WorldWideScience

Sample records for facility jefferson lab

  1. Upgrade to Cryomodule Test Facility at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Powers; Trent Allison; G. Davis; Michael Drury; Christiana Grenoble; Lawrence King; Tomasz Plawski; Joseph Preble

    2003-09-01

    The cryomodule test facility (CMTF) was originally implemented in the late eighties for testing of a small fraction of the cryomodules during the production run for the Continuous Electron Beam Accelerator Facility [1]. The original system was built using a dedicated wiring scheme and a pair of 2 kW, 1497 MHz RF sources. This dedicated system made it difficult to test cryomodules and other RF structures of non-standard configuration. Additionally, due to a previously installed cyclotron, there were static magnetic fields in excess of 6 Gauss within the test cave, which limited the capability of the facility when measuring the quality factor of superconducting cavities. Testing of the Spallation Neutron Source cryomodules as well as future upgrades to the CEBAF accelerator necessitated that the facility be reconfigured to be flexible both with respect to RF source power and cryomodule wiring configuration. This paper will describe the implementation of a generalized wiring scheme t hat is easily adapted to different cryomodule configurations. It will also describe the capabilities of the LabView based low level RF controls and the related data acquisition systems currently being used to test cryomodules and related hardware. The high power RF source capabilities will be described. The magnetic shielding put in place in order to reduce the ambient magnetic file to levels below 50 mGauss will also be described.

  2. The Jefferson Lab Program

    CERN Document Server

    James-Boyce, M

    2003-01-01

    The kW-class infrared (IR) free electron laser (FEL) at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) had the capability of producing intra-cavity Thomson scattering of the IR off the electron beam thus producing high average flux, sub-picosecond x-rays. We have measured these x-rays and demonstrated the energy tunability range from 3.5 keV to 18 keV. The corresponding flux and brightness have been estimated and will be discussed. In 2002, the FEL was disassembled and has been reconfigured to produce 10 kW average power IR. We present the estimated x-ray capabilities for the new FEL and discuss potential applications.

  3. The New 2nd-Generation SRF R&D Facility at Jefferson Lab: TEDF

    Energy Technology Data Exchange (ETDEWEB)

    Reece, Charles E.; Reilly, Anthony V.

    2012-09-01

    The US Department of Energy has funded a near-complete renovation of the SRF-based accelerator research and development facilities at Jefferson Lab. The project to accomplish this, the Technical and Engineering Development Facility (TEDF) Project has completed the first of two phases. An entirely new 3,100 m{sup 2} purpose-built SRF technical work facility has been constructed and was occupied in summer of 2012. All SRF work processes with the exception of cryogenic testing have been relocated into the new building. All cavity fabrication, processing, thermal treatment, chemistry, cleaning, and assembly work is collected conveniently into a new LEED-certified building. An innovatively designed 800 m2 cleanroom/chemroom suite provides long-term flexibility for support of multiple R&D and construction projects as well as continued process evolution. The characteristics of this first 2nd-generation SRF facility are described.

  4. Exclusive processes at Jefferson Lab

    Indian Academy of Sciences (India)

    Haiyan Gao

    2003-11-01

    Mapping the transition from strongly interacting, non-perturbative quantum chromodynamics, where nucleon–meson degrees of freedom are effective to perturbative QCD of quark and gluon degrees of freedom, is one of the most fundamental, challenging tasks in nuclear and particle physics. Exclusive processes such as proton–proton elastic scattering, meson photoproduction, and deuteron photodisintegration have been pursued extensively at many laboratories over the years in the search for such a transition, particularly at Jefferson Lab in recent years, taking the advantage of the high luminosity capability of the CEBAF facility. In this talk, I review recent results from Jefferson Lab on deuteron photodisintegration and photopion production processes and the future 12 GeV program.

  5. Jefferson Lab: Present and Future

    Science.gov (United States)

    Rossi, Patrizia

    2016-08-01

    The continuous electron beam accelerator facility and associated experimental equipment at Jefferson Lab comprise a unique facility for nuclear physics research whose upgrade is presently underway, with completion expected in 2017. The upgraded facility will accelerate electron beams to 11 GeV for experiments in the existing Halls A, B and C. In addition, a 12 GeV beam can be provided to a new experimental hall, Hall D, to generate a 9 GeV tagged photon beam. This upgrade will enable a new experimental program with substantial discovery potential to address important topics in hadronic, nuclear, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  6. Thomas Jefferson National Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Grames, Joseph; Higinbotham, Douglas; Montgomery, Hugh

    2010-09-08

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

  7. Jefferson Lab Phenomenology: an Overview

    Energy Technology Data Exchange (ETDEWEB)

    Wally Melnitchouk

    2004-03-01

    Experiments at Jefferson Lab are pushing the frontiers of our knowledge about the structure and dynamics of nucleons and nuclei. I will review a selection of recent results and discuss their impact on our understanding of hadron structure.

  8. Jefferson Lab Science, Past and Future

    CERN Document Server

    McKeown, R D

    2014-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  9. Overview of Nuclear Physics at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, Robert D. [JLAB

    2013-08-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  10. The DVCS program at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Niccolai, Silvia [Institut de Physique Nucleaire, Orsay, France

    2014-06-01

    Recent promising results, obtained at Jefferson Lab, on cross sections and asymmetries for DVCS and their link to the Generalized Parton Distributions are the focus of this paper. The extensive experimental program to measure DVCS with the 12-GeV-upgraded CEBAF in three experimental Halls (A, B, C) of Jefferson Lab, will also be presented.

  11. Latest results from FROST at Jefferson Lab

    Directory of Open Access Journals (Sweden)

    Ritchie B.G.

    2014-06-01

    Full Text Available The spectrum of broad and overlapping nucleon excitations can be greatly clarified by use of a polarized photon beam incident on a polarized target in meson photoproduction experiments. At Jefferson Lab, a program of such measurements has made use of the Jefferson Lab FROzen Spin Target (FROST. An overview of preliminary results are presented.

  12. Making the Case for Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Franz

    2011-06-01

    This chapter is a personal account of the initial planning and competition for a new laboratory, which eventually became known as the Thomas Jefferson National Accelerator Facility, with the official nickname "Jefferson Lab." The period covered starts as far back as 1964, with the introduction of quarks, and extends up to the late 1980s after the initial team was assembled, the superconducting design was in place, and construction was well underway. I describe some of the major experiments that were proposed to justify the laboratory, reflect on the present status of those initially proposed experiments, and very briefly outline some of the new ideas that emerged after the laboratory was constructed. The science is presented in a simple manner intended for a lay audience, with some of the ideas illustrated by cartoons that were often used in popular lectures given during this period.

  13. The Work Smart Standards process at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Boyce, J.R.; Prior, S.; Hanson, E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Morgan, B. [Dept. of Energy, Newport News, VA (United States). Thomas Jefferson National Accelerator Facility Site Office

    1997-12-01

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) has developed a set of Work Smart Standards for the Lab. The effort incorporated the Lab`s performance-based contract into the Necessary and Sufficient (N and S) Standards identification process of the DOE. A rigorous protocol identified hazards in the workplace and standards that provide adequate protection of workers, public, and the environment at reasonable cost. The intensive process was a joint effort between the Lab and DOE and it required trained teams of knowledgeable experts in three fields: (1) actual required work conditions at Jefferson Lab; (2) laws, regulations, DOE directives and performance-based contracts; and (3) Environmental Health and Safety (EH and S), Rad Con, and QA. The criteria for selection of the teams, the database designed and used for the process, and lessons learned are discussed.

  14. The work smart standards process at Jefferson Lab

    Science.gov (United States)

    Boyce, James R.; Prior, Sandra; Hanson, Eric; Morgan, Barbara

    1997-02-01

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) has developed a set of Work Smart Standards for the Lab. The effort incorporated the Lab's performance-based contract into the Necessary and Sufficient (N&S) Standards identification process of the DOE. A rigorous protocol identified hazards in the workplace and standards that provide adequate protection of workers, public, and the environment at reasonable cost. The intensive process was a joint effort between the Lab and DOE and it required trained teams of knowledgeable experts in three fields: 1.) actual required work conditions at Jefferson Lab; 2.) laws, regulations, DOE directives and performance-based contracts; and 3.) Environmental Health and Safety (EH&S), Rad Con, and QA. The criteria for selection of the teams, the database designed and used for the process, and lessons learned are discussed.

  15. The Jefferson Lab High Power Light Source

    Energy Technology Data Exchange (ETDEWEB)

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  16. Jefferson Lab Personnel Safety Fast Beam Kicker System

    Science.gov (United States)

    Mahoney, K.; Garza, O.; Stitts, E.; Areti, H.; O'Sullivan, M.

    1997-05-01

    The CEBAF accelerator at Thomas Jefferson National Accelerator Facility (Jefferson Lab) uses a continuous electron beam with up to 800 kilowatts of average beam power. The laboratory beam containment policy requires that in the event of an errant beam striking a beam blocking device, the beam must be shut off by three methods in less than 1 millisecond. One method implemented is to shut off the beam at the gun. Two additional methods have been developed which use fast beam kickers to deflect the injector beam on to a water cooled aperture. The kickers designed and implemented at Jefferson Lab are able to deflect the injector beam in less than 200 microseconds. The kicker system includes self-test and monitoring capabilities that enable the system to be used for personnel safety. This paper will describe the requirements and performance of the fast beam kicker system.

  17. Jefferson Lab: New opportunities in hadronic physics

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Patrizia [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA and INFN, Laboratori Nazionali di Frascati, 00044 Frascati (Italy)

    2014-11-11

    Jefferson Lab (JLab) is a fundamental research laboratory located in Newport News (Virginia-USA) whose primary mission is to explore the fundamental nature of confined states of quarks and gluons. It consists of a high-intensity electron accelerator based on continuous wave superconducting radio frequency technology and a sophisticated array of particle detectors. The design features and excellent performance of the accelerator made it possible to plan an upgrade in energy from 6 to 12 GeV without substantially altering the construction scheme of the accelerator. The program includes the construction of major new experimental facilities for the existing three Halls, A, B, C and the construction of the new experimental Hall D. The research program that motivated the upgrade in energy includes: the study of the nucleon 'tomography' through the study of generalized parton distribution functions (GPDs) and transverse momentum dependent parton distribution functions (TMDs), the study of exotics and hybrid mesons to explore the nature of the quarks confinement, precision test of the Standard Model through parity-violating electron scattering experiments. Major highlights of the program at 6 GeV will be presented as well as an overview of the 12 GeV physics program.

  18. Jefferson Lab: New opportunities in hadronic physics

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Patrizia [JLAB

    2014-11-01

    Jefferson Lab (JLab) is a fundamental research laboratory located in Newport News (Virginia-USA) whose primary mission is to explore the fundamental nature of confined states of quarks and gluons. It consists of a high-intensity electron accelerator based on continuous wave superconducting radio frequency technology and a sophisticated array of particle detectors. The design features and excellent performance of the accelerator made it possible to plan an upgrade in energy from 6 to 12 GeV without substantially altering the construction scheme of the accelerator. The program includes the construction of major new experimental facilities for the existing three Halls, A, B, C and the construction of the new experimental Hall D. The research program that motivated the upgrade in energy includes: the study of the nucleon "tomography" through the study of generalized parton distribution functions (GPDs) and transverse momentum dependent parton distribution functions (TMDs), the study of exotics and hybrid mesons to explore the nature of the quarks confinement, precision test of the Standard Model through parity-violating electron scattering experiments. Major highlights of the program at 6 GeV will be presented as well as an overview of the 12 GeV physics program.

  19. Jefferson Lab Data Acquisition Run Control System

    Energy Technology Data Exchange (ETDEWEB)

    Vardan Gyurjyan; Carl Timmer; David Abbott; William Heyes; Edward Jastrzembski; David Lawrence; Elliott Wolin

    2004-10-01

    A general overview of the Jefferson Lab data acquisition run control system is presented. This run control system is designed to operate the configuration, control, and monitoring of all Jefferson Lab experiments. It controls data-taking activities by coordinating the operation of DAQ sub-systems, online software components and third-party software such as external slow control systems. The main, unique feature which sets this system apart from conventional systems is its incorporation of intelligent agent concepts. Intelligent agents are autonomous programs which interact with each other through certain protocols on a peer-to-peer level. In this case, the protocols and standards used come from the domain-independent Foundation for Intelligent Physical Agents (FIPA), and the implementation used is the Java Agent Development Framework (JADE). A lightweight, XML/RDF-based language was developed to standardize the description of the run control system for configuration purposes.

  20. Optical Calibration For Jefferson Lab HKS Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    L. Yuan; L. Tang

    2005-11-04

    In order to accept very forward angle scattering particles, Jefferson Lab HKS experiment uses an on-target zero degree dipole magnet. The usual spectrometer optics calibration procedure has to be modified due to this on-target field. This paper describes a new method to calibrate HKS spectrometer system. The simulation of the calibration procedure shows the required resolution can be achieved from initially inaccurate optical description.

  1. Quark Hadron Duality - Recent Jefferson Lab Results

    Energy Technology Data Exchange (ETDEWEB)

    Niculescu, Maria Ioana [James Madison Univ., Harrisonburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-08-01

    The duality between the partonic and hadronic descriptions of electron--nucleon scattering is a remarkable feature of nuclear interactions. When averaged over appropriate energy intervals the cross section at low energy which is dominated by nucleon resonances resembles the smooth behavior expected from perturbative QCD. Recent Jefferson Lab results indicate that quark-hadron duality is present in a variety of observables, not just the proton F2 structure function. An overview of recent results, especially local quark-hadron duality on the neutron, are presented here.

  2. Quark Hadron Duality - Recent Jefferson Lab Results

    CERN Document Server

    Niculescu, Ioana

    2015-01-01

    The duality between the partonic and hadronic descriptions of electron--nucleon scattering is a remarkable feature of nuclear interactions. When averaged over appropriate energy intervals the cross section at low energy which is dominated by nucleon resonances resembles the smooth behavior expected from perturbative QCD. Recent Jefferson Lab results indicate that quark-hadron duality is present in a variety of observables, not just the proton F2 structure function. An overview of recent results, especially local quark-hadron duality on the neutron, are presented here.

  3. PC/104 Embedded IOCs at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Jianxun Yan, Trent Allison, Sue Witherspoon, Anthony Cuffe

    2009-10-01

    Jefferson Lab has developed embedded IOCs based on PC/104 single board computers (SBC) for low level control systems. The PC/104 IOCs run EPICS on top of the RTEMS operating system. Two types of control system configurations are used in different applications, PC/104 SBC with commercial PC/104 I/O cards and PC/104 SBC with custom designed FPGA-based boards. RTEMS was built with CEXP shell to run on the PC/104 SBC. CEXP shell provides the function of dynamic object loading, which is similar to the widely used VxWorks operating system. Standard software configurations were setup for PC/104 IOC application development to provide a familiar format for new projects as well as ease the conversion of applications from VME based IOCs to PC/104 IOCs. Many new projects at Jefferson Lab are going to employ PC/104 SBCs as IOCs and some applications have already been running them for accelerator operations. The PC/104 - RTEMS IOC provides a free open source Real-Time Operating System (RTOS), low cost/maintenance, easily installed/ configured, flexible, and reliable solution for accelerator control and 12GeV Upgrade projects.

  4. Nucleon Form Factors - A Jefferson Lab Perspective

    Energy Technology Data Exchange (ETDEWEB)

    John Arrington, Kees de Jager, Charles F. Perdrisat

    2011-06-01

    The charge and magnetization distributions of the proton and neutron are encoded in their elastic electromagnetic form factors, which can be measured in elastic electron--nucleon scattering. By measuring the form factors, we probe the spatial distribution of the proton charge and magnetization, providing the most direct connection to the spatial distribution of quarks inside the proton. For decades, the form factors were probed through measurements of unpolarized elastic electron scattering, but by the 1980s, progress slowed dramatically due to the intrinsic limitations of the unpolarized measurements. Early measurements at several laboratories demonstrated the feasibility and power of measurements using polarization degrees of freedom to probe the spatial structure of the nucleon. A program of polarization measurements at Jefferson Lab led to a renaissance in the field of study, and significant new insight into the structure of matter.

  5. The Jefferson Lab frozen spin target

    Energy Technology Data Exchange (ETDEWEB)

    Keith, C.D., E-mail: ckeith@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Brock, J.; Carlin, C.; Comer, S.A.; Kashy, D. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); McAndrew, J. [School of Physics, University of Edinburgh, Edinburgh (United Kingdom); Meekins, D.G.; Pasyuk, E.; Pierce, J.J.; Seely, M.L. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)

    2012-08-21

    A frozen spin polarized target, constructed at Jefferson Lab for use inside a large acceptance spectrometer, is described. The target has been utilized for photoproduction measurements with polarized tagged photons of both longitudinal and circular polarization. Protons in TEMPO-doped butanol were dynamically polarized to approximately 90% outside the spectrometer at 5 T and 200-300 mK. Photoproduction data were acquired with the target inside the spectrometer at a frozen-spin temperature of approximately 30 mK with the polarization maintained by a thin, superconducting coil installed inside the target cryostat. A 0.56 T solenoid was used for longitudinal target polarization and a 0.50 T dipole for transverse polarization. Spin-lattice relaxation times as high as 4000 h were observed. We also report polarization results for deuterated propanediol doped with the trityl radical OX063.

  6. The Jefferson Lab Frozen Spin Target

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Keith, James Brock, Christopher Carlin, Sara Comer, David Kashy, Josephine McAndrew, David Meekins, Eugene Pasyuk, Joshua Pierce, Mikell Seely

    2012-08-01

    A frozen spin polarized target, constructed at Jefferson Lab for use inside a large acceptance spectrometer, is described. The target has been utilized for photoproduction measurements with polarized tagged photons of both longitudinal and circular polarization. Protons in TEMPO-doped butanol were dynamically polarized to approximately 90% outside the spectrometer at 5 T and 200-300 mK. Photoproduction data were acquired with the target inside the spectrometer at a frozen-spin temperature of approximately 30 mK with the polarization maintained by a thin, superconducting coil installed inside the target cryostat. A 0.56 T solenoid was used for longitudinal target polarization and a 0.50 T dipole for transverse polarization. Spin relaxation times as high as 4000 hours were observed. We also report polarization results for deuterated propanediol doped with the trityl radical OX063.

  7. The Timing Synchronization System at Jefferson Lab

    CERN Document Server

    Keesee, M; Flood, R; Lebedev, V

    2001-01-01

    This paper presents the requirements and design of a Timing Synchronization System (TSS) for the Continuous Electron Beam Accelerator Facility (CEBAF) control system at Thomas Jefferson National Accelerator Facility. A clock module has been designed which resides in a VME crate. The clock module can be a communications master or a slave depending on its configuration, which is software and jumper selectable. As a master, the clock module sends out messages in response to an external synchronization signal over a serial fiber optic line. As a slave, it receives the messages and interrupts an associated computer in its VME crate. The application that motivated the development of the TSS, the Accelerator 30 Hz Measurement System, will be described. Operational experience with the TSS will also be discussed.

  8. Di-hadron production at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Anefalos Pereira, Sergio [Lab. Naz. Frascati, Frascati, Italy; et. al.,

    2014-10-01

    Semi-inclusive deep inelastic scattering (SIDIS) has been used extensively in recent years as an important testing ground for QCD. Studies so far have concentrated on better determination of parton distribution functions, distinguishing between the quark and antiquark contributions, and understanding the fragmentation of quarks into hadrons. Hadron pair (di-hadron) SIDIS provides information on the nucleon structure and hadronization dynamics that complement single hadron SIDIS. Di-hadrons allow the study of low- and high-twist distribution functions and Dihadron Fragmentation Functions (DiFF). Together with the twist-2 PDFs ( f1, g1, h1), the Higher Twist (HT) e and hL functions are very interesting because they offer insights into the physics of the largely unexplored quark-gluon correlations, which provide access into the dynamics inside hadrons. The CLAS spectrometer, installed in Hall-B at Jefferson Lab, has collected data using the CEBAF 6 GeV longitudinally polarized electron beam on longitudinally polarized solid NH3 targets. Preliminary results on di-hadron beam-, target- and double-spin asymmetries will be presented.

  9. Beamline Insertions Manager at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael C. [Jefferson Lab., Newport News, VA (United States)

    2015-09-01

    The beam viewer system at Jefferson Lab provides operators and beam physicists with qualitative and quantitative information on the transverse electron beam properties. There are over 140 beam viewers installed on the 12 GeV CEBAF accelerator. This paper describes an upgrade consisting of replacing the EPICS-based system tasked with managing all viewers with a mixed system utilizing EPICS and high-level software. Most devices, particularly the beam viewers, cannot be safely inserted into the beam line during high-current beam operations. Software is partly responsible for protecting the machine from untimely insertions. The multiplicity of beam-blocking and beam-vulnerable devices motivates us to try a data-driven approach. The beamline insertions application components are centrally managed and configured through an object-oriented software framework created for this purpose. A rules-based engine tracks the configuration and status of every device, along with the beam status of the machine segment containing the device. The application uses this information to decide on which device actions are allowed at any given time.

  10. Production of Resonances Using CLAS at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Kei [Arizona State University, Tempe , AZ (United States)

    2015-07-01

    Measurements of hadronic resonances produced in photoproduction reactions at Jefferson Lab are shown and discussed. Emphasis is placed on the production of the excited hyperon states Sigma(1385), Lambda(1405), and Lambda(1520). Some future prospects for the upcoming Jefferson Lab 12 GeV era are given, where the CLAS12 and GlueX detectors will see unprecedented amounts of data using electromagnetic probes and further our knowledge of hadronic resonances.

  11. Proton Form Factor Measurements at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Charles Perdrisat; Vina Punjabi

    2004-09-27

    In two experiments at Jefferson Lab in Hall A, the first one in 1998 and the second in 2000, the ratio of the electromagnetic form factors of the proton was obtained by measuring P{sub t} and P{sub ell}, the transverse and longitudinal recoil proton polarization components, respectively, in {rvec e}p {yields} e{rvec p}; the ratio G{sub E{sub p}}/G{sub M{sub p}} is proportional to P{sub t}/P{sub {ell}}. Simultaneous measurement of P{sub t} and P{sub {ell}} provides good control of the systematic uncertainty. The first measurement of G{sub E{sub p}}/G{sub M{sub p}} ratio was made to Q{sup 2} = 3.5 GeV{sup 2} and the second measurement to Q{sup 2} = 5.6 GeV{sup 2}. The results from these two experiments indicate that the ratio scales like 1/Q{sup 2}, in stark contrast with cross section data analyzed by the Rosenbluth separation method which gives a constant value for this ratio. The incompatibility of the recoil polarization results with most of the Rosenbluth separation results appears now well established above Q{sup 2} of about 3 GeV{sup 2}. The consensus at the present time is that the interference of the two-photon exchange with the Born term, which had been deemed negligible until recently, might explain the discrepancy between the results of the two techniques; the possibility that the discrepancy is due to incomplete radiative correction has also been recently discussed.

  12. Jefferson Lab's Trim Card II

    Energy Technology Data Exchange (ETDEWEB)

    Trent Allison; Sarin Philip; C. Higgins; Edward Martin; William Merz

    2005-05-01

    Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) uses Trim Card I power supplies to drive approximately 1900 correction magnets. These trim cards have had a long and illustrious service record. However, some of the employed technology is now obsolete, making it difficult to maintain the system and retain adequate spares. The Trim Card II is being developed to act as a transparent replacement for its aging predecessor. A modular approach has been taken in its development to facilitate the substitution of sections for future improvements and maintenance. The resulting design has been divided into a motherboard and 7 daughter cards which has also allowed for parallel development. The Trim Card II utilizes modern technologies such as a Field Programmable Gate Array (FPGA) and a microprocessor to embed trim card controls and diagnostics. These reprogrammable devices also provide the versatility to incorporate future requirements.

  13. A syncrhronized FIR/VUV light source at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Shinn, Michelle D. [JLAB, Newport News, VA (United States)

    2013-05-31

    This slide show presents an introduction to Free-Electron Lasers (FELs) and what makes the JLab FELs unique. Ways of exploring the nature of matter with the FEL are shown, including applications in the THz, IR, UV, and VUV. The Jefferson Lab FEL Facility is unique in its high average brightness in the THz, and IR -- VUV spectral regions and Sub ps-pulses at MHz repetition rates. With an installation of a rebuilt 'F100' cryomodule the linac energy will increase to > 150MeV. This will permit lasing further into the UV and extend VUV. With the swap of our CEBAF-style cryounit for an improved booster, we could lase in the VUV. Addition of a wiggler and optical cavity slightly canted from the UV beamline would allow simultaneous lasing of UV and THz for high E-field 2 color experiments.

  14. Performance characteristics of Jefferson Lab's new SRF infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Reece, Charles E. [JLAB; Denny, Philip [JLAB; Reilly, Anthony [JLAB

    2013-09-01

    In the past two years, Jefferson Lab has reconfigured and renovated its SRF support infrastructure as part of the Technology and Engineering Development Facility project, TEDF. The most significant changes are in the cleanroom and chemistry facilities. We report the initial characterization data on the new ultra-pure water systems, cleanroom facilities, describe the reconfiguration of existing facilities and also opportunities for flexible growth presented by the new arrangement.

  15. An Overview of Dark Matter Experiments at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    James Boyce

    2012-09-01

    Dark Matter research at Jefferson Lab started in 2006 with the LIght Pseudoscalar and Scalar Search (LIPSS) collaboration to check the validity of results reported by the PVLAS collaboration. In the intervening years interest in dark matter laboratory experiments has grown at Jefferson Lab. Current research underway or in planning stages probe various mass regions covering 14 orders of magnitude: from 10{sup -6} eV to 100 MeV. This presentation will be an overview of our dark matter efforts, three of which focus on the hypothesized A' gauge boson.

  16. Pair spectrometer hodoscope for Hall D at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, F.; Hutton, C.; Sitnikov, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Somov, A., E-mail: somov@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Somov, S.; Tolstukhin, I. [National Research Nuclear University MEPhI, Moscow (Russian Federation)

    2015-09-21

    We present the design of the pair spectrometer hodoscope fabricated at Jefferson Lab and installed in the experimental Hall D. The hodoscope consists of thin scintillator tiles; the light from each tile is collected using wave-length shifting fibers and detected using a Hamamatsu silicon photomultiplier. Light collection was measured using relativistic electrons produced in the tagger area of the experimental Hall B.

  17. Jefferson Lab's Distributed Data Acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Trent Allison; Thomas Powers

    2006-05-01

    Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) occasionally experiences fast intermittent beam instabilities that are difficult to isolate and result in downtime. The Distributed Data Acquisition (Dist DAQ) system is being developed to detect and quickly locate such instabilities. It will consist of multiple Ethernet based data acquisition chassis distributed throughout the seven-eights of a mile CEBAF site. Each chassis will monitor various control system signals that are only available locally and/or monitored by systems with small bandwidths that cannot identify fast transients. The chassis will collect data at rates up to 40 Msps in circular buffers that can be frozen and unrolled after an event trigger. These triggers will be derived from signals such as periodic timers or accelerator faults and be distributed via a custom fiber optic event trigger network. This triggering scheme will allow all the data acquisition chassis to be triggered simultaneously and provide a snapshot of relevant CEBAF control signals. The data will then be automatically analyzed for frequency content and transients to determine if and where instabilities exist.

  18. Gluonic Excitations and Experimental Hall-D at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Justin [MIT

    2014-07-01

    A new tagged photon beam facility is being constructed in experimental Hall-D at Jefferson Lab as a part of the 12 GeV upgrade program. The 9 GeV linearly-polarized photon beam will be produced via coherent Bremsstrahlung using the CEBAF electron beam, incident on a diamond radiator. The GlueX experiment in Hall-D will use this photon beam to search for and study the pattern of gluonic excitations in the meson spectrum produced through photoproduction reactions with a liquid hydrogen target. Recent lattice QCD calculations predict a rich spectrum of hybrid mesons, that are formed by exciting the gluonic field that couples the quarks. A subset of these hybrid mesons are predicted to have exotic quantum numbers which cannot be formed from a simple qq^- pair, and thus provide an ideal laboratory for testing QCD in the confinement regime. In these proceedings the status of the construction and installation of the GlueX detector will be presented, in addition to simulation results for some reactions of interest in hybrid meson searches.

  19. High Power Lasing in the IR Upgrade FEL at Jefferson Lab

    CERN Document Server

    Benson, S V; Behre, Chris; Herman-Biallas, George; Boyce, James; Douglas, David; Dylla, Fred; Evans, Richard; Grippo, A; Gubeli, Joe; Hardy, David; Hernandez-Garcia, Carlos; Jordan, Kevin; Merminga, Lia; Neil, George; Preble, Joe; Shinn, Michelle D; Siggins, Tim; Walker, Richard; Williams, Gwyn; Yunn, Byung; Zhang, Shukui

    2004-01-01

    We report on progress in commissioning the IR Upgrade facility at Jefferson Lab. Operation at high power has been demonstrated at 5.7 microns with over 4 kW of continuous power output and a recirculated electron beam power of up to 800 kW. We report on the features and limitations of the present design and on efforts to increase the power to over 10 kW.

  20. High Power Lasing in the IR Upgrade FEL at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Vincent Benson; Kevin Beard; Chris Behre; George Herman Biallas; James Boyce; David Douglas; Fred Dylla; Richard Evans; Al Grippo; Joe Gubeli; David Hardy; Carlos Hernandez-Garcia; Kevin Jordan; Lia Merminga; George Neil; Joe Preble; Michelle D. Shinn; Tim Siggins; Richard Walker; Gwyn Williams; Byung Yunn; Shukui Zhang

    2004-08-01

    We report on progress in commissioning the IR Upgrade facility at Jefferson Lab. Operation at high power has been demonstrated at 5.7 microns with over 8.5 kW of continuous power output, 10 kW for 1 second long pulses, and CW recirculated electron beam power of over 1.1 MW. We report on the features and limitations of the present design and report on the path to getting even higher powers.

  1. The Detector Design of the Jefferson Lab EIC

    Energy Technology Data Exchange (ETDEWEB)

    Diefenthaler, Markus [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-11-01

    The Electron-Ion Collider (EIC) is envisioned as the next-generation U.S. facility to study quarks and gluons in strongly interacting matter. The broad physics program of the EIC aims to precisely image gluons in nucleons and nuclei and to reveal the origin of the nucleon spin by colliding polarized electrons with polarized protons, polarized light ions, and heavy nuclei at high luminosity. The Jefferson Lab EIC (JLEIC) design is based on a figure-8 shaped ring-ring collider. The luminosity, exceeding 1033cm-2 s -1 in a broad range of the center-of-mass energy and maximum luminosity above 1034cm-2 s -1 , is achieved by high-rate collisions of short small-emittance low-charge bunches made possible by high-energy electron cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) can be easily preserved and manipulated due to the unique figure-8 shape of the collider rings. The focus of this presentation is put on the JLEIC primary detector that has been designed to support the full physics program of the EIC and to provide essentially full acceptance to all fragments produced in collisions. The detector has been fully integrated with the accelerator and extended to the forward electron and hadron regions to achieve exceptional small-angle acceptance and resolution as well as high-precision electron polarimetry and low-Q 2 tagging. The Central Detector design allows for excellent tracking up to small angles and excellent hadron PID resulting and offers a great performance, in particular for semi-inclusive and exclusive measurements. The combination of high luminosity, highly polarized lepton and ion beams, and a full acceptance, multi-purpose detector fully integrated with the accelerator will allow JLEIC a unique opportunity to make breakthroughs in the investigation of the strong interaction.

  2. The 4th Generation Light Source at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Albert Grippo; Christopher Gould; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; Kevin Jordan; John Klopf; Steven Moore; George Neil; Thomas Powers; Joseph Preble; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Shukui Zhang; Gwyn Williams

    2007-04-25

    A number of "Grand Challenges" in Science have recently been identified in reports from The National Academy of Sciences, and the U.S. Dept. of Energy, Basic Energy Sciences. Many of these require a new generation of linac-based light source to study dynamical and non-linear phenomena in nanoscale samples. In this paper we present a summary of the properties of such light sources, comparing them with existing sources, and then describing in more detail a specific source at Jefferson Lab. Importantly, the JLab light source has developed some novel technology which is a critical enabler for other new light sources.

  3. Precision Electron Beam Polarimetry in Hall C at Jefferson Lab

    Science.gov (United States)

    Gaskell, David

    2013-10-01

    The electron beam polarization in experimental Hall C at Jefferson Lab is measured using two devices. The Hall-C/Basel Møller polarimeter measures the beam polarization via electron-electron scattering and utilizes a novel target system in which a pure iron foil is driven to magnetic saturation (out of plane) using a superconducting solenoid. A Compton polarimeter measures the polarization via electron-photon scattering, where the photons are provided by a high-power, CW laser coupled to a low gain Fabry-Perot cavity. In this case, both the Compton-scattered electrons and backscattered photons provide measurements of the beam polarization. Results from both polarimeters, acquired during the Q-Weak experiment in Hall C, will be presented. In particular, the results of a test in which the Møller and Compton polarimeters made interleaving measurements at identical beam currents will be shown. In addition, plans for operation of both devices after completion of the Jefferson Lab 12 GeV Upgrade will also be discussed.

  4. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jefferson Lab

    CERN Document Server

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Filatov, Yu; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Nadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzić, B; Tiefenback, M; Wang, H; Wang, S; Weiss, C; Yunn, B; Zhang, Y

    2012-01-01

    This report presents a brief summary of the science opportunities and program of a polarized medium energy electron-ion collider at Jefferson Lab and a comprehensive description of the conceptual design of such a collider based on the CEBAF electron accelerator facility.

  5. Simulation for Proton Charge Radius (PRad) Experiment at Jefferson Lab

    Science.gov (United States)

    Ye, Li; PRad Collaboration Collaboration

    2016-09-01

    The ``Proton Charge Radius Puzzle'' refers to 7 σ discrepancy between the proton charge radius extracted from muonic hydrogen Lamb shift measurements and that from the atomic hydrogen Lamb shift and e-p elastic scattering measurements. In order to get a better understanding of this puzzle, the PRad experiment (E12-11-106) was proposed and recently performed with 1.1 and 2.2 GeV unpolarized electron beam in Hall B at Jefferson Lab. The experiment aims to extract the electric form factor and the charge radius of proton by simultaneously measuring the e - p elastic scattering cross section and the Møller cross section at very low Q2(2 × 10-4 10-1(GeV / c) 2) region, with sub-percent precision. A windowless hydrogen gas flow target was used to better control the background. A high-efficiency and high-resolution calorimeter (HyCal) and a pair of Gas Electron Multiplier (GEM) chambers were used in the experiment. This talk will focus on comparing the detailed simulation of PRad experiment and its background with preliminary spectra from the data. This work is supported in part by NSF MRI Award PHY-1229153, the U.S. Department of Energy under Contacts No. DE-FG02-07ER41528, Thomas Jefferson National Laboratory, Mississippi State University and PRad collaboration.

  6. Low momentum recoil detectors in CLAS12 at Jefferson Lab

    Science.gov (United States)

    Charles, Gabriel; CLAS Collaboration Collaboration

    2017-01-01

    Part of the experimental program in Hall B of the Jefferson Lab is dedicated to studying nucleon structure using DIS on nuclei and detecting low-momentum recoil particles in coincidence with the scattered electron. For this purpose, specially designed central detectors are required in place of the inner tracker of CLAS12 to detect particles with momenta below 100 MeV/c. We will present the status of the BONuS12 RTPC detector that will take data within the next 2 years. We will detail the main improvements made from the previous BONuS RTPC. In a second part, we will discuss another recoil experiment, called ALERT, that has been proposed to run in Hall B. The constraints being different, the recoil detector is based on a drift chamber and an array of scintillators. We will present the main differences between the two detectors and summarize the R&D performed to develop the ALERT detector.

  7. Recent Results from the IR Upgrade FEL at Jefferson Lab

    CERN Document Server

    Benson, S V; Behre, C P; Biallas, G H; Boyce, J; Douglas, D; Dylla, H F D; Evans, R; Grippo, A G; Gubeli, J G; Hardy, D; Hernandez-Garcia, C; Jordan, K; Merminga, L; Neil, G; Preble, J P; Shinn, M D; Siggins, T; Walker, R L; Williams, G P; Zhang, S

    2005-01-01

    After demonstrating 10 kW operation with 1 second pulses, the Jefferson Lab program switched to demonstrating high power operation at short wavelengths using a new 8 cm period wiggler and a THz suppression chicane. We report here on the lasing results to date using this new configuration. We have demonstrated a large reduction in THz heating on the mirrors. We have also eliminated heating in the mirror steering assemblies, making operation at high power much more stable. Finally, we have greatly reduced astigmatism in the optical cavity, allowing operation with a very short Rayleigh range. The laser has been tuned from 0.9 to 3.1 microns using the new wiggler. User experiments commenced in April of 2005 with the FEL Upgrade operating over the 1-3 micron range. We are in the process of installing a 5.5 cm permanent magnet wiggler that will give us even larger tuning range and higher power.

  8. First lasing of the IR upgrade FEL at Jefferson lab

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Behre; Stephen Benson; George Biallas; James Boyce; Christopher Curtis; David Douglas; H. Dylla; L. Dillon-townes; Richard Evans; Albert Grippo; Joseph Gubeli; David Hardy; John Heckman; Carlos Hernandez-Garcia; Tommy Hiatt; Kevin Jordan; Nikolitsa Merminga; George Neil; Joseph Preble; Harvey Rutt; Michelle D. Shinn; Timothy Siggins; Hiroyuki Toyokawa; David W. Waldman; Richard Walker; Neil Wilson; Byung Yunn; Shukui Zhang

    2004-08-01

    We report initial lasing results from the IR Upgrade FEL at Jefferson Lab[1]. The electron accelerator was operated with low average current beam at 80 MeV. The time structure of the beam was 120 pC bunches at 4.678 MHz with up to 750 {micro}sec pulses at 2Hz. Lasing was established over the entire wavelength range of the mirrors (5.5-6.6 {micro}m). The detuning curve length, turn-on time, and power were in agreement with modeling results assuming a 1 psec FWHM micropulse. The same model predicts over 10 kW of power output with 10 mA of beam and 10% output coupling, which is the ultimate design goal of the IR Upgrade FEL. The behavior of the laser while the dispersion section strength was varied was found to qualitatively match predictions. Initial CW lasing results also will be presented.

  9. Jefferson Lab injector development for next generation parity violation experiments

    Science.gov (United States)

    Grames, J.; Hansknect, J.; Poelker, M.; Suleiman, R.

    2011-11-01

    To meet the challenging requirements of next generation parity violation experiments at Jefferson Lab, the Center for Injectors and Sources is working on improving the parity-quality of the electron beam. These improvements include new electron photogun design and fast helicity reversal of the Pockels Cell. We proposed and designed a new scheme for slow helicity reversal using a Wien Filter and two Solenoids. This slow reversal complements the insertable half-wave plate reversal of the laser-light polarization by reversing the electron beam polarization at the injector while maintaining a constant accelerator configuration. For position feedback, fast air-core magnets located in the injector were commissioned and a new scheme for charge feedback is planned.

  10. Large-Scale Production of Carbon Nanotubes Using the Jefferson Lab Free Electron Laser

    Science.gov (United States)

    Holloway, Brian C.

    2003-01-01

    We report on our interdisciplinary program to use the Free Electron Laser (FEL) at the Thomas Jefferson National Accelerator Facility (J-Lab) for high-volume pulsed laser vaporization synthesis of carbon nanotubes. Based in part on the funding of from this project, a novel nanotube production system was designed, tested, and patented. Using this new system nanotube production rates over 100 times faster than conventional laser systems were achieved. Analysis of the material produced shows that it is of as high a quality as the standard laser-based materials.

  11. Basic instrumentation for Hall A at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Alcorn, J.; Anderson, B.D.; Aniol, K.A.; Annand, J.R.M.; Auerbach, L.; Arrington, J.; Averett, T.; Baker, F.T.; Baylac, M.; Beise, E.J.; Berthot, J.; Bertin, P.Y.; Bertozzi, W.; Bimbot, L.; Black, T.; Boeglin, W.U.; Boykin, D.V.; Brash, E.J.; Breton, V.; Breuer, H.; Brindza, P.; Brown, D.; Burtin, E.; Calarco, J.R.; Cardman, L.S.; Carr, R.; Cates, G.D.; Cavata, C.; Chai, Z.; Chang, C.C.; Chant, N.S.; Chen, J.-P.; Choi, S.; Chudakov, E.; Churchwell, S.; Coman, M.; Cisbani, E.; Colilli, S.; Colombel, N.; Crateri, R.; Dale, D.S.; Degrande, N.; Jager, C.W. de E-mail: kees@jlab.org; De Leo, R.; Deur, A.; Dezern, G.; Diederich, B.; Dieterich, S.; Di Salvo, R.; Djawotho, P.; Domingo, J.; Ducret, J.-E.; Dutta, D.; Egiyan, K.; Epstein, M.B.; Escoffier, S.; Esp, S.; Ewell, L.A.; Finn, J.M.; Fissum, K.G.; Folts, E.; Fonvieille, H.; Frois, B.; Frullani, S.; Gao, H.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gavalya, A.; Gayou, O.; Gilad, S.; Gilman, R.; Giuliani, F.; Glamazdin, A.; Glashausser, C.; Gomez, J.; Gorbenko, V.; Gorringe, T.; Gricia, M.; Griffioen, K.; Hamilton, D.; Hansen, J.-O.; Hersman, F.W.; Higinbotham, D.W.; Holmes, R.; Holmgren, H.; Holtrop, M.; D' Hose, N.; Hovhannisyan, E.; Howell, C.; Huber, G.M.; Hughes, E.; Hyde-Wright, C.E.; Ibrahim, H.; Incerti, S.; Iodice, M.; Iommi, R.; Ireland, D.; Jaminion, S.; Jardillier, J.; Jensen, S.; Jiang, X.; Jones, C.E.; Jones, M.K.; Joo, K.; Jutier, C.; Kahl, W.; Kato, S.; Katramatou, A.T.; Kelly, J.J.; Kerhoas, S.; Ketikyan, A.; Khandaker, M.; Khayat, M.; Kino, K.; Kominis, I.; Korsch, W.; Kox, S.; Kramer, K.; Kumar, K.S.; Kumbartzki, G.; Kuss, M.; Lagamba, L.; Laveissiere, G.; Leone, A.; LeRose, J.J.; Marie, F.; Levchuk, L.; Leuschner, M.; Lhuillier, D.; Liang, M.; Livingston, K.; Lindgren, R.A.; Liyanage, N.; Lolos, G.J.; Lourie, R.W.; Lucentini, M.; Madey, R.; Maeda, K.; Malov, S.; Manley, D.M.; Margaziotis, D.J.; Markowitz, P.; Marroncle, J.; Martine, J.; Mayilyan, S.; McCarthy, J.S.; McCormick, K. [and others

    2004-04-21

    The instrumentation in Hall A at the Thomas Jefferson National Accelerator Facility was designed to study electro- and photo-induced reactions at very high luminosity and good momentum and angular resolution for at least one of the reaction products. The central components of Hall A are two identical high resolution spectrometers, which allow the vertical drift chambers in the focal plane to provide a momentum resolution of better than 2x10{sup -4}. A variety of Cherenkov counters, scintillators and lead-glass calorimeters provide excellent particle identification. The facility has been operated successfully at a luminosity well in excess of 10{sup 38} cm{sup -2} s{sup -1}. The research program is aimed at a variety of subjects, including nucleon structure functions, nucleon form factors and properties of the nuclear medium.

  12. The 6 GeV TMD Program at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Puckett, Andrew J. [Univ. of Connecticut, Storrs, CT (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-01-01

    The study of the transverse momentum dependent parton distributions (TMDs) of the nucleon in semi-inclusive deep-inelastic scattering (SIDIS) has emerged as one of the major physics motivations driving the experimental program using the upgraded 11 GeV electron beam at Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF). The accelerator construction phase of the CEBAF upgrade is essentially complete and commissioning of the accelerator has begun as of April, 2014. As the new era of CEBAF operations begins, it is appropriate to review the body of published and forthcoming results on TMDs from the 6 GeV era of CEBAF operations, discuss what has been learned, and discuss the key challenges and opportunities for the 11 GeV SIDIS program of CEBAF.

  13. Direct Comparison of Møller and Compton Polarimeters in Hall C at Jefferson Lab

    Science.gov (United States)

    Gaskell, Dave

    2017-01-01

    Knowledge of the electron beam polarization is one of the most important systematic uncertainties in precision, parity-violating electron scattering experiments with next generation experiments aiming to measure the electron beam polarization to better than 0.5%. At high energies, the most typical polarimetry techniques are Møller (polarized electron-electron) and Compton (polarized electron-photon) scattering. The use of two techniques with different systematic uncertainties provides confidence in the extracted beam polarization. Direct comparisons of the two polarimetry techniques are challenging in that Compton polarimeters typically desire maximum beam flux (high beam currents) while Møller polarimeters need to limit the beam current to avoid depolarization effects in the target. We have performed a direct comparison of the Møller and Compton polarimeters in experimental Hall C at Jefferson Lab. This test is unique in that the data were taken sequentially under identical beam conditions at 4.5 μA. We found excellent agreement between the Hall C Møller and Compton polarimeters. Combined with high-current Compton data, we were also able to limit the beam current dependence of the beam polarization to 1% or less up to a beam current of 180 μA. Supported in part by the U.S. Deparment of Energy, contract number AC05-06OR23177, under which Jefferson Science Associates, LLC operates Thomas Jefferson National Accelerator Facility.

  14. Searching for heavy photons at Jefferson Lab using detached vertices

    Science.gov (United States)

    Weinstein, Lawrence; Szumila-Vance, Holly; HPS Collaboration Collaboration

    2017-01-01

    The Heavy Photon Search (HPS) experiment in Jefferson Lab Hall B will look for a new U(1) vector boson (called a ``heavy photon'', ``dark photon'', or A') in the mass range from 20 to 600 MeV/c2. This A' could potentially couple to the ordinary photon through kinetic mixing, which would create a coupling to electric charge of α' / α =ɛ2 . If so, then the A' can be produced through electron interactions with a heavy target through a process analogous to bremsstrahlung. The A' could then decay to e+e- . If the coupling ɛ is large, we can directly detect a peak in the e+e- mass spectrum above the dominant QED background. If ɛ is small, then we can look for e+e- events with a detached vertex resulting from A' decays downstream of the production target. In 2015 and 2016 we measured a few beam days each of 1.1 and 2.2 GeV electron scattering from tungsten using a large acceptance forward spectrometer consisting of a silicon vertex tracker located inside a dipole magnet and a lead tungstate electromagnetic calorimeter for triggering. This talk will present the detached vertex A' search, including preliminary results at 1.1 GeV if available.

  15. Jefferson Lab Mass Storage and File Replication Services

    Institute of Scientific and Technical Information of China (English)

    IanBird; YingChen; 等

    2001-01-01

    Jefferson Lab has implemented a scalable,distributed,high performance mass storage system-JASMine.The system is entirely implemented in Java,provides access to robotic tape storage and includes disk cache and stage manager components.The disk manager subsystem may be used independently to manage stand-alone disk pools.The system includes a scheduler to provide policy-based access to the storage systems.Security is provided by pluggable authentication modules and is implemented at the network socket level.The tape and disk cache systems have well defined interfaces in order to provids integration with grid-based services.The system is in production and being used to archive 1 TB per day from the experiments.and currently moves over 2 TB per day total.This paper will describe the architecture of JASMine;discuss the rationale for building the system,and present a transparent 3rd party file replication service to move data to collab-orating institutes using JASMine,XML,and servlet technology interfacing to grid-based file transfer mechanisms.

  16. Evolution of the Generic Lock System at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Brian Bevins; Yves Roblin

    2003-10-13

    The Generic Lock system is a software framework that allows highly flexible feedback control of large distributed systems. It allows system operators to implement new feedback loops between arbitrary process variables quickly and with no disturbance to the underlying control system. Several different types of feedback loops are provided and more are being added. This paper describes the further evolution of the system since it was first presented at ICALEPCS 2001 and reports on two years of successful use in accelerator operations. The framework has been enhanced in several key ways. Multiple-input, multiple-output (MIMO) lock types have been added for accelerator orbit and energy stabilization. The general purpose Proportional-Integral-Derivative (PID) locks can now be tuned automatically. The generic lock server now makes use of the Proxy IOC (PIOC) developed at Jefferson Lab to allow the locks to be monitored from any EPICS Channel Access aware client. (Previously clients had to be Cdev aware.) The dependency on the Qt XML parser has been replaced with the freely available Xerces DOM parser from the Apache project.

  17. 12 GeV detector technology at Jefferson Lab

    Science.gov (United States)

    Leckey, John P.; GlueX Collaboration

    2013-04-01

    The Thomas Jefferson National Accelerator Facility (JLab) is presently in the middle of an upgrade to increase the energy of its CW electron beam from 6 GeV to 12 GeV along with the addition of a fourth experimental hall. Driven both by necessity and availability, novel detectors and electronics modules have been used in the upgrade. One such sensor is the Silicon Photomultiplier (SiPM), specifically a Multi-Pixel Photon Counter (MPPC), which is an array of avalanche photodiode pixels operating in Geiger mode that are used to sense photons. The SiPMs replace conventional photomultiplier tubes and have several distinct advantages including the safe operation in a magnetic field and the lack of need for high voltage. Another key to 12 GeV success is advanced fast electronics. Jlab will use custom 250 MHz and 125 MHz 12-bit analog to digital converters (ADCs) and time to digital converters (TDCs) all of which take advantage of VME Switched Serial (VXS) bus with its GB/s high bandwidth readout capability. These new technologies will be used to readout drift chambers, calorimeters, spectrometers and other particle detectors at Jlab once the 12 GeV upgrade is complete. The largest experiment at Jlab utilizing these components is GlueX - an experiment in the newly constructed Hall D that will study the photoproduction of light mesons in the search for hybrid mesons. The performance of these components and their respective detectors will be presented.

  18. 12 GeV detector technology at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Leckey, John P. [Indiana U.

    2013-04-01

    The Thomas Jefferson National Accelerator Facility (JLab) is presently in the middle of an upgrade to increase the energy of its CW electron beam from 6 GeV to 12 GeV along with the addition of a fourth experimental hall. Driven both by necessity and availability, novel detectors and electronics modules have been used in the upgrade. One such sensor is the Silicon Photomultiplier (SiPM), specifically a Multi-Pixel Photon Counter (MPPC), which is an array of avalanche photodiode pixels operating in Geiger mode that are used to sense photons. The SiPMs replace conventional photomultiplier tubes and have several distinct advantages including the safe operation in a magnetic field and the lack of need for high voltage. Another key to 12 GeV success is advanced fast electronics. Jlab will use custom 250 MHz and 125 MHz 12-bit analog to digital converters (ADCs) and time to digital converters (TDCs) all of which take advantage of VME Switched Serial (VXS) bus with its GB/s high bandwidth readout capability. These new technologies will be used to readout drift chambers, calorimeters, spectrometers and other particle detectors at Jlab once the 12 GeV upgrade is complete. The largest experiment at Jlab utilizing these components is GlueX - an experiment in the newly constructed Hall D that will study the photoproduction of light mesons in the search for hybrid mesons. The performance of these components and their respective detectors will be presented.

  19. 12 GeV detector technology at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Leckey, John P. [Indiana University, Bloomington, IN 47405 (United States); Collaboration: GlueX Collaboration

    2013-04-19

    The Thomas Jefferson National Accelerator Facility (JLab) is presently in the middle of an upgrade to increase the energy of its CW electron beam from 6 GeV to 12 GeV along with the addition of a fourth experimental hall. Driven both by necessity and availability, novel detectors and electronics modules have been used in the upgrade. One such sensor is the Silicon Photomultiplier (SiPM), specifically a Multi-Pixel Photon Counter (MPPC), which is an array of avalanche photodiode pixels operating in Geiger mode that are used to sense photons. The SiPMs replace conventional photomultiplier tubes and have several distinct advantages including the safe operation in a magnetic field and the lack of need for high voltage. Another key to 12 GeV success is advanced fast electronics. Jlab will use custom 250 MHz and 125 MHz 12-bit analog to digital converters (ADCs) and time to digital converters (TDCs) all of which take advantage of VME Switched Serial (VXS) bus with its GB/s high bandwidth readout capability. These new technologies will be used to readout drift chambers, calorimeters, spectrometers and other particle detectors at Jlab once the 12 GeV upgrade is complete. The largest experiment at Jlab utilizing these components is GlueX - an experiment in the newly constructed Hall D that will study the photoproduction of light mesons in the search for hybrid mesons. The performance of these components and their respective detectors will be presented.

  20. Overview and Lessons Learned of the Jefferson Lab Cryomodule Production for the CEBAF 12 GeV Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, John P. [JLAB; Burrill, Andrew B. [JLAB; Drury, Michael A. [JLAB; Harwood, Leigh H. [JLAB; Hovater, J. Curt [JLAB; Reece, Charles E. [JLAB; Wiseman, Mark A. [JLAB

    2013-12-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab is nearing completion of an energy upgrade from 6 to 12 GeV. An integral part of the upgrade is the addition of ten new cryomodules, each consisting of eight seven-cell superconducting radio-frequency (SRF) cavities. An average performance of 100+MV of acceleration per cryomodule is needed to achieve the 12 GeV beam energy goal. The production methodology was for industry to provide and deliver the major components to Jefferson Lab, where they were tested and assembled into cryomodules. The production process begins with an inspection upon receiving of all major components followed by individual performance qualification testing. The SRF cavities received their final chemical processing and cleaning at Jefferson Lab. The qualified components along with all associated hardware and instrumentation are assembled, tested, installed into CEBAF and run through an integrated system checkout in preparation for beam operations. The production process is complete and one of the first completed cryomodules has successfully produced 108 MV of acceleration with a linac beam current of 465 {micro}A.

  1. SPHERES National Lab Facility

    Science.gov (United States)

    Benavides, Jose

    2014-01-01

    SPHERES is a facility of the ISS National Laboratory with three IVA nano-satellites designed and delivered by MIT to research estimation, control, and autonomy algorithms. Since Fall 2010, The SPHERES system is now operationally supported and managed by NASA Ames Research Center (ARC). A SPHERES Program Office was established and is located at NASA Ames Research Center. The SPHERES Program Office coordinates all SPHERES related research and STEM activities on-board the International Space Station (ISS), as well as, current and future payload development. By working aboard ISS under crew supervision, it provides a risk tolerant Test-bed Environment for Distributed Satellite Free-flying Control Algorithms. If anything goes wrong, reset and try again! NASA has made the capability available to other U.S. government agencies, schools, commercial companies and students to expand the pool of ideas for how to test and use these bowling ball-sized droids. For many of the researchers, SPHERES offers the only opportunity to do affordable on-orbit characterization of their technology in the microgravity environment. Future utilization of SPHERES as a facility will grow its capabilities as a platform for science, technology development, and education.

  2. ADVANTAGES OF THE PROGRAM-BASED LOGBOOK SUBMISSION GUI AT JEFFERSON LAB

    Energy Technology Data Exchange (ETDEWEB)

    T. McGuckin

    2006-10-24

    DTlite is a Tcl/Tk script that is used as the primary interface for making entries into Jefferson Lab's electronic logbooks. DTlite was originally written and implemented by a user to simplify submission of entries into Jefferson Lab?s electronic logbook, but has subsequently been maintained and developed by the controls software group. The use of a separate, script-based tool for logbook submissions (as opposed to a web-based submission tool bundled with the logbook database/interface) provides many advantages to the users, as well as creating many challenges to the programmers and maintainers of the electronic logbook system. The paper describes the advantages and challenges of this design model and how they have affected the development lifecycle of the electronic logbook system.

  3. Studies of the Electromagnetic Structure of Mesons at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Daniel, S.

    2012-11-11

    The Jefferson Laboratory Hall B PrimEx Collaboration is using tagged photons to perform an absolute 1.4% level cross section measurement of the photoproduction of neutral pions in the Coulomb field of a nucleus. The absolute cross section for this process is directly proportional to the neutral pion radiative decay width and consequently the uncertainty in the luminosity is directly reflected in the final error bar of the measurement. The PI has taken primary responsibility for the photon flux determination and in this technical report, we outline the steps taken to limit the uncertainty in the tagged photon flux to the 1% level. These include the use of a total absorption counter for absolute flux calibration, a pair spectrometer for online relative flux monitoring, and updated procedures for postbremsstrahlung electron counting. The photon tagging technique has been used routinely in its various forms to provide quasimonochromatic photons for absolute photonuclear cross section measurements. The analysis of such experiments in the context of bremsstrahlung photon tagging was summarized by Owens in 1990. Since then, a number of developments have made possible significant improvements in the implementation of this technique. Here, we describe the steps taken by the PrimEx Collaboration in Hall B of Jefferson Laboratory to limit the systematic uncertainty in the absolute photon flux to 1%. They include an absolute flux calibration at low intensity with a total absorption counter, online relative flux monitoring with a pair spectrometer, and the use of multihit time to digital converters for post bremsstrahlung electron counting during production data runs. While this discussion focuses on the analysis techniques utilized by the PrimEx Collaboration which involves a bremsstrahlung based photon tagging system to measure the neutral pion lifetime, the methods described herein readily apply to other types of photon tagging systems.

  4. The Proton Form Factor Ratio Measurements at Jefferson Lab

    CERN Document Server

    Punjabi, Vina

    2014-01-01

    The ratio of the proton form factors, GEp/GMp, has been measured from Q2 of 0.5 GeV2 to 8.5 GeV2, at the Jefferson Laboratory, using the polarization transfer method. This ratio is extracted directly from the measured ratio of the transverse and longitudinal polarization components of the recoiling proton in elastic electron-proton scattering. The discovery that the proton form factor ratio measured in these experiments decreases approximately linearly with four-momentum transfer, Q2, for values above ? 1 GeV2, is one of the most significant results to come out of JLab. These results have had a large impact on progress in hadronic physics; and have required a significant rethinking of nucleon structure. The increasingly common use of the double-polarization technique to measure the nucleon form factors, in the last 15 years, has resulted in a dramatic improvement of the quality of all four nucleon electromagnetic form factors, GEp, GMp, GEn and GMn. There is an approved experiment at JLab, GEP(V), to continue...

  5. The Meson Spectroscopy Program Using the Forward Tagger with CLAS12 at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Fegan, Stuart [INFN-GENOVA

    2014-11-01

    The 12 GeV upgrade to the Continuous Electron Beam Accelerator Facility (CEBAF) will enable a new generation of experiments in hadronic nuclear physics at Jefferson Lab, seeking to address fundamental questions in QCD. For example, confirming the existence of exotic states, suggested by both quark models and lattice calculations, would allow gluonic degrees of freedom to be explored, and may help explain the role played by gluons in the QCD interaction. In Experimental Hall B, meson spectroscopy (the MesonEx experiment) will be performed using low Q2 electron scattering to produce quasi-real photons. The scattered electron is detected at small angles by the Forward Tagger device, determining the properties of the photon on an event-by-event basis. This technique has notable advantages over real photon beams, and over hadronic beam experiments, where most experimental data exists. This article will focus on the development of the Forward Tagger by the INFN Genova group, and the proposed MesonEx experiment.

  6. A proposed VUV oscillator-based FEL upgrade at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Benson, S. V. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Douglas, D. R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Evtushenko, P. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hannon, F. E. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hernandez-Garcia, C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Klopf, J. M. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Legg, R. A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Neil, G. R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Shinn, M. D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Tennant, C. D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Williams, G. P. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2011-09-20

    Advances in superconducting linac technology offer the possibility of an upgrade of the Jefferson Lab Free Electron Laser (JLab FEL) facility to an oscillator-based VUV-FEL that would produce 6 x 10{sup 12} coherent 100 eV photons per pulse at multi-MHz repetition rates in the fundamental. At present JLab operates a pair of oscillator-based continuous-wave Free Electron Lasers (FELs) as a linac-based next generation light source in the IR and UV, with sub-picosecond pulses up to 75 MHz. Harmonics upwards of 10 eV are produced and the fully coherent nature of the source results in peak and average brightness values that are several orders of magnitude higher than storage rings. The accelerator uses an energy recovered linac design for efficiency of operation. New style superconducting linac cryomodules with higher gradient, combined with a new injector and beam transport system allow the development of the FEL to higher photon energies.

  7. The Proton Form Factor Ratio Measurements at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Punjabi, Vina A. [Norfolk State University, Norfolk, VA (United States); Perdrisat, Charles F. [William and Mary College, Williamsburg, VA (United States)

    2014-03-01

    The ratio of the proton form factors, G{sub Ep}/G{sub Mp}, has been measured from Q{sup 2} of 0.5 GeV{sup 2} to 8.5 GeV{sup 2}, at the Jefferson Laboratory, using the polarization transfer method. This ratio is extracted directly from the measured ratio of the transverse and longitudinal polarization components of the recoiling proton in elastic electron-proton scattering. The discovery that the proton form factor ratio measured in these experiments decreases approximately linearly with four-momentum transfer, Q{sup 2}, for values above ~1 GeV{sup 2}, is one of the most significant results to come out of JLab. These results have had a large impact on progress in hadronic physics; and have required a significant rethinking of nucleon structure. The increasingly common use of the double-polarization technique to measure the nucleon form factors, in the last 15 years, has resulted in a dramatic improvement of the quality of all four nucleon electromagnetic form factors, G{sub Ep}, G{sub Mp}, G{sub En} and G{sub Mn}. There is an approved experiment at JLab, GEP(V), to continue the ratio measurements to 12 GeV{sup 2}. A dedicated experimental setup, the Super Bigbite Spectrometer (SBS), will be built for this purpose. It will be equipped with a focal plane polarimeter to measure the polarization of the recoil protons. The scattered electrons will be detected in an electromagnetic calorimeter. In this presentation, I will review the status of the proton elastic electromagnetic form factors and discuss a number of theoretical approaches to describe nucleon form factors.

  8. Vacuum Characterization and Improvement for the Jefferson Lab Polarized Electron Source

    Energy Technology Data Exchange (ETDEWEB)

    Stutzman, Marcy L. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Poelker, Matthew [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Adderley, Philip A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Mamun, Md Abdullah [Old Dominion Univ., Norfolk, VA (United States)

    2015-09-01

    Operating the JLab polarized electron source with high reliability and long lifetime requires vacuum near the XHV level, defined as pressure below 7.5×10-13 Torr. This paper describes ongoing vacuum research at Jefferson Lab including characterization of outgassing rates for surface coatings and heat treatments, ultimate pressure measurements, investigation of pumping including an XHV cryopump, and characterization of ionization gauges in this pressure regime.

  9. Beam Line Commissioning of a UV/VUV FEL at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Stephen; Blackburn, Keith; Bullard, Daniel; Clavero Perez, Cesar; Coleman, James; Dickover, Cody; Douglas, David; Ellingsworth, Forrest; Evtushenko, Pavel; Hernandez-Garcia, Carlos; Gould, Christopher; Gubeli, Joseph; Hardy, David; Jordan, Kevin; Klopf, John; James, Kortze; Legg, Robert; Marchlik, Matthew; Moore, Steven; Neil, George; Powers, Thomas; Sexton, Daniel; Shinn, Michelle D; Tennant, Christopher; Walker, Richard; Williams, Gwyn; Wilson, Frederick

    2011-08-01

    Many novel applications in photon sciences require very high brightness and/or short pulses in the vacuum ultra-violet (VUV). Jefferson Lab has commissioned a UV oscillator with high gain and has transported the third harmonic of the UV to a user lab. The experimental performance of the UV FEL is much better than simulated performance in both gain and efficiency. This success is important for efforts to push towards higher gain FELs at short wavelengths where mirrors absorb strongly. We will report on efforts to characterize the UV laser and the VUV coherent harmonics as well as designs to lase directly in the VUV wavelength range.

  10. Electromagnetic calorimeter for the Heavy Photon Search Experiment at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, Emma [Univ. of Glasgow, Scotland (United Kingdom)

    2014-11-01

    The Heavy Photon Search Experiment (HPS) seeks to detect a hypothesised hidden sector boson, the A', predicted to be produced in dark matter decay or annihilation. Theories suggest that the A' couples weakly to electric charge through kinetic mixing, allowing it, as a result, to decay to Standard Matter (SM) lepton pair, which may explain the electron and positron excess recently observed in cosmic rays. Measuring the lepton pair decay of the A' could lead to indirect detection of dark matter. The HPS experiment is a fixed target experiment that will utilize the electron beam produced at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). The detector set-up includes a silicon vertex tracker (SVT) and an Electromagnetic Calorimeter (ECal). The ECal will provide the trigger and detect e+e- pairs and its construction and testing forms the focus of this thesis. The ECal consists of 442 PbWO4- tapered crystals with a length 16cm and a 1.6x1.6cm2 cross-section, stacked into a rectangular array and are coupled to Large Area APDs and corresponding pre-amplifiers. Supplementary to the ECal is a Light Monitoring System (LMS) consisting of bi-coloured LEDs that will monitor changes in APD gain and crystal transparency due to radiation damage. Before construction of the ECal each of the components were required to be individually tested to determine a number of different characteristics. Irradiation tests were performed on PbWO4 ECal crystals and, as a comparison, one grown by a different manufacturer to determine their radiation hardness. A technique for annealing the radiation damage by optical bleaching, which involves injecting light of various wavelengths into the crystal, was tested using the blue LED from the LMS as a potential candidate. The light yield dependence on temperature was also measured for one of the PbWO4 crystal types. Each APD was individually tested to determine if they

  11. Status of the Control System for the CLAS Detector at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    T. Carroll; A. Gilmer; M. Vineyard; T. Auger; W. Brooks; S. Fabbro; A. Freyberger; M. Ito; B. Madre; Y. Patois; S. Philips; M. Swynghedauw; J. Tang

    1997-11-01

    A control system for Hall B at the Thomas Jefferson National Accelerator Facility is being developed within the framework of the Experimental Physics and Industrial Control System (EPICS). The Hall B equipment currently under EPICS control include numerous beam line devices, high voltage supplies, detector gas systems, and safety systems. The status of the control system is described.

  12. Fiducialization of Superconducting Radio Frequency Cryomodules at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    C. J. Curtis; J. Dahlberg; W. Oren; J. Preble; K. Tremblay

    2006-09-26

    During the early 1990's the Continuous Electron Beam Accelerator Facility (CEBAF), was under construction in Newport News, Virginia. The facility was to be the first of its kind in that it was to provide a continuous beam of electrons for experimental physics at energies of several GeV. One of the key elements of this unique machine was the 338 superconducting radio frequency (SRF) cavities built into 42 cryomodules and arranged in two linacs. These were linked by arcs of conventional magnets which allowed recirculation through the linacs up to five times, in order to achieve the design energy of 4GeV. Within each cryomodule the cavities were aligned and referenced to external fiducials allowing alignment on the design beampath. This paper describes the process developed to achieve this, how it evolved with improving instrumentation, and the results obtained. Suggestions for alternative methods which may prove useful for future projects are also discussed.

  13. Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, Jozef; Essig, Rouven; Kumar, Krishna; Meyer, Curtis; McKeown, Robert; Meziani, Zein Eddine; Miller, Gerald A; Pennington, Michael; Richards, David; Weinstein, Larry

    2012-08-01

    We are at the dawn of a new era in the study of hadronic nuclear physics. The non-Abelian nature of Quantum Chromodynamics (QCD) and the resulting strong coupling at low energies represent a significant challenge to nuclear and particle physicists. The last decade has seen the development of new theoretical and experimental tools to quantitatively study the nature of confinement and the structure of hadrons comprised of light quarks and gluons. Together these will allow both the spectrum and the structure of hadrons to be elucidated in unprecedented detail. Exotic mesons that result from excitation of the gluon field will be explored. Multidimensional images of hadrons with great promise to reveal the dynamics of the key underlying degrees of freedom will be produced. In particular, these multidimensional distributions open a new window on the elusive spin content of the nucleon through observables that are directly related to the orbital angular momenta of quarks and gluons. Moreover, computational techniques in Lattice QCD now promise to provide insightful and quantitative predictions that can be meaningfully confronted with, and elucidated by, forthcoming experimental data. In addition, the development of extremely high intensity, highly polarized and extraordinarily stable beams of electrons provides innovative opportunities for probing (and extending) the Standard Model, both through parity violation studies and searches for new particles. Thus the 12 GeV upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab will enable a new experimental program with substantial discovery potential to address these and other important topics in nuclear, hadronic and electroweak physics.

  14. Spectroscopic Study of L Hypernuclei with Electron Beams at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Satoshi [Tohoku Univ., Sendai (Japan); Gogami, Toshiyuki [Tohoku Univ., Sendai (Japan); Tang, Liguang [Hampton Univ., Hampton, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-07-01

    The missing mass spectroscopy of L hypernuclei with the (e, e'K^+) reaction was started from 2000 at Jefferson Lab. In this fifteen years, various hypernuclei (A = 7 - 52) including hyperon (L, S^0) productions have been studied with newly developed experimental techniques. The (e, e'K^+) reaction spectroscopy of L hypernuclei features its capability of absolute missing mass calibration and production of new species of hypernuclei which are the isospin partners of well studied hypernuclei by (K^-, pi-) and (pi^+, K^+) reactions. In this paper, we will review how we established the (e, e'K^+) spectroscopic study of hypernuclei.

  15. Electron Polarimetry at Low Energies in Hall C at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Gaskell, David J. [JLAB

    2013-11-01

    Although the majority of Jefferson Lab experiments require multi-GeV electron beams, there have been a few opportunities to make electron beam polarization measurements at rather low energies. This proceedings will discuss some of the practical difficulties encountered in performing electron polarimetry via Mo/ller scattering at energies on the order of a few hundred MeV. Prospects for Compton polarimetry at very low energies will also be discussed. While Mo/ller scattering is likely the preferred method for electron polarimetry at energies below 500 MeV, there are certain aspects of the polarimeter and experiment design that must be carefully considered.

  16. Precision Measurements of the Neutron Spin Structure at Jefferson Lab Hall A

    Energy Technology Data Exchange (ETDEWEB)

    Xiaochao Zheng

    2004-09-01

    The authors present here recent progress on the experimental study of the neutron spin structure at Jefferson Lab Hall A. They focus on two precision experiments. The physics motivation and the experimental setup will be described first. Then they present results for the neutron spin asymmetry A{sub 1}{sup n} and results for spin-flavor decomposition of the nucleon spin in the valence quark region, and preliminary results for the neutron spin structure function g{sub 2}{sup n} at low Q{sup 2}.

  17. CLAS+FROST: new generation of photoproduction experiments at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Eugene Pasyuk

    2009-12-01

    A large part of the experimental program in Hall B of the Jefferson Lab is dedicated to baryon spectroscopy. Photoproduction experiments are essential part of this program. CEBAF Large Acceptance Spectrometer (CLAS) and availability of circularly and linearly polarized tagged photon beams provide unique conditions for this type of experiments. Recent addition of the Frozen Spin Target (FROST) gives a remarkable opportunity to measure double and triple polarization observables for different pseudo-scalar meson photoproduction processes. For the first time, a complete or nearly complete experiment becomes possible and will allow model independent extraction of the reaction amplitude. An overview of the experiment and its current status is presented.

  18. Jefferson Lab CLAS12 Superconducting Solenoid magnet Requirements and Design Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Rajput-Ghoshal, Renuka [Jefferson Lab, Newport News, VA; Hogan, John P. [Jefferson Lab, Newport News, VA; Fair, Ruben J. [Jefferson Lab, Newport News, VA; Ghoshal, Probir K. [Jefferson Lab, Newport News, VA; Luongo, Cesar [Jefferson Lab, Newport News, VA; Elouadrhiri, Latifa [Jefferson Lab, Newport News, VA

    2014-12-01

    As part of the Jefferson Lab 12GeV accelerator upgrade project, one of the experimental halls (Hall B) requires two superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration and the second is an actively shielded solenoidal magnet system consisting of 5 coils. In this presentation the physics requirements for the 5 T solenoid magnet, design constraints, conductor decision, and cooling choice will be discussed. The various design iterations to meet the specification will also be discussed in this presentation.

  19. The GlueX experiment: Search for gluonic excitations via photoproduction at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Eugenio, Paul [Florida State U.

    2013-07-01

    Studies of meson spectra via strong decays provide insight regarding QCD at the confinement scale. These studies have led to phenomenological models for QCD such as the constituent quark model. However, QCD allows for a much richer spectrum of meson states which include extra states such as exotics, hybrids, multi-quarks, and glueballs. First discussion of the status of exotic meson searches is given followed by an overview of the progress at Jefferson Lab to double the energy of the machine to 12 GeV, which will allow us to access photoproduction of mesons in search for gluonic excited states.

  20. Upgraded photon calorimeter with integrating readout for Hall A Compton Polarimeter at Jefferson Lab

    CERN Document Server

    Friend, M; Benmokhtar, F; Camsonne, A; Dalton, M; Franklin, G B; Mamyan, V; Michaels, R; Nanda, S; Nelyubin, V; Paschke, K; Quinn, B; Rakhman, A; Souder, P; Tobias, A

    2011-01-01

    The photon arm of the Compton polarimeter in Hall A of Jefferson Lab has been upgraded to allow for electron beam polarization measurements with better than 1% accuracy. The data acquisition system (DAQ) now includes an integrating mode, which eliminates several systematic uncertainties inherent in the original counting-DAQ setup. The photon calorimeter has been replaced with a Ce-doped GSO crystal, which has a bright output and fast response, and works well for measurements using the new integrating method at electron beam energies from 1 to 6 GeV.

  1. Upgraded photon calorimeter with integrating readout for the Hall A Compton polarimeter at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Friend, M., E-mail: mfriend@andrew.cmu.edu [Carnegie Mellon University, Department of Physics, 5000 Forbes Ave, Pittsburgh, PA 15213 (United States); Parno, D. [Carnegie Mellon University, Department of Physics, 5000 Forbes Ave, Pittsburgh, PA 15213 (United States); University of Washington, Center for Experimental Nuclear Physics and Astrophysics and Department of Physics, Seattle, WA 98195 (United States); Benmokhtar, F. [Carnegie Mellon University, Department of Physics, 5000 Forbes Ave, Pittsburgh, PA 15213 (United States); Christopher Newport University, Department of Physics, Computer Science and Engineering, 1 University Place, Newport News, VA 23606 (United States); Camsonne, A. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave, Newport News, VA 23606 (United States); Dalton, M.M. [University of Virginia, Department of Physics, 382 McCormick Rd, Charlottesville, VA 22904 (United States); Franklin, G.B.; Mamyan, V. [Carnegie Mellon University, Department of Physics, 5000 Forbes Ave, Pittsburgh, PA 15213 (United States); Michaels, R.; Nanda, S. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave, Newport News, VA 23606 (United States); Nelyubin, V.; Paschke, K. [University of Virginia, Department of Physics, 382 McCormick Rd, Charlottesville, VA 22904 (United States); Quinn, B. [Carnegie Mellon University, Department of Physics, 5000 Forbes Ave, Pittsburgh, PA 15213 (United States); Rakhman, A.; Souder, P. [Syracuse University, Department of Physics, Syracuse, NY 13244 (United States); Tobias, A. [University of Virginia, Department of Physics, 382 McCormick Rd, Charlottesville, VA 22904 (United States)

    2012-06-01

    The photon arm of the Compton polarimeter in Hall A of Jefferson Lab has been upgraded to allow for electron beam polarization measurements with better than 1% accuracy. The data acquisition (DAQ) system now includes an integrating mode, which eliminates several systematic uncertainties inherent in the original counting-DAQ setup. The photon calorimeter has been replaced with a Ce-doped Gd{sub 2}SiO{sub 5} crystal, which has a bright output and fast response, and works well for measurements using the new integrating method at electron beam energies from 1 to 6 GeV.

  2. Short Distance of Nuclei - Mining the Wealth of Existing Jefferson Lab Data - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, Lawrence [Old Dominion Univ., Norfolk, VA (United States); Kuhn, Sebastian [Old Dominion Univ., Norfolk, VA (United States)

    2016-01-08

    Over the last fifteen years of operation, the Jefferson Lab CLAS Collaboration has performed many experiments using nuclear targets. Because the CLAS detector has a very large acceptance and because it used a very open (i.e., nonspecific) trigger, there is a vast amount of data on many different reaction channels yet to be analyzed. The goal of the Jefferson Lab Nuclear Data Mining grant was to (1) collect the data from nuclear target experiments using the CLAS detector, (2) collect the associated cuts and corrections used to analyze that data, (3) provide non-expert users with a software environment for easy analysis of the data, and (4) to search for interesting reaction signatures in the data. We formed the Jefferson Lab Nuclear Data Mining collaboration under the auspices of this grant. The collaboration successfully carried out all of our goals. Dr. Gavalian, the data mining scientist, created a remarkably user-friendly web-based interface to enable easy analysis of the nuclear-target data by non-experts. Data from many of the CLAS nuclear target experiments has been made available on servers at Old Dominion University. Many of the associated cuts and corrections have been incorporated into the data mining software. The data mining collaboration was extraordinarily successful in finding interesting reaction signatures in the data. Our paper Momentum sharing in imbalanced Fermi systems was published in Science. Several analyses of CLAS data are continuing and will result in papers after the end of the grant period. We have held several analysis workshops and have given many invited talks at international conferences and workshops related to the data mining initiative. Our initiative to maximize the impact of data collected with CLAS in the 6-GeV era was very successful. During the hiatus between the end of 6-GeV experiments and the beginning of 12-GeV experiments, our collaboration and the physics community at large benefited tremendously from the Jefferson Lab

  3. An overview of recent nucleon spin structure measurements at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Allada, Kalyan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-02-01

    Jefferson Lab have made significant contributions to improve our knowledge of the longitudinal spin structure by measuring polarized structure functions, g1 and g2, down to Q2 = 0.02 GeV2. The low Q2 data is especially useful in testing the Chiral Perturbation theory (cPT) calculations. The spin-dependent sum rules and the spin polarizabilities, constructed from the moments of g1 and g2, provide an important tool to study the longitudinal spin structure. We will present an overview of the experimental program to measure these structure functions at Jefferson Lab, and present some recent results on the neutron polarizabilities, proton g1 at low Q2, and proton and neutron d2 measurement. In addition to this, we will discuss the transverse spin structure of the nucleon which can be accessed using chiral-odd transversity distribution (h1), and show some results from measurements done on polarized 3He target in Hall A.

  4. Berkeley Lab Laser Accelerator (BELLA) facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Berkeley Lab Laser Accelerator (BELLA) facility (formerly LOASIS) develops advanced accelerators and radiation sources. High gradient (1-100 GV/m) laser-plasma...

  5. A composite thin vacuum window for the CLAS photon tagger at Jefferson lab

    CERN Document Server

    Matthews, S K; O'Brien, J T; Sober, D I

    1999-01-01

    The construction of a thin vacuum window, currently in use on the CLAS photon tagging system at the Thomas Jefferson National Accelerator Facility, is described. A layer of woven Kevlar cloth supports a much thinner membrane of aluminized Mylar. Notable features of this particular window include its overall length (9.6 m), and the fact that the entire load is supported by the epoxy seal with no mechanical clamping around the edges. Results from a diverse program of materials testing, including a clear dependence of leak rate on relative humidity, are also reported.

  6. Jefferson Lab Hall A Beamline Instrumentation and Calibration for GMP experiment

    Science.gov (United States)

    Gautam, Thir Narayan

    2015-10-01

    The nucleon electromagnetic form factors characterize the distributions of electric charge and magnetization current inside the nucleon and thus reflect the internal structure determined by Quantum Chromodynamics. The GMp experiment is a first experiment run in Hall A at Jefferson Lab after the upgrade to double the beam energy with the goal to precisely measure electron-proton elastic cross section in the Q2 range of 7 to 17 GeV2 with an accuracy of better than 2%; several time better than existing data at the highest Q2. In order to achieve this accuracy, a determination of the accumulated beam charge of better than 0.5% is required. The new 12 GeV beamline was commissioned during the spring of 2015, with the main instrumentation consisting of beam charge and position monitors. In this talk, the procedures and the results of the calibrations of these beamline components will be presented.

  7. Proposed measurement of tagged deep inelastic scattering in Hall A of Jefferson lab

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, Rachel [Univ. of Glasgow, Scotland (United Kingdom); Annand, John [Univ. of Glasgow, Scotland (United Kingdom); Dutta, Dipangkar [Mississippi State Univ., Mississippi State, MS (United States); Keppel, Cynthia E. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); King, Paul [The Ohio State Univ., Columbus, OH (United States). Dept of Physics; Wojtsekhowski, Bogdan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Jixie [Univ. of Virginia, Charlottesville, VA (United States)

    2017-03-01

    A tagged deep inelastic scattering (TDIS) experiment is planned for Hall A of Jefferson Lab, which will probe the mesonic content of the nucleon directly. Low momentum recoiling (and spectator) protons will be measured in coincidence with electrons scattered in a deep inelastic regime from hydrogen (and deuterium) targets, covering kinematics of 8 < W2 < 18 GeV2, 1 < Q2 < 3 (GeV/c)2 and 0:05 < x < 0:2. The tagging technique will help identify scattering from partons in the meson cloud and provide access to the pion structure function via the Sullivan process. The experiment will yield the first TDIS results in the valence regime, for both proton and neutron targets. We present here an overview of the experiment.

  8. Dynamically polarized target for the g2p and GEp experiments at Jefferson Lab

    CERN Document Server

    Pierce, Joshua; Badman, Toby; Brock, James; Carlin, Christopher; Crabb, Donald; Day, Donal; Kvaltine, Nicholas; Meekins, David; Mulholland, Jonathan; Shields, Joshua; Slifer, Karl; Keith, Christopher

    2013-01-01

    We describe a dynamically polarized target that has been utilized for two electron scattering experiments in Hall A at Jefferson Lab. The primary components of the target are a new, high cooling power 4He evaporation refrigerator, and a re-purposed, superconducting split-coil magnet. It has been used to polarize protons in irradiated NH3 at a temperature of 1 K and at fields of 2.5 and 5.0 Tesla. The performance of the target material in the electron beam under these conditions will be discussed. Maximum polarizations of 55% and 95% were obtained at those fields, respectively. To satisfy the requirements of both experiments, the magnet had to be routinely rotated between angles of 0, 6, and 90 degrees with respect to the incident electron beam. This was accomplished using a new rotating vacuum seal which permits rotations to be performed in only a few minutes.

  9. The 3D structure of the hadrons: recents results and experimental program at Jefferson Lab

    Directory of Open Access Journals (Sweden)

    Muñoz Camacho C.

    2014-04-01

    Full Text Available The understanding of Quantum Chromodynamics (QCD at large distances still remains one of the main outstanding problems of nuclear physics. Studying the internal structure of hadrons provides a way to probe QCD in the non-perturbative domain and can help us unravel the internal structure of the most elementary blocks of matter. Jefferson Lab (JLab has already delivered results on how elementary quarks and gluons create nucleon structure and properties. The upgrade of JLab to 12 GeV will allow the full exploration of the valence-quark structure of nucleons and the extraction of real threedimensional pictures. I will present recent results and review the future experimental program at JLab.

  10. The aerogel threshold Cherenkov detector for the High Momentum Spectrometer in Hall C at Jefferson Lab

    CERN Document Server

    Asaturyan, R; Fenker, H; Gaskell, D; Huber, G M; Jones, M; Mack, D; Mkrtchyan, H G; Metzger, B; Novikoff, N; Tadevosyan, V; Vulcan, W; Wood, S

    2004-01-01

    We describe a new aerogel threshold Cherenkov detector installed in the HMS spectrometer in Hall C at Jefferson Lab. The Hall C experimental program in 2003 required an improved particle identification system for better identification of pi/K/P, which was achieved by installing an additional threshold Cherenkov counter. Two types of aerogel with n=1.03 and n=1.015 allow one to reach 10^{-3} proton and 10^{-2} kaon rejection in the 1-5 GeV/c momentum range with pion detection efficiency better than 99% (97%). The detector response shows no significant position dependence due to a diffuse light collection technique. The diffusion box was equipped with 16 Photonis XP4572 PMT's. The mean number of photoelectrons in saturation was ~16 and ~8, respectively. Moderate particle identification is feasible near threshold.

  11. The lead-glass electromagnetic calorimeters for the magnetic spectrometers in Hall C at Jefferson Lab

    CERN Document Server

    Mkrtchyan, H; Tadevosyan, V; Arrington, J; Asaturyan, A; Christy, M E; Dutta, D; Ent, R; Fenker, H C; Gaskell, D; Horn, T; Jones, M K; Keppel, C E; Mack, D J; Malace, S P; Mkrtchyan, A; Niculescu, M I; Seely, J; Tvaskis, V; Wood, S A; Zhamkochyan, S

    2012-01-01

    The electromagnetic calorimeters of the various magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers design considerations, relevant construction information, and comparisons of simulated and experimental results are included. The energy resolution of the HMS and SOS calorimeters is better than $\\sigma/E \\sim 6%/\\sqrt E $, and pion/electron ($\\pi/e$) separation of about 100:1 has been achieved in energy range 1 -- 5 GeV. Good agreement has been observed between the experimental and simulated energy resolutions, but simulations systematically exceed experimentally determined $\\pi^-$ suppression factors by close to a factor of two. For the SHMS spectrometer presently under construction details on the design and accompanying GEANT4 simulation efforts are given. The anticipated performance of the new calorimeter is predicted over the full momentum range of the SHMS. Good electron/hadron separation is anticipated by combining the energy deposited in an initial...

  12. Superconducting Magnets for the 12 GeV Upgrade at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Fair, Ruben J. [JLAB; Young, Glenn R. [JLAB

    2015-06-01

    Jefferson Laboratory is embarked on an energy upgrade to its flagship continuous electron beam accelerator in order to expand the scope of its research capabilities and probe further into the structure of nuclear particles. The 12 GeV upgrade includes the design, manufacture, integration, installation and commissioning of eight different superconducting magnets in three separate experimental halls. The effort involves other national laboratories, universities and industry spanning three countries. This paper will summarize the key characteristics of these magnets, ranging in size from 0.2 to 23 MJ in stored energy, and featuring many different types and configurations. The paper will also give an overview of the specific technical challenges for each magnet, and a status report on magnet manufacture and expected delivery dates. The 12GeV upgrade at J-Lab represents the largest superconducting magnet fabrication and installation program currently ongoing in the United States and this paper will present the breadth of collaborations supporting it.

  13. Studies with cathode drift chambers for the GlueX experiment at Jefferson Lab

    Science.gov (United States)

    Pentchev, L.; Barbosa, F.; Berdnikov, V.; Butler, D.; Furletov, S.; Robison, L.; Zihlmann, B.

    2017-02-01

    A drift chamber system consisting of 24 1 m-diameter chambers with both cathode and wire readout (total of 12,672 channels) is operational in Hall D at Jefferson Lab (Virginia). Two cathode strip planes and one wire plane in each chamber register the same avalanche allowing the study of avalanche development, charge induction process, and strip resolution. We demonstrate a method for reconstructing the two-dimensional distribution of the avalanche ;center-of-gravity; position around the wire from an 55Fe source with resolutions down to 30 μm. We estimate the azimuthal extent of the avalanche around the wire as a function of the total charge for an Ar/CO2 gas mixture. By means of cluster counting using a modified 3 cm-gap chamber, we observe significant space charge effects within the same track, resulting in an extent of the avalanche along the wire.

  14. Deeply Virtual Pseudoscalar Meson Production at Jefferson Lab and Transversity GPDs

    Energy Technology Data Exchange (ETDEWEB)

    Kubarovsky, Valery P. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-02-01

    Transverse-momentum dependent parton distribution functions (TMDs) provide a description of nucleon structure in terms of the parton transverse momentum and its transverse spin. At leading twist there are eight TMDs, each offering a unique feature of quarks in a polarized or an unpolarized nucleon. The Sivers distribution is one of the most interesting TMD due to its non-universality. It has been extracted using the data from semi-inclusive deep-inelastic scattering (SIDIS), but there is no data yet from spin-dependent Drell-Yan (DY) process. Such measurement will provide a crucial test of TMD formalism which predicts an equal magnitude and opposite sign for the Sivers function extracted from SIDIS and DY process. We will discuss key future measurements of TMDs using both SIDIS and DY process with a focus on Hall A SoLID SIDIS program at Jefferson Lab.

  15. Transient Mirror Heating Theory and Experiment in the Jefferson Lab IR Demo FEL

    Energy Technology Data Exchange (ETDEWEB)

    Benson, S.; Michelle D. Shinn.; Neil, G.R.

    2001-01-01

    During commissioning of the IR Demo FEL at Jefferson Lab, we noticed that the FEL exhibited a rapid power drop with time when the first set of 3 mu-m mirrors was used. Thought the rate of power drop was unexpected, it was thought that it could be due to a distortion of the mirrors during a time short compared to a the thermal diffusion time. This transient distortion might affect the laser more than the steady state distortion. This paper presents some analysis of the transient mirror heating problem and some recent experimental results using different mirror substrates and coatings. It is found that the behavior of the first mirror set cannot be reconciled with the observed power fall-off if a linear absorption is assumed. The power drop in more recent experiments is consistent with linear thermal analysis. No anomalous transient effects are seen.

  16. Preliminary Results from Integrating Compton Photon Polarimetry in Hall A of Jefferson Lab

    CERN Document Server

    Parno, D; Benmokhtar, F; Franklin, G; Michaels, R; Nanda, S; Quinn, B; Souder, P

    2011-01-01

    A wide range of nucleon and nuclear structure experiments in Jefferson Lab's Hall A require precise, continuous measurements of the polarization of the electron beam. In our Compton polarimeter, electrons are scattered off photons in a Fabry-Perot cavity; by measuring an asymmetry in the integrated signal of the scattered photons detected in a GSO crystal, we can make non-invasive, continuous measurements of the beam polarization. Our goal is to achieve 1% statistical error within two hours of running. We discuss the design and commissioning of an upgrade to this apparatus, and report preliminary results for experiments conducted at beam energies from 3.5 to 5.9 GeV and photon rates from 5 to 100 kHz.

  17. Preliminary Results from Integrating Compton Photon Polarimetry in Hall A of Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    D. Parno, M. Friend, F. Benmokhtar, G. Franklin, R. Michaels, S. Nanda, B. Quinn, P. Souder

    2011-09-01

    A wide range of nucleon and nuclear structure experiments in Jefferson Lab's Hall A require precise, continuous measurements of the polarization of the electron beam. In our Compton polarimeter, electrons are scattered off photons in a Fabry-Perot cavity; by measuring an asymmetry in the integrated signal of the scattered photons detected in a GSO crystal, we can make non-invasive, continuous measurements of the beam polarization. Our goal is to achieve 1% statistical error within two hours of running. We discuss the design and commissioning of an upgrade to this apparatus, and report preliminary results for experiments conducted at beam energies from 3.5 to 5.9 GeV and photon rates from 5 to 100 kHz.

  18. New photomultiplier active base for Hall C Jefferson Lab lead tungstate calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Vladimir E. [JLAB; Mkrtchyan, Hamlet G. [Artem Alikhanian National Laboratory

    2012-11-01

    A new photomultiplier tube active base was designed and tested. The base combines active voltage division circuit and fast amplifier, powered by the current flowing through voltage divider. This base is developed to upgrade older photomultiplier bases of Jefferson Lab lead-tungsten calorimeter (about ˜1200 crystals of PbWO{sub 4} from the PrimEx experimental setup). This is needed for the extension of detectors' rate capability to meet requirements of new Hall C proposal PR12-11-102 of measurements of the L/T separated cross sections and their ratio R = πL/πT in neutral-pion p(e,e'π0)p deep exclusive and p(p(e,e'π{sup 0})p)X semi-inclusive scattering regions. New active base is direct replacement of older passive base circuit without adding of additional power or signal lines. However, it extends detectors rate capability with factor over 20. Moreover, transistorized voltage divider improves detector's amplitude resolution due to reduction of photomultiplier gain dependence from tube anode current. The PMT active base is the invention disclosed in V. Popov's U.S. Patent No. 6,791,269, which successfully works over ten years in several Jefferson Lab Cherenkov detectors. The following design is a new revised and improved electronic circuit with better gain stability and linearity in challenge to meet requirements of new Hall C experimental setup. New active base performance was tested using fast LED light source and Pr:LuAG scintillator and gamma sources. Electronics radiation hardness was tested on JLab accelerator. Results of testing R4125 Hamamatsu photomultiplier tube in new active base are presented.

  19. APEX: A Prime EXperiment at Jefferson Lab - Test Run Results and Full Run Plans; Update

    Energy Technology Data Exchange (ETDEWEB)

    Beacham, James [Ohio University, JLAB

    2015-06-01

    APEX is an experiment at Thomas Jefferson National Accelerator Facility (JLab) in Virginia, USA, that searches for a new gauge boson (A') with sub-GeV mass and coupling to ordinary matter of g' ~ (10-6 - 10⁻²)e. Electrons impinge upon a fixed target of high-Z material. An A' is produced via a process analogous to photon bremsstrahlung, decaying to an e⁺+e⁻ pair. A test run was held in July of 2010, covering mA' = 175 to 250 MeV and couplings g'/e > 10⁻³. A full run is approved and will cover mA' ~ 65 to 525 MeV and g'/e > 2.3 x 10⁻⁴, and is expected to occur sometime in 2016 or 2017.

  20. Ingot niobium as candidate electrode material for Jefferson Lab 200 kV inverted electron photogun

    Energy Technology Data Exchange (ETDEWEB)

    BastaniNejad, Mahzad, E-mail: Mahzad@jlab.org [Christopher Newport University, Newport News VA (United States); Suleiman, Riad, E-mail: suleiman@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States)

    2015-12-04

    This contribution describes the field emission characterization of niobium electrodes using a DC high voltage field emission test apparatus. A total of six electrodes were evaluated: two large-grain, two single-crystal, and two fine-grain that were chemically polished using a buffered-chemical acid solution. Field emission from niobium electrodes could be significantly reduced and sometimes completely eliminated, by introducing krypton gas into the vacuum chamber while the electrode is biased at high voltage. Of all the electrodes tested, a large-grain niobium electrode performed the best, exhibiting no measurable field emission (<10 pA) at 225 kV with 20 mm cathode/anode gap, corresponding to a field strength of 18.7 MV/m. Motivated by these results, an inverted electron photogun operated at Jefferson Lab injector test facility was equipped with a large-grain niobium cathode electrode and it has been successfully conditioned to 225 kV without field emission. This photogun was used to study strained superlattice GaAs and K{sub 2}CsSb photocathodes at high beam currents.

  1. Large Gas Electron Multiplier Trackers for Super Bigbite Spectrometer at Jefferson lab Hall A

    Science.gov (United States)

    Saenboonruang, K.; Gnanvo, K.; Liyanage, N.; Nelyubin, V.; Sacher, S.; Cisbani, E.; Musico, P.; Wojtsekhowski, B.

    2013-04-01

    The 12 GeV upgrade at Jefferson Lab (JLAB) makes many exciting nuclear experiments possible. These experiments also require new high performance instrumentation. The Super Bigbite Spectrometer (SBS) was proposed to perform a series of high precision nucleon form factor experiments at large momentum transfer. The SBS will be capable of operating at a very high luminosity and provide a large solid angle acceptance of 76 msr. SBS will be equipped with a double focal plane polarimeter. Thus, SBS will have three large trackers made of Gas Electron Multiplier (GEM) chambers. The first, second, and third trackers will consist of six, four, and four tracking layers respectively. When completed in 2017, the SBS GEM trackers will form one of the largest sets of GEM chambers in the world. The GEM trackers allow the SBS to operate under high background rates over 500 kHz/cm^2, while providing an excellent spatial resolution of 70 μm. The first tracker will be constructed at the Istituto Nazionale di Fisica Nucleare in Italy, while the second and third trackers will be built at the University of Virginia. In 2012, the first UVa SBS GEM chamber prototype was successfully constructed and tested. The GEM chamber construction details and test results will be presented in this talk.

  2. Beam Position Reconstruction for the g2p Experiment in Hall A at Jefferson Lab

    CERN Document Server

    Zhu, Pengjia; Allison, Trent; Badman, Toby; Camsonne, Alexandre; Chen, Jian-ping; Cummings, Melissa; Gu, Chao; Huang, Min; Liu, Jie; Musson, John; Slifer, Karl; Sulkosky, Vincent; Ye, Yunxiu; Zhang, Jixie; Zielinski, Ryan

    2015-01-01

    Beam-line equipment was upgraded for experiment E08-027 (g2p) in Hall A at Jefferson Lab. Two beam position monitors (BPMs) were necessary to measure the beam position and angle at the target. A new BPM receiver was designed and built to handle the low beam currents (50-100 nA) used for this experiment. Two new super-harps were installed for calibrating the BPMs. In addition to the existing fast raster system, a slow raster system was installed. Before and during the experiment, these new devices were tested and debugged, and their performance was also evaluated. In order to achieve the required accuracy (1-2 mm in position and 1-2 mrad in angle at the target location), the data of the BPMs and harps were carefully analyzed, as well as reconstructing the beam position and angle event by event at the target location. The calculated beam position will be used in the data analysis to accurately determine the kinematics for each event.

  3. Design of the Proposed Low Energy Ion Collider Ring at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Nissen, Edward W. [JLAB; Lin, Fanglei [JLAB; Morozov, Vasiliy [JLAB; Zhang, Yuhong [JLAB

    2013-06-01

    The polarized Medium energy Electron-Ion Collider (MEIC) envisioned at Jefferson Lab will cover a range of center-of-mass energies up to 65 GeV. The present MEIC design could also allow the accommodation of low energy electron-ion collisions (LEIC) for additional science reach. This paper presents the first design of the low energy ion collider ring which is converted from the large ion booster of MEIC. It can reach up to 25 GeV energy for protons and equivalent ion energies of the same magnetic rigidity. An interaction region and an electron cooler designed for MEIC are integrated into the low energy collider ring, in addition to other required new elements including crab cavities and ion spin rotators, for later reuse in MEIC itself. A pair of vertical chicanes which brings the low energy ion beams to the plane of the electron ring and back to the low energy ion ring are also part of the design.

  4. Phenomenology of $\\phi$ photoproduction from recent CLAS data at Jefferson Lab

    CERN Document Server

    Dey, Biplab

    2014-01-01

    We comment on the important phenomenological aspects of the recent high-statistics and wide-angle coverage $\\phi$ photoproduction data from CLAS at Jefferson Lab. The most prominent feature is a localized structure at a center-of-mass (c.m) energy $\\sqrt{s} \\sim 2.2$ GeV that is not expected in a simple $t$-channel Pomeron-exchange model. The structure exists only at the forward production angles that almost rules out any resonance contribution. Strong rescattering effects between the $p \\phi$ and $K^+\\Lambda(1520)$ channels could be possible explanations. The analyses of both charged- ($\\phi \\to K^+ K^-$) and neutral- ($\\phi \\to K^0_S K^0_L$) $K\\bar{K}$ decay modes of the $\\phi$, that show some minor differences, can be illuminating in this respect. We also comment on the angular structure of the Pomeron-parton coupling as borne out in the polarization data where the often-asumed $s$-channel helicity conservation is seen to be broken.

  5. Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab

    CERN Document Server

    Battaglieri, M; Caiffi, B; Celentano, A; De Vita, R; Fanchini, E; Marsicano, L; Musico, P; Osipenko, M; Panza, F; Ripani, M; Santopinto, E; Taiuti, M; Bellini, V; Bondí, M; De Napoli, M; Mammoliti, F; Leonora, E; Randazzo, N; Russo, G; Sperduto, M; Sutera, C; Tortorici, F; Baltzell, N; Dalton, M; Freyberger, A; Girod, F X; Kubarovsky, V; Pasyuk, E; Smith, E S; Stepanyan, S; Ungaro, M; Whitlatch, T; Izaguirre, E; Krnjaic, G; Snowden-Ifft, D; Loomba, D; Carpinelli, M; Sipala, V; Schuster, P; Toro, N; Essig, R; Wood, M H; Holtrop, M; Paremuzyan, R; De Cataldo, G; De Leo, R; Di Bari, D; Lagamba, L; Nappi, E; Perrino, R; Balossino, I; Barion, L; Ciullo, G; Contalbrigo, M; Lenisa, P; Movsisyan, A; Spizzo, F; Turisini, M; De Persio, F; Cisbani, E; Garibaldi, F; Meddi, F; Urciuoli, G M; Hasch, D; Lucherini, V; Mirazita, M; Pisano, S; Simi, G; D'Angelo, A; Lanza, L; Rizzo, A; Schaerf, C; Zonta, I; Filippi, A; Fegan, S; Kunkel, M; Bashkanov, M; Beltrame, P; Murphy, A; Smith, G; Watts, D; Zachariou, N; Zana, L; Glazier, D; Ireland, D; McKinnon, B; Sokhan, D; Colaneri, L; Pereira, S Anefalos; Afanasev, A; Briscoe, B; Strakovsky, I; Kalantarians, N; Weinstein, L; Adhikari, K P; Dunne, J A; Dutta, D; Fassi, L El; Ye, L; Hicks, K; Cole, P; Dobbs, S; Fanelli, C

    2016-01-01

    MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. This proposal presents the MeV-GeV DM discovery potential for a $\\sim$1 m$^3$ segmented CsI(Tl) scintillator detector placed downstream of the Hall A beam-dump at Jefferson Lab, receiving up to 10$^{22}$ electrons-on-target (EOT) in 285 days. This experiment (Beam-Dump eXperiment or BDX) would be sensitive to elastic DM-electron and to inelastic DM scattering at the level of 10 counts per year, reaching the limit of the neutrino irreducible background. The distinct signature of a DM interaction will be an electromagnetic shower of few hundreds of MeV, together with a reduced activity in the surrounding active veto counters. A detailed description of the DM particle $\\chi$ production in the dump and subsequent interaction in the detector has been performed by means of Monte Carlo simulations. Different approaches have been used to evaluate the expected backgrounds: the cosmogenic background has been extrapolated from the result...

  6. Deeply Virtual Pseudoscalar Meson Production at Jefferson Lab and Transversity GPDs

    CERN Document Server

    Kubarovsky, Valery

    2016-01-01

    The cross section of the exclusive $\\pi^0$ and $\\eta$ electroproduction reaction $ep\\to e^\\prime p^\\prime \\pi^0/\\eta$ was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections $d^4\\sigma/dtdQ^2dx_Bd\\phi$ and structure functions $\\sigma_T+\\epsilon\\sigma_L, \\sigma_{TT}$ and $\\sigma_{LT}$ as functions of $t$ were obtained over a wide range of $Q^2$ and $x_B$. The data are compared with the GPD based theoretical models. Analyses find that a large dominance of transverse processes is necessary to explain the experimental results. Generalized form factors of the transversity GPDs $H_T^{\\pi,\\eta}$ and $\\bar E_T^{\\pi,\\eta}$ were directly extracted from the experimental observables for the first time. It was found that GPD $\\bar E_T$ dominates in pseudoscalar meson production. The combined $\\pi^0$ and $\\eta$ data opens the way for the flavor decomposition of the transversity GPDs. The first ever evaluation of this decomposition was demonstrated.

  7. Deep Exclusive PI0 and ETA Electroproduction with CLAS at Jefferson Lab

    Science.gov (United States)

    Stoler, Paul

    2012-03-01

    The CLAS collaboration at Jefferson Lab has undertaken a series of measurements of exclusive 0̂ and η electroproduction at a beam energy 6 GeV over a large kinematic coverage in Q^2, t and xB. New results of extracted structure functions σL+σT, σLT and σTT, are presented in the kinematic range Q^2 from 1.2 to 3.2 GeV^2/c^2, |t| from |tmin| to 1.2 GeV^2/c^2 and xB from 0.1 to 0.6. Recent theoretical work [1,2] indicate that pseudoscalar meson production is uniquely sensitive to quark helicity-flip processes. The new results, together with CLAS measurements of beam spin asymmetries Aφ [3] and cross section ratios σ(π0)/σ(η) , compared with theoretical calculations [1,2] that are based on the helicity-flip transversity GPDs, provide supporting evidence that pseudoscalar meson production at these kinematics may be dominated by the handbag mechanism and helicity-flip transversity GPDs. [4pt] [1] S.V.Goloskokov and P.Kroll, Eur.Phys.J. A47,112 (2011).[0pt] [2] G.R. Goldstein,J.O.Gonzalez and S.Liuti, Phys. Rev., D84,034007(2011).[0pt] [3] R.DeMasi,et,al.(CLAS Collaboration),Phys.Rev.,C77,042201(2008)

  8. The lead-glass electromagnetic calorimeters for the magnetic spectrometers in Hall C at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Mkrtchyan, Hamlet [Yerevan Physics Institute, JLAB; Carlini, Roger D. [JLAB; Tadevosyan, Vardan H. [Yerevan Physics Institute; Arrington, John Robert [ANL; Asaturyan, Arshak Razmik [Yerevan Physics Institute; Christy, Michael Eric [Hampton U.; Dutta, Dipangkar [Mississippi State U.; Ent, Rolf [JLAB; Fenker, Howard C. [JLAB; Gaskell, David J. [JLAB; Horn, Tanja [Catholic University of America, JLAB; Jones, Mark K. [JLAB; Keppel, Cynthia [JLAB, Hampton U.; Mack, David J. [JLAB; Malace, Simona P. [Triangle Universities Nuclear Laboratory and Duke University; Mkrtchyan, Arthur [Yerevan Physics Institute; Niculescu, Maria-Ioana [James Madison U.; Seely, Charles Jason [MIT; Tvaskis, Vladas [University of Manitoba; Wood, Stephen A. [JLAB; Zhamkochyan, Simon [Yerevan Physics Institute

    2013-08-01

    The electromagnetic calorimeters of the various magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers design considerations, relevant construction information, and comparisons of simulated and experimental results are included. The energy resolution of the HMS and SOS calorimeters is better than $\\sigma/E \\sim 6%/\\sqrt E $, and pion/electron ($\\pi/e$) separation of about 100:1 has been achieved in energy range 1 -- 5 GeV. Good agreement has been observed between the experimental and simulated energy resolutions, but simulations systematically exceed experimentally determined $\\pi^-$ suppression factors by close to a factor of two. For the SHMS spectrometer presently under construction details on the design and accompanying GEANT4 simulation efforts are given. The anticipated performance of the new calorimeter is predicted over the full momentum range of the SHMS. Good electron/hadron separation is anticipated by combining the energy deposited in an initial (preshower) calorimeter layer with the total energy deposited in the calorimeter.

  9. Potential for a Tensor Asymmetry Azz Measurement in the x > 1 Region at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Long, Elena [UNH

    2014-10-01

    The tensor asymmetry A(zz) in the quasi-elastic region through the tensor polarized D(e, e')X channel is sensitive to the nucleon-nucleon potential. Previous measurements of A(zz) have been used to extract b(1) in the DIS region and T(20) in the elastic region. In the quasielastic region, A(zz) can be used to compare light cone calculations with variation nucleon- nucleon calculations, and is an important quantity to determine for understanding tensor effects, such as the dominance of pn correlations in nuclei. In the quasi-elastic region, A(zz) was first calculated in 1988 by Frankfurt and Strikman using the Hamada-Johnstone and Reid soft-core wave functions [1]. Recent calculations by M. Sargsian revisit A(zz) in the x > 1 range using virtual-nucleon and light-cone methods, which differ by up to a factor of two [2]. Discussed in these proceedings, a study has been completed that determines the feasibility of measuring A(zz) in the quasi-elastic x > 1 region at Jefferson Lab's Hall C.

  10. Beam position reconstruction for the g2p experiment in Hall A at Jefferson lab

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Pengjia, E-mail: pzhu@jlab.org [University of Science and Technology of China, Hefei, Anhui 230026 (China); Allada, Kalyan [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Massachusetts Institute of Technology, MA 02139 (United States); Allison, Trent [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Badman, Toby [University of New Hampshire, Durham, NH 03824 (United States); Camsonne, Alexandre; Chen, Jian-ping [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Cummings, Melissa [College of William & Mary, Williamsburg, VA 23187 (United States); Gu, Chao [University of Virginia, Charlottesville, VA 22904 (United States); Huang, Min [Duke University, Durham, NC 27708 (United States); Liu, Jie [University of Virginia, Charlottesville, VA 22904 (United States); Musson, John [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Slifer, Karl [University of New Hampshire, Durham, NH 03824 (United States); Sulkosky, Vincent [University of Virginia, Charlottesville, VA 22904 (United States); Massachusetts Institute of Technology, MA 02139 (United States); Ye, Yunxiu [University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Jixie [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); University of Virginia, Charlottesville, VA 22904 (United States); Zielinski, Ryan [University of New Hampshire, Durham, NH 03824 (United States)

    2016-02-01

    Beam-line equipment was upgraded for experiment E08-027 (g2p) in Hall A at Jefferson Lab. Two beam position monitors (BPMs) were necessary to measure the beam position and angle at the target. A new BPM receiver was designed and built to handle the low beam currents (50–100 nA) used for this experiment. Two new super-harps were installed for calibrating the BPMs. In addition to the existing fast raster system, a slow raster system was installed. Before and during the experiment, these new devices were tested and debugged, and their performance was also evaluated. In order to achieve the required accuracy (1–2 mm in position and 1–2 mrad in angle at the target location), the data of the BPMs and harps were carefully analyzed, as well as reconstructing the beam position and angle event by event at the target location. The calculated beam position will be used in the data analysis to accurately determine the kinematics for each event.

  11. Unveiling the nucleon tensor charge at Jefferson Lab: A study of the SoLID case

    CERN Document Server

    Ye, Zhihong; Allada, Kalyan; Liu, Tianbo; Chen, Jian-Ping; Kang, Zhong-Bo; Prokudin, Alexei; Sun, Peng; Yuan, Feng

    2016-01-01

    Future experiments at the Jefferson Lab 12 GeV upgrade, in particular, the Solenoidal Large Intensity Device (SoLID), aim at a very precise data set in the region where the partonic structure of the nucleon is dominated by the valence quarks. One of the main goals is to constrain the quark transversity distributions. We apply recent theoretical advances of the global QCD extraction of the transversity distributions to study the impact of future experimental data from the SoLID experiments. Especially, we develop a simple strategy based on the Hessian matrix analysis that allows one to estimate the uncertainties of the transversity quark distributions and their tensor charges extracted from SoLID data simulation. We find that the SoLID measurements with the proton and the effective neutron targets can improve the precision of the u- and d-quark transversity distributions up to one order of magnitude in the range 0.05 < x < 0.6.

  12. Dark Matter Search in a Beam-Dump eXperiment (BDX) at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Battaglieri, M. [Univ. of Genova (Italy). National Institute for Nuclear Physics. et al

    2016-07-05

    MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. This proposal presents the MeV-GeV DM discovery potential for a $\\sim$1 m$^3$ segmented CsI(Tl) scintillator detector placed downstream of the Hall A beam-dump at Jefferson Lab, receiving up to 10$^{22}$ electrons-on-target (EOT) in 285 days. This experiment (Beam-Dump eXperiment or BDX) would be sensitive to elastic DM-electron and to inelastic DM scattering at the level of 10 counts per year, reaching the limit of the neutrino irreducible background. The distinct signature of a DM interaction will be an electromagnetic shower of few hundreds of MeV, together with a reduced activity in the surrounding active veto counters. A detailed description of the DM particle $\\chi$ production in the dump and subsequent interaction in the detector has been performed by means of Monte Carlo simulations. Different approaches have been used to evaluate the expected backgrounds: the cosmogenic background has been extrapolated from the results obtained with a prototype detector running at INFN-LNS (Italy), while the beam-related background has been evaluated by GEANT4 Monte Carlo simulations. The proposed experiment will be sensitive to large regions of DM parameter space, exceeding the discovery potential of existing and planned experiments in the MeV-GeV DM mass range by up to two orders of magnitude.

  13. Study of Double Spin Asymmetries in Inclusive ep Scattering at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hoyoung [Seoul National Univ. (Korea, Republic of)

    2014-08-01

    The spin structure of the proton has been investigated in the high Bjorken x and low momentum transfer Q2 region. We used Jefferson Lab's polarized electron beam, a polarized target, and a spectrometer to get both the parallel and perpendicular spin asymmetries Apar and Aperp. These asymmetries produced the physics asymmetries A_1 and A_2 and spin structure functions g_1 and g_2. We found Q2 dependences of the asymmetries at resonance region and higher-twist effects. Our result increases the available data on the proton spin structure, especially at resonance region with low Q2. Moreover, A_2 and g_2 data show clear Q2 evolution, comparing with RSS and SANE-BETA. Negative resonance in A_2 data needs to be examined by theory. It can be an indication of very negative transverse-longitudinal interference contribution at W ~ 1.3 GeV. Higher twist effect appears at the low Q2 of 1.9 GeV2, although it is less significant than lower Q2 data of RSS. Twist03 matrix element d_2 was calculated using our asymmetry fits evaluation at Q2 – 1.9 GeV2. D-bar_2 = -0.0087±0.0014 was obtained by integrating 0.47 ≤ x ≤ 0.87.

  14. The design and performance of the electromagnetic calorimeters in Hall C at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Vardan Tadevosyan, Hamlet Mkrtchyan, Arshak Asaturyan, Arthur Mkrtchyan, Simon Zhamkochyan

    2012-12-01

    The design and performance of the electromagnetic calorimeters in the magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers, construction information and comparisons of simulated and experimental results are presented. The design and simulated performance for a new calorimeter to be used in the new SHMS spectrometer is also presented. We have developed and constructed electromagnetic calorimeters from TF-1 type lead-glass blocks for the HMS and SOS magnetic spectrometers at JLab Hall C. The HMS/SOS calorimeters are of identical design and construction except for their total size. Blocks of dimension 10 cm × 10 cm × 70 cm are arranged in four planes and stacked 13 and 11 blocks high in the HMS and SOS respectively. The energy resolution of these calorimeters is better than 6%/√E, and pion/electron (π/e) separation of about 100:1 has been achieved in energy range 1–5 GeV. Good agreement has been observed between the experimental and GEANT4 simulated energy resolutions. The HMS/SOS calorimeters have been used nearly in all Hall C experiments, providing good energy resolution and a high pion suppression factor. No significant deterioration in their performance has been observed in the course of use since 1994. For the SHMS spectrometer, presently under construction, details on the calorimeter design and accompanying GEANT4 simulation efforts are given. A Preshower+Shower design was selected as the most cost-effective among several design choices. The preshower will consist of a layer of 28 modules with TF-1 type lead glass radiators, stacked in two columns. The shower part will consist of 224 modules with F-101 type lead glass radiators, stacked in a “fly's eye” configuration of 14 columns and 16 rows. The active area of 120 × 130 cm(2) will encompass the beam envelope at the calorimeter. The anticipated performance of the new calorimeter is simulated over the full momentum range of the SHMS, predicting

  15. Radiation and ionization energy loss simulation for the GDH sum rule experiment in Hall-A at Jefferson Lab

    Institute of Scientific and Technical Information of China (English)

    YAN Xin-Hu; YE Yun-Xiu; CHEN Jian-Ping; LU Hai-Jiang; ZHU Peng-Jia; JIANG Feng-Jian

    2015-01-01

    The radiation and ionization energy loss are presented for single arm Monte Carlo simulation for the GDH sum rule experiment in Hall-A at the Jefferson Lab.Radiation and ionization energy loss are discussed for 12C elastic scattering simulation.The relative momentum ratio-Ap and 12C elastic cross section are compared without and with radiative energy loss and a reasonable shape is obtained by the simulation.The total energy loss distribution is obtained,showing a Landau shape for 12C elastic scattering.This simulation work will give good support for radiation correction analysis of the GDH sum rule experiment.

  16. Review of Alignment Activities at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Curtis

    2002-12-01

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) comprises a 5 GeV continuous electron beam accelerator (CEBAF) delivering beam to three experimental halls, and a kilowatt range tunable free electron laser (FEL), currently being upgraded to a 10 kW machine. The progression into steady state experimental runs at the facility has allowed the alignment group the opportunity to incorporate new developments into the alignment system. Two of these are discussed, together with some of the more unusual (e.g. gyrotheodolite survey) and the more routine surveys performed at the lab over the last three years.

  17. Analysis of New High-Q0 SRF Cavity Tests by Nitrogen Gas Doping at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari D. [JLAB; Geng, Rongli [JLAB; Reece, Charles E. [JLAB

    2014-12-01

    In order to refine systematic understanding and establish confident process control, Jefferson Lab has joined with partners to investigate and thoroughly characterize the dramatically higher Q0 of 1.3 GHz niobium cavities first reported by FNAL in 2013[1]. With partial support from the LCLS-II project, JLab has undertaken a parametric study of nitrogen doping in vacuum furnace at 800 °C followed by variable depth surface removal in the 5 - 20 μm range. Q0 above 3×1010 are typical at 2.0 K and 16 MV/m accelerating field. We report observations from the single cell study and current interpretations. In addition to the parametric single cell study, we also report on the ongoing serial testing of six nitrogen-doped 9-cell cavities as baseline prototypes for LCLS-II.

  18. Liquid nitrogen tests of a Torus coil for the Jefferson Lab 12GeV accelerator upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Fair, Ruben J. [JLAB; Ghoshal, Probir K. [JLAB; Bruhwel, Krister B. [JLAB; Kashy, David H. [JLAB; Machie, Danny [JLAB; Bachimanchi, Ramakrishna [JLAB; Taylor, William; Fischer, John W. [JLAB; Legg, Robert A. [JLAB; Powers, Jacob R. [JLAB

    2015-06-01

    A magnet system consisting of six superconducting trapezoidal racetrack-type coils is being built for the Jefferson Lab 12-GeV accelerator upgrade project. The magnet coils are wound with Superconducting Super Collider-36 NbTi strand Rutherford cable soldered into a copper channel. Each superconducting toroidal coil is force cooled by liquid helium, which circulates in a tube that is in good thermal contact with the inside of the coil. Thin copper sheets are soldered to the helium cooling tube and enclose the superconducting coil, providing cooling to the rest of the coil pack. As part of a rigorous risk mitigation exercise, each of the six coils is cooled with liquid nitrogen (LN2) to 80 K to validate predicted thermal stresses, verify the robustness and integrity of electrical insulation, and evaluate the efficacy of the employed conduction cooling method. This paper describes the test setup, the tests performed, and the findings.

  19. Parity Violation Inelastic Scattering Experiments at 6 GeV and 12 GeV Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Sulkosky, Vincent A. [University of Virginia, Charlottesville, VA; Jefferson Lab, Newport News, VA; et. al.,

    2015-03-01

    We report on the measurement of parity-violating asymmetries in the deep inelastic scattering and nucleon resonance regions using inclusive scattering of longitudinally polarized electrons from an unpolarized deuterium target. The effective weak couplings C$_{2q}$ are accessible through the deep-inelastic scattering measurements. Here we report a measurement of the parity-violating asymmetry, which yields a determination of 2C$_{2u}$ - C$_{2d}$ with an improved precision of a factor of five relative to the previous result. This result indicates evidence with 95% confidence that the 2C$_{2u}$ - C$_{2d}$ is non-zero. This experiment also provides the first parity-violation data covering the whole resonance region, which provide constraints on nucleon resonance models. Finally, the program to extend these measurements at Jefferson Lab in the 12 GeV era using the Solenoidal Large Intensity Device was also discussed.

  20. Extraction of the Compton Form Factor H from DVCS measurements at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Moutarde, H

    2009-05-01

    In the framework of Generalised Parton Distributions, we study the helicity-dependent and independent cross sections measured in Hall A and the beam spin asymmetries measured in Hall B at Jefferson Laboratory. We perform a global fit of these data and fits on each kinematical bin. We extract the real and imaginary parts of the Compton Form Factor $\\mathcal{H}$ under the main hypothesis of dominance of the Generalised Parton Distribution $H$ and twist 2 accuracy. We discuss our results and compare to previous extractions as well as to the VGG model. We pay extra attention to the estimation of errors on the extraction of $\\mathcal{H}$.

  1. Studies Of Coherent Synchrotron Radiation And Longitudinal Space Charge In The Jefferson Lab FEL Driver

    Energy Technology Data Exchange (ETDEWEB)

    Tennant, Christopher D. [JLAB; Douglas, David R. [JLAB; Li, Rui [JLAB; Tsai, C.-Y. [Virginia Polytechnic University

    2014-12-01

    The Jefferson Laboratory IR FEL Driver provides an ideal test bed for studying a variety of beam dynamical effects. Recent studies focused on characterizing the impact of coherent synchrotron radiation (CSR) with the goal of benchmarking measurements with simulation. Following measurements to characterize the beam, we quantitatively characterized energy extraction via CSR by measuring beam position at a dispersed location as a function of bunch compression. In addition to operating with the beam on the rising part of the linac RF waveform, measurements were also made while accelerating on the falling part. For each, the full compression point was moved along the backleg of the machine and the response of the beam (distribution, extracted energy) measured. Initial results of start-to-end simulations using a 1D CSR algorithm show remarkably good agreement with measurements. A subsequent experiment established lasing with the beam accelerated on the falling side of the RF waveform in conjunction with positive momentum compaction (R56) to compress the bunch. The success of this experiment motivated the design of a modified CEBAF-style arc with control of CSR and microbunching effects.

  2. Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab

    CERN Document Server

    McCracken, M E; Meyer, C A; Williams, M

    2009-01-01

    We present measurements of the differential cross section and Lambda recoil polarization for the gamma p to K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi- and K+ p (missing pi -) final-state topologies; results from these analyses were found to exhibit good agreement. These differential cross section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300 MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500 MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of non-resonant K+ Lambda photoproduction mechanisms at all production angles.

  3. Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    McCracken, Michael E. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2010-02-01

    We present measurements of the differential cross section and Lambda recoil polarization for the gamma p to K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi- and K+ p (missing pi -) final-state topologies; results from these analyses were found to exhibit good agreement. These differential cross section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300 MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500 MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of non-resonant K+ Lambda photoproduction mechanisms at all production angles.

  4. GlueX at Jefferson Lab: a search for exotic states of matter in photon-proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, Matt [Cornell University, Ithaca, NY

    2014-11-01

    The GlueX Experiment, which is currently under construction as a component of the 12 GeV upgrade to Jefferson Lab, will utilize photoproduction on a proton target to search for hybrid mesons in the light quark sector. Recent first-principles calculations of the hadron spectrum in Quantum Chromodynamics suggest the presence of bound states in the meson spectrum that cannot arise from a quark and an anti-quark. Such states appear to have valance gluonic content or gluonic degrees of freedom and are called hybrid mesons. An interesting subset of these, the “exotic hybrid mesons," have total angular momentum, parity, and charge conjugation quantum numbers that cannot be formed with a pair of spin-1/2 fermions. By performing an amplitude analysis of photon-proton reactions, the GlueX experiment will attempt to experimentally establish the spectrum of hybrid mesons. In this article, the present theoretical and experimental landscape is reviewed, the design of the GlueX detector presented, and the GlueX startup plans are briefly discussed.

  5. A Bulk Superconducting Magnetic System for the CLAS12 Target at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Statera, Marco [INFN, Ferrara, Italy; Contalbrigo, Marco [INFN, Ferrara, Italy; Ciullo, Giuseppe [Universite di Ferrara, Ferrara, Italy; Lenisa, Paulo [INFN, Ferrara, Italy; Lowry, Michael M. [JLAB; Sandorfi, Andrew M. [JLAB

    2015-06-01

    A feasibility study of a bulk magnetic system for the target of an experiment to measure the transverse spin effects in semi-inclusive deep inelastic scattering (SIDIS) at 11 GeV with a transversely polarized target using the CLAS12 detector is presented. An experiment has been approved with the highest priority rating to study spin azimuthal asymmetries in SIDIS using 11-GeV polarized electron beams from the upgraded CEBAF facility and the CLAS12 detector equipped with a transversely polarized target. The transverse target in CLAS12 requires the shielding of a volume inside the longitudinal field of the main solenoid. In the shielded region, a transverse target magnet can operate; for the proposed magnetic configuration, the main solenoid maximum magnetic induction is 2 T. A bulk MgB2 cylinder cooled in liquid helium is proposed both to shield the longitudinal field of the main solenoid and to provide a transverse field induction up to 1.2 T for the hydrogen deuteride ice (HD-ice) target. The installation and magnetization procedure will be described. The magnetization procedure has to be compatible with the polarization and installation procedure of the HD-ice target. The design of a test bench to measure the transverse magnetization of a MgB2 bulk cylinder cooled by a coldhead is presented together with the scheduled measurements.

  6. Hypernuclear Physics Programs via Electroproduction in Hall C at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    L. Tang

    1998-06-01

    Hypernuclei with strangeness -1 have been intensively studied both theoretically and experimentally using hadronic probes and reactions, (K, {pi}) and ({pi}, K), for many years since the first discovery of such formation in the earlier nuclear emulsion and bubble chamber experiments. Many recent review papers exist on the status of hypernuclear physics, such as the recent one written by B.F. Gibson and Ed V. Hungerford in which one can find detailed discussion on all aspects of hypernuclear physics and more complete reference list. The unique feature of this field can be summarized, in general, into three categories: (1) Strong Interaction Involving Strangeness, (2) Weak Interaction with {Delta}S = -1, and (3) Medium Modifications. For strong interaction, it is commonly believed that a hyperon can be treated as an ''impurity'' to probe deep interior of the nuclear medium to explore fundamental issues such as the changes in size and shape due to the short range feature of YN interactions, limit of conventional nuclear model (shell or cluster) in solving for many body systems with new degree of freedom, spin dependent forces (spin-spin, spin-orbital, tensor), new symmetry and explicit QCD effect in nuclear media. Many of such issues are impossible or very difficult to be studied in the ordinary nuclear physics. The keys for success in this part of field includes good energy resolution and wide ranged spectroscopy. Until now, many important issues are still unresolved or remained to be resolved in more consistent and satisfactory fashion, such as spin dependent forces. This is due to luck of high quality experimental facilities. Recent experiments at KEK using ({pi}{sup +}, K{sup +}) reaction with a dedicated new SKS spectrometer have demonstrated the importance of improving the energy resolution. New structures were found as resolution improved only from 3 MeV to 2 MeV.

  7. The Continuous Electron Beam Accelerator Facility: CEBAF at the Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Leemann, Chrisoph; Douglas, David R; Krafft, Geoffrey A

    2001-08-01

    The Jefferson Laboratory's superconducting radiofrequency (srf) Continuous Electron Beam Accelerator Facility (CEBAF) provides multi-GeV continuous-wave (cw) beams for experiments at the nuclear and particle physics interface. CEBAF comprises two antiparallel linacs linked by nine recirculation beam lines for up to five passes. By the early 1990s, accelerator installation was proceeding in parallel with commissioning. By the mid-1990s, CEBAF was providing simultaneous beams at different but correlated energies up to 4 GeV to three experimental halls. By 2000, with srf development having raised the average cavity gradient up to 7.5 MV/m, energies up to nearly 6 GeV were routine, at 1-150 muA for two halls and 1-100 nA for the other. Also routine are beams of >75% polarization. Physics results have led to new questions about the quark structure of nuclei, and therefore to user demand for a planned 12 GeV upgrade. CEBAF's enabling srf technology is also being applied in other projects.

  8. An Investigation into the Electromagnetic Interactions between a Superconducting Torus and Solenoid for the Jefferson Lab 12 GeV Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Rajput-Ghoshal, Renuka [JLAB; Ghoshal, Probir K. [JLAB; Fair, Ruben J. [JLAB; Hogan, John P. [JLAB; Kashy, David H. [JLAB

    2015-06-01

    The Jefferson Lab 12 GeV Upgrade in Hall B will need CLAS12 detector that requires two superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a Toroidal configuration (Torus) and the second is an actively shielded solenoidal magnet (Solenoid). Both the torus and solenoid are located in close proximity to one another and are surrounded by sensitive detectors. This paper investigates the electromagnetic interactions between the two systems during normal operation as well as during various fault scenarios as part of a Risk Assessment and Mitigation (RAM).

  9. Design and Evaluation of joint resistance in SSC Rutherford type cable splices for Torus magnet for the Jefferson Lab 12 GeV Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Ghoshal, Probir K. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Fair, Ruben J. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Kashy, David H. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Legg, Robert A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Rajput-Ghoshal, Renuka [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hampshire, Damian; Tsui, Yeekin; Haden-Gates, Virginia

    2016-06-01

    The Hall B 3.6-T superconducting torus magnet is being designed and built as part of the Jefferson Lab 12-GeV upgrade. The magnet consists of six trapezoidal coils connected in series, with an operating current of 3770 A. The magnet and the joints (or splices) connecting the coils are all conduction cooled by supercritical 4.6-K helium. This paper studies the design and manufacturing process of the splices made between two SSC Rutherford-type cables and discusses the tests performed to evaluate the performance of the splices under varying incident magnetic fields.

  10. A high-finesse Fabry–Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Rakhman, A., E-mail: rahim@ornl.gov [Syracuse University, Department of Physics, Syracuse, NY 13244 (United States); Research Accelerator Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Hafez, M. [Old Dominion University, Applied Research Center, Norfolk, VA 23529 (United States); Nanda, S. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Benmokhtar, F. [Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213 (United States); Duquesne University, Pittsburgh, PA 15282 (United States); Camsonne, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Cates, G.D. [University of Virginia, Department of Physics, Charlottesville, VA 22904 (United States); Dalton, M.M. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); University of Virginia, Department of Physics, Charlottesville, VA 22904 (United States); Franklin, G.B. [Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213 (United States); Friend, M. [Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213 (United States); High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Michaels, R.W. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Nelyubin, V. [University of Virginia, Department of Physics, Charlottesville, VA 22904 (United States); Parno, D.S. [Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213 (United States); University of Washington, Center for Experimental Nuclear Physics and Astrophysics and Department of Physics, Seattle, WA 98195 (United States); Paschke, K.D. [University of Virginia, Department of Physics, Charlottesville, VA 22904 (United States); Quinn, B.P. [Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213 (United States); and others

    2016-06-21

    A high-finesse Fabry–Perot cavity with a frequency-doubled continuous wave green laser (532 nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064 nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO{sub 3} crystal. The maximum achieved green power at 5 W infrared pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7 kW with a corresponding enhancement of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.06 GeV and 50 μA.

  11. A high-finesse Fabry-Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab

    CERN Document Server

    Rakhman, A; Nanda, S; Benmokhtar, F; Camsonne, A; Cates, G D; Dalton, M M; Franklin, G B; Friend, M; Michaels, R W; Nelyubin, V; Parno, D S; Paschke, K D; Quinn, B P; Souder, P A; Tobias, W A

    2016-01-01

    A high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532~nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064~nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO$_{3}$ crystal. The maximum achieved green power at 5 W IR pump power is 1.74 W with a total conversion efficiency of 34.8\\%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7~kW with a corresponding enhancement of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7\\%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0\\% precision in polarization measurements of an electron beam with energy and current of 1.0~GeV and 50~$\\mu$A.

  12. Boosting Deuteron Polarization in HD Targets: Experience of moving spins between H and D with RF methods during the E06-101 experiment at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiangdong; Bass, Christopher; D' Angelo, Annalisa; Deur, Alexandre; Dezern, Gary; Kageya, Tsuneo; Laine, Vivien; Lowry, Michael; Sandorfi, Andrew; Teachey, Robert; Wang, Haipeng; Whisnant, Charles

    2014-06-01

    Solid HDice targets are polarized by bringing the HD crystal to thermal equilibrium at low temperature and high magnetic field, typically 10-20 mK and 15 Tesla, at Jefferson Lab. In this regime, due to its smaller magnetic moment, the resulting polarization for D is always at least three times smaller than for H. The controlled amount of polarizing catalysts, o-H2 and p-D2, used in the process of reaching a frozen-spin state, further limit the maximum achievable D polarization. Nonetheless, H and D polarizations can be transferred from one to the other by connecting the H and D sub-states of the HD system with RF. In a large target, the RF power needed for such transitions is effectively limited by non-uniformities in the RF field. High efficiency transfers can require substantial RF power levels, and a tuned-RF circuit is needed to prevent large temperature excursions of the holding cryostat. In this paper, we compare the advantages and limitations of two different RF transfer methods to increase D polarization, Forbidden Adiabatic and Saturated Forbidden RF Transitions. The experience with the HD targets used during the recently completed E06-101 experiment in Hall-B of Jefferson Lab is discussed.

  13. NASA Glenn Propulsion Systems Lab (PSL) Icing Facility Update

    Science.gov (United States)

    Thomas, Queito P.

    2015-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, PSL is capable of simulation of in-flight icing events in a ground test facility. The system was designed to operate at altitudes from 4,000 ft. to 40,000 ft. at Mach numbers up to 0.8M and inlet total temperatures from -60F to +15F.

  14. Light Vector Meson Photoproduction off of 1H at Jefferson Lab and p-w Interference in the Leptonic Decay Channel

    Energy Technology Data Exchange (ETDEWEB)

    Djalali, Chaden [University of Iowa; Paolone, Michael [Temple University, JLAB; Weygand, Dennis; Wood, Mike H. [USC LA, JLAB

    2014-09-01

    Although the phenomena of r – w interference has been studied at great length in pionic decay channel over the past 50 years, a study of the interference in a purely electromagnetic production and decay channel has never been performed on an elementary proton target until now. The only published photo-production data of the r - w leptonic decay channel was obtained in the early seventies on C and Be. An investigation of the r - w interference on a Hydrogen was recently completed at Jefferson Lab with the CLAS detector. The di-lepton spectra was fit with two inter- fering relativistic Breit-Wigner functions, and the interference phase was extracted. Preliminary results will be compared to the previous experimental studies in nuclei.

  15. Dynamically polarized target for the g{sub 2}{sup p} and G{sub E}{sup p} experiments at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, J., E-mail: jpierce@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Maxwell, J.; Badman, T. [Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Brock, J.; Carlin, C. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Crabb, D.G.; Day, D. [Department of Physics, University of Virginia, Charlottesville, VA 22904 (United States); Keith, C.D. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Kvaltine, N. [Department of Physics, University of Virginia, Charlottesville, VA 22904 (United States); Meekins, D.G. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Mulholland, J.; Shields, J. [Department of Physics, University of Virginia, Charlottesville, VA 22904 (United States); Slifer, K. [Department of Physics, University of New Hampshire, Durham, NH 03824 (United States)

    2014-02-21

    We describe a dynamically polarized target that has been utilized for two electron scattering experiments in Hall A at Jefferson Lab. The primary components of the target are a new, high cooling power {sup 4}He evaporation refrigerator, and a re-purposed, superconducting split-coil magnet. It has been used to polarize protons in irradiated NH{sub 3} at a temperature of 1 K and at fields of 2.5 and 5.0 T. The performance of the target material in the electron beam under these conditions will be discussed. Maximum polarizations of 28% and 95% were obtained at those fields, respectively. To satisfy the requirements of both experiments, the magnet had to be routinely rotated between angles of 0°, 6°, and 90° with respect to the incident electron beam. This was accomplished using a new rotating vacuum seal which permits rotations to be performed in only a few minutes.

  16. Design and Manufacture of the Conduction Cooled Torus Coils for the Jefferson Lab 12GeV Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Wiseman, M; Elouadhiri, L; Ghoshal, P K; Kashy, D; Elementi, L; Gabrielli, G; Gardner, T J; Kiemschies, O; Krave, S; Makarov, A; Robotham, B; Szal, J; Velev, G

    2015-06-01

    The design of the 12-GeV torus required the construction of six superconducting coils with a unique geometry required for the experimental needs of Jefferson Laboratory Hall B. Each of these coils consists of 234 turns of copper-stabilized superconducting cable conduction cooled by 4.6 K helium gas. The finished coils are each roughly 2 × 4 × 0.05 m and supported in an aluminum coil case. Because of its geometry, new tooling and manufacturing methods had to be developed for each stage of construction. The tooling was designed and developed while producing a practice coil at Fermi National Laboratory. This paper describes the tooling and manufacturing techniques required to produce the six production coils and two spare coils required by the project. Project status and future plans are also presented.

  17. Environmental assessment for the Strategic Petroleum Reserve Big Hill facility storage of commercial crude oil project, Jefferson County, Texas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The Big Hill SPR facility located in Jefferson County, Texas has been a permitted operating crude oil storage site since 1986 with benign environmental impacts. However, Congress has not authorized crude oil purchases for the SPR since 1990, and six storage caverns at Big Hill are underutilized with 70 million barrels of available storage capacity. On February 17, 1999, the Secretary of Energy offered the 70 million barrels of available storage at Big Hill for commercial use. Interested commercial users would enter into storage contracts with DOE, and DOE would receive crude oil in lieu of dollars as rental fees. The site could potentially began to receive commercial oil in May 1999. This Environmental Assessment identified environmental changes that potentially would affect water usage, power usage, and air emissions. However, as the assessment indicates, changes would not occur to a major degree affecting the environment and no long-term short-term, cumulative or irreversible impacts have been identified.

  18. Photoproduction of {Lambda} and {Sigma}{sup 0} Hyperons off Protons in the Nucleon Resonance Region using CLAS at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    John McNabb

    2002-12-01

    The differential cross section and hyperon recoil polarizations of the photoproduction of the ground state hyperons, {gamma} p {yields} K{sup +} {Lambda} and {gamma} p {yields} K{sup +} {Sigma}{sup 0} , have been measured with the CLAS at Jefferson Lab up to a photon energy in the lab of 2.325 GeV. The results for both channels show significantly larger cross section in the middle to forward angles than have been observed previously by the SAPHIR Collaboration. Both reactions show significantly more backward peaking in the angular distributions than has previously been possible to observe. The backward peaking hints that hyperon resonances in the u-channel play a significant role in the production mechanism. In addition, in the {gamma} p {yields} K{sup +} {Lambda} reaction, a previously unobserved bump in the cross section was observed at forward angles, centered on a W of 1.95 GeV with a width of approximately {Gamma} = 100 MeV. In both {gamma} p {yields} K{sup +} Y reactions the recoil polarization in the forward direction seems reasonably well reproduced by t-channel interferences in a Regge model calculation as well as hadrodynamic models that include kaon resonances in the t-channel. The recoil polarization for {gamma} p {yields} K{sup +} {Lambda} shows a significant enhancement around a W of 1.9 GeV in the backward angles, which is a sign of resonance activity in this vicinity. The polarization of {gamma} p {yields} K{sup +} {Sigma}{sup 0} at backward angles is, in contrast, less pronounced and mostly consistent with zero.

  19. Photoproduction of Λ and Σ0 Hyperons off Protons in the Nucleon Resonance Region using CLAS at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    McNabb, John W.C. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2002-12-05

    The differential cross section and hyperon recoil polarizations of the photoproduction of the ground state hyperons, γ p → K+ Λ and γ p → K+ Σ0 , have been measured with the CLAS at Jefferson Lab up to a photon energy in the lab of 2.325 GeV. The results for both channels show significantly larger cross section in the middle to forward angles than have been observed previously by the SAPHIR Collaboration. Both reactions show significantly more backward peaking in the angular distributions than has previously been possible to observe. The backward peaking hints that hyperon resonances in the u-channel play a significant role in the production mechanism. In addition, in the γ p → K+ Λ reaction, a previously unobserved bump in the cross section was observed at forward angles, centered on a W of 1.95 GeV with a width of approximately Γ = 100 MeV. In both γ p → K+ Y reactions the recoil polarization in the forward direction seems reasonably well reproduced by t-channel interferences in a Regge model calculation as well as hadrodynamic models that include kaon resonances in the t-channel. The recoil polarization for γ p → K+ Λ shows a significant enhancement around a W of 1.9 GeV in the backward angles, which is a sign of resonance activity in this vicinity. The polarization of γ p → K+ Σ0 at backward angles is, in contrast, less pronounced and mostly consistent with zero.

  20. The E00-110 experiment in Jefferson Lab's Hall A: Deeply Virtual Compton Scattering off the Proton at 6 GeV

    CERN Document Server

    Defurne, M; Aniol, K A; Beaumel, M; Benaoum, H; Bertin, P; Brossard, M; Camsonne, A; Chen, J -P; Chudakov, E; Craver, B; Cusanno, F; de Jager, C W; Deur, A; Feuerbach, R; Ferdi, C; Fieschi, J -M; Frullani, S; Fuchey, E; Garcon, M; Garibaldi, F; Gayou, O; Gavalian, G; Gilman, R; Gomez, J; Gueye, P; Guichon, P A M; Guillon, B; Hansen, O; Hayes, D; Higinbotham, D; Holmstrom, T; Hyde, C E; Ibrahim, H; Igarashi, R; Jiang, X; Jo, H S; Kaufman, L J; Kelleher, A; Keppel, C; Kolarkar, A; Kuchina, E; Kumbartzki, G; Laveissière, G; LeRose, J J; Lindgren, R; Liyanage, N; Lu, H -J; Margaziotis, D J; Mazouz, M; Meziani, Z -E; McCormick, K; Michaels, R; Michel, B; Moffit, B; Monaghan, P; Camacho, C Muñoz; Nanda, S; Nelyubin, V; Paremuzyan, R; Potokar, M; Qiang, Y; Ransome, R D; Réal, J -S; Reitz, B; Roblin, Y; Roche, J; Sabatié, F; Saha, A; Sirca, S; Slifer, K; Solvignon, P; Subedi, R; Sulkosky, V; Ulmer, P E; Voutier, E; Wang, K; Weinstein, L B; Wojtsekhowski, B; Zheng, X; Zhu, L

    2015-01-01

    We present final results on the photon electroproduction ($\\vec{e}p\\rightarrow ep\\gamma$) cross section in the deeply virtual Compton scattering (DVCS) regime and the valence quark region from Jefferson Lab experiment E00-110. Results from an analysis of a subset of these data were published before, but the analysis has been improved which is described here at length, together with details on the experimental setup. Furthermore, additional data have been analyzed resulting in photon electroproduction cross sections at new kinematic settings, for a total of 588 experimental bins. Results of the $Q^2$- and $x_B$-dependences of both the helicity-dependent and helicity-independent cross sections are discussed. The $Q^2$-dependence illustrates the dominance of the twist-2 handbag amplitude in the kinematics of the experiment, as previously noted. Thanks to the excellent accuracy of this high luminosity experiment, it becomes clear that the unpolarized cross section shows a significant deviation from the Bethe-Heit...

  1. E00-110 experiment at Jefferson Lab Hall A: Deeply virtual Compton scattering off the proton at 6 GeV

    Science.gov (United States)

    Defurne, M.; Amaryan, M.; Aniol, K. A.; Beaumel, M.; Benaoum, H.; Bertin, P.; Brossard, M.; Camsonne, A.; Chen, J.-P.; Chudakov, E.; Craver, B.; Cusanno, F.; de Jager, C. W.; Deur, A.; Feuerbach, R.; Ferdi, C.; Fieschi, J.-M.; Frullani, S.; Fuchey, E.; Garçon, M.; Garibaldi, F.; Gayou, O.; Gavalian, G.; Gilman, R.; Gomez, J.; Gueye, P.; Guichon, P. A. M.; Guillon, B.; Hansen, O.; Hayes, D.; Higinbotham, D.; Holmstrom, T.; Hyde, C. E.; Ibrahim, H.; Igarashi, R.; Jiang, X.; Jo, H. S.; Kaufman, L. J.; Kelleher, A.; Keppel, C.; Kolarkar, A.; Kuchina, E.; Kumbartzki, G.; Laveissière, G.; LeRose, J. J.; Lindgren, R.; Liyanage, N.; Lu, H.-J.; Margaziotis, D. J.; Mazouz, M.; Meziani, Z.-E.; McCormick, K.; Michaels, R.; Michel, B.; Moffit, B.; Monaghan, P.; Muñoz Camacho, C.; Nanda, S.; Nelyubin, V.; Paremuzyan, R.; Potokar, M.; Qiang, Y.; Ransome, R. D.; Réal, J.-S.; Reitz, B.; Roblin, Y.; Roche, J.; Sabatié, F.; Saha, A.; Sirca, S.; Slifer, K.; Solvignon, P.; Subedi, R.; Sulkosky, V.; Ulmer, P. E.; Voutier, E.; Wang, K.; Weinstein, L. B.; Wojtsekhowski, B.; Zheng, X.; Zhu, L.; Jefferson Lab Hall A Collaboration

    2015-11-01

    We present final results on the photon electroproduction (e ⃗p →e p γ ) cross section in the deeply virtual Compton scattering (DVCS) regime and the valence quark region from Jefferson Lab experiment E00-110. Results from an analysis of a subset of these data were published before, but the analysis has been improved, which is described here at length, together with details on the experimental setup. Furthermore, additional data have been analyzed, resulting in photon electroproduction cross sections at new kinematic settings for a total of 588 experimental bins. Results of the Q2 and xB dependencies of both the helicity-dependent and the helicity-independent cross sections are discussed. The Q2 dependence illustrates the dominance of the twist-2 handbag amplitude in the kinematics of the experiment, as previously noted. Thanks to the excellent accuracy of this high-luminosity experiment, it becomes clear that the unpolarized cross section shows a significant deviation from the Bethe-Heitler process in our kinematics, compatible with a large contribution from the leading twist-2 DVCS2 term to the photon electroproduction cross section. The necessity to include higher-twist corrections to fully reproduce the shape of the data is also discussed. The DVCS cross sections in this paper represent the final set of experimental results from E00-110, superseding the previous publication.

  2. A Search for the LHCb Charmed 'Pentaquark' using Photo-Production of $J/{\\psi}$ at Threshold in Hall C at Jefferson Lab

    CERN Document Server

    Meziani, Z -E; Paolone, M; Chudakov, E; Jones, M; Adhikari, K; Aniol, K; Armstrong, W; Arrington, J; Asaturyan, A; Atac, H; Bae, S; Bhatt, H; Bhetuwal, D; Chen, J -P; Chen, X; Choi, H; Choi, S; Diefenthaler, M; Dunne, J; Dupré, R; Duran, B; Dutta, D; El-Fassi, L; Fu, Q; Gao, H; Go, H; Gu, C; Ha, J; Hafidi, K; Hansen, O; Hattawy, M; Higinbotham, D; Huber, G M; Markowitz, P; Meekins, D; Mkrtchyan, H; Li, W; Li, X; Liu, T; Peng, C; Pentchev, L; Pooser, E; Rehfuss, M; Sparveris, N; Tadevosyan, V; Wang, R; Wesselmann, F R; Wood, S; Xiong, W; Yan, X; Ye, L; Ye, Z; Zafar, A; Zhang, Y; Zhao, F; Zhao, Z; Zhamkochyana, S

    2016-01-01

    We propose to measure the photo-production cross section of $J/{\\psi}$ near threshold, in search of the recently observed LHCb hidden-charm resonances $P_c$(4380) and $P_c$(4450) consistent with 'pentaquarks'. The observation of these resonances in photo-production will provide strong evidence of the true resonance nature of the LHCb states, distinguishing them from kinematic enhancements. A bremsstrahlung photon beam produced with an 11 GeV electron beam at CEBAF covers the energy range of $J/{\\psi}$ production from the threshold photo-production energy of 8.2 GeV, to an energy beyond the presumed $P_c$(4450) resonance. The experiment will be carried out in Hall C at Jefferson Lab using a 50{\\mu}A electron beam incident on a 9% copper radiator. The resulting photon beam passes through a 15 cm liquid hydrogen target, producing $J/{\\psi}$ mesons through a diffractive process in the $t$-channel, or through a resonant process in the $s$- and $u$-channel. The decay $e^+e^-$ pair of the $J/{\\psi}$ will be detected...

  3. The 12 GeV Energy Upgrade at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Pilat, Fulvia C.

    2012-09-01

    Two new cryomodules and an extensive upgrade of the bending magnets at Jefferson Lab has been recently completed in preparation for the full energy upgrade in about one year. Jefferson Laboratory has undertaken a major upgrade of its flagship facility, the CW re-circulating CEBAF linac, with the goal of doubling the linac energy to 12 GeV. I will discuss here the main scope and timeline of the upgrade and report on recent accomplishments and the present status. I will then discuss in more detail the core of the upgrade, the new additional C100 cryomodules, their production, tests and recent successful performance. I will then conclude by looking at the future plans of Jefferson Laboratory, from the commissioning and operations of the 12 GeV CEBAF to the design of the MEIC electron ion collider.

  4. A study of 3pi production in gammap → npi+pi+pi- and gammap → Delta++pi+pi-pi- with CLAS at Jefferson Lab

    Science.gov (United States)

    Tsaris, Aristeidis

    Apart from the mesons that the constituent quark model predicts, QCD allows for additional states beyond the qq¯ system. Previous experiments have performed partial wave analysis on pion- production data and claim observation of an exotic JPC = 1-+ state decaying via rhopi. The g12 experiment took place at Jefferson Lab using the CLAS spectrometer, a liquid hydrogen target was used and a tagged photon beam. By studying the reactions gamma p → npi+pi+pi - and gammap → Delta++pi +pi-pi-, the photoproduction of mesons decaying to 3pi was studied using two different but complimentary channels. Events are selected with low four-momentum transfer to the baryon, in order to enhance one pion exchange production. For both 3pi systems the data exhibit two intermediate decays, rhopi and f 2pi. For the gammap → npi +pi+pi- reaction over 600k events were acquired resulting in the largest 3 photoproduction dataset to date. The exotic JPC = 1-+ partial wave does not show resonant behavior and more so it is strongly consistent with a non-resonant non-interfering wave relative to a resonant pi 2(1670). Furthermore, the partial wave analysis shows production of the a2(1320) and pi2(1670) mesons. For the first time we report observation of a photoproduced a 1(1260) meson. For the gammap → Delta ++pi+pi-pi- reaction nearly 350k events were analyzed. A partial wave analysis was performed for the first time on this channel. The a 1(1260), a2(1320), and the pi2(1670) mesons were observed. Observation of the a1(1260) confirms the result first reported in gammap → npi+pi+pi- reaction.

  5. Park Facilities, Jefferson County Parks, Published in 2008, 1:2400 (1in=200ft) scale, Jefferson County Land Information Office.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Park Facilities dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from Published Reports/Deeds information as of 2008. It is described...

  6. Deeply virtual compton scattering on the nucleon with the Clas Detector of Jefferson Lab: measurement of the polarized and unpolarized cross sections; Etude de la diffusion compton profondement virtuelle sur le nucleon avec le detecteur Clas de Jefferson Lab: mesure des sections efficaces polarisees et non polarisees

    Energy Technology Data Exchange (ETDEWEB)

    Jo, H.S

    2007-03-15

    The Generalized Parton Distributions (GPDs), introduced in the 1990's, provide the most complete description of the structure (in quarks and gluons) of the nucleon. The Deeply Virtual Compton Scattering (DVCS), which corresponds to the 'hard' exclusive electroproduction of photons on the nucleon, is a key process among the reactions allowing access to the GPDs. A DVCS-dedicated experiment was carried out in 2005 with the CLAS detector of Jefferson Lab, using a polarized electron beam of 5.776 GeV and a hydrogen target. For this experiment, we built and used a dedicated electromagnetic calorimeter capable of detecting the final-state photon. The collected data allowed us to study the DVCS in the widest kinematic range ever accessed for this reaction: 1 < Q{sup 2} < 4.6 GeV{sup 2}, 0.1 < x{sub B} < 0.58, 0.09 < -t < 2 GeV{sup 2}. The work performed during this PhD includes simulation work done for the preparation of the experiment, timing calibration of one of the CLAS subsystems, and data analysis. The aim of the data analysis was the extraction of the unpolarized cross sections of the studied reaction and of the difference of the polarized cross sections, this latter observable being linearly proportional to the GPDs. The obtained results were compared to DVCS theoretical calculations based on one of the most up-to-date GPD parametrizations. (author)

  7. SPIN Effects, QCD, and Jefferson Laboratory with 12 GeV electrons

    Energy Technology Data Exchange (ETDEWEB)

    Prokudin, Alexey [JLAB

    2013-11-01

    QCD and Spin physics are playing important role in our understanding of hadron structure. I will give a short overview of origin of hadron structure in QCD and highlight modern understanding of the subject. Jefferson Laboratory is undergoing an upgrade that will increase the energy of electron beam up to 12 GeV. JLab is one of the leading facilities in nuclear physics studies and once operational in 2015 JLab 12 will be crucial for future of nuclear physics. I will briefly discuss future studies in four experimental halls of Jefferson Lab.

  8. DarkLight: A Search for Dark Forces at the Jefferson Laboratory Free-Electron Laser Facility

    Energy Technology Data Exchange (ETDEWEB)

    Balewski, Jan; Bernauer, J; Bertozzi, William; Bessuille, Jason; Buck, B; Cowan, Ray; Dow, K; Epstein, C; Fisher, Peter; Gilad, Shalev; Ihloff, Ernest; Kahn, Yonatan; Kelleher, Aidan; Kelsey, J; Milner, Richard; Moran, C; Ou, Longwu; Russell, R; Schmookler, Barak; Thaler, J; Tschalar, C; Vidal, Christopher; Winnebeck, A; Benson, Stephen [JLAB; Gould, Christopher [JLAB; Biallas, George [JLAB; Boyce, James [JLAB; Coleman, James [JLAB; Douglas, David [JLAB; Ent, Rolf [JLAB; Evtushenko, Pavel [JLAB; Fenker, Howard [JLAB; Gubeli, Joseph [JLAB; Hannon, Fay [JLAB; Huang, Jia [JLAB; Jordan, Kevin [JLAB; Legg, Robert [JLAB; Marchlik, Matthew [JLAB; Moore, Steven [JLAB; Neil, George [JLAB; Shinn, Michelle D [JLAB; Tennant, Christopher [JLAB; Walker, Richard [JLAB; Williams, Gwyn [JLAB; Zhang, Shukui [JLAB; Freytsis, M; Fiorito, Ralph; O' Shea, P; Alarcon, Ricardo; Dipert, R; Ovanesyan, G; Gunter, Thoth; Kalantarians, Narbe; Kohl, M; Albayrak, Ibrahim; Horn, Tanja; Gunarathne, D S; Martoff, C J; Olvitt, D L; Surrow, Bernd; Lia, X; Beck, Reinhard; Schmitz, R; Walther, D; Brinkmann, K; Zaunig, H

    2014-05-01

    We give a short overview of the DarkLight detector concept which is designed to search for a heavy photon A' with a mass in the range 10 MeV/c^2 < m(A') < 90 MeV/c^2 and which decays to lepton pairs. We describe the intended operating environment, the Jefferson Laboratory free electon laser, and a way to extend DarkLight's reach using A' --> invisible decays.

  9. A Rare-Ion Beam Facility at iThemba LABS

    Science.gov (United States)

    Bark, R. A.

    2015-11-01

    iThemba LABS, chiefly based around a k=200 Separated Sector Cyclotron (SSC), is a multidisciplinary facility engaged in basic nuclear physics research, materials research, radionuclide production and hadron therapy. A proposal to acquire a new cyclotron to produce rare-ion beams for nuclear and materials research is outlined.

  10. NASA's GreenLab Research Facility: A Guide for a Self-Sustainable Renewable Energy Ecosystem

    Science.gov (United States)

    Bomani, B. M. McDowell; Hendricks, R. C.; Elbuluk, Malik; Okon, Monica; Lee, Eric; Gigante, Bethany

    2011-01-01

    There is a large gap between the production and demand for energy from alternative fuel and alternative renewable energy sources. The sustainability of humanity, as we know it, directly depends on the ability to secure affordable fuel, food, and freshwater. NASA Glenn Research Center (Glenn) has initiated a laboratory pilot study on using biofuels as viable alternative fuel resources for the field of aviation, as well as utilizing wind and solar technology as alternative renewable energy resources. The GreenLab Research Facility focuses on optimizing biomass feedstock using algae and halophytes as the next generation of renewable aviation fuels. The unique approach in this facility helps achieve optimal biomass feedstock through climatic adaptation of balanced ecosystems that do not use freshwater, compete with food crops, or use arable land. In addition, the GreenLab Research Facility is powered, in part, by alternative and renewable energy sources, reducing the major environmental impact of present electricity sources. The ultimate goal is to have a 100 percent clean energy laboratory that, when combined with biomass feedstock research, has the framework in place for a self-sustainable renewable energy ecosystem that can be duplicated anywhere in the world and can potentially be used to mitigate the shortage of food, fuel, and water. This paper describes the GreenLab Research Facility at Glenn and its power and energy sources, and provides recommendations for worldwide expansion and adoption of the facility s concept.

  11. Hybrid scheme of positron source at SPARC-LAB LNF facility

    Energy Technology Data Exchange (ETDEWEB)

    Abdrashitov, S.V., E-mail: abdsv@tpu.ru [National Research Tomsk Polytechnic University, Lenin Ave 30, 634050 Tomsk (Russian Federation); National Research Tomsk State University, Lenin Ave 36, 634050 Tomsk (Russian Federation); Bogdanov, O.V. [National Research Tomsk Polytechnic University, Lenin Ave 30, 634050 Tomsk (Russian Federation); Dabagov, S.B. [INFN Laboratori Nazionali di Frascati, Via E. Fermi 40, I-00044 Frascati, RM (Italy); RAS PN Lebedev Physical Institute, Leninskiy Prospekt 53, 119991 Moscow (Russian Federation); NRNU MEPhI, Kashirskoe Highway 31, 115409 Moscow (Russian Federation); Pivovarov, Yu.L.; Tukhfatullin, T.A. [National Research Tomsk Polytechnic University, Lenin Ave 30, 634050 Tomsk (Russian Federation)

    2015-07-15

    The hybrid scheme of the positron source for SPARC-LAB LNF facility (Frascati, Italy) is proposed. The comparison of the positron yield in a thin amorphous W converter of 0.1 mm thickness produced by bremsstrahlung, by axial 〈1 0 0〉 and planar (1 1 0) channeling radiations in a W crystal is performed for the positron energy range of 1 ÷ 3 MeV. It is shown that the radiation from 200 MeV electrons (parameters of SPARC-LAB LNF Frascati) in a 10 μm W crystal can produce positrons in the radiator of 0.1 mm thickness with the rate of 10–10{sup 2} s{sup −1} at planar channeling, of 10{sup 2}–10{sup 3} s{sup −1} at bremsstrahlung and of 10{sup 3}–10{sup 4} s{sup −1} at axial channeling.

  12. Screensaver: an open source lab information management system (LIMS for high throughput screening facilities

    Directory of Open Access Journals (Sweden)

    Nale Jennifer

    2010-05-01

    Full Text Available Abstract Background Shared-usage high throughput screening (HTS facilities are becoming more common in academe as large-scale small molecule and genome-scale RNAi screening strategies are adopted for basic research purposes. These shared facilities require a unique informatics infrastructure that must not only provide access to and analysis of screening data, but must also manage the administrative and technical challenges associated with conducting numerous, interleaved screening efforts run by multiple independent research groups. Results We have developed Screensaver, a free, open source, web-based lab information management system (LIMS, to address the informatics needs of our small molecule and RNAi screening facility. Screensaver supports the storage and comparison of screening data sets, as well as the management of information about screens, screeners, libraries, and laboratory work requests. To our knowledge, Screensaver is one of the first applications to support the storage and analysis of data from both genome-scale RNAi screening projects and small molecule screening projects. Conclusions The informatics and administrative needs of an HTS facility may be best managed by a single, integrated, web-accessible application such as Screensaver. Screensaver has proven useful in meeting the requirements of the ICCB-Longwood/NSRB Screening Facility at Harvard Medical School, and has provided similar benefits to other HTS facilities.

  13. Screensaver: an open source lab information management system (LIMS) for high throughput screening facilities

    Science.gov (United States)

    2010-01-01

    Background Shared-usage high throughput screening (HTS) facilities are becoming more common in academe as large-scale small molecule and genome-scale RNAi screening strategies are adopted for basic research purposes. These shared facilities require a unique informatics infrastructure that must not only provide access to and analysis of screening data, but must also manage the administrative and technical challenges associated with conducting numerous, interleaved screening efforts run by multiple independent research groups. Results We have developed Screensaver, a free, open source, web-based lab information management system (LIMS), to address the informatics needs of our small molecule and RNAi screening facility. Screensaver supports the storage and comparison of screening data sets, as well as the management of information about screens, screeners, libraries, and laboratory work requests. To our knowledge, Screensaver is one of the first applications to support the storage and analysis of data from both genome-scale RNAi screening projects and small molecule screening projects. Conclusions The informatics and administrative needs of an HTS facility may be best managed by a single, integrated, web-accessible application such as Screensaver. Screensaver has proven useful in meeting the requirements of the ICCB-Longwood/NSRB Screening Facility at Harvard Medical School, and has provided similar benefits to other HTS facilities. PMID:20482787

  14. Intake risk and dose evaluation methods for workers in radiochemistry labs of a medical cyclotron facility.

    Science.gov (United States)

    Calandrino, Riccardo; del Vecchio, Antonella; Savi, Annarita; Todde, Sergio; Belloli, Sara

    2009-10-01

    The aim of this paper is to evaluate the risks and doses for the internal contamination of the radiochemistry staff in a high workload medical cyclotron facility. The doses from internal contamination derive from the inhalation of radioactive gas leakage from the cells by personnel involved in the synthesis processes and are calculated from urine sample measurements. Various models are considered for the calculation of the effective committed dose from the analysis of these urine samples, and the results are compared with data obtained from local environmental measurement of the radioactivity released inside the lab.

  15. Jefferson Lab E89-044 experiment: study of the quasi-elastic He{sup 3}(e,e'p)d reaction in parallel kinematics; Experience E89-044 de diffusion quasi-elastique {sup 3}He(e,e'p) au Jefferson Laboratory: analyse des sections efficaces de desintegration a deux corps en cinematique parallele

    Energy Technology Data Exchange (ETDEWEB)

    Penel-Nottaris, E

    2004-07-01

    The Jefferson Lab Hall A E89-044 experiment has measured the He{sup 3}(e,e'p) reaction cross-sections. The extraction of the longitudinal and transverse response functions for the two-body break-up He{sup 3}(e,e'p)d reaction in parallel kinematics allows the study of the bound proton electromagnetic properties inside the He{sup 3} nucleus and the involved nuclear mechanisms beyond plane waves approximations, for missing momenta of 0 and +- 300 MeV/c and transferred momenta from 0.8 to 4.1 GeV{sup 2}. Preliminary cross-sections have been obtained after calibration of the experimental setup by fitting theoretical models averaged over the experimental phase-space using a Monte-Carlo simulation. The 8% systematic error on cross-sections is linked mainly to the absolute normalization of the target density: the elastic scattering data analysis will allow to reduce this error. The preliminary results show some disagreement with theoretical predictions for the forward angles kinematics around 0 MeV/c missing momenta and sensitivity to final state interactions and He{sup 3} waves functions for missing momenta of 300 MeV/c. The longitudinal and transverse separation should constraint theoretical models more strongly. (author)

  16. Constraining scenarios of the soft/hard transition for the pion electromagnetic form factor with expected data of 12-GeV Jefferson Lab experiments and of the Electron-Ion Collider

    CERN Document Server

    Troitsky, S V

    2015-01-01

    It has been shown previously [PRD 88 (2013) 093005, arXiv:1310.1770] that a non-perturbative relativistic constituent-quark model for the $\\pi$-meson electromagnetic form factor allows for a quantitative description of the soft/hard transition, resulting in the correct Quantum-Chromodynamical asymptotics, including normalization, from the low-energy data without further parameter tuning. This happens universally whenever the constituent-quark mass is switched off. The energy range where the transition happens is therefore determined by the quark-mass running at intermediate energies and is not tightly constrained theoretically. Here we consider possible ways to pin down this energy range with coming experimental data. We demonstrate that expected experimental uncertainties of the 12-GeV Jefferson-Lab data are larger than the span of predictions of the model, so these data might be used for testing the model but not for determination of the soft/hard transition scale. Contrary, the projected Electron-Ion Colli...

  17. A study of 3π production in γ p → nπ+π+π- and γ p → Δ++π+π-π- with CLAS at Jefferson Lab

    Science.gov (United States)

    Tsaris, Aristeidis

    2016-05-01

    Apart from the mesons that the constituent quark model predicts, QCD allows for additional states beyond the qq ¯ system. Previous experiments have performed partial wave analysis on pion-production data and claim observation of a JPC = 1-+ state decaying via ρπ. The g12 experiment took place at Jefferson Lab using the CLAS spectrometer, a liquid hydrogen target was used and a tagged photon beam. By studying the reactions γ p → nπ+π+π- and γ p → Δ++π+π-π-, we are analyzing a large data-set of a three pion system. In the first reaction channel, events are selected with low four-momentum transfer to the neutron, in order to enhance one pion exchange production. The latter reaction is expected to be dominated by pion exchange between the baryon and the 3π meson system, given identification of Δ++ in the event. For both 3π systems the data exhibit two intermediate decays, ρπ and f2π. An analysis of the kinematics and dynamics of those two data-sets has been performed, as well as a study of the angular distributions looking for resonance contributions.

  18. The External-Injection experiment at the SPARC{sub L}AB facility

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Andrea R., E-mail: andrea.rossi@mi.infn.it [INFN - MI, via Celoria 16, 20133 Milan (Italy); Bacci, Alberto [INFN - MI, via Celoria 16, 20133 Milan (Italy); Belleveglia, Marco; Chiadroni, Enrica [INFN - LNF, v.le E. Fermi, 00044 Frascati (Italy); Cianchi, Alessandro [“Tor Vergata” University, Physics Department, via della Ricerca Scientifica 1, 00133 Rome (Italy); INFN - LNF, v.le E. Fermi, 00044 Frascati (Italy); Di Pirro, Giampiero; Ferrario, Massimo; Gallo, Alessandro; Gatti, Giancarlo [INFN - LNF, v.le E. Fermi, 00044 Frascati (Italy); Maroli, Cesare [University of Milan, Physics Department, via Celoria 16, 20133 Milan (Italy); Mostacci, Andrea [“La Sapienza” University, SBAI Department, via A. Scarpa 14, 00161 Rome (Italy); INFN - LNF, v.le E. Fermi, 00044 Frascati (Italy); Petrillo, Vittoria [University of Milan, Physics Department, via Celoria 16, 20133 Milan (Italy); INFN - MI, via Celoria 16, 20133 Milan (Italy); Serafini, Luca [INFN - MI, via Celoria 16, 20133 Milan (Italy); Tomassini, Paolo [University of Milan, Physics Department, via Celoria 16, 20133 Milan (Italy); Vaccarezza, Cristina [INFN - LNF, v.le E. Fermi, 00044 Frascati (Italy)

    2014-03-11

    At the SPARC{sub L}AB facility of INFN-LNF we are installing a transport lines for ultra-short electron bunches and another for ultra-intense laser pulses, generated by the SPARC photo-injector and by the FLAME laser in a synchronized fashion at the tens of fs level, to co-propagate inside a hydrogen filled glass capillary, in order to perform acceleration of the electron bunch by a plasma wave driven by the laser pulse. The main aim of this experiment is to demonstrate that a high brightness electron beam can be accelerated by a plasma wave without any significant degradation of its quality. Motivations of the technical choices are made and expected performances are reported.

  19. Measurement of Single Spin Asymmetries in Semi-Inclusive Deep Inelastic Scattering Reaction n(e, e'π+) X at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Allada, Kalyan [Univ. of Kentucky, Lexington, KY (United States)

    2010-06-01

    What constitutes the spin of the nucleon? The answer to this question is still not completely understood. Although we know the longitudinal quark spin content very well, the data on the transverse quark spin content of the nucleon is still very sparse. Semi-inclusive Deep Inelastic Scattering (SIDIS) using transversely polarized targets provide crucial information on this aspect. The data that is currently available was taken with proton and deuteron targets. The E06-010 experiment was performed at Jefferson Lab in Hall-A to measure the single spin asymmetries in the SIDIS reaction n(e, e'π±/K±)X using transversely polarized 3He target. The experiment used the continuous electron beam provided by the CEBAF accelerator with a beam energy of 5.9 GeV. Hadrons were detected in a high-resolution spectrometer in coincidence with the scattered electrons detected by the BigBite spectrometer. The kinematic coverage focuses on the valence quark region, x = 0.19 to 0.34, at Q2 = 1.77 to 2.73 (GeV/c)2. This is the first measurement on a neutron target. The data from this experiment, when combined with the world data on the proton and the deuteron, will provide constraints on the transversity and Sivers distribution functions on both the u and d-quarks in the valence region. In this work we report on the single spin asymmetries in the SIDIS n(e, e'π+)X reaction.

  20. Jefferson County Bio-energy Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Yates, Wade [Jefferson County Colorado, Golden, CO (United States)

    2006-06-01

    The Jefferson County Bio-energy Initiative (JCBI) seeks to develop economically viable market outlets for forest thinning biomass through the creation of new businesses and public-private sector partnerships, while simultaneously reducing the risk of catastrophic fires and associated costs and damages. Jefferson County has a strong interest in cooperating with the United States Forest Service (USFS) and private industry to help create the infrastructure that will reduce the barriers to new bio-energy markets due to logistical concerns over long-term forest biomass supply availability. Jefferson County believes that developing a site that allows for the creation of a large central biomass-processing facility will help reduce the costs and risks associated with supply uncertainty. The JCBI will operate as a cooperative between public and private sector entities, with Jefferson County acting as facilitator and not as a competitor.

  1. Associated {Lambda} production at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Niculescu, G. [Hampton Univ., VA (United States); Baker, O.K. [Hampton Univ., VA (United States)]|[Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Avery, S. [Argonne National Lab., IL (United States)] [and others; E93018 Collaboration

    1997-12-31

    The {sup 1}H(e, e{prime}K{sup +}){Lambda} and {sup 1}H(e, e{prime}K{sup +}){Sigma}{sup 0} reactions were studied as a function of the squared four-momentum-transfer, Q{sup 2}, and the virtual photon polarization, {var_epsilon}, thus enabling the separation of the longitudinal and transverse parts of the cross section. The existence of a sensibly large longitudinal component for the {sup 1}H(e, e{prime}K{sup +}){Lambda} reaction seems to be sustained by these data.

  2. Soft Spin Physics at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Raffaella De Vita

    2004-10-01

    An extensive experimental program to study spin physics at low and moderate four-momentum transfer, Q{sup 2}, is in progress at Jefferson Lab. In this regime, soft processes as resonance excitation and higher twist contribution play a dominant role and the measurement of spin observables is a fundamental tool to understand such phenomena and identify the relevant degrees of freedom. In these proceedings I will describe the ongoing experimental program and I will discuss preliminary and final results.

  3. The GreenLab Research Facility: A Micro-Grid Integrating Production, Consumption and Storage of Clean Energy

    Science.gov (United States)

    McDowell Bomani, Bilal Mark; Elbuluk, Malik; Fain, Henry; Kankam, Mark D.

    2012-01-01

    There is a large gap between the production and demand for energy from alternative fuel and alternative renewable energy sources. The NASA Glenn Research Center (GRC) has initiated a laboratory-pilot study that concentrates on using biofuels as viable alternative fuel resources for the field of aviation, as well as, utilizing wind and solar technologies as alternative renewable energy resources, and in addition, the use of pumped water for storage of energy that can be retrieved through hydroelectric generation. This paper describes the GreenLab Research Facility and its power and energy sources with .recommendations for worldwide expansion and adoption of the concept of such a facility

  4. Deeply virtual Compton scattering in the Hall A of Jefferson laboratory; Diffusion Compton profondement virtuelle dans le Hall A au Jefferson laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Munoz Camacho, C

    2005-12-15

    Generalized Parton Distributions (GPDs), introduced in the late 90's, provide a universal description of hadrons in terms of the underlying degrees of freedom of Quantum Chromodynamics: quarks and gluons. GPDs appear in a wide variety of hard exclusive reactions and the advent of high luminosity accelerator facilities has made the study of GPDs accessible to experiment. Deeply Virtual Compton Scattering (DVCS) is the golden process involving GPDs. The first dedicated DVCS experiment ran in the Hall A of Jefferson Lab in Fall 2004. An electromagnetic calorimeter and a plastic scintillator detector were constructed for this experiment, together with specific electronics and acquisition system. The experiment preparation, data taking and analysis are described in this document. Results on the absolute cross section difference for opposite beam helicities provide the first measurement of a linear combination of GPDs as a function of the momentum transfer to the nucleon. (author)

  5. Virtual deep Compton scattering from Hall A at Jefferson Laboratory; Diffusion Compton profondement virtuelle dans le Hall A au Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, Carlos Munoz [Univ. Pierre et Marie Curie, Paris (France)

    2005-12-14

    Generalized Parton Distributions (GPDs), introduced in the late 90s, provide a universal description of hadrons in terms of the underlying degrees of freedom of Quantum Chromodynamics: quarks and gluons. GPDs appear in a wide variety of hard exclusive reactions and the advent of high luminosity accelerator facilities has made the study of GPDs accessible to experiment. Deeply Virtual Compton Scattering (DVCS) is the golden process involving GPDs. The first dedicated DVCS experiment ran in the Hall A of Jefferson Lab in Fall 2004. An electromagnetic calorimeter and a plastic scintillator detector were constructed for this experiment, together with specific electronics and acquisition system. The experiment preparation, data taking and analysis are described in this document. Results on the absolute cross section difference for opposite beam helicities provide the first measurement of a linear combination of GPDs as a function of the momentum transfer to the nucleon.

  6. Pulsed laser facilities operating from UV to IR at the Gas Laser Lab of the Lebedev Institute

    Science.gov (United States)

    Ionin, Andrei; Kholin, Igor; Vasil'Ev, Boris; Zvorykin, Vladimir

    2003-05-01

    Pulsed laser facilities developed at the Gas Lasers Lab of the Lebedev Physics Institute and their applications for different laser-matter interactions are discussed. The lasers operating from UV to mid-IR spectral region are as follows: e-beam pumped KrF laser (λ= 0.248 μm) with output energy 100 J; e-beam sustained discharge CO2(10.6 μm) and fundamental band CO (5-6 μm) lasers with output energy up to ~1 kJ; overtone CO laser (2.5-4.2 μm) with output energy ~ 50 J and N2O laser (10.9 μm) with output energy of 100 J; optically pumped NH3 laser (11-14 μm). Special attention is paid to an e-beam sustained discharge Ar-Xe laser (1.73 μm ~ 100 J) as a potential candidate for a laser-propulsion facility. The high energy laser facilities are used for interaction of laser radiation with polymer materials, metals, graphite, rocks, etc.

  7. Utilizing the US Lab Nadir Research Window for Remote Sensing Operations with The Window Observational Research Facility (WORF)

    Science.gov (United States)

    Turner, Richard; Barley, Bryan; Gilbert, Paul A. (Technical Monitor)

    2002-01-01

    The Window Observational Research Facility (WORF) is an ISPR-based rack facility designed to take advantage of the high optical quality US Lab Nadir research window. The WORF is based on the ISS Expedite the Processing of Experiments to Space Station (EXPRESS) rack mechanical structure and electronic systems. The WORF has a unique payload volume located at the center of the rack that provides access to the window. The interior dimensions of the payload volume are 34-in. (86.36 cm) wide by 33-in. (83.82 cm) high by 23-in. (58.42 cm) deep. This facility supports the deployment of payloads such as 9 in. aerial photography cameras and 12 in. diameter optical equipment. The WORF coupled with the optical quality of the United States Lab window support the deployment of various payload disciplines. The WORF provides payloads with power, data command and control, air cooling, water cooling, and video processing. The WORF's payload mounting surfaces and interfaces include the interior payload mounting shelf and the interior and exterior aircraft-like seat tracks. The payload mounting shelf is limited to a maximum mass of 136 kg (299 pounds). The WORF can accommodate large payloads such as the commonly used Leica-Heerbrug RC-30 aerial photography camera (whose dimensions are 53.3 cm (21-in.) wide by 50.8 cm (20-in.) deep by 76.2 cm (30-in.) long). The performance characteristics of the WORF allow it to support an array of payload disciplines. The WORF provides a maximum of 3 Kw at 28 Vdc and has a maximum data rate of 10 Mbps. The WORF's unique payload volume is designed to be light-tight, down to 2.8 x 10(exp -11) Watts/cm2/steradian, and have low-reflective surfaces. This specially designed WORF interior supports payload investigations that observe low-light-level phenomenon such as aurora. Although the WORF rack does not employ any active rack isolation (i.e., vibration dampening) technology, the rack provides a very stable environment for payload operations (on the order

  8. CFX Analysis of the CANDU Moderator Thermal-Hydraulics in the Stern Lab. Test Facility

    Science.gov (United States)

    Kim, Hyoung Tae

    2014-06-01

    A numerical calculation with the commercial CFD code CFX is conducted for a test facility simulating the CANDU moderator thermal-hydraulics. Two kinds of moderator thermal-hydraulic tests at Stern Laboratories Inc. were performed in the full geometric configuration of the CANDU moderator circulating vessel, which is called a Calandria, housing a matrix of horizontal rod bundles simulating the Calandria tubes. The first of these tests is the pressure drop measurement of a cross flow in the horizontal rod bundles. The other is the local temperature measurement on the cross section of the horizontal cylinder vessel simulating the Calandria. In the present study the full geometric details of the Calandria are incorporated in the grid generation of the computational domain to which the boundary conditions for each experiment are applied. The numerical solutions are reviewed and compared with the available test data.

  9. Virtual Compton scattering off the proton at Jefferson Lab (experiment E93050): preliminary results of the cross-sections of the reaction (ep{yields}ep{gamma}) in order to find out the generalized polarizabilities (GPs) of the proton at Q{sup 2} = 1.9 GeV{sup 2}; Diffusion compton virtuelle a jefferson lab (experience E93050): resultat preliminaire des sections efficaces (ep{yields}ep{gamma}) en vue d'extraire les polarisabilites generalisees du proton a Q{sup 2} = 1.9 GEV{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Jaminion, St

    2000-12-01

    Virtual Compton Scattering off the proton ({gamma}{sup *}p {yields} {gamma}p) at low energy is accessible via the reaction (ep {yields} ep{gamma}), and contains 6 new observables: Generalized Polarizabilities (GPs). Their extraction needs the measurement of absolute five fold differential cross sections for photon electroproduction off the proton. The determination of GPs will put new constraints on models of nucleon structure in the non-perturbative Quantum Chromodynamics region. Following the Mainz experiment realized at four momentum transfer Q{sup 2} = 0.33 GeV{sup 2}, the E93050 experiment which was performed in the Hall A of Jefferson Lab during march-april 1998, will allow the measurement of combinations of generalized polarizabilities at Q{sup 2}=1 and 1.9 GeV{sup 2}. The final electron and proton were detected in coincidence in the Hall A high resolution spectrometers. The final photon is reconstructed like a missing particle, and all its variables can be determined. We had to optimize optics tensor of each spectrometer in order to have the best reconstruction at vertex point. We created an acceptance function, which is included in the software simulating solid angle. We determined different cuts to substract our background dominating (ep {yields} ep{gamma}) reaction. This work allows to carry out our first photon electro-production cross section measurement at Q{sup 2}=1.9 GeV{sup 2}. The results seem to indicate a measurable effect of generalized polarizabilities, which remains however to be confirmed. (author)

  10. Detector development for Jefferson Lab’s 12 GeV Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Yi, E-mail: yqiang@jlab.org

    2015-05-01

    Jefferson Lab will soon finish its highly anticipated 12 GeV Upgrade. With doubled maximum energy, Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF) will enable a new experimental program with substantial discovery potential, addressing important topics in nuclear, hadronic and electroweak physics. In order to take full advantage of the high energy, high luminosity beam, new detectors are being developed, designed and constructed to fit the needs of different physics topics. The paper will give an overview of various new detector technologies to be used for 12 GeV experiments. It will then focus on the development of two solenoid-based spectrometers, the GlueX and SoLID spectrometers. The GlueX experiment in Hall D will study the complex properties of gluons through exotic hybrid meson spectroscopy. The GlueX spectrometer, a hermetic detector package designed for spectroscopy and the associated partial wave analysis, is currently in the final stage of construction. Hall A, on the other hand, is developing the SoLID spectrometer to capture the 3D image of the nucleon from semi-inclusive processes and to study the intrinsic properties of quarks through mirror symmetry breaking. Such a spectrometer will have the capability to handle very high event rates while still maintaining a large acceptance in the forward region.

  11. A new Large Lab-scale Facility for Hydro-Geophysical Experiments: Hydrogeosite

    Science.gov (United States)

    La Penna, V.; Cuomo, V.; Rizzo, E.; Fiore, S.; Troisi, S.; Straface, S.

    2006-12-01

    ; piezometric probes; grid of electrodes (in surface and holes) for geoelectrical measurements (DC, IP and SP); GPR antennae. The Hydrogeosite will serve several research activities and it represents an intermediate stage between laboratory experiments and field survey. Therefore, it has the advantage to obtain controlled results, like in a laboratory experiment, but at scales comparable to the field ones. The new Laboratory of Hydrogeophysics of IMAA-CNR would like to have placed the facility at international researcher disposal to study a wide spectra of hydrogeological phenomena, to assess new geophysical techniques and to test new sensors and instruments, etc.. Research centers interested to plan experiments in this full-scale model are welcome.

  12. Data analysis phase-study of the reproducibility of cementation in Lab and facility scales

    Energy Technology Data Exchange (ETDEWEB)

    Haucz, Maria Judite Afonso; Tello, Cledola Cassia Oliveira de, E-mail: hauczmj@cdtn.br, E-mail: tellocc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nucelar (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    In Nuclear Technology Development Center (CDTN) several activities are carried out in the nuclear research area, generating low-level radioactive waste, including aqueous one. The treatment used for these wastes in the CDTN is their volume reduction by the addition of chemicals, in order to concentrate the radionuclides in the waste to an insoluble form, generating sludge. This sludge is incorporated into cement in the Cementation Facility (ICIME) of CDTN, with a mixing system outside the drum and a batch capacity of 200 liters. As these wastes come from different research works, the chemical characteristics are also different, and therefore laboratory studies are necessary to define the process parameters of the cementation for each type of waste. This determination and the quality of the cemented waste product are performed in the Cementation Laboratory (LABCIM), where 2 liters of pastes containing wastes are prepared with a household mixer with circular motion. In LABCIM, tests are done to determinate the viscosity, the setting time and the density in the paste, as well as the compressive and the tensile strength, the density, the homogeneity and the presence of free water in the product. The tests are carried out to verify if the solidified waste product, generated in CDTN, meets the acceptance criteria for safe disposal in the repository established in the standard CNEN NN 6:09. In a previous analysis Haucz et al., comparing the test results of pastes and waste products, which were obtained at LABCIM and ICIME, it was observed that there were statistical differences among them. In order to evaluate these differences and to select the best LABCIM mixing system, it was proposed a design of experiments (DOE), using the applicable statistical tools. Then at LABCIM, pastes were prepared with the same procedure using three different mixers, different types of cement, different times of mixing and different water:cement ratio. Then one formulation was selected, and

  13. Labs to go up for bid in 2005 University may lose research facilities if it does not have competitive offer

    CERN Multimedia

    Foxman, A

    2003-01-01

    "...When the UC's contracts to run the Los Alamos, Lawrence Livermore and Berkeley National Labs run out in 2005, the UC will have to compete to keep them for the first time in over half a century" (1 page).

  14. Clothing Systems Design Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Clothing Systems Design Lab houses facilities for the design and rapid prototyping of military protective apparel.Other focuses include: creation of patterns and...

  15. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC-LAB test facility

    Energy Technology Data Exchange (ETDEWEB)

    Shpakov, V.; Anania, M.P.; Biagioni, A.; Chiadroni, E. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Cianchi, A. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); “Tor Vergata” University, via della Ricerca Scientifica 1, 00133 Rome (Italy); Curcio, A. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Dabagov, S. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); P.N. Lebedev Physical Institute RAS, Leninskiy Prospekt 53, 119991 Moscow (Russian Federation); NRNU “MEPhI”, Kashirskoe highway 31, 115409 Moscow (Russian Federation); Ferrario, M.; Filippi, F. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Marocchino, A. [Dipartimento SBAI Universitá di Roma ‘La Sapienza’, via Antonio Scarpa 14/16, 00161 Rome (Italy); Paroli, B. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Pompili, R. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Rossi, A.R. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Zigler, A. [Racah Institute of Physics Hebrew University of Jerusalem (Israel)

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC-LAB for such diagnostics tool, along with expected parameters of betatron radiation. - Highlights: • The betatron radiation parameters in SPARC-LAB wakefiled experiments were studied. • The differences with betatron radiation in other wake-field experiments were highlighted. • The solution for betatron radiation detection was investigated.

  16. The Jupiter Electron Scattering Program at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Arie Bodek

    2004-08-01

    JUPITER (Jlab Unified Program to Investigate nuclear Targets and Electroproduction of Resonances) is a new collaboration between the Nuclear Physics Electron Scattering and High Energy Physics Neutrino Scattering Communities to Investigate the Structure of Nucleons and Nuclei with Electron and Neutrino Beams. The first phase of JUPITER is Hall C experiment E04-001 on Inclusive Electron Scattering from Nuclear Targets. First data run of E04-001 is currently scheduled for January of 2005.

  17. High-intensity positron microprobe at Jefferson Lab

    CERN Document Server

    Golge, Serkan; Wojtsekhowski, Bogdan

    2014-01-01

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 10$^{10}$ e$^+$/s. Reaching this intensity in our design relies on the transport of positrons (T$_+$ below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system, transport of the beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effective...

  18. The RICH detector for CLAS12 at Jefferson Lab

    Directory of Open Access Journals (Sweden)

    Pappalardo L.L.

    2014-06-01

    Full Text Available The CLAS12 spectrometer at JLab will offer unique possibilities to study the 3D nucleon structure in terms of TMDs and GPDs in the poorly explored valence region, and to perform high precision hadron spectroscopy. A large area ring-imaging Cherenkov detector has been designed to achieve the required hadron identification capability in the momentum range 3–8 GeV/c. The detector, based on a novel hybrid imaging design, foresees an aerogel radiator and an array of multi-anode photomultipliers. The detector concept and preliminary results of test-beams on a prototype are presented.

  19. Recent Results of TMD Measurements from Jefferson Lab Hall A

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiaodong [LANL

    2013-10-01

    This slide-show presents results on transverse momentum distributions. The presentation covers: target single-spin asymmetry (SSA) (in parity conserving interactions); • Results of JLab Hall A polarized {sup 3}He target TMD measurement; • Semi-­inclusive deep-inelastic scattering channels (E06-010); • Target single-spin asymmetry A{sub UT}, Collins and Sivers SSA on neutron; • Double-spin asymmetry A{sub LT}, extract TMD g{sub 1T} on neutron; • Inclusive channels SSA (E06-010, E05-015, E07-013) • Target SSA: inclusive {sup 3}He(e,e’) quasi-elastic scattering; • Target SSA: inclusive {sup 3}He(e,e’) deep inelastic-elastic scattering; • New SIDIS experiments planned in Hall-A for JLab-12 GeV.

  20. Measurement of differential cross sections and Cx and Cz for γp→ K+Λ and γp →K+Σ° using CLAS at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Bradford Jr., Robert K. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2005-05-11

    This work presents several observables for the reactions γ pK+Λ and γ pK+Σ°. In addition to measuring differential cross sections, we have made first measurements of the double polarization observables Cx and Cz. Cx and C z characterize the transfer of polarization from the incident photon to the produced hyperons. Data were obtained at Jefferson Lab using a circularly polarized photon beam at endpoint energies of 2.4, 2.9, and 3.1 GeV. Events were detected with the CLAS spectrometer. In the Λ channel, the cross sections support the recent observation of new resonant structure at W = 1900 MeV. Studies of the invariant cross section, $dσ/\\atop{dt}$ show scaling behavior suggesting that the production mechanism becomes t-channel dominated near threshold at forward kaon angles. The double polarization observables show that the recoiling Λ is almost maximally polarized along the direction of the incident photon from mid to forward kaon angles. While Σo differential cross sections are of the same magnitude as the Λ differential cross sections, there is evidence of different physics dominating the production mechanism. The Σ° invariant cross sections do not show the same t-scaling behavior present in the Λ results. The double polarization observables indicate that the Σ° is not polarized as strongly as the Λ. They also fail to identify one preferred polarization axis. Complete interpretation of these results will rely on model calculations. Currently available isobar models obtain varying degrees of success while attempting to predict the double polarization observables. While the models are in better agreement with the differential cross sections, discrepancies with our

  1. A study of 3π production in γp → n-π+π+π- and γ-p → Δ++π+π-π- with CLAS at Jefferson Lab ->n

    Energy Technology Data Exchange (ETDEWEB)

    Tsaris, Aristedis [Florida Intl Univ., Miami, FL (United States)

    2016-02-22

    Apart from the mesons that the constituent quark model predicts, QCD allows for additional states beyond the qq system. Previous experiments have performed partial wave analysis on pion-production data and claim observation of an exotic JPC = 1-+ state decaying via p-π. The g12 experiment took place at Jefferson Lab using the CLAS spectrometer, a liquid hydrogen target was used and a tagged photon beam. By studying the reactions γp → n-π+π+π- and γp → Δ++π+π-π-, the photoproduction of mesons decaying to 3-pi was studied using two different but complimentary channels. Events are selected with low four-momentum transfer to the baryon, in order to enhance one pion exchange production. For both 3-pi systems the data exhibit two intermediate decays, p-pi and f2π. For the γp → n-π+π+π- reaction over 600k events were acquired resulting in the largest 3 photoproduction dataset to date. The exotic JPC = 1-+ partial wave does not show resonant behavior and more so it is strongly consistent with a non-resonant non-interfering wave relative to a resonant π2(1670). Furthermore, the partial wave analysis shows production of the a2(1320) and π2(1670) mesons. For the first time we report observation of a photoproduced a1(1260) meson. For the γp → Δ++π+π-π- reaction nearly 350k events were analyzed. A partial wave analysis was performed for the first time on this channel. The a1(1260), a2(1320), and the 2(1670) mesons were observed. Observation of the a1(1260) confirms the result first reported in γp → n-π+π+π- reaction.

  2. Vision Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Vision Lab personnel perform research, development, testing and evaluation of eye protection and vision performance. The lab maintains and continues to develop...

  3. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC_LAB test facility

    Science.gov (United States)

    Shpakov, V.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A. R.; Zigler, A.

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC_LAB for such diagnostics tool, along with expected parameters of betatron radiation.

  4. Physics lab in spin

    CERN Multimedia

    Hawkes, N

    1999-01-01

    RAL is fostering commerical exploitation of its research and facilities in two main ways : spin-out companies exploit work done at the lab, spin-in companies work on site taking advantage of the facilities and the expertise available (1/2 page).

  5. A service-based SLA (Service Level Agreement) for the RACF (RHIC and ATLAS computing facility) at brookhaven national lab

    Science.gov (United States)

    Karasawa, Mizuka; Chan, Tony; Smith, Jason

    2010-04-01

    The RACF provides computing support to a broad spectrum of scientific programs at Brookhaven. The continuing growth of the facility, the diverse needs of the scientific programs and the increasingly prominent role of distributed computing requires the RACF to change from a system to a service-based SLA with our user communities. A service-based SLA allows the RACF to coordinate more efficiently the operation, maintenance and development of the facility by mapping out a matrix of system and service dependencies and by creating a new, configurable alarm management layer that automates service alerts and notification of operations staff. This paper describes the adjustments made by the RACF to transition to a service-based SLA, including the integration of its monitoring software, alarm notification mechanism and service ticket system at the facility to make the new SLA a reality.

  6. Design of a Computer-Based Control System Using LabVIEW for the NEMESYS Electromagnetic Launcher Facility

    Science.gov (United States)

    2007-06-01

    quickly was necessary. A railgun shot typically occurs in less than 10 ms, and firing capacitor banks to shape the current pulse are in the 100s of...DESIGN OF A COMPUTER-BASED CONTROL SYSTEM USING LABVIEW FOR THE NEMESYS ELECTROMAGNETIC LAUNCHER FACILITY∗ B. M. Huhmanξ 1, J. M. Neri Plasma...has assembled a facility to develop and test materials for the study of barrel lifetime in electromagnetic launchers (EML) for surface-fire support

  7. Early Commissioning Experience and Future Plans for the 12 GeV Continuous Electron Beam Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Spata, Michael F. [JLAB

    2014-12-01

    Jefferson Lab has recently completed the accelerator portion of the 12 GeV Upgrade for the Continuous Electron Beam Accelerator Facility. All 52 SRF cryomodules have been commissioned and operated with beam. The initial beam transport goals of demonstrating 2.2 GeV per pass, greater than 6 GeV in 3 passes to an existing experimental facility and greater than 10 GeV in 5-1/2 passes have all been accomplished. These results along with future plans to commission the remaining beamlines and to increase the performance of the accelerator to achieve reliable, robust and efficient operations at 12 GeV are presented.

  8. EXPERIENCE AND PLANS OF THE JLAB FEL FACILITY AS A USER FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Michelle D. Shinn

    2007-08-26

    Jefferson Lab's IR Upgrade FEL building was planned from the beginning to be a user facility, and includes an associated 600 m2 area containing seven laboratories. The high average power capability (multikilowatt-level) in the near-infrared (1-3 microns), and many hundreds of watts at longer wavelengths, along with an ultrafast (~ 1 ps) high PRF (10's MHz) temporal structure makes this laser a unique source for both applied and basic research. In addition to the FEL, we have a dedicated laboratory capable of delivering high power (many tens of watts) of broadband THz light. After commissioning the IR Upgrade, we once again began delivering beam to users in 2005. In this presentation, I will give an overview of the FEL facility and its current performance, lessons learned over the last two years, and a synopsis of current and future experiments.

  9. Field Work Proposal: PUBLIC OUTREACH EVENT FOR ACCELERATOR STEWARDSHIP TEST FACILITY PILOT PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Hutton, Andrew [TJNAF; Areti, Hari [TJNAF

    2015-03-05

    Jefferson Lab’s outreach efforts towards the goals of Accelerator Stewardship Test Facility Pilot Program consist of the lab’s efforts in three venues. The first venue, at the end of March is to meet with the members of Virginia Tech Corporate Research Center (VTCRC) (http://www.vtcrc.com/tenant-directory/) in Blacksburg, Virginia. Of the nearly 160 members, we expect that many engineering companies (including mechanical, electrical, bio, software) will be present. To this group, we will describe the capabilities of Jefferson Lab’s accelerator infrastructure. The description will include not only the facilities but also the intellectual expertise. No funding is requested for this effort. The second venue is to reach the industrial exhibitors at the 6th International Particle Accelerator Conference (IPAC’15). Jefferson Lab will host a booth at the conference to reach out to the >75 industrial exhibitors (https://www.jlab.org/conferences/ipac2015/SponsorsExhibitors.php) who represent a wide range of technologies. A number of these industries could benefit if they can access Jefferson Lab’s accelerator infrastructure. In addition to the booth, where written material will be available, we plan to arrange a session A/V presentation to the industry exhibitors. The booth will be hosted by Jefferson Lab’s Public Relations staff, assisted on a rotating basis by the lab’s scientists and engineers. The budget with IPAC’15 designations represents the request for funds for this effort. The third venue is the gathering of Southeastern Universities Research Association (SURA) university presidents. Here we plan to reach the research departments of the universities who can benefit by availing themselves to the infrastructure (material sciences, engineering, medical schools, material sciences, to name a few). Funding is requested to allow for attendance at the SURA Board Meeting. We are coordinating with DOE regarding these costs to raise the projected conference

  10. Field Work Proposal: PUBLIC OUTREACH EVENT FOR ACCELERATOR STEWARDSHIP TEST FACILITY PILOT PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Hutton, Andrew [TJNAF; Areti, Hari [TJNAF

    2015-03-05

    Jefferson Lab’s outreach efforts towards the goals of Accelerator Stewardship Test Facility Pilot Program consist of the lab’s efforts in three venues. The first venue, at the end of March is to meet with the members of Virginia Tech Corporate Research Center (VTCRC) (http://www.vtcrc.com/tenant-directory/) in Blacksburg, Virginia. Of the nearly 160 members, we expect that many engineering companies (including mechanical, electrical, bio, software) will be present. To this group, we will describe the capabilities of Jefferson Lab’s accelerator infrastructure. The description will include not only the facilities but also the intellectual expertise. No funding is requested for this effort. The second venue is to reach the industrial exhibitors at the 6th International Particle Accelerator Conference (IPAC’15). Jefferson Lab will host a booth at the conference to reach out to the >75 industrial exhibitors (https://www.jlab.org/conferences/ipac2015/SponsorsExhibitors.php) who represent a wide range of technologies. A number of these industries could benefit if they can access Jefferson Lab’s accelerator infrastructure. In addition to the booth, where written material will be available, we plan to arrange a session A/V presentation to the industry exhibitors. The booth will be hosted by Jefferson Lab’s Public Relations staff, assisted on a rotating basis by the lab’s scientists and engineers. The budget with IPAC’15 designations represents the request for funds for this effort. The third venue is the gathering of Southeastern Universities Research Association (SURA) university presidents. Here we plan to reach the research departments of the universities who can benefit by availing themselves to the infrastructure (material sciences, engineering, medical schools, material sciences, to name a few). Funding is requested to allow for attendance at the SURA Board Meeting. We are coordinating with DOE regarding these costs to raise the projected conference

  11. RCRA Facility Investigation Plan K-1004 Area Lab Drain and the K-1007-B Pond - Oak Ridge Gaseous Diffusion Plant - Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    ORGDP, Martin Marietta Energy Systems Inc.

    1988-12-01

    Within the confines of the Oak Ridge Gaseous Diffusion Plant (ORGDP) are hazardous waste treatment, storage, and disposal facilities; some are in operation while others are no longer in use. these solid waste management units (SWMUs) are subject to assessment by the US Environmental Protection Agency (EPA). The RCRA Facility Investigation (RFI) Plans are scheduled to be submitted for all units during calendar years 1987 and 1988. The RFI Plan - General Document (K/HS-132) includes information applicable to all the ORGDP SMWUs and serves as a reference document for the site-specific RFI plans. This document is the site-specific RFI Plan for the K-1004 Area Lab Drain (ALD) and the K-1007-B Pond. This plan is based upon requirements described in the draft document, RFI Guidance, Vols. I-IV, December 1987 (EPA 530/SW-87-001). This unit is regulated by Section 3004(u) of the 1984 Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation Recovery Act (RCRA). Contained within this document are geographical, historical, operational, geological, and hydrological data specific to the K-1004 ALD and the K-1007-B Pond. The potential for release of contamination through the various media to receptors is addressed. A sampling plan is proposed to further determine the extent (if any) of release of contamination to the surrounding environment. Included are health and safety procedures to be followed when implementing the sampling plan. Quality control (QC) procedures for remedial action occurring on the Oak Ridge Reservation (ORR) are presented in 'The Environmental Surveillance Procedures Quality Control Program, Martin Marietta Energy Systems, Inc., (ESH/Sub/87-21706/1), and quality assurance (QA) guidelines for ORGDP investigations are contained in The K-25 Remedial Actions Program Quality Assurance Plan, K/HS-231.

  12. Elevation Data for Jefferson County, WI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Land Elevation TINs (Triangulated Irregular Networks) in this directory are generated from 2 foot contour lines from Jefferson County. Little is known about the...

  13. Advanced Active Acoustics Lab (AAAL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  14. PD Lab

    NARCIS (Netherlands)

    Bilow, Marcel; Entrop, Alexis Gerardus; Lichtenberg, Jos; Stoutjesdijk, Pieter

    2015-01-01

    PD Lab explores the applications of building sector related product development. PD lab investigates and tests digital production technologies like CNC milled wood connections. It will also act as a platform in its wider meaning to investigate the effects and influences of file to factory

  15. PD Lab

    OpenAIRE

    Bilow, Marcel; Entrop, Bram; Lichtenberg, Jos; Stoutjesdijk, Pieter

    2015-01-01

    PD Lab explores the applications of building sector related product development. PD lab investigates and tests digital production technologies like CNC milled wood connections. It will also act as a platform in its wider meaning to investigate the effects and influences of file to factory production, to explore the potential in the field of sustainability, material use, logistics and the interaction of stakeholders within the chain of the building process.

  16. RF Power Upgrade for CEBAF at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Kimber,Richard Nelson

    2011-03-01

    Jefferson Laboratory (JLab) is currently upgrading the 6GeV Continuous Electron Beam Accelerator Facility (CEBAF) to 12GeV. As part of the upgrade, RF systems will be added, bringing the total from 340 to 420. Existing RF systems can provide up to 6.5 kW of CW RF at 1497 MHZ. The 80 new systems will provide increased RF power of up to 13 kW CW each. Built around a newly designed and higher efficiency 13 kW klystron developed for JLab by L-3 Communications, each new RF chain is a completely revamped system using hardware different than our present installations. This paper will discuss the main components of the new systems including the 13 kW klystron, waveguide isolator, and HV power supply using switch-mode technology. Methodology for selection of the various components and results of initial testing will also be addressed. Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

  17. Is Jefferson a Founding Father of Democratic Education? A Response to "Jefferson and the Ideology of Democratic Schooling"

    Science.gov (United States)

    Neem, Johann

    2013-01-01

    This response argues that it is reasonable to consider Thomas Jefferson a proponent of democratic education. It suggests that Jefferson's education proposals sought to ensure the wide distribution of knowledge and that Jefferson's legacy remains important to us today.

  18. TELECOM LAB

    CERN Multimedia

    IT-CS-TEL Section

    2001-01-01

    The Telecom Lab is moving from Building 104 to Building 31 S-026, with its entrance via the ramp on the side facing Restaurant n°2. The help desk will thus be closed to users on Tuesday 8 May. On May 9, the Lab will only be able to deal with problems of a technical nature at the new address and it will not be able to process any new subscription requests throughout the week from 7 to 11 May. We apologise for any inconvenience this may cause and thank you for your understanding.

  19. The Heavy Photon Search experiment at Jefferson Laboratory

    Directory of Open Access Journals (Sweden)

    De Napoli Marzio

    2015-01-01

    Full Text Available Many beyond Standard Model theories predict a new massive gauge boson, aka “dark” or “heavy photon”, directly coupling to hidden sector particles with dark charge. The heavy photon is expected to mix with the Standard Model photon through kinetic mixing and therefore couple weakly to normal charge. The Heavy Photon Search (HPS experiment will search for the heavy photon at the Thomas Jefferson National Accelerator Facility (JLab, in the mass range 20-1000 MeV/c2 and coupling to electric charge ϵ2 = α′/α in the range 10−5 to 10−10. HPS will look for the e+e− decay channel of heavy photons radiated by electron Bremsstrahlung, employing both invariant mass search and detached vertexing techniques. The experiment employs a compact forward spectrometer comprising silicon microstrip detectors for vertexing and tracking and an electromagnetic calorimeter for particle identification and triggering.

  20. Experiment E89-044 on the Quasielastic 3He(e,e'p) Reaction at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    E. Penel-Nottaris

    2004-07-07

    The Jefferson Lab Hall A E89-044 experiment has measured the 3He(e,e'p) reaction cross-sections. The extraction of the longitudinal and transverse response functions for the two-body break-up 3He(e,e'p)d reaction in parallel kinematics allows the study of the bound proton electromagnetic properties inside the 3He nucleus and the involved nuclear mechanisms beyond plane wave approximations.

  1. Lattice QCD and the Jefferson Laboratory Program

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Dudek, Robert Edwards, David Richards, Konstantinos Orginos

    2011-06-01

    Lattice gauge theory provides our only means of performing \\textit{ab initio} calculations in the non-perturbative regime. It has thus become an increasing important component of the Jefferson Laboratory physics program. In this paper, we describe the contributions of lattice QCD to our understanding of hadronic and nuclear physics, focusing on the structure of hadrons, the calculation of the spectrum and properties of resonances, and finally on deriving an understanding of the QCD origin of nuclear forces.

  2. Lab architecture

    Science.gov (United States)

    Crease, Robert P.

    2008-04-01

    There are few more dramatic illustrations of the vicissitudes of laboratory architecturethan the contrast between Building 20 at the Massachusetts Institute of Technology (MIT) and its replacement, the Ray and Maria Stata Center. Building 20 was built hurriedly in 1943 as temporary housing for MIT's famous Rad Lab, the site of wartime radar research, and it remained a productive laboratory space for over half a century. A decade ago it was demolished to make way for the Stata Center, an architecturally striking building designed by Frank Gehry to house MIT's computer science and artificial intelligence labs (above). But in 2004 - just two years after the Stata Center officially opened - the building was criticized for being unsuitable for research and became the subject of still ongoing lawsuits alleging design and construction failures.

  3. Workspace: LAB

    DEFF Research Database (Denmark)

    Binder, Thomas; Lundsgaard, Christina; Nørskov, Eva-Carina

    2007-01-01

    På mange arbejdspladser viger man tilbage fra at inddrage medarbejderne når der igangsættes større forandringer. Workspace:lab er et bud på en inddragende udviklingsproces hvor dialog og eksperimenter står i centrum. Ved at samle såvel medarbejdere som ledelse og rådgivere på et mindre antal...

  4. Generalized Nanosatellite Avionics Testbed Lab

    Science.gov (United States)

    Frost, Chad R.; Sorgenfrei, Matthew C.; Nehrenz, Matt

    2015-01-01

    The Generalized Nanosatellite Avionics Testbed (G-NAT) lab at NASA Ames Research Center provides a flexible, easily accessible platform for developing hardware and software for advanced small spacecraft. A collaboration between the Mission Design Division and the Intelligent Systems Division, the objective of the lab is to provide testing data and general test protocols for advanced sensors, actuators, and processors for CubeSat-class spacecraft. By developing test schemes for advanced components outside of the standard mission lifecycle, the lab is able to help reduce the risk carried by advanced nanosatellite or CubeSat missions. Such missions are often allocated very little time for testing, and too often the test facilities must be custom-built for the needs of the mission at hand. The G-NAT lab helps to eliminate these problems by providing an existing suite of testbeds that combines easily accessible, commercial-offthe- shelf (COTS) processors with a collection of existing sensors and actuators.

  5. European labs fight back against cuts

    CERN Multimedia

    König, R

    1997-01-01

    Germany's 1997 budget contains cuts amounting to 3.7% in funding of domestic research programs and in contributions to international labs. Contributions will be cut to the European Space Agency, the European Synchrotron facility and CERN.

  6. Electro-Optic System Development Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Electro-Optic System Development Lab serves as a development facility for electro-optical systems ranging from visible through long wave infrared. Capabilities...

  7. Unstable Jefferson fractures: Results of transoral osteosynthesis

    Directory of Open Access Journals (Sweden)

    Yong Hu

    2014-01-01

    Full Text Available Background: Majority of C 1 fractures can be effectively treated conservatively by immobilization or traction unless there is an injury to the transverse ligament. Conservative treatment usually involves a long period of immobilization in a halo-vest. Surgical intervention generally involves fusion, eliminating the motion of the upper cervical spine. We describe the treatment of unstable Jefferson fractures designed to avoid these problems of both conservative and invasive methods. Materials and Methods: A retrospective review of 12 patients with unstable Jefferson fractures treated with transoral osteosynthesis of C 1 between July 2008 and December 2011 was performed. A steel plate and C 1 lateral mass screw fixation were used to repair the unstable Jefferson fractures. Our study group included eight males and four females with an average age of 33 years (range 23-62 years. Results: Patients were followed up for an average of 16 months after surgery. Range of motion of the cervical spine was by and large physiologic: Average flexion 35° (range 28-40°, average extension 42° (range 30-48°. Lateral bending to the right and left averaged 30° and 28° respectively (range 12-36° and 14-32° respectively. The average postoperative rotation of the atlantoaxial joint, evaluated by functional computed tomography scan was 60° (range 35-72°. Total average lateral displacement of the lateral masses was 7.0 mm before surgery (range 5-12 mm, which improved to 3.5 mm after surgery (range 1-6.5 mm. The total average difference of the atlanto-dens interval in flexion and extension after surgery was 1.0 mm (range 1-3 mm. Conclusions: Transoral osteosynthesis of the anterior ring using C 1 lateral mass screws is a viable option for treating unstable Jefferson fractures, which allows maintenance of rotation at the C 1-C 2 joint and restoration of congruency of the atlanto-occipital and atlantoaxial joints.

  8. The Heavy Photon Search experiment at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    De Napoli, Marzio [Istituto Nazionale di Fisica Nucleare (INFN), Catania (Italy). Lab. et al.

    2015-06-01

    Many beyond Standard Model theories predict a new massive gauge boson, a.k.a. 'dark' or 'heavy photon', directly coupling to hidden sector particles with dark charge. The heavy photon is expected to mix with the Standard Model photon through kinetic mixing and therefore couple weakly to normal charge. The Heavy Photon Search (HPS) experiment will search for the heavy photon at the Thomas Jefferson National Accelerator Facility (JLab), in the mass range 20-1000 MeV/c2 and coupling to electric charge ϵ2 = α'/α in the range 10-5 to 10-10. HPS will look for the e+e- decay channel of heavy photons radiated by electron Bremsstrahlung, employing both invariant mass search and detached vertexing techniques. The experiment employs a compact forward spectrometer comprising silicon microstrip detectors for vertexing and tracking and an electromagnetic calorimeter for particle identification and triggering.

  9. Experiment E89-044 on the Quasielastic 3He(e,e'p) Reaction at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Penel-Nottaris, Emilie [Univ. Joseph Fourier Grenoble (France)

    2004-07-07

    The Jefferson Lab Hall A E89-044 experiment has measured the 3He(e,e'p) reaction cross-sections. The extraction of the longitudinal and transverse response functions for the two-body break-up 3He(e,e'p)d reaction in parallel kinematics allows the study of the bound proton electromagnetic properties inside the 3He nucleus and the involved nuclear mechanisms beyond plane wave approximations.

  10. Measurements of the deuteron elastic structure function A(Q sup 2) at large momentum transfers at Jefferson Laboratory

    CERN Document Server

    Petratos, G G

    1999-01-01

    Measurements of the deuteron elastic structure function A(Q sup 2) for 0.7<=Q sup 2<=6.0 (GeV/c) sup 2 are reported. The experiment performed elastic electron-deuteron scattering in coincidence, using the Hall A Facility of Jefferson Laboratory. The data are compared to theoretical models based on the impulse approximation with the inclusion of meson-exchange currents, and to predictions of quark dimensional scaling and perturbative quantum chromodynamics.

  11. Land Elevation TINs (Triangulated Irregular Networks) for Jefferson County, WI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Land Elevation TINs (Triangulated Irregular Networks) in this directory are generated from 2 foot contour lines from Jefferson County. Little is known about the...

  12. Jefferson fractures of the immature spine. Report of 3 cases.

    Science.gov (United States)

    AuYong, Nicholas; Piatt, Joseph

    2009-01-01

    Jefferson fractures of the immature spine have received little attention in the study of pediatric spinal trauma. Fractures through synchondroses are a possibility in the immature spine, in addition to fractures through osseous portions of the vertebral ring, and they create opportunities for misinterpretation of diagnostic imaging. The authors describe 3 examples of Jefferson fractures in young children. All 3 cases featured fractures through an anterior synchondrosis in association with persistence of the posterior synchondrosis or a fracture of the posterior arch. The possibility of a Jefferson fracture should be considered for any child presenting with neck pain, cervical muscle spasm, or torticollis following a head injury, despite a seemingly normal cervical spine study. Jefferson fractures in young children are probably much more common than previously recognized.

  13. Parcels and Land Ownership, Published in 2011, Jefferson County Government.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Parcels and Land Ownership dataset as of 2011. The extent of these data is generally Jefferson County, IA. This metadata was auto-generated through the Ramona...

  14. Parcels and Land Ownership, Published in 2011, Jefferson County Government.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Parcels and Land Ownership dataset as of 2011. The extent of these data is generally Jefferson County, OK. This metadata was auto-generated through the Ramona...

  15. Exploration of deeply virtual Compton scattering on the neutron in the Hall A of Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Mazouz, Malek [Joseph Fourier Univ., Grenoble (France)

    2006-12-08

    Generalized Parton Distributions (GPDs) are universal functions which provide a comprehensive description of hadron properties in terms of quarks and gluons. Deeply Virtual Compton Scattering (DVCS) is the simplest hard exclusive process involving GPDs. In particular, the DVCS on the neutron is mostly sensitive to E, the less constrained GPD, wich allows to access to the quark angular momentum. The first dedicated DVCS experiment on the neutron ran in the Hall A of Jefferson Lab in fall 2004. The high luminosity of the experiment and the resulting background rate recquired specific devices which are decribed in this document. The analysis methods and the experiment results, leading to preliminary constraints on the GPD E, are presented.

  16. Neutron Arm Study and Calibration for the GEn Experiment at Thomas Jefferson National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Timothy [California State Univ. (CalState), Los Angeles, CA (United States)

    2007-07-01

    The measurement of the neutron electric form factor, G$n\\atop{e}$, will allow us to solve indirectly for the quark charge distribution inside of the neutron. With the equipment at Jefferson Lab we have measured G$n\\atop{e}$ at four momentum transfer values of Q2 at 1.3, 2.4 and 3.4 (GeV/c)2 using a polarized electron beam and polarized Helium target. The scattered electrons off of the Helium target are detected in the BigBite spectrometer and the recoiling neutrons from the Helium are detected in the Neutron Arm, which is composed of an array of scintillators. The main focus of this thesis will be devoted to the geometry, timing and energy calibrations of the Neutron Arm.

  17. The Leyden uranium prospect, Jefferson County, Colorado

    Science.gov (United States)

    Gott, Garland B.

    1950-01-01

    The Leyden uranium prospect is in sec. 28, T, 2 S., R. 70 W, Jefferson County, Cplo, Examination of the property was made in February 1950. Uranium was first reported in this locality in 1875 by Captain E. L. Berthoud, who noted uranium minerals associated with the main coal bed. The Old Leyden coal mine workings have long been abandoned and caved, but specimens of the uranium-bearing rock can be seen on the old dump 700 feet to the south. The mineralized coal bed is 10 to 12 feet thick and occurs near the base of the Laramie formation of Upper Cretaceous age. Uranium minerals are present in the form of yellow incrustations and inclusions in fractured and partly silicified coal. Petrographic studies indicate that the silica and uranium minerals were deposited after deposition and carbonization of the coal. Secondary uranium minerals also were found by C. R. Butler along the outcrop of the sandstones in the Laramie formation. No uranium minerals were found in place by the writer, but four samples from the dump contained 0.001, 0,005, 0.17 and 0.69 percent uranium.

  18. Deeply virtual Compton scattering at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Biselli, Angela S. [Fairfield University - Department of Physics 1073 North Benson Road, Fairfield, CT 06430, USA; Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-08-01

    The generalized parton distributions (GPDs) have emerged as a universal tool to describe hadrons in terms of their elementary constituents, the quarks and the gluons. Deeply virtual Compton scattering (DVCS) on a proton or neutron ($N$), $e N \\rightarrow e' N' \\gamma$, is the process more directly interpretable in terms of GPDs. The amplitudes of DVCS and Bethe-Heitler, the process where a photon is emitted by either the incident or scattered electron, can be accessed via cross-section measurements or exploiting their interference which gives rise to spin asymmetries. Spin asymmetries, cross sections and cross-section differences can be connected to different combinations of the four leading-twist GPDs (${H}$, ${E}$, ${\\tilde{H}}$, ${\\tilde{E}}$) for each quark flavors, depending on the observable and on the type of target. This paper gives an overview of recent experimental results obtained for DVCS at Jefferson Laboratory in the halls A and B. Several experiments have been done extracting DVCS observables over large kinematics regions. Multiple measurements with overlapping kinematic regions allow to perform a quasi-model independent extraction of the Compton form factors, which are GPDs integrals, revealing a 3D image of the nucleon.

  19. The BDX experiment at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Celentano, Andrea [Istituto Nazionale di Fisica Nucleare (INFN), Genova (Italy). et al.

    2015-06-01

    The existence of MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. The Beam Dump eXperiment (BDX) at Jefferson Laboratory aims to investigate this mass range. Dark matter particles will be detected through scattering on a segmented, plastic scintillator detector placed downstream of the beam-dump at one of the high intensity JLab experimental Halls. The experiment will collect up to 1022 electrons-on-target (EOT) in a one-year period. For these conditions, BDX is sensitive to the DM-nucleon elastic scattering at the level of a thousand counts per year, and is only limited by cosmogenic backgrounds. The experiment is also sensitive to DM-electron elastic and inelastic scattering, at the level of 10 counts/year. The foreseen signal for these channels is a high-energy (> 100 MeV) electromagnetic shower, with almost no background. The experiment has been presented in form of a Letter of Intent to the laboratory, receiving positive feedback, and is currently being designed.

  20. JLIFE: THE JEFFERSON LAB INTERACTIVE FRONT END FOR THE OPTICAL PROPAGATION CODE

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Anne M. [JLAB; Shinn, Michelle D. [JLAB

    2013-08-01

    We present details on a graphical interface for the open source software program Optical Propagation Code, or OPC. This interface, written in Java, allows a user with no knowledge of OPC to create an optical system, with lenses, mirrors, apertures, etc. and the appropriate drifts between them. The Java code creates the appropriate Perl script that serves as the input for OPC. The mode profile is then output at each optical element. The display can be either an intensity profile along the x axis, or as an isometric 3D plot which can be tilted and rotated. These profiles can be saved. Examples of the input and output will be presented.

  1. The Design and Evolution of Jefferson Lab's Jasmine Mass Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Bryan Hess; M. Andrew Kowalski; Michael Haddox-Schatz

    2005-04-01

    We describe the Jasmine mass storage system, in operation since 2001. Jasmine has scaled to meet the challenges of grid applications, petabyte class storage, and hundreds of MB/sec throughput using commodity hardware, Java technologies, and a small but focused development team. The evolution of the integrated disk cache system, which provides a managed online subset of the tape contents, is examined in detail. We describe how the storage system has grown to meet the special needs of the batch farm, grid clients, and new performance demands.

  2. Design of imaginary transition gamma booster synchrotron for the Jefferson Lab EIC (JLEIC)

    Energy Technology Data Exchange (ETDEWEB)

    Bogacz, Alex [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-05-01

    Baseline design of the JLEIC booster synchrotron is presented. Its aim is to inject and accumulate heavy ions and protons at 285 MeV, to accelerate them to about 7 GeV, and finally to extract the beam into the ion collider ring. The Figure-8 ring features two 2600 achromatic arcs configured with negative momentum compaction optics, designed to avoid transition crossing for all ion species during the course of acceleration. The lattice also features a specialized high dispersion injection insert optimized to facilitate the transverse phase-space painting in both planes for multi-turn ion injection. Furthermore, the lattice has been optimized to ease chromaticity correction with two families of sextupoles in each plane. The booster ring is configured with super-ferric, 3 Tesla bends. We are presently launching optimization of the booster synchrotron design to operate in the extreme space-charge dominated regime.

  3. Operating Experience and Reliability Improvements on the 5 kW CW Klystron at Jefferson Lab

    Science.gov (United States)

    Nelson, R.; Holben, S.

    1997-05-01

    With substantial operating hours on the RF system, considerable information on reliability of the 5 kW CW klystrons has been obtained. High early failure rates led to examination of the operating conditions and failure modes. Internal ceramic contamination caused premature failure of gun potting material and ultimate tube demise through arcing or ceramic fracture. A planned course of repotting and reconditioning of approximately 300 klystrons, plus careful attention to operating conditions and periodic analysis of operational data, has substantially reduced the failure rate. It is anticipated that implementation of planned supplemental monitoring systems for the klystrons will allow most catastrophic failures to be avoided. By predicting end of life, tubes can be changed out before they fail, thus minimizing unplanned downtime. Initial tests have also been conducted on this same klystron operated at higher voltages with resultant higher output power. The outcome of these tests will provide information to be considered for future upgrades to the accelerator.

  4. Recent Results of Semi-inclusive DIS Experiments at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Allada, Kalyan [Massachusetts Institute of Technology, Cambridge, MA

    2015-09-01

    Semi-inclusive deep inelastic scattering (SIDIS) is a powerful tool to explore the 3-d structure of nucleon in momentum space. Through a combination of polarized or unpolarized lepton beam and nucleon target one can study various transverse-momentum dependent parton distribution functions (TMDs) that appear in the SIDIS cross-section. TMDs provide a description of nucleon structure in terms of parton’s transverse momentum and its transverse spin, which enables us to study the quark orbital angular momentum effects in the nucleon. Several SIDIS experiments were performed in three experimental halls at JLab with 6 GeV electron beam using both polarized or upolarized beam and target combinations. The kinematic range was mainly focued on valence quark region. In this proceeding we will discuss some of the recent results from JLab 6 GeV run.

  5. Transversity and Transverse Spin in Nucleon Structure through SIDIS at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    A. Afanasev; M. Anselmino; H. Avakian; G. Cates; J.-P. Chen; E. Chudakov; E. Cisbani; C. de Jager; L. Gamberg; H. Gao; F. Garibaldi; X. Jiang; K. S. Kumar; Z.-E. Meziani; P. J. Mulders; J.-C. Peng; X. Qian; M. Schlegel; P. Souder; F. Yuan; L. Zhu

    2006-12-13

    The JLab 12 GeV upgrade with a proposed solenoid detector and the CLAS12 detector can provide the granularity and three-dimensional kinematic coverage in longitudinal and transverse momentum, $0.1\\le x \\le 0.5$, $0.3 \\le z \\le 0.7$ with $P_T \\le 1.5 {\\rm GeV}$ to precisely measure the leading twist chiral-odd and $T$-odd quark distribution and fragmentation functions in SIDIS. The large $x$ experimental reach of these detectors with a 12 GeV CEBAF at JLab makes it {\\em ideal} to obtain precise data on the {\\em valence-dominated} transversity distribution function and to access the tensor charge.

  6. Spin duality in the nucleon: Measurements at Jefferson Lab Hall A

    Energy Technology Data Exchange (ETDEWEB)

    Nilanga Liyanage

    2005-02-01

    The current experimental status of quark-hadron duality is discussed with particular emphasis on separated longitudinal and transverse structure functions. In addition, current and future experiments, which could help elucidate the nature of duality, are briefly discussed.

  7. Hydrogen — Dr. Jekyll and Mr. Hyde: A Motivation for the Hydrogen Workshop at Jefferson Lab

    Science.gov (United States)

    Padamsee, Hasan; Chattopadhyay, Swapan

    2003-07-01

    As shown by both its history and its present scientific and technological roles, hydrogen presents not only opportunities but distinct challenges. The opportunities, which once included aeronautics, now encompass semiconductors and electronics/opto-electronics in general. Transportation has returned along with the grand prospect of a "hydrogen economy" based on more recent advances in the technologies of H generation and use. Challenges presented by H have grown acute for accelerator builders, especially in the areas of superconducting accelerating structures, large vacuum systems, and cryogenic systems.

  8. Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab

    CERN Document Server

    Battaglieri, M; De Vita, R; Izaguirre, E; Krnjaic, G; Smith, E; Stepanyan, S; Bersani, A; Fanchini, E; Fegan, S; Musico, P; Osipenko, M; Ripani, M; Santopinto, E; Taiuti, M; Schuster, P; Toro, N; Dalton, M; Freyberger, A; Girod, F -X; Kubarovsky, V; Ungaro, M; De Cataldo, G; De Leo, R; Di Bari, D; Lagamba, L; Nappi, E; Perrino, R; Carpinelli, M; Sipala, V; Aiello, S; Bellini, V; De Napoli, M; Giusa, A; Mammoliti, F; Leonora, E; Noto, F; Randazzo, N; Russo, G; Sperduto, M; Sutera, C; Ventura, C; Barion, L; Ciullo, G; Contalbrigo, M; Lenisa, P; Movsisyan, A; Spizzo, F; Turisini, M; De Persio, F; Cisbani, E; Fanelli, C; Garibaldi, F; Meddi, F; Urciuoli, G M; Pereira, S Anefalos; De Sanctis, E; Hasch, D; Lucherini, V; Mirazita, M; Montgomery, R; Pisano, S; Simi, G; D'Angelo, A; Lanza, L Colaneri L; Rizzo, A; Schaerf, C; Zonta, I; Calvo, D; Filippi, A; Holtrop, M; Peremuzyan, R; Glazier, D; Ireland, D; McKinnon, B; Afanasev, D Sokhan A; Briscoe, B; Kalantarians, N; Fassi, L El; Weinstein, L; Beltrame, P; Murphy, A; Watts, D; Zana, L; Hicks, K

    2014-01-01

    MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. This Letter of Intent presents the MeV-GeV DM discovery potential for a 1 m$^3$ segmented plastic scintillator detector placed downstream of the beam-dump at one of the high intensity JLab experimental Halls, receiving up to 10$^{22}$ electrons-on-target (EOT) in a one-year period. This experiment (Beam-Dump eXperiment or BDX) is sensitive to DM-nucleon elastic scattering at the level of a thousand counts per year, with very low threshold recoil energies ($\\sim$1 MeV), and limited only by reducible cosmogenic backgrounds. Sensitivity to DM-electron elastic scattering and/or inelastic DM would be below 10 counts per year after requiring all electromagnetic showers in the detector to exceed a few-hundred MeV, which dramatically reduces or altogether eliminates all backgrounds. Detailed Monte Carlo simulations are in progress to finalize the detector design and experimental set up. An existing 0.036 m$^3$ prototype based on the s...

  9. The Jefferson Lab 12 GeV program on nucleon structure

    Energy Technology Data Exchange (ETDEWEB)

    Burkert, Volker D. [JLAB

    2013-10-01

    This slide-show presents the experiments planned at JLab with their 12 GeV upgrade. Experiments reported address: the use of hadron spectra as probes of QCD; the transverse structure of hadrons; the longitudinal structure of hadrons; the 3-dimensional structure of hadrons; hadrons and cold nuclear matter; and low-energy tests of the Standard Model and fundamental symmetries.

  10. Preliminary Results from the PrimEx-II experiment at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Gasparian, Ashot [NCA& T, Greensboro, NC; Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-06-01

    Properties of the neutral pion, as the lightest hadron in Nature, are most sensitive to the basic symmetries and their partial breaking effects in the theory of the strong interaction (QCD). In particular, the po →gg decay width is primarily defined by the spontaneous chiral symmetry breaking effect (chiral anomaly) in QCD. The next order corrections to the anomaly have been shown to be small and are known to a 1% precision level. The PrimEx Collaboration at JLab has developed and performed two Primakoff type experiments to measure the po →gg decay width with a similar precision. The published result from the PrimEx-I experiment, G(p0 →gg ) = 7.82±0.14 (stat.)±0.17 (syst.) eV, was a factor of two more precise than the average value quoted in PDG-2010 [1]. The second experiment was performed in 2010 with a goal of 1.4% total uncertainty to address the next-to-leading-order theory calculations. The preliminary results from the PrimEx-II experiment are presented and discussed in this note.

  11. The Aerogel Cerenkov detector for the SHMS magnetic spectrometer in Hall C at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Horn, T.; Mkrtchyan, H.; Ali, S.; Asaturyan, A.; Carmignotto, M.; Dittmann, A.; Dutta, D.; Ent, R.; Hlavin, N.; Illieva, Y.; Mkrtchyan, A.; Nadel-Turonski, P.; Pegg, I.; Ramos, A.; Reinhold, J.; Sapkota, I.; Tadevosyan, V.; Zhamkochyan, S.; Wood, S. A.

    2017-01-01

    Hadronic reactions producing strange quarks such as exclusive or semi-inclusive kaon production, play an important role in studies of hadron structure and the dynamics that bind the most basic elements of nuclear physics. The small-angle capability of the new Super High Momentum Spectrometer (SHMS) in Hall C, coupled with its high momentum reach - up to the anticipated 11-GeV beam energy in Hall C - and coincidence capability with the well-understood High Momentum Spectrometer, will allow for probes of such hadron structure involving strangeness down to the smallest distance scales to date. To cleanly select the kaons, a threshold aerogel Cerenkov detector has been constructed for the SHMS. The detector consists of an aerogel tray followed by a diffusion box. Four trays for aerogel of nominal refractive indices of n=1.030, 1.020, 1.015 and 1.011 were constructed. The tray combination will allow for identification of kaons from 1 GeV/c up to 7.2 GeV/c, reaching 10-2 proton and 10-3 pion rejection, with kaon detection efficiency better than 95%. The diffusion box of the detector is equipped with 14 five-inch diameter photomultiplier tubes. Its interior walls are covered with Gore diffusive reflector, which is superior to the commonly used Millipore paper and improved the detector performance by 35%. The inner surface of the two aerogel trays with higher refractive index is covered with Millipore paper, however, those two trays with lower aerogel refractive index are again covered with Gore diffusive reflector for higher performance. The measured mean number of photoelectrons in saturation is ~12 for n=1.030, ~8 for n=1.020, ~10 for n=1.015, and ~5.5 for n=1.011. The design details, the results of component characterization, and initial performance tests and optimization of the detector are presented.

  12. The Aerogel Cherenkov Detector for the SHMS magnetic spectrometer in Hall C at Jefferson Lab

    CERN Document Server

    Horn, T; Ali, S; Asaturyan, A; Carmignotto, M A P; Dittmann, A; Dutta, D; Ent, R; Hlavin, N; Illieva, Y; Mkrtchyan, A; Nadel-Turonski, P; Pegg, I L; Ramos, A; Reinhold, J; Sapkota, I; Tadevosyan, V; Zhamkochyan, S; Wood, S A

    2016-01-01

    Hadronic reactions producing strange quarks such as exclusive or semi-inclusive kaon production, play an important role in studies of hadron structure and the dynamics that bind the most basic elements of nuclear physics. The small-angle capability of the new Super High Momentum Spectrometer (SHMS) in Hall C, coupled with its high momentum reach - up to the anticipated 11-GeV beam energy in Hall C - and coincidence capability with the well-understood High Momentum Spectrometer, will allow for probes of such hadron structure involving strangeness down to the smallest distance scales to date. To cleanly select the kaons, a threshold aerogel Cerenkov detector has been constructed for the SHMS. The detector consists of an aerogel tray followed by a diffusion box. Four trays for aerogel of nominal refractive indices of n=1.030, 1.020, 1.015 and 1.011 were constructed. The tray combination will allow for identification of kaons from 1 GeV/c up to 7.2 GeV/c, reaching 10^-2 proton and 10^-3 pion rejection, with kaon ...

  13. Nuclear power and the Hamilton-Jefferson debate

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, A.

    The basic sources of nuclear opposition derive from the philosophical arguments of Thomas Jefferson against Alexander Hamilton's vision of an industrial society with a strong central authority. Today's young people continue Jefferson's radical plea for the individual freedoms associated with personal ownership and limited government, but they accept the structure of the former while searching for the romanticism of the latter. The nuclear debate reflects this dichotomy and will continue even if the issues of waste disposal and safety are resolved. (DCK)

  14. Transcription of Gail Jefferson, Boston University Conference on Ethnomethodology and Conversation Analysis, 9 June 1977

    DEFF Research Database (Denmark)

    Nevile, Maurice Richard

    2015-01-01

    for the original film recording to be digitised. Jefferson later developed elements of her 1977 talk into the paper ‘On the poetics of ordinary talk’ (Jefferson. G. 1996, in Text and Performance Quarterly, 16,1:1-61). An indication of the significance of the talk is given in that paper’s abstract, where Jefferson...

  15. Electroproduction of neutral pions in the Hall A at the Jefferson Laboratory; Electroproduction de pions neutres dans le Hall A au Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Fuchey, Eric [Blaise Pascal Univ., Aubiere (France)

    2010-06-01

    The past decade has seen a strong evolution of the study of the hadron structure through exclusive processes, allowing to access to a more complete description of this structure. Exclusive processes include DVCS (Deeply Virtual Compton Scattering) as well as hard exclusive meson production. This document is particularly focussed on the latter, and more particularly on exclusive neutral pion production. In this thesis is described the analysis of triple coincidence events H(e, e'γγ)X, which were a consequent by-product of the DVCS experiment which occured during Fall 2004 at Jefferson Lab Hall A, to extract the ep → epπ0 cross section. This cross section has been measured at two values of four-momentum transfer Q2 = 1.9 GeV2 and Q2 = 2.3 GeV2. The statistical precision for these measurements is achieved at better than 5 %. The kinematic range allows to study the evolution of the extracted cross section as a function of Q2 and W. Results are be confronted with Regge inspired calculations and Generalized (GPD) predictions. An intepretation of our

  16. The medical history of Thomas Jefferson (1743-1826).

    Science.gov (United States)

    Schneeberg, Norman G

    2008-05-01

    Thomas Jefferson, the third President of the USA, was often the victim of a panoply of disorders including episodic headaches, dysentery, rheumatism, multiple bone fractures, malaria, possibly tuberculosis, dental problems, diabetes and urinary tract obstruction. Intermittently he experienced anxiety, depression and insomnia; he was an anxious, striving perfectionist, a compulsively controlled man.

  17. The Virtual Lab System

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A virtual lab system is the simulation of real devices and experiments using computer and network tech-nology. It can make users do experiments easily, observe experiment phenomena and results through the remote termi-nal. Consequently, users can get final results to verify relative theory. The article analyses the features of virtual labsystems. A real virtual lab system named "Multimedia Virtual Lab for Digital Circuit Logic Design (MVLDCLD) "which has been developed by the authors and their group is also presented.

  18. USNA DIGITAL FORENSICS LAB

    Data.gov (United States)

    Federal Laboratory Consortium — To enable Digital Forensics and Computer Security research and educational opportunities across majors and departments. Lab MissionEstablish and maintain a Digital...

  19. Magnetic Media Lab

    Data.gov (United States)

    Federal Laboratory Consortium — This lab specializes in tape certification and performance characterization of high density digital tape and isprepared to support the certification of standard size...

  20. USNA DIGITAL FORENSICS LAB

    Data.gov (United States)

    Federal Laboratory Consortium — To enable Digital Forensics and Computer Security research and educational opportunities across majors and departments. Lab Mission Establish and maintain a Digital...

  1. Fabrication and Prototyping Lab

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Fabrication and Prototyping Lab for composite structures provides a wide variety of fabrication capabilities critical to enabling hands-on research and...

  2. Crystallization Formulation Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Crystallization Formulation Lab fills a critical need in the process development and optimization of current and new explosives and energetic formulations. The...

  3. Determination of the Optimal Operating Parameters for Jefferson Laboratory's Cryogenic Cold Compressor Systems

    CERN Document Server

    Wilson, J D

    2003-01-01

    The technology of Jefferson Laboratory's (JLab) Continuous Electron Beam Accelerator Facility (CEBAF) and Free Electron Laser (FEL) requires cooling from one of the world's largest 2K helium refrigerators known as the Central Helium Liquefier (CHL). The key characteristic of CHL is the ability to maintain a constant low vapor pressure over the large liquid helium inventory using a series of five cold compressors. The cold compressor system operates with a constrained discharge pressure over a range of suction pressures and mass flows to meet the operational requirements of CEBAF and FEL. The research topic is the prediction of the most thermodynamically efficient conditions for the system over its operating range of mass flows and vapor pressures with minimum disruption to JLab operations. The research goal is to find the operating points for each cold compressor for optimizing the overall system at any given flow and vapor pressure.

  4. Determination of the Optimal Operating Parameters for Jefferson Laboratory's Cryogenic Cold Compressor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Joe D. Wilson, Jr.

    2003-04-01

    The technology of Jefferson Laboratory's (JLab) Continuous Electron Beam Accelerator Facility (CEBAF) and Free Electron Laser (FEL) requires cooling from one of the world's largest 2K helium refrigerators known as the Central Helium Liquefier (CHL). The key characteristic of CHL is the ability to maintain a constant low vapor pressure over the large liquid helium inventory using a series of five cold compressors. The cold compressor system operates with a constrained discharge pressure over a range of suction pressures and mass flows to meet the operational requirements of CEBAF and FEL. The research topic is the prediction of the most thermodynamically efficient conditions for the system over its operating range of mass flows and vapor pressures with minimum disruption to JLab operations. The research goal is to find the operating points for each cold compressor for optimizing the overall system at any given flow and vapor pressure.

  5. Physics Labs with Flavor

    Science.gov (United States)

    Agrest, Mikhail M.

    2009-01-01

    This paper describes my attempts to look deeper into the so-called "shoot for your grade" labs, started in the '90s, when I began applying my teaching experience in Russia to introductory physics labs at the College of Charleston and other higher education institutions in South Carolina. The term "shoot for your grade" became popular among…

  6. Making Real Virtual Labs

    Science.gov (United States)

    Keller, Harry E.; Keller, Edward E.

    2005-01-01

    Francis Bacon began defining scientific methodology in the early 17th century, and secondary school science classes began to implement science labs in the mid-19th century. By the early 20th century, leading educators were suggesting that science labs be used to develop scientific thinking habits in young students, and at the beginning of the 21st…

  7. 78 FR 36545 - Notice of Ability To Pay-Cash-out Settlement Agreement for the Jefferson City Residential Yards...

    Science.gov (United States)

    2013-06-18

    ... AGENCY Notice of Ability To Pay--Cash-out Settlement Agreement for the Jefferson City Residential Yards... Jefferson City Residential Yards Site in Jefferson City, Jefferson County, Montana (Site). The Site consists of 19 residential yards, a portion of a U.S. Postal Service property, and sections of Spring...

  8. EPICS Channel Access Server for LabVIEW

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-01

    It can be challenging to interface National Instruments LabVIEW (http://www.ni.com/labview/) with EPICS (http://www.aps.anl.gov/epics/). Such interface is required when an instrument control program was developed in LabVIEW but it also has to be part of global control system. This is frequently useful in big accelerator facilities. The Channel Access Server is written in LabVIEW, so it works on any hardware/software platform where LabVIEW is available. It provides full server functionality, so any EPICS client can communicate with it.

  9. Investigation of virtual deep Compton scattering from neutrons in Hall A at Jefferson Laboratory; Exploration de la diffusion Compton profondement virtuelle sur le neutron dans le Hall A au Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Mazouz, Malek [Ecole Doctorale de Physique, Universite Joseph Fourier - Grenoble 1, 53 Avenue des Martyrs, F-38026 Grenoble (France)

    2006-12-15

    Generalized Parton Distributions (GPDs) are universal functions which provide a comprehensive description of hadron properties in terms of quarks and gluons. Deeply Virtual Compton Scattering (DVCS) is the simplest hard exclusive process involving GPDs.In particular, the DVCS on the neutron is mostly sensitive to E, the less constrained GPD, which allows to access to the quark angular momentum. The first dedicated DVCS experiment on the neutron ran in the Hall A of Jefferson Lab in fall 2004. The high luminosity of the experiment and the resulting background rate required specific devices which are described in this document. The analysis methods and the experiment results, leading to preliminary constraints on the GPD E, are presented. (author)

  10. Comprehensive facilities plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitate existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.

  11. An Infrared Laser Testing Facility for the Characterization of the CLAS12 Silicon Detectors

    Science.gov (United States)

    Phillips, Sarah

    2011-04-01

    During the 12 GeV upgrade to the CEBAF accelerator at Jefferson Lab, a new spectrometer, CLAS12, will be built in Hall B. The Nuclear Physics Group at the University of New Hampshire is part of the collaboration working to design and build this new detector system. Among the new detector systems being developed for CLAS12 is a silicon vertex tracker that will be placed close to the target, providing excellent position resolution for vertex determination. It is essential to have the ability to perform quality assurance tests and to evaluate the performance of the individual silicon strip detectors before their installation in the full detector system. The UNH Nuclear Physics Group is designing and building a laser testing facility at UNH to perform this task. The design for the testing facility consists of a 1064 nm infrared laser system and a precision positioning mechanism to scan the laser light on the detector by a computer controlled system designed to efficiently test the large number of detectors prior to installation. The detector signals are read out by a computer data acquisition system for analysis. The facility also includes a cleanroom area to house the test stand, and a dry storage containment system for the storage of the detectors.

  12. A Laser Testing Facility for the Characterization of Silicon Strip Detectors

    Science.gov (United States)

    Phillips, Sarah

    2011-04-01

    Silicon strip detectors are used for high-precision tracking systems in particle physics experiments. During the 12 GeV upgrade to the accelerator at Jefferson Lab, a new spectrometer, CLAS12, will be built in Hall B. The University of New Hampshire is part of the collaboration designing and building CLAS12. Among the detector systems being developed for CLAS12 is a silicon vertex tracker that will be placed close to the target, providing excellent position resolution for vertex determination. It is vital to have the ability to perform quality assurance tests and to evaluate the performance of the individual silicon strip detectors before installation in CLAS12. UNH is designing and building a laser testing facility to perform this task. The design consists of an infrared laser system and a precision computer-controlled positioning system that scans the laser light on the detector. The detector signals are read out by a data acquisition system for analysis. The facility includes a cleanroom area and a dry storage containment system. The facility allows the characterization of the large number of detectors before the final assembly of the silicon vertex tracker.

  13. The Complexity of Thomas Jefferson. A Response to "'The Diffusion of Light': Jefferson's Philosophy of Education"

    Science.gov (United States)

    Carpenter, James

    2014-01-01

    This response argues that Jefferson's educational philosophy must be considered in a proper historical context. Holowchak accurately demonstrates both Jefferson's obsession with education and the political philosophy on which his educational beliefs are built. However, the effort to apply modern democratic and meritocratic attributes to…

  14. The Complexity of Thomas Jefferson. A Response to "'The Diffusion of Light': Jefferson's Philosophy of Education"

    Science.gov (United States)

    Carpenter, James

    2014-01-01

    This response argues that Jefferson's educational philosophy must be considered in a proper historical context. Holowchak accurately demonstrates both Jefferson's obsession with education and the political philosophy on which his educational beliefs are built. However, the effort to apply modern democratic and meritocratic attributes to…

  15. Jefferson fracture in a child--illustrative case report.

    Science.gov (United States)

    Korinth, Marcus C; Kapser, Alexandra; Weinzierl, Martin R

    2007-01-01

    In adults, atlas burst fractures (Jefferson fractures) are not uncommon. In the pediatric population, they are extremely rare, and only few cases have been reported so far. They all showed a highly consistent clinical presentation with rare neurological deficits as well as recovery with full function without any surgical intervention. We describe a case of a Jefferson fracture in a 7.5-year-old-boy after falling onto the top of his head, presenting solely with slight neck pain. The initial radiological characteristics are presented on magnetic resonance imaging (MRI) and computer tomography (CT); the bony bridging and fusion of the fracture sites are demonstrated on CT during the course of the healing. The patient was placed in a rigid cervical collar, and his physical examination results remained normal according to age. Complete fusion of both fracture sites was seen on the third follow-up 6.5 months after presentation. In this rare case of a Jefferson fracture in a child monitored by radiological imaging techniques, important aspects of conservatively treated atlas burst fractures are illustrated. It underlines their benign character and favorable outcome with full functional recovery without any surgical intervention.

  16. Laser Research Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Laser Research lab is thecenter for the development of new laser sources, nonlinear optical materials, frequency conversion processes and laser-based sensors for...

  17. Secure Processing Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Secure Processing Lab is the center of excellence for new and novel processing techniques for the formation, calibration and analysis of radar. In addition, this...

  18. The Udall Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Udall lab is interested in genome evolution and cotton genomics.The cotton genus ( Gossypium) is an extraordinarily diverse group with approximately 50 species...

  19. Deciphering Your Lab Report

    Science.gov (United States)

    Advertisement Proceeds from website advertising help sustain Lab Tests Online. AACC is a not-for-profit organization and does not endorse non-AACC products and services. Advertising & Sponsorship: Policy | Opportunities ...

  20. LIDAR Research & Development Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The LIDAR Research and Development labs are used to investigate and improve LIDAR components such as laser sources, optical signal detectors and optical filters. The...

  1. Case report: nonoperative treatment of an unstable Jefferson fracture using a cervical collar.

    Science.gov (United States)

    Haus, Brian M; Harris, Mitchel B

    2008-05-01

    The treatment of unstable burst fractures of the atlas (Jefferson fractures) is controversial. Unstable Jefferson fractures have been managed successfully with either immobilization, typically halo traction or halo vest, or surgery. We report a patient with an unstable Jefferson fracture treated nonoperatively with a cervical collar, frequent clinical examinations, and flexion-extension radiographs. Twelve months after treatment, the patient achieved painless union of his fracture. The successful treatment confirms prior studies reporting unstable Jefferson fractures have been treated nonoperatively. The outcome challenges the clinical relevance of treatment algorithms that rely on the "rules of Spence" to guide treatment of unstable Jefferson fractures and illustrates instability may not necessarily be present in patients with considerable lateral mass widening. Additionally, it emphasizes a more reliable way of assessing C1-C2 stability in unstable Jefferson fractures is by measuring the presence and extent of anterior subluxation on lateral flexion and extension views.

  2. Case Report: Nonoperative Treatment of an Unstable Jefferson Fracture Using a Cervical Collar

    OpenAIRE

    Haus, Brian M.; Harris, Mitchel B.

    2008-01-01

    The treatment of unstable burst fractures of the atlas (Jefferson fractures) is controversial. Unstable Jefferson fractures have been managed successfully with either immobilization, typically halo traction or halo vest, or surgery. We report a patient with an unstable Jefferson fracture treated nonoperatively with a cervical collar, frequent clinical examinations, and flexion-extension radiographs. Twelve months after treatment, the patient achieved painless union of his fracture. The succes...

  3. Acoustic sensors for fission gas characterization: R and D skills devoted to innovative instrumentation in MTR, non-destructive devices in hot lab facilities and specific transducers for measurements of LWR rods in nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    Ferrandis, J.Y.; Leveque, G.; Rosenkrantz, E.; Augereau, F.; Combette, P. [University Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France)

    2015-07-01

    pressure and composition measurement by an acoustic sensor was conducted successfully between 2008 and 2010 on 5 high burn-up MOX fuel rods and 2 very high burn-up UO{sub 2} fuel rods in LECA Facility at Cadarache Centre. An improvement of this sensor has been proposed, allowing us to divide by two the uncertainty on the pressure measurement. In the case of hot-cell measurements, viscous liquid can be used to couple the sensor with the rod. For gas content with a pressure exceeding 15 bars and a 10% Xe/Kr ratio, such coupling may reduce relative acoustic method accuracy by ±7% for pressure measurement result and ±0.25 % for the assessment of gas composition. These results make it possible to demonstrate the feasibility of the technique on LWR fuel rods. The transducer and the associated methodology are now operational for non-destructive measurements in hot lab facilities and allow characterising the fission gas without puncturing the fuel rods. Up to now, any other non-destructive method can be proposed. A next step will be the development of an industrial application in a fuel storage pool in order to perform a large number of measurements on a fuel assembly in nuclear plants.

  4. Berkeley Lab Computing Sciences: Accelerating Scientific Discovery

    OpenAIRE

    Hules, John A.

    2009-01-01

    Scientists today rely on advances in computer science, mathematics, and computational science, as well as large-scale computing and networking facilities, to increase our understanding of ourselves, our planet, and our universe. Berkeley Lab's Computing Sciences organization researches, develops, and deploys new tools and technologies to meet these needs and to advance research in such areas as global climate change, combustion, fusion energy, nanotechnology, biology, and astrophysics.

  5. The CLAS12 Torus Detector Magnet at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Luongo, Cesar [Jefferson Lab; Ballard, Joshua [Jefferson Lab; Biallas, George [Jefferson Lab; Elouadrhiri, Latifa [Jefferson Lab; Fair, Ruben [Jefferson Lab; Ghoshal, Probir [Jefferson Lab; Kashy, Dave [Jefferson Lab; Legg, Robert [Jefferson Lab; Pastor, Orlando [Jefferson Lab; Rajput-Ghoshal, Renuka [Jefferson Lab; Rode, Claus [Jefferson Lab; Wiseman, Mark [Jefferson Lab; Young, Glenn [Jefferson Lab; Elementi, Luciano [Fermilab; Krave, Steven [Fermilab; Makarov, Alexander [Fermilab; Nobrega, Fred [Fermilab; Velev, George [Fermilab

    2015-12-17

    The CLAS12 Torus is a toroidal superconducting magnet, which is part of the detector for the 12-GeV accelerator upgrade at Jefferson Laboratory (JLab). The coils were wound/fabricated by Fermilab, with JLab responsible for all other parts of the project scope, including design, integration, cryostating the individual coils, installation, cryogenics, I&C, etc. This paper provides an overview of the CLAS12 Torus magnet features and serves as a status report of its installation in the experimental hall. Completion and commissioning of the magnet is expected in 2016.

  6. CDC Lab Values

    Centers for Disease Control (CDC) Podcasts

    2015-02-02

    More than fifteen hundred scientists fill the lab benches at CDC, logging more than four million hours each year. CDC’s laboratories play a critical role in the agency’s ability to find, stop, and prevent disease outbreaks. This podcast provides a brief overview of what goes on inside CDC’s labs, and why this work makes a difference in American’s health.  Created: 2/2/2015 by Office of the Associate Director for Communication (OADC).   Date Released: 2/2/2015.

  7. OpenLabNotes

    DEFF Research Database (Denmark)

    List, Markus; Franz, Michael; Tan, Qihua

    2015-01-01

    the longevity of the providers. Turning towards free alternatives, however, raises questions about data protection, which are not sufficiently addressed by available solutions. To serve as legal documents, ELNs must prevent scientific fraud through technical means such as digital signatures. It would also......LabFramework, a powerful and flexible laboratory information management system. In contrast to comparable solutions, it allows to protect the intellectual property of its users by offering data protection with digital signatures. OpenLabNotes effectively Closes the gap between research documentation and sample management...

  8. SmallSat Lab

    Science.gov (United States)

    2014-03-05

    CubeSat. Mr. Alvarez worked with four students on the PCB layout for the solar panels and the construction of the 6U CubeSat mockup . Support for Mr...Hull and Mr. Alvarez was $49k including fringe benefits. !! Purchases: During this time period a license for MatLab software and the Princeton...Satellite ToolBox was purchased using funds from this award. This software adds tremendous capability to the SmallSat Lab by enabling students to analyze

  9. The NOAO Data Lab

    Science.gov (United States)

    Fitzpatrick, M.; Olsen, K.; Stobie, E. B.; Mighell, K. J.; Norris, P.

    2015-09-01

    We describe the NOAO Data Lab to help community users take advantage of current large surveys and prepare them even larger surveys in the era of LSST. The Data Lab will allow users to efficiently utilize catalogs of billions of objects, combine traditional telescope image and spectral data with external archives, share custom results with collaborators, publish data products to other users, and experiment with analysis toolkits. Specific science cases will be used to develop a prototype framework and tools, allowing us to work directly with scientists from survey teams to ensure development remains focused on scientifically productive tasks.

  10. Status of the AFRL/RW Bio-Sensors Lab

    Science.gov (United States)

    2012-03-28

    identical counter-rotating NDFs; an internally designed ocellar stimulation rig (an automated Cardan arm with LED scene projection array, completing...automated Cardan arm. Facilities: The Bio-Sensors Lab (Dr Dennis Goldstein’s old Optics Lab where he did optical surface characterization of...eyes and ocelli (and stomatopod compound eye midband sensors). The automated Cardan arm with its movable LED array, described later in the

  11. A Big Bang Lab

    Science.gov (United States)

    Scheider, Walter

    2005-01-01

    The February 2005 issue of The Science Teacher (TST) reminded everyone that by learning how scientists study stars, students gain an understanding of how science measures things that can not be set up in lab, either because they are too big, too far away, or happened in a very distant past. The authors of "How Far are the Stars?" show how the…

  12. Lab on paper

    NARCIS (Netherlands)

    Zhao, Weian; van den Berg, Albert

    2008-01-01

    Lab-on-a-chip (LOC) devices, which are suited to portable point-of-care (POC) diagnostics and on-site detection, hold great promise for improving global health, and other applications.1–8 While their importance and utility are widely acknowledged and extensive research has been conducted in the

  13. The Crime Lab Project.

    Science.gov (United States)

    Hein, Annamae J.

    2003-01-01

    Describes the Crime Lab Project, which takes an economical, hands-on, interdisciplinary approach to studying the career of forensics in the middle or high school classroom. Includes step-by-step student requirements for the investigative procedure, a sample evidence request form, and an assessment rubric. (KHR)

  14. Lab with Dad

    Science.gov (United States)

    Havers, Brenda; Delmotte, Karen

    2012-01-01

    Family science nights are fantastic, but planning one can be overwhelming, especially when one considers the already overloaded schedule of a classroom teacher. To overcome this challenge, the authors--colleagues with a mutual love of science--developed a much simpler annual event called "Lab With Dad." The purpose was for one target age group of…

  15. Elemental Chem Lab

    Science.gov (United States)

    Franco Mariscal, Antonio Joaquin

    2008-01-01

    This educative material uses the symbols of 45 elements to spell the names of 32 types of laboratory equipment usually found in chemical labs. This teaching material has been divided into three puzzles according to the type of the laboratory equipment: (i) glassware as reaction vessels or containers; (ii) glassware for measuring, addition or…

  16. Lab on paper

    NARCIS (Netherlands)

    Zhao, Weian; van den Berg, Albert

    2008-01-01

    Lab-on-a-chip (LOC) devices, which are suited to portable point-of-care (POC) diagnostics and on-site detection, hold great promise for improving global health, and other applications.1–8 While their importance and utility are widely acknowledged and extensive research has been conducted in the labo

  17. Energy and chemical efficient nitrogen removal at a full-scale MBR water reuse facility

    Directory of Open Access Journals (Sweden)

    Jianfeng Wen

    2015-02-01

    Full Text Available With stringent wastewater discharge limits on nitrogen and phosphorus, membrane bioreactor (MBR technology is gaining popularity for advanced wastewater treatment due to higher effluent quality and smaller footprint. However, higher energy intensity required for MBR plants and increased operational costs for nutrient removal limit wide application of the MBR technology. Conventional nitrogen removal requires intensive energy inputs and chemical addition. There are drivers to search for new technology and process control strategies to treat wastewater with lower energy and chemical demand while still producing high quality effluent. The NPXpress is a patented technology developed by American Water engineers. This technology is an ultra-low dissolved oxygen (DO operation for wastewater treatment and is able to remove nitrogen with less oxygen requirements and reduced supplemental carbon addition in MBR plants. Jefferson Peaks Water Reuse Facility in New Jersey employs MBR technology to treat municipal wastewater and was selected for the implementation of the NPXpress technology. The technology has been proved to consistently produce a high quality reuse effluent while reducing energy consumption and supplemental carbon addition by 59% and 100%, respectively. Lab-scale kinetic studies suggested that NPXpress promoted microorganisms with higher oxygen affinity. Process modelling was used to simulate treatment performance under NPXpress conditions and develop ammonia-based aeration control strategy. The application of the ammonia-based aeration control at the plant further reduced energy consumption by additional 9% and improved treatment performance with 35% reduction in effluent total nitrogen. The overall energy savings for Jefferson Peaks was $210,000 in four years since the implementation of NPXpress. This study provided an insight in design and operation of MBR plants with NPXpress technology and ultra-low DO operations.

  18. "The Diffusion of Light": Jefferson's Philosophy of Education

    Science.gov (United States)

    Holowchak, M. Andrew

    2013-01-01

    Jefferson's republicanism--a people-first, mostly bottom-up political vision with a moral underpinning--was critically dependent on general education for the citizenry and higher education for those who would govern. This paper contains an analysis of Jefferson's general philosophy of education by enumerating some of its most fundamental…

  19. The Jefferson Project: Large-eddy simulations of a watershed

    Science.gov (United States)

    Watson, C.; Cipriani, J.; Praino, A. P.; Treinish, L. A.; Tewari, M.; Kolar, H.

    2015-12-01

    The Jefferson Project is a new endeavor at Lake George, NY by IBM Research, Rensselaer Polytechnic Institute (RPI) and The Fund for Lake George. Lake George is an oligotrophic lake - one of low nutrients - and a 30-year study recently published by RPI's Darrin Fresh Water Institute highlighted the renowned water quality is declining from the injection of salt (from runoff), algae, and invasive species. In response, the Jefferson Project is developing a system to provide extensive data on relevant physical, chemical and biological parameters that drive ecosystem function. The system will be capable of real-time observations and interactive modeling of the atmosphere, watershed hydrology, lake circulation and food web dynamics. In this presentation, we describe the development of the operational forecast system used to simulate the atmosphere in the model stack, Deep ThunderTM (a configuration of the ARW-WRF model). The model performs 48-hr forecasts twice daily in a nested configuration, and in this study we present results from ongoing tests where the innermost domains are dx = 333-m and 111-m. We discuss the model's ability to simulate boundary layer processes, lake surface conditions (an input into the lake model), and precipitation (an input into the hydrology model) during different weather regimes, and the challenges of data assimilation and validation at this scale. We also explore the potential for additional nests over select regions of the watershed to better capture turbulent boundary layer motions.

  20. Oceanographic profile data collected from CTD and sound velocimeter - moving vessel profiler casts aboard NOAA Ship THOMAS JEFFERSON, NOAA Ship Thomas Jefferson Launch 3101 and NOAA Ship Thomas Jefferson Launch 3102 as part of project OPR-D302-TJ-15 in the North Atlantic Ocean from 2015-12-03 to 2015-12-17 (NCEI Accession 0148757)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148757 includes physical and profile data collected aboard NOAA Ship THOMAS JEFFERSON, NOAA Ship Thomas Jefferson Launch 3101 and NOAA Ship Thomas...

  1. Skills Labs: workshop EMERGO toolkit

    NARCIS (Netherlands)

    Kurvers, Hub; Slootmaker, Aad

    2009-01-01

    Kurvers, H. J., & Slootmaker, A. (2009). Skills Labs: workshop EMERGO toolkit. Presentation given at project members of Skills Labs. March, 31, 2009 and April, 24, 2009, Heerlen, The Netherlands: Open University of the Netherlands.

  2. ERLN Lab Compendium Fact Sheet

    Science.gov (United States)

    The Compendium is an online database of environmental testing laboratories nationwide. It enables labs to create profiles of their capabilities, so emergency responders can quickly identify a lab that will meet their support needs.

  3. "That Knowledge Most Useful to Us:" Thomas Jefferson's Concept of "Utility" in the Education of Republican Citizens.

    Science.gov (United States)

    Wagoner, Jennings L., Jr.

    This paper discusses Thomas Jefferson's evolving concept of the form and manner of education most useful for republican citizens. Jefferson both respected and resented Europe's claims of superiority in cultural matters. But as captivated as Jefferson was by European artistic and literary attainments, he was appalled at the misery and squalor that…

  4. Tele-Lab IT-Security: an Architecture for an online virtual IT Security Lab

    Directory of Open Access Journals (Sweden)

    Christoph Meinel

    2008-05-01

    Full Text Available Recently, Awareness Creation in terms of IT security has become a big thing – not only for enterprises. Campaigns for pupils try to highlight the importance of IT security even in the user’s early years. Common practices in security education – as seen in computer science courses at universities – mainly consist of literature and lecturing. In the best case, the teaching facility offers practical courses in a dedicated isolated computer lab. Additionally, there are some more or less interactive e-learning applications around. Most existing offers can do nothing more than impart theoretical knowledge or basic information. They all lack of possibilities to provide practical experience with security software or even hacker tools in a realistic environment. The only exceptions are the expensive and hard-to-maintain dedicated computer security labs. Those can only be provided by very few organizations. Tele-Lab IT-Security was designed to offer hands-on experience exercises in IT security without the need of additional hardware or maintenance expenses. The existing implementation of Tele-Lab even provides access to the learning environment over the Internet – and thus can be used anytime and anywhere. The present paper describes the extended architecture on which the current version of the Tele-Lab server is built.

  5. Study of CSR Effects in the Jefferson Laboratory FEL Driver

    Energy Technology Data Exchange (ETDEWEB)

    Hall, C. C. [Colorado State U.; Biedron, S. [Colorado State U.; Burleson, Theodore A. [Colorado State U.; Milton, Stephen V. [Colorado State U.; Morin, Auralee L. [Colorado State U.; Benson, Stephen V. [JLAB; Douglas, David R. [JLAB; Evtushenko, Pavel E. [JLAB; Hannon, Fay E. [JLAB; Li, Rui [JLAB; Tennant, Christopher D. [JLAB; Zhang, Shukui [JLAB; Carlsten, Bruce E. [LANL; Lewellen, John W. [LANL

    2013-08-01

    In a recent experiment conducted on the Jefferson Laboratory IR FEL driver the effects of Coherent Synchrotron Radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR chicane. This experiment also provides a valuable opportunity to benchmark existing CSR models in a system that may not be fully represented by a 1-D CSR model. Here we present results from this experiment and compare to initial simulations of CSR in the magnetic compression chicane of the machine. Finally, we touch upon the possibility for CSR induced microbunching gain in the magnetic compression chicane, and show that parameters in the machine are such that it should be thoroughly damped.

  6. Collet-sicard syndrome in a patient with jefferson fracture.

    Science.gov (United States)

    Kwon, Hee Chung; Cho, Dae Kyung; Jang, Yoon Young; Lee, Seong Jae; Hyun, Jung Keun; Kim, Tae Uk

    2011-12-01

    Collet-Sicard syndrome is a rare condition characterized by the unilateral paralysis of the 9th through 12th cranial nerves. We describe a case of a 46-year-old man who presented with dysphagia after a falling down injury. Computed tomography demonstrated burst fracture of the atlas. Physical examination revealed decreased gag reflex on the left side, decreased laryngeal elevation, tongue deviation to the left side, and atrophy of the left trapezius muscle. Videofluoroscopic swallowing study (VFSS) revealed frequent aspirations of a massive amount of thick liquid and incomplete opening of the upper esophageal sphincter during the pharyngeal phase. We report a rare case of Collet-Sicard syndrome caused by Jefferson fracture.

  7. The Heavy Photon Search experiment at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Celentano, Andrea [INFN-GENOVA

    2014-11-01

    The Heavy Photon Search experiment (HPS) at Jefferson Laboratory will search for a new U(1) massive gauge boson, or "heavy-photon", mediator of a new fundamental interaction, called "dark-force", that couples to ordinary photons through kinetic mixing. HPS has sensitivity in the mass range 20 MeV – 1 GeV and coupling epsilon2 between 10-5 and 10-10. The HPS experiment will look for the e+e- decay of the heavy photon, by resonance search and detached vertexing, in an electron beam fixed target experiment. HPS will use a compact forward spectrometer, which employs silicon microstrip detectors for vertexing and tracking, and a PbWO4 electromagnetic calorimeter for energy measurement and fast triggering.

  8. Spin physics program in Jefferson Lab’s Hall C

    Energy Technology Data Exchange (ETDEWEB)

    Rondon, Oscar A. [University of Virginia, Charlottesville, VA

    2015-04-01

    The nucleon spin structure has been studied at Jefferson Lab’s Hall C in experiments RSS (E01-006) and SANE (E07-003), which measured double spin asymmetries using the U. of Virginia solid polarized target and CEBAF’s 6 GeV polarized electrons. The proton longitudinal spin structure g 1 and transverse structure g 2 have been investigated at kinematics extending from the elastic point to DIS, for four-momenta squared ranging from 0.8 to 5 GeV2. The neutron structures have been measured in the region of the nucleon resonances at 1.3 GeV2 on a deuteron target. Results of both experiments will be highlighted. A brief survey of approved experiments for the 12 GeV program will also be presented.

  9. Spin physics program in Jefferson Lab’s Hall C

    Energy Technology Data Exchange (ETDEWEB)

    Rondón, Oscar A. [Institute for Nuclear and Particle Physics, University of Virginia, Charlottesville, VA 22903 (United States)

    2015-04-10

    The nucleon spin structure has been studied at Jefferson Lab’s Hall C in experiments RSS (E01-006) and SANE (E07-003), which measured double spin asymmetries using the U. of Virginia solid polarized target and CEBAF’s 6 GeV polarized electrons. The proton longitudinal spin structure g{sub 1} and transverse structure g{sub 2} have been investigated at kinematics extending from the elastic point to DIS, for four-momenta squared ranging from 0.8 to 5 GeV{sup 2}. The neutron structures have been measured in the region of the nucleon resonances at 1.3 GeV{sup 2} on a deuteron target. Results of both experiments will be highlighted. A brief survey of approved experiments for the 12 GeV program will also be presented.

  10. Archimedes Remote Lab for Secondary Schools

    NARCIS (Netherlands)

    Garcia Zubia, J.; Angulo Martinez, I.; Martinez Pieper, G.; Lopez de Ipina Gonzalez de Artaza, D.; Hernandez Jayo, U.; Orduna Fernandez, P.; Dziabenko, O.; Rodriguez Gil, L.; Riesen, van S.A.N.; Anjewierden, A.A.; Kamp, E.; Jong, de A.J.M.

    2015-01-01

    This paper presents a remote lab designed for teaching the Archimedes’ principle to secondary school students, as well as an online virtual lab on the general domain of buoyancy. The Archimedes remote lab is integrated into WebLab-Deusto. Both labs are promoted for usage in frame of the Go-Lab Europ

  11. Archimedes Remote Lab for Secondary Schools

    NARCIS (Netherlands)

    Garcia Zubia, J.; Angulo Martinez, I.; Martinez Pieper, G.; Lopez de Ipina Gonzalez de Artaza, D.; Hernandez Jayo, U.; Orduna Fernandez, P.; Dziabenko, O.; Rodriguez Gil, L.; van Riesen, Siswa; Anjewierden, Anjo Allert; Kamp, Ellen; de Jong, Anthonius J.M.

    2015-01-01

    This paper presents a remote lab designed for teaching the Archimedes’ principle to secondary school students, as well as an online virtual lab on the general domain of buoyancy. The Archimedes remote lab is integrated into WebLab-Deusto. Both labs are promoted for usage in frame of the Go-Lab

  12. Ejection Tower Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Ejection Tower Facility's mission is to test and evaluate new ejection seat technology being researched and developed for future defense forces. The captive and...

  13. Phoenix's Wet Chemistry Lab

    Science.gov (United States)

    2008-01-01

    This is an illustration of the analytical procedure of NASA's Phoenix Mars Lander's Wet Chemistry Lab (WCL) on board the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument. By dissolving small amounts of soil in water, WCL can determine the pH, the abundance of minerals such as magnesium and sodium cations or chloride, bromide and sulfate anions, as well as the conductivity and redox potential. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Phoenix's Wet Chemistry Lab

    Science.gov (United States)

    2008-01-01

    This is an illustration of soil analysis on NASA's Phoenix Mars Lander's Wet Chemistry Lab (WCL) on board the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument. By dissolving small amounts of soil in water, WCL will attempt to determine the pH, the abundance of minerals such as magnesium and sodium cations or chloride, bromide and sulfate anions, as well as the conductivity and redox potential. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. e-Learning - Physics Labs

    Science.gov (United States)

    Mohottala, Hashini

    2014-03-01

    The general student population enrolled in any college level class is highly diverse. An increasing number of ``nontraditional'' students return to college and most of these students follow distance learning degree programs while engaging in their other commitments, work and family. However, those students tend to avoid taking science courses with labs, mostly because of the incapability of remotely completing the lab components in such courses. In order to address this issue, we have come across a method where introductory level physics labs can be taught remotely. In this process a lab kit with the critical lab components that can be easily accessible are conveniently packed into a box and distributed among students at the beginning of the semester. Once the students are given the apparatus they perform the experiments at home and gather data All communications with reference to the lab was done through an interactive user-friendly webpage - Wikispaces (WikiS). Students who create pages on WikiS can submit their lab write-ups, embed videos of the experiments they perform, post pictures and direct questions to the lab instructor. The students who are enrolled in the same lab can interact with each other through WikiS to discuss labs and even get assistance.

  16. Living labs design and assessment of sustainable living

    CERN Document Server

    Guerra-Santin, Olivia; Lockton, Dan

    2017-01-01

    This book presents the results of a multi-annual project with sustainable Living Labs in the United Kingdom, Sweden, Germany and the Netherlands. Living Labs – as initiated by the authors – have proved to be very promising research, design, co-creation and communication facilities for the development and implementation of sustainable innovations in the home. The book provides an inspiring introduction to both the methodology and business modelling for the Living Lab facilities. Understanding daily living at home is key to designing products and services that support households in their transition to more sustainable lifestyles. This book not only explores new ways of gaining insights into daily practices, but also discusses developing and testing design methods to create sustainable solutions for households. These new methods and tools are needed because those available are either ineffective or cause rebound-effects. Intended for researchers and designers with an interest in the transition to sustainable...

  17. EUSO@TurLab: An experimental replica of ISS orbits

    Directory of Open Access Journals (Sweden)

    Bertaina M.

    2015-01-01

    Full Text Available The EUSO@TurLab project is an on-going activity aimed to reproduce atmospheric and luminous conditions that JEM-EUSO will encounter on its orbits around the Earth. The use of the TurLab facility, part of the Department of Physics of the University of Torino, allows the simulation of different surface conditions in a very dark and rotating environment in order to test the response of JEM-EUSO's sensors and sensitivity. The experimental setup currently in operation has been used to check the potential of the TurLab facility for the above purposes, and the acquired data will be used to test the concept of JEM-EUSO's trigger system.

  18. Numerical Simulation of Beam-Beam Effects in the Proposed Electron-Ion Colider at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Balsa Terzic, Yuhong Zhang

    2010-05-01

    One key limiting factor to a collider luminosity is beam-beam interactions which usually can cause serious emittance growth of colliding beams and fast reduction of luminosity. Such nonlinear collective beam effect can be a very serious design challenge when the machine parameters are pushed into a new regime. In this paper, we present simulation studies of the beam-beam effect for a medium energy ring-ring electron-ion collider based on CEBAF.

  19. Design and Fabrication of the Superconducting Horizontal Bend Magnet for the Super High Momentum Spectrometer at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Chouhan, Shailendra S. [Michigan State University; DeKamp, Jon [Michigan State University; Burkhart, E. E, [Michigan State University; Bierwagen, J. [Michigan State University; Song, H. [Michigan State University; Zeller, Albert F. [Michigan State University; Brindza, Paul D. [JLAB; Lassiter, Steven R. [JLAB; Fowler, Michael J. [JLAB; Sun, Qiuli (Eric) [JLAB

    2015-06-01

    A collaboration exists between NSCL and JLab to design and build JLab's Super High Momentum Spectrometer (SHMS) horizontal bend magnet that allows the bending of the 12 GeV/c particles horizontally by 3° to allow SHMS to reach angles as low as 5.5°. Two full size coils have been wound and are cold tested for both magnetic and structural properties. Each coil is built from 90 layers of single-turn SSC outer conductor cable. An initial test coil with one third the turns was fabricated to demonstrate that the unique saddle shape with fully contoured ends could be wound with Rutherford superconducting cable. Learned lessons during the trial winding were integrated into the two complete full-scale coils that are now installed in the helium vessel. The fabrication of the iron yoke, cold mass, and thermal shield is complete, and assembly of the vacuum vessel is in progress. This paper presents the process and progress along with the modified magnet design to reduce the fringe field in the primary beam region and also includes the impact of the changes on coil forces and coil restraint system.

  20. The Aerogel $\\check{C}$erenkov Detector for the SHMS magnetic spectrometer in Hall C at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Horn, T.; Mkrtchyan, H.; Ali, S.; Asaturyan, A.; Carmignotto, M.; Dittmann, A.; Dutta, D.; Ent, R.; Hlavin, N.; Illieva, Y.; Mkrtchyan, A.; Nadel-Turonski, P.; Pegg, I.; Ramos, A.; Reinhold, J.; Sapkota, I.; Tadevosyan, V.; Zhamkochyan, S.; Wood, S. A.

    2016-10-01

    Hadronic reactions producing strange quarks such as exclusive or semi-inclusive kaon production, play an important role in studies of hadron structure and the dynamics that bind the most basic elements of nuclear physics. The small-angle capability of the new Super High Momentum Spectrometer (SHMS) in Hall C, coupled with its high momentum reach - up to the anticipated 11-GeV beam energy in Hall C - and coincidence capability with the well-understood High Momentum Spectrometer, will allow for probes of such hadron structure involving strangeness down to the smallest distance scales to date. To cleanly select the kaons, a threshold aerogel Cerenkov detector has been constructed for the SHMS. The detector consists of an aerogel tray followed by a diffusion box. Four trays for aerogel of nominal refractive indices of n=1.030, 1.020, 1.015 and 1.011 were constructed. The tray combination will allow for identification of kaons from 1 GeV/c up to 7.2 GeV/c, reaching 10-2 proton and 10-3 pion rejection, with kaon detection efficiency better than 95%. The diffusion box of the detector is equipped with 14 five-inch diameter photomultiplier tubes. Its interior walls are covered with Gore diffusive reflector, which is superior to the commonly used Millipore paper and improved the detector performance by 35%. The inner surface of the two aerogel trays with higher refractive index is covered with Millipore paper, however, those two trays with lower aerogel refractive index are again covered with Gore diffusive reflector for higher performance. The measured mean number of photoelectrons in saturation is ~12 for n=1.030, ~8 for n=1.020, ~10 for n=1.015, and ~5.5 for n=1.011. The design details, the results of component characterization, and initial performance tests and optimization of the detector are presented.

  1. The Effects of Space-Charge on the Dynamics of the Ion Booster in the Jefferson Lab EIC (JLEIC)

    Energy Technology Data Exchange (ETDEWEB)

    Bogacz, Alex [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Nissen, Edward [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-05-01

    Optimization of the booster synchrotron design to operate in the extreme space-charge dominated regime is proposed. This study is motivated by the ultra-high luminosity promised by the JLEIC accelerator complex, which poses several beam dynamics and lattice design challenges for its individual components. We examine the effects of space charge on the dynamics of the booster synchrotron for the proposed JLEIC electron ion collider. This booster will inject and accumulate protons and heavy ions at an energy of 280 MeV and then engage in a process of acceleration and electron cooling to bring it to its extraction energy of 8 GeV. This would then be sent into the ion collider ring part of JLEIC. In order to examine the effects of space charge on the dynamics of this process we use the software SYNERGIA.

  2. Experiment E89-044 of quasi-elastic diffusion 3He(e,e'p) at Jefferson Laboratory: Analyze cross sections of the two body breakup in parallel kinematics; Experience E89-044 de diffusion quasi-elastique 3he(e,e'p) au Jefferson Laboratory : analyse des sections efficaces de desintegration a deux corps en cinematique parallele

    Energy Technology Data Exchange (ETDEWEB)

    Penel-Nottaris, Emilie [Univ. Joseph Fourier Grenoble (France)

    2004-07-01

    The Jefferson Lab Hall A experiment has measured the 3He(e,e'p) reaction cross sections. The separation of the longitudinal and transverse response functions for the two-body breakup reaction in parallel kinematics allows to study the bound proton electromagnetic properties in the 3He nucleus and the involved nuclear mechanisms beyond impulse approximation. Preliminary cross sections show some disagreement with theoretical predictions for the forward angles kinematics around 0 MeV/c missing momenta, and sensitivity to final state interactions and 3He wave functions for missing momenta of 300 MeV/c.

  3. Inexpensive DAQ based physics labs

    Science.gov (United States)

    Lewis, Benjamin; Clark, Shane

    2015-11-01

    Quality Data Acquisition (DAQ) based physics labs can be designed using microcontrollers and very low cost sensors with minimal lab equipment. A prototype device with several sensors and documentation for a number of DAQ-based labs is showcased. The device connects to a computer through Bluetooth and uses a simple interface to control the DAQ and display real time graphs, storing the data in .txt and .xls formats. A full device including a larger number of sensors combined with software interface and detailed documentation would provide a high quality physics lab education for minimal cost, for instance in high schools lacking lab equipment or students taking online classes. An entire semester’s lab course could be conducted using a single device with a manufacturing cost of under $20.

  4. Bedrock Geology of the turkey Creek Drainage Basin, Jefferson County, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This geospatial data set describes bedrock geology of the Turkey Creek drainage basin in Jefferson County, Colorado. It was digitized from maps of fault locations...

  5. 75 FR 51098 - Protection Island and San Juan Islands National Wildlife Refuges, Jefferson, Island, San Juan...

    Science.gov (United States)

    2010-08-18

    ... libraries in northwestern Washington: Anacortes Public Library, Bellingham Public Library, Clinton Public Library, Coupeville Public Library, Evergreen State College Library, Island Public Library, Jefferson County Central Library, Lopez Island Public Library, North Olympic Public Library, Oak Harbor Public...

  6. Digital Data for Volcano Hazards in the Mount Jefferson Region, Oregon

    Science.gov (United States)

    Schilling, S.P.; Doelger, S.; Walder, J.S.; Gardner, C.A.; Conrey, R.M.; Fisher, B.J.

    2008-01-01

    Mount Jefferson has erupted repeatedly for hundreds of thousands of years, with its last eruptive episode during the last major glaciation which culminated about 15,000 years ago. Geologic evidence shows that Mount Jefferson is capable of large explosive eruptions. The largest such eruption occurred between 35,000 and 100,000 years ago. If Mount Jefferson erupts again, areas close to the eruptive vent will be severely affected, and even areas tens of kilometers (tens of miles) downstream along river valleys or hundreds of kilometers (hundreds of miles) downwind may be at risk. Numerous small volcanoes occupy the area between Mount Jefferson and Mount Hood to the north, and between Mount Jefferson and the Three Sisters region to the south. These small volcanoes tend not to pose the far-reaching hazards associated with Mount Jefferson, but are nonetheless locally important. A concern at Mount Jefferson, but not at the smaller volcanoes, is the possibility that small-to-moderate sized landslides could occur even during periods of no volcanic activity. Such landslides may transform as they move into lahars (watery flows of rock, mud, and debris) that can inundate areas far downstream. The geographic information system (GIS) volcano hazard data layer used to produce the Mount Jefferson volcano hazard map in USGS Open-File Report 99-24 (Walder and others, 1999) is included in this data set. Both proximal and distal hazard zones were delineated by scientists at the Cascades Volcano Observatory and depict various volcano hazard areas around the mountain.

  7. ERLN Technical Support for Labs

    Science.gov (United States)

    The Environmental Response Laboratory Network provides policies and guidance on lab and data requirements, Standardized Analytical Methods, and technical support for water and radiological sampling and analysis

  8. Aircraft Lighting and Transparency Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Lighting and Transparencies with Night Combat Lab performs radiometric and photometric measurements of cockpit lighting and displays. Evaluates the day,...

  9. The lab of fame

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    For a third time, CERN is organising the Swiss heat of Famelab, the world’s leading science communication competition that has already gathered over 5,000 young and talented scientists and engineers from all across the planet.   Besides their degrees, the scientists who participate in Famelab have another thing in common: their passion for communicating science. Coming from a variety of scientific fields, from medicine to particle physics and microbiology, the contestants have three minutes to present a science, technology, mathematics or engineering-based talk using only the props he or she can carry onto the stage; PowerPoint presentations are not permitted. The contestants are then judged by a panel of three judges who evaluate the content, clarity and charisma of their talks. What's unique about FameLab is the fact that content is an important aspect of the performance. At the end of their presentation, contestants are often questioned about the scientific relevance of...

  10. SCFA lead lab technical assistance at Oak Ridge Y-12 nationalsecurity complex: Evaluation of treatment and characterizationalternatives of mixed waste soil and debris at disposal area remedialaction DARA solids storage facility (SSF)

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry

    2002-08-26

    On July 17-18, 2002, a technical assistance team from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with the Bechtel Jacobs Company Disposal Area Remedial Action (DARA) environmental project leader to review treatment and characterization options for the baseline for the DARA Solids Storage Facility (SSF). The technical assistance request sought suggestions from SCFA's team of technical experts with experience and expertise in soil treatment and characterization to identify and evaluate (1) alternative treatment technologies for DARA soils and debris, and (2) options for analysis of organic constituents in soil with matrix interference. Based on the recommendations, the site may also require assistance in identifying and evaluating appropriate commercial vendors.

  11. Alteration and vein mineralization, Ladwig uranium mine, Jefferson County, Colorado

    Science.gov (United States)

    Wallace, Alan R.

    1979-01-01

    Uranium ore at the Ladwig mine, Jefferson County, Colo., occurs in steeply dipping, northwest-striking faults and related fractures with a carbonate-adularia assemblage that forms in altered wallrocks and fills veins. The faults occur between large intrusive pegmatites and garnetiferous gneisses of Precambrian age, and were reactivated as the result of the early Paleocene uplift of the Front Range foothills. Mineralization in the deposit includes both wallrock alteration and vein filling. Alteration was intense but local, and chiefly involved the carbonatization of mafic minerals in the wallrocks. Felsic minerals in the wallrocks are relatively unaltered. The veins are filled with an adularia-pitchblende-carbonate assemblage with minor related sulfides and coffinite. Many of the iron-bearing carbonates in both the alteration and vein assemblages have been altered to hematite. The mineralization and alteration are believed to have formed in response to initially high amounts of CO2 and the subsequent release of dissolved CO2 by boiling or effervescence. Uranium, carried in a dicarbonate complex, was precipitated directly as pitchblende when the CO2 was released. The expulsion of H+ during boiling created a net oxidizing environment which oxidized the iron-bearing carbonates. Late stage calcite and sulfides were deposited in existing voids in the veins.

  12. The eye disease of Jefferson Davis (1808-1889).

    Science.gov (United States)

    Hertle, Richard W; Spellman, Robert

    2006-01-01

    The only Confederate president, Jefferson Davis, led a long and eventful life. He was a Mississippi planter, a husband, a father, West Point graduate, war hero, congressman, senator, secretary of war, and finally President of the Confederate States of America. In many ways he was a study of contrast with his northern counterpart, Abraham Lincoln. Davis was personally courageous and a rich, educated, southern aristocrat who did not deeply understand the political process or have the refined personal skills necessary to work well with others. Prior to his Presidency he served with distinction in two wars, but as a result of his confederate activity and pro-slavery philosophy he is one of the least discussed famous Americans. Davis's health was a constant problem and he suffered an almost fatal attack of "malaria" in 1836. In the winter of 1857-1858 he again was seriously ill and by the end of February 1858 a chronic, relapsing, ocular inflammatory condition began. Using historical evidence from multiple sources, this paper will propose a diagnosis of the Confederate President's ocular condition and consider how this could have influenced his military and political decisions.

  13. Reference-based pricing: an evidence-based solution for lab services shopping.

    Science.gov (United States)

    Melton, L Doug; Bradley, Kent; Fu, Patricia Lin; Armata, Raegan; Parr, James B

    2014-01-01

    To determine the effect of reference-based pricing (RBP) on the percentage of lab services utilized by members that were at or below the reference price. Retrospective, quasi-experimental, matched, case-control pilot evaluation of an RBP benefit for lab services. The study group included employees of a multinational grocery chain covered by a national health insurance carrier and subject to RBP for lab services; it had access to an online lab shopping tool and was informed about the RBP benefit through employer communications. The reference group was covered by the same insurance carrier but not subject to RBP. The primary end point was lab compliance, defined as the percentage of lab claims with total charges at or below the reference price. Difference-in-difference regression estimation evaluated changes in lab compliance between the 2 groups. Higher compliance per lab claim was evident for the study group compared with the reference group (69% vs 57%; Ponline shopping tool was used by 7% of the matched-adjusted study group prior to obtaining lab services. Lab compliance was 76% for study group members using the online tool compared with 68% among nonusers who were subject to RBP (P<.01). RBP can promote cost-conscious selection of lab services. Access to facilities that offer services below the reference price and education about RBP improve compliance. Evaluation of the effect of RBP on higher-cost medical services, including radiology, outpatient specialty, and elective inpatient procedures, is needed.

  14. Physics Labs with Flavor II

    Science.gov (United States)

    Agrest, Mikhail M.

    2011-01-01

    This paper was inspired by the numerous requests from "TPT" readers to expand the number of examples of "recurrent study" lab exercises described in my previous paper "Physics Labs with Flavor." I recommend that readers examine it first in order to better understand this one as my attempt here is to be brief. In that paper, one can find details…

  15. Physics Labs with Flavor II

    Science.gov (United States)

    Agrest, Mikhail M.

    2011-01-01

    This paper was inspired by the numerous requests from "TPT" readers to expand the number of examples of "recurrent study" lab exercises described in my previous paper "Physics Labs with Flavor." I recommend that readers examine it first in order to better understand this one as my attempt here is to be brief. In that paper, one can find details…

  16. GitLab repository management

    CERN Document Server

    Hethey, Jonathan

    2013-01-01

    A simple, easy to understand tutorial guide on how to build teams and efficiently use version control, using GitLab.If you are a system administrator in a company that writes software or are in charge of an infrastructure, this book will show you the most important features of GitLab, including how to speed up the overall process

  17. GeoLab: A Geological Workstation for Future Missions

    Science.gov (United States)

    Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi

    2014-01-01

    The GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance theThe GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance the early scientific returns from future missions and ensure that the best samples are selected for Earth return. The facility was also designed to foster the development of instrument technology. Since 2009, when GeoLab design and construction began, the GeoLab team [a group of scientists from the Astromaterials Acquisition and Curation Office within the Astromaterials Research and Exploration Science (ARES) Directorate at JSC] has progressively developed and reconfigured the GeoLab hardware and software interfaces and developed test objectives, which were to 1) determine requirements and strategies for sample handling and prioritization for geological operations on other planetary surfaces, 2) assess the scientific contribution of selective in-situ sample

  18. Optimize Deployment of Renewable Energy Technologies for Government Agencies, Industrial Facilities, and Military Installations: NREL Offers Proven Tools and Resources to Reduce Energy Use and Improve Efficiency (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2010-01-01

    The National Renewable Energy Lab provides expertise, facilities, and technical assistance to campuses, facilities, and government agencies to apply renewable energy and energy efficiency technologies.

  19. What's your lab's strategy?

    Science.gov (United States)

    Francis, Peter

    2016-07-01

    Important strategic choices cascade throughout a laboratory. Senior management should create a document that answers each of the five key questions explained on page 60. Once this has been detailed in writing, it remains important to disseminate the basics to all employees so they are singing the same tune. A useful way to accomplish this is through a coherent strategy statement that specifies three components: 1) objectives; 2) scope; and 3) advantages. Commercial and hospital outreach labs should be in business to win. It all starts with a definition of what winning looks like. To "participate" in your market contributes to mediocrity-and it's self-defeating. With no clear strategic direction of where-to-play and how-to-win choices that associate with the aspiration, a mission or vision statement can be frustrating rather than inspiring for employees. Articulate it plainly and concisely for everybody. With a care-fully prepared and designed strategy, you will be on your way to winning in the zero-sum game!

  20. Thinking Outside the Lab

    Science.gov (United States)

    Colter, Tabitha

    2017-01-01

    As an undergraduate physics major who spent 2015 deep in a quantum optics lab at Oak Ridge National Laboratory, I knew my 2016 experience with the House of Representatives Energy and Commerce Committee would be a completely new challenge. I have long had a passion for the bridge of communication between the technical and non-technical worlds but it was only through my AIP Mather internship this summer that I was able to see that passion come to life in the realm of science policy. Suddenly, I went from squeezing political philosophy classes into my packed schedule to witnessing the political process first-hand. I was thrilled to find that the skills of critical thinking and communicating complex issues I have developed throughout my training as a physicist were directly applicable to my work in Congress. Overall, my experience this summer has given me insight into the inner workings of the federal policy process, deepened my appreciation for the work of government employees to keep Congressional members informed on the pressing current issues, and exposed me to a whole range of alternative careers within science. AIP and SPS

  1. Living Labs – From scientific labs to the smart city

    DEFF Research Database (Denmark)

    Heller, Alfred

    time is part of the Doll Living Lab setup placed in the area. Lyngby Smart City is a living lab approach facilitated by the City of Knowledge. Together with the labs presented above, we find a direct chain from scientific research labs at DTU over the campus lab, out into the real world living labs...... near Lyngby and from there into the big smart city of Copenhagen to be promoted to the world markets. This way the value chain “from research to invoice” is instantiated into not only an innovation and business strategy, but rather a research strategy that aims at elevating DTU’s research to an even......, but also partners from outside. This proposition can be found under the term “Smart Campus” with it’s own homepage. Here you find the example from the library above, the Smart Avenue that enables communication and IT solutions on the campus, enabled through intelligent street lightning that in the same...

  2. Common Systems Integration Lab (CSIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Common Systems Integration Lab (CSIL)supports the PMA-209 Air Combat Electronics Program Office. CSIL also supports development, test, integration and life cycle...

  3. Where Lab Tests Are Performed

    Science.gov (United States)

    Advertisement Proceeds from website advertising help sustain Lab Tests Online. AACC is a not-for-profit organization and does not endorse non-AACC products and services. Advertising & Sponsorship: Policy | Opportunities ...

  4. Hospital labs go under microscope.

    Science.gov (United States)

    Aston, Geri

    2014-05-01

    Financial pressures are hitting hospital clinical labs on both the inpatient and outpatient sides. To control expenses, hospitals are teaming up to buy supplies, centralizing services and improving blood management.

  5. Pollution hazard closes neutrino lab

    CERN Multimedia

    Jones, Nicola

    2003-01-01

    "A leading astrophysics laboratory in Italy has closed down all but one of its experiments over concerns that toxic polluants could leak form the underground lab into the local water supply" (0.5 page)

  6. Metallurgical Laboratory (MET-LAB)

    Data.gov (United States)

    Federal Laboratory Consortium — The MET-LAB can perform materials characterization for all types of metallic components and systems to any industry-specific or military standard. Capabilities: The...

  7. Common Systems Integration Lab (CSIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Common Systems Integration Lab (CSIL)supports the PMA-209 Air Combat Electronics Program Office. CSIL also supports development, test, integration and life cycle...

  8. The history of Rhoton's Lab.

    Science.gov (United States)

    Matsushima, Toshio; Richard Lister, J; Matsushima, Ken; de Oliveira, Evandro; Timurkaynak, Erdener; Peace, David A; Kobayashi, Shigeaki

    2017-09-06

    The work performed in Dr. Rhoton's Lab, represented by over 500 publications on microneurosurgical anatomy, greatly contributed to improving the level of neurosurgical treatment throughout the world. The authors reviewed the development and activities of the Lab over 40 years. Dr. Albert L. Rhoton Jr., the founder of, and leader in, this field, displayed great creativity and ingenuity during his life. He devoted himself to perfecting his study methodology, employing high-definition photos and slides to enhance the quality of his published papers. He dedicated his life to the education of neurosurgeons. His "lab team," which included microneuroanatomy research fellows, medical illustrators, lab directors, and secretaries, worked together under his leadership to develop the methods and techniques of anatomical study to complete over 160 microneurosurgical anatomy projects. The medical illustrators adapted computer technologies and integrated art and science in the field of microneurosurgical anatomy. Dr. Rhoton's fellows established methods of injecting colors and pursued a series of projects to innovate surgical approaches and instruments over a 40-year period. They also continued to help Dr. Rhoton to conduct international educational activities after returning to their home countries. Rhoton's Lab became a world-renowned anatomical lab as well as a microsurgical training center and generated the knowledge necessary to perform accurate, gentle, and safe surgery for the sake of patients.

  9. The meson spectroscopy program with CLAS12 at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Alessandro [Univ. of Rome Tor Vergata (Italy)

    2016-06-01

    The study of the hadronic spectrum is one of the most powerful tools to investigate the mechanism at the basis of quark confinement within hadrons. A precise determination of the spectrum allows not only to assess the properties of the hadrons in their fundamental and excited states, but also to investigate the existence of states resulting from alternative configurations of quarks and gluons, such as the glue-balls, hybrid hadrons and many-quarks configurations. The study of the mesonic part of the spectrum can play a central role in this investigation thanks to the strong signature that the hybrid mesons are expected to have: the presence of explicit gluonic degrees of freedom in such states may result in JPC configurations not allowed for the standard q ¯ q states. From the experimental side the expected high-multiplicity decays of the hybrid mesons require an apparatus with high performances in terms of rate-capability, resolution and acceptance. The CLAS12 experiment (formally MesonEx) is one of new-generation experiments at Thomas Jefferson National Laboratory (JLAB) for which an unprecedented statistics of events, with fully reconstructed kinematics for large particle multiplicity decays, will be available. A wide scientific program that will start in 2016 has been deployed for meson spectrum investigation with the CLAS12 apparatus in Hall B at energies up to 11 GeV. One of the main parts of the program is based on the use of the Forward Tagger apparatus, which will allow CLAS12 experiment to extend the study of meson electro-production to the quasi-real photo-production kinematical region (very low Q2), where the production of hybrid mesons is expected to be favoured. The data analysis which is required to extract the signal from hybrid states should go beyond the standard partial wave analysis techniques and a new analysis framework is being set up through the international network Haspect. The Haspect Network gathers people involved into theoretical and

  10. On the Role of ExperienceLab in Professional Domain Ambient Intelligence Research

    NARCIS (Netherlands)

    Van Loenen, E.J.; Van de Sluis, B.M.; De Ruyter, B.; Aarts, E.H.L.

    2011-01-01

    Concept development for professional domain AmI solutions involvesdifferent stakeholders than those for consumer products, and puts different requirements on experience test methods and facilities. Philips ExperienceLab facility for experience research is described, aswell as trends and lessons lear

  11. Communication acoustics in Bell Labs

    Science.gov (United States)

    Flanagan, J. L.

    2004-05-01

    Communication aoustics has been a central theme in Bell Labs research since its inception. Telecommunication serves human information exchange. And, humans favor spoken language as a principal mode. The atmospheric medium typically provides the link between articulation and hearing. Creation, control and detection of sound, and the human's facility for generation and perception are basic ingredients of telecommunication. Electronics technology of the 1920s ushered in great advances in communication at a distance, a strong economical impetus being to overcome bandwidth limitations of wireline and cable. Early research established criteria for speech transmission with high quality and intelligibility. These insights supported exploration of means for efficient transmission-obtaining the greatest amount of speech information over a given bandwidth. Transoceanic communication was initiated by undersea cables for telegraphy. But these long cables exhibited very limited bandwidth (order of few hundred Hz). The challenge of sending voice across the oceans spawned perhaps the best known speech compression technique of history-the Vocoder, which parametrized the signal for transmission in about 300 Hz bandwidth, one-tenth that required for the typical waveform channel. Quality and intelligibility were grave issues (and they still are). At the same time parametric representation offered possibilities for encryption and privacy inside a traditional voice bandwidth. Confidential conversations between Roosevelt and Churchill during World War II were carried over high-frequency radio by an encrypted vocoder system known as Sigsaly. Major engineering advances in the late 1940s and early 1950s moved telecommunications into a new regime-digital technology. These key advances were at least three: (i) new understanding of time-discrete (sampled) representation of signals, (ii) digital computation (especially binary based), and (iii) evolving capabilities in microelectronics that

  12. Occipital Neuralgia after Occipital Cervical Fusion to Treat an Unstable Jefferson Fracture

    OpenAIRE

    Kong, Seong Ju; Park, Jin Hoon; Roh, Sung Woo

    2012-01-01

    In this report we describe a patient with an unstable Jefferson fracture who was treated by occipitocervical fusion and later reported sustained postoperative occipital neuralgia. A 70-year-old male was admitted to our center with a Jefferson fracture induced by a car accident. Preoperative lateral X-ray revealed an atlanto-dens interval of 4.8mm and a C1 canal anterior-posterior diameter of 19.94mm. We performed fusion surgery from the occiput to C5 without decompression of C1. The patient r...

  13. Lab-on-a-chip pathogen sensors for food safety.

    Science.gov (United States)

    Yoon, Jeong-Yeol; Kim, Bumsang

    2012-01-01

    There have been a number of cases of foodborne illness among humans that are caused by pathogens such as Escherichia coli O157:H7, Salmonella typhimurium, etc. The current practices to detect such pathogenic agents are cell culturing, immunoassays, or polymerase chain reactions (PCRs). These methods are essentially laboratory-based methods that are not at all real-time and thus unavailable for early-monitoring of such pathogens. They are also very difficult to implement in the field. Lab-on-a-chip biosensors, however, have a strong potential to be used in the field since they can be miniaturized and automated; they are also potentially fast and very sensitive. These lab-on-a-chip biosensors can detect pathogens in farms, packaging/processing facilities, delivery/distribution systems, and at the consumer level. There are still several issues to be resolved before applying these lab-on-a-chip sensors to field applications, including the pre-treatment of a sample, proper storage of reagents, full integration into a battery-powered system, and demonstration of very high sensitivity, which are addressed in this review article. Several different types of lab-on-a-chip biosensors, including immunoassay- and PCR-based, have been developed and tested for detecting foodborne pathogens. Their assay performance, including detection limit and assay time, are also summarized. Finally, the use of optical fibers or optical waveguide is discussed as a means to improve the portability and sensitivity of lab-on-a-chip pathogen sensors.

  14. Practical Clinical Training in Skills Labs: Theory and Practice

    Directory of Open Access Journals (Sweden)

    Bugaj, T. J.

    2016-08-01

    Full Text Available Today, skills laboratories or “skills labs”, i.e. specific practical skill training facilities, are a firmly established part of medical education offering the possibility of training clinical procedures in a safe and fault-forging environment prior to real life application at bedside or in the operating room. Skills lab training follows a structured teaching concept, takes place under supervision and in consideration of methodological-didactic concepts, ideally creating an atmosphere that allows the repeated, anxiety- and risk-free practice of targeted skills.In this selective literature review, the first section is devoted to (I the development and dissemination of the skills lab concept. There follows (II an outline of the underlying idea and (III an analysis of key efficacy factors. Thereafter, (IV the training method’s effectiveness and transference are illuminated, before (V the use of student tutors, in the sense of peer-assisted-learning, in skills labs is discussed separately. Finally, (VI the efficiency of the skills lab concept is analyzed, followed by an outlook on future developments and trends in the field of skills lab training.

  15. METC Combustion Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Halow, J.S.; Maloney, D.J.; Richards, G.A.

    1993-11-01

    The objective of the Morgantown Energy Technology Center (METC) high pressure combustion facility is to provide a mid-scale facility for combustion and cleanup research to support DOE`s advanced gas turbine, pressurized, fluidized-bed combustion, and hot gas cleanup programs. The facility is intended to fill a gap between lab scale facilities typical of universities and large scale combustion/turbine test facilities typical of turbine manufacturers. The facility is now available to industry and university partners through cooperative programs with METC. High pressure combustion research is also important to other DOE programs. Integrated gasification combined cycle (IGCC) systems and second-generation, pressurized, fluidized-bed combustion (PFBC) systems use gas turbines/electric generators as primary power generators. The turbine combustors play an important role in achieving high efficiency and low emissions in these novel systems. These systems use a coal-derived fuel gas as fuel for the turbine combustor. The METC facility is designed to support coal fuel gas-fired combustors as well as the natural gas fired combustor used in the advanced turbine program.

  16. Microgrid Central Controller Development and Hierarchical Control Implementation in the Intelligent MicroGrid Lab of Aalborg University

    DEFF Research Database (Denmark)

    Meng, Lexuan; Savaghebi, Mehdi; Andrade, Fabio

    2015-01-01

    This paper presents the development of a microgrid central controller in an inverter-based intelligent microgrid (iMG) lab in Aalborg University, Denmark. The iMG lab aims to provide a flexible experimental platform for comprehensive studies of microgrids. The complete control system applied...... in this lab is based on the hierarchical control scheme for microgrids and includes primary, secondary and tertiary control. The structure of the lab, including the lab facilities, configurations and communication network, is first introduced. Primary control loops are developed in MATLAB....../Simulink and compiled to dSPACEs for local control purposes. In order to realize system supervision and proper secondary and tertiary management, a LabVIEW-based microgrid central controller is also developed. The software and hardware schemes are described. An example case is introduced and tested in the iMG lab...

  17. Status of chemistry lab safety in Nepal.

    Science.gov (United States)

    Kandel, Krishna Prasad; Neupane, Bhanu Bhakta; Giri, Basant

    2017-01-01

    Chemistry labs can become a dangerous environment for students as the lab exercises involve hazardous chemicals, glassware, and equipment. Approximately one hundred thousand students take chemistry laboratory classes annually in Nepal. We conducted a survey on chemical lab safety issues across Nepal. In this paper, we assess the safety policy and equipment, protocols and procedures followed, and waste disposal in chemistry teaching labs. Significant population of the respondents believed that there is no monitoring of the lab safety in their lab (p<0.001). Even though many labs do not allow food and beverages inside lab and have first aid kits, they lack some basic safety equipment. There is no institutional mechanism to dispose lab waste and chemical waste is disposed haphazardly. Majority of the respondents believed that the safety training should be a part of educational training (p = 0.001) and they would benefit from short course and/or workshop on lab safety (p<0.001).

  18. Practical Clinical Training in Skills Labs: Theory and Practice

    OpenAIRE

    Bugaj, T. J.; Nikendei, C.

    2016-01-01

    Today, skills laboratories or “skills labs”, i.e. specific practical skill training facilities, are a firmly established part of medical education offering the possibility of training clinical procedures in a safe and fault-forging environment prior to real life application at bedside or in the operating room. Skills lab training follows a structured teaching concept, takes place under supervision and in consideration of methodological-didactic concepts, ideally creating an atmosphere that al...

  19. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Science.gov (United States)

    2010-07-01

    ... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 264.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste in overpacked... hazardous waste in overpacked drums (lab packs). 264.316 Section 264.316 Protection of Environment...

  20. Advanced Physics Lab at TCU

    Science.gov (United States)

    Quarles, C. A.

    2009-04-01

    The one semester, one credit hour Modern Physics Lab is viewed as a transition between the structured Physics 1 and 2 labs and junior/senior research. The labs focus on a variety of experiments built around a multichannel analyzer, various alpha, beta and gamma ray detectors and weak radioactive sources. Experiments include radiation safety and detection with a Geiger counter and NaI detector, gamma ray spectroscopy with a germanium detector, beta spectrum, alpha energy loss, gamma ray absorption, Compton effect, nuclear and positron annihilation lifetime, speed of gamma rays. Other experiments include using the analog oscilloscope, x-ray diffraction of diamond and using an SEM/EDX. Error analysis is emphasized throughout. The semester ends with an individual project, often an extension of one of the earlier experiments, and students present their results as a paper and an APS style presentation to the department.

  1. PROJECTED LAB-E DICROMATIC ELECTRONIC DETECTOR FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Barish, Barry C.; Bartlett, J.Frederick; Bodek, Arie; Brown, K.W.; Buchholz, D.; Merritt, Frank S.; Sciulli, F.J.; Stutte, Linda G.; Suter, H.; /Caltech; Fisk, H.Eugene; Krafczyk, G.; /Fermilab

    1974-10-01

    Two years ago the first neutrino interaction had yet to be observed at Fermilab. It was not known at that time whether the cross section would continue to rise above 10 GeV (in fact there were indications from cosmic ray experiments to the contrary), or even whether a W-boson might exist with a mass of say 2.5 GeV/c{sup 2}. Put in this perspective the progress in neutrino physics has been truly outstanding. Let us just review briefly the primary results so far reported by the Caltech-Fermilab group. The physics can be divided into two parts: (A) the study of the structure of hadrons (deep inelastic scattering) and (B) the study of the weak interaction at high energies.

  2. Health Care Needs of a Hispanic Population in Dane, Dodge, and Jefferson Counties.

    Science.gov (United States)

    Slesinger, Doris P.; And Others

    In the summer of 1976, 133 permanent residents in the Hispano community in Wisconsin's Dane, Dodge and Jefferson counties were interviewed to determine their perceptions of their own and their families' health needs and of their unmet health needs. Respondents were primarily women since it was felt they were the best informed about the family's…

  3. Cerebellar infarction resulting from vertebral artery occlusion associated with a Jefferson fracture.

    Science.gov (United States)

    Muratsu, Hirotsugu; Doita, Minoru; Yanagi, Toshihide; Sekiguchi, Kenji; Nishida, Kotaro; Tomioka, Masao; Kurosaka, Masahiro

    2005-06-01

    Neurologic deficit secondary to a Jefferson fracture is rare, as the fracture fragments tend to spread outward. To the authors' knowledge, only five cases of vertebral artery injury associated with C1 fracture have been reported. A 75-year-old man with diffuse spinal hyperostosis hit the top of his head and sustained a Jefferson fracture. The patient presented with vertigo and slurred speech. Magnetic resonance (MR) imaging demonstrated cerebellar infarction, and MR angiography (MRA) showed bilateral vertebral artery occlusion associated with a Jefferson fracture. The patient was placed in a halo vest for a total of 11 weeks and treated with anticoagulant therapy. Vertigo gradually improved, and the patient was able to walk with a cane. Previously slurred speech was completely resolved. This case demonstrates that a Jefferson fracture can cause vertebral artery occlusion, resulting in cerebellar infarction. The clinician should be aware of the possibility and implications of vertebral artery injuries, especially if a fracture involving the foramen transversarium with displacement is documented or if there is a neurologic deficit above the level of injury. Advances in noninvasive imaging such as MRA will facilitate accurate evaluation of these potentially life-threatening vascular injuries.

  4. 75 FR 19988 - Watercress Darter National Wildlife Refuge, Jefferson County, AL

    Science.gov (United States)

    2010-04-16

    ... Fish and Wildlife Service Watercress Darter National Wildlife Refuge, Jefferson County, AL AGENCY: Fish... and environmental assessment; request for comments. SUMMARY: We, the Fish and Wildlife Service... comments by May 17, 2010. ADDRESSES: You may obtain a copy of the Draft CCP/EA by writing to: Mr. Stephen...

  5. 78 FR 45960 - Notice of Inventory Completion: Missouri Department of Natural Resources, Jefferson City, MO

    Science.gov (United States)

    2013-07-30

    ... National Park Service Notice of Inventory Completion: Missouri Department of Natural Resources, Jefferson... Natural Resources has completed an inventory of human remains and associated funerary objects, in... Missouri Department of Natural Resources. If no additional requestors come forward, transfer of control...

  6. 75 FR 36676 - Notice of Inventory Completion: Missouri Department of Natural Resources, Jefferson City, MO

    Science.gov (United States)

    2010-06-28

    ... National Park Service Notice of Inventory Completion: Missouri Department of Natural Resources, Jefferson... completion of an inventory of human remains in the control of the Missouri Department of Natural Resources... Department of Natural Resources professional staff in consultation with representatives of the Osage...

  7. Jefferson Scale of Patient's Perceptions of Physician Empathy: preliminary psychometric data.

    Science.gov (United States)

    Kane, Gregory C; Gotto, Joanne L; Mangione, Salvatore; West, Susan; Hojat, Mohammadreza

    2007-02-01

    To develop a brief scale for measuring patient's perceptions of their physician's empathic engagement and to provide preliminary evidence in support of aspects of the scale's psychometrics. Study comprised 225 patients, out of 436 patients (52% response rate) seen by 166 residents in the internal medicine residency program at the Jefferson Hospital Ambulatory Clinic as part of their ambulatory training at Thomas Jefferson University Hospital. A 5-item questionnaire entitled the Jefferson Scale of Patient's Perceptions of Physician Empathy was developed and administered to the study participants. Its factor structure, item-total score correlations, and correlations with several relevant criterion measures were examined. Factor analysis indicated that the scale was measuring a single factor of emphatic engagement. Item scores and total scores of the Jefferson Scale of Patient's Perceptions of Physician Empathy yielded significant correlations with the American Board of Internal Medicine patient ratings form and with selected items from other relevant instruments measuring physicians' humanistic behavior and the appraisal of physicians' performance. A brief scale for assessing physician empathy from the patients' perspective showed good psychometric characteristics and can be used for the assessment of patient outcomes.

  8. Jefferson Scale of Patient’s Perceptions of Physician Empathy: Preliminary Psychometric Data

    Science.gov (United States)

    Kane, Gregory C.; Gotto, Joanne L.; Mangione, Salvatore; West, Susan; Hojat, Mohammadreza

    2007-01-01

    Aim To develop a brief scale for measuring patient’s perceptions of their physician’s empathic engagement and to provide preliminary evidence in support of aspects of the scale’s psychometrics. Method Study comprised 225 patients, out of 436 patients (52% response rate) seen by 166 residents in the internal medicine residency program at the Jefferson Hospital Ambulatory Clinic as part of their ambulatory training at Thomas Jefferson University Hospital. A 5-item questionnaire entitled the Jefferson Scale of Patient’s Perceptions of Physician Empathy was developed and administered to the study participants. Its factor structure, item-total score correlations, and correlations with several relevant criterion measures were examined. Results Factor analysis indicated that the scale was measuring a single factor of emphatic engagement. Item scores and total scores of the Jefferson Scale of Patient’s Perceptions of Physician Empathy yielded significant correlations with the American Board of Internal Medicine patient ratings form and with selected items from other relevant instruments measuring physicians’ humanistic behavior and the appraisal of physicians’ performance. Conclusions A brief scale for assessing physician empathy from the patients’ perspective showed good psychometric characteristics and can be used for the assessment of patient outcomes. PMID:17309143

  9. UXO Technology Demonstration Program at Jefferson Proving Ground, Phase IV

    Science.gov (United States)

    1999-05-01

    engaged in the design, development and manufacture of safe excavation equipment. It occupies office and shop facilities in Verona, Pennsylvania, a...trenches 6 feet wide by 10 feet deep. The company’s design team operates totally with CAD equipment and the shop space is capable of metal fabrication and...acquire, process and interpret the GPR data. The sub- contractor was Georadar Research Pty. Ltd. of 412 Eastbank Road, Coramba, Coffs Harbour, NSW. 2450

  10. Lab-on-fiber technology

    CERN Document Server

    Cusano, Andrea; Crescitelli, Alessio; Ricciardi, Armando

    2014-01-01

    This book focuses on a research field that is rapidly emerging as one of the most promising ones for the global optics and photonics community: the "lab-on-fiber" technology. Inspired by the well-established 'lab on-a-chip' concept, this new technology essentially envisages novel and highly functionalized devices completely integrated into a single optical fiber for both communication and sensing applications.Based on the R&D experience of some of the world's leading authorities in the fields of optics, photonics, nanotechnology, and material science, this book provides a broad and accurate de

  11. Ntal/Lab/Lat2

    DEFF Research Database (Denmark)

    Iwaki, Shoko; Jensen, Bettina M; Gilfillan, Alasdair M

    2007-01-01

    Non-T cell activation linker (NTAL)/linker for activation of B cells (LAB), now officially termed LAT2 (linker for activation of T cells 2) is a 25-30kDa transmembrane adaptor protein (TRAP) associated with glycolipid-enriched membrane fractions (GEMs; lipid rafts) in specific cell types of hemat......Non-T cell activation linker (NTAL)/linker for activation of B cells (LAB), now officially termed LAT2 (linker for activation of T cells 2) is a 25-30kDa transmembrane adaptor protein (TRAP) associated with glycolipid-enriched membrane fractions (GEMs; lipid rafts) in specific cell types...

  12. Astronomy for Everyone: Harvard's Move Toward an All-Inclusive Astronomy Lab and Telescope

    Science.gov (United States)

    Bieryla, Allyson

    2016-01-01

    Harvard University has a growing astronomy program that offers various courses to the undergraduate concentrators, secondaries and non-majors. Many of the courses involve labs that use the 16-inch DFM Clay Telescope for night-time observations and the heliostat for observing the Sun. The goal is to proactively adapt the lab and telescope facilities to accommodate all students with disabilities. The current focus is converting the labs to accommodate visually impaired students. Using tactile images and sound, the intention is to create an experience equivalent to that of a student with full sight.

  13. Carrier Analysis Lab (CAL) – Aircraft/Weapons/Ship Compatibility Lab

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Carrier Analysis Lab (CAL) - Aircraft/Weapons/Ship Compatibility Lab located at the Naval Air Warfare Center Aircraft Division, Lakehurst, NJ provides...

  14. A Simple, Successful Capacitor Lab

    Science.gov (United States)

    Ennis, William

    2011-01-01

    Capacitors are a fundamental component of modern electronics. They appear in myriad devices and in an enormous range of sizes. Although our students are taught the function and analysis of capacitors, few have the opportunity to use them in our labs.

  15. The Telecom Lab is moving

    CERN Multimedia

    IT Department

    2009-01-01

    As of 2nd March 2009, the Telecom Lab will move to Building 58 R-017. The Telecom Lab is the central point for all support questions regarding CERN mobile phone services (provision of SIM cards, requests for modifications of subscriptions, diagnostics for mobile phone problems, etc.). The opening hours as well as the contact details for the Telecom Lab remain unchanged: New location: Building 58 R-017 Opening hours: Every week day, from 11 a.m. to 12 a.m. Phone number: 72480 Email address: labo.telecom@cern.ch This change has no impact on support requests for mobile services. Users can still submit their requests concerning mobile phone subscriptions using the usual EDH form (https://edh.cern.ch/Document/GSM). The automatic message sent to inform users of their SIM card availability will be updated to indicate the new Telecom Lab location. You can find all information related to CERN mobile phone services at the following link: http://cern.ch/gsm CS Section - IT/CS group

  16. Oceanographic profile data collected from CTD casts aboard Thomas Jefferson Launch 3101 and Thomas Jefferson Launch 3102 as part of project OPR-B370-TJ-15 in the North Atlantic Ocean from 2014-05-01 to 2014-10-30 (NCEI Accession 0148756)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148756 includes physical and profile data collected aboard the Thomas Jefferson Launch 3101 and Thomas Jefferson Launch 3102 during project...

  17. Facilities & Leadership

    Data.gov (United States)

    Department of Veterans Affairs — The facilities web service provides VA facility information. The VA facilities locator is a feature that is available across the enterprise, on any webpage, for the...

  18. H CANYON PROCESSING IN CORRELATION WITH FH ANALYTICAL LABS

    Energy Technology Data Exchange (ETDEWEB)

    Weinheimer, E.

    2012-08-06

    Management of radioactive chemical waste can be a complicated business. H Canyon and F/H Analytical Labs are two facilities present at the Savannah River Site in Aiken, SC that are at the forefront. In fact H Canyon is the only large-scale radiochemical processing facility in the United States and this processing is only enhanced by the aid given from F/H Analytical Labs. As H Canyon processes incoming materials, F/H Labs provide support through a variety of chemical analyses. Necessary checks of the chemical makeup, processing, and accountability of the samples taken from H Canyon process tanks are performed at the labs along with further checks on waste leaving the canyon after processing. Used nuclear material taken in by the canyon is actually not waste. Only a small portion of the radioactive material itself is actually consumed in nuclear reactors. As a result various radioactive elements such as Uranium, Plutonium and Neptunium are commonly found in waste and may be useful to recover. Specific processing is needed to allow for separation of these products from the waste. This is H Canyon's specialty. Furthermore, H Canyon has the capacity to initiate the process for weapons-grade nuclear material to be converted into nuclear fuel. This is one of the main campaigns being set up for the fall of 2012. Once usable material is separated and purified of impurities such as fission products, it can be converted to an oxide and ultimately turned into commercial fuel. The processing of weapons-grade material for commercial fuel is important in the necessary disposition of plutonium. Another processing campaign to start in the fall in H Canyon involves the reprocessing of used nuclear fuel for disposal in improved containment units. The importance of this campaign involves the proper disposal of nuclear waste in order to ensure the safety and well-being of future generations and the environment. As processing proceeds in the fall, H Canyon will have a substantial

  19. Designing and Creating a Set of New Lab Experiments for a Traditional Fluid Mechanics Course in Civil Engineering

    Science.gov (United States)

    Budny, Dan

    2013-11-01

    Many fluids lab facilities and their associated student experiences were built back in the 1960-1970 time frames. They typically consisted of large facilities that included wind tunnels, flumes, wet wells, pump stations, etc. Today these labs are physically and pedagogically out dated and the need for lab space is forcing the closing of large scale labs. This is the same basic problem within the Swanson School of Engineering at the University of Pittsburgh. Thus we have replaced all the old equipment and lab experiences with small bench top experiments with a focus on applying the large body of knowledge associate with better student learning experiences. This paper will describe the concepts behind the design of the new experiments and the learning improvements discovered as a result of moving from a few large experiments to a larger number of smaller scale experiments.

  20. Biochemistry Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Biochemistry Facility provides expert services and consultation in biochemical enzyme assays and protein purification. The facility currently features 1) Liquid...

  1. Flexible HVAC System for Lab or Classroom.

    Science.gov (United States)

    Friedan, Jonathan

    2001-01-01

    Discusses an effort to design a heating, ventilation, and air conditioning system flexible enough to accommodate an easy conversion of classrooms to laboratories and dry labs to wet labs. The design's energy efficiency and operations and maintenance are examined. (GR)

  2. Flexible HVAC System for Lab or Classroom.

    Science.gov (United States)

    Friedan, Jonathan

    2001-01-01

    Discusses an effort to design a heating, ventilation, and air conditioning system flexible enough to accommodate an easy conversion of classrooms to laboratories and dry labs to wet labs. The design's energy efficiency and operations and maintenance are examined. (GR)

  3. GeoLab Sample Handling System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop  a robotic sample handling/ manipulator system for the GeoLab glovebox. This work leverages from earlier GeoLab work and a 2012 collaboration with a...

  4. Updated version of an interim connection space LabPQR for spectral color reproduction: LabLab.

    Science.gov (United States)

    Cao, Qian; Wan, Xiaoxia; Li, Junfeng; Liang, Jingxing

    2016-09-01

    In this paper, we propose a new interim connection space (ICS) called LabLab, which is an updated version of LabPQR, to overcome the drawback that the last three dimensions of LabPQR have no definite colorimetric meanings. We extended and improved the method by which the first three dimensions of LabPQR are deduced to obtain an ICS consisting of two sets of CIELAB values under different illuminants, and the reconstructed spectra from LabLab were obtained by minimizing colorimetric errors by means of the computational formula of the CIE-XYZ tristimulus values combined with least-squares best fit. The improvement obtained from the proposed method was tested to compress and reconstruct the reflectance spectra of the 1950 Natural Color System color chips and more than 50,000 ISO SOCS color patches as well as six multispectral images acquired by multispectral image acquisition systems using 1600 glossy Munsell color chips as training samples. The performance was evaluated by the mean values of color differences between the original and reconstructed spectra under the CIE 1931 standard colorimetric observer and the CIE standard illuminants D50, D55, D65, D75, F2, F7, F11, and A as well as five multichip white LED light sources. The mean and maximum values of the root mean square errors between the original and reconstructed spectra were also calculated. The experimental results show that the proposed three LabLab interim connection spaces significantly outperform principal component analysis, LabPQR, XYZLMS, Fairman-Brill, and LabRGB in colorimetric reconstruction accuracy at the cost of slight reduction of spectral reconstruction accuracy and illuminant independence of color differences of the suggested LabLab interim connection spaces outperform other interim connection spaces. In addition, the presented LabLab interim connection spaces could be quite compatible with the extensively used colorimetric management system since each dimension has definite colorimetric

  5. The Development of MSFC Usability Lab

    Science.gov (United States)

    Cheng, Yiwei; Richardson, Sally

    2010-01-01

    This conference poster reviews the development of the usability lab at Marshall Space Flight Center. The purpose of the lab was to integrate a fully functioning usability laboratory to provide a resource for future human factor assessments. and to implement preliminary usability testing on a MSFC website to validate the functionality of the lab.

  6. NI新款LabVIEW工具包

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    美国国家仪器有限公司(National Instruments,NI)近日推出新的LabVIEW图形化开发环境的软件工程工具——LabVIEW单元测试工具包和LabVIEW桌面执行追踪工具包。

  7. Annie Lechenet. Jefferson-Madison, Un débat sur la République.

    Directory of Open Access Journals (Sweden)

    Marie-Jeanne Rossignol

    2006-04-01

    Full Text Available Annie Léchenet est une philosophe, auteure d’une thèse sur la citoyenneté chez Thomas Jefferson. Pour cet ouvrage au format imposé (128 pages, les PUF lui ont confié la mission plus ambitieuse encore consistant à présenter les idées de Jefferson et de Madison. L’angle choisi est plutôt original : alors qu’il est de tradition d’associer les deux hommes, fondateurs du parti démocrate-républicain dans les années 1790, puis proches collaborateurs politiques tout le reste de leur existence, Annie...

  8. Jefferson Laboratory Hall A SuperBigBite Spectrometer Data Acquisition System

    Science.gov (United States)

    Camsonne, Alexandre; Hall A Collaboration; Hall A SuperBigBite Collaboration

    2013-10-01

    The SuperBigBite detector is a large acceptance spectrometer which is being built for Hall A at Jefferson Laboratory and planned for completion in 2017. Several experiments are approved for this detector ranging from form factors to nucleon structure. The detector consists mainly of a large dipole magnet and several plane of Gas Electron Multiplier trackers associated with calorimeters. In order to reduce the cost of the project the electronics used will be a mix of older Fastbus and newly developed electronics. I will present the layout of the system and how we plan to handle the high background rates seen by the different detectors for the different experiments. 12000 Jefferson Avenue Suite #4 Newport News VA 23606 USA.

  9. GlueX: The Search for Gluonic Excitations at Jefferson Laboratory

    CERN Document Server

    Carman, D S

    2006-01-01

    One of the unanswered and most fundamental questions in physics regards the nature of the confinement mechanism of quarks and gluons in quantum chromodynamics (QCD). Exotic hybrid mesons manifest gluonic degrees of freedom and their detailed spectroscopy will provide the precision data necessary to test assumptions in lattice QCD and the specific phenomenology leading to confinement. Photoproduction is expected to be a particularly effective manner to produce exotic hybrids, however, existing data using photon beams are sparse. At Jefferson Laboratory, plans are underway by the GlueX Collaboration to use the coherent bremsstrahlung technique to produce a linearly polarized photon beam. A solenoid-based hermetic detector will be used to collect data on meson production and decays with statistics that will exceed existing photoproduction data by several orders of magnitude after the first year of running. In order to reach the ideal photon energy of 9 GeV required for these studies, the energy of the Jefferson ...

  10. A psychometric appraisal of the Jefferson Scale of Empathy using law students

    Directory of Open Access Journals (Sweden)

    Williams B

    2016-07-01

    Full Text Available Brett Williams,1 Adiva Sifris,2 Marty Lynch1 1Department of Community Emergency Health and Paramedic Practice, Faculty of Medicine, Nursing and Health Sciences, 2Faculty of Law, Monash University, Frankston, VIC, Australia Background: A growing body of literature indicates that empathic behaviors are positively linked, in several ways, with the professional performance and mental well-being of lawyers and law students. It is therefore important to assess empathy levels among law students using psychometrically sound tools that are suitable for this cohort.Participants and methods: The 20-item Jefferson Scale of Empathy – Health Profession Students Version was adapted for a law context (eg, the word “health care” became “legal”, and the new Jefferson Scale of Empathy – Law Students (JSE-L-S version was completed by 275 students at Monash University, Melbourne, Australia. Data were subjected to principal component analysis.Results: Four factors emerged from the principal component analysis (“understanding the client’s perspective”, “responding to clients’ experiences and emotions”, “responding to clients’ cues and behaviors”, and “standing in clients’ shoes”, which accounted for 46.7% of the total variance. The reliability of the factors varied, but the overall 18-item JSE-L-S yielded a Cronbach’s alpha coefficient of 0.80. Several patterns among the item loadings were similar to those reported in studies using other versions of the Jefferson Scale of Empathy.Conclusion: The JSE-L-S appears to be a reliable measure of empathy among undergraduate law students, which could help provide insights into law student welfare and future performance as legal practitioners. Additional evaluation of the JSE-L-S is required to disambiguate some of the minor findings explored. Adjustments may improve the psychometric properties. Keywords: empathy, law, student, Jefferson, sympathy

  11. Chemical quality of bottom sediments in selected streams, Jefferson County, Kentucky, April-July 1992

    Science.gov (United States)

    Moore, B.L.; Evaldi, R.D.

    1995-01-01

    Bottom sediments from 25 stream sites in Jefferson County, Ky., were analyzed for percent volatile solids and concentrations of nutrients, major metals, trace elements, miscellaneous inorganic compounds, and selected organic compounds. Statistical high outliers of the constituent concentrations analyzed for in the bottom sediments were defined as a measure of possible elevated concentrations. Statistical high outliers were determined for at least 1 constituent at each of 12 sampling sites in Jefferson County. Of the 10 stream basins sampled in Jefferson County, the Middle Fork Beargrass Basin, Cedar Creek Basin, and Harrods Creek Basin were the only three basins where a statistical high outlier was not found for any of the measured constituents. In the Pennsylvania Run Basin, total volatile solids, nitrate plus nitrite, and endrin constituents were statistical high outliers. Pond Creek was the only basin where five constituents were statistical high outliers-barium, beryllium, cadmium, chromium, and silver. Nitrate plus nitrite and copper constituents were the only statistical high outliers found in the Mill Creek Basin. In the Floyds Fork Basin, nitrate plus nitrite, phosphorus, mercury, and silver constituents were the only statistical high outliers. Ammonia was the only statistical high outlier found in the South Fork Beargrass Basin. In the Goose Creek Basin, mercury and silver constituents were the only statistical high outliers. Cyanide was the only statistical high outlier in the Muddy Fork Basin.

  12. Economic-environmental modeling of point source pollution in Jefferson County, Alabama, USA.

    Science.gov (United States)

    Kebede, Ellene; Schreiner, Dean F; Huluka, Gobena

    2002-05-01

    This paper uses an integrated economic-environmental model to assess the point source pollution from major industries in Jefferson County, Northern Alabama. Industrial expansion generates employment, income, and tax revenue for the public sector; however, it is also often associated with the discharge of chemical pollutants. Jefferson County is one of the largest industrial counties in Alabama that experienced smog warnings and ambient ozone concentration, 1996-1999. Past studies of chemical discharge from industries have used models to assess the pollution impact of individual plants. This study, however, uses an extended Input-Output (I-O) economic model with pollution emission coefficients to assess direct and indirect pollutant emission for several major industries in Jefferson County. The major findings of the study are: (a) the principal emission by the selected industries are volatile organic compounds (VOC) and these contribute to the ambient ozone concentration; (b) the direct and indirect emissions are significantly higher than the direct emission by some industries, indicating that an isolated analysis will underestimate the emission by an industry; (c) while low emission coefficient industries may suggest industry choice they may also emit the most hazardous chemicals. This study is limited by the assumptions made, and the data availability, however it provides a useful analytical tool for direct and cumulative emission estimation and generates insights on the complexity in choice of industries.

  13. The Defining Characteristics of Urban Living Labs

    Directory of Open Access Journals (Sweden)

    Kris Steen

    2017-07-01

    Full Text Available The organization of supported and sustainable urban interventions is challenging, with multiple actors involved, fragmented decision-making powers, and multiple values at stake. Globally, urban living labs have become a fashionable phenomenon to tackle this challenge, fostering the development and implementation of innovation, experimentation, and knowledge in urban, real-life settings while emphasizing the important role of participation and co-creation. However, although urban living labs could in this way help cities to speed up the sustainable transition, urban living lab experts agree that, in order to truly succeed in these ambitious tasks, the way urban living labs are being shaped and steered needs further research. Yet, they also confirm the existing variation and opaqueness in the definition of the concept. This article contributes to conceptual clarity by developing an operationalized definition of urban living labs, which has been used to assess 90 sustainable urban innovation projects in the city of Amsterdam. The assessment shows that the majority of the projects that are labelled as living labs do not include one or more of the defining elements of a living lab. In particular, the defining co-creation and development activities were found to be absent in many of the projects. This article makes it possible to categorize alleged living lab projects and distill the “true” living labs from the many improperly labelled or unlabelled living labs, allowing more specific analyses and, ultimately, better targeted methodological recommendations for urban living labs.

  14. LabVIEW 8 student edition

    CERN Document Server

    Bishop, Robert H

    2007-01-01

    For courses in Measurement and Instrumentation, Electrical Engineering lab, and Physics and Chemistry lab. This revised printing has been updated to include new LabVIEW 8.2 Student Edition. National Instruments' LabVIEW is the defacto industry standard for test, measurement, and automation software solutions. With the Student Edition of LabVIEW, students can design graphical programming solutions to their classroom problems and laboratory experiments with software that delivers the graphical programming capabilites of the LabVIEW professional version. . The Student Edition is also compatible with all National Instruments data acquisition and instrument control hardware. Note: The LabVIEW Student Edition is available to students, faculty, and staff for personal educational use only. It is not intended for research, institutional, or commercial use. For more information about these licensing options, please visit the National Instruments website at (http:www.ni.com/academic/)

  15. Lab-on-a-Chip Pathogen Sensors for Food Safety

    Directory of Open Access Journals (Sweden)

    Bumsang Kim

    2012-08-01

    Full Text Available There have been a number of cases of foodborne illness among humans that are caused by pathogens such as Escherichia coli O157:H7, Salmonella typhimurium, etc. The current practices to detect such pathogenic agents are cell culturing, immunoassays, or polymerase chain reactions (PCRs. These methods are essentially laboratory-based methods that are not at all real-time and thus unavailable for early-monitoring of such pathogens. They are also very difficult to implement in the field. Lab-on-a-chip biosensors, however, have a strong potential to be used in the field since they can be miniaturized and automated; they are also potentially fast and very sensitive. These lab-on-a-chip biosensors can detect pathogens in farms, packaging/processing facilities, delivery/distribution systems, and at the consumer level. There are still several issues to be resolved before applying these lab-on-a-chip sensors to field applications, including the pre-treatment of a sample, proper storage of reagents, full integration into a battery-powered system, and demonstration of very high sensitivity, which are addressed in this review article. Several different types of lab-on-a-chip biosensors, including immunoassay- and PCR-based, have been developed and tested for detecting foodborne pathogens. Their assay performance, including detection limit and assay time, are also summarized. Finally, the use of optical fibers or optical waveguide is discussed as a means to improve the portability and sensitivity of lab-on-a-chip pathogen sensors.

  16. Near Space Lab-Rat Experimentation using Stratospheric Balloon

    Science.gov (United States)

    Buduru, Suneel Kumar; Reddy Vizapur, Anmi; Rao Tanneeru, Venkateswara; Trivedi, Dharmesh; Devarajan, Anand; Pandit Manikrao Kulkarni, MR..; Ojha, Devendra; Korra, Sakram; Neerudu, Nagendra; Seng, Lim; Godi, Stalin Peter

    2016-07-01

    First ever balloon borne lab-rat experiment up to near space stratospheric altitude levels carried out at TIFR Balloon Facility, Hydeabad using zero pressure balloons for the purpose of validating the life support system. A series of two balloon experiments conducted under joint collaboration with IN.Genius, Singapore in the year 2015. In these experiments, three lab-rats sent to stratosphere in a pressurized capsule designed to reach an altitude of 30 km by keeping constant pressure, temperature and maintained at a precise rate of oxygen supply inside the capsule. The first experiment conducted on 1 ^{st} February, 2015 with a total suspended weight of 225 kg. During the balloon ascent stage at 18 km altitude, sensors inside the capsule reported drastic drop in internal pressure while oxygen and temperatures maintained at correct levels resulted in premature fligt termination at 20.1 km. All the three lab-rats recovered without life due to the collapse of their lungs caused by the depressurization inside the capsule. The second experiment conducted on 14th March, 2015 using a newly developed capsule with rectification of depressurization fault by using improved sealing gaskets and hermitically sealed connectors for sending lab-rats again to stratosphere comprising a total suspended load of 122.3 kg. The balloon flight was terminated after reaching 29.5 km in 110 minutes and succesfully recovered all the three lab-rats alive. This paper focuses on lessons learnt of the development of the life support system as an integral pressurized vessel, flight control instrumentation, flight simulation tests using thermo-vaccum chamber with pre-flight operations.

  17. Soil and Rock Mechanics Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The 10,000-sq ft soil mechanics research facility is the largest in the Department of Defense and has a loading capability of 250,000 lb on triaxial specimens up to...

  18. Digital media labs in libraries

    CERN Document Server

    Goodman, Amanda L

    2014-01-01

    Families share stories with each other and veterans reconnect with their comrades, while teens edit music videos and then upload them to the web: all this and more can happen in the digital media lab (DML), a gathering of equipment with which people create digital content or convert content that is in analog formats. Enabling community members to create digital content was identified by The Edge Initiative, a national coalition of leading library and local government organizations, as a library technology benchmark. Surveying academic and public libraries in a variety of settings and sharing a

  19. Double success for neutrino lab

    CERN Multimedia

    2010-01-01

    "The Gran Sasso National Laboratory in Italy is celebrating two key developments in the field of neutrino physics. Number one is the first ever detection, by the OPERA experiement, of possible tau neutrino that has switched its identity from a muon neutrino as it travelled form its origins at CERN in Switzerland to the Italian lab. Number two is the successful start-up of the ICARUS detector, which, like OPERA, is designed to study neutrinos that "oscillate" between types" (0.5 pages)

  20. Laser safety in the lab

    CERN Document Server

    Barat, Ken L

    2012-01-01

    There is no more challenging setting for laser use than a research environment. In almost every other setting the laser controls count on engineering controls, and human exposure is kept to a minimum. In research, however, the user often manipulates the optical layout and thereby places him or herself in peril, but this does not mean that accidents and injury are unavoidable. On the contrary, laser accidents can be avoided by following a number of simple approaches. [i]Laser Safety in the Lab[/i] provides the laser user and laser safety officer with practical guidelines from housekeeping to ey

  1. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  2. Which Classification of Cavernous Sinus Syndrome is Better - Ishikawa or Jefferson? A Prospective Study of 73 Patients.

    Science.gov (United States)

    Bhatkar, Sanat; Goyal, Manoj Kumar; Takkar, Aastha; Modi, Manish; Mukherjee, Kanchan K; Singh, Paramjeet; Radotra, Bishan Das; Singh, Ramandeep; Lal, Vivek

    2016-12-01

    Ishikawa and Jefferson are the two most commonly used systems used for the classification of cavernous sinus syndrome (CSS). However, relative utilities of these two classification systems have not been evaluated in detail in developing countries. In this study, we compared relative utilities of these two classification schemes in the evaluation of CSS. To compare the utility of Jefferson and Ishikawa classifications in the evaluation of CSS. A total of 73 consecutive patients of CSS were prospectively classified using either Ishikawa or Jefferson classification and relative utility of these two classification schemes in determining etiology of CSS was compared. While only 46.6% of patients could be classified using Jefferson classification, 95.5% of patients could be classified using Ishikawa scheme. CSS was classified as anterior, middle, and posterior in 17.8%, 21.9%, and 8.2% of patients, respectively, as per the Jefferson classification. As per the Ishikawa classification, 37% of patients each showed anterior and posterior CSS, 16.4% showed middle CSS, whereas 4.1% had whole CSS. Middle CSS was significantly associated with the presence of fungal infections (P = 0.045) as per Jefferson classifications, and anterior CSS was significantly associated with a vascular etiology (P = 0.005) as per Ishikawa classification. Overall, inflammatory causes were the most common cause for anterior CSS, while tumors accounted for maximum cases of posterior CSS. Although more number of patients could be classified using Ishikawa classification, there was no advantage of Ishikawa classification over Jefferson with regard to determination of etiology of CSS.

  3. Facility Microgrids

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

    2005-05-01

    Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

  4. Recent developments from the OPEnS Lab

    Science.gov (United States)

    Selker, J. S.; Good, S. P.; Higgins, C. W.; Sayde, C.; Buskirk, B.; Lopez, M.; Nelke, M.; Udell, C.

    2016-12-01

    The Openly Published Environmental Sensing (OPEnS) lab is a facility that is open to all from around the world to use (http://agsci.oregonstate.edu/open-sensing). With 3-D CAD, electronics benches, 3-D printers and laser cutters, and a complete precision metal shop, the lab can build just about anything. Electronic platforms such as the Arduino are combined with cutting edge sensors, and packaged in rugged housing to address critical environmental sensing needs. The results are published in GITHub and in the AGU journal Earth and Space Sciences under the special theme of "Environmental Sensing." In this poster we present advancements including: A ultra-precise isotopic sampler for rainfall; an isotopic sampler for soil gas; a data-logging wind vane that can be mounted on the tether of a balloon; a rain-gage calibrator with three rates of constant application; a <$20 dissolved O2 probe for water; a stream-bed permeameter that gives rapid quantification of permeability. You can use the OPEnS lab! Just sketch your idea on a white board and send it in. The conversation is started, and your prototype can be ready in a few weeks. We have a staff of three engineers ready to help, where you are working remotely, or decide to spend some time with the team in Corvallis.

  5. Linearly polarized photon beam at MAX-lab

    Energy Technology Data Exchange (ETDEWEB)

    Ganenko, V., E-mail: ganenko@kipt.kharkov.ua [National Science Center, Kharkov Institute of Physics and Technology, 61108 Kharkov (Ukraine); Brudvik, J. [MAX IV Laboratory, Lund University, SE-221 00 Lund (Sweden); Burdeinyi, D. [National Science Center, Kharkov Institute of Physics and Technology, 61108 Kharkov (Ukraine); Fissum, K. [Department of Physics, Lund University, SE-221 00 Lund (Sweden); Hansen, K. [MAX IV Laboratory, Lund University, SE-221 00 Lund (Sweden); Isaksson, L. [Department of Physics, Lund University, SE-221 00 Lund (Sweden); Livingston, K. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Lundin, M. [MAX IV Laboratory, Lund University, SE-221 00 Lund (Sweden); Morokhovskii, V. [National Science Center, Kharkov Institute of Physics and Technology, 61108 Kharkov (Ukraine); Nilsson, B.; Pugachov, D. [MAX IV Laboratory, Lund University, SE-221 00 Lund (Sweden); Schroder, B. [MAX IV Laboratory, Lund University, SE-221 00 Lund (Sweden); Department of Physics, Lund University, SE-221 00 Lund (Sweden); Vashchenko, G. [National Science Center, Kharkov Institute of Physics and Technology, 61108 Kharkov (Ukraine)

    2014-11-01

    A linearly polarized photon beam has been produced at MAX-lab using the coherent bremsstrahlung of electrons with an energy of 192.6 MeV in a 0.1 mm thick diamond crystal. The intensity and shape of the coherent maxima and their dependence on the crystal orientation are similar to the features observed at higher electron energies (∼ 1 GeV) and are well described by coherent bremsstrahlung theory. The linear polarization of the uncollimated beam at the coherent peak energy ≈50–60 MeV is about 20% and can be increased to 40–45% if collimation of half the characteristic angle is used. At present the degree of polarization is high enough to allow the study of polarization observables in photo-nuclear reactions at MAX-lab in the energy range from Giant Dipole Resonance up to ≈80 MeV. -- Highlights: •A linearly polarized tagged photon beam has been produced at the MAX-lab facility. •The coherent bremsstrahlung spectra were measured for various crystal orientations. •The measured spectra are well described by the coherent bremsstrahlung theory. •The photon beam polarization can reach 50% at the Giant Resonance region. •Polarized beam provides performing nuclear experiments in the energy range 10–90 MeV.

  6. Curricular Adaptations in Introductory Physics Labs

    Science.gov (United States)

    Dreyfus, Benjamin W.; Ewell, Mary; Moore, Kimberly

    2017-01-01

    When curricular materials are disseminated to new sites, there can be a tension between fidelity to the original intent of the developers and adaptation to local needs. In this case study we look at a lab activity that was initially developed for an introductory physics for the life sciences (IPLS) course at the University of Maryland, then implemented at George Mason University with significant adaptations. The goals of the two implementations were overlapping, but also differed in ways that are reflected in the two versions of the lab. We compare student lab report data from the two sites to examine the impacts of the adaptation on how students engaged with the lab.

  7. Learning from an Ambient Assisted Living Lab

    DEFF Research Database (Denmark)

    Bygholm, Ann; Kanstrup, Anne Marie

    2014-01-01

    This paper presents methodological lessons learned from an Ambient Assisted Living (AAL) lab exploring the use of intelligent beds in a nursing home. The living lab study was conducted over a period of three month. 20 intelligent beds were installed. Data was collected via self-registration, diar......This paper presents methodological lessons learned from an Ambient Assisted Living (AAL) lab exploring the use of intelligent beds in a nursing home. The living lab study was conducted over a period of three month. 20 intelligent beds were installed. Data was collected via self...

  8. MatLab Script and Functional Programming

    Science.gov (United States)

    Shaykhian, Gholam Ali

    2007-01-01

    MatLab Script and Functional Programming: MatLab is one of the most widely used very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. The MatLab seminar covers the functional and script programming aspect of MatLab language. Specific expectations are: a) Recognize MatLab commands, script and function. b) Create, and run a MatLab function. c) Read, recognize, and describe MatLab syntax. d) Recognize decisions, loops and matrix operators. e) Evaluate scope among multiple files, and multiple functions within a file. f) Declare, define and use scalar variables, vectors and matrices.

  9. Improved LabVIEW Code Generation

    National Research Council Canada - National Science Library

    Evita Vavilina; Gatis Gaigals

    2016-01-01

    .... LabVIEW provides highly convenient environment for simulation development and also tools for generation of simulation environment that can include simulation itself and collection of simulation data...

  10. Famed lab seeks big grid

    CERN Multimedia

    Lillington, K

    2001-01-01

    DUBLIN, Ireland -- CERN, the famed Swiss high-energy particle physics lab, has a problem. It's about to start generating more data than any computer or network anywhere in the world is able to analyze. That prospect has led CERN to drive a major European project to create a vast "grid" research network of computers across Europe. When completed, the 10 million euro, Linux-based endeavor called DataGRID, will become a principal European computing resource for researchers of many disciplines. "I believe grid computing will revolutionize the way we compute, in much the same way as the World Wide Web and Internet changed the way we communicate," said John Ellis, a theoretical physicist and adviser to the director general of CERN.

  11. Physical Therapy Management of Atlas Fracture (Jefferson's Fracture) : A Case Report

    OpenAIRE

    Taketomi, Yoshio; Muraki,Toshiaki; Yoneda, Toshihiko

    1997-01-01

    The purpose of this report is to document a pain-reducing effect of physical therapy on a patient with fracture of the atlas (Jefferson's fracture). A 51-year-old man was caught in an automobile accident. He had been unconscious under respiratory management in an intensive care unit for two days following the accident. On the 48th day, the patient was referred to the physical therapy department. His neck was firmly fixed with a cervicothoracic-style orthosis. Physical therapy was performed fi...

  12. Physical Therapy Management of Atlas Fracture (Jefferson's Fracture) : A Case Report

    OpenAIRE

    Taketomi, Yoshio; Muraki,Toshiaki; YONEDA, Toshihiko

    1997-01-01

    The purpose of this report is to document a pain-reducing effect of physical therapy on a patient with fracture of the atlas (Jefferson's fracture). A 51-year-old man was caught in an automobile accident. He had been unconscious under respiratory management in an intensive care unit for two days following the accident. On the 48th day, the patient was referred to the physical therapy department. His neck was firmly fixed with a cervicothoracic-style orthosis. Physical therapy was performed fi...

  13. Lineaments and fracture traces, Jennings County and Jefferson Proving Ground, Indiana

    Science.gov (United States)

    Greeman, T.K.

    1981-01-01

    Jennings and several adjacent counties are economically restricted "by inadequate water supplies. The North Vernon Water Utility, supplying more than 25 percent of Jennings County's population, obtains its water from the Vernon Fork Muscatatuck River, although streamflow is less than the average daily withdrawal 69 days of the year. The U.S. Army, Jefferson Proving Ground, pipes water more than 5 miles and lifts it 375 feet for fire protection. Another Jennings County utility pipes water more than 15 miles to rural domestic consumers unable to locate sufficient ground-water supplies.

  14. Finite element model of the Jefferson fracture: comparison with a cadaver model

    OpenAIRE

    Bozkus, Hakan; Karakas, Askin; Hancı, Murat; Uzan, Mustafa; Bozdag, Ergun; Sarıoglu, Ali

    2001-01-01

    This study tries to explain the reason why the Jefferson fracture is a burst fracture, using two different biomechanical models: a finite element model (FEM) and a cadaver model used to determine strain distribution in C1 during axial static compressive loading. For the FEM model, a three-dimensional model of C1 was obtained from a 29-year-old healthy human, using axial CT scans with intervals of 1.0 mm. The mesh model was composed of 8200 four-noded isoparametric tetrahedrons and 37,400 soli...

  15. Democracia y propiedad en el republicanismo de Thomas Jefferson y Maximilien Robespierre

    OpenAIRE

    Laín Escandell, Bru

    2016-01-01

    [spa] "Democracia y Propiedad en el republicanismo de Thomas Jefferson y Maximilien Robespierre” es una investigación que aborda el pensamiento y la acción política de la tradición republicana en los primeros años de la República norteamericana y de la Francia revolucionaria. Lo que en particular se estudia en esta investigación es la relación que en ambos contextos se dio entre la concepción de la democracia y la de la propiedad desde un doble ámbito, esto es, tanto en su dimensión conceptua...

  16. Edward Gantt (1742-1837): US senate chaplain and first White House physician to Thomas Jefferson.

    Science.gov (United States)

    Cavanagh, Harrison Dwight

    2017-08-01

    In his long and eventful life, Edward Gantt (1742-1837) made important contributions to the newly independent American Republic, as well as to the development of scientific evidence-based American medicine. Unfortunately, his achievements have gone unrecognized and unreported in mainstream historical publications. Specifically, his service as the first designated White House doctor, and personal physician to President Thomas Jefferson from 1801 to 1809 has not been reported. The purpose of this paper is to document the biographical and scientific details of his extraordinary life and notable contributions.

  17. Innovations in STEM education: the Go-Lab federation of online labs

    NARCIS (Netherlands)

    Jong, de Ton; Sotiriou, Sofoklis; Gillet, Dennis

    2014-01-01

    The Go-Lab federation of online labs opens up virtual laboratories (simulation), remote laboratories (real equipment accessible at distance) and data sets from physical laboratory experiments (together called “online labs”) for large-scale use in education. In this way, Go-Lab enables inquiry-based

  18. Hot Hydrogen Test Facility

    Science.gov (United States)

    Swank, W. David; Carmack, Jon; Werner, James E.; Pink, Robert J.; Haggard, DeLon C.; Johnson, Ryan

    2007-01-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISP. This quantity is proportional to the square root of the propellant's absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500°C hydrogen flowing at 1500 liters per minute. The facility is intended to test low activity uranium containing materials but is also suited for testing cladding and coating materials. In this first installment the facility is described. Automated data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

  19. Lab-on-a-Chip Based Protein Crystallization

    Science.gov (United States)

    vanderWoerd, Mark J.; Brasseur, Michael M.; Spearing, Scott F.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We are developing a novel technique with which we will grow protein crystals in very small volumes, utilizing chip-based, microfluidic ("LabChip") technology. This development, which is a collaborative effort between NASA's Marshall Space Flight Center and Caliper Technologies Corporation, promises a breakthrough in the field of protein crystal growth. Our initial results obtained from two model proteins, Lysozyme and Thaumatin, show that it is feasible to dispense and adequately mix protein and precipitant solutions on a nano-liter scale. The mixtures have shown crystal growth in volumes in the range of 10 nanoliters to 5 microliters. In addition, large diffraction quality crystals were obtained by this method. X-ray data from these crystals were shown to be of excellent quality. Our future efforts will include the further development of protein crystal growth with LabChip(trademark) technology for more complex systems. We will initially address the batch growth method, followed by the vapor diffusion method and the liquid-liquid diffusion method. The culmination of these chip developments is to lead to an on orbit protein crystallization facility on the International Space Station. Structural biologists will be invited to utilize the on orbit Iterative Biological Crystallization facility to grow high quality macromolecular crystals in microgravity.

  20. Motion-preserving reduction and fixation of C1 Jefferson fracture using a C1 lateral mass screw construct.

    Science.gov (United States)

    Jo, Kwang-Wook; Park, Ik-Seong; Hong, Jae Taek

    2011-05-01

    The treatment of C1 Jefferson fractures is controversial. Non-surgical treatment with halo fixation always bears the risk of insufficient healing with further instability and increasing neck pain. However, a C1-2 fusion can markedly decrease the rotatory motion of the neck. The aim of this report is to describe a new treatment for C1 Jefferson fractures. We used open reduction and C1 fixation using a bilateral C1 lateral mass screw construct. The screws were connected with a rod and nuts to reduce lateral spread of the lateral masses. This method is an alternative surgical option for C1 Jefferson fractures in select patients and can maintain important C1-2 joint motion.

  1. Programming Arduino with LabVIEW

    CERN Document Server

    Schwartz, Marco

    2015-01-01

    If you already have some experience with LabVIEW and want to apply your skills to control physical objects and make measurements using the Arduino sensor, this book is for you. Prior knowledge of Arduino and LabVIEW is essential to fully understand the projects detailed in this book.

  2. Innovation - A view from the Lab

    Science.gov (United States)

    The USDA Ag Lab in Peoria helps bridge the gap between agricultural producers and commercial manufacturers. In 2015, the Ag Lab, officially known as the Agricultural Research Service (ARS) National Center for Agricultural Utilization Research (NCAUR), is celebrating 75 years of research in Peoria. T...

  3. Hydrogel Beads: The New Slime Lab?

    Science.gov (United States)

    Brockway, Debra; Libera, Matthew; Welner, Heidi

    2011-01-01

    Creating slime fascinates students. Unfortunately, though intrigue is at its peak, the educational aspect of this activity is often minimal. This article describes a chemistry lab that closely relates to the slime lab and allows high school students to explore the concepts of chemical bonding, properties, and replacement reactions. It involves the…

  4. Link Analysis in the Mission Planning Lab

    Science.gov (United States)

    McCarthy, Jessica A.; Cervantes, Benjamin W.; Daugherty, Sarah C.; Arroyo, Felipe; Mago, Divyang

    2011-01-01

    The legacy communications link analysis software currently used at Wallops Flight Facility involves processes that are different for command destruct, radar, and telemetry. There is a clear advantage to developing an easy-to-use tool that combines all the processes in one application. Link Analysis in the Mission Planning Lab (MPL) uses custom software and algorithms integrated with Analytical Graphics Inc. Satellite Toolkit (AGI STK). The MPL link analysis tool uses pre/post-mission data to conduct a dynamic link analysis between ground assets and the launch vehicle. Just as the legacy methods do, the MPL link analysis tool calculates signal strength and signal- to-noise according to the accepted processes for command destruct, radar, and telemetry assets. Graphs and other custom data are generated rapidly in formats for reports and presentations. STK is used for analysis as well as to depict plume angles and antenna gain patterns in 3D. The MPL has developed two interfaces with the STK software (see figure). The first interface is an HTML utility, which was developed in Visual Basic to enhance analysis for plume modeling and to offer a more user friendly, flexible tool. A graphical user interface (GUI) written in MATLAB (see figure upper right-hand corner) is also used to quickly depict link budget information for multiple ground assets. This new method yields a dramatic decrease in the time it takes to provide launch managers with the required link budgets to make critical pre-mission decisions. The software code used for these two custom utilities is a product of NASA's MPL.

  5. Educating Each According to His Needs: A Response to "Beyond the Schoolhouse Door: Educating the Political Animal in Jefferson's Little Republics"

    Science.gov (United States)

    Holowchak, M. Andrew

    2015-01-01

    This essay is a reply to Brian Dotts's "Beyond the Schoolhouse Door," which focuses on the need of a system of general education in Jefferson's writings on educative reform. [For Dotts' "Beyond the Schoolhouse Door: Educating the Political Animal in Jefferson's Little Republics," see EJ1061579.

  6. Occipital neuralgia after occipital cervical fusion to treat an unstable jefferson fracture.

    Science.gov (United States)

    Kong, Seong Ju; Park, Jin Hoon; Roh, Sung Woo

    2012-12-01

    In this report we describe a patient with an unstable Jefferson fracture who was treated by occipitocervical fusion and later reported sustained postoperative occipital neuralgia. A 70-year-old male was admitted to our center with a Jefferson fracture induced by a car accident. Preoperative lateral X-ray revealed an atlanto-dens interval of 4.8mm and a C1 canal anterior-posterior diameter of 19.94mm. We performed fusion surgery from the occiput to C5 without decompression of C1. The patient reported sustained continuous pain throughout the following year despite strong analgesics. The pain dermatome was located mainly in the great occipital nerve territory and posterior neck. Magnetic resonance images revealed no evidence of cord compression, however a C1 lamina compressed dural sac and C2 root compression could not be excluded. We performed bilateral C2 root decompression via a C1 laminectomy. After decompression, bilateral C2 root redundancy was identified by palpation. After decompression surgery, pain was reduced. This case indicates that occipital neuralgia, suggesting the need for diagnostic block, should be considered in the differential diagnosis of patients with sustained occipital headache after occipitocervical fusion surgery.

  7. Psychometric testing of the Jefferson Scale of Empathy Health Profession Students' version with Australian paramedic students.

    Science.gov (United States)

    Williams, Brett; Brown, Ted; Boyle, Malcolm; Dousek, Simon

    2013-03-01

    Evidence now suggests that improved empathic behaviors can have a positive impact on healthcare outcomes. Therefore, having psychometrically-sound empathy scales is important for healthcare educators. In this study, the factor structure of the 20-item Jefferson Scale Empathy-Health Profession Students' version, when completed by a group of undergraduate paramedic students from a large Australian university, was investigated. Data from the Scale completed by 330 paramedic students were analyzed using principal components analysis followed by a maximum likelihood confirmatory factor analysis to test goodness of fit to the sample data. Two factors emerged from the principal components analysis, "compassionate care" and "perspective taking", accounting for 44.2% of the total variance. The 17-item two-factor model produced good model fit and good reliability estimates. Three of the original items did not fit the model. Results from the confirmatory factor analysis suggest that the 17-item Jefferson Scale Empathy-Health Profession Students' version is a valid and reliable measure for undergraduate paramedic students' empathy levels.

  8. GlueX: The Search for Gluonic Excitations at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    D.S. Carman

    2005-08-21

    One of the unanswered and most fundamental questions in physics regards the nature of the confinement mechanism of quarks and gluons in quantum chromodynamics (QCD). Exotic hybrid mesons manifest gluonic degrees of freedom and their detailed spectroscopy will provide the precision data necessary to test assumptions in lattice QCD and the specific phenomenology leading to confinement. Photoproduction is expected to be a particularly effective manner to produce exotic hybrids, however, existing data using photon beams are sparse. At Jefferson Laboratory, plans are underway by the GlueX Collaboration to use the coherent bremsstrahlung technique to produce a linearly polarized photon beam. A solenoid-based hermetic detector will be used to collect data on meson production and decays with statistics that will exceed existing photoproduction data by several orders of magnitude after the first year of running. In order to reach the ideal photon energy of 9 GeV required for these studies, the energy of the Jefferson Laboratory electron accelerator, CEBAF, will be doubled from its current maximum energy of 6 GeV to 12 GeV. The physics motivating the search and the status of the project are reviewed.

  9. Reliability and validity of the Jefferson Scale of Empathy in undergraduate nursing students.

    Science.gov (United States)

    Ward, Julia; Schaal, Mary; Sullivan, Jacqueline; Bowen, Mary E; Erdmann, James B; Hojat, Mohammadreza

    2009-01-01

    Evidence has been reported in support of the reliability and validity of the Jefferson Scale of Physician Empathy (JSPE) when used with physicians, medical students, and nurses. This study examined the psychometrics of a modified version of the scale in undergraduate nursing students. The modified version of the JSPE was administered to 333 nursing students at different levels of training. Three underlying constructs, that is, "Perspective Taking," "Compassionate Care," and "Standing in Patient's Shoes" emerged from the factor analysis of the scale that were consistent with the conceptual framework of empathy, thus supporting the construct validity of the scale. The coefficient alpha was .77. Scores of the empathy scale were significantly correlated with the scores of the Jefferson Scale of Attitudes toward Physician-Nurse Collaboration (r = .38, p < .001). Women scored higher than men, and those with more clinical experiences scored higher than others. It was concluded that the empathy scale used in this study is a psychometrically sound instrument for measuring empathy in undergraduate nursing students.

  10. The Jefferson Scale of Attitudes toward Physician-Nurse Collaboration: a study with undergraduate nursing students.

    Science.gov (United States)

    Ward, Julia; Schaal, Mary; Sullivan, Jacqueline; Bowen, Mary E; Erdmann, James B; Hojat, Mohammadreza

    2008-08-01

    The Jefferson Scale of Attitudes toward Physician-Nurse Collaboration (JSAPNC) was administered to 333 undergraduate nursing students. The underlying factors, item-total score correlations and reliability of the JSAPNC were examined. A significant correlation was observed between scores of the JSAPNC and the Jefferson Scale of Empathy (r = 0.38). It was hypothesized that: (1) Women would score higher than men on the JSAPNC, (2) Scores on the JSAPNC would increase as students progress in their nursing education, (3) Scores on the JSAPNC would be higher for students with work experiences in health care, and (4) Scores on the JSAPNC would be higher for those with a higher level of education prior to nursing school. Hypotheses 1, 3 and 4 were confirmed at a conventional statistical level of significance (p < 0.05), and hypothesis 2 was confirmed at a marginal significance level (p = 0.06). No significant differences were observed on scores of the JSAPNC among undergraduate nursing students grouped by ethnic minority, specialty plan, academic major prior to nursing school, or marital status. Implications for future studies in nursing education are discussed.

  11. First report of Jefferson's ground sloth (Megalonyx jeffersonii) in North Dakota: Paleobiogeographical and paleoecological significance

    Science.gov (United States)

    Hoganson, J.W.; McDonald, H. Gregory

    2007-01-01

    A well-preserved ungual of a pes documents the presence of Jefferson's ground sloth (Megalonyx jeffersonii) at the end of the Wisconsinan in North Dakota. This is the 1st report of M. jeffersonii in North Dakota, and one of few records from the upper Great Plains. An accelerator mass spectrometer radiocarbon age of 11,915 ?? 40 years ago was obtained from the specimen, suggesting that the sloth resided in North Dakota during the Rancholabrean Land Mammal Age, just before extinction of the species. Palynological records from sites near the sloth occurrence and of the same age indicate that it resided in a cool, moist, spruce-dominated forest habitat in a riparian setting along the Missouri River. Its presence in that setting corroborates the notion that Jefferson's ground sloth was a browsing inhabitant of gallery forests associated with rivers. It is likely that M. jeffersonii used river valleys, such as the Missouri River valley, as migration routes. ?? 2007 American Society of Mammalogists.

  12. Communication Method between LabVIEW and Excel%LabVIEW与Excel的通信方法

    Institute of Scientific and Technical Information of China (English)

    陈金平; 王生泽; 吴文英

    2006-01-01

    在虚拟仪器开发过程中,需要将一些多路采集数据存储在Excel表格中.LabVIEW是一种方便灵活的虚拟仪器开发环境,而LabVIEW中的DDE是Windows操作系统中的一种基于消息的协议.利用LabVIEW的DDE功能可以很好地实现LabVIEW与Excel的数据通信.通过具体例子叙述了LabVIEW的DDE功能,这种功能使得LabVIEW与Excel的数据交换方便快捷,实现方法简单明了,实践表明DDE是增强LabVIEW整体功能的一条有效途径.

  13. Lab-on-a-Chip

    Science.gov (United States)

    2004-01-01

    Labs on chips are manufactured in many shapes and sizes and can be used for numerous applications, from medical tests to water quality monitoring to detecting the signatures of life on other planets. The eight holes on this chip are actually ports that can be filled with fluids or chemicals. Tiny valves control the chemical processes by mixing fluids that move in the tiny channels that look like lines, connecting the ports. Scientists at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama designed this chip to grow biological crystals on the International Space Station. Through this research, they discovered that this technology is ideally suited for solving the challenges of the Vision for Space Exploration. For example, thousands of chips the size of dimes could be loaded on a Martian rover looking for biosignatures of past or present life. Other types of chips could be placed in handheld devices used to monitor microbes in water or to quickly conduct medical tests on astronauts. (NASA/MSFC/D.Stoffer)

  14. Designing Viable Business Models for Living Labs

    Directory of Open Access Journals (Sweden)

    Bernhard R. Katzy

    2012-09-01

    Full Text Available Over 300 regions have integrated the concept of living labs into their economic development strategy since 2006, when the former Finnish Prime Minister Esko Aho launched the living lab innovation policy initiative during his term of European presidency. Despite motivating initial results, however, success cases of turning research into usable new products and services remain few and uncertainty remains on what living labs actually do and contribute. This practitioner-oriented article presents a business excellence model that shows processes of idea creation and team mobilization, new product development, user involvement, and entrepreneurship through which living labs deliver high-potential investment opportunities. Customers of living labs are identified as investors such as venture capitalists or industrial firms because living labs can generate revenue from them to create their own sustainable business model. The article concludes that living labs provide extensive support “lab” infrastructure and that it remains a formidable challenge to finance it, which calls for a more intensive debate.

  15. Experiences with lab-centric instruction

    Science.gov (United States)

    Titterton, Nathaniel; Lewis, Colleen M.; Clancy, Michael J.

    2010-06-01

    Lab-centric instruction emphasizes supervised, hands-on activities by substituting lab for lecture time. It combines a multitude of pedagogical techniques into the format of an extended, structured closed lab. We discuss the range of benefits for students, including increased staff interaction, frequent and varied self-assessments, integrated collaborative activities, and a systematic sequence of activities that gradually increases in difficulty. Instructors also benefit from a deeper window into student progress and understanding. We follow with discussion of our experiences in courses at U.C. Berkeley, and using data from some of these investigate the effects of lab-centric instruction on student learning, procrastination, and course pacing. We observe that the lab-centric format helped students on exams but hurt them on extended programming assignments, counter to our hypothesis. Additionally, we see no difference in self-ratings of procrastination and limited differences in ratings of course pace. We do find evidence that the students who choose to attend lab-centric courses are different in several important ways from students who choose to attend the same course in a non-lab-centric format.

  16. e-REAL: Enhanced Reality Lab

    Directory of Open Access Journals (Sweden)

    Fernando Salvetti

    2014-10-01

    Full Text Available e-REAL - enhanced reality lab - is a fully-immersive and multitasking environment, designed to experience challenging situations in a group setting, engaging all participants simultaneously on different levels: with peers, thematic experts and learning facilitators, both on site and remotely. e-REAL is a lab based on visual thinking and knowledge visualization, facilitated by enhanced (or augmented reality tools. It is a highly interactive and face-to-face lab that promotes proactive data and information research (everything is available, but learners have to actively look for it - allowing knowledge sharing with remote teams and integrating training on soft skills with those that are technical and specialized.

  17. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science

    Science.gov (United States)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  18. Quench Studies of Six High Temperature Nitrogen Doped 9 Cell Cavities for Use in the LCLS-II Baseline Prototype Cryomodule at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Geng, Rongli [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Eremeev, Grigory [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Reece, Charles [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    Jefferson Lab (JLab) processed six nine-cell cavities as part of a small-scale production for LCLS-II cavity processing development utilizing the promising nitrogen-doping process. Various nitrogen-doping recipes have been scrutinized to optimize process parameters with the aim to guarantee an unloaded quality factor (Q_0) of 2.7∙1010 at an accelerating field (Eacc) of 16 MV/m at 2.0 K in the cryomodule. During the R&D phase the characteristic Q0 vs. Eacc performance curve of the cavities has been measured in JLab’s vertical test area at 2 K. The findings showed the characteristic rise of the Q0 with Eacc as expected from nitrogen-doping. Initially, five cavities achieved an average Q0 of 3.3·1010 at the limiting Eacc averaging to 16.8 MV/m, while one cavity experienced an early quench accompanied by an unusual Q_0 vs. Eacc curve. The project accounts for a cavity performance loss from the vertical dewar test (with or without the helium vessel) to the horizontal performance in a cryomodule, such that these results leave no save margin to the cryomodule specification. Consequently, a refinement of the nitrogen-doping has been initiated to guarantee an average quench field above 20 MV/m without impeding the Q_0. This paper covers the refinement work performed for each cavity, which depends on the initial results, as well as a quench analysis carried out before and after the rework during the vertical RF tests as far as applicable.

  19. Labs not in a lab: A case study of instructor and student perceptions of an online biology lab class

    Science.gov (United States)

    Doiron, Jessica Boyce

    Distance learning is not a new phenomenon but with the advancement in technology, the different ways of delivering an education have increased. Today, many universities and colleges offer their students the option of taking courses online instead of sitting in a classroom on campus. In general students like online classes because they allow for flexibility, the comfort of sitting at home, and the potential to save money. Even though there are advantages to taking online classes, many students and instructors still debate the effectiveness and quality of education in a distant learning environment. Many universities and colleges are receiving pressure from students to offer more and more classes online. Research argues for both the advantages and disadvantages of online classes and stresses the importance of colleges and universities weighing both sides before deciding to adopt an online class. Certain classes may not be suitable for online instruction and not all instructors are suitable to teach online classes. The literature also reveals that there is a need for more research on online biology lab classes. With the lack of information on online biology labs needed by science educators who face the increasing demand for online biology labs, this case study hopes to provide insight into the use of online biology lab classes and the how students and an instructor at a community college in Virginia perceive their online biology lab experience as well as the effectiveness of the online labs.

  20. 2012 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Jefferson and Clallam Counties, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data for the Jefferson/Clallam study area on March 23rd-25th, April 13th-15th, and May...

  1. Gender Comparisons Prior to, during, and after Medical School Using Two Decades of Longitudinal Data at Jefferson Medical College.

    Science.gov (United States)

    Hojat, Mohammadreza; And Others

    1994-01-01

    Similarities and differences prior to, during, and after medical school between 3,451 men and 1,121 women graduates of Jefferson Medical College were investigated. Differences in test scores, competence ratings, specialty choices, and estimated income hold implications for health care manpower management. (SLD)

  2. 33 CFR 100.121 - Swim Across the Sound, Long Island Sound, Port Jefferson, NY to Captain's Cove Seaport...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Swim Across the Sound, Long... SAFETY OF LIFE ON NAVIGABLE WATERS § 100.121 Swim Across the Sound, Long Island Sound, Port Jefferson, NY... they are officially participating in the Swim Across the Sound event or are otherwise authorized by...

  3. K-Long Facility for JLab and its Scientific Potential

    CERN Document Server

    Strakovsky, Igor I

    2016-01-01

    Our main interest in creating a secondary high-quality KL-beam is to investigate hyperon spectroscopy through both formation and production processes. We propose to study two-body reactions induced by the KL-beam on the proton target. The experiment should measure both differential cross sections and self-analyzed polarizations of the produced $\\Lambda$-, $\\Sigma$-, and $\\Xi$-hyperons using the GlueX detector at the Jefferson Lab Hall D. New data will greatly constrain partial-wave analysis and reduce model-dependent uncertainties in the extraction of strange resonance properties, providing a new benchmark for comparisons with QCD-inspired models and LQCD calculations. The measurements will span c.m. $\\cos\\theta$ from -0.95 to 0.95 in c.m. range above W = 1490MeV and up to 4000 MeV.

  4. K-Long Facility for JLab and its Scientific Potential

    Energy Technology Data Exchange (ETDEWEB)

    Strakovski, Igor I. [George Washington Univ., Washington, DC (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-11-29

    Our main interest in creating a secondary high-quality KL-beam is to investigate hyperon spectroscopy through both formation and production processes. We propose to study two-body reactions induced by the KL-beam on the proton target. The experiment should measure both differential cross sections and self-analyzed polarizations of the produced $\\Lambda$-, $\\Sigma$-, and $\\Xi$-hyperons using the GlueX detector at the Jefferson Lab Hall D. New data will greatly constrain partial-wave analysis and reduce model-dependent uncertainties in the extraction of strange resonance properties, providing a new benchmark for comparisons with QCD-inspired models and LQCD calculations. The measurements will span c.m. $\\cos\\theta$ from -0.95 to 0.95 in c.m. range above W = 1490MeV and up to 4000 MeV.

  5. K-Long Facility for JLab and its Scientific Potential

    Science.gov (United States)

    Strakovsky, Igor I.

    2016-11-01

    Our main interest in creating a secondary high-quality KL-beam is to investigate hyperon spectroscopy through both formation and production processes. We propose to study two-body reactions induced by the KL-beam on the proton target. The experiment should measure both differential cross sections and self-analyzed polarizations of the produced Λ-, Σ-, and Ξ-hyperons using the GlueX detector at the Jefferson Lab Hall D. New data will greatly constrain partial-wave analysis and reduce modeldependent uncertainties in the extraction of strange resonance properties, providing a new benchmark for comparisons with QCD-inspired models and LQCD calculations. The measurements will span c.m. cos θ from -0.95 to 0.95 in c.m. range above W = 1490 MeV and up to 4000 MeV.

  6. EXPERIENCE WITH COLLABORATIVE DEVELOPMENT FOR THE SPALLATION NEUTRON SOURCE FROM A PARTNER LAB PERSPECTIVE.

    Energy Technology Data Exchange (ETDEWEB)

    HOFF, L.T.

    2005-10-10

    Collaborative development and operation of large physics experiments is fairly common. Less common is the collaborative development or operation of accelerators. A current example of the latter is the Spallation Neutron Source (SNS). The SNS project was conceived as a collaborative effort between six DOE facilities. In the SNS case, the control system was also developed collaboratively. The SNS project has now moved beyond the collaborative development phase and into the phase where Oak Ridge National Lab (ORNL) is integrating contributions from collaborating ''partner labs'' and is beginning accelerator operations. In this paper, the author reflects on the benefits and drawbacks of the collaborative development of an accelerator control system as implemented for the SNS project from the perspective of a partner lab.

  7. Improving "lab-on-a-chip" techniques using biomedical nanotechnology: a review.

    Science.gov (United States)

    Gorjikhah, Fatemeh; Davaran, Soodabeh; Salehi, Roya; Bakhtiari, Mohsen; Hasanzadeh, Arash; Panahi, Yunes; Emamverdy, Masumeh; Akbarzadeh, Abolfazl

    2016-11-01

    Nanotechnology and its applications in biomedical sciences principally in molecular nanodiagnostics are known as nanomolecular diagnostics, which provides new options for clinical nanodiagnostic techniques. Molecular nanodiagnostics are a critical role in the development of personalized medicine, which features point-of care performance of diagnostic procedure. This can to check patients at point-of-care facilities or in remote or resource-poor locations, therefore reducing checking time from days to minutes. In this review, applications of nanotechnology suited to biomedicine are discussed in two main class: biomedical applications for use inside (such as drugs, diagnostic techniques, prostheses, and implants) and outside the body (such as "lab-on-a-chip" techniques). A lab-on-a-chip (LOC) is a tool that incorporates numerous laboratory tasks onto a small device, usually only millimeters or centimeters in size. Finally, are discussed the applications of biomedical nanotechnology in improving "lab-on-a-chip" techniques.

  8. EXPERIENCE WITH COLLABORATIVE DEVELOPMENT FOR THE SPALLATION NEUTRON SOURCE FROM A PARTNER LAB PERSPECTIVE.

    Energy Technology Data Exchange (ETDEWEB)

    HOFF, L.T.

    2005-10-10

    Collaborative development and operation of large physics experiments is fairly common. Less common is the collaborative development or operation of accelerators. A current example of the latter is the Spallation Neutron Source (SNS). The SNS project was conceived as a collaborative effort between six DOE facilities. In the SNS case, the control system was also developed collaboratively. The SNS project has now moved beyond the collaborative development phase and into the phase where Oak Ridge National Lab (ORNL) is integrating contributions from collaborating ''partner labs'' and is beginning accelerator operations. In this paper, the author reflects on the benefits and drawbacks of the collaborative development of an accelerator control system as implemented for the SNS project from the perspective of a partner lab.

  9. Laboratory Professionals: Who's Who in the Lab

    Science.gov (United States)

    ... such as in clinical chemistry, immunology, molecular pathology, microbiology, or blood bank /transfusion service. MLSs/MTs have ... Many labs are looking for laboratory professionals with advanced degrees and experience. « Prev | Next » Proudly sponsored by ... ...

  10. Photonics and Fiber Optics Processor Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Photonics and Fiber Optics Processor Lab develops, tests and evaluates high speed fiber optic network components as well as network protocols. In addition, this...

  11. Podcast: Scientific Integrity and Lab Fraud

    Science.gov (United States)

    Nov 25, 2015. Dr. Bruce Woods, a chemist in the Electronic Crimes Division within the OIG’s Office of Investigations discusses his recent webinar for the Association of Public Health Laboratories on lab fraud.

  12. Thanatology for Everyone: Developmental Labs and Workshops

    Science.gov (United States)

    O'Connell, Walter E.; And Others

    1977-01-01

    In an effort to "treat" the growing death concerns of many medical staffs, an experiential death and dying lab was created. Its evolution to meet changing needs is discussed, as well as future potential for work in this area. (Author)

  13. Årsrapport 2007: Knowledge Lab

    DEFF Research Database (Denmark)

    Helms, Niels Henrik

    Denne rapport beskriver Knowledge Labs udvikling og aktiviteter i 2007. Knowledge Lab har været og ikke mindst er et forsknings- og udviklingslaboratorium ved Syd- dansk Universitet. Det blev etableret i 2002 som en del af den jysk-fynske it-satsning. Laboratoriet beskæftiger en lang række forskere...... og projektmedarbejdere, som tilsammen repræsenterer kompetencer inden for fokusområderne: digital kompetenceudvikling, vidensledelse og vidensudvikling. Knowledge Lab arbejder med fokusområderne i et gensidigt betinget samspil mellem forskning, udvikling og anvendelse. Det forskningsmæssige grundlag...... for Knowledge Lab er: Grundlæggende og anvendt vidensteori med særligt henblik på brugen af digitale teknologier til understøttelse af videnstilegnelse, vidensdeling og vidensskabelse. Arbejds- og forskningsmåden er partnerskaber med private og offentlige virksomheder....

  14. Virtual labs in Leonardo da Vinci

    Directory of Open Access Journals (Sweden)

    Stanislaw Nagy

    2006-10-01

    Full Text Available This paper discusses the problem of virtual lab capabilities in the e-learning. Using combination of web conferencing and "virtual labs" capabilities, a new quality distance learning teaching is now in preparation and will be included in the course teaching to produce interactive, online simulations for the natural gas engineering studies. The activities are designed to enhance the existing curriculum and to include online assessments. A special care is devoted to the security problem between a server and a client computer. Several examples of the virtual labs related to the PVT thermodynamics, fluid flow, the natural gas well-testing, and thev gas network flow are prepared and tested. A major challenge for the 'CELGAS' system is in managing the delicate balance between the student collaboration and the isolation. Students may be encouraged to collaborate and work with each other, simulating their exploration of the lab material.

  15. Airborne Low-Frequency Sonar (ALFS) Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The ALFS lab is dedicated to support acoustic data analysis and processing software support to the AN/AQS-22 dipping sonar system. It includes stand-alone Software...

  16. Developing an Advanced Lab course from scratch

    Science.gov (United States)

    Michalak, Rudi

    2012-10-01

    A few years ago the Alpha group in APS organized faculty with interests in advanced lab courses in physics. At the University of Wyoming, we re-launched an advanced lab course after doing more than 15 years without one. Our majors had to take an electronic course in the Electrical Engineering department to get familiar with any kind of electronic equipment. Now we are in the fourth teaching session of the advanced Modern Physics lab and we will expand the course into a two-term course beginning spring 2013. Forty-five majors have gone through our labs, We developed an oral exam tradition, which is now beginning to lend our department upper level outcome assessment credibility for campus wide assessment.

  17. Mammography Facilities

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mammography Facility Database is updated periodically based on information received from the four FDA-approved accreditation bodies: the American College of...

  18. Health Facilities

    Science.gov (United States)

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, such as birthing centers and psychiatric care centers. When you ...

  19. Canyon Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — B Plant, T Plant, U Plant, PUREX, and REDOX (see their links) are the five facilities at Hanford where the original objective was plutonium removal from the uranium...

  20. Euronet Lab : a Cloud Based Laboratory Environment

    OpenAIRE

    Correia, Raúl Cordeiro; Fonseca, José Manuel; Donnellan, Andrew

    2012-01-01

    A large number of virtual and remote labs connected to the internet is already available nowadays. However, they usually are isolated and independent systems, unable to cooperate and complement each other. This lack of interconnection and interoperability leads, consequently, to the duplication of efforts in order to develop what could be easily shared and reused. Therefore, the integration of different platforms can speed up the development of virtual labs and downsize the barriers of usi...

  1. Learning Parallel Computations with ParaLab

    OpenAIRE

    Kozinov, E.; Shtanyuk, A.

    2015-01-01

    In this paper, we present the ParaLab teachware system, which can be used for learning the parallel computation methods. ParaLab provides the tools for simulating the multiprocessor computational systems with various network topologies, for carrying out the computational experiments in the simulation mode, and for evaluating the efficiency of the parallel computation methods. The visual presentation of the parallel computations taking place in the computational experiments is the key feature ...

  2. Quality management system at K-Lab

    Energy Technology Data Exchange (ETDEWEB)

    Bosio, J. (K-Lab (NO))

    1990-01-01

    This report describes how a Quality Management System has been organised at Kaarstoe metering and technology laboratory (K-Lab). Implementation of new technologies will become easier to carry through if they have been developed within a Quality Management System according to existing international standards. K-Lab has applied for accreditation to the Norwegian Calibration Service which among other requirements requests a proper Quality Management System. 2 refs., 4 figs.

  3. German lab wins linear collider contest

    CERN Multimedia

    Cartlidge, Edwin

    2004-01-01

    Particle physicists have chosen to base the proposed International Linear Collider on superconducting technology developed by an international collaboration centred on the DESY lab in Germany. The superconducting approach was chosen by an internatinal panel ahead of a rival technology developed at Stanford in the US and the KEK lab in Japan. The eagerly-awaited decision was announced at the International Conference on High Energy Physics in Beijing today (½ page)

  4. Fifteen years experience: Egyptian metabolic lab

    Directory of Open Access Journals (Sweden)

    Ekram M. Fateen

    2014-10-01

    Conclusion: This study illustrates the experience of the reference metabolic lab in Egypt over 15 years. The lab began metabolic disorder screening by using simple diagnostic techniques like thin layer chromatography and colored tests in urine which by time updated and upgraded the methods to diagnose a wide range of disorders. This study shows the most common diagnosed inherited inborn errors of metabolism among the Egyptian population.

  5. mQoL smart lab

    DEFF Research Database (Denmark)

    De Masi, Alexandre; Ciman, Matteo; Gustarini, Mattia

    2016-01-01

    serve quality research in all of them. In this paper, we present own "mQoL Smart Lab" for interdisciplinary research efforts on individuals' "Quality of Life" improvement. We present an evolution of our current in-house living lab platform enabling continuous, pervasive data collection from individuals......' smartphones. We discuss opportunities for mQoL stemming from developments in machine learning and big data for advanced data analytics in different disciplines, better meeting the requirements put on the platform....

  6. S'Cool LAB Summer CAMP 2017

    CERN Multimedia

    Woithe, Julia

    2017-01-01

    The S’Cool LAB Summer CAMP is an opportunity for high-school students (aged 16-19) from all around the world to spend 2 weeks exploring the fascinating world of particle physics. The 24 selected participants spend their summer at S’Cool LAB, CERN’s hands-on particle physics learning laboratory, for an epic programme of lectures and tutorials, team research projects, visits of CERN’s research installations, and social activities.

  7. Artists-in-Labs: Processes of Inquiry

    Science.gov (United States)

    Scott, Jill

    This book verifies the need for the arts and the sciences to work together in order to develop more creative and conceptual approaches to innovation and presentation. By blending ethnographical case studies, scientific viewpoints and critical essays, the focus of this research inquiry is the lab context. For scientists, the lab context is one of the most important educational experiences. For contemporary artists, laboratories are inspiring spaces to investigate, share know-how transfer and search for new collaboration potentials.

  8. Complex developmental abnormality of the atlas mimicking a Jefferson fracture: Diagnostic tips and tricks.

    Science.gov (United States)

    Ganau, Mario; Spinelli, Roberto; Tacconi, Leonello

    2013-01-01

    Congenital atlas abnormalities are rare - often asymptomatic - findings, not requiring any specific treatment. They are frequently discovered, by chance, in trauma patients, in the course of the radiological work flow at the Emergency Department. In these cases they may represent a diagnostic challenge, since physicians are expected to differentiate them from complex C1 fractures (isolated Jefferson's fractures or associated with Anderson and d'Alonzo's fractures) requiring surgical treatment. Although difficult to identify, a correct diagnosis is mandatory in order to optimize the patient's treatment. In this article we report a case of congenital atlas abnormality, and discuss the tips and tricks to make a correct differential diagnosis through the most appropriate clinical and radiological work flow.

  9. Spatial analysis of geologic and hydrologic features relating to sinkhole occurrence in Jefferson County, West Virginia

    Science.gov (United States)

    Doctor, Daniel H.; Doctor, Katarina Z.

    2012-01-01

    In this study the influence of geologic features related to sinkhole susceptibility was analyzed and the results were mapped for the region of Jefferson County, West Virginia. A model of sinkhole density was constructed using Geographically Weighted Regression (GWR) that estimated the relations among discrete geologic or hydrologic features and sinkhole density at each sinkhole location. Nine conditioning factors on sinkhole occurrence were considered as independent variables: distance to faults, fold axes, fracture traces oriented along bedrock strike, fracture traces oriented across bedrock strike, ponds, streams, springs, quarries, and interpolated depth to groundwater. GWR model parameter estimates for each variable were evaluated for significance, and the results were mapped. The results provide visual insight into the influence of these variables on localized sinkhole density, and can be used to provide an objective means of weighting conditioning factors in models of sinkhole susceptibility or hazard risk.

  10. Experimental Investigation of Multibunch, Multipass Beam Breakup in the Jefferson Laboratory Free Electron Laser Upgrade Driver

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Tennant; David Douglas; Kevin Jordan; Nikolitsa Merminga; Eduard Pozdeyev; Haipeng Wang; Todd I. Smith; Stefan Simrock; Ivan Bazarov; Georg Hoffstaetter

    2006-03-24

    In recirculating accelerators, and in particular energy recovery linacs (ERLs), the maximum current can be limited by multipass, multibunch beam breakup (BBU), which occurs when the electron beam interacts with the higher-order modes (HOMs) of an accelerating cavity on the accelerating pass and again on the energy recovering pass. This effect is of particular concern in the design of modern high average current energy recovery accelerators utilizing superconducting RF technology. Experimental characterization and observations of the instability at the Jefferson Laboratory 10 kW Free Electron Laser (FEL) are presented. Measurements of the threshold current for the instability are made under a variety of beam conditions and compared to the predictions of several BBU simulation codes. This represents the first time in which the codes have been experimentally benchmarked. With BBU posing a threat to high current beam operation in the FEL Driver, several suppression schemes were developed.

  11. Supplemental Guidelines, JCE Lab-Experiment Manuscripts

    Science.gov (United States)

    2000-05-01

    These guidelines supplement the Guide to Submissions (published in J. Chem. Educ. 2000, 77, 29-30 and at http://jchemed.chem.wisc.edu/Journal/Authors/ Guidelines.html or available on request from the JCE editorial office). Manuscripts that describe laboratory experiments should first follow the Guide to Submissions and then apply these Supplemental Guidelines. Rationale JCE receives many submissions that describe laboratory experiments. The broad range of experiments readers can find each month is one of our most important features. These supplemental guidelines have been designed to make published laboratory experiments as useful as possible to readers. They are based on four fundamental ideas: peer review of a lab-experiment manuscript should be based to a large degree on the written and technology-based materials used by students in the laboratory, not just on a description of those materials; JCE should print the information a reader needs to decide whether to try to use the experiment; this includes information about possible safety hazards; readers who decide to use a lab should be able to adapt it to their circumstances quickly and easily; detailed information, including student materials, should be available to adopters of an experiment in a format that is modifiable and easily adapted for use by faculty, students, and support staff. To support these goals we require that a manuscript that describes a laboratory experiment must consist of a Lab Summary and Lab Documentation. (Each of these is described in detail below.) If, after peer review, a lab-experiment manuscript is published, only the Lab Summary will be printed in JCE. The Abstract, the Lab Summary, and all Lab Documentation will be published via JCE Online. Lab Documentation is placed on the Web as PDF files that can be displayed and printed by Acrobat Reader, and as Word or Word Perfect files that can be edited by those who adopt a lab. Those without Web access can request printed copies of all

  12. LabVIEW Support at CERN

    CERN Multimedia

    HR Department

    2010-01-01

    Since the beginning of 2009, due to the CERN restructuring, LabVIEW support moved from the IT to the EN department, joining the Industrial Controls and Electronics Group (ICE). LabVIEW support has been merged with the Measurement, Test and Analysis (MTA) section which, using LabVIEW, has developed most of the measurement systems to qualify the LHC magnets and components over the past 10 years. The post mortem analysis for the LHC hardware commissioning has also been fully implemented using LabVIEW, customised into a framework, called RADE, for CERN needs. The MTA section has started with a proactive approach sharing its tools and experience with the CERN LabVIEW community. Its framework (RADE) for CERN integrated application development has been made available to the users. Courses on RADE have been integrated into the standard National Instruments training program at CERN. RADE and LabVIEW support were merged together in 2010 on a single email address:labview.support@cern.ch For more information please...

  13. The Habitation Lab: Using a Design Approach to Foster Innovation for Sustainable Living

    Directory of Open Access Journals (Sweden)

    Paula Femenías

    2013-11-01

    Full Text Available This article describes a first step towards a strategy for using living labs as a means to foster innovation and develop new concepts of sustainable living from an architectural point of view. The overall aim is to enable truly sustainable living through radically reduced energy and resource use thus addressing both environmental and social aspects of sustainability. Earlier research has shown that contemporary housing developments, including those with a sustainable profile, do not profoundly question modern lifestyles and consumption, which is a necessity to overcome limitations of a technological focus on environmental efficiency in construction. Thus, we see an opportunity for the discipline of architecture to engage in current investments in living lab facilities in order to push innovation in the field of sustainable housing. We introduce the concept of a "Habitation Lab", which will provide an arena for radical and high-risk design experimentation between users, building-sector actors, and academia, and we describe a case study of a planned Habitation Lab within a living lab facility where traditional solutions for daily living and habitation are questioned and new architectural innovations are explored and evaluated. The idea of using experimental activities in the field of housing is not new, and we argue that new investments should build on earlier experiences to avoid perpetuating misconceptions and repeating past failures. Furthermore, to ensure the dissemination and uptake of results, the design of the Habitation Lab should consider the innovation and learning trajectories of the building sector. We propose a transdisciplinary setting to provide a neutral arena for value creation and to increase the distribution of experiences.

  14. Cultural resource applications for a GIS: Stone conservation at Jefferson and Lincoln Memorials

    Science.gov (United States)

    Joly, Kyle; Donald, Tony; Comer, Douglas

    1998-01-01

    Geographical information systems are rapidly becoming essential tools for land management. They provide a way to link landscape features to the wide variety of information that managers must consider when formulating plans for a site, designing site improvement and restoration projects, determining maintenance projects and protocols, and even interpreting the site. At the same time, they can be valuable research tools.Standing structures offer a different sort of geography, even though a humanly contrived one. Therefore, the capability of a geographical information system (GIS) to link geographical units to the information pertinent to the site and resource management can be employed in the management of standing structures. This was the idea that inspired the use of a GIS software, ArcView, to link computer aided design CAD) drawings of the Jefferson and Lincoln Memorials with inventories of the stones in the memorials. Both the CAD drawings and the inventory were in existence; what remained to be done was to modify the CAD files and place the inventory in an appropriately designed computerized database, and then to link the two in a GIS project. This work was carried out at the NPS Denver Service Center, Resource Planning Group, Applied Archaeology Center (DSC-RPG-AAC), in Silver Spring, Maryland, with the assistance of US/ICOMOS summer interns Katja Marasovic (Croatia) and Rastislav Gromnica (Slovakia), under the supervision of AAC office manager Douglas Comer. Project guidance was provided by Tony Donald, the Denver Service Center (DSC) project architect for the restoration of the Jefferson and Lincoln Memorials, and GIS consultation services by Kyle Joly.

  15. Finite element model of the Jefferson fracture: comparison with a cadaver model.

    Science.gov (United States)

    Bozkus, H; Karakas, A; Hanci, M; Uzan, M; Bozdag, E; Sarioglu, A C

    2001-06-01

    This study tries to explain the reason why the Jefferson fracture is a burst fracture, using two different biomechanical models: a finite element model (FEM) and a cadaver model used to determine strain distribution in C1 during axial static compressive loading. For the FEM model, a three-dimensional model of C1 was obtained from a 29-year-old healthy human, using axial CT scans with intervals of 1.0 mm. The mesh model was composed of 8200 four-noded isoparametric tetrahedrons and 37,400 solid elements. The material properties of the cortical bone of the vertebra were assessed according to the previous literature and were assumed to be linear isotropic and homogeneous for all elements. Axial static compressive loads were applied at between 200 and 1200 N. The strain and stress (maximum shear and von Mises) analyses were determined on the clinically relevant fracture lines of anterior and posterior arches. The results of the FEM were compared with a cadaver model. The latter comprised the C1 bone of a cadaver placed in a methylmethacrylate foam. Axial static compressive loads between 200 and 1200 N were applied by an electrohydraulic testing machine. Strain values were measured using strain gauges, which were cemented to the bone where the clinically relevant fracture lines of the anterior and posterior arches were located. As a result, compressive strain was observed on the outer surface of the anterior arch and inferior surface of the posterior arch. In addition, there was tensile strain on the inner surface of the anterior arch and superior surface of the posterior arch. The strain values obtained from the two experimental models showed similar trends. The FEM analysis revealed that maximum strain changes occurred where the maximum shear and von Mises stresses were concentrated. The changes in the C1 strain and stress values during static axial loading biomechanically prove that the Jefferson fracture is a burst fracture.

  16. Comparison of occipitocervical and atlantoaxial fusion in treatment of unstable Jefferson fractures

    Directory of Open Access Journals (Sweden)

    Yong Hu

    2017-01-01

    Full Text Available Background: Controversy exists regarding the management of unstable Jefferson fractures, with some surgeons performing reduction and immobilization of the patient in a halo vest and others performing open reduction and internal fixation. This study compares the clinical and radiological outcome parameters between posterior atlantoaxial fusion (AAF and occipitocervical fusion (OCF constructs in the treatment of the unstable atlas fracture. Materials and Methods: 68 consecutive patients with unstable Jefferson fractures treated by AAF or OCF between October 2004 and March 2011 were included in this retrospective evaluation from institutional databases. The authors reviewed medical records and original images. The patients were divided into two surgical groups treated with either AAF ( n = 48, F/M 30:18 and OCF ( n = 20, F/M 13:7 fusion. Blood loss, operative time, Japanese Orthopaedic Association (JOA score, visual analog scale (VAS score, atlanto-dens interval, lateral mass displacement, complications, and the bone fusion rates were recorded. Results: Five patients with incomplete paralysis (7.4% demonstrated postoperative improvement by more than 1 grade on the American Spinal Injury Association impairment scale. The JOA score of the AAF group improved from 12.5 ± 3.6 preoperatively to 15.7 ± 2.3 postoperatively, while the JOA score of the OCF group improved from 11.2 ± 3.3 preoperatively to 14.8 ± 4.2 postoperatively. The VAS score of AAF group decreased from 4.8 ± 1.5 preoperatively to 1.0 ± 0.4 postoperatively, the VAS score of the OCF group decreased from 5.4 ± 2.2 preoperatively to 1.3 ± 0.9 postoperatively. Conclusions: The OCF or AAF combined with short-term external immobilization can establish the upper cervical stability and prevent further spinal cord injury and nerve function damage.

  17. Comparison of occipitocervical and atlantoaxial fusion in treatment of unstable Jefferson fractures

    Science.gov (United States)

    Hu, Yong; Yuan, Zhen-shan; Kepler, Christopher K; Dong, Wei-xin; Sun, Xiao-yang; Zhang, Jiao

    2017-01-01

    Background: Controversy exists regarding the management of unstable Jefferson fractures, with some surgeons performing reduction and immobilization of the patient in a halo vest and others performing open reduction and internal fixation. This study compares the clinical and radiological outcome parameters between posterior atlantoaxial fusion (AAF) and occipitocervical fusion (OCF) constructs in the treatment of the unstable atlas fracture. Materials and Methods: 68 consecutive patients with unstable Jefferson fractures treated by AAF or OCF between October 2004 and March 2011 were included in this retrospective evaluation from institutional databases. The authors reviewed medical records and original images. The patients were divided into two surgical groups treated with either AAF (n = 48, F/M 30:18) and OCF (n = 20, F/M 13:7) fusion. Blood loss, operative time, Japanese Orthopaedic Association (JOA) score, visual analog scale (VAS) score, atlanto-dens interval, lateral mass displacement, complications, and the bone fusion rates were recorded. Results: Five patients with incomplete paralysis (7.4%) demonstrated postoperative improvement by more than 1 grade on the American Spinal Injury Association impairment scale. The JOA score of the AAF group improved from 12.5 ± 3.6 preoperatively to 15.7 ± 2.3 postoperatively, while the JOA score of the OCF group improved from 11.2 ± 3.3 preoperatively to 14.8 ± 4.2 postoperatively. The VAS score of AAF group decreased from 4.8 ± 1.5 preoperatively to 1.0 ± 0.4 postoperatively, the VAS score of the OCF group decreased from 5.4 ± 2.2 preoperatively to 1.3 ± 0.9 postoperatively. Conclusions: The OCF or AAF combined with short-term external immobilization can establish the upper cervical stability and prevent further spinal cord injury and nerve function damage. PMID:28216748

  18. Rust Contamination from Water Leaks in the Cosmic Dust Lab and Lunar and Meteorite Thin Sections Labs at Johnson Space Center

    Science.gov (United States)

    Kent, J. J.; Berger, E. L.; Fries, M. D.; Bastien, R.; McCubbin, F. M.; Pace, L.; Righter, K.; Sutter, B.; Zeigler, R. A.; Zolensky, M.

    2017-01-01

    On the early morning of September 15th, 2016, on the first floor of Building 31 at NASA-Johnson Space Center, the hose from a water chiller ruptured and began spraying water onto the floor. The water had been circulating though old metal pipes, and the leaked water contained rust-colored particulates. The water flooded much of the western wing of the building's ground floor before the leak was stopped, and it left behind a residue of rust across the floor, most notably in the Apollo and Meteorite Thin Section Labs and Sample Preparation Lab. No samples were damaged in the event, and the affected facilities are in the process of remediation. At the beginning of 2016, a separate leak occurred in the Cosmic Dust Lab, located in the same building. In that lab, a water leak occurred at the bottom of the sink used to clean the lab's tools and containers with ultra-pure water. Over years of use, the ultra-pure water eroded the metal sink piping and leaked water onto the inside of the lab's flow bench. This water also left behind a film of rusty material. The material was cleaned up and the metal piping was replaced with PVC pipe and sealed with Teflon plumber's tape. Samples of the rust detritus were collected from both incidents. These samples were imaged and analyzed to determine their chemical and mineralogical compositions. The purpose of these analyses is to document the nature of the detritus for future reference in the unlikely event that these materials occur as contaminants in the Cosmic Dust samples or Apollo or Meteorite thin sections.

  19. The NOAO data lab: science-driven development

    Science.gov (United States)

    Fitzpatrick, Michael J.; Graham, Matthew J.; Mighell, Kenneth J.; Olsen, Knut; Norris, Patrick; Ridgway, Stephen T.; Stobie, Elizabeth B.; Bolton, Adam S.; Saha, Abhijit; Huang, Lijuan W.

    2016-08-01

    The NOAO Data Lab aims to provide infrastructure to maximize community use of the high-value survey datasets now being collected with NOAO telescopes and instruments. As a science exploration framework, the Data Lab allow users to access and search databases containing large (i.e. terabyte-scale) catalogs, visualize, analyze, and store the results of these searches, combine search results with data from other archives or facilities, and share these results with collaborators using a shared workspace and/or data publication service. In the process of implementing the needed tools and services, specific science cases are used to guide development of the system framework and tools. The result is a Year-1 capability demonstration that (fully or partially) implements each of the major architecture components in the context of a real-world science use-case. In this paper, we discuss how this model of science-driven development helped us to build a fully functional system capable of executing the chosen science case, and how we plan to scale this system to support general use in the next phase of the project.

  20. An Algebra-Based Introductory Computational Neuroscience Course with Lab.

    Science.gov (United States)

    Fink, Christian G

    2017-01-01

    A course in computational neuroscience has been developed at Ohio Wesleyan University which requires no previous experience with calculus or computer programming, and which exposes students to theoretical models of neural information processing and techniques for analyzing neural data. The exploration of theoretical models of neural processes is conducted in the classroom portion of the course, while data analysis techniques are covered in lab. Students learn to program in MATLAB and are offered the opportunity to conclude the course with a final project in which they explore a topic of their choice within computational neuroscience. Results from a questionnaire administered at the beginning and end of the course indicate significant gains in student facility with core concepts in computational neuroscience, as well as with analysis techniques applied to neural data.

  1. Assessing Usage and Maximizing Finance Lab Impact: A Case Exploration

    Science.gov (United States)

    Noguera, Magdy; Budden, Michael Craig; Silva, Alberto

    2011-01-01

    This paper reports the results of a survey conducted to assess students' usage and perceptions of a finance lab. Finance labs differ from simple computer labs as they typically contain data boards, streaming market quotes, terminals and software that allow for real-time financial analyses. Despite the fact that such labs represent significant and…

  2. RoboLab and virtual environments

    Science.gov (United States)

    Giarratano, Joseph C.

    1994-01-01

    A useful adjunct to the manned space station would be a self-contained free-flying laboratory (RoboLab). This laboratory would have a robot operated under telepresence from the space station or ground. Long duration experiments aboard RoboLab could be performed by astronauts or scientists using telepresence to operate equipment and perform experiments. Operating the lab by telepresence would eliminate the need for life support such as food, water and air. The robot would be capable of motion in three dimensions, have binocular vision TV cameras, and two arms with manipulators to simulate hands. The robot would move along a two-dimensional grid and have a rotating, telescoping periscope section for extension in the third dimension. The remote operator would wear a virtual reality type headset to allow the superposition of computer displays over the real-time video of the lab. The operators would wear exoskeleton type arms to facilitate the movement of objects and equipment operation. The combination of video displays, motion, and the exoskeleton arms would provide a high degree of telepresence, especially for novice users such as scientists doing short-term experiments. The RoboLab could be resupplied and samples removed on other space shuttle flights. A self-contained RoboLab module would be designed to fit within the cargo bay of the space shuttle. Different modules could be designed for specific applications, i.e., crystal-growing, medicine, life sciences, chemistry, etc. This paper describes a RoboLab simulation using virtual reality (VR). VR provides an ideal simulation of telepresence before the actual robot and laboratory modules are constructed. The easy simulation of different telepresence designs will produce a highly optimum design before construction rather than the more expensive and time consuming hardware changes afterwards.

  3. Committee on Veterinary Medicine at the Society for Medical Education: Skills Labs in Veterinary Medicine - a brief overview.

    Science.gov (United States)

    Dilly, Marc; Gruber, Christian

    2016-01-01

    Since 2012, skills labs have been set up to teach practical skills at veterinary training facilities in the German-speaking world. In addition to didactic considerations, ethical points of view in terms of animal protection form the basis of the increasing significance of skills labs in veterinary medicine. Not least because of the quality standards in veterinary medicine training which apply across Europe, the link between veterinary medicine training facilities is particularly significant when it comes to the setting up and development of skills labs. The Committee on Veterinary Medicine is therefore not only interested in exchange and cooperation within veterinary medicine, but also sees an opportunity for mutual gain in the link with the Society for Medical Education Committee "Practical Skills".

  4. The Design:Lab as platform in participatory design research

    DEFF Research Database (Denmark)

    Binder, Thomas; Brandt, Eva

    2008-01-01

    The notion of laboratory or simply 'lab' has become popular in recent years in areas outside science and technology development. Learning Labs, Innovation Labs, Usability Labs, Media and Communication Labs and even Art Labs designate institutions or fora dedicated to change and experimentation....... Influenced by these currents we use the expression 'Design:Lab' as a shorthand description of open collaborations between many stakeholders sharing a mutual interest in design research in a particular field. Many have reacted to the term 'laboratory' or 'lab' as foreign and awkward to design, and we as well...... as others have frequently used other metaphors like workshop, studio or atelier in design research. In this article we will argue that the laboratory metaphor is particularly suitable and useful for the design:lab, and we will give examples of how we have worked with the design:lab as a platform...

  5. Broadcasting photonic lab on a chip concept through a low cost manufacturing approach.

    Science.gov (United States)

    Rodríguez-Ruiz, Isaac; Teychené, Sébastien; Van Pham, Nhat; Radajewski, Dimitri; Lamadie, Fabrice; Llobera, Andreu; Charton, Sophie

    2017-08-01

    A low cost fabrication process for photonic lab on a chip systems is here proposed. For the implementation of the masters suitable for cast molding fabrication, an inexpensive dry film photoresist, patternable using standard laboratory equipment, is benchmarked against standardized SU-8 masters obtained using UV lithography and systems manufacture in clean room facilities. Results show adequate system fabrication and a comparable performance of the photonic structures for absorbance/extinction measurements. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A Lab-Scale CELSS

    Science.gov (United States)

    Flynn, Mark E.; Finn, Cory K.; Srinivasan, Venkatesh; Sun, Sidney; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    It has been shown that prohibitive resupply costs for extended-duration manned space flight missions will demand that a high degree of recycling and in situ food production be implemented. A prime candidate for in situ food production is the growth of higher level plants. Research in the area of plant physiology is currently underway at many institutions. This research is aimed at the characterization and optimization of gas exchange, transpiration and food production of higher plants in order to support human life in space. However, there are a number of unresolved issues involved in making plant chambers an integral part of a closed life support system. For example, issues pertaining to the integration of tightly coupled, non-linear systems with small buffer volumes will need to be better understood in order to ensure successful long term operation of a Controlled Ecological Life Support System (CELSS). The Advanced Life Support Division at NASA Ames Research Center has embarked on a program to explore some of these issues and demonstrate the feasibility of the CELSS concept. The primary goal of the Laboratory Scale CELSS Project is to develop a fully-functioning integrated CELSS on a laboratory scale in order to provide insight, knowledge and experience applicable to the design of human-rated CELSS facilities. Phase I of this program involves the integration of a plant chamber with a solid waste processor. This paper will describe the requirements, design and some experimental results from Phase I of the Laboratory Scale CELSS Program.

  7. Do Online Labs Work? An Assessment of an Online Lab on Cell Division

    Science.gov (United States)

    Gilman, Sharon L.

    2006-01-01

    Some studies show students successfully learning science through online courses. This study compared students doing an online and in-class lab exercise on cell division. Online students performed slightly but significantly better on a follow-up content quiz, however, about half those expressed a strong preference for in-class lab work.

  8. eLabEL: technology-supported living labs in primary care.

    NARCIS (Netherlands)

    Vermeulen, J.; Huygens, M.W.J.; Swinkels, I.; Oude Nijeweme-d'Hollosy, W.; Velsen, L. van; Jansen, Y.; Witte, L.P. de

    2015-01-01

    Abstract— Telecare technologies and eHealth applications can support patients and care professionals. However, these technologies are currently not being implemented in primary care. The eLabEL project aims to contribute to a solution for this problem by establishing Living Labs in which patients, h

  9. eLabEL: technology-supported living labs in primary care

    NARCIS (Netherlands)

    Vermeulen, Joan; Huygens, Martine; Witte, de Luc P.; Swinkels, Ilse; Oude Nijeweme-d'Hollosy, Wendy; Velsen, van Lex; Jansen, Yvonne

    2015-01-01

    Telecare technologies and eHealth applications can support patients and care professionals. However, these technologies are currently not being implemented in primary care. The eLabEL project aims to contribute to a solution for this problem by establishing Living Labs in which patients, healthcare

  10. Are Virtual Labs as Effective as Hands-on Labs for Undergraduate Physics? A Comparative Study at Two Major Universities

    Science.gov (United States)

    Darrah, Marjorie; Humbert, Roxann; Finstein, Jeanne; Simon, Marllin; Hopkins, John

    2014-01-01

    Most physics professors would agree that the lab experiences students have in introductory physics are central to the learning of the concepts in the course. It is also true that these physics labs require time and money for upkeep, not to mention the hours spent setting up and taking down labs. Virtual physics lab experiences can provide an…

  11. Boosting Big National Lab Data

    Energy Technology Data Exchange (ETDEWEB)

    Kleese van Dam, Kerstin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-02-21

    tissue sample and the gradual effect is observed as more of the substance is injected, providing better insights into the natural processes that are occurring, as well as result driven sampling adjustment to capture particularly interesting features --- as they emerge. The Department of Energy’s Pacific Northwest National Laboratory (PNNL) is recognized for it’s expertise in the development of new measurement techniques and their application to challenges of national importance. So it was obvious to us to address the need for in-situ analysis of large scale experimental data. We have a wide range of experimental instruments on site, in facilities such as DOE’s national scientific user facility, the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). Commonly, scientists would create an individual analysis pipeline for each of those instruments; but even the same type of instrument would not necessarily share the same analysis tools. With the rapid increase of data volumes and rates we were facing two key challenges: how to bring a wider set of capabilities to bear to achieve in-situ analysis, and how to do so across a wide range of heterogeneous instruments at affordable costs and in a reasonable timeframe. We decided to take an unconventional approach to the problem, rather than developing customized, one-off solutions for specific instruments we wanted to explore if a more common solution could be found that would go beyond shared, basic infrastructures such as data movement and workflow engines.

  12. Asian Facilities

    Science.gov (United States)

    Nakahata, M.

    2011-04-01

    Asian underground facilities are reviewed. The YangYang underground Laboratory in Korea and the Kamioka observatory in Japan are operational and several astrophysical experiments are running. Indian Neutrino Observatory(INO) and China JinPing Underground Laboratory (CJPL) are under construction and underground experiments are being prepared. Current activities and future prospects at those underground sites are described.

  13. Collaborative Creation of a Lab Rubric

    Directory of Open Access Journals (Sweden)

    Carrie Miller-DeBoer

    2011-03-01

    Full Text Available While there are a number of tested rubrics in circulation, our task was to intervene in a particular situation: the lead professor was concerned because her graduate teaching assistants held negative views about student performance on the lab reports. GTAs found poor products frustrating, and admitted that their grading was thus superficial and provided no feedback to students. Specifically, GTAs did not feel equipped to evaluate writing and, as a result, simply graded on steps completed in the lab process.We have a rubric now for an Introduction to Zoology lab that could be submitted here as a pretty darn good rubric for other instructors to use. But the intent of our “Tips and Tools” is to describe the actual creation of the rubric. We believe the active “real time” development of the rubric carried as much or more value than the finished product.

  14. eComLab: remote laboratory platform

    Science.gov (United States)

    Pontual, Murillo; Melkonyan, Arsen; Gampe, Andreas; Huang, Grant; Akopian, David

    2011-06-01

    Hands-on experiments with electronic devices have been recognized as an important element in the field of engineering to help students get familiar with theoretical concepts and practical tasks. The continuing increase the student number, costly laboratory equipment, and laboratory maintenance slow down the physical lab efficiency. As information technology continues to evolve, the Internet has become a common media in modern education. Internetbased remote laboratory can solve a lot of restrictions, providing hands-on training as they can be flexible in time and the same equipment can be shared between different students. This article describes an on-going remote hands-on experimental radio modulation, network and mobile applications lab project "eComLab". Its main component is a remote laboratory infrastructure and server management system featuring various online media familiar with modern students, such as chat rooms and video streaming.

  15. A Moodle extension to book online labs

    Directory of Open Access Journals (Sweden)

    Antonio C. Cardoso

    2005-11-01

    Full Text Available The social constructivist philosophy of Moodle makes it an excellent choice to deliver e-learning contents that require collaborative activities, such as those that are associated with online labs. In the case of online labs that enable web access to real devices (remote workbenches, access time should be reserved beforehand. A booking tool will avoid access conflicts and at the same time will help the students to organise their time and activities. This paper presents a Moodle extension that was developed within the Leonardo da Vinci MARVEL project, with the objective of meeting this requirement. The booking tool presented enables resource sharing in general and may be used to organise access to any type of scarce resources, such as to online labs and to the videoconferencing rooms that are needed to support collaborative activities.

  16. Learner performance and attitudes in traditional versus simulated lab experiences

    Science.gov (United States)

    Pyatt, Kevin A.

    The expository laboratory, a type of physical laboratory that has prescribed outcomes, was initially designed to address learning environments and laboratory environments of the 20th century. Evidence suggests that it has lost its instructional value. Emerging technologies such as simulations have a multitude of instructional benefits which can serve as robust replacements for the expository lab. There is evidence that the expository lab is being redefined and may need to be redesigned for the online world. These changes have not been realized, however, due to the current accreditation process which does not recognize the simulated lab as a legitimate alternative to expository labs. This study investigated whether simulated laboratories can achieve the goals of contemporary lab instruction as successfully as the expository lab paradigm. This study addressed the differences and similarities in student attitudes toward using a simulated lab and an expository lab. The methodology used in this study was experimental and quantitative in nature. Two experiments were carried out, each of which comprised the completion of a lab activity by participants who were assigned to a control group (expository lab) or an experimental group (simulated lab). This study found that there were significant differences between the assessment means of the simulated lab groups and the expository lab groups. The assessment means for the simulated lab groups were significantly higher than the assessment means of the expository lab groups. In terms of learner attitude, it was found that simulated labs were perceived to be more open-ended, easier to use, and easier to generate usable data, than expository labs. Moreover, students preferred using simulated labs over expository labs, and the time to complete simulated lab activities was significantly less than the time to complete expository lab activities. This study showed that the simulated lab can serve as a legitimate alternative to the

  17. Design and Management of a Transgenic Facility

    Institute of Scientific and Technical Information of China (English)

    Bob Springsteen

    2001-01-01

    @@ In 1965, I was given the opportunity to manage a research animal colony. At that time, the animal colony consisted of numerous species, such as primates, dogs, cats, rab bits, guinea pigs, hamsters, rats, mice, and some farm animals as well. Over the years,this menagerie was reduced to mice and rab bits. The animal facility now houses 8 000mice, of which 80% are transgenics. In approximately six years, transgenic mice have become the mainstay of the Berkeley Lab animal facility, and this population continues to grow.

  18. [Semiotic Studies Lab for Patient Care Interactions].

    Science.gov (United States)

    Nunes, Dulce Maria; Portella, Jean Cristtus; Bianchi e Silva, Laura

    2011-12-01

    The aim of this experience report is to present the Semiotic Studies Lab for Patient Care Interactions (Laboratório de Estudos Semióticos nas Interações de Cuidado - LESIC). The lab was set up at the Nursing School of the Federal University of Rio Grande do Sul (UFRGS), Brazil in 2010. It has the purpose of providing didactic and pedagogical updates, based on the Theory developed by the Paris School of Semiotics, that enable the increase of knowledge and interactive/observational skills regarding the nature and mastery of human care.

  19. Using collaborative technologies in remote lab delivery systems for topics in automation

    Science.gov (United States)

    Ashby, Joe E.

    Lab exercises are a pedagogically essential component of engineering and technology education. Distance education remote labs are being developed which enable students to access lab facilities via the Internet. Collaboration, students working in teams, enhances learning activity through the development of communication skills, sharing observations and problem solving. Web meeting communication tools are currently used in remote labs. The problem identified for investigation was that no standards of practice or paradigms exist to guide remote lab designers in the selection of collaboration tools that best support learning achievement. The goal of this work was to add to the body of knowledge involving the selection and use of remote lab collaboration tools. Experimental research was conducted where the participants were randomly assigned to three communication treatments and learning achievement was measured via assessments at the completion of each of six remote lab based lessons. Quantitative instruments used for assessing learning achievement were implemented, along with a survey to correlate user preference with collaboration treatments. A total of 53 undergraduate technology students worked in two-person teams, where each team was assigned one of the treatments, namely (a) text messaging chat, (b) voice chat, or (c) webcam video with voice chat. Each had little experience with the subject matter involving automation, but possessed the necessary technical background. Analysis of the assessment score data included mean and standard deviation, confirmation of the homogeneity of variance, a one-way ANOVA test and post hoc comparisons. The quantitative and qualitative data indicated that text messaging chat negatively impacted learning achievement and that text messaging chat was not preferred. The data also suggested that the subjects were equally divided on preference to voice chat verses webcam video with voice chat. To the end of designing collaborative

  20. Fratura de côndilo occipital associada a fratura de Jefferson e lesão dos nervos cranianos caudais: relato de caso Occipital condyle fracture associated with Jefferson's fracture and injury of lower cranial nerves: case report

    Directory of Open Access Journals (Sweden)

    Asdrubal Falavigna

    2002-12-01

    Full Text Available A fratura de côndilo occipital (FCO é patologia que pode passar despercebida à avaliação médica, não só por sua infrequência (1% como pela variedade de diagnóstico clínico e dificuldade na visualização dessa área ao exame radiológico de rotina. Essa fratura pode vir associada a lesões de nervos cranianos (31%, sendo o hipoglosso o mais comumente envolvido (67%. É rara sua associação com fratura de Jefferson. Relatamos o caso de uma paciente de 58 anos, que desenvolveu FCO, lesão de nervos cranianos caudais e fratura de Jefferson após uma queda. O tratamento preconizado foi tração cervical por seis semanas seguida pelo uso de halo-colete por três meses. Houve consolidação óssea e regressão da lesão nervosa. O objetivo deste relato é alertar para que, uma vez diagnosticada a FCO, está indicada investigação radiológica da transição crânio-cervical pela possibilidade da presença de lesões simultâneas nervosas, de nervos cranianos e ósseas, como por exemplo a fratura de Jefferson. Apesar de suas associações serem raras, devem ter seu diagnóstico conhecido para poder ser manejadas adequadamente.Occipital condyle fracture(OCF is rarely seen and can be missed during medical evaluation due to the variety of clinical presentations and the difficulty to be visualized radiographically. This fracture can be associated with cranial nerves injuries (31%, being the hipoglossal nerve the most frequently involved (67%. We report a 58 years old female patient who presented with OCF, injury of lower cranial nerves and Jefferson's fracture. The patient was treated with cervical traction for six weeks followed by halo immobilization for three months. There was bone consolidation recovery of the nervous injury after this period. This report emphazises the importance of investigating the skull-cervical transition in all patients with cervical trauma. Although Jefferson's fracture is rarely associated with OCF, it should be

  1. Go-Lab Deliverable D1.4 Go-Lab classroom scenarios handbook

    OpenAIRE

    2015-01-01

    This deliverable presents the Go-Lab scenarios handbook. This handbook offers six different scenarios that are meant to help teachers design ILSs. Each scenario represents a specific pedagogical method within the overall Go-Lab inquiry approach. The six Go-Lab inquiry scenarios are labelled as follows:• The basic scenario • The jigsaw approach • Six changing hats • Learning by critiquing • Structured controversy • Find the mistakeIn a later stage, when a suitable modelling tool has been found...

  2. Computational Labs Using VPython Complement Conventional Labs in Online and Regular Physics Classes

    Science.gov (United States)

    Bachlechner, Martina E.

    2009-03-01

    Fairmont State University has developed online physics classes for the high-school teaching certificate based on the text book Matter and Interaction by Chabay and Sherwood. This lead to using computational VPython labs also in the traditional class room setting to complement conventional labs. The computational modeling process has proven to provide an excellent basis for the subsequent conventional lab and allows for a concrete experience of the difference between behavior according to a model and realistic behavior. Observations in the regular class room setting feed back into the development of the online classes.

  3. Improving the Quality of Lab Reports by Using Them as Lab Instructions

    Science.gov (United States)

    Haagen-Schuetzenhoefer, Claudia

    2012-10-01

    Lab exercises are quite popular in teaching science. Teachers have numerous goals in mind when teaching science laboratories. Nevertheless, empirical research draws a heterogeneous picture of the benefits of lab work. Research has shown that it does not necessarily contribute to the enhancement of practical abilities or content knowledge. Lab activities are frequently based on recipe-like, step-by-step instructions ("cookbook style"), which do not motivate students to engage cognitively. Consequently, students put the emphasis on "task completion" or "manipulating equipment."2

  4. MetaLIMS, a simple open-source laboratory information management system for small metagenomic labs.

    Science.gov (United States)

    Heinle, Cassie Elizabeth; Gaultier, Nicolas Paul Eugène; Miller, Dana; Purbojati, Rikky Wenang; Lauro, Federico M

    2017-06-01

    As the cost of sequencing continues to fall, smaller groups increasingly initiate and manage larger sequencing projects and take on the complexity of data storage for high volumes of samples. This has created a need for low-cost laboratory information management systems (LIMS) that contain flexible fields to accommodate the unique nature of individual labs. Many labs do not have a dedicated information technology position, so LIMS must also be easy to setup and maintain with minimal technical proficiency. MetaLIMS is a free and open-source web-based application available via GitHub. The focus of MetaLIMS is to store sample metadata prior to sequencing and analysis pipelines. Initially designed for environmental metagenomics labs, in addition to storing generic sample collection information and DNA/RNA processing information, the user can also add fields specific to the user's lab. MetaLIMS can also produce a basic sequencing submission form compatible with the proprietary Clarity LIMS system used by some sequencing facilities. To help ease the technical burden associated with web deployment, MetaLIMS options the use of commercial web hosting combined with MetaLIMS bash scripts for ease of setup. MetaLIMS overcomes key challenges common in LIMS by giving labs access to a low-cost and open-source tool that also has the flexibility to meet individual lab needs and an option for easy deployment. By making the web application open source and hosting it on GitHub, we hope to encourage the community to build upon MetaLIMS, making it more robust and tailored to the needs of more researchers.

  5. Efficacy of Lactic Acid Bacteria (LAB supplement in management of constipation among nursing home residents

    Directory of Open Access Journals (Sweden)

    Kim Jung

    2010-02-01

    Full Text Available Abstract Background Constipation is a significant problem in the elderly, specifically nursing home and/or extended-care facility residents are reported to suffer from constipation. Lactic acid bacteria (LAB are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as diarrhea and constipation effect. The objective of this study was to investigate the efficacy of this LAB supplement in the management of nursing home residents. Methods Nineteen subjects (8M, 11F; mean age 77.1 ± 10.1 suffering with chronic constipation were assigned to receive LAB (3.0 × 1011 CFU/g twice (to be taken 30 minutes after breakfast and dinner a day for 2 weeks in November 2008. Subjects draw up a questionnaire on defecation habits (frequency of defecation, amount and state of stool, and we collected fecal samples from the subjects both before entering and after ending the trial, to investigate LAB levels and inhibition of harmful enzyme activities. Results were tested with SAS and Student's t-test. Results Analysis of questionnaire showed that there was an increase in the frequency of defecation and amount of stool excreted in defecation habit after LAB treatment, but there were no significant changes. And it also affects the intestinal environment, through significantly increase (p p Conclusion LAB, when added to the standard treatment regimen for nursing home residents with chronic constipation, increased defecation habit such as frequency of defecation, amount and state of stool. So, it may be used as functional probiotics to improve human health by helping to prevent constipation.

  6. LabVIEW A Developer's Guide to Real World Integration

    CERN Document Server

    Fairweather, Ian

    2011-01-01

    LabVIEW(t) has become one of the preeminent platforms for the development of data acquisition and data analysis programs. LabVIEW(t): A Developer's Guide to Real World Integration explains how to integrate LabVIEW into real-life applications. Written by experienced LabVIEW developers and engineers, the book describes how LabVIEW has been pivotal in solving real-world challenges. Each chapter is self-contained and demonstrates the power and simplicity of LabVIEW in various applications, from image processing to solar tracking systems. Many of the chapters explore how exciting new technologies c

  7. Jefferson Teamwork Observation Guide (JTOG): An Instrument to Observe Teamwork Behaviors.

    Science.gov (United States)

    Lyons, Kevin J; Giordano, Carolyn; Speakman, Elizabeth; Smith, Kellie; Horowitz, June A

    2016-01-01

    Interprofessional education (IPE) is becoming an integral part of the education of health professions students. However, teaching students to become successful members of interprofessional teams is complex, and it is important for students to learn the combinations of skills necessary for teams to function effectively. There are many instruments available to measure many features related to IPE. However, these instruments are often too cumbersome to use in an observational situation since they tend to be lengthy and contain many abstract characteristics that are difficult to identify. The Jefferson Teamwork Observation Guide (JTOG) is a short tool that was created for students early in their educational program to observe teams in action with a set of guidelines to help them focus their observation on behaviors indicative of good teamwork. The JTOG was developed over a 2-year period based on student and clinician feedback and the input of experts in IPE. While initially developed as a purely educational tool for prelicensure students, it is becoming clear that it is an easy-to-use instrument that assesses the behavior of clinicians in practice.

  8. Natural radioactivity in geothermal waters, Alhambra Hot Springs and nearby areas, Jefferson County, Montana

    Science.gov (United States)

    Leonard, Robert B.; Janzer, Victor J.

    1978-01-01

    Radioactive hot springs issue from a fault zone in crystalline rock of the Boulder batholith at Alhambra, Jefferson County, in southwestern Montana. The discharge contains high concentrations of radon, and the gross alpha activity and the concentration of adium-226 exceed maximum levels recommended by the Environmental Protection Agency for drinking water. Part of the discharge is diverted for space heating, bathing, and domestic use. The radioactive thermal waters at measured temperatures of about 60°C are of the sodium bicarbonate type and saturated with respect to calcium carbonate. Radium-226 in the rock and on fractured surfaces or coprecipitated with calcium carbonate probably is the principal source of radon that is dissolved in the thermal water and discharged with other gases from some wells and springs. Local surface water and shallow ground water are of the calcium bicarbonate type and exhibit low background activity. The temperature, percent sodium, and radioactivity of mixed waters adjacent to the fault zone increase with depth. Samples from most of the major hot springs in southwestern Montana have been analyzed for gross alpha and beta activity. The high level of radioactivity at Alhambra appears to be related to leaching of radioactive material from siliceous veins by ascending thermal waters and is not a normal characteristic of hot springs issuing from fractured crystalline rock in Montana.

  9. Psychometric properties of a Chinese version of the Jefferson Scale of Empathy-Health Profession Students.

    Science.gov (United States)

    Hsiao, C-Y; Tsai, Y-F; Kao, Y-C

    2013-12-01

    Empathy is central to a therapeutic nurse-patient relationship. Valid and reliable Chinese instruments to assess nursing students' empathy are lacking. The aim of this study was to examine the psychometric properties of a Chinese version of the Jefferson Scale of Empathy-Health Profession Students (C-JSE-HPS) among Taiwanese undergraduate nursing students. A convenience sample of 613 Taiwanese nursing students participated in the study. Content validity, construct validity, internal consistency reliability and test-retest reliability were examined. Content validity was confirmed by a content validity index of 0.89. Factor analysis yielded three components of perspective taking, compassionate care and standing in the patient's shoes, explaining 57.14% of total variance. Women scored higher on empathy than men. Also, students who were enrolled in the 4-year Bachelor of Science in Nursing (BSN) indicated greater empathy degrees than those in the 2-year Registered Nurse to Bachelor of Science in Nursing (RN-to-BSN). Cronbach's alpha coefficient and the test-retest reliability were 0.93 and 0.92 respectively. A C-JSE-HPS demonstrated satisfactory psychometric properties to measure empathy of undergraduate nursing students. Educators may use this instrument to assess empathic qualities among students and design effective empathy-oriented nursing curricula to improve the quality of nursing care.

  10. The Escape Plans Of Mill And Jefferson: Why The Law Must Do More For Workers

    Directory of Open Access Journals (Sweden)

    Stephen Nayak-Young

    2015-05-01

    Full Text Available A familiar trope in both scholarly writing and folk wisdom suggests that so long as workers are free to choose from among some reasonable set of options, the law should avoid regulating these options to the greatest extent possible. In this Article, I examine the similar “escape plans” proposed by John Stuart Mill and Thomas Jefferson as putatively sufficient legal intervention to relieve the plight of wage workers. My focus differs from that of Professor Justin Schwartz, who offers, in a recent paper, a detailed and cogent discussion of the reasons why Mill’s prediction, in particular, for the “probable futurity” of workers turned out to be so inaccurate. Instead, I concentrate on the normative question whether either Mill’s or Jefferson’s proposal could have satisfied the demands of justice if it had come to pass. I conclude that no matter how attractive a given “exit option” might appear to its proponents, the law cannot, merely by making the option available to workers, sidestep its obligation to regulate wage labor and other working relationships and ensure that they are just for all concerned. 

  11. Modeling exposure to depleted uranium in support of decommissioning at Jefferson Proving Ground, Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Ebinger, M.H. [Los Alamos National Lab., NM (United States); Oxenburg, T.P. [Army Test and Evaluation Command, Aberdeen Proving Ground, MD (United States)

    1997-02-01

    Jefferson Proving Ground was used by the US Army Test and Evaluation Command for testing of depleted uranium munitions and closed in 1995 under the Base Realignment and Closure Act. As part of the closure of JPG, assessments of potential adverse health effects to humans and the ecosystem were conducted. This paper integrates recent information obtained from site characterization surveys at JPG with environmental monitoring data collected from 1983 through 1994 during DU testing. Three exposure scenarios were evaluated for potential adverse effects to human health: an occasional use scenario and two farming scenarios. Human exposure was minimal from occasional use, but significant risk were predicted from the farming scenarios when contaminated groundwater was used by site occupants. The human health risk assessments do not consider the significant risk posed by accidents with unexploded ordnance. Exposures of white-tailed deer to DU were also estimated in this study, and exposure rates result in no significant increase in either toxicological or radiological risks. The results of this study indicate that remediation of the DU impact area would not substantially reduce already low risks to humans and the ecosystem, and that managed access to JPG is a reasonable model for future land use options.

  12. Development of Micromegas detectors for the CLAS12 experiment at Jefferson Laboratory

    CERN Document Server

    Charles, Gabriel

    This thesis presents my work performed since 2010 to develop Micromegas detectors for the CLAS12 spectrometer that will be installed in the Hall B of Jefferson Laboratory (USA). The Micromegas are robust, fast and cheap gaseous detectors. Nevertheless, they must be adapted to the specific CLAS12 environment as there are many challenges to face : presence of a strong magnetic field, off-detector frontend electronics, high hadrons rate, necessity to curve the detectors, few space available. My PhD started by beam tests at CERN that allowed to evaluate the spark rate in CLAS12 Micromegas at a few Hertz. An important part of this document is therefore devoted to the study of several innovative methods to minimize the dead time induced by sparks. Thus, I have performed intensive tests on the optimization of the micromesh high voltage filter, with on Micromegas equipped with a GEM foild or on resistive Micromegas. The latter giving excellent results, full scale prototypes, one of which built by a company, have been...

  13. The Jefferson Scale of Physician Empathy: preliminary psychometrics and group comparisons in Italian physicians.

    Science.gov (United States)

    Di Lillo, Mariangela; Cicchetti, Americo; Lo Scalzo, Alessandra; Taroni, Francesco; Hojat, Mohammadreza

    2009-09-01

    To examine the psychometrics of the Jefferson Scale of Physician Empathy (JSPE) among a sample of Italian physicians. The JSPE was translated into Italian using back-translation procedures to ensure the accuracy of the translation. The translated JSPE was administered to 778 physicians at three hospitals in Rome, Italy in 2002. Individual empathy scores were calculated, as well as descriptive statistics at the item and scale level. Group comparisons of empathy scores were also made among men and women, physicians practicing in medical or surgical specialties, physicians working in different hospitals, and at physicians at various levels of career rank. Results are reported for 289 participants who completed the JSPE. Item-total score correlations were all positive and statistically significant. The prominent component of "perspective taking," which is the most important underlying construct of the scale, emerged in the factor analysis of the JSPE and was similar in both Italian and American samples. However, more factors appeared among Italian physicians, indicating that the underlying construct of empathy may be more complex among Italians. Cronbach coefficient alpha was .85. None of the group differences observed among physicians classified by gender, hospital of practice, specialty, or level of career rank reached statistical significance. Findings generally provide support for the construct validity and reliability of the Italian version of the JSPE. Further research is needed to determine whether the lack of statistically significant differences in empathy by gender and specialty is related to cultural peculiarities, the translation of the scale, or sampling.

  14. The Jefferson Scale of Physician Empathy: a preliminary psychometric study and group comparisons in Korean physicians.

    Science.gov (United States)

    Suh, Dae Hun; Hong, Jong Soo; Lee, Dong Hun; Gonnella, Joseph S; Hojat, Mohammadreza

    2012-01-01

    Empathy is an important element of professionalism in medicine. Thus, evaluation and enhancement empathy in physicians is important, regardless of geographical boundaries. This study was designed to evaluate the psychometrics of a Korean version of the Jefferson Scale of Physician Empathy (JSPE) among Korean physicians. The Korean version of JSPE was completed by 229 physicians in Korea. Item-total score correlations were all positive and statistically significant. Cronbach's coefficient alpha was 0.84. The mean score was 98.2 (SD = 12.0), which was lower than that reported for American and Italian physicians. The emerged factor structure of the translated version was somewhat similar to that reported for American physicians, although the order was different. Significant differences in the mean empathy scores were observed between men and women and among physicians in different specialties. Our findings provide evidence in support of reliability and construct validity of the Korean version of JSPE for assessing empathy among Korean physicians. The disparity between Korean physicians and physicians from other countries may be explained by differences in the culture of medical education and medical practice. It suggests an exploration of cross-cultural differences in physician empathy.

  15. Electronics Lab Instructors' Approaches to Troubleshooting Instruction

    Science.gov (United States)

    Dounas-Frazer, Dimitri R.; Lewandowski, H. J.

    2017-01-01

    In this exploratory qualitative study, we describe instructors' self-reported practices for teaching and assessing students' ability to troubleshoot in electronics lab courses. We collected audio data from interviews with 20 electronics instructors from 18 institutions that varied by size, selectivity, and other factors. In addition to describing…

  16. An LED Solar Simulator for Student Labs

    Science.gov (United States)

    González, Manuel I.

    2017-01-01

    Measuring voltage-current and voltage-power curves of a photovoltaic module is a nice experiment for high school and undergraduate students. In labs where real sunlight is not available this experiment requires a solar simulator. A prototype of a simulator using LED lamps has been manufactured and tested, and a comparison with classical halogen…

  17. A Hardware Lab Anywhere At Any Time

    Directory of Open Access Journals (Sweden)

    Tobias Schubert

    2004-12-01

    Full Text Available Scientific technical courses are an important component in any student's education. These courses are usually characterised by the fact that the students execute experiments in special laboratories. This leads to extremely high costs and a reduction in the maximum number of possible participants. From this traditional point of view, it doesn't seem possible to realise the concepts of a Virtual University in the context of sophisticated technical courses since the students must be "on the spot". In this paper we introduce the so-called Mobile Hardware Lab which makes student participation possible at any time and from any place. This lab nevertheless transfers a feeling of being present in a laboratory. This is accomplished with a special Learning Management System in combination with hardware components which correspond to a fully equipped laboratory workstation that are lent out to the students for the duration of the lab. The experiments are performed and solved at home, then handed in electronically. Judging and marking are also both performed electronically. Since 2003 the Mobile Hardware Lab is now offered in a completely web based form.

  18. Surfactant Adsorption: A Revised Physical Chemistry Lab

    Science.gov (United States)

    Bresler, Marc R.; Hagen, John P.

    2008-01-01

    Many physical chemistry lab courses include an experiment in which students measure surface tension as a function of surfactant concentration. In the traditional experiment, the data are fit to the Gibbs isotherm to determine the molar area for the surfactant, and the critical micelle concentration is used to calculate the Gibbs energy of micelle…

  19. Carleton to oversee $40 million lab grant

    CERN Multimedia

    Singer, Zev

    2003-01-01

    "Carleton University got a major gift yesterday, as the federal government announced the university will oversee a $40-million grant to run the world's deepest underground lab at the Sudbury Neutrino Observatory. Five other universities are partners in the project" (1/2 page).

  20. Lab-on a-Chip

    Science.gov (United States)

    2003-01-01

    Helen Cole, the project manager for the Lab-on-a-Chip Applications Development program, and Lisa Monaco, the project scientist for the program, insert a lab on a chip into the Caliper 42 which is specialized equipment that controls processes on commercial chips to support development of lab-on-a-chip applications. The system has special microscopes and imaging systems, so scientists can process and study different types of fluid, chemical, and medical tests conducted on chips. For example, researchers have examined fluorescent bacteria as it flows through the chips' fluid channels or microfluidic capillaries. Researchers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, have been studying how the lab-on-a-chip technology can be used for microbial detection, water quality monitoring, and detecting biosignatures of past or present life on Mars. The Marshall Center team is also collaborating with scientists at other NASA centers and at universities to develop custom chip designs for not only space applications, but for many Earth applications, such as for detecting deadly microbes in heating and air systems. (NASA/MSFC/D.Stoffer)