WorldWideScience

Sample records for facility effluent drains

  1. Cold Vacuum Drying facility effluent drain system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) effluent drain system (EFS). The primary function of the EFS is to collect and transport fire suppression water discharged into a CVDF process bay to a retention basin located outside the facility. The EFS also provides confinement of spills that occur inside a process bay and allows non-contaminated water that drains to the process bay sumps to be collected until sampling and analysis are complete

  2. Liquid Effluent Retention Facility/Effluent Treatment Facility Hazards Assessment

    International Nuclear Information System (INIS)

    Simiele, G.A.

    1994-01-01

    This document establishes the technical basis in support of Emergency Planning activities for the Liquid Effluent Retention Facility and Effluent Treatment Facility the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated

  3. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    International Nuclear Information System (INIS)

    Coenenberg, J.G.

    1997-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, 'operating' treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  4. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  5. Facility effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  6. Facility effluent monitoring plan for 242-A Evaporator facility

    International Nuclear Information System (INIS)

    Crummel, G.M.; Gustavson, R.D.

    1993-03-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility effluent Monitoring Plans, WHC-EP-0438-1**. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  7. Facility effluent monitoring plan for 242-A evaporator facility

    International Nuclear Information System (INIS)

    Crummel, G.M.; Gustavson, R.D.

    1995-02-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years

  8. Facility effluent monitoring plan determinations for the 400 Area facilities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-09-01

    This Facility Effluent Monitoring Plan determination resulted from an evaluation conducted for the Westinghouse Hanford Company 400 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans. Two major Westinghouse Hanford Company facilities in the 400 Area were evaluated: the Fast Flux Test Facility and the Fuels Manufacturing and examination Facility. The determinations were prepared by Westinghouse Hanford Company. Of these two facilities, only the Fast Flux Test Facility will require a Facility Effluent Monitoring Plan. 7 refs., 5 figs., 4 tabs

  9. Facility effluent monitoring plan determinations for the 200 Area facilities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-11-01

    The following facility effluent monitoring plan determinations document the evaluations conducted for the Westinghouse Hanford Company 200 Area facilities (chemical processing, waste management, 222-S Laboratory, and laundry) on the Hanford Site in south central Washington State. These evaluations determined the need for facility effluent monitoring plans for the 200 Area facilities. The facility effluent monitoring plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438 (WHC 1991). The Plutonium/Uranium Extraction Plant and UO 3 facility effluent monitoring plan determinations were prepared by Los Alamos Technical Associates, Richland, Washington. The Plutonium Finishing Plant, Transuranic Waste Storage and Assay Facility, T Plant, Tank Farms, Low Level Burial Grounds, and 222-S Laboratory determinations were prepared by Science Applications International Corporation of Richland, Washington. The B Plant Facility Effluent Monitoring Plan Determination was prepared by ERCE Environmental Services of Richland, Washington

  10. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Geiger, J.L.

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified. in. A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  11. Facility effluent monitoring plan for the 327 Facility

    International Nuclear Information System (INIS)

    1994-11-01

    The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  12. Facility effluent monitoring plan for the fast flux test facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Dahl, N.R.

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in US Department of Energy Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A Facility Effluent Monitoring Plan determination was performed during calendar year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  13. Facility Effluent Monitoring Plan for the uranium trioxide facility

    International Nuclear Information System (INIS)

    Lohrasbi, J.; Johnson, D.L.; De Lorenzo, D.S.

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  14. Facility effluent monitoring plan for the tank farm facility

    Energy Technology Data Exchange (ETDEWEB)

    Crummel, G.M.

    1998-05-18

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

  15. Waste analysis plan for the 200 area effluent treatment facility and liquid effluent retention facility

    International Nuclear Information System (INIS)

    Ballantyne, N.A.

    1995-01-01

    This waste analysis plan (WAP) has been prepared for startup of the 200 Area Effluent Treatment Facility (ETF) and operation of the Liquid Effluent Retention Facility (LERF), which are located on the Hanford Facility, Richland, Washington. This WAP documents the methods used to obtain and analyze representative samples of dangerous waste managed in these units, and of the nondangerous treated effluent that is discharged to the State-Approved Land Disposal System (SALDS). Groundwater Monitoring at the SALDS will be addressed in a separate plan

  16. Facility effluent monitoring plan for the 300 Area Fuels Fabrication Facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Brendel, D.F.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP- 0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring system by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The Fuel Fabrication Facility in the Hanford 300 Area supported the production reactors from the 1940's until they were shut down in 1987. Prior to 1987 the Fuel Fabrication Facility released both airborne and liquid radioactive effluents. In January 1987 the emission of airborne radioactive effluents ceased with the shutdown of the fuels facility. The release of liquid radioactive effluents have continued although decreasing significantly from 1987 to 1990

  17. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    International Nuclear Information System (INIS)

    Lohrasbi, J.; Johnson, D.L.; De Lorenzo, D.S.

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  18. Facility effluent monitoring plan for the plutonium uranium extraction facility

    Energy Technology Data Exchange (ETDEWEB)

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  19. Facility effluent monitoring plan for the plutonium uranium extraction facility

    International Nuclear Information System (INIS)

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  20. Facility effluent monitoring plan for the Plutonium Uranium Extraction Facility

    International Nuclear Information System (INIS)

    Greager, E.M.

    1997-01-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan will ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, at a minimum, every 3 years

  1. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    Energy Technology Data Exchange (ETDEWEB)

    Lohrasbi, J.; Johnson, D.L. [Westinghouse Hanford Co., Richland, WA (United States); De Lorenzo, D.S. [Los Alamos Technical Associates, NM (United States)

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  2. Facility effluent monitoring plan for the tank farms facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bachand, D.D.; Crummel, G.M.

    1995-05-01

    A facility effluent monitoring plan is required by the US Department of Energy for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using specific guidelines. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years.

  3. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    International Nuclear Information System (INIS)

    Thompson, R.J.; Sontage, S.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years

  4. Facility effluent monitoring plan for the 2724-W Protective Equipment Decontamination Facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Lavey, G.H.

    1992-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438**. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  5. Readiness plan, Hanford 300 Area Treated Effluent Disposal Facility: Revision 1

    International Nuclear Information System (INIS)

    Storm, S.J.

    1994-01-01

    The 300 Area Treated Effluent Disposal Facility (TEDF) is designed for the collection, treatment, and eventual disposal of liquid waste from the 300 Area Process Sewer (PS) system. The PS currently discharges water to the 300 Area Process Trenches. Facilities supported total 54 buildings, including site laboratories, inactive buildings, and support facilities. Effluent discharges to the process sewer from within these facilities include heating, ventilation, and air conditioning systems, heat exchangers, floor drains, sinks, and process equipment. The wastewaters go through treatment processes that include iron coprecipitation, ion exchange and ultraviolet oxidation. The iron coprecipitation process is designed to remove general heavy metals. A series of gravity filters then complete the clarification process by removing suspended solids. Following the iron coprecipitation process is the ion exchange process, where a specific resin is utilized for the removal of mercury. The final main unit operation is the ultraviolet destruction process, which uses high power ultraviolet light and hydrogen peroxide to destroy organic molecules. The objective of this readiness plan is to provide the method by which line management will prepare for a Readiness Assessment (RA) of the TEDF. The self-assessment and RA will assess safety, health, environmental compliance and management readiness of the TEDF. This assessment will provide assurances to both WHC and DOE that the facility is ready to start-up and begin operation

  6. 200 Area Liquid Effluent Facilities -- Quality assurance program plan

    International Nuclear Information System (INIS)

    Fernandez, L.

    1995-01-01

    This Quality Assurance Program Plan (QAPP) describes the quality assurance and management controls used by the 200 Area Liquid Effluent Facilities (LEF) to perform its activities in accordance with DOE Order 5700.6C. The 200 Area LEF consists of the following facilities: Effluent Treatment Facility (ETF); Treated Effluent Disposal Facility (TEDF); Liquid Effluent Retention facility (LERF); and Truck Loading Facility -- (Project W291). The intent is to ensure that all activities such as collection of effluents, treatment, concentration of secondary wastes, verification, sampling and disposal of treated effluents and solids related with the LEF operations, conform to established requirements

  7. Facility effluent monitoring plan for the tank farms facilities

    International Nuclear Information System (INIS)

    Crummel, G.M.; Gustavson, R.D.; Kenoyer, J.L.; Moeller, M.P.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum three years. A variety of liquid wastes are generated in processing treatment, and disposal operations throughout the Hanford Site. The Tank Farms Project serves a major role in Hanford Site waste management activities as the temporary repository for these wastes. Stored wastes include hazardous components regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) and as by-product material regulated under the Atomic Energy Act of 1954. A total of 177 single- and double-shell tanks (SST and DST) have been constructed in the 200 East and 200 West Areas of the Hanford Site. These facilities were constructed to various designs from 1943 to 1986. The Tank Farms Project is comprised of these tanks along with various transfer, receiving, and treatment facilities

  8. Facility effluent monitoring plan for the 324 Facility

    International Nuclear Information System (INIS)

    1994-11-01

    The 324 Facility [Waste Technology Engineering Laboratory] in the 300 Area primarily supports the research and development of radioactive and nonradioactive waste vitrification technologies, biological waste remediation technologies, spent nuclear fuel studies, waste mixing and transport studies, and tritium development programs. All of the above-mentioned programs deal with, and have the potential to, release hazardous and/or radioactive material. The potential for discharge would primarily result from (1) conducting research activities using the hazardous materials, (2) storing radionuclides and hazardous chemicals, and (3) waste accumulation and storage. This report summarizes the airborne and liquid effluents, and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterizing effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  9. Facility effluent monitoring plan for the uranium trioxide facility

    International Nuclear Information System (INIS)

    Thompson, R.J.; Sontag, S.

    1991-11-01

    A facility effluent monitoring plant is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The UO 3 Plant is located in the south-central portion of the 200 West Area of the Hanford Site. The plant consists of two primary processing buildings and several ancillary facilities. The purpose of the UO 3 Plant is to receive uranyl nitrate hexahydrate (UNH) from the Plutonium-Uranium Extraction (PUREX) Plant, concentrate it, convert the UNH to uranium trioxide (UO 3 ) powder by calcination and package it for offsite shipment. The UO 3 Plant has been placed in a standby mode. There are two liquid discharges, and three gaseous exhaust stacks, and seven building exhausters that are active during standby conditions

  10. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-06-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the Facility Monitoring Plans of the overall site-wide environmental monitoring plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of individual Facility Effluent Monitoring Plans. This document is intended to be a basic road map to the Facility Effluent Monitoring Plan documents (i.e., the guidance document for preparing Facility Effluent Monitoring Plans, Facility Effluent Monitoring Plan determinations, management plan, and Facility Effluent Monitoring Plans). The implementing procedures, plans, and instructions are appropriate for the control of effluent monitoring plans requiring compliance with US Department of Energy, US Environmental Protection Agency, state, and local requirements. This Quality Assurance Project Plan contains a matrix of organizational responsibilities, procedural resources from facility or site manuals used in the Facility Effluent Monitoring Plans, and a list of the analytes of interest and analytical methods for each facility preparing a Facility Effluent Monitoring Plan. 44 refs., 1 figs., 2 tabs

  11. Facility effluent monitoring plan for the 325 Facility

    International Nuclear Information System (INIS)

    1998-01-01

    The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  12. Facility Effluent Monitoring Plan for the 2724-W Protective Equipment Decontamination Facility

    International Nuclear Information System (INIS)

    Carter, G.J.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updates as a minimum every three years

  13. Facility effluent monitoring plan for the B plant

    International Nuclear Information System (INIS)

    Lesser, J.E.

    1994-09-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plant assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated every three years

  14. Facility effluent monitoring plan for WESF

    Energy Technology Data Exchange (ETDEWEB)

    SIMMONS, F.M.

    1999-09-01

    The FEMP for the Waste Encapsulation and Storage Facility (WESF) provides sufficient information on the WESF effluent characteristics and the effluent monitoring systems so that a compliance assessment against applicable requirements may be performed. Radioactive and hazardous material source terms are related to specific effluent streams that are in turn, related to discharge points and, finally are compared to the effluent monitoring system capability.

  15. Facility Effluent Monitoring Plan for the Waste Receiving and Processing (WRAP) Facility

    Energy Technology Data Exchange (ETDEWEB)

    DAVIS, W.E.

    2000-03-08

    A facility effluent monitoring plan is required by the U.S. Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee public safety, or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan ensures long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and must be updated, as a minimum, every 3 years.

  16. Facility Effluent Monitoring Plan for the Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    DAVIS, W.E.

    2000-01-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee public safety, or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan ensures long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and must be updated, as a minimum, every 3 years

  17. Facility effluent monitoring plan for the Waste Receiving and Processing Facility Module 1

    International Nuclear Information System (INIS)

    Lewis, C.J.

    1995-10-01

    A facility effluent monitoring plan is required by the US Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal state, and local requirements. This facility effluent monitoring plan shall ensure lonq-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years

  18. Facility Effluent Monitoring Plan for the 222-S Laboratory

    International Nuclear Information System (INIS)

    Robinson, A.V.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems against applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. The current operation of the 222-S facilities includes the provision of analytical and radiological chemistry services in support of Hanford Site processing plants. The emphasis is on waste management, chemical processing, environmental monitoring effluent programs at B Plant, the Uranium Oxide Plant, Tank Farms, the 242-A Evaporator, the Waste Encapsulation and Storage Facility, the Plutonium-Uranium Extraction Facility, the Plutonium Finishing Plant, process development/impact activities, and essential materials. The laboratory also supplies analytical services in support of ongoing waste tank characterization

  19. A guide for preparing Hanford Site facility effluent monitoring plans

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1992-06-01

    This document provides guidance on the format and content of effluent monitoring plans for facilities at the Hanford Site. The guidance provided in this document is designed to ensure compliance with US Department of Energy (DOE) Orders 5400.1 (DOE 1988a), 5400.3 (DOE 1989a), 5400.4 (DOE 1989b), 5400.5 (DOE 1990a), 5480.1 (DOE 1982), 5480.11 (DOE 1988b), and 5484.1 (DOE 1981). These require environmental monitoring plans for each site, facility, or process that uses, generates, releases, or manages significant pollutants of radioactive or hazardous materials. In support of DOE Orders 5400.5 (Radiation Protection of the Public and the Environment) and 5400.1 (General Environmental Protection Program), the DOE Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE 1991) should be used to establish elements of a radiological effluent monitoring program in the Facility Effluent Monitoring Plan. Evaluation of facilities for compliance with the US Environmental Protection Agency Clean Air Act of 1977 requirements also is included in the airborne emissions section of the Facility Effluent Monitoring Plans. Sampling Analysis Plans for Liquid Effluents, as required by the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), also are included in the Facility Effluent Monitoring Plans. The Facility Effluent Monitoring Plans shall include complete documentation of gaseous and liquid effluent sampling and monitoring systems

  20. Treated Effluent Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Treated non-hazardous and non-radioactive liquid wastes are collected and then disposed of through the systems at the Treated Effluent Disposal Facility (TEDF). More...

  1. Facility Effluent Monitoring Plan for the N Reactor

    International Nuclear Information System (INIS)

    Watson, D.J.; Brendel, D.F.; Shields, K.D.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP- 0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The primary purpose of the N Reactor Facility Effluent Monitoring Plan (FEMP), during standby, is to ensure that the radioactive effluents are properly monitored and evaluated for compliance with the applicable DOE orders and regulatory agencies at the federal, state, and local levels. A secondary purpose of the FEMP is to ensure that hazardous wastes are not released, in liquid effluents, to the environment even though the potential to do so is extremely low. The FEMP is to provide a monitoring system that collects representative samples in accordance with industry standards, performs analyses within stringent quality control (QC) requirements, and evaluates the data through the use of comparative analysis with the standards and acceptable environmental models

  2. Liquid Effluent Retention Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Liquid Effluent Retention Facility (LERF) is located in the central part of the Hanford Site. LERF is permitted by the State of Washington and has three liquid...

  3. Facility effluent monitoring plan for WESF

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    1999-01-01

    The FEMP for the Waste Encapsulation and Storage Facility (WESF) provides sufficient information on the WESF effluent characteristics and the efferent monitoring systems so that a compliance assessment against applicable requirements may be performed. Radioactive and hazardous material source terms are related to specific effluent streams that are in turn, related to discharge points and, finally are compared to the effluent monitoring system capability

  4. Effluent Treatment Facility tritium emissions monitoring

    International Nuclear Information System (INIS)

    Dunn, D.L.

    1991-01-01

    An Environmental Protection Agency (EPA) approved sampling and analysis protocol was developed and executed to verify atmospheric emissions compliance for the new Savannah River Site (SRS) F/H area Effluent Treatment Facility. Sampling equipment was fabricated, installed, and tested at stack monitoring points for filtrable particulate radionuclides, radioactive iodine, and tritium. The only detectable anthropogenic radionuclides released from Effluent Treatment Facility stacks during monitoring were iodine-129 and tritium oxide. This paper only examines the collection and analysis of tritium oxide

  5. Facility Effluent Monitoring Plan for the Plutonium Finishing Plant

    International Nuclear Information System (INIS)

    FRAZIER, T.P.

    1999-01-01

    A facility effluent monitoring plan is required by the U. S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. To ensure the long-range integrity of the effluent monitoring systems, an update to this facility effluent monitoring plan is required whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document is reviewed annually even if there are no operational changes, and is updated, at a minimum, every 3 years

  6. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, Marcel Y.; Gervais, Todd L.

    2004-11-15

    The Pacific Northwest National Laboratory (PNNL) operates a number of Research & Development (R&D) facilities for the U.S. Department of Energy (DOE) on the Hanford Site. Facility effluent monitoring plans (FEMPs) have been developed to document the facility effluent monitoring portion of the Environmental Monitoring Plan (DOE 2000) for the Hanford Site. Three of PNNL’s R&D facilities, the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling, and individual FEMPs were developed for these facilities in the past. In addition, a balance-of-plant (BOP) FEMP was developed for all other DOE-owned, PNNL-operated facilities at the Hanford Site. Recent changes, including shutdown of buildings and transition of PNNL facilities to the Office of Science, have resulted in retiring the 3720 FEMP and combining the 331 FEMP into the BOP FEMP. This version of the BOP FEMP addresses all DOE-owned, PNNL-operated facilities at the Hanford Site, excepting the Radiochemical Processing Laboratory, which has its own FEMP because of the unique nature of the building and operations. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R&D. R&D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in Appendix A. Potential radioactive airborne emissions in the BOP facilities are estimated annually using a building inventory-based approach provided in federal regulations. Sampling at individual BOP facilities is based on a potential-to-emit assessment. Some of these facilities are considered minor emission points and thus are sampled routinely, but not continuously, to confirm the low emission potential. One facility, the 331 Life Sciences Laboratory, has a major emission point and is sampled continuously. Sampling systems are

  7. 324 and 327 Facilities Environmental Effluent Specifications

    International Nuclear Information System (INIS)

    JOHNSON, D.L.

    1999-01-01

    These effluent specifications address requirements for the 324/321 Facilities, which are undergoing stabilization activities. Effluent specifications are imposed to protect personnel, the environment and the public, by ensuring adequate implementation and compliance with federal and state regulatory requirements and Hanford programs

  8. 200 Area Effluent Treatment Facility: Delisting petition

    International Nuclear Information System (INIS)

    1993-08-01

    Waste water has been generated for over 40 years as a result of operations conducted on the Hanford Site. This waste water previously was discharged to cribs, ponds, or ditches. An example of such waste water includes process condensate that might have been in contact with dangerous waste or mixed waste (containing both radioactive and dangerous components). This petition presents the treatment technologies that are designed into the 200 Area Effluent Treatment Facility to eliminate the dangerous characteristics of the waste and to delist the effluent in accordance with the requirements found in 40 Code of Federal Regulations 260.20 and 260.22. The purpose of this petition is to demonstrate that the 242-A Evaporator process condensate will be treated adequately so that the effluent from the 200 Area Effluent Treatment Facility will no longer require management as a regulated dangerous waste. This demonstration was performed by use of a surrogate (synthetic) waste, designed by the US Department of Energy, Richland Operations Office to include species that represent all organic and inorganic constituents (but not radionuclide species) expected to be found on the Hanford Site. Thus, the surrogate will encompass not only the expected 242-A Evaporator process condensate characteristics, but those of other potential 200 Area Effluent Treatment Facility waste streams and additional 40 CFR Appendix VIII constituents

  9. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    International Nuclear Information System (INIS)

    Frazier, T.P.

    1994-01-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans

  10. Hazard Baseline Downgrade Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Blanchard, A.

    1998-01-01

    This Hazard Baseline Downgrade reviews the Effluent Treatment Facility, in accordance with Department of Energy Order 5480.23, WSRC11Q Facility Safety Document Manual, DOE-STD-1027-92, and DOE-EM-STD-5502-94. It provides a baseline grouping based on the chemical and radiological hazards associated with the facility. The Determination of the baseline grouping for ETF will aid in establishing the appropriate set of standards for the facility

  11. Facility effluent monitoring plan for the 284-E and 284-W power plants

    International Nuclear Information System (INIS)

    Nickels, J.M.; Herman, D.R.

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during calendar year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  12. Facility Effluent Monitoring Plan for the 3720 Building

    Energy Technology Data Exchange (ETDEWEB)

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the Environmental Science Laboratory (3720 Facility) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs'' This FEMP has been prepared for the 3720 Facility primarily because it has a major (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The 3720 Facility provides office and laboratory space for PNNL scientific and engineering staff conducting multidisciplinary research in the areas of materials characterization and testing and waste management. The facility is designed to accommodate the use of radioactive and hazardous materials to conduct these activities. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, and dispersible particulate. The facility is in the process of being vacated for shutdown, but is considered a Major Emission Point as of the date of this document approval.

  13. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993

  14. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993.

  15. Facility Effluent Monitoring Plan for the Plutonium Finishing Plant (PFP); FINAL

    International Nuclear Information System (INIS)

    FRAZIER, T.P.

    1999-01-01

    A facility effluent monitoring plan is required by the U. S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. To ensure the long-range integrity of the effluent monitoring systems, an update to this facility effluent monitoring plan is required whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document is reviewed annually even if there are no operational changes, and is updated, at a minimum, every 3 years

  16. Readiness Assessment Plan, Hanford 200 areas treated effluent disposal facilities

    International Nuclear Information System (INIS)

    Ulmer, F.J.

    1995-01-01

    This Readiness Assessment Plan documents Liquid Effluent Facilities review process used to establish the scope of review, documentation requirements, performance assessment, and plant readiness to begin operation of the Treated Effluent Disposal system in accordance with DOE-RLID-5480.31, Startup and Restart of Facilities Operational Readiness Review and Readiness Assessments

  17. Radioactive clearance discharge of effluent from nuclear and radiation facilities

    International Nuclear Information System (INIS)

    Liu Xinhua; Xu Chunyan

    2013-01-01

    On the basis of the basic concepts of radiation safety management system exemption, exclusion and clearance, we expound that the general industrial gaseous and liquid effluent discharges are exempted or excluded, gaseous and liquid effluent discharged from nuclear and radiation facilities are clearance, and non-radioactive. The main purpose of this paper is to clarify the concepts, reach a consensus that the gaseous and liquid effluent discharged from nuclear and radiation facilities are non-radioactive and have no hazard to human health and natural environment. (authors)

  18. Facility Effluent Monitoring Plan for the Spent Nuclear Fuel (SNF) Project

    International Nuclear Information System (INIS)

    HUNACEK, G.S.

    2000-01-01

    A facility effluent monitoring plan is required by the US. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document was prepared using the specific guidelines identified in Westinghouse Hanford Company (WHC)-EP-0438-1, ''A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans'', and assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the third revision to the original annual report. This document is reviewed annually even if there are no operational changes, and it is updated as necessary

  19. Computer software configuration management plan for 200 East/West Liquid Effluent Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Graf, F.A. Jr.

    1995-02-27

    This computer software management configuration plan covers the control of the software for the monitor and control system that operates the Effluent Treatment Facility and its associated truck load in station and some key aspects of the Liquid Effluent Retention Facility that stores condensate to be processed. Also controlled is the Treated Effluent Disposal System`s pumping stations and monitors waste generator flows in this system as well as the Phase Two Effluent Collection System.

  20. Computer software configuration management plan for 200 East/West Liquid Effluent Facilities

    International Nuclear Information System (INIS)

    Graf, F.A. Jr.

    1995-01-01

    This computer software management configuration plan covers the control of the software for the monitor and control system that operates the Effluent Treatment Facility and its associated truck load in station and some key aspects of the Liquid Effluent Retention Facility that stores condensate to be processed. Also controlled is the Treated Effluent Disposal System's pumping stations and monitors waste generator flows in this system as well as the Phase Two Effluent Collection System

  1. Facility effluent monitoring plan for K area spent fuel storage basin

    International Nuclear Information System (INIS)

    Hunacek, G.S.

    1996-01-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400. 1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document was prepared using the specific guidelines identified in WHC-EP-0438-1, A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, and assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the second revision to the original annual report. Long-range integrity of the effluent monitoring system shall be ensured with updates of this report whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  2. State waste discharge permit application, 200-E chemical drain field

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect ground would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE 91NM-177, (Ecology and DOE-RL 1991). The Consent Order No. DE 91NM-177 requires a series of permitting activities for liquid effluent discharges. This document presents the State Waste Discharge Permit (SWDP) application for the 200-E Chemical Drain Field. Waste water from the 272-E Building enters the process sewer line directly through a floor drain, while waste water from the 2703-E Building is collected in two floor drains, (north and south) that act as sumps and are discharged periodically. The 272-E and 2703-E Buildings constitute the only discharges to the process sewer line and the 200-E Chemical Drain Field.

  3. State waste discharge permit application, 200-E chemical drain field

    International Nuclear Information System (INIS)

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect ground would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE 91NM-177, (Ecology and DOE-RL 1991). The Consent Order No. DE 91NM-177 requires a series of permitting activities for liquid effluent discharges. This document presents the State Waste Discharge Permit (SWDP) application for the 200-E Chemical Drain Field. Waste water from the 272-E Building enters the process sewer line directly through a floor drain, while waste water from the 2703-E Building is collected in two floor drains, (north and south) that act as sumps and are discharged periodically. The 272-E and 2703-E Buildings constitute the only discharges to the process sewer line and the 200-E Chemical Drain Field

  4. 200 area liquid effluent facility quality assurance program plan. Revision 1

    International Nuclear Information System (INIS)

    Sullivan, N.J.

    1995-01-01

    Direct revision of Supporting Document WHC-SD-LEF-QAPP-001, Rev. 0. 200 Area Liquid Effluent Facilities Quality Assurance Program Plan. Incorporates changes to references in tables. Revises test to incorporate WHC-SD-LEF-CSCM-001, Computer Software Configuration Management Plan for 200 East/West Liquid Effluent Facilities

  5. Statistical evaluation of effluent monitoring data for the 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    Chou, C.J.; Johnson, V.G.

    2000-01-01

    The 200 Area Treated Effluent Disposal Facility (TEDF) consists of a pair of infiltration basins that receive wastewater originating from the 200 West and 200 East Areas of the Hanford Site. TEDF has been in operation since 1995 and is regulated by State Waste Discharge Permit ST 4502 (Ecology 1995) under the authority of Chapter 90.48 Revised Code of Washington (RCW) and Washington Administrative Code (WAC) Chapter 173-216. The permit stipulates monitoring requirements for effluent (or end-of-pipe) discharges and groundwater monitoring for TEDF. Groundwater monitoring began in 1992 prior to TEDF construction. Routine effluent monitoring in accordance with the permit requirements began in late April 1995 when the facility began operations. The State Waste Discharge Permit ST 4502 included a special permit condition (S.6). This condition specified a statistical study of the variability of permitted constituents in the effluent from TEDF during its first year of operation. The study was designed to (1) demonstrate compliance with the waste discharge permit; (2) determine the variability of all constituents in the effluent that have enforcement limits, early warning values, and monitoring requirements (WHC 1995); and (3) determine if concentrations of permitted constituents vary with season. Additional and more frequent sampling was conducted for the effluent variability study. Statistical evaluation results were provided in Chou and Johnson (1996). Parts of the original first year sampling and analysis plan (WHC 1995) were continued with routine monitoring required up to the present time

  6. Facility Effluent Monitoring Plan for the 284-E and 284-W power plants

    International Nuclear Information System (INIS)

    Herman, D.R.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP- 0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The 284-E and 284-W Power Plants are coal-fired plants used to generate steam. Electricity is not generated at these facilities. The maximum production of steam is approximately 159 t (175 tons)/h at 101 kg (225 lb)/in 2 . Steam generated at these facilities is used in other process facilities (i. e., the B Plant, Plutonium-Uranium Extraction Plant, 242-A Evaporator) for heating and process operations. The functions or processes associated with these facilities do not have the potential to generate radioactive airborne effluents or radioactive liquid effluents, therefore, radiation monitoring equipment is not used on the discharge of these streams. The functions or processes associated with the production of steam result in the use, storage, management and disposal of hazardous materials

  7. Gaseous radioactive effluent restrictions, measurement, and minimization at a PET/cyclotron facility

    International Nuclear Information System (INIS)

    Plascjak, P.S.; Kim, K.K.; Googins, S.W.; Meyer, W.C. Jr.

    1993-01-01

    In the US, restrictions on the release of radioactive effluents from PET (positron emission tomography)/cyclotron facilities are typically imposed by State regulatory agencies and may be based on various methodologies and limits published by numerous agencies. This work presents suitable effluent concentration limits for various chemical forms of radioisotopes routinely produced in PET/cyclotron facilities. They were determined by application of metabolic models defined by ICRP 53 and ICRP 26/30 which will result in compliance with effective dose equivalent limits of 100 mrem per year at the release point. The NIH Cyclotron Facility effluent air monitoring system, environmental dosimetry program, and simple, effective systems for radioactive effluent minimization are also described. (orig.)

  8. The application of XML in the effluents data modeling of nuclear facilities

    International Nuclear Information System (INIS)

    Yue Feng; Lin Quanyi; Yue Huiguo; Zhang Yan; Zhang Peng; Cao Jun; Chen Bo

    2013-01-01

    The radioactive effluent data, which can provide information to distinguish whether facilities, waste disposal, and control system run normally, is an important basis of safety regulation and emergency management. It can also provide the information to start emergency alarm system as soon as possible. XML technology is an effective tool to realize the standard of effluent data exchange, in favor of data collection, statistics and analysis, strengthening the effectiveness of effluent regulation. This paper first introduces the concept of XML, the choices of effluent data modeling method, and then emphasizes the process of effluent model, finally the model and application are shown, While there is deficiency about the application of XML in the effluents data modeling of nuclear facilities, it is a beneficial attempt to the informatization management of effluents. (authors)

  9. Cold Vacuum Drying facility condensate collection system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) condensate collection system (CCS). The function of the CCS is to collect cooling coil condensate from air-handling units in the CVDF and to isolate the condensate in collection tanks until the condensate is determined to be acceptable to drain to the effluent drain collection basin

  10. Request for modification of 200 Area effluent treatment facility final delisting

    International Nuclear Information System (INIS)

    Bowman, R.C.

    1998-01-01

    A Delisting Petition submitted to the U.S. Environmental Protection Agency in August 1993 addressed effluent to be generated at the 200 Area Effluent Treatment Facility from treating Hanford Facility waste streams. This Delisting Petition requested that 71.9 million liters per year of treated effluent, bearing the designation 'F001' through 'F005', and/or 'F039' that is derived from 'F001' through 'F005' waste, be delisted. On June 13, 1995, the U.S. Environmental Protection Agency published the final rule (Final Delisting), which formally excluded 71.9 million liters per year of 200 Area Effluent Treatment Facility effluent from ''being listed as hazardous wastes'' (60 FR 31115 now promulgated in 40 CFR 261). Given the limited scope, it is necessary to request a modification of the Final Delisting to address the management of a more diverse multi-source leachate (F039) at the 200 Area Effluent Treatment Facility. From past operations and current cleanup activities on the Hanford Facility, a considerable amount of both liquid and solid Resource Conservation and Recovery Act of 1976 regulated mixed waste has been and continues to be generated. Ultimately this waste will be treated as necessary to meet the Resource Conservation and Recovery Act Land Disposal Restrictions. The disposal of this waste will be in Resource Conservation and Recovery Act--compliant permitted lined trenches equipped with leachate collection systems. These operations will result in the generation of what is referred to as multi-source leachate. This newly generated waste will receive the listed waste designation of F039. This waste also must be managed in compliance with the provisions of the Resource Conservation and Recovery Act

  11. Facility effluent monitoring plan for K Area Spent Fuel. Revision 1

    International Nuclear Information System (INIS)

    Hunacek, G.S.

    1995-09-01

    The scope of this document includes program plans for monitoring and characterizing radioactive and nonradioactive hazardous materials discharged in the K Area effluents. This FEMP includes complete documentation for both airborne and liquid effluent monitoring systems that monitor radioactive and nonradioactive hazardous pollutants that could be discharged to the environment under routine and/or upset conditions. This documentation is provided for each K Area facility that uses, generates, releases, or manages significant quantities of radioactive and nonradioactive hazardous materials that could impact public and employee safety and the environment. This FEW describes the airborne and liquid effluent paths and the associated sampling and monitoring systems of the K Area facilities. Sufficient information is provided on the effluent characteristics and the effluent monitoring systems so that a compliance assessment against requirements may be performed. Adequate details are supplied such that radioactive and hazardous material source terms may be related to specific effluent streams which are, in turn, related to discharge points and finally compared to the effluent monitoring system capability

  12. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    International Nuclear Information System (INIS)

    Ballinger, M.Y.; Shields, K.D.

    1999-01-01

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R and D) facilities for the Department of Energy on the Hanford Site. According to DOE Order 5400.1, a Facility Effluent Monitoring Plan is required for each site, facility, or process that uses, generates, releases, or manages significant pollutants or hazardous materials. Three of the R and D facilities: the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling and thus individual Facility Effluent Monitoring Plans (FEMPs) have been developed for them. Because no definition of ''significant'' is provided in DOE Order 5400.1 or the accompanying regulatory guide DOE/EH-0173T, this FEMP was developed to describe monitoring requirements in the DOE-owned, PNNL-operated facilities that do not have individual FEMPs. The remainder of the DOE-owned, PNNL-operated facilities are referred to as Balance-of-Plant (BOP) facilities. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R and D. R and D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in the FEMP

  13. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, M.Y.; Shields, K.D.

    1999-04-02

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R and D) facilities for the Department of Energy on the Hanford Site. According to DOE Order 5400.1, a Facility Effluent Monitoring Plan is required for each site, facility, or process that uses, generates, releases, or manages significant pollutants or hazardous materials. Three of the R and D facilities: the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling and thus individual Facility Effluent Monitoring Plans (FEMPs) have been developed for them. Because no definition of ''significant'' is provided in DOE Order 5400.1 or the accompanying regulatory guide DOE/EH-0173T, this FEMP was developed to describe monitoring requirements in the DOE-owned, PNNL-operated facilities that do not have individual FEMPs. The remainder of the DOE-owned, PNNL-operated facilities are referred to as Balance-of-Plant (BOP) facilities. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R and D. R and D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in the FEMP.

  14. Liquid effluent retention facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-06-01

    This appendix to the Liquid Effluent Retention Facility Dangerous Waste Permit Application contains pumps, piping, leak detection systems, geomembranes, leachate collection systems, earthworks and floating cover systems

  15. Request for modification of 200 Area effluent treatment facility final delisting

    Energy Technology Data Exchange (ETDEWEB)

    BOWMAN, R.C.

    1998-11-19

    A Delisting Petition submitted to the U.S. Environmental Protection Agency in August 1993 addressed effluent to be generated at the 200 Area Effluent Treatment Facility from treating Hanford Facility waste streams. This Delisting Petition requested that 71.9 million liters per year of treated effluent, bearing the designation 'F001' through 'F005', and/or 'F039' that is derived from 'F001' through 'F005' waste, be delisted. On June 13, 1995, the U.S. Environmental Protection Agency published the final rule (Final Delisting), which formally excluded 71.9 million liters per year of 200 Area Effluent Treatment Facility effluent from ''being listed as hazardous wastes'' (60 FR 31115 now promulgated in 40 CFR 261). Given the limited scope, it is necessary to request a modification of the Final Delisting to address the management of a more diverse multi-source leachate (F039) at the 200 Area Effluent Treatment Facility. From past operations and current cleanup activities on the Hanford Facility, a considerable amount of both liquid and solid Resource Conservation and Recovery Act of 1976 regulated mixed waste has been and continues to be generated. Ultimately this waste will be treated as necessary to meet the Resource Conservation and Recovery Act Land Disposal Restrictions. The disposal of this waste will be in Resource Conservation and Recovery Act--compliant permitted lined trenches equipped with leachate collection systems. These operations will result in the generation of what is referred to as multi-source leachate. This newly generated waste will receive the listed waste designation of F039. This waste also must be managed in compliance with the provisions of the Resource Conservation and Recovery Act.

  16. 242-A Evaporator/Liquid Effluent Retention Facility data quality objectives

    International Nuclear Information System (INIS)

    Von Bargen, B.H.

    1994-01-01

    The purpose of data quality objectives (DQO) is to determine the most cost effective methods of gathering the essential data necessary to make decisions to support successful operation of the facility. The essential data is defined by such information as sample amount, sample location, required analyses, and how sampling and analyses are performed. Successful operation is defined as meeting the campaign objectives while operating within established requirements. This DQO document addresses that portion of the system from 242-A Evaporator candidate feed tanks through discharge of process condensate to the Liquid Effluent Retention of Facility (LERF). Later revisions will incorporate and integrate the entire system, including the Effluent Treatment Facility (ETF)

  17. 242-A Evaporator/Liquid Effluent Retention Facility data quality objectives

    Energy Technology Data Exchange (ETDEWEB)

    Von Bargen, B.H.

    1994-09-29

    The purpose of data quality objectives (DQO) is to determine the most cost effective methods of gathering the essential data necessary to make decisions to support successful operation of the facility. The essential data is defined by such information as sample amount, sample location, required analyses, and how sampling and analyses are performed. Successful operation is defined as meeting the campaign objectives while operating within established requirements. This DQO document addresses that portion of the system from 242-A Evaporator candidate feed tanks through discharge of process condensate to the Liquid Effluent Retention of Facility (LERF). Later revisions will incorporate and integrate the entire system, including the Effluent Treatment Facility (ETF).

  18. 300 Area Treated Effluent Disposal Facility permit reopener run plan

    International Nuclear Information System (INIS)

    Olander, A.R.

    1995-01-01

    The 300 Area Treated Effluent Disposal Facility (TEDF) is authorized to discharge treated effluent to the Columbia River by National Pollutant Discharge Elimination System permit WA-002591-7. The letter accompanying the final permit noted the following: EPA recognizes that the TEDF is a new waste treatment facility for which full scale operation and effluent data has not been generated. The permit being issued by EPA contains discharge limits that are intended to force DOE's treatment technology to the limit of its capability.'' Because of the excessively tight limits the permit contains a reopener clause which may allow limits to be renegotiated after at least one year of operation. The restrictions for reopening the permit are as follows: (1) The permittee has properly operated and maintained the TEDF for a sufficient period to stabilize treatment plant operations, but has nevertheless been unable to achieve the limitation specified in the permit. (2) Effluent data submitted by the permittee supports the effluent limitation modifications(s). (3) The permittee has submitted a formal request for the effluent limitation modification(s) to the Director. The purpose of this document is to guide plant operations for approximately one year to ensure appropriate data is collected for reopener negotiations

  19. Hanford Site Treated Effluent Disposal Facility process flow sheet

    International Nuclear Information System (INIS)

    Bendixsen, R.B.

    1993-04-01

    This report presents a novel method of using precipitation, destruction and recycle factors to prepare a process flow sheet. The 300 Area Treated Effluent Disposal Facility (TEDF) will treat process sewer waste water from the 300 Area of the Hanford Site, located near Richland, Washington, and discharge a permittable effluent flow into the Columbia River. When completed and operating, the TEDF effluent water flow will meet or exceed water quality standards for the 300 Area process sewer effluents. A preliminary safety analysis document (PSAD), a preconstruction requirement, needed a process flow sheet detailing the concentrations of radionuclides, inorganics and organics throughout the process, including the effluents, and providing estimates of stream flow quantities, activities, composition, and properties (i.e. temperature, pressure, specific gravity, pH and heat transfer rates). As the facility begins to operate, data from process samples can be used to provide better estimates of the factors, the factors can be entered into the flow sheet and the flow sheet will estimate more accurate steady state concentrations for the components. This report shows how the factors were developed and how they were used in developing a flow sheet to estimate component concentrations for the process flows. The report concludes with how TEDF sample data can improve the ability of the flow sheet to accurately predict concentrations of components in the process

  20. Cold Vacuum Drying facility condensate collection system design description (SYS 19); FINAL

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) condensate collection system (CCS). The function of the CCS is to collect cooling coil condensate from air-handling units in the CVDF and to isolate the condensate in collection tanks until the condensate is determined to be acceptable to drain to the effluent drain collection basin

  1. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    International Nuclear Information System (INIS)

    Shields, K.D.; Ballinger, M.Y.

    1999-03-01

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities

  2. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities.

  3. Verification of best available technology for the 300 Area Treated Effluent Disposal Facility (310 Facility)

    International Nuclear Information System (INIS)

    Wagner, R.N.

    1994-01-01

    This compilation of Project L-045H reference materials documents that the 300 Area Treated Effluent Disposal Facility (TEDF, also designated the 310 Facility) was designed, built, and will be operated in accordance with the best available technology (BAT) identified in the Engineering Summary Report. The facility is intended for treatment of 300 Area process sewer wastewater. The following unit operations for 300 Area process sewer water treatment are specified as: influent receipt; iron co-precipitation and sludge handling for removal of heavy metals and initial suspended solids; ion exchanged for removal of mercury and other heavy metals; ultraviolet (UV)/peroxide treatment for destruction of organic compounds, cyanide, coliforms, sulfide, and nitrite; and effluent discharge to the Columbia River with pH monitoring/control capability

  4. Studies for improvement of regulatory control on the radioactive effluent released from nuclear facilities

    International Nuclear Information System (INIS)

    Cheong, Jae Hak; Park, H. M.; Song, M. C.; Lee, K. H.; Jang, J. K.; Chun, J. K.; Jeong, K. H.

    2005-05-01

    This report contains the second-year results of the research project titled 'Studies for Improvement of Regulatory Control on the Radioactive Effluent Released from Nuclear Facilities' and mainly provides technical and strategic approaches to improve performance of regulatory control on the gaseous effluent released from domestic nuclear facilities. The main result contained here includes overview and technical bases of radioactive gaseous effluent control (Chapter 1), reconsideration of the sensitivity requirements for measurement of radioactivity in gaseous effluent sample (Chapter 2), uncertainty analysis of the calculated radioactivity in gaseous effluent (Chapter 3), and improvement of quantification method of noble gas releases (Chapter 4). In addition, analysis of the impact due to combined sampling of particulate from multiple release points (Chapter 5), comparison of domestic nuclear reactors gaseous effluent data to foreign PWRs (Chapter 6), standardized sampling technique for collection of gaseous tritium (Chapter 7), and application of Xe-133 equivalent concept to gaseous effluent control (Chapter 8) are also provided. As a whole, this report provides a generic approach to improve the performance of regulatory control on the gaseous effluent. Therefore, actual enforcement of the recommendations should be preceded by establishment of a series of action plans reflecting on the site- and facility-specific design and operational features

  5. F/H effluent treatment facility. Technical data summary

    International Nuclear Information System (INIS)

    Ryan, J.P.; Stimson, R.E.

    1984-12-01

    This document provides the technical basis for the design of the facility. Some of the sections are described with options to permit simplification of the process, depending on the effluent quality criteria that the facility will have to meet. Each part of the F/HETF process is reviewed with respect to decontamination and concentration efficiency, operability, additional waste generation, energy efficiency, and compatability with the rest of the process

  6. Atomics International environmental monitoring and facility effluent annual report, 1976

    International Nuclear Information System (INIS)

    Moore, J.D.

    1977-01-01

    Environmental and facility effluent radioactivity monitoring at Atomics International (AI) is performend by the Radiation and Nuclear Safety Unit of the Health, Safety, and Radiation Services Department. Soil, vegetation, and surface water are routinely sampled to a distance of 10 miles from AI sites. Continuous ambient air sampling and thermoluminescent dosimetry are performed on site for monitoring airborne radioactivity and site ambient radiation levels. Radioactivity in effluents discharged to the atmosphere from AI facilities is continuously sampled and monitored to ensure that levels released to unrestricted areas are within appropriate limits, and to identify processes which may require additional engineering safeguards to minimize radioactivity levels in such effluents. In addition, selected nonradioactive constituents in surface water discharged to unrestricted areas are determined. This report summarizes and discusses monitoring results for 1976. The results of a special soil plutonium survey performed during the year are also summarized

  7. 200 area effluent treatment facility opertaional test report

    International Nuclear Information System (INIS)

    Crane, A.F.

    1995-01-01

    This document reports the results of the 200 Area Effluent Treatment Facility (200 Area ETF) operational testing activities. These Operational testing activities demonstrated that the functional, operational and design requirements of the 200 Area ETF have been met and identified open items which require retesting

  8. 300 Area Treated Effluent Disposal Facility (TEDF) Hazards Assessment

    International Nuclear Information System (INIS)

    CAMPBELL, L.R.

    1999-01-01

    This document establishes the technical basis in support of emergency planning activities for the 300 Area Treated Effluent Disposal Facility. The technical basis for project-specific Emergency Action Levels and Emergency Planning Zone is demonstrated

  9. LIQUID EFFLUENT RETENTION FACILITY (LERF) BASIN 42 STUDIES

    International Nuclear Information System (INIS)

    DUNCAN JB

    2004-01-01

    This report documents laboratory results obtained under test plan RPP-21533 for samples submitted by the Effluent Treatment Facility (ETF) from the Liquid Effluent Retention Facility (LERF) Basin 42 (Reference 1). The LERF Basin 42 contains process condensate (PC) from the 242-A Evaporator and landfill leachate. The ETF processes one PC campaign approximately every 12 to 18 months. A typical PC campaign volume can range from 1.5 to 2.5 million gallons. During the September 2003 ETF Basin 42 processing campaign, a recurring problem with 'gelatinous buildup' on the outlet filters from 60A-TK-I (surge tank) was observed (Figure 1). This buildup appeared on the filters after the contents of the surge tank were adjusted to a pH of between 5 and 6 using sulfuric acid. Biological activity in the PC feed was suspected to be the cause of the gelatinous material. Due to this buildup, the filters (10 (micro)m CUNO) required daily change out to maintain process throughput

  10. LIQUID EFFLUENT RETENTION FACILITY (LERF) BASIN 42 STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB

    2004-10-29

    This report documents laboratory results obtained under test plan RPP-21533 for samples submitted by the Effluent Treatment Facility (ETF) from the Liquid Effluent Retention Facility (LERF) Basin 42 (Reference 1). The LERF Basin 42 contains process condensate (PC) from the 242-A Evaporator and landfill leachate. The ETF processes one PC campaign approximately every 12 to 18 months. A typical PC campaign volume can range from 1.5 to 2.5 million gallons. During the September 2003 ETF Basin 42 processing campaign, a recurring problem with 'gelatinous buildup' on the outlet filters from 60A-TK-I (surge tank) was observed (Figure 1). This buildup appeared on the filters after the contents of the surge tank were adjusted to a pH of between 5 and 6 using sulfuric acid. Biological activity in the PC feed was suspected to be the cause of the gelatinous material. Due to this buildup, the filters (10 {micro}m CUNO) required daily change out to maintain process throughput.

  11. DETERMINATION OF LIQUID FILM THICKNESS FOLLOWING DRAINING OF CONTACTORS, VESSELS, AND PIPES IN THE MCU PROCESS

    International Nuclear Information System (INIS)

    Poirier, M; Fernando Fondeur, F; Samuel Fink, S

    2006-01-01

    The Department of Energy (DOE) identified the caustic side solvent extraction (CSSX) process as the preferred technology to remove cesium from radioactive waste solutions at the Savannah River Site (SRS). As a result, Washington Savannah River Company (WSRC) began designing and building a Modular CSSX Unit (MCU) in the SRS tank farm to process liquid waste for an interim period until the Salt Waste Processing Facility (SWPF) begins operations. Both the solvent and the strip effluent streams could contain high concentrations of cesium which must be removed from the contactors, process tanks, and piping prior to performing contactor maintenance. When these vessels are drained, thin films or drops will remain on the equipment walls. Following draining, the vessels will be flushed with water and drained to remove the flush water. The draining reduces the cesium concentration in the vessels by reducing the volume of cesium-containing material. The flushing, and subsequent draining, reduces the cesium in the vessels by diluting the cesium that remains in the film or drops on the vessel walls. MCU personnel requested that Savannah River National Laboratory (SRNL) researchers conduct a literature search to identify models to calculate the thickness of the liquid films remaining in the contactors, process tanks, and piping following draining of salt solution, solvent, and strip solution. The conclusions from this work are: (1) The predicted film thickness of the strip effluent is 0.010 mm on vertical walls, 0.57 mm on horizontal walls and 0.081 mm in horizontal pipes. (2) The predicted film thickness of the salt solution is 0.015 mm on vertical walls, 0.74 mm on horizontal walls, and 0.106 mm in horizontal pipes. (3) The predicted film thickness of the solvent is 0.022 mm on vertical walls, 0.91 mm on horizontal walls, and 0.13 mm in horizontal pipes. (4) The calculated film volume following draining is: (a) Salt solution receipt tank--1.6 gallons; (b) Salt solution feed

  12. New treatment facility for low level process effluents at the Savannah River site

    International Nuclear Information System (INIS)

    Ebra, M.A.; Bibler, J.P.; Johnston, B.S.; Kilpatrick, L.L.; Poy, F.L.; Wallace, R.M.

    1987-01-01

    A new facility, the F/H Effluent Treatment Facility (F/H ETF) is under construction at the Savannah River site. It will decontaminate process effluents containing low levels of radionuclides and hazardous chemicals prior to discharge to a surface stream. These effluents, which are currently discharged to seepage basins, originate in the chemical separations and high-level radioactive waste processing areas, known as F-Area and H-Area. The new facility will allow closure of the basins in order to meet the provisions of the Resource Conservation and Recovery Act by November 1988. A high degree of reliability is expected from this design as a result of extensive process development work that has been conducted at the Savannah River Laboratory. This work has included both bench scale testing of individual unit operations and pilot scale testing of an integrated facility, 150 to 285 L/min (40 to 75 gpm), that contains the major operations

  13. 200 Area treated effluent disposal facility operational test report

    International Nuclear Information System (INIS)

    Crane, A.F.

    1995-01-01

    This document reports the results of the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These completed operational testing activities demonstrated the functional, operational and design requirements of the 200 Area TEDF have been met

  14. Source term development for the 300 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    Bendixsen, R.B.

    1994-04-01

    A novel method for developing a source term for radiation and hazardous material content of sludge processing equipment and barrels in a new waste water treatment facility is presented in this paper. The 300 Area Treated Effluent Disposal Facility (TEDF), located at the Hanford Site near Richland, Washington, will treat process sewer waste water from the 300 Area and discharge a permittable effluent flow into the Columbia River. A process information and hazards analysis document needed a process flowsheet detailing the concentrations of radionuclides, inorganics, and organics throughout the process, including the sludge effluent flow. A hazards analysis for a processing facility usually includes a flowsheet showing the process, materials, heat balances, and instrumentation for that facility. The flow sheet estimates stream flow quantities, activities, compositions, and properties. For the 300 Area TEDF, it was necessary to prepare the flow sheet with all of the information so that radiation doses to workers could be estimated. The noble method used to develop the 300 Area TEDF flowsheet included generating recycle factors. To prepare each component in the flowsheet, precipitation, destruction, and two recycle factors were developed. The factors were entered into a spreadsheet and provided a method of estimating the steady-state concentrations of all of the components in the facility. This report describes how the factors were developed, explains how they were used in developing the flowsheet, and presents the results of using these values to estimate radiation doses for personnel working in the facility. The report concludes with a discussion of the effect of estimates of radioactive and hazardous material concentrations on shielding design and the need for containment features for equipment in the facility

  15. Effluent releases at the TRIGA reactor facility

    Energy Technology Data Exchange (ETDEWEB)

    Whittemore, W L [General Atomic Co., San Diego, CA (United States)

    1974-07-01

    The principal effluent from the operating TRIGA reactors in our facility is argon-41. As monitored by a recording gas and particulate stack monitor, the values shown in the table, the Mark III operating 24 hours per day for very long periods produced the largest amount of radioactive argon. The quantity of 23.7 Ci A-41 when diluted by the normal reactor room ventilation system corresponded to 1.45 x 10{sup -6} {mu}Ci/cc. As diluted in the roof stack stream and the reactor building wake, the concentration immediately outside the reactor building was 25% MPC for an unrestricted area. The continued dilution of this effluent resulted in a concentration of a few percent MPC at the site boundary (unrestricted area) 350 meters from the reactor. (author)

  16. Subproject L-045H 300 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    1991-06-01

    The study focuses on the project schedule for Project L-045H, 300 Area Treated Effluent Disposal Facility. The 300 Area Treated Effluent Disposal Facility is a Department of Energy subproject of the Hanford Environmental Compliance Project. The study scope is limited to validation of the project schedule only. The primary purpose of the study is to find ways and means to accelerate the completion of the project, thereby hastening environmental compliance of the 300 Area of the Hanford site. The ''300 Area'' has been utilized extensively as a laboratory area, with a diverse array of laboratory facilities installed and operational. The 300 Area Process Sewer, located in the 300 Area on the Hanford Site, collects waste water from approximately 62 sources. This waste water is discharged into two 1500 feet long percolation trenches. Current environmental statutes and policies dictate that this practice be discontinued at the earliest possible date in favor of treatment and disposal practices that satisfy applicable regulations

  17. A questionnaire about radiation safety management of the draining-water system at nuclear medicine facilities

    International Nuclear Information System (INIS)

    Shizukuishi, Kazuya; Narita, Hiroto

    2004-01-01

    We conducted a questionnaire survey about radiation-safety management condition in Japanese nuclear medicine facilities to make materials of proposition for more reasonable management of medical radioactive waste. We distributed a questionnaire to institutions equipped with Nuclear Medicine facilities. Of 1,125 institutions, 642 institutes (52.8%) returned effective answers. The questionnaire covered the following areas: scale of an institution, presence of enforcement of radiotherapy, system of a tank, size and number of each tank, a form of draining-water system, a displacement in a radioactive rays management area, a measurement method of the concentration of medical radioactive waste in draining water system, planned and used quantity of radioisotopes for medical examination and treatment, an average displacement of hospital for one month. In most institutions, a ratio of dose limitation of radioisotope in draining-water system was less than 1.0, defined as an upper limitation in ordinance. In 499 hospitals without facilities of hospitalization for unsealed radioisotope therapy, 473 hospitals reported that sum of ratios of dose limits in a draining-water system was less than 1.0. It was calculated by used dose of radioisotope and monthly displacement from hospital, on the premise that all used radioisotope entered in the general draining-water system. When a drainage including radioactivity from a controlled area join with that from other area before it flows out of a institution, it may be diluted and its radioactive concentration should be less than its upper limitation defined in the rule. Especially, in all institutions with a monthly displacement of more than 25,000 m 3 , the sum of ratio of the concentration of each radionuclide to the concentration limit dose calculated by used dose of radioisotope, indicated less than 1.0. (author)

  18. Pharmaceutical Formulation Facilities as Sources of Opioids and Other Pharmaceuticals to Wastewater Treatment Plant Effluents

    Science.gov (United States)

    2010-01-01

    Facilities involved in the manufacture of pharmaceutical products are an under-investigated source of pharmaceuticals to the environment. Between 2004 and 2009, 35 to 38 effluent samples were collected from each of three wastewater treatment plants (WWTPs) in New York and analyzed for seven pharmaceuticals including opioids and muscle relaxants. Two WWTPs (NY2 and NY3) receive substantial flows (>20% of plant flow) from pharmaceutical formulation facilities (PFF) and one (NY1) receives no PFF flow. Samples of effluents from 23 WWTPs across the United States were analyzed once for these pharmaceuticals as part of a national survey. Maximum pharmaceutical effluent concentrations for the national survey and NY1 effluent samples were generally effluent had median concentrations ranging from 3.4 to >400 μg/L. Maximum concentrations of oxycodone (1700 μg/L) and metaxalone (3800 μg/L) in samples from NY3 effluent exceeded 1000 μg/L. Three pharmaceuticals (butalbital, carisoprodol, and oxycodone) in samples of NY2 effluent had median concentrations ranging from 2 to 11 μg/L. These findings suggest that current manufacturing practices at these PFFs can result in pharmaceuticals concentrations from 10 to 1000 times higher than those typically found in WWTP effluents. PMID:20521847

  19. F/H Area Effluent Treatment Facility. Phase II. CAC basic data

    International Nuclear Information System (INIS)

    Collins, W.W.; O'Leary, C.D.

    1984-01-01

    Project objectives and requirements are listed for both Phase I and II. Schedule is listed with startup targeted for 1989. Storage facilities will be provided for both chemical and radioactive effluents. 8 figs., 19 tabs

  20. Investigation of radiation safety management at nuclear medicine facilities in Japan. Contamination of radioactivity in the draining-water system

    International Nuclear Information System (INIS)

    Endo, Keigo; Koizumi, Mitsuru; Kinoshita, Fujimi; Nakazawa, Keiji

    1999-01-01

    Radiation-safety management condition in Japanese nuclear medicine facilities were investigated by the questionnaire method. The first questionnaire was asked in all Japanese 1,401 Nuclear Medicine facilities. Answers from 624 institutes (44.5%) were received and analyzed. The radiation-safety management in nuclear medicine institutes was considered to be very well performed everyday. Opinion for the present legal control of nuclear medicine institutes was that the regulation in Japan was too strict for the clinical use of radionuclides. The current regulation is based on the assumption that 1% of all radioactivity used in nuclear medicine institutes contaminates into the draining-water system. The second questionnaire detailing the contamination of radioactivity in the draining-water system was sent to 128 institutes, and 64 answers were received. Of them, 42 institutes were considered to be enough to evaluate the contamination of radioactivity in the draining-water system. There was no difference between 624 institutes answered to the first questionnaire and 42 institutes, where the radioactivity in the draining-water system measured, in the distribution of the institute size, draining-water system equipment and the radioactivity measuring method, and these 42 institutes seemed to be representative of Japanese nuclear medicine institutes. Contamination rate of radioactivity into the draining system was calculated by the value of radioactivity in the collecting tank divided by the amount of radionuclides used daily in each institute. The institutes were divided into two categories on the basis of nuclear medicine practice pattern; type A: in-vivo use only and type B: both in-vivo and in-vitro use. The contamination rate in 27 type A institutes did not exceed 0.01%, whereas in 15 type B institutes the contamination rate distributed widely from undetectable to above 1%. These results indicated that the present regulation for the draining-water system, which assumed

  1. Best Available Technology (BAT) guidance for radiological liquid effluents at US Department of Energy Facilities

    International Nuclear Information System (INIS)

    Wallo, A. III; Peterson, H.T. Jr.; Ikenberry, T.A.; Baker, R.E.

    1993-01-01

    The US Department of Energy (DOE), in DOE Order 5400.5 (1990), directs operators of DOE facilities to apply the Best Available Technology (BAT) to control radiological liquid effluents from these facilities when specific conditions are present. DOE has published interim guidance to assist facility operators in knowing when a BAT analysis is needed and how such an analysis should be performed and documented. The purpose of the guidance is to provide a uniform basis in determining BAT throughout DOE and to assist in evaluating BAT determinations during programmatic audits. The BAT analysis process involves characterizing the effluent source; identifying and selecting candidate control technologies; evaluating the potential environmental, operational, resource, and economic impacts of the control technologies; developing an evaluation matrix for comparing the technologies; selecting the BAT; and documenting the evaluation process. The BAT analysis process provides a basis for consistent evaluation of liquid effluent releases, yet allows an individual site or facility the flexibility to address site-specific issues or concerns in the most appropriate manner

  2. Control system of liquid effluents generated in treatment with I-131

    International Nuclear Information System (INIS)

    Garcia M, T.; Ruiz C, M. A.; Angeles C, A.; Ramirez S, R.

    2015-09-01

    In recent years, nuclear medicine has developed greatly in our country and around the world. Techniques for both medical diagnosis and therapy have increased the use of radiopharmaceuticals, notably the I-131. In Mexico there are around 150 nuclear medicine establishments authorized by the Comision Nacional de Seguridad Nuclear y Salvaguardias. Most of these establishments do not have an appropriate facility for the treatment of radioactive liquid effluents, to ensure compliance with the concentration limits established in the regulations. The Instituto Nacional de Investigaciones Nucleares (ININ) developed and implemented successfully, a control system of radioactive effluents (named SACEL) from a nuclear medicine facility. This system ensures an effective compliance with regulations and also better management and control of these radioactive effluents. Calculations and design of SACEL were made with respect to I-131, because is one of the most commonly used in radiotherapy and medical diagnostics, besides its half-life is greater in relation to other radionuclides. SACEL is comprised of four storage tanks and decay and a fifth tank for measuring the concentration of I-131 and later discharge to the drain; these tanks are connected to an automated system that controls the effluents passage. The calculation to determine the volume of the tanks was carried out according to the demand that has the hospital, to the maximum activity being poured in effluents and time required to decay. In this paper the design and installation of SACEL system, in addition to functioning as a facility that enables the Hospital meet the required standards is presented. Dose calculations performed with MCNPX and the methodology used in the calibration of the detection system is also presented. (Author)

  3. Methodology for Determining Increases in Radionuclide Inventories for the Effluent Treatment Facility Process

    International Nuclear Information System (INIS)

    Blanchard, A.

    1998-01-01

    A study is currently underway to determine if the Effluent Treatment Facility can be downgraded from a Hazard Category 3 facility to a Radiological Facility per DOE STD-1027-92. This technical report provides a methodology to determine and monitor increases in the radionuclide inventories of the ETF process columns. It also provides guidelines to ensure that other potential increases to the ETF radionuclide inventory are evaluated as required to ensure that the ETF remains a Radiological Facility

  4. Survey of tritium wastes and effluents in near-term fusion-research facilities

    International Nuclear Information System (INIS)

    Bickford, W.E.; Dingee, D.A.; Willingham, C.E.

    1981-08-01

    The use of tritium control technology in near-term research facilities has been studied for both the magnetic and inertial confinement fusion programs. This study focused on routine generation of tritium wastes and effluents, with little referene to accidents or facility decommissioning. This report serves as an independent review of the effectiveness of planned control technology and radiological hazards associated with operation. The facilities examined for the magnetic fusion program included Fusion Materials Irradiation Testing Facility (FMIT), Tritium Systems Test Assembly (TSTA), and Tokamak Fusion Test Reactor (TFTR) in the magnetic fusion program, while NOVA and Antares facilities were examined for the inertial confinement program

  5. Updated on effluents releases of the CEA nuclear fuel cycle facilities - 1995 to 2010 period

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Nelson Luiz Dias [Centro Tecnologico da Marinha em Sao Paulo (CTMSP) Sao Paulo, SP (Brazil)

    2011-07-01

    The environmental impact assessment of the Centro Experimental Aramar (CEA) facilities has been presented in a former work, based on the measured effluent releases data, for the period from 1995 to 2007. This work shows the update up to 2010. The effluents releases to the environment result from the routine operation of CEA nuclear fuel cycle facilities (LEI - Isotopic Enrichment Laboratory, USIDE - Pilot Plant for Industrial Verification of Uranium Enrichment and LABMAT - Nuclear Materials Laboratory). Basically, this work presents the radioactive release source terms, as described at the CEA Effluent Report sent to the National Commission for Nuclear Energy (CNEN) each semester, and a historical assessment of the critical group annual doses from 1995 up to 2010. The assessed doses are compared to the maximum dose constraint as well as to the exemption level specified by CNEN. (author)

  6. Updated on effluents releases of the CEA nuclear fuel cycle facilities - 1995 to 2010 period

    International Nuclear Information System (INIS)

    Ferreira, Nelson Luiz Dias

    2011-01-01

    The environmental impact assessment of the Centro Experimental Aramar (CEA) facilities has been presented in a former work, based on the measured effluent releases data, for the period from 1995 to 2007. This work shows the update up to 2010. The effluents releases to the environment result from the routine operation of CEA nuclear fuel cycle facilities (LEI - Isotopic Enrichment Laboratory, USIDE - Pilot Plant for Industrial Verification of Uranium Enrichment and LABMAT - Nuclear Materials Laboratory). Basically, this work presents the radioactive release source terms, as described at the CEA Effluent Report sent to the National Commission for Nuclear Energy (CNEN) each semester, and a historical assessment of the critical group annual doses from 1995 up to 2010. The assessed doses are compared to the maximum dose constraint as well as to the exemption level specified by CNEN. (author)

  7. Environmental monitoring standardization of effluent from nuclear fuel cycle facilities in China

    International Nuclear Information System (INIS)

    Gao Mili

    1993-01-01

    China has established some environmental monitoring standards of effluent from nuclear fuel cycle facilities. Up to date 33 standards have been issued; 10 to be issued; 11 in drafting. These standards cover sampling, gross activities measurement, analytical methods and management rules and so on. They involve with almost all nuclear fuel cycle facilities and have formed a complete standards system. By the end of the century, we attempt to draft a series of analytical and determination standards in various environmental various medium, they include 36 radionuclides from nuclear fuel cycle facilities. (3 tabs.)

  8. UNC Nuclear Industries reactor and fuels production facilities 1985 effluent release report

    International Nuclear Information System (INIS)

    Rokkan, D.J.

    1986-01-01

    Analyses of routine samples from radioactive liquid and airborne streams were performed using UNC's Radioanalytical Laboratory and the analytical services of US Testing Company. All significant effluent discharges from UNC facilities to the environment during CY 1985 are reported in this document

  9. Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. Draft EIR/EIS: Executive summary

    International Nuclear Information System (INIS)

    1994-01-01

    The Southeast Regional Wastewater Treatment Plant (SERWTP) Facilities Improvement Plan and Geysers Effluent Pipeline and Effluent Injection Project are proposed as a plan to provide expanded wastewater treatment capabilities and to dispose of the effluent by injection in The Geysers geothermal field for purposes of power production. The project is located predominantly in the County of Lake, California, and also in part of Sonoma County. The plan includes various conventional facilities improvements in wastewater treatment to a secondary level of treatment at the SWERWTP. The plan includes facilities to convey the treated effluent in a 26-mile, 24-inch inside diameter pipeline to the Southeast Geysers. The wastewater from the SERWTP would be supplemented by raw lake water diverted from nearby Clear Lake. At The Geysers, the effluent would be directed into a system of distribution lines to wells. In the geothermal reservoir, the water will be converted to steam and collected in production wells that will direct the steam to six existing power plants. This document is a summary of a combined full Environmental Impact Report (EIR) and Environmental Impact Statement (EIS). The EIR/EIS describes the environmental impacts of the various components of the project. Mitigation measures are suggested for reducing impacts to a less than significant level

  10. Characterization and consequences from CEA nuclear fuel cycle facilities effluents releases - 1995 up to 2007 period

    International Nuclear Information System (INIS)

    Ferreira, Nelson Luiz Dias; Fonseca, Lizandra Pereira de Souza

    2009-01-01

    Discharges to the environment of airborne and/or liquid radioactive effluents from the normal operation of nuclear facilities can become a potential source of radiation exposure to humans. The highest exposed members of the public are defined as the critical group. The requirements for the control and monitoring of radioactive discharges to the environment and the degree of environmental monitoring required are linked to the assessed critical group dose. The assessed dose can be compared to dose constraint, which is a fraction of the annual effective dose to members of the public, as well as the level of exemption specified by the National Commission for Nuclear Energy (CNEN). Effluents releases from the Centro Experimental Aramar (CEA) facilities are registered and described at CEA Effluent Report, semestrally sent to CNEN. Basically, that report provides information related to the type and the quantity of chemical and radioactive substances released to the environment due the routine operation of CEA nuclear fuel cycle facilities (LEI - Isotopic Enrichment Laboratory, USIDE - Pilot Plant for Industrial Verification of Uranium Enrichment and LABMAT - Nuclear Materials Laboratory). CEA Annual Effluent Report includes assessment of the annual effective doses for members of the critical group for the CEA site. This work presents the characterization of the radioactive release source terms and a historical of the critical group annual doses from 1995 up to 2007. (author)

  11. Treatability studies of alternative wastewaters for Metal Finishing Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Wittry, D.M.; Martin, H.L.

    1994-01-01

    The 300-M Area Liquid Effluent Treatment Facility (LETF) of the Savannah River Site (SRS) is an end-of-pipe industrial wastewater treatment facility that uses precipitation and filtration, which is the EPA Best Available Technology economically achievable for a Metal Finishing and Aluminum Form Industries. Upon the completion of stored waste treatment, the LETF will be shut down, because production of nuclear materials for reactors stopped at the end of the Cold War. The economic use of the LETF for the treatment of alternative wastewater streams is being evaluated through laboratory bench-scale treatability studies

  12. Biofouling of microfilters at the Savannah River Site F/H-Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    McCabe, D.J.; Wiggins, A.W.; Poirier, M.R.; Hazen, T.C.

    1991-01-01

    The F/H-Effluent Treatment Facility uses state-of-the-art water treatment processes to remove contaminants from low-level radioactive wastewater at the Savannah River Site. The plant replaces seepage basins that were closed to comply with the 1984 amendments to the Resource Conservation and Recovery Act (RCRA). The facility removes both radioactive and nonradioactive contaminants from the effluents orginating from onsite waste management facilities. The unit processes involve filtration, ion exchange, activated carbon absorption, and reverse osmosis. The filtration step is prone to considerable fouling, reducing the overall throughput of the facility. The filters utilized in the process are Norton Ceraflo trademark ceramic microfilters. It was discovered that bacteria were primarily responsible for the severe filter fouling. Inorganic fouling was also observed, but was not normally as severe as the bacterial fouling. The bacteria densities necessary to induce severe fouling were not significantly higher than those often found in surface water streams. Diversion of waste streams containing the highest quantity of bacteria, and various methods of source reduction were implemented, which dramatically improved the filter performance. Addition of aluminum nitrate at low pH further improved the filter performance

  13. Biofouling of microfilters at the Savannah River Site F/H-area effluent treatment facility

    International Nuclear Information System (INIS)

    McCabe, D.J.; Wiggins, A.W.; Poirier, M.R.; Hazen, T.C.

    1992-01-01

    The F/H-Effluent Treatment Facility uses state-of-the-art water treatment processes to remove contaminants from low-level radioactive wastewater at the Savannah River Site, The plant replaces seepage basins that were closed to comply with the 1984 amendments to the Resource Conservation and Recovery Act (RCRA). The facility removes both radioactive and nonradioactive contaminants from the effluents originating from onsite waste management facilities. The unit processes involve filtration, ion exchange, activated carbon absorption, and reverse osmosis. The filtration step is prone to considerable fouling, reducing the overall throughput of the facility. The Filters utilized in the process are Norton Ceraflo ceramic microfilters. It was discovered that bacteria were primarily responsible for the severe filter fouling. Inorganic fouling was also observed, but was not normally as severe as the bacterial fouling. The bacteria densities necessary to induce severe fouling were not significantly higher than those often found in surface water streams. Diversion of waste streams containing the highest quantity of bacteria, and various methods of source reduction were implemented, which dramatically unproved the filter performance. Addition of aluminum nitrate at low pH further improved the filter performance. (author)

  14. Continuous 'Passive' Registration of Non-Point Contaminant Loads Via Agricultural Subsurface Drain Tubes

    Science.gov (United States)

    Rozemeijer, J.; Jansen, S.; de Jonge, H.; Lindblad Vendelboe, A.

    2014-12-01

    Considering their crucial role in water and solute transport, enhanced monitoring and modeling of agricultural subsurface tube drain systems is important for adequate water quality management. For example, previous work in lowland agricultural catchments has shown that subsurface tube drain effluent contributed up to 80% of the annual discharge and 90-92% of the annual NO3 loads from agricultural fields towards the surface water. However, existing monitoring techniques for flow and contaminant loads from tube drains are expensive and labor-intensive. Therefore, despite the unambiguous relevance of this transport route, tube drain monitoring data are scarce. The presented study aimed developing a cheap, simple, and robust method to monitor loads from tube drains. We are now ready to introduce the Flowcap that can be attached to the outlet of tube drains and is capable of registering total flow, contaminant loads, and flow-averaged concentrations. The Flowcap builds on the existing SorbiCells, a modern passive sampling technique that measures average concentrations over longer periods of time (days to months) for various substances. By mounting SorbiCells in our Flowcap, a flow-proportional part of the drain effluent is sampled from the main stream. Laboratory testing yielded good linear relations (R-squared of 0.98) between drainage flow rates and sampling rates. The Flowcap was tested in practice for measuring NO3 loads from two agricultural fields and one glasshouse in the Netherlands. The Flowcap registers contaminant loads from tube drains without any need for housing, electricity, or maintenance. This enables large-scale monitoring of non-point contaminant loads via tube drains, which would facilitate the improvement of contaminant transport models and would yield valuable information for the selection and evaluation of mitigation options to improve water quality.

  15. Recommended parameters for effect assessment of radioactive airborne effluents under normal condition of nuclear facilities

    International Nuclear Information System (INIS)

    Li Hong; Fang Dong; Sun Chengzhi; Xiao Naihong

    2003-01-01

    A set of models and default parameters are recommended for effect assessment of radioactive airborne effluents under normal condition of nuclear facilities in order to standardize the environmental effect assessment of nuclear facilities, and to simplify the observation and investigation in early phase. The paper introduces the input data and default parameters used in the model

  16. Behavior and removal of organic species in the Savannah River Plant effluent treatment facility

    International Nuclear Information System (INIS)

    Oblath, S.B.; Georgeton, G.K.

    1988-01-01

    The effluent treatment facility (ETF) at the Savannah River Plant (SRP) is a new facility designed to treat and decontaminate low-level radioactive wastewater prior to release to the environment. The wastewater is primarily composed of evaporator overheads from the chemical separations and waste handling facilities at SRP. Primarily a 2000 mg/L NaNO 3 solution, the wastewater also contains microcurie-per-liter quantities of radionuclides and milligram-per-liter concentrations of heavy metals and organic components. This paper shows a block diagram of the major process steps. The pH adjustment, filtration, mercury removal, reverse osmosis, and cation-exchange polishing steps give a significant reduction of inorganic species and radionuclide (except trittium) concentrations. The activated carbon removal step was recently added to remove organic species to ensure that the effluent discharge permit limits for oil and grease and biochemical oxygen demand are met. The concentrates and regenerates from each of the treatment steps are further concentrated by evaporation to reduce the volume sufficiently for incorporation into and disposal as a grout

  17. Control of semivolatile radionuclides in gaseous effluents at nuclear facilities

    International Nuclear Information System (INIS)

    1982-01-01

    An up-to-date review is presented of the subject, combining the results of laboratory studies on control of the most important semivolatile radionuclides in gaseous effluents at nuclear facilities and the results of operating experience in that area. Ruthenium is the most significant semivolatile contaminant in gaseous effluents at nuclear facilities. Volatilization of ruthenium can be reduced by various means, in particular by adding reductants. Volatilized ruthenium can be retained by adsorbents such as silica gel and ferric-oxide-based materials. Decontamination factors in the order of 10 3 have been obtained with these adsorbents under optimum conditions. Volatilized ruthenium can also be removed by other equipment such as condensers and scrubbers. Experience with high-level liquid waste solidification plants has shown that, in general, ruthenium volatilization is in the order of 10% or more unless special treatment is undertaken. There is little experience with ruthenium adsorbers in plants. Silica gel seems to have performed best, with ruthenium decontamination factors of about 10 2 to 10 3 . However, feed-to-stack ruthenium decontamination factors of 10 9 or more have been obtained even without ruthenium adsorbers. Other semivolatiles are relatively insignificant under normal conditions because of a low level of volatilization potential or mass or activity in the inventory. Moreover, owing to particulate formation, they can be easily removed without specific equipment

  18. Phase 1 Testing Results of Immobilization of WTP Effluent Management Facility Evaporator Bottoms Core Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, Alex D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-05

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate, along with entrained, volatile, and semi-volatile metals, such as Hg, As, and Se. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate that get recycled to the melter, and is a key objective of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of earlier tasks was to formulate and prepare a

  19. Pilot-scale ultrafiltration testing for the F and H area effluent treatment facility

    International Nuclear Information System (INIS)

    Kessler, J.L.

    1984-01-01

    An F and H Area Effluent Treatment Facility (F/H ETF) is being designed to treat low activity aqueous effluents which are produced from F and H Area daily operations. The treatment scheme for the F/H ETF will include pretreatment (pH adjustment and filtration) followed by Reverse Osmosis and/or Ion Exchange to remove dissolved species. Several alternative treatment processes are being considered for the F/H ETF. One of the alternatives in the pretreatment step is tubular Ultrafiltration (UF), using a dynamically formed zirconium oxide membrane supported on a porous stainless steel backing. Pilot-scale testing with a single membrane module (13 ft 2 area) and 200-Area effluent simulant has demonstrated that UF is a viable filtration option for the F/H ETF. UF testing at TNX has defined the operating conditions necessary for extended operation and also demonstrated excellent filtration performance (filtrate SDI 2 /day) flux and will provide excellent pretreatment for both reverse osmosis and ion exchange. 2 refs

  20. Effluent Containment System for space thermal nuclear propulsion ground test facilities

    International Nuclear Information System (INIS)

    1995-08-01

    This report presents the research and development study work performed for the Space Reactor Power System Division of the U.S. Department of Energy on an innovative ECS that would be used during ground testing of a space nuclear thermal rocket engine. A significant portion of the ground test facilities for a space nuclear thermal propulsion engine are the effluent treatment and containment systems. The proposed ECS configuration developed recycles all engine coolant media and does not impact the environment by venting radioactive material. All coolant media, hydrogen and water, are collected, treated for removal of radioactive particulates, and recycled for use in subsequent tests until the end of the facility life. Radioactive materials removed by the treatment systems are recovered, stored for decay of short-lived isotopes, or packaged for disposal as waste. At the end of the useful life, the facility will be decontaminated and dismantled for disposal

  1. F/H Effluent Treatment Facility. Preliminary engineering report

    International Nuclear Information System (INIS)

    1985-01-01

    The Department of Energy is currently proposing to construct the F/H ETF to process wastewater from the Separations Areas and replace the existing seepage basins. Reasons for seepage basin closure are two-fold. First, nonradioactive hazardous materials routinely discharged to the seepage basins may have adversely impacted the quality of the groundwater in the vicinity of the basins. Second, amendments to the Resource Conservation and Recovery Act (RCRA) were approved in 1984, prohibiting the discharge of hazardous wastes to unlined seepage basins after November, 1988. The F/H ETF will consist of wastewater storage facilities and a treatment plant discharging treated effluent to Upper Three Runs Creek. Seepage basin use in F and H Areas wil be discontinued after startup, allowing timely closure of these basins. 3 refs

  2. Results of the F/H Effluent Treatment Facility biological monitoring program, July 1987--July 1991

    International Nuclear Information System (INIS)

    Specht, W.L.

    1992-07-01

    As required by the South Carolina Department of Health and Environmental Control (SCDHEC) under NPDES Permit SCO000175, biological monitoring was conducted in Upper Three Runs Creek to determine if discharges from the F/H Effluent Treatment Facility have adversely impacted the biotic community of the receiving stream. Data included in this summary report encompass July 1987 through July 1991. As originally designed, the F/H ETF was not expected to remove all of the mercury from the wastewater; therefore, SCDHEC specified that studies be conducted to determine if mercury was bioaccumulating in aquatic biota. Subsequent to approval of the biological monitoring program, an ion exchange column was added to the F/H ETF specifically to remove mercury, which eliminated mercury from the F/H ETF effluent. The results of the biological monitoring program indicate that at the present rate of discharge, the F/H ETF effluent has not adversely affected the receiving stream with respect to any of the parameters that were measured. The effluent is not toxic at the in-stream waste concentration and there is no evidence of mercury bioaccumulation

  3. General principles governing sampling and measurement techniques for monitoring radioactive effluents from nuclear facilities

    International Nuclear Information System (INIS)

    Fitoussi, L.

    1978-01-01

    An explanation is given of the need to monitor the release of radioactive gases and liquid effluents from nuclear facilities, with particular emphasis on the ICRP recommendations and on the interest in this problem shown by the larger international organizations. This is followed by a description of the classes of radionuclides that are normally monitored in this way. The characteristics of monitoring 'in line' and 'by sample taking' are described; the disadvantages of in line monitoring and the problem of sample representativity are discussed. There follows an account of the general principles for measuring gaseous and liquid effluents that are applied in the techniques normally employed at nuclear facilities. Standards relating to the specifications for monitoring instruments are at present being devised by the International Electrotechnical Commission, and there are still major differences in national practices, at least as far as measurement thresholds are concerned. In conclusion, it is shown that harmonization of practices and standardization of equipment would probably help to make international relations in the field more productive. (author)

  4. Groundwater monitoring plan for the Hanford Site 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    DB Barnett

    2000-01-01

    Seven years of groundwater monitoring at the 200 Area Treated Effluent Disposal Facility (TEDF) have shown that the uppermost aquifer beneath the facility is unaffected by TEDF effluent. Effluent discharges have been well below permitted and expected volumes. Groundwater mounding from TEDF operations predicted by various models has not been observed, and waterlevels in TEDF wells have continued declining with the dissipation of the nearby B Pond System groundwater mound. Analytical results for constituents with enforcement limits indicate that concentrations of all these are below Practical Quantitation Limits, and some have produced no detections. Likewise, other constituents on the permit-required list have produced results that are mostly below sitewide background. Comprehensive geochemical analyses of groundwater from TEDF wells has shown that most constituents are below background levels as calculated by two Hanford Site-wide studies. Additionally, major ion proportions and anomalously low tritium activities suggest that groundwater in the aquifer beneath the TEDF has been sequestered from influences of adjoining portions of the aquifer and any discharge activities. This inference is supported by recent hydrogeologic investigations which indicate an extremely slow rate of groundwater movement beneath the TEDF. Detailed evaluation of TEDF-area hydrogeology and groundwater geochemistry indicate that additional points of compliance for groundwater monitoring would be ineffective for this facility, and would produce ambiguous results. Therefore, the current groundwater monitoring well network is retained for continued monitoring. A quarterly frequency of sampling and analysis is continued for all three TEDF wells. The constituents list is refined to include only those parameters key to discerning subtle changes in groundwater chemistry, those useful in detecting general groundwater quality changes from upgradient sources, or those retained for comparison with end

  5. Americium/curium bushing melter drain tests

    International Nuclear Information System (INIS)

    Smith, M.E.; Hardy, B.J.; Smith, M.E.

    1997-01-01

    Americium and curium were produced in the past at the Savannah River Site (SRS) for research, medical, and radiological applications. They have been stored in a nitric acid solution in an SRS reprocessing facility for a number of years. Vitrification of the americium/curium (Am/Cm) solution will allow the material to be safely stored or transported to the DOE Oak Ridge Reservation. Oak Ridge is responsible for marketing radionuclides for research and medical applications. The bushing melter technology being used in the Am/Cm vitrification research work is also under consideration for the stabilization of other actinides such as neptunium and plutonium. A series of melter drain tests were conducted at the Savannah River Technology Center to determine the relationship between the drain tube assembly operating variables and the resulting pour initiation times, glass flowrates, drain tube temperatures, and stop pour times. Performance criteria such as ability to start and stop pours in a controlled manner were also evaluated. The tests were also intended to provide support of oil modeling of drain tube performance predictions and thermal modeling of the drain tube and drain tube heater assembly. These drain tests were instrumental in the design of subsequent melter drain tube and drain tube heaters for the Am/Cm bushing melter, and therefore in the success of the Am/Cm vitrification and plutonium immobilization programs

  6. Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. Draft EIR/EIS, Volume 2 of 2: Appendices

    International Nuclear Information System (INIS)

    1994-01-01

    The Southeast Regional Wastewater Treatment Plant (SERWTP) Facilities Improvement Plan and Geysers Effluent Pipeline and Effluent Injection Project are proposed as a plan to provide expanded wastewater treatment capabilities and to dispose of the effluent by injection in The Geysers geothermal field for purposes of power production. The project is located predominantly in the County of Lake, California, and also in part of Sonoma County. The plan includes various conventional facilities improvements in wastewater treatment to a secondary level of treatment at the SWERWTP. The plan includes facilities to convey the treated effluent in a 26-mile, 24-inch inside diameter pipeline to the Southeast Geysers. The wastewater from the SERWTP would be supplemented by raw lake water diverted from nearby Clear Lake. At The Geysers, the effluent would be directed into a system of distribution lines to wells. In the geothermal reservoir, the water will be converted to steam and collected in production wells that will direct the steam to six existing power plants. This document is a summary of a combined full Environmental Impact Report (EIR) and Environmental Impact Statement (EIS). The EIR/EIS describes the environmental impacts of the various components of the project. Mitigation measures are suggested for reducing impacts to a less than significant level. This report contains appendices A and B. Appendix A contains notices of preparation/notices of intent and EIR/EIS scoping comments. Appendix B contains GeothermEx, Inc., analysis of Geothermal Reservoir Effects and Induced Seismicity

  7. Waste Treatment Plant Liquid Effluent Treatability Evaluation

    International Nuclear Information System (INIS)

    LUECK, K.J.

    2001-01-01

    Bechtel National, Inc. (BNI) provided a forecast of the radioactive, dangerous liquid effluents expected to be generated by the Waste Treatment Plant (WTP). The forecast represents the liquid effluents generated from the processing of 25 distinct batches of tank waste through the WTP. The WTP liquid effluents will be stored, treated, and disposed of in the Liquid Effluent Retention Facility (LERF) and the Effluent Treatment Facility (ETF). Fluor Hanford, Inc. (FH) evaluated the treatability of the WTP liquid effluents in the LERFIETF. The evaluation was conducted by comparing the forecast to the LERFIETF treatability envelope, which provides information on the items that determine if a liquid effluent is acceptable for receipt and treatment at the LERFIETF. The WTP liquid effluent forecast is outside the current LERFlETF treatability envelope. There are several concerns that must be addressed before the WTP liquid effluents can be accepted at the LERFIETF

  8. Assessment of the estrogenic potency of effluents from petrochemical facilities and a petroleum refinery in Ontario

    International Nuclear Information System (INIS)

    Sherry, J.P.; Trepanier, T.; Tinson, C.; Munro, S.

    2002-01-01

    Studies have shown that wastewater from refineries could induce vitellogenin (Vg) in juvenile rainbow trout. Vg is a biomarker of exposure to estrogenic chemicals. This study reassessed the estrogenic potency of the wastewater from an Ontario refinery and assessed the estrogenicity of wastewater from 3 petrochemical facilities. A 21 day static renewal test was conducted to test the effluents and in which a competitive binding ELISA detected induced Vg. Statistical testing for tank effects was performed in a replicated tank design and the St. Clair River water from upstream industrial facilities was used as a negative reference. The positive control treatment was waterborne 17β-estradiol. Wastewater from the petroleum refinery induced Vg in the treated fish, but wastewater from the petrochemical effluents did not induce detectable levels of Vg in treated trout. The information obtained through this study will be used to determine the potential for responses in feral fish

  9. Nuclear plant refurbishment calls for patience. [Construction of radioactive effluent plant

    Energy Technology Data Exchange (ETDEWEB)

    Henly, Anna

    1989-08-01

    All nuclear power plants produce a small quantity of liquid effluent from wash hand basins, showers and surface drains on the site. The effluent is termed low-level radioactive waste and under the 'Radioactive Substances Act' can be discharged into estuaries or the sea. Before a controlled discharge can be made the effluent has to be chemically treated and have any radioactive particulate matter removed. The replacing of the radioactive effluent plant at the Berkeley nuclear power station in the United Kingdom is described, with particular reference to the vigorous safety standards and quality assurance programme operated by the Central Electricity Generating Board. (author).

  10. Contaminant Characterization of Effluent from Pennsylvania Brine Treatment, Inc., Josephine Facility: Implications for Disposal of Oil and Gas Flowback Fluids from Brine Treatment Plants

    Science.gov (United States)

    The PBT-Josephine Facility accepts only wastewater from the oil and gas industry. This report describes the concentrations of selected contaminants in the effluent water and compares the contaminant effluent concentrations to state and federal standards.

  11. USERDA effluent data collection and reporting program

    International Nuclear Information System (INIS)

    Elle, D.R.; Schoen, A.A.

    1978-01-01

    Effluent and environmental monitoring has been conducted at United States Energy Research and Development Administration (formerly United States Atomic Energy Commission) facilities and sites virtually since the inception of atomic energy research and development. In 1971, computer systems were developed that permitted storage of information and data characterizing each effluent and onsite discharge point and relevant information on sources, effluent treatment and control systems, and discharge data, and serve as ERDA's computer-based management information systems for compiling waste discharge control and monitoring data on radioactivity released as airborne or liquid effluents or liquid discharges to onsite retention basins at ERDA facilities. The information systems and associated data outputs have proved to be an effective internal management tool for identifying effluent control problem areas and for surveying an agencywide Radioactive Effluent Reduction Program. The trend data facilitate the detection of gradual changes in the effectiveness of waste treatment systems, and errors or oversights in monitoring and data handling. Other computer outputs are useful for identifying effluent release points that have significantly higher or lower concentrations or quantities in the discharge stream than were measured the previous year. The year-to-year trend reports and the extensive computer edit and error checks have improved the reliability of the reported effluent data. Adoption of a uniform, centralized reporting system has improved the understanding and credibility of effluent data, and has allowed management to evaluate the effectiveness of effluent control practices at ERDA facilities. (author)

  12. PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY

    International Nuclear Information System (INIS)

    Halgren, D.L.

    2010-01-01

    The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the same six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft 2 ) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.

  13. Hanford 300 Area Treated Effluent Disposal Facility inventory at risk calculations and safety analysis

    International Nuclear Information System (INIS)

    Olander, A.R.

    1995-11-01

    The 300 Area Treated Effluent Disposal Facility (TEDF) is a wastewater treatment plant being constructed to treat the 300 Area Process Sewer and Retention Process Sewer. This document analyzes the TEDF for safety consequences. It includes radionuclide and hazardous chemical inventories, compares these inventories to appropriate regulatory limits, documents the compliance status with respect to these limits, and identifies administrative controls necessary to maintain this status

  14. Formulation and preparation of Hanford Waste Treatment Plant direct feed low activity waste Effluent Management Facility core simulant

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL; Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL

    2016-05-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter

  15. Control system of liquid effluents generated in treatment with I-131; Sistema de control de efluentes liquidos generados en el tratamiento con I-131

    Energy Technology Data Exchange (ETDEWEB)

    Garcia M, T.; Ruiz C, M. A.; Angeles C, A.; Ramirez S, R., E-mail: teodoro.garcia@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    In recent years, nuclear medicine has developed greatly in our country and around the world. Techniques for both medical diagnosis and therapy have increased the use of radiopharmaceuticals, notably the I-131. In Mexico there are around 150 nuclear medicine establishments authorized by the Comision Nacional de Seguridad Nuclear y Salvaguardias. Most of these establishments do not have an appropriate facility for the treatment of radioactive liquid effluents, to ensure compliance with the concentration limits established in the regulations. The Instituto Nacional de Investigaciones Nucleares (ININ) developed and implemented successfully, a control system of radioactive effluents (named SACEL) from a nuclear medicine facility. This system ensures an effective compliance with regulations and also better management and control of these radioactive effluents. Calculations and design of SACEL were made with respect to I-131, because is one of the most commonly used in radiotherapy and medical diagnostics, besides its half-life is greater in relation to other radionuclides. SACEL is comprised of four storage tanks and decay and a fifth tank for measuring the concentration of I-131 and later discharge to the drain; these tanks are connected to an automated system that controls the effluents passage. The calculation to determine the volume of the tanks was carried out according to the demand that has the hospital, to the maximum activity being poured in effluents and time required to decay. In this paper the design and installation of SACEL system, in addition to functioning as a facility that enables the Hospital meet the required standards is presented. Dose calculations performed with MCNPX and the methodology used in the calibration of the detection system is also presented. (Author)

  16. F/H Effluent Treatment Facility filtration upgrade alternative evaluations overview

    Energy Technology Data Exchange (ETDEWEB)

    Miles, W.C. Jr.; Poirier, M.R.; Brown, D.F.

    1992-01-01

    The F/H Effluent Treatment Facility (ETF) at the Savannah River Site (SRS) was designed to treat process wastewater from the 200-F/H Production Facilities (routine wastewater) as well as intermittent flows from the F/H Retention Basins and F/H Cooling Water Basins (nonroutine wastewater). Since start-up of the ETF at SRS in 1988, the treatment process has experienced difficulties processing routine and nonroutine wastewater. Studies have identified high bacteria and bacterial decomposition products in the wastewater as the cause for excessive fouling of the filtration system. In order to meet Waste Management requirements for the treatment of processed wastewater, an upgrade of the ETF filtration system is being developed. This upgrade must be able to process the nonroutine wastewater at design capacity. As a result, a study of alternative filter technologies was conducted utilizing simulated wastewater. The simulated wastewater tests have been completed. Three filter technologies, centrifugal polymeric ultrafilters, tubular polymeric ultrafilters, and backwashable cartridge filters have been selected for further evaluation utilizing actual ETF wastewater.

  17. F/H Effluent Treatment Facility filtration upgrade alternative evaluations overview

    Energy Technology Data Exchange (ETDEWEB)

    Miles, W.C. Jr.; Poirier, M.R.; Brown, D.F.

    1992-07-01

    The F/H Effluent Treatment Facility (ETF) at the Savannah River Site (SRS) was designed to treat process wastewater from the 200-F/H Production Facilities (routine wastewater) as well as intermittent flows from the F/H Retention Basins and F/H Cooling Water Basins (nonroutine wastewater). Since start-up of the ETF at SRS in 1988, the treatment process has experienced difficulties processing routine and nonroutine wastewater. Studies have identified high bacteria and bacterial decomposition products in the wastewater as the cause for excessive fouling of the filtration system. In order to meet Waste Management requirements for the treatment of processed wastewater, an upgrade of the ETF filtration system is being developed. This upgrade must be able to process the nonroutine wastewater at design capacity. As a result, a study of alternative filter technologies was conducted utilizing simulated wastewater. The simulated wastewater tests have been completed. Three filter technologies, centrifugal polymeric ultrafilters, tubular polymeric ultrafilters, and backwashable cartridge filters have been selected for further evaluation utilizing actual ETF wastewater.

  18. F/H effluent treatment facility filtration upgrade alternative evaluations overview

    International Nuclear Information System (INIS)

    Miles, W.C. Jr.; Poirier, M.R.; Brown, D.F.

    1992-01-01

    The F/H Effluent Treatment Facility (ETF) at the Savannah River Site (SRS) was designed to treat process wastewater from the 200-F/H Production Facilities (routine wastewater) as well as intermittent flows from the F/H Retention Basins and F/H Cooling Water Basins (nonroutine wastewater). Since start-up of the ETF at SRS in 1988, the treatment process has experienced difficulties processing routine and nonroutine wastewater. Studies have identified high bacteria and bacterial decomposition products in the wastewater as the cause for excessive fouling of the filtration system. In order to meet Waste Management requirements for the treatment of processed wastewater, an upgrade of the ETF filtration system is being developed. This upgrade must be able to process the nonroutine wastewater at design capacity. As a result, a study of alternative filter technologies was conducted utilizing simulated wastewater. The simulated wastewater tests have been completed. Three filter technologies, centrifugal polymeric ultrafilters, tubular polymeric ultrafilters, and backwashable cartridge filters have been selected for further evaluation utilizing actual ETF wastewater. (author)

  19. Epidemiological studies on salmonella in a certain area ("Walcheren project") III. The presence of salmonella in man, insects, seagulls and in foods, chopping-block scrapings from butcher's shops, effluent of sewage treatment plants and drains of butcher's shops.

    Science.gov (United States)

    Edel, W; van Schothorst, M; van Leusden, F M; Kampelmacher, E H

    1978-12-01

    For a period of three months in a relatively small area (Walcheren), various materials (meat and meat products, insects, seagull droppings, chopping-block scrapings from butcher's shops, effluent of sewage treatment plants, drains from butcher's shops and stools of patients) were examined again for the presence of Salmonella as a continuation of previous investigations. As had been the case in previous studies, S. typhimurium (27.5%), S. panama (22.2%) and S. brandenburg (9.2%) were the three most frequently isolated serotypes. The three most frequently isolated phage types of S. typhimurium were II 505 (62.1%) II 502 (5.3%) and I 650 (4.2%). The serotypes and phage types were present in almost all the materials examined which again emphasizes the fact that there are contamination cycles of Salmonella. These studies show that the route of contamination divides in the butcher's shops. Salmonella organisms carried with the meat from the slaughter-house find their way into the drains on the one hand, and through meat and meat products, to the consumer on the other. Moreover, the high degree of contamination of effluent is not in accordance with the small number of cases of salmonellosis in man.

  20. Evaluation of groundwater monitoring results at the Hanford Site 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    Barnett, D.B.

    1998-09-01

    The Hanford Site 200 Area Treated Effluent Disposal Facility (TEDF) has operated since June 1995. Groundwater monitoring has been conducted quarterly in the three wells surrounding the facility since 1992, with contributing data from nearby B Pond System wells. Cumulative hydrologic and geochemical information from the TEDF well network and other surrounding wells indicate no discernable effects of TEDF operations on the uppermost aquifer in the vicinity of the TEDF. The lateral consistency and impermeable nature of the Ringold Formation lower mud unit, and the contrasts in hydraulic conductivity between this unit and the vadose zone sediments of the Hanford formation suggest that TEDF effluent is spreading laterally with negligible mounding or downward movement into the uppermost aquifer. Hydrographs of TEDF wells show that TEDF operations have had no detectable effects on hydraulic heads in the uppermost aquifer, but show a continuing decay of the hydraulic mound generated by past operations at the B Pond System. Comparison of groundwater geochemistry from TEDF wells and other, nearby RCRA wells suggests that groundwater beneath TEDF is unique; different from both effluent entering TEDF and groundwater in the B Pond area. Tritium concentrations, major ionic proportions, and lower-than-background concentrations of other species suggest that groundwater in the uppermost aquifer beneath the TEDF bears characteristics of water in the upper basalt confined aquifer system. This report recommends retaining the current groundwater well network at the TEDF, but with a reduction of sampling/analysis frequency and some modifications to the list of constituents sought

  1. Waste Management Effluent Treatment Facility: Phase I. CAC basic data

    International Nuclear Information System (INIS)

    Gemar, D.W.; O'Leary, C.D.

    1984-01-01

    In order to expedite design and construction of the Waste Management Effluent Treatment Facility (WMETF), the project has been divided into two phases. Phase I consists of four storage basins and the associated transfer lines, diversion boxes, and control rooms. The design data pertaining to Phase I of the WMETF project are presented together with general background information and objectives for both phases. The project will provide means to store and decontaminate wastewater streams that are currently discharged to the seepage basins in F Area and H Area. This currently includes both routine process flows sent directly to the seepage basins and diversions of contaminated cooling water or storm water runoff that are stored in the retention basins before being pumped to the seepage basins

  2. Computer software design description for the Treated Effluent Disposal Facility (TEDF), Project L-045H, Operator Training Station (OTS)

    International Nuclear Information System (INIS)

    Carter, R.L. Jr.

    1994-01-01

    The Treated Effluent Disposal Facility (TEDF) Operator Training Station (OTS) is a computer-based training tool designed to aid plant operations and engineering staff in familiarizing themselves with the TEDF Central Control System (CCS)

  3. Guide for effluent radiological measurements at DOE installations

    International Nuclear Information System (INIS)

    Corley, J.P.; Corbit, C.D.

    1983-07-01

    Effluent monitoring and reporting programs are maintained at all US Department of Energy (DOE) facilities that may: (1) discharge significant concentrations of radioactivity in relation to applicable standards, or (2) discharge quantities of radioactivity that have potential health and safety or other environmental significance. This Guide is intended to provide supplemental guidance to DOE Orders on methods, procedures, and performance criteria to bring more comparable rationale to DOE facility effluent measurement programs and promote compliance with applicable standards and provide the DOE Office of Operational Safety (OOS) and Operations Offices with an additional tool for evaluating effluent measurement programs at DOE facilities

  4. Cleanup Verification Package for the 116-K-2 Effluent Trench

    International Nuclear Information System (INIS)

    Capron, J.M.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 116-K-2 effluent trench, also referred to as the 116-K-2 mile-long trench and the 116-K-2 site. During its period of operation, the 116-K-2 site was used to dispose of cooling water effluent from the 105-KE and 105-KW Reactors by percolation into the soil. This site also received mixed liquid wastes from the 105-KW and 105-KE fuel storage basins, reactor floor drains, and miscellaneous decontamination activities

  5. TBP production plant effluent treatment process

    International Nuclear Information System (INIS)

    Sriniwas, C.; Sugilal, G.; Wattal, P.K.

    2004-06-01

    TBP production facility at Heavy Water Plant, Talcher generates about 2000 litres of effluent per 200 kg batch. The effluent is basically an aqueous solution containing dissolved and dispersed organics such as dibutyl phosphate, butanol etc. The effluent has high salinity, chemical oxygen demand (30-80 g/L) and pungent odour. It requires treatment before discharge. A chemical precipitation process using ferric chloride was developed for quantitative separation of organics from the aqueous part of the effluent. This process facilitates the discharge of the aqueous effluent. Results of the laboratory and bench scale experiments on actual effluent samples are presented in this report. (author)

  6. Effluent Information System (EIS) / Onsite Discharge Information System (ODIS): 1986 executive summary

    International Nuclear Information System (INIS)

    Watanabe, T.

    1987-09-01

    Department of Energy (DOE) data base systems aid DOE-Headquarters and Field Offices in managing the radioactive air and liquid effluents from DOE facilities. Data on effluents released offsite are entered into effluent information system (EIS) and data on effluents discharged onsite and retained onsite are entered into Onsite Discharge Information System (ODIS). This document is a summary of information obtained from the CY 1986 effluent data received from all DOE and DOE contractor facilities and entered in the data bases. Data from previous years are also included. The summary consists of information for effluents released offsite, and information for effluents retained onsite

  7. WASTE TREATMENT PLANT (WTP) LIQUID EFFLUENT TREATABILITY EVALUATION

    International Nuclear Information System (INIS)

    LUECK, K.J.

    2004-01-01

    A forecast of the radioactive, dangerous liquid effluents expected to be produced by the Waste Treatment Plant (WTP) was provided by Bechtel National, Inc. (BNI 2004). The forecast represents the liquid effluents generated from the processing of Tank Farm waste through the end-of-mission for the WTP. The WTP forecast is provided in the Appendices. The WTP liquid effluents will be stored, treated, and disposed of in the Liquid Effluent Retention Facility (LERF) and the Effluent Treatment Facility (ETF). Both facilities are located in the 200 East Area and are operated by Fluor Hanford, Inc. (FH) for the US. Department of Energy (DOE). The treatability of the WTP liquid effluents in the LERF/ETF was evaluated. The evaluation was conducted by comparing the forecast to the LERF/ETF treatability envelope (Aromi 1997), which provides information on the items which determine if a liquid effluent is acceptable for receipt and treatment at the LERF/ETF. The format of the evaluation corresponds directly to the outline of the treatability envelope document. Except where noted, the maximum annual average concentrations over the range of the 27 year forecast was evaluated against the treatability envelope. This is an acceptable approach because the volume capacity in the LERF Basin will equalize the minimum and maximum peaks. Background information on the LERF/ETF design basis is provided in the treatability envelope document

  8. Liquid effluent retention facility final-status groundwater monitoring plan

    International Nuclear Information System (INIS)

    Sweeney, M.D.; Chou, C.J.; Bjornstad, B.N.

    1997-09-01

    The following sections describe the groundwater-monitoring program for the Liquid Effluent Retention Facility (LERF). The LERF is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA). The LERF is included in the open-quotes Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, Permit WA890008967close quotes, (referred to herein as the Permit) (Ecology 1994) and is subject to final-status requirements for groundwater monitoring (WAC 173-303-645). This document describes a RCRA/WAC groundwater detection-monitoring program for groundwater in the uppermost aquifer system at the LERF. This plan describes the LERF monitoring network, constituent list, sampling schedule, statistical methods, and sampling and analysis protocols that will be employed for the LERF. This plan will be used to meet the groundwater monitoring requirements from the time the LERF becomes part of the Permit and through the post-closure care period, until certification of final closure

  9. Effluent treatment plant and decontamination centre, Trombay

    International Nuclear Information System (INIS)

    Kaushik, C.P.; Agarwal, K.

    2017-01-01

    The Bhabha Atomic Research Centre, Trombay, has a number of plants and laboratories, which generate Radioactive Liquid Waste and Protective Wears. Two facilities have been established in late 1960s to cater to this requirement. The Centre, on the average generates about 50,000 m"3 of active liquid effluents of varying specific activities. The Effluent Treatment Plant was setup to receive and process radioactive liquids generated by various facilities of BARC in Trombay. It also serves a single-point discharge facility to enable monitoring of radioactive effluents discharged from the Trombay site. About 120-150 Te of protective wears and inactive apparel are generated annually from various radioactive facilities and laboratories of BARC. In addition, contaminated fuel assembly components are generated by DHRUVA and formerly by CIRUS. These components require decontamination before its recycle to the fuel assembly process. The Decontamination Centre, setup in late 1960s, is mandated to carry out the above mentioned decontamination activities

  10. 200 Area effluent treatment facility process control plan 98-02

    International Nuclear Information System (INIS)

    Le, E.Q.

    1998-01-01

    This Process Control Plan (PCP) provides a description of the background information, key objectives, and operating criteria defining Effluent Treatment Facility (ETF) Campaign 98-02 as required per HNF-IP-0931 Section 37, Process Control Plans. Campaign 98-62 is expected to process approximately 18 millions gallons of groundwater with an assumption that the UP-1 groundwater pump will be shut down on June 30, 1998. This campaign will resume the UP-1 groundwater treatment operation from Campaign 97-01. The Campaign 97-01 was suspended in November 1997 to allow RCRA waste in LERF Basin 42 to be treated to meet the Land Disposal Restriction Clean Out requirements. The decision to utilize ETF as part of the selected interim remedial action of the 200-UP-1 Operable Unit is documented by the Declaration of the Record of Decision, (Ecology, EPA and DOE 1997). The treatment method was chosen in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), the Hanford Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement or TPA), and to the extent practicable, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP)

  11. Tritium monitoring in groundwater and evaluation of model predictions for the Hanford Site 200 Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Barnett, D.B.; Bergeron, M.P.; Cole, C.R.; Freshley, M.D.; Wurstner, S.K.

    1997-08-01

    The Effluent Treatment Facility (ETF) disposal site, also known as the State-Approved Land Disposal Site (SALDS), receives treated effluent containing tritium, which is allowed to infiltrate through the soil column to the water table. Tritium was first detected in groundwater monitoring wells around the facility in July 1996. The SALDS groundwater monitoring plan requires revision of a predictive groundwater model and reevaluation of the monitoring well network one year from the first detection of tritium in groundwater. This document is written primarily to satisfy these requirements and to report on analytical results for tritium in the SALDS groundwater monitoring network through April 1997. The document also recommends an approach to continued groundwater monitoring for tritium at the SALDS. Comparison of numerical groundwater models applied over the last several years indicate that earlier predictions, which show tritium from the SALDS approaching the Columbia River, were too simplified or overly robust in source assumptions. The most recent modeling indicates that concentrations of tritium above 500 pCi/L will extend, at most, no further than ∼1.5 km from the facility, using the most reasonable projections of ETF operation. This extent encompasses only the wells in the current SALDS tritium-tracking network

  12. 216-Z-8 French drain characterization study

    International Nuclear Information System (INIS)

    Marratt, M.C.; Kasper, R.B.; Van Luik, A.E.

    1984-09-01

    The 216-Z-8 French drain study is one of a series of studies examining historical transuranic waste facilities no longer in use at the Hanford Site. The 216-Z-8 French drain underground disposal system consisted of a large settling tank that overflowed into a French drain. The French drain consisted of two large-diameter, gravel filled, vitrified clay pipes placed on end, end-to-end, over a gravel-filled excavation. The top of the drain was sealed with concrete to prevent the upward flow of waste solution. The waste solution discharged to the 216-Z-8 waste disposal system was a neutralized, transuranic recovery process, filter cake, backflush slurry. The primary objective of this study was to determine the distribution of plutonium and americium beneath the French drain. Transuranic activity under the French drain did not exceed 5 nCi/g in the soil samples obtained from a well within 1 m of the drain structure. Conservative estimates indicated that 4 to 5 m 3 of radioactive contaminated sediments, 10 nCi/g may lie directly under the 216-Z-8 French drain. The secondary objective of the study was to evaluate the possibility of a leak in the settling tank. Results from the analysis of soil samples from wells drilled around the settling tank indicated the presence of low-level transuranic contamination (on the order of 0.001 nci/g) in the soil surrounding the tank. However, the distribution of the contamination does not support a leak as a plausible mechanism to account for the observed activity surrounding the tank. The bulk of the plutonium was confirmed to be in the sludge that remained in the tank; thus, no significant environmental impact would be expected even if there has been a leak

  13. EFFLUENT TREATMENT FACILITY PEROXIDE DESTRUCTION CATALYST TESTING

    International Nuclear Information System (INIS)

    HALGREN DL

    2008-01-01

    The 200 Area Effluent Treatment Facility (ETF) main treatment train includes the peroxide destruction module (PDM) where the hydrogen peroxide residual from the upstream ultraviolet light/hydrogen peroxide oxidation unit is destroyed. Removal of the residual peroxide is necessary to protect downstream membranes from the strong oxidizer. The main component of the PDM is two reaction vessels utilizing granular activated carbon (GAC) as the reaction media. The PDM experienced a number of operability problems, including frequent plugging, and has not been utilized since the ETF changed to groundwater as the predominant feed. The unit seemed to be underperforming in regards to peroxide removal during the early periods of operation as well. It is anticipated that a functional PDM will be required for wastewater from the vitrification plant and other future streams. An alternate media or methodology needs to be identified to replace the GAC in the PDMs. This series of bench scale tests is to develop information to support an engineering study on the options for replacement of the existing GAC method for peroxide destruction at the ETF. A number of different catalysts will be compared as well as other potential methods such as strong reducing agents. The testing should lead to general conclusions on the viability of different catalysts and identify candidates for further study and evaluation

  14. Characterization of Drain Surface Water: Environmental Profile, Degradation Level and Geo-statistic Monitoring

    International Nuclear Information System (INIS)

    Mumtaz, M.W.; Raza, M.A.; Ahmed, Z.; Abbas, M.N.; Hussain, M.

    2015-01-01

    The physico-chemical characterization of the surface water. Samples was carried out collected from nine sampling points of drain passing by the territory of Hafizabad city, Punjab, Pakistan. The water of drain is used by farmers for irrigation purposes in nearby agricultural fields. Twenty water quality parameters were evaluated in three turns and the results obtained were compared with the National Environmental Quality Standards (NEQS) municipal and industrial effluents prescribed limits. The highly significant difference (p<0.01) was recorded for the content of phenols, carbonyl compounds, cyanides, dissolved oxygen, biological oxygen demand, total soluble salts, total dissolved salts, nitrates and sulphates, whereas, the concentration of magnesium, potassium and oil and grease differed significantly (p<0.05) with respect to the sampling points on average basis. Non-significant difference (p>0.05) was noted for temperature, pH, electrical conductivity, hardness, calcium, sodium, chemical oxygen demand and chloride among water samples from different sampling points. Furthermore, the experimental results of different water quality parameters studied at nine sampling points of the drain were used and interpolated in ArcGIS 9.3 environment system using kriging techniques to obtain calculated values for the remaining locations of the Drain. (author)

  15. Radioecological impact of effluents from a nuclear facility being decommissioned in the Antas river hydro graphic basin in the state of Minas Gerais, Brazil. Radioecological impact of effluents in the Antas reservoir

    International Nuclear Information System (INIS)

    Ronque, Leilane Barbosa; Azevedo, Heliana de; Lopes do Nascimento, Marcos Roberto; Roque, Claudio Vitor; Silva, Nivaldo Carlos da; Rodgher, Suzelei; Regali-Seleghim, Mirna Helena

    2008-01-01

    The Antas reservoir receives the treated effluents which come from acid drainage of uranium ore from the UTM-INB (Ore Treatment Unit - Brazilian Nuclear Industries), located in Caldas, Minas Gerais. This study was conducted in order to determine the possible environmental impact caused by discharge of the treated liquid effluent from the UTM into the Antas reservoir. Biological (ciliated protozoa and Peridinium sp. phytoflagellate) and physicochemical variables (manganese, zinc, sulfate, uranium, dissolved oxygen and temperature), trophic state and saprobity indexes were evaluated. Sampling in reservoir (Cab, P41, P14S, and P14F points) took place during the dry winter season (July 2006). Each day, samples were collected four times (6:00 am, 12:00 pm, 6:00 pm, and 12:00 am). Biological variables analyzed at the Antas reservoir classified it as an oligo trophic and beta-mesosaprobic environment. Chemical parameters indicate failures in the nuclear facility effluent treatment plant, showing that effluents outside of standard limits established by Brazilian current legislation for Class II water are being discharged at point P41. These results agree with biological analyses, since point P41 has the lowest diversity and biomass values for ciliated protozoa organisms, indicating possible environmental impacts on the ecosystem due to effluent discharge by this mining company.(author)

  16. The project of the technological line of the electronic-beam drains disinfection in the infected hospitals' divisions and tubercular centres

    International Nuclear Information System (INIS)

    Shlapatska, V.V.; Volkonsky, V.G.; Sakhno, V.I.; Tomchaj, S.P.

    1999-01-01

    The purpose of the project was to create the electrophysical facility for the environmental protection from contamination by drains of the infected hospitals' divisions and tubercular centres and prevention of open water reservoirs. Development of the economically approved methods of the radiative disinfection of contaminated drains; development of the inexpensive compact facility for the electron-beam disinfection of small volume drains

  17. SECONDARY WASTE/ETF (EFFLUENT TREATMENT FACILITY) PRELIMINARY PRE-CONCEPTUAL ENGINEERING STUDY

    International Nuclear Information System (INIS)

    May, T.H.; Gehner, P.D.; Stegen, Gary; Hymas, Jay; Pajunen, A.L.; Sexton, Rich; Ramsey, Amy

    2009-01-01

    This pre-conceptual engineering study is intended to assist in supporting the critical decision (CD) 0 milestone by providing a basis for the justification of mission need (JMN) for the handling and disposal of liquid effluents. The ETF baseline strategy, to accommodate (WTP) requirements, calls for a solidification treatment unit (STU) to be added to the ETF to provide the needed additional processing capability. This STU is to process the ETF evaporator concentrate into a cement-based waste form. The cementitious waste will be cast into blocks for curing, storage, and disposal. Tis pre-conceptual engineering study explores this baseline strategy, in addition to other potential alternatives, for meeting the ETF future mission needs. Within each reviewed case study, a technical and facility description is outlined, along with a preliminary cost analysis and the associated risks and benefits.

  18. Generation of airborne Listeria innocua from model floor drains.

    Science.gov (United States)

    Berrang, Mark E; Frank, Joseph F

    2012-07-01

    Listeria monocytogenes can colonize floor drains in poultry processing and further processing facilities, remaining present even after cleaning and disinfection. Therefore, during wash down, workers exercise caution to avoid spraying hoses directly into drains in an effort to prevent the escape and transfer of drain microflora to food contact surfaces. The objective of this study was to examine the extent to which an inadvertent water spray into a colonized floor drain can cause the spread of airborne Listeria. Listeria innocua was used to inoculate a polyvinyl chloride model floor drain, resulting in approximately 10(8) cells per ml of phosphate-buffered saline and 10(4) attached cells per square centimeter of inner surface. Each model drain was subjected to a 2-s spray of tap water at 68.9 kPa from a distance of 1 m. Drains were sprayed while filled and again after emptying. Airborne cells were collected by using sedimentation plates containing Listeria selective agar which were placed on the floor and walls of a contained room at incremental horizontal and vertical distances of 0.6, 1.2, 2.4, or 4.0 m from the drain. Sedimentation plates were exposed for 10 min. A mechanical sampler was used to also collect air by impaction on the surface of Listeria selective agar to determine the number of cells per liter of air. The experiment was conducted in triplicate rooms for each of four replications. L. innocua was detected on sedimentation plates on the floor as far as 4.0 m from the drain and on walls as high as 2.4 m above the floor and 4 m from the drain. A 2-s spray with a water hose into a contaminated drain can cause airborne spread of Listeria, resulting in the potential for cross-contamination of food contact surfaces, equipment, and exposed product.

  19. Drains and Drainage Capabilities: Quantitative Analysis of Drain Efficiencies

    Directory of Open Access Journals (Sweden)

    Andaç Aykan

    2016-03-01

    Full Text Available Objective: In this study, it was aimed to compare the efficiency of the same type of but different-sized silicone drains at different surgical procedures. Material and Methods: Twenty-four patients, who had different diagnoses and were operated between 2011 and 2013, were included. In all patients, 7- and 10-mm silicone-ended, Jackson–Pratt drains were used. Drains that were under 30 cc/day removed. The connection tube and perforated silicone end were examined due to the clot content. All drain efficiencies were calculated, and the results were statistically analyzed. Results: Seven of the 24 patients (29.2% were males and 17 (70.8% were females; the mean age was 39.0±11.4 years. Totally, 49 drains were used, of which 25 (51% were 7 mm and 24 (49% were 10 mm in size. Median removal time was the 5th day (2–12 for the 7-mm drains and the 6th day (3–14 for the 10-mm drains. There was no statistically significant difference between the groups for drain removal time (p=0.268. Further, there was no difference at the connection tube and silicone end for clot content between the 7- and 10-mm drains (p=0.58. For the drainage volume and efficiency, no difference was observed between the groups (p=0.146. Conclusion: In this study it was observed that there is no difference in the drainage volume and efficiency between different-sized Jackson–Pratt drains.

  20. Fowl play? Forensic environmental assessment of alleged discharge of highly contaminated effluent from a chicken slaughterhouse

    Science.gov (United States)

    Harvey, P.; Taylor, M. P.; Handley, H. K.

    2016-12-01

    Multiple lines of geochemical and biological evidence are applied to identify and fingerprint the nature and source of alleged contamination emanating from a chicken slaughterhouse on the urban fringe of Sydney, Australia. The slaughterhouse has a long history of alleged environmental misconduct. The impact of the facility on catchment source waters by the slaughterhouse has been the subject of controversy. The facility owner has persistently denied breach of their licence condition and maintains it is `a very environmentally conscious operation'. The disputed nature of the possible sources of discharges and its contaminants required a detailed forensic environmental assessment. Water samples collected from off-site discharge points associated with the facility show highly elevated concentrations of faecal coliforms (max 68,000 cfu), ammonia-N (51,000 µg/L), total nitrogen (98,000 µg/L) and phosphorous (32,000 µg/L). Upstream and adjacent watercourses were markedly less contaminated. Water discharge points associated with the slaughterhouse and natural catchment runoff were sampled for arsenic speciation, including assessment for the organoarsenic compound Roxarsone. Roxarsone is used as a chicken growth promoter. Water draining the slaughterhouse facility contained concentrations around 10 times local background levels. The Roxarsone compound was not detected in any waters, but inorganic arsenic, As(V), was present in all waters with the greatest concentrations in waters draining from the slaughterhouse. The environmental evidence was compiled over a series of discharges events and presented to the NSW EPA. Subsequent to receipt of the data supported by their own investigations, the NSW EPA mandated that the slaughterhouse be subject to a pollution reduction program. The efficacy of the pollution reduction program to stem the release of highly contaminated effluent is currently subject to ongoing investigation using a suite of water chemistry measures including

  1. 340 Facility compliance assessment

    International Nuclear Information System (INIS)

    English, S.L.

    1993-10-01

    This study provides an environmental compliance evaluation of the RLWS and the RPS systems of the 340 Facility. The emphasis of the evaluation centers on compliance with WAC requirements for hazardous and mixed waste facilities, federal regulations, and Westinghouse Hanford Company (WHC) requirements pertinent to the operation of the 340 Facility. The 340 Facility is not covered under either an interim status Part A permit or a RCRA Part B permit. The detailed discussion of compliance deficiencies are summarized in Section 2.0. This includes items of significance that require action to ensure facility compliance with WAC, federal regulations, and WHC requirements. Outstanding issues exist for radioactive airborne effluent sampling and monitoring, radioactive liquid effluent sampling and monitoring, non-radioactive liquid effluent sampling and monitoring, less than 90 day waste storage tanks, and requirements for a permitted facility

  2. Chemical and microbiological water quality of subsurface agricultural drains during a field trial of liquid dairy manure effluent application rate and varying tillage practices, Upper Tiffin Watershed, southeastern Michigan

    Science.gov (United States)

    Haack, Sheridan Kidd; Duris, Joseph W.

    2008-01-01

    A field trial was done in the Upper Tiffin River Watershed, in southeastern Michigan, to determine the influence of liquid dairy manure effluent (LDME) management practices on the quality of agricultural subsurface-drain water. Samples from subsurface drains were analyzed for nutrients, fecal-coliform and Escherichia coli (E. coli) bacteria, antibiotics, chemicals typically detected in wastewater, and the occurrence of genes indicating the presence of shiga-toxin-producing E. coli, or of bovine-specific Bacteroidetes bacteria. Samples were collected from November 2, 2006, to March 20, 2007, from eight subsurface drains under field plots that received no LDME and no tillage (controls) or received 4,000 or 8,000 gallons per acre (gal/acre) of LDME and either no tillage or two different types of tillage. The two types of tillage tested were (1) ground-driven, rotary, subsurface cultivation and (2) rolling-tine aeration. Samples were collected before LDME application and at 4 hours, and 1, 2, 6, 7, and 14 days post-application. Nutrient concentrations were high in subsurface-drain water throughout the field-trial period and could not be attributed to the field-trial LDME application. Of the 59 drain-water samples, including those collected before LDME application and control samples for each date, 56 had concentrations greater than the U.S. Environmental Protection Agency (USEPA), Ecoregion VI recommended surface-water criterion for total phosphorus, and all samples had concentrations greater than the recommended total nitrogen criterion. Nitrate + nitrite nitrogen concentration exceeded 20 milligrams per liter for every sample and contributed most to the total nitrogen concentrations. Substantial increases in drain-water concentrations of organic and ammonia nitrogen and total phosphorus were found for all treatments, including controls, at 14 days post-application after 0.84 inch of rainfall over 2 days. E. coli concentrations exceeded the USEPA recreational

  3. The management plan of liquid effluent in Korean advanced light water reactor

    International Nuclear Information System (INIS)

    Kim, S. H.; Lim, H. S.; Jeong, D. W.; Jeong, D. Y.

    2001-01-01

    Non-radioactive liquid effluent in Korean Advanced Light Water Reactor is transferred and treated in centralized waste treatment facility after the radioactivity in effluent is checked within power block. The liquid effluent from centralized waste treatment facility will be discharged by way of discharge canal in order to be in the sufficient condition. As a result of investigating the radiation monitoring design in accordance with 20 provisions by Korean Regulatory Authority, each effluent radiation monitoring with 20 provisions by Korean Regulatory Authority, each effluent radiation monitoring design satisfies the regulatory guideline. In relation to sampling and analyses, most systems satisfy the regulatory guideline except for some effluents from turbine building. And, though sampling and analyses are performed after radioactivity is monitored at each system in turbine building, these exceptions in turbine building effluents are expected to cause no significant problems because radioactivity is monitored by direct or indirect methods prior to release from turbine building. Integrated monitoring on liquid effluent from the centralized waste water treatment facility is not necessary because radiation monitoring, sampling and analyses on each system within power block are performed, and operational effectiveness compared with cost according to adding the radiation monitoring equipment is too low. So, whether the radiation monitoring in this effluent is reflected on design or not is planned to be determined through discussion with regulatory authority

  4. 40 CFR 440.13 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... water equal to the difference between annual precipitation falling on the treatment facility and the... pollutants discharged in mine drainage from mines operated to obtain iron ore shall not exceed: Effluent.... (2) In the event that the annual precipitation falling on the treatment facility and the drainage...

  5. Pilot-scale reverse osmosis testing for the F and H Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Kessler, J.L.

    1984-01-01

    Pilot-scale reverse osmosis (RO) tests were completed with a 10 gpm unit to demonstrate the performance of RO in the F and H Area Effluent Treatment Facility (F/H ETF). RO will be used in the WMETF to remove soluble salts and soluble radioactivity. The advantage of using RO (over ion exchange) is that it is nondescriminanting and removes virtually all dissolved solids species, regardless of ionic charge. RO also generates less than half the waste volume produced by ion exchange. Test results using a 200-Area nonradioactive effluent simulant demonstrated salt rejections of 98% and water recoveries of 94% by using recycle on a single stage pilot unit. For a full-scale, multi-staged unit overall salt rejections will be 95% (DF = 20) while obtaining a 94% water recovery (94% discharge, 6% concentrated waste stream). Identical performance is expected on actual radioactive streams, based on shielded cells testing performed by Motyka and Stimson. Similarly, if the WMETF RO system is configured in the same manner as the SRL ECWPF, a DF of 20 and a water recvery of 94% should be obtained

  6. 200 Area Treated Effluent Disposal Facility operational test specification. Revision 2

    International Nuclear Information System (INIS)

    Crane, A.F.

    1995-01-01

    This document identifies the test specification and test requirements for the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These operational testing activities, when completed, demonstrate the functional, operational and design requirements of the 200 Area TEDF have been met. The technical requirements for operational testing of the 200 Area TEDF are defined by the test requirements presented in Appendix A. These test requirements demonstrate the following: pump station No.1 and associated support equipment operate both automatically and manually; pump station No. 2 and associated support equipment operate both automatically and manually; water is transported through the collection and transfer lines to the disposal ponds with no detectable leakage; the disposal ponds accept flow from the transfer lines with all support equipment operating as designed; and the control systems operate and status the 200 Area TEDF including monitoring of appropriate generator discharge parameters

  7. INEEL Liquid Effluent Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Major, C.A.

    1997-06-01

    The INEEL contractors and their associated facilities are required to identify all liquid effluent discharges that may impact the environment at the INEEL. This liquid effluent information is then placed in the Liquid Effluent Inventory (LEI) database, which is maintained by the INEEL prime contractor. The purpose of the LEI is to identify and maintain a current listing of all liquid effluent discharge points and to identify which discharges are subject to federal, state, or local permitting or reporting requirements and DOE order requirements. Initial characterization, which represents most of the INEEL liquid effluents, has been performed, and additional characterization may be required in the future to meet regulations. LEI information is made available to persons responsible for or concerned with INEEL compliance with liquid effluent permitting or reporting requirements, such as the National Pollutant Discharge Elimination System, Wastewater Land Application, Storm Water Pollution Prevention, Spill Prevention Control and Countermeasures, and Industrial Wastewater Pretreatment. The State of Idaho Environmental Oversight and Monitoring Program also needs the information for tracking liquid effluent discharges at the INEEL. The information provides a baseline from which future liquid discharges can be identified, characterized, and regulated, if appropriate. The review covered new and removed buildings/structures, buildings/structures which most likely had new, relocated, or removed LEI discharge points, and at least 10% of the remaining discharge points.

  8. Characteristics of treated effluents and their potential applications for producing concrete.

    Science.gov (United States)

    Noruzman, Ainul Haezah; Muhammad, Bala; Ismail, Mohammad; Abdul-Majid, Zaiton

    2012-11-15

    Conservation and preservation of freshwater is increasingly becoming important as the global population grows. Presently, enormous volumes of freshwater are used to mix concrete. This paper reports experimental findings regarding the feasibility of using treated effluents as alternatives to freshwater in mixing concrete. Samples were obtained from three effluent sources: heavy industry, a palm-oil mill and domestic sewage. The effluents were discharge into public drain without danger to human health and natural environment. Chemical compositions and physical properties of the treated effluents were investigated. Fifteen compositional properties of each effluent were correlated with the requirements set out by the relevant standards. Concrete mixes were prepared using the effluents and freshwater to establish a base for control performance. The concrete samples were evaluated with regard to setting time, workability, compressive strength and permeability. The results show that except for some slight excesses in total solids and pH, the properties of the effluents satisfy the recommended disposal requirements. Two concrete samples performed well for all of the properties investigated. In fact, one sample was comparatively better in compressive strength than the normal concrete; a 9.4% increase was observed at the end of the curing period. Indeed, in addition to environmental conservation, the use of treated effluents as alternatives to freshwater for mixing concrete could save a large amount of freshwater, especially in arid zones. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Effects of wastewater effluent discharge and treatment facility upgrades on environmental and biological conditions of the upper Blue River, Johnson County, Kansas and Jackson County, Missouri, January 2003 through March 2009

    Science.gov (United States)

    Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Poulton, Barry C.

    2010-01-01

    The Johnson County Blue River Main Wastewater Treatment Facility discharges into the upper Blue River near the border between Johnson County, Kansas and Jackson County, Missouri. During 2005 through 2007 the wastewater treatment facility underwent upgrades to increase capacity and include biological nutrient removal. The effects of wastewater effluent on environmental and biological conditions of the upper Blue River were assessed by comparing an upstream site to two sites located downstream from the wastewater treatment facility. Environmental conditions were evaluated using previously and newly collected discrete and continuous data, and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This evaluation is useful for understanding the potential effects of wastewater effluent on water quality, biological community structure, and ecosystem function. In addition, this information can be used to help achieve National Pollution Discharge Elimination System (NPDES) wastewater effluent permit requirements after additional studies are conducted. The effects of wastewater effluent on the water-quality conditions of the upper Blue River were most evident during below-normal and normal streamflows (about 75 percent of the time), when wastewater effluent contributed more than 20 percent to total streamflow. The largest difference in water-quality conditions between the upstream and downstream sites was in nutrient concentrations. Total and inorganic nutrient concentrations at the downstream sites during below-normal and normal streamflows were 4 to 15 times larger than at the upstream site, even after upgrades to the wastewater treatment facility were completed. However, total nitrogen concentrations decreased in wastewater effluent and at the downstream site following wastewater treatment facility upgrades. Similar decreases in total phosphorus were not observed, likely because the biological

  10. Characterization of effluents from a high-temperature gas-cooled reactor fuel refabrication plant

    International Nuclear Information System (INIS)

    Judd, M.S.; Bradley, R.A.; Olsen, A.R.

    1975-12-01

    The types and quantities of chemical and radioactive effluents that would be released from a reference fuel refabrication facility for the High-Temperature Gas-Cooled Reactor (HTGR) have been determined. This information will be used to predict the impact of such a facility on the environment, to identify areas where additional development work needs to be done to further identify and quantify effluent streams, and to limit effluent release to the environment

  11. Proposed radioactive liquid effluent monitoring requirements at the Savannah River Site

    International Nuclear Information System (INIS)

    Jannik, G.T.; Carlton, W.H.; Blunt, B.C.

    1994-01-01

    Clear regulatory guidance exists for structuring a radiological air monitoring program, however, there is no parallel guidance for radiological liquid monitoring. For Department of Energy (DOE) facilities, there are no existing applicable federal regulations, DOE orders, or DOE guidance documents that specify at what levels continuous monitoring, continuous sampling, or periodic confirmatory measurements of radioactive liquid effluents must be made. In order to bridge this gap and to technically justify and document liquid effluent monitoring decisions at DOE's Savannah River Site, Westinghouse Savannah River Company has proposed that a graded, dose-based approach be established, in conjunction with limits on facility radionuclide inventories, to determine the monitoring and sampling criteria to be applied at each potential liquid radioactive effluent point. The graded approach would be similar to--and a conservative extension of--the existing, agreed-upon SRS/EPA-IV airborne effluent monitoring approach documented in WSRC's NESHAP Quality Assurance Project Plan. The limits on facility radionuclide inventories are based on--and are a conservative extension of--the 10 CFR 834, 10 CFR 20, and SCR 61-63 annual limits on discharges to sanitary sewers. Used in conjunction with each other, the recommended source category criteria levels and facility radionuclide inventories would allow for the best utilization of resources and provide consistent, technically justifiable determinations of radioactive liquid effluent monitoring requirements

  12. Effluent monitoring: Its purpose and value

    International Nuclear Information System (INIS)

    Schoen, A.A.

    1978-01-01

    The purpose of effluent monitoring is described in terms of the primary objectives, the most important of which is to verify that the facility is functioning as it was designed and that the waste treatment and effluent control systems are performing as planned and expected. The object of a monitoring programme should be periodically re-examined to ensure that the programme serves a contemporary purpose. The value of the effluent monitoring programme is determined by the extent to which users of the monitoring data, i.e. the operator, the regulating authorities and the public, accept the result as indicating that the plant is operating safely, and in an environmentally acceptable manner. The credibility of the monitoring results is therefore the most important factor determining the value of an effluent monitoring programme. (author)

  13. Effluent salinity of pipe drains and tube-wells : a case study from the Indus plain

    NARCIS (Netherlands)

    Kelleners, T.J.

    2001-01-01

    Keywords: anisotropy, aquifer, desalinization, effluent salinity, groundwater, irrigation, salt-water upconing, soil salinity, stream-function, subsurface drainage

    Irrigated agriculture in arid and semi-arid zones often suffers from waterlogging and salinity problems.

  14. 200 Area TEDF effluent sampling and analysis plan

    International Nuclear Information System (INIS)

    Alaconis, W.C.; Ballantyne, N.A.; Boom, R.J.

    1995-06-01

    This sampling analysis sets forth the effluent sampling requirements, analytical methods, statistical analyses, and reporting requirements to satisfy the State Waste Discharge Permit No. ST4502 for the Treated Effluent Disposal Facility. These requirements are listed below: Determine the variability in the effluent of all constituents for which enforcement limits, early warning values and monitoring requirements; demonstrate compliance with the permit; and verify that BAT/AKART (Best Available Technology/All know and Reasonable Treatment) source, treatment, and technology controls are being met

  15. F and H Area Effluent Treatment Facility (F/H ETF): ultrafiltration and hyperfiltration systems testing at Carre, Inc. with simulated F and H area effluents

    International Nuclear Information System (INIS)

    Ryan, J.P.

    1984-01-01

    The F and H Area Effluent Treatment Facility is essentially a four-stage process that will decontaminate the waste water that is currently being discharged to seepage basins in the Separations Areas. The stages include pretreatment, reverse osmosis, ion exchange, and evaporation. A series of tests were performed at Carre, Inc. (Seneca, SC) from March 5 through March 13, to determine the usefulness of ultrafiltration (UF) in the pretreatment stage of the ETF. The results of that testing program indicate that UF would be an excellent means of removing entrained activity from the 200 Area process effluents. Hyperfiltration (HF) was also tested as a means of providing an improved concentration factor from the reverse osmosis stage. The results show that the membranes that were tested would not reject salt well enough at high salt concentrations to be useful in the final reverse osmosis stage. However, there are several membranes which are commercially available that would provide the needed rejection if they could be applied (dynamically) on the Carre support structure. This avenue is still being explored, as theoretically, it could eliminate the need for the F/H ETF evaporator

  16. Preparation and evaporation of Hanford Waste treatment plant direct feed low activity waste effluent management facility simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Howe, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-07

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream involves concentrating the condensate in a new evaporator at the Effluent Management Facility (EMF) and returning it to the LAW melter. The LMOGC stream will contain components, e.g. halides and sulfates, that are volatile at melter temperatures, have limited solubility in glass waste forms, and present a material corrosion concern. Because this stream will recycle within WTP, these components are expected to accumulate in the LMOGC stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfates in the glass and is a key objective of this program. In order to determine the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, determine the formation and distribution of key regulatoryimpacting constituents, and generate an aqueous stream that can be used in testing of the subsequent immobilization step. This overall program examines the potential treatment and immobilization of the LMOGC stream to enable alternative disposal. The objective of this task was to (1) prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations, (2) demonstrate evaporation in order to predict the final composition of the effluents from the EMF

  17. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81 Water Services waste water.

  18. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    International Nuclear Information System (INIS)

    1994-08-01

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81 Water Services waste water

  19. Liquid Effluent Monitoring Program at the Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Ballinger, M.Y.

    1995-05-01

    Pacific Northwest Laboratory (PNL) is conducting a program to monitor the waste water from PNL-operated research and development facilities on the Hanford Site. The purpose of the program is to collect data to assess administrative controls and to determine whether discharges to the process sewer meet sewer criteria. Samples have been collected on a regular basis from the major PNL facilities on the Hanford Site since March 1994. A broad range of analyses has been performed to determine the primary constituents in the liquid effluent. The sampling program is briefly summarized in the paper. Continuous monitoring of pH, conductivity, and flow also provides data on the liquid effluent streams. In addition to sampling and monitoring, the program is evaluating the dynamics of the waste stream with dye studies and is evaluating the use of newer technologies for potential deployment in future sampling/monitoring efforts. Information collected to date has been valuable in determining sources of constituents that may be higher than the Waste Acceptance Criteria (WAC) for the Treated Effluent Disposal Facility (TEDF). This facility treats the waste streams before discharge to the Columbia River

  20. Chemical investigation of the effluents of selected chemical industries in NWFP (Pakistan)

    International Nuclear Information System (INIS)

    Jan, M.R.; Shah, J.; Shah, H.

    2002-01-01

    Samples of effluents were collected from the waste water drains of selected chemical industries, located at small industries estate Kohat Road Peshawar on monthly basis from November 1994 to October 1995. These samples were studied for physico chemical properties and heavy metals like Pb, Ag, Cu, Zn, Fe, Cr, Cd, Mn and Ni using spectroscopic techniques. The results of our investigation are presented and discussed. (author)

  1. Effects of wastewater effluent discharge and treatment facility upgrades on environmental and biological conditions of Indian Creek, Johnson County, Kansas, June 2004 through June 2013

    Science.gov (United States)

    Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Foster, Guy M.; Poulton, Barry C.; Paxson, Chelsea R.; Harris, Theodore D.

    2014-01-01

    Indian Creek is one of the most urban drainage basins in Johnson County, Kansas, and environmental and biological conditions of the creek are affected by contaminants from point and other urban sources. The Johnson County Douglas L. Smith Middle Basin (hereafter referred to as the “Middle Basin”) and Tomahawk Creek Wastewater Treatment Facilities (WWTFs) discharge to Indian Creek. In summer 2010, upgrades were completed to increase capacity and include biological nutrient removal at the Middle Basin facility. There have been no recent infrastructure changes at the Tomahawk Creek facility; however, during 2009, chemically enhanced primary treatment was added to the treatment process for better process settling before disinfection and discharge with the added effect of enhanced phosphorus removal. The U.S. Geological Survey, in cooperation with Johnson County Wastewater, assessed the effects of wastewater effluent on environmental and biological conditions of Indian Creek by comparing two upstream sites to four sites located downstream from the WWTFs using data collected during June 2004 through June 2013. Environmental conditions were evaluated using previously and newly collected discrete and continuous data and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This study improves the understanding of the effects of wastewater effluent on stream-water and streambed sediment quality, biological community composition, and ecosystem function in urban areas. After the addition of biological nutrient removal to the Middle Basin WWTF in 2010, annual mean total nitrogen concentrations in effluent decreased by 46 percent, but still exceeded the National Pollutant Discharge Elimination System (NPDES) wastewater effluent permit concentration goal of 8.0 milligrams per liter (mg/L); however, the NPDES wastewater effluent permit total phosphorus concentration goal of 1.5 mg/L or less was

  2. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    International Nuclear Information System (INIS)

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS

  3. Packaging of radioactive sludges at the Saclay effluent processing plant

    International Nuclear Information System (INIS)

    Cerre, Pierre; Mestre, Emile; Bourdrez, Jean; Leconnetable, Jean

    1964-10-01

    The authors describe technical and technological aspects of the packaging workshop for radioactive sludges produced by processes of co-precipitation of Saclay effluents. This facility is an achievement of studies which aimed at improving working conditions for the plant staff. This workshop implements a process of solidification of filtered sludge by mixing with a hydraulic binding agent. After some generalities on the decontamination process applied to effluents produced by the Saclay research centre, the authors present and describe the adopted process, propose a physical description of the facility: building, chemical engineering equipment (filtration, packaging, and handling). They describe facility operation: introduction of a block into the cell, block filling, output of a packaged container. They briefly discuss the first results of facility exploitation [fr

  4. Transition plan: Project C-018H, 200-E Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Connor, M.D.

    1994-01-01

    The purpose of this transition plan is to ensure an orderly transfer of project information to operations to satisfy Westinghouse Hanford Company (WHC) operational requirements and objectives, and ensure safe and efficient operation of Project C-018H, the 200-E Area Effluent Treatment Facility (ETF). This plan identifies the deliverables for Project C-018H upon completion of construction and turnover to WHC for operations, and includes acceptance criteria to objectively assess the adequacy of the contract deliverables in relation to present requirements. The scope of this plan includes a general discussion of the need for complete and accurate design basis documentation and design documents as project deliverables. This plan also proposes that a configuration management plan be prepared to protect and control the transferred design documents and reconstitute the design basis and design requirements, in the event that the deliverables and project documentation received from the contractor are less than adequate at turnover

  5. Rework of process effluents from the fabrication of HTR fuel

    International Nuclear Information System (INIS)

    Lasberg, Ingo; Braehler, Georg; Boyes, David

    2008-01-01

    HTR fuel facilities require the application of several liquid chemicals and accordingly they produce significant amounts of Uranium contaminated/potentially contaminated effluents. The main effluents are (amounts for a 3 t Uranium/a plant): aqueous solutions including tetrahydrofurfuryl alcohol THFA, ammonium hydroxide NH4OH, and ammonium nitrate NH4NO3 (180 m 3 /a), isopropanol IPA/water mixtures (130 m 3 /a); Non-Process Water NPW (300 m 3 /a); methanol (7m 3 /a); additionally off-gas streams, containing ammonia (9 t/a) have to be treated. In an industrial scale facility all such effluents/gases need to be processed for recycling, decontamination prior to release to the environment (as waste or as valuable material). Thermal decomposition is applied to dispose of burnable residues.

  6. Effluent information system (EIS)/onsite discharge information system (ODIS) 1985 executive summary

    International Nuclear Information System (INIS)

    Watanabe, T.

    1986-09-01

    The Effluent Information System (EIS) and Onsite Discharge Information System (ODIS) are Department of Energy (DOE) data base systems that aid DOE-Headquarters and Field Offices in managing the radioactive air and liquid effluents from DOE facilities. Data on effluents released offsite are entered into EIS and data on effluents discharged onsite and retained onsite are entered into ODIS. This document is a summary of information obtained from the CY 1985 effluent data received from all DOE and DOE contractor facilities and entered in the data bases. Data from previous years are also included. The summary consists of two parts. The first part summarizes information for effluents released offsite, and the second part summarizes information for effluents retained onsite. These summaries are taken from the routine annual reports sent to each DOE Operations Office. Special tabulations or specific data can be supplied upon request. Explanations of the significant changes are included in the EIS and ODIS graphic sections. Only those changes in activity greater than a factor of two and having a magnitude greater than 0.1 Ci are considered significant and are addressed in the explanation

  7. Utilization of portable effluent wastewater in brick manufacturing

    International Nuclear Information System (INIS)

    EI-Mahllawy, M.S.; El-Sokkary, T.M.

    2005-01-01

    Portable wastewater is produced from sedimentation and filtration tanks in portable water treatment plants. Usually, this useless wastewater is drained into River Nile Canal and not to the sewer system causing a potential pollution. Wastewater has been taken from Portable Treatment Plant located at Qalubia Province, Delta, Egypt. Evaluation of raw materials was carried out by using X-ray diffraction (XRD), X-ray fluorescence (XRF), thermal analyses (DTA and TGA) as well as plasticity and drying sensitivity coefficient (DSC) measurements. Technological properties of fired bricks were investigated according to Egyptian and American Specifications. The obtained experimental results encourage substitution of the drained portable wastewater for the tap water in bricks manufacturing. Thus, utilization of the studied portable effluent wastewater in such industry is possible and fulfills the double target of saving drinking water used in clay bricks manufacturing, rather than its environmental pollution prevention. Keywords: Portable wastewater, tap water, clay building bricks, physicomechanical properties

  8. Operating experience and radiation protection problems in the working of the radio-metallurgy hot cell facilities at BARC

    International Nuclear Information System (INIS)

    Janardhanan, S.; Watamwar, S.B.; Mehta, S.K.; Pillai, P.M.B.; John, Jacob; Kutty, K.N.

    1977-01-01

    The Bhabha Atomic Research Centre at Bombay has six hot cell facilities for radiometallurgical investigations of irradiated/failed fuel elements. The hot cell facilities have been provided with certain built-in safety features, a ventilation system, radiation monitoring instruments for various purposes, a centralised air monitoring system and a central panel for display of various alarms. Procedures adopted for radiation protection and contamination control include : (1) radiation leak test for cells and filter efficiency evaluation before cell activation, (2) practices to be followed by frog suit personnel while working in hot cell areas, (3) receipt and handling of irradiated fuel elements, (4) cell filter change operation, (5) checks on high level drains and (6) effluent discharge and waste shipments. Operating experience in the working of these facilities along with radiation accident incidents is described. Data regarding release of activity during normal cell operations, dose rates during various metallurgical operations and personnel exposures are presented. (M.G.B.)

  9. Containment vessel drain system

    Science.gov (United States)

    Harris, Scott G.

    2018-01-30

    A system for draining a containment vessel may include a drain inlet located in a lower portion of the containment vessel. The containment vessel may be at least partially filled with a liquid, and the drain inlet may be located below a surface of the liquid. The system may further comprise an inlet located in an upper portion of the containment vessel. The inlet may be configured to insert pressurized gas into the containment vessel to form a pressurized region above the surface of the liquid, and the pressurized region may operate to apply a surface pressure that forces the liquid into the drain inlet. Additionally, a fluid separation device may be operatively connected to the drain inlet. The fluid separation device may be configured to separate the liquid from the pressurized gas that enters the drain inlet after the surface of the liquid falls below the drain inlet.

  10. Decommissioning of Phosphoric Acid Purification Facility, PT Petrokimia Gresik

    International Nuclear Information System (INIS)

    Zainus Salimin; Nanang TS; Zaid, Ach.; Chotimah; Karyono

    2008-01-01

    Decommissioning of phosporic acid purification facility was the administrative and technical actions taken to allow the removal of some or all of the regulatory control from that facility exploit the phosphoric acid containing uranium. The site location of facility was cleaned up as the clean previous site (green land) for another site project utilization. Decommissioning activities covers the draining of solution or solid powder of remaining process on the equipment, decontamination of site location and equipment wall, dismantling of equipment, decontamination of equipment after dismantling, and decontamination of concrete floor and wall. Uranium contaminated liquid waste and organic solution was treated by bio-oxidation process using bacteria. Remaining solid powder from process (28 drums), contaminated material and equipment after decontamination (60 drums of fire brick, 31 pieces of equipment cut, 2 drums of ashes, 10 drums of active sludge from bio-oxidation process) and concrete splinter of 10 drums of 200 l volume per drum are the radioactive waste that must be sent to Radioactive Waste Technology Centre for its treatment. The non contaminated material and equipment (908 ton) can be reused for reprocessing, some of non contaminated sludge (14.4 m 3 ) and all of non contaminated filtrate water (353 m 3 ) from bio-oxidation process with toxic matters qualification which comply to the its limit values are released on the effluent release drain system of the plant. Clearance level utilizing for filtering contaminated material or equipment was an activity concentration of 1 Bq/g, surface contamination of 1 Bq/cm 2 , effective dose on the 50 cm distance from surface of contaminated material of 0.5 μSv/h (BAPETEN Regulation Letter No. 1459A/P101/PIBN/2008). Limit values for toxic matter are pH 6-9, COD 100 ppm and BOD 50 ppm (Gov. Regulation of East Java No. 45 year of 2002). (author)

  11. Facility Modeling Capability Demonstration Summary Report

    International Nuclear Information System (INIS)

    Key, Brian P.; Sadasivan, Pratap; Fallgren, Andrew James; Demuth, Scott Francis; Aleman, Sebastian E.; Almeida, Valmor F. de; Chiswell, Steven R.; Hamm, Larry; Tingey, Joel M.

    2017-01-01

    A joint effort has been initiated by Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Savanah River National Laboratory (SRNL), Pacific Northwest National Laboratory (PNNL), sponsored by the National Nuclear Security Administration's (NNSA's) office of Proliferation Detection, to develop and validate a flexible framework for simulating effluents and emissions from spent fuel reprocessing facilities. These effluents and emissions can be measured by various on-site and/or off-site means, and then the inverse problem can ideally be solved through modeling and simulation to estimate characteristics of facility operation such as the nuclear material production rate. The flexible framework called Facility Modeling Toolkit focused on the forward modeling of PUREX reprocessing facility operating conditions from fuel storage and chopping to effluent and emission measurements.

  12. Facility Modeling Capability Demonstration Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Key, Brian P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sadasivan, Pratap [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fallgren, Andrew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aleman, Sebastian E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chiswell, Steven R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hamm, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Tingey, Joel M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-02-01

    A joint effort has been initiated by Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Savanah River National Laboratory (SRNL), Pacific Northwest National Laboratory (PNNL), sponsored by the National Nuclear Security Administration’s (NNSA’s) office of Proliferation Detection, to develop and validate a flexible framework for simulating effluents and emissions from spent fuel reprocessing facilities. These effluents and emissions can be measured by various on-site and/or off-site means, and then the inverse problem can ideally be solved through modeling and simulation to estimate characteristics of facility operation such as the nuclear material production rate. The flexible framework called Facility Modeling Toolkit focused on the forward modeling of PUREX reprocessing facility operating conditions from fuel storage and chopping to effluent and emission measurements.

  13. Physicochemical assessment of industrial textile effluents of Punjab (India)

    Science.gov (United States)

    Bhatia, Deepika; Sharma, Neeta Raj; Kanwar, Ramesh; Singh, Joginder

    2018-06-01

    Urbanization and industrialization are generating huge quantities of untreated wastewater leading to increased water pollution and human diseases in India. The textile industry is one of the leading polluters of surface water and consumes about 200-270 tons of water to produce 1 ton of textile product. The primary objective of the present study was to investigate the pollution potential of textile industry effluent draining into Buddha Nallah stream located in Ludhiana, Punjab (India), and determine the seasonal variation in physicochemical parameters (pH, water temperature, total dissolved solids, total suspended solids, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) of Buddha Nallah water. During summer months, for Site 1 and Site 2, the value of pH was in the alkaline range of 8.78 ± 0.47 and 8.51 ± 0.41, respectively. The values of pH in the rainy season were found to be in the range of 7.38 ± 0.58 and 7.11 ± 0.59 for Site 1 and Site 2, respectively. In the autumn and winter seasons, the average pH values were found to be in the range of 8.58 ± 1.40 and 8.33 ± 0.970, respectively. The maximum mean temperature in summer was recorded as 41.16 ± 4.99 °C, and lowest mean temperature in winter was recorded as 39.25 ± 2.25 °C at Site 2. The suspended solids were found to be highest (143.5 ± 75.01 and 139.66 ± 71.87 mg/L) in autumn for both the sites and lowest (86.50 + 15.10 mg/L) in the rainy season for Site 1. The values of BOD and COD of the textile effluent of both sites during all the seasons ranged from 121-580 to 240-990 mg/L, respectively, much higher than WHO water quality standard of 30 mg/L for BOD and 250 mg/L for COD. The present study deals with the collection of textile industry effluent and its characterization to find out the physicochemical load being drained by the effluent generated from textile industries, on the natural wastewater streams.

  14. Monitoring of noble gas radioisotopes in nuclear power plant effluents

    International Nuclear Information System (INIS)

    Kabat, M.J.

    1985-01-01

    Monitoring of gaseous radionuclides in the effluents of nuclear facilities is an essential requirement in effluent management programs. Since there is no practical way of removing noble gas radioisotopes from air at release pathways, their accurate monitoring is essential for providing appropriate environmental protection. Emitted γ dose-rate is the limiting factor for concentration-time integral of noble gas in gaseous effluents of reactor facilities. The external exposure to the public from a semi-infinite cloud is directly proportional to both the noble gas isotope concentration and the integrated γ energy per disintegration. Both can be directly measured in gaseous effluent pathways with a suitable detector. The capability of NaI(T1), CaF 2 (Eu) and plastic scintillation detectors to measure the γ-Ci.MeV content of noble gas releases was experimentally evaluated. The combination of CaF 2 (Eu) detector in a pressurized through-flow chamber, with a charge integrating scaler well complied with both γ energy response and detection sensitivity requirements. Noble gas source terms and effluent monitoring criteria are discussed, theoretical and experimental results are presented and a practical, on-line noble gas monitoring system is described

  15. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Mcclane, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator, so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents. The LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures, have limited solubility in the glass waste form, and represent a materials corrosion concern, such as halides and sulfate. Because this stream will recycle within WTP, these components will accumulate in the Melter Condensate

  16. Rework of process effluents from the fabrication of HTR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lasberg, Ingo; Braehler, Georg [NUKEM Technologies GmbH (Germany); Boyes, David [Pebble Bed Modular Reactor (Pty) Ltd., Centurion (South Africa)

    2008-07-01

    HTR fuel facilities require the application of several liquid chemicals and accordingly they produce significant amounts of Uranium contaminated/potentially contaminated effluents. The main effluents are (amounts for a 3 t Uranium/a plant): aqueous solutions including tetrahydrofurfuryl alcohol THFA, ammonium hydroxide NH4OH, and ammonium nitrate NH4NO3 (180 m{sup 3}/a), isopropanol IPA/water mixtures (130 m{sup 3}/a); Non-Process Water NPW (300 m{sup 3}/a); methanol (7m{sup 3}/a); additionally off-gas streams, containing ammonia (9 t/a) have to be treated. In an industrial scale facility all such effluents/gases need to be processed for recycling, decontamination prior to release to the environment (as waste or as valuable material). Thermal decomposition is applied to dispose of burnable residues.

  17. A Novel Technique to Prevent Effluent Spillage During Percutaneous Cystolithotripsy

    Directory of Open Access Journals (Sweden)

    Shenoy SP

    2015-07-01

    Full Text Available Our objective was to design an efficient system for collection of refluxing irrigant during performance of percutaneous cystolithotripsy (PCL to avoid the messy spillage and its undesirable consequences on the patient, the operating team and the operating room environment. A closed drainage system using a long sleeve surgical glove, 10 millimeter laparoscopic trocar, 30 french Amplatz sheath, Y-tubing and linen thread was designed for performing PCL without disconnection during the procedure. While the refluxing effluent was efficiently drained, minimizing spillage, the calculus fragments were collected in a distensible receptacle adjacent to the Amplatz sheath. Three procedures were performed over a year on males with large bladder calculi. The system designed by us was easy to set up, lent itself to easy unhindered performance of the procedure, and spillage of effluent was minimized.

  18. Reducing resin use in floor drain processing system

    International Nuclear Information System (INIS)

    Flint, W.; Hobart, S.A.; Miller, A.D.

    1995-01-01

    The Kewaunee Nuclear Power Plant utilizes two mixed bed demineralizers for processing floor drain wastes. These demineralizers were originally designed for stream generator blowdown treatment, but were not needed for that purpose. Effluent from the resin beds is monitored for radioactivity and released for discharge. Plant radwaste inleakage volumes and resin disposal volumes were low in comparison with industry averages, but decontamination factors through the treatment system were less than desirable. Release criteria for discharges always had been met, but plant personnel wished to decrease their already low discharges of radioactive species, reduce their resin disposal costs, and provide a margin of safety in the unlikely event that fuel damage would be experienced during an operating cycle. This paper describes the study initiated to address those issues, the findings of the study, and results of implementing some of the study recommendations

  19. Surplus Facilities Management Program. Post remedial action survey report for the Sodium Reactor Experiment (SRE) facility, Santa Susana Field Laboratories, Rockwell International, Ventura County, California

    International Nuclear Information System (INIS)

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Flynn, K.F.; Justus, A.L.

    1984-02-01

    Decontamination of the Sodium Reactor Experiment (SRE) began in 1976 and was completed in 1982. In view of the concurrent and post-remedial-action surveys, the following conclusions can be stated. All the buildings and areas included in this decommissioning project have been decontaminated to below the limits specified in the draft ANSI Standard N13.12 and the NRC Guidelines for Decontamination of Facilities and Equipment Prior to Release for Unrestricted Use or Termination of Licenses for By-Product, Source, or Special Nuclear Material, dated July 1982. Radioactive contamination was found in appropriate access points of the sanitary sewer and storm drain systems included within the boundaries of this decommissioning project. One sample indicated a 90 Sr concentration dissolved in the water of approximately half the recommended water concentration for controlled areas and approximately 15 times the recommended water concentration for uncontrolled areas as stated in DOE-5480.1 Chg. 6, Chapter XI. Therefore, the interior inaccessible surfaces of these systems must be considered contaminated in accordance with statements found in the NRC Regulatory Guidelines issued in July 1982. Effluent from the outfall of this drain system must also be considered as being potentially contaminated. 1 reference, 32 figures, 8 tables

  20. Direct measurements of the tile drain and groundwater flow route contributions to surface water contamination: from field-scale concentration patterns in groundwater to catchment-scale surface water quality

    NARCIS (Netherlands)

    Rozemeijer, J.C.; Velde, van der Y.; Geer, van F.C.; Broers, H.P.; Bierkens, M.F.P.

    2010-01-01

    Enhanced knowledge of water and solute pathways in catchments would improve the understanding of dynamics in water quality and would support the selection of appropriate water pollution mitigation options. For this study, we physically separated tile drain effluent and groundwater discharge from an

  1. Direct measurements of the tile drain and groundwater flow route contributions to surface water contamination: From field-scale concentration patterns in groundwater to catchment-scale surface water quality

    NARCIS (Netherlands)

    Rozemeijer, J.C.; Velde, Y. van der; Geer, F.C. van; Bierkens, M.F.P.; Broers, H.P.

    2010-01-01

    Enhanced knowledge of water and solute pathways in catchments would improve the understanding of dynamics in water quality and would support the selection of appropriate water pollution mitigation options. For this study, we physically separated tile drain effluent and groundwater discharge from an

  2. Approach to the problem of liquid effluents in petrochemical plants; Abordagem do problema efluentes liquidos em plantas petroquimicas

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Cordelia Alves [PROMON Engenharia SA, Rio de Janeiro, RJ (Brazil)

    1993-12-31

    It represents the typical example of petrochemical company that uses the responsible care. The company looks for solve the liquid effluent problems of its units at a complete view. First of all, they made a complete report of the environmental scenario through the operational conditions (it included the collect system, effluent treatment, etc.) and their connection with the environmental problems. In the following step was made the necessary changes to establish the effluents pollute level below the allowable levels and to avoid soil contamination. The company has made the modifications at the following systems:a closed system to collect and reprocess process drains; collect, transfer and retention of contaminated storm water; a stripper column and a solid removal system to treat contaminated water. (author) 2 figs.

  3. Approach to the problem of liquid effluents in petrochemical plants; Abordagem do problema efluentes liquidos em plantas petroquimicas

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Cordelia Alves [PROMON Engenharia SA, Rio de Janeiro, RJ (Brazil)

    1992-12-31

    It represents the typical example of petrochemical company that uses the responsible care. The company looks for solve the liquid effluent problems of its units at a complete view. First of all, they made a complete report of the environmental scenario through the operational conditions (it included the collect system, effluent treatment, etc.) and their connection with the environmental problems. In the following step was made the necessary changes to establish the effluents pollute level below the allowable levels and to avoid soil contamination. The company has made the modifications at the following systems:a closed system to collect and reprocess process drains; collect, transfer and retention of contaminated storm water; a stripper column and a solid removal system to treat contaminated water. (author) 2 figs.

  4. Liquid Effluent Monitoring Information System (LEMIS) System Construction

    International Nuclear Information System (INIS)

    Adams, R.T.

    1994-01-01

    The liquid effluent sampling program is part of the effort to minimize adverse environmental impact during the cleanup operation at the Hanford Site. Of the 33 Phase I and Phase II liquid effluents, all streams actively discharged to the soil column will be sampled. The Liquid Effluent Monitoring Information System (LEMIS) is being developed as the organized information repository facility in support of the liquid effluent monitoring requirements of the Tri-Party Agreement. It is necessary to provide an automated repository into which the results from liquid effluent sampling will be placed. This repository must provide for effective retention, review, and retrieval of selected sample data by authorized persons and organizations. This System Construction document is the aggregation of the DMR P+ methodology project management deliverables. Together they represent a description of the project and its plan through four Releases, corresponding to the definition and prioritization of requirements defined by the user

  5. Free Moisture in GT-73 Resin Waste Generated from the Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Kaplan, D.I.

    2002-01-01

    Solid Waste Division is presently evaluating whether to transfer spent resin generated from the Effluent Treatment Facility (ETF) to the Nevada Test Site (NTS). One of the criteria for the waste to be accepted at the NTS is that the waste must not contain more than 1 vol-percent free liquid. This criterion reduces the amount of liquid, a primary vector for subsurface contaminant migration (along with colloids), introduced into the repository. This criterion also serves to reduce the chance of an accidental spill during transport of the waste to the NTS. On December 15, 1997, a shipment from Fernald to the NTS leaked some liquid waste onto a highway in Kingman, Arizona, resulting in a Type B Accident Investigation. The direct cause of the leak was attributed to broken welds related to the use of substandard containers. The overall objective of this study was to provide guidance as to whether the spent GT-73 resin would meet the free moisture WAC set by the NTS

  6. Dose apportionment using statistical modeling of the effluent release

    International Nuclear Information System (INIS)

    Datta, D.

    2011-01-01

    Nuclear power plants are always operated under the guidelines stipulated by the regulatory body. These guidelines basically contain the technical specifications of the specific power plant and provide the knowledge of the discharge limit of the radioactive effluent into the environment through atmospheric and aquatic route. However, operational constraints sometimes may violate the technical specification due to which there may be a failure to satisfy the stipulated dose apportioned to that plant. In a site having multi facilities sum total of the dose apportioned to all the facilities should be constrained to 1 mSv/year to the members of the public. Dose apportionment scheme basically stipulates the limit of the gaseous and liquid effluent released into the environment. Existing methodology of dose apportionment is subjective in nature that may result the discharge limit of the effluent in atmospheric and aquatic route in an adhoc manner. Appropriate scientific basis for dose apportionment is always preferable rather than judicial basis from the point of harmonization of establishing the dose apportionment. This paper presents an attempt of establishing the discharge limit of the gaseous and liquid effluent first on the basis of the existing value of the release of the same. Existing release data for a few years (for example 10 years) for any nuclear power station have taken into consideration. Bootstrap, a resampling technique, has been adopted on this data sets to generate the population which subsequently provide the corresponding population distribution of the effluent release. Cumulative distribution of the population distribution obtained is constructed and using this cumulative distribution, 95th percentile (upper bound) of the discharge limit of the radioactive effluents is computed. Dose apportioned for a facility is evaluated using this estimated upper bound of the release limit. Paper describes the detail of the bootstrap method in evaluating the

  7. A real-time positron monitor for the estimation of stack effluent releases from PET medical cyclotron facilities

    International Nuclear Information System (INIS)

    Mukherjee, Bhaskar.

    2002-01-01

    Large activities of short-lived positron emitting radiopharmaceuticals are routinely manufactured by modern Medical Cyclotron facilities for positron emission tomography (PET) applications. During radiochemical processing, a substantial fraction of the volatile positron emitting radiopharmaceuticals are released into the atmosphere. An inexpensive, fast response positron detector using a simple positron-annihilation chamber has been developed for real-time assessment of the stack release of positron emitting effluents at the Australian National Medical Cyclotron. The positron detector was calibrated by using a 3.0 ml (1.50 MBq) aliquot of 18 FDG and interfaced to an industrial standard datalogger for the real-time acquisition of stack release data

  8. Physico-Chemical parameters and trace-metals concentration in effluents from various industries in vicinity of Lahore

    International Nuclear Information System (INIS)

    Gulfraz, M.; Ahmad, T.; Afzal, H.

    2003-01-01

    Increasing problem of pollution has become serious in almost all big cities of Pakistan. The industrial effluents (Liquid waste) discharged by different industries are drained into streams/nallahs, which ultimately join the waterways (streams, lakes, rivers or sea). The effluent samples from five industries, like Tanneries, Chemicals, Pharmaceuticals, Fertilizers and metal/electroplating, working in Lahore, Sheikhupura and Kalashahkaku were selected for analysis. The parameters, like Temperature, pH, conductivity, hardness, alkalinity, total dissolved solids, chemical oxygen demands, phosphate, nitrate, nitrite, major cations (Na, K, Ca, Mg) and heavy/trace metals, were studied. The results were compared with National environmental Quality standards (NEQS). It was further observed that when effluents of industries join fresh water of stream, lakes or rivers, this causes severe water-pollution and damages the flora and fauna. Suggestions for effective control of water-pollution are also given. (author)

  9. Identification and treatment of lithium as the primary toxicant in a groundwater treatment facility effluent

    International Nuclear Information System (INIS)

    Kszos, L.A.; Crow, K.R.

    1996-01-01

    6 Li is used in manufacturing nuclear weapons, shielding, and reactor control rods. Li compounds have been used at DOE facilities and Li-contaminated waste has historically been land disposed. Seep water from burial grounds near Y-12 contain small amounts of chlorinated hydrocarbons, traces of PCBs, and 10-19 mg/L Li. Seep treatment consists of oil-water separation, filtration, air stripping, and carbon adsorption. Routine biomonitoring tests using fathead minnows and Ceriodaphniadubia are conducted. Evaluation of suspected contaminants revealed that toxicity was most likely due to Li. Laboratory tests showed that 1 mg Li/L reduced the survival of both species; 0.5 mg Li/L reduced Ceriodaphnia reproduction and minnow growth. However, the toxicity was greatly reduced in presence of sodium (up to 4 mg Li/L, Na can fully negate the toxic effect of Li). Because of the low Na level discharged from the treatment facility, Li removal from the ground water was desired. SuperLig reg-sign columns were used (Li-selective organic macrocycle bonded to silica gel). Bench-scale tests showed that the material was very effective for removing Li from the effluent, reducing the toxicity

  10. Revision of by-laws about effluents of EdF's nuclear power plants

    International Nuclear Information System (INIS)

    2002-01-01

    In France, in application of the clean water law from January 3, 1992 and since the decree 95-540 from May 4, 1995, each basic nuclear facility receives a single permission which covers both its water takes and its radioactive and non-radioactive effluents. This decree, initially dedicated to new facilities has been enlarged to all existing installations for which the prefectorial by-laws have reached their date-line. Thus, up to now, five inter-ministerial by-laws have renewed the permissions of water takes and effluents evacuation of the power plants of Saint-Laurent-des-Eaux (Loir-et-Cher), Flamanville (Manche), Paluel (Seine-Maritime), Belleville (Cher) and Saint-Alban (Isere). These by-laws foresee an important abatement of the effluents and concern more particularly the tritium, 14 C, the iodine isotopes and also some other non-radioactive chemical compounds. This document is a compilation of all revised by-laws about effluents and concerning the nuclear power plants listed above. (J.S.)

  11. Optimizing liquid effluent monitoring at a large nuclear complex.

    Science.gov (United States)

    Chou, Charissa J; Barnett, D Brent; Johnson, Vernon G; Olson, Phil M

    2003-12-01

    Effluent monitoring typically requires a large number of analytes and samples during the initial or startup phase of a facility. Once a baseline is established, the analyte list and sampling frequency may be reduced. Although there is a large body of literature relevant to the initial design, few, if any, published papers exist on updating established effluent monitoring programs. This paper statistically evaluates four years of baseline data to optimize the liquid effluent monitoring efficiency of a centralized waste treatment and disposal facility at a large defense nuclear complex. Specific objectives were to: (1) assess temporal variability in analyte concentrations, (2) determine operational factors contributing to waste stream variability, (3) assess the probability of exceeding permit limits, and (4) streamline the sampling and analysis regime. Results indicated that the probability of exceeding permit limits was one in a million under normal facility operating conditions, sampling frequency could be reduced, and several analytes could be eliminated. Furthermore, indicators such as gross alpha and gross beta measurements could be used in lieu of more expensive specific isotopic analyses (radium, cesium-137, and strontium-90) for routine monitoring. Study results were used by the state regulatory agency to modify monitoring requirements for a new discharge permit, resulting in an annual cost savings of US dollars 223,000. This case study demonstrates that statistical evaluation of effluent contaminant variability coupled with process knowledge can help plant managers and regulators streamline analyte lists and sampling frequencies based on detection history and environmental risk.

  12. Optimizing Liquid Effluent Monitoring at a Large Nuclear Complex

    International Nuclear Information System (INIS)

    Chou, Charissa J.; Johnson, V.G.; Barnett, Brent B.; Olson, Phillip M.

    2003-01-01

    Monitoring data for a centralized effluent treatment and disposal facility at the Hanford Site, a defense nuclear complex undergoing cleanup and decommissioning in southeast Washington State, was evaluated to optimize liquid effluent monitoring efficiency. Wastewater from several facilities is collected and discharged to the ground at a common disposal site. The discharged water infiltrates through 60 m of soil column to the groundwater, which eventually flows into the Columbia River, the second largest river in the contiguous United States. Protection of this important natural resource is the major objective of both cleanup and groundwater and effluent monitoring activities at the Hanford Site. Four years of effluent data were evaluated for this study. More frequent sampling was conducted during the first year of operation to assess temporal variability in analyte concentrations, to determine operational factors contributing to waste stream variability and to assess the probability of exceeding permit limits. Subsequently, the study was updated which included evaluation of the sampling and analysis regime. It was concluded that the probability of exceeding permit limits was one in a million under normal operating conditions, sampling frequency could be reduced, and several analytes could be eliminated, while indicators could be substituted for more expensive analyses. Findings were used by the state regulatory agency to modify monitoring requirements for a new discharge permit. The primary focus of this paper is on the statistical approaches and rationale that led to the successful permit modification and to a more cost-effective effluent monitoring program

  13. Survey of radioactive effluent releases from byproduct material facilities. Technical report

    International Nuclear Information System (INIS)

    Cook, J.R.

    1981-08-01

    A survey of over 3,000 NRC byproduct material licensees was conducted in late 1980 to collect data on annual effluent releases of radioactivity. The survey was conducted through a questionnaire, which was sent to NRC licensees who handle radioactive material in unsealed form, i.e., research, medical, and industrial institutions. Principal findings from the survey analysis are as follows: More than 98% of the reported annual releases to air (484 to 490) yield calculated average concentrations at the boundary of the unrestricted area that were at 1% or less than the maximum permissible concentration (MPC) of Appendix B, Table II, Column 1 of 10 CFR 20. The largest reported annual release was estimated to yield a concentration that was approximately 12% of MPC, the 5 other releases ranged from 1 to 10% of MPC. All reported annual releases of liquid waste were within the limits specified by NRC with most facilities reporting annual releases of only a fraction of a curie. Based on the data provided by licensees and analyzed in this report, it appears that in general the environmental impacts from research, medical and industrial institutions and organizations licensed by the NRC to possess and use byproduct materials are minimal and correspond to a small fraction of that from natural background

  14. Feasibility of using geothermal effluents for waterfowl wetlands

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-09-01

    This project was conducted to evaluate the feasibility of using geothermal effluents for developing and maintaining waterfowl wetlands. Information in the document pertains to a seven State area the West where geothermal resources have development potential. Information is included on physiochemical characteristics of geothermal effluents; known effects of constituents in the water on a wetland ecosystem and water quality criteria for maintaining a viable wetland; potential of sites for wetland development and disposal of effluent water from geothermal facilities; methods of disposal of effluents, including advantages of each method and associated costs; legal and institutional constraints which could affect geothermal wetland development; potential problems associated with depletion of geothermal resources and subsidence of wetland areas; potential interference (adverse and beneficial) of wetlands with ground water; special considerations for wetlands requirements including size, flows, and potential water usage; and final conclusions and recommendations for suitable sites for developing demonstration wetlands.

  15. Decentralised wastewater treatment effluent fertigation: preliminary ...

    African Journals Online (AJOL)

    2018-04-02

    Apr 2, 2018 ... The experimental site at Newlands-Mashu Research Facility, located in Durban ... Samples of effluent used during the study were collected from the AF ... Yield parameters of banana (number and mass of true fingers ..... GHOREISHI M, HOSSINI Y and MAFTOON M (2012) Simple models for predicting leaf ...

  16. Globalization, Brain Drain, and Development

    OpenAIRE

    Docquier, Frédéric; Rapoport, Hillel

    2012-01-01

    This paper reviews four decades of economics research on the brain drain, with a focus on recent contributions and on development issues. We first assess the magnitude, intensity, and determinants of the brain drain, showing that brain drain (or high-skill) migration is becoming a dominant pattern of international migration and a major aspect of globalization. We then use a stylized growth model to analyze the various channels through which a brain drain affects the sending countries and revi...

  17. Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. Final EIR/EIS

    International Nuclear Information System (INIS)

    1994-01-01

    On May 26, 1994, the Lake County Sanitation District and the US Bureau of Land Management released for public review a Draft Environmental Impact Report/Environmental Impact Statement (EIR/EIS) on the proposed Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. A minimum 45-day review and comment period began on that date and notices were published in the Federal Register. The public review and comment period closed on July 26, 1994. Public hearings on the Draft EIMIS were held in Lakeport, CA, on June 30 and July 14, 1994. The first part of this document contains copies of the written comments submitted on the Draft EIR/EIS. It also contains summary paraphrased comments of the public hearings. The second part of this document contains responses to the comments

  18. Processing of miscellaneous radioactive effluents by continous flocculation decantation

    International Nuclear Information System (INIS)

    Lundy, D.; Matton, P.; Petteau, J.L.; Roofthooft, R.

    1985-01-01

    In the nuclear power plant of Chooz an installation for flocculation and chemical precipitation has been built to treat miscellaneous radioactive effluents continuously. It is an industrial prototype of 5 m 3 /h resulting of several years of research, first on lab scale in a discontinous system and finally in a continuous pilot plant of small size (500 l/h). The process is based on the adsorption of radioactivity on a floc of copper-ferrocyanide precipitated by ferric chloride. The water is then filtered. After a series of preliminary tests and modifications, it has been possible to develop a technique which satisfies the specified decontamination conditions and to reduce the discharges of radioactivity to the Meuse to only 5 - 10% of the authorized limits. The process aims principally at the treatment of laundry waste, but other effluents such as drains from the rocks, pool water and used decontamination solutions (of the primary pumps) have been treated. A technico-economic evaluation of the process in comparison with evaporation is clearly in favour of the flocculation. 31 figs, 40 tables, 12 refs

  19. A study of effluent control technologies employed by radiopharmaceutical users and suppliers

    International Nuclear Information System (INIS)

    Leventhal, L.; Slider, J.; Chakoff, E.; Cehn, J.I.; Savage, E.

    1980-01-01

    The radiopharmaceutical industry facilities in the U.S.A. have been reviewed to identify factors that could lead to the airborne release of radioactive isotopes, and to assess the control technology employed. The subject is dealt with in brief outline under the following headings: 1) Hospital usage, the radionuclides being grouped according to use. The main potential airborne effluents were 131 I, 133 Xe, and sup(99m)Tc. 2) Monitoring of facilities for airborne effluents. 3) Control technology, either by dilution or by storage to reduce radioactivity; suppliers and users effluent controls. It was found that the control equipment is readily available, reliable, and effective. Cost appears to increase proportionately with the dose reduction provided. NRC requirements and cost-benefit ratios determine choice. It was concluded that current practices in the industry are adequate. (U.K.)

  20. Using Smoke Injection in Drains to Identify Potential Preferential Pathways in a Drained Arable Field

    Science.gov (United States)

    Nielsen, M. H.; Petersen, C. T.; Hansen, S.

    2014-12-01

    Macropores forming a continuous pathway between the soil surface and subsurface drains favour the transport of many contaminants from agricultural fields to surface waters. The smoke injection method presented by Shipitalo and Gibbs (2000) used for demonstrating and quantifying such pathways has been further developed and used on a drained Danish sandy loam. In order to identify the preferential pathways to drains, smoke was injected in three 1.15 m deep tile drains (total drain length 93 m), and smoke emitting macropores (SEMP) at the soil surface were counted and characterized as producing either strong or weak plumes compared to reference plumes from 3 and 6 mm wide tubes. In the two situations investigated in the present study - an early spring and an autumn situation, smoke only penetrated the soil surface layer via earthworm burrows located in a 1.0 m wide belt directly above the drain lines. However, it is known from previous studies that desiccation fractures in a dry summer situation also can contribute to the smoke pattern. The distance between SEMP measured along the drain lines was on average 0.46 m whereas the average spacing between SEMP with strong plumes was 2.3 m. Ponded water was applied in 6 cm wide rings placed above 52 burrows including 17 reference burrows which did not emit smoke. Thirteen pathways in the soil were examined using dye tracer and profile excavation. SEMP with strong plumes marked the entrance of highly efficient transport pathways conducting surface applied water and dye tracer into the drain. However, no single burrow was traced all the way from the surface into the drain, the dye patterns branched off in a network of other macropores. Water infiltration rates were significantly higher (P drains and surface waters, pathways being associated primarily with unevenly distributed SEMP producing strong smoke plumes.

  1. A study of effluent control technologies employed by radiopharmaceutical users and suppliers

    International Nuclear Information System (INIS)

    Leventhal, L.; Slider, J.; Chakoff, E.; Chen, J.I.; Savage, E.

    1980-01-01

    The quantities of radiopharmaceuticals produced for in-vivo diagnostic and therapy procedures has been estimated to be growing at the rate of 16% per year, based on 1978 sales figures. Nuclear medicine facilities are experiencing an average annual growth rate of 5% per year. The principle radionuclides produced and used for nuclear medicine are 131 I, 131 Xe, and sup(9m)Tc. Of particular concern is that amount of these radionuclides which might become airborne and escape into the environment during the process of manufacture or during aliquotting or administration by hospital personnel. Therefore, a study was made of the effluent control technology employed by radiopharmaceutical suppliers and users. Generally, the means used to control airborne radioactive effluents fall into two classes according to function. The controls either dilute and direct the effluent to a specific point of release or hold up the effluent to reduce by decay the amount of radioactivity released. Radiopharmaceutical suppliers and hospitals were contacted, and a survey made of the control technology used. The classes and types of effluent control equipment and their general characteristics, cost and effectiveness were determined. It was concluded that control equipment was readily available, reliable, and effective in reducing radioactive releases from radiopharmaceutical facilities. (author)

  2. Nuclear power plant laundry drain treatment using membrane bio reactor

    International Nuclear Information System (INIS)

    Tsukamoto, Masaaki; Kohanawa, Osamu; Kinugasa, Atsushi; Ogawa, Naoki; Murogaki, Kenta

    2012-01-01

    In nuclear power plant, the radioactive effluent generated by washing the clothes worn in controlled area and the hand and shower water used at the controlled area are treated in laundry drain treatment system. Although various systems which treat such liquid waste preexist, the traditional treatment system has disadvantages such as high running cost and a large amount of secondary waste generation. To solve these matters, we have considered application of an activated sludge system, membrane bio reactor, which has been practically used in general industry. For nuclear power plant, the activated sludge system has been developed, tested in its adaptability and the adequacy has been proved. Some preexisting treatment systems have been replaced with this activated sludge system for the first time in a domestic nuclear power plant, and the renewal system is now in operation. The result is reported. (author)

  3. Effluent Management Facility Evaporator Bottom-Waste Streams Formulation and Waste Form Qualification Testing

    Energy Technology Data Exchange (ETDEWEB)

    Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.

    2017-08-02

    This report describes the results from grout formulation and cementitious waste form qualification testing performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). These results are part of a screening test that investigates three grout formulations proposed for wide-range treatment of different waste stream compositions expected for the Hanford Effluent Management Facility (EMF) evaporator bottom waste. This work supports the technical development need for alternative disposition paths for the EMF evaporator bottom wastes and future direct feed low-activity waste (DFLAW) operations at the Hanford Site. High-priority activities included simulant production, grout formulation, and cementitious waste form qualification testing. The work contained within this report relates to waste form development and testing, and does not directly support the 2017 Integrated Disposal Facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY 2017 and future waste form development efforts. The provided results and data should be used by (1) cementitious waste form scientists to further the understanding of cementitious leach behavior of contaminants of concern (COCs), (2) decision makers interested in off-site waste form disposal, and (3) the U.S. Department of Energy, their Hanford Site contractors and stakeholders as they assess the IDF PA program at the Hanford Site. The results reported help fill existing data gaps, support final selection of a cementitious waste form for the EMF evaporator bottom waste, and improve the technical defensibility of long-term waste form risk estimates.

  4. Liquid Effluent Monitoring Information System test plans release 1.2

    International Nuclear Information System (INIS)

    Adams, R.T.

    1994-01-01

    The Liquid Effluent Monitoring Information System (LEMIS) is being developed as the organized information repository facility in support of the liquid effluent monitoring requirements of the Tri-Party Agreement. It is necessary to provide an automated repository into which the results from liquid effluent sampling will be placed. This repository must provide for effective retention, review, and retrieval of selected sample data by authorized persons and organizations. This System Architecture document is the aggregation of the DMR P+ methodology project management deliverables. Together they represent a description of the project and its plan through four Releases, corresponding to the definition and prioritization of requirements defined by the user

  5. Waste monitoring system for effluents

    International Nuclear Information System (INIS)

    Macdonald, J.M.; Gomez, B.; Trujillo, L.; Malcom, J.E.; Nekimken, H.; Pope, N.; Bibeau, R.

    1995-07-01

    The waste monitoring system in use at Los Alamos National Laboratory's Plutonium Facility, TA-55, is a computer-based system that proves real-time information on industrial effluents. Remote computers monitor discharge events and data moves from one system to another via a local area network. This report describes the history, system design, summary, instrumentation list, displays, trending screens, and layout of the waste monitoring system

  6. Investigation of Irrigation Reuse Potential of Wastewater Treatment Effluent from Hamedan Atieh-Sazan General Hospital

    Directory of Open Access Journals (Sweden)

    Mohammad Binavapour

    2007-12-01

    Full Text Available Hospital wastewater is a type of municipal wastewater which may contain pathogenic agents and different microorganisms. If properly treated, the effluent from hospital wastewater treatment facilities can be used for irrigation purposes. To investigate this, the effluent from Hamedan Atieh-Sazan General Hospital was studied. The existing treatment facility uses an extended aeration system with an average wastewater flow rate of approximately 150 m3/day. In addition to evaluating the performance of the wastewater facility at Atieh-Sazan General Hospital, quality parameters of the raw wastewater and the effluent were measured. The mean values obtained for pH, BOD, COD, MPN for total Coliform/100ml, and Nematode/lit in raw wastewater were about 7.1, 238 mg/l, 352 mg/l, 5.5´106, and 2340, respectively. The mean values obtained for pH, BOD, COD, Na%, MPN for total Coliform/100 ml, and Nematode/lit in the effluent were 7.1, 35 mg/L, 77 mg/L, 61, 1561, and 575, respectively. Based on these results, the efficiency of the existing system in removing BOD, COD, and MPN/100 ml were %85.3, %78.3, and %99.97, respectively. With respect to water quality standards available, the quality of the effluent was considered to be suitable for irrigation except for its Na%, MPN for total Coliform, and Nematodes values.

  7. A prospective randomized study of use of drain versus no drain after burr-hole evacuation of chronic subdural hematoma.

    Science.gov (United States)

    Singh, Amit Kumar; Suryanarayanan, Bhaskar; Choudhary, Ajay; Prasad, Akhila; Singh, Sachin; Gupta, Laxmi Narayan

    2014-01-01

    Chronic subdural hematoma (CSDH) recurs after surgical evacuation in 5-30% of patients. Inserting subdural drain might reduce the recurrence rate, but is not commonly practiced. There are few prospective studies to evaluate the effect of subdural drains. A prospective randomized study to investigate the effect of subdural drains in the on recurrence rates and clinical outcome following burr-hole drainage (BHD) of CSDH was undertaken. During the study period, 246 patients with CSDH were assessed for eligibility. Among 200 patients fulfilling the eligibility criteria, 100 each were assigned to "drain group" (drain inserted into the subdural space following BHD) and "without drain group" (subdural drain was not inserted following BHD) using random allocation software. The primary end point was recurrence needing re-drainage up to a period of 6 months from surgery. Recurrence occurred in 9 of 100 patients with a drain, and 26 of 100 patients in without drain group (P = 0.002). The mortality was 5% in patients with drain and 4% in patients without drain group (P = 0.744). The medical and surgical complications were comparable between the two study groups. Use of a subdural drain after burr-hole evacuation of a CSDH reduces the recurrence rate and is not associated with increased complications.

  8. Investigating dynamic sources of pharmaceuticals: Demographic and seasonal use are more important than down-the-drain disposal in wastewater effluent in a University City setting

    Science.gov (United States)

    Vatovec, Christine; Phillips, Patrick J.; Van Wagoner, Emily; Scott, Tia-Marie; Furlong, Edward T.

    2016-01-01

    Pharmaceutical pollution in surface waters poses risks to human and ecosystem health. Wastewater treatment facilities are primary sources of pharmaceutical pollutants, but little is known about the factors that affect drugs entering the wastewater stream. This paper investigates the effects of student pharmaceutical use and disposal behaviors and an annual demographic shift on pharmaceutical pollution in a university town. We sampled wastewater effluent during a ten-day annual spring student move-out period at the University of Vermont. We then interpreted these data in light of survey results that investigated pharmaceutical purchasing, use, and disposal practices among the university student population. Surveys indicated that the majority of student respondents purchased pharmaceuticals in the previous year. Many students reported having leftover drugs, though only a small portion disposed of them, mainly in the trash.We detected 51 pharmaceuticals in 80% or more of the wastewater effluent samples collected over the ten-day sampling period. Several increased in concentration after students left the area. Concentrations of caffeine and nicotine decreased weakly. Drug disposal among this university student population does not appear to be a major source of pharmaceuticals in wastewater. Increases in pharmaceutical concentration after the students left campus can be tied to an increase in the seasonal use of allergy medications directly related to pollen, as well as a demographic shift to a year-round older population, which supports national data that older people use larger volumes and different types of pharmaceuticals than the younger student population.

  9. Experiences of simulated tracer dispersal studies using effluent discharges at Tarapur aquatic environment

    International Nuclear Information System (INIS)

    Sudheendran, V.; Baburajan, A.; Sawane, Pratibha; Rao, D.D.; Hegde, A.G.

    2007-01-01

    The nuclear complex in Tarapur, Maharashtra is a multi facility nuclear site comprising of power reactors and research facilities. Each facility has independent liquid effluent discharge line to Arabian Sea. Experimental studies were conducted to evaluate dilution factors in the aquatic environment using liquid effluent releases as tracer from one of the facilities. 3 H and 137 Cs radioisotopes present in the routine releases were used as simulated tracer nuclides. The dilution factors(D.F) observed for tritium were in the range of 20-20000 in a distance range of 10 m to 1500 m respectively and for 137 Cs the D.F. were in the range of 50 to 900 over a distance range of 10-200 m. The paper describes the analytical methodology and sampling scenarios and the results of dilution factors obtained for Tarapur aquatic environment. (author)

  10. Tritium handling facilities at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Anderson, J.L.; Damiano, F.A.; Nasise, J.E.

    1975-01-01

    A new tritium facility, recently activated at the Los Alamos Scientific Laboratory, is described. The facility contains a large drybox, associated gas processing system, a facility for handling tritium gas at pressures to approximately 100 MPa, and an effluent treatment system which removes tritium from all effluents prior to their release to the atmosphere. The system and its various components are discussed in detail with special emphasis given to those aspects which significantly reduce personnel exposures and atmospheric releases. (auth)

  11. Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. Draft EIR/EIS, Volume 1 of 2

    International Nuclear Information System (INIS)

    1994-01-01

    The primary focus of this environmental analysis is on improvements to the Southeast Regional Wastewater Treatment Plant (SRWTP) facilities and disposal to the Geysers for injection. This analysis will be incorporated with an earlier EIR which evaluated system improvements to the SRWTP and twelve disposal alternatives. In July 1993, the Lake County Sanitation District Board of Directors (LACOSAN) selected the Geysers Effluent Pipeline as the preferred alternative to be analyzed in this EIR/EIS. This environmental analysis will primarily focus on improvements to the SRWTP facilities and a 24 inch pipeline designed to carry up to 5,400 gallons per minute of secondarily treated wastewater. The wastewater will be transported from the Lake County Sanitation District's Southeast Regional Wastewater Treatment Plant, Middletown Wastewater Treatment Plant with additional make-up water from Clear Lake to the Southeast portion of the Geysers Geothermal Field in Lake and Sonoma Counties, California

  12. Liquid Effluent Monitoring Information System (LEMIS) test plans release 1.0

    International Nuclear Information System (INIS)

    Adams, R.T.

    1994-01-01

    The Liquid Effluent Monitoring Information System (LEMIS) is being developed as the organized information repository facility in support of the liquid effluent monitoring requirements of the Tri-Party Agreement. It is necessary to provide an automated repository into which the results from liquid effluent sampling will be placed. This repository must provide for effective retention, review, and retrieval of selected sample data by authorized persons and organizations. This System Architecture document is the aggregation of the DMR P+ methodology project management deliverables. Together they represent a description of the project and its plan through four Releases, corresponding to the definition and prioritization of requirements defined by the user

  13. Liquid Effluent Monitoring Information System (LEMIS) test plans release 1.1

    International Nuclear Information System (INIS)

    Adams, R.T.

    1994-01-01

    The Liquid Effluent Monitoring Information System (LEMIS) is being developed as the organized information repository facility in support of the liquid effluent monitoring requirements of the Tri-Party Agreement. It is necessary to provide an automated repository into which the results from liquid effluent sampling will be placed. This repository must provide for effective retention, review, and retrieval of selected sample data by authorized persons and organizations. This System Architecture document is the aggregation of the DMR P+ methodology project management deliverables. Together they represent a description of the project and its plan through four Releases, corresponding to the definition and prioritization of requirements defined by the user

  14. Treatment option evaluation for liquid effluent secondary streams on the Hanford Site

    International Nuclear Information System (INIS)

    Holter, G.M.; Triplett, M.B.; Fow, C.L.; White, M.K.

    1988-08-01

    This study, conducted by the Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC), examines the range of secondary waste types and volumes likely to result from treatment of contaminated liquid effluents. Alternatives for treatment of these effluents were considered, taking into account the implementation of the ''best-available technology'' as assumed in current and ongoing engineering studies for treating the various liquid effluent waste streams. These treatment alternatives, and potential variations in the operating schedules for Hanford Site facilities generating contaminated liquid effluents, were evaluated to project an estimated range for the volume of each of the various secondary waste streams that are likely to be generated. The conclusions and recommendations were developed, based on these estimates. 23 refs., 34 figs., 16 tabs

  15. Assessment of Radioactive Liquid Effluents Release at IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    Bessa Nisti, Marcelo; Godoy dos Santos, Adir Janete

    2008-01-01

    A continuous effluent monitoring program has been established at IPEN's plant in order to allow an environmental impact assessment due to radioactive liquid effluent discharge to sanitary system. Representative samples of radioactive liquid effluents are analyzed by using high resolution gamma spectroscopy and instrumental neutron activation analysis, facing to Brazilian radioprotection regulatory rules. The results are consolidating yearly in the Institute source-term. In this paper, results of the source-term are presented, concerning to years 2004, 2005 and 2006. The total activity discharged was 8.5xl0 8 Bq, 5.7x10 8 Bq and 2.7xl0 8 Bq, respectively. As the release is strongly dependent on the total amount of the effluent and on the dilution factor, special attention is needed in order to obtain the correct value of that last one. The estimated inside plant dilution factor, considering the recent facilities and the reshaping of the sewerage system was 80, 180 and 130, for period of 2004, 2005 and 2006 discharged liquid radioactive effluent

  16. Tritium effluent removal system

    International Nuclear Information System (INIS)

    Lamberger, P.H.; Gibbs, G.E.

    1978-01-01

    An air detritiation system has been developed and is in routine use for removing tritium and tritiated compounds from glovebox effluent streams before they are released to the atmosphere. The system is also used, in combination with temporary enclosures, to contain and decontaminate airborne releases resulting from the opening of tritium containment systems during maintenance and repair operations. This detritiation system, which services all the tritium handling areas at Mound Facility, has played an important role in reducing effluents and maintaining them at 2 percent of the level of 8 y ago. The system has a capacity of 1.7 m 3 /min and has operated around the clock for several years. A refrigerated in-line filtration system removes water, mercury, or pump oil and other organics from gaseous waste streams. The filtered waste stream is then heated and passed through two different types of oxidizing beds; the resulting tritiated water is collected on molecular sieve dryer beds. Liquids obtained from regenerating the dryers and from the refrigerated filtration system are collected and transferred to a waste solidification and packaging station. Component redundancy and by-pass capabilities ensure uninterrupted system operation during maintenance. When processing capacity is exceeded, an evacuated storage tank of 45 m 3 is automatically opened to the inlet side of the system. The gaseous effluent from the system is monitored for tritium content and recycled or released directly to the stack. The average release is less than 1 Ci/day. The tritium effluent can be reduced by isotopically swamping the tritium; this is accomplished by adding hydrogen prior to the oxidizer beds, or by adding water to the stream between the two final dryer beds

  17. Effluent management practices at the AAEC Research Establishment

    International Nuclear Information System (INIS)

    Khoe, G.

    1978-02-01

    A technical description is given of the facilities and operation of the waste water and liquid waste management system at the Australian Atomic Energy Commission Research Establishment at Lucas Heights. Also described are practices and principles involved in the control and recording of radioactivity in the effluents. (Author)

  18. Evaluation of environmental control technologies for commercial uranium nuclear fuel fabrication facilities

    International Nuclear Information System (INIS)

    Perkins, B.L.

    1983-01-01

    At present in the United States, there are seven commercial light-water reactor uranium fuel fabrication facilities. Effluent wastes from these facilities include uranium, nitrogen, fluorine, and organic-containing compounds. These effluents may be either discharged to the ambient environment, treated and recycled internally, stored or disposed of on-site, sent off-site for treatment and/or recovery, or sent off-site for disposal (including disposal in low-level waste burial sites). Quantities of waste generated and treatment techniques vary greatly depending on the facility and circuits used internally at the facility, though in general all the fluorine entering the facility as UF 6 is discharged as waste. Further studies to determine techniques and procedures that might minimize dose (ALARA) and to give data on possible long-term effects of effluent discharge and waste disposal are needed

  19. Management of radioactive effluents from research Reactors and PHWRs

    International Nuclear Information System (INIS)

    Bodke, S.B.; Surender Kumar; Sinha, P.K.; Budhwar, R.K.; Raj, Kanwar

    2006-01-01

    Indian nuclear power programme is mainly based on pressurized heavy water reactors (PHWRs). In addition we have research reactors namely Apsara, CIRUS, Dhruva at Trombay. The operation and maintenance activities of these reactors generate radioactive liquid waste. These wastes require effective management so that the release of radioactivity to the environment is well within the authorized limits. India is self reliant in the design, erection, commissioning and operation of effluent management system for nuclear reactors. Segregation at source based on nature of effluents and radioactivity content is the first and foremost step in the over all management of liquid effluents. The effluents from the power reactors contain mainly activation products like 3 H. It also contains fission products like 137 Cs. Containment of these radionuclide along with 60 Co, 90 Sr, 131 I plays an important part in liquid waste management. Treatment processes for decontamination of these radionuclide include chemical treatment, ion exchange, evaporation etc. Effluents after treatment are monitored and discharged to the nearby water body after filtration and dilution. The concentrates from the processes are conditioned in cement matrix and disposed in Near Surface Disposal Facilities (NSDFs) co-located at each site. Some times large quantity of effluents with higher radioactivity concentration may get generated from the abnormal operation such as failure of heat exchangers. These effluents are handled on a campaign basis for which adequate storage capacity is provided. The treatment is given taking into consideration the required decontamination factor (DF), capacities of available treatment process, discharge limits and the availability of the dilution water. Similarly large quantities of effluents may get generated during fuel clad failure incident in reactors. In such situation, as in CIRUS large volume of effluent containing higher radioactivity are generated and are managed by delay

  20. Drain Current Modulation of a Single Drain MOSFET by Lorentz Force for Magnetic Sensing Application.

    Science.gov (United States)

    Chatterjee, Prasenjit; Chow, Hwang-Cherng; Feng, Wu-Shiung

    2016-08-30

    This paper reports a detailed analysis of the drain current modulation of a single-drain normal-gate n channel metal-oxide semiconductor field effect transistor (n-MOSFET) under an on-chip magnetic field. A single-drain n-MOSFET has been fabricated and placed in the center of a square-shaped metal loop which generates the on-chip magnetic field. The proposed device designed is much smaller in size with respect to the metal loop, which ensures that the generated magnetic field is approximately uniform. The change of drain current and change of bulk current per micron device width has been measured. The result shows that the difference drain current is about 145 µA for the maximum applied magnetic field. Such changes occur from the applied Lorentz force to push out the carriers from the channel. Based on the drain current difference, the change in effective mobility has been detected up to 4.227%. Furthermore, a detailed investigation reveals that the device behavior is quite different in subthreshold and saturation region. A change of 50.24 µA bulk current has also been measured. Finally, the device has been verified for use as a magnetic sensor with sensitivity 4.084% (29.6 T(-1)), which is very effective as compared to other previously reported works for a single device.

  1. 300 Area process sewer piping upgrade and 300 Area treated effluent disposal facility discharge to the City of Richland Sewage System, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The U.S. Department of Energy (DOE) is proposing to upgrade the existing 300 Area Process Sewer System by constructing and operating a new process sewer collection system that would discharge to the 300 Area Treated Effluent Disposal Facility. The DOE is also considering the construction of a tie-line from the TEDF to the 300 Area Sanitary Sewer for discharging the process wastewater to the City of Richland Sewage System. The proposed action is needed because the integrity of the old piping in the existing 300 Area Process Sewer System is questionable and effluents might be entering the soil column from leaking pipes. In addition, the DOE has identified a need to reduce anticipated operating costs at the new TEDF. The 300 Area Process Sewer Piping Upgrade (Project L-070) is estimated to cost approximately $9.9 million. The proposed work would involve the construction and operation of a new process sewer collection system. The new system would discharge the effluents to a collection sump and lift station for the TEDF. The TEDF is designed to treat and discharge the process effluent to the Columbia River. The process waste liquid effluent is currently well below the DOE requirements for radiological secondary containment and is not considered a RCRA hazardous waste or a State of Washington Hazardous Waste Management Act dangerous waste. A National Pollutant Discharge Elimination, System (NPDES) permit has been obtained from the U.S. Environmental Protection Agency for discharge to the Columbia River. The proposed action would upgrade the existing 300 Area Process Sewer System by the construction and operation of a new combined gravity, vacuum, and pressurized process sewer collection system consisting of vacuum collection sumps, pressure pump stations, and buried polyvinyl chloride or similar pipe. Two buildings would also be built to house a main collection station and a satellite collection station.

  2. Determination of beta-adrenergic receptor blocking pharmaceuticals in united states wastewater effluent

    Energy Technology Data Exchange (ETDEWEB)

    Huggett, D.B.; Khan, I.A.; Foran, C.M.; Schlenk, D

    2003-02-01

    This is the first report of beta-adrenergic receptor antagonist pharmaceuticals in United States wastewater effluent. - Beta adrenergic receptor antagonists ({beta}-Blockers) are frequently prescribed medications in the United States and have been identified in European municipal wastewater effluent, however no studies to date have investigated these compounds in United States wastewater effluent. Municipal wastewater effluent was collected from treatment facilities in Mississippi, Texas, and New York to investigate the occurrence of metoprolol, nadolol, and propranolol. Propranolol was identified in all wastewater samples analyzed (n=34) at concentrations {<=}1.9 {mu}g/l. Metoprolol and nadolol were identified in {>=}71% of the samples with concentrations of metoprolol {<=}1.2 {mu}g/l and nadolol {<=}0.36 {mu}g/l. Time course studies at both Mississippi plants and the Texas plant indicate that concentrations of propranolol, metoprolol, and nadolol remain relatively constant at each sampling period. This study indicates that {beta}-Blockers are present in United States wastewater effluent in the ng/l to {mu}g/l range.

  3. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities

    International Nuclear Information System (INIS)

    Fan, Lu; Brett, Michael T.; Jiang, Wenju; Li, Bo

    2017-01-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L −1 . Nitrate (NO 3 − ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 −  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. - Highlights: • DIN was the dominated N pool for most of the tested effluent samples. • DON bioavailability considerably varied depending on the WWTP assessed.

  4. Waste characterization for the F/H Effluent Treatment Facility in support of waste certification

    International Nuclear Information System (INIS)

    Brown, D.F.

    1994-01-01

    The Waste Acceptance Criteria (WAC) procedures define the rules concerning packages of solid Low Level Waste (LLW) that are sent to the E-area vaults (EAV). The WACs tabulate the quantities of 22 radionuclides that require manifesting in waste packages destined for each type of vault. These quantities are called the Package Administrative Criteria (PAC). If a waste package exceeds the PAC for any radionuclide in a given vault, then specific permission is needed to send to that vault. To avoid reporting insignificant quantities of the 22 listed radionuclides, the WAC defines the Minimum Reportable Quantity (MRQ) of each radionuclide as 1/1000th of the PAC. If a waste package contains less than the MRQ of a particular radionuclide, then the package's manifest will list that radionuclide as zero. At least one radionuclide has to be reported, even if all are below the MRQ. The WAC requires that the waste no be ''hazardous'' as defined by SCDHEC/EPA regulations and also lists several miscellaneous physical/chemical requirements for the packages. This report evaluates the solid wastes generated within the F/H Effluent Treatment Facility (ETF) for potential impacts on waste certification

  5. Ion exchange separation of plutonium and gallium (1) resource and inventory requirements, (2) waste, emissions, and effluent, and (3) facility size

    International Nuclear Information System (INIS)

    DeMuth, S.

    1997-01-01

    The following report summarizes an effort intended to estimate within an order-of-magnitude the (1) resource and inventory requirements, (2) waste, emissions, and effluent amounts, and (3) facility size, for ion exchange (IX) separation of plutonium and gallium. This analysis is based upon processing 3.5 MT-Pu/yr. The technical basis for this summary is detailed in a separate document, open-quotes Preconceptual Design for Separation of Plutonium and Gallium by Ion Exchangeclose quotes. The material balances of this separate document are based strictly on stoichiometric amounts rather than details of actual operating experience, in order to avoid classification as Unclassified Controlled Nuclear Information. This approximation neglets the thermodynamics and kinetics which can significantly impact the amount of reagents required. Consequently, the material resource requirements and waste amounts presented here would normally be considered minimums for processing 3.5 MT-Pu/yr; however, the author has compared the inventory estimates presented with that of an actual operating facility and found them similar. Additionally, the facility floor space presented here is based upon actual plutonium processing systems and can be considered a nominal estimate

  6. A Rare Complication of Abdominal Drain: Fallopian Tube Herniation Through the Drain Site

    OpenAIRE

    Dilek Uygur; Seval Erdinç; Hülya Dede; Ümit Taşdemir; Oktay Kaymak; Nuri Danışman

    2016-01-01

    Prophylactic drainage of the peritoneal cavity after obstetrical and gynecological surgery is widely practiced. The idea of “when in doubt, drain” is accepted and applied clinically by many surgeons. However, surgically placed drains are not without risk. The present case describes herniation of fallopian tube during the removal of a surgical drain placed after a cesarean section.

  7. Towards the design of a zero effluent facility in the pharmaceutical industry

    CSIR Research Space (South Africa)

    Gouws, JF

    2007-05-01

    Full Text Available . The pharmaceutical production industry has some unique characteristics that make it possible to reach the goal of zero effluent. In such industries wastewater is generally produced from washing out of mixing vessels. The wastewater thus contains valuable product...

  8. A Rare Complication of Abdominal Drain: Fallopian Tube Herniation Through the Drain Site

    Directory of Open Access Journals (Sweden)

    Dilek Uygur

    2016-05-01

    Full Text Available Prophylactic drainage of the peritoneal cavity after obstetrical and gynecological surgery is widely practiced. The idea of “when in doubt, drain” is accepted and applied clinically by many surgeons. However, surgically placed drains are not without risk. The present case describes herniation of fallopian tube during the removal of a surgical drain placed after a cesarean section.

  9. Radiation protection at nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Endo, K.; Momose, T.; Furuta, S.

    2011-01-01

    Radiation protection methodologies concerning individual monitoring, workplace monitoring and environmental monitoring in nuclear fuel facilities have been developed and applied to facilities in the Nuclear Fuel Cycle Engineering Laboratories (NCL) of Japan Atomic Energy Agency (JAEA) for over 40 y. External exposure to photon, beta ray and neutron and internal exposure to alpha emitter are important issues for radiation protection at these facilities. Monitoring of airborne and surface contamination by alpha and beta/photon emitters at workplace is also essential to avoid internal exposure. A critical accident alarm system developed by JAEA has been proved through application at the facilities for a long time. A centralised area monitoring system is effective for emergency situations. Air and liquid effluents from facilities are monitored by continuous monitors or sampling methods to comply with regulations. Effluent monitoring has been carried out for 40 y to assess the radiological impacts on the public and the environment due to plant operation. (authors)

  10. Canadian uranium mines and mills evolution of regulatory expectations and requirements for effluent treatment

    International Nuclear Information System (INIS)

    LeClair, J.; Ashley, F.

    2006-01-01

    The regulation of uranium mining in Canada has changed over time as our understanding and concern for impacts on both human and non-human biota has evolved. Since the mid-1970s and early 1980s, new uranium mine and mill developments have been the subject of environmental assessments to assess and determine the significance of environmental effects throughout the project life cycle including the post-decommissioning phase. Water treatment systems have subsequently been improved to limit potential effects by reducing the concentration of radiological and non-radiological contaminants in the effluent discharge and the total loadings to the environment. This paper examines current regulatory requirements and expectations and how these impact uranium mining/milling practices. It also reviews current water management and effluent treatment practices and performance. Finally, it examines the issues and challenges for existing effluent treatment systems and identifies factors to be considered in optimizing current facilities and future facility designs. (author)

  11. Sampling and analysis plan (SAP) for WESF drains and TK-100 sump

    International Nuclear Information System (INIS)

    Simmons, F.M.

    1998-01-01

    The intent of this project is to determine whether the Waste Encapsulation and Storage Facility (WESF) floor drain piping and the TK-100 sump are free from contamination. TK-100 is currently used as a catch tank to transfer low level liquid waste from WESF to Tank Farms via B Plant. This system is being modified as part of the WESF decoupling since B Plant is being deactivated. As a result of the 1,1,1-trichloroethane (TCA) discovery in TK-100, the associated WESF floor drains and the pit sump need to be sampled. Breakdown constituents have been reviewed and found to be non-hazardous. There are 29 floor drains that tie into a common header leading into the tank. To prevent high exposure during sampling of the drains, TK-100 will be removed into the B Plant canyon and a new tank will be placed in the pit before any floor drain samples are taken. The sump will be sampled prior to TK-100 removal. A sample of the sludge and any liquid in the sump will be taken and analyzed for TCA and polychlorinated biphenyl (PCB). After the sump has been sampled, the vault floor will be flushed. The flush will be transferred from the sump into TK-100. TK-100 will be moved into B Plant. The vault will then be cleaned of debris and visually inspected. If there is no visual indication of TCA or PCB staining, the vault will be painted and a new tank installed. If there is an indication of TCA or PCB from laboratory analysis or staining, further negotiations will be required to determine a path forward. A total of 8 sets of three 40ml samples will be required for all of the floor drains and sump. The sump set will include one 125ml solid sample. The only analysis required will be for TCA in liquids. PCBs will be checked in sump solids only. The Sampling and Analysis Plan (SAP) is written to provide direction for the sampling and analytical activities of the 29 WESF floor drains and the TK-100 sump. The intent of this plan is to define the responsibilities of the various organizations

  12. Consideration of radioecological studies in French regulations on the discharges of radioactive effluents

    International Nuclear Information System (INIS)

    Hebert, J.

    1980-01-01

    For each of the lines of approach of the regulations on radioactive effluent discharges utilized in France, the report examines the place of radioecology. Developments in greater depth will be devoted to the preliminary and definitive studies foreseen by the conditions of effluent discharges coming from the base nuclear facilities. The place of radioecology in general international law on pollution across national borders or of the sea will also be examined [fr

  13. Liquid Effluent Monitoring Information System test plans releases 2.0 and 3.0

    International Nuclear Information System (INIS)

    Guettler, D.A.

    1995-01-01

    The Liquid Effluent Monitoring Information System (LEMIS) is being developed as the organized information repository facility in support of the liquid effluent monitoring requirements of the Tri-Party Agreement. It is necessary to provide an automated repository into which the results from liquid effluent sampling will be placed. This repository must provide for effective retention, review, and retrieval of selected sample data by authorized persons and organizations. This System Architecture document is the aggregation of the DMR P+ methodology project management deliverables. Together they represent a description of the project and its plan through four Releases, corresponding to the definition and prioritization of requirements defined by the user

  14. Changes in the Treatment of Some Physico-Chemical Properties of Cassava Mill Effluents Using Saccharomyces cerevisiae.

    Science.gov (United States)

    Izah, Sylvester Chibueze; Bassey, Sunday Etim; Ohimain, Elijah Ige

    2017-10-16

    Cassava is majorly processed into gari by smallholders in Southern Nigeria. During processing, large volume of effluents are produced in the pressing stage of cassava tuber processing. The cassava mill effluents are discharged into the soil directly and it drain into nearby pits, surface water, and canals without treatment. Cassava mill effluents is known to alter the receiving soil and water characteristics and affects the biota in such environments, such as fishes (water), domestic animals, and vegetation (soil). This study investigated the potential of Saccharomyces cerevisiae to be used for the treatment of some physicochemical properties of cassava mill effluents. S. cerevisiae was isolated from palm wine and identified based on conventional microbiological techniques, viz. morphological, cultural, and physiological/biochemical characteristics. The S. cerevisiae was inoculated into sterile cassava mill effluents and incubated for 15 days. Triplicate samples were withdrawn from the setup after the fifth day of treatment. Portable equipment was used to analyze the in-situ parameters, viz. total dissolved solids (TDS), pH, dissolved oxygen (DO), conductivity, salinity, and turbidity. Anions (nitrate, sulphate, and phosphate) and chemical oxygen demand (COD) were analyzed using spectrophotometric and open reflux methods respectively. Results showed a decline of 37.62%, 22.96%, 29.63%, 20.49%, 21.44%, 1.70%, 53.48%, 68.00%, 100%, and 74.48% in pH, conductivity, DO, TDS, salinity, sulphate, nitrate, phosphate, and COD levels respectively, and elevation of 17.17% by turbidity. The study showed that S. cerevisiae could be used for the treatment of cassava mill effluents prior to being discharged into the environment so as to reduce the pollution or contamination and toxicity levels.

  15. ENGINEERING STUDY FOR THE 200 AREA EFFLUENT TREATMENT FACILITY (ETF) SECONDARY WASTE TREATMENT OF PROJECTED FUTURE WASTE FEEDS

    International Nuclear Information System (INIS)

    LUECK, K.J.

    2004-01-01

    This report documents an engineering study conducted to evaluate alternatives for treating secondary waste in the secondary treatment train (STT) of the Hanford Site 200 Area Effluent Treatment Facility (ETF). The study evaluates ETF STT treatment alternatives and recommends preferred alternatives for meeting the projected future missions of the ETF. The preferred alternative(s) will process projected future ETF influents to produce a solid waste acceptable for final disposal on the Hanford Site. The main text of this report summarizes the ETF past and projected operations, lists the assumptions about projected operations that provide the basis for the engineering evaluation, and summarizes the evaluation process. The evaluation process includes identification of available modifications to the current ETF process, screens those modifications for technical viability, evaluates the technically viable alternatives, and provides conclusions and recommendations based on that evaluation

  16. PFP Wastewater Sampling Facility

    International Nuclear Information System (INIS)

    Hirzel, D.R.

    1995-01-01

    This test report documents the results obtained while conducting operational testing of the sampling equipment in the 225-WC building, the PFP Wastewater Sampling Facility. The Wastewater Sampling Facility houses equipment to sample and monitor the PFP's liquid effluents before discharging the stream to the 200 Area Treated Effluent Disposal Facility (TEDF). The majority of the streams are not radioactive and discharges from the PFP Heating, Ventilation, and Air Conditioning (HVAC). The streams that might be contaminated are processed through the Low Level Waste Treatment Facility (LLWTF) before discharging to TEDF. The sampling equipment consists of two flow-proportional composite samplers, an ultrasonic flowmeter, pH and conductivity monitors, chart recorder, and associated relays and current isolators to interconnect the equipment to allow proper operation. Data signals from the monitors are received in the 234-5Z Shift Office which contains a chart recorder and alarm annunciator panel. The data signals are also duplicated and sent to the TEDF control room through the Local Control Unit (LCU). Performing the OTP has verified the operability of the PFP wastewater sampling system. This Operability Test Report documents the acceptance of the sampling system for use

  17. Necessity of suction drains in gynecomastia surgery.

    Science.gov (United States)

    Keskin, Mustafa; Sutcu, Mustafa; Cigsar, Bulent; Karacaoglan, Naci

    2014-05-01

    The aim of gynecomastia surgery is to restore a normal chest contour with minimal signs of breast surgery. The authors examine the rate of complications in gynecomastia surgery when no closed-suction drains are placed. One hundred thirty-eight consecutive male patients who underwent gynecomastia surgery without drains were retrospectively analyzed to determine whether the absence of drains adversely affected patient outcomes. Patients were managed by ultrasonic-assisted liposuction both with and without the pull-through technique. The mean age of the patients was 29 years, and the mean volume of breast tissue aspirated was 350 mL per beast. Pull-through was needed in 23 cases. There was only 1 postoperative hematoma. These results are comparable with previously published data for gynecomastia surgery in which drains were placed, suggesting that the absence of drains does not adversely affect postoperative recovery. Routine closed-suction drainage after gynecomastia surgery is unnecessary, and it may be appropriate to omit drains after gynecomastia surgery.

  18. The effect of industrial effluent stream on the groundwater

    International Nuclear Information System (INIS)

    Yasar, A.; Ahmad, N.; Chaudhry, M.N.; Sarwar, M.

    2005-01-01

    This study was performed to investigate the effect of the industrial wastewater stream on the groundwater. Wastewater was characterized in terms of inorganic and organic constituents. Inorganic constituents included Na/sup +/, Ca/sup 2+/ K/sup +/, Cl/sup -/, NO/sub 3//sup -/ and SO/sub 4//sup 2-/ coupled with heavy metal elements such as, Cd, Cr, Pb, Mn, Cu, Ni, Fe and In. Organic load of the stream was determined in terms of chemical oxygen demand (COD), biological oxygen demand (BOD/sub 5/) and ammonia-nitrogen (NH/sub 3/-N) contents. Other characteristics were pH, electrical conductivity (EC) and total dissolved solids (TDS). The correlation coefficients between quality parameter pairs of stream water and groundwater were determined to ascertain the source of groundwater contamination. At station 1, BOD/sub 5/ and COD contents were 20 times and Cr concentration was 10 times higher than the permissible limits for stream water [1]. Contents of these parameters reflected the level of industrial and domestic pollution coming from India. However, large variations in the levels of these parameters at down stream sites of the drain were characteristic of type and nature of industrial effluents and domestic sewage joining the stream. Analysis results of more than one hundred groundwater samples from shallow and deep wells around the drain showed that groundwater of shallow aquifers was contaminated due to drain water. A comparison of the contents of these parameters in shallow wells with WHO standards showed that some parameters such as turbidity, TDS, Na/sup +/, F -and heavy metals like Cr were found higher than the permissible limits. (author)

  19. 21 CFR 868.5995 - Tee drain (water trap).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tee drain (water trap). 868.5995 Section 868.5995...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5995 Tee drain (water trap). (a) Identification. A tee drain (water trap) is a device intended to trap and drain water that collects in ventilator...

  20. Development of rationalized system treating floor drain

    International Nuclear Information System (INIS)

    Nakamura, Yasuyuki; Serizawa, Kenichi; Komatsu, Akihiro; Shimizu, Takayuki

    1998-01-01

    Radioactive liquid wastes generated at BWR plants are collected and treated as required. These days, however, generation of floor drain has deceased and HFF (Hollow Fiber Filter) has experienced a wide applicability to several kinds of liquid wastes. We should consider that the floor drain can be mixed and diluted with equipment drain and be purified by HFF. That enables some of the sumps and long priming pipes to be combined. From this point of view, we have developed a highly rationalized waste liquid system. We have evaluated the applicability of this system after an investigation into the generation and properties of floor drain and equipment drain at the latest BWR'S and an on-site test at a typical BWR. (author)

  1. Determination of beta-adrenergic receptor blocking pharmaceuticals in united states wastewater effluent

    International Nuclear Information System (INIS)

    Huggett, D.B.; Khan, I.A.; Foran, C.M.; Schlenk, D.

    2003-01-01

    This is the first report of beta-adrenergic receptor antagonist pharmaceuticals in United States wastewater effluent. - Beta adrenergic receptor antagonists (β-Blockers) are frequently prescribed medications in the United States and have been identified in European municipal wastewater effluent, however no studies to date have investigated these compounds in United States wastewater effluent. Municipal wastewater effluent was collected from treatment facilities in Mississippi, Texas, and New York to investigate the occurrence of metoprolol, nadolol, and propranolol. Propranolol was identified in all wastewater samples analyzed (n=34) at concentrations ≤1.9 μg/l. Metoprolol and nadolol were identified in ≥71% of the samples with concentrations of metoprolol ≤1.2 μg/l and nadolol ≤0.36 μg/l. Time course studies at both Mississippi plants and the Texas plant indicate that concentrations of propranolol, metoprolol, and nadolol remain relatively constant at each sampling period. This study indicates that β-Blockers are present in United States wastewater effluent in the ng/l to μg/l range

  2. Radiological characterization of liquid effluent hold up tank for generating data base for future decommissioning

    International Nuclear Information System (INIS)

    Sapkal, Jyotsna A.; Singh, Pratap; Verma, Amit; Yadav, R.K.B.; Thakare, S.V.

    2018-01-01

    Operations at Radiological laboratory facilities are involved in fabrication of high activity radioactive sources like 60 Co, 192 1r and 137 Cs, handling of long lived radionuclides like 137 Cs/ 90 Sr, radiochemical processing and production of short-lived radioisotopes for medical diagnosis and treatment of patients. Typical liquid waste management feature at any Radiological Laboratory facility primarily consists of effluent tanks which store the liquid effluent wastes generated during radiochemical processing and fabrication of reactor produced radioisotopes. The liquid waste generated from various laboratories are collected to low level sump tanks from where it is transferred to hold up tanks. The liquid waste is transferred to centralized effluent treatment plant, analysis and characterization of the same is carried out. This paper explains the characterization study of samples drawn from the liquid effluent tank which would be helpful for planning for decontamination as well as for decommissioning and in management of radioactive wastes. In this study the crud deposited at the bottom of tank was collected for gamma spectrometry analysis. Radiation field was measured, at the bottom of the tank for correlating the activity present and the radiation field

  3. Startup of the remote laboratory-scale waste-treatment facility

    International Nuclear Information System (INIS)

    Knox, C.A.; Siemens, D.H.; Berger, D.N.

    1981-01-01

    The Remote Laboratory-Scale Waste-Treatment Facility was designed as a system to solidify small volumes of radioactive liquid wastes. The objectives in operating this facility are to evaluate solidification processes, determine the effluents generated, test methods for decontaminating the effluents, and provide radioactive solidified waste products for evaluation. The facility consists of a feed-preparation module, a waste-solidification module and an effluent-treatment module. The system was designed for remote installation and operation. Several special features for remotely handling radioactive materials were incorporated into the design. The equipment was initially assembled outside of a radiochemical cell to size and fabricate the connecting jumpers between the modules and to complete some preliminary design-verification tests. The equipment was then disassembled and installed in the radiochemical cell. When installation was completed the entire system was checked out with water and then with a nonradioactive simulated waste solution. The purpose of these operations was to start up the facility, find and solve operational problems, verify operating procedures and train personnel. The major problems experienced during these nonradioactive runs were plugging of the spray calciner nozzle and feed tank pumping failures. When these problems were solved, radioactive operations were started. This report describes the installation of this facility, its special remote design feature and the startup operations

  4. How to remove a chest drain.

    Science.gov (United States)

    Allibone, Elizabeth

    2015-10-07

    RATIONALE AND KEY POINTS: This article aims to help nurses to undertake the removal of a chest drain in a safe, effective and patient-centred manner. This procedure requires two practitioners. The chest drain will have been inserted aseptically to remove air, blood, fluid or pus from the pleural cavity. ▶ Chest drains may be small or wide bore depending on the underlying condition and clinical setting. They may be secured with a mattress suture and/or an anchor suture. ▶ Chest drains are usually removed under medical instructions when the patient's lung has inflated, the underlying condition has resolved, there is no evidence of respiratory compromise or failure, and their anticoagulation status has been assessed as satisfactory. ▶ Chest drains secured with a mattress suture should be removed by two practitioners. One practitioner is required to remove the tube and the other to tie the mattress suture (if present) and secure the site. REFLECTIVE ACTIVITY: Clinical skills articles can help update your practice and ensure it remains evidence based. Apply this article to your practice. Reflect on and write a short account of: 1. How reading this article will change your practice. 2. How this article could be used to educate patients with chest drains. Subscribers can upload their reflective accounts at: rcni.com/portfolio .

  5. Theoretical computation background for transformation of foundations using pile drains

    Directory of Open Access Journals (Sweden)

    Ter-Martirosyan Zaven

    2017-01-01

    Full Text Available In the design of foundations for buildings and structures of various purposes, including improved risk, weak water-saturated clay soils with low mechanical characteristics are often found on a construction site. One of the possible ways of using them as a foundation is to seal them in various ways, including using pile drains of sand or rock stone material that are capable of both absorbing the load at the base and accelerating the process of filtration consolidation. This paper describes an analytical solution to the problem of interaction between the pile and the mattress with the surrounding soil of the foundation, taking into account the possibility of expanding the pile shaft. Solutions are obtained for determining the stresses in the shaft of the pile drain and in the soil under the mattress. The solution takes into account the influence of the pre-stressed state of the foundation after compaction on the formation of a stress-strain state during the erection and operation of structures. The solutions are relevant for consolidating pile drains made of rubble or for jet grouting piles, the rigidity of which is comparable to the rigidity of the surrounding soil. The paper describes the technique for determining the characteristics of the strength and deformability of the converted foundation and the results of large-scale tests at the experimental site for the construction of a large energy facility in Russia.

  6. Experience with effluent release from the Omaha V. A. Hospital TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Blotcky, A J [Veterans Administration Hospital (United States)

    1974-07-01

    The effluent release from experiments is controlled by limiting the size of each sample irradiated so that if it was accidentally completely volatized into the closed room, the radioactive concentration would not exceed the permitted limits. The possible releases of Ar-41 and N-16 from the reactor are also considered. The experimentally determined levels of radiation around the Omaha facility are shown. From the data and calculations it was concluded that the levels of effluent release from the Omaha TRIGA are very small.

  7. Experience with effluent release from the Omaha V. A. Hospital TRIGA reactor

    International Nuclear Information System (INIS)

    Blotcky, A.J.

    1974-01-01

    The effluent release from experiments is controlled by limiting the size of each sample irradiated so that if it was accidentally completely volatized into the closed room, the radioactive concentration would not exceed the permitted limits. The possible releases of Ar-41 and N-16 from the reactor are also considered. The experimentally determined levels of radiation around the Omaha facility are shown. From the data and calculations it was concluded that the levels of effluent release from the Omaha TRIGA are very small

  8. Drain site evisceration of fallopian tube, another reason to discourage abdominal drain: report of a case and brief review of literature.

    Science.gov (United States)

    Saini, Pradeep; Faridi, M S; Agarwal, Nitin; Gupta, Arun; Kaur, Navneet

    2012-04-01

    Placement of a drain following abdominal surgery is common despite a lack of convincing evidence in the current literature to support this practice. The use of intra-abdominal drain is associated with many potential and serious complications. We report a drain site evisceration of the right fallopian tube after the removal of an intra-abdominal drain. The drain was placed in the right iliac fossa in a patient who underwent a lower segment Caesarean section (LSCS) for meconium liquor with fetal distress. The Pfannenstiel incision made for LSCS was reopened and the protruding inflamed fimbrial end of the right fallopian tube was excised. The patient made an uneventful recovery. Routine intra-abdominal prophylactic drain following an abdominal surgery including LSCS should be discouraged.

  9. Magnox Swarf Storage Silo Liquor Effluent Management -Sellafield Site, Cumbria, UK - Legacy radioactive waste storage - 59271

    International Nuclear Information System (INIS)

    Le Clere, Stephen

    2012-01-01

    The Sellafield Magnox Swarf Storage Silo (MSSS) was constructed to provide an underwater storage facility for irradiated magnox cladding metal Swarf, as well as miscellaneous beta-gamma waste from several sources. Liquid effluent arisings from hazard reduction activities at this facility represent the toughest effluent treatment challenge within the company's Legacy Ponds and Silos portfolio. The key requirement for hazard reduction has generated many substantial challenges as the facility is readied for decommissioning. This has demanded the production of carefully thought out strategies for managing, and overcoming, the key difficulties to be encountered as hazard reduction progresses. The complexity associated with preparing for waste retrievals from the Magnox Swarf Storage Silo, has also generated the demand for a mix of creativity and perseverance to meet the challenges and make progress. Challenging the status quo and willingness to accept change is not easy and the road to overall hazard reduction for the high hazard MSSS facility will demand the skills and investment of individuals, teams, and entire facility work-forces. The first steps on this road have been taken with the successful introduction of liquor management operations, however much more is yet to be achieved. Clear communication, investing in stakeholder management, perseverance in the face of difficulty and a structured yet flexible programme delivery approach, will ensure the continued success of tackling the complex challenges of treating liquid effluent from a legacy fuel storage silo at the Sellafield Site. (authors)

  10. Westinghouse Hanford Company effluent discharges and solid waste management report for calendar year 1989: 200/600 Areas

    International Nuclear Information System (INIS)

    Brown, M.J.; P'Pool, R.K.; Thomas, S.P.

    1990-05-01

    This report presents calendar year 1989 radiological and nonradiological effluent discharge data from facilities in the 200 Areas and the 600 Area of the Hanford Site. Both summary and detailed effluent data are presented. In addition, radioactive and nonradioactive solid waste storage and disposal data for calendar year 1989 are furnished. Where appropriate, comparisons to previous years are made. The intent of the report is to demonstrate compliance of Westinghouse Hanford Company-operated facilities with administrative control values for radioactive constituents and applicable guidelines and standards (including Federal permit limits) for nonradioactive constituents. 11 refs., 20 tabs

  11. Penrose Drain Migration After Laparoscopic Surgery

    Directory of Open Access Journals (Sweden)

    Pazouki AbdolReza

    2009-05-01

    Full Text Available Laparoscopy has made a revolution in surgical procedures and treatment of various diseases but its complications are still under investigation. Intra-abdominal visceral and vessel injuries, trocar site hernia, and leaving foreign bodies into the peritoneal cavity are among some laparoscopic surgery complications. This is a rare report of Penrose drain migration following incomplete laparoscopic Fundoplication surgery. The patient was a 47- year- old woman, who was a candidate for Touplet Fundoplication via laparoscopic approach due to refractory gastro-esophageal reflux disease (GERD. While wrapping a Penrose drain around the esophagus, the patient had a cardiorespiratory arrest. Attempts to remove the Penrose drain were unsuccessful and the surgical procedure was terminated due to patient's condition. Four months later, after a long period of dysphagia and abdominal pain, the Penrose drain was defecated via rectum.

  12. Controlled decomposition and oxidation: A treatment method for gaseous process effluents

    Science.gov (United States)

    Mckinley, Roger J. B., Sr.

    1990-01-01

    The safe disposal of effluent gases produced by the electronics industry deserves special attention. Due to the hazardous nature of many of the materials used, it is essential to control and treat the reactants and reactant by-products as they are exhausted from the process tool and prior to their release into the manufacturing facility's exhaust system and the atmosphere. Controlled decomposition and oxidation (CDO) is one method of treating effluent gases from thin film deposition processes. CDO equipment applications, field experience, and results of the use of CDO equipment and technological advances gained from the field experiences are discussed.

  13. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities.

    Science.gov (United States)

    Fan, Lu; Brett, Michael T; Jiang, Wenju; Li, Bo

    2017-10-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L -1 . Nitrate (NO 3 - ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 -  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effluent standards

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, G C [Pennsylvania State University (United States)

    1974-07-01

    At the conference there was a considerable interest in research reactor standards and effluent standards in particular. On the program, this is demonstrated by the panel discussion on effluents, the paper on argon 41 measured by Sims, and the summary paper by Ringle, et al. on the activities of ANS research reactor standards committee (ANS-15). As a result, a meeting was organized to discuss the proposed ANS standard on research reactor effluents (15.9). This was held on Tuesday evening, was attended by members of the ANS-15 committee who were present at the conference, participants in the panel discussion on the subject, and others interested. Out of this meeting came a number of excellent suggestions for changes which will increase the utility of the standard, and a strong recommendation that the effluent standard (15.9) be combined with the effluent monitoring standard. It is expected that these suggestions and recommendations will be incorporated and a revised draft issued for comment early this summer. (author)

  15. The health workforce crisis: the brain drain scourge.

    Science.gov (United States)

    Ike, Samuel O

    2007-01-01

    The magnitude of the health workforce crisis engendered by brain drain particularly in Africa, and nay more especially Nigeria, has been assuming increasingly alarming proportions in the past three decades. The challenge it poses in meeting the manpower needs in the healthcare sector as well as in the larger economy of the sending countries is enormous. This paper thus sets out to highlight the scope of this brain drain, its effects and the reasons sustaining it, as well as makes concrete suggestions to help stern the tide. A review of the literature on brain drain with particular emphasis on the health workforce sector was done, with focus on Africa, and specifically Nigeria. Literature search was done using mainly the Medline, as well as local journals. The historical perspectives, with the scope of external and internal brain drain are explored. The glaring effects of brain drain both in the global workforce terrain and specifically in the health sectors are portrayed. The countries affected most and the reasons for brain drain are outlined. Strategic steps to redress the brain drain crisis are proffered in this paper. The health workforce crisis resulting from brain drain must be brought to the front-burner of strategic policy decisions leading to paradigm shift in political, social and economic conditions that would serve as incentives to curb the scourge.

  16. Toxicity identification evaluation methods for identification of toxicants in refinery effluents

    International Nuclear Information System (INIS)

    Barten, K.A.; Mount, D.R.; Hackett, J.R.

    1993-01-01

    During the last five years, the authors have used Toxicity Identification Evaluation (TIE) methods to characterize and identify the source(s) of toxicity in effluents from dozens of municipal and industrial facilities. In most cases, specific chemicals responsible for toxicity have been identified. Although generally successful, the initial experience was that for several refinery effluents, they were able only to qualitatively characterize the presence of organic toxicants; standard toxicant identification procedures were not able to isolate specific organic chemicals. They believe that organic toxicity in these refinery effluents is caused by multiple organic compounds rather than by just a few; evidence for this includes an inability to isolate toxicity in a small number of fractions using liquid chromatography and the presence of very large numbers of compounds in isolated fractions. There is also evidence that the toxicant(s) may be ionic, in that the toxicity of whole effluent and isolated fractions often show increasing toxicity with decreasing pH. Finally, positive-pressure filtration has also reduced toxicity in some samples. In this presentation the authors summarize their experiences with refinery effluents, focusing on typical patterns they have observed and alternative procedures they have used to better understand the nature of these toxicants

  17. A new specifically designed forceps for chest drain insertion.

    LENUS (Irish Health Repository)

    Andrews, Emmet

    2012-02-03

    Insertion of a chest drain can be associated with serious complications. It is recommended that the drain is inserted with blunt dissection through the chest wall but there is no specific instrument to aid this task. We describe a new reusable forceps that has been designed specifically to facilitate the insertion of chest drains.A feasibility study of its use in patients who required a chest drain as part of elective cardiothoracic operations was undertaken. The primary end-point was successful and accurate placement of the drain. The operators also completed a questionnaire rating defined aspects of the procedure. The new instrument was used to insert the chest drain in 30 patients (19 male, 11 female; median age 61.5 years (range 16-81 years)). The drain was inserted successfully without the trocar in all cases and there were no complications. Use of the instrument rated as significantly easier relative to experience of previous techniques in all specified aspects. The new device can be used to insert intercostal chest drains safely and efficiently without using the trocar or any other instrument.

  18. Device for discharging drain in a control rod driving apparatus

    International Nuclear Information System (INIS)

    Ikeda, Tadasu; Ikuta, Takuzo; Yoshida, Tomiji; Tsukahara, Katsumi.

    1975-01-01

    Object: To efficiently and safely collect and discharge drain by a simple construction in which a drain cover and a drain tank in a control rod driving apparatus are integrally formed, and an overhauling wrench of said apparatus and a drain hose are mounted on the drain tank. Structure: When a mounting bolt is untightened by a torque wrench so as to be removed from a flange surface of the control rod driving apparatus in a nuclear reactor, axial movement of said apparatus is absorbed by a spring so that drain containing a radioactive material is discharged into a drain tank through the flange surface of said apparatus and is then guided into a collecting tank through a drain hose. (Kamimura, M.)

  19. Does the suction drain diameter matter? Bleeding analysis after total knee replacement comparing different suction drain gauges

    Directory of Open Access Journals (Sweden)

    Marcos George de Souza Leao

    Full Text Available ABSTRACT OBJECTIVES: To evaluate bleeding and the estimated blood loss in patients who underwent total knee replacement (TKR with different closed suction drains (3.2-mm and 4.8-mm gauge. METHODS: This was a randomized controlled trial with 22 patients who underwent TKR and were divided into two groups: Group I, with 11 patients in whom the 3.2-mm suction drain was used, and Group II, with 11 patients in whom the 4.8-mm suction drain was used. The hematocrit was measured after 24, 48 and 72 h after surgery in order to calculate the estimated blood loss. The drained volume was measured 3, 6, 12, 24, and 48 h after TKR, and thereafter both groups were compared. RESULTS: Regarding the hematocrit, there were no differences between groups in measured periods (24, 48, and 72 h after surgery. The total bleeding measured at the suction drains within 48 h was higher in Group II, with a statistically significant difference (p = 0.005; in the first 24 h, there was major bleeding in Group II (mean 893 mL, with a significant difference (p = 0.004. Between 24 and 48 h, there was no statistically significant difference in both groups (p = 0.710. The total estimated bleeding was higher in Group I, with mean of 463 mL, versus 409 mL in Group II, with no statistical significance (p = 0.394. CONCLUSIONS: Bleeding was higher in the group that used the 4.8 mm gauge suction drain, with no differences in hematocrit and estimated blood loss.

  20. Environmental assessment for effluent reduction, Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    1996-01-01

    The Department of Energy (DOE) proposes to eliminate industrial effluent from 27 outfalls at Los Alamos National Laboratory (LANL). The Proposed Action includes both simple and extensive plumbing modifications, which would result in the elimination of industrial effluent being released to the environment through 27 outfalls. The industrial effluent currently going to about half of the 27 outfalls under consideration would be rerouted to LANL's sanitary sewer system. Industrial effluent from other outfalls would be eliminated by replacing once-through cooling water systems with recirculation systems, or, in a few instances, operational changes would result in no generation of industrial effluent. After the industrial effluents have been discontinued, the affected outfalls would be removed from the NPDES Permit. The pipes from the source building or structure to the discharge point for the outfalls may be plugged, or excavated and removed. Other outfalls would remain intact and would continue to discharge stormwater. The No Action alternative, which would maintain the status quo for LANL's outfalls, was also analyzed. An alternative in which industrial effluent would be treated at the source facilities was considered but dismissed from further analysis because it would not reasonably meet the DOE's purpose for action, and its potential environmental effects were bounded by the analysis of the Proposed Action and the No Action alternatives

  1. Timing of Re-Transfusion Drain Removal Following Total Knee Replacement

    Science.gov (United States)

    Leeman, MF; Costa, ML; Costello, E; Edwards, D

    2006-01-01

    INTRODUCTION The use of postoperative drains following total knee replacement (TKR) has recently been modified by the use of re-transfusion drains. The aim of our study was to investigate the optimal time for removal of re-transfusion drains following TKR. PATIENTS AND METHODS The medical records of 66 patients who had a TKR performed between October 2003 and October 2004 were reviewed; blood drained before 6 h and the total volume of blood drained was recorded. RESULTS A total of 56 patients had complete records of postoperative drainage. The mean volume of blood collected in the drain in the first 6 h was 442 ml. The mean total volume of blood in the drain was 595 ml. Therefore, of the blood drained, 78% was available for transfusion. CONCLUSION Re-transfusion drains should be removed after 6 h, when no further re-transfusion is permissible. PMID:16551400

  2. Laparoscopic radical prostatectomy: omitting a pelvic drain

    Directory of Open Access Journals (Sweden)

    David Canes

    2008-03-01

    Full Text Available PURPOSE: Our goal was to assess outcomes of a selective drain placement strategy during laparoscopic radical prostatectomy (LRP with a running urethrovesical anastomosis (RUVA using cystographic imaging in all patients. Materials and Methods: A retrospective chart review was performed for all patients undergoing LRP between January 2003 and December 2004. The anastomosis was performed using a modified van Velthoven technique. A drain was placed at the discretion of the senior surgeon when a urinary leak was demonstrated with bladder irrigation, clinical suspicion for a urinary leak was high, or a complex bladder neck reconstruction was performed. Routine postoperative cystograms were obtained. RESULTS: 208 patients underwent LRP with a RUVA. Data including cystogram was available for 206 patients. The overall rate of cystographic urine leak was 5.8%. A drain was placed in 51 patients. Of these, 8 (15.6% had a postoperative leak on cystogram. Of the 157 undrained patients, urine leak was radiographically visible in 4 (2.5%. The higher leak rate in the drained vs. undrained cohort was statistically significant (p = 0.002. Twenty-four patients underwent pelvic lymph node dissection (8 drained, 16 undrained. Three undrained patients developed lymphoceles, which presented clinically on average 3 weeks postoperatively. There were no urinomas or hematomas in either group. CONCLUSIONS: Routine placement of a pelvic drain after LRP with a RUVA is not necessary, unless the anastomotic integrity is suboptimal intraoperatively. Experienced clinical judgment is essential and accurate in identifying patients at risk for postoperative leakage. When suspicion is low, omitting a drain does not increase morbidity.

  3. Permeability of Consolidated Incinerator Facility Wastes Stabilized with Portland Cement

    International Nuclear Information System (INIS)

    Walker, B.W.

    1999-01-01

    The Consolidated Incinerator Facility (CIF) at the Savannah River Site (SRS) burns low-level radioactive wastes and mixed wastes as method of treatment and volume reduction. The CIF generates secondary waste, which consists of ash and off-gas scrubber solution. Currently the ash is stabilized/solidified in the Ashcrete process. The scrubber solution (blowdown) is sent to the SRS Effluent Treatment Facility (ETF) for treatment as waste water. In the past, the scrubber solution was also stabilized/solidified in the Ashcrete process as blowcrete and will continue to be treated this way for listed waste burns and scrubber solution that do not meet the Effluent Treatment Facility (ETF) Waste Acceptance Criteria (WAC)

  4. IRSN's expertise about nuclear medicine hospital effluents

    International Nuclear Information System (INIS)

    2009-01-01

    This brief note aims at presenting the radioactivity follow up of hospital effluents performed by the French Institute of Radiation Protection and Nuclear Safety (IRSN). This follow up concerns the radioactive compounds and radiopharmaceuticals used in nuclear medicine, and principally technetium 99 and iodine 131. The IRSN has developed a network of remote measurement systems for the monitoring of sewers and waste water cleaning facilities. Data are compiled in a data base for analysis and subsequent expertise. (J.S.)

  5. 46 CFR 45.157 - Scuppers and gravity drains.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Scuppers and gravity drains. 45.157 Section 45.157 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Conditions of Assignment § 45.157 Scuppers and gravity drains. Scuppers and gravity deck drains from spaces...

  6. Project W-049H disposal facility test report

    International Nuclear Information System (INIS)

    Buckles, D.I.

    1995-01-01

    The purpose of this Acceptance Test Report (ATR) for the Project W-049H, Treated Effluent Disposal Facility, is to verify that the equipment installed in the Disposal Facility has been installed in accordance with the design documents and function as required by the project criteria

  7. Effluent Mixing Modeling for Liquefied Natural Gas Outfalls in a Coastal Ecosystem

    Directory of Open Access Journals (Sweden)

    Mustafa Samad

    2014-06-01

    Full Text Available Liquid Natural Gas (LNG processing facilities typically are located on ocean shores for easy transport of LNG by marine vessels. These plants use large quantities of water for various process streams. The combined wastewater effluents from the LNG plants are discharged to the coastal and marine environments typically through submarine outfalls. Proper disposal of effluents from an LNG plant is essential to retain local and regional environmental values and to ensure regulatory and permit compliance for industrial effluents. Typical outfall designs involve multi-port diffuser systems where the design forms a part of the overall environmental impact assessment for the plant. The design approach needs to ensure that both near-field plume dispersion and far-field effluent circulation meets the specified mixing zone criteria. This paper describes typical wastewater process streams from an LNG plant and presents a diffuser system design case study (for an undisclosed project location in a meso-tidal coast to meet the effluent mixing zone criteria. The outfall is located in a coastal and marine ecosystem where the large tidal range and persistent surface wind govern conditions for the diffuser design. Physical environmental attributes and permit compliance criteria are discussed in a generic format. The paper describes the design approach, conceptualization of numerical model schemes for near- and far-field effluent mixing zones, and the selected diffuser design.

  8. Current practice patterns of drain usage amongst UK and Irish surgeons performing bilateral breast reductions: Evidence down the drain.

    Science.gov (United States)

    Sugrue, Conor M; McInerney, Niall; Joyce, Cormac W; Jones, Deidre; Hussey, Alan J; Kelly, Jack L; Kerin, Michael J; Regan, Padraic J

    2015-01-01

    Bilateral breast reduction (BBR) is one of the most frequently performed female breast operations. Despite no evidence supporting efficacy of drain usage in BBRs, postoperative insertion is common. Recent high quality evidence demonstrating potential harm from drain use has subsequently challenged this traditional practice. The aim of this study is to assess the current practice patterns of drains usage by Plastic & Reconstructive and Breast Surgeons in UK and Ireland performing BBRs. An 18 question survey was created evaluating various aspects of BBR practice. UK and Irish Plastic & Reconstructive and Breast Surgeons were invited to participate by an email containing a link to a web-based survey. Statistical analysis was performed with student t-test and chi-square test. Two hundred and eleven responding surgeons were analysed, including 80.1% (171/211) Plastic Surgeons and 18.9% (40/211) Breast Surgeons. Of the responding surgeons, 71.6% (151/211) routinely inserted postoperative drains, for a mean of 1.32 days. Drains were used significantly less by surgeons performing ≥20 BBRs (p = 0.02). With the majority of BBRs performed as an inpatient procedure, there was a trend towards less drain usage in surgeons performing this procedure as an outpatient; however, this was not statistically significant (p = 0.07). Even with the high level of evidence demonstrating the safety of BBR without drains, they are still routinely utilised. In an era of evidence- based medicine, surgeons performing breast reductions must adopt the results from scientific research into their clinical practice.

  9. QUALIFIED VERSION OF MIGRATION: BRAIN DRAIN

    Directory of Open Access Journals (Sweden)

    Ayhan GENCLER

    2009-07-01

    Full Text Available Though globalization suggests an international exchange of people besides goods and capital, developed countries often tended to put forward some restrictions on the migration of workers from developed countries. However, there has been an increase in skilled international migration especially during the last two decades. Skilled international migration or brain drain points out the emigration of educated and highly skilled workers. It seems that, in general, developing or underdeveloped countries experience the negative consequences of the brain drain and suffer from the decreases in their human capital. The paper explains the phenomenon of skilled international migration, or brain drain, and summarizes the main global trends in this area.

  10. The management of vacuum neck drains in head and neck surgery and the comparison of two different practice protocols for drain removal.

    Science.gov (United States)

    Kasbekar, A V; Davies, F; Upile, N; Ho, M W; Roland, N J

    2016-01-01

    Introduction The management of vacuum neck drains in head and neck surgery is varied. We aimed to improve early drain removal and therefore patient discharge in a safe and effective manner. Methods The postoperative management of head and neck surgical patients with vacuum neck drains was reviewed retrospectively. A new policy was then implemented to measure drainage three times daily (midnight, 6am, midday). The decision for drain removal was based on the most recent drainage period (at Measuring drainage volumes three times daily allows for more accurate assessment of wound drainage, and this can lead to earlier removal of neck drains and safe discharge.

  11. Assessment methodology for radioactive effluents

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The objective of this environmental assessment is to define and rank the needs for controlling radioactive effluents from nuclear fuel cycle facilities. The assessment is based on environmental standards and dose-to-man calculations. The study includes three calculations for each isotope from each facility: maximum individual dose for a 50-year dose commitment from a 1-yr exposure according to the organ affected; population dose for a 50-yr dose commitment from a 1-yr exposure according to the organ affected; and annual dose rate for the maximally exposed individual. The relative contribution of a specific nuclide and source to the total dose provides a method of ranking the nuclides, which in turn identifies the sources that should receive the greatest control in the future. These results will be used in subsequent tasks to assess the environmental impact of the total nuclear fuel cycle

  12. Fallopian Tube Herniation through Left Sided Abdominal Drain Site.

    Science.gov (United States)

    Hussain, Khalid; Masood, Jovaria

    2016-06-01

    Intra-abdominal drains have been used since long to prevent intra-abdominal collection, and detect any anastomotic leaks. We report a case of left sided fallopian tube herniation from a left lower abdominal drain site in a 27-year female who underwent caesarian section for breach presentation. Several complications related to drain usage has been described but left sided fallopian tube prolapse through drain site has not been reported in literature.

  13. Investigation of the effects of slow-release fertilizer and struvite in biodegradation in filter drains and potential application of treated water in irrigation of road verges.

    Science.gov (United States)

    Theophilus, Stephen C; Mbanaso, Fredrick U; Nnadi, Ernest O; Onyedeke, Kingsley T

    2017-11-14

    Filter drains are usually laid along the margins of highways. Highway runoffs are polluted with hydrocarbons and high levels of total dissolved solids. Therefore, effective pollution removal mechanism is necessary in order to avoid contamination of surrounding soils and groundwater. Biodegradation is amongst pollution removal mechanisms in filter drains, but it is a relatively slow process which is dependent on wide range of factors including the type of pollutant and availability of nutrients. This paper reports on a study conducted to investigate the impact of slow-release fertilizer and struvite in enhancement of biodegradation of hydrocarbon in filter drains. Filter drain models incorporated with geotextile were challenged with cumulative oil loading of 178 mg/m 2 /week with a view to comparing the efficiency of these two nutrient sources under high oil pollution loading and realistic rainfall conditions of 13 mm/week. Nutrients and street dust were applied at one-off rate of 17 g/m 2 and 1.55 g/rig to provide nutrient enhancement and simulate field conditions respectively. The impact of the nutrients was studied by monitoring bacterial and fungal growth using nutrient agar, Rose Bengal Agar media and CO2 evolution. EC, pH, heavy metals, TPH, elemental analysis and SAR were used to investigate water quality of effluent of filter drains for potential application as irrigation fluid for trees and flowers planted on road verges. The results show that nutrient application encouraged microbial activities and enhanced biodegradation rates with differences in type of nutrient applied. Also, it was observed that incorporation of geotextiles in filter drains improved pollution retention efficiency and there is a potential opportunity for utilization of struvite in SuDS systems as sustainable nutrient source.

  14. Evaluation of environmental stress imposed by a coal-ash effluent: Wisconsin power plant impact study

    Energy Technology Data Exchange (ETDEWEB)

    Webster, K.E.; Forbes, A.M.; Magnuson, J.L.

    1985-06-01

    Effluent discharged from the coal-ash settling basin of the Columbia Generating Station (Wisconsin) modified water chemistry (increased trace metal concentrations, suspended solids and dissolved materials) and substrate quality (precipitation of chemical floc) in the receiving stream, the ash pit drain. To test the hypothesis that habitat avoidance could account for declines in macroinvertebrate density observed after discharge began, drift rates of two species were measured in laboratory streams containing combinations of reference and coal-ash-modified substrate and water. Contrary to the hypothesis, drift was uniformly lower in laboratory streams containing modified substrate and/or water compared to the reference condition for Gammarus pseudolimnaeus and Asellus racovitzai.

  15. Environmental analysis of the operation of the ERDA facilities in Oak Ridge

    International Nuclear Information System (INIS)

    McWherter, J.R.

    1975-01-01

    An analysis of the environmental effects of current ERDA operations in Oak Ridge is being conducted to establish a baseline for the consideration of the environmental effects of additional facilities or modified operations in the future. An extensive ecological survey has been conducted for about one year; social and economic data were obtained; and an archaeological survey of the area was made. The facilities were described and the effluents associated with operations were quantified to the extent practical. The effects of effluent releases to the environment are being analyzed. The social effects of the ERDA facilities in Oak Ridge are also being studied. (auth)

  16. Risk-Based Radioactive Liquid Effluent Monitoring Requirements at the U. S. Department of Energy's Savannah River Site

    International Nuclear Information System (INIS)

    Jannik, G.T.

    2001-01-01

    For Department of Energy (DOE) facilities, clear regulatory guidance exists for structuring radiological air emissions monitoring programs. However, there are no parallel regulations for radiological liquid effluent monitoring programs. In order to bridge this gap and to technically justify liquid effluent monitoring decisions at DOE's Savannah River Site, a graded, risk-basked approach has been established to determine the monitoring and sampling criteria to be applied at each liquid discharge point

  17. Analysis format and evaluation methods for effluent particle sampling systems in nuclear facilities

    International Nuclear Information System (INIS)

    Schwendiman, L.C.; Glissmeyer, J.A.

    1976-06-01

    Airborne effluent sampling systems for nuclear facilities are frequently designed, installed, and operated without a systematic approach which discloses and takes into account all the circumstances and conditions which would affect the validity and adequacy of the sample. Without a comprehensive check list or something similar, the designer of the system may not be given the important information needed to provide a good design. In like manner, an already operating system may be better appraised. Furthermore, the discipline of a more formal approach may compel the one who will use the system to make sure he knows what he wants and can thus give the designer the needed information. An important consideration is the criteria to be applied to the samples to be taken. This analysis format consists of a listing of questions and statements calling forth the necessary information required to analyze a sampling system. With this information developed, one can proceed with an evaluation, the methodology of which is also discussed in the paper. Errors in probe placement, failure to sample at the proper rate, delivery line losses, and others are evaluated using mathematical models and empirically derived relationships. Experimental methods are also described for demonstrating that quality sampling will be achieved. The experiments include using a temporary, simple, but optimal sample collection system to evaluate the more complex systems. The use of tracer particles injected in the stream is also discussed. The samples obtained with the existing system are compared with those obtained by the temporary, optimal system

  18. Emission of Tc-99 from nuclear facilities

    International Nuclear Information System (INIS)

    Luxenburger, H.J.; Schuettelkopf, H.; Bohn, B.

    1984-11-01

    No noticeable Tc-activities are emitted from nuclear power stations. The emissions with the gaseous effluents exceed but rarely the detection limit of 25 nCi/h. Likewise, the emission with the liquid effluents remains below the detection limit of about 0.5 nCi/m 3 . Neither can a remarkable emission be recorded from the facilities of the Central Decontamination Services Department (HDB) of KfK. The emissions from the evaporation system for low level solutions and from the evaporation system for low level solutions and from the incineration facility for solid wastes do not exceed or rarely exceed to a minor extent the detection limit of 0.3 pCi/m 3 waste air. Also with the liquid effluents only minor Tc-amounts are discharged of 0.3 nCi/m 3 at the maximum. In the distillate of the medium level solutions discharged from the Karlsruhe Reprocessing Plant (WAK) to HDB as so-called tritiated water 2 nCi/m 3 Tc-99 at the maximum are contained. Only in the gaseous effluents from the evaporation system for medium level solutions emissions of up to 14 pCi/m 3 can be detected. The detection limits are almost permanently exceeded by the gaseous effluents from WAK. Small amounts of Tc-99 of 7 pCi/m 3 exhaust air at the maximum are released to the environment. However, the amount of Tc accumulated over the sampling period is insignificant from the radioecological point of view. (orig./HP) [de

  19. Fallopian Tube Herniation: An Unusual Complication of Surgical Drain

    OpenAIRE

    Sharma, Lipi; Singh, Alpana; Bhaskaran, Sruthi; Radhika, A. G.; Radhakrishnan, Gita

    2012-01-01

    Background. Surgical drains have been used since time immemorial, but their use is not without complications. By presenting this case we aim to describe an uncommon complication of herniation of fallopian tube following the simple procedure of surgical drain removal. Case Presentation. This case describes a 23-year G2P1L1 who underwent an emergency cesarean section for obstructed labor with intraperitoneal drain insertion. The patient had an uneventful postoperative period, drain was removed ...

  20. India: 'brain drain' or the migration of talent?

    Science.gov (United States)

    Oommen, T K

    1989-09-01

    2 views on "brain drain" exist: 1) LDCs lose their enormous investments on higher education when skilled people migrate to other countries and 2) LDCs are exaggerating the problem and only a few skilled people migrate at 1 time. India does not completely lose its investment in education when professionals migrate, since the migrants still contribute to knowledge and also send remittances to relatives in India. Unemployed educated people would cause a greater drain on India's resources than educated migrants. The author prefers the phrase migration of talent to brain drain, since the former indicates a 2-way movement. Most migrants from LDCs are students. About 11,000 university graduates leave India every year for advanced study and/or work. A conservative estimate is that 2500 will remain abroad permanently. Most professionals who migrate go to the US and Canada. Factors promoting migration include 1) unemployment, 2) immigration rules, 3) colonial links, 4) financial incentives and material benefits, 5) pursuit of higher education, 6) improvement of working conditions and facilities, 7) avoidance of excessive bureaucratic procedures, and 8) compensation for the mismatch between Indian education and employment. Reasons for returning to India include 1) deference to wives who were unable to adjust to a foreign way of life, 2) contributing to Indian development, and 3) racial discrimination. It will probably not be possible to lure back migrants who left for material reasons. Attractive job offers could entice back those who left for advanced training. To encourage the return of those who left to pursue high quality research, India must 1) increase expenditure on research and development, possibly through the private industrial sector, 2) promote travel to other countries for professional enrichment, and 3) improve conditions of research work. The article concludes with an analysis of migration of talent from 3 perspectives: 1) the individual, 2) the nation

  1. Testing for Nuclear Thermal Propulsion Systems: Identification of Technologies for Effluent Treatment in Test Facilities

    Data.gov (United States)

    National Aeronautics and Space Administration — Key steps to ensure identification of relevant effluent treatment technologies for Nuclear Thermal Propulsion (NTP) testing include the following. 1. Review of...

  2. Effluent monitoring for nuclear safeguards

    International Nuclear Information System (INIS)

    Stanchi, L.

    1977-01-01

    A microprocessor-based instrument operates a continuous surveillance on effluents from a nuclear facility. It receives and evaluates pulses from two NaI detectors and a set of single-channel analyzers. It has self-diagnosing capability so that it takes actions not only when it recognizes excessive radioactivity but also when it ascertains some abnormal behavior. Power failure procedure and automatic restart are provided. Operative constants such as alarm thresholds, times, and number of successive measurements are permanently stored in a read/write battery operated C-MOS memory. The program allows automatic succession of phases in a peculiar way and has a feature for loading an auxiliary program into RAMs

  3. Effluent monitoring for nuclear safeguards

    International Nuclear Information System (INIS)

    Stanchi, L.

    1976-01-01

    A microprocessor-based instrument operates a continuous surveillance on effluents from a nuclear facility. It receives and evaluates pulses from two NaI detectors and a set of single-channel analyzers. It has self-diagnosing capability so that it takes actions not only when it recognizes excessive radioactivity but also when it ascertains some abnormal behavior. Power failure procedure and automatic restart are provided. Operative constants such as alarm thresholds, times, and number of successive measurements are permanently stored in a read/write battery operated C-MOS memory. The program allows automatic succession of phases in a peculiar way and has a feature for loading an auxiliary program into RAMs

  4. Thailand and brain drain

    Directory of Open Access Journals (Sweden)

    Terry Commins

    2009-01-01

    Full Text Available Brain drain has been the subject of research since the 1960s. This research has been hampered by a lack of accurate data from both source and receiving countries on migration and on the losses and gains to developing economies of skilled migration. However, despite these handicaps, research has been able to clearly show that trends are changing and the effect this is having is usually quite different for individual source countries.Thailand, as a developing economy, could be regarded as a source country. Fortunately, Thailand has never ranked highly in terms of brain drain when compared to other states in Asia and while it may not be a significant problem it nonetheless needs to be monitored. Thailand is also somewhat unique in that the migration that has occurred has been almost equally split between secondary and tertiary educated Thais. Thailand also ranks low in terms of tertiary educated population who have migrated when compared to other countries in the region. Globalisation is having a profound effect on the migration of skilled workers. As trade becomes increasingly free, barriers to the movement of services or people are also freed. As the better educated are encouraged to think globally, so too will they be inclined to move globally into the world community.This paper examines Thailand’s position with respect to brain drain, some of the lessons we have learned and some of the steps that are being taken to minimise the impact of the loss of skilled workers, with a particular focus on science and technology. The conclusion is that brain drain should not be viewed as an entirely negative development and that the positive outcomes should be recognised, encouraged and incorporated into policy.

  5. Cold Vacuum Drying facility sanitary sewage collection system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) sanitary sewage collection system. The sanitary sewage collection system provides collection and storage of effluents and raw sewage from the CVDF to support the cold vacuum drying process. This system is comprised of a sanitary sewage holding tank and pipes for collection and transport of effluents to the sanitary sewage holding tank

  6. Drain Insertion in Chronic Subdural Hematoma: An International Survey of Practice.

    Science.gov (United States)

    Soleman, Jehuda; Kamenova, Maria; Lutz, Katharina; Guzman, Raphael; Fandino, Javier; Mariani, Luigi

    2017-08-01

    To investigate whether, after the publication of grade I evidence that it reduces recurrence rates, the practice of drain insertion after burr-hole drainage of chronic subdural hematoma has changed. Further, we aimed to document various practice modalities concerning the insertion of a drain adopted by neurosurgeons internationally. We administered a survey to neurosurgeons worldwide with questions relating to the surgical treatment of chronic subdural hematoma, with an emphasis on their practices concerning the use of a drain. The preferred surgical technique was burr-hole drainage (89%). Most surgeons prefer to place a drain (80%), whereas in 56% of the cases the reason for not placing a drain was brain expansion after evacuation. Subdural drains are placed by 50% and subperiosteal drains by 27% of the responders, whereas 23% place primarily a subdural drain if possible and otherwise a subperiosteal drain. Three quarters of the responders leave the drain for 48 hours and give prophylactic antibiotic treatment, mostly a single-shot dose intraoperatively (70%). Routine postoperative computed tomography is done by 59% mostly within 24-48 hours after surgery (94%). Adjunct treatment to surgery rarely is used (4%). The publication of grade I evidence in favor of drain use influenced positively this practice worldwide. Some surgeons are still reluctant to insert a drain, especially when the subdural space is narrow after drainage of the hematoma. The insertion of a subperiosteal drain could be a good alternative solution. However, its outcome and efficacy must be evaluated in larger studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A study of the complications of small bore 'Seldinger' intercostal chest drains.

    Science.gov (United States)

    Davies, Helen E; Merchant, Shairoz; McGown, Anne

    2008-06-01

    Use of small bore chest drains (drainage over a 12-month period. One hundred consecutive small bore Seldinger (12F) chest drain insertions were evaluated. Few serious complications occurred. However, 21% of the chest drains were displaced ('fell out') and 9% of the drains became blocked. This contributed to high morbidity rates, with 13% of patients requiring repeat pleural procedures. The frequency of drain blockage in pleural effusion was reduced by administration of regular normal saline drain flushes (odds ratio for blockage in flushed drains compared with non-flushed drains 0.04, 95% CI: 0.01-0.37, P < 0.001). Regular chest drain flushes are advocated in order to reduce rates of drain blockage, and further studies are needed to determine optimal fixation strategies that may reduce associated patient morbidity.

  8. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico.

    Science.gov (United States)

    Brown, Kathryn D; Kulis, Jerzy; Thomson, Bruce; Chapman, Timothy H; Mawhinney, Douglas B

    2006-08-01

    This study had three objectives: 1) determine occurrence of antibiotics in effluent from hospitals, residential facilities, and dairies, and in municipal wastewater 2) determine antibiotic removal at a large wastewater treatment plant (WWTP) in Albuquerque, NM, and 3) determine concentrations of antibiotics in the Rio Grande, which receives wastewater from the Albuquerque WWTP. Twenty-three samples of wastewater and 3 samples of Rio Grande water were analyzed for the presence of 11 antibiotics. Fifty-eight percent of samples had at least one antibiotic present while 25% had three or more. Hospital effluent had detections of sulfamethoxazole, trimethoprim, ciprofloxacin, ofloxacin, lincomycin, and penicillin G, with 4 of 5 hospital samples having at least one antibiotic detected and 3 having four or more. At the residential sampling sites, ofloxacin was found in effluent from assisted living and retirement facilities, while the student dormitory had no detects. Only lincomycin was detected in dairy effluent (in 2 of 8 samples, at 700 and 6600 ng/L). Municipal wastewater had detections of sulfamethoxazole, trimethoprim, ciprofloxacin, and ofloxacin, with 4 of 6 samples having at least one antibiotic present and 3 having 3 or more. The relatively high concentrations (up to 35,500 ng/L) of ofloxacin found in hospital and residential effluent may be of concern due to potential genotoxic effects and development of antibiotic resistance. At the Albuquerque WWTP, both raw wastewater and treated effluent had detections of sulfamethoxazole, trimethoprim, and ofloxacin, at concentrations ranging from 110 to 470 ng/L. However, concentrations in treated effluent were reduced by 20% to 77%. No antibiotics were detected in the Rio Grande upstream of the Albuquerque WWTP discharge, and only one antibiotic, sulfamethoxazole, was detected in the Rio Grande (300 ng/L) below the WWTP.

  9. Industrial effluent quality, pollution monitoring and environmental management.

    Science.gov (United States)

    Ahmad, Maqbool; Bajahlan, Ahmad S; Hammad, Waleed S

    2008-12-01

    Royal Commission Environmental Control Department (RC-ECD) at Yanbu industrial city in Kingdom of Saudi Arabia has established a well-defined monitoring program to control the pollution from industrial effluents. The quality of effluent from each facility is monitored round the clock. Different strategic measures have been taken by the RC-ECD to implement the zero discharge policy of RC. Industries are required to pre-treat the effluent to conform pretreatment standards before discharging to central biological treatment plant. Industries are not allowed to discharge any treated or untreated effluent in open channels. After treatment, reclaimed water must have to comply with direct discharge standards before discharge to the sea. Data of industrial wastewater collected from five major industries and central industrial wastewater treatment plant (IWTP) is summarized in this report. During 5-year period, 3,705 samples were collected and analyzed for 43,436 parameters. There were 1,377 violations from pretreatment standards from all the industries. Overall violation percentage was 3.17%. Maximum violations were recorded from one of the petrochemical plants. The results show no significant pollution due to heavy metals. Almost all heavy metals were within RC pretreatment standards. High COD and TOC indicates that major pollution was due to hydrocarbons. Typical compounds identified by GC-MS were branched alkanes, branched alkenes, aliphatic ketones, substituted thiophenes, substituted phenols, aromatics and aromatic alcohols. Quality of treated water was also in compliance with RC direct discharge standards. In order to achieve the zero discharge goal, further studies and measures are in progress.

  10. Drain Back, Low Flow Solar Combi Systems

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Fan, Jianhua

    2014-01-01

    Drain Back systems with ETC collectors are tested and analyzed in a Danish - Chinese cooperation project. Experiences from early work at DTU, with drain back, low flow systems, was used to design two systems: 1) One laboratory system at DTU and 2) One demonstration system in a single family house...... in Sorö Denmark. Detailed monitoring and modelling of the system in the DTU lab is done to be able to generalize the results, to other climates and loads and to make design optimizations. The advantage with drain back, low flow systems, is that the system can be made more simple with less components...... and that the performance can be enhanced. A combination of the drain back- and system expansion vessel was tested successfully. Small initial problems with installation and proposals for design improvements to avoid these in practice are described in the paper. Installer education and training is an important step to have...

  11. Circuital model for the spherical geodesic waveguide perfect drain

    Science.gov (United States)

    González, Juan C.; Grabovičkić, Dejan; Benítez, Pablo; Miñano, Juan C.

    2012-08-01

    The perfect drain for the Maxwell fish eye (MFE) is a non-magnetic dissipative region placed in the focal point to absorb all the incident radiation without reflection or scattering. The perfect drain was recently designed as a material with complex permittivity that depends on frequency. However, this material is only a theoretical material, so it cannot be used in practical devices. The perfect drain has been claimed as necessary for achieving super-resolution (Leonhardt 2009 New J. Phys. 11 093040), which has increased the interest in practical perfect drains suitable for manufacturing. Here, we present a practical perfect drain that is designed using a simple circuit (made of a resistance and a capacitor) connected to the coaxial line. Moreover, we analyze the super-resolution properties of a device equivalent to the MFE, known as a spherical geodesic waveguide, loaded with this perfect drain. The super-resolution analysis for this device is carried out using COMSOL Multiphysics. The results of simulations predict a super-resolution of up to λ/3000.

  12. Circuital model for the spherical geodesic waveguide perfect drain

    International Nuclear Information System (INIS)

    González, Juan C; Grabovičkić, Dejan; Benítez, Pablo; Miñano, Juan C

    2012-01-01

    The perfect drain for the Maxwell fish eye (MFE) is a non-magnetic dissipative region placed in the focal point to absorb all the incident radiation without reflection or scattering. The perfect drain was recently designed as a material with complex permittivity that depends on frequency. However, this material is only a theoretical material, so it cannot be used in practical devices. The perfect drain has been claimed as necessary for achieving super-resolution (Leonhardt 2009 New J. Phys. 11 093040), which has increased the interest in practical perfect drains suitable for manufacturing. Here, we present a practical perfect drain that is designed using a simple circuit (made of a resistance and a capacitor) connected to the coaxial line. Moreover, we analyze the super-resolution properties of a device equivalent to the MFE, known as a spherical geodesic waveguide, loaded with this perfect drain. The super-resolution analysis for this device is carried out using COMSOL Multiphysics. The results of simulations predict a super-resolution of up to λ/3000. (paper)

  13. Method of processing laundry drain

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Y; Oda, A; Yusa, H; Kitamura, M; Horiuchi, S

    1979-09-28

    Purpose: To subject the laundry drain to flocculation precipitation treatment in the prior stage of an inverse osmotic treatment, and subject only the supernatant to the inverse osmotic treatment and the precipitate directly to the condensation treatment, thereby decreasing the frequency of exchange of the inverse osmotic membranes, and reducing the quantity of purifying water. Method: The laundry drain is supplied to a flocculation precipitation tank, and added and mixed with a flocculant and a neutralizing agent, thus being subjected to a flocculation precipitation treatment. The supernatant is transported to a circulation tank through a transportation pipe, and is subjected to an inverse osmotic treatment in inverse osmotic module through the circulation tank, a filter and a high tension pump, and then returned to the circulation tank. The supernatant is thus concentrated to a predetermined concentration by repeating such operations. On the other hand, the precipitate at the bottom part of the flocculation precipitation tank is supplied through the transportation pipe to an evaporator supply tank together with the concentrate from the drain circulation tank, and evaporated and concentrated in the evaporator.

  14. Evisceration of Appendix through the Drain Site: A Rare Case Report.

    Science.gov (United States)

    Ravishankaran, Praveen; Rajamani, A

    2013-06-01

    Placing a drain after surgery is a usual procedure in any emergency abdominal operation. The drain is removed as soon as its purpose of draining the intraabdominal collection in served. Evisceration of intraabdominal organs through the drain site is a rare occurance. This case report is about an 12 year old girl who was admitted with blunt trauma abdomen. After completion of emergency laparotomy a drain was placed in the right lower quadrant. When the drain was removed on the 6th post operative day, the appendix eviscerated out of the drain site. The wound was extended a little and an appendectomy was done. This case is presented for its rarity as only two similar instances have been reported in literature so far.

  15. Acute lethality data for Ontario's electric power generation sector effluents covering the period from December 1990 to May 1991

    International Nuclear Information System (INIS)

    Poirier, D.G.; Lee, J.T.; Mueller, M.C.; Westlake, G.F.

    1995-01-01

    Regulations require that electric power generation facilities monitor their liquid effluents. Acute lethality tests are simple, rapid standard methods for measuring potential impacts on aquatic ecosystems. These toxicity tests will detect harmful concentrations of chemicals and mixtures of compounds in effluents, but compliance with end of pipe limits for acute toxicity will not necessarily control all adverse environmental effects. In these tests, aquatic organisms were exposed to undiluted effluent, as well as a series of effluent dilutions for a fixed period of time. This report is a compilation of six months of test results. Typically the most toxic samples were taken from the waste treatment plant (WTP) neutral sumps. This was true for fossil fueled as well as for nuclear generating stations. tabs., figs

  16. Mechanical decontamination techniques for floor drain systems

    International Nuclear Information System (INIS)

    Palau, G.L.

    1987-01-01

    The unprecedented nature of cleanup activities at Three Mile Island Unit 2 (TMI-2) following the 1979 accident has necessitated the development of new techniques to deal with radiation and contamination in the plant. One of these problems was decontamination of floor drain systems, which had become highly contaminated with various forms of dirt and sludge containing high levels of fission products and fuel from the damaged reactor core. The bulk of this contamination is loosely adherent to the drain pipe walls; however, significant amounts of contamination have become incorporated into pipe wall oxide and corrosion layers and embedded in microscopic pits and fissures in the pipe wall material. The need to remove this contamination was recognized early in the TMI-2 cleanup effort. A program consisting of development and laboratory testing of floor drain decontamination techniques was undertaken early in the cleanup with support from the Electric Power Research Institute (EPRI). Based on this initial research, two techniques were judged to show promise for use at TMI-2: a rotating brush hone system and a high-pressure water mole nozzle system. Actual use of these devices to clean floor drains at TMI-2 has yielded mixed decontamination results. The decontamination effectiveness that has been obtained is highly dependent on the nature of the contamination in the drain pipe and the combination of decontamination techniques used

  17. Brain drain of China and India

    OpenAIRE

    Li, Yuan

    2012-01-01

    Abstract Under the background of globalization, brain drain is a common phenomenon in many countries. Talents flow from developing countries to developed countries, and this phenomenon unavoidably exerts various and profound influences to both the source countries and the receiving countries. This thesis deals with the phenomenon of brain drain with the aim to investigate the phenomenon further and carry out two case studies of China and India. The research method is main...

  18. Control of effluents and environmental surveillance of the CEA centres. 1997 status

    International Nuclear Information System (INIS)

    1998-06-01

    The environmental quality in the vicinity of CEA facilities is a major concern of the safety policy of the CEA. The aim of this document is to inform the public about the gaseous and liquids radioactive effluents released by the CEA centres under the permission of the ministry. It provides a status of the effluents and of the radioactivity levels measured near the CEA centres in 1997, using air, water, vegetation and milk samples. A comparison is made with the measurements performed during the 1993-1996 period. The data presented comes from the regulatory registers transmitted to the agency for the protection against ionizing radiations (OPRI) which belongs to the ministry of health. (J.S.)

  19. The consequences of nuclear waste disposal facilities on public health and environment

    International Nuclear Information System (INIS)

    Rivasi, M.

    2000-01-01

    This report, from the French parliament office for the evaluation of scientifical and technological choices, makes a status of the effluents and waste stocks from different types of nuclear facilities and analyzes the consequences of these effluents and wastes on the public health and on the environment. Finally, it examines the necessary scientifical, technical and legal improvements. (J.S.)

  20. Preliminary evaluation of the gaseous effluent sampling and monitoring systems at the 291-Z-1 and 296-Z-3 stacks

    International Nuclear Information System (INIS)

    Schwendiman, L.C.; Glissmeyer, J.A.

    1992-04-01

    The 291-Z-1 and 296-Z-3 stack effluent particulate sampling and monitoring systems are being evaluated for compliance with Atlantic Richfield Hanford Company's Interim Criteria for such systems. This evaluation is part of a study by Battelle-Northwest of gaseous effluent sampling systems in ARHCO facilities. This letter report presents a preliminary evaluation of the mentioned facilities and the indicated improvements needed to meet the Interim Criteria so that conceptual design work for improved systems can be initiated. There is currently underway a detailed study at the two stacks including a series of sampling experiments, the findings of which will not be included in this report. The gaseous effluent sampling system at the 291-Z-1 and 296-Z-3 stacks are very dissimilar and will be treated in separate sections of this report. The discussions for each sampling system will include a brief description and a preliminary evaluation of the systems

  1. Revision of by-laws about effluents of EdF's nuclear power plants; Revision des arretes de rejets des centrales nucleaires d'EDF

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    In France, in application of the clean water law from January 3, 1992 and since the decree 95-540 from May 4, 1995, each basic nuclear facility receives a single permission which covers both its water takes and its radioactive and non-radioactive effluents. This decree, initially dedicated to new facilities has been enlarged to all existing installations for which the prefectorial by-laws have reached their date-line. Thus, up to now, five inter-ministerial by-laws have renewed the permissions of water takes and effluents evacuation of the power plants of Saint-Laurent-des-Eaux (Loir-et-Cher), Flamanville (Manche), Paluel (Seine-Maritime), Belleville (Cher) and Saint-Alban (Isere). These by-laws foresee an important abatement of the effluents and concern more particularly the tritium, {sup 14}C, the iodine isotopes and also some other non-radioactive chemical compounds. This document is a compilation of all revised by-laws about effluents and concerning the nuclear power plants listed above. (J.S.)

  2. CSER 94-011: Use of glovebags for demister draining operations

    International Nuclear Information System (INIS)

    Hess, A.L.

    1994-01-01

    A criticality safety review is presented for the use of plastic-sheet glovebags for the operations of draining demisters on the 26-inch vacuum system headers. A criticality drain is required because of the possibility for spilling liquid of sufficient volume and fissile content for criticality. It is recommended that the glovebag design include a rigid, 2ft x 2ft floor with a central drain feeding a geometrically favorable spill-catch vessel, plus a screen grid above the bottom for drain protection

  3. Draining after breast reduction: a randomised controlled inter-patient study

    NARCIS (Netherlands)

    Corion, Leonard U. M.; Smeulders, Mark J. C.; van Zuijlen, Paul P. M.; van der Horst, Chantal M. A. M.

    2009-01-01

    One hundred and seven bilateral breast reductions were prospectively randomised during surgery to receive or not receive wound drains. Fifty-five patients were randomised to have a drain and 52 to not have a drain. There was no statistical difference in the number of complications between the

  4. CONCAWE effluent speciation project

    Energy Technology Data Exchange (ETDEWEB)

    Leonards, P.; Comber, M.; Forbes, S.; Whale, G.; Den Haan, K.

    2010-09-15

    In preparation for the implementation of the EU REACH regulation, a project was undertaken to transfer the high-resolution analytical method for determining hydrocarbon blocks in petroleum products by comprehensive two-dimensional gas chromatography (GCxGC) to a laboratory external to the petroleum industry (Institute for Environmental Studies (IVM) of the VU University of Amsterdam). The method was validated and used for the analysis of petroleum hydrocarbons extracted from refinery effluents. The report describes the technology transfer and the approaches used to demonstrate the successful transfer and application of the GCxGC methodology from analysing petroleum products to the quantitative determination of hydrocarbon blocks in refinery effluents. The report describes all the methods used for all the determinations on the effluent samples along with an overview of the results obtained which are presented in summary tables and graphs. These data have significantly improved CONCAWE's knowledge of what refineries emit in their effluents. A total of 111 Effluent Discharge Samples from 105 CONCAWE refineries in Europe were obtained in the period June 2008 to March 2009. These effluents were analysed for metals, standard effluent parameters (including COD, BOD), oil in water, BTEX and volatile organic compounds. The hydrocarbon speciation determinations and other hydrocarbon analyses are also reported. The individual refinery analytical results are included into this report, coded as per the CONCAWE system. These data will be, individually, communicated to companies and refineries. The report demonstrates that it is feasible to conduct a research programme to investigate the fate and effects of hydrocarbon blocks present in discharged refinery effluents.

  5. Study of the patency of different peritoneal drains used prophylactically in bariatric surgery.

    Science.gov (United States)

    Salgado Júnior, Wilson; Macedo Neto, Marcelo Martins; dos Santos, José Sebastião; Sakarankutty, Ajith Kumar; Ceneviva, Reginaldo; de Castro e Silva, Orlando

    2009-05-21

    To compare the performance of different types of abdominal drains used in bariatric surgery. A vertical banded Roux-en-Y gastric bypass was performed in 33 morbidly obese patients. Drainage of the peritoneal cavity was performed in each case using three different types of drain selected in a randomized manner: a latex tubular drain, a Watterman tubulolaminar drain, and a silicone channeled drain. Drain permeability, contamination of the drained fluid, ease of handling, and patient discomfort were evaluated postoperatively over a period of 7 d. The patients with the silicone channeled drain had larger volumes of drainage compared to patients with tubular and tubulolaminar drains between the third and seventh postoperative days. In addition, a lower incidence of discomfort and of contamination with bacteria of a more pathogenic profile was observed in the patients with the silicone channeled drain. The silicone channeled drain was more comfortable and had less chance of occlusion, which is important in the detection of delayed dehiscence.

  6. A study conducted on the impact of effluent waste from machining process on the environment by water analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kovoor, Punnose P.; Idris, Mohd Razif [Kuala Lumpur Univ. (Malaysia). Inst. of Product Design and Manufacturing, IPROM; Hassan, Masjuki Haji [Univ. of Malaya, Kuala Lumpur (Malaysia). Dept. of Mechanical Engineering; Tengku Yahya, Tengku Fazli [Kuala Lumpur Univ., Melaka (Malaysia). Malaysian Inst. of Chemical and Bio Engineering Technology, MICET

    2012-11-01

    Ferrous block metals are used frequently in large quantities in various sectors of industry for making automotive, furniture, electrical and mechanical items, body parts for consumables, and so forth. During the manufacturing stage, the block metals are subjected to some form of material removal process either through turning, grinding, milling, or drilling operations to obtain the final product. Wastes are generated from the machining process in the form of effluent waste, solid waste, atmospheric emission, and energy emission. These wastes, if not recycled or treated properly before disposal, will have a detrimental impact on the environment through air, water, and soil pollution. The purpose of this paper is to determine the impact of the effluent waste from the machining process on the environment through water analysis. A twofold study is carried out to determine the impact of the effluent waste on the water stream. The preliminary study consists of a scenario analysis where five scenarios are drawn out using substances such as spent coolant, tramp oil, solvent, powdered chips, and sludge, which are commonly found in the effluent waste. The wastes are prepared according to the scenarios and are disposed through the Institute of Product Design and Manufacturing (IPROM) storm water drain. Samples of effluent waste are collected at specific locations according to the APHA method and are tested for parameters such as pH, ammoniacal nitrogen, dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, and total suspended solids. A subsequent study is done by collecting 30 samples of the effluent waste from the machining operations from two small- and medium-scale enterprise locations and the IPROM workshop to test the quality of water. The results obtained from the tests showed high values of chemical oxygen demand, ammoniacal nitrogen, and total suspended solids when compared with the Standard B specification for inland water bodies as specified by the

  7. Improved performance of inkjet-printed Ag source/drain electrodes for organic thin-film transistors by overcoming the coffee ring effects

    Science.gov (United States)

    Liu, Cheng-Fang; Lin, Yan; Lai, Wen-Yong; Huang, Wei

    2017-11-01

    Inkjet printing is a promising technology for the scalable fabrication of organic electronics because of the material conservation and facile patterning as compared with other solution processing techniques. In this study, we have systematically investigated the cross-sectional profile control of silver (Ag) electrode via inkjet printing. A facile methodology for achieving inkjet-printed Ag source/drain with improved profiles is developed. It is demonstrated that the printing conditions such as substrate temperature, drop spacing and printing layers affect the magnitude of the droplet deposition and the rate of evaporation, which can be optimized to greatly reduce the coffee ring effects for improving the inkjet-printed electrode profiles. Ag source/drain electrodes with uniform profiles were successfully inkjet-printed and incorporated into organic thin-film transistors (OTFTs). The resulting devices showed superior electrical performance than those without special treatments. It is noted to mention that the strategy for modulating the inkjet-printed Ag electrodes in this work does not demand the ink formulation or complicated steps, which is beneficial for scaling up the printing techniques for potential large-area/mass manufacturing.

  8. CMT scaling analysis and distortion evaluation in passive integral test facility

    International Nuclear Information System (INIS)

    Deng Chengcheng; Qin Benke; Wang Han; Chang Huajian

    2013-01-01

    Core makeup tank (CMT) is the crucial device of AP1000 passive core cooling system, and reasonable scaling analysis of CMT plays a key role in the design of passive integral test facilities. H2TS method was used to perform scaling analysis for both circulating mode and draining mode of CMT. And then, the similarity criteria for CMT important processes were applied in the CMT scaling design of the ACME (advanced core-cooling mechanism experiment) facility now being built in China. Furthermore, the scaling distortion results of CMT characteristic Ⅱ groups of ACME were calculated. At last, the reason of scaling distortion was analyzed and the distortion evaluation was conducted for ACME facility. The dominant processes of CMT circulating mode can be adequately simulated in the ACME facility, but the steam condensation process during CMT draining is not well preserved because the excessive CMT mass leads to more energy to be absorbed by cold metal. However, comprehensive analysis indicates that the ACME facility with high-pressure simulation scheme is able to properly represent CMT's important phenomena and processes of prototype nuclear plant. (authors)

  9. Management of Discharge of Low Level Liquid Radioactive Waste Generated in Medical, Educational, Research and Industrial Facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-15

    Although published information on management technologies suitable for radioactive effluents is readily available, smaller facilities such as hospitals, universities and research laboratories in some countries can benefit from more detailed guidance on identifying optimal arrangements for effectively managing their radioactive liquid effluents. A wide range of circumstances exist globally, given that the generation of radioactive liquid effluents may be regular or irregular, and the liquid effluents may be suitable for direct discharge to the environment, or may require a period of decay storage prior to discharge. Countries typically fit into one of the four following categories with respect to the status of their arrangements for the management of radioactive liquid effluents: (1) The country does not have sufficient technical, regulatory and organizational infrastructure to effectively manage its radioactive liquid effluents; (2) The country's technical infrastructure for effectively managing its radioactive liquid effluents is almost sufficient, but it is not supported by an acceptable level of regulatory and organizational capacity (e.g. legal infrastructure, administrative infrastructure); (3) The country has sufficient technical, regulatory and organizational capacity, but it is known that the application of the requirements for proper management of radioactive liquid effluents is, in many cases, not being carried out to the standard indicated by official reports; (4) The country has well developed and established regulatory and organizational capacity, which is complemented by an acceptable level of relevant technical infrastructure such that the radioactive liquid effluents can be properly managed. Facilities, as well as countries, in the first three categories will find information in this publication to assist their further development. Even countries that already have the necessary infrastructure to properly manage their liquid radioactive effluents may

  10. Management of Discharge of Low Level Liquid Radioactive Waste Generated in Medical, Educational, Research and Industrial Facilities

    International Nuclear Information System (INIS)

    2013-07-01

    Although published information on management technologies suitable for radioactive effluents is readily available, smaller facilities such as hospitals, universities and research laboratories in some countries can benefit from more detailed guidance on identifying optimal arrangements for effectively managing their radioactive liquid effluents. A wide range of circumstances exist globally, given that the generation of radioactive liquid effluents may be regular or irregular, and the liquid effluents may be suitable for direct discharge to the environment, or may require a period of decay storage prior to discharge. Countries typically fit into one of the four following categories with respect to the status of their arrangements for the management of radioactive liquid effluents: (1) The country does not have sufficient technical, regulatory and organizational infrastructure to effectively manage its radioactive liquid effluents; (2) The country's technical infrastructure for effectively managing its radioactive liquid effluents is almost sufficient, but it is not supported by an acceptable level of regulatory and organizational capacity (e.g. legal infrastructure, administrative infrastructure); (3) The country has sufficient technical, regulatory and organizational capacity, but it is known that the application of the requirements for proper management of radioactive liquid effluents is, in many cases, not being carried out to the standard indicated by official reports; (4) The country has well developed and established regulatory and organizational capacity, which is complemented by an acceptable level of relevant technical infrastructure such that the radioactive liquid effluents can be properly managed. Facilities, as well as countries, in the first three categories will find information in this publication to assist their further development. Even countries that already have the necessary infrastructure to properly manage their liquid radioactive effluents may

  11. Advances in chest drain management in thoracic disease

    Science.gov (United States)

    George, Robert S.

    2016-01-01

    An adequate chest drainage system aims to drain fluid and air and restore the negative pleural pressure facilitating lung expansion. In thoracic surgery the post-operative use of the conventional underwater seal chest drainage system fulfills these requirements, however they allow great variability amongst practices. In addition they do not offer accurate data and they are often inconvenient to both patients and hospital staff. This article aims to simplify the myths surrounding the management of chest drains following chest surgery, review current experience and explore the advantages of modern digital chest drain systems and address their disease-specific use. PMID:26941971

  12. An Equal-Strain Analytical Solution for the Radial Consolidation of Unsaturated Soils by Vertical Drains considering Drain Resistance

    Directory of Open Access Journals (Sweden)

    Feng Zhou

    2018-01-01

    Full Text Available Developing an analytical solution for the consolidation of unsaturated soils remains a challenging task due to the complexity of coupled governing equations for air and water phases. This paper presents an equal-strain model for the radial consolidation of unsaturated soils by vertical drains, and the effect of drain resistance is also considered. Simplified governing equations are established, and an analytical solution to calculate the excess pore-air and pore-water pressures is derived by using the methods of matrix analysis and eigenfunction expansion. The average degrees of consolidation for air and water phases and the ground surface settlement are also given. The solutions of the equal-strain model are verified by comparing the proposed free-strain model with the equal-strain model, and reasonably good agreement is obtained. Moreover, parametric studies regarding the drain resistance effect are graphically presented.

  13. Percutaneous Retrieval of a Retained Jackson-Pratt Drain Fragment

    International Nuclear Information System (INIS)

    Namyslowski, Jan; Halin, Neil J.; Greenfield, Alan J.

    1996-01-01

    A retained intraabdominal Jackson-Pratt drain fragment was percutaneously retrieved using an inflated angioplasty balloon that had been maneuvered inside of the drain lumen over a hydrophilic-coated steerable guidewire

  14. Major ion toxicity in effluents: A review with permitting recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Goodfellow, W.L.; Ausley, L.W.; Burton, D.T.; Denton, D.L.; Dorn, P.B.; Grothe, D.R.; Heber, M.A.; Norberg-King, T.J.; Rodgers, J.H. Jr.

    2000-01-01

    Effluent toxicity testing methods have been well defined, but for the most part, these methods do not attempt to segregate the effects of active ionic concentrations and ion imbalances upon test and species performances. The role of various total dissolved solids in effluents on regulatory compliance has emerged during the last few years and has caused confusion in technical assessment and in permitting and compliance issues. This paper assesses the issue of ionic strength and ion imbalance, provides a brief summary of applicable data, presents several case studies demonstrating successful tools to address toxicity resulting from salinity and ion imbalance, and provides recommendations for regulatory and compliance options to manage discharges with salinity/ion imbalance issues. Effluent toxicity resulting from inorganic ion imbalance and the ion concentration of the effluent is pervasive in permitted discharge from many industrial process and municipal discharges where process streams are concentrated, adjusted, or modified. This paper discusses procedures that use weight-of-evidence approaches to identify ion imbalance toxicity, including direct measurement, predictive toxicity models for freshwater, exchange resins, mock effluents, and ion imbalance toxicity with tolerant/susceptible test species. Cost-effective waste treatment control options for a facility whose effluent is toxic because of total dissolved solids (TDS) or because of specific ion(s) are scarce at best. Depending on the discharge situation, TDS toxicity may not be viewed with the same level of concern as other, more traditional, toxicants. These discharge situations often do not require the conservative safety factors required by other toxicants. Selection of the alternative regulatory solutions discussed in this paper may be beneficial, especially because they do not require potentially expensive or high-energy-using treatment options that may be ineffective control options. The information

  15. Pretreatment technologies for industrial effluents: Critical review on bioenergy production and environmental concerns.

    Science.gov (United States)

    Prabakar, Desika; Suvetha K, Subha; Manimudi, Varshini T; Mathimani, Thangavel; Kumar, Gopalakrishnan; Rene, Eldon R; Pugazhendhi, Arivalagan

    2018-07-15

    The implementation of different pretreatment techniques and technologies prior to effluent discharge is a direct result of the inefficiency of several existing wastewater treatment methods. A majority of the industrial sectors have known to cause severe negative effects on the environment. The five major polluting industries are the paper and pulp mills, coal manufacturing facilities, petrochemical, textile and the pharmaceutical sectors. Pretreatment methods have been widely used in order to lower the toxicity levels of effluents and comply with environmental standards. In this review, the possible environmental benefits and concerns of adopting different pretreatment technologies for renewable energy production and product/resource recovery has been reviewed and discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. 40 CFR 426.113 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Television Picture... applicable to the abrasive polishing and acid polishing waste water streams. Effluent characteristic Effluent...

  17. 40 CFR 427.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.43 Effluent limitations guidelines representing the degree of effluent...

  18. 40 CFR 427.33 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Starch Binder) Subcategory § 427.33 Effluent limitations guidelines representing the degree of effluent...

  19. Laparoscopic elective cholecystectomy with and without drain: A controlled randomised trial

    Directory of Open Access Journals (Sweden)

    Gouda El-labban

    2012-01-01

    Full Text Available Background : Laparoscopic cholecystectomy is the main method of treatment of symptomatic gallstones. Routine drainage after laparoscopic cholecystectomy is an issue of considerable debate. Therefore, a controlled randomised trial was designed to assess the value of drains in elective laparoscopic cholecystectomy. Materials and Methods: During a two-year period (From April 2008 to January 2010, 80 patients were simply randomised to have a drain placed (group A, an 8-mm pentose tube drain was retained below the liver bed, whereas 80 patients were randomised not to have a drain (group B placed in the subhepatic space. End points of this trial were to detect any differences in morbidity, postoperative pain, wound infection and hospital stay between the two groups. Results : There was no mortality in either group and no statistically significant difference in postoperative pain, nausea and vomiting, wound infection or abdominal collection between the two groups. However, hospital stay was longer in the drain group than in group without drain and it is appearing that the use of drain delays hospital discharge. Conclusion : The routine use of a drain in non-complicated laparoscopic cholecystectomy has nothing to offer; in contrast, it is associated with longer hospital stay.

  20. 40 CFR 426.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Television... stream): Effluent characteristic Effluent limitations Maximum for any 1 day Average of daily values for...

  1. The aquatic toxicity and chemical forms of coke plant effluent cyanide -- Implications for discharge limits

    International Nuclear Information System (INIS)

    Garibay, R.; Rupnow, M.; Godwin-Saad, E.; Hall, S.

    1995-01-01

    Cyanide is present in treated cokemaking process waters at concentrations as high as 8.0 mg/L. In assessing options for managing the discharge of a treated effluent, the development and implementation of discharge limits for cyanide became a critical issue. A study was initiated to evaluate possible alternatives to cyanide permit limits at the US Steel Gary Works Facility. The objectives of the study were to: (1) evaluation the forms of cyanide present in coke plant effluent; (2) determine whether these forms of cyanide are toxic to selected aquatic organisms; (3) compare the aquatic toxicity of various chemical forms of cyanide; (4) identify if the receiving water modifies cyanide bioavailability; and (5) confirm, with respect to water quality-based effluent limits, an appropriate analytical method for monitoring cyanide in a coke plant effluent. The results of aquatic toxicity tests and corresponding analytical data are presented. Toxicity tests were conducted with various pure chemical forms of cyanide as well as whole coke plant effluent (generated from a pilot-scale treatment system). Test species included the fathead minnow (Pimephales promelas), rainbow trout (Oncorhynchus mykiss), Ceriodaphnia dubia (C. dubia) and Daphnia magna (D. magna). Analytical measurements for cyanide included total, weak acid dissociable, diffusible cyanide and selected metal species of cyanide. The findings presented by the paper are relevant with respect to the application of cyanide water quality criteria for a coke plant effluent discharge, the translation of these water quality-based effluent limits to permit limits, and methods for compliance monitoring for cyanide

  2. Powerful Software to Simulate Soil Consolidation Problems with Prefabricated Vertical Drains

    OpenAIRE

    Gonzalo García-Ros; Iván Alhama; Manuel Cánovas

    2018-01-01

    The present work describes the program Simulation of Consolidation with Vertical Drains (SICOMED_2018), a tool for the solution of consolidation processes in heterogeneous soils, with totally or partially penetrating prefabricated vertical drains (PVD) and considering both the effects of the smear zone, generated when introducing the drain into the ground, and the limitation in the discharge capacity of the drain. In order to provide a completely free program, the code Next-Generation Simulat...

  3. Iatrogenic Perforation of the Left Ventricle during Insertion of a Chest Drain

    OpenAIRE

    Kim, Dongmin; Lim, Seong-Hoon; Seo, Pil Won

    2013-01-01

    Chest draining is a common procedure for treating pleural effusion. Perforation of the heart is a rare often fatal complication of chest drain insertion. We report a case of a 76-year-old female patient suffering from congestive heart failure. At presentation, unilateral opacity of the left chest observed on a chest X-ray was interpreted as massive pleural effusion, so an attempt was made to drain the left pleural space. Malposition of the chest drain was suspected because blood was draining ...

  4. 1325-N Liquid Waste Disposal Facility Supplemental Information to the Hanford Facility Contingency Plan (DOE/RL-93-75)

    International Nuclear Information System (INIS)

    Edens, V.G.

    1998-03-01

    The 1325-N Liquid Waste Disposal Facility located at the 100-N Area of the Hanford Site started receiving part of the N Reactor liquid radioactive effluent flow in 1983. In September 1985, the 1325-N Facility became the primary liquid waste disposal system for the N Reactor. The facility is located approximately 60 feet above and 2000 feet east of the shore of the Columbia River. Waste stream discharges were ceased in April 1991.Specific information on types of waste discharged to 1325-N are contained within the Part A, Form 3, Permit application of this unit

  5. Dose apportionment for BARC facilities

    International Nuclear Information System (INIS)

    Preetha, J.; Sundar, D.; Munshi, S.K.; Pradeepkumar, K.S.

    2017-01-01

    One of the important responsibilities of BARC Safety Council (BSC) is to ensure that appropriate measures are in place to protect the members of the public and the environment from the undue effects of radioactive releases from the facilities regulated by BSC. It is with this aim in mind that a Standing Committee for Dose Apportionment (DAC) was constituted by BSC in 2005, to ensure that the limits are set by the regulatory body for release of low-level gaseous and liquid effluents into the environment from BARC facilities. There are three Committees for dose apportionment constituted by the Chairman, BSC, viz, DAC-TK for Tarapur and Kalpakkam facilities, DAC-TV for Trombay and DACSF for specific faculties

  6. Horner's syndrome caused by an intercostal chest drain.

    OpenAIRE

    Campbell, P; Neil, T; Wake, P N

    1989-01-01

    Horner's syndrome occurred in a young woman as a complication of the treatment of a traumatic pneumothorax with an intercostal drain. The nerve damage probably occurred when the lung had fully re-expanded, pressing the tip of the intercostal drain, lying at the apex of the pleural cavity, on to the sympathetic chain.

  7. Rethinking "Brain Drain" in the Era of Globalisation

    Science.gov (United States)

    Rizvi, Fazal

    2005-01-01

    This paper discusses a range of issues concerning the idea of "brain drain" within the context of recent thinking on transnational mobility. It argues that the traditional analyses of brain drain are not sufficient, and that we can usefully approach the topic from a postcolonial perspective concerned with issues of identity, national…

  8. Comparison of a large and small-calibre tube drain for managing spontaneous pneumothoraces.

    Science.gov (United States)

    Benton, Ian J; Benfield, Grant F A

    2009-10-01

    To compare treatment success of large- and small-bore chest drains in the treatment of spontaneous pneumothoraces the case-notes were reviewed of those admitted to our hospital with a total of 73 pneumothoraces and who were treated by trainee doctors of varying experience. Both a large- and a small-bore intercostal tube drain system were in use during the two-year period reviewed. Similar pneumothorax profile and numbers treated with both drains were recorded, resulting in a similar drain time and numbers of successful and failed re-expansion of pneumothoraces. Successful pneumothorax resolution was the same for both drain types and the negligible tube drain complications observed with the small-bore drain reflected previously reported experiences. However the large-bore drain was associated with a high complication rate (32%) with more infectious complications (24%). The small-bore drain was prone to displacement (21%). There was generally no evidence of an increased failure and morbidity, reflecting poorer expertise, in the non-specialist trainees managing the pneumothoraces. A practical finding however was that in those large pneumothoraces where re-expansion failed, the tip of the drain had not been sited at the apex of the pleural cavity irrespective of the drain type inserted.

  9. FROM BRAIN DRAIN TO BRAIN NETWORKING

    Directory of Open Access Journals (Sweden)

    Irina BONCEA

    2015-06-01

    Full Text Available Scientific networking is the most accessible way a country can turn the brain drain into brain gain. Diaspora’s members offer valuable information, advice or financial support from the destination country, without being necessary to return. This article aims to investigate Romania’s potential of turning brain drain into brain networking, using evidence from the medical sector. The main factors influencing the collaboration with the country of origin are investigated. The conclusions suggest that Romania could benefit from the diaspora option, through an active implication at institutional level and the implementation of a strategy in this area.

  10. Carbon accumulation in pristine and drained mires

    Energy Technology Data Exchange (ETDEWEB)

    Maekilae, M.

    2011-07-01

    The carbon accumulation of 73 peat columns from 48 pristine and drained mires was investigated using a total of 367 dates and age-depth models derived from bulk density measurements. Peat columns were collected from mires of varying depth, age, degree of natural state and nutrient conditions in aapa mire and raised bog regions and coastal mires from southern and central Finland and Russian Karelia. Particular attention was paid to the accumulation of carbon over the last 300 years, as this period encompasses the best estimates of the oxic layer (acrotelm) age across the range of sites investigated. In general, drained mires are initially more nutrient-rich than pristine mires. Organic matter decomposes more rapidly at drained sites than at pristine sites, resulting in thinner peat layers and carbon accumulation but a higher dry bulk density and carbon content. The average carbon accumulation was calculated as 24.0 g m-2 yr-1 at pristine sites and 19.4 g m-2 yr-1 at drained sites, while for peat layers younger than 300 years the respective figures were 45.3 and 34.5 g m-2 yr-1 at pristine and drained sites. For the <300-year-old peat layers studied here, the average thickness was 19 cm less and the carbon accumulation rate 10.8 g m-2 yr-1 lower in drained areas than in pristine areas. The amount carbon accumulation of surface peat layers depends upon the mire site type, vegetation and natural state; variations reflect differences in plant communities as well as factors that affect biomass production and decay rates. The highest accumulation rates and thus carbon binding for layers younger than 300 years were measured in the ombrotrophic mire site types (Sphagnum fuscum bog and Sphagnum fuscum pine bog), and the second highest rates in wet, treeless oligotrophic and minerotrophic mire site types. The lowest values of carbon accumulation over the last 300 years were obtained for the most transformed, sparsely forested and forested mire site types, where the water

  11. Climate mitigation scenarios of drained peat soils

    Science.gov (United States)

    Kasimir Klemedtsson, Åsa; Coria, Jessica; He, Hongxing; Liu, Xiangping; Nordén, Anna

    2014-05-01

    The national inventory reports (NIR) submitted to the UNFCCC show Sweden - which as many other countries has wetlands where parts have been drained for agriculture and forestry purposes, - to annually emit 12 million tonnes carbon dioxide equivalents, which is more GHG'es than industrial energy use release in Sweden. Similar conditions can be found in other northern countries, having cool and wet conditions, naturally promoting peat accumulation, and where land use management over the last centuries have promoted draining activities. These drained peatland, though covering only 2% of the land area, have emissions corresponding to 20% of the total reported NIR emissions. This substantial emission contribution, however, is hidden within the Land Use Land Use Change and Forestry sector (LULUCF) where the forest Carbon uptake is even larger, which causes the peat soil emissions become invisible. The only drained soil emission accounted in the Swedish Kyoto reporting is the N2O emission from agricultural drained organic soils of the size 0.5 million tonnes CO2e yr-1. This lack of visibility has made incentives for land use change and management neither implemented nor suggested, however with large potential. Rewetting has the potential to decrease soil mineralization, why CO2 and N2O emissions are mitigated. However if the soil becomes very wet CH4 emission will increase together with hampered plant growth. By ecological modeling, using the CoupModel the climate change mitigation potential have been estimated for four different land use scenarios; 1, Drained peat soil with Spruce (business as usual scenario), 2, raised ground water level to 20 cm depth and Willow plantation, 3, raised ground water level to 10 cm depth and Reed Canary Grass, and 4, rewetting to an average water level in the soil surface with recolonizing wetland plants and mosses. We calculate the volume of biomass production per year, peat decomposition, N2O emission together with nitrate and DOC

  12. Method of draining water through a solid waste site without leaching

    Science.gov (United States)

    Treat, Russell L.; Gee, Glendon W.; Whyatt, Greg A.

    1993-01-01

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  13. 40 CFR 417.162 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Detergents Subcategory § 417.162 Effluent limitations guidelines... available (BPT): (a) For normal liquid detergent operations the following values pertain: Effluent...

  14. Decentralised wastewater treatment effluent fertigation: preliminary ...

    African Journals Online (AJOL)

    Decentralised wastewater treatment effluent fertigation: preliminary technical assessment. ... living in informal settlements with the effluent produced being used on agricultural land. ... Banana and taro required 3 514 mm of irrigation effluent.

  15. Present and future mine effluents management at Zirovski Vrh uranium mine

    International Nuclear Information System (INIS)

    Logar, Z.; Likar, B.; Gantar, I.

    2002-01-01

    Zirovski Vrh uranium mine and its facilities are situated on the northeastern slopes of the Zirovski Vrh ridge (960 m) and on the southern slopes of Crna gora (611 m) respectively. Mine elevation is from 430 m (bottom of the valley) to 580 m (P-1 adit). All effluents from the mine and mill objects flow into the Brebovscica river (with average yearly flow of 0.74 m 3 /s): run off mine water; mine waste pile Jazbec outflow; mill tailings Borst outflows; effluents from mine temporary mine waste piles P-1, P-9, P-36 are of minor significance. The first three effluents and the recipient surface water flows (the Todrascica brook and the Brebovscica river) are monitored extensively. The impact of radioactive polluted outflows on named waters is proved, but far under the maximal permitted limit values. The authorised maximal limits values for mine effluents were obtained in 1996. Detail design will ensure that this values will not be exceeded in the future. The long term planes are to minimise the uranium concentrations in the run off mine water by target underground drilling. The mine waste pile and the mill tailings will be covered by engineered cover system to avoid clean water contamination by weathering and ablution as well. The existing effluents from the mill tailings will diminish after the remediation and consolidation of the tailing. The Government of Slovenia funds the remediation of the uranium production site Zirovski Vrh. Estimated needed funds for remediation of the main objects are shown in the table below. The total investment includes also the costs for effluents control. Area Mio US$ Underground mine remediation 19.00 Mine waste pile remediation 6.50 Mill tailings remediation 2.24 Total investment costs 27.74 Above figures do not include operation costs of the Zirovski Vrh Mine, approximately US$ 2.2 Mio per year nowadays. The last implementation schedule foresights the end of remediation works in year 2005. After that starts trial monitoring of 5 years

  16. Inverse problem in anisotropic poroelasticity: drained constants from undrained ultrasound measurements.

    Science.gov (United States)

    Berryman, James G; Nakagawa, Seiji

    2010-02-01

    Poroelastic analysis has traditionally focused on the relationship between dry and drained constants, which are assumed known, and the saturated or undrained constants, which are assumed unknown. However, there are many applications in this field of study for which the main measurements can only be made on the saturated/undrained system, and then it is uncertain what the effects of the fluids were on the system, since the drained constants remain a mystery. The work presented here shows how to deduce drained constants from undrained constants for anisotropic systems having symmetries ranging from isotropic to orthotropic. Laboratory ultrasound data are then inverted for the drained constants in three granular packings: one of glass beads, and two others for distinct types of more or less angular sand grain packings. Experiments were performed under uniaxial stress, which resulted in hexagonal (transversely isotropic) symmetry of the poroelastic response. One important conclusion from the general analysis is that the drained constants are uniquely related to the undrained constants, assuming that porosity, grain bulk modulus, and pore fluid bulk modulus are already known. Since the resulting system of equations for all the drained constants is linear, measurement error in undrained constants also propagates linearly into the computed drained constants.

  17. Inverse problem in anisotropic poroelasticity: Drained constants from undrained ultrasound measurements

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.; Nakagawa, S.

    2009-11-20

    Poroelastic analysis has traditionally focused on the relationship between dry or drained constants which are assumed known and the saturated or undrained constants which are assumed unknown. However, there are many applications in this field of study for which the main measurements can only be made on the saturated/undrained system, and then it is uncertain what the eects of the uids were on the system, since the drained constants remain a mystery. The work presented here shows how to deduce drained constants from undrained constants for anisotropic systems having symmetries ranging from isotropic to orthotropic. Laboratory ultrasound data are then inverted for the drained constants in three granular packings: one of glass beads, and two others for distinct types of more or less angular sand grain packings. Experiments were performed under uniaxial stress, which resulted in hexagonal (transversely isotropic) symmetry of the poroelastic response. One important conclusion from the general analysis is that the drained constants are uniquely related to the undrained constants, assuming that porosity, grain bulk modulus, and pore uid bulk modulus are already known. Since the resulting system of equations for all the drained constants is linear, measurement error in undrained constants also propagates linearly into the computed drained constants.

  18. Detecting peatland drains with Object Based Image Analysis and Geoeye-1 imagery.

    Science.gov (United States)

    Connolly, J; Holden, N M

    2017-12-01

    Peatlands play an important role in the global carbon cycle. They provide important ecosystem services including carbon sequestration and storage. Drainage disturbs peatland ecosystem services. Mapping drains is difficult and expensive and their spatial extent is, in many cases, unknown. An object based image analysis (OBIA) was performed on a very high resolution satellite image (Geoeye-1) to extract information about drain location and extent on a blanket peatland in Ireland. Two accuracy assessment methods: Error matrix and the completeness, correctness and quality (CCQ) were used to assess the extracted data across the peatland and at several sub sites. The cost of the OBIA method was compared with manual digitisation and field survey. The drain maps were also used to assess the costs relating to blocking drains vs. a business-as-usual scenario and estimating the impact of each on carbon fluxes at the study site. The OBIA method performed well at almost all sites. Almost 500 km of drains were detected within the peatland. In the error matrix method, overall accuracy (OA) of detecting the drains was 94% and the kappa statistic was 0.66. The OA for all sub-areas, except one, was 95-97%. The CCQ was 85%, 85% and 71% respectively. The OBIA method was the most cost effective way to map peatland drains and was at least 55% cheaper than either field survey or manual digitisation, respectively. The extracted drain maps were used constrain the study area CO 2 flux which was 19% smaller than the prescribed Peatland Code value for drained peatlands. The OBIA method used in this study showed that it is possible to accurately extract maps of fine scale peatland drains over large areas in a cost effective manner. The development of methods to map the spatial extent of drains is important as they play a critical role in peatland carbon dynamics. The objective of this study was to extract data on the spatial extent of drains on a blanket bog in the west of Ireland. The

  19. Detecting peatland drains with Object Based Image Analysis and Geoeye-1 imagery

    Directory of Open Access Journals (Sweden)

    J. Connolly

    2017-03-01

    Full Text Available Abstract Background Peatlands play an important role in the global carbon cycle. They provide important ecosystem services including carbon sequestration and storage. Drainage disturbs peatland ecosystem services. Mapping drains is difficult and expensive and their spatial extent is, in many cases, unknown. An object based image analysis (OBIA was performed on a very high resolution satellite image (Geoeye-1 to extract information about drain location and extent on a blanket peatland in Ireland. Two accuracy assessment methods: Error matrix and the completeness, correctness and quality (CCQ were used to assess the extracted data across the peatland and at several sub sites. The cost of the OBIA method was compared with manual digitisation and field survey. The drain maps were also used to assess the costs relating to blocking drains vs. a business-as-usual scenario and estimating the impact of each on carbon fluxes at the study site. Results The OBIA method performed well at almost all sites. Almost 500 km of drains were detected within the peatland. In the error matrix method, overall accuracy (OA of detecting the drains was 94% and the kappa statistic was 0.66. The OA for all sub-areas, except one, was 95–97%. The CCQ was 85%, 85% and 71% respectively. The OBIA method was the most cost effective way to map peatland drains and was at least 55% cheaper than either field survey or manual digitisation, respectively. The extracted drain maps were used constrain the study area CO2 flux which was 19% smaller than the prescribed Peatland Code value for drained peatlands. Conclusions The OBIA method used in this study showed that it is possible to accurately extract maps of fine scale peatland drains over large areas in a cost effective manner. The development of methods to map the spatial extent of drains is important as they play a critical role in peatland carbon dynamics. The objective of this study was to extract data on the spatial extent of

  20. Nurses’ Knowledge Levels of Chest Drain Management: A Descriptive Study

    Directory of Open Access Journals (Sweden)

    Merve Tarhan

    2016-12-01

    Full Text Available Objective: The physician is responsible for inserting one or more chest tubes into the pleural space or the mediastinal space and connecting them to an appropriate drainage system. When the general principles about care of patients with chest drains were implemented correctly and effectively by nurses, nurse will contribute to accelerate the healing process of patients. In this context, the aim of this study was to determine the nurses’ level of knowledge regarding the care of patients with chest drains. Methods: The study was conducted with 153 nurses who worked in a chest diseases and thoracic surgery hospital in July 2014. Questionnaire form of 35 questions prepared by investigators was used to collect data. For the analysis of results, frequency tests, independent sample t-test and oneway ANOVA test were used. Results: 69.3% of nurses stated that they had obtained information from colleguages. 35.3% considered their knowledge about chest drain management to be inadequate. 55.6% scored 13 points and above from knowledge questionnaire about chest drain management. There were statistically significant difference between knowledge level and educational background, clinic work type, working unit, years of professional experience and institutional experience, frequency of contact patients with chest drain and perception of knowledge level (p<0.05. Conclusion: Results of this study indicate that lack of evidence-based nursing care and insufficient training has resulted in uncertainty and knowledge deficit in important aspects of chest drain care. It can be concluded that nurses receive training needs and training protocols are about chest drain management.

  1. Controlling the ambipolarity and improvement of RF performance using Gaussian Drain Doped TFET

    Science.gov (United States)

    Nigam, Kaushal; Gupta, Sarthak; Pandey, Sunil; Kondekar, P. N.; Sharma, Dheeraj

    2018-05-01

    Ambipolar conduction in tunnel field-effect transistors (TFETs) has been occurred as an inherent issue due to drain-channel tunneling. It makes TFET less efficient and restricts its application in complementary digital circuits. Therefore, this manuscript reports the application of Gaussian doping profile on nanometer regime silicon channel TFETs to completely eliminate the ambipolarity. For this, Gaussian doping is used in the drain region of conventional gate-drain overlap TFET to control the tunneling of electrons from the valence band of channel to the conduction band of drain. As a result, barrier width at the drain/channel junction increases significantly leading to the suppression of an ambipolar current even when higher doping concentration (1 ? 10 ? cm ?) is considered in the drain region. However, significant improvement in terms of RF figure-of-merits such as cut-off frequency (f ?), gain bandwidth product (GBW), and gate-to-drain capacitance (C ?) is achieved with Gaussian doped gate on drain overlap TFET as compared to its counterpart TFET.

  2. MEDICAL BRAIN DRAIN - A THEORETICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Boncea Irina

    2013-07-01

    Full Text Available Medical brain drain is defined as the migration of health personnel from developing countries to developed countries and between industrialized nations in search for better opportunities. This phenomenon became a global growing concern due to its impact on both the donor and the destination countries. This article aims to present the main theoretical contributions starting from 1950 until today and the historical evolution, in the attempt of correlating the particular case of medical brain drain with the theory and evolution of the brain drain in general. This article raises questions and offers answers, identifies the main issues and looks for possible solutions in order to reduce the emigration of medical doctors. Factors of influence include push (low level of income, poor working conditions, the absence of job openings and social recognition, oppressive political climate and pull (better remuneration and working conditions, prospects for career development, job satisfaction, security factors. Developing countries are confronting with the loss of their most valuable intellectuals and the investment in their education, at the benefit of developed nations. An ethical debate arises as the disparities between countries increases, industrialized nations filling in the gaps in health systems with professionals from countries already facing shortages. However, recent literature emphasizes the possibility of a “beneficial brain drain” through education incentives offered by the emigration prospects. Other sources of “brain gain” for donor country are the remittances, the scientific networks and return migration. Measures to stem the medical brain drain involve the common effort and collaboration between developing and developed countries and international organizations. Measures adopted by donor countries include higher salaries, better working conditions, security, career opportunities, incentives to stimulate return migration. Destination

  3. Silver precipitation from electrolytic effluents

    International Nuclear Information System (INIS)

    Rivera, I.; Patino, F.; Cruells, M.; Roca, A.; Vinals, J.

    2004-01-01

    The recovery of silver contained in electrolytic effluents is attractive due to its high economic value. These effluents are considered toxic wastes and it is not possible to dump them directly without any detoxification process. One of the most important way for silver recovery is the precipitation with sodium ditionite, sodium borohidride or hydrazine monohidrate. In this work, the most significant aspects related to the use of these reagents is presented. Results of silver precipitation with sodium ditionite from effluents containing thiosulfate without previous elimination of other species are also presented. silver concentration in the final effluents w <1 ppm. (Author) 15 refs

  4. Brain drain: Propulsive factors and consequences

    Directory of Open Access Journals (Sweden)

    Dragan ILIC

    2018-01-01

    Full Text Available When speaking about the total number of highly educated individuals’ migration, it is easy to spot that it is rapidly increasing. The brain drain issues should be taken very seriously especially in under developed and in the developing countries, knowing that the human capital is globally mobile and that highly educated individuals can without any issues market their knowledge around the globe. Dealing with it requires a carefully tailored strategy for these countries, which are suffering from severe human capital losses on annual basis. Since the labor markets of today are highly competitive, it is necessary for these countries to secure good advancement and doing business opportunities. The purpose of this research is to provide an insight into the key propulsive factors and potential consequences caused by the brain drain. The method used in order to conduct the research was a carefully designed questionnaire taken by the date subject enrolled at the third and fourth years of state governed and privately owned universities. This research shows that one of the key reasons for brain drain in underdeveloped and in the developing countries is shortage of further educational advancement opportunities.

  5. Direct measurements of the tile drain and groundwater flow route contributions to surface water contamination: From field-scale concentration patterns in groundwater to catchment-scale surface water quality

    International Nuclear Information System (INIS)

    Rozemeijer, J.C.; Velde, Y. van der; Geer, F.C. van; Bierkens, M.F.P.; Broers, H.P.

    2010-01-01

    Enhanced knowledge of water and solute pathways in catchments would improve the understanding of dynamics in water quality and would support the selection of appropriate water pollution mitigation options. For this study, we physically separated tile drain effluent and groundwater discharge from an agricultural field before it entered a 43.5-m ditch transect. Through continuous discharge measurements and weekly water quality sampling, we directly quantified the flow route contributions to surface water discharge and solute loading. Our multi-scale experimental approach allowed us to relate these measurements to field-scale NO 3 concentration patterns in shallow groundwater and to continuous NO 3 records at the catchment outlet. Our results show that the tile drains contributed 90-92% of the annual NO 3 and heavy metal loads. Considering their crucial role in water and solute transport, enhanced monitoring and modeling of tile drainage are important for adequate water quality management. - Direct measurements of flow route contributions to surface water contaminant loading reveal the crucial role of tile drainage for catchment-scale water and solute transport.

  6. Potable Water Treatment Facility General Permit (PWTF GP) ...

    Science.gov (United States)

    2017-08-28

    The Final PWTF GP establishes permit eligibility conditions, Notice of Intent (NOI) requirements, effluent limitations, standards, prohibitions, and best management practices for facilities that discharge to waters in the Commonwealth of Massachusetts (including both Commonwealth and Indian country lands) and the State of New Hampshire.

  7. Drain Tube-Induced Jejunal Penetration Masquerading as Bile Leak following Whipple's Operation.

    Science.gov (United States)

    Bae, Sang Ho; Lee, Tae Hoon; Lee, Sae Hwan; Lee, Suck-Ho; Park, Sang-Heum; Kim, Sun-Joo; Kim, Chang Ho

    2011-05-01

    A 70-year-old man had undergone pancreaticoduodenectomy due to a distal common bile duct malignancy. After the operation, serous fluid discharge decreased from two drain tubes in the retroperitoneum. Over four weeks, the appearance of the serous fluid changed to a greenish bile color and the patient persistently drained over 300 ml/day. Viewed as bile leak at the choledochojejunostomy, treatment called for endoscopic diagnosis and therapy. Cap-fitted forward-viewing endoscopy demonstrated that the distal tip of a pancreatic drain catheter inserted at the pancreaticojejunostomy site had penetrated the opposite jejunum wall. One of the drain tubes primarily placed in the retroperitoneum had also penetrated the jejunum wall, with the distal tip positioned near the choledochojejunostomy site. No leak of contrast appeared beyond the jejunum or anastomosis site. Following repositioning of a penetrating catheter of the pancreaticojejunostomy, four days later, the patient underwent removal of two drain tubes without additional complications. In conclusion, the distal tip of the catheter, placed to drain pancreatic juice, penetrated the jejunum wall and may have caused localized perijejunal inflammation. The other drain tube, placed in the retroperitoneal space, might then have penetrated the inflamed wall of the jejunum, allowing persistent bile drainage via the drain tube. The results masqueraded as bile leakage following pancreaticoduodenectomy.

  8. Genotoxicity of swine effluents.

    Science.gov (United States)

    Techio, V H; Stolberg, J; Kunz, A; Zanin, E; Perdomo, C C

    2011-01-01

    This study aimed at the investigation of genotoxic effects of swine effluents from different stages of a treatment system for swine wastes through bioassay of stamen hairs and micronuclei in Tradescantia (clone BNL 4430). No significant differences (p≥0.05) regarding the genic mutations were found in the bioassay of stamen hairs, independently of the effluent analysed. For the genotoxicity test with micronuclei, the plants exposed to raw wastes, to sludge, and to effluent of the biodigester have presented higher rates of chromosomal damages (micronuclei), with significant differences in relation to the control group and other effluent of the waste treatment system (p≤0.05). The association between the chemical parameters and the genotoxicity data have shown that the variables COD and TKN have presented significant correlation (p≤0.05) with the number of mutagenic events in the tetrads.

  9. Post-treatment and reuse of secondary effluents using natural ltreatment systems: the Indian practices.

    Science.gov (United States)

    Kumar, D; Asolekar, S R; Sharma, S K

    2015-10-01

    Paper summarizes the results of India-wide survey of natural treatment systems (NTSs) for wastewater treatment and reuse. The quality of treated wastewater from different types of NTSs was analyzed for various physico-chemical and bacteriological parameters, and needs for post-treatment were identified. Currently, about 1838 million liters per day (MLD) of wastewater is being treated using NTSs, of which the contributions of polishing ponds, waste stabilization ponds, duckweed ponds, constructed wetlands, and Karnal technology were found to be 53.39, 45.15, 0.13, 0.55, and 0.78%, respectively. Among the NTSs studied, constructed wetland was found most efficient in removal of pollutants including nitrogen, phosphorus, total coliform, and fecal coliform in the range of 76, 61, 99.956, and 99.923%, respectively. Of all types of NTSs, only constructed wetland was found to meet the total coliform count requirements (effluents for irrigation; effluents from 48 systems are being discharged into river or lake, and remaining 38 systems have not found any designated use of treated effluent. The chlorination was the only post-treatment, which is being practiced at only three wastewater treatment facilities. During post-treatment, 1-2 ppm of chlorine is applied to the secondary effluent irrespective of its quality. The treated effluents from different NTSs contain fecal bacteria in the magnitude of 10(3) to 10(5), which may cause the severe health impacts through contamination of groundwater as well as surface water resources.

  10. Treatment of liquid effluent from uranium mines and mills. Report of a co-ordinated research project 1996-2000

    International Nuclear Information System (INIS)

    2004-10-01

    Treatment and control of liquid effluents produced during uranium mining and milling operations is an integral part of environmental project management. Research has continued to add to the large body of science that has been built up around the treatment of radioactive and non-radioactive effluents to minimize their long-term environmental impact. The objective of the meetings on which this publication is based was to exchange information on active effluent treatment technologies that have application during operations and passive treatment techniques such as constructed wetlands and use of micro-organisms that are applicable during project reclamation and long-term care and maintenance. Papers describe effluent treatment case histories from active uranium mining and processing operations as well as effluent treatment research on both active and passive systems that have potential application under a wide range of operating and post-operational conditions including new information on high-density sludge from effluent neutralization (Australia), aerated manganese hydroxide for removal of radium (China), nanofiltration and macropore resins to treat mine water (Australia and China), in situ microbial treatment and permeable reactive walls for treatment of contaminated groundwater (Germany), construction of wetlands to treat mine water runoff (Australia and Germany), biogenic granules to remove 226 Ra from mill effluent (India), self-remediation of acidic in situ leach aquifers (Kazakhstan) and sorption characteristics of soil for self-remediation of contaminated groundwater (Hungary). These and other topics presented in this publication will be of interest to technical personnel who deal with day-to-day practical aspects of liquid effluent control and treatment at uranium production facilities worldwide

  11. Safety problems with abandoned explosive facilities

    International Nuclear Information System (INIS)

    Courtright, W.C.

    1969-01-01

    Procedures were developed for the safe removal of explosive and radioactive contaminated materials structures and drains from abandoned sites, including explosives processing and service buildings with a goal to return the entire area to its natural state and to permit public access. The safety problems encountered in the cleanup and their solutions are applicable to modification and maintenance work in operating explosive facilities. (U.S.)

  12. PERFORMANCE OF A SURFACE FLOW CONSTRUCTED WETLAND SYSTEM USED TO TREAT SECONDARY EFFLUENT AND FILTER BACKWASH WATER

    Directory of Open Access Journals (Sweden)

    Juan Antonio Vidales-Contreras

    2011-05-01

    The performance of a surface flow wetland system used to treat activated sludge effluent and filter backwash water from a tertiary treatment facility was evaluated. Samples were collected before and after vegetation removal from the system which consists of two densely vegetated settling basins (0.35 ha, an artificial stream, and a 3-ha surface flow wetland. Bulrush (Scripus spp. and cattail (Typha domingensis were the dominant plant species. The average inflow of chlorinated secondary effluent during the first two months of the actual study was 1.9  m3 min-1 while the inflow for backwash water treatment ranged from 0.21 to 0.42 m3 min-1. The system was able to reduce TSS and BOD5 to tertiary effluent standards; however, monitoring of chloride concentrations revealed that wetland evapotranspiration is probably enriching pollutant concentrations in the wetland outflow. Coliphage removal from the filter backwash was 97 and 35% during 1999 and 2000, respectively. However, when secondary effluent entered the system, coliphage removal averaged 65%. After vegetation removal, pH and coliphage density increased significantly (p

  13. Automatic deodorizing system for waste water from radioisotope facilities using an ozone generator

    International Nuclear Information System (INIS)

    Kawamura, Hiroko; Hirata, Yasuki

    2002-01-01

    We applied an ozone generator to sterilize and to deodorize the waste water from radioisotope facilities. A small tank connected to the generator is placed outside of the drainage facility founded previously, not to oxidize the other apparatus. The waste water is drained 1 m 3 at a time from the tank of drainage facility, treated with ozone and discharged to sewer. All steps proceed automatically once the draining work is started remotely in the office. The waste water was examined after the ozone treatment for 0 (original), 0.5, 1.0, 1.5 and 2.0 h. Regarding original waste water, the sum of coliform groups varied with every examination repeated - probably depend on the colibacilli used in experiments; hydrogen sulfide, biochemical oxygen demand and the offensive odor increased with increasing coliform groups. The ozone treatment remarkably decreased hydrogen sulfide and the offensive odor, decreased coliform groups when the original water had rich coliforms. (author)

  14. Automatic deodorizing system for waste water from radioisotope facilities using an ozone generator

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hiroko; Hirata, Yasuki [Kyushu Univ., Fukuoka (Japan). Radioisotope Center; Taguchi, Kenji [Riken Co. Ltd., Kitakyushu, Fukuoka (Japan)

    2002-03-01

    We applied an ozone generator to sterilize and to deodorize the waste water from radioisotope facilities. A small tank connected to the generator is placed outside of the drainage facility founded previously, not to oxidize the other apparatus. The waste water is drained 1 m{sup 3} at a time from the tank of drainage facility, treated with ozone and discharged to sewer. All steps proceed automatically once the draining work is started remotely in the office. The waste water was examined after the ozone treatment for 0 (original), 0.5, 1.0, 1.5 and 2.0 h. Regarding original waste water, the sum of coliform groups varied with every examination repeated - probably depend on the colibacilli used in experiments; hydrogen sulfide, biochemical oxygen demand and the offensive odor increased with increasing coliform groups. The ozone treatment remarkably decreased hydrogen sulfide and the offensive odor, decreased coliform groups when the original water had rich coliforms. (author)

  15. Prevalence of Multiple Antibiotics Resistant (MAR) Pseudomonas Species in the Final Effluents of Three Municipal Wastewater Treatment Facilities in South Africa

    Science.gov (United States)

    Odjadjare, Emmanuel E.; Igbinosa, Etinosa O.; Mordi, Raphael; Igere, Bright; Igeleke, Clara L.; Okoh, Anthony I.

    2012-01-01

    The final effluents of three (Alice, Dimbaza, and East London) wastewater treatment plants (WWTPs) were evaluated to determine their physicochemical quality and prevalence of multiple antibiotics resistant (MAR) Pseudomonas species, between August 2007 and July 2008. The annual mean total Pseudomonas count (TPC) was 1.20 × 104 (cfu/100 mL), 1.08 × 104 (cfu/100 mL), and 2.66 × 104 (cfu/100 mL), for the Alice, Dimbaza, and East London WWTPs respectively. The effluents were generally compliant with recommended limits for pH, temperature, TDS, DO, nitrite and nitrate; but fell short of target standards for turbidity, COD, and phosphate. The tested isolates were highly sensitive to gentamicin (100%), ofloxacin (100%), clindamycin (90%), erythromycin (90%) and nitrofurantoin (80%); whereas high resistance was observed against the penicillins (90–100%), rifampin (90%), sulphamethoxazole (90%) and the cephems (70%). MAR index ranged between 0.26 and 0.58. The study demonstrated that MAR Pseudomonas species were quite prevalent in the final effluents of WWTPs in South Africa; and this can lead to serious health risk for communities that depend on the effluent-receiving waters for sundry purposes. PMID:22829792

  16. 1994 Environmental monitoring drinking water and nonradiological effluent programs annual report

    International Nuclear Information System (INIS)

    Andersen, B.D.; Brock, T.A.; Meachum, T.R.

    1995-10-01

    EG ampersand G Idaho, Inc., initiated monitoring programs for drinking water in 1988 and for nonradiological parameters and pollutants in liquid effluents in 1985. These programs were initiated for the facilities operated by EG ampersand G Idaho for the US Department of Energy at the Idaho National Engineering Laboratory. On October 1, 1994, Lockheed Idaho Technologies Company (LITCO) replaced EG ampersand G Idaho as the prime contractor at the INEL and assumed responsibility for these programs. Section I discusses the general site characteristics, the analytical laboratories, and sampling methodology general to both programs. Section 2, the Drinking Water Program, tracks the bacteriological, chemical, and radiological parameters required by State and Federal regulations. This section describes the drinking water monitoring activities conducted at 17 LITCO-operated production wells and 11 distribution systems. It also contains all of the drinking water parameters detected and the regulatory limits exceeded during calendar year 1994. In addition, groundwater quality is discussed as it relates to contaminants identified at the wellhead for LITCO production wells. Section 3 discusses the nonradiological liquid effluent monitoring results for 27 liquid effluent streams. These streams are presented with emphasis on calendar year 1994 activities. All parameter measurements and concentrations were below the Resource Conservation and Recovery Act toxic characteristics limits

  17. Steam generator fitted with a dynamic draining device

    International Nuclear Information System (INIS)

    Chaix, J.E.

    1982-01-01

    This generator has, at its upper part, at least one drying structure for holding the water carried with the steam and communicating at its lower part with at least one discharge pipe for draining off the water, each pipe communicating with a dynamic draining device capable of creating a depression in order to suck up the water contained in the drying structure. Application is for pressurized water nuclear reactors [fr

  18. Control verification radioactive effluent discharges to the environment

    International Nuclear Information System (INIS)

    Alvarez, D.E.; Czerniczyniec, M.A.; Amado, V.A.; Curti, A.R.; Lee Gonzáles, H.M.

    2015-01-01

    The National Law of Nuclear Activity No. 24,804 establishes that the Nuclear Regulatory Authority (ARN) will be responsible for the function of regulation and control of nuclear activity, grant, suspend and revoke licenses, permits or authorizations and to issue regulatory standards on radiation and nuclear safety. According to the latter the ARN has issued a set of rules that make up the regulatory framework for nuclear activity. This includes the standards that determine the radiological criteria for controlling the release of radioactive effluents which were established to protect members of the public. In the process of licensing a facility, the ARN determines the authorized discharge of gaseous and liquid effluents which must comply with the installation values. These annual values are understood as an operating restriction (OR) and arise from the activity of each relevant radionuclide present in the discharge. For this is taken as a reference the level of optimized discharge considering an appropriate margin of flexibility to ensure public protection without interfering with the operation of the installation. This paper presents the results of the review of the above criteria and methodology for calculating the RO adopted by the RNA present. [es

  19. Leaching of dissolved phosphorus from tile-drained agricultural areas.

    Science.gov (United States)

    Andersen, H E; Windolf, J; Kronvang, B

    2016-01-01

    We investigated leaching of dissolved phosphorus (P) from 45 tile-drains representing animal husbandry farms in all regions of Denmark. Leaching of P via tile-drains exhibits a high degree of spatial heterogeneity with a low concentration in the majority of tile-drains and few tile-drains (15% in our investigation) having high to very high concentration of dissolved P. The share of dissolved organic P (DOP) was high (up to 96%). Leaching of DOP has hitherto been a somewhat overlooked P loss pathway in Danish soils and the mechanisms of mobilization and transport of DOP needs more investigation. We found a high correlation between Olsen-P and water extractable P. Water extractable P is regarded as an indicator of risk of loss of dissolved P. Our findings indicate that Olsen-P, which is measured routinely in Danish agricultural soils, may be a useful proxy for the P leaching potential of soils. However, we found no straight-forward correlation between leaching potential of the top soil layer (expressed as either degree of P saturation, Olsen-P or water extractable P) and the measured concentration of dissolved P in the tile-drain. This underlines that not only the source of P but also the P loss pathway must be taken into account when evaluating the risk of P loss.

  20. Numerical Simulation of Liquids Draining From a Tank Using OpenFOAM

    Science.gov (United States)

    Sakri, Fadhilah Mohd; Sukri Mat Ali, Mohamed; Zaki Shaikh Salim, Sheikh Ahmad; Muhamad, Sallehuddin

    2017-08-01

    Accurate simulation of liquids draining is a challenging task. It involves two phases flow, i.e. liquid and air. In this study draining a liquid from a cylindrical tank is numerically simulated using OpenFOAM. OpenFOAM is an open source CFD package and it becomes increasingly popular among the academician and also industries. Comparisons with theoretical and results from previous published data confirmed that OpenFOAM is able to simulate the liquids draining very well. This is done using the gas-liquid interface solver available in the standard library of OpenFOAM. Additionally, this study was also able to explain the physics flow of the draining tank.

  1. Near-facility environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.W.; Johnson, A.R.; Markes, B.M.; McKinney, S.M.; Perkins, C.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the routine near-facility environmental monitoring programs which are presently being conducted at the Hanford Site. Several types of environmental media are sampled near nuclear facilities to monitor the effectiveness of waste management and restoration activities, and effluent treatment and control practices. These media include air, surface water and springs, surface contamination, soil and vegetation, investigative sampling (which can include wildlife), and external radiation. Sampling and analysis information and analytical results for 1994 for each of these media are summarized in this section. Additional data and more detailed information may be found in Westinghouse Hanford Company Operational Environmental Monitoring Annual Report, Calendar Year 1994.

  2. Closed suction drain with bulb

    Science.gov (United States)

    ... of gloves. Put a new bandage around the drain tube site. Use surgical tape to hold it down ... small amount of redness is normal). There is drainage from the skin around the tube site. There is more tenderness and swelling at ...

  3. Nuclear reactor effluent monitoring

    International Nuclear Information System (INIS)

    Minns, J.L.; Essig, T.H.

    1993-01-01

    Radiological environmental monitoring and effluent monitoring at nuclear power plants is important both for normal operations, as well as in the event of an accident. During normal operations, environmental monitoring verifies the effectiveness of in-plant measures for controlling the release of radioactive materials in the plant. Following an accident, it would be an additional mechanism for estimating doses to members of the general public. This paper identifies the U.S. Nuclear Regulatory Commission (NRC) regulatory basis for requiring radiological environmental and effluent monitoring, licensee conditions for effluent and environmental monitoring, NRC independent oversight activities, and NRC's program results

  4. Nuclear reactor effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Minns, J.L.; Essig, T.H. [Nuclear Regulatory Commission, Washington, DC (United States)

    1993-12-31

    Radiological environmental monitoring and effluent monitoring at nuclear power plants is important both for normal operations, as well as in the event of an accident. During normal operations, environmental monitoring verifies the effectiveness of in-plant measures for controlling the release of radioactive materials in the plant. Following an accident, it would be an additional mechanism for estimating doses to members of the general public. This paper identifies the U.S. Nuclear Regulatory Commission (NRC) regulatory basis for requiring radiological environmental and effluent monitoring, licensee conditions for effluent and environmental monitoring, NRC independent oversight activities, and NRC`s program results.

  5. Effluent treatment for nuclear thermal propulsion ground testing

    Science.gov (United States)

    Shipers, Larry R.

    1993-01-01

    The objectives are to define treatment functions, review concept options, discuss PIPET effluent treatment system (ETS), and outline future activities. The topics covered include the following: reactor exhaust; effluent treatment functions; effluent treatment categories; effluent treatment options; concept evaluation; PIPETS ETS envelope; PIPET effluent treatment concept; and future activities.

  6. Long-Term Metal Retention Performance of Media Filter Drains for Stormwater Management

    Directory of Open Access Journals (Sweden)

    Agathe Thomas

    2015-03-01

    Full Text Available Stormwater runoff, a substantial source of nonpoint pollution, can be treated using Best Management Practices (BMPs, such as the Media Filter Drain (MFD. An MFD is a trench filled with an engineered media mix, usually with a grass overlay, that receives runoff from the paved roadway next to it. The MFD was shown to remove dissolved metals (zinc and copper, typical pollutants from vehicles and urban areas, which might negatively impact aquatic species in receiving waters, but its long-term effectiveness was not known. Existing media filter mixes of different ages were collected from two different sites in the Pacific Northwest of the United States. Columns made with these media mixes received concentrated copper and zinc loading to simulate accelerated aging for estimated total lifespans from 14 to 22 years of copper and zinc loading, with little or no decrease in sorption. Throughout the aging process, some columns were subjected to performance testing with higher levels of typical runoff concentrations and average concentration decreases from influent to effluent were found to be greater than 90% for both copper and zinc. Based on this study, the MFD’s lifespan for zinc and copper treatment is significantly greater than the initial ten-year estimate.

  7. Sampling and monitoring of carbon-14 in gaseous effluents from nuclear facilities - a literature survey

    International Nuclear Information System (INIS)

    Snellman, M.

    1988-12-01

    C-14 compounds produced in the coolant may be released mainly together with off-gas and waste water from the coolant purification and treatment system. In reactors the release of C-14 will occur mainly in gaseous effluents and only a few percent in liquid effluents. Reported releases from BWRs range from 260 to 670 GBq/GW(e) x year and from 90 to 430 GBq/GW(e) x year for PWRs. At BWRs the condenser air ejector contributes the main inplant release pathway, whereas in PWRs the off-gas treatment vents are the main pathway for C-14 release. C-14 sampling methods depend generally on the C-14 being in the form of CO 2 . The off-gas discharges from BWRs are mainly in the form of CO 2 whereas in PWRs a major fraction of the released C-14 is in the form of hydrocarbons or carbon monoxide (generally 80-100%). Sampling systems in PWRs should therefore be equipped with a catalytic oxidizer to convert all C-14 to CO 2 before trapping. The purpose of this study is to provide information on the techniques available for sampling and monitoring C-14

  8. Production of biogas and biofertilizers from biodigester effluents

    International Nuclear Information System (INIS)

    Cepero, L.; Blanco, D.; Suárez, J.; Savran, Valentina; Piñón, M. R. Díaz; Palacios, A.

    2012-01-01

    One of the research and technological innovation processes which are developed within the project «Biomass as renewable energy source for rural areas» (BIOMAS-CUBA) is related to biogas and biofertilizer production from biodigester effluents, in agroenergy farms, where food and energy are produced, in an integrated way. The technologies selected for constructing anaerobic biodigesters have been: fixed dome (Chinese model), plastic tube or polyethylene with continuous flow (Taiwan type) and anaerobic lagoon covered with a high density polyethylene geomembrane. From these technologies 69 biodigesters were constructed or repaired to a lesser extent-, in farms from the provinces Matanzas, Sancti Spiritus and Las Tunas, at the Experimental Station "Indio Hatuey", in the mountain community Magueyal (Santiago de Cuba), in a pig production facility from Las Tunas and a livestock production farm belonging to the Ministry of Interior, in Jovellanos (Matanzas province). These 69 biodigesters comprised a total digestion capacity of 1 665 m³ and generated productions of 600 060 m³ of biogas, which were used for cooking food and feed stuffs, electricity generation and brick firing; as well as 2 601 t of biofertilizers, used for improving the fertility of 1 830 ha of soils; in addition, they allow eliminating the contamination produced by cattle and pig dung in the productive scenarios, which generates a positive environmental impact. The installation was carried out of 52 bioproduct production plants from biodigester effluents, enriched with native microorganisms, which are used in animal and plant health, crop nutrition, elimination of bad odors in livestock production facilities, bioremediation of lagoons contaminated with organic residues and in bioceramic filters. (author)

  9. Supercritical water oxidation test bed effluent treatment study

    International Nuclear Information System (INIS)

    Barnes, C.M.

    1994-04-01

    This report presents effluent treatment options for a 50 h Supercritical Water Test Unit. Effluent compositions are calculated for eight simulated waste streams, using different assumed cases. Variations in effluent composition with different reactor designs and operating schemes are discussed. Requirements for final effluent compositions are briefly reviewed. A comparison is made of two general schemes. The first is one in which the effluent is cooled and effluent treatment is primarily done in the liquid phase. In the second scheme, most treatment is performed with the effluent in the gas phase. Several unit operations are also discussed, including neutralization, mercury removal, and evaporation

  10. Predicting artificailly drained areas by means of selective model ensemble

    DEFF Research Database (Denmark)

    Møller, Anders Bjørn; Beucher, Amélie; Iversen, Bo Vangsø

    . The approaches employed include decision trees, discriminant analysis, regression models, neural networks and support vector machines amongst others. Several models are trained with each method, using variously the original soil covariates and principal components of the covariates. With a large ensemble...... out since the mid-19th century, and it has been estimated that half of the cultivated area is artificially drained (Olesen, 2009). A number of machine learning approaches can be used to predict artificially drained areas in geographic space. However, instead of choosing the most accurate model....... The study aims firstly to train a large number of models to predict the extent of artificially drained areas using various machine learning approaches. Secondly, the study will develop a method for selecting the models, which give a good prediction of artificially drained areas, when used in conjunction...

  11. Environmental system applied to radioactive liquid effluent release

    International Nuclear Information System (INIS)

    Nisti, Marcelo Bessa

    2009-01-01

    The current environmental administration considers the productive activity as an environmental system, defined as a group of processes, interactions, parameters and factors involved in the production. This mastering dissertation evaluated the release of the liquid radioactive effluents at Instituto de Pesquisas Energeticas e Nucleares (IPEN), under a systemic environmental study. The study evaluated the source term at IPEN in the period from 2004 to 2008, making use of gamma-ray and alpha spectrometry, instrumental neutron activation analysis, liquid phase scintillation and atomic absorption spectrometry. The employed methodologies were verified using samples from the Intercomparison National Program - PNI/IRD and Reference Materials. The facilities that contributed the most in these releases were the Radiopharmaceutical Center (CR) and the Research Reactor Center (CRPq) with an average of 11,4% and 87,4%, respectively, relative to the present radioactive activity. The sewer system releases were within the radioactive protection regulations, showing the effectiveness of IPEN's Radioactive Effluents Monitoring Program. The concentration of the stable elements Ag, Cd, Cr, Fe, Mn, Ni, Pb and Zn was determined in the liquid effluent in ali the samples from the storage tanks TR1 and CR in the period from 2004 to 2008 and in some of the samples of other IPEN's facilities in the period from 2004 to 2007. Among the analyzed effluents, two samples were higher than the stable elements discharge standards established in the state of Sao Paulo, one sample was higher than the required value of the element cadmium and the other higher than required value of the element zinco The storage tank TR1 discharge flow was estimated in 10,9 ± 0,9 m3 h -1 . The dilution factor at discharge point E1 was estimated using a radiotracers the isotopes 3 H, 137 CS, 60 Co, 54 Mn and 65 Zn, which are commonly released into IPEN's sewer system. The executed radiotracer study was carried out

  12. Planning of Eka Hospital Pekanbaru wastewater recycling facility

    Science.gov (United States)

    Jecky, A.; Andrio, D.; Sasmita, A.

    2018-04-01

    The Ministry of Public Works No. 06 2011 required the large scale of water to conserve the water resource, Eka Hospital Pekanbaru have to improve the sewage treatment plant through the wastewater recycling. The effluent from the plant can be used to landscape gardening and non-potable activities. The wastewater recycling design was done by analyzing the existing condition of thesewage treatment plant, determine the effluent quality standards for wastewater recycling, selected of alternative technology and processing, design the treatment unit and analyze the economic aspects. The design of recycling facility by using of combination cartridge filters processing, ultrafiltration membranes, and desinfection by chlorination. The wastewater recycling capacity approximately of 75 m3/day or 75% of the STP effluent. The estimated costs for installation of wastewater recycling and operation and maintenance per month are Rp 111,708,000 and Rp 2,498,000 respectively.

  13. The Simple Urine Bag as Wound Drain Post-Craniotomy in a Low ...

    African Journals Online (AJOL)

    Methods: A 4-year prospective cohort study of the effectiveness, outcome with use and complications of the Uribag as post craniotomy wound drain in a consecutive cohort of neurosurgical patients. Data analyzed include the patients' brief demographics; the types of cranial surgery in which drain was used; the drain ...

  14. Frequency dependence and passive drains in fish-eye lenses

    Science.gov (United States)

    Quevedo-Teruel, O.; Mitchell-Thomas, R. C.; Hao, Y.

    2012-11-01

    The Maxwell fish eye lens has previously been reported as being capable of the much sought after phenomenon of subwavelength imaging. The inclusion of a drain in this system is considered crucial to the imaging ability, although its role is the topic of much debate. This paper provides a numerical investigation into a practical implementation of a drain in such systems, and analyzes the strong frequency dependence of both the Maxwell fish eye lens and an alternative, the Miñano lens. The imaging capability of these types of lens is questioned, and it is supported by simulations involving various configurations of drain arrays. Finally, a discussion of the near-field and evanescent wave contribution is given.

  15. Shearon Harris steam generator channel head drain line leakage

    International Nuclear Information System (INIS)

    Bauer, P.A.

    1992-01-01

    All three Shearon Harris steam generators were equipped with Inconel 600 drain penetrations inserted into clearance holes on the bottom center line of the plenums, roll expanded into the plenum shell, and seal welded to the stainless steel cladding. Eddy current inspections showed axial cracks in the drain lines of B and C generators, but not on the leaking A generator. The drain lines of the three generators were repaired by cutting off the pipe under the plenum, applying Inconel 600 cladding to the underside of the plenum by a temper bead process, spot facing the overlay cladding and welding a new Inconel 600 pipe coupling to the clad surface. 3 figs

  16. Intra-articular injection of tranexamic acid via a drain plus drain-clamping to reduce blood loss in cementless total knee arthroplasty

    Directory of Open Access Journals (Sweden)

    Mutsuzaki Hirotaka

    2012-09-01

    Full Text Available Abstract Background Patients undergoing cementless total knee arthroplasty (TKA sometimes suffer large blood loss. In a retrospective study, we explored whether postoperative intra-articular retrograde injection of tranexamic acid (TA and leaving a drain clamp in place for 1 h reduced blood loss. Patients and methods Patients (n = 140 treated with unilateral primary cementless TKA (posterior cruciate ligament retained were divided into two groups: those who had an intra-articular injection of TA (1000 mg and drain clamping for 1 h postoperatively (study group, n = 70 and those who were not given TA and did not undergo clamping of their drains (control group, n = 70. Postoperative total blood loss, volume of drainage, hemoglobin level, transfusion amounts and rates, D-dimer level at postoperative day (POD 7, and complications were recorded. Results Total blood loss, total drainage, mean transfusion volume, and transfusion rates were lower in the study group than in controls (P P P  Conclusions Immediately postoperative intra-articular retrograde injection of TA and 1 h of drain-clamping effectively reduced blood loss and blood transfusion after cementless TKA. We believe that this method is simple, easy, and suitable for these patients.

  17. Monitoring of the radioactive liquid effluents discharged from IPEN-CNEN/SP. Optimization of the procedures adopted

    International Nuclear Information System (INIS)

    Seki, C.R.

    1990-01-01

    The main purpose of a radioactive liquid effluents monitoring of a nuclear installation is to determine the amount of radioactivity discharged to the environment, as well as, to verify if this activity is below the authorized discharge limits established by the competent authority. Although this control has been established on a routine basis since the beginning of operation of the nuclear installations available at IPEN, the growing of such facilities in the last years has implied in an increase in the number of samples to be analyzed. The aim of this work is, therefore, to optimize the procedures adopted in the Environmental Monitoring Division of IPEN-CNEN/SP for the activity measurement of the liquid effluents discharged to the environment. Since these effluents are discharged to Pinheiros river, which presents a high dilution factor, a study is also carried out in order to verify if the activity present can be measured by the equipment available. (author)

  18. A mathematical model to optimize the drain phase in gravity-based peritoneal dialysis systems.

    Science.gov (United States)

    Akonur, Alp; Lo, Ying-Cheng; Cizman, Borut

    2010-01-01

    Use of patient-specific drain-phase parameters has previously been suggested to improve peritoneal dialysis (PD) adequacy. Improving management of the drain period may also help to minimize intraperitoneal volume (IPV). A typical gravity-based drain profile consists of a relatively constant initial fast-flow period, followed by a transition period and a decaying slow-flow period. That profile was modeled using the equation VD(t) = (V(D0) - Q(MAX) x t) xphi + (V(D0) x e(-alphat)) x (1 - phi), where V(D)(t) is the time-dependent dialysate volume; V(D0), the dialysate volume at the start of the drain; Q(MAX), the maximum drain flow rate; alpha, the exponential drain constant; and phi, the unit step function with respect to the flow transition. We simulated the effects of the assumed patient-specific maximum drain flow (Q(MAX)) and transition volume (psi), and the peritoneal volume percentage when transition occurs,for fixed device-specific drain parameters. Average patient transport parameters were assumed during 5-exchange therapy with 10 L of PD solution. Changes in therapy performance strongly depended on the drain parameters. Comparing 400 mL/85% with 200 mL/65% (Q(MAX/psi), drain time (7.5 min vs. 13.5 min) and IPV (2769 mL vs. 2355 mL) increased when the initial drain flow was low and the transition quick. Ultrafiltration and solute clearances remained relatively similar. Such differences were augmented up to a drain time of 22 minutes and an IPV of more than 3 L when Q(MAX) was 100 mL/min. The ability to model individual drain conditions together with water and solute transport may help to prevent patient discomfort with gravity-based PD. However, it is essential to note that practical difficulties such as displaced catheters and obstructed flow paths cause variability in drain characteristics even for the same patient, limiting the clinical applicability of this model.

  19. Iodine speciation in the hot cell effluent gases

    International Nuclear Information System (INIS)

    Lee, B.S.; Jester, W.A.; Olynyk, J.M.

    1990-01-01

    The various species of airborne radioiodine can affect the iodine source term of a severe core damage accident because of the different transport and deposition properties. also, the radiobiological hazardness may vary according to their chemical form. The purpose of the work reported in this paper was to characterize the various chemical forms of airborne radioiodine in hot cell effluent gases of a radiopharmaceutical production facility that produces medical radioisotopes from separated fission products of irradiated uranium targets. It is concluded that the methyl iodide is the youngest chemical species in terms of effective decay time age, and the hot cell filter bank is least efficient in removing the methyl iodide

  20. Return of talent programs: rationale and evaluation criteria for programs to ameliorate a 'brain drain'.

    Science.gov (United States)

    Keely, C B

    1986-03-01

    The term, brain drain, describes the loss of skilled professionals and the nonreturn of students from advanced study abroad. It is now used almost exclusively in reference to mobility from less developed countries to more developed countries. Controversy centers on whether needed skills are being drawn off unfairly at subsidized rates from developing to developed countries or whether excess capability is being utilized in developed countries rather than underemployed or wasted at home. Some causes of high level personnel migration include: 1) wage differentials between sending and receiving countries; 2) absence of opportunities for career development or mobility for reasons other than merit or accomplishment; 3) lack of high quality facilities, equipment, time, and other costly supports in developing countries; 4) employer's lack of knowledge of employee work and the resulting wages; and 5) political disagreement or persecution. Prospects for closing wage gaps and upgrading working conditions on a large scale in developing countries are dim. Growth of the labor force coupled with national needs that are not congruent with professions requiring costly facilities, supplies, and equipment make this a slim possibility. Increasing career mobility possibilities seems to be a more promising route to reducing brain drain. One form of preventive measure is offering study abroad which requires service at the end of the study period; a variation is to guarantee employment for university graduates or for certain sectors, such as scientists. Restructuring decisions on hiring and promotion would have a positive effect, as would developing a better evaluation of expected productivity by type of training. Successful return of talent programs will be relatively modest in terms of the number of people returning and should be thought of as a part of human capital investment. Programs that are concerned with filling positions rather than with luring talent home are more likely to be

  1. Drain Back Systems in Laboratory and in Practice

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Fan, Jianhua

    2015-01-01

    in the collector loop to have a safe reliable operation. The components should also be designed and marked so that only one correct mounting option is possible, like forward and return pipes to/from the collector of slightly different sizes or color. Adapted installer education and training is a very important...... step to have success with drain back systems. Practices used in glycol systems may give serious failures. Key-words: Drain Back, Low Flow, Solar Combi System, ETC collectors....

  2. Fukushima Daiichi nuclear acccident. Damaged facilities of the site - Situation as on March 2018

    International Nuclear Information System (INIS)

    2018-03-01

    After a recall of the events that led to the Fukushima Daiichi accident, this note presents the situation in March 2018 of the actions of control of the damaged facilities and of their effluents. The last part presents the three steps of the facility control recovery plan retained by TEPCO

  3. Drain Tube-Induced Jejunal Penetration Masquerading as Bile Leak following Whipple’s Operation

    Directory of Open Access Journals (Sweden)

    Sang Ho Bae

    2011-05-01

    Full Text Available A 70-year-old man had undergone pancreaticoduodenectomy due to a distal common bile duct malignancy. After the operation, serous fluid discharge decreased from two drain tubes in the retroperitoneum. Over four weeks, the appearance of the serous fluid changed to a greenish bile color and the patient persistently drained over 300 ml/day. Viewed as bile leak at the choledochojejunostomy, treatment called for endoscopic diagnosis and therapy. Cap-fitted forward-viewing endoscopy demonstrated that the distal tip of a pancreatic drain catheter inserted at the pancreaticojejunostomy site had penetrated the opposite jejunum wall. One of the drain tubes primarily placed in the retroperitoneum had also penetrated the jejunum wall, with the distal tip positioned near the choledochojejunostomy site. No leak of contrast appeared beyond the jejunum or anastomosis site. Following repositioning of a penetrating catheter of the pancreaticojejunostomy, four days later, the patient underwent removal of two drain tubes without additional complications. In conclusion, the distal tip of the catheter, placed to drain pancreatic juice, penetrated the jejunum wall and may have caused localized perijejunal inflammation. The other drain tube, placed in the retroperitoneal space, might then have penetrated the inflamed wall of the jejunum, allowing persistent bile drainage via the drain tube. The results masqueraded as bile leakage following pancreaticoduodenectomy.

  4. Perioperative lumbar drain utilization in transsphenoidal pituitary resection.

    Science.gov (United States)

    Alharbi, Shatha; Harsh, Griffith; Ajlan, Abdulrazag

    2018-01-01

    To evaluate lumbar drain (LD) efficacy in transnasal resection of pituitary macroadenomas in preventing postoperative cerebrospinal fluid (CSF) leak, technique safety, and effect on length of hospital stay. We conducted a retrospective data review of pituitary tumor patients in our institution who underwent surgery between December 2006 and January 2013. All patients were operated on for complete surgical resection of pituitary macroadenoma tumors. Patients were divided into 2 groups: group 1 received a preoperative drain, while LD was not preoperatively inserted in group 2. In cases of tumors with suprasellar extension with anticipation of high-flow leak, LD was inserted after the patient was intubated and in a lateral position. Lumbar drain was used for 48 hours, and the drain was removed if no leak was observed postoperatively. In documented postoperative CSF leak patients with no preoperative drain, the leak was treated by LD trial prior to surgical reconstruction. Cases in which leak occurred 6 months postoperatively were excluded. Our study population consisted of 186 patients, 99 women (53%) and 87 men (47%), with a mean age of 50.3+/-16.1 years. Complications occurred in 7 patients (13.7%) in group 1 versus 21 (15.5%) in group 2 (p=0.72). Postoperative CSF leak was observed in 1 patient (1.9%) in group 1 and 7 (5%) in group 2 (Fisher exact test=0.3). Length of hospital stay was a mean of 4.7+/-1.9 days in group 1 and a mean of 2.7+/-2.4 days in group 2 (pLD insertion is generally considered safe with a low risk of complications, it increases the length of hospitalization. Minor complications include headaches and patient discomfort.

  5. Assessing contaminant sensitivity of endangered and threatened aquatic species: Part III. Effluent toxicity tests

    Science.gov (United States)

    Dwyer, F.J.; Hardesty, D.K.; Henke, C.E.; Ingersoll, C.G.; Whites, D.W.; Augspurger, T.; Canfield, T.J.; Mount, D.R.; Mayer, F.L.

    2005-01-01

    Toxicity tests using standard effluent test procedures described by the U.S. Environmental Protection Agency were conducted with Ceriodaphnia dubia, fathead minnows (Pimephales promelas), and seven threatened and endangered (listed) fish species from four families: (1) Acipenseridae: shortnose sturgeon (Acipenser brevirostrum); (2) Catostomidae; razorback sucker (Xyrauchen texanus); (3) Cyprinidae: bonytail chub (Gila elegans), Cape Fear shiner (Notropis mekistocholas) Colorado pikeminnow (Ptychocheilus lucius), and spotfin chub (Cyprinella monacha); and (4) Poecillidae: Gila topminnow (Poeciliopsis occidentalis). We conducted 7-day survival and growth studies with embryo-larval fathead minnows and analogous exposures using the listed species. Survival and reproduction were also determined with C. dubia. Tests were conducted with carbaryl, ammonia-or a simulated effluent complex mixture of carbaryl, copper, 4-nonylphenol, pentachlorophenol and permethrin at equitoxic proportions. In addition, Cape Fear shiners and spotfin chub were tested using diazinon, copper, and chlorine. Toxicity tests were also conducted with field-collected effluents from domestic or industrial facilities. Bonytail chub and razorback suckers were tested with effluents collected in Arizona whereas effluent samples collected from North Carolina were tested with Cape Fear shiner, spotfin chub, and shortnose sturgeon. The fathead minnow 7-day effluent test was often a reliable estimator of toxic effects to the listed fishes. However, in 21 % of the tests, a listed species was more sensitive than fathead minnows. More sensitive species results varied by test so that usually no species was always more or less sensitive than fathead minnows. Only the Gila topminnow was consistently less sensitive than the fathead minnow. Listed fish species were protected 96% of the time when results for both fathead minnows and C. dubia were considered, thus reinforcing the value of standard whole-effluent

  6. Characterization and monitoring of 300 Area facility liquid waste streams during 1994 and 1995

    International Nuclear Information System (INIS)

    Thompson, C.J.; Ballinger, M.Y.; Damberg, E.G.; Riley, R.G.

    1997-07-01

    Pacific Northwest National Laboratory's Facility Effluent Management Program characterized and monitored liquid waste streams from 300 Area buildings that are owned by the US Department of Energy and are operated by Pacific Northwest National Laboratory. The purpose of these measurements was to determine whether the waste streams would meet administrative controls that were put in place by the operators of the 300 Area Treated Effluent Disposal Facility. This report summarizes the data obtained between March 1994 and September 1995 on the following waters: liquid waste streams from Buildings 306, 320, 324, 325, 326, 327, 331, and 3,720; treated and untreated Columbia River water (influent); and water at the confluence of the waste streams (that is, end-of-pipe)

  7. Flow proportional sampling of low level liquid effluent

    International Nuclear Information System (INIS)

    Colley, D.; Jenkins, R.

    1989-01-01

    A flow proportional sampler for use on low level radioactive liquid effluent has been developed for installation on all CEGB nuclear power stations. The sampler, operates by drawing effluent continuously from the main effluent pipeline, through a sampler loop and returning it to the pipeline. The effluent in this loop is sampled by taking small, frequent aliquots using a linear acting shuttle valve. The frequency of operation of this valve is controlled by a flowmeter installed in the effluent line; sampling rate being directly proportional to effluent flowrate. (author)

  8. Evaluation of effluents from bench-scale treatment combinations for landfill leachate in Ibadan, Nigeria.

    Science.gov (United States)

    Aluko, Olufemi Oludare; Sridhar, Mkc

    2014-01-01

    The removal of pollutants in landfill leachate was investigated using constructed wetlands, a trickling filter, alum flocculation and coagulation, and a sequencing batch reactor in various combinations. Thirteen combined operations were investigated involving three out of the four unit treatment methods in series. The study was conducted because unit operations, though achieved reductions in pollutants concentrations had effluent values above the national regulatory guideline values. The suspended solids of effluents were permissible in most treatment processes, while reductions in 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and ammonia (NH3) of leachates ranged from 80% to 97%; 86% to 97% and 92% to 98% respectively. However, there were significant increases in nitrate (85%) and dissolved oxygen of treatment (218%). In addition, the characteristics of the recommended treatment sequence, involving constructed wetlands, alum and trickling filter produced effluents with reductions in colour (97%), alkalinity (97%), BOD (97%), COD (97%) and NH3 (98%), and in metals, except nickel (29% reduction from the influent values). The recommended treatment combination is suitable for effective leachate management at the landfill. The cost of constructing and operating the recommended treatment combination at the facility, for 5 years, would be NGN6,009,750.00 ($38,036.39). The performance should be monitored on site prior to full adoption if effluent characteristics remain consistently low over dry and wet seasons.

  9. A note on the utilisation of the water hyacinth (eichhornia crassipes) for the treatment of tannery effluents

    International Nuclear Information System (INIS)

    1981-01-01

    Water hyacinth is an aquatic weed which grows quickly in ponds, ditches and streams. It clogs drains, irrigation canals and run-off streams promoting back waters and flood conditions. By its prolific growth it competes with other aquatic weeds and causes destruction of the ecosystems of inland waters. Other damaging effects of water hyacinth include incubation of insects and disease vectors, hindrance to navigation, interference with fishing, increased loss of water by plant transpiration, restriction of desirable aquatic plant growth, depletion of oxygen in water and destruction of recreation values of inland waters. It has been observed from the literature that world-wide attempts have been made to destroy water hyacinth for the reasons enumerated above. But recently emphasis has been given to its utilisation rather than its destruction. Reports are available on its use in paper and pulp industries, for production of biogas, as a food for animals and as fertilizer. Water hyacinth has been used in oxidation ponds for the treatment of digested sugar wastes and effluents of septic tanks, but no work has been reported as yet on use of water hyacinth in the treatment of tannery effluents. The waste water from a tannery is highly coloured with a foul odour and contains toxic materials like phenols, sulphides and chromium in addition to bio-degradable matter like proteins, flesh, hair, etc. The untreated effluents when let into streams deplete the dissolved oxygen of the stream and destroy the aquatic life. Similarly, when the untreated effluents are let off into sewers they choke the sewers, or when let off on land they cause ground water pollution. The conventional methods of treatment of sewage, namely the trickling filter activated sludge process are equally applicable for the treatment of tannery waste water. But these methods are known to be costly both in construction and maintenance. Certain low-cost waste treatment methods have been developed involving the use

  10. Treatment of uranium-containing effluent in the process of metallic uranium parts

    International Nuclear Information System (INIS)

    Yuan Guoqi

    1993-01-01

    The anion exchange method used in treatment of uranium-containing effluent in the process of metallic parts is the subject of the paper. The results of the experiments shows that the uranium concentration in created water remains is less than 10 μg/l when the waste water flowed through 10000 column volume. A small facility with column volume 150 litre was installed and 1500 m 3 of waste water can be cleaned per year. (1 tab.)

  11. Radiological impact of airborne effluents of coal-fired and nuclear power plants

    International Nuclear Information System (INIS)

    McBride, J.P.; Moore, R.E.; Witherspoon, J.P.; Blanco, R.E.

    1977-06-01

    Radiological impact of naturally occurring radionuclides in airborne effluents of a model coal-fired steam plant is evaluated assuming a release to the atmosphere of 1 percent of the ash in the coal burned and compared with the impact of radioactive materials in the airborne effluents of model light-water reactors. The principal exposure pathway for radioactive materials released from both types of plants is ingestion of contaminated foodstuffs. For nuclear plants immersion in the airborne effluents is also a significant factor in the dose commitment. Assuming that the coal burned contains 1 ppM uranium and 2 ppM thorium together with their decay products and using the same impact analysis methods used in evaluating nuclear facilities, the maximum individual dose commitments from the coal plant for the whole body and most organs (except the thyroid) are shown to be greater than those from a pressurized-water reactor (PWR) and, with the exception of the bone and kidney doses, less than those from a boiling-water reactor (BWR). With the exception of the bone dose, the maximum individual dose commitments from the coal plant are less than the numerical design guideline limits listed for light-water reactors (LWRs). Population dose commitments from the coal plant are higher than those from either nuclear plant

  12. Effects of pond draining on biodiversity and water quality of farm ponds.

    Science.gov (United States)

    Usio, Nisikawa; Imada, Miho; Nakagawa, Megumi; Akasaka, Munemitsu; Takamura, Noriko

    2013-12-01

    Farm ponds have high conservation value because they contribute significantly to regional biodiversity and ecosystem services. In Japan pond draining is a traditional management method that is widely believed to improve water quality and eradicate invasive fish. In addition, fishing by means of pond draining has significant cultural value for local people, serving as a social event. However, there is a widespread belief that pond draining reduces freshwater biodiversity through the extirpation of aquatic animals, but scientific evaluation of the effectiveness of pond draining is lacking. We conducted a large-scale field study to evaluate the effects of pond draining on invasive animal control, water quality, and aquatic biodiversity relative to different pond-management practices, pond physicochemistry, and surrounding land use. The results of boosted regression-tree models and analyses of similarity showed that pond draining had little effect on invasive fish control, water quality, or aquatic biodiversity. Draining even facilitated the colonization of farm ponds by invasive red swamp crayfish (Procambarus clarkii), which in turn may have detrimental effects on the biodiversity and water quality of farm ponds. Our results highlight the need for reconsidering current pond management and developing management plans with respect to multifunctionality of such ponds. Efectos del Drenado de Estanques sobre la Biodiversidad y la Calidad del Agua en Estanques de Cultivo. © 2013 Society for Conservation Biology.

  13. Placement of percutaneous transhepatic biliary stent using a silicone drain with channels

    Science.gov (United States)

    Yoshida, Hiroshi; Mamada, Yasuhiro; Taniai, Nobuhiko; Mineta, Sho; Mizuguchi, Yoshiaki; Kawano, Yoichi; Sasaki, Junpei; Nakamura, Yoshiharu; Aimoto, Takayuki; Tajiri, Takashi

    2009-01-01

    This report describes a method for percutaneous transhepatic biliary stenting with a BLAKE Silicone Drain, and discusses the usefulness of placement of the drain connected to a J-VAC Suction Reservoir for the treatment of stenotic hepaticojejunostomy. Percutaneous transhepatic biliary drainage was performed under ultrasonographic guidance in a patient with stenotic hepaticojejunostomy after hepatectomy for hepatic hilum malignancy. The technique used was as follows. After dilatation of the drainage root, an 11-Fr tube with several side holes was passed through the stenosis of the hepaticojejunostomy. A 10-Fr BLAKE Silicone Drain is flexible, which precludes one-step insertion. One week after insertion of the 11-Fr tube, a 0.035-inch guidewire was inserted into the tube. After removal of the 11-Fr tube, the guidewire was put into the channel of a 10-Fr BLAKE Silicone Drain. The drain was inserted into the jejunal limb through the intrahepatic bile duct and was connected to a J-VAC Suction Reservoir. Low-pressure continued suction was applied. Patients can be discharged after insertion of the 10-Fr BLAKE Silicone Drain connected to the J-VAC Suction Reservoir. Placement of a percutaneous transhepatic biliary stent using a 10-Fr BLAKE Silicone Drain connected to a J-VAC Suction Reservoir is useful for the treatment of stenotic hepaticojejunostomy. PMID:19725159

  14. Management of extensive surgical emphysema with subcutaneous drain: A case report

    Directory of Open Access Journals (Sweden)

    Quoc Tran

    Full Text Available Introduction: Subcutaneous emphysema (SE is a frequent and often self-limiting complication of tube thoracostomy or other cardiothoracic procedures. On rare occasions, severe and extensive surgical emphysema marked by palpable cutaneous tension, dysphagia, dysphonia, palpebral closure or associated with pneumoperitoneum, airway compromise, “tension phenomenon” and respiratory failure require treatment. Presentation of case: A 67 year old lady presented with a large spontaneous pneumothorax on the background of end-stage chronic obstructive pulmonary disease (COPD and newly diagnosed lung cancer, developed extensive surgical emphysema following insertion of a chest drain. Immediate improvement was observed after insertion of a large-bore, 26 French (Fr. intercostal catheter, subcutaneous drain which was maintained under low suction (−5 cm H2O for a further 24 h. Discussion: Several methods have been described in the literature for the treatment of extensive subcutaneous emphysema, including: emergency tracheostomy, multisite subcutaneous drainage, infraclavicular “blow holes” incisions and subcutaneous drains or simply increasing suction on an in situ chest drain. Here a large-bore, fenestrated, subcutaneous drain maintained on low negative pressure also provided the necessary decompression. Conclusion: In the absence of a comparative study to identify the most effective method to manage extensive subcutaneous emphysema, this case highlights an effective, simple and safe management option. Keywords: Pneumothorax, Subcutaneous emphysema, Drain, Low suction, Intercostal catheter, Case report

  15. Environmental and effluent monitoring at ANSTO sites, 2004-2005

    International Nuclear Information System (INIS)

    Hoffmann, Emmy L.; Loosz, Tom; Ferris, John M.; Harrison, Jennifer J.

    2005-01-01

    This report presents the results of ANSTO's environmental and effluent monitoring at the Lucas Heights Science and Technology Centre (LHSTC) and the National Medical Cyclotron (NMC) sites, from July 2004 to June 2005. Effective doses to the critical group of members of the public potentially affected by routine airborne emissions from the LHSTC were less than 0.005 mSv/year. This estimated maximum potential dose is less than 24% of the ANSTO ALARA objective of 0.02 mSv/year, and much lower than the public dose limit of 1 mSv/year that is recommended by the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). The effective doses to the critical group of members of the public potentially exposed to routine liquid effluent releases from the LHSTC have been realistically estimated as a quarter (or less) of the estimated doses to the critical group for airborne releases. The levels of tritium detected in groundwater and stormwater at the LHSTC were less than those set out in the Australian Drinking Water Guidelines. The airborne and liquid effluent emissions from the NMC were below both the ARPANSA-approved notification levels and Sydney Water limits for acceptance of trade wastewater to sewer. Results of environmental monitoring at both ANSTO sites confirm that the facilities continue to be operated well within regulatory limits. ANSTO's routine operations at the LHSTC and NMC make only a very small addition to the natural background radiation dose of ∼1.5 mSv/year experienced by members of the Australian public

  16. Nitrogen removal and nitrate leaching for two perennial, sod-based forage systems receiving dairy effluent.

    Science.gov (United States)

    Woodard, Kenneth R; French, Edwin C; Sweat, Lewin A; Graetz, Donald A; Sollenberger, Lynn E; Macoon, Bisoondat; Portier, Kenneth M; Rymph, Stuart J; Wade, Brett L; Prine, Gordon M; Van Horn, Harold H

    2003-01-01

    In northern Florida, year-round forage systems are used in dairy effluent sprayfields to reduce nitrate leaching. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentration below the rooting zone for two perennial, sod-based, triple-cropping systems over four 12-mo cycles (1996-2000). The soil is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzip-samment). Effluent N rates were 500, 690, and 910 kg ha(-1) per cycle. Differences in N removal between a corn (Zea mays L.)-bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (CBR) and corn-perennial peanut (Arachis glabrata Benth.)-rye system (CPR) were primarily related to the performance of the perennial forages. Nitrogen removal of corn (125-170 kg ha(-1)) and rye (62-90 kg ha(-1)) was relatively stable between systems and among cycles. The greatest N removal was measured for CBR in the first cycle (408 kg ha(-1)), with the bermudagrass removing an average of 191 kg N ha(-1). In later cycles, N removal for bermudagrass declined because dry matter (DM) yield declined. Yield and N removal of perennial peanut increased over the four cycles. Nitrate N concentrations below the rooting zone were lower for CBR than CPR in the first two cycles, but differences were inconsistent in the latter two. The CBR system maintained low NO3(-)-N leaching in the first cycle when the bermudagrass was the most productive; however, it was not a sustainable system for long-term prevention of NO3(-)-N leaching due to declining bermudagrass yield in subsequent cycles. For CPR, effluent N rates > or = 500 kg ha(-1) yr(-1) have the potential to negatively affect ground water quality.

  17. 40 CFR 417.82 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Soaps Subcategory § 417.82 Effluent limitations guidelines representing the...

  18. 40 CFR 415.342 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... SOURCE CATEGORY Chrome Pigments Production Subcategory § 415.342 Effluent limitations guidelines... available (BPT): Subpart AH—Chrome Pigments Pollutant or pollutant property BPT effluent limitations Maximum...

  19. 40 CFR 407.67 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED FRUITS AND VEGETABLES PROCESSING POINT SOURCE CATEGORY Canned and Preserved Fruits Subcategory § 407.67 Effluent limitations guidelines...

  20. 40 CFR 407.77 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED FRUITS AND VEGETABLES PROCESSING POINT SOURCE CATEGORY Canned and Preserved Vegetables Subcategory § 407.77 Effluent limitations guidelines...

  1. 40 CFR 406.73 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... economically achievable. 406.73 Section 406.73 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....73 Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

  2. Operational experience of gaseous effluent treatment at the Eurochemic reprocessing plant

    International Nuclear Information System (INIS)

    Osipenco, A.; Detilleux, E.

    1977-01-01

    The EUROCHEMIC fuel reprocessing plant applies the PUREX flow sheet. Two particular features of the plant influence gaseous and liquid effluents: chemical decanning and the ability to process a wide range of fuels, uranium metal or oxide, having an initial enrichment typical of power reactors (up to 5%) or material testing reactors (up to 93%). The ventilation circuits, treatment plant and monitoring equipment for gaseous releases are briefly described. No retention facilities for rare gases, tritium, or carbon-14 are provided. The releases are monitored for krypton-85, iodine-131, alpha and beta-gamma aerosols and tritium. Between 1966 and 1974 the plant processes about 200 tonnes of power reactor fuel, from which about 0.7 tonnes of plutonium and 1.5 tonnes of highly enriched uranium were separated. The most important points in the operation of the gas cleaning equipment are indicated: efficiency, operational reliability, incidents, etc.. Actual discharges as measured are compared with the limits set in the operation licence. Using the atmospheric diffusion coefficients, the dose commitment is estimated. The low level liquid effluents are passed, after neutralization, to the treatment plant of the Belgian nuclear center CEN/SCK. However, if the activity exceeds the limit set by the CEN/SCK, the effluents are concentrated by evaporation and stored on the EUROCHEMIC site. (orig.) [de

  3. Animal alternatives for whole effluent toxicity testing ...

    Science.gov (United States)

    Since the 1940s, effluent toxicity testing has been utilized to varying degrees in many countries to assess potential ecological impacts and assist in determining necessary treatment options for environmental protection. However, it was only in the early 1980’s that toxicity based effluent assessments and subsequent discharge controls became globally important, when it was recognized that physical and chemical measurements alone did not protect the environment from potential impacts. Consequently, various strategies using different toxicity tests, whole effluent assessment techniques (incorporating bioaccumulation potential and persistence) plus supporting analytical tools have been developed over 30 years of practice. Numerous workshops and meetings have focused on effluent risk assessment through ASTM, SETAC, OSPAR, UK competent authorities, and EU specific country rules. Concurrent with this drive to improve effluent quality using toxicity tests, interest in reducing animal use has risen. The Health and Environmental Sciences Institute (HESI) organized and facilitated an international workshop in March 2016 to evaluate strategies for concepts, tools, and effluent assessments and update the toolbox of for effluent testing methods. The workshop objectives were to identify opportunities to use a suite of strategies for effluents, and to identify opportunities to reduce the reliance on animal tests and to determine barriers to implementation of new methodologie

  4. Liquid effluent processing group. Activity details 1963

    International Nuclear Information System (INIS)

    1964-08-01

    This report first gives a quantitative overview of volumes of effluents of high activity, medium activity and low activity which passed through the department for effluent processing. It also makes the distinction between the shape or type of container of these effluents. A table indicates their origin and another indicates their destination. The β and α decontamination rates are determined, and the assessment of stored aqueous and organic effluents on the 31 December 1963 is given. The next part proposes an assessment of laboratory activities: control operations (input controls, control of processed effluent before discarding), controls related to processing (processing types, radiochemical and chemical dosing performed on effluent mixes before processing). Tables indicate the characteristics of medium activity effluents collected in 1963, the results of high activity liquid analysis, and Beryllium dosing results. A summary of ALEA processing, a table of the characteristics of stored oils and solvents are given. The third part reports data related to transport activities, and various works performed in the Saclay plant to improve exploitation conditions and results

  5. 40 CFR 417.83 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Soaps Subcategory § 417.83 Effluent limitations guidelines representing the degree of...

  6. 40 CFR 415.647 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... CATEGORY Cadmium Pigments and Salts Production Subcategory § 415.647 Effluent limitations guidelines... subject to this subpart and producing cadmium pigments must achieve the following effluent limitations...

  7. 40 CFR 415.643 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... CATEGORY Cadmium Pigments and Salts Production Subcategory § 415.643 Effluent limitations guidelines... subject to this subpart and producing cadmium pigments must achieve the following effluent limitations...

  8. 40 CFR 406.32 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... technology currently available. 406.32 Section 406.32 Protection of Environment ENVIRONMENTAL PROTECTION... Milling Subcategory § 406.32 Effluent limitations guidelines representing the degree of effluent reduction...

  9. 40 CFR 406.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... technology currently available. 406.42 Section 406.42 Protection of Environment ENVIRONMENTAL PROTECTION... Milling Subcategory § 406.42 Effluent limitations guidelines representing the degree of effluent reduction...

  10. 40 CFR 406.52 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... technology currently available. 406.52 Section 406.52 Protection of Environment ENVIRONMENTAL PROTECTION... Milling Subcategory § 406.52 Effluent limitations guidelines representing the degree of effluent reduction...

  11. 40 CFR 406.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... technology currently available. 406.12 Section 406.12 Protection of Environment ENVIRONMENTAL PROTECTION... Subcategory § 406.12 Effluent limitations guidelines representing the degree of effluent reduction attainable...

  12. 40 CFR 406.33 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... economically achievable. 406.33 Section 406.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Subcategory § 406.33 Effluent limitations guidelines representing the degree of effluent reduction attainable...

  13. 40 CFR 406.53 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... economically achievable. 406.53 Section 406.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Subcategory § 406.53 Effluent limitations guidelines representing the degree of effluent reduction attainable...

  14. 40 CFR 424.73 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... economically achievable. 424.73 Section 424.73 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Chromium Subcategory § 424.73 Effluent limitations guidelines representing the degree of effluent reduction...

  15. Derived release limits (DRL's) for airborne and liquid effluents from the Chalk River Nuclear Laboratories during normal operations

    International Nuclear Information System (INIS)

    Palmer, J.F.

    1981-02-01

    Derived release limits (DRL's), based on regulatory dose limits, have been calculated for routine discharges of radioactivity in airborne and liquid effluents from the Chalk River Nuclear Laboratories. Three types of sources of airborne effluents were considered: the NRX/NRU stack, the 61 m stack connected to the 99 Mo production facility, and a roof vent typical of those installed on several buildings on the site. Sources of liquid effluents to the Ottawa River were treated as a single source from the site as a whole. Various exposure pathways to workers on the site and to members of the public outside the site boundary were considered in the calculations. The DRL's represent upper limits for routine emissions of radioactivity from the Chalk River Nuclear Laboratories to the surrounding environment. Actual releases are regulated by Administrative Levels, set lower than the DRL's, and are confirmed by monitoring. (author)

  16. 40 CFR 440.23 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Aluminum Ore Subcategory... discharged in mine drainage from mines producing bauxite ores shall not exceed: Effluent characteristic...

  17. 40 CFR 440.22 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Aluminum Ore... pollutants discharged in mine drainage from mines producing bauxite ores shall not exceed: Effluent...

  18. 40 CFR 414.73 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... achievable (BAT). 414.73 Section 414.73 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... § 414.73 Effluent limitations representing the degree of effluent reduction attainable by the...

  19. 40 CFR 410.73 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... achievable (BAT). 410.73 Section 410.73 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... § 410.73 Effluent limitations representing the degree of effluent reduction attainable by the...

  20. Radiation treatment of sewage effluent, (2)

    International Nuclear Information System (INIS)

    Sawai, Teruko; Sekiguchi, Masayuki; Sawai, Takeshi; Shimokawa, Toshinari; Tanabe, Hiroko

    1991-01-01

    The water demand of the past several years has increased rapidly. Recycling of municipal waste water is an effective mean of coping with the water shortage in Tokyo. We studied the radiation treatment method of further purification of the effluent from sewage treatment plants. By gamma irradiation the refractory organic substances in the effluent were decomposed and the COD values decreased with increasing dose. The high molecular weight components in the effluent were degraded to lower molecular weight substances and were decomposed finally to carbon dioxide. In this paper we studied on the fading color and the reducing of order of sewage effluent. (author)

  1. Filtration device for active effluents

    International Nuclear Information System (INIS)

    Guerin, M.; Meunier, G.

    1994-01-01

    Among the various techniques relating to solid/liquid separations, filtration is currently utilized for treating radioactive effluents. After testing different equipments on various simulated effluents, the Valduc Center has decided to substitute a monoplate filter for a rotative diatomite precoated filter

  2. 40 CFR 420.73 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... achievable (BAT). 420.73 Section 420.73 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Subcategory § 420.73 Effluent limitations representing the degree of effluent reduction attainable by the...

  3. Characterisation of potential aquaculture pond effluents, and ...

    African Journals Online (AJOL)

    Conventional treatment of effluents from these small-scale, low-volume operations, which discharge relatively dilute effluents infrequently, might not be cost-effective. Keywords: aquaculture–environment interaction, earthen ponds, effluent characterisation, K-means clustering, t ilapia, water quality. African Journal of Aquatic ...

  4. The effluent problem in a plutonium production centre; Probleme des effluents d'un centre de production de plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Galley, R; Cantel, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The first part of the report is devoted to generalities: the geographical situation of the Marcoule Centre, the sources of radio-active effluent, methods of treating this effluent. In the second part the authors gives a detailed description of the various installations in the Radio-active Effluent Treatment Station at the Marcoule Centre, and outline the conditions governing the rejection of treated effluent into the Rhone. A few lines are given to comparisons between the results obtained from the use of these installations up till may 1959 and the expected results published by the same authors at the Brussels Conference (1956). In conclusion the authors lay down some of the essential principles, applicable to the study of new installations. (author) [French] La premiere partie du rapport est consacree a quelques generalites: situation geographique du Centre de Marcoule, provenance des effluents radioactifs, methodes de traitement de ces effluents. Dans la seconde partie, les auteurs presentent une description detaillee des diverses installations de la Station de Traitement des Effluents radioactifs du Centre de Marcoule et precisent les conditions de rejet dans le Rhone des effluents radioactifs traites. Quelques lignes sont consacrees aux comparaisons entre les resultats de l'exploitation des installations jusqu'en mai 1959 et les previsions publiees par les memes auteurs a l'occasion de la Conference de Bruxelles (1956). En conclusion, les auteurs donnent quelques principes essentiels, applicables a l'etude de nouvelles installations. (auteur)

  5. Elimination of liquid discharge to the environment from the TA-50 Radioactive Liquid Waste Treatment Facility

    International Nuclear Information System (INIS)

    Moss, D.; Williams, N.; Hall, D.; Hargis, K.; Saladen, M.; Sanders, M.; Voit, S.; Worland, P.; Yarbro, S.

    1998-06-01

    Alternatives were evaluated for management of treated radioactive liquid waste from the radioactive liquid waste treatment facility (RLWTF) at Los Alamos National Laboratory. The alternatives included continued discharge into Mortandad Canyon, diversion to the sanitary wastewater treatment facility and discharge of its effluent to Sandia Canyon or Canada del Buey, and zero liquid discharge. Implementation of a zero liquid discharge system is recommended in addition to two phases of upgrades currently under way. Three additional phases of upgrades to the present radioactive liquid waste system are proposed to accomplish zero liquid discharge. The first phase involves minimization of liquid waste generation, along with improved characterization and monitoring of the remaining liquid waste. The second phase removes dissolved salts from the reverse osmosis concentrate stream to yield a higher effluent quality. In the final phase, the high-quality effluent is reused for industrial purposes within the Laboratory or evaporated. Completion of these three phases will result in zero discharge of treated radioactive liquid wastewater from the RLWTF

  6. Elimination of liquid discharge to the environment from the TA-50 Radioactive Liquid Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Moss, D.; Williams, N.; Hall, D.; Hargis, K.; Saladen, M.; Sanders, M.; Voit, S.; Worland, P.; Yarbro, S.

    1998-06-01

    Alternatives were evaluated for management of treated radioactive liquid waste from the radioactive liquid waste treatment facility (RLWTF) at Los Alamos National Laboratory. The alternatives included continued discharge into Mortandad Canyon, diversion to the sanitary wastewater treatment facility and discharge of its effluent to Sandia Canyon or Canada del Buey, and zero liquid discharge. Implementation of a zero liquid discharge system is recommended in addition to two phases of upgrades currently under way. Three additional phases of upgrades to the present radioactive liquid waste system are proposed to accomplish zero liquid discharge. The first phase involves minimization of liquid waste generation, along with improved characterization and monitoring of the remaining liquid waste. The second phase removes dissolved salts from the reverse osmosis concentrate stream to yield a higher effluent quality. In the final phase, the high-quality effluent is reused for industrial purposes within the Laboratory or evaporated. Completion of these three phases will result in zero discharge of treated radioactive liquid wastewater from the RLWTF.

  7. A retrospective study of the use of active suction wound drains in dogs and cats.

    Science.gov (United States)

    Bristow, P C; Halfacree, Z J; Baines, S J

    2015-05-01

    To report indications for use and complications associated with commonly used closed active suction wound drains in a large number of clinical cases. Retrospective review of medical case records (from 2004 to 2010) for dogs and cats that had a closed active suction drain placed into a wound. Only the four most common drain types were included: Mini Redovac®, Redovac®, Jackson Pratt® and Wound Evac®. Two hundred and fifty-three drains were placed in 33 cats and 195 dogs. Mini Redovac drains were used most frequently in cats (76 · 5%) and Redovac drains in dogs (54 · 3%). The infection rate for clean surgeries in dogs was 15 · 6% (unattainable in cats). Major complications occurred in four dogs; minor complications occurred in 12 drains in cats (35 · 3%), and in 74 drains in dogs (33 · 8%). There was no statistically significant association between the type of drain and complication rate for either species. Although closed active suction drains can be used with low risk of major complications, they lead to a high rate of infection in clean surgeries in dogs. It is recommended that such drains are kept in place for the shortest time possible and that strict asepsis is adhered to both during placement and management. © 2015 British Small Animal Veterinary Association.

  8. Radionuclide content of wastewater and solid waste from a low-level effluent treatment plant

    International Nuclear Information System (INIS)

    Muhamat Omar; Zalina Laili; Nik Marzukee Nik Ibrahim; Mat Bakar Mahusin

    2010-01-01

    A study on radioactivity levels of wastewater and solid waste from a Low-level Effluent Treatment Plant has been carried out. The measurement of radionuclide concentration was carried out using gamma spectrometry. Natural and anthropogenic radionuclides were detected in solid radioactive waste recovered from the treatment plant. The presence of radionuclides in waste water varies depending on activities carried out in laboratories and facilities connected to the plant. (author)

  9. Radiation dose associated with CT-guided drain placement for pediatric patients

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Cody J.; Isaacson, Ari J.; Fordham, Lynn Ansley; Ivanovic, Marija; Dixon, Robert G. [University of North Carolina at Chapel Hill, Department of Radiology, UNC Health Care, Chapel Hill, NC (United States); Taylor, J.B. [University of North Carolina at Chapel Hill, Environment, Health and Safety, Chapel Hill, NC (United States)

    2017-05-15

    To date, there are limited radiation dose data on CT-guided procedures in pediatric patients. Our goal was to quantify the radiation dose associated with pediatric CT-guided drain placement and follow-up drain evaluations in order to estimate effective dose. We searched the electronic medical record and picture archiving and communication system (PACS) to identify all pediatric (<18 years old) CT-guided drain placements performed between January 2008 and December 2013 at our institution. We compiled patient data and radiation dose information from CT-guided drain placements as well as pre-procedural diagnostic CTs and post-procedural follow-up fluoroscopic abscess catheter injections (sinograms). Then we converted dose-length product, fluoroscopy time and number of acquisitions to effective doses using Monte Carlo simulations and age-appropriate conversion factors based on annual quality-control testing. Fifty-two drainages were identified with mean patient age of 11.0 years (5 weeks to 17 years). Most children had diagnoses of appendicitis (n=23) or inflammatory bowel disease (n=11). Forty-seven patients had diagnostic CTs, with a mean effective dose of 7.3 mSv (range 1.1-25.5 mSv). Drains remained in place for an average of 16.9 days (range 0-75 days), with an average of 0.9 (0-5) sinograms per patient in follow-up. The mean effective dose for all drainages and follow-up exams was 5.3 mSv (0.7-17.1) and 62% (32/52) of the children had effective doses less than 5 mSv. The majority of pediatric patients who have undergone CT-guided drain placements at our institution have received total radiation doses on par with diagnostic ranges. This information could be useful when describing the dose of radiation to parents and providers when CT-guided drain placement is necessary. (orig.)

  10. Radiation dose associated with CT-guided drain placement for pediatric patients

    International Nuclear Information System (INIS)

    Schwartz, Cody J.; Isaacson, Ari J.; Fordham, Lynn Ansley; Ivanovic, Marija; Dixon, Robert G.; Taylor, J.B.

    2017-01-01

    To date, there are limited radiation dose data on CT-guided procedures in pediatric patients. Our goal was to quantify the radiation dose associated with pediatric CT-guided drain placement and follow-up drain evaluations in order to estimate effective dose. We searched the electronic medical record and picture archiving and communication system (PACS) to identify all pediatric (<18 years old) CT-guided drain placements performed between January 2008 and December 2013 at our institution. We compiled patient data and radiation dose information from CT-guided drain placements as well as pre-procedural diagnostic CTs and post-procedural follow-up fluoroscopic abscess catheter injections (sinograms). Then we converted dose-length product, fluoroscopy time and number of acquisitions to effective doses using Monte Carlo simulations and age-appropriate conversion factors based on annual quality-control testing. Fifty-two drainages were identified with mean patient age of 11.0 years (5 weeks to 17 years). Most children had diagnoses of appendicitis (n=23) or inflammatory bowel disease (n=11). Forty-seven patients had diagnostic CTs, with a mean effective dose of 7.3 mSv (range 1.1-25.5 mSv). Drains remained in place for an average of 16.9 days (range 0-75 days), with an average of 0.9 (0-5) sinograms per patient in follow-up. The mean effective dose for all drainages and follow-up exams was 5.3 mSv (0.7-17.1) and 62% (32/52) of the children had effective doses less than 5 mSv. The majority of pediatric patients who have undergone CT-guided drain placements at our institution have received total radiation doses on par with diagnostic ranges. This information could be useful when describing the dose of radiation to parents and providers when CT-guided drain placement is necessary. (orig.)

  11. Stability performance and interface shear strength of geocomposite drain/soil systems

    Science.gov (United States)

    Othman, Maidiana; Frost, Matthew; Dixon, Neil

    2018-02-01

    Landfill covers are designed as impermeable caps on top of waste containment facilities after the completion of landfill operations. Geocomposite drain (GD) materials consist of a geonet or geospacer (as a drainage core) sandwiched between non-woven geotextiles that act as separators and filters. GD provides a drainage function as part of the cover system. The stability performance of landfill cover system is largely controlled by the interface shear strength mobilized between the elements of the cover. If a GD is used, the interface shear strength properties between the upper surface of the GD and the overlying soil may govern stability of the system. It is not uncommon for fine grained materials to be used as cover soils. In these cases, understanding soil softening issues at the soil interface with the non-woven geotextile is important. Such softening can be caused by capillary break behaviour and build-up of water pressures from the toe of the drain upwards into the cover soil. The interaction processes to allow water flow into a GD core through the soil-geotextile interface is very complex. This paper reports the main behaviour of in-situ interface shear strength of soil-GD using field measurements on the trial landfill cover at Bletchley, UK. The soil softening at the interface due to soaked behaviour show a reduction in interface shear strength and this aspect should be emphasized in design specifications and construction control. The results also help to increase confidence in the understanding of the implications for design of cover systems.

  12. Methanization of industrial liquid effluents; Methanisation des effluents industriels liquides

    Energy Technology Data Exchange (ETDEWEB)

    Frederic, S.; Lugardon, A. [Societe Naskeo Environnement, 92 - Levallois-Perret (France)

    2007-09-15

    In a first part, this work deals with the theoretical aspects of the methanization of the industrial effluents; the associated reactional processes are detailed. The second part presents the technological criteria for choosing the methanization process in terms of the characteristics of the effluent to be treated. Some of the methanization processes are presented with their respective advantages and disadvantages. At last, is described the implementation of an industrial methanization unit. The size and the main choices are detailed: the anaerobic reactor, the control, the valorization aspects of the biogas produced. Some examples of industrial developments illustrate the different used options. (O.M.)

  13. Theory of Maxwell's fish eye with mutually interacting sources and drains

    Science.gov (United States)

    Leonhardt, Ulf; Sahebdivan, Sahar

    2015-11-01

    Maxwell's fish eye is predicted to image with a resolution not limited by the wavelength of light. However, interactions between sources and drains may ruin the subwavelength imaging capabilities of this and similar absolute optical instruments. Nevertheless, as we show in this paper, at resonance frequencies of the device, an array of drains may resolve a single source, or alternatively, a single drain may scan an array of sources, no matter how narrowly spaced they are. It seems that near-field information can be obtained from far-field distances.

  14. Improved simulation of poorly drained forests using Biome-BGC.

    Science.gov (United States)

    Bond-Lamberty, Ben; Gower, Stith T; Ahl, Douglas E

    2007-05-01

    Forested wetlands and peatlands are important in boreal and terrestrial biogeochemical cycling, but most general-purpose forest process models are designed and parameterized for upland systems. We describe changes made to Biome-BGC, an ecophysiological process model, that improve its ability to simulate poorly drained forests. Model changes allowed for: (1) lateral water inflow from a surrounding watershed, and variable surface and subsurface drainage; (2) adverse effects of anoxic soil on decomposition and nutrient mineralization; (3) closure of leaf stomata in flooded soils; and (4) growth of nonvascular plants (i.e., bryophytes). Bryophytes were treated as ectohydric broadleaf evergreen plants with zero stomatal conductance, whose cuticular conductance to CO(2) was dependent on plant water content. Individual model changes were parameterized with published data, and ecosystem-level model performance was assessed by comparing simulated output to field data from the northern BOREAS site in Manitoba, Canada. The simulation of the poorly drained forest model exhibited reduced decomposition and vascular plant growth (-90%) compared with that of the well-drained forest model; the integrated bryophyte photosynthetic response accorded well with published data. Simulated net primary production, biomass and soil carbon accumulation broadly agreed with field measurements, although simulated net primary production was higher than observed data in well-drained stands. Simulated net primary production in the poorly drained forest was most sensitive to oxygen restriction on soil processes, and secondarily to stomatal closure in flooded conditions. The modified Biome-BGC remains unable to simulate true wetlands that are subject to prolonged flooding, because it does not track organic soil formation, water table changes, soil redox potential or anaerobic processes.

  15. Management of Chest Drains: A National Survey on Surgeons‑in ...

    African Journals Online (AJOL)

    triangle of safety [Figure 1]. Just above a quarter of respondents (27.2%) always utilized different sizes of tubes for different pathologies and the same proportion of respondents always positioned the tip of the tube apically to drain pneumothorax and basally to drain pleural effusion. In contrast, 9.9% and 6.2% of respondents.

  16. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Aghajanzadeh, Arian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wray, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKane, Aimee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-30

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered process equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.

  17. The treatment of effluents

    International Nuclear Information System (INIS)

    Wormser, G.; Rodier, J.; Robien, E. de; Fernandez, N.

    1964-01-01

    For several years the French Atomic Energy Commission has been studying with interest problems presented by radio-active effluents. Since high activities have not yet received a definite solution we will deal only, in this paper, with the achievements and research concerning low and medium activity effluents. In the field of the achievements, we may mention the various effluent treatment stations which have been built in France; a brief list will be given together with an outline of their main new features. Thus in particular the latest treatment stations put into operation (Grenoble, Fontenay-aux-Roses, Cadarache) will be presented. From all these recent achievements three subjects will be dealt with in more detail. 1 - The workshop for treating with bitumen the sludge obtained after concentration of radionuclides. 2 - The workshop for treating radioactive solid waste by incineration. 3 - A unit for concentrating radio-active liquid effluents by evaporation. In the field of research, several topics have been undertaken, a list will be given. In most cases the research concerns the concentration of radionuclides with a view to a practical and low cost storage, a concentration involving an efficient decontamination of the aqueous liquids in the best possible economic conditions. For improving the treatments leading to the concentration of nuclides, our research has naturally been concerned with perfecting the treatments used in France: coprecipitation and evaporation. In our work we have taken into account in particular two conditions laid down in the French Centres. 1 - A very strict sorting out of the effluents at their source in order to limit in each category the volume of liquid to be dealt with. 2 - The necessity for a very complete decontamination due to the high population density in our country. In the last past we present two original methods for treating liquid effluents. 1 - The use of ion-exchange resins for liquids containing relatively many salts. The

  18. The stable stiffness triangle - drained sand during deformation cycles

    DEFF Research Database (Denmark)

    Sabaliauskas, Tomas; Ibsen, Lars Bo

    2017-01-01

    Cyclic, drained sand stiffness was observed using the Danish triaxial appa- ratus. New, deformation dependant soil property (the stable stiffness triangle) was detected. Using the the stable stiffness triangle, secant stiffness of drained sand was plausible to predict (and control) even during ir...... findings can find application in off-shore, seismic and other engi- neering practice, or inspire new branches of research and modelling wherever dynamic, cyclic or transient loaded sand is encountered....

  19. 241-AY-102 Leak Detection Pit Drain Line Inspection Report

    International Nuclear Information System (INIS)

    Boomer, Kayle D.; Engeman, Jason K.; Gunter, Jason R.; Joslyn, Cameron C.; Vazquez, Brandon J.; Venetz, Theodore J.; Garfield, John S.

    2014-01-01

    This document provides a description of the design components, operational approach, and results from the Tank AY-102 leak detection pit drain piping visual inspection. To perform this inspection a custom robotic crawler with a deployment device was designed, built, and operated by IHI Southwest Technologies, Inc. for WRPS to inspect the 6-inch leak detection pit drain line

  20. Effect of an intervention in storm drains to prevent Aedes aegypti reproduction in Salvador, Brazil.

    Science.gov (United States)

    Souza, Raquel Lima; Mugabe, Vánio André; Paploski, Igor Adolfo Dexheimer; Rodrigues, Moreno S; Moreira, Patrícia Sousa Dos Santos; Nascimento, Leile Camila Jacob; Roundy, Christopher Michael; Weaver, Scott C; Reis, Mitermayer Galvão; Kitron, Uriel; Ribeiro, Guilherme Sousa

    2017-07-11

    Aedes aegypti, the principal vector for dengue, chikungunya and Zika viruses, is a synanthropic species that uses stagnant water to complete its reproductive cycle. In urban settings, rainfall water draining structures, such as storm drains, may retain water and serve as a larval development site for Aedes spp. reproduction. Herein, we describe the effect of a community-based intervention on preventing standing water accumulation in storm drains and their consequent infestation by adult and immature Ae. aegypti and other mosquitoes. Between April and May of 2016, local residents association of Salvador, Brazil, after being informed of water accumulation and Ae. aegypti infestation in the storm drains in their area, performed an intervention on 52 storm drains. The intervention consisted of placing concrete at the bottom of the storm drains to elevate their base to the level of the outflow tube, avoiding water accumulation, and placement of a metal mesh covering the outflow tube to avoid its clogging with debris. To determine the impact of the intervention, we compared the frequency at which the 52 storm drains contained water, as well as adult and immature mosquitoes using data from two surveys performed before and two surveys performed after the intervention. During the pre-intervention period, water accumulated in 48 (92.3%) of the storm drains, and immature Ae. aegypti were found in 11 (21.2%) and adults in 10 (19.2%). After the intervention, water accumulated in 5 (9.6%) of the storm drains (P Aedes mosquitoes (mainly Culex spp.) in the storm drains also decreased after the intervention. This study exemplifies how a simple intervention targeting storm drains can result in a major reduction of water retention, and, consequently, impact Ae. aegypti larval populations. Larger and multi-center evaluations are needed to confirm the potential of citywide structural modifications of storm drains to reduce Aedes spp. infestation level.

  1. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions.

    Science.gov (United States)

    Barber, Larry B; Loyo-Rosales, Jorge E; Rice, Clifford P; Minarik, Thomas A; Oskouie, Ali K

    2015-06-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  2. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions

    Science.gov (United States)

    Barber, Larry B.; Loyo-Rosales, Jorge E.; Rice, Clifford P.; Minarik, Thomas A.; Oskouie, Ali K.

    2015-01-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  3. Drain-Site Hernia Containing the Vermiform Appendix: Report of a Case

    Directory of Open Access Journals (Sweden)

    Markus Gass

    2013-01-01

    Full Text Available The herniated vermiform appendix has been described as content of every hernia orifice in the right lower quadrant. While the femoral and inguinal herniated vermiform appendix is frequent enough to result in an own designation, port-site or even drain-site hernias are less frequently described. We report the case of a 62-year-old woman who presented with right lower quadrant pain seven years after Roux-en-Y Cystojejunostomy for a pancreatic cyst. CT scan showed herniation of the vermiform appendix through a former drain-site. A diagnostic laparoscopy with appendectomy and direct closure of the abdominal wall defect combined with mesh reinforcement was performed. Despite the decreasing use of intraperitoneal drains over the recent years, a multitude of patients had intraperitoneal drainage in former times. These patients face nowadays the risk of drain-site hernias with sometimes even unexpected structures inside.

  4. Nutrient removal from swine lagoon effluent by duckweed

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, B.A.; Cheng, J.; Classen, J.; Stomp, A.M.

    2000-04-01

    Three duckweed geographic isolates were grown on varying concentrations of swine lagoon effluent in a greenhouse to determine their ability to remove nutrients from the effluent. Duckweed biomass was harvested every other day over a 12-day period. Duckweed biomass production, nutrient loss from the swine lagoon effluent, and nutrient content of duckweed biomass were used to identify effluent concentrations/geographic isolate combinations that are effective in terms of nutrient utilization from swine lagoon effluent and production of healthy duckweed biomass. When Lemna minor geographic isolate 8627 was grown on 50% swine lagoon effluent, respective losses of TKN, NH{sub 3}-N, TP, OPO{sub 4}-P, TOC, K, Cu, and Zn were 83, 100, 49, 31, 68, 21, 28 and 67%.

  5. PFOS and PFOA in influents, effluents, and biosolids of Chinese wastewater treatment plants and effluent-receiving marine environments

    International Nuclear Information System (INIS)

    Chen Hong; Zhang Can; Han Jianbo; Yu Yixuan; Zhang Peng

    2012-01-01

    Concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in influents, effluents and sludges were investigated by analyzing the samples from twelve wastewater treatment plants (WWTPs) in China. The highest concentrations of PFOS and PFOA in influents were found to occur in municipal and industrial WWTPs, respectively. Relative to PFOS and PFOA concentrations in influents, elevated concentrations were observed in effluents from WWTPs applying anaerobic–anoxic–oxic wastewater treatment process. Importantly, application of previously reported organic carbon normalized partition coefficients (K OC ) derived from sediment-based sorption experiments appear to underestimate the PFOS and PFOA levels in biosolids quantified in the current study. PFOS and PFOA levels in effluents were found to be approximately 27 and 2 times higher than those detected in the effluent-receiving seawater, respectively. However, their levels in this area of seawater haven't exceeded the provisional short-term health advisories in drinking water issued by U.S. EPA yet. - Highlights: ► Levels of PFOS and PFOA in influents, effluents and sludge from Chinese WWTPs were examined. ► Municipal sewage was the main source for PFOS in Chinese WWTPs, while industrial sewage for PFOA. ► PFOS and PFOA concentrations in effluents were much higher than those in receiving seawater. - Levels of PFOS and PFOA in influent, effluent and sludge samples from Chinese WWTPs were examined and found much higher than those in receiving seawater.

  6. Radioactive Liquid Waste Treatment Facility Discharges in 2011

    Energy Technology Data Exchange (ETDEWEB)

    Del Signore, John C. [Los Alamos National Laboratory

    2012-05-16

    This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2011. During 2011, three pathways were available for the discharge of treated water to the environment: discharge as water through NPDES Outfall 051 into Mortandad Canyon, evaporation via the TA50 cooling towers, and evaporation using the newly-installed natural-gas effluent evaporator at TA50. Only one of these pathways was used; all treated water (3,352,890 liters) was fed to the effluent evaporator. The quality of treated water was established by collecting a weekly grab sample of water being fed to the effluent evaporator. Forty weekly samples were collected; each was analyzed for gross alpha, gross beta, and tritium. Weekly samples were also composited at the end of each month. These flow-weighted composite samples were then analyzed for 37 radioisotopes: nine alpha-emitting isotopes, 27 beta emitters, and tritium. These monthly analyses were used to estimate the radioactive content of treated water fed to the effluent evaporator. Table 1 summarizes this information. The concentrations and quantities of radioactivity in Table 1 are for treated water fed to the evaporator. Amounts of radioactivity discharged to the environment through the evaporator stack were likely smaller since only entrained materials would exit via the evaporator stack.

  7. Homogenization of one-dimensional draining through heterogeneous porous media including higher-order approximations

    Science.gov (United States)

    Anderson, Daniel M.; McLaughlin, Richard M.; Miller, Cass T.

    2018-02-01

    We examine a mathematical model of one-dimensional draining of a fluid through a periodically-layered porous medium. A porous medium, initially saturated with a fluid of a high density is assumed to drain out the bottom of the porous medium with a second lighter fluid replacing the draining fluid. We assume that the draining layer is sufficiently dense that the dynamics of the lighter fluid can be neglected with respect to the dynamics of the heavier draining fluid and that the height of the draining fluid, represented as a free boundary in the model, evolves in time. In this context, we neglect interfacial tension effects at the boundary between the two fluids. We show that this problem admits an exact solution. Our primary objective is to develop a homogenization theory in which we find not only leading-order, or effective, trends but also capture higher-order corrections to these effective draining rates. The approximate solution obtained by this homogenization theory is compared to the exact solution for two cases: (1) the permeability of the porous medium varies smoothly but rapidly and (2) the permeability varies as a piecewise constant function representing discrete layers of alternating high/low permeability. In both cases we are able to show that the corrections in the homogenization theory accurately predict the position of the free boundary moving through the porous medium.

  8. Experimental Breeder Reactor II (EBR-II) Fuel-Performance Test Facility (FPTF)

    International Nuclear Information System (INIS)

    Pardini, J.A.; Brubaker, R.C.; Veith, D.J.; Giorgis, G.C.; Walker, D.E.; Seim, O.S.

    1982-01-01

    The Fuel-Performance Test Facility (FPTF) is the latest in a series of special EBR-II instrumented in-core test facilities. A flow control valve in the facility is programmed to vary the coolant flow, and thus the temperature, in an experimental-irradiation subassembly beneath it and coupled to it. In this way, thermal transients can be simulated in that subassembly without changing the temperatures in surrounding subassemblies. The FPTF also monitors sodium flow and temperature, and detects delayed neutrons in the sodium effluent from the experimental-irradiation subassembly beneath it. This facility also has an acoustical detector (high-temperature microphone) for detecting sodium boiling

  9. Effluent Guidelines

    Science.gov (United States)

    Effluent guidelines are national standards for wastewater discharges to surface waters and municipal sewage treatment plants. We issue the regulations for industrial categories based on the performance of treatment and control technologies.

  10. Origin of the water drained by the tunnel Graton

    International Nuclear Information System (INIS)

    Plata B, A.

    1992-12-01

    The research of the origin of the water drained by the Graton tunnel was attempted using isotope techniques. During the period of studies (April 1989-October 1992), four field work was executed to sample waters for chemistry, stable isotope and Tritium analysis, an to inject tracers and verify the possible infiltration from the Rimac and Blanco rivers to the tunnel. The results of the stable isotope analysis show that the water drained by the Graton tunnel comes from a basin around 300 meters above the average altitude of the basin where the Graton is located. The Tritium analysis show that the water is relatively modern. Using the model of total mixing, the residence times of the water drained at the km 0.5 and 2.5 are in the order to 45 years. The conductivities of the water of the tunnel is higher than the Rimac river ones because the influence of mine water. The chemical analysis of the water sampled at the downstream end of the tunnel, show that the conservative ions of the water kept almost constant during more than two years. The results of the work with artificial tracer show that there is no significant leakage from the Rimac and Blanco rivers to the Graton tunnel. So far, it can be concluded as a preliminary approach that the Graton tunnel drains relatively modern water originated in another basin. The hydrodynamics of the area of study seems to include a large storage on underground water in the system. The topography, geology and isotopic composition of the water samples, points to the upper Mantaro river basin as the possible source of part of the water drained by the Graton tunnel. (authors). 20 p. 2 figs., 7 ills., 4 tabs

  11. Cytogenotoxicity evaluation of two industrial effluents using Allium ...

    African Journals Online (AJOL)

    ISHIOMA

    textile effluent was 4.5 times more toxic than the paint effluent. ... Key words: Genotoxicity, paint, textile, industrial effluents, Allium cepa, mutation, pollution, chromosomal .... concentration of a chemical producing 50% of the total effect).

  12. Optimization design for drain to nuclear power condenser

    International Nuclear Information System (INIS)

    Ding Jiapeng; Jiang Chengren

    2010-01-01

    Characters and varieties of drain to nuclear power condenser are discussed in this paper. Take the main steam system of a nuclear power as an example, normal and detailed optimization design are introduced, related expatiate are used as a reference for the drain of other systems. According to the characters of nuclear power instant operation, the influence and needed actions related with the optimization design are also analyzed. Based on the above research, the scheme has been carried out in a nuclear power station and safety for the condenser operation of the nuclear power has been improved largely. (authors)

  13. Corrective Action Investigation Plan for Corrective Action Unit 500: Test Cell A Septic System, Nevada Test Site, Nevada, Revision 0, DOE/NV--528 UPDATED WITH TECHNICAL CHANGE No.1

    Energy Technology Data Exchange (ETDEWEB)

    ITLV

    1998-12-01

    This Corrective Action Investigation Plan (CAIP) addresses one of three leachfield systems associated with Test Cell A, which is located in Area 25 at the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (see Leachfield Work Plan Figure 1-1). Corrective Action Unit 500 is comprised of the Test Cell A Septic System (CAS 25-04-05) and the associated leachfield system presented in Figure 1-1 (FFACO, 1996). The leachfield is located 60 meters (m) (200 feet [ft]) southeast of the Building 3124 gate, and approximately 45 m (150 ft) southwest of Building 3116 at Test Cell A. Test Cell A operated during the 1960s to support nuclear rocket reactor testing as part of the Nuclear Rocket Development Station (NRDS) (SNPO, 1970). Various operations within Buildings 3113B (Mechanical Equipment Room), 3115 (Helium Compressor Station), 3116 (Pump House), a water tank drain and overflow, a ''yard and equipment drain system'' outside of Building 3116, and a trailer have resulted in potentially hazardous effluent releases to the leachfield system (DOE, 1988a). The leachfield system components include discharge lines, manways, a septic tank, an outfall line, a diversion chamber, and a 15 by 30 m (50 by 100 ft) leachfield (see Leachfield Work Plan Figure 3-1 for explanation of terminology). In addition, engineering drawings show an outfall system that may or may not be connected to the CAU 500 leachfield. In general, effluent contributed to the leachfield was sanitary wastewater associated with floor drains, toilet and lavatory facilities in Building 3113B and floor drains in the remaining source buildings. The surface and subsurface soils in the vicinity of the collection system, outfall, and leachfield may have been impacted by effluent containing contaminants of potential concern (COPCs) generated by support activities associated with Test Cell A reactor testing operations.

  14. modelling effluent assimila modelling effluent assimilat modelling

    African Journals Online (AJOL)

    eobe

    G EFFLUENT ASSIMILATIVE CAPACITY OF IKPOBA RIVE. BENIN CITY, NIGERIA ... l purposes to communities rse such as ... treat in order for it to meet the aforeme of the communities. It is therefore i ..... Substituting and integrating yields the following equations ..... Purification Potentials of Small Tropical Urban. Stream: A ...

  15. Charge plasma based source/drain engineered Schottky Barrier MOSFET: Ambipolar suppression and improvement of the RF performance

    Science.gov (United States)

    Kale, Sumit; Kondekar, Pravin N.

    2018-01-01

    This paper reports a novel device structure for charge plasma based Schottky Barrier (SB) MOSFET on ultrathin SOI to suppress the ambipolar leakage current and improvement of the radio frequency (RF) performance. In the proposed device, we employ dual material for the source and drain formation. Therefore, source/drain is divided into two parts as main source/drain and source/drain extension. Erbium silicide (ErSi1.7) is used as main source/drain material and Hafnium metal is used as source/drain extension material. The source extension induces the electron plasma in the ultrathin SOI body resulting reduction of SB width at the source side. Similarly, drain extension also induces the electron plasma at the drain side. This significantly increases the SB width due to increased depletion at the drain end. As a result, the ambipolar leakage current can be suppressed. In addition, drain extension also reduces the parasitic capacitances of the proposed device to improve the RF performance. The optimization of length and work function of metal used in the drain extension is performed to achieve improvement in device performance. Moreover, the proposed device makes fabrication simpler, requires low thermal budget and free from random dopant fluctuations.

  16. Estimating drain flow from measured water table depth in layered soils under free and controlled drainage

    Science.gov (United States)

    Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen

    2018-01-01

    Long records of continuous drain flow are important for quantifying annual and seasonal changes in the subsurface drainage flow from drained agricultural land. Missing data due to equipment malfunction and other challenges have limited conclusions that can be made about annual flow and thus nutrient loads from field studies, including assessments of the effect of controlled drainage. Water table depth data may be available during gaps in flow data, providing a basis for filling missing drain flow data; therefore, the overall goal of this study was to examine the potential to estimate drain flow using water table observations. The objectives were to evaluate how the shape of the relationship between drain flow and water table height above drain varies depending on the soil hydraulic conductivity profile, to quantify how well the Hooghoudt equation represented the water table-drain flow relationship in five years of measured data at the Davis Purdue Agricultural Center (DPAC), and to determine the impact of controlled drainage on drain flow using the filled dataset. The shape of the drain flow-water table height relationship was found to depend on the selected hydraulic conductivity profile. Estimated drain flow using the Hooghoudt equation with measured water table height for both free draining and controlled periods compared well to observed flow with Nash-Sutcliffe Efficiency values above 0.7 and 0.8 for calibration and validation periods, respectively. Using this method, together with linear regression for the remaining gaps, a long-term drain flow record for a controlled drainage experiment at the DPAC was used to evaluate the impacts of controlled drainage on drain flow. In the controlled drainage sites, annual flow was 14-49% lower than free drainage.

  17. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Detergents Subcategory § 417.163 Effluent limitations guidelines representing the degree... subpart after application of the best available technology economically achievable: (a) For normal liquid...

  18. 40 CFR 428.62 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Effluent limitations guidelines... technology currently available. 428.62 Section 428.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Medium...

  19. 40 CFR 428.63 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Effluent limitations guidelines... economically achievable. 428.63 Section 428.63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Medium-Sized General...

  20. Estimation of local and regional components of drain - flow from an irrigated field

    International Nuclear Information System (INIS)

    Eching, S.O.; Hopmans, J.W.; Wallender, W.W.; Macyntyre, J.L.; Peters, D.

    1995-01-01

    The contribution of regional ground water and deep percolation from a furrow irrigated field to total drain flow was estimated using salt load analysis. It was found that 64% of the drain flow comes from regional ground water flow. The electrical conductivity of the drain water was highly correlated with the drain flow rate. From the field water balance with deep percolation as estimated from the salt load analysis, using yield function derived evapotranspiration, and measured changes in root zone water storage, it was shown that 14% of the crop evapotranspiration comes from ground water during the study period. 8 figs; 5 tabs; 15 refs ( Author )

  1. Strip-drains for in situ clean up of contaminated fine-grained soils

    International Nuclear Information System (INIS)

    Bowders, J.J.; Gabr, M.A.

    1995-01-01

    Methods for in situ remediation of contaminated soils, such as bioremediation, vacuum/air stripping and soil flushing have been found to be less effective under fine-grained soil conditions. To enhance the performance of these techniques, it was proposed that strip-drains or wick drains also known as prefabricated vertical (PV) drains be used. The research objective was to determine the feasibility of using PV drains to enhance the soil flushing process. Bench top and intermediate-scale laboratory experiments were conducted. An overview of the work, results and future considerations were presented. Results indicated that the technology is feasible. A preliminary model for the technology to be used in any field situation was developed. The model is currently being tested with data from physical experiments on both intermediate and field tests. 5 figs

  2. Civaux nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Civaux, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  3. Chooz nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Chooz, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  4. Brennilis nuclear facilities. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of Brennilis, and then the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities, administrative procedures carried out in 2009), incidents and accidents registered in 2009, radioactive and chemical effluents released by the facilities in the environment, other pollutions, management of radioactive wastes, and, finally, the actions carried out in the domain of transparency and public information. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  5. Assessment of effluent turbidity in mesophilic and thermophilic sludge reactors - origin of effluent colloidal material

    NARCIS (Netherlands)

    Vogelaar, J.C.T.; Lier, van J.B.; Klapwijk, B.; Vries, M.C.; Lettinga, G.

    2002-01-01

    Two lab-scale plug flow activated sludge reactors were run in parallel for 4 months at 30 and 55°C. Research focussed on: (1) COD (chemical oxygen demand) removal, (2) effluent turbidity at both temperatures, (3) the origin of effluent colloidal material and (4) the possible role of protozoa on

  6. Desalination of effluent using fin type solar still

    Energy Technology Data Exchange (ETDEWEB)

    Velmurugan, V. [Department of Mechanical Engineering, Infant Jesus College of Engineering, Thoothukudi, Tamil Nadu 628 851 (India); Deenadayalan, C.K.; Vinod, H.; Srithar, K. [Department of Mechanical Engineering, Thiagarajar College of Engineering, Madurai, Tamil Nadu 625 015 (India)

    2008-11-15

    In this work, an attempt is made to produce potable water from industrial effluents. An ordinary basin type solar still integrated with fins at the basin plate is used for experimentation. Since industrial effluent is used as feed, before this still, an effluent settling tank is provided to get clarified effluent. This effluent settling tank is fabricated with three chambers, consists of pebble, coal and sand for settling the impurities and removing the bacteria in the effluents. Sponges, pebbles, black rubber and sand are used in the fin type single basin solar still for enhancing the yield. Results show that the productivity increases considerably due to this modification. A theoretical analysis is also carried out which, closely converges with experimental results. The economic analysis proved that the approximate payback period of such kinds of still is 1 year. (author)

  7. Reverse blocking characteristics and mechanisms in Schottky-drain AlGaN/GaN HEMT with a drain field plate and floating field plates

    International Nuclear Information System (INIS)

    Mao Wei; She Wei-Bo; Zhang Jin-Feng; Zheng Xue-Feng; Wang Chong; Hao Yue; Yang Cui

    2016-01-01

    In this paper, a novel AlGaN/GaN HEMT with a Schottky drain and a compound field plate (SD-CFP HEMT) is presented for the purpose of better reverse blocking capability. The compound field plate (CFP) consists of a drain field plate (DFP) and several floating field plates (FFPs). The physical mechanisms of the CFP to improve the reverse breakdown voltage and to modulate the distributions of channel electric field and potential are investigated by two-dimensional numerical simulations with Silvaco-ATLAS. Compared with the HEMT with a Schottky drain (SD HEMT) and the HEMT with a Schottky drain and a DFP (SD-FP HEMT), the superiorities of SD-CFP HEMT lie in the continuous improvement of the reverse breakdown voltage by increasing the number of FFPs and in the same fabrication procedure as the SD-FP HEMT. Two useful optimization laws for the SD-CFP HEMTs are found and extracted from simulation results. The relationship between the number of the FFPs and the reverse breakdown voltage as well as the FP efficiency in SD-CFP HEMTs are discussed. The results in this paper demonstrate a great potential of CFP for enhancing the reverse blocking ability in AlGaN/GaN HEMT and may be of great value and significance in the design and actual manufacture of SD-CFP HEMTs. (paper)

  8. Hanford Site Near-Facility Environmental Monitoring Data Report for Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Craig J.; Dorsey, Michael C.; Mckinney, Stephen M.; Wilde, Justin W.; Poston, Ted M.

    2009-09-15

    Near-facility environmental monitoring is defined as monitoring near facilities that have the potential to discharge or have discharged, stored, or disposed of radioactive or hazardous materials. Monitoring locations are associated with nuclear facilities such as the Plutonium Finishing Plant, Canister Storage Building, and the K Basins; inactive nuclear facilities such as N Reactor and the Plutonium-Uranium Extraction (PUREX) Facility; and waste storage or disposal facilities such as burial grounds, cribs, ditches, ponds, tank farms, and trenches. Much of the monitoring consists of collecting and analyzing environmental samples and methodically surveying areas near facilities. The program is also designed to evaluate acquired analytical data, determine the effectiveness of facility effluent monitoring and controls, assess the adequacy of containment at waste disposal units, and detect and monitor unusual conditions.

  9. 40 CFR 424.13 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. 424.13 Section 424.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Furnaces With Wet Air Pollution Control Devices Subcategory § 424.13 Effluent limitations guidelines...

  10. 40 CFR 424.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. 424.43 Section 424.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Carbide Furnaces With Wet Air Pollution Control Devices Subcategory § 424.43 Effluent limitations...

  11. 40 CFR 429.163 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... degree of effluent reduction attainable by the application of the best available technology economically... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Wood Furniture... application of the best available technology economically achievable (BAT). Except as provided in 40 CFR 125...

  12. 40 CFR 429.171 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Wood Furniture... best practicable control technology currently available (BPT). Except as provided in 40 CFR 125.30...

  13. 40 CFR 429.173 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... degree of effluent reduction attainable by the application of the best available technology economically... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Wood Furniture... best available technology economically achievable (BAT). Except as provided in 40 CFR 125.30 through...

  14. 40 CFR 429.161 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Wood Furniture... application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...

  15. 40 CFR 426.123 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Incandescent Lamp... technology economically achievable: (a) [Reserved] (b) Any manufacturing plant which frosts incandescent lamp... characteristic Effluent limitations Maximum for any 1 day Average of daily values for 30 consecutive days shall...

  16. Thailand and brain drain

    OpenAIRE

    Terry Commins

    2009-01-01

    Brain drain has been the subject of research since the 1960s. This research has been hampered by a lack of accurate data from both source and receiving countries on migration and on the losses and gains to developing economies of skilled migration. However, despite these handicaps, research has been able to clearly show that trends are changing and the effect this is having is usually quite different for individual source countries.Thailand, as a developing economy, could be regarded as a sou...

  17. Treatment of effluent at the Saclay Centre d'Etudes Nucleaires (1960); Le traitement des effluents du Centre d'Etudes Nucleaires de Saclay (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Wormser, G [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The Centre d'Etudes Nucleaires at Saclay possesses several installations from which liquid radioactive effluent is rejected, and it has thus been found necessary to construct a station for the purification of radioactive liquids and to settle various chemical, analytical and technological problems. This report describes, in the following order: - the disposal possibilities at the Centre d'Etudes Nucleaires, Saclay, - the effluents produced at the centre, - the set-up for collecting effluent, - treatment of the effluent, - results of these treatments. (author) [French] La presence, au Centre d'Etudes Nucleaires de Saclay, de plusieurs installations susceptibles de rejeter des effluents liquides radioactifs a necessite la construction d'une station d'epuration d'eaux radioactives et la mise au point de differents problemes chimiques, analytiques et technologiques. Dans ce rapport, nous exposerons successivement: - les possibilites de rejet du Centre d'Etudes Nucleaires de Saclay, - les effluents du centre, - le dispositif de collecte des effluents, - le traitement de ces effluents, - les resultats de ces traitements. (auteur)

  18. The European Politics of Brain Drain

    DEFF Research Database (Denmark)

    Hasselbalch, Jacob

    This qualitative multi-method studymaps the politics of brain drain at the level of the European Union and follows the evolution of the issue over the last four parliamentary periods. By utilizing a novel combination of interviews with a content and network analysis of parliamentary questions...

  19. An economic perspective on Malawi's medical "brain drain"

    Directory of Open Access Journals (Sweden)

    Mohiddin Abdu

    2006-12-01

    Full Text Available Abstract Background The medical "brain drain" has been described as rich countries "looting" doctors and nurses from developing countries undermining their health systems and public health. However this "brain-drain" might also be seen as a success in the training and "export" of health professionals and the benefits this provides. This paper illustrates the arguments and possible policy options by focusing on the situation in one of the poorest countries in the world, Malawi. Discussion Many see this "brain drain" of medical staff as wrong with developed countries exploiting poorer ones. The effects are considerable with Malawi facing high vacancy rates in its public health system, and with migration threatening to outstrip training despite efforts to improve pay and conditions. This shortage of staff has made it more challenging for Malawi to deliver on its Essential Health Package and to absorb new international health funding. Yet, without any policy effort Malawi has been able to demonstrate its global competitiveness in the training ("production" of skilled health professionals. Remittances from migration are a large and growing source of foreign exchange for poor countries and tend to go directly to households. Whilst the data for Malawi is limited, studies from other poor countries demonstrate the power of remittances in significantly reducing poverty. Malawi can benefit from the export of health professionals provided there is a resolution of the situation whereby the state pays for training and the benefits are gained by the individual professional working abroad. Solutions include migrating staff paying back training costs, or rich host governments remitting part of a tax (e.g. income or national insurance to the Malawi government. These schemes would allow Malawi to scale up training of health professionals for local needs and to work abroad. Summary There is concern about the negative impacts of the medical "brain-drain". However a

  20. An economic perspective on Malawi's medical "brain drain"

    Science.gov (United States)

    Record, Richard; Mohiddin, Abdu

    2006-01-01

    Background The medical "brain drain" has been described as rich countries "looting" doctors and nurses from developing countries undermining their health systems and public health. However this "brain-drain" might also be seen as a success in the training and "export" of health professionals and the benefits this provides. This paper illustrates the arguments and possible policy options by focusing on the situation in one of the poorest countries in the world, Malawi. Discussion Many see this "brain drain" of medical staff as wrong with developed countries exploiting poorer ones. The effects are considerable with Malawi facing high vacancy rates in its public health system, and with migration threatening to outstrip training despite efforts to improve pay and conditions. This shortage of staff has made it more challenging for Malawi to deliver on its Essential Health Package and to absorb new international health funding. Yet, without any policy effort Malawi has been able to demonstrate its global competitiveness in the training ("production") of skilled health professionals. Remittances from migration are a large and growing source of foreign exchange for poor countries and tend to go directly to households. Whilst the data for Malawi is limited, studies from other poor countries demonstrate the power of remittances in significantly reducing poverty. Malawi can benefit from the export of health professionals provided there is a resolution of the situation whereby the state pays for training and the benefits are gained by the individual professional working abroad. Solutions include migrating staff paying back training costs, or rich host governments remitting part of a tax (e.g. income or national insurance) to the Malawi government. These schemes would allow Malawi to scale up training of health professionals for local needs and to work abroad. Summary There is concern about the negative impacts of the medical "brain-drain". However a closer look at the evidence