WorldWideScience

Sample records for facility security plan

  1. Information security management system planning for CBRN facilities

    International Nuclear Information System (INIS)

    Lenaeu, Joseph D.; O'Neil, Lori Ross; Leitch, Rosalyn M.; Glantz, Clifford S.; Landine, Guy P.; Bryant, Janet L.; Lewis, John; Mathers, Gemma; Rodger, Robert; Johnson, Christopher

    2015-01-01

    The focus of this document is to provide guidance for the development of information security management system planning documents at chemical, biological, radiological, or nuclear (CBRN) facilities. It describes a risk-based approach for planning information security programs based on the sensitivity of the data developed, processed, communicated, and stored on facility information systems.

  2. Information security management system planning for CBRN facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lenaeu, Joseph D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); O' Neil, Lori Ross [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leitch, Rosalyn M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glantz, Clifford S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Landine, Guy P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bryant, Janet L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lewis, John [National Nuclear Lab., Workington (United Kingdom); Mathers, Gemma [National Nuclear Lab., Workington (United Kingdom); Rodger, Robert [National Nuclear Lab., Workington (United Kingdom); Johnson, Christopher [National Nuclear Lab., Workington (United Kingdom)

    2015-12-01

    The focus of this document is to provide guidance for the development of information security management system planning documents at chemical, biological, radiological, or nuclear (CBRN) facilities. It describes a risk-based approach for planning information security programs based on the sensitivity of the data developed, processed, communicated, and stored on facility information systems.

  3. Risk evaluation system for facility safeguards and security planning

    International Nuclear Information System (INIS)

    Udell, C.J.; Carlson, R.L.

    1987-01-01

    The Risk Evaluation System (RES) is an integrated approach to determining safeguards and security effectiveness and risk. RES combines the planning and technical analysis into a format that promotes an orderly development of protection strategies, planning assumptions, facility targets, vulnerability and risk determination, enhancement planning, and implementation. In addition, the RES computer database program enhances the capability of the analyst to perform a risk evaluation of the facility. The computer database is menu driven using data input screens and contains an algorithm for determining the probability of adversary defeat and risk. Also, base case and adjusted risk data records can be maintained and accessed easily

  4. Risk evaluation system for facility safeguards and security planning

    International Nuclear Information System (INIS)

    Udell, C.J.; Carlson, R.L.

    1987-01-01

    The Risk Evaluation System (RES) is an integrated approach to determining safeguards and security effectiveness and risk. RES combines the planning and technical analysis into a format that promotes an orderly development of protection strategies, planing assumptions, facility targets, vulnerability and risk determination, enhancement planning, and implementation. In addition, the RES computer database program enhances the capability of the analyst to perform a risk evaluation of the facility. The computer database is menu driven using data input screens and contains an algorithm for determining the probability of adversary defeat and risk. Also, base case and adjusted risk data records can be maintained and accessed easily

  5. Computer Security Incident Response Planning at Nuclear Facilities

    International Nuclear Information System (INIS)

    2016-06-01

    The purpose of this publication is to assist Member States in developing comprehensive contingency plans for computer security incidents with the potential to impact nuclear security and/or nuclear safety. It provides an outline and recommendations for establishing a computer security incident response capability as part of a computer security programme, and considers the roles and responsibilities of the system owner, operator, competent authority, and national technical authority in responding to a computer security incident with possible nuclear security repercussions

  6. USCG Security Plan Review

    Data.gov (United States)

    Department of Homeland Security — The Security Plan Review module is intended for vessel and facility operators to check on the status of their security plans submitted to the US Coast Guard. A MISLE...

  7. Acceptance criteria for the evaluation of Category 1 fuel cycle facility physical security plans

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, P.A.

    1991-10-01

    This NUREG document presents criteria developed from US Nuclear Regulatory Commission regulations for the evaluation of physical security plans submitted by Category 1 fuel facility licensees. Category 1 refers to those licensees who use or possess a formula quantity of strategic special nuclear material.

  8. Acceptance criteria for the evaluation of Category 1 fuel cycle facility physical security plans

    International Nuclear Information System (INIS)

    Dwyer, P.A.

    1991-10-01

    This NUREG document presents criteria developed from US Nuclear Regulatory Commission regulations for the evaluation of physical security plans submitted by Category 1 fuel facility licensees. Category 1 refers to those licensees who use or possess a formula quantity of strategic special nuclear material

  9. Security of pipeline facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.C. [Alberta Energy and Utilities Board, Calgary, AB (Canada); Van Egmond, C.; Duquette, L. [National Energy Board, Calgary, AB (Canada); Revie, W. [Canada Centre for Mineral and Energy Technology, Ottawa, ON (Canada)

    2005-07-01

    This working group provided an update on provincial, federal and industry directions regarding the security of pipeline facilities. The decision to include security issues in the NEB Act was discussed as well as the Pipeline Security Management Assessment Project, which was created to establish a better understanding of existing security management programs as well as to assist the NEB in the development and implementation of security management regulations and initiatives. Amendments to the NEB were also discussed. Areas of pipeline security management assessment include physical safety management; cyber and information security management; and personnel security. Security management regulations were discussed, as well as implementation policies. Details of the Enbridge Liquids Pipelines Security Plan were examined. It was noted that the plan incorporates flexibility for operations and is integrated with Emergency Response and Crisis Management. Asset characterization and vulnerability assessments were discussed, as well as security and terrorist threats. It was noted that corporate security threat assessment and auditing are based on threat information from the United States intelligence community. It was concluded that the oil and gas industry is a leader in security in North America. The Trans Alaska Pipeline Incident was discussed as a reminder of how costly accidents can be. Issues of concern for the future included geographic and climate issues. It was concluded that limited resources are an ongoing concern, and that the regulatory environment is becoming increasingly prescriptive. Other concerns included the threat of not taking international terrorism seriously, and open media reporting of vulnerability of critical assets, including maps. tabs., figs.

  10. 6 CFR 27.225 - Site security plans.

    Science.gov (United States)

    2010-01-01

    ... Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY CHEMICAL FACILITY ANTI-TERRORISM STANDARDS Chemical Facility Security Program § 27.225 Site security plans. (a) The Site Security Plan must... chemical facility security. (b) Except as provided in § 27.235, a covered facility must complete the Site...

  11. PUREX facility preclosure work plan

    International Nuclear Information System (INIS)

    Engelmann, R.H.

    1997-01-01

    This preclosure work plan presents a description of the PUREX Facility, the history of the waste managed, and addresses transition phase activities that position the PUREX Facility into a safe and environmentally secure configuration. For purposes of this documentation, the PUREX Facility does not include the PUREX Storage Tunnels (DOE/RL-90/24). Information concerning solid waste management units is discussed in the Hanford Facility Dangerous Waste Permit Application, General Information Portion (DOE/RL-91-28, Appendix 2D)

  12. Virtual reality in the creation of a tool to support planning of physical security at nuclear facilities

    International Nuclear Information System (INIS)

    Santo, Andre Cotelli do E.; Mol, Antonio Carlos de A.; Goncalves, Deise Galvao de S.; Marins, Eugenio; Freitas, Victor Goncalves G.

    2013-01-01

    In recent years was observed the importance of improving the physical security of nuclear facilities, mainly due to the increasing advancement of brazilian nuclear program. The present work aims to develop a tool that allows the visualization and planning of action strategies in a virtual environment, in order to improve this security. To this end, was created a virtual model of the Instituto de Engenharia Nuclear (IEN), which is located on Ilha do Fundao - Rio de Janeiro - Brazil. This environment is a three-dimensional model, with representations close to reality, where virtual characters (avatars) can move and interact in real time. In this virtual world, it was developed a dynamic weather system, where is possible to change between day and night, and climate changes such as: rain, storms, snow, among other features. Furthermore, the tool has a surveillance system using virtual cameras, allowing the monitoring of the environment. This way, making possible to simulate strategies approach, allowing an evaluation of the procedures performed, as well as assisting in the training of security installations subject to radiation. (author)

  13. Virtual reality in the creation of a tool to support planning of physical security at nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Santo, Andre Cotelli do E.; Mol, Antonio Carlos de A.; Goncalves, Deise Galvao de S.; Marins, Eugenio; Freitas, Victor Goncalves G., E-mail: cotelli.andre@gmail.com, E-mail: mol@ien.gov.br, E-mail: deise.galvao@gmail.com, E-mail: eugenio@ien.gov.br, E-mail: vgoncalves@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio De Janeiro, RJ (Brazil)

    2013-07-01

    In recent years was observed the importance of improving the physical security of nuclear facilities, mainly due to the increasing advancement of brazilian nuclear program. The present work aims to develop a tool that allows the visualization and planning of action strategies in a virtual environment, in order to improve this security. To this end, was created a virtual model of the Instituto de Engenharia Nuclear (IEN), which is located on Ilha do Fundao - Rio de Janeiro - Brazil. This environment is a three-dimensional model, with representations close to reality, where virtual characters (avatars) can move and interact in real time. In this virtual world, it was developed a dynamic weather system, where is possible to change between day and night, and climate changes such as: rain, storms, snow, among other features. Furthermore, the tool has a surveillance system using virtual cameras, allowing the monitoring of the environment. This way, making possible to simulate strategies approach, allowing an evaluation of the procedures performed, as well as assisting in the training of security installations subject to radiation. (author)

  14. Perimeter security for Minnesota correctional facilities

    Energy Technology Data Exchange (ETDEWEB)

    Crist, D. [Minnesota Department of Corrections, St. Paul, MN (United States); Spencer, D.D. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-31

    For the past few years, the Minnesota Department of Corrections, assisted by Sandia National Laboratories, has developed a set of standards for perimeter security at medium, close, and maximum custody correctional facilities in the state. During this process, the threat to perimeter security was examined and concepts about correctional perimeter security were developed. This presentation and paper will review the outcomes of this effort, some of the lessons learned, and the concepts developed during this process and in the course of working with architects, engineers and construction firms as the state upgraded perimeter security at some facilities and planned new construction at other facilities.

  15. Hanford Facility contingency plan

    International Nuclear Information System (INIS)

    Sutton, L.N.; Miskho, A.G.; Brunke, R.C.

    1993-10-01

    The Hanford Facility Contingency Plan, together with each TSD unit-specific contingency plan, meets the WAC 173-303 requirements for a contingency plan. This plan includes descriptions of responses to a nonradiological hazardous materials spill or release at Hanford Facility locations not covered by TSD unit-specific contingency plans or building emergency plans. This plan includes descriptions of responses for spills or releases as a result of transportation activities, movement of materials, packaging, and storage of hazardous materials

  16. A Study of Facilities and Infrastructure Planning, Prioritization, and Assessment at Federal Security Laboratories (Revised)

    Science.gov (United States)

    2013-02-01

    Engineer Support Agency Air Force Real Property Agency Wright-Patterson Air Force Base (AFB), OH; Kirtland AFB, New Mexico ; Eglin AFB, Florida...emergency response to their site. • Sandia works with the State of New Mexico Finance Authority to finance the development of a new facility...algorithms specific to an F&I type to generate the modernization requirement based on Replacement Plant Value, depreciation , expected service life, and

  17. A Study of Facilities and Infrastructure Planning, Prioritization, and Assessment at Federal Security Laboratories

    Science.gov (United States)

    2012-11-01

    Support Agency Air Force Real Property Agency Wright-Patterson Air Force Base (AFB), OH; Kirtland AFB, New Mexico ; Eglin AFB, Florida; Edwards...with the State of New Mexico Finance Authority to finance the development of a new facility. Laboratories communicated frequently with State and...modernization requirement based on Replacement Plant Value, depreciation , expected service life, and residual value at the end of the expected service life

  18. Security culture for nuclear facilities

    Science.gov (United States)

    Gupta, Deeksha; Bajramovic, Edita

    2017-01-01

    Natural radioactive elements are part of our environment and radioactivity is a natural phenomenon. There are numerous beneficial applications of radioactive elements (radioisotopes) and radiation, starting from power generation to usages in medical, industrial and agriculture applications. But the risk of radiation exposure is always attached to operational workers, the public and the environment. Hence, this risk has to be assessed and controlled. The main goal of safety and security measures is to protect human life, health, and the environment. Currently, nuclear security considerations became essential along with nuclear safety as nuclear facilities are facing rapidly increase in cybersecurity risks. Therefore, prevention and adequate protection of nuclear facilities from cyberattacks is the major task. Historically, nuclear safety is well defined by IAEA guidelines while nuclear security is just gradually being addressed by some new guidance, especially the IAEA Nuclear Security Series (NSS), IEC 62645 and some national regulations. At the overall level, IAEA NSS 7 describes nuclear security as deterrence and detection of, and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear, other radioactive substances and their associated facilities. Nuclear security should be included throughout nuclear facilities. Proper implementation of a nuclear security culture leads to staff vigilance and a high level of security posture. Nuclear security also depends on policy makers, regulators, managers, individual employees and members of public. Therefore, proper education and security awareness are essential in keeping nuclear facilities safe and secure.

  19. Integrated Facilities and Infrastructure Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Reisz Westlund, Jennifer Jill

    2017-03-01

    Our facilities and infrastructure are a key element of our capability-based science and engineering foundation. The focus of the Integrated Facilities and Infrastructure Plan is the development and implementation of a comprehensive plan to sustain the capabilities necessary to meet national research, design, and fabrication needs for Sandia National Laboratories’ (Sandia’s) comprehensive national security missions both now and into the future. A number of Sandia’s facilities have reached the end of their useful lives and many others are not suitable for today’s mission needs. Due to the continued aging and surge in utilization of Sandia’s facilities, deferred maintenance has continued to increase. As part of our planning focus, Sandia is committed to halting the growth of deferred maintenance across its sites through demolition, replacement, and dedicated funding to reduce the backlog of maintenance needs. Sandia will become more agile in adapting existing space and changing how space is utilized in response to the changing requirements. This Integrated Facilities & Infrastructure (F&I) Plan supports the Sandia Strategic Plan’s strategic objectives, specifically Strategic Objective 2: Strengthen our Laboratories’ foundation to maximize mission impact, and Strategic Objective 3: Advance an exceptional work environment that enables and inspires our people in service to our nation. The Integrated F&I Plan is developed through a planning process model to understand the F&I needs, analyze solution options, plan the actions and funding, and then execute projects.

  20. Strategic planning and security analysis

    International Nuclear Information System (INIS)

    DePasquale, S.

    1991-01-01

    Nuclear security master planning is a deliberative process, founded on the premise that the broad scope of security must be analyzed before any meaningful determinations may be reached on an individual security aspect. This paper examines the analytical process required in developing a Security Master Plan. It defines a four stage process concluding with the selection of security measures encompassing physical security, policy and procedure considerations and guard force deployment. The final product orchestrates each security measure in a complementary and supportive configuration

  1. Security planning an applied approach

    CERN Document Server

    Lincke, Susan

    2015-01-01

    This book guides readers through building an IT security plan. Offering a template, it helps readers to prioritize risks, conform to regulation, plan their defense and secure proprietary/confidential information. The process is documented in the supplemental online security workbook. Security Planning is designed for the busy IT practitioner, who does not have time to become a security expert, but needs a security plan now. It also serves to educate the reader of a broader set of concepts related to the security environment through the Introductory Concepts and Advanced sections. The book serv

  2. Computer Security at Nuclear Facilities

    International Nuclear Information System (INIS)

    Cavina, A.

    2013-01-01

    This series of slides presents the IAEA policy concerning the development of recommendations and guidelines for computer security at nuclear facilities. A document of the Nuclear Security Series dedicated to this issue is on the final stage prior to publication. This document is the the first existing IAEA document specifically addressing computer security. This document was necessary for 3 mains reasons: first not all national infrastructures have recognized and standardized computer security, secondly existing international guidance is not industry specific and fails to capture some of the key issues, and thirdly the presence of more or less connected digital systems is increasing in the design of nuclear power plants. The security of computer system must be based on a graded approach: the assignment of computer system to different levels and zones should be based on their relevance to safety and security and the risk assessment process should be allowed to feed back into and influence the graded approach

  3. Physical security of nuclear facilities

    International Nuclear Information System (INIS)

    Dixon, H.

    1987-01-01

    A serious problem with present security systems at nuclear facilities is that the threats and standards prepared by the NRC and DOE are general, and the field offices are required to develop their own local threats and, on that basis, to prepared detailed specifications for security systems at sites in their jurisdiction. As a result, the capabilities of the systems vary across facilities. Five steps in particular are strongly recommended as corrective measures: 1. Those agencies responsible for civil nuclear facilities should jointly prepare detailed threat definitions, operational requirements, and equipment specifications to protect generic nuclear facilities, and these matters should be issued as policy. The agencies should provide sufficient detail to guide the design of specific security systems and to identify candidate components. 2. The DOE, NRC, and DOD should explain to Congress why government-developed security and other military equipment are not used to upgrade existing security systems and to stock future ones. 3. Each DOE and NRC facility should be assessed to determine the impact on the size of the guard force and on warning time when personnel-detecting radars and ground point sensors are installed. 4. All security guards and technicians should be investigated for the highest security clearance, with reinvestigations every four years. 5. The processes and vehicles used in intrafacility transport of nuclear materials should be evaluated against a range of threats and attack scenarios, including violent air and vehicle assaults. All of these recommendations are feasible and cost-effective. The appropriate congressional subcommittees should direct that they be implemented as soon as possible

  4. Computer Security at Nuclear Facilities (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The possibility that nuclear or other radioactive material could be used for malicious purposes cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material and to respond effectively to nuclear security events. States have agreed to strengthen existing instruments and have established new international legal instruments to enhance nuclear security worldwide. Nuclear security is fundamental in the management of nuclear technologies and in applications where nuclear or other radioactive material is used or transported. Through its Nuclear Security Programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in such material; national response plans; and contingency measures. With its Nuclear Security Series, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. The IAEA Nuclear Security Series comprises Nuclear Security Fundamentals, which include objectives and essential elements of a State's nuclear security regime; Recommendations; Implementing Guides; and Technical Guidance. Each State carries the full responsibility for nuclear security, specifically: to provide for the security of nuclear and other radioactive material and associated facilities and activities; to ensure the security of such material in use, storage or in transport; to combat illicit trafficking and the inadvertent movement of such material; and to be prepared to respond to a nuclear security event. This publication is in the Technical Guidance

  5. 304 Concretion facility closure plan

    International Nuclear Information System (INIS)

    1990-04-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium Zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/Zircaloy-2 alloy, and Zircaloy-2 chips and fines were secured in concrete billets in the 304 Concretion Facility, located in the 300 Area. The beryllium/Zircaloy-2 alloy and Zircaloy-2 chips and fines are designated as low-level radioactive mixed waste (LLRMW) with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Concretion Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act of 1976 (RCRA). This closure plan presents a description of the facility, the history of materials and wastes managed, and the procedures that will be followed to close the 304 Concretion Facility (304 Facility). Clean closure of the 304 Facility is the proposed method for closure of the facility. Justification for this proposal is presented. 15 refs., 22 figs., 4 tabs

  6. Planning security for supply security

    International Nuclear Information System (INIS)

    Spies von Buellesheim.

    1994-01-01

    The situation of the hardcoal mining industry is still difficult, however better than last year. Due to better economic trends in the steel industry, though on a lower level, sales in 1994 have stabilised. Stocks are being significantly reduced. As to the production, we have nearly reached a level which has been politically agreed upon in the long run. Due to the determined action of the coalmining companies, a joint action of management and labour, the strong pressure has been mitigated. On the energy policy sector essential targets have been achieved: First of all the ECSC decision on state aid which will be in force up to the year 2002 and which will contribute to accomplish the results of the 1991 Coal Round. Furthermore, the 1994 Act on ensuring combustion of hardcoal in electricity production up to the year 2005. The hardcoal mining industry is grateful to all political decision makers for the achievements. The industry demands, however, that all questions still left open, including the procurement of financial means after 1996, should be settled soon on the basis of the new act and in accordance with the 1991 Coal Round and the energy concept of the Federal Government. German hardcoal is an indispensable factor within a balanced energy mix which guarantees the security of our energy supply, the security of the price structure and the respect of the environment. (orig.) [de

  7. Comprehensive facilities plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitate existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.

  8. 304 Concretion Facility Closure Plan

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium with Zircaloy-2 and copper silicon allo , uranium-titanium alloy, beryllium/Zircaloy-2 alloy, and Zircaloy-2 chips and fines were secured in concrete billets (7.5-gal containers) in the 304 Concretion Facility (304 Facility), located in the 300 Area. The beryllium/Zircaloy-2 alloy and Zircaloy-2 chips and fines are designated as low-level radioactive mixed waste (LLRMW) with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Concretion Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act of 1976 (RCRA) and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040 (Ecology 1991). This closure plan presents a description of the facility, the history of materials and wastes managed, and the procedures that will be followed to close the 304 Facility. The strategy for closure of the 304 Facility is presented in Section 6.0

  9. Macro Security Methodology for Conducting Facility Security and Sustainability Assessments

    International Nuclear Information System (INIS)

    Herdes, Greg A.; Freier, Keith D.; Wright, Kyle A.

    2007-01-01

    Pacific Northwest National Laboratory (PNNL) has developed a macro security strategy that not only addresses traditional physical protection systems, but also focuses on sustainability as part of the security assessment and management process. This approach is designed to meet the needs of virtually any industry or environment requiring critical asset protection. PNNL has successfully demonstrated the utility of this macro security strategy through its support to the NNSA Office of Global Threat Reduction implementing security upgrades at international facilities possessing high activity radioactive sources that could be used in the assembly of a radiological dispersal device, commonly referred to as a 'dirty bomb'. Traditional vulnerability assessments provide a snap shot in time of the effectiveness of a physical protection system without significant consideration to the sustainability of the component elements that make up the system. This paper describes the approach and tools used to integrate technology, plans and procedures, training, and sustainability into a simple, quick, and easy-to-use security assessment and management tool.

  10. Security of water treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Forsha, C.A. [Univ. of Pittsburgh at Johnstown, Johnstowne, PA (United States)

    2002-06-15

    The safety of the nation's water supply is at risk. Although harm may or may not be done to water sources, the fear is definitely a factor. No matter what size system supplies water, the community will expect increased security. Decisions must be made as to how much will be spent on security and what measures will be taken with the money. Small systems often have a difficult time in finding a direction to focus on. Physical and electronic protection is less involved because of the scale of service. Biological contamination is difficult to prevent if the assailants are determined. Small-scale water storage and low magnitudes of flow increase a contamination threat. Large systems have a size advantage when dealing with biological contamination because of the dilution factor, but physical and electronic protection is more involved. Large-scale systems are more likely to overlook components. A balance is maintained through anything dealing with the public. Having greater assurance that water quality will be maintained comes at the cost of knowing less about how water is protected and treated, and being banned from public land within watersheds that supply drinking water. Whether good or bad ideas are being implemented, security of water treatment facilities is changing. (author)

  11. Security of water treatment facilities

    International Nuclear Information System (INIS)

    Forsha, C.A.

    2002-01-01

    The safety of the nation's water supply is at risk. Although harm may or may not be done to water sources, the fear is definitely a factor. No matter what size system supplies water, the community will expect increased security. Decisions must be made as to how much will be spent on security and what measures will be taken with the money. Small systems often have a difficult time in finding a direction to focus on. Physical and electronic protection is less involved because of the scale of service. Biological contamination is difficult to prevent if the assailants are determined. Small-scale water storage and low magnitudes of flow increase a contamination threat. Large systems have a size advantage when dealing with biological contamination because of the dilution factor, but physical and electronic protection is more involved. Large-scale systems are more likely to overlook components. A balance is maintained through anything dealing with the public. Having greater assurance that water quality will be maintained comes at the cost of knowing less about how water is protected and treated, and being banned from public land within watersheds that supply drinking water. Whether good or bad ideas are being implemented, security of water treatment facilities is changing. (author)

  12. Study on Nuclear Facility Cyber Security Awareness and Training Programs

    International Nuclear Information System (INIS)

    Lee, Jung-Woon; Song, Jae-Gu; Lee, Cheol-Kwon

    2016-01-01

    Cyber security awareness and training, which is a part of operational security controls, is defined to be implemented later in the CSP implementation schedule. However, cyber security awareness and training is a prerequisite for the appropriate implementation of a cyber security program. When considering the current situation in which it is just started to define cyber security activities and to assign personnel who has responsibilities for performing those activities, a cyber security awareness program is necessary to enhance cyber security culture for the facility personnel to participate positively in cyber security activities. Also before the implementation of stepwise CSP, suitable education and training should be provided to both cyber security teams (CST) and facility personnel who should participate in the implementation. Since such importance and urgency of cyber security awareness and training is underestimated at present, the types, trainees, contents, and development strategies of cyber security awareness and training programs are studied to help Korean nuclear facilities to perform cyber security activities more effectively. Cyber security awareness and training programs should be developed ahead of the implementation of CSP. In this study, through the analysis of requirements in the regulatory standard RS-015, the types and trainees of overall cyber security training programs in nuclear facilities are identified. Contents suitable for a cyber security awareness program and a technical training program are derived. It is suggested to develop stepwise the program contents in accordance with the development of policies, guides, and procedures as parts of the facility cyber security program. Since any training programs are not available for the specialized cyber security training in nuclear facilities, a long-term development plan is necessary. As alternatives for the time being, several cyber security training courses for industrial control systems by

  13. Study on Nuclear Facility Cyber Security Awareness and Training Programs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung-Woon; Song, Jae-Gu; Lee, Cheol-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Cyber security awareness and training, which is a part of operational security controls, is defined to be implemented later in the CSP implementation schedule. However, cyber security awareness and training is a prerequisite for the appropriate implementation of a cyber security program. When considering the current situation in which it is just started to define cyber security activities and to assign personnel who has responsibilities for performing those activities, a cyber security awareness program is necessary to enhance cyber security culture for the facility personnel to participate positively in cyber security activities. Also before the implementation of stepwise CSP, suitable education and training should be provided to both cyber security teams (CST) and facility personnel who should participate in the implementation. Since such importance and urgency of cyber security awareness and training is underestimated at present, the types, trainees, contents, and development strategies of cyber security awareness and training programs are studied to help Korean nuclear facilities to perform cyber security activities more effectively. Cyber security awareness and training programs should be developed ahead of the implementation of CSP. In this study, through the analysis of requirements in the regulatory standard RS-015, the types and trainees of overall cyber security training programs in nuclear facilities are identified. Contents suitable for a cyber security awareness program and a technical training program are derived. It is suggested to develop stepwise the program contents in accordance with the development of policies, guides, and procedures as parts of the facility cyber security program. Since any training programs are not available for the specialized cyber security training in nuclear facilities, a long-term development plan is necessary. As alternatives for the time being, several cyber security training courses for industrial control systems by

  14. 6 CFR 37.41 - Security plan.

    Science.gov (United States)

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Security plan. 37.41 Section 37.41 Domestic... Security plan. (a) In General. States must have a security plan that addresses the provisions in paragraph (b) of this section and must submit the security plan as part of its REAL ID certification under § 37...

  15. Grout Facilities standby plan

    Energy Technology Data Exchange (ETDEWEB)

    Claghorn, R.D.; Kison, P.F.; Nunamaker, D.R.; Yoakum, A.K.

    1994-09-29

    This plan defines how the Grout Facilities will be deactivated to meet the intent of the recently renegotiated Tri-Party Agreement (TPA). The TPA calls for the use of the grout process as an emergency option only in the event that tank space is not available to resolve tank safety issues. The availability of new tanks is expected by 1997. Since a grout startup effort would take an estimated two years, a complete termination of the Grout Disposal Program is expected in December 1995. The former Tank Waste Remediation (TWRS) Strategy, adopted in 1988, called for the contents of Hanford`s 28 newer double-shell waste tanks to be separated into high-level radioactive material to be vitrified and disposed of in a geologic repository; low-level wastes were to be sent to the Grout Facility to be made into a cement-like-mixture and poured into underground vaults at Hanford for disposal. The waste in the 149 older single-shell tanks (SST) were to undergo further study and analysis before a disposal decision was made.

  16. Grout Facilities standby plan

    International Nuclear Information System (INIS)

    Claghorn, R.D.; Kison, P.F.; Nunamaker, D.R.; Yoakum, A.K.

    1994-01-01

    This plan defines how the Grout Facilities will be deactivated to meet the intent of the recently renegotiated Tri-Party Agreement (TPA). The TPA calls for the use of the grout process as an emergency option only in the event that tank space is not available to resolve tank safety issues. The availability of new tanks is expected by 1997. Since a grout startup effort would take an estimated two years, a complete termination of the Grout Disposal Program is expected in December 1995. The former Tank Waste Remediation (TWRS) Strategy, adopted in 1988, called for the contents of Hanford's 28 newer double-shell waste tanks to be separated into high-level radioactive material to be vitrified and disposed of in a geologic repository; low-level wastes were to be sent to the Grout Facility to be made into a cement-like-mixture and poured into underground vaults at Hanford for disposal. The waste in the 149 older single-shell tanks (SST) were to undergo further study and analysis before a disposal decision was made

  17. Facility planning and site development

    International Nuclear Information System (INIS)

    Reisman, R.C.; Handmaker, H.

    1986-01-01

    Planning for a magnetic resonance imaging (MRI) facility should provide for the efficient operation of current and future MRI devices and must also take into consideration a broad range of general planning principles. Control of budgeted facility costs and construction schedules is of increasing importance due to the magnitude of expense of MRI facility development as well as the need to protect institutional or entrepreneurial investment. In a competitive environment facility costs may be the determining factor in a project's success

  18. Ghana's Integrated Nuclear Security Support Plan

    International Nuclear Information System (INIS)

    Dahlstrom, Danielle

    2013-01-01

    At the Korle Bu Teaching Hospital outside Accra, Pearl Lovelyn Lawson checks the records of the next patient to undergo radiotherapy and adjusts the dose settings of the teletherapy machine. It is business as usual at the facility that treats over fifty patients each day. But Lawson's routine now includes additional procedures to ensure that the highly radioactive cobalt-60 source located inside the machine remains secure. Nuclear security devices and systems such as double locks, motion sensors, and cameras that transmit images to a central alarm system have been installed to ensure that the source cannot be stolen, the facility sabotaged, or unauthorized access gained. At Korle Bu physical protection measures were upgraded as part of Ghana's Integrated Nuclear Security Support Plan (INSSP). Preventing, detecting and responding to criminal acts like the theft or illegal transfer of a radioactive source, is an international priority that could be addressed through an INSSP. As one of its key nuclear security services, the IAEA assists Member States in drafting such plans. An INSSP is developed jointly with the Member State, using a holistic approach to nuclear security capacity building. It reinforces the primary objective of a State's nuclear security regime to protect people, society, and the environment from the harmful consequences of a nuclear security event. Addressing five components - the legal and regulatory framework, prevention, detection, and sustainability - the jointly developed plan identifies the needs, responsible entities and organizations within the State, as well as the timeframe for the implementation of agreed nuclear security related activities. Ghana's INSSP, tailored to its specific needs, is based on findings and recommendations from advisory service missions carried out in Ghana, including an International Nuclear Security Advisory Service mission and an International Physical Protection Advisory Service mission. Ghana's INSSP was

  19. 105-C Facility characterization plan

    International Nuclear Information System (INIS)

    Miller, R.L.

    1997-01-01

    This facility characterization plan is a site-specific document that describes how quantification and qualification of the radiological sources and the radioactive contamination in the 105-C Building will be accomplished. Characterization of hazardous materials will be addressed in a separate plan. This plan was developed from review of video tapes, photographs, and records. The purpose of this characterization plan is to provide an efficient and cost-effective method for determining the distribution of radioactive contamination at the 105-C Facility

  20. Conducting Computer Security Assessments at Nuclear Facilities

    International Nuclear Information System (INIS)

    2016-06-01

    Computer security is increasingly recognized as a key component in nuclear security. As technology advances, it is anticipated that computer and computing systems will be used to an even greater degree in all aspects of plant operations including safety and security systems. A rigorous and comprehensive assessment process can assist in strengthening the effectiveness of the computer security programme. This publication outlines a methodology for conducting computer security assessments at nuclear facilities. The methodology can likewise be easily adapted to provide assessments at facilities with other radioactive materials

  1. Master planning for successful safeguard/security systems engineering

    International Nuclear Information System (INIS)

    Bruckner, D.G.

    1987-01-01

    The development and phased implementation of an overall master plan for weapons systems and facilities engaged in the complexities of high technology provides a logical road map for system accomplishment. An essential factor in such a comprehensive plan is development of an integrated systems security engineering plan. Some DOD programs use new military regulations and policy directives to mandate consideration of the safeguard/security disciplines be considered for weapons systems and facilities during the entire life cycle of the program. The emphasis is to make certain the weapon system and applicable facilities have complementary security features. Together they must meet the needs of the operational mission and, at the same time, provide the security forces practical solutions to their requirements. This paper discusses the process of meshing the safe- guards/security requirements with an overall the master plan and the challenges attendant to this activity

  2. 6 CFR 27.245 - Review and approval of site security plans.

    Science.gov (United States)

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Review and approval of site security plans. 27.245 Section 27.245 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY CHEMICAL FACILITY ANTI-TERRORISM STANDARDS Chemical Facility Security Program § 27.245 Review and approval of site...

  3. Nuclear Station Facilities Improvement Planning

    International Nuclear Information System (INIS)

    Hooks, R. W.; Lunardini, A. L.; Zaben, O.

    1991-01-01

    An effective facilities improvement program will include a plan for the temporary relocation of personnel during the construction of an adjoining service building addition. Since the smooth continuation of plant operation is of paramount importance, the phasing plan is established to minimize the disruptions in day-to-day station operation and administration. This plan should consider the final occupancy arrangements and the transition to the new structure; for example, computer hookup and phase-in should be considered. The nuclear industry is placing more emphasis on safety and reliability of nuclear power plants. In order to do this, more emphasis is placed on operations and maintenance. This results in increased size of managerial, technical and maintenance staffs. This in turn requires improved office and service facilities. The facilities that require improvement may include training areas, rad waste processing and storage facilities, and maintenance facilities. This paper discusses an approach for developing an effective program to plan and implement these projects. These improvement projects can range in magnitude from modifying a simple system to building a new structure to allocating space for a future project. This paper addresses the planning required for the new structures with emphasis on site location, space allocation, and internal layout. Since facility planning has recently been completed by Sargent and Leyden at six U. S. nuclear stations, specific examples from some of those plants are presented. Site planning and the establishment of long-range goals are of the utmost importance when undertaking a facilities improvement program for a nuclear station. A plan that considers the total site usage will enhance the value of both the new and existing facilities. Proper planning at the beginning of the program can minimize costs and maximize the benefits of the program

  4. Security of radioactive sources in radiation facilities

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and safety standards are formulated on the basis of internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides and guidelines elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Board before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. In India, radiation sources are being widely used for societal benefits in industry, medical practices, research, training and agriculture. It has been reported from all over the world that unsecured radioactive sources caused serious radiological accidents involving radiation injuries and fatalities. Particular concern was expressed regarding radioactive sources that have become orphaned (not under regulatory control) or vulnerable (under weak regulatory control and about to be orphaned). There is a concern about safety and security of radioactive sources and hence the need of stringent regulatory control over the handling of the sources and their security. In view of this, this guide is prepared which gives provisions necessary to safeguard radiation installations against theft of radioactive sources and other malevolent acts that may result in radiological consequences. It is, therefore, required that the radiation sources are used safely and managed securely by only authorised personnel. This guide is intended to be used by users of radiation sources in developing the necessary security plan for

  5. Hanford Surplus Facilities Program plan

    International Nuclear Information System (INIS)

    Hughes, M.C.; Wahlen, R.K.; Winship, R.A.

    1989-09-01

    The Hanford Surplus Facilities Program is responsible for the safe and cost-effective surveillance, maintenance, and decommissioning of surplus facilities at the Hanford Site. The management of these facilities requires a surveillance and maintenance program to keep them in a safe condition and development of a plan for ultimate disposition. Criteria used to evaluate each factor relative to decommissioning are based on the guidelines presented by the US Department of Energy-Richland Operations Office, Defense Facilities Decommissioning Program Office, and are consistent with the Westinghouse Hanford Company commitment to decommission the Hanford Site retired facilities in the safest and most cost-effective way achievable. This document outlines the plan for managing these facilities to the end of disposition

  6. Security issues in a parking facility.

    Science.gov (United States)

    Gutman, Abraham; Lew, I Paul

    2009-01-01

    Active security supported by passive security measures which are part of the physical design of a parking facility are essential to preventing crimes from happening wherever and whenever possible, the authors maintain. In the article, they focus on design elements which can be most effective in discouraging potential perpetrators.

  7. Chemical Facility Security: Regulation and Issues for Congress

    National Research Council Canada - National Science Library

    Shea, Dana A; Tatelman, Todd B

    2007-01-01

    The Department of Homeland Security (DHS) has proposed security regulations for chemical facilities, implementing the statutory authority granted in the Homeland Security Appropriations Act, 2007 (P.L...

  8. Global Security Program Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bretzke, John C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-25

    The Global Security Directorate mission is to protect against proliferant and unconventional nuclear threats –regardless of origin - and emerging new threats. This mission is accomplished as the Los Alamos National Laboratory staff completes projects for our numerous sponsors. The purpose of this Program Management Plan is to establish and clearly describe the GS program management requirements including instructions that are essential for the successful management of projects in accordance with our sponsor requirements. The detailed information provided in this document applies to all LANL staff and their subcontractors that are performing GS portfolio work. GS management is committed to a culture that ensures effective planning, execution, and achievement of measurable results in accordance with the GS mission. Outcomes of such a culture result in better communication, delegated authority, accountability, and increased emphasis on safely and securely achieving GS objectives.

  9. 340 Facility maintenance implementation plan

    International Nuclear Information System (INIS)

    1995-03-01

    This Maintenance Implementation Plan (MIP) has been developed for maintenance functions associated with the 340 Facility. This plan is developed from the guidelines presented by Department of Energy (DOE) Order 4330.4B, Maintenance Management Program (DOE 1994), Chapter II. The objective of this plan is to provide baseline information for establishing and identifying Westinghouse Hanford Company (WHC) conformance programs and policies applicable to implementation of DOE order 4330.4B guidelines. In addition, this maintenance plan identifies the actions necessary to develop a cost-effective and efficient maintenance program at the 340 Facility. Primary responsibility for the performance and oversight of maintenance activities at the 340 Facility resides with Westinghouse Hanford Company (WHC). Maintenance at the 340 Facility is performed by ICF-Kaiser Hanford (ICF-KH) South Programmatic Services crafts persons. This 340 Facility MIP provides interface requirements and responsibilities as they apply specifically to the 340 Facility. This document provides an implementation schedule which has been developed for items considered to be deficient or in need of improvement. The discussion sections, as applied to implementation at the 340 Facility, have been developed from a review of programs and practices utilizing the graded approach. Biennial review and additional reviews are conducted as significant programmatic and mission changes are made. This document is revised as necessary to maintain compliance with DOE requirements

  10. 340 Facility maintenance implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This Maintenance Implementation Plan (MIP) has been developed for maintenance functions associated with the 340 Facility. This plan is developed from the guidelines presented by Department of Energy (DOE) Order 4330.4B, Maintenance Management Program (DOE 1994), Chapter II. The objective of this plan is to provide baseline information for establishing and identifying Westinghouse Hanford Company (WHC) conformance programs and policies applicable to implementation of DOE order 4330.4B guidelines. In addition, this maintenance plan identifies the actions necessary to develop a cost-effective and efficient maintenance program at the 340 Facility. Primary responsibility for the performance and oversight of maintenance activities at the 340 Facility resides with Westinghouse Hanford Company (WHC). Maintenance at the 340 Facility is performed by ICF-Kaiser Hanford (ICF-KH) South Programmatic Services crafts persons. This 340 Facility MIP provides interface requirements and responsibilities as they apply specifically to the 340 Facility. This document provides an implementation schedule which has been developed for items considered to be deficient or in need of improvement. The discussion sections, as applied to implementation at the 340 Facility, have been developed from a review of programs and practices utilizing the graded approach. Biennial review and additional reviews are conducted as significant programmatic and mission changes are made. This document is revised as necessary to maintain compliance with DOE requirements.

  11. Assessing the Security Vulnerabilities of Correctional Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, G.S.; Spencer, D.S.

    1998-10-27

    The National Institute of Justice has tasked their Satellite Facility at Sandia National Laboratories and their Southeast Regional Technology Center in Charleston, South Carolina to devise new procedures and tools for helping correctional facilities to assess their security vulnerabilities. Thus, a team is visiting selected correctional facilities and performing vulnerability assessments. A vulnerability assessment helps to identi~ the easiest paths for inmate escape, for introduction of contraband such as drugs or weapons, for unexpected intrusion fi-om outside of the facility, and for the perpetration of violent acts on other inmates and correctional employees, In addition, the vulnerability assessment helps to quantify the security risks for the facility. From these initial assessments will come better procedures for performing vulnerability assessments in general at other correctional facilities, as well as the development of tools to assist with the performance of such vulnerability assessments.

  12. Facility effluent monitoring plan determinations for the 400 Area facilities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-09-01

    This Facility Effluent Monitoring Plan determination resulted from an evaluation conducted for the Westinghouse Hanford Company 400 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans. Two major Westinghouse Hanford Company facilities in the 400 Area were evaluated: the Fast Flux Test Facility and the Fuels Manufacturing and examination Facility. The determinations were prepared by Westinghouse Hanford Company. Of these two facilities, only the Fast Flux Test Facility will require a Facility Effluent Monitoring Plan. 7 refs., 5 figs., 4 tabs

  13. European facilities and plans

    International Nuclear Information System (INIS)

    Ellis, J.

    1984-01-01

    The capabilities and time schedules of present and planned accelerators in Europe are reviewed. The history of the Large Hadron Collider (LHC) project is recalled, and the results of machine feasibility studies are summarized. It seems possible to build in the LEP tunnel a pp collider with √s = 10 to 18 TeV and a luminosity of 10 33 cm -2 sec - . Results from the Lausanne Workshop on LHC physics are reviewed, and some aspects of Higgs and supersymmetric particle production are discussed

  14. Physical security of cut-and-cover underground facilities

    International Nuclear Information System (INIS)

    Morse, W.D.

    1998-01-01

    To aid designers, generic physical security objectives and design concepts for cut-and-cover underground facilities are presented. Specific aspects addressing overburdens, entryways, security doors, facility services, emergency egress, security response force, and human elements are discussed

  15. Computer Security at Nuclear Facilities. Reference Manual (Arabic Edition)

    International Nuclear Information System (INIS)

    2011-01-01

    The possibility that nuclear or other radioactive material could be used for malicious purposes cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material and to respond effectively to nuclear security events. States have agreed to strengthen existing instruments and have established new international legal instruments to enhance nuclear security worldwide. Nuclear security is fundamental in the management of nuclear technologies and in applications where nuclear or other radioactive material is used or transported. Through its Nuclear Security Programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in such material; national response plans; and contingency measures. With its Nuclear Security Series, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. The IAEA Nuclear Security Series comprises Nuclear Security Fundamentals, which include objectives and essential elements of a State's nuclear security regime; Recommendations; Implementing Guides; and Technical Guidance. Each State carries the full responsibility for nuclear security, specifically: to provide for the security of nuclear and other radioactive material and associated facilities and activities; to ensure the security of such material in use, storage or in transport; to combat illicit trafficking and the inadvertent movement of such material; and to be prepared to respond to a nuclear security event. This publication is in the Technical Guidance

  16. Computer Security at Nuclear Facilities. Reference Manual (Russian Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The possibility that nuclear or other radioactive material could be used for malicious purposes cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material and to respond effectively to nuclear security events. States have agreed to strengthen existing instruments and have established new international legal instruments to enhance nuclear security worldwide. Nuclear security is fundamental in the management of nuclear technologies and in applications where nuclear or other radioactive material is used or transported. Through its Nuclear Security Programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in such material; national response plans; and contingency measures. With its Nuclear Security Series, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. The IAEA Nuclear Security Series comprises Nuclear Security Fundamentals, which include objectives and essential elements of a State's nuclear security regime; Recommendations; Implementing Guides; and Technical Guidance. Each State carries the full responsibility for nuclear security, specifically: to provide for the security of nuclear and other radioactive material and associated facilities and activities; to ensure the security of such material in use, storage or in transport; to combat illicit trafficking and the inadvertent movement of such material; and to be prepared to respond to a nuclear security event. This publication is in the Technical Guidance

  17. Computer Security at Nuclear Facilities. Reference Manual (Chinese Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The possibility that nuclear or other radioactive material could be used for malicious purposes cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material and to respond effectively to nuclear security events. States have agreed to strengthen existing instruments and have established new international legal instruments to enhance nuclear security worldwide. Nuclear security is fundamental in the management of nuclear technologies and in applications where nuclear or other radioactive material is used or transported. Through its Nuclear Security Programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in such material; national response plans; and contingency measures. With its Nuclear Security Series, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. The IAEA Nuclear Security Series comprises Nuclear Security Fundamentals, which include objectives and essential elements of a State's nuclear security regime; Recommendations; Implementing Guides; and Technical Guidance. Each State carries the full responsibility for nuclear security, specifically: to provide for the security of nuclear and other radioactive material and associated facilities and activities; to ensure the security of such material in use, storage or in transport; to combat illicit trafficking and the inadvertent movement of such material; and to be prepared to respond to a nuclear security event. This publication is in the Technical Guidance

  18. WIPP facility representative program plan

    International Nuclear Information System (INIS)

    1994-01-01

    This plan describes the Department of Energy (DOE), Carlsbad Area Office (CAO) facility representative (FR) program at the Waste Isolation Pilot Plant (WIPP). It provides the following information: (1) FR and support organization authorities and responsibilities; (2) FR program requirements; and (3) FR training and qualification requirements

  19. ICT security- aspects important for nuclear facilities

    International Nuclear Information System (INIS)

    Thunem, Atoosa P-J.

    2005-09-01

    Rapid application growth of complex Information and Communication Technologies (ICT) in every society and state infrastructure as well as industry has revealed vulnerabilities that eventually have given rise to serious security breaches. These vulnerabilities together with the course of the breaches from cause to consequence are gradually about to convince the field experts that ensuring the security of ICT-driven systems is no longer possible by only relying on the fundaments of computer science, IT, or telecommunications. Appropriating knowledge from other disciplines is not only beneficial, but indeed very necessary. At the same time, it is a common observation today that ICT-driven systems are used everywhere, from the nuclear, aviation, commerce and healthcare domains to camera-equipped web-enabled cellular phones. The increasing interdisciplinary and inter-sectoral aspects of ICT security worldwide have been providing updated and useful information to the nuclear domain, as one of the emerging users of ICT-driven systems. Nevertheless, such aspects have also contributed to new and complicated challenges, as ICT security for the nuclear domain is in a much more delicate manner than for any other domains related to the concept of safety, at least from the public standpoint. This report addresses some important aspects of ICT security that need to be considered at nuclear facilities. It deals with ICT security and the relationship between security and safety from a rather different perspective than usually observed and applied. The report especially highlights the influence on the security of ICT-driven systems by all other dependability factors, and on that basis suggests a framework for ICT security profiling, where several security profiles are assumed to be valid and used in parallel for each ICT-driven system, sub-system or unit at nuclear facilities. The report also covers a related research topic of the Halden Project with focus on cyber threats and

  20. Developing standardized facility contingency plans

    International Nuclear Information System (INIS)

    Davidson, D.A.

    1993-01-01

    Texaco consists of several operating departments that are, in effect, independent companies. Each of these departments is responsible for complying with all environmental laws and regulations. This includes the preparation by each facility to respond to an oil spill at that location. For larger spills, however, management of the response will rest with corporate regional response teams. Personnel from all departments make up the regional teams. In 1990, Congress passed the Oil Pollution Act. In 1991, the US Coast Guard began developing oil spill response contingency plan regulations, which they are still working on. Meanwhile, four of the five west coast states have also passed laws requiring contingency plans. (Only Hawaii has chosen to wait and see what the federal regulations will entail). Three of the states have already adopted regulations. Given these laws and regulations, along with its corporate structure, Texaco addressed the need to standardize local facility plans as well as its response organization. This paper discusses how, by working together, the Texaco corporate international oil spill response staff and the Texaco western region on-scene commander developed: A standard contingency plan format crossing corporate boundaries and meeting federal and state requirements. A response organization applicable to any size facility or spill. A strategy to sell the standard contingency plan and response organization to the operating units

  1. Nuclear Security in Action at Facilities in Ghana

    International Nuclear Information System (INIS)

    Dahlstrom, Danielle

    2013-01-01

    Nuclear security is a national responsibility. An Integrated Nuclear Security Support Plan (INSSP) is a tool that enables States to address nuclear security in a comprehensive way and to strengthen its national nuclear security regime, beginning with the legislative and regulatory framework within a State. Operating areas in nuclear facilities like research reactors which use highly enriched uranium, require additional physical protection measures to ensure the security of the nuclear material and prevent acts of sabotage. Other radioactive materials, like sealed radioactive sources used in radiotherapy machines in hospitals for cancer treatment, need to be protected so that they are not stolen and used with malicious intent. Nuclear and other radioactive material needs to be kept in safe and secure storage, which incorporates various types of physical barriers to prevent theft and unauthorized access. Intrusion detection and assessment systems, like cameras and sensors, help to ensure timely and adequate responses to any security incident. Responding to a nuclear security incident, and mitigating its consequences, requires specialized equipment like isotope identifiers, and competent and well trained personnel. Nuclear Security Support Centres (NSSCs) focus on human resource development as well as technical and scientific support which contribute to the sustainability of nuclear security in a State

  2. Nuclear security. Improving correction of security deficiencies at DOE's weapons facilities

    International Nuclear Information System (INIS)

    Wells, James E.; Cannon, Doris E.; Fenzel, William F.; Lightner, Kenneth E. Jr.; Curtis, Lois J.; DuBois, Julia A.; Brown, Gail W.; Trujillo, Charles S.; Tumler, Pamela K.

    1992-11-01

    The US nuclear weapons research, development, and production are conducted at 10 DOE nuclear weapons facilities by contractors under the guidance and oversight of 9 DOE field offices. Because these facilities house special nuclear materials used in making nuclear weapons and nuclear weapons components, DOE administers a security program to protect (1) against theft, sabotage, espionage, terrorism, or other risks to national security and (2) the safety and health of DOE employees and the public. DOE spends almost $1 billion a year on this security program. DOE administers the security program through periodic inspections that evaluate and monitor the effectiveness of facilities' safeguards and security. Security inspections identify deficiencies, instances of noncompliance with safeguards and security requirements or poor performance of the systems being evaluated, that must be corrected to maintain adequate security. The contractors and DOE share responsibility for correcting deficiencies. Contractors, in correcting deficiencies, must comply with several DOE orders. The contractors' performances were not adequate in conducting four of the eight procedures considered necessary in meeting DOE's deficiency correction requirements. For 19 of the 20 deficiency cases we reviewed, contractors could not demonstrate that they had conducted three critical deficiency analyses (root cause, risk assessment, and cost-benefit) required by DOE. Additionally, the contractors did not always adequately verify that corrective actions taken were appropriate, effective, and complete. The contractors performed the remaining four procedures (reviewing deficiencies for duplication, entering deficiencies into a data base, tracking the status of deficiencies, and preparing and implementing a corrective action plan) adequately in all 20 cases. DOE's oversight of the corrective action process could be improved in three areas. The computerized systems used to track the status of security

  3. Facility effluent monitoring plan determinations for the 200 Area facilities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-11-01

    The following facility effluent monitoring plan determinations document the evaluations conducted for the Westinghouse Hanford Company 200 Area facilities (chemical processing, waste management, 222-S Laboratory, and laundry) on the Hanford Site in south central Washington State. These evaluations determined the need for facility effluent monitoring plans for the 200 Area facilities. The facility effluent monitoring plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438 (WHC 1991). The Plutonium/Uranium Extraction Plant and UO 3 facility effluent monitoring plan determinations were prepared by Los Alamos Technical Associates, Richland, Washington. The Plutonium Finishing Plant, Transuranic Waste Storage and Assay Facility, T Plant, Tank Farms, Low Level Burial Grounds, and 222-S Laboratory determinations were prepared by Science Applications International Corporation of Richland, Washington. The B Plant Facility Effluent Monitoring Plan Determination was prepared by ERCE Environmental Services of Richland, Washington

  4. [Planning a Health Residence for Prison Security Measures, Tuscany (Italy)].

    Science.gov (United States)

    Porfido, Eugenio; Colombai, Renato; Scarpa, Franco; Totaro, Michele; Tani, Luca; Baldini, Claudio; Baggiani, Angelo

    2016-01-01

    Health Residences for Prison Security Measures are facilities hosting psychotic persons who have committed crimes and providing them with personalized rehabilitation and treatment plans to promote their reinstatement in society. The aim of this study was to describe the criteria for planning and designing a prison health residence in the Tuscany region (Italy), to be managed by the regional healthcare service, in line with current regulations, with dedicated staff for providing specific treatment plans and programmes.

  5. Safeguards and security issues at the MRS facility

    International Nuclear Information System (INIS)

    McGuinn, E.; Birch, M.; Jones, J.; Floyd, W.

    1993-01-01

    The U.S. Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for disposing of the nation's high level radioactive waste in a way that ensures the protection of the public from any unacceptable radiological risks and the maintenance of the national security. To achieve these objectives, OCRWM plans to institute a Nuclear Regulatory Commission (NRC)-approved security program at its facilities including the Monitored Retrievable Storage (MRS) facility. This program will safeguard nuclear information and provide not only for the physical protection of facilities but also for the nuclear material being handled and stored. Several key regulatory issues were identified during the development of the safeguards and security (S ampersand S) program for the MRS. These issues relate to developing a realistic definition of the security threat at the MRS and establishing a single set of regulatory requirements. Resolution of these issues is important to implement a realistic S ampersand S program who scope is commensurate with the potential risk at the MRS and complies with all appropriate regulatory requirements. OCRWM is working toward a timely resolution of these issues and on the formulation of an S ampersand S program for implementation at the MRS. As an initial step, DOE has proposed an S ampersand S strategy for the MRS based on a set of assumed resolutions to the key regulatory issues. With this approach, the facility designers will be able to evaluate possible S ampersand S concepts for integration into the MRS early in the design process

  6. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-06-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the Facility Monitoring Plans of the overall site-wide environmental monitoring plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of individual Facility Effluent Monitoring Plans. This document is intended to be a basic road map to the Facility Effluent Monitoring Plan documents (i.e., the guidance document for preparing Facility Effluent Monitoring Plans, Facility Effluent Monitoring Plan determinations, management plan, and Facility Effluent Monitoring Plans). The implementing procedures, plans, and instructions are appropriate for the control of effluent monitoring plans requiring compliance with US Department of Energy, US Environmental Protection Agency, state, and local requirements. This Quality Assurance Project Plan contains a matrix of organizational responsibilities, procedural resources from facility or site manuals used in the Facility Effluent Monitoring Plans, and a list of the analytes of interest and analytical methods for each facility preparing a Facility Effluent Monitoring Plan. 44 refs., 1 figs., 2 tabs

  7. Planning Security Services for IT Systems

    OpenAIRE

    Henderson, Marie; Page, Howard Philip

    2014-01-01

    Often the hardest job is to get business representatives to look at security as something that makes managing their risks and achieving their objectives easier, with security compliance as just part of that journey. This paper addresses that by making planning for security services a 'business tool'.

  8. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    International Nuclear Information System (INIS)

    Frazier, T.P.

    1994-01-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans

  9. Integrated Nuclear Security Support Plan (INSSP)

    International Nuclear Information System (INIS)

    Moore, G.M.

    2010-01-01

    Integrated Nuclear Security Support Plan (INSSP) purposes the framework for a comprehensive approach to addressing specific national security needs. It provides means for coordinating nuclear security assistance to member states. Identifies responsible parties for completion of nuclear security activities which are necessary to build sustainable nuclear security programs. International Atomic Energy Agency INSSP development process is based on findings and recommendations from a range of nuclear security missions and other information needs assessments. Takes into account of the ongoing work activities of other bilateral assistance.

  10. 303-K Storage Facility closure plan

    International Nuclear Information System (INIS)

    1993-01-01

    Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5

  11. Guidelines for developing NASA (National Aeronautics and Space Administration) ADP security risk management plans

    Science.gov (United States)

    Tompkins, F. G.

    1983-01-01

    This report presents guidance to NASA Computer security officials for developing ADP security risk management plans. The six components of the risk management process are identified and discussed. Guidance is presented on how to manage security risks that have been identified during a risk analysis performed at a data processing facility or during the security evaluation of an application system.

  12. A security/safety survey of long term care facilities.

    Science.gov (United States)

    Acorn, Jonathan R

    2010-01-01

    What are the major security/safety problems of long term care facilities? What steps are being taken by some facilities to mitigate such problems? Answers to these questions can be found in a survey of IAHSS members involved in long term care security conducted for the IAHSS Long Term Care Security Task Force. The survey, the author points out, focuses primarily on long term care facilities operated by hospitals and health systems. However, he believes, it does accurately reflect the security problems most long term facilities face, and presents valuable information on security systems and practices which should be also considered by independent and chain operated facilities.

  13. I and C security program for nuclear facilities: implementation guide - TAFICS/IG/2

    International Nuclear Information System (INIS)

    2016-04-01

    This is the second in a series of documents being developed by TAFICS for protecting computer-based I and C systems of Indian nuclear facilities from cyber attacks. The document provides guidance to nuclear facility management to establish, implement and maintain a robust I and C security program - consisting of security plan and a set of security controls. In order to provide a firm basis for the security program, the document also identifies the fundamental security principles and foundational security requirements related to computer-based I and C systems of nuclear facilities. It is recommended that all applicable Indian nuclear facilities should implement the security program - with required adaptation - so as to provide the necessary assurance that the I and C systems are adequately protected against cyber attacks. (author)

  14. Facility effluent monitoring plan for the fast flux test facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Dahl, N.R.

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in US Department of Energy Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A Facility Effluent Monitoring Plan determination was performed during calendar year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  15. I and C security audit of nuclear facilities: implementation guide - TAFICS/IG/3

    International Nuclear Information System (INIS)

    2017-05-01

    This document provides guidance to I and C Security audit team to prepare, plan, and execute security audit of Instrumentation and Control (I and C) systems at DAE's nuclear facilities, including I and C system development and manufacturing organisations. The audit is expected to check efficacy of I and C security program - plan, policies, procedures and controls - implemented at a nuclear facility to protect I and C systems from potential cyber attacks. The document contains detailed audit procedures, which specify the audit objectives, audit objects and audit methods for each element of I and C security described in implementation guides promulgated by TAFICS to all DAE Units. (author)

  16. National Security Technology Incubation Project Continuation Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-09-30

    This document contains a project continuation plan for the National Security Technology Incubator (NSTI). The plan was developed as part of the National Security Preparedness Project (NSPP) funded by a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This continuation plan describes the current status of NSTI (staffing and clients), long-term goals, strategies, and long-term financial solvency goals.The Arrowhead Center of New Mexico State University (NMSU) is the operator and manager of the NSTI. To realize the NSTI, Arrowhead Center must meet several performance objectives related to planning, development, execution, evaluation, and sustainability. This continuation plan is critical to the success of NSTI in its mission of incubating businesses with security technology products and services.

  17. 49 CFR 659.23 - System security plan: contents.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false System security plan: contents. 659.23 Section 659... State Oversight Agency § 659.23 System security plan: contents. The system security plan must, at a... system security plan; and (e) Document the rail transit agency's process for making its system security...

  18. ADP Security Plan, Math Building, Room 1139

    Energy Technology Data Exchange (ETDEWEB)

    Melton, R.

    1985-08-27

    This document provides the draft copy of an updated (ADP) Security Plan for an IBM Personal Computer to be used in the Math Building at PNL for classified data base management. Using the equipment specified in this document and implementing the administrative and physical procedures as outlined will provide the secure environment necessary for this work to proceed.

  19. 78 FR 48029 - Improving Chemical Facility Safety and Security

    Science.gov (United States)

    2013-08-07

    ... Improving Chemical Facility Safety and Security By the authority vested in me as President by the... at reducing the safety risks and security risks associated with hazardous chemicals. However... to further improve chemical facility safety and security in coordination with owners and operators...

  20. 77 FR 63849 - Facility Security Officer Training Requirements; Correction

    Science.gov (United States)

    2012-10-17

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2012-0908] Facility Security Officer... comments on the development of a Facility Security Officer training program. The notice contains an inaccurate Internet link to RSVP for the public meeting. DATES: The notice of public meeting; request for...

  1. Facility effluent monitoring plan for 242-A Evaporator facility

    International Nuclear Information System (INIS)

    Crummel, G.M.; Gustavson, R.D.

    1993-03-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility effluent Monitoring Plans, WHC-EP-0438-1**. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  2. School Security: Planning and Costs.

    Science.gov (United States)

    Hunter, Richard C.; Mazingo, Terri H.

    2003-01-01

    Describes efforts by two school districts to address the potential threats of shootings and other school disruptions: Baltimore City Public Schools in Maryland and Charlotte-Mecklenburg Public Schools in North Carolina. Also describes the growing costs of providing safety and security in elementary and secondary schools. (Contains 13 references.)…

  3. Appendix E - Sample Production Facility Plan

    Science.gov (United States)

    This sample Spill Prevention, Control and Countermeasure (SPCC) Plan in Appendix E is intended to provide examples and illustrations of how a production facility could address a variety of scenarios in its SPCC Plan.

  4. Strategic facility planning improves capital decision making.

    Science.gov (United States)

    Reeve, J R

    2001-03-01

    A large, Midwestern IDS undertook a strategic facility-planning process to evaluate its facility portfolio and determine how best to allocate future investments in facility development. The IDS assembled a facility-planning team, which initiated the planning process with a market analysis to determine future market demands and identify service areas that warranted facility expansion. The team then analyzed each of the IDS's facilities from the perspective of uniform capacity measurements, highest and best use compared with needs, building condition and investment-worthiness, and facility growth and site development opportunities. Based on results of the analysis, the strategy adopted entailed, in part, shifting some space from inpatient care to ambulatory care services and demolishing and replacing the 11 percent of facilities deemed to be in the worst condition.

  5. Facility effluent monitoring plan for the 327 Facility

    International Nuclear Information System (INIS)

    1994-11-01

    The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  6. Facility effluent monitoring plan for the tank farm facility

    Energy Technology Data Exchange (ETDEWEB)

    Crummel, G.M.

    1998-05-18

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

  7. LMFBR safety experiment facility planning and analysis

    International Nuclear Information System (INIS)

    Stevenson, M.G.; Scott, J.H.

    1976-01-01

    In the past two years considerable effort has been placed on the planning and design of new facilities for the resolution of LMFBR safety issues. The paper reviews the key issues, the experiments needed to resolve them, and the design aspects of proposed new facilities. In addition, it presents a decision theory approach to selecting an optimal combination of modified and new facilities

  8. Facility effluent monitoring plan for the plutonium uranium extraction facility

    Energy Technology Data Exchange (ETDEWEB)

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  9. Facility Effluent Monitoring Plan for the uranium trioxide facility

    International Nuclear Information System (INIS)

    Lohrasbi, J.; Johnson, D.L.; De Lorenzo, D.S.

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  10. Facility effluent monitoring plan for the plutonium uranium extraction facility

    International Nuclear Information System (INIS)

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  11. Facility effluent monitoring plan for the Plutonium Uranium Extraction Facility

    International Nuclear Information System (INIS)

    Greager, E.M.

    1997-01-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan will ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, at a minimum, every 3 years

  12. A different paradigm for security planning

    International Nuclear Information System (INIS)

    Hagengruber, R.

    2002-01-01

    Full text: Security costs at nuclear facilities have been relatively high for many years. Since the 1970s, these expenditures in the United States have grown much faster than inflation. After the tragedy of September 11, the rate of increase appears to be exponential. Within the National Nuclear Security Administration, the cost of security now is about 10 % of the entire budget. Research and Development (R and D) has played a role in modern security, but the rate of advancement of security technology has not been sufficient to moderate the increasing costs and performance demands. Part of this problem is associated with both an inadequate investment level and the lack of a visionary roadmap for security technology. The other element of the problem is the lack of a strategic framework or architecture that would allow security technology to be effectively placed in an overall context of functionality. A new concept for an architecture for security will be presented. Within this architecture, a different approach to design, use of technology, and evaluation of effectiveness will be offered. Promising areas of technology and design will be illustrated by specific examples and suggestions for advanced R and D will be made. (author)

  13. National Security Technology Incubator Business Plan

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-12-31

    This document contains a business plan for the National Security Technology Incubator (NSTI), developed as part of the National Security Preparedness Project (NSPP) and performed under a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This business plan describes key features of the NSTI, including the vision and mission, organizational structure and staffing, services, evaluation criteria, marketing strategies, client processes, a budget, incubator evaluation criteria, and a development schedule. The purpose of the NSPP is to promote national security technologies through business incubation, technology demonstration and validation, and workforce development. The NSTI will focus on serving businesses with national security technology applications by nurturing them through critical stages of early development. The vision of the NSTI is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety, security, and protection of the homeland. The NSTI is operated and managed by the Arrowhead Center, responsible for leading the economic development mission of New Mexico State University (NMSU). The Arrowhead Center will recruit business with applications for national security technologies recruited for the NSTI program. The Arrowhead Center and its strategic partners will provide business incubation services, including hands-on mentoring in general business matters, marketing, proposal writing, management, accounting, and finance. Additionally, networking opportunities and technology development assistance will be provided.

  14. Corporate strategic plan for safeguards and security

    International Nuclear Information System (INIS)

    1997-06-01

    Department of Energy (DOE) safeguards and security (S and S) is a team effort, consisting of Field, National Laboratories, Program Office, and Headquarters units cooperating to support the Department's diverse security needs. As an integral part of the nation's security structure, the DOE S and S Program regularly supports and works in cooperation with other US Government agencies and private industry to improve the national security posture. Thus, inter- and intra-agency partnerships play an invaluable role in the continuing efforts to integrate and implement improved ways of doing business. Their Corporate Strategic Plan provides a road map to guide, track, and provide feedback for the incorporation and implementation of S and S activities within DOE. Part 1 Planning Framework, describes those overarching factors which influence the planning endeavors. Part 2, Strategic Perspective, outlines where the S and S Program has been and how they will move to the future through core competencies, changing cultural thinking, and implementing their strategies. Part 3, Strategic and Operational Integration, details critical focus areas, strategies, and success indicators designed to enhance inter-agency S and S integration and promote cooperation with external agencies. This Plan will be reviewed annually to ensure it remains supportive and fully-engaged with the nation's and international security environments

  15. Facility effluent monitoring plan for 242-A evaporator facility

    International Nuclear Information System (INIS)

    Crummel, G.M.; Gustavson, R.D.

    1995-02-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years

  16. Nuclear Security Management for Research Reactors and Related Facilities

    International Nuclear Information System (INIS)

    2016-03-01

    This publication provides a single source guidance to assist those responsible for the implementation of nuclear security measures at research reactors and associated facilities in developing and maintaining an effective and comprehensive programme covering all aspects of nuclear security on the site. It is based on national experience and practices as well as on publications in the field of nuclear management and security. The scope includes security operations, security processes, and security forces and their relationship with the State’s nuclear security regime. The guidance is provided for consideration by States, competent authorities and operators

  17. 78 FR 48076 - Facility Security Clearance and Safeguarding of National Security Information and Restricted Data

    Science.gov (United States)

    2013-08-07

    ...-2011-0268] RIN 3150-AJ07 Facility Security Clearance and Safeguarding of National Security Information..., Classified National Security Information. The rule would allow licensees flexibility in determining the means... licensee security education and training programs and enhances the protection of classified information...

  18. ORNL Isotopes Facilities Shutdown Program Plan

    International Nuclear Information System (INIS)

    Gibson, S.M.; Patton, B.D.; Sears, M.B.

    1990-10-01

    This plan presents the results of a technical and economic assessment for shutdown of the Oak Ridge National Laboratory (ORNL) isotopes production and distribution facilities. On December 11, 1989, the Department of Energy (DOE), Headquarters, in a memorandum addressed to DOE Oak Ridge Operations Office (DOE-ORO), gave instructions to prepare the ORNL isotopes production and distribution facilities, with the exception of immediate facility needs for krypton-85, tritium, and yttrium-90, for safe shutdown. In response to the memorandum, ORNL identified 17 facilities for shutdown. Each of these facilities is located within the ORNL complex with the exception of Building 9204-3, which is located at the Y-12 Weapons Production Plant. These facilities have been used extensively for the production of radioactive materials by the DOE Isotopes Program. They currently house a large inventory of radioactive materials. Over the years, these aging facilities have inherited the problems associated with storing and processing highly radioactive materials (i.e., facilities' materials degradation and contamination). During FY 1990, ORNL is addressing the requirements for placing these facilities into safe shutdown while maintaining the facilities under the existing maintenance and surveillance plan. The day-to-day operations associated with the surveillance and maintenance of a facility include building checks to ensure that building parameters are meeting the required operational safety requirements, performance of contamination control measures, and preventative maintenance on the facility and facility equipment. Shutdown implementation will begin in FY 1993, and shutdown completion will occur by the end of FY 1994

  19. 77 FR 61771 - Facility Security Officer Training Requirements

    Science.gov (United States)

    2012-10-11

    ... following: (1) Draft model FSO training course; (2) Computer-based training and distance learning; (3... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2012-0908] Facility Security Officer... Security Officer training program, with the primary focus on developing the curriculum for such a program...

  20. Seven layers of security to help protect biomedical research facilities.

    Science.gov (United States)

    Mortell, Norman

    2010-04-01

    In addition to risks such as theft and fire that can confront any type of business, the biomedical research community often faces additional concerns over animal rights extremists, infiltrations, data security and intellectual property rights. Given these concerns, it is not surprising that the industry gives a high priority to security. This article identifies security threats faced by biomedical research companies and shows how these threats are ranked in importance by industry stakeholders. The author then goes on to discuss seven key 'layers' of security, from the external environment to the research facility itself, and how these layers all contribute to the creation of a successfully secured facility.

  1. Emergency planning for fuel cycle facilities

    International Nuclear Information System (INIS)

    Lacey, L.R.

    1991-01-01

    In April 1989, NRC published new emergency planning regulations which apply to certain by-product, source, and special nuclear materials licensees including most fuel cycle facilities. In addition to these NRC regulations, other regulatory agencies such as EPA, OSHA, and DOT have regulations concerning emergency planning or notification that may apply to fuel cycle facilities. Emergency planning requirements address such areas as emergency classification, organization, notification and activation, assessment, corrective and protective measures, emergency facilities and equipment, maintaining preparedness, records and reports, and recovery. This article reviews applicable regulatory requirements and guidance, then concentrates on implementation strategies to produce an effective emergency response capability

  2. Plan Colombia or development as security

    Directory of Open Access Journals (Sweden)

    Juan Pablo Guevara Latorre

    2015-01-01

    the most relevant policy for the construction of the State in 21st-century Colombia from a critical standpoint. The document makes it possible to show that Plan Colombia is a privatized form of development, interpreted in terms of security based on an incomplete understanding of the Colombian conflict that prevails into our present

  3. Facility effluent monitoring plan for the tank farms facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bachand, D.D.; Crummel, G.M.

    1995-05-01

    A facility effluent monitoring plan is required by the US Department of Energy for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using specific guidelines. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years.

  4. 33 CFR 105.205 - Facility Security Officer (FSO).

    Science.gov (United States)

    2010-07-01

    ... training in the following, as appropriate: (i) Relevant international laws and codes, and recommendations... well as any plans to change the facility or facility infrastructure prior to amending the FSP; and (18...

  5. Site and facility transportation services planning documents

    Energy Technology Data Exchange (ETDEWEB)

    Ratledge, J.E. (Oak Ridge National Lab., TN (USA)); Danese, L.; Schmid, S. (Science Applications International Corp., Oak Ridge, TN (USA))

    1990-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) will eventually ship Purchasers' (10 CFR 961.3) spent nuclear fuel from approximately 122 commercial nuclear facilities. The preparation and processing of Site and Facility Specific Transportation Services Planning Documents (SPDs) and Site Specific Servicing Plans (SSSPs) provides a focus for advanced planning and the actual shipping of waste, as well as the overall development of transportation requirements for the waste transportation system. SPDs will be prepared for each of the affected nuclear waste facilities over the next 2 years with initial emphasis on facilities likely to be served during the earliest years of the Federal Waste Management System (FWMS) operations. 3 figs., 1 tab.

  6. Site and facility transportation services planning documents

    International Nuclear Information System (INIS)

    Ratledge, J.E.; Danese, L.; Schmid, S.

    1990-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) will eventually ship Purchasers' (10 CFR 961.3) spent nuclear fuel from approximately 122 commercial nuclear facilities. The preparation and processing of Site and Facility Specific Transportation Services Planning Documents (SPDs) and Site Specific Servicing Plans (SSSPs) provides a focus for advanced planning and the actual shipping of waste, as well as the overall development of transportation requirements for the waste transportation system. SPDs will be prepared for each of the affected nuclear waste facilities over the next 2 years with initial emphasis on facilities likely to be served during the earliest years of the Federal Waste Management System (FWMS) operations. 3 figs., 1 tab

  7. Facility effluent monitoring plan for the 325 Facility

    International Nuclear Information System (INIS)

    1998-01-01

    The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  8. Physical security technologies for weapons complex reconfiguration facilities

    International Nuclear Information System (INIS)

    Jaeger, C.D.

    1994-01-01

    Sandia National Laboratories was a member of the Weapons Complex Reconfiguration (WCR) Safeguards and Security (S ampersand S) team providing assistance to the Department of Energy's (DOE) Office of Weapons Complex Reconfiguration. The physical security systems in the new and upgraded facilities being considered for the WCR had to meet DOE orders and other requirements set forth in the WCR Programmatic Design Criteria (PDC), incorporate the latest physical security technologies using proven state-of-the-art systems and meet fundamental security principles. The outcome was to avoid costly retrofits and provide effective and comprehensive protection against current and projected threats with minimal impact on operations, costs and schedule. Physical security requirements for WCR facilities include: (1) reducing S ampersand S life-cycle costs, (2) where feasible automating S ampersand S functions to minimize operational costs, access to critical assets and exposure of people to hazardous environments, (3) increasing the amount of delay to outsider adversary attack, (4) compartmentalizing the facility to minimize the number of personnel requiring access to critical areas and (5) having reliable and maintainable systems. To be most effective against threats physical security must be integrated with facility operations, safety and other S ampersand S activities, such as material control and accountability, nuclear measurements and computer and information security. This paper will discuss the S ampersand S issues, requirements, technology opportunities and needs. Physical security technologies and systems considered in the design effort of the Weapons Complex Reconfiguration facilities will be reviewed

  9. 78 FR 69433 - Executive Order 13650 Improving Chemical Facility Safety and Security Listening Sessions

    Science.gov (United States)

    2013-11-19

    ... Chemical Facility Safety and Security Listening Sessions AGENCY: National Protection and Programs... from stakeholders on issues pertaining to Improving Chemical Facility Safety and Security (Executive... regulations, guidance, and policies; and identifying best practices in chemical facility safety and security...

  10. Security Culture in Physical Protection of Nuclear Material and Facility

    International Nuclear Information System (INIS)

    Susyanta-Widyatmaka; Koraag, Venuesiana-Dewi; Taswanda-Taryo

    2005-01-01

    In nuclear related field, there are three different cultures: safety, safeguards and security culture. Safety culture has established mostly in nuclear industries, meanwhile safeguards and security culture are relatively new and still developing. The latter is intended to improve the physical protection of material and nuclear facility. This paper describes concept, properties and factors affecting security culture and interactions among these cultures. The analysis indicates that anybody involving in nuclear material and facility should have strong commitment and awareness of such culture to establish it. It is concluded that the assessment of security culture outlined in this paper is still preliminary for developing and conduction rigorous security culture implemented in a much more complex facility such as nuclear power plant

  11. Insider threat to secure facilities: data analysis

    International Nuclear Information System (INIS)

    1980-01-01

    Three data sets drawn from industries that have experienced internal security breaches are analyzed. The industries and the insider security breaches are considered analogous in one or more respects to insider threats potentially confronting managers in the nuclear industry. The three data sets are: bank fraud and embezzlement (BF and E), computer-related crime, and drug theft from drug manufacturers and distributors. A careful analysis by both descriptive and formal statistical techniques permits certain general conclusions on the internal threat to secure industries to be drawn. These conclusions are discussed and related to the potential insider threat in the nuclear industry. 49 tabs

  12. Waste Receiving and Processing Facility PMS Test Report/DMS-Y2K/System Security DMS (Data Management System)

    International Nuclear Information System (INIS)

    PALMER, M.E.

    1999-01-01

    Test Plan HNF-4351 defines testing requirements for installation of a new server in the WRAP Facility. This documents shows the results of the test reports on the DMS-Y2K and DMS-F81 (Security) systems

  13. 6 CFR 27.200 - Information regarding security risk for a chemical facility.

    Science.gov (United States)

    2010-01-01

    ... chemical facility. 27.200 Section 27.200 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY CHEMICAL FACILITY ANTI-TERRORISM STANDARDS Chemical Facility Security Program § 27.200 Information regarding security risk for a chemical facility. (a) Information to determine security risk. In order to...

  14. Facility effluent monitoring plan for the 324 Facility

    International Nuclear Information System (INIS)

    1994-11-01

    The 324 Facility [Waste Technology Engineering Laboratory] in the 300 Area primarily supports the research and development of radioactive and nonradioactive waste vitrification technologies, biological waste remediation technologies, spent nuclear fuel studies, waste mixing and transport studies, and tritium development programs. All of the above-mentioned programs deal with, and have the potential to, release hazardous and/or radioactive material. The potential for discharge would primarily result from (1) conducting research activities using the hazardous materials, (2) storing radionuclides and hazardous chemicals, and (3) waste accumulation and storage. This report summarizes the airborne and liquid effluents, and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterizing effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  15. Facility effluent monitoring plan for the tank farms facilities

    International Nuclear Information System (INIS)

    Crummel, G.M.; Gustavson, R.D.; Kenoyer, J.L.; Moeller, M.P.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum three years. A variety of liquid wastes are generated in processing treatment, and disposal operations throughout the Hanford Site. The Tank Farms Project serves a major role in Hanford Site waste management activities as the temporary repository for these wastes. Stored wastes include hazardous components regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) and as by-product material regulated under the Atomic Energy Act of 1954. A total of 177 single- and double-shell tanks (SST and DST) have been constructed in the 200 East and 200 West Areas of the Hanford Site. These facilities were constructed to various designs from 1943 to 1986. The Tank Farms Project is comprised of these tanks along with various transfer, receiving, and treatment facilities

  16. Healthcare security staffing for smaller facilities: where science meets art.

    Science.gov (United States)

    Warren, Bryan

    2013-01-01

    Obtaining effective security resourcing and staffing for smaller healthcare facilities presents many difficulties, according to the author In this article, he provides guidance to security practitioners on taking existing data and translating it into a language that administration will understand and appreciate.

  17. 33 CFR 105.305 - Facility Security Assessment (FSA) requirements.

    Science.gov (United States)

    2010-07-01

    ... evacuation routes and assembly stations; and (viii) Existing security and safety equipment for protection of... protection systems; (iv) Procedural policies; (v) Radio and telecommunication systems, including computer... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Facility Security Assessment (FSA...

  18. 49 CFR 659.21 - System security plan: general requirements.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false System security plan: general requirements. 659.21... State Oversight Agency § 659.21 System security plan: general requirements. (a) The oversight agency shall require the rail transit agency to implement a system security plan that, at a minimum, complies...

  19. SURF II: Characteristics, facilities, and plans

    International Nuclear Information System (INIS)

    Madden, R.P.; Canfield, R.; Furst, M.; Hamilton, A.; Hughey, L.

    1992-01-01

    This facility report describes the Synchrotron Ultraviolet Radiation Facility (SURF II) operated by the National Institute of Standards and Technology, Gaithersburg, Maryland. SURF II is a 300-MeV electron storage ring which provides well characterized continuum radiation from the far infrared to the soft x-ray region with the critical wavelength at 17.4 nm. Brief descriptions are given of the user facilities, the characteristics of the synchrotron radiation, the main storage ring, the injector system and each of the operating beam lines, and associated instruments. Further description is given of expansion plans for additional beam lines

  20. 75 FR 55574 - Joint Public Roundtable on Swap Execution Facilities and Security-Based Swap Execution Facilities

    Science.gov (United States)

    2010-09-13

    ...; File No. 4-612] Joint Public Roundtable on Swap Execution Facilities and Security-Based Swap Execution Facilities AGENCY: Commodity Futures Trading Commission (``CFTC'') and Securities and Exchange Commission... discuss swap execution facilities and security-based swap execution facilities in the context of certain...

  1. Facility effluent monitoring plan for the uranium trioxide facility

    International Nuclear Information System (INIS)

    Thompson, R.J.; Sontag, S.

    1991-11-01

    A facility effluent monitoring plant is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The UO 3 Plant is located in the south-central portion of the 200 West Area of the Hanford Site. The plant consists of two primary processing buildings and several ancillary facilities. The purpose of the UO 3 Plant is to receive uranyl nitrate hexahydrate (UNH) from the Plutonium-Uranium Extraction (PUREX) Plant, concentrate it, convert the UNH to uranium trioxide (UO 3 ) powder by calcination and package it for offsite shipment. The UO 3 Plant has been placed in a standby mode. There are two liquid discharges, and three gaseous exhaust stacks, and seven building exhausters that are active during standby conditions

  2. National Ignition Facility Title II Design Plan

    International Nuclear Information System (INIS)

    Kumpan, S

    1997-01-01

    This National Ignition Facility (NIF) Title II Design Plan defines the work to be performed by the NIF Project Team between November 1996, when the U.S. Department of Energy (DOE) reviewed Title I design and authorized the initiation of Title H design and specific long-lead procurements, and September 1998, when Title 11 design will be completed

  3. Planning Tool for Strategic Evaluation of Facility Plans - 13570

    Energy Technology Data Exchange (ETDEWEB)

    Magoulas, Virginia; Cercy, Michael [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States); Hall, Irin [Newport News Shipbuilding, 4101 Washington Ave., Newport News, VA 23607 (United States)

    2013-07-01

    Savannah River National Laboratory (SRNL) has developed a strategic planning tool for the evaluation of the utilization of its unique resources for processing and research and development of nuclear materials. The Planning Tool is a strategic level tool for assessing multiple missions that could be conducted utilizing the SRNL facilities and showcasing the plan. Traditional approaches using standard scheduling tools and laying out a strategy on paper tended to be labor intensive and offered either a limited or cluttered view for visualizing and communicating results. A tool that can assess the process throughput, duration, and utilization of the facility was needed. SRNL teamed with Newport News Shipbuilding (NNS), a division of Huntington Ingalls Industries, to create the next generation Planning Tool. The goal of this collaboration was to create a simulation based tool that allows for quick evaluation of strategies with respect to new or changing missions, and clearly communicates results to the decision makers. This tool has been built upon a mature modeling and simulation software previously developed by NNS. The Planning Tool provides a forum for capturing dependencies, constraints, activity flows, and variable factors. It is also a platform for quickly evaluating multiple mission scenarios, dynamically adding/updating scenarios, generating multiple views for evaluating/communicating results, and understanding where there are areas of risks and opportunities with respect to capacity. The Planning Tool that has been developed is useful in that it presents a clear visual plan for the missions at the Savannah River Site (SRS). It not only assists in communicating the plans to SRS corporate management, but also allows the area stakeholders a visual look at the future plans for SRS. The design of this tool makes it easily deployable to other facility and mission planning endeavors. (authors)

  4. Planning Tool for Strategic Evaluation of Facility Plans - 13570

    International Nuclear Information System (INIS)

    Magoulas, Virginia; Cercy, Michael; Hall, Irin

    2013-01-01

    Savannah River National Laboratory (SRNL) has developed a strategic planning tool for the evaluation of the utilization of its unique resources for processing and research and development of nuclear materials. The Planning Tool is a strategic level tool for assessing multiple missions that could be conducted utilizing the SRNL facilities and showcasing the plan. Traditional approaches using standard scheduling tools and laying out a strategy on paper tended to be labor intensive and offered either a limited or cluttered view for visualizing and communicating results. A tool that can assess the process throughput, duration, and utilization of the facility was needed. SRNL teamed with Newport News Shipbuilding (NNS), a division of Huntington Ingalls Industries, to create the next generation Planning Tool. The goal of this collaboration was to create a simulation based tool that allows for quick evaluation of strategies with respect to new or changing missions, and clearly communicates results to the decision makers. This tool has been built upon a mature modeling and simulation software previously developed by NNS. The Planning Tool provides a forum for capturing dependencies, constraints, activity flows, and variable factors. It is also a platform for quickly evaluating multiple mission scenarios, dynamically adding/updating scenarios, generating multiple views for evaluating/communicating results, and understanding where there are areas of risks and opportunities with respect to capacity. The Planning Tool that has been developed is useful in that it presents a clear visual plan for the missions at the Savannah River Site (SRS). It not only assists in communicating the plans to SRS corporate management, but also allows the area stakeholders a visual look at the future plans for SRS. The design of this tool makes it easily deployable to other facility and mission planning endeavors. (authors)

  5. National Ignition Facility (NIF) FY2015 Facility Use Plan

    Energy Technology Data Exchange (ETDEWEB)

    Folta, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wisoff, Jeff [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-12-18

    Major features of the FY2015 NIF Use Plan include: • Performing a record number of layered DT experiments with 28 planned compared with 15 in FY2014. Executing the first plutonium experiments on the NIF in support of the Science Campaigns. • Over 300 targets shots, a 57% increase compared to FY14. This is a stretch goal defined in the 120-Day Study document, and relies upon the success of many shot-rate improvement actions, as well as on the distribution of shot type selected by the users. While the Plan is consistent with this goal, the increased proportion of layered DT experiments described above reduces the margin against this goal. • Commissioning of initial ARC capability, which will support both SSP-HED and SSPICF programs. • Increase in days allocated to Discovery Science to a level that supports an ongoing program for academic use of NIF and an annual solicitation for new proposals. • Six Facility Maintenance and Reconfiguration (FM&R) periods totaling 30 days dedicated to major facility maintenance and modifications. • Utilization of the NIF Facility Advisory Schedule Committee (FASC) to provide stakeholder review and feedback on the NIF schedule. The Use Plan assumes a total FY2015 LLNL NIF Operations funding in MTE 10.7 of $229.465M and in MTE 10.3 of 47.0M. This Use Plan will be revised in the event of significant changes to the FY2015 funding or if NNSA provides FY2016 budget guidance significantly reduced compared to FY2015.

  6. How to implement security controls for an information security program at CBRN facilities

    International Nuclear Information System (INIS)

    Lenaeus, Joseph D.; O'Neil, Lori Ross; Leitch, Rosalyn M.; Glantz, Clifford S.; Landine, Guy P.; Bryant, Janet L.; Lewis, John; Mathers, Gemma; Rodger, Robert; Johnson, Christopher

    2015-01-01

    This document was prepared by PNNL within the framework of Project 19 of the European Union Chemical Biological Radiological and Nuclear Risk Mitigation Centres of Excellence Initiative entitled, ''Development of procedures and guidelines to create and improve secure information management systems and data exchange mechanisms for CBRN materials under regulatory control.'' It provides management and workers at CBRN facilities, parent organization managers responsible for those facilities, and regulatory agencies (governmental and nongovernmental) with guidance on the best practices for protecting information security. The security mitigation approaches presented in this document were chosen because they present generally accepted guidance in an easy-to-understand manner, making it easier for facility personnel to grasp key concepts and envision how security controls could be implemented by the facility. This guidance is presented from a risk management perspective.

  7. How to implement security controls for an information security program at CBRN facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lenaeus, Joseph D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); O' Neil, Lori Ross [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leitch, Rosalyn M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glantz, Clifford S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Landine, Guy P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bryant, Janet L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lewis, John [National Nuclear Lab., Workington (United Kingdom); Mathers, Gemma [National Nuclear Lab., Workington (United Kingdom); Rodger, Robert [National Nuclear Lab., Workington (United Kingdom); Johnson, Christopher [National Nuclear Lab., Workington (United Kingdom)

    2015-12-01

    This document was prepared by PNNL within the framework of Project 19 of the European Union Chemical Biological Radiological and Nuclear Risk Mitigation Centres of Excellence Initiative entitled, ''Development of procedures and guidelines to create and improve secure information management systems and data exchange mechanisms for CBRN materials under regulatory control.'' It provides management and workers at CBRN facilities, parent organization managers responsible for those facilities, and regulatory agencies (governmental and nongovernmental) with guidance on the best practices for protecting information security. The security mitigation approaches presented in this document were chosen because they present generally accepted guidance in an easy-to-understand manner, making it easier for facility personnel to grasp key concepts and envision how security controls could be implemented by the facility. This guidance is presented from a risk management perspective.

  8. Planning and implementing nuclear emergency response facilities

    International Nuclear Information System (INIS)

    Williams, D.H.

    1983-01-01

    After Three Mile Island, Arkansas Nuclear One produced a planning document called TMI-2 Response Program. Phase I of the program defined action plans in nine areas: safety assessment, training, organization, public information, communication, security, fiscal-governmental, technical and logistical support. Under safety assessment, the staff was made even better prepared to handle radioactive material. Under training, on site simulators for each unit at ANO were installed. The other seven topics interface closely with each other. An emergency control center is diagrammed. A habitable technical support system was created. A media center, with a large media area, and an auditorium, was built. Electric door strike systems increased security. Phone networks independently run via microwave were installed. Until Three Mile Island, logistical problems were guesswork. That incident afforded an opportunity to better identify and prepare for these problems

  9. 49 CFR 659.25 - Annual review of system safety program plan and system security plan.

    Science.gov (United States)

    2010-10-01

    ... system security plan. 659.25 Section 659.25 Transportation Other Regulations Relating to Transportation... and system security plan. (a) The oversight agency shall require the rail transit agency to conduct an annual review of its system safety program plan and system security plan. (b) In the event the rail...

  10. Computer security at ukrainian nuclear facilities: interface between nuclear safety and security

    International Nuclear Information System (INIS)

    Chumak, D.; Klevtsov, O.

    2015-01-01

    Active introduction of information technology, computer instrumentation and control systems (I and C systems) in the nuclear field leads to a greater efficiency and management of technological processes at nuclear facilities. However, this trend brings a number of challenges related to cyber-attacks on the above elements, which violates computer security as well as nuclear safety and security of a nuclear facility. This paper considers regulatory support to computer security at the nuclear facilities in Ukraine. The issue of computer and information security considered in the context of physical protection, because it is an integral component. The paper focuses on the computer security of I and C systems important to nuclear safety. These systems are potentially vulnerable to cyber threats and, in case of cyber-attacks, the potential negative impact on the normal operational processes can lead to a breach of the nuclear facility security. While ensuring nuclear security of I and C systems, it interacts with nuclear safety, therefore, the paper considers an example of an integrated approach to the requirements of nuclear safety and security

  11. 40 CFR 35.917 - Facilities planning (step 1).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Facilities planning (step 1). 35.917... Facilities planning (step 1). (a) Sections 35.917 through 35.917-9 establish the requirements for facilities... the facilities planning provisions of this subpart before award of step 2 or step 3 grant assistance...

  12. National Ignition Facility project acquisition plan

    International Nuclear Information System (INIS)

    Callaghan, R.W.

    1996-04-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF

  13. Emergency planning and preparedness for nuclear facilities

    International Nuclear Information System (INIS)

    Koelzer, W.

    1988-01-01

    Nuclear installations are designed, constructed and operated in such a way that the probability for an incident or accident is very low and the probability for a severe accident with catastrophic consequences is extremely small. These accidents represent the residual risk of the nuclear installation, and this residual risk can be decreased on one hand by a better design, construction and operation and on the other hand by planning and taking emergency measures inside the facility and in the environment of the facility. By way of introduction and definition it may be indicated to define some terms pertaining to the subject in order to make for more uniform understanding. (orig./DG)

  14. 15 CFR 923.13 - Energy facility planning process.

    Science.gov (United States)

    2010-01-01

    ... facility planning process. The management program must contain a planning process for energy facilities... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Energy facility planning process. 923... affected public and private parties will be involved in the planning process. [61 FR 33806, June 28, 1996...

  15. SETT facility of International Nuclear Security Academy

    International Nuclear Information System (INIS)

    Seo, Hyung Min

    2012-01-01

    After the Cold War was put to an end, the international community, especially the Western world, was concerned about Soviet nuclear materials falling into wrong hands, especially of terrorists. Later, the growing threat posed by terrorist networks such as the Taliban and al Qaeda led to a global campaign to deny such networks materials which may be used for the development of Weapons of Mass Destruction (WMD). The 9 11 attacks made a section of the international community highly apprehensive of WMD terrorism, especially its nuclear version. From this point of view, it is clear that nuclear facilities which contain nuclear materials are very attractive targets for those who have intention of nuclear terror

  16. SETT facility of International Nuclear Security Academy

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyung Min [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2012-05-15

    After the Cold War was put to an end, the international community, especially the Western world, was concerned about Soviet nuclear materials falling into wrong hands, especially of terrorists. Later, the growing threat posed by terrorist networks such as the Taliban and al Qaeda led to a global campaign to deny such networks materials which may be used for the development of Weapons of Mass Destruction (WMD). The 9 11 attacks made a section of the international community highly apprehensive of WMD terrorism, especially its nuclear version. From this point of view, it is clear that nuclear facilities which contain nuclear materials are very attractive targets for those who have intention of nuclear terror

  17. Security central processing unit applications in the protection of nuclear facilities

    International Nuclear Information System (INIS)

    Goetzke, R.E.

    1987-01-01

    New or upgraded electronic security systems protecting nuclear facilities or complexes will be heavily computer dependent. Proper planning for new systems and the employment of new state-of-the-art 32 bit processors in the processing of subsystem reports are key elements in effective security systems. The processing of subsystem reports represents only a small segment of system overhead. In selecting a security system to meet the current and future needs for nuclear security applications the central processing unit (CPU) applied in the system architecture is the critical element in system performance. New 32 bit technology eliminates the need for program overlays while providing system programmers with well documented program tools to develop effective systems to operate in all phases of nuclear security applications

  18. Decommissioning plan depleted uranium manufacturing facility

    International Nuclear Information System (INIS)

    Bernhardt, D.E.; Pittman, J.D.; Prewett, S.V.

    1987-01-01

    Aerojet Ordnance Tennessee, Inc. (Aerojet) is decommissioning its California depleted uranium (DU) manufacturing facility. Aerojet has conducted manufacturing and research and development activities at the facility since 1977 under a State of California Source Materials License. The decontamination is being performed by a contractor selector for technical competence through competitive bid. Since the facility will be released for uncontrolled use it will be decontaminated to levels as low as reasonably achievable (ALARA). In order to fully apply the principles of ALARA, and ensure the decontamination is in full compliance with appropriate guides, Aerojet has retained Rogers and Associaties Engineering Corporation (RAE) to assist in the decommissioning. RAE has assisted in characterizing the facility and preparing contract bid documents and technical specifications to obtain a qualified decontamination contractor. RAE will monitor the decontamination work effort to assure the contractor's performance complies with the contract specifications and the decontamination plan. The specifications require a thorough cleaning and decontamination of the facility, not just sufficient cleaning to meet the numeric cleanup criteria

  19. Nuclear security of Cuba’s medical facilities

    International Nuclear Information System (INIS)

    Dahlstrom, Danielle

    2016-01-01

    Cuba is a leading hub for medical research and cancer treatment in Latin America and the Caribbean. Physical protection is installed at radiotherapy facilities to detect entry of and delay access to an intruder. This minimizes the likelihood of unauthorized access and maximizes nuclear security.

  20. Information Security: USDA Needs to Implement Its Departmentwide Information Security Plan

    National Research Council Canada - National Science Library

    2000-01-01

    USDA has taken positive steps to begin improving its information security by developing its August 1999 Action Plan with recommendations to strengthen department-wide information security and hiring...

  1. A nuclear facility Security Analyzer written in Prolog

    International Nuclear Information System (INIS)

    Zimmerman, B.D.

    1987-01-01

    The Security Analyzer project was undertaken to use the Prolog artificial intelligence programming language and Entity-Relationship database construction techniques to produce an intelligent database computer program capable of analyzing the effectiveness of a nuclear facility's security systems. The Security Analyzer program can search through a facility to find all possible surreptitious entry paths that meet various user-selected time and detection probability criteria. The program can also respond to user-formulated queries concerning the database information. The intelligent database approach allows the program to perform a more comprehensive path search than other programs that only find a single optimal path. The program also is more flexible in that the database, once constructed, can be interrogated and used for purposes independent of the searching function

  2. A nuclear facility Security Analyzer written in PROLOG

    International Nuclear Information System (INIS)

    Zimmerman, B.D.

    1987-08-01

    The Security Analyzer project was undertaken to use the Prolog ''artificial intelligence'' programming language and Entity-Relationship database construction techniques to produce an intelligent database computer program capable of analyzing the effectiveness of a nuclear facility's security systems. The Security Analyzer program can search through a facility to find all possible surreptitious entry paths that meet various user-selected time and detection probability criteria. The program can also respond to user-formulated queries concerning the database information. The intelligent database approach allows the program to perform a more comprehensive path search than other programs that only find a single ''optimal'' path. The program also is more flexible in that the database, once constructed, can be interrogated and used for purposes independent of the searching function

  3. National Ignition Facility project acquisition plan revision 1

    International Nuclear Information System (INIS)

    Clobes, A.R.

    1996-01-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility M Project. It was prepared for the NIP Prood Office by the NIF Procurement Manager

  4. Introduction of regulatory guide on cyber security of L and C systems in nuclear facilities

    International Nuclear Information System (INIS)

    Kang, Y.; Jeong, C. H.; Kim, D. I.

    2008-01-01

    In the case of unauthorized individuals, systems and entities or process threatening the instrumentation and control systems of nuclear facilities using the intrinsic vulnerabilities of digital based technologies, those systems may lose their own required functions. The loss of required functions of the systems can seriously affect the safety of nuclear facilities. Consequently, digital instrumentation and control systems, which perform functions important to safety, should be designed and operated to respond to cyber threats capitalizing on the vulnerabilities of digital based technologies. To make it possible, the developers and licensees of nuclear facilities should perform appropriate cyber security activities throughout the whole life cycle of digital instrumentation and control systems. Under the goal of securing the safety of nuclear facilities, this paper presents the regulatory on cyber security activities to remove the cyber threats that exploit the vulnerabilities of digital instrumentation and control systems and to mitigate the effect of such threats. Presented regulatory guide includes establishing the cyber security policy and plan, analyzing and classifying the cyber threats and cyber security assessment of digital instrumentation and control systems. (authors)

  5. 40 CFR 35.925-1 - Facilities planning.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Facilities planning. 35.925-1 Section... Facilities planning. That, if the award is for step 2, step 3, or step 2=3 grant assistance, the facilities planning requirements in § 35.917 et seq. have been met. ...

  6. National Ignition Facility Configuration Management Plan

    International Nuclear Information System (INIS)

    Cabral, S G; Moore, T L

    2002-01-01

    This Configuration Management Plan (CMP) describes the technical and administrative management process for controlling the National Ignition Facility (NIF) Project configuration. The complexity of the NIF Project (i.e., participation by multiple national laboratories and subcontractors involved in the development, fabrication, installation, and testing of NIF hardware and software, as well as construction and testing of Project facilities) requires implementation of the comprehensive configuration management program defined in this plan. A logical schematic illustrating how the plan functions is provided in Figure 1. A summary of the process is provided in Section 4.0, Configuration Change Control. Detailed procedures that make up the overall process are referenced. This CMP is consistent with guidance for managing a project's configuration provided in Department of Energy (DOE) Order 430.1, Guide PMG 10, ''Project Execution and Engineering Management Planning''. Configuration management is a formal discipline comprised of the following four elements: (1) Identification--defines the functional and physical characteristics of a Project and uniquely identifies the defining requirements. This includes selection of components of the end product(s) subject to control and selection of the documents that define the project and components. (2) Change management--provides a systematic method for managing changes to the project and its physical and functional configuration to ensure that all changes are properly identified, assessed, reviewed, approved, implemented, tested, and documented. (3) Data management--ensures that necessary information on the project and its end product(s) is systematically recorded and disseminated for decision-making and other uses. Identifies, stores and controls, tracks status, retrieves, and distributes documents. (4) Assessments and validation--ensures that the planned configuration requirements match actual physical configurations and

  7. Security administration plan for HANDI 2000 business management system

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, D.

    1998-09-29

    This document encompasses and standardizes the integrated approach for security within the PP and Ps applications, It also identifies the security tools and methods to be used. The Security Administration Plan becomes effective as of this document`s acceptance and will provide guidance through implementation efforts and, as a ``living document`` will support the operations and maintenance of the system.

  8. National Ignition Facility Cryogenic Target Systems Interim Management Plan

    International Nuclear Information System (INIS)

    Warner, B

    2002-01-01

    Restricted availability of funding has had an adverse impact, unforeseen at the time of the original decision to projectize the National Ignition Facility (NIF) Cryogenic Target Handling Systems (NCTS) Program, on the planning and initiation of these efforts. The purpose of this document is to provide an interim project management plan describing the organizational structure and management processes currently in place for NCTS. Preparation of a Program Execution Plan (PEP) for NCTS has been initiated, and a current draft is provided as Attachment 1 to this document. The National Ignition Facility is a multi-megajoule laser facility being constructed at Lawrence Livermore National Laboratory (LLNL) by the National Nuclear Security Administration (NNSA) in the Department of Energy (DOE). Its primary mission is to support the Stockpile Stewardship Program (SSP) by performing experiments studying weapons physics, including fusion ignition. NIF also supports the missions of weapons effects, inertial fusion energy, and basic science in high-energy-density physics. NIF will be operated by LLNL under contract to the University of California (UC) as a national user facility. NIF is a low-hazard, radiological facility, and its operation will meet all applicable federal, state, and local Environmental Safety and Health (ES and H) requirements. The NCTS Interim Management Plan provides a summary of primary design criteria and functional requirements, current organizational structure, tracking and reporting procedures, and current planning estimates of project scope, cost, and schedule. The NIF Director controls the NIF Cryogenic Target Systems Interim Management Plan. Overall scope content and execution schedules for the High Energy Density Physics Campaign (SSP Campaign 10) are currently undergoing rebaselining and will be brought into alignment with resources expected to be available throughout the NNSA Future Years National Security Plan (FYNSP). The revised schedule for

  9. 49 CFR 172.802 - Components of a security plan.

    Science.gov (United States)

    2010-10-01

    ... from origin to destination, including shipments stored incidental to movement. (b) The security plan must also include the following: (1) Identification by job title of the senior management official... business and must make the security plan available upon request, at a reasonable time and location, to an...

  10. Emergency planning and preparedness for nuclear facilities

    International Nuclear Information System (INIS)

    1986-01-01

    In order to review the advances made over the past seven years in the area of emergency planning and preparedness supporting nuclear facilities and consider developments which are on the horizon, the IAEA at the invitation of the Government of Italy, organized this International Symposium in co-operation with the Italian Commission for Nuclear and Alternative Energy Sources, Directorate of Nuclear Safety and Health Protection (ENEA-DISP). There were over 250 designated participants and some 70 observers from 37 Member States and four international organizations in attendance at the Symposium. The Symposium presentations were divided into sessions devoted to the following topics: emergency planning (20 papers), accident assessment (30 papers), protective measures and recovery operations (10 papers) and emergency preparedness (16 papers). A separate abstract was prepared for each of these papers

  11. 303-K Storage Facility closure plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-15

    Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.

  12. Report on emergency electrical power supply systems for nuclear fuel cycle and reactor facilities security systems

    International Nuclear Information System (INIS)

    1977-01-01

    The report includes information that will be useful to those responsible for the planning, design and implementation of emergency electric power systems for physical security and special nuclear materials accountability systems. Basic considerations for establishing the system requirements for emergency electric power for security and accountability operations are presented. Methods of supplying emergency power that are available at present and methods predicted to be available in the future are discussed. The characteristics of capacity, cost, safety, reliability and environmental and physical facility considerations of emergency electric power techniques are presented. The report includes basic considerations for the development of a system concept and the preparation of a detailed system design

  13. Report on emergency electrical power supply systems for nuclear fuel cycle and reactor facilities security systems

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The report includes information that will be useful to those responsible for the planning, design and implementation of emergency electric power systems for physical security and special nuclear materials accountability systems. Basic considerations for establishing the system requirements for emergency electric power for security and accountability operations are presented. Methods of supplying emergency power that are available at present and methods predicted to be available in the future are discussed. The characteristics of capacity, cost, safety, reliability and environmental and physical facility considerations of emergency electric power techniques are presented. The report includes basic considerations for the development of a system concept and the preparation of a detailed system design.

  14. National Ignition Facility Site Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, V.

    1997-09-01

    The purpose of the NIF Site Management Plan is to describe the roles, responsibilities, and interfaces for the major NIF Project organizations involved in construction of the facility, installation and acceptance testing of special equipment, and the NIF activation. The plan also describes the resolution of priorities and conflicts. The period covered is from Critical Decision 3 (CD3) through the completion of the Project. The plan is to be applied in a stepped manner. The steps are dependent on different elements of the project being passed from the Conventional Facilities (CF) Construction Manager (CM), to the Special Equipment (SE) CMs, and finally to the Activation/ Start-Up (AS) CM. These steps are defined as follows: The site will be coordinated by CF through Project Milestone 310, end of conventional construction. The site is defined as the fenced area surrounding the facility and the CF laydown and storage areas. The building utilities that are installed by CF will be coordinated by CF through the completion of Project Milestone 310, end of conventional construction. The building utilities are defined as electricity, compressed air, de-ionized water, etc. Upon completion of the CF work, the Optics Assembly Building/Laser and Target Area Building (OAB/LTAB) will be fully operational. At that time, an Inertial Confinement Fusion (ICF) Program building coordinator will become responsible for utilities and site activities. * Step 1. Mid-commissioning (temperature stable, +1{degree}C) of an area (e.g., Laser Bay 2, OAB) will precipitate the turnover of that area (within the four walls) from CF to SE. * Step 2. Interior to the turned-over space, SE will manage all interactions, including those necessary by CF. * Step 3. As the SE acceptance testing procedures (ATPS) are completed, AS will take over the management of the area and coordinate all interactions necessary by CF and SE. For each step, the corresponding CMs for CF, SE, or AS will be placed in charge of

  15. National Ignition Facility Site Management Plan

    International Nuclear Information System (INIS)

    Roberts, V.

    1997-01-01

    The purpose of the NIF Site Management Plan is to describe the roles, responsibilities, and interfaces for the major NIF Project organizations involved in construction of the facility, installation and acceptance testing of special equipment, and the NIF activation. The plan also describes the resolution of priorities and conflicts. The period covered is from Critical Decision 3 (CD3) through the completion of the Project. The plan is to be applied in a stepped manner. The steps are dependent on different elements of the project being passed from the Conventional Facilities (CF) Construction Manager (CM), to the Special Equipment (SE) CMs, and finally to the Activation/ Start-Up (AS) CM. These steps are defined as follows: The site will be coordinated by CF through Project Milestone 310, end of conventional construction. The site is defined as the fenced area surrounding the facility and the CF laydown and storage areas. The building utilities that are installed by CF will be coordinated by CF through the completion of Project Milestone 310, end of conventional construction. The building utilities are defined as electricity, compressed air, de-ionized water, etc. Upon completion of the CF work, the Optics Assembly Building/Laser and Target Area Building (OAB/LTAB) will be fully operational. At that time, an Inertial Confinement Fusion (ICF) Program building coordinator will become responsible for utilities and site activities. * Step 1. Mid-commissioning (temperature stable, +1 degree C) of an area (e.g., Laser Bay 2, OAB) will precipitate the turnover of that area (within the four walls) from CF to SE. * Step 2. Interior to the turned-over space, SE will manage all interactions, including those necessary by CF. * Step 3. As the SE acceptance testing procedures (ATPS) are completed, AS will take over the management of the area and coordinate all interactions necessary by CF and SE. For each step, the corresponding CMs for CF, SE, or AS will be placed in charge of

  16. Fast Flux Test Facility (FFTF) standby plan

    Energy Technology Data Exchange (ETDEWEB)

    Hulvey, R.K.

    1997-03-06

    The FFTF Standby Plan, Revision 0, provides changes to the major elements and project baselines to maintain the FFTF plant in a standby condition and to continue washing sodium from irradiated reactor fuel. The Plan is consistent with the Memorandum of Decision approved by the Secretary of Energy on January 17, 1997, which directed that FFTF be maintained in a standby condition to permit the Department to make a decision on whether the facility should play a future role in the Department of Energy`s dual track tritium production strategy. This decision would be made in parallel with the intended December 1998 decision on the selection of the primary, long- term source of tritium. This also allows the Department to review the economic and technical feasibility of using the FFTF to produce isotopes for the medical community. Formal direction has been received from DOE-RL and Fluor 2020 Daniel Hanford to implement the FFTF standby decision. The objective of the Plan is maintain the condition of the FFTF systems, equipment and personnel to preserve the option for plant restart within three and one-half years of a decision to restart, while continuing deactivation work which is consistent with the standby mode.

  17. Fast Flux Test Facility (FFTF) standby plan

    International Nuclear Information System (INIS)

    Hulvey, R.K.

    1997-01-01

    The FFTF Standby Plan, Revision 0, provides changes to the major elements and project baselines to maintain the FFTF plant in a standby condition and to continue washing sodium from irradiated reactor fuel. The Plan is consistent with the Memorandum of Decision approved by the Secretary of Energy on January 17, 1997, which directed that FFTF be maintained in a standby condition to permit the Department to make a decision on whether the facility should play a future role in the Department of Energy's dual track tritium production strategy. This decision would be made in parallel with the intended December 1998 decision on the selection of the primary, long- term source of tritium. This also allows the Department to review the economic and technical feasibility of using the FFTF to produce isotopes for the medical community. Formal direction has been received from DOE-RL and Fluor 2020 Daniel Hanford to implement the FFTF standby decision. The objective of the Plan is maintain the condition of the FFTF systems, equipment and personnel to preserve the option for plant restart within three and one-half years of a decision to restart, while continuing deactivation work which is consistent with the standby mode

  18. 10 CFR 95.21 - Withdrawal of requests for facility security clearance.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Withdrawal of requests for facility security clearance. 95.21 Section 95.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FACILITY SECURITY CLEARANCE AND SAFEGUARDING OF NATIONAL SECURITY INFORMATION AND RESTRICTED DATA Physical Security § 95.21 Withdrawal of...

  19. Plan for 3-D full-scale earthquake testing facility

    International Nuclear Information System (INIS)

    Ohtani, K.

    2001-01-01

    Based on the lessons learnt from the Great Hanshin-Awaji Earthquake, National Research Institute for Earth Science and Disaster Prevention plan to construct the 3-D Full-Scale Earthquake Testing Facility. This will be the world's largest and strongest shaking table facility. This paper describes the outline of the project for this facility. This facility will be completed in early 2005. (author)

  20. INDUSTRIAL CONTROL SYSTEM CYBER SECURITY: QUESTIONS AND ANSWERS RELEVANT TO NUCLEAR FACILITIES, SAFEGUARDS AND SECURITY

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Anderson; Mark Schanfein; Trond Bjornard; Paul Moskowitz

    2011-07-01

    Typical questions surrounding industrial control system (ICS) cyber security always lead back to: What could a cyber attack do to my system(s) and; how much should I worry about it? These two leading questions represent only a fraction of questions asked when discussing cyber security as it applies to any program, company, business, or organization. The intent of this paper is to open a dialog of important pertinent questions and answers that managers of nuclear facilities engaged in nuclear facility security and safeguards should examine, i.e., what questions should be asked; and how do the answers affect an organization's ability to effectively safeguard and secure nuclear material. When a cyber intrusion is reported, what does that mean? Can an intrusion be detected or go un-noticed? Are nuclear security or safeguards systems potentially vulnerable? What about the digital systems employed in process monitoring, and international safeguards? Organizations expend considerable efforts to ensure that their facilities can maintain continuity of operations against physical threats. However, cyber threats particularly on ICSs may not be well known or understood, and often do not receive adequate attention. With the disclosure of the Stuxnet virus that has recently attacked nuclear infrastructure, many organizations have recognized the need for an urgent interest in cyber attacks and defenses against them. Several questions arise including discussions about the insider threat, adequate cyber protections, program readiness, encryption, and many more. These questions, among others, are discussed so as to raise the awareness and shed light on ways to protect nuclear facilities and materials against such attacks.

  1. Industrial Control System Cyber Security: Questions And Answers Relevant To Nuclear Facilities, Safeguards And Security

    International Nuclear Information System (INIS)

    Anderson, Robert S.; Schanfein, Mark; Bjornard, Trond; Moskowitz, Paul

    2011-01-01

    Typical questions surrounding industrial control system (ICS) cyber security always lead back to: What could a cyber attack do to my system(s) and; how much should I worry about it? These two leading questions represent only a fraction of questions asked when discussing cyber security as it applies to any program, company, business, or organization. The intent of this paper is to open a dialog of important pertinent questions and answers that managers of nuclear facilities engaged in nuclear facility security and safeguards should examine, i.e., what questions should be asked; and how do the answers affect an organization's ability to effectively safeguard and secure nuclear material. When a cyber intrusion is reported, what does that mean? Can an intrusion be detected or go un-noticed? Are nuclear security or safeguards systems potentially vulnerable? What about the digital systems employed in process monitoring, and international safeguards? Organizations expend considerable efforts to ensure that their facilities can maintain continuity of operations against physical threats. However, cyber threats particularly on ICSs may not be well known or understood, and often do not receive adequate attention. With the disclosure of the Stuxnet virus that has recently attacked nuclear infrastructure, many organizations have recognized the need for an urgent interest in cyber attacks and defenses against them. Several questions arise including discussions about the insider threat, adequate cyber protections, program readiness, encryption, and many more. These questions, among others, are discussed so as to raise the awareness and shed light on ways to protect nuclear facilities and materials against such attacks.

  2. The preliminary planning for decommissioning nuclear facilities in Taiwan

    International Nuclear Information System (INIS)

    Li, K.K.

    1993-01-01

    During the congressional hearing in 1992 for a $7 billion project for approval of the fourth nuclear power plant, the public was concerned about the decommissioning of the operating plants. In order to facilitate the public acceptance of nuclear energy and to secure the local capability for appropriate nuclear backend management, both technologically and financially, it is important to have preliminary planning for decommissioning the nuclear facilities. This paper attempted to investigate the possible scope of decommissioning activities and addressed the important regulatory, financial, and technological aspects. More research and development works regarding the issue of decommissioning are needed to carry out the government's will of decent management of nuclear energy from the cradle to the grave

  3. Waste Receiving and Processing (WRAP) Facility PMS Test Report For Data Management System (DMS) Security Test DMS-Y2K

    Energy Technology Data Exchange (ETDEWEB)

    PALMER, M.E.

    1999-09-21

    Test Plan HNF-4351 defines testing requirements for installation of a new server in the WRAP Facility. This document shows the results of the test reports on the DMS-Y2K and DMS-F81 (Security) systems.

  4. Nevada National Security Site Integrated Groundwater Sampling Plan, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene

    2018-03-01

    The purpose is to provide a comprehensive, integrated approach for collecting and analyzing groundwater samples to meet the needs and objectives of the DOE/EM Nevada Program’s UGTA Activity. Implementation of this Plan will provide high-quality data required by the UGTA Activity for ensuring public protection in an efficient and cost-effective manner. The Plan is designed to ensure compliance with the UGTA Quality Assurance Plan (QAP) (NNSA/NFO, 2015); Federal Facility Agreement and Consent Order (FFACO) (1996, as amended); and DOE Order 458.1, Radiation Protection of the Public and the Environment (DOE, 2013). The Plan’s scope comprises sample collection and analysis requirements relevant to assessing both the extent of groundwater contamination from underground nuclear testing and impact of testing on water quality in downgradient communities. This Plan identifies locations to be sampled by CAU and location type, sampling frequencies, sample collection methodologies, and the constituents to be analyzed. In addition, the Plan defines data collection criteria such as well purging, detection levels, and accuracy requirements/recommendations; identifies reporting and data management requirements; and provides a process to ensure coordination between NNSS groundwater sampling programs for sampling analytes of interest to UGTA. Information used in the Plan development—including the rationale for selection of wells, sampling frequency, and the analytical suite—is discussed under separate cover (N-I, 2014) and is not reproduced herein. This Plan does not address compliance for those wells involved in a permitted activity. Sampling and analysis requirements associated with these wells are described in their respective permits and are discussed in NNSS environmental reports (see Section 5.2). In addition, sampling for UGTA CAUs that are in the Closure Report (CR) stage are not included in this Plan. Sampling requirements for these CAUs are described in the CR

  5. Development on Guidance of Cyber Security Exercise for the Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyundoo [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2016-10-15

    Cyber threats and attacks are increasing rapidly against infrastructure including energy and utilities industry over the world. Because of lack of human resource and incident response system to prevent or defend increased cyber threats, many governments and major national infrastructures perform cyber security exercises to improve capabilities of cyber security incident response. Accordingly there are exponential growth in the number of cyber security exercises over the past decade with the trend expecting to accelerate in the coming years. Even though there were many cyber security exercises in the Nuclear Facilities, this exercise was first which focused on mitigation and recovery of the system of the Nuclear Facility against cyber incident. So many insufficient items were deduced such as absence of a procedure for mitigation and recovery of cyber incident. These procedures should be developed and established through 3rd phase of Cyber Security Plan (CSP) and other technical complement actions under regulatory body’s guidance. Also developed and existed procedures should be regularly performed to make cyber incident response team and related people rapidly response against cyber incident through exercises or other training. The insufficient items come from the exercise should be reflected to developed and existed procedures by periods.

  6. Development on Guidance of Cyber Security Exercise for the Nuclear Facilities

    International Nuclear Information System (INIS)

    Kim, Hyundoo

    2016-01-01

    Cyber threats and attacks are increasing rapidly against infrastructure including energy and utilities industry over the world. Because of lack of human resource and incident response system to prevent or defend increased cyber threats, many governments and major national infrastructures perform cyber security exercises to improve capabilities of cyber security incident response. Accordingly there are exponential growth in the number of cyber security exercises over the past decade with the trend expecting to accelerate in the coming years. Even though there were many cyber security exercises in the Nuclear Facilities, this exercise was first which focused on mitigation and recovery of the system of the Nuclear Facility against cyber incident. So many insufficient items were deduced such as absence of a procedure for mitigation and recovery of cyber incident. These procedures should be developed and established through 3rd phase of Cyber Security Plan (CSP) and other technical complement actions under regulatory body’s guidance. Also developed and existed procedures should be regularly performed to make cyber incident response team and related people rapidly response against cyber incident through exercises or other training. The insufficient items come from the exercise should be reflected to developed and existed procedures by periods

  7. The public transportation system security and emergency preparedness planning guide

    Science.gov (United States)

    2003-01-01

    Recent events have focused renewed attention on the vulnerability of the nation's critical infrastructure to major events, including terrorism. The Public Transportation System Security and Emergency Preparedness Planning Guide has been prepared to s...

  8. Plan for radiological security at a university health center

    International Nuclear Information System (INIS)

    Huiaman Mendoza, G.M.; Sanchez Riojas, M.M.; Felix JImenez, D.

    1998-01-01

    This work shows a radiological security plan applied to a Basic Radiological Service at a university health center. Factors taken into account were installation designs, equipment operation parameters, work procedures, image system and responsibilities

  9. Sites Requiring Facility Response Plans, Geographic NAD83, EPA (2006) [facility_response_plan_sites_la_EPA_2007

    Data.gov (United States)

    Louisiana Geographic Information Center — Locations of facilities in Louisiana requiring Oil Pollution Act (OPA) Facility Response Plans (FRP). The dataset was provided by the Region 6 OSCARS program....

  10. 10 CFR 76.119 - Security facility approval and safeguarding of National Security Information and Restricted Data.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Security facility approval and safeguarding of National Security Information and Restricted Data. 76.119 Section 76.119 Energy NUCLEAR REGULATORY COMMISSION... approval and safeguarding of National Security Information and Restricted Data. The requirements for...

  11. Bechtel Hanford, Inc. network security plan for the environmental restoration contract

    International Nuclear Information System (INIS)

    McCaffrey, M.B.

    1997-01-01

    As part of the Computer Protection Program, this Network Security Plan identifies the specific security measures used to protect the Bechtel Hanford, Inc. (BHI) enterprise network. The network consists of the communication infrastructure and information systems used by BHI to perform work related to the Environmental Restoration Contract (ERC) at the Hanford Site. It provides electronic communication between the ERC-leased facilities in Richland, Washington and other facilities located on the Hanford Site. Network gateways to other site and offsite networks provide electronic communication with the rest of the Hanford community. The enterprise network is comprised of several individual networks that operate under different conditions and perform different functions. The principal network used by BHI is the Bechtel Local Area Network (BLAN). This document identifies specific security issues surrounding the BLAN and the measures BHI takes to protect it. The other BHI-operated networks are discussed from the perspective of the security impact they have on the BLAN. This plan addresses security for individual and shared computer systems connected to the BHI networks as well as the gateways between other site and external networks. It specifically does not address computer-based information systems that store or process particularly sensitive data, computer systems connected to other site networks (e.g., Hanford Local Area Network), or standalone computers located in ERC facilities

  12. IAEA Nuclear Security Assessment Methodologies (NUSAM) Project for Regulated Facilities

    International Nuclear Information System (INIS)

    Jang, Sung Soon

    2016-01-01

    Nuclear Security Assessment Methodologies (NUSAM) is a coordinate research project. The objectives of the NUSAM project is to establish a risk informed, performance-based methodological framework in a systematic, structured, comprehensive and appropriately transparent manner; to provide an environment for the sharing and transfer of knowledge and experience; and to provide guidance on, and practical examples of good practices in assessing the security of nuclear and other radioactive materials, as well as associated facilities and activities. The author worked as an IAEA scientific secretary of the NUAM project from 2013 to 2015. IAEA launched this project in 2013 and performed many activities: meetings, document development, table-top exercises and computer simulations. Now the project is in the final stage and will be concluded in the late 2016. The project will produce documents on NUSAM assessment methods and case study documents on NPP, Irradiator Facility and Transport. South Korea as a main contributor to this project will get benefits from the NUSAM. In 2014, South Korea introduced force-on-force exercises, which could be used as the assessment of physical protection system by the methods of NUSAM

  13. IAEA Nuclear Security Assessment Methodologies (NUSAM) Project for Regulated Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Sung Soon [Korea Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2016-05-15

    Nuclear Security Assessment Methodologies (NUSAM) is a coordinate research project. The objectives of the NUSAM project is to establish a risk informed, performance-based methodological framework in a systematic, structured, comprehensive and appropriately transparent manner; to provide an environment for the sharing and transfer of knowledge and experience; and to provide guidance on, and practical examples of good practices in assessing the security of nuclear and other radioactive materials, as well as associated facilities and activities. The author worked as an IAEA scientific secretary of the NUAM project from 2013 to 2015. IAEA launched this project in 2013 and performed many activities: meetings, document development, table-top exercises and computer simulations. Now the project is in the final stage and will be concluded in the late 2016. The project will produce documents on NUSAM assessment methods and case study documents on NPP, Irradiator Facility and Transport. South Korea as a main contributor to this project will get benefits from the NUSAM. In 2014, South Korea introduced force-on-force exercises, which could be used as the assessment of physical protection system by the methods of NUSAM.

  14. 78 FR 51754 - Request To Modify License by Replacing Security Plan With New Radiation Safety Plan; U.S...

    Science.gov (United States)

    2013-08-21

    ... Replacing Security Plan With New Radiation Safety Plan; U.S. Department of the Army, Jefferson Proving... security plan with a new radiation safety plan. DATES: Submit comments by September 20, 2013. Requests for.... The proposed change is to modify License Condition No. 12 D which refers to the security plan of...

  15. Security-Constrained Resource Planning in Electricity Market

    International Nuclear Information System (INIS)

    Roh, Jae Hyung; Shahidehpour, Mohammad; Yong Fu

    2007-06-01

    We propose a market-based competitive generation resource planning model in electricity markets. The objective of the model is to introduce the impact of transmission security in a multi-GENCO generation resource planning. The proposed approach is based on effective decomposition and coordination strategies. Lagrangian relaxation and Benders decomposition like structure are applied to the model. Locational price signal and capacity signal are defined for the simulation of competition among GENCOs and the coordination of security between GENCOs and the regulatory body (ISO). The numerical examples exhibit the effectiveness of the proposed generation planning model in electricity markets.

  16. Sport Facility Planning and Management. Sport Management Library.

    Science.gov (United States)

    Farmer, Peter J.; Mulrooney, Aaron L.; Ammon, Rob, Jr.

    Students of sports facilities management will need to acquire a wide variety of managerial skills and knowledge in order to be adequately prepared to plan and manage these facilities. This textbook offers students a mix of practical examples and recognized theory to help them in the planning, constructing, promoting, and managing of sports…

  17. Planning Facilities for Athletics, Physical Education and Recreation. Revised.

    Science.gov (United States)

    American Alliance for Health, Physical Education, Recreation and Dance (AAHPERD).

    This revised edition includes new material recommended by a panel of experts in the field of recreational planning. The following topics are covered: (1) the planning process; (2) indoor facilities; (3) outdoor facilities; (4) indoor and outdoor swimming pools; (5) encapsulated spaces and stadiums; (6) service areas; (7) recreation and park…

  18. Security plan for the energy sector

    International Nuclear Information System (INIS)

    Tapias Stahelin, Fernando

    1998-01-01

    The explosion of pipelines is so alone the tip of the iceberg of a violent situation that, for many, sinks the economic and social panorama of Colombia in an uncertainty difficult to clarify. Although it is certain that we have the elements to build a country with a floating economy and in development, it is also certain that our own war doesn't allow leaving but there. At the moment 3,2% of the Gross Domestic Product - GDP of the country is dedicated to the military expense, it calculates alarming if one keeps in mind that the average of Latin America is of 1.7% and the world average has lowered ostensibly in the last 10 years, passing from 5.1% to so single 2.7 investments. Of continuing this way, in the 2004 the projected inversion of the GDP of Colombia for military expense will overcome 5%. A conscientious analysis reveals the data of this situation that it affects all the contour of the national life. When we speak of violence in the country we should refer to all those factors and actors that destabilize the society and the legally established political institutions, creating it keels and fear in the whole population. In a same way, it becomes necessary to speak of the security and the national defense that should be guaranteed by the government instances. The security of a state of tranquility and well being; the defense, is an activity situation so that in the case that the security loses temper, it can return to the situation of initial security

  19. Site and facility waste transportation services planning documents

    International Nuclear Information System (INIS)

    Ratledge, J.E.; Schmid, S.; Danese, L.

    1991-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) will eventually ship Purchasers' (10 CFR 961.3) spent nuclear fuel from approximately 122 commercial nuclear facilities. The preparation and maintenance of Site- and Facility-Specific Transportation Services Planning Documents (SPDs) and Site-Specific Servicing Plans (SSSPs) provides a focus for advanced planning and the actual shipping of waste, as well as the overall development of transportation requirements for the waste transportation system. SPDs will be prepared for each of the affected nuclear waste facilities, with initial emphasis on facilities likely to be served during the earliest years of the Federal Waste Management System (FWMS) operations

  20. Stormwater Pollution Prevention Plan - TA-60 Material Recycling Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, Leonard Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-31

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector P-Land Transportation and Warehousing as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA- 60 Material Recycling Facility at Los Alamos National Laboratory. Los Alamos National Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-60 Material Recycling Facility. The current permit expires at midnight on June 4, 2020.

  1. Facility Decontamination and Decommissioning Program Surveillance and Maintenance Plan, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Poderis, Reed J. [NSTec; King, Rebecca A. [NSTec

    2013-09-30

    This Surveillance and Maintenance (S&M) Plan describes the activities performed between deactivation and final decommissioning of the following facilities located on the Nevada National Security Site, as documented in the Federal Facility Agreement and Consent Order under the Industrial Sites program as decontamination and decommissioning sites: ? Engine Maintenance, Assembly, and Disassembly (EMAD) Facility: o EMAD Building (Building 25-3900) o Locomotive Storage Shed (Building 25-3901) ? Test Cell C (TCC) Facility: o Equipment Building (Building 25-3220) o Motor Drive Building (Building 25-3230) o Pump Shop (Building 25-3231) o Cryogenic Lab (Building 25-3232) o Ancillary Structures (e.g., dewars, water tower, piping, tanks) These facilities have been declared excess and are in various stages of deactivation (low-risk, long-term stewardship disposition state). This S&M Plan establishes and implements a solid, cost-effective, and balanced S&M program consistent with federal, state, and regulatory requirements. A graded approach is used to plan and conduct S&M activities. The goal is to maintain the facilities in a safe condition in a cost-effective manner until their final end state is achieved. This plan accomplishes the following: ? Establishes S&M objectives and framework ? Identifies programmatic guidance for S&M activities to be conducted by National Security Technologies, LLC, for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) ? Provides present facility condition information and identifies hazards ? Identifies facility-specific S&M activities to be performed and their frequency ? Identifies regulatory drivers, NNSA/NFO policies and procedures, and best management practices that necessitate implementation of S&M activities ? Provides criteria and frequencies for revisions and updates ? Establishes the process for identifying and dispositioning a condition that has not been previously identified or

  2. Waste Encapsulation and Storage Facility (WESF) Design Reconstitution Plan

    International Nuclear Information System (INIS)

    HERNANDEZ, R.

    1999-01-01

    The purpose of Design Reconstitution is to establish a Design Baseline appropriate to the current facility mission. The scope of this plan is to ensure that Systems, Structures and Components (SSC) identified in the WESF Basis for Interim Operation (HNF-SDWM-BIO-002) are adequately described and documented, in order to support facility operations. In addition the plan addresses the adequacy of selected Design Topics which are also crucial for support of the facility Basis for Interim Operation (BIO)

  3. A Practice of Secure Development and Operational Environment Plan

    International Nuclear Information System (INIS)

    Park, Jaekwan; Seo, Sangmun; Suh, Yongsukl; Park, Cheol

    2017-01-01

    This paper suggests a practice of plan for SDOE establishment in a nuclear I and C. First, it is necessary to perform a requirements analysis to define key regulatory issues and determine the target systems. The analysis includes a survey to find out the applicable measures credited internationally. Based on the analysis results, this paper proposes an implementation plan including a process harmonizing security activities with legacy software activities and applicable technical, operational, and management measures for target systems. Recently, nuclear I and C has been faced with two security issues, cyber security (CS) and secure development and operational environment (SDOE). Unlike cyber security, few studies on planning SDOE have been presented. This paper suggests a plan for establishing an SDOE in a nuclear I and C. This paper defines three key considerations to comply with the regulatory position of RG. 1.152(R3) and proposes a process harmonizing the security activities with legacy software activities. In addition, this paper proposes technical, operational, and management measures applicable for SDOE.

  4. A guide for preparing Hanford Site facility effluent monitoring plans

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1992-06-01

    This document provides guidance on the format and content of effluent monitoring plans for facilities at the Hanford Site. The guidance provided in this document is designed to ensure compliance with US Department of Energy (DOE) Orders 5400.1 (DOE 1988a), 5400.3 (DOE 1989a), 5400.4 (DOE 1989b), 5400.5 (DOE 1990a), 5480.1 (DOE 1982), 5480.11 (DOE 1988b), and 5484.1 (DOE 1981). These require environmental monitoring plans for each site, facility, or process that uses, generates, releases, or manages significant pollutants of radioactive or hazardous materials. In support of DOE Orders 5400.5 (Radiation Protection of the Public and the Environment) and 5400.1 (General Environmental Protection Program), the DOE Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE 1991) should be used to establish elements of a radiological effluent monitoring program in the Facility Effluent Monitoring Plan. Evaluation of facilities for compliance with the US Environmental Protection Agency Clean Air Act of 1977 requirements also is included in the airborne emissions section of the Facility Effluent Monitoring Plans. Sampling Analysis Plans for Liquid Effluents, as required by the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), also are included in the Facility Effluent Monitoring Plans. The Facility Effluent Monitoring Plans shall include complete documentation of gaseous and liquid effluent sampling and monitoring systems

  5. Plan de negocio Security Info Consultores

    OpenAIRE

    Cardona Cubillos, Diego Alejandro

    2013-01-01

    La empresa a crear tiene como razón social Security Info Consultores, con domicilio principal en la ciudad de Bogotá, y su servicio principal consiste en implementar un modelo de seguridad informática acorde a cada empresa, en dar charlas y conferencia sobre normatividad, correcta custodia de la información, concientización sobre la importancia del manejo de la información, capacitar al personal para que tengan un conocimiento detallado y claro sobre le modelo implantado, desarrollar audito...

  6. Surveillance and Maintenance Plan for the Uranium Trioxide(UO3) Facility

    International Nuclear Information System (INIS)

    McGuire, J.J.

    1999-01-01

    This document provides a plan for implementing surveillance and maintenance (S and M) activities to ensure the Uranium Oxide(UO3) Facility is maintained in a safe, environmentally secure, and cost effective manner until subsequent closure during the final disposition phase of decommissioning. This plan has been prepared in accordance with the guidelines provided in the U.S. Department of Energy (DOE) Office of Environmental Management (EM) Decommissioning Resource Manual (DOE 1995) and Section 8.6 of TPA change form P-08-97-01 to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology, et al. 1996)

  7. The Maritime Infrastructure Recovery Plan for the National Strategy for Maritime Security

    National Research Council Canada - National Science Library

    2006-01-01

    ... to the jurisdiction of the United States. The MIRP, the Maritime Commerce Security Plan, and the Maritime Transportation System Security Plan were developed in close coordination under the National Strategy for Maritime Security (NSMS...

  8. Major issues on establishing an emergency plan in nuclear facilities

    International Nuclear Information System (INIS)

    Chen, Zhu-zhou

    1988-03-01

    Several major issues on emergency planning and preparation in nuclear facilities were discussed -- such as the importance of emergency planning and preparation, basic principles of intervention and implementation of emergency plan and emergency training and drills to insure the effectiveness of the emergency plan. It is emphasized that the major key point of emergency planning and response is to avoid the occurrence of serious nonrandom effect. 12 refs., 3 tabs

  9. 200 Area Liquid Effluent Facilities -- Quality assurance program plan

    International Nuclear Information System (INIS)

    Fernandez, L.

    1995-01-01

    This Quality Assurance Program Plan (QAPP) describes the quality assurance and management controls used by the 200 Area Liquid Effluent Facilities (LEF) to perform its activities in accordance with DOE Order 5700.6C. The 200 Area LEF consists of the following facilities: Effluent Treatment Facility (ETF); Treated Effluent Disposal Facility (TEDF); Liquid Effluent Retention facility (LERF); and Truck Loading Facility -- (Project W291). The intent is to ensure that all activities such as collection of effluents, treatment, concentration of secondary wastes, verification, sampling and disposal of treated effluents and solids related with the LEF operations, conform to established requirements

  10. The Security Plan for the Joint Euratom/IAEA Remote Monitoring Network

    International Nuclear Information System (INIS)

    Stronkhorst, J.; Schoop, K.; Ruuska, K.; Kurek, S.; Levert, J.F.

    2015-01-01

    The European Commission and the IAEA have installed surveillance systems in all larger civil European nuclear facilities. The monitoring data is gathered by optical surveillance systems, electronic sealing systems and numerous measuring devices. The on-site joint Euratom/IAEA monitoring networks operate in general completely isolated from the operator's IT systems. To largely improve data security and reliability, remote data transmission (RDT) is installed on a growing number of sites, and the inspection data is daily transferred to the Data Collect Servers in Luxembourg and Vienna. A growing number of RDT connections and a growing number of security threats require an IT security policy that is pro-active as well as reactive in an efficient way. The risk based approach used in setting up the security plans assesses all elements of the monitoring network, from the implemented technical solution and the assessment of the security needs and threats, up to the incident handling and lessons learned. The results of the assessments are, for each individual RDT connection, described in the technical paragraphs and annexes, including system descriptions, network plans and contact information. The principles of secure data handling as implemented in the shared Euratom /IAEA monitoring network can apply to a broad range of industrial monitoring systems, where human interaction is in general the largest security risk. (author)

  11. Standard Guide for Preparing Characterization Plans for Decommissioning Nuclear Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This standard guide applies to developing nuclear facility characterization plans to define the type, magnitude, location, and extent of radiological and chemical contamination within the facility to allow decommissioning planning. This guide amplifies guidance regarding facility characterization indicated in ASTM Standard E 1281 on Nuclear Facility Decommissioning Plans. This guide does not address the methodology necessary to release a facility or site for unconditional use. This guide specifically addresses: 1.1.1 the data quality objective for characterization as an initial step in decommissioning planning. 1.1.2 sampling methods, 1.1.3 the logic involved (statistical design) to ensure adequate characterization for decommissioning purposes; and 1.1.4 essential documentation of the characterization information. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate saf...

  12. Computer-Assisted School Facility Planning with ONPASS.

    Science.gov (United States)

    Urban Decision Systems, Inc., Los Angeles, CA.

    The analytical capabilities of ONPASS, an on-line computer-aided school facility planning system, are described by its developers. This report describes how, using the Canoga Park-Winnetka-Woodland Hills Planning Area as a test case, the Department of City Planning of the city of Los Angeles employed ONPASS to demonstrate how an on-line system can…

  13. West Valley Demonstration Project facilities utilization plan for the existing facilities at the Western New York Nuclear Service Center

    International Nuclear Information System (INIS)

    Skillern, C.G.

    1986-05-01

    In 1980, Congress passed Public Law 96-368, the West Valley Demonstration Project (WVDP) Act. As a primary objective, the Act authorized the US Department of Energy (DOE) to solidify the high-level waste (HLW) stored at the Western New York Nuclear Service Center (WNYNSC) into a form suitable for transportation and disposal in a federal repository. This report will describe how WVDP proposes to use the existing WNYNSC Facilities in an efficient and technically effective manner to comply with Public Law 96-368. In support of the above cited law, the DOE has entered into a ''Cooperative agreement between the United States Department of Energy and the New York State Energy Research and Development Authority on the Western New York Nuclear Service Center at West Valley, New York.'' The state-owned areas turned over to the DOE for use are as follows: Process Plant, Waste Storage, Low-Level Waste Treatment Facility, Service Facilities, Plant Security, and Additional Facilities. The Facilities Utilization Plan (FUP) describes how the state-owned facilities will be utilized to complete the Project; it is divided into five sections as follows: Executive Summary - an overview; Introduction - the WVDP approach to utilizing the WNYNSC Facilities; WVDP Systems - a brief functional description of the system, list of equipment and components to be used and decontamination and decommissioning (D and D) support; WVDP Support Facilities; and Caveats that could effect or change the potential usage of a particular area

  14. Designing a Physical Security System for Risk Reduction in a Hypothetical Nuclear Facility

    International Nuclear Information System (INIS)

    Saleh, A.A.; Abd Elaziz, M.

    2017-01-01

    Physical security in a nuclear facility means detection, prevention and response to threat, the ft, sabotage, unauthorized access and illegal transfer involving radioactive and nuclear material. This paper proposes a physical security system designing concepts to reduce the risk associated with variant threats to a nuclear facility. This paper presents a study of the unauthorized removal and sabotage in a hypothetical nuclear facility considering deter, delay and response layers. More over, the study involves performing any required upgrading to the security system by investigating the nuclear facility layout and considering all physical security layers design to enhance the weakness for risk reduction

  15. Facility effluent monitoring plan for the 2724-W Protective Equipment Decontamination Facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Lavey, G.H.

    1992-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438**. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  16. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Geiger, J.L.

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified. in. A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  17. The planned Alaska SAR Facility - An overview

    Science.gov (United States)

    Carsey, Frank; Weeks, Wilford

    1987-01-01

    The Alaska SAR Facility (ASF) is described in an overview fashion. The facility consists of three major components, a Receiving Ground System, a SAR Processing System and an Analysis and Archiving System; the ASF Program also has a Science Working Team and the requisite management and operations systems. The ASF is now an approved and fully funded activity; detailed requirements and science background are presented for the facility to be implemented for data from the European ERS-1, the Japanese ERS-1 and Radarsat.

  18. TECHNIQUE OF OPTIMAL AUDIT PLANNING FOR INFORMATION SECURITY MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    F. N. Shago

    2014-03-01

    Full Text Available Complication of information security management systems leads to the necessity of improving the scientific and methodological apparatus for these systems auditing. Planning is an important and determining part of information security management systems auditing. Efficiency of audit will be defined by the relation of the reached quality indicators to the spent resources. Thus, there is an important and urgent task of developing methods and techniques for optimization of the audit planning, making it possible to increase its effectiveness. The proposed technique gives the possibility to implement optimal distribution for planning time and material resources on audit stages on the basis of dynamics model for the ISMS quality. Special feature of the proposed approach is the usage of a priori data as well as a posteriori data for the initial audit planning, and also the plan adjustment after each audit event. This gives the possibility to optimize the usage of audit resources in accordance with the selected criteria. Application examples of the technique are given while planning audit information security management system of the organization. The result of computational experiment based on the proposed technique showed that the time (cost audit costs can be reduced by 10-15% and, consequently, quality assessments obtained through audit resources allocation can be improved with respect to well-known methods of audit planning.

  19. Report to Congress on innovative safety and security technology solutions for alternative transportation facilities

    Science.gov (United States)

    2017-05-01

    This research collected information on the frequency and impact of safety and security incidents (threats) at selected facilities and identified priority incidents at each facility. A customized all hazards approach was used to determine the ha...

  20. Surveillance and Maintenance Plan for the Plutonium Uranium Extraction (PUREX) Facility

    International Nuclear Information System (INIS)

    Woods, P.J.

    1998-05-01

    This document provides a plan for implementing surveillance and maintenance (S ampersand M) activities to ensure the Plutonium Uranium Extraction (PUREX) Facility is maintained in a safe, environmentally secure, and cost-effective manner until subsequent closure during the final disposition phase of decommissioning. This plan has been prepared in accordance with the guidelines provided in the U.S. Department of Energy (DOE), Office of Environmental Management (EM) Decommissioning Resource Manual (DOE/EM-0246) (DOE 1995), and Section 8.6 of TPA change form P-08-97-01 to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology, et al. 1996). Specific objectives of the S ampersand M program are: Ensure adequate containment of remaining radioactive and hazardous material. Provide security control for access into the facility and physical safety to surveillance personnel. Maintain the facility in a manner that will minimize potential hazards to the public, the environment, and surveillance personnel. Provide a plan for the identification and compliance with applicable environmental, safety, health, safeguards, and security requirements

  1. PLANNING INTELLIGENCE ACTIVITIES IN A DYNAMIC SECURITY ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Anca Pavel

    2016-10-01

    Full Text Available The hypothesis introduced by this article is that, in order to perform intelligence missions and to obtain valuable intelligence for the consumers it is necessary to implement processes and tools to support planning activities. Today's challenges consist rather in the ability of intelligence organizations to identify and initiate new connections, processes and communication flows with other partners operating in the security environment than to plan in their own name secret operations. From this point of view, planning activities should focus on new procedures, at a much more extensive level in order to align institutional efforts beyond the boundaries of their own organization and the national community of information. Also, in order to coordinate intelligence activities, strategic planning must be anchored into a complex analysis of the potential impact of existing and possible future global phenomena that shape the security environment and thus identify better ways of improving results.

  2. Ice condenser testing facility and plans

    International Nuclear Information System (INIS)

    Kannberg, L.D.; Ross, B.A.; Eschbach, E.J.; Ligotke, M.W.

    1987-01-01

    A facility is being constructed to experimentally validate the ICEDF computer code. The code was developed to estimate the extent of fission product retention in the ice compartments of pressurized water reactor ice condenser containment systems during severe accidents. The design and construction of the facility is based on a test design that addresses the validation needs of the code for conditions typical of those expected to occur during severe pressurized water reactor accidents. Detailed facility design has followed completion of a test design (i.e., assembled test cases each involving a different set of aerosol and thermohydraulic flow conditions). The test design was developed with the aid of statistical test design software and was scrutinized for applicability with the aid of ICEDF simulations. The test facility will incorporate a small section of a prototypic ice condenser (e.g., a cross section comprising the equivalent of four 1-ft-diameter ice baskets to their full prototypic height of 48 ft). The development of the test design, the detailed facility design, and the construction progress are described in this paper

  3. Fast Flux Test Facility project plan. Revision 2

    International Nuclear Information System (INIS)

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition

  4. Fast Flux Test Facility project plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  5. Grout Treatment Facility Land Disposal Restriction Management Plan

    International Nuclear Information System (INIS)

    Hendrickson, D.W.

    1991-01-01

    This document establishes management plans directed to result in the land disposal of grouted wastes at the Hanford Grout Facilities in compliance with Federal, State of Washington, and Department of Energy land disposal restrictions. 9 refs., 1 fig

  6. Private sector's role in public school facility planning.

    Science.gov (United States)

    2009-03-01

    This report explores the role of private consultants in the school facility planning process. : It focuses on such issues as school siting and local government and school district collaboration. : As such, it seeks to demonstrate the importance of th...

  7. Surveillance and Maintenance Plan for the 202-S Reduction Oxidation (REDOX) Facility

    International Nuclear Information System (INIS)

    McGuire, J.J.

    1999-01-01

    This document provides a plan for implementing surveillance and maintenance (S and M) activities to ensure the 202-S Reduction Oxidation (REDOX) Facility is maintained in a safe, environmentally secure, and cost effective manner until subsequent closure during the final disposition phase of decommissioning. Specific objectives of the S and M program are to ensure adequate confinement of hazardous substances, to provide physical safety and security controls, to maintain the facilities in a manner that will minimize potential hazards to the public and workers, to provide adequate frequency of inspections to identify potential hazards, to maintain selected systems or equipment that will be essential for decommissioning activities in a shutdown but standby or operational mode, if economically justified, and to provide a mechanism for the identification and compliance with applicable environmental, safety and health, and safeguard and security requirements

  8. Marketing Plan for the National Security Technology Incubator

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-03-31

    This marketing plan was developed as part of the National Security Preparedness Project by the Arrowhead Center of New Mexico State University. The vision of the National Security Technology Incubator program is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety and security. The plan defines important aspects of developing the incubator, such as defining the target market, marketing goals, and creating strategies to reach the target market while meeting those goals. The three main marketing goals of the incubator are: 1) developing marketing materials for the incubator program; 2) attracting businesses to become incubator participants; and 3) increasing name recognition of the incubator program on a national level.

  9. ERC Maintenance Implementation Plan for nuclear facilities

    International Nuclear Information System (INIS)

    Franquero, R.C.

    1997-05-01

    The inactive and surplus facilities assigned to the Environmental Restoration Contractor are shut down and have no operating production processes or production materials except for residual contamination. There is a minimal number of operating systems to support surveillance and maintenance or decontamination and decommissioning activities (D ampersand D). These systems may include heating and ventilation, air conditioning, lighting, and other electrical systems. Inactive and surplus facilities will be subject to periodic long-term surveillance to ensure the integrity of structures until D ampersand D. D ampersand D projects are of relatively short duration and end with all systems deactivated. Therefore, a rigorous in-depth maintenance program such as that required for producing nuclear facilities is not required or cost effective

  10. Security's role in morgue operations: needed--a foolproof plan.

    Science.gov (United States)

    White, John M

    2012-01-01

    If handling the remains of dead patients is a responsibility of your security department, or you are being pressured to take on the role because of budget cuts, the need to anticipate and plan for complications which may arise is critical, the author points out.

  11. Nevada National Security Site Integrated Groundwater Sampling Plan, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Marutzky, Sam; Farnham, Irene

    2014-10-01

    The purpose of the Nevada National Security Site (NNSS) Integrated Sampling Plan (referred to herein as the Plan) is to provide a comprehensive, integrated approach for collecting and analyzing groundwater samples to meet the needs and objectives of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity. Implementation of this Plan will provide high-quality data required by the UGTA Activity for ensuring public protection in an efficient and cost-effective manner. The Plan is designed to ensure compliance with the UGTA Quality Assurance Plan (QAP). The Plan’s scope comprises sample collection and analysis requirements relevant to assessing the extent of groundwater contamination from underground nuclear testing. This Plan identifies locations to be sampled by corrective action unit (CAU) and location type, sampling frequencies, sample collection methodologies, and the constituents to be analyzed. In addition, the Plan defines data collection criteria such as well-purging requirements, detection levels, and accuracy requirements; identifies reporting and data management requirements; and provides a process to ensure coordination between NNSS groundwater sampling programs for sampling of interest to UGTA. This Plan does not address compliance with requirements for wells that supply the NNSS public water system or wells involved in a permitted activity.

  12. 202-S Hexone Facility supplemental information to the Hanford Facility Contingency Plan

    International Nuclear Information System (INIS)

    Ingle, S.J.

    1996-03-01

    This document is a unit-specific contingency plan for the 202-S Hexone Facility and is intended to be used as a supplement to the Hanford Facility Contingency Plan. This unit-specific plan is to be used to demonstrate compliance with the contingency plan requirements of WAC 173-303 for certain Resource Conservation and Recovery Act of 1976 (RCRA) waste management units. The 202-S Hexone Facility is not used to process radioactive or nonradioactive hazardous material. Radioactive, dangerous waste material is contained in two underground storage tanks, 276-S-141 and 276-S-142. These tanks do not present a significant hazard to adjacent facilities, personnel, or the environment. Currently, dangerous waste management activities are not being applied at the tanks. It is unlikely that any incidents presenting hazards to public health or the environment would occur at the 202-S Hexone Facility

  13. Overview of planning process at FFTF [Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Gadeken, A.D.

    1986-03-01

    The planning process at the Fast Flux Test Facility (FFTF) is controlled through a hierarchy of documents ranging from a ten-year strategic plan to a weekly schedule. Within the hierarchy are a Near-Term (three-year) Operating Plan, a Cycle (six-month) Plan, and an Outage/Operating Phase Schedule. Coordination of the planning process is accomplished by a dedicated preparation team that also provides an overview of the formal planning timetable which identifies key action items required to be completed before an outage/operating phase can begin

  14. Near-facility environmental monitoring quality assurance project plan

    International Nuclear Information System (INIS)

    McKinney, S.M.

    1997-01-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near facility environmental monitoring performed by Waste Management Federal Services, Inc., Northwest Operations and supersedes WHC-EP-0538-2. This plan applies to all sampling and monitoring activities performed by waste management Federal Services, Inc., Northwest Operations in implementing facility environmental monitoring at the Hanford Site

  15. Fast flux test facility, transition project plan

    International Nuclear Information System (INIS)

    Guttenberg, S.

    1994-01-01

    The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition

  16. Fast flux test facility, transition project plan

    Energy Technology Data Exchange (ETDEWEB)

    Guttenberg, S.

    1994-11-15

    The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  17. Planning the School Food Service Facilities. Revised 1967.

    Science.gov (United States)

    Utah State Board of Education, Salt Lake City.

    Evaluations of food service equipment, kitchen design and food service facilities are comprehensively reviewed for those concerned with the planning and equipping of new school lunchrooms or the remodeling of existing facilities. Information is presented in the form of general guides adaptable to specific local situations and needs, and is…

  18. Environmental Control Plan for the Industrial Hygiene Field Services Facility

    International Nuclear Information System (INIS)

    Donnelly, J.W.

    2000-01-01

    This environmental control plan is for the Hanford Site's Industrial Hygiene Field Services Facility, located in the 100-N Area. This facility is used for the maintenance and storage of respirators, respiratory equipment and testing, calibration and testing of industrial hygiene equipment, and asbestos fiber counting

  19. Readiness Assessment Plan, Hanford 200 areas treated effluent disposal facilities

    International Nuclear Information System (INIS)

    Ulmer, F.J.

    1995-01-01

    This Readiness Assessment Plan documents Liquid Effluent Facilities review process used to establish the scope of review, documentation requirements, performance assessment, and plant readiness to begin operation of the Treated Effluent Disposal system in accordance with DOE-RLID-5480.31, Startup and Restart of Facilities Operational Readiness Review and Readiness Assessments

  20. Facility effluent monitoring plan for WESF

    Energy Technology Data Exchange (ETDEWEB)

    SIMMONS, F.M.

    1999-09-01

    The FEMP for the Waste Encapsulation and Storage Facility (WESF) provides sufficient information on the WESF effluent characteristics and the effluent monitoring systems so that a compliance assessment against applicable requirements may be performed. Radioactive and hazardous material source terms are related to specific effluent streams that are in turn, related to discharge points and, finally are compared to the effluent monitoring system capability.

  1. Facility effluent monitoring plan for WESF

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    1999-01-01

    The FEMP for the Waste Encapsulation and Storage Facility (WESF) provides sufficient information on the WESF effluent characteristics and the efferent monitoring systems so that a compliance assessment against applicable requirements may be performed. Radioactive and hazardous material source terms are related to specific effluent streams that are in turn, related to discharge points and, finally are compared to the effluent monitoring system capability

  2. Planning and Managing School Facilities for Agriculture

    Science.gov (United States)

    Staller, Bernie

    1976-01-01

    The Agribusiness Department at Janesville Parker Senior High in Wisconsin involves 360 students and three instructors in three different buildings. Facilities were provided through a variety of methods with major emphasis on utilizing the urban setting. Future Farmers of America students operate projects in orchards, greenhouse, gardens, and…

  3. Outline of electric power facility plan in fiscal year 1988

    International Nuclear Information System (INIS)

    1988-01-01

    As to the electric power facility plan in fiscal year 1988, 15 designated electric power enterprises made the notification to the Minister of International Trade and Industry in March, 1988. This outline of the facility plan summarized the plans of 66 enterprises in total, including the plans of municipally operated, joint thermal power and other enterprises in addition to the above 15. In order to ensure the stable supply of electric power, the Ministry of International Trade and Industry considers that it is indispensable to purposefully develop electric power sources and the facilities for distribution along this facility plan. The forecast for fiscal year 1997 is : total electric power demand 778.2 billion kWh, maximum power demand 151.21 million kW, and yearly load factor 56.9 %. This is equivalent to the yearly growth of 2.4 %. In fiscal year 1988, it is planned to present 29 plants of 2760 MW to the Power Source Development Coordination Council. The breakdown is : hydroelectricity 140 MW, thermal power 2010 MW, and nuclear power 610 MW. The Ministry guides electric power enterprises so as to realize the diversification of electric power sources. Also the increase of transmission and transformation facilities, the plan of equipment investment and others are reported. (Kako, I.)

  4. SNL Five-Year Facilities & Infrastructure Plan FY2015-2019

    Energy Technology Data Exchange (ETDEWEB)

    Cipriani, Ralph J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    Sandia’s development vision is to provide an agile, flexible, safer, more secure, and efficient enterprise that leverages the scientific and technical capabilities of the workforce and supports national security requirements in multiple areas. Sandia’s Five-Year Facilities & Infrastructure Planning program represents a tool to budget and prioritize immediate and short-term actions from indirect funding sources in light of the bigger picture of proposed investments from direct-funded, Work for Others and other funding sources. As a complementary F&I investment program, Sandia’s indirect investment program supports incremental achievement of the development vision within a constrained resource environment.

  5. Synchronization of workshops, using facilities planning

    Science.gov (United States)

    Zineb, Britel; Abdelghani, Cherkaoui

    2017-08-01

    In this paper, we will present a methodology used for the synchronization of two workshops of a sheet metal department. These two workshops have a supplier-customer relationship. The aim of the study is to synchronise the two workshops as a step towards creating a better material flow, reduced inventory and achieving Just in time and lean production. To achieve this, we used a different set of techniques: SMED, Facilities planning…

  6. Facility Effluent Monitoring Plan for the 222-S Laboratory

    International Nuclear Information System (INIS)

    Robinson, A.V.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems against applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. The current operation of the 222-S facilities includes the provision of analytical and radiological chemistry services in support of Hanford Site processing plants. The emphasis is on waste management, chemical processing, environmental monitoring effluent programs at B Plant, the Uranium Oxide Plant, Tank Farms, the 242-A Evaporator, the Waste Encapsulation and Storage Facility, the Plutonium-Uranium Extraction Facility, the Plutonium Finishing Plant, process development/impact activities, and essential materials. The laboratory also supplies analytical services in support of ongoing waste tank characterization

  7. Facility effluent monitoring plan for the B plant

    International Nuclear Information System (INIS)

    Lesser, J.E.

    1994-09-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plant assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated every three years

  8. Business plan Hatchery Facility Zambezi Valley, Mozambique

    NARCIS (Netherlands)

    Vernooij, A.G.; Wilschut, S.

    2015-01-01

    This business plan focuses on the establishment of a hatchery, one of the essential elements of a sustainable and profitable poultry meat value chain. There is a growing demand for poultry meat in the Zambezi Valley, and currently a large part of the consumed broilers comes from other parts of the

  9. Development of Facilities Master Plan and Laboratory Renovation Project

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Andrea D

    2011-10-03

    Funding from this grant has allowed Morehouse School of Medicine to complete its first professionally developed, comprehensive campus master plan that is in alignment with the recently completed strategic plan. In addition to master planning activities, funds were used for programming and designing research renovations, and also to supplement other research facility upgrades by providing lighting and equipment. The activities funded by this grant will provide the catalyst for substantial improvement in the School's overall facilities for biomedical education and research, and will also provide much of the information needed to conduct a successful campaign to raise funds for proposed buildings and renovations.

  10. Hanford Site waste tank farm facilities design reconstitution program plan

    International Nuclear Information System (INIS)

    Vollert, F.R.

    1994-01-01

    Throughout the commercial nuclear industry the lack of design reconstitution programs prior to the mid 1980's has resulted in inadequate documentation to support operating facilities configuration changes or safety evaluations. As a result, many utilities have completed or have ongoing design reconstitution programs and have discovered that without sufficient pre-planning their program can be potentially very expensive and may result in end-products inconsistent with the facility needs or expectations. A design reconstitution program plan is developed here for the Hanford waste tank farms facility as a consequence of the DOE Standard on operational configuration management. This design reconstitution plan provides for the recovery or regeneration of design requirements and basis, the compilation of Design Information Summaries, and a methodology to disposition items open for regeneration that were discovered during the development of Design Information Summaries. Implementation of this plan will culminate in an end-product of about 30 Design Information Summary documents. These documents will be developed to identify tank farms facility design requirements and design bases and thereby capture the technical baselines of the facility. This plan identifies the methodology necessary to systematically recover documents that are sources of design input information, and to evaluate and disposition open items or regeneration items discovered during the development of the Design Information Summaries or during the verification and validation processes. These development activities will be governed and implemented by three procedures and a guide that are to be developed as an outgrowth of this plan

  11. Federal Facilities Compliance Act, Conceptual Site Treatment Plan. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-10-29

    This Conceptual Site Treatment Plan was prepared by Ames Laboratory to meet the requirements of the Federal Facilities Compliance Act. Topics discussed in this document include: general discussion of the plan, including the purpose and scope; technical aspects of preparing plans, including the rationale behind the treatability groupings and a discussion of characterization issues; treatment technology needs and treatment options for specific waste streams; low-level mixed waste options; TRU waste options; and future waste generation from restoration activities.

  12. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    International Nuclear Information System (INIS)

    Lohrasbi, J.; Johnson, D.L.; De Lorenzo, D.S.

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  13. Facility effluent monitoring plan for the Waste Receiving and Processing Facility Module 1

    International Nuclear Information System (INIS)

    Lewis, C.J.

    1995-10-01

    A facility effluent monitoring plan is required by the US Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal state, and local requirements. This facility effluent monitoring plan shall ensure lonq-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years

  14. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    International Nuclear Information System (INIS)

    Thompson, R.J.; Sontage, S.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years

  15. Facility Effluent Monitoring Plan for the 2724-W Protective Equipment Decontamination Facility

    International Nuclear Information System (INIS)

    Carter, G.J.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updates as a minimum every three years

  16. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    Energy Technology Data Exchange (ETDEWEB)

    Lohrasbi, J.; Johnson, D.L. [Westinghouse Hanford Co., Richland, WA (United States); De Lorenzo, D.S. [Los Alamos Technical Associates, NM (United States)

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  17. 33 CFR 105.210 - Facility personnel with security duties.

    Science.gov (United States)

    2010-07-01

    ... to threaten security; (d) Techniques used to circumvent security measures; (e) Crowd management and... effects, baggage, cargo, and vessel stores; and (m) The meaning and the consequential requirements of the...

  18. Self-Assessment of Nuclear Security Culture in Facilities and Activities. Technical Guidance

    International Nuclear Information System (INIS)

    2017-01-01

    The IAEA has developed a comprehensive methodology for evaluating nuclear security culture. When implemented by a State, this methodology will help to make nuclear security culture sustainable. It will also promote cooperation and the sharing of good practices related to nuclear security culture. This publication is the first guidance for assessing nuclear security culture and analysing its strengths and weaknesses within a facility or activity, or an organization. It reflects, within the context of assessment, the nuclear security culture model, principles and criteria set out in the Implementing Guide, IAEA Nuclear Security Series No. 7. This guidance will be useful for organizations and operating facilities in conducting the self-assessment of nuclear security culture by providing practical methods and tools. It will also help regulatory bodies and other competent authorities to understand the self-assessment methodology used by operators, encourage operators to start the self-assessment process or, if appropriate, conduct independent assessments of nuclear security culture.

  19. 78 FR 48037 - Facility Security Clearance and Safeguarding of National Security Information and Restricted Data

    Science.gov (United States)

    2013-08-07

    ... Clearance and Safeguarding of National Security Information and Restricted Data AGENCY: Nuclear Regulatory... the objectives of Executive Order 13526, Classified National Security Information. The rule allows... signed Executive Order 13526, Classified National Security Information, which was published in the...

  20. Designing and constructing/installing technical security countermeasures (TSCM) into supersensitive facilities

    International Nuclear Information System (INIS)

    Davis, D.L.

    1988-01-01

    The design and construction of supersensitive facilities and the installation of systems secure from technical surveillance and sabotage penetration involve ''TSCM'' in the broad sense of technical ''security'' countermeasures. When the technical threat was at a lower level of intensity and sophistication, it was common practice to defer TSCM to the future facility occupant. However, the New Moscow Embassy experience has proven this course of action subject to peril. Although primary concern with the embassy was audio surveillance, elsewhere there are other threats of equal or greater concern, e.g., technical implants may be used to monitor readiness status or interfere with the operation of C3I and weapons systems. Present and future technical penetration threats stretch the imagination. The Soviets have committed substantial hard scientific resources to a broad range of technical intelligence, even including applications or parapsychology. Countering these threats involves continuous TSCM precautions from initial planning to completion. Designs and construction/installation techniques must facilitate technical inspections and preclude the broadest range of known and suspected technical penetration efforts

  1. Designing and constructing/installing technical security countermeasures (TSCM) into supersensitive facilities

    Energy Technology Data Exchange (ETDEWEB)

    Davis, D.L.

    1988-01-01

    The design and construction of supersensitive facilities and the installation of systems secure from technical surveillance and sabotage penetration involve ''TSCM'' in the broad sense of technical ''security'' countermeasures. When the technical threat was at a lower level of intensity and sophistication, it was common practice to defer TSCM to the future facility occupant. However, the New Moscow Embassy experience has proven this course of action subject to peril. Although primary concern with the embassy was audio surveillance, elsewhere there are other threats of equal or greater concern, e.g., technical implants may be used to monitor readiness status or interfere with the operation of C3I and weapons systems. Present and future technical penetration threats stretch the imagination. The Soviets have committed substantial hard scientific resources to a broad range of technical intelligence, even including applications or parapsychology. Countering these threats involves continuous TSCM precautions from initial planning to completion. Designs and construction/installation techniques must facilitate technical inspections and preclude the broadest range of known and suspected technical penetration efforts.

  2. Federal Facilities Compliance Act, Draft Site Treatment Plan: Compliance Plan Volume. Part 2, Volume 2

    International Nuclear Information System (INIS)

    1994-01-01

    This document presents the details of the implementation of the Site Treatment Plan developed by Ames Laboratory in compliance with the Federal Facilities Compliance Act. Topics discussed in this document include: implementation of the plan; milestones; annual updates to the plan; inclusion of new waste streams; modifications of the plan; funding considerations; low-level mixed waste treatment plan and schedules; and TRU mixed waste streams

  3. User's guide for evaluating physical security capabilities of nuclear facilities by the EASI method

    International Nuclear Information System (INIS)

    Bennett, H.A.

    1977-06-01

    This handbook is a guide for evaluating physical security of nuclear facilities using the ''Estimate of Adversary Sequence Interruption (EASI)'' method and a hand-held programmable calculator. The handbook is intended for use by personnel at facilities where special nuclear materials are used, processed, or stored. It may also be used as a design aid for such facilities by potential licensees

  4. Quadrant I RCRA Facility Investigation Work Plan

    International Nuclear Information System (INIS)

    1990-01-01

    The objective of this Facility Investigation (FRI) at the Portsmouth Gaseous Diffusion Plant (PORTS) is to acquire, analyze and interpret data which will: (1) characterize the environmental setting including ground water, surface water and sediment, soil and air; (2) define and characterize sources of contamination; (3) characterize the vertical and horizontal extent and degree of contamination of the environment; (4) assess the risk to human health and the environment resulting from possible exposure to contaminants; and, (5) support the Corrective Measures Study (CMS) which will follow the RFI. Investigations to characterize the environmental setting, sources of contamination, and vertical and horizontal extent and degree of contamination will be conducted relative to individual potential sources which have been identified in the Quadrant I Description of Current Conditions. These unit investigations will follow the systematic approach which is outlined below

  5. 305 Building Cold Test Facility Management Plan

    International Nuclear Information System (INIS)

    Whitehurst, R.

    1994-01-01

    This document provides direction for the conduct of business in Building 305 for cold testing tools and equipment. The Cold Test Facility represents a small portion of the overall building, and as such, the work instructions already implemented in the 305 Building will be utilized. Specific to the Cold Test there are three phases for the tools and equipment as follows: 1. Development and feature tests of sludge/fuel characterization equipment, fuel containerization equipment, and sludge containerization equipment to be used in K-Basin. 2. Functional and acceptance tests of all like equipment to be installed and operated in K-Basin. 3. Training and qualification of K-Basin Operators on equipment to be installed and operated in the Basin

  6. 76 FR 45645 - 10-Day Notice of Proposed Information Collection: Technology Security/Clearance Plans, Screening...

    Science.gov (United States)

    2011-07-29

    ...: Technology Security/Clearance Plans, Screening Records, and Non-Disclosure Agreements ACTION: Notice of... Information Collection: Technology Security/ Clearance Plans, Screening Records, and Non-Disclosure Agreements...: None. Respondents: Business and Nonprofit Organizations, Foreign Governments. Estimated Number of...

  7. WIPP Facility Work Plan for Solid Waste Management Units

    International Nuclear Information System (INIS)

    2000-01-01

    This Facility Work Plan (FWP) has been prepared as required by Module VII,Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a). This work plan describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current New Mexico Environment Department (NMED) guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility's's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The scope of work for the RFI Work Plan or SAP is being developed by the Permittees. The final content of the RFI Work Plan or SAP will be coordinated with the NMED for submittal on May 24, 2000. Specific project-related planning information will be included in the RFI Work Plan or SAP. The SWMU program at WIPP began in 1994 under U.S. Environmental Protection Agency (EPA) regulatory authority. NMED subsequently received regulatory authority from EPA. A

  8. Waste analysis plan for the 200 area effluent treatment facility and liquid effluent retention facility

    International Nuclear Information System (INIS)

    Ballantyne, N.A.

    1995-01-01

    This waste analysis plan (WAP) has been prepared for startup of the 200 Area Effluent Treatment Facility (ETF) and operation of the Liquid Effluent Retention Facility (LERF), which are located on the Hanford Facility, Richland, Washington. This WAP documents the methods used to obtain and analyze representative samples of dangerous waste managed in these units, and of the nondangerous treated effluent that is discharged to the State-Approved Land Disposal System (SALDS). Groundwater Monitoring at the SALDS will be addressed in a separate plan

  9. Facility Effluent Monitoring Plan for the 3720 Building

    Energy Technology Data Exchange (ETDEWEB)

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the Environmental Science Laboratory (3720 Facility) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs'' This FEMP has been prepared for the 3720 Facility primarily because it has a major (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The 3720 Facility provides office and laboratory space for PNNL scientific and engineering staff conducting multidisciplinary research in the areas of materials characterization and testing and waste management. The facility is designed to accommodate the use of radioactive and hazardous materials to conduct these activities. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, and dispersible particulate. The facility is in the process of being vacated for shutdown, but is considered a Major Emission Point as of the date of this document approval.

  10. 303-K Radioactive Mixed-Waste Storage Facility closure plan

    International Nuclear Information System (INIS)

    1991-11-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors chemical-separation systems, and related facilities used for the production o special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 303-K Radioactive Mixed-Waste Storage Facility (303-K Facility) has been used since 1943 to store various radioactive,and dangerous process materials and wastes generated by the fuel manufacturing processes in the 300 Area. The mixed wastes are stored in US Department of Transportation (DOT)-specification containers (DOT 1988). The north end of the building was used for storage of containers of liquid waste and the outside storage areas were used for containers of solid waste. Because only the north end of the building was used, this plan does not include the southern end of the building. This closure plan presents a description of the facility, the history of materials and wastes managed, and a description of the procedures that will be followed to chose the 303-K Facility as a greater than 90-day storage facility. The strategy for closure of the 303-K Facility is presented in Chapter 6.0

  11. Facility effluent monitoring plan for the 300 Area Fuels Fabrication Facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Brendel, D.F.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP- 0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring system by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The Fuel Fabrication Facility in the Hanford 300 Area supported the production reactors from the 1940's until they were shut down in 1987. Prior to 1987 the Fuel Fabrication Facility released both airborne and liquid radioactive effluents. In January 1987 the emission of airborne radioactive effluents ceased with the shutdown of the fuels facility. The release of liquid radioactive effluents have continued although decreasing significantly from 1987 to 1990

  12. Project summary plan for HTGR recycle reference facility

    International Nuclear Information System (INIS)

    Baxter, B.J.

    1979-11-01

    A summary plan is introduced for completing conceptual definition of an HTGR Recycle Reference Facility (HRRF). The plan describes a generic project management concept, often referred to as the requirements approach to systems engineering. The plan begins with reference flow sheets and provides for the progressive evolution of HRRF requirements and definition through feasibility, preconceptual, and conceptual phases. The plan lays end-to-end all the important activities and elements to be treated during each phase of design. Identified activities and elements are further supported by technical guideline documents, which describe methodology, needed terminology, and where relevant a worked example

  13. Certification plan transuranic waste: Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    1992-06-01

    The purpose of this plan is to describe the organization and methodology for the certification of transuranic (TRU) waste handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). The plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Quality Assurance Implementing Management Plan (QAIMP) for the HWBF; and a list of the current and planned implementing procedures used in waste certification

  14. Implementation of computer security at nuclear facilities in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Lochthofen, Andre; Sommer, Dagmar [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany)

    2013-07-01

    In recent years, electrical and I and C components in nuclear power plants (NPPs) were replaced by software-based components. Due to the increased number of software-based systems also the threat of malevolent interferences and cyber-attacks on NPPs has increased. In order to maintain nuclear security, conventional physical protection measures and protection measures in the field of computer security have to be implemented. Therefore, the existing security management process of the NPPs has to be expanded to computer security aspects. In this paper, we give an overview of computer security requirements for German NPPs. Furthermore, some examples for the implementation of computer security projects based on a GRS-best-practice-approach are shown. (orig.)

  15. Implementation of computer security at nuclear facilities in Germany

    International Nuclear Information System (INIS)

    Lochthofen, Andre; Sommer, Dagmar

    2013-01-01

    In recent years, electrical and I and C components in nuclear power plants (NPPs) were replaced by software-based components. Due to the increased number of software-based systems also the threat of malevolent interferences and cyber-attacks on NPPs has increased. In order to maintain nuclear security, conventional physical protection measures and protection measures in the field of computer security have to be implemented. Therefore, the existing security management process of the NPPs has to be expanded to computer security aspects. In this paper, we give an overview of computer security requirements for German NPPs. Furthermore, some examples for the implementation of computer security projects based on a GRS-best-practice-approach are shown. (orig.)

  16. Facility Effluent Monitoring Plan for the Plutonium Finishing Plant

    International Nuclear Information System (INIS)

    FRAZIER, T.P.

    1999-01-01

    A facility effluent monitoring plan is required by the U. S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. To ensure the long-range integrity of the effluent monitoring systems, an update to this facility effluent monitoring plan is required whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document is reviewed annually even if there are no operational changes, and is updated, at a minimum, every 3 years

  17. Energy Systems Integration Facility (ESIF) Facility Stewardship Plan: Revision 2.1

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Juan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Anderson, Art [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-02

    The U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), has established the Energy Systems Integration Facility (ESIF) on the campus of the National Renewable Energy Laboratory (NREL) and has designated it as a DOE user facility. This 182,500-ft2 research facility provides state-of-the-art laboratory and support infrastructure to optimize the design and performance of electrical, thermal, fuel, and information technologies and systems at scale. This Facility Stewardship Plan provides DOE and other decision makers with information about the existing and expected capabilities of the ESIF and the expected performance metrics to be applied to ESIF operations. This plan is a living document that will be updated and refined throughout the lifetime of the facility.

  18. Establishing cyber security programs for I and C systems at nuclear facilities

    International Nuclear Information System (INIS)

    Waedt, Karl

    2012-01-01

    In recent years, across the international nuclear community, cyber security issues have quickly gained significant attention from safety authorities and plant designers alike. This increased attention was accelerated by news of the Stuxnet virus, which impaired control systems at Iranian nuclear facilities in 2010, but is also fueled by regular news about cyber security breaches of data systems at large business corporations. This paper discusses key aspects of establishing a cyber security program for Instrumentation and Control (I and C) systems at a nuclear facility, and identifies inherent aspects of nuclear power plant (NPP) design, that differentiate the needs of such a cyber security program from those of typical corporate data systems. (orig.)

  19. Establishing cyber security programs for I and C systems at nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Waedt, Karl [AREVA NP GmbH (Germany)

    2012-11-01

    In recent years, across the international nuclear community, cyber security issues have quickly gained significant attention from safety authorities and plant designers alike. This increased attention was accelerated by news of the Stuxnet virus, which impaired control systems at Iranian nuclear facilities in 2010, but is also fueled by regular news about cyber security breaches of data systems at large business corporations. This paper discusses key aspects of establishing a cyber security program for Instrumentation and Control (I and C) systems at a nuclear facility, and identifies inherent aspects of nuclear power plant (NPP) design, that differentiate the needs of such a cyber security program from those of typical corporate data systems. (orig.)

  20. Don't Drop Your Guard: Securing Nuclear Facilities

    International Nuclear Information System (INIS)

    Lööf, Susanna

    2013-01-01

    You're never quite finished with nuclear security. ''Even the most advanced security system for radioactive or nuclear material needs to be continuously updated to ensure that it remains effective,'' says Arvydas Stadalnikas, an IAEA Senior Nuclear Security Officer. ''Security can always be improved. Even if you think you have the best system for today, it may require enhancements because of the changing environment,'' he said. To help States with this daunting task, the IAEA offers support through its International Physical Protection Advisory Service (IPPAS) which includes in-depth analysis of the physical protection and nuclear security followed by expert advice. The IAEA has carried out 58 missions to 37 countries since the IPPAS programme was launched in 1996, helping States translate international conventions, codes and guidance on nuclear security into practice. Although each mission focuses on improving the security in a specific country, ''the programme has benefits that reach far beyond the recipient State's national borders,'' Stadalnikas noted. ''Each IPPAS mission helps improve global nuclear security because enhanced security in one country means that you improve globally. Deficiencies in one country could open the way for malicious acts, which can have worldwide effects,'' he said

  1. WIPP Facility Work Plan for Solid Waste Management Units

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2001-02-25

    This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility’s Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

  2. Near-Facility Environmental Monitoring Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    MCKINNEY, S.M.

    2000-01-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near-facility environmental monitoring directed by Waste Management Technical Services and supersedes HNF-EP-0538-4. This plan applies to all sampling and monitoring activities performed by Waste Management Technical Services in implementing near-facility environmental monitoring at the Hanford Site. This Quality Assurance Project Plan is required by U.S. Department of Energy Order 5400.1 (DOE 1990) as a part of the Environmental Monitoring Plan (DOE-RL 1997) and is used to define: Environmental measurement and sampling locations used to monitor environmental contaminants near active and inactive facilities and waste storage and disposal sites; Procedures and equipment needed to perform the measurement and sampling; Frequency and analyses required for each measurement and sampling location; Minimum detection level and accuracy; Quality assurance components; and Investigation levels. Near-facility environmental monitoring for the Hanford Site is conducted in accordance with the requirements of U.S. Department of Energy Orders 5400.1 (DOE 1990), 5400.5 (DOE 1993), 5484.1 (DOE 1990), and 435.1 (DOE 1999), and DOE/EH-O173T (DOE 1991). It is Waste Management Technical Services' objective to manage and conduct near-facility environmental monitoring activities at the Hanford Site in a cost-effective and environmentally responsible manner that is in compliance with the letter and spirit of these regulations and other environmental regulations, statutes, and standards

  3. Double-shell tank waste transfer facilities integrity assessment plan

    International Nuclear Information System (INIS)

    Hundal, T.S.

    1998-01-01

    This document presents the integrity assessment plan for the existing double-shell tank waste transfer facilities system in the 200 East and 200 West Areas of Hanford Site. This plan identifies and proposes the integrity assessment elements and techniques to be performed for each facility. The integrity assessments of existing tank systems that stores or treats dangerous waste is required to be performed to be in compliance with the Washington State Department of Ecology Dangerous Waste Regulations, Washington Administrative Code WAC-173-303-640 requirements

  4. Hexone Storage and Treatment Facility closure plan

    International Nuclear Information System (INIS)

    1992-11-01

    The HSTF is a storage and treatment unit subject to the requirements for the storage and treatment of dangerous waste. Closure is being conducted under interim status and will be completed pursuant to the requirements of Washington State Department of Ecology (Ecology) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 and WAC 173-303-640. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of WAC 173-303 or of this closure plan. The information on radionuclides is provided only for general knowledge where appropriate. The known hazardous/dangerous waste remaining at the site before commencing other closure activities consists of the still vessels, a tarry sludge in the storage tanks, and residual contamination in equipment, piping, filters, etc. The treatment and removal of waste at the HSTF are closure activities as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and WAC 173-303

  5. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, M.Y.; Shields, K.D.

    1999-04-02

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R and D) facilities for the Department of Energy on the Hanford Site. According to DOE Order 5400.1, a Facility Effluent Monitoring Plan is required for each site, facility, or process that uses, generates, releases, or manages significant pollutants or hazardous materials. Three of the R and D facilities: the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling and thus individual Facility Effluent Monitoring Plans (FEMPs) have been developed for them. Because no definition of ''significant'' is provided in DOE Order 5400.1 or the accompanying regulatory guide DOE/EH-0173T, this FEMP was developed to describe monitoring requirements in the DOE-owned, PNNL-operated facilities that do not have individual FEMPs. The remainder of the DOE-owned, PNNL-operated facilities are referred to as Balance-of-Plant (BOP) facilities. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R and D. R and D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in the FEMP.

  6. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    International Nuclear Information System (INIS)

    Ballinger, M.Y.; Shields, K.D.

    1999-01-01

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R and D) facilities for the Department of Energy on the Hanford Site. According to DOE Order 5400.1, a Facility Effluent Monitoring Plan is required for each site, facility, or process that uses, generates, releases, or manages significant pollutants or hazardous materials. Three of the R and D facilities: the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling and thus individual Facility Effluent Monitoring Plans (FEMPs) have been developed for them. Because no definition of ''significant'' is provided in DOE Order 5400.1 or the accompanying regulatory guide DOE/EH-0173T, this FEMP was developed to describe monitoring requirements in the DOE-owned, PNNL-operated facilities that do not have individual FEMPs. The remainder of the DOE-owned, PNNL-operated facilities are referred to as Balance-of-Plant (BOP) facilities. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R and D. R and D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in the FEMP

  7. 105-DR large sodium fire facility closure Plan. Revision 2

    International Nuclear Information System (INIS)

    Ruck, F.A. III.

    1995-03-01

    The 105-DR Large Sodium Fire Facility (LSFF), which was operated 1972-1986, was a research laboratory that occupied the former ventilation supply room on the SW side of the 105-DR Reactor Facility. (The 105-DR defense reactor was shut down in 1964.) LSFF was used to investigate fire and safety aspects of large sodium or other metal alkali fires in the LMFBR facilities; it was also used to store and treat alkali metal waste. This closure plan presents a description of the unit, the history of the waste managed, and the procedures that will be followed to close the LSFF as an Alkali Metal Treatment Facility. No future use of LSFF is expected. It is located within the 100-DR-2 (source) and 100-HR-3 (groundwater) operable units, which will be addressed through the RCRA facility investigation/corrective measures study process

  8. 2727-S Nonradioactive Dangerous Waste Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    Wilczek, T.A.; Laws, J.R.; Izatt, R.D.

    1992-01-01

    This closure plan describes the activities for final closure of the 2727-S Nonradioactive Dangerous Waste Storage (NRDWS) Facility at the Hanford Site. The 2727-S NRDWS Facility provided container storage for nonradioactive dangerous and extremely hazardous wastes generated in the research and development laboratories, process operations, and maintenance and transportation functions throughout the Hanford Site. Storage operations began at the 2727-S NRDWS Facility March 14, 1983, and continued until December 30, 1986, when the last shipment of materials from the facility took place. These storage operations have been moved to the new 616 NRDWS Facility, which is an interim status unit located between the 200 East and 200 West Areas of the Hanford Site

  9. Y-12 National Security Complex National Historic Preservation Act Historic Preservation Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-09-30

    The Historic Preservation Plan (HPP) recognizes that the Y-12 National Security Complex is a vital and long-term component of DOE and NNSA. In addition to NNSA missions, the Office of Science and Energy, the Office of Nuclear Energy, and the Office of Environmental Management have properties located at Y-12 that must be taken into consideration. The HPP also recognizes that the challenge for cultural resource management is incorporating the requirements of NNSA, SC, NE, and EM missions while preserving and protecting its historic resources. The HPP seeks to find an effective way to meet the obligations at Y-12 for historic and archeological protection while at the same time facilitating effective completion of ongoing site mission activities, including removal of obsolete or contaminated facilities, adaptive reuse of existing facilities whenever feasible, and construction of new facilities in order to meet site mission needs. The Y-12 Historic Preservation Plan (HPP) defines the preservation strategy for the Y-12 National Security Complex and will direct efficient compliance with the NHPA and federal archaeological protection legislation at Y-12 as DOE and NNSA continues mission activities of the site.

  10. Radiotherapy facilities: Master planning and concept design considerations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-08-15

    This publication provides guidelines on how to plan a radiotherapy facility in terms of the strategic master planning process including the legal, technical and infrastructure requirements. It outlines a risk assessment methodology, a typical project work plan and describes the professional expertise required for the implementation of such a project. Generic templates for a block design are suggested, which include possibilities for future expansion. These templates can be overlaid onto the designated site such that the most efficient workflow between the main functional areas can be ensured. A sample checklist is attached to act as a guideline for project management and to indicate the critical stages in the process where technical expert assistance may be needed. The publication is aimed at professionals and administrators involved in infrastructure development, planning and facility management, as well as engineers, building contractors and radiotherapy professionals.

  11. Radiotherapy Facilities: Master Planning and Concept Design Considerations (Russian Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    This publication provides guidelines on how to plan a radiotherapy facility in terms of the strategic master planning process including the legal, technical and infrastructure requirements. It outlines a risk assessment methodology and a typical project work plan, and describes the professional expertise required for the implementation of such a project. Generic templates for a block design are suggested, which include possibilities for future expansion. These templates can be overlaid onto the designated site such that the most efficient workflow between the main functional areas can be ensured. A sample checklist is attached to act as a guideline for project management and to indicate the critical stages in the process where technical expert assistance may be needed. The publication is aimed at professionals and administrators involved in infrastructure development, planning and facility management, as well as engineers, building contractors and radiotherapy professionals

  12. Radiotherapy facilities: Master planning and concept design considerations

    International Nuclear Information System (INIS)

    2014-01-01

    This publication provides guidelines on how to plan a radiotherapy facility in terms of the strategic master planning process including the legal, technical and infrastructure requirements. It outlines a risk assessment methodology, a typical project work plan and describes the professional expertise required for the implementation of such a project. Generic templates for a block design are suggested, which include possibilities for future expansion. These templates can be overlaid onto the designated site such that the most efficient workflow between the main functional areas can be ensured. A sample checklist is attached to act as a guideline for project management and to indicate the critical stages in the process where technical expert assistance may be needed. The publication is aimed at professionals and administrators involved in infrastructure development, planning and facility management, as well as engineers, building contractors and radiotherapy professionals

  13. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references

  14. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.

  15. Pitfalls and Security Measures for the Mobile EMR System in Medical Facilities

    Science.gov (United States)

    Yeo, Kiho; Lee, Keehyuck; Kim, Jong-Min; Kim, Tae-Hun; Choi, Yong-Hoon; Jeong, Woo-Jin; Hwang, Hee; Baek, Rong Min

    2012-01-01

    Objectives The goal of this paper is to examine the security measures that should be reviewed by medical facilities that are trying to implement mobile Electronic Medical Record (EMR) systems designed for hospitals. Methods The study of the security requirements for a mobile EMR system is divided into legal considerations and sectional security investigations. Legal considerations were examined with regard to remote medical services, patients' personal information and EMR, medical devices, the establishment of mobile systems, and mobile applications. For the 4 sectional security investigations, the mobile security level SL-3 from the Smartphone Security Standards of the National Intelligence Service (NIS) was used. Results From a compliance perspective, legal considerations for various laws and guidelines of mobile EMR were executed according to the model of the legal considerations. To correspond to the SL-3, separation of DMZ and wireless network is needed. Mobile access servers must be located in only the smartphone DMZ. Furthermore, security measures like 24-hour security control, WIPS, VPN, MDM, and ISMS for each section are needed to establish a secure mobile EMR system. Conclusions This paper suggested a direction for applying regulatory measures to strengthen the security of a mobile EMR system in accordance with the standard security requirements presented by the Smartphone Security Guideline of the NIS. A future study on the materialization of these suggestions after their application at actual medical facilities can be used as an illustrative case to determine the degree to which theory and reality correspond with one another. PMID:22844648

  16. Pitfalls and Security Measures for the Mobile EMR System in Medical Facilities.

    Science.gov (United States)

    Yeo, Kiho; Lee, Keehyuck; Kim, Jong-Min; Kim, Tae-Hun; Choi, Yong-Hoon; Jeong, Woo-Jin; Hwang, Hee; Baek, Rong Min; Yoo, Sooyoung

    2012-06-01

    The goal of this paper is to examine the security measures that should be reviewed by medical facilities that are trying to implement mobile Electronic Medical Record (EMR) systems designed for hospitals. The study of the security requirements for a mobile EMR system is divided into legal considerations and sectional security investigations. Legal considerations were examined with regard to remote medical services, patients' personal information and EMR, medical devices, the establishment of mobile systems, and mobile applications. For the 4 sectional security investigations, the mobile security level SL-3 from the Smartphone Security Standards of the National Intelligence Service (NIS) was used. From a compliance perspective, legal considerations for various laws and guidelines of mobile EMR were executed according to the model of the legal considerations. To correspond to the SL-3, separation of DMZ and wireless network is needed. Mobile access servers must be located in only the smartphone DMZ. Furthermore, security measures like 24-hour security control, WIPS, VPN, MDM, and ISMS for each section are needed to establish a secure mobile EMR system. This paper suggested a direction for applying regulatory measures to strengthen the security of a mobile EMR system in accordance with the standard security requirements presented by the Smartphone Security Guideline of the NIS. A future study on the materialization of these suggestions after their application at actual medical facilities can be used as an illustrative case to determine the degree to which theory and reality correspond with one another.

  17. Do provisions to advance chemical facility safety also advance chemical facility security? - An analysis of possible synergies

    OpenAIRE

    Hedlund, Frank Huess

    2012-01-01

    The European Commission has launched a study on the applicability of existing chemical industry safety provisions to enhancing security of chemical facilities covering the situation in 18 EU Member States. This paper reports some preliminary analytical findings regarding the extent to which existing provisions that have been put into existence to advance safety objectives due to synergy effects could be expected advance security objectives as well.The paper provides a conceptual definition of...

  18. Post 9-11 Security Issues for Non-Power Reactor Facilities

    International Nuclear Information System (INIS)

    Zaffuts, P. J.

    2003-01-01

    This paper addresses the legal and practical issues arising out of the design and implementation of a security-enhancement program for non power reactor nuclear facilities. The security enhancements discussed are derived from the commercial nuclear power industry's approach to security. The nuclear power industry's long and successful experience with protecting highly sensitive assets provides a wealth of information and lessons that should be examined by other industries contemplating security improvements, including, but not limited to facilities using or disposing of nuclear materials. This paper describes the nuclear industry's approach to security, the advantages and disadvantages of its constituent elements, and the legal issues that facilities will need to address when adopting some or all of these elements in the absence of statutory or regulatory requirements to do so

  19. Post 9-11 Security Issues for Non-Power Reactor Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Zaffuts, P. J.

    2003-02-25

    This paper addresses the legal and practical issues arising out of the design and implementation of a security-enhancement program for non power reactor nuclear facilities. The security enhancements discussed are derived from the commercial nuclear power industry's approach to security. The nuclear power industry's long and successful experience with protecting highly sensitive assets provides a wealth of information and lessons that should be examined by other industries contemplating security improvements, including, but not limited to facilities using or disposing of nuclear materials. This paper describes the nuclear industry's approach to security, the advantages and disadvantages of its constituent elements, and the legal issues that facilities will need to address when adopting some or all of these elements in the absence of statutory or regulatory requirements to do so.

  20. WIPP Facility Work Plan for Solid Waste Management Units

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2000-02-25

    This Facility Work Plan (FWP) has been prepared as required by Module VII,Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a). This work plan describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current New Mexico Environment Department (NMED) guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility’s Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to NMED’s guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The scope of work for the RFI Work Plan or SAP is being developed by the Permittees. The final content of the RFI Work Plan or SAP will be coordinated with the NMED for submittal on May 24, 2000. Specific project-related planning information will be included in the RFI Work Plan or SAP. The SWMU program at WIPP began in 1994 under U.S. Environmental Protection Agency (EPA) regulatory authority. NMED subsequently received regulatory authority from EPA

  1. Bio-inspired motion planning algorithms for autonomous robots facilitating greater plasticity for security applications

    Science.gov (United States)

    Guo, Yi; Hohil, Myron; Desai, Sachi V.

    2007-10-01

    Proposed are techniques toward using collaborative robots for infrastructure security applications by utilizing them for mobile sensor suites. A vast number of critical facilities/technologies must be protected against unauthorized intruders. Employing a team of mobile robots working cooperatively can alleviate valuable human resources. Addressed are the technical challenges for multi-robot teams in security applications and the implementation of multi-robot motion planning algorithm based on the patrolling and threat response scenario. A neural network based methodology is exploited to plan a patrolling path with complete coverage. Also described is a proof-of-principle experimental setup with a group of Pioneer 3-AT and Centibot robots. A block diagram of the system integration of sensing and planning will illustrate the robot to robot interaction to operate as a collaborative unit. The proposed approach singular goal is to overcome the limits of previous approaches of robots in security applications and enabling systems to be deployed for autonomous operation in an unaltered environment providing access to an all encompassing sensor suite.

  2. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed

  3. 78 FR 69286 - Facility Security Clearance and Safeguarding of National Security Information and Restricted Data

    Science.gov (United States)

    2013-11-19

    ... Clearance and Safeguarding of National Security Information and Restricted Data AGENCY: Nuclear Regulatory... Executive Order 13526, Classified National Security Information. In addition, this direct final rule allowed... licensees (or their designees) to conduct classified [[Page 69287

  4. Environmental Monitoring Plan, Nevada Test Site and support facilities

    International Nuclear Information System (INIS)

    1991-11-01

    This Operational Area Monitoring Plan for environmental monitoring, is for EG ampersand G Energy Measurements, Inc. (EG ampersand G/EM) which operates several offsite facilities in support of activities at the Nevada Test Site (NTS). These facilities include: (1) Amador Valley Operations (AVO), Pleasanton, California; (2) Kirtland Operations (KO), Kirtland Air Force base, Albuquerque, New Mexico (KAFB); (3) Las Vegas Area Operations (LVAO), Remote Sensing Laboratory (RSL), and North Las Vegas (NLV) Complex at Nellis Air Force Base (NAFB), North Las Vegas, Nevada; (4) Los Alamos Operations (LAO), Los Alamos, New Mexico; (5) Santa Barbara Operations (SBO), Goleta, California; (6) Special Technologies Laboratory (STL), Santa Barbara, California; (7) Washington Aerial Measurements Department (WAMD), Andrews Air Force Base, Maryland; and, (8) Woburn Cathode Ray Tube Operations (WCO), Woburn, Massachusetts. Each of these facilities has an individual Operational Area Monitoring Plan, but they have been consolidated herein to reduce redundancy

  5. Facility Effluent Monitoring Plan for the Waste Receiving and Processing (WRAP) Facility

    Energy Technology Data Exchange (ETDEWEB)

    DAVIS, W.E.

    2000-03-08

    A facility effluent monitoring plan is required by the U.S. Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee public safety, or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan ensures long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and must be updated, as a minimum, every 3 years.

  6. Facility Effluent Monitoring Plan for the Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    DAVIS, W.E.

    2000-01-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee public safety, or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan ensures long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and must be updated, as a minimum, every 3 years

  7. The application of security provisions in accommodation facility – hotel

    OpenAIRE

    Rotbauer, Josef

    2010-01-01

    This thesis treats of security provisions, which hotels are using to protect health and property of accommodated persons. In the opening part is caught the progress of attendance and capacities of hotels in the Czech republic during a specific time period. The next chapter focuses on possible threats, which are imminent to hotels during the operation. The third part of the thesis solves particular methods of application of security provisions, these are verified in two concrete hotels in the ...

  8. Emergency preparedness and response plan for nuclear facilities in Indonesia

    International Nuclear Information System (INIS)

    Nur Rahmah Hidayati; Pande Made Udiyani

    2009-01-01

    All nuclear facilities in Indonesia are owned and operated by the National Nuclear Energy Agency (BATAN). The programs and activities of emergency planning and preparedness in Indonesia are based on the existing nuclear facilities, i.e. research reactors, research reactor fuel fabrication plant, radioactive waste treatment installation and radioisotopes production installation. The assessment is conducted to learn of status of emergency preparedness and response plan for nuclear facilities in Indonesia and to support the preparation of future Nuclear Power Plant. The assessment is conducted by comparing the emergency preparedness and response system in Indonesia to the system in other countries such as Japan and Republic of Korea, since the countries have many Nuclear Power Plants and other nuclear facilities. As a result, emergency preparedness response plan for existing nuclear facility in Indonesia has been implemented in many activities such as environmental monitoring program, facility monitoring equipment, and the continuous exercise of emergency preparedness and response. However, the implementation need law enforcement for imposing the responsibility of the coordinators in National Emergency Preparedness Plan. It also needs some additional technical support systems which refer to the system in Japan or Republic of Korea. The systems must be completed with some real time monitors which will support the emergency preparedness and response organization. The system should be built in NPP site before the first NPP will be operated. The system should be connected to an Off Site Emergency Center under coordination of BAPETEN as the regulatory body which has responsibility to control of nuclear energy in Indonesia. (Author)

  9. Cold Vacuum Dryer (CVD) Facility Security System Design Description. System 54

    International Nuclear Information System (INIS)

    WHITEHURST, R.

    2000-01-01

    This system design description (SDD) addresses the Cold Vacuum Drying (CVD) Facility security system. The system's primary purpose is to provide reasonable assurance that breaches of security boundaries are detected and assessment information is provided to protective force personnel. In addition, the system is utilized by Operations to support reduced personnel radiation goals and to provide reasonable assurance that only authorized personnel are allowed to enter designated security areas

  10. NIF conventional facilities construction health and safety plan

    International Nuclear Information System (INIS)

    Benjamin, D W

    1998-01-01

    The purpose of this Plan is to outline the minimum health and safety requirements to which all participating Lawrence Livermore National Laboratory (LLNL) and non-LLNL employees (excluding National Ignition Facility [NIF] specific contractors and subcontractors covered under the construction subcontract packages (e.g., CSP-9)-see Construction Safety Program for the National Ignition Facility [CSP] Section I.B. ''NIF Construction Contractors and Subcontractors'' for specifics) shall adhere to for preventing job-related injuries and illnesses during Conventional Facilities construction activities at the NIF Project. For the purpose of this Plan, the term ''LLNL and non-LLNL employees'' includes LLNL employees, LLNL Plant Operations staff and their contractors, supplemental labor, contract labor, labor-only contractors, vendors, DOE representatives, personnel matrixed/assigned from other National Laboratories, participating guests, and others such as visitors, students, consultants etc., performing on-site work or services in support of the NIF Project. Based upon an activity level determination explained in Section 1.2.18, in this document, these organizations or individuals may be required by site management to prepare their own NIF site-specific safety plan. LLNL employees will normally not be expected to prepare a site-specific safety plan. This Plan also outlines job-specific exposures and construction site safety activities with which LLNL and non-LLNL employees shall comply

  11. Facility Effluent Monitoring Plan for the N Reactor

    International Nuclear Information System (INIS)

    Watson, D.J.; Brendel, D.F.; Shields, K.D.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP- 0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The primary purpose of the N Reactor Facility Effluent Monitoring Plan (FEMP), during standby, is to ensure that the radioactive effluents are properly monitored and evaluated for compliance with the applicable DOE orders and regulatory agencies at the federal, state, and local levels. A secondary purpose of the FEMP is to ensure that hazardous wastes are not released, in liquid effluents, to the environment even though the potential to do so is extremely low. The FEMP is to provide a monitoring system that collects representative samples in accordance with industry standards, performs analyses within stringent quality control (QC) requirements, and evaluates the data through the use of comparative analysis with the standards and acceptable environmental models

  12. 190-C Facility <90 Day Storage Pad training plan

    International Nuclear Information System (INIS)

    Little, N.C.

    1996-12-01

    This is the Environmental Restoration Contractor (ERC) team training plan for the 190-C Facility <90 Day Storage Pad of Hazardous Waste. It is intended to meet the requirements of Washington Administrative Code (WAC) 173-303-330 and the Hanford Dangerous Waste Permit. Training unrelated to compliance with WAC 173-303-330 is not addressed in this training plan. WAC 173-303-330(1)(d)(ii, v, vi) requires that personnel be familiarized, where applicable, with waste feed cut-off systems, response to ground-water contamination incidents, and shutdown of operations. These are not applicable to 190-C Facility <90 Day Storage Pad, and are therefore not covered in this training plan

  13. The emergency plan implementing procedures for HANARO facility

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Tai; Khang, Byung Oui; Lee, Goan Yup; Lee, Moon [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-04-01

    The radiological emergency plan implementing procedures of HANARO (High-flux Advanced Neutron Application Reactor) facility is prepared based on the Korea Atomic Law, the Civil Defence Law, Disaster Protection Law and the emergency related regulatory guides such as Guidance for Evolution of Radiation Emergency Plans in Nuclear Research Facilities (KAERI/TR-956/98, Feb.1998) and the emergency plan of HANARO. These procedures is also prepared to ensure adequate response activities to the rediological events which would cause a significant risk to the KAERI staffs and the public nea to the site. Periodic trainning and exercise for the reactor operators and emergency staffs will reduce accident risks and the release of radioactivities to the environment. 61 refs., 81 tabs. (Author)

  14. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    International Nuclear Information System (INIS)

    Shank, D.R.

    1994-01-01

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium

  15. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    Energy Technology Data Exchange (ETDEWEB)

    Shank, D.R.

    1994-12-29

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  16. Construction plan of ion irradiation facility in JAERI

    International Nuclear Information System (INIS)

    Tanaka, Ryuichi

    1987-01-01

    The Takasaki Radiation Chemistry Research Establishment of Japan Atomic Energy Research Institute (JAERI) started the construction of an ion irradiation facility to apply ion beam to the research and development of radiation resistant materials for severe environment, the research on biotechnology and new functional materials. This project was planned as ion beam irradiation becomes an effective means for the research on fundamental physics and advanced technology, and the national guideline recently emphasizes the basic and pioneering field in research and development. This facility comprises an AVF cyclotron with an ECR ion source (maximum proton energy: 90 MeV), a 3 MV tandem accelerator, a 3 MV single end type Van de Graaf accelerator and a 400 kV ion implanter. In this report, the present status of planning the accelerators and the facility to be constructed, the outline of research plan, the features of the accelerators, and the beam characteristics are described. In this project, the research items are divided into the materials for space environment, the materials for nuclear fusion reactors, biotechnology, new functional materials, and ion beam technology. The ion beams required for the facility are microbeam, pulsed beam, multiple beam, neutron beam and an expanded irradiation field. (Kako, I.)

  17. Do provisions to advance chemical facility safety also advance chemical facility security? An analysis of possible synergies

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2012-01-01

    The European Commission has launched a study on the applicability of existing chemical industry safety provisions to enhancing security of chemical facilities covering the situation in 18 EU Member States. This paper reports some preliminary analytical findings regarding the extent to which exist...

  18. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    International Nuclear Information System (INIS)

    Shields, K.D.; Ballinger, M.Y.

    1999-03-01

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities

  19. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities.

  20. Waste Encapsulation and Storage Facility (WESF) Interim Status Closure Plan

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    This document describes the planned activities and performance standards for closing the Waste Encapsulation and Storage Facility (WESF). WESF is located within the 225B Facility in the 200 East Area on the Hanford Facility. Although this document is prepared based on Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the storage unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the intention is to clean close WESF, postclosure activities are not applicable to this interim status closure plan. To clean close the storage unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or environmentally is impracticable, the interim status closure plan will be modified to address required postclosure activities. WESF stores cesium and strontium encapsulated salts. The encapsulated salts are stored in the pool cells or process cells located within 225B Facility. The dangerous waste is contained within a double containment system to preclude spills to the environment. In the unlikely event that a waste spill does occur outside the capsules, operating methods and administrative controls require that waste spills be cleaned up promptly and completely, and a notation made in the operating record. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  1. Safeguards and security design guidelines for conceptual monitored retrievable storage (MRS) facilities

    International Nuclear Information System (INIS)

    Byers, K.R.; Clark, R.G.; Harms, N.L.; Roberts, F.P.

    1984-07-01

    Existing safeguards/security regulations and licensing requirements that may be applicable to an MRS facility are not currently well-defined. Protection requirements consistent with the NRC-graded safeguards approach are identified, as a baseline safeguards system with a comparison of the impacts on safeguards and security of salient features of the different storage concepts. In addition, MRS facility design features and operational considerations are proposed that would enhance facility protection and provide additional assurance that protection systems and procedures would be effectively implemented. 3 figures

  2. Sampling and Analysis Plan for the 221-U Facility

    International Nuclear Information System (INIS)

    Rugg, J.E.

    1998-02-01

    This sampling and analysis plan (SAP) presents the rationale and strategy for the sampling and analysis activities proposed to be conducted to support the evaluation of alternatives for the final disposition of the 221-U Facility. This SAP will describe general sample locations and the minimum number of samples required. It will also identify the specific contaminants of potential concern (COPCs) and the required analysis. This SAP does not define the exact sample locations and equipment to be used in the field due to the nature of unknowns associated with the 221-U Facility

  3. Radiological planning and implementation for nuclear-facility decommissioning

    International Nuclear Information System (INIS)

    Valentine, A.M.

    1982-01-01

    The need and scope of radiological planning required to support nuclear facility decommissioning are issues addressed in this paper. The role of radiation protection engineering and monitoring professionals during project implementation and closeout is also addressed. Most of the discussion focuses on worker protection considerations; however, project support, environmental protection and site release certification considerations are also covered. One objective is to identify radiological safety issues that must be addressed. The importance of the issues will vary depending on the type of facility being decommissioned; however, by giving appropriate attention to these issues difficult decommissioning projects can be accomplished in a safer manner with workers and the public receiving minimal radiation exposures

  4. Waste Encapsulation and Storage Facility (WESF) Waste Analysis Plan

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    The purpose of this waste analysis plan (WAP) is to document waste analysis activities associated with the Waste Encapsulation and Storage Facility (WESF) to comply with Washington Administrative Code (WAC) 173-303-300(1), (2), (3), (4), (5), and (6). WESF is an interim status other storage-miscellaneous storage unit. WESF stores mixed waste consisting of radioactive cesium and strontium salts. WESF is located in the 200 East Area on the Hanford Facility. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  5. Considerations in setting up and planning a graft processing facility.

    Science.gov (United States)

    Koh, Mickey B C

    2017-12-01

    The graft processing facility forms one of the core components of a clinical haematopoietic stem cell transplant program. The quality of a graft is instrumental in leading to consistent and reproducible outcomes of engraftment and other parameters. As such, meticulous planning and consideration is required and will include core elements including physical design and clinical correlates. The successful running of such a facility depends on an overarching quality program and adherence to local and international regulatory guidelines. Copyright © 2017 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.

  6. KSC facilities status and planned management operations. [for Shuttle launches

    Science.gov (United States)

    Gray, R. H.; Omalley, T. J.

    1979-01-01

    A status report is presented on facilities and planned operations at the Kennedy Space Center with reference to Space Shuttle launch activities. The facilities are essentially complete, with all new construction and modifications to existing buildings almost finished. Some activity is still in progress at Pad A and on the Mobile Launcher due to changes in requirements but is not expected to affect the launch schedule. The installation and testing of the ground checkout equipment that will be used to test the flight hardware is now in operation. The Launch Processing System is currently supporting the development of the applications software that will perform the testing of this flight hardware.

  7. IAEA puts cyber security in focus for nuclear facilities in 2015

    International Nuclear Information System (INIS)

    Shepherd, John

    2015-01-01

    Later in 2015 the International Atomic Energy Agency (IAEA) will convene a special conference to discuss computer security, in the wake of cyber attacks on global financial institutions and government agencies that were increasingly in the news. According to the IAEA, the prevalence of IT security incidents in recent years involving the Stuxnet malware 'demonstrated that nuclear facilities can be susceptible to cyber attack'. The IAEA said this and other events have significantly raised global concerns over potential vulnerabilities and the possibility of a cyber attack, or a joint cyber-physical attack, that could impact on nuclear security. The IAEA has correctly identified that the use of computers and other digital electronic equipment in physical protection systems at nuclear facilities, as well as in facility safety systems, instrumentation, information processing and communication, 'continues to grow and presents an ever more likely target for cyber attack'. The agency's Vienna conference, to be held in June, will review emerging trends in computer security and areas that may still need to be addressed. The meeting follows a declaration of ministers of IAEA member states in 2013 that called on the agency to help raise awareness of the growing threat of cyber attacks and their potential impact on nuclear security. The conference is being organised 'to foster international cooperation in computer security as an essential element of nuclear security', the IAEA said. Details of the IAEA's 'International Conference on Computer Security in a Nuclear World: Expert Discussion and Exchange' are on the 'meetings' section of the agency's web site.

  8. Management plan -- Multi-Function Waste Tank Facility. Revision 1

    International Nuclear Information System (INIS)

    Fritz, R.L.

    1995-01-01

    This Westinghouse Hanford Company (WHC) Multi-Function Waste Tank Facility (MWTF) Management Plan provides guidance for execution WHC MWTF Project activities related to design, procurement, construction, testing, and turnover. This Management Plan provides a discussion of organizational responsibilities, work planning, project management systems, quality assurance (QA), regulatory compliance, personnel qualifications and training, and testing and evaluations. Classified by the US Department of Energy (DOE) as a major systems acquisition (MSA), the MWTF mission is to provide a safe, cost-effective, and environmentally sound method for interim storage of Hanford Site high-level wastes. This Management Plan provides policy guidance and direction to the Project Office for execution of the project activities

  9. Management plan -- Multi-Function Waste Tank Facility. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, R.L.

    1995-01-11

    This Westinghouse Hanford Company (WHC) Multi-Function Waste Tank Facility (MWTF) Management Plan provides guidance for execution WHC MWTF Project activities related to design, procurement, construction, testing, and turnover. This Management Plan provides a discussion of organizational responsibilities, work planning, project management systems, quality assurance (QA), regulatory compliance, personnel qualifications and training, and testing and evaluations. Classified by the US Department of Energy (DOE) as a major systems acquisition (MSA), the MWTF mission is to provide a safe, cost-effective, and environmentally sound method for interim storage of Hanford Site high-level wastes. This Management Plan provides policy guidance and direction to the Project Office for execution of the project activities.

  10. Experimental area plans for an advanced hadron facility

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E.W.; Macek, R.J.; Tschalear, C.

    1986-01-01

    A brief overview is presented of the current plans for an experimental area for a new advanced hadron facility for the exploration of nuclear and particle physics. The facility, LAMPF II, is presently visualized as consisting of the LAMPF linac sending 800 MeV protons to a 6 GeV booster ring followed by a 45 GeV main ring. Two experimental areas area planned. The first is intended to provide neutrinos via a pair of pulsed focusing horns. The other is designed to accommodate secondary beams that span the range of useful energies up to GeV/c. Beam specification goals are discussed with respect to source brightness, beam purity, and beam-line acceptance and length. The various beam lines are briefly described. Production cross sections and rates are estimated for antiproton production. Problems of thermal energy deposition in both components and targets and of effectiveness of particle separators are discussed. 9 refs. (LEW)

  11. Experimental area plans for an advanced hadron facility

    International Nuclear Information System (INIS)

    Hoffman, E.W.; Macek, R.J.; Tschalear, C.

    1986-01-01

    A brief overview is presented of the current plans for an experimental area for a new advanced hadron facility for the exploration of nuclear and particle physics. The facility, LAMPF II, is presently visualized as consisting of the LAMPF linac sending 800 MeV protons to a 6 GeV booster ring followed by a 45 GeV main ring. Two experimental areas area planned. The first is intended to provide neutrinos via a pair of pulsed focusing horns. The other is designed to accommodate secondary beams that span the range of useful energies up to GeV/c. Beam specification goals are discussed with respect to source brightness, beam purity, and beam-line acceptance and length. The various beam lines are briefly described. Production cross sections and rates are estimated for antiproton production. Problems of thermal energy deposition in both components and targets and of effectiveness of particle separators are discussed. 9 refs

  12. A conceptual model for barrier free facilities planning.

    Science.gov (United States)

    Bittencourt, R S; de M Guimarães, L B

    2012-01-01

    This paper presents the proposal of a model for planning a barrier free industrial facilities, considering the demands that inclusion requires, ranging from outside the factory (social environment), to the needs of the production system and the workstation. Along with literature review, the demands were identified in a shoe manufacturer that employs people with disabilities, and organized taxonomically in agreement with the structure for planning facilities. The results show that the problems are not primarily related to eliminating architectural barriers and factors aimed at preventing risks to people's health and safety but, rather, are related to the company's cultural environment, because the main hazards are managerial. In special cases, it is suggested there is a need to adjust those parts of tasks that the worker cannot do, or even to re-schedule work so as to make it possible for employees with disabilities to perform their tasks.

  13. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, Marcel Y.; Gervais, Todd L.

    2004-11-15

    The Pacific Northwest National Laboratory (PNNL) operates a number of Research & Development (R&D) facilities for the U.S. Department of Energy (DOE) on the Hanford Site. Facility effluent monitoring plans (FEMPs) have been developed to document the facility effluent monitoring portion of the Environmental Monitoring Plan (DOE 2000) for the Hanford Site. Three of PNNL’s R&D facilities, the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling, and individual FEMPs were developed for these facilities in the past. In addition, a balance-of-plant (BOP) FEMP was developed for all other DOE-owned, PNNL-operated facilities at the Hanford Site. Recent changes, including shutdown of buildings and transition of PNNL facilities to the Office of Science, have resulted in retiring the 3720 FEMP and combining the 331 FEMP into the BOP FEMP. This version of the BOP FEMP addresses all DOE-owned, PNNL-operated facilities at the Hanford Site, excepting the Radiochemical Processing Laboratory, which has its own FEMP because of the unique nature of the building and operations. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R&D. R&D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in Appendix A. Potential radioactive airborne emissions in the BOP facilities are estimated annually using a building inventory-based approach provided in federal regulations. Sampling at individual BOP facilities is based on a potential-to-emit assessment. Some of these facilities are considered minor emission points and thus are sampled routinely, but not continuously, to confirm the low emission potential. One facility, the 331 Life Sciences Laboratory, has a major emission point and is sampled continuously. Sampling systems are

  14. 105-DR Large Sodium Fire Facility closure plan

    International Nuclear Information System (INIS)

    1993-05-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, and activities associated with nuclear energy development. The 105-DR Large Sodium Fire Facility (LSFF), which was in operation from about 1972 to 1986, was a research laboratory that occupied the former ventilation supply room on the southwest side of the 105-DR Reactor facility. The LSFF was established to provide a means of investigating fire and safety aspects associated with large sodium or other metal alkali fires in the liquid metal fast breeder reactor (LMFBR) facilities. The 105-DR Reactor facility was designed and built in the 1950's and is located in the 100-D Area of the Hanford Site. The building housed the 105-DR defense reactor, which was shut down in 1964. The LSFF was initially used only for engineering-scale alkali metal reaction studies. In addition, the Fusion Safety Support Studies program sponsored intermediate-size safety reaction tests in the LSFF with lithium and lithium lead compounds. The facility has also been used to store and treat alkali metal waste, therefore the LSFF is subject to the regulatory requirements for the storage and treatment of dangerous waste. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610. This closure plan presents a description of the facility, the history of waste managed, and the procedures that will be followed to close the LSFF as an Alkali Metal Treatment Facility. No future use of the LSFF is expected

  15. 105-DR Large Sodium Fire Facility closure plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, and activities associated with nuclear energy development. The 105-DR Large Sodium Fire Facility (LSFF), which was in operation from about 1972 to 1986, was a research laboratory that occupied the former ventilation supply room on the southwest side of the 105-DR Reactor facility. The LSFF was established to provide a means of investigating fire and safety aspects associated with large sodium or other metal alkali fires in the liquid metal fast breeder reactor (LMFBR) facilities. The 105-DR Reactor facility was designed and built in the 1950`s and is located in the 100-D Area of the Hanford Site. The building housed the 105-DR defense reactor, which was shut down in 1964. The LSFF was initially used only for engineering-scale alkali metal reaction studies. In addition, the Fusion Safety Support Studies program sponsored intermediate-size safety reaction tests in the LSFF with lithium and lithium lead compounds. The facility has also been used to store and treat alkali metal waste, therefore the LSFF is subject to the regulatory requirements for the storage and treatment of dangerous waste. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610. This closure plan presents a description of the facility, the history of waste managed, and the procedures that will be followed to close the LSFF as an Alkali Metal Treatment Facility. No future use of the LSFF is expected.

  16. Pre-Project planning of Capital Facilities at NASA

    OpenAIRE

    Barrow, Benjamin John

    1999-01-01

    This thesis details the development of a NASA specific Project Definition Rating Index (PDRI) tool. This tool is to be used as a checklist for determining the necessary steps to follow in defining project scope and as a means to monitor progress and assess scope definition completeness at various stages during the NASA Pre-Project Planning process. This thesis also describes and identifies specific points in the NASA Capital Facility Programming Cycle for the performance of PDRI assessments ...

  17. 324 Facility B-Cell quality process plan

    International Nuclear Information System (INIS)

    Carlson, J.L.

    1998-01-01

    This report documents the quality process plan for the restart of a hot cell in the B Plant, originally a bismuth phosphate processing facility, but later converted to a waste fractionation plant. B-Cell is currently being cleaned out and deactivated. TPA Milestone M-89-02 dictates that all mixed waste and equipment be removed from B-Cell by 5/31/1999. This report describes the major activities that remain for completion of the TPA milestone

  18. Acceptance criteria for the evaluation of nuclear power reactor security plans

    International Nuclear Information System (INIS)

    1982-08-01

    This guidance document contains acceptance criteria to be used in the NRC license review process. It contains specific criteria for use in evaluating the acceptability of nuclear power reactor security programs as detailed in security plans

  19. Tools for an effective annual review of the Security Management Plan.

    Science.gov (United States)

    Daniel, Matthew

    2014-01-01

    A hospital's Security Management Plan, required by the Joint Commission, can also be used by security management professionals, the author points out, to ensure that they are continually monitoring and improving the program in a changing healthcare environment.

  20. Chemical Facility Security: Reauthorization, Policy Issues, and Options for Congress

    Science.gov (United States)

    2010-12-10

    gaseous chlorine disinfection to chloramine disinfection —a change identified by some advocacy groups as being an inherently safer substitution—as being...chemicals, such as chlorine, for purposes such as disinfection .29 Advocates for their inclusion in security regulations cite the presence of such...Science and Technology (S& T ) Directorate is engaged in a Chemical Infrastructure Risk Assessment Project that, among other goals, will assess the

  1. Planning for maintenance in radiochemical facilities [Paper No.: VB-2

    International Nuclear Information System (INIS)

    Balasubramanian, G.R.

    1981-01-01

    Reprocessing facilities in the earlier stages of development were planned mainly based on the concept of direct maintenance in view of the inherent advantage of man-machine interface and initial savings in the investment costs. With the mechanical processes finding a firm place in head-end operation and increase in down time necessary for elaborate decontamination efforts even for a minor modification has led to the review of the concept. For the same reason, the recent plants are based on the concept of harmonious blend of both direct and remote maintenance. The paper describes the planning needed from consideration of various aspects related to such concepts of maintenance during different phases of such type of facilities, highlighting some of the tools and special equipments to be developed for this purpose. A brief description of recent development in the field of remote maintenance is also given. Though the basic hot facility of reference is the one of reprocessing fast reactor fuels, the concepts and systems discussed are equally applicable to other radiochemical and radiometallurgical facilities also. (author)

  2. 33 CFR 106.305 - Facility Security Assessment (FSA) requirements.

    Science.gov (United States)

    2010-07-01

    ... available to maintain essential services; (vi) The essential maintenance equipment and storage areas; (vii... procedures relating to essential services; (v) Measures to protect radio and telecommunication equipment... property, or economic disruption, of an attack on or at the OCS facility; and (7) Locations where access...

  3. Future Direction of the Instrumentation and Control System for Security of Nuclear Facilities

    International Nuclear Information System (INIS)

    Kim, Woo Jin; Kim, Jae Kwang

    2014-01-01

    Instrumentation and control systems are pervasively used as a vital component in modern industries. Nuclear facilities, such as nuclear power plants (NPPs), originally use I and C systems for plant status monitoring, processes control, and many other purposes. After some events that raised security concerns, application areas of I and C systems have been expanded to physical protection of nuclear material and facilities. As nuclear policies over the world are strengthening security issues, the future direction of roles and technical requirements of security related I and C systems is described: An introduction of I and C systems, especially digitalized I and C systems, to security of nuclear facilities requires many careful considerations, such as system integration, verification and validation (V/V), etc. Institute of Nuclear Nonproliferation and Control (KINAC) established 'International Nuclear Nonproliferation and Security Academy, INSA' in 2014. One of the main achievements of INSA is test-bed implementation for technical criteria development of nuclear facilities' physical protection systems (PPSs) as well as for education and training of those systems. The test bed was modified and improved more suitably from the previous version to modern PPSs including state-of-the-art I and C technologies. KINAC is confident in the new test bed to become a fundamental technical basis of security related I and C systems in near future

  4. 6 CFR 27.205 - Determination that a chemical facility “presents a high level of security risk.”

    Science.gov (United States)

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Determination that a chemical facility âpresents... SECURITY, OFFICE OF THE SECRETARY CHEMICAL FACILITY ANTI-TERRORISM STANDARDS Chemical Facility Security Program § 27.205 Determination that a chemical facility “presents a high level of security risk.” (a...

  5. Closure Report for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2011-09-29

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 [as amended March 2010]). CAU 116 consists of the following two Corrective Action Sites (CASs), located in Area 25 of the Nevada National Security Site: (1) CAS 25-23-20, Nuclear Furnace Piping and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 consisted of Building 3210 and the attached concrete shield wall. CAS 25-23-20 consisted of the nuclear furnace piping and tanks. Closure activities began in January 2007 and were completed in August 2011. Activities were conducted according to Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 116 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2008). This CR provides documentation supporting the completed corrective actions and provides data confirming that closure objectives for CAU 116 were met. Site characterization data and process knowledge indicated that surface areas were radiologically contaminated above release limits and that regulated and/or hazardous wastes were present in the facility.

  6. Secondary process for securing emergency cooling in nuclear facilities

    International Nuclear Information System (INIS)

    Bachl, H.

    1975-01-01

    An auxiliary process for securing the emergency cooling of nuclear power plants is described which is characterized in that a two-material heat power auxiliary process is connected at the cold end of the cooling circuit to a main heat power process to obtain mechanical energy from thermal, which in normal operation works as a cold-absorption process, but with failure of the main process changes to a heat power process with full evaporation and subsequent superheating of the two-materials mixture. (RW/LH) [de

  7. A guide for developing an ADP security plan for Navy Finance Center, Cleveland, Ohio

    OpenAIRE

    Barber, Daniel E.; Hodnett, Elwood Thomas, Jr.

    1982-01-01

    Approved for public release; distribution is unlimited This paper is intended to be used as a guide by personnel at the Navy Finance Center (NFC) Cleveland, Ohio in developing an Automatic Data Processing (ADP) Security Plan. An effort has been made to combine the requirements for an ADP security plan established by OPNAVINST5239.1A with pertinent information from other selected readings. The importance of the devotion of personnel, time and funds to ADP security planning has been emphas...

  8. Nuclear material facilities - security systems and technology R and D trends

    International Nuclear Information System (INIS)

    Ellis, D.; Steele, B.

    2002-01-01

    Full text: In the US, physical security research and development (R and D) during the 1970s and 1980s created a body of technology and systems engineering that largely defined the industry for several decades. However, despite today's terrorists threats and risks, the overall funding of new and innovative physical security solutions is relatively very small. Such factors constraining physical security R and D include the expansion of overall security responsibilities, the emphasis on programmatic and business performance, in addition to evolving (mis)perceptions that 'the problem has been solved' or that 'anyone can do security'. Underlying these factors, the lack of robust standards and certifications has limited the development and application of physical security products, systems, and services. The research and development of new security technologies must be evaluated against very demanding constraints - including costs/benefits, emerging threats, and policies. Going forward, the goal will be to create a more comprehensive approach to physical security of nuclear material facilities that matches evolving threats and that will complement the transition to an integrated security/operations management environment. Such a management model evaluates the additional value of increasing security alternatives in addition to determining trade-offs between the programmatic mission and security issues. Correspondingly, more explicit and strategically useful measures must be developed to determine importance that, in turn, will influence security-related R and D efforts. The research and development of security technologies should be based upon identified needs and requirements resulting from a systematic analysis of the threat and other conditions. In particular, security technologies and systems must be evaluated in terms of current and long-term impacts. Such needs are (will be) diverse and will depend upon sustained research investments in a broad range of technologies

  9. State and Urban Area Homeland Security Strategy v3.0: Evolving Strategic Planning

    National Research Council Canada - National Science Library

    Chen, Darren

    2006-01-01

    This thesis proposes to overhaul the state and urban area homeland security strategy program by improving the strategic planning process guidance and assistance and strategy review in collaboration...

  10. Design impacts of safeguards and security requirements for a US MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Erkkila, B.H.; Rinard, P.M.; Thomas, K.E.; Zack, N.R.; Jaeger, C.D.

    1998-01-01

    The disposition of plutonium that is no longer required for the nation's defense is being structured to mitigate risks associated with the material's availability. In the 1997 Record of Decision, the US Government endorsed a dual-track approach that could employ domestic commercial reactors to effect the disposition of a portion of the plutonium in the form of mixed oxide (MOX) reactor fuels. To support this decision, the Office of Materials Disposition requested preparation of a document that would review US requirements for safeguards and security and describe their impact on the design of a MOX fuel fabrication facility. The intended users are potential bidders for the construction and operation of the facility. The document emphasizes the relevant DOE Orders but also considers the Nuclear Regulatory Commission (NRC) requirements. Where they are significantly different, the authors have highlighted this difference and provided guidance on the impact to the facility design. Finally, the impacts of International Atomic Energy Agency (IAEA) safeguards on facility design are discussed. Security and materials control and accountability issues that influence facility design are emphasized in each area of discussion. This paper will discuss the prepared report and the issues associated with facility design for implementing practical, modern safeguards and security systems into a new MOX fuel fabrication facility

  11. An integrated approach for facilities planning by ELECTRE method

    Science.gov (United States)

    Elbishari, E. M. Y.; Hazza, M. H. F. Al; Adesta, E. Y. T.; Rahman, Nur Salihah Binti Abdul

    2018-01-01

    Facility planning is concerned with the design, layout, and accommodation of people, machines and activities of a system. Most of the researchers try to investigate the production area layout and the related facilities. However, few of them try to investigate the relationship between the production space and its relationship with service departments. The aim of this research to is to integrate different approaches in order to evaluate, analyse and select the best facilities planning method that able to explain the relationship between the production area and other supporting departments and its effect on human efforts. To achieve the objective of this research two different approaches have been integrated: Apple’s layout procedure as one of the effective tools in planning factories, ELECTRE method as one of the Multi Criteria Decision Making methods (MCDM) to minimize the risk of getting poor facilities planning. Dalia industries have been selected as a case study to implement our integration the factory have been divided two main different area: the whole facility (layout A), and the manufacturing area (layout B). This article will be concerned with the manufacturing area layout (Layout B). After analysing the data gathered, the manufacturing area was divided into 10 activities. There are five factors that the alternative were compared upon which are: Inter department satisfactory level, total distance travelled for workers, total distance travelled for the product, total time travelled for the workers, and total time travelled for the product. Three different layout alternatives have been developed in addition to the original layouts. Apple’s layout procedure was used to study and evaluate the different alternatives layouts, the study and evaluation of the layouts was done by calculating scores for each of the factors. After obtaining the scores from evaluating the layouts, ELECTRE method was used to compare the proposed alternatives with each other and with

  12. State Environmental Policy Act (SEPA) environmental checklist forms for 304 Concretion Facility Closure Plan

    International Nuclear Information System (INIS)

    1993-11-01

    The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 304 Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 304 Facility, the history of materials and waste managed, and the procedures that will be followed to close the 304 Facility. The 304 Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5

  13. State Environmental Policy Act (SEPA) environmental checklist forms for 304 Concretion Facility Closure Plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 304 Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 304 Facility, the history of materials and waste managed, and the procedures that will be followed to close the 304 Facility. The 304 Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.

  14. Cyber-security of nuclear facilities: stakes and challenges

    International Nuclear Information System (INIS)

    Marquez, T.

    2016-01-01

    Major players in the French nuclear industry have implemented the concept of cyber-resilience that aims at anticipating and identifying real threats and detecting the weaknesses of the critical installations in order to protect them more efficiently. French law imposes for some categories of installations including nuclear power plants the implementation of advanced protection solutions to reach a high standard of cyber security. Sentryo, a start-up has developed a system that allows the detection of intruders in a digital network by analysing the interactions between the nodes of the network. The intruder is detected when the interaction mapping appears to be different from a configuration considered as normal. The feedback experience shows that any function in an enterprise must be made aware of the cyber risk. (A.C.)

  15. A demonstration of a low cost approach to security at shipping facilities and ports

    Science.gov (United States)

    Huck, Robert C.; Al Akkoumi, Mouhammad K.; Herath, Ruchira W.; Sluss, James J., Jr.; Radhakrishnan, Sridhar; Landers, Thomas L.

    2010-04-01

    Government funding for the security at shipping facilities and ports is limited so there is a need for low cost scalable security systems. With over 20 million sea, truck, and rail containers entering the United States every year, these facilities pose a large risk to security. Securing these facilities and monitoring the variety of traffic that enter and leave is a major task. To accomplish this, the authors have developed and fielded a low cost fully distributed building block approach to port security at the inland Port of Catoosa in Oklahoma. Based on prior work accomplished in the design and fielding of an intelligent transportation system in the United States, functional building blocks, (e.g. Network, Camera, Sensor, Display, and Operator Console blocks) can be assembled, mixed and matched, and scaled to provide a comprehensive security system. The following functions are demonstrated and scaled through analysis and demonstration: Barge tracking, credential checking, container inventory, vehicle tracking, and situational awareness. The concept behind this research is "any operator on any console can control any device at any time."

  16. Energy secretary Spencer Abraham announces department of energy 20-year science facility plan

    CERN Multimedia

    2003-01-01

    "In a speech at the National Press Club today, U.S. Energy Secretary Spencer Abraham outlined the Department of Energy's Office of Science 20-year science facility plan, a roadmap for future scientific facilities to support the department's basic science and research missions. The plan prioritizes new, major scientific facilities and upgrades to current facilities" (1 page).

  17. Certification Plan, low-level waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met

  18. Smart facility location planning for Smart Cities: using GIS technology and facility provision standards for pro-active planning of social facilities to support smart growth

    CSIR Research Space (South Africa)

    Green, Chéri

    2016-08-01

    Full Text Available step toward “smart” planning processes to support smart cities of the future. A case study application in Cape Town is used to illustrate the application of the methodology of spatially matching supply and demand for facilities using GIS tools...

  19. Waste sampling and characterization facility (WSCF) maintenance implementation plan

    International Nuclear Information System (INIS)

    Heinemann, J.L.; Millard, G.E.

    1997-08-01

    This Maintenance Implementation Plan (MIP) is written to satisfy the requirements of the US Department of Energy (DOE) Order 4330.4B, Maintenance Management Program that specifies the general policy and objectives for the establishment of the DOE controlled maintenance programs. These programs provide for the management and performance of cost effective maintenance and repair of the DOE property, which includes facilities. This document outlines maintenance activities associated with the facilities operated by Waste Management Hanford, Inc. (WMH). The objective of this MIP is to provide baseline information for the control and execution of WMH Facility Maintenance activities relative to the requirements of Order 4330.4B, assessment of the WMH maintenance programs, and actions necessary to maintain compliance with the Order. Section 2.0 summarizes the history, mission and description of the WMH facilities. Section 3.0 describes maintenance scope and requirements, and outlines the overall strategy for implementing the maintenance program. Specific elements of DOE Order 4330.4B are addressed in Section 4.0, listing the objective of each element, a discussion of the WMH compliance methodology, and current implementation requirements with references to WMH and HNF policies and procedures. Section 5.0 addresses deviations from policy requirements, and Section 6.0 is a schedule for specific improvements in support of this MIP

  20. State and Urban Area Homeland Security Plans and Exercises: Issues for the 110th Congress

    National Research Council Canada - National Science Library

    Reese, Shawn

    2007-01-01

    ... for both terrorist attacks and natural disasters. Two potential activities that Congress might choose to focus on are the certification of state and urban area homeland security plans and the conduct of exercises to test the plans...

  1. State and Urban Area Homeland Security Plans and Exercises: Issues for the 109th Congress

    National Research Council Canada - National Science Library

    Reese, Shawn

    2006-01-01

    ... for both terrorist attacks and natural disasters. Two potential activities that Congress might choose to focus on are the certification of state and urban area homeland security plans, and the conduct of exercises to test the plans...

  2. Environmental restoration plan for the transfer of surplus facilities to the Facility Transition Program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1995-08-01

    This report will provide guidance on management, coordination, and integration of plans to transition facilities to the Facility Transition Program and activities as related to the Oak Ridge National Laboratory (ORNL) Environmental Restoration Program facilities. This report gives (1) guidance on the steps necessary for identifying ORNL surplus facilities, (2) interfaces of Surveillance and Maintenance (S and M) and Isotope Facility Deactivation program managers, (3) roles and responsibilities of the facility managers, and (4) initial S and M requirements upon acceptance into the Facility Transition Program

  3. Framework for Integrating Safety, Operations, Security, and Safeguards in the Design and Operation of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Darby, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Horak, Karl Emanuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaChance, Jeffrey L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tolk, Keith Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Whitehead, Donnie Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2007-10-01

    The US is currently on the brink of a nuclear renaissance that will result in near-term construction of new nuclear power plants. In addition, the Department of Energy’s (DOE) ambitious new Global Nuclear Energy Partnership (GNEP) program includes facilities for reprocessing spent nuclear fuel and reactors for transmuting safeguards material. The use of nuclear power and material has inherent safety, security, and safeguards (SSS) concerns that can impact the operation of the facilities. Recent concern over terrorist attacks and nuclear proliferation led to an increased emphasis on security and safeguard issues as well as the more traditional safety emphasis. To meet both domestic and international requirements, nuclear facilities include specific SSS measures that are identified and evaluated through the use of detailed analysis techniques. In the past, these individual assessments have not been integrated, which led to inefficient and costly design and operational requirements. This report provides a framework for a new paradigm where safety, operations, security, and safeguards (SOSS) are integrated into the design and operation of a new facility to decrease cost and increase effectiveness. Although the focus of this framework is on new nuclear facilities, most of the concepts could be applied to any new, high-risk facility.

  4. ICT security- aspects important for nuclear facilities; Information and Communication Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Thunem, Atoosa P-J.

    2005-09-15

    Rapid application growth of complex Information and Communication Technologies (ICT) in every society and state infrastructure as well as industry has revealed vulnerabilities that eventually have given rise to serious security breaches. These vulnerabilities together with the course of the breaches from cause to consequence are gradually about to convince the field experts that ensuring the security of ICT-driven systems is no longer possible by only relying on the fundaments of computer science, IT, or telecommunications. Appropriating knowledge from other disciplines is not only beneficial, but indeed very necessary. At the same time, it is a common observation today that ICT-driven systems are used everywhere, from the nuclear, aviation, commerce and healthcare domains to camera-equipped web-enabled cellular phones. The increasing interdisciplinary and inter-sectoral aspects of ICT security worldwide have been providing updated and useful information to the nuclear domain, as one of the emerging users of ICT-driven systems. Nevertheless, such aspects have also contributed to new and complicated challenges, as ICT security for the nuclear domain is in a much more delicate manner than for any other domains related to the concept of safety, at least from the public standpoint. This report addresses some important aspects of ICT security that need to be considered at nuclear facilities. It deals with ICT security and the relationship between security and safety from a rather different perspective than usually observed and applied. The report especially highlights the influence on the security of ICT-driven systems by all other dependability factors, and on that basis suggests a framework for ICT security profiling, where several security profiles are assumed to be valid and used in parallel for each ICT-driven system, sub-system or unit at nuclear facilities. The report also covers a related research topic of the Halden Project with focus on cyber threats and

  5. Soil Management Plan for the Oak Ridge Y-12 National Security Complex Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-03-02

    This Soil Management Plan applies to all activities conducted under the auspices of the National Nuclear Security Administration (NNSA) Oak Ridge Y-12 National Security Complex (Y-12) that involve soil disturbance and potential management of waste soil. The plan was prepared under the direction of the Y-12 Environmental Compliance Department of the Environment, Safety, and Health Division. Soil disturbances related to maintenance activities, utility and building construction projects, or demolition projects fall within the purview of the plan. This Soil Management Plan represents an integrated, visually oriented, planning and information resource tool for decision making involving excavation or disturbance of soil at Y-12. This Soil Management Plan addresses three primary elements. (1) Regulatory and programmatic requirements for management of soil based on the location of a soil disturbance project and/or the regulatory classification of any contaminants that may be present (Chap. 2). Five general regulatory or programmatic classifications of soil are recognized to be potentially present at Y-12; soil may fall under one or more these classifications: (a) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) pursuant to the Oak Ridge Reservation (ORR) Federal Facilities Agreement; (b) Resource Conservation and Recovery Act (RCRA); (c) RCRA 3004(u) solid waste managements units pursuant to the RCRA Hazardous and Solid Waste Amendments Act of 1984 permit for the ORR; (d) Toxic Substances and Control Act-regulated soil containing polychlorinated biphenyls; and (e) Radiologically contaminated soil regulated under the Atomic Energy Act review process. (2) Information for project planners on current and future planned remedial actions (RAs), as prescribed by CERCLA decision documents (including the scope of the actions and remedial goals), land use controls implemented to support or maintain RAs, RCRA post-closure regulatory requirements for

  6. Power facility plan and power supply plan of Japan in 1988

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Shoji; Makino, Masao

    1988-06-01

    The power facility plan and the power supply plan for 1988 are described. The demand by non-industrial use will grow at an average of 3.8% for the 1986-97 period due to changes in the life style, construction and extension of buildings and increasing use of OA equipment although the power conservation is promoted. The industrial consumption will increase at only 1.2% a year due to the slowed growth and energy saving. As a result, the total demand will be 778,200 million kWh in 1997 with annual growth of 2.4%. The maximum demand will be 151,210 kW in 1997 with annual growth of 2.9%. The annual load rate will decrease to 56.9%, showing a continuously worsening utilization efficiency of power facilities. The development of 29 power units with total capacity of 2,760 MW is planned in 1988 for a stable power supply with a sufficient margin regarding maximum demand. The plan requires the investment of 3,700 billion yen, including the power transmission systems and substations. The power supply plan in 1988 is aimed at the effective operation of facilities and cost reduction by regional management under proper recognition of local characteristics of each power source, while maintaining a stable power supply with specified margins. (1 fig, 11 tabs)

  7. 33 CFR 103.505 - Elements of the Area Maritime Security (AMS) Plan.

    Science.gov (United States)

    2010-07-01

    ... port in case of security threats or breaches of security; (j) Procedures for periodic plan review... (CSO), Vessel Security Officers (VSO), public safety officers, emergency response personnel, and crisis management organization representatives within the port, including 24-hour contact details; (m) Measures to...

  8. 75 FR 43528 - Seeking Public Comment on Draft National Health Security Strategy Biennial Implementation Plan

    Science.gov (United States)

    2010-07-26

    ... National Health Security Strategy Biennial Implementation Plan AGENCY: Department of Health and Human... National Health Security Strategy (NHSS) of the United States of America (2009) and build upon the NHSS Interim Implementation Guide for the National Health Security Strategy of the United States of America...

  9. IAEA puts cyber security in focus for nuclear facilities in 2015

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, John [nuclear 24, Brighton (United Kingdom)

    2015-01-15

    Later in 2015 the International Atomic Energy Agency (IAEA) will convene a special conference to discuss computer security, in the wake of cyber attacks on global financial institutions and government agencies that were increasingly in the news. According to the IAEA, the prevalence of IT security incidents in recent years involving the Stuxnet malware 'demonstrated that nuclear facilities can be susceptible to cyber attack'. The IAEA said this and other events have significantly raised global concerns over potential vulnerabilities and the possibility of a cyber attack, or a joint cyber-physical attack, that could impact on nuclear security. The IAEA has correctly identified that the use of computers and other digital electronic equipment in physical protection systems at nuclear facilities, as well as in facility safety systems, instrumentation, information processing and communication, 'continues to grow and presents an ever more likely target for cyber attack'. The agency's Vienna conference, to be held in June, will review emerging trends in computer security and areas that may still need to be addressed. The meeting follows a declaration of ministers of IAEA member states in 2013 that called on the agency to help raise awareness of the growing threat of cyber attacks and their potential impact on nuclear security. The conference is being organised 'to foster international cooperation in computer security as an essential element of nuclear security', the IAEA said. Details of the IAEA's 'International Conference on Computer Security in a Nuclear World: Expert Discussion and Exchange' are on the 'meetings' section of the agency's web site.

  10. Risk management plan for the National Ignition Facility

    International Nuclear Information System (INIS)

    Brereton, S.; Lane, M.; Smith, C.; Yatabe, J.

    1998-01-01

    The National Ignition Facility (NIF) is a U.S. Department of Energy inertial confinement laser fusion facility, currently under construction at the Lawrence Livermore National Laboratory (LLNL). NIF is a critical tool for the Department of Energy (DOE) science- based Stockpile Stewardship and Management Program. In addition, it represents a major step towards realizing inertial confinement fusion as a source of energy. The NIF will focus 192 laser beams onto spherical targets containing a mixture of deuterium and tritium, causing them to implode. This will create the high temperatures and pressures necessary for these targets to undergo fusion. The plan is for NIF to achieve ignition (i.e., self-heating of the fuel) and energy gain (i.e., more fusion energy produced than laser energy deposited) in the laboratory for the first time. A Risk Management Plan was prepared for the NIF design and construction Project. The plan was prepared in accordance with the DOE Life Cycle Asset Management Good Practice Guide. The objectives of the plan were to: (1) identify the risks to the completion of the Project in terms of meeting technical and regulatory requirements, cost, and schedule, (2) assess the risks in terms of likelihood of occurrence and their impact potential relative to technical performance, ES ampersand H (environment, safety and health), costs, and schedule, and (3) address each risk in terms of suitable risk management measures. Major risk elements were identified for the NIF Project. A risk assessment methodology was developed, which was utilized to rank the Project risks with respect to one another. Those elements presenting greater risk were readily identified by this process. This paper describes that methodology and the results

  11. Groundwater protection plan for the Environmental Restoration Disposal Facility

    International Nuclear Information System (INIS)

    Weekes, D.C.; Jaeger, G.K.; McMahon, W.J.; Ford, B.H.

    1996-01-01

    This document is the groundwater protection plan for the Environmental Restoration Disposal Facility (ERDF) Project. This plan is prepared based on the assumption that the ERDF will receive waste containing hazardous/dangerous constituents, radioactive constituents, and combinations of both. The purpose of this plan is to establish a groundwater monitoring program that (1) meets the intent of the applicable or relevant and appropriate requirements, (2) documents baseline groundwater conditions, (3) monitors those conditions for change, and (4) allows for modifications to groundwater sampling if required by the leachate management program. Groundwater samples indicate the occurrence of preexisting groundwater contamination in the uppermost unconfined aquifer below the ERDF Project site, as a result of past waste-water discharges in the 200 West Area. Therefore, it is necessary for the ERDF to establish baseline groundwater quality conditions and to monitor changes in the baseline over time. The groundwater monitoring program presented in this plan will provide the means to assess onsite and offsite impacts to the groundwater. In addition, a separate leachate management program will provide an indication of whether the liners are performing within design standards

  12. Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification

  13. 48 CFR 652.239-70 - Information Technology Security Plan and Accreditation.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Information Technology... Clauses 652.239-70 Information Technology Security Plan and Accreditation. As prescribed in 639.107-70(a), insert the following provision: Information Technology Security Plan and Accreditation (SEP 2007) All...

  14. 48 CFR 1252.239-71 - Information technology security plan and accreditation.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Information technology... Provisions and Clauses 1252.239-71 Information technology security plan and accreditation. As prescribed in (TAR) 48 CFR 1239.70, insert the following provision: Information Technology Security Plan and...

  15. Analysis of impact of noncompliance with physical-security requirements at nuclear facilities

    International Nuclear Information System (INIS)

    Green, J.N.

    1982-03-01

    Inspectors are required to analyze the impact of instances of noncompliance with physical security requirements at licensed nuclear facilities. A scoring procedure for components and a method for evaluating the effectiveness of the subsystems involved are proposed to reinforce an inspector's judgment about the remaining level of safeguards

  16. Hospital security and patient elopement: protecting patients and your healthcare facility.

    Science.gov (United States)

    Smith, Thomas A

    2012-01-01

    Regulatory and financial consequences of adverse events associated with patient elopements are bringing new challenges to healthcare security to develop policies and procedures to prevent and respond to such incidents. This article provides an overview of the problem of elopement in healthcare and what it means to the security function; gives a working knowledge of healthcare related standards and guidelines aimed at reducing patient elopement; and reviews the elements of an elopement prevention and response plan for your organization.

  17. Considerations to Enhance the Florida Domestic Security Strategic Plan

    Science.gov (United States)

    2011-03-01

    security strategies. vi THIS PAGE INTENTIONALLY LEFT BLANK vii TABLE OF CONTENTS I. INTRODUCTION ...Thank you all. xvi THIS PAGE INTENTIONALLY LEFT BLANK 1 I. INTRODUCTION A. PROBLEM STATEMENT After the terrorist attacks of September 11, 2001...State Homeland Security Strategy (Nebraska Emergency Mangement Agency, 2009) • Vermont Homeland Security Strategy (Vermont Department of Public

  18. Analysis of the security during power system expansion planning

    Directory of Open Access Journals (Sweden)

    Osak Alexey

    2017-01-01

    Full Text Available Increasing the intelligent level of the EPS control systems, caused by the implementation of Smart technologies, changes the structure and the properties of EPS and increases the importance of system reliability analysis. System reliability analysis includes two components – for the balance and for the regime. On the one hand, there is a large number of studies to assess the reliability of the power system, which examines various aspects and methods of solving this problem. On the other hand, in Russia there is no generally accepted methodology with clear criteria that could be used for feasibility studies of various technical solutions taking into consideration system reliability aspects. In practice, the security analysis is limited by the calculations of power flows, static and dynamic stability for a number of forecast periods for the normal and repair circuits considering the most severe disturbances. The existing approach allows defining the requirements and adjusting emergency control systems, but does not allow evaluating and comparing solutions for power grid constructions. The authors propose a new method for power system reliability evaluation, which is suitable for planning development and operation of power systems. The method includes a general description of the algorithm which allows to compare various development scenarios, as well as to assess the reliability level of their implementation. In particular, the method allows to determine where it is needed only the relay protection and emergency control system development, and where it is necessary grid, protection and control development and reconstruction.

  19. Bechtel Hanford, Inc. Network Security Plan for the Environmental Restoration Contract

    International Nuclear Information System (INIS)

    Slade, B.E.

    2000-01-01

    This document was created to address ERC computer security needs that are outlined by DOE Order 1360.2B, Unclassified Computer Security Program. DOE Order 1360.2B has been canceled and replaced with DOE Notice 205.1, Unclassified Cyber Security Program. The ERC response to DOE Notice 205.1 is to generate BHI-01343, Cyber Security Program Plan, which is not available for public access or viewing

  20. A new Brazilian regulation for the security of nuclear material and nuclear facilities

    International Nuclear Information System (INIS)

    Tavares, Renato L.A.; Filho, Josélio S.M.; Torres, Luiz F.B.; Lima, Alexandre R.; Lima, Fabiano P.C.

    2017-01-01

    The present paper aims to outline the challenges related to the elaboration and concepts involved in a regulatory transition from a purely prescriptive approach to a combined approach that mixes performance-based concepts and evaluation metrics based on statistical data of equipment and personnel. This methodology might represent an improvement compared to a purely prescriptive approach, in which the regulatory authority defines the measures to be taken by operators of nuclear facilities to prevent theft, sabotage events, and mitigate their consequences. The prescriptive approach, despite having the advantages of clarity in the definition of requirements, simplicity in regulatory terms (inspections to verify compliance), and homogeneity in relation to various facilities, does not allow a clear and effective performance measurement, may provide insufficient or excessive security measures (with excessive expenditure of material and human resources), and the possibility of providing a false sense of security. It is known that, in many countries, the state-sponsored nuclear security regime mixes elements of the two mentioned approaches, prescriptive and based on performance, which is not Brazilian practice nowadays. Such methodological developments happened globally due to the increase of threat level for nuclear facilities and materials. The currently regulation in force is CNEN-NE 2.01, which provides a set of measures intended to implement Physical Protection Systems in Nuclear, Radiological Facilities as well as Transport Operations, and all documents related to security of such issues. The new regulation, named CNEN-NN 2.01, will focus only on Nuclear Material and Facilities (two other regulations specific for Security of Radioactive Sources and Transport Operations are under elaboration process). CNEN NN 2.01 is intended to provide further adherence to new international recommendations, e.g, IAEA INFCIRC 225 Rev.5 (NSS 13), which is currently regarded as the

  1. A new Brazilian regulation for the security of nuclear material and nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Renato L.A.; Filho, Josélio S.M.; Torres, Luiz F.B.; Lima, Alexandre R., E-mail: renato.tavares@cnen.gov.br, E-mail: joselio@cnen.gov.br, E-mail: ltorres@cnen.gov.br, E-mail: alexandre.lima@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Diretoria de Radioproteção e Segurança Nuclear; Lima, Fabiano P.C., E-mail: fabianopetruceli@outlook.com [Presidência da República, Brasilia, DF (Brazil). Gabinete de Segurança Institucional

    2017-07-01

    The present paper aims to outline the challenges related to the elaboration and concepts involved in a regulatory transition from a purely prescriptive approach to a combined approach that mixes performance-based concepts and evaluation metrics based on statistical data of equipment and personnel. This methodology might represent an improvement compared to a purely prescriptive approach, in which the regulatory authority defines the measures to be taken by operators of nuclear facilities to prevent theft, sabotage events, and mitigate their consequences. The prescriptive approach, despite having the advantages of clarity in the definition of requirements, simplicity in regulatory terms (inspections to verify compliance), and homogeneity in relation to various facilities, does not allow a clear and effective performance measurement, may provide insufficient or excessive security measures (with excessive expenditure of material and human resources), and the possibility of providing a false sense of security. It is known that, in many countries, the state-sponsored nuclear security regime mixes elements of the two mentioned approaches, prescriptive and based on performance, which is not Brazilian practice nowadays. Such methodological developments happened globally due to the increase of threat level for nuclear facilities and materials. The currently regulation in force is CNEN-NE 2.01, which provides a set of measures intended to implement Physical Protection Systems in Nuclear, Radiological Facilities as well as Transport Operations, and all documents related to security of such issues. The new regulation, named CNEN-NN 2.01, will focus only on Nuclear Material and Facilities (two other regulations specific for Security of Radioactive Sources and Transport Operations are under elaboration process). CNEN NN 2.01 is intended to provide further adherence to new international recommendations, e.g, IAEA INFCIRC 225 Rev.5 (NSS 13), which is currently regarded as the

  2. EXPERIENCE AND PLANS OF THE JLAB FEL FACILITY AS A USER FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Michelle D. Shinn

    2007-08-26

    Jefferson Lab's IR Upgrade FEL building was planned from the beginning to be a user facility, and includes an associated 600 m2 area containing seven laboratories. The high average power capability (multikilowatt-level) in the near-infrared (1-3 microns), and many hundreds of watts at longer wavelengths, along with an ultrafast (~ 1 ps) high PRF (10's MHz) temporal structure makes this laser a unique source for both applied and basic research. In addition to the FEL, we have a dedicated laboratory capable of delivering high power (many tens of watts) of broadband THz light. After commissioning the IR Upgrade, we once again began delivering beam to users in 2005. In this presentation, I will give an overview of the FEL facility and its current performance, lessons learned over the last two years, and a synopsis of current and future experiments.

  3. National Ignition Facility risk management plan, rev. 1

    International Nuclear Information System (INIS)

    Brereton, S J; Lane, M A

    1998-01-01

    The initial release of the National Ignition Facility (AUF) Risk Management Plan (LLNL, 1997a) was prepared in accordance with the DOE Life Cycle Asset Management Good Practice Guide (DOE, 1996a) and supported Critical Decision 3 (CD3), Approval to Initiate Construction (DOE, 1997a). The objectives of the plan were to: (1) Identify the risks to the completion of the Project in terms of meeting technical and regulatory requirements, cost, and schedule. (2) Assess the risks in terms of likelihood of occurrence and their impact potential relative to technical performance, ES and H (environmental, safety and health), costs, and schedule. (3) Address suitable risk mitigation measures for each identified risk. This revision of the Risk Management Plan considers project risks and vulnerabilities after CD3 (DOE, 1997a) was approved by the Secretary of Energy. During the one-year period since the initial release, the vulnerabilities of greatest concern have been the litigation of the Programmatic Environmental Impact Statement (PEIS) (DOE, 1996b) by a group of environmental organizations led by the Natural Resources Defense Council; the finding and successful clean-up of polychlorinated biphenyl (PCB)-filled electrical capacitors at the NIF site excavation; the FY98 congressional budget authorization and request for the FY99 budget authorization; funding for Inertial Confinement Fusion (ICF)/NIF programmatic activities (including French and other sources of funding); and finally, progress in the core science and technology, and optics program that form the basis for the NIF design

  4. 190-C Facility <90 Day Storage Pad supplemental information to the Hanford facility contingency plan

    International Nuclear Information System (INIS)

    Little, N.C.

    1996-12-01

    The 190-C Facility <90 Day Storage Pad stores waste oils primarily contaminated with lead generated while draining equipment within the building of residual lubricating oils. Waste oils are packaged and stored in fifty-five gallon drums, or other containers permitted by the Site Specific Waste Management Instruction. Bechtel Hanford, Inc. (BHI) manual BHI-EE-02, Environmental Requirements Procedures, references this document. This document is to be used to demonstrate compliance with the contingency plan requirements in Washington Administrative Code, Chapter 173-303, Dangerous Waste Regulations, for certain Resource Conservation and Recovery Act of 1976 (RCRA) waste management units (units). Refer to BHI-EE-02, for additional information

  5. Abbreviated sampling and analysis plan for planning decontamination and decommissioning at Test Reactor Area (TRA) facilities

    International Nuclear Information System (INIS)

    1994-10-01

    The objective is to sample and analyze for the presence of gamma emitting isotopes and hazardous constituents within certain areas of the Test Reactor Area (TRA), prior to D and D activities. The TRA is composed of three major reactor facilities and three smaller reactors built in support of programs studying the performance of reactor materials and components under high neutron flux conditions. The Materials Testing Reactor (MTR) and Engineering Test Reactor (ETR) facilities are currently pending D/D. Work consists of pre-D and D sampling of designated TRA (primarily ETR) process areas. This report addresses only a limited subset of the samples which will eventually be required to characterize MTR and ETR and plan their D and D. Sampling which is addressed in this document is intended to support planned D and D work which is funded at the present time. Biased samples, based on process knowledge and plant configuration, are to be performed. The multiple process areas which may be potentially sampled will be initially characterized by obtaining data for upstream source areas which, based on facility configuration, would affect downstream and as yet unsampled, process areas. Sampling and analysis will be conducted to determine the level of gamma emitting isotopes and hazardous constituents present in designated areas within buildings TRA-612, 642, 643, 644, 645, 647, 648, 663; and in the soils surrounding Facility TRA-611. These data will be used to plan the D and D and help determine disposition of material by D and D personnel. Both MTR and ETR facilities will eventually be decommissioned by total dismantlement so that the area can be restored to its original condition

  6. Laser programs facility management plan for environment, safety, and health

    International Nuclear Information System (INIS)

    Cruz, G.E.

    1996-01-01

    The Lawrence Livermore National Laboratory's (LLNL) Laser Programs ES ampersand H policy is established by the Associate Director for Laser Programs. This FMP is one component of that policy. Laser Programs personnel design, construct and operate research and development equipment located in various Livermore and Site 300 buildings. The Programs include a variety of activities, primarily laser research and development, inertial confinement fusion, isotope separation, and an increasing emphasis on materials processing, imaging systems, and signal analysis. This FMP is a formal statement of responsibilities and controls to assure operational activities are conducted without harm to employees, the general public, or the environment. This plan identifies the hazards associated with operating a large research and development facility and is a vehicle to control and mitigate those hazards. Hazards include, but are not limited to: laser beams, hazardous and radioactive materials, criticality, ionizing radiation or x rays, high-voltage electrical equipment, chemicals, and powered machinery

  7. National ignition facility environment, safety, and health management plan

    International Nuclear Information System (INIS)

    1995-11-01

    The ES ampersand H Management Plan describes all of the environmental, safety, and health evaluations and reviews that must be carried out in support of the implementation of the National Ignition Facility (NIF) Project. It describes the policy, organizational responsibilities and interfaces, activities, and ES ampersand H documents that will be prepared by the Laboratory Project Office for the DOE. The only activity not described is the preparation of the NIF Project Specific Assessment (PSA), which is to be incorporated into the Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (PEIS). This PSA is being prepared by Argonne National Laboratory (ANL) with input from the Laboratory participants. As the independent NEPA document preparers ANL is directly contracted by the DOE, and its deliverables and schedule are agreed to separately with DOE/OAK

  8. Regional Radiological Security Partnership in Southeast Asia - Increasing the Sustainability of Security Systems at the Site-Level by Using a Model Facility Approach

    International Nuclear Information System (INIS)

    Chamberlain, Travis L.; Dickerson, Sarah; Ravenhill, Scott D.; Murray, Allan; Morris, Frederic A.; Herdes, Gregory A.

    2009-01-01

    In 2004, Australia, through the Australian Nuclear Science and Technology Organisation (ANSTO), created the Regional Security of Radioactive Sources (RSRS) project and partnered with the U.S. Department of Energy's Global Threat Reduction Initiative (GTRI) and the International Atomic Energy Agency (IAEA) to form the Southeast Asian Regional Radiological Security Partnership (RRSP). The intent of the RRSP is to cooperate with countries in Southeast Asia to improve the security of their radioactive sources. This Southeast Asian Partnership supports objectives to improve the security of high risk radioactive sources by raising awareness of the need and developing national programs to protect and control such materials, improve the security of such materials, and recover and condition the materials no longer in use. The RRSP has utilized many tools to meet those objectives including: provision of physical protection upgrades, awareness training, physical protection training, regulatory development, locating and recovering orphan sources, and most recently - development of model security procedures at a model facility. This paper discusses the benefits of establishing a model facility, the methods employed by the RRSP, and three of the expected outcomes of the Model Facility approach. The first expected outcome is to increase compliance with source security guidance materials and national regulations by adding context to those materials, and illustrating their impact on a facility. Second, the effectiveness of each of the tools above is increased by making them part of an integrated system. Third, the methods used to develop the model procedures establishes a sustainable process that can ultimately be transferred to all facilities beyond the model. Overall, the RRSP has utilized the Model Facility approach as an important tool to increase the security of radioactive sources, and to position facilities and countries for the long term secure management of those sources.

  9. Demonstration tools for the facility/land use planning process at Rocky Flats

    International Nuclear Information System (INIS)

    Ryan, K.B.

    1994-01-01

    The new mission for the Rocky Flats Site states, open-quotes Manage waste and materials, clean up and convert the Rocky Flats Site to beneficial use in a manner that is safe, environmentally and socially responsible, physical secure, and cost-effective.close quotes. In addition, community recognition and support is encouraged and expected. To accomplish this ambitious mission of converting to another use and incorporating stakeholder input, many tools must be developed. These tools must be clearly understandable and readily available, with the hope and plan that similar outcomes will be much more apparent if the same or similar tools are applied by all decision markers, both internal and external. Since the task is monumental and extremely complex, establishing and understanding these available tools early in the planning process is important. All decision makers must be identified and the availability of the tools should be shared to eliminate redundancy and expedite the planning process. Most documents utilized for decision making are very technical in nature. Since numerous and varied stakeholders will be involved, these documents must be socialized or open-quotes detechnicalized.close quotes This paper discusses developing internal and universally acceptable demonstration tools for explaining how facilities and land will be analyzed for constraints and opportunities during the planning process

  10. Model business plan for a sterile insect production facility

    International Nuclear Information System (INIS)

    2008-01-01

    For over 50 years the sterile insect technique (SIT) is a pest control strategy which has been used for eradication, and more recently for suppression, containment and prevention, of unwanted insect pest populations. Examples of successful applications of SIT, almost always applied in conjunction with other control methods in an area-wide integrated approach, are available from around the world. The development and application of SIT has relied overwhelmingly on public or donor initiative and funding throughout its history, although the private sector has always been involved as participants, cooperators or partners in funding. The demand for SIT, and therefore the market for sterile insects, has increased in recent years. This increase coincides with the introduction of new pests through the expansion of global trade and, at the same time, widespread pressure to find alternatives to pesticides. Recent improvements in the technology supporting SIT facilitate its application and suggest lower costs can be achieved. The conditions are therefore met for a greater commercialization of the technique to bring it in line with other pest control approaches that are fully integrated into a market approach. Several challenges arise, however, in pursuing sterile insect production as a commercial venture, ranging from intellectual property protection to pricing of the product. Routine insurance requirements, for instance, are complicated by the biological aspects of the business. This report is aimed at facilitating private sector involvement in the production of sterile insects for use in pest control. It provides guidelines and tools to support the development of specific business plans for a new SIT venture. By providing an international perspective on such issues as initial capital costs and recurring operational expenditures for a sterile insect facility, it may be used to evaluate the feasibility of proceeding with the construction or expansion of a sterile insect

  11. Brookhaven National Laboratory's Accelerator Test Facility: research highlights and plans

    Science.gov (United States)

    Pogorelsky, I. V.; Ben-Zvi, I.

    2014-08-01

    The Accelerator Test Facility (ATF) at Brookhaven National Laboratory has served as a user facility for accelerator science for over a quarter of a century. In fulfilling this mission, the ATF offers the unique combination of a high-brightness 80 MeV electron beam that is synchronized to a 1 TW picosecond CO2 laser. We unveil herein our plan to considerably expand the ATF's floor space with an upgrade of the electron beam's energy to 300 MeV and the CO2 laser's peak power to 100 TW. This upgrade will propel the ATF even further to the forefront of research on advanced accelerators and radiation sources, supporting the most innovative ideas in this field. We discuss emerging opportunities for scientific breakthroughs, including the following: plasma wakefield acceleration studies in research directions already active at the ATF; laser wakefield acceleration (LWFA), where the longer laser wavelengths are expected to engender a proportional increase in the beam's charge while our linac will assure, for the first time, the opportunity to undertake detailed studies of seeding and staging of the LWFA; proton acceleration to the 100-200 MeV level, which is essential for medical applications; and others.

  12. Planning, Management and Organizational Aspects of the Decommissioning of a Hot Cell Facility

    Energy Technology Data Exchange (ETDEWEB)

    Strufe, N. [Danish Decommissioning, Roskilde (Denmark)

    2013-08-15

    This CRP project document ''Planning, Management and Organizational Aspects in Decommissioning of a Hot Cell Facility'' aims to describe the establishment of a management organization that ensures that the DD Hot Cell Project is properly and safely conducted and that staff members, who are seconded to the project, have a strong feeling of ownership and being an integral part of the project. The objectives of the decommissioning project of the hot cell facility is to decontaminate the facility and to remove items that cannot be decontaminated on site, in order for the entire hot cell building to become useable for other purposes without any radiological restrictions. The project requires proper communication and coordination with all stakeholders on-site, comprehensive work plans and strict control of the individual working areas and operations. A project of this type obviously requires a strong and well managed and coordinated project organization. DD has established a management system - KMS. The purposes of the KMS are twofold. The system aims to secure the fulfilment of the conditions and requirements of quality set by the nuclear authorities. The system also aims to provide the basis for a rational and economically feasible operation with a high level of safety. One of the main lessons learned in this project is clear that is to ensure that the necessary resources are available and the required expertise is allocated timely for the performance of the project(s) a strong coordination and great flexibility within the DD organization is required. This document describes the approach and considerations from the project management point of view. The document initially gives an introduction to the hot cell decommissioning project followed by issues of the general considerations and planning of the project within the DD, including aspects on organisation, quality assurance and coordination. (author)

  13. Secure environment for real-time tele-collaboration on virtual simulation of radiation treatment planning.

    Science.gov (United States)

    Ntasis, Efthymios; Maniatis, Theofanis A; Nikita, Konstantina S

    2003-01-01

    A secure framework is described for real-time tele-collaboration on Virtual Simulation procedure of Radiation Treatment Planning. An integrated approach is followed clustering the security issues faced by the system into organizational issues, security issues over the LAN and security issues over the LAN-to-LAN connection. The design and the implementation of the security services are performed according to the identified security requirements, along with the need for real time communication between the collaborating health care professionals. A detailed description of the implementation is given, presenting a solution, which can directly be tailored to other tele-collaboration services in the field of health care. The pilot study of the proposed security components proves the feasibility of the secure environment, and the consistency with the high performance demands of the application.

  14. Antares facility for inertial-fusion experiments: status and plans

    International Nuclear Information System (INIS)

    Goldstone, P.D.; Allen, G.; Jansen, H.; Saxman, A.; Singer, S.; Thuot, M.

    1982-01-01

    Antares is a large, 30 to 40 kJ CO 2 laser system which will provide a base for experiments to determine the efficiency with which 10 μm light can be used to drive target implosions while maintaining an acceptable level of preheat. Construction of the facility is in the final stages and diagnostics for initial experiments are being designed and constructed with operations scheduled to begin early in FY-84. After an initial shakedown period, we expect to perform a series of measurements to determine the energy scaling of hot electron temperature and target coupling efficiency in selected set of targets including simple spheres. We also expect to continue experiments, now planned for Helios, to determine whether CO 2 -produced ions are appropriate for driving inertial fusion targets with acceptable efficiency (Helios experiments have demonstrated that as much as 40% of the incident light can be converted to fast ions). Details of these experiments, as well as plans for further experiments, are still being defined

  15. Liquid effluent retention facility final-status groundwater monitoring plan

    International Nuclear Information System (INIS)

    Sweeney, M.D.; Chou, C.J.; Bjornstad, B.N.

    1997-09-01

    The following sections describe the groundwater-monitoring program for the Liquid Effluent Retention Facility (LERF). The LERF is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA). The LERF is included in the open-quotes Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, Permit WA890008967close quotes, (referred to herein as the Permit) (Ecology 1994) and is subject to final-status requirements for groundwater monitoring (WAC 173-303-645). This document describes a RCRA/WAC groundwater detection-monitoring program for groundwater in the uppermost aquifer system at the LERF. This plan describes the LERF monitoring network, constituent list, sampling schedule, statistical methods, and sampling and analysis protocols that will be employed for the LERF. This plan will be used to meet the groundwater monitoring requirements from the time the LERF becomes part of the Permit and through the post-closure care period, until certification of final closure

  16. Facility Response Plan (FRP) Points, Region 9, 2014, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — A Facility Response Plan (FRP) demonstrates a facility's preparedness to respond to a worst case oil discharge. Under the Clean Water Act, as amended by the Oil...

  17. Facility Response Plan (FRP) Points, Region 9, 2013, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — A Facility Response Plan (FRP) demonstrates a facility's preparedness to respond to a worst case oil discharge. Under the Clean Water Act, as amended by the Oil...

  18. Facility Response Plan (FRP) Points, Region 9, 2012, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — A Facility Response Plan (FRP) demonstrates a facility's preparedness to respond to a worst case oil discharge. Under the Clean Water Act, as amended by the Oil...

  19. Design verification and validation plan for the cold vacuum drying facility

    International Nuclear Information System (INIS)

    NISHIKAWA, L.D.

    1999-01-01

    The Cold Vacuum Drying Facility (CVDF) provides the required process systems, supporting equipment, and facilities needed for drying spent nuclear fuel removed from the K Basins. This document presents the both completed and planned design verification and validation activities

  20. Facility Response Plan (FRP) Inspected Points, Region 9, 2014, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — A Facility Response Plan (FRP) demonstrates a facility's preparedness to respond to a worst case oil discharge. Under the Clean Water Act, as amended by the Oil...

  1. performance-based approach to design and evaluation of nuclear security systems for Brazilian nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Renato L. A.; Filho, Josélio S. M., E-mail: renato.tavares@cnen.gov.br, E-mail: joselio@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Diretoria de Radioproteção e Segurança Nuclear. Divisão de Normas e Segurança Física; Fontes, Gladson S.; Fiel, J.C.B., E-mail: gsfontes@hotmail.com, E-mail: fiel@ime.eb.br [Instituto Militar de Engenharia (SE-7/IME), Rio de Janeiro, RJ (Brazil). Seção de Engenharia Nuclear

    2017-07-01

    This study presents an application of a performance-based approach to definition of requirements, design and evaluation of physical protection systems for nuclear facilities. Such approach considers a probabilistic analysis of the threat, equipment, systems and response forces used to prevent, dissuade and detain malicious acts against the integrity of facilities and the nuclear materials inside them. Nowadays, in the context of Brazilian nuclear facilities licensing, a mostly prescriptive approach is adopted, which despite having advantages such as simplified inspections and homogeneous regulatory requisites amid different fuel cycle facility types, does not consider evolution, dynamism and capacities of external or internal threats to facilities and to Brazilian Nuclear Program itself, neither provides metrics to evaluate system performance facing such threats. In order to preserve actual plans and systems confidentiality, a facility hypothetical model is created, including a research reactor and a waste storage facility. It is expected that the methodology and results obtained in this study serve in the future as a basis to Brazilian nuclear operators, in elaboration process of their Physical Protection Plans, which must comply with future regulation CNEN-NN 2.01, a revision of CNEN-NE 2.01, once that regulation will include performance requisites. (author)

  2. performance-based approach to design and evaluation of nuclear security systems for Brazilian nuclear facilities

    International Nuclear Information System (INIS)

    Tavares, Renato L. A.; Filho, Josélio S. M.; Fontes, Gladson S.; Fiel, J.C.B.

    2017-01-01

    This study presents an application of a performance-based approach to definition of requirements, design and evaluation of physical protection systems for nuclear facilities. Such approach considers a probabilistic analysis of the threat, equipment, systems and response forces used to prevent, dissuade and detain malicious acts against the integrity of facilities and the nuclear materials inside them. Nowadays, in the context of Brazilian nuclear facilities licensing, a mostly prescriptive approach is adopted, which despite having advantages such as simplified inspections and homogeneous regulatory requisites amid different fuel cycle facility types, does not consider evolution, dynamism and capacities of external or internal threats to facilities and to Brazilian Nuclear Program itself, neither provides metrics to evaluate system performance facing such threats. In order to preserve actual plans and systems confidentiality, a facility hypothetical model is created, including a research reactor and a waste storage facility. It is expected that the methodology and results obtained in this study serve in the future as a basis to Brazilian nuclear operators, in elaboration process of their Physical Protection Plans, which must comply with future regulation CNEN-NN 2.01, a revision of CNEN-NE 2.01, once that regulation will include performance requisites. (author)

  3. Use of risk assessment methods for security design and analysis of nuclear and radioactive facilities

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Andrade, Marcos C.; Jordao, Elizabete

    2011-01-01

    The objective of this work is to evaluate the applicability of risk assessment methods for analyzing the physical protection of nuclear and radioactive facilities. One of the important processes for physical protection in nuclear and radioactive facilities is the identifying of areas containing nuclear materials, structures, systems or components to be protected from sabotage, which could directly or indirectly lead to unacceptable radiological consequences. A survey of the international guidelines and recommendations about vital area identification, design basis threat (DBT), and the security of nuclear and radioactive facilities was carried out. The traditional methods used for quantitative risk assessment, like FMEA (Failure Mode and Effect Analysis), Event and Decision Trees, Fault and Success Trees, Vulnerability Assessment, Monte Carlo Simulation, Probabilistic Safety Assessment, Scenario Analysis, and Game Theory, among others, are highlighted. The applicability of such techniques to security issues, their pros and cons, the general resources needed to implement them, as data or support software, are analyzed. Finally, an approach to security design and analysis, beginning with a qualitative and preliminary examination to determine the range of possible scenarios, outcomes, and the systems to be included in the analyses, and proceeding to a progressively use of more quantitative techniques is presented. (author)

  4. Safeguards and security aspects of a potential Canadian used-fuel disposal facility

    International Nuclear Information System (INIS)

    Smith, R.M.; Wuschke, D.; Baumgartner, P.

    1994-09-01

    Large quantities of highly radioactive used fuel have been produced by Canadian nuclear generating stations. Conceptual design and development is under way to assess a means of disposing of this used fuel within a vault located 500 to 1000 m deep in plutonic rock in the Canadian Shield. In parallel with this work, the safeguards and physical security measures that will be required for this used fuel during transportation, packaging, and containment in a disposal vault are being studied in Canada, in several other countries that have similar requirements and by the International Atomic Energy Agency. Canadian commitments and regulations applicable to used-fuel transportation and disposal are described. The experience gained from applying safeguards and physical security measures at similar facilities is considered together with the availability of equipment that might be used in applying these measures. Possible safeguards and physical security measures are outlined and considered. These measures are based on the conceptual design studies for a reference Used-Fuel Disposal Centre and associated transportation systems undertaken by Atomic Energy of Canada Limited and Ontario Hydro. These studies show that effective and practical safeguards, which meet present IAEA objectives, can be applied to the used fuel in transportation and at a disposal facility. They also show that physical security measures can be employed that have a high probability of preventing theft or sabotage. 27 refs., 8 figs., 3 tabs., glossary, 2 appendices

  5. Safeguards and security aspects of a potential Canadian used-fuel disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R M; Wuschke, D; Baumgartner, P

    1994-09-01

    Large quantities of highly radioactive used fuel have been produced by Canadian nuclear generating stations. Conceptual design and development is under way to assess a means of disposing of this used fuel within a vault located 500 to 1000 m deep in plutonic rock in the Canadian Shield. In parallel with this work, the safeguards and physical security measures that will be required for this used fuel during transportation, packaging, and containment in a disposal vault are being studied in Canada, in several other countries that have similar requirements and by the International Atomic Energy Agency. Canadian commitments and regulations applicable to used-fuel transportation and disposal are described. The experience gained from applying safeguards and physical security measures at similar facilities is considered together with the availability of equipment that might be used in applying these measures. Possible safeguards and physical security measures are outlined and considered. These measures are based on the conceptual design studies for a reference Used-Fuel Disposal Centre and associated transportation systems undertaken by Atomic Energy of Canada Limited and Ontario Hydro. These studies show that effective and practical safeguards, which meet present IAEA objectives, can be applied to the used fuel in transportation and at a disposal facility. They also show that physical security measures can be employed that have a high probability of preventing theft or sabotage. 27 refs., 8 figs., 3 tabs., glossary, 2 appendices.

  6. Facility effluent monitoring plan for the 284-E and 284-W power plants

    International Nuclear Information System (INIS)

    Nickels, J.M.; Herman, D.R.

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during calendar year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  7. Strategic Sustainability Performance Plan. Discovering Sustainable Solutions to Power and Secure America’s Future

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2010-09-01

    Sustainability is fundamental to the Department of Energy’s research mission and operations as reflected in the Department’s Strategic Plan. Our overarching mission is to discover the solutions to power and secure America’s future.

  8. The New Roles of the Dominican Armed Forces in the Dominican Republic National Security Plan

    National Research Council Canada - National Science Library

    Arias, Jose D

    2007-01-01

    ... in the 2005 National Security Plan. The resulting analysis provides a basis for determining what the new roles of the Dominican Armed Forces and the National Police should be for the 21st century...

  9. State and Urban Area Homeland Security Strategy v3.0: Evolving Strategic Planning

    National Research Council Canada - National Science Library

    Chen, Darren

    2006-01-01

    ... with state and local stakeholders. Federal state and local reviewers regard the current state and urban homeland security strategies as generally inadequate and indicative of limited strategic planning processes...

  10. Test plan for the soils facility demonstration: A petroleum contaminated soil bioremediation facility

    International Nuclear Information System (INIS)

    Lombard, K.H.

    1994-01-01

    The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing new and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays

  11. Economic Security Environment and Implementation of Planning, Programming, Budgeting, Execution (PPBE) System in Georgia

    Science.gov (United States)

    2004-06-01

    Roy J. What Determines Economic Growth? Economic Review – Second Quarter 1993 [References: Barro (1991); Mankiw , Romer, and Well (1992); De Long...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release: distribution unlimited ECONOMIC SECURITY...DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE: Economic Security Environment and Implementation of Planning, Programming, Budgeting, Execution

  12. Interim format and content for a physical security plan for nuclear power plants

    International Nuclear Information System (INIS)

    1977-02-01

    The document serves as interim guidance to assist the licensee or applicant in the preparation of a physical security plan. It is to be used in conjunction with interim acceptance criteria for physical security programs, which will be distributed at a later date

  13. Implementation of safeguards and security for fissile materials disposition reactor alternative facilities

    International Nuclear Information System (INIS)

    Jaeger, C.D.; Duggan, R.A.; Tolk, K.M.

    1995-01-01

    A number of different disposition alternatives are being considered and include facilities which provide for long-ten-n and interim storage, convert and stabilize fissile materials for other disposition alternatives, immobilize fissile material in glass and/or ceramic material, fabricate fissile material into mixed oxide (MOX) fuel for reactors, use reactor based technologies to convert material into spent fuel, and dispose of fissile material using a number of geologic alternatives. Particular attention will be given to the reactor alternatives which include existing, partially completed, advanced or evolutionary LWRs and CANDU reactors. The various reactor alternatives are all very similar and include processing which converts Pu to a usable form for fuel fabrication, a MOX fuel fab facility located in either the US or in Europe, US LWRs or the CANDU reactors and ultimate disposal of spent fuel in a geologic repository. This paper focuses on how the objectives of reducing security risks and strengthening arms reduction and nonproliferation will be accomplished and the possible impacts of meeting these objectives on facility operations and design. Some of the areas in this paper include: (1) domestic and international safeguards requirements, (2) non-proliferation criteria and measures, (3) the threat, and (4) potential proliferation risks, the impacts on the facilities, and safeguards and security issues unique to the presence of Category 1 or strategic special nuclear material

  14. New fire and security rules change USA nuclear power plant emergency plans

    International Nuclear Information System (INIS)

    Garrou, A.L.

    1978-01-01

    New safety and security rules for nuclear power plants have resulted from the Energy Reorganisation Act and also from a review following the Browns Ferry fire. The content of the emergency plan which covers personnel, plant, site, as well as a general emergency, is outlined. New fire protection rules, the plan for security, local and state government assistance are also discussed, with a brief reference to the impact of the new rules on continuity of operations. (author)

  15. Los Alamos National Laboratory Facilities, Security and Safeguards Division, Safeguards and Security Program Office, Protective Force Oversight Program

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of this document is to identify and describe the duties and responsibilities of Facility Security and Safeguards (FSS) Safeguards and Security (SS) organizations (groups/offices) with oversight functions over the Protection Force (PF) subcontractor. Responsible organizations will continue their present PF oversight functions under the Cost Plus Award Fee (CPAF) assessment, but now will be required to also coordinate, integrate, and interface with other FSS S and S organizations and with the PF subcontractor to measure performance, assess Department of Energy (DOE) compliance, reduce costs, and minimize duplication of effort. The role of the PF subcontractor is to provide the Laboratory with effective and efficient protective force services. PF services include providing protection for the special nuclear material, government property and classified or sensitive information developed and/or consigned to the Laboratory, as well as protection for personnel who work or participate in laboratory activities. FSS S and S oversight of both performance and compliance standards/metrics is essential for these PF objectives to be met

  16. Multi-site risk-based project planning, optimization, sequencing, & budgeting process and tool for the integrated facility disposition project

    International Nuclear Information System (INIS)

    Nelson, J.G.; Castillo, C.; Huntsman, J.; Killoy, S.; Lucek, H.; Marks, T.C.

    2011-01-01

    Faced with the Department of Energy (DOE) Complex Transformation, National Nuclear Security Administration (NNSA) was tasked with developing an integrated plan for the decommissioning of over 400 facilities and 300 environmental remediation units, as well as the many reconfiguration and modernization projects at the Oak Ridge National Laboratory (ORNL) and Y-12 Complex. Manual scheduling of remediation activities is time-consuming and inherently introduces bias of the scheduler or organization into the process. Clearly a well-defined process, quantitative risk-based tool was needed to develop an objective, unbiased baseline sequence and schedule with a sound technical foundation for the Integrated Facility Disposition Project (IFDP). Faced with limited available data, innovation was needed to extrapolate intelligent relative data for key risk parameters based on known data elements. The IFDP Supermodel was customized and expanded to provide this capability for conceptual planning of diverse project portfolios and multiple sites. (author)

  17. Radiation protection planning for decommissioning of research reactor facilities

    International Nuclear Information System (INIS)

    Jackson, Roger; Harman, Neil; Craig, David; Fecitt, Lorna; Lobach, Yuri; Gorlinskij, Juri; Kolyadin, Vyacheslav; Pavlenko, Vytali

    2008-01-01

    The MR reactor at the Russian Research Centre Kurchatov Institute (RRCKI), Moscow was a 50 MW multipurpose material testing and research reactor equipped with nine experimental loop facilities to test prototype fuel for various nuclear power reactors being developed. The reactor was shut down in 1993 and de-fuelled. The experimental loops are located in basement rooms around the reactor. The nature of the research into the characteristics of fuel design and coolant chemistry resulted in fission products and activation products in the test loop equipment. Decommissioning of the loops therefore presents a number of challenges. In addition the city of Moscow has expanded such that the RRC KI is now surrounded by housing which had to be taken into account in the radiological protection planning. This paper describes the techniques proposed to undertake the dismantling operations in order to minimise the radiation exposure to workers and members of the public. Estimates have been made of the worker doses which could be incurred during the dismantling process and the environmental impacts which could occur. These are demonstrated to be as low as reasonably achievable. The work was funded by the UK Department of Business Enterprise and Regulatory Reform (DBERR) (formerly the Department of Trade and Industry) under the Nuclear Safety Programme (NSP) set up to address nuclear safety issues in the Former Soviet Union. (author)

  18. Savannah River Site plan for performing maintenance in Federal Facility Agreement areas (O and M Plan)

    International Nuclear Information System (INIS)

    Morris, D.R.

    1996-01-01

    The Savannah River Site was placed on the National Priority List (NPL) in December 1989 and became subject to comprehensive remediation in accordance with CERCLA. The FFA, effective August 16, 1993, establishes the requirements for Site investigation and remediation of releases and potential releases of hazardous substances, and interim status corrective action for releases of hazardous wastes or hazardous constituents. It was determined that further direction was needed for the Operating Departments regarding operation and maintenance activities within those areas listed in the FFA. The Plan for Performing Maintenance (O and M Plan) provides this additional direction. Section 4.0 addresses the operation and maintenance activities necessary for continued operation of the facilities in areas identified as RCRA/CERCLA Units or Site Evaluation Areas. Certain types of the O and M activity could be construed as a remedial or removal action. The intent of this Plan is to provide direction for conducting operation and maintenance activities that are not intended to be remedial or removal actions. The Plan identifies the locations of the units and areas, defines intrusive O and M activities, classifies the intrusive activity as either minor or major, and identifies the requirements, approvals, and documentation necessary to perform the activity in a manner that is protective of human health and the environment; and minimizes any potential impact to any future removal and remedial actions

  19. Alternate Futures for 2025: Security Planning to Avoid Surprise

    National Research Council Canada - National Science Library

    Engelbrecht, Joseph

    1996-01-01

    .... The methodology details how the study participants identified the three drivers, created the strategic planning space, selected the worlds of interest, created the plausible histories, and developed...

  20. Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    International Nuclear Information System (INIS)

    2011-01-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  1. Design of security scheme of the radiotherapy planning administration system based on the hospital information system

    International Nuclear Information System (INIS)

    Zhuang Yongzhi; Zhao Jinzao

    2010-01-01

    Objective: To design a security scheme of radiotherapy planning administration system. Methods: Power Builder 9i language was used to program the system through the model of client-server machine. Oracle 9i was used as the database server. Results In this system, user registration management, user login management, application-level functions of control, database access control, and audit trail were designed to provide system security. Conclusions: As a prototype for the security analysis and protection of this scheme provides security of the system, application system, important data and message, which ensures the system work normally. (authors)

  2. Gas supply planning for new gas-fired electricity generation facilities

    International Nuclear Information System (INIS)

    Slocum, J.C.

    1990-01-01

    This paper explores several key issues in gas supply planning for new gas fired electric generation facilities. This paper will have two main sections, as follows: developing the gas supply plan for a gas-fired electricity generation facility and exploring key gas supply contract pricing issues

  3. Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1998

    Energy Technology Data Exchange (ETDEWEB)

    Haagenstad, T.

    1999-01-15

    This Mitigation Action Plan Annual Report (MAPAR) has been prepared as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP) to protect workers, soils, water, and biotic and cultural resources in and around the facility.

  4. Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1998

    International Nuclear Information System (INIS)

    Haagenstad, T.

    1999-01-01

    This Mitigation Action Plan Annual Report (MAPAR) has been prepared as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP) to protect workers, soils, water, and biotic and cultural resources in and around the facility

  5. Provision of family planning services in Tanzania: a comparative analysis of public and private facilities

    NARCIS (Netherlands)

    Kakoko, D.C.; Ketting, E.; Kamazima, S.R.; Ruben, R.

    2012-01-01

    Adherence to the policy guidelines and standards is necessary for family planning services. We compared public and private facilities in terms of provision of family planning services. We analyzed data from health facility questionnaire of the 2006 Tanzania Service Provision Assessment survey, based

  6. Family and Consumer Sciences: A Facility Planning and Design Guide for School Systems.

    Science.gov (United States)

    Maryland State Dept. of Education, Baltimore.

    This document presents design concepts and considerations for planning and developing middle and high school family and consumer sciences education facilities. It includes discussions on family and consumer sciences education trends and the facility planning process. Design concepts explore multipurpose laboratories and spaces for food/nutrition…

  7. 200 area liquid effluent facility quality assurance program plan. Revision 1

    International Nuclear Information System (INIS)

    Sullivan, N.J.

    1995-01-01

    Direct revision of Supporting Document WHC-SD-LEF-QAPP-001, Rev. 0. 200 Area Liquid Effluent Facilities Quality Assurance Program Plan. Incorporates changes to references in tables. Revises test to incorporate WHC-SD-LEF-CSCM-001, Computer Software Configuration Management Plan for 200 East/West Liquid Effluent Facilities

  8. Facility Operations 1993 fiscal year work plan: WBS 1.3.1

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The Facility Operations program is responsible for the safe, secure, and environmentally sound management of several former defense nuclear production facilities, and for the nuclear materials in those facilities. As the mission for Facility Operations plants has shifted from production to support of environmental restoration, each plant is making a transition to support the new mission. The facilities include: K Basins (N Reactor fuel storage); N Reactor; Plutonium-Uranium Reduction Extraction (PUREX) Plant; Uranium Oxide (UO{sub 3}) Plant; 300 Area Fuels Supply (N Reactor fuel supply); Plutonium Finishing Plant (PFP).

  9. Facility Operations 1993 fiscal year work plan: WBS 1.3.1

    International Nuclear Information System (INIS)

    1992-11-01

    The Facility Operations program is responsible for the safe, secure, and environmentally sound management of several former defense nuclear production facilities, and for the nuclear materials in those facilities. As the mission for Facility Operations plants has shifted from production to support of environmental restoration, each plant is making a transition to support the new mission. The facilities include: K Basins (N Reactor fuel storage); N Reactor; Plutonium-Uranium Reduction Extraction (PUREX) Plant; Uranium Oxide (UO 3 ) Plant; 300 Area Fuels Supply (N Reactor fuel supply); Plutonium Finishing Plant (PFP)

  10. Security and privacy preserving approaches in the eHealth clouds with disaster recovery plan.

    Science.gov (United States)

    Sahi, Aqeel; Lai, David; Li, Yan

    2016-11-01

    Cloud computing was introduced as an alternative storage and computing model in the health sector as well as other sectors to handle large amounts of data. Many healthcare companies have moved their electronic data to the cloud in order to reduce in-house storage, IT development and maintenance costs. However, storing the healthcare records in a third-party server may cause serious storage, security and privacy issues. Therefore, many approaches have been proposed to preserve security as well as privacy in cloud computing projects. Cryptographic-based approaches were presented as one of the best ways to ensure the security and privacy of healthcare data in the cloud. Nevertheless, the cryptographic-based approaches which are used to transfer health records safely remain vulnerable regarding security, privacy, or the lack of any disaster recovery strategy. In this paper, we review the related work on security and privacy preserving as well as disaster recovery in the eHealth cloud domain. Then we propose two approaches, the Security-Preserving approach and the Privacy-Preserving approach, and a disaster recovery plan. The Security-Preserving approach is a robust means of ensuring the security and integrity of Electronic Health Records, and the Privacy-Preserving approach is an efficient authentication approach which protects the privacy of Personal Health Records. Finally, we discuss how the integrated approaches and the disaster recovery plan can ensure the reliability and security of cloud projects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Hanford Facility resource conservation and recovery act permit general inspection plan

    International Nuclear Information System (INIS)

    Beagles, D.B.

    1995-12-01

    The Hanford Facility Resource Conservation and Recovery Act Permit, General Inspection Requirements, includes a requirement that general facility inspections be conducted of the 100, 200 East, 200 West, 300, 400, and 1100 Areas and the banks of the Columbia River. This inspection plan describes the activities that shall be conducted for a general inspection of the Hanford Facility

  12. Using virtual reality in the training of security staff and evaluation of physical protection barriers in nuclear facilities

    International Nuclear Information System (INIS)

    Augusto, Silas C.; Mol, Antonio C.A.; Mol, Pedro C.; Sales, Douglas S.

    2009-01-01

    The physical security of facilities containing radioactive objects, an already important matter, now has a new aggravating factor: the existence of groups intending to obtain radioactive materials for the purpose of intentionally induce radioactive contamination incidents, as for example the explosion of dirty bombs in populated regions, damaging both people and environment. In this context, the physical security of such facilities must be reinforced so to reduce the possibilities of such incidents. This paper presents a adapted game engine used as a virtual reality system, enabling the modeling and simulation of scenarios of nuclear facilities containing radioactive objects. In these scenarios, the physical protection barriers, as fences and walls, are simulated along with vigilance screens. Using a computer network, several users can participate simultaneously in the simulation, being represented by avatars. Users can play the roles of both invaders and security staff. The invaders have as objective to surpass the facility's physical protection barriers to steal radioactive objects and flee. The security staff have as objective to prevent and stop the theft of radioactive objects from the facility. The system can be used to analysis simulated scenarios and train vigilance/security staff. A test scenario was already developed and used, and the preliminary tests had satisfactory results, as they enabled the evaluation of the physical protection barriers of the virtual facility, and the training of those who participated in the simulations in the functions of a security staff. (author)

  13. Using virtual reality in the training of security staff and evaluation of physical protection barriers in nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Augusto, Silas C.; Mol, Antonio C.A.; Mol, Pedro C.; Sales, Douglas S. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)], e-mail: silas@ien.gov.br, e-mail: mol@ien.gov.br, e-mail: pedro98@gmail.com, e-mail: dsales@ien.gov.br

    2009-07-01

    The physical security of facilities containing radioactive objects, an already important matter, now has a new aggravating factor: the existence of groups intending to obtain radioactive materials for the purpose of intentionally induce radioactive contamination incidents, as for example the explosion of dirty bombs in populated regions, damaging both people and environment. In this context, the physical security of such facilities must be reinforced so to reduce the possibilities of such incidents. This paper presents a adapted game engine used as a virtual reality system, enabling the modeling and simulation of scenarios of nuclear facilities containing radioactive objects. In these scenarios, the physical protection barriers, as fences and walls, are simulated along with vigilance screens. Using a computer network, several users can participate simultaneously in the simulation, being represented by avatars. Users can play the roles of both invaders and security staff. The invaders have as objective to surpass the facility's physical protection barriers to steal radioactive objects and flee. The security staff have as objective to prevent and stop the theft of radioactive objects from the facility. The system can be used to analysis simulated scenarios and train vigilance/security staff. A test scenario was already developed and used, and the preliminary tests had satisfactory results, as they enabled the evaluation of the physical protection barriers of the virtual facility, and the training of those who participated in the simulations in the functions of a security staff. (author)

  14. 10 CFR 72.186 - Change to physical security and safeguards contingency plans.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Change to physical security and safeguards contingency... contingency plans. (a) The licensee shall make no change that would decrease the safeguards effectiveness of... licensee safeguards contingency plan without prior approval of the Commission. A licensee desiring to make...

  15. The development of mobile robot for security application and nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B. S.; Lee, Y. B.; Choi, Y. S.; Seo, Y. C.; Park, Y. M

    1999-12-01

    The use of a mobile robot system in nuclear radioactive environments has the advantage of watching and inspecting the NPP safety-related equipment systematically and repairing damaged parts efficiently, thereby enhancing the safe operations of NPPs as well as reducing significantly personnel's dose rate to radioactive environment. Key technology achieved through the development of such robotic system can be used for security application and can offer new approaches to many of the tasks faced to the industry as well. The mobile robot system was composed of a mobile subsystem, a manipulator subsystem, a control subsystem, and a sensor subsystem to use in security application and nuclear radioactive environments. The mobile subsystem was adopted to synchro-drive method to improve the mobility of it. And the manipulator subsystem was developed to minimize the weight and easy to control at remote site. Finally, we developed the USB-based robot control system considering the expandability and modularity. The developed mobile robot for inspection and security was experimented for the collision avoidance and autonomous algorithm, and then it was confirmed that the mobile robot was very effective to the security application and inspection of nuclear facilities. (author)

  16. The development of mobile robot for security application and nuclear facilities

    International Nuclear Information System (INIS)

    Kim, B. S.; Lee, Y. B.; Choi, Y. S.; Seo, Y. C.; Park, Y. M.

    1999-12-01

    The use of a mobile robot system in nuclear radioactive environments has the advantage of watching and inspecting the NPP safety-related equipment systematically and repairing damaged parts efficiently, thereby enhancing the safe operations of NPPs as well as reducing significantly personnel's dose rate to radioactive environment. Key technology achieved through the development of such robotic system can be used for security application and can offer new approaches to many of the tasks faced to the industry as well. The mobile robot system was composed of a mobile subsystem, a manipulator subsystem, a control subsystem, and a sensor subsystem to use in security application and nuclear radioactive environments. The mobile subsystem was adopted to synchro-drive method to improve the mobility of it. And the manipulator subsystem was developed to minimize the weight and easy to control at remote site. Finally, we developed the USB-based robot control system considering the expandability and modularity. The developed mobile robot for inspection and security was experimented for the collision avoidance and autonomous algorithm, and then it was confirmed that the mobile robot was very effective to the security application and inspection of nuclear facilities. (author)

  17. 29 CFR 2509.75-3 - Interpretive bulletin relating to investments by employee benefit plans in securities of...

    Science.gov (United States)

    2010-07-01

    ... Regulations Relating to Labor (Continued) EMPLOYEE BENEFITS SECURITY ADMINISTRATION, DEPARTMENT OF LABOR... Interpretive bulletin relating to investments by employee benefit plans in securities of registered investment.... That section provides that an investment by an employee benefit plan in securities issued by an...

  18. Security communication systems for nuclear fixed site facilities. Technical report Jan 77-Apr 80

    International Nuclear Information System (INIS)

    Howington, L.C.; Taylor, L.L.

    1980-07-01

    This report presents a basic discussion of communication techniques and factors relevant to designing communication systems for nuclear fixed site facility security systems. The reader is provided communication fundamentals, design considerations, and specification techniques. Copious references and an annotated bibliography are provided for individuals who desire to delve deeper than the limits and areas of study of this report. Ease of reading and use of this report are enhanced by relegating detailed communication design treatise to the Appendices. Sample procurement specifications are provided throughout the report for various communication system components and are distinguished from the regular text by using a smaller type

  19. Use of Nuclear Material Accounting and Control for Nuclear Security Purposes at Facilities. Implementing Guide

    International Nuclear Information System (INIS)

    2015-01-01

    Nuclear material accounting and control (NMAC) works in a complementary fashion with the international safeguards programme and physical protection systems to help prevent, deter or detect the unauthorized acquisition and use of nuclear materials. These three methodologies are employed by Member States to defend against external threats, internal threats and both state actors and non-state actors. This publication offers guidance for implementing NMAC measures for nuclear security at the nuclear facility level. It focuses on measures to mitigate the risk posed by insider threats and describes elements of a programme that can be implemented at a nuclear facility in coordination with the physical protection system for the purpose of deterring and detecting unauthorized removal of nuclear material

  20. Field Lysimeter Test Facility for protective barriers: Experimental plan

    International Nuclear Information System (INIS)

    Kirkham, R.R.; Gee, G.W.; Downs, J.L.

    1987-12-01

    This document was first written in October 1986 and has been used to guide the design of the Field Lysimeter Test Facility (FLTF) and to promote discussions between research and engineering staff regarding the selection of barrier treatments for inclusion in the FLTF. The construction of the lysimeter facility was completed June 28, 1987. This document describes the facility, the treatments placed in each lysimeter, types of measurements made in each lysimeter, and a brief discussion of project activities related to quality assurance, safety, and funding requirements. The treatment description and figures have been updated to reflect the lysimeter facility as constructed. 12 refs., 6 figs., 5 tabs

  1. Background Information for the Nevada National Security Site Integrated Sampling Plan, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene; Marutzky, Sam

    2014-12-01

    This document describes the process followed to develop the Nevada National Security Site (NNSS) Integrated Sampling Plan (referred to herein as the Plan). It provides the Plan’s purpose and objectives, and briefly describes the Underground Test Area (UGTA) Activity, including the conceptual model and regulatory requirements as they pertain to groundwater sampling. Background information on other NNSS groundwater monitoring programs—the Routine Radiological Environmental Monitoring Plan (RREMP) and Community Environmental Monitoring Program (CEMP)—and their integration with the Plan are presented. Descriptions of the evaluations, comments, and responses of two Sampling Plan topical committees are also included.

  2. Chemical Hygiene Plan for Onsite Measurement and Sample Shipping Facility Activities

    International Nuclear Information System (INIS)

    Price, W.H.

    1998-01-01

    This chemical hygiene plan presents the requirements established to ensure the protection of employee health while performing work in mobile laboratories, the sample shipping facility, and at the onsite radiological counting facility. This document presents the measures to be taken to promote safe work practices and to minimize worker exposure to hazardous chemicals. Specific hazardous chemicals present in the mobile laboratories, the sample shipping facility, and in the radiological counting facility are presented in Appendices A through G

  3. Strategic planning and marketing research for older, inner-city health care facilities: a case study.

    Science.gov (United States)

    Wood, V R; Robertson, K R

    1992-01-01

    Numerous health care facilities, located in downtown metropolitan areas, now find themselves surrounded by a decaying inner-city environment. Consumers may perceive these facilities as "old," and catering to an "urban poor" consumer. These same consumers may, therefore, prefer to patronize more modern facilities located in suburban areas. This paper presents a case study of such a health care facility and how strategic planning and marketing research were conducted in order to identify market opportunities and new strategic directions.

  4. Contraceptive security, information flow, and local adaptations: family planning Morocco.

    Science.gov (United States)

    Chandani, Y; Breton, G

    2001-12-01

    Many developing countries increasingly recognize and acknowledge family planning as a critical part of socio-economic development. However, with few health dollars to go around, countries tend to provide essential drugs for curative care, rather than for family planning products. Donors have historically provided free contraceptives for family planning services. Whether products are donated or purchased by the country, a successful family planning program depends on an uninterrupted supply of products, beginning with the manufacturer and ending with the customer. Any break in the supply chain may cause a family planning program to fail. A well-functioning logistics system can manage the supply chain and ensure that the customers have the products they need, when they need them. Morocco was selected for the case study. The researchers had ready access to key informants and information about the Logistics Management Information System. Because the study had time and resource constraints, research included desktop reviews and interview, rather than data collection in the field. The case study showed that even in a challenging environment an LMIS can be successfully deployed and fully supported by the users. It is critical to customize the system to a country-specific situation to ensure buy-in for the implementation. Significant external support funding and technical expertise are critical components to ensure the initial success of the system. Nonetheless, evidence from the case study shows that, after a system has been implemented, the benefits may not ensure its institutionalization. Other support, including local funding and technical expertise, is required.

  5. Plan Nacional de Desarrollo y Seguridad 1971-1975 (National Plan for Development and Security, 1971-1975).

    Science.gov (United States)

    Boletin del Centro Nacional de Documentacion e Informacion Educativa, 1971

    1971-01-01

    This article discusses the education provisions established in the Argentine Plan for Development and Security (1971-1975). The statements on educational development call for a diagnostic study of the current cultural and educational situation, the establishment of objectives and strategies, goals for each level of education, steps for the…

  6. [Security Management in Clinical Laboratory Departments and Facilities: Current Status and Issues].

    Science.gov (United States)

    Ishida, Haku; Nakamura, Junji; Yoshida, Hiroshi; Koike, Masaru; Inoue, Yuji

    2014-11-01

    We conducted a questionnaire survey regarding the current activities for protecting patients' privacy and the security of information systems (IS) related to the clinical laboratory departments of university hospitals, certified training facilities for clinical laboratories, and general hospitals in Yamaguchi Prefecture. The response rate was 47% from 215 medical institutions, including three commercial clinical laboratory centers. The results showed that there were some differences in management activities among facilities with respect to continuing education, the documentation or regulation of operational management for paper records, electronic information, remaining samples, genetic testing, and laboratory information for secondary use. They were suggested to be caused by differences in functions between university and general hospitals, differences in the scale of hospitals, or whether or not hospitals have received accreditation or ISO 15189. Regarding the IS, although the majority of facilities had sufficiently employed the access control to IS, there was some room for improvement in the management of special cases such as VIPs and patients with HIV infection. Furthermore, there were issues regarding the login method for computers shared by multiple staff, the showing of the names of personnel in charge of reports, and the risks associated with direct connections to systems and the Internet and the use of portable media such as USB memory sticks. These results indicated that further efforts are necessary for each facility to continue self-assessment and make improvements.

  7. 105-DR Large Sodium Fire Facility decontamination, sampling, and analysis plan

    International Nuclear Information System (INIS)

    Knaus, Z.C.

    1995-01-01

    This is the decontamination, sampling, and analysis plan for the closure activities at the 105-DR Large Sodium Fire Facility at Hanford Reservation. This document supports the 105-DR Large Sodium Fire Facility Closure Plan, DOE-RL-90-25. The 105-DR LSFF, which operated from about 1972 to 1986, was a research laboratory that occupied the former ventilation supply room on the southwest side of the 105-DR Reactor facility in the 100-D Area of the Hanford Site. The LSFF was established to investigate fire fighting and safety associated with alkali metal fires in the liquid metal fast breeder reactor facilities. The decontamination, sampling, and analysis plan identifies the decontamination procedures, sampling locations, any special handling requirements, quality control samples, required chemical analysis, and data validation needed to meet the requirements of the 105-DR Large Sodium Fire Facility Closure Plan in compliance with the Resource Conservation and Recovery Act

  8. Closure Plan for the E-Area Low-Level Waste Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.

    2000-10-30

    A closure plan has been developed to comply with the applicable requirements of the U.S. Department of Energy Order 435.2 Manual and Guidance. The plan is organized according to the specifications of the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans.

  9. Closure Plan for the E-Area Low-Level Waste Facility

    International Nuclear Information System (INIS)

    Cook, J.R.

    2000-01-01

    A closure plan has been developed to comply with the applicable requirements of the U.S. Department of Energy Order 435.2 Manual and Guidance. The plan is organized according to the specifications of the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans

  10. LASL experimental engineered waste burial facility: design considerations and preliminary plan

    International Nuclear Information System (INIS)

    DePoorter, G.L.

    1980-01-01

    The LASL Experimental Engineered Waste Burial Facility is a part of the National Low-Level Waste Management Program on Shallow-Land Burial Technology. It is a test facility where basic information can be obtained on the processes that occur in shallow-land burial operations and where new concepts for shallow-land burial can be tested on an accelerated basis on an appropriate scale. The purpose of this paper is to present some of the factors considered in the design of the facility and to present a preliminary description of the experiments that are initially planned. This will be done by discussing waste management philosophies, the purposes of the facility in the context of the waste management philosophy for the facility, and the design considerations, and by describing the experiments initially planned for inclusion in the facility, and the facility site

  11. FORMATION OF FINANCIAL SECURITY OF THE ENTERPRISE BASED ON STRATEGIC PLANNING

    Directory of Open Access Journals (Sweden)

    Nadiya Rushchyshyn

    2017-09-01

    Full Text Available The purpose of the study is to improve ways of forming financial security of the enterprise based onstrategic planning. The subject of the research: formation of financial security of the enterprise on the basis of strategicplanning. The methodological background of the research is a set of theoretical and general scientific methods:analysis and synthesis, theoretical and logical generalization, grouping, abstraction, and others. The paper providesa general description of the core approaches defining the concept of “financial security of the enterprise”. Functionalgoals of financial security of the enterprise are outlined, namely: ensuring financial stability and independence;achievement of high competitiveness in the market of goods, works, services; ensuring high efficiency of financialand economic activity; ensuring high liquidity of assets, and increasing the market value of the enterprise; supportfor the appropriate level of business activity and image; formation of information security and commercialsecrets; efficient organization of security of share capital and assets of the enterprise. The scheme of organizationof financial security organization is considered based on strategic planning. It is determined that the strategicplanning results in strategic plan (strategy for ensuring the financial security of the enterprise. Such a strategyshould be consistent with both financial and the company’s overall strategies, as well as main goals and objectives.For the most effective implementation of the chosen financial security strategy at the enterprise, it is expedientto develop and implement a system of plans covering all aspects of the strategic planning process, including thetarget program, strategic, tactical, calendar, and individual plans. The system of plans should specify: the purpose ofchanges in the functioning of internal systems of the enterprise; terms of making changes; the work that needs tobe done to make changes; their

  12. Joint Integration Test Facility (JITF) Engineering II Performance Measurement Plans

    National Research Council Canada - National Science Library

    Boucher, Joanne

    2001-01-01

    ..., effectiveness, and accountability in federal programs and spending. The plan establishes six separate performance measurements, which correlate directly to customer satisfaction, Intelligence Mission Application (IMA...

  13. An Examination of the Structure of Sustainable Facilities Planning Scale for User Satisfaction in Nigerian Universities

    Directory of Open Access Journals (Sweden)

    Abayomi Ibiyemi

    2014-09-01

    Full Text Available Universities are under increasing pressure to demonstrate that continuous performance improvement is being delivered for user satisfaction, but the importance of facilities planning as a student-staff focused tool needs to be emphasised. This research sought answers to questions relating to the underlying structure of sustainable facilities planning and user satisfaction, and the number of factors that make up the facilities planning scale. Three universities from the south-western part of Nigeria were selected randomly using ownership structure to define the cases: University of Lagos, Akoka, Lagos, Ladoke Akintola University of Technology, Ogbomoso and Joseph Ayo Babalola University, Ikeji Arakeji, each representing the Federal, State, and Private ownership. A questionnaire survey was used on a random sample of 651 staff and students from the three universities. Six hundred questionnaires were retrieved (response rate of 92.2%. An exploratory factor analysis was used to understand the responses and the interrelationships. The results showed a two-factor solution of ‘locational advantages and user needs’ and ‘adequacy of facilities/functional connection and four core determinants for acceptance. It is concluded that universities should factor student-staff focus points into their facilities planning schemes to optimise their service deliveries. The study contributes to the discussion on factor structure of sustainable facilities planning scale with a focus on students and staff of universities.   Keywords: Facilities planning, universities, data structure, factors, Nigeria.

  14. An Examination of the Structure of Sustainable Facilities Planning Scale for User Satisfaction in Nigerian Universities

    Directory of Open Access Journals (Sweden)

    Abayomi Ibiyemi

    2014-09-01

    Full Text Available Universities are under increasing pressure to demonstrate that continuous performance improvement is being delivered for user satisfaction, but the importance of facilities planning as a student-staff focused tool needs to be emphasised. This research sought answers to questions relating to the underlying structure of sustainable facilities planning and user satisfaction, and the number of factors that make up the facilities planning scale. Three universities from the south-western part of Nigeria were selected randomly using ownership structure to define the cases: University of Lagos, Akoka, Lagos, Ladoke Akintola University of Technology, Ogbomoso and Joseph Ayo Babalola University, Ikeji Arakeji, each representing the Federal, State, and Private ownership. A questionnaire survey was used on a random sample of 651 staff and students from the three universities. Six hundred questionnaires were retrieved (response rate of 92.2%. An exploratory factor analysis was used to understand the responses and the interrelationships. The results showed a two-factor solution of ‘locational advantages and user needs’ and ‘adequacy of facilities/functional connection and four core determinants for acceptance. It is concluded that universities should factor student-staff focus points into their facilities planning schemes to optimise their service deliveries. The study contributes to the discussion on factor structure of sustainable facilities planning scale with a focus on students and staff of universities. Keywords: Facilities planning, universities, data structure, factors, Nigeria.

  15. Conceptual design of technical security systems for Russian nuclear facilities physical protection

    International Nuclear Information System (INIS)

    Izmailov, A.V.

    1995-01-01

    Conceptual design of technical security systems (TSS) used in the early stages of physical protection systems (PPS) design for Russia nuclear facilities is discussed. The importance of work carried out in the early stages was noted since the main design solutions are being made within this period (i.e. selection of a structure of TSS and its components). The methods of analysis and synthesis of TSS developed by ''Eleron'' (MINATOM of Russia) which take into account the specific conditions of Russian nuclear facilities and a scope of equipment available are described in the review. TSS effectiveness assessment is based on a probability theory and a simulation. The design procedure provides for a purposeful choice of TSS competitive options including a ''cost-benefit'' criterion and taking into account a prechosen list of design basis threats to be used for a particular facility. The attention is paid to a practical aspect of the methods application as well as to the bilateral Russian-American scientific and technical co-operation in the PPS design field

  16. 111-B Metal Examination Facility Concrete Tanks Characterization Plan

    International Nuclear Information System (INIS)

    Encke, D.B.

    1997-08-01

    The 111-B Metal Examination Facility was a single-story, wood frame 'L'-shaped building built on a concrete floor slab. The facility served as a fuel failure inspection facility. Irradiated fuel pieces were stored and examined in two below grade concrete storage tanks filled with water. The tanks have been filled with grout to stabilize the contamination they contained, and overall dimensions are 5 ft 9 in. (1.5 m 22.8 cm ) wide, 9 ft 1 in. (2.7 m 2.54 cm ) deep, and 10 ft 8 in. (3.0 m 20.32 cm) long, and are estimated to weigh 39 tons. The tanks were used to store and examine failed fuel rods, using water as a radiation shield. The tanks were lined with stainless steel; however, drawings show the liner has been removed from at least one tank (south tank) and was partially filled with grout. The south tank was used to contain the Sample Storage Facility, a multi-level metal storage rack for failed nuclear fuel rods (shown in drawings H-1-2889 and -2890). Both tanks were completely grouted sometime before decontamination and demolition (D ampersand D) of the above ground facility in 1984. The 111-B Metal Examination Facility contained two concrete tanks located below floor level for storage and examination of failed fuel. The tanks were filled with concrete as part of decommissioning the facility prior to 1983 (see Appendix A for description of previous work). Funding for removal and disposal of the tanks ran out before they could be properly disposed

  17. Long range planning of radiotherapy facilities in the Netherlands

    NARCIS (Netherlands)

    Postma, T.J.B.M.; Terpstra, S.

    2000-01-01

    The subject of this paper is long range planning or policy development for healthcare in the Netherlands. Especially the co-ordinating function of planning will be discussed. In healthcare different actors or stakeholders are involved. Each of these actors may have their own interests, expectations,

  18. Compliance with federal and state regulations regarding the emergency response plan and physical security plan at the Oregon State TRIGA reactor

    International Nuclear Information System (INIS)

    Johnson, A.G.; Ringle, J.C.; Anderson, T.V.

    1976-01-01

    Recent legislative actions within the State of Oregon have had a significant impact upon the OSU TRIGA Emergency Response Plan, and to a lesser extent upon the Physical Security Plan. These state imposed changes will be reviewed in light of existing federal requirements. With the upcoming acquisition of FLIP fuel in August 1976, NRC required several major changes to the existing Physical Security Plan. Within the limitations of public disclosure, these changes will be contrasted to the present plan. (author)

  19. Screening criteria for siting waste management facilities: Regional Management Plan

    International Nuclear Information System (INIS)

    1986-01-01

    The Midwest Interstate Low-Level Radioactive Waste Commission (Midwest Compact) seeks to define and place into operation a system for low-level waste management that will protect the public health and safety and the environment from the time the waste leaves its point of origin. Once the system is defined it will be necessary to find suitable sites for the components of that waste management system. The procedure for siting waste management facilities that have been chosen by the compact is one in which a host state is chosen for each facility. The host state is then given the freedom to select the site. Sites will be needed of low-level waste disposal facilities. Depending on the nature of the waste management system chosen by the host state, sites may also be needed for regional waste treatment facilities, such as compactors or incinerators. This report provides example criteria for use in selecting sites for low-level radioactive waste treatment and disposal facilities. 14 refs

  20. Radiological, technical and financial planning for decommissioning of small nuclear facilities in Sweden - 16177

    International Nuclear Information System (INIS)

    Lindskog, Staffan; Sjoeblom, Rolf

    2009-01-01

    On November 1 2008, a new ordinance came into force in Sweden. It extends the implementation of nuclear liability to all nuclear facilities and companies, regardless of size. The Government has authorized the Swedish Radiation Safety Authority (SSM) to issue further regulation as warranted and appropriate, and commissioned the same Authority to oversee the implementation. Consequently, SSM is presently conducting research in order to establish a basis for the implementation of the ordinance to smaller facilities and enterprises. The goal is to enable finance to be assured in an efficient manner so that any burden on the companies is as small as possible. Thus, 'functional requirements' are identified, and used as a basis for various investigations. The aspects include technical and cost calculation prerequisites, as well as various domains of law: the environmental code, radiation and nuclear safety, financial reporting, and criminal law. It is found that the basis for the differentiation among the facility operators and owners should be the cost and the associated uncertainty. Thus, a cost calculation will have to be carried out by all. It should be based on available standards and guidance documents. It is found that this is a requirement that already exists elsewhere in the legislation, and thus no additional burden is imposed on the companies. It is found that segregated funds is the preferred option for long-term liabilities. Securities are suitable for short-term liabilities provided that the economy of the company in question is sound. Securities might also be used for long-term liabilities to cover uncertainty. It is proposed that a de minimis limit of at least kSEK 25 (about keuros 2,4 and k$ 3,4) is used. An important reason for this is that lower limits might be incompatible with the rules for financial reporting. It is also proposed that securities might be used also for long-term commitments if the total environmental liability does not exceed 1

  1. ORNL Surplus Facilities Management Program maintenance and surveillance plan for fiscal year 1984

    International Nuclear Information System (INIS)

    Coobs, J.H.; Myrick, T.E.

    1986-10-01

    The Surplus Facilities Management Program (SFMP) at Oak Ridge National Laboratory (ORNL) is part of the Department of Energy's (DOE) National SFMP, administered by the Richland Operations Office. The purpose and objectives of the national program are set forth in the current SFMP Program Plan and include (1) the maintenance and surveillance of facilities awaiting decommissioning, (2) planning for the orderly decommissioning of these facilities, and (3) implementation of a program to accomplish the facility disposition in a safe, cost-effective, and timely manner. As outlined in the national program plan, participating SFMP contractors are required to prepare a formal plan that documents the maintenance and surveillance (M and S) programs established for each site. This report has been prepared to provide this documentation for those facilties included in the ORNL SFMP

  2. Stormwater Pollution Prevention Plan TA-60 Roads and Grounds Facility and Associated Sigma Mesa Staging Area

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, Leonard Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-01

    This Stormwater Pollution Prevention Plan (SWPPP) is applicable to operations at the Technical Area -60 (TA-60) Roads and Grounds Facility and Associated Sigma Mesa Staging Area off Eniwetok Drive, in Los Alamos County, New Mexico.

  3. Straighttalk. The ideal master facility plan begins with business strategy and integrates operational improvement.

    Science.gov (United States)

    Powder, Scott; Brown, Richard E; Haupert, John M; Smith, Ryder

    2007-04-02

    Given the scarcity of capital to meet ever-growing demands for healthcare services, master facility planning has become more important than ever. Executives must align their master facility plans with their overall business strategy, incorporating the best in care- and service-delivery models. In this installment of Straight Talk, executives from two health systems--Advocate Health Care in Oak Brook, Ill. and Parkland Health & Hospital System in Dallas--discuss master facility planning. Modern Healthcare and PricewaterhouseCoopers present Straight Talk. The session on master facility planning was held on March 8, 2007 at Modern Healthcare's Chicago Headquarters. Charles Lauer, former vice president of publishing and editorial director at Modern Healthcare, was the moderator.

  4. Atmospheric Radiation Measurement (ARM) Climate Research Facility Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mather, James [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    Mission and Vision Statements for the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mission The ARM Climate Research Facility, a DOE scientific user facility, provides the climate research community with strategically located in situ and remote-sensing observatories designed to improve the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their interactions and coupling with the Earth’s surface. Vision To provide a detailed and accurate description of the Earth atmosphere in diverse climate regimes to resolve the uncertainties in climate and Earth system models toward the development of sustainable solutions for the nation's energy and environmental challenges.

  5. Underground Test Area Activity Communication/Interface Plan, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro, Las Vegas, NV (United States); Rehfeldt, Kenneth [Navarro, Las Vegas, NV (United States)

    2016-10-01

    The purpose of this plan is to provide guidelines for effective communication and interfacing between Underground Test Area (UGTA) Activity participants, including the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) and its contractors. This plan specifically establishes the following: • UGTA mission, vision, and core values • Roles and responsibilities for key personnel • Communication with stakeholders • Guidance in key interface areas • Communication matrix

  6. Seismic qualification program plan for continued operation at DOE-SRS nuclear material processing facilities

    International Nuclear Information System (INIS)

    Talukdar, B.K.; Kennedy, W.N.

    1991-01-01

    The Savannah River Facilities for the most part were constructed and maintained to standards that were developed by Du Pont and are not rigorously in compliance with the current General Design Criteria (GDC); DOE Order 6430.IA requirements. In addition, many of the facilities were built more than 30 years ago, well before DOE standards for design were issued. The Westinghouse Savannah River Company (WSRC) his developed a program to address the evaluation of the Nuclear Material Processing (NMP) facilities to GDC requirements. The program includes a facility base-line review, assessment of areas that are not in compliance with the GDC requirements, planned corrective actions or exemptions to address the requirements, and a safety assessment. The authors from their direct involvement with the Program, describe the program plan for seismic qualification including other natural phenomena hazards,for existing NMP facility structures to continue operation Professionals involved in similar effort at other DOE facilities may find the program useful

  7. Surplus Facilities and Resource Conservation and Recovery Act Closure program plan, fiscal year 1992

    International Nuclear Information System (INIS)

    Hughes, M.C.; Wahlen, R.K.; Winship, R.A.

    1991-10-01

    The Surplus Facilities and Resource Conservation and Recovery Act Closure program is responsible to US Department of Energy Field Office, Richland for the safe, cost-effective surveillance, maintenance, and decommissioning of surplus facilities at the Hanford Site. The Surplus Facilities and Resource Conservation and Recovery Act Closure program is also responsible to US Department of Energy Field Office, Richland for the program management of specific Resource Conservation and Recovery Act closures at the Hanford Site. This program plan addresses only the surplus facilities. The criteria used to evaluate each factor relative to decommissioning are based on the guidelines presented by the US Department of Energy Field Office, Richland, Environmental Restoration Division. The guidelines are consistent with the Westinghouse Hanford Company commitment to decommission Hanford Site retired facilities in the safest and most cost-effective way achievable. This document outlines the plan for managing these facilities until disposal

  8. US energy security plans threatened by militant Venezuela

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    Faced with the need to import increasing volumes of crude oil and the desire to avoid over-dependence on the Middle East, the United States is looking to its own hemisphere for more oil. Unfortunately for Washington, the continent's largest oil exporter does not appear to want to co-operate. Venezuela's President, Hugo Chavez, wants to reduce his country's political and economic ties with the US and is seeking other markets for its oil. He has also picked a fight with US oil companies operating in Venezuela, disputing their taxes and refusing to approve their upstream investment programmes, giving rise to fears that oil and gas production will not grow as planned, thereby reducing future export levels. (author)

  9. Hanford Facility Resource Conservation and Recovery Act Permit General Inspection Plan

    International Nuclear Information System (INIS)

    Beagles, D.S.

    1995-02-01

    This inspection plan describes the activities that shall be conducted for a general inspection of the Hanford Facility. RCRA includes a requirement that general facility inspections be conducted of the 100, 200 East, 200 West, 300, 400, and 1100 areas and the banks of the Columbia River. This plan meets the RCRA requirements and also provides for scheduling of inspections and defines general and specific items to be noted during the inspections

  10. Environmental restoration contractor facility safety plan -- MO-561 100-D site remediation project

    International Nuclear Information System (INIS)

    Donahoe, R.L.

    1996-11-01

    This safety plan is applicable to Environmental Restoration Contractor personnel who are permanently assigned to MO-561 or regularly work in the facility. The MO-561 Facility is located in the 100-D Area at the Hanford Site in Richland, Washington. This plan will: (a) identify hazards potentially to be encountered by occupants of MO-561; (b) provide requirements and safeguards to ensure personnel safety and regulatory compliance; (c) provide information and actions necessary for proper emergency response

  11. Planning for Success: Constructing a First Responder Planning Methodology for Homeland Security

    National Research Council Canada - National Science Library

    Jankowski, Thaddeus K., Sr

    2005-01-01

    .... This thesis argues that the fire service and others in the first responder community will be able to contribute to homeland security missions much more effectively, and efficiently, by switching...

  12. Integrated operations plan for the MFTF-B Mirror Fusion Test Facility. Volume II. Integrated operations plan

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    This document defines an integrated plan for the operation of the Lawrence Livermore National Laboratory (LLNL) Mirror Fusion Test Facility (MFTF-B). The plan fulfills and further delineates LLNL policies and provides for accomplishing the functions required by the program. This plan specifies the management, operations, maintenance, and engineering support responsibilities. It covers phasing into sustained operations as well as the sustained operations themselves. Administrative and Plant Engineering support, which are now being performed satisfactorily, are not part of this plan unless there are unique needs.

  13. Integrated operations plan for the MFTF-B Mirror Fusion Test Facility. Volume II. Integrated operations plan

    International Nuclear Information System (INIS)

    1981-12-01

    This document defines an integrated plan for the operation of the Lawrence Livermore National Laboratory (LLNL) Mirror Fusion Test Facility (MFTF-B). The plan fulfills and further delineates LLNL policies and provides for accomplishing the functions required by the program. This plan specifies the management, operations, maintenance, and engineering support responsibilities. It covers phasing into sustained operations as well as the sustained operations themselves. Administrative and Plant Engineering support, which are now being performed satisfactorily, are not part of this plan unless there are unique needs

  14. Remedial Action Plan for Expanded Bioventing System Facility 6454

    National Research Council Canada - National Science Library

    1996-01-01

    This draft remedial action plan (RAP) presents the scope for an expanded bioventing system for in situ treatment of fuel-contaminated soils at Site 6454 at Vandenberg Air Force Base (AFB), California...

  15. Nuclear fuel cycle facilities in the world (excluding the centrally planned economies)

    International Nuclear Information System (INIS)

    1979-01-01

    Information on the existing, under construction and planned fuel cycle facilities in the various countries is presented. Some thirty countries have activities related to different nuclear fuel cycle steps and the information covers the capacity, status, location, and the names of owners of the facilities

  16. Environmental Control Plan for the Industrial Hygiene Field Services Facility; TOPICAL

    International Nuclear Information System (INIS)

    J. W. Donnelly

    2001-01-01

    This environmental control plan is for the Hanford Site's industrial hygiene field services facility, located in the 100-N Area. The facility is used for the maintenance and storage of respirators, respiratory equipment and testing, calibration and testing of industrial hygiene equipment, and asbestos fiber counting

  17. Information security in academic libraries: the role of the librarian in planning and introducing institutional policies

    Directory of Open Access Journals (Sweden)

    Juliana Soares Lima

    2017-04-01

    Full Text Available This study presents a short discussion about the role of the librarian as a mediator at planning, developing and implementing an Information Security Policy in Academic Libraries, by working together with professionals in the field of Information Technology. It also discusses the main virtual threats and some risks that are prone to infect computers in libraries. Based on the current legislation and on some normative documents about information security, it is confirmed the importance of the librarian take part in the main decision-making related to information security, such as planning a consistent Information Security Policy which be able to see the specific needs of Academic Libraries as institutions prone to cyberattacks. The main topics and guidelines to carry out an Information Security Policy are presented based on the results that were obtained through an action research, by visiting libraries to fill in application forms and to compose reports whose content was analyzed. Finally, the study concludes that Information Security Policy must be validated by managers of sectors or departments which the Academic Library is hierarchically subordinate to.

  18. Intelligence and Security Standards on Industrial Facilities Protection in Case of Terrorism and Military Attack

    International Nuclear Information System (INIS)

    Stipetic, D.

    2007-01-01

    Industrial facilities, which use toxic chemicals in their production processes, are tempting targets for military and terrorist strategists. They know that these facilities when attacked could produce effects not realizable with conventional weapons. The resulting legal, policy and political consequences would be minimal as compared to that of disseminating toxic chemicals or chemical agents as weapons on enemy territory. At this time there is no clear definition of the legality or illegality of these types of actions used against specific industrial targets for the purpose of mass destruction or disruption. Without clearly defined international regulations covering these actions, we must depend solely on national defense systems. Not only are these regulation not defined, there are no implementation tools, which would be available if the various treaties (CWC/BWC) etc., were able to incorporate needed legislative action. Consequently we must depend on and put into practice defense security standards for industrial facilities for protection against both possible terrorist and military attacks. Emergency responses to incidents involving violent criminals and terrorists are extremely dangerous. Incidents involving weapons of mass destruction, firearms, and hazardous materials have resulted in the injury and death of many firefighters, police officers and medical personnel. We wish to intend display place and role of intelligence and counter intelligence system to prevention potential target and military attack. Security needs to be incorporated into the public safety culture and it must become the routine for how we operate. The recognition and identification process is an important skill that needs continual refinement. The use of transportation or facility paperwork assists in recognizing what potential hazards. A key factor in the successful command and management of a hazmat incident or terrorism event is the ability of public safety agencies to function as a

  19. Homeland Security is Hometown Security: Comparison and Case Studies of Vertically Synchronized Catastrophe Response Plans

    Science.gov (United States)

    2015-09-01

    Hurricanes Andrew, Hugo , and Katrina resonate as failures where there was little, if any, federal response in the initial hours, which left the depleted...was also initiated by several large scale incidents, including the Three Mile Island Disaster and Hurricanes Hugo and Andrew.67 This evolved at the...persist during large scale disasters, as was demonstrated during Hurricane Katrina and Super Storm Sandy. Catastrophe response planning at the

  20. Standard format and content for emergency plans for fuel cycle and materials facilities

    International Nuclear Information System (INIS)

    1990-09-01

    This regulatory guides is being developed to provide guidance acceptable to the NRC staff on the information to be included in emergency plans and to establish a format for presenting the information. Use of a standard format will help ensure uniformity and completeness in the preparation of emergency plans. An acceptable emergency plan should describe the licensed activities conducted at the facility and the types of accidents that might occur. It should provide information on classifying postulated accidents and the licensee's procedures for notifying and coordinating with offsite authorities. The plan should provide information on emergency response measures that might be necessary, the equipment and facilities available to respond to an emergency, and how the licensee will maintain emergency preparedness capability. It should describe the records and reports that will be maintained. There should also be a section on recovery after an accident and plans for restoring the facility to a safe condition. 4 refs

  1. Minimum dose method for walking-path planning of nuclear facilities

    International Nuclear Information System (INIS)

    Liu, Yong-kuo; Li, Meng-kun; Xie, Chun-li; Peng, Min-jun; Wang, Shuang-yu; Chao, Nan; Liu, Zhong-kun

    2015-01-01

    Highlights: • For radiation environment, the environment model is proposed. • For the least dose walking path problem, a path-planning method is designed. • The path-planning virtual–real mixed simulation program is developed. • The program can plan walking path and simulate. - Abstract: A minimum dose method based on staff walking road network model was proposed for the walking-path planning in nuclear facilities. A virtual–reality simulation program was developed using C# programming language and Direct X engine. The simulation program was used in simulations dealing with virtual nuclear facilities. Simulation results indicated that the walking-path planning method was effective in providing safety for people walking in nuclear facilities

  2. Application of Framework for Integrating Safety, Security and Safeguards (3Ss) into the Design Of Used Nuclear Fuel Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Badwan, Faris M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Demuth, Scott F [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-06

    Department of Energy’s Office of Nuclear Energy, Fuel Cycle Research and Development develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development focused on used nuclear fuel recycling and waste management to meet U.S. needs. Used nuclear fuel is currently stored onsite in either wet pools or in dry storage systems, with disposal envisioned in interim storage facility and, ultimately, in a deep-mined geologic repository. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Integrating safety, security, and safeguards (3Ss) fully in the early stages of the design process for a new nuclear facility has the potential to effectively minimize safety, proliferation, and security risks. The 3Ss integration framework could become the new national and international norm and the standard process for designing future nuclear facilities. The purpose of this report is to develop a framework for integrating the safety, security and safeguards concept into the design of Used Nuclear Fuel Storage Facility (UNFSF). The primary focus is on integration of safeguards and security into the UNFSF based on the existing Nuclear Regulatory Commission (NRC) approach to addressing the safety/security interface (10 CFR 73.58 and Regulatory Guide 5.73) for nuclear power plants. The methodology used for adaptation of the NRC safety/security interface will be used as the basis for development of the safeguards /security interface and later will be used as the basis for development of safety and safeguards interface. Then this will complete the integration cycle of safety, security, and safeguards. The overall methodology for integration of 3Ss will be proposed, but only the integration of safeguards and security will be applied to the design of the

  3. Integrated Food and Nutrition Security Programming to Address Undernutrition : The Plan Approach

    NARCIS (Netherlands)

    Boer, de F.A.; Verdonk, I.

    2012-01-01

    From a technical point of view, it is widely recognised that an integrated approach to food and nutrition security is an effective way to promote child nutritional well-being. In this desk review, based on project documents of the countries which took part in the PLAN NL supported Food and Nutrition

  4. 75 FR 10973 - Hazardous Materials: Risk-Based Adjustment of Transportation Security Plan Requirements

    Science.gov (United States)

    2010-03-09

    ... (explosive) material; (3) More than 1 L (1.06 qt.) per package of a material poisonous by inhalation in... controlled; and 6.1 materials poisonous by inhalation. We also proposed to require security plans for any... happens very rapidly, and in the process, the propane combines readily with air to form fuel air mixtures...

  5. 76 FR 80205 - Instituting a National Action Plan On Women, Peace, And Security

    Science.gov (United States)

    2011-12-23

    ... strengthen its efforts to prevent--and protect women and children from--harm, exploitation, discrimination... systems through the integration of gender perspectives, and invest in women and girls' health, education... Instituting a National Action Plan On Women, Peace, And Security By the authority vested in me as President by...

  6. Particular intervention plan of the Areva La Hague facility - 2012 edition

    International Nuclear Information System (INIS)

    2012-01-01

    The Particular intervention plan (PPI in French) is an emergency plan which foresees the measures and means to be implemented to address the potential risks of the presence and operation of a nuclear facility. This plan is implemented and developed by the Prefect in case of nuclear accident (or incident leading to a potential accident), the impact of which extending beyond the facility perimeter. It represents a special section of the organisation plan for civil protection response (ORSEC plan). The PPI foresees the necessary measures and means for crisis management during the first hours following the accident and is triggered by the Department Prefect according to the information provided by the facility operator. Its aim is to protect the populations leaving within 10 km of the facility against a potential radiological hazard. The PPI describes: the facility, the intervention area, the protection measures for the population, the conditions of emergency plan triggering, the crisis organisation, the action forms of the different services, and the post-accident stage. This document is the public version of the Particular intervention plan of the Areva NC La Hague fuel reprocessing plant (located on the territories of Beaumont-Hague, Digulleville, Herqueville, Jobourg and Omonville-la-Petite towns, Manche, France) which comprises the totally decommissioned UP2 400 unit, and the UP2 800 production unit still in operation

  7. 105-DR Large Sodium Fire Facility Supplemental Information to the Hanford Facility Contingency Plan (DOE/RL-93-75)

    International Nuclear Information System (INIS)

    Edens, V.G.

    1998-05-01

    This document is a unit-specific contingency plan for the 105-DR Large Sodium Fire Facility and is intended to be used as a supplement to DOE/RL-93-75, Hanford Facility Contingency Plan (DOE-RL 1993). This unit-specific plan is to be used to demonstrate compliance with the contingency plan requirements of Washington Administrative Code (WAC) 173-303 for certain Resource Conservation and Recovery Act of 1976 (RCRA) waste management units.The LSFF occupied the former ventilation supply fan room and was established to provide a means of investigating fire and safety aspects associated with large sodium or other metal alkali fires. The unit was used to conduct experiments for studying the behavior of molten alkali metals and alkali metal fires. This unit had also been used for the storage and treatment of alkali metal dangerous waste. Additionally, the Fusion Safety Support Studies programs sponsored intermediate-size safety reaction tests in the LSFF with lithium and lithium-lead compounds. The LSFF, which is a RCRA site, was partially clean closed in 1995 and is documented in 'Transfer of the 105-DR Large Sodium Fire Facility to Bechtel Hanford, Inc.' (BHI 1998). In summary, the 105-DR supply fan room (1720-DR) has been demolished, and a majority of the surrounding soils were clean-closed. The 117-DR Filter Building, 116-DR Exhaust Stack, 119- DR Sampling Building, and associated ducting/tunnels were not covered under this closure

  8. Planning for off-site response to radiation accidents in nuclear facilities

    International Nuclear Information System (INIS)

    1981-01-01

    The purpose of this publication is to give guidance to those who are responsible for the protection of the public in the event of an accident occurring at a land-based nuclear facility. This guidance should assist in the advance preparation of emergency response plans and implementing procedures. Basic principles of protective measures along with their advantages and disadvantages are discussed. Other principles related to emergency planning and the operational response to an emergency are outlined. Although the guidance is primarily oriented towards land-based nuclear power facilities, the guidance does have general application to other types of nuclear facility

  9. Facility layout planning for educational systems: An application of fuzzy GIS and AHP

    Directory of Open Access Journals (Sweden)

    Hossein Ebrhaimzadeh Asmin

    2014-06-01

    Full Text Available One of the most important issues in urban planning programs is to allocate necessary spaces for educational applications. Selecting appropriate locations for training centers increases students' mental capabilities. Suitable location for the establishment of educational facilities is the first fundamental step for development of educational systems. The selection of optimal sites for educational facilities involves numerous parameters and it is essential to use multiple criteria decision making approaches to make wise decisions. This paper presents an empirical investigation on facility layout planning for educational systems in city of Birjand, Iran. Using fuzzy GIS as well as analytical hierarchy process (AHP, the study determines the most appropriate candidates for training centers.

  10. Planning for off-site response to radiation accidents in nuclear facilities

    International Nuclear Information System (INIS)

    1979-01-01

    The purpose of this manual is to give guidance to those who are responsible for the protection of the public in the event of an accident occurring at a land-based nuclear facility. This guidance should assist in the advance preparation of emergency response plans and implementing procedures. Basic principles of protective measures along with their advantages and disadvantages are discussed. Other principles related to emergency planning and the operational response to an emergency are outlined. Although the guidance is primarily oriented toward land-based nuclear power facilities, the guidance does have general application to other types of nuclear facilities

  11. Endangered Species Act and energy facility planning: compliance and conflict

    Energy Technology Data Exchange (ETDEWEB)

    Shreeve, D; Calef, C; Nagy, J

    1978-05-01

    New energy facilities such as coal mines, gasification plants, refineries, and power plants--because of their severe environmental impacts--may, if sited haphazardly, jeopardize endangered species. By law, conflicts between energy-facility siting and endangered species occurrence must be minimized. To assess the likelihood of such conflicts arising, the authors used data from the Fish and Wildlife Service, Endangered Species Office, that describe the species' ranges by county. This data set was matched with county-level occurrences of imminent energy developments to find counties of overlap and hence potential conflict. An index was developed to measure the likelihood of actual conflict occurring in such counties. Factors determining the index are: numbers of endangered species inhabiting the county, number of energy-related developments, and to what degree the county remains in a wild or undeveloped state. Maps were prepared showing (1) geographic ranges of endangered species by taxonomic groups (mammals, fish, etc.) and (2) counties of conflict.

  12. Using Common Sense to Effectively Integrate Security Technologies within a School's Security Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Gree, M.W.

    1998-11-03

    Security technologies are not the answer to all school security problems. However, they can be an excellent tool for school administrators and security personnel when incorporated into a total security strategy involving personnel, procedures, and facility layout. Unfortunately, very few of the tougher security problems in schools have solutions that are affordable, effective, and acceptable. Like any other type of facility, a school's security staff must understand the strengths and limitations of the security measures they are csecurity practices, which will rarely increase new building costs if included in the initial planning.

  13. Plutonium reclamation facility (PRF, building 236-Z) layup plan

    International Nuclear Information System (INIS)

    ANDERSON, R.N.

    1999-01-01

    This document reviews each system inside PRF to determine the operation and maintenance requirements necessary to maintain safe and predictable system performance for facility systems needed to remain operational while minimizing the maintenance and surveillance being performed. Also covered are the actions required to place PRF in a safe layup configuration while minimizing hazards and taking into account the need for reactivation of certain equipment when cleanup work commences in the future

  14. Sampling and Analysis Plan for the 233-S Plutonium Concentration Facility

    International Nuclear Information System (INIS)

    Mihalic, M.A.

    1998-02-01

    This Sampling and Analysis Plan (SAP) provides the information and instructions to be used for sampling and analysis activities in the 233-S Plutonium Concentration Facility. The information and instructions herein are separated into three parts and address the Data Quality Objective (DQO) Summary Report, Quality Assurance Project Plan (QAP), and SAP

  15. 77 FR 3389 - Approval and Promulgation of State Air Quality Plans for Designated Facilities and Pollutants...

    Science.gov (United States)

    2012-01-24

    ... Promulgation of State Air Quality Plans for Designated Facilities and Pollutants, State of West Virginia; Control of Emissions From Existing Hospital/Medical/Infectious Waste Incinerator Units, Plan Revision... final action to approve a revision to the West Virginia hospital/medical/infectious waste incinerator...

  16. 77 FR 3422 - Approval and Promulgation of State Air Quality Plans for Designated Facilities and Pollutants...

    Science.gov (United States)

    2012-01-24

    ... Promulgation of State Air Quality Plans for Designated Facilities and Pollutants; State of West Virginia; Control of Emissions From Existing Hospital/Medical/Infectious Waste Incinerator Units, Plan Revision... revision to the West Virginia hospital/medical/infectious waste incinerator (HMIWI) Section 111(d)/ 129...

  17. Five Recession-Driven Strategies for Planning and Managing Campus Facilities

    Science.gov (United States)

    Rudden, Michael S.

    2010-01-01

    Colleges and universities continue to face significant fiscal challenges in the current recession. A review of ongoing campus facilities planning projects, coupled with a review of more than 30 recent campus master planning requests for proposals and the relevant literature, indicates that colleges and universities are finding innovative ways to…

  18. 78 FR 34973 - Proposal for Sewage Sludge Incinerators State Plan for Designated Facilities and Pollutants; Indiana

    Science.gov (United States)

    2013-06-11

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 62 [EPA-R05-OAR-2013-0372; FRL-9820-9] Proposal for Sewage Sludge Incinerators State Plan for Designated Facilities and Pollutants; Indiana AGENCY... direct final rulemaking, Indiana's State Plan to control air pollutants from Sewage Sludge Incinerators...

  19. Security programs for Category I or II nuclear material or certain nuclear facilities. Regulatory guide G-274

    International Nuclear Information System (INIS)

    2003-03-01

    The purpose of this regulatory guide is to help applicants for a Canadian Nuclear Safety Commission (CNSC) licence in respect of Category I or II nuclear material - other than a licence to transport - , or a nuclear facility consisting of a nuclear reactor that may exceed 10 MW thermal power during normal operation, prepare and submit the security information to be included with the application, pursuant to the Nuclear Safety and Control Act (NSCA). Category I and II nuclear material are defined in Appendix B to this guide. This guide describes: the security information that should typically be included with the application for any licence referred to above; how the security information may be organized and presented in a separate document (hereinafter 'the security program description'), in order to assist CNSC review and processing of the application; and, the administrative procedures to be followed when preparing, submitting or revising the security program description. (author)

  20. Energy planning and security of supply in Spain and their compliance with the European legal framework

    International Nuclear Information System (INIS)

    Dolader, J.

    2004-01-01

    The electricity and gas markets in Spain were liberalized by the 1997 Electricity Act and the 1998 Hydrocarbons Act, respectively. The final step of the liberalization process was completed in January 2003 with the full eligibility of Spanish electricity and gas consumers. The liberalization Acts include in addition a two-way long-term energy planning process within a ten-year time scope. On the one hand the planning process involves binding planning concerning the so called 'basic infrastructures' (which include the electricity and gas transmission networks plus the total re-gasification capacity), and on the other hand, an indicative energy planning aimed at facilitating the decision making of administrations and agents by forecasting energy demand, and analyzing its coverage under the premises of security of supply. The present paper describes the current energy planning system in Spain, the provisions to ensure the security of supply and their compliance with the new European legislation - both the proposed and the existent one - regarding the security of supply in the EU.(author)

  1. Exclusión y seguridad social en el plan de desarrollo Exclusion and social security in the Development Plan

    Directory of Open Access Journals (Sweden)

    Rodríguez Salazar Oscar

    1999-06-01

    Full Text Available Este articulo analiza la forma en que el Plan de Desarrollo "Cambio para contruir la Paz" trata el sistema de seguridad social y su interpretacion sobre las causas de la exclusion social. El plan carece de una vision de conjunto del sistema por cuanto no aborda los aspectos reisgos profesionles y pensiones; articula el concepto de solidaridad a las relaciones interpersonales y, asi, subestima el papel del Estado en el logro de esa meta. Por otra parte, las politicas laborales esbozadas en el Plan conducen en forma inexorable a una mayor exclusion social. En cuanto al sistema de seguridad social en salud, dado que la cobertura se ha extendido mediante el regimen subsidiado, la ausencia de una politica que promueva el control social puede acentuar la clientelizacion que Estado manifiesta querer combatir.This article analyzes the way that the Development Plan "Changeto Build Peace" treats the social security system and its interpretation of the causes of social exclusion. The Plan lacks a vision of the system as a whole as it does not address the aspects of professional risks and pensions; it articula tes the concept of solidarity to interpersonal relations and thus underestimates the role of the State in achieving that goal. Moreover, the labor policies outlined in the Plan lead inexorably to greater social exclusion. As far as the social security system for health, given that coverage has been extended by meansof the subsidized regime, the absence of a policy that promotes social control may accentuate the clientelization of the State which the Plan claims to want to combato.

  2. CS651 Computer Systems Security Foundations 3d Imagination Cyber Security Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Roy S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-02

    3d Imagination is a new company that bases its business on selling and improving 3d open source related hardware. The devices that they sell include 3d imagers, 3d printers, pick and place machines and laser etchers. They have a fast company intranet for ease in sharing, storing and printing large, complex 3d designs. They have an employee set that requires a variety of operating systems including Windows, Mac and a variety of Linux both for running business services as well as design and test machines. There are a wide variety of private networks for testing transfer rates to and from the 3d devices, without interference with other network tra c. They do video conferencing conferencing with customers and other designers. One of their machines is based on the project found at delta.firepick.org(Krassenstein, 2014; Biggs, 2014), which in future, will perform most of those functions. Their devices all include embedded systems, that may have full blown operating systems. Most of their systems are designed to have swappable parts, so when a new technology is born, it can be quickly adopted by people with 3d Imagination hardware. This company is producing a fair number of systems and components, however to get the funding they need to mass produce quality parts, so they are preparing for an IPO to raise the funds they need. They would like to have a cyber-security audit performed so they can give their investors con dence that they are protecting their data, customers information and printers in a proactive manner.

  3. Federal Facility Compliance Act, Proposed Site Treatment Plan: Background Volume. Executive Summary

    International Nuclear Information System (INIS)

    1995-01-01

    This Federal Facility Compliance Act Site Treatment Plan discusses the options of radioactive waste management for Ames Laboratory. This is the background volume which discusses: site history and mission; framework for developing site treatment plans; proposed plan organization and related activities; characterization of mixed waste and waste minimization; low level mixed waste streams and the proposed treatment approach; future generation of TRU and mixed wastes; the adequacy of mixed waste storage facilities; and a summary of the overall DOE activity in the area of disposal of mixed waste treatment residuals

  4. Information security management handbook

    CERN Document Server

    Tipton, Harold F

    2006-01-01

    Access Control Systems and Methodology. Telecommunications and Network Security. Security Management Practices. Application Program Security. Cryptography. Computer, System, and Security Architecture. Operations Security. Business Continuity Planning and Disaster Recovery Planning. Law, Investigation and Ethics. Physical Security.

  5. Status of U.S. Plans for an Advanced ISOL Facility. A Brief Report

    International Nuclear Information System (INIS)

    Bertrand, F.E.

    1998-01-01

    A brief discussion is provided of the current status of plans to build an advanced ISOL radioactive ion beam facility in the US. Designs for this new facility, which was recommended as the next major construction project of the DOE Nuclear Physics Program Office, have been proposed by two US national laboratories, Argonne National Laboratory and Oak Ridge National Laboratory. The new facility will provide orders-of-magnitude higher radioactive beam currents than existing facilities of this type and will cost in the range of $250 million

  6. Implementation plan for deployment of Federal Interim Storage facilities for commercial spent nuclear fuel

    International Nuclear Information System (INIS)

    1986-12-01

    This document is the third annual report on plans for providing Federal Interim Storage (FIS) capacity. References are made to the first and second annual reports, as necessary. Background factors and aspects that were considered in the development of this deployment plan and activities and interactions considered to be required to implement an FIS program are discussed. A generic description of the approach that the Department plans to follow in deploying FIS facilities is also described

  7. Implementation plan for deployment of Federal Interim Storage facilities for commercial spent nuclear fuel

    International Nuclear Information System (INIS)

    1985-01-01

    This document is the second annual report on plans for providing Federal Interim Storage (FIS) capacity. References are made to the first annual report as necessary (DOE/RW-0003, 1984). Background factors and aspects that were considered in the development of this deployment plan and activities and interactions considered to be required to implement an FIS program are discussed. The generic approach that the Department plans to follow in deploying FIS facilities is also described

  8. Implementation plan for deployment of Federal Interim Storage facilities for commercial spent nuclear fuel

    International Nuclear Information System (INIS)

    1989-01-01

    This document is the sixth annual report on plans for providing FIS capacity. References are made to the first, second, third, fourth, and fifth annual reports, as necessary. Background factors and aspects that were considered in the development of this deployment plan and activities and interactions considered to be required to implement an FIS program are discussed. A generic description of the approach that the Department plans to follow in deploying FIS facilities is also described. 21 refs., 1 fig., 1 tab

  9. Federal Facilities Compliance Act, Draft Site Treatment Plan: Background Volume, Part 2, Volume 1

    International Nuclear Information System (INIS)

    1994-01-01

    This Draft Site Treatment Plan was prepared by Ames Laboratory to meet the requirements of the Federal Facilities Compliance Act. Topics discussed include: purpose and scope of the plan; site history and mission; draft plant organization; waste minimization; waste characterization; preferred option selection process; technology for treating low-level radioactive wastes and TRU wastes; future generation of mixed waste streams; funding; and process for evaluating disposal issues in support of the site treatment plan

  10. The Remote Handled Immobilization Low-Activity Waste Disposal Facility Environmental Permits and Approval Plan

    International Nuclear Information System (INIS)

    DEFFENBAUGH, M.L.

    2000-01-01

    The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement or record of decision shall result in shutdown of an operational

  11. Planning study for advanced national synchrotron-radiation facilities

    International Nuclear Information System (INIS)

    1984-01-01

    A new generation of synchrotron-radiation sources based on insertion devices offers gains in photon-beam brilliance as large as the gains that present-day synchrotron sources provided over conventional sources. This revolution in synchrotron capability and its impact on science and technology will be as significant as the original introduction of synchrotron radiation. This report recommends that insertion-device technology be pursued as our highest priority, both through the full development of insertion-device potential on existing machines and through the building of new facilities

  12. DOE standard: Filter test facility quality program plan

    International Nuclear Information System (INIS)

    1999-02-01

    This standard was developed primarily for application in US Department of Energy programs. It contains specific direction for HEPA filter testing performed at a DOE-accepted HEPA Filter Test Facility (FTF). Beneficial comments (recommendations, additions, deletions) and any pertinent data that may improve this document should be sent to the Office of Nuclear Safety Policy and Standards (EH-31), US Department of Energy, Washington, DC 20585, by letter or by using the self-addressed Document Improvement Proposal form (DOE F 1300.3) appearing at the end of this document

  13. Involvement of the Public Health Authority in emergency planning and preparedness for nuclear facilities in Hungary

    International Nuclear Information System (INIS)

    Sztanyik, L.B.

    1986-01-01

    It is required by the Hungarian Atomic Energy Act and its enacting clause of 1980 that facilities established for the application of atomic energy be designed, constructed and operated in such a manner that abnormal operational occurrences can be avoided and unplanned exposures to radiation and radioactive substances can be prevented. The primary responsibility for planning and implementing emergency actions rests with the management of the operating organization. Thus one of the prerequisites of licensing the first nuclear power plant in Hungary was the preparation and submission for approval of an emergency plan by the operating organization. In addition to this, the council of the county where the power plant is located has also been obliged to prepare a complementary emergency plan, in co-operation with other regional and national authorities, for the prevention of consequences from an emergency that may extend beyond the site boundary of the plant. In preparing the complementary plan, the emergency plan of the facility had to be taken into account. Unlike most national authorities involved in nuclear matters, the Public Health Authority is involved in the preparation of plans for every kind of emergency in a nuclear facility, including even those whose consequences can probably be confined to the plant site. The paper discusses in detail the role and responsibility of the Public Health Authority in emergency planning and preparedness for nuclear facilities. (author)

  14. 300 Area Treated Effluent Disposal Facility permit reopener run plan

    International Nuclear Information System (INIS)

    Olander, A.R.

    1995-01-01

    The 300 Area Treated Effluent Disposal Facility (TEDF) is authorized to discharge treated effluent to the Columbia River by National Pollutant Discharge Elimination System permit WA-002591-7. The letter accompanying the final permit noted the following: EPA recognizes that the TEDF is a new waste treatment facility for which full scale operation and effluent data has not been generated. The permit being issued by EPA contains discharge limits that are intended to force DOE's treatment technology to the limit of its capability.'' Because of the excessively tight limits the permit contains a reopener clause which may allow limits to be renegotiated after at least one year of operation. The restrictions for reopening the permit are as follows: (1) The permittee has properly operated and maintained the TEDF for a sufficient period to stabilize treatment plant operations, but has nevertheless been unable to achieve the limitation specified in the permit. (2) Effluent data submitted by the permittee supports the effluent limitation modifications(s). (3) The permittee has submitted a formal request for the effluent limitation modification(s) to the Director. The purpose of this document is to guide plant operations for approximately one year to ensure appropriate data is collected for reopener negotiations

  15. Achievements and Future Plans of CLIC Test Facilities

    CERN Document Server

    Braun, Hans Heinrich

    2001-01-01

    CTF2 was originally designed to demonstrate the feasibility of two-beam acceleration with high current drive beams and a string of 30 GHz CLIC accelerating structure prototypes (CAS). This goal was achieved in 1999 and the facility has since been modified to focus on high gradient testing of CAS's and 30 GHz single cell cavities (SCC). With these modifications, it is now possible to provide 30 GHz RF pulses of more than 150 MW and an adjustable pulselength from 3 to 15 ns. While the SCC results are promising, the testing of CAS's revealed problems of RF breakdown and related surface damage. As a consequence, a new R&D program has been launched to advance the understanding of RF breakdown processes, to improve surface properties, investigate new materials and to optimise the structure geometries of the CAS's. In parallel the construction of a new facility named CTF3 has started. CTF3 will mainly serve two purposes. The first is the demonstration of the CLIC drive beam generation scheme. CTF3 will acceler-a...

  16. Mixed Waste Management Facility, revised FY94 Plan

    International Nuclear Information System (INIS)

    Streit, R.

    1994-01-01

    This revision of the FY94 Plan incorporates changes to work during FY94 in response to the DOE request in the DOE KD-1 decision letter of June 28,1994. This letter provided guidance of both scope and budget profile in response to the Conceptual Design Report (CDR) issued by the MWMF Project in April, 1994. This work plan only addresses work for the remainder of FY94. A revised plan for the complete project is in development and will be issued separately. Since February, 1994, the MWMF Project has been operating on DOE guidance directing that work on the CDR be completed, that only other essential work be continued to maintain the project, and that costs be maintained at approximately the January, 1994 spending levels until a KD-1 decision was made. This has formed the basis for monthly reports through June, 1994. The baseline contained in this report will become the basis for reports during the remainder of FY94

  17. The National Criticality Experiments Research Center at the Device Assembly Facility, Nevada National Security Site: Status and Capabilities, Summary Report

    International Nuclear Information System (INIS)

    Bragg-Sitton, S.; Bess, J.; Werner, J.

    2011-01-01

    The National Criticality Experiments Research Center (NCERC) was officially opened on August 29, 2011. Located within the Device Assembly Facility (DAF) at the Nevada National Security Site (NNSS), the NCERC has become a consolidation facility within the United States for critical configuration testing, particularly those involving highly enriched uranium (HEU). The DAF is a Department of Energy (DOE) owned facility that is operated by the National Nuclear Security Agency/Nevada Site Office (NNSA/NSO). User laboratories include the Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL). Personnel bring their home lab qualifications and procedures with them to the DAF, such that non-site specific training need not be repeated to conduct work at DAF. The NNSS Management and Operating contractor is National Security Technologies, LLC (NSTec) and the NNSS Safeguards and Security contractor is Wackenhut Services. The complete report provides an overview and status of the available laboratories and test bays at NCERC, available test materials and test support configurations, and test requirements and limitations for performing sub-critical and critical tests. The current summary provides a brief summary of the facility status and the method by which experiments may be introduced to NCERC.

  18. Long-term optimal energy mix planning towards high energy security and low GHG emission

    International Nuclear Information System (INIS)

    Thangavelu, Sundar Raj; Khambadkone, Ashwin M.; Karimi, Iftekhar A.

    2015-01-01

    Highlights: • We develop long-term energy planning considering the future uncertain inputs. • We analyze the effect of uncertain inputs on the energy cost and energy security. • Conventional energy mix prone to cause high energy cost and energy security issues. • Stochastic and optimal energy mix show benefits over conventional energy planning. • Nuclear option consideration reduces the energy cost and carbon emissions. - Abstract: Conventional energy planning focused on energy cost, GHG emission and renewable contribution based on future energy demand, fuel price, etc. Uncertainty in the projected variables such as energy demand, volatile fuel price and evolution of renewable technologies will influence the cost of energy when projected over a period of 15–30 years. Inaccurate projected variables could affect energy security and lead to the risk of high energy cost, high emission and low energy security. The energy security is an ability of generation capacity to meet the future energy demand. In order to minimize the risks, a generic methodology is presented to determine an optimal energy mix for a period of around 15 years. The proposed optimal energy mix is a right combination of energy sources that minimize the risk caused due to future uncertainties related to the energy sources. The proposed methodology uses stochastic optimization to address future uncertainties over a planning horizon and minimize the variations in the desired performance criteria such as energy security and costs. The developed methodology is validated using a case study for a South East Asian region with diverse fuel sources consists of wind, solar, geothermal, coal, biomass and natural gas, etc. The derived optimal energy mix decision outperformed the conventional energy planning by remaining stable and feasible against 79% of future energy demand scenarios at the expense of 0–10% increase in the energy cost. Including the nuclear option in the energy mix resulted 26

  19. Los Alamos National Laboratory plans for a laboratory microfusion facility

    International Nuclear Information System (INIS)

    Harris, D.B.

    1988-01-01

    Los Alamos National Laboratory is actively participating in the National Laboratory Microfusion Facility (LMF) Scoping Study. We are currently performing a conceptual design study of a krypton-fluoride laser system that appears to meet all of the diver requirements for the LMF. A new theory of amplifier module scaling has been developed recently and it appears that KrF amplifier modules can be scaled up to output energies much larger than thought possible a few years ago. By using these large amplifier modules, the reliability and availability of the system is increased and its cost and complexity is decreased. Final cost figures will be available as soon as the detailed conceptual design is complete

  20. Planning of Eka Hospital Pekanbaru wastewater recycling facility

    Science.gov (United States)

    Jecky, A.; Andrio, D.; Sasmita, A.

    2018-04-01

    The Ministry of Public Works No. 06 2011 required the large scale of water to conserve the water resource, Eka Hospital Pekanbaru have to improve the sewage treatment plant through the wastewater recycling. The effluent from the plant can be used to landscape gardening and non-potable activities. The wastewater recycling design was done by analyzing the existing condition of thesewage treatment plant, determine the effluent quality standards for wastewater recycling, selected of alternative technology and processing, design the treatment unit and analyze the economic aspects. The design of recycling facility by using of combination cartridge filters processing, ultrafiltration membranes, and desinfection by chlorination. The wastewater recycling capacity approximately of 75 m3/day or 75% of the STP effluent. The estimated costs for installation of wastewater recycling and operation and maintenance per month are Rp 111,708,000 and Rp 2,498,000 respectively.