WorldWideScience

Sample records for facilities engineering research

  1. Materials Engineering Research Facility (MERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s Materials Engineering Research Facility (MERF) enables engineers to develop manufacturing processes for producing advanced battery materials in sufficient...

  2. Engine Environment Research Facility (EERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility supports research and development testing of the behavior of turbine engine lubricants, fuels and sensors in an actual engine environment....

  3. Detonation Engine Research Facility (DERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility is configured to safely conduct experimental pressuregain combustion research. The DERF is capable of supporting up to 60,000 lbf thrust...

  4. Engine Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Air Force Arnold Engineering Development Center's Engine Test Facility (ETF) test cells are used for development and evaluation testing of propulsion systems for...

  5. Field Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Field Research Facility (FRF) located in Duck, N.C. was established in 1977 to support the U.S. Army Corps of Engineers' coastal engineering mission. The FRF is...

  6. Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

    1994-10-01

    This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

  7. Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

    1994-10-01

    This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

  8. Ice Engineering Research Area

    Data.gov (United States)

    Federal Laboratory Consortium — Refrigerated Physical Modeling of Waterways in a Controlled EnvironmentThe Research Area in the Ice Engineering Facility at the Cold Regions Research and Engineering...

  9. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. S.; Choi, J. W.; Go, W. I.; Kim, H. D.; Song, K. C.; Jeong, I. H.; Park, H. S.; Im, C. S.; Lee, H. M.; Moon, K. H.; Hong, K. P.; Lee, K. S.; Suh, K. S.; Kim, E. K.; Min, D. K.; Lee, J. C.; Chun, Y. B.; Paik, S. Y.; Lee, E. P.; Yoo, G. S.; Kim, Y. S.; Park, J. C.

    1997-09-01

    In the early stage of the project, a comprehensive survey was conducted to identify the feasibility of using available facilities and of interface between those facilities. It was found out that the shielded cell M6 interface between those facilities. It was found out that the shielded cell M6 of IMEF could be used for the main process experiments of DUPIC fuel fabrication in regard to space adequacy, material flow, equipment layout, etc. Based on such examination, a suitable adapter system for material transfer around the M6 cell was engineered. Regarding the PIEF facility, where spent PWR fuel assemblies are stored in an annex pool, disassembly devices in the pool are retrofitted and spent fuel rod cutting and shipping system to the IMEF are designed and built. For acquisition of casks for radioactive material transport between the facilities, some adaptive refurbishment was applied to the available cask (Padirac) based on extensive analysis on safety requirements. A mockup test facility was newly acquired for remote test of DUPIC fuel fabrication process equipment prior to installation in the M6 cell of the IMEF facility. (author). 157 refs., 57 tabs., 65 figs.

  10. Environmental Toxicology Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Fully-equipped facilities for environmental toxicology research The Environmental Toxicology Research Facility (ETRF) located in Vicksburg, MS provides over 8,200 ft...

  11. Basic Research Firing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Basic Research Firing Facility is an indoor ballistic test facility that has recently transitioned from a customer-based facility to a dedicated basic research...

  12. Guide to research facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  13. Environmental Toxicology Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Fully-equipped facilities for environmental toxicology researchThe Environmental Toxicology Research Facility (ETRF) located in Vicksburg, MS provides over 8,200 ft...

  14. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Lee, H. H.; Kim, K. H. and others

    2000-03-01

    The objectives of this study are (1) the refurbishment for PIEF(Post Irradiation Examination Facility) and M6 hot-cell in IMEF(Irradiated Material Examination Facility), (2) the establishment of the compatible facility for DUPIC fuel fabrication experiments which is licensed by government organization, and (3) the establishment of the transportation system and transportation cask for nuclear material between facilities. The report for this project describes following contents, such as objectives, necessities, scope, contents, results of current step, R and D plan in future and etc.

  15. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Lee, H. H.; Kim, K. H. [and others

    2002-03-01

    With starting DUPIC fuel fabrication experiment by using spent fuels, 1) operation and refurbishment for DFDF (DUPIC fuel development facility), and 2) operation and improvement of transportation equipment for radioactive materials between facilities became the objectives of this study. This report describes objectives of the project, necessities, state of related technology, R and D scope, R and D results, proposal for application etc.

  16. Earthquake engineering for nuclear facilities

    CERN Document Server

    Kuno, Michiya

    2017-01-01

    This book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground...

  17. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  18. Feasibility of Conducting J-2X Engine Testing at the Glenn Research Center Plum Brook Station B-2 Facility

    Science.gov (United States)

    Schafer, Charles F.; Cheston, Derrick J.; Worlund, Armis L.; Brown, James R.; Hooper, William G.; Monk, Jan C.; Winstead, Thomas W.

    2008-01-01

    A trade study of the feasibility of conducting J-2X testing in the Glenn Research Center (GRC) Plum Brook Station (PBS) B-2 facility was initiated in May 2006 with results available in October 2006. The Propulsion Test Integration Group (PTIG) led the study with support from Marshall Space Flight Center (MSFC) and Jacobs Sverdrup Engineering. The primary focus of the trade study was on facility design concepts and their capability to satisfy the J-2X altitude simulation test requirements. The propulsion systems tested in the B-2 facility were in the 30,000-pound (30K) thrust class. The J-2X thrust is approximately 10 times larger. Therefore, concepts significantly different from the current configuration are necessary for the diffuser, spray chamber subsystems, and cooling water. Steam exhaust condensation in the spray chamber is judged to be the key risk consideration relative to acceptable spray chamber pressure. Further assessment via computational fluid dynamics (CFD) and other simulation capabilities (e.g. methodology for anchoring predictions with actual test data and subscale testing to support investigation.

  19. Geodynamics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This GSL facility has evolved over the last three decades to support survivability and protective structures research. Experimental devices include three gas-driven...

  20. Geophysical Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Geophysical Research Facility (GRF) is a 60 ft long qaodmasdkwaspemas5ajkqlsmdqpakldnzsdfls 22 ft wide qaodmasdkwaspemas4ajkqlsmdqpakldnzsdfls 7 ft deep concrete...

  1. Transonic Experimental Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Transonic Experimental Research Facility evaluates aerodynamics and fluid dynamics of projectiles, smart munitions systems, and sub-munitions dispensing systems;...

  2. Flexible Electronics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Flexible Electronics Research Facility designs, synthesizes, tests, and fabricates materials and devices compatible with flexible substrates for Army information...

  3. Magnetics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetics Research Facility houses three Helmholtz coils that generate magnetic fields in three perpendicular directions to balance the earth's magnetic field....

  4. U.S. Army Natick Soldier Research, Development & Engineering Center Testing Facilities And Equipment. Second Edition

    Science.gov (United States)

    2011-04-01

    anthracis, F. tularensis, Y. pestis, C. botulinum Type A, Smallpox, Listeria monocytogenes, E. coli O157, Salmonella, Campylobacter , and Cryptosporidium...sensitive analytical instrumentation (i.e., HPLC, gene arrays, PCR, rtPCR, ELISA based detection). FOOD MICROBIOLOGY CLEANROOM This facility is a

  5. An Assessment of the Naval Facilities Engineering Command’s Investments in Research and Development

    Science.gov (United States)

    1989-06-01

    NCEL’s establishment in 1971 of the Field Engineering Support Office (FESO). The prime purpose of FESO was to see that field activity customers were...had found, the dynamics of the environment make a totally replicative study inappropriate for 1989. The prime objectives in the development of this...August 1988. Dillman, D. A., Mail & Telephone Surveys: The Total Design Method, John Wiley & Sons, Inc., 1978. Erdos & Morgan, Professional Mail Surveys

  6. Geophysical Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Geophysical Research Facility (GRF) is a 60 ft long × 22 ft wide × 7 ft deep concrete basin at CRREL for fresh or saltwater investigations and can be temperature...

  7. Frost Effects Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Full-scale study in controlled conditionsThe Frost Effects Research Facility (FERF) is the largest refrigerated warehouse in the United States that can be used for a...

  8. Concrete Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This is a 20,000-sq ft laboratory that supports research on all aspects of concrete and materials technology. The staff of this facility offer wide-ranging expertise...

  9. Frost Effects Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Full-scale study in controlled conditions The Frost Effects Research Facility (FERF) is the largest refrigerated warehouse in the United States that can be used for...

  10. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  11. Small-Engine Research Laboratory (SERL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Small-Engine Research Laboratory (SERL) is a facility designed to conduct experimental small-scale propulsion and power generation systems research....

  12. METC Combustion Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Halow, J.S.; Maloney, D.J.; Richards, G.A.

    1993-11-01

    The objective of the Morgantown Energy Technology Center (METC) high pressure combustion facility is to provide a mid-scale facility for combustion and cleanup research to support DOE`s advanced gas turbine, pressurized, fluidized-bed combustion, and hot gas cleanup programs. The facility is intended to fill a gap between lab scale facilities typical of universities and large scale combustion/turbine test facilities typical of turbine manufacturers. The facility is now available to industry and university partners through cooperative programs with METC. High pressure combustion research is also important to other DOE programs. Integrated gasification combined cycle (IGCC) systems and second-generation, pressurized, fluidized-bed combustion (PFBC) systems use gas turbines/electric generators as primary power generators. The turbine combustors play an important role in achieving high efficiency and low emissions in these novel systems. These systems use a coal-derived fuel gas as fuel for the turbine combustor. The METC facility is designed to support coal fuel gas-fired combustors as well as the natural gas fired combustor used in the advanced turbine program.

  13. Telerobotics and Systems Engineering for Scientific Facilities Editorial

    Directory of Open Access Journals (Sweden)

    Manuel Ferre

    2014-11-01

    Full Text Available This special issue is focused on promoting telerobotic remote handling technologies integrated with system engineering. Integration matters are particularly relevant in scientific facilities such as CERN (European Organization for Nuclear Research, GSI-FAIR (Facility for Antiproton and Ion Research, JET (Joint European Torus and ITER (International Thermonuclear Experimental Reactor, where the complexity of these facilities require top-down analysis.

  14. Variable gravity research facility

    Science.gov (United States)

    Allan, Sean; Ancheta, Stan; Beine, Donna; Cink, Brian; Eagon, Mark; Eckstein, Brett; Luhman, Dan; Mccowan, Daniel; Nations, James; Nordtvedt, Todd

    1988-01-01

    Spin and despin requirements; sequence of activities required to assemble the Variable Gravity Research Facility (VGRF); power systems technology; life support; thermal control systems; emergencies; communication systems; space station applications; experimental activities; computer modeling and simulation of tether vibration; cost analysis; configuration of the crew compartments; and tether lengths and rotation speeds are discussed.

  15. Concurrent engineering research center

    Science.gov (United States)

    Callahan, John R.

    1995-01-01

    The projects undertaken by The Concurrent Engineering Research Center (CERC) at West Virginia University are reported and summarized. CERC's participation in the Department of Defense's Defense Advanced Research Project relating to technology needed to improve the product development process is described, particularly in the area of advanced weapon systems. The efforts committed to improving collaboration among the diverse and distributed health care providers are reported, along with the research activities for NASA in Independent Software Verification and Validation. CERC also takes part in the electronic respirator certification initiated by The National Institute for Occupational Safety and Health, as well as in the efforts to find a solution to the problem of producing environment-friendly end-products for product developers worldwide. The 3M Fiber Metal Matrix Composite Model Factory Program is discussed. CERC technologies, facilities,and personnel-related issues are described, along with its library and technical services and recent publications.

  16. Weapons Neutron Research Facility (WNR)

    Data.gov (United States)

    Federal Laboratory Consortium — The Weapons Neutron Research Facility (WNR) provides neutron and proton beams for basic, applied, and defense-related research. Neutron beams with energies ranging...

  17. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with a...

  18. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with...

  19. Earthquake engineering research: 1982

    Science.gov (United States)

    The Committee on Earthquake Engineering Research addressed two questions: What progress has research produced in earthquake engineering and which elements of the problem should future earthquake engineering pursue. It examined and reported in separate chapters of the report: Applications of Past Research, Assessment of Earthquake Hazard, Earthquake Ground Motion, Soil Mechanics and Earth Structures, Analytical and Experimental Structural Dynamics, Earthquake Design of Structures, Seismic Interaction of Structures and Fluids, Social and Economic Aspects, Earthquake Engineering Education, Research in Japan.

  20. Designing requirements engineering research

    NARCIS (Netherlands)

    Wieringa, Roelf J.; Heerkens, Johannes M.G.

    2007-01-01

    Engineering sciences study different topics than natural sciences, and utility is an essential factor in choosing engineering research problems. But despite these differences, research methods for the engineering sciences are no different than research methods for any other kind of science. At most

  1. Research facility access & science education

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, S.P. [Univ. of Texas, Arlington, TX (United States); Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

    1994-10-01

    As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

  2. A combined cycle engine test facility

    Energy Technology Data Exchange (ETDEWEB)

    Engers, R.; Cresci, D.; Tsai, C. [General Applied Science Laboratories Inc., Ronkonkoma, NY (United States)

    1995-09-01

    Rocket-Based Combined-Cycle (RBCC) engines intended for missiles and/or space launch applications incorporate features of rocket propulsion systems operating in concert with airbreathing engine cycles. Performance evaluation of these types of engines, which are intended to operate from static sea level take-off to supersonic cruise or accerlerate to orbit, requires ground test capabilities which integrate rocket component testing with airbreathing engine testing. A combined cycle engine test facility has been constructed in the General Applied Science Laboratories, Inc. (GASL) Aeropropulsion Test Laboratory to meet this requirement. The facility was designed to support the development of an innovative combined cycle engine concept which features a rocket based ramjet combustor. The test requirements included the ability to conduct tests in which the propulsive force was generated by rocket only, the ramjet only and simultaneous rocket and ramjet power (combined cycle) to evaluate combustor operation over the entire engine cycle. The test facility provides simulation over the flight Mach number range of 0 to 8 and at various trajectories. The capabilities of the combined cycle engine test facility are presented.

  3. Robotics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This 60 feet x 100 feet structure on the grounds of the Fort Indiantown Gap Pennsylvania National Guard (PNG) Base is a mixed-use facility comprising office space,...

  4. Robotics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This 60 feet x 100 feet structure on the grounds of the Fort Indiantown Gap Pennsylvania National Guard (PNG) Base is a mixed-use facility comprising office space,...

  5. New Mexico energy research resource registry. Researchers and facilities

    Science.gov (United States)

    1975-01-01

    Human resources and facilities in New Mexico available for application to energy research and development are listed. Information regarding individuals with expertise in the environmental, socio-economic, legal, and management and planning areas of the energy effort is included as well as those scientists, engineers, and technicians involved directly in energy research and development.

  6. Environmental practices for biomedical research facilities.

    Science.gov (United States)

    Medlin, E L; Grupenhoff, J T

    2000-12-01

    As a result of the Leadership Conference on Biomedical Research and the Environment, the Facilities Committee focused its work on the development of best environmental practices at biomedical research facilities at the university and independent research facility level as well as consideration of potential involvement of for-profit companies and government agencies. The designation "facilities" includes all related buildings and grounds, "green auditing" of buildings and programs, purchasing of furnishings and sources, energy efficiency, and engineering services (lighting, heating, air conditioning), among other activities. The committee made a number of recommendations, including development of a national council for environmental stewardship in biomedical research, development of a system of green auditing of such research facilities, and creation of programs for sustainable building and use. In addition, the committee recommended extension of education and training programs for environmental stewardship, in cooperation with facilities managers, for all research administrators and researchers. These programs would focus especially on graduate fellows and other students, as well as on science labs at levels K--12.

  7. LAMPF: a nuclear research facility

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, M.S.

    1977-09-01

    A description is given of the recently completed Los Alamos Meson Physics Facility (LAMPF) which is now taking its place as one of the major installations in this country for the support of research in nuclear science and its applications. Descriptions are given of the organization of the Laboratory, the Users Group, experimental facilities for research and for applications, and procedures for carrying on research studies.

  8. SYSTEMS ENGINEERING RESEARCH

    Institute of Scientific and Technical Information of China (English)

    Abd-El-Kader SAHRAOUI; Dennis M. BUEDE; Andrew P. SAGE

    2008-01-01

    In this paper, we propose selected research topics that are believed central to progress and growth in the application of systems engineering (SE). As a professional activity, and as an intellectual activity, systems engineering has strong links to such associated disciplines as decision analysis, operation research, project management, quality management, and systems design. When focussing on systems engineering research, we should distinguish between subjects that are of systems engineering essence and others that more closely correspond to those that are more relevant for related disciplines.

  9. Tokamak Engineering Technology Facility scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W.M. Jr.; Abdou, M.A.; Bolta, C.C.

    1976-03-01

    A scoping study for a Tokamak Engineering Technology Facility (TETF) is presented. The TETF is a tokamak with R = 3 m and I/sub p/ = 1.4 MA based on the counterstreaming-ion torus mode of operation. The primary purpose of TETF is to demonstrate fusion technologies for the Experimental Power Reactor (EPR), but it will also serve as an engineering and radiation test facility. TETF has several technological systems (e.g., superconducting toroidal-field coil, tritium fuel cycle, impurity control, first wall) that are prototypical of EPR.

  10. Teaching engineering design research

    DEFF Research Database (Denmark)

    Blessing, Lucienne; Andreasen, Mogens Myrup

    2005-01-01

    The importance og engineering design as an industrial activity, and the increasingly complex and dynamic context in which it takes place, has led to the wish to improve the effectiveness and efficiency of engineering design in practice as well as in education. Although attempts have been made...... to improve design for centuries, it was not until well in the second half of the 20th century that engineering design became a research topic (see pahl and Beitz (1996), Heymann (2004) for historical overviews). Engineering research, such as research into thermodynamics, mechanics and materials, has a much...... by PhD students. This has created the demand for a clear, efficient way of learning the crafmanship of doing design research, a demand which is in strong contrast to the state of design research in general. This article reflects the authors' efforts in running a summer school om engineering design...

  11. Navy Fuel Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs basic and applied research to understand the underlying chemistry that impacts the use, handling, and storage of current and future Navy mobility...

  12. R and D needs assessment for the Engineering Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    The Engineering Test Facility (ETF), planned to be the next major US magnetic fusion device, has its mission (1) to provide the capability for moving into the engineering phase of fusion development and (2) to provide a test-bed for reactor components in a fusion environment. The design, construction, and operation of the ETF requires an increasing emphasis on certain key research and development (R and D) programs in magnetic fusion in order to provide the necessary facility design base. This report identifies these needs and discusses the apparent inadequacies of the presently planned US program to meet them, commensurate with the ETF schedule.

  13. Laboratory Facilities for Testing Thermal Engines

    Directory of Open Access Journals (Sweden)

    Ioan Ruja

    2010-10-01

    Full Text Available This work presents an electromechanical plant through with which is realised couples different resistant, MR (0 ÷ MRN, on the gearbox shaft of internal combustion engine. The purpose is to study the plant in phase and stationary behaviour of the main technical parameters that define the engine operation such as: torque, speed, temperature, pressure, vibration, burnt gas, noise, forces. You can take measurements to determine engine performance testing and research on improving engine thermal efficiency. With the proposed plant is built by measuring the characteristic internal combustion engines (tuning characteristic and functional characteristic and determine the technical performance of interest, optimal.

  14. Global Journal of Engineering Research

    African Journals Online (AJOL)

    The Global Journal of Engineering Research is aimed at promoting research in all areas of Engineering Research including Mechanical, Civil, Electrical, Chemical, ... Teaching and learning methodologies in engineering education in Nigerian ...

  15. The Radiological Research Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described.

  16. The Radiological Research Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  17. Research Facility Development at CAS

    Institute of Scientific and Technical Information of China (English)

    Tian Dongsheng; Miao Yougui; Zhang Hongsong

    2005-01-01

    @@ This article gives an introductory account on the development of research facilities at the CAS over the past six years since the initiation of the Knowledge Innovation Program in 1998 and during the period of the national 10th Five-year Plan in particular. In addition, it expounds the key points for the future work at the CAS in this regard.

  18. Teaching engineering design research

    DEFF Research Database (Denmark)

    Blessing, Lucienne; Andreasen, Mogens Myrup

    2005-01-01

    to improve design for centuries, it was not until well in the second half of the 20th century that engineering design became a research topic (see pahl and Beitz (1996), Heymann (2004) for historical overviews). Engineering research, such as research into thermodynamics, mechanics and materials, has a much...... longer tradition, as can be seen from the establishment of many technical universities in the second half of the 19th century. However, despite 30 years of design research, the feld is not a well-established scientific discipline. Furthermore, the effects on industrial practice and education are far less...... than expected . According to Suh (1998) "the most significant changes in design practice will occur when the field is fully endowed with a firm science base." Today, due to the organisation of our universitites and the paht to a university position, a substantial part of all research efforts is created...

  19. Engineering Challenges for Closed Ecological System facilities

    Science.gov (United States)

    Dempster, William; Nelson, Mark; Allen, John P.

    2012-07-01

    Engineering challenges for closed ecological systems include methods of achieving closure for structures of different materials, and developing methods of allowing energy (for heating and cooling) and information transfer through the materially closed structure. Methods of calculating degree of closure include measuring degradation rates of inert trace gases introduced into the system. An allied problem is developing means of locating where leaks are located so that they may be repaired and degree of closure maintained. Once closure is achieved, methods of dealing with the pressure differentials between inside and outside are needed: from inflatable structures which might adjust to the pressure difference to variable volume chambers attached to the life systems component. These issues are illustrated through the engineering employed at Biosphere 2, the Biosphere 2 Test Module and the Laboratory Biosphere and a discussion of methods used by other closed ecological system facility engineers. Ecological challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogue to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils.

  20. Nanoscale Science, Engineering and Technology Research Directions

    Energy Technology Data Exchange (ETDEWEB)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  1. Geothermal reservoir engineering research

    Science.gov (United States)

    Ramey, H. J., Jr.; Kruger, P.; Brigham, W. E.; London, A. L.

    1974-01-01

    The Stanford University research program on the study of stimulation and reservoir engineering of geothermal resources commenced as an interdisciplinary program in September, 1972. The broad objectives of this program have been: (1) the development of experimental and computational data to evaluate the optimum performance of fracture-stimulated geothermal reservoirs; (2) the development of a geothermal reservoir model to evaluate important thermophysical, hydrodynamic, and chemical parameters based on fluid-energy-volume balances as part of standard reservoir engineering practice; and (3) the construction of a laboratory model of an explosion-produced chimney to obtain experimental data on the processes of in-place boiling, moving flash fronts, and two-phase flow in porous and fractured hydrothermal reservoirs.

  2. Human factors engineering for the TERF (Tritium Emissions Reduction Facility) project. [Tritium Emissions Reduction Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hedley, W.H.; Adams, F.S. (EG and G Mound Applied Technologies, Miamisburg, OH (USA)); Wells, J.E. (Lawrence Livermore National Lab., CA (USA))

    1990-12-14

    The Tritium Emissions Reduction Facility (TERF) is being built by EG G Mound Applied Technologies to provide improved control of the tritium emissions from gas streams being processed. Mound handles tritium in connection with production, development, research, disassembly, recovery, and surveillance operations. During these operations, a small fraction of the tritium being processed escapes from its original containment. The objective of this report is to describe the human factors engineering as performed in connection with the design, construction, and testing of the TERF as required in DOE Order 6430.1A, section 1300-12. Human factors engineering has been involved at each step of the process and was considered during the preliminary research on tritium capture before selecting the specific process to be used. Human factors engineering was also considered in determining the requirements for the TERF and when the specific design work was initiated on the facility and the process equipment. Finally, human factors engineering was used to plan the specific acceptance tests that will be made during TERF installation and after its completion. These tests will verify the acceptability of the final system and its components. 16 refs., 8 figs.

  3. Stockbridge Antenna Measurement and Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Stockbridge Antenna Measurement Facility is located 23 miles southwest of AFRL¹s Rome Research Site. This unique measurement facility is designed to evaluate the...

  4. Glass Furnace Combustion and Melting Research Facility.

    Energy Technology Data Exchange (ETDEWEB)

    Connors, John J. (PPG Industries, Inc., Pittsburgh, PA); McConnell, John F. (JFM Consulting, Inc., Pittsburgh, PA); Henry, Vincent I. (Henry Technology Solutions, LLC, Ann Arbor, MI); MacDonald, Blake A.; Gallagher, Robert J.; Field, William B. (Lilja Corp., Livermore, CA); Walsh, Peter M.; Simmons, Michael C. (Lilja Corp., Livermore, CA); Adams, Michael E. (Lilja Corp., Rochester, NY); Leadbetter, James M. (A.C. Leadbetter and Son, Inc., Toledo, OH); Tomasewski, Jack W. (A.C. Leadbetter and Son, Inc., Toledo, OH); Operacz, Walter J. (A.C. Leadbetter and Son, Inc., Toledo, OH); Houf, William G.; Davis, James W. (A.C. Leadbetter and Son, Inc., Toledo, OH); Marvin, Bart G. (A.C. Leadbetter and Son, Inc., Toledo, OH); Gunner, Bruce E. (A.C. Leadbetter and Son, Inc., Toledo, OH); Farrell, Rick G. (A.C. Leadbetter and Son, Inc., Toledo, OH); Bivins, David P. (PPG Industries, Inc., Pittsburgh, PA); Curtis, Warren (PPG Industries, Inc., Pittsburgh, PA); Harris, James E. (PPG Industries, Inc., Pittsburgh, PA)

    2004-08-01

    The need for a Combustion and Melting Research Facility focused on the solution of glass manufacturing problems common to all segments of the glass industry was given high priority in the earliest version of the Glass Industry Technology Roadmap (Eisenhauer et al., 1997). Visteon Glass Systems and, later, PPG Industries proposed to meet this requirement, in partnership with the DOE/OIT Glass Program and Sandia National Laboratories, by designing and building a research furnace equipped with state-of-the-art diagnostics in the DOE Combustion Research Facility located at the Sandia site in Livermore, CA. Input on the configuration and objectives of the facility was sought from the entire industry by a variety of routes: (1) through a survey distributed to industry leaders by GMIC, (2) by conducting an open workshop following the OIT Glass Industry Project Review in September 1999, (3) from discussions with numerous glass engineers, scientists, and executives, and (4) during visits to glass manufacturing plants and research centers. The recommendations from industry were that the melting tank be made large enough to reproduce the essential processes and features of industrial furnaces yet flexible enough to be operated in as many as possible of the configurations found in industry as well as in ways never before attempted in practice. Realization of these objectives, while still providing access to the glass bath and combustion space for optical diagnostics and measurements using conventional probes, was the principal challenge in the development of the tank furnace design. The present report describes a facility having the requirements identified as important by members of the glass industry and equipped to do the work that the industry recommended should be the focus of research. The intent is that the laboratory would be available to U.S. glass manufacturers for collaboration with Sandia scientists and engineers on both precompetitive basic research and the

  5. Solar Energy Research Center Instrumentation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Thomas, J.; Papanikolas, John, P.

    2011-11-11

    SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR

  6. Alleviation of Facility/Engine Interactions in an Open-Jet Scramjet Test Facility

    Science.gov (United States)

    Albertson, Cindy W.; Emami, Saied

    2001-01-01

    Results of a series of shakedown tests to eliminate facility/engine interactions in an open-jet scramjet test facility are presented. The tests were conducted with the NASA DFX (Dual-Fuel eXperimental scramjet) engine in the NASA Langley Combustion Heated Scramjet Test Facility (CHSTF) in support of the Hyper-X program, The majority of the tests were conducted at a total enthalpy and pressure corresponding to Mach 5 flight at a dynamic pressure of 734 psf. The DFX is the largest engine ever tested in the CHSTF. Blockage, in terms of the projected engine area relative to the nozzle exit area, is 81% with the engine forebody leading edge aligned with the upper edge of the facility nozzle such that it ingests the nozzle boundary layer. The blockage increases to 95% with the engine forebody leading edge positioned 2 in. down in the core flow. Previous engines successfully tested in the CHSTF have had blockages of no more than 51%. Oil flow studies along with facility and engine pressure measurements were used to define flow behavior. These results guided modifications to existing aeroappliances and the design of new aeroappliances. These changes allowed fueled tests to be conducted without facility interaction effects in the data with the engine forebody leading edge positioned to ingest the facility nozzle boundary layer. Interaction effects were also reduced for tests with the engine forebody leading edge positioned 2 in. into the core flow, however some interaction effects were still evident in the engine data. A new shroud and diffuser have been designed with the goal of allowing fueled tests to be conducted with the engine forebody leading edge positioned in the core without facility interaction effects in the data. Evaluation tests of the new shroud and diffuser will be conducted once ongoing fueled engine tests have been completed.

  7. Empirically Driven Software Engineering Research

    Science.gov (United States)

    Rombach, Dieter

    Software engineering is a design discipline. As such, its engineering methods are based on cognitive instead of physical laws, and their effectiveness depends highly on context. Empirical methods can be used to observe the effects of software engineering methods in vivo and in vitro, to identify improvement potentials, and to validate new research results. This paper summarizes both the current body of knowledge and further challenges wrt. empirical methods in software engineering as well as empirically derived evidence regarding software typical engineering methods. Finally, future challenges wrt. education, research, and technology transfer will be outlined.

  8. New Research Approach to Rebuild Sport Facilities

    Directory of Open Access Journals (Sweden)

    Gaetano Raiola

    2011-01-01

    Full Text Available Problem statement: The game court of team sport, part of Sport Centre of Arturo Collana, was closed after structural accident in 2006 and the local administration is now designing the rebuilding of it. For this reason, it has already allocated economical resource to study a partial reconstruction of it to reutilize actual structure. The problem is how can satisfy the customers according to suggesting the old and new solutions. Approach: The aim is to recognize expected demand about the real choice of customers with the proposal for a various architectural aspects. A survey was carries out by using statistical model to correlate a demand of multi game sport relating to various hypotheses, already designed with a different solution. A sample of 100 customers that have submitted questionnaire with the specific parameters about the architecture and engine was taken to apply the qualitative research method to the market research. Results and Conclusion: The result of this study concludes that it is not possible to the partially construct but it is useful the plenty reconstruction of game court. The local organization of Coni (Italian National Olympic Committee designed a new project according to a specific parameter that follows the same characteristic of old game court without searching the other engineer and architectural solutions. Thus the question is a mix of engine and architectural aspects, economical and functional elements of it. The data showed association between demand of multisport and new architectonical hypothesis and the association between demand of single sport and old architectural structure. The percentage of multi sport demand is higher than single sport and this orientation has to follow to design a new sport facilities.

  9. Electronics and Telemetry Engineering and Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electronics Laboratory is a fully equipped facility providing the capability to support electronic product development from highly complex weapon system sensors,...

  10. Empirical Research In Engineering Design

    DEFF Research Database (Denmark)

    Ahmed, Saeema

    2007-01-01

    Increasingly engineering design research involves the use of empirical studies that are conducted within an industrial environment [Ahmed, 2001; Court 1995; Hales 1987]. Research into the use of information by designers or understanding how engineers build up experience are examples of research...... of research issues. This paper describes case studies of empirical research carried out within industry in engineering design focusing upon information, knowledge and experience in engineering design. The paper describes the research methods employed, their suitability for the particular research aims......, the advantages and disadvantages of the methods and describes two case studies in detail. The paper draws conclusions from the studies reviewed about the use of empirical research methods in industry....

  11. Empirical Research In Engineering Design

    DEFF Research Database (Denmark)

    Ahmed, Saeema

    2007-01-01

    Increasingly engineering design research involves the use of empirical studies that are conducted within an industrial environment [Ahmed, 2001; Court 1995; Hales 1987]. Research into the use of information by designers or understanding how engineers build up experience are examples of research...... of research issues. This paper describes case studies of empirical research carried out within industry in engineering design focusing upon information, knowledge and experience in engineering design. The paper describes the research methods employed, their suitability for the particular research aims......, the advantages and disadvantages of the methods and describes two case studies in detail. The paper draws conclusions from the studies reviewed about the use of empirical research methods in industry....

  12. Experimental Research of Engine Foundations

    Directory of Open Access Journals (Sweden)

    Violeta-Elena Chiţan

    2004-01-01

    Full Text Available This paper tries a compact presentation of experimental research of engine-foundations. The dynamic phenomena are so complex, that the vibrations cannot be estimated in the design stage. The design engineer of an engine foundation must foresee through a dynamic analysis of the vibrations, those measures that lead to the avoidance or limiting of the bad effects caused by the vibrations.

  13. Research advances in industrial engineering

    CERN Document Server

    2015-01-01

    This book provides discussions and the exchange of information on principles, strategies, models, techniques, methodologies and applications of industrial engineering. It communicates the latest developments and research activity on industrial engineering and is useful for all those interested in the technological challenges in the field.

  14. Solar Energy Research Center Instrumentation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Thomas, J.; Papanikolas, John, P.

    2011-11-11

    SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR

  15. Flood Fighting Products Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A wave research basin at the ERDC Coastal and Hydraulics Laboratory has been modified specifically for testing of temporary, barrier-type, flood fighting products....

  16. Pedagogical Training and Research in Engineering Education

    Science.gov (United States)

    Wankat, Phillip C.

    2008-01-01

    Ferment in engineering has focused increased attention on undergraduate engineering education, and has clarified the need for rigorous research in engineering education. This need has spawned the new research field of Engineering Education and greatly increased interest in earning Ph.D. degrees based on rigorous engineering education research.…

  17. Knowledge Management tools integration within DLR's concurrent engineering facility

    Science.gov (United States)

    Lopez, R. P.; Soragavi, G.; Deshmukh, M.; Ludtke, D.

    The complexity of space endeavors has increased the need for Knowledge Management (KM) tools. The concept of KM involves not only the electronic storage of knowledge, but also the process of making this knowledge available, reusable and traceable. Establishing a KM concept within the Concurrent Engineering Facility (CEF) has been a research topic of the German Aerospace Centre (DLR). This paper presents the current KM tools of the CEF: the Software Platform for Organizing and Capturing Knowledge (S.P.O.C.K.), the data model Virtual Satellite (VirSat), and the Simulation Model Library (SimMoLib), and how their usage improved the Concurrent Engineering (CE) process. This paper also exposes the lessons learned from the introduction of KM practices into the CEF and elaborates a roadmap for the further development of KM in CE activities at DLR. The results of the application of the Knowledge Management tools have shown the potential of merging the three software platforms with their functionalities, as the next step towards the fully integration of KM practices into the CE process. VirSat will stay as the main software platform used within a CE study, and S.P.O.C.K. and SimMoLib will be integrated into VirSat. These tools will support the data model as a reference and documentation source, and as an access to simulation and calculation models. The use of KM tools in the CEF aims to become a basic practice during the CE process. The settlement of this practice will result in a much more extended knowledge and experience exchange within the Concurrent Engineering environment and, consequently, the outcome of the studies will comprise higher quality in the design of space systems.

  18. Model Study of a Proposed Engineering Acoustic Research Facility (Etude sur Modele d’un Projet d’Installation de Recherches en Genie Acoustique)

    Science.gov (United States)

    1976-07-01

    Toronto E.H. Dudgeon, Head/Chef D.C. MacPhail ,Engine Laboratory/ Laboratoire des moteurs Director/Directeur GO O/L/ D~~~~~~r1ISTRIBUT1I...acceptable et une faible sensibilit A la deviation du jet ont W ddfinies, mais ces dispositifs n’ont &6 rgalisds qu’au detriment du rendement

  19. Engineering study for the phase 1 privatization facilities electrical power

    Energy Technology Data Exchange (ETDEWEB)

    Singh, G., Westinghouse Hanford

    1996-07-18

    This engineering study evaluates the availability of electric power from the existing 13.8 kV substation, BPA 115 kV system,and RL 230 kV transmission line; for supporting the Privatization Phase I Facilities. 230 kV system is a preferable alternative.

  20. Value Engineering. Technical Manual. School Facilities Development Procedures Manual.

    Science.gov (United States)

    Washington Office of the State Superintendent of Public Instruction, Olympia.

    Value Engineering (VE) is a cost-optimizing technique used to analyze design quality and cost-effectiveness. The application of VE procedures to the design and construction of school facilities has been adopted by the state of Washington. This technical manual provides guidance in developing the scope and applicability of VE to school projects; in…

  1. Concurrent Engineering Research and Application

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Research and application of Concurrent Engineering have produced good results. A Chinese style concurrent engineering architecture and reference mode has been produced. A series of break thoughts in BPR (Business Process Reengineering) have been made with organization of the IPT (Integrated Product Development Team) and engineering support technologies. Several prototype tools were developed, including product development process modeling and management, QFD-based schema design and decision making, PDM-based concurrent design, STEP-based CAD/CAPP/CAM integration, design for assembly, design for manufacturing, computer aided fixture design, and machining process simulation. Finally, the research results were used in the development of two complex components in an aerospace application, and satisfactory results were obtained.

  2. Neil Armstrong At Lunar Landing Research Facility

    Science.gov (United States)

    1969-01-01

    Nearly 25 years ago, on July 20,1969, Neil Armstrong, shown here with NASA Langley Research Centers Lunar Excursion Module (LEM) Simulator, became the first human to walk on the moon after practicing with the simulator in May of 1969. Training with the simulator, part of Langleys Lunar Research Facility, allowed the Apollo astronauts to study and safely overcome problems that could have occurred during the final 150-foot descent to the surface of the moon. NASA needed such a facility in order to explore and develop techniques for landing the LEM on the moons surface, where gravity is only one-sixth as strong as on the Earth, as well as to determine the limits of human piloting capabilities in the new surroundings. This unique facility, completed in 1965 and now a National Historic Landmark, effectively canceled all but one-sixth of Earths gravitational force by using an overhead cable system.

  3. Aviation Engine Test Facilities (AETF) fire protection study

    Science.gov (United States)

    Beller, R. C.; Burns, R. E.; Leonard, J. T.

    1989-07-01

    An analysis is presented to the effectiveness of various types of fire fighting agents in extinguishing the kinds of fires anticipated in Aviation Engine Test Facilities (AETF), otherwise known as Hush Houses. The agents considered include Aqueous Film-Forming Foam, Halon 1301, Halon 1211 and water. Previous test work has shown the rapidity with which aircraft, especially high performance aircraft, can be damaged by fire. Based on this, tentative criteria for this evaluation included a maximum time of 20 s from fire detection to extinguishment and a period of 30 min in which the agent would prevent reignition. Other issues examined included: toxicity, corrosivity, ease of personnel egress, system reliability, and cost effectiveness. The agents were evaluated for their performance in several fire scenarios, including: under frame fire, major engine fire, engine disintegration fire, high-volume pool fire with simultaneous spill fire, internal electrical fire, and runaway engine fire.

  4. FY2012 Engineering Research & Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Monya

    2014-07-22

    This report documents engineering research, development, and technology advancements performed by LLNL during fiscal year 2012 in the following areas: computational engineering, engineering information systems, micro/nano-devices and structures, and measurement technologies.

  5. Engineering Research, Development and Technology, FY95: Thrust area report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  6. MYRRHA: A multipurpose nuclear research facility

    Science.gov (United States)

    Baeten, P.; Schyns, M.; Fernandez, Rafaël; De Bruyn, Didier; Van den Eynde, Gert

    2014-12-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA) can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.

  7. Subsidence characterization and modeling for engineered facilities in Arizona, USA

    Science.gov (United States)

    Rucker, M. L.; Fergason, K. C.; Panda, B. B.

    2015-11-01

    Several engineered facilities located on deep alluvial basins in southern Arizona, including flood retention structures (FRS) and a coal ash disposal facility, have been impacted by up to as much as 1.8 m of differential land subsidence and associated earth fissuring. Compressible basin alluvium depths are as deep as about 300 m, and historic groundwater level declines due to pumping range from 60 to more than 100 m at these facilities. Addressing earth fissure-inducing ground strain has required alluvium modulus characterization to support finite element modeling. The authors have developed Percolation Theory-based methodologies to use effective stress and generalized geo-material types to estimate alluvium modulus as a function of alluvium lithology, depth and groundwater level. Alluvial material modulus behavior may be characterized as high modulus gravel-dominated, low modulus sand-dominated, or very low modulus fines-dominated (silts and clays) alluvium. Applied at specific aquifer stress points, such as significant pumping wells, this parameter characterization and quantification facilitates subsidence magnitude modeling at its' sources. Modeled subsidence is then propagated over time across the basin from the source(s) using a time delay exponential decay function similar to the soil mechanics consolidation coefficient, only applied laterally. This approach has expanded subsidence modeling capabilities on scales of engineered facilities of less than 2 to more than 15 km.

  8. Occupational medicine programs for animal research facilities.

    Science.gov (United States)

    Wald, Peter H; Stave, Gregg M

    2003-01-01

    Occupational medicine is a key component of a comprehensive occupational health and safety program in support of laboratory animal research and production facilities. The mission of the department is to maximize employee health and productivity utilizing a population health management approach, which includes measurement and analysis of health benefits utilization. The department works in close cooperation with other institutional health and safety professionals to identify potential risks from exposure to physical, chemical, and biological hazards in the workplace. As soon as exposures are identified, the department is responsible for formulating and providing appropriate medical surveillance programs. Occupational medicine is also responsible for targeted delivery of preventive and wellness services; management of injury, disease, and disability; maintenance of medical information; and other clinic services required by the institution. Recommendations are provided for the organization and content of occupational medicine programs for animal research facilities.

  9. Integrated flight propulsion control research results using the NASA F-15 HIDEC Flight Research Facility

    Science.gov (United States)

    Stewart, James F.

    1992-01-01

    Over the last two decades, NASA has conducted several flight research experiments in integrated flight propulsion control. Benefits have included increased thrust, range, and survivability; reduced fuel consumption; and reduced maintenance. These flight programs were flown at NASA Dryden Flight Research Facility. This paper presents the basic concepts for control integration, examples of implementation, and benefits of integrated flight propulsion control systems. The F-15 research involved integration of the engine, flight, and inlet control systems. Further extension of the integration included real time, onboard optimization of engine, inlet, and flight control variables; a self repairing flight control system; and an engines only control concept for emergency control. The flight research programs and the resulting benefits are described for the F-15 research.

  10. Variable Gravity Research Facility - A concept

    Science.gov (United States)

    Wercinski, Paul F.; Smith, Marcie A.; Synnestvedt, Robert G.; Keller, Robert G.

    1990-01-01

    Is human exposure to artificial gravity necessary for Mars mission success, and if so, what is the optimum means of achieving artificial gravity? Answering these questions prior to the design of a Mars vehicle would require construction and operation of a dedicated spacecraft in low earth orbit. This paper summarizes the study results of a conceptual design and operations scenario for such a spacecraft, called the Variable Gravity Research Facility (VGRF).

  11. A US Based Ultrafast Interdisciplinary Research Facility

    Science.gov (United States)

    Gueye, Paul; Hill, Wendell; Johnson, Anthony

    2006-10-01

    The US scientific competitiveness on the world arena has substantially decreased due to the lack of funding and training of qualified personnel. Most of the potential workforce found in higher education is composed of foreign students and post-docs. In the specific field of low- and high-field science, the European and Asian communities are rapidly catching-up with the US, even leading in some areas. To remain the leader in ultrafast science and technology, new visions and commitment must be embraced. For that reason, an international effort of more than 70 countries for a US-based interdisciplinary research facility using ultrafast laser technology is under development. It will provide research and educational training, as well as new venues for a strong collaboration between the fields of astrophysics, nuclear/high energy physics, plasma physics, optical sciences, biological and medical physics. This facility will consist of a uniquely designed high contrast multi-lines concept housing twenty experimental rooms shared between four beams:[0.1 TW, 1 kHz], [10 TW, 9 kHz], [100-200 TW, 10 Hz] and [500 TW, 10 Hz]. The detail schematic of this multi-laser system, foreseen research and educational programs, and organizational structure of this facility will be presented.

  12. A framework for systems engineering research

    CSIR Research Space (South Africa)

    Erasmus, L

    2013-08-01

    Full Text Available This presentation discusses a framework which is proposed to perform systems engineering research within South Africa and the necessity for hybrid research methods in systems engineering....

  13. MYRRHA: A multipurpose nuclear research facility

    Directory of Open Access Journals (Sweden)

    Baeten P.

    2014-01-01

    As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.

  14. National facilities study. Volume 5: Space research and development facilities task group

    Science.gov (United States)

    1994-01-01

    With the beginnings of the U.S. space program, there was a pressing need to develop facilities that could support the technology research and development, testing, and operations of evolving space systems. Redundancy in facilities that was once and advantage in providing flexibility and schedule accommodation is instead fast becoming a burden on scarce resources. As a result, there is a clear perception in many sectors that the U.S. has many space R&D facilities that are under-utilized and which are no longer cost-effective to maintain. At the same time, it is clear that the U.S. continues to possess many space R&D facilities which are the best -- or among the best -- in the world. In order to remain world class in key areas, careful assessment of current capabilities and planning for new facilities is needed. The National Facility Study (NFS) was initiated in 1992 to develop a comprehensive and integrated long-term plan for future aerospace facilities that meets current and projected government and commercial needs. In order to assess the nation's capability to support space research and development (R&D), a Space R&D Task Group was formed. The Task Group was co-chaired by NASA and DOD. The Task Group formed four major, technologically- and functionally- oriented working groups: Human and Machine Operations; Information and Communications; Propulsion and Power; and Materials, Structures, and Flight Dynamics. In addition to these groups, three supporting working groups were formed: Systems Engineering and Requirements; Strategy and Policy; and Costing Analysis. The Space R&D Task Group examined several hundred facilities against the template of a baseline mission and requirements model (developed in common with the Space Operations Task Group) and a set of excursions from the baseline. The model and excursions are described in Volume 3 of the NFS final report. In addition, as a part of the effort, the group examined key strategic issues associated with space R

  15. NSTX: Facility/Research Highlights and Near Term Facility Plans

    Energy Technology Data Exchange (ETDEWEB)

    M. Ono

    2008-11-19

    The National Spherical Torus Experiment (NSTX) is a collaborative mega-ampere-class spherical torus research facility with high power heating and current drive systems and the state-of-the-art comprehensive diagnostics. For the 2008 experimental campaign, the high harmonic fast wave (HHFW) heating efficiency in deuterium improved significantly with lithium evaporation and produced a record central Te of 5 keV. The HHFW heating of NBI-heated discharges was also demonstrated for the first time with lithium application. The EBW emission in H-mode was also improved dramatically with lithium which was shown to be attributable to reduced edge collisional absorption. Newly installed FIDA energetic particle diagnostic measured significant transport of energetic ions associated with TAE avalanche as well as n=1 kink activities. A full 75 channel poloidal CHERS system is now operational yielding tantalizing initial results. In the near term, major upgrade activities include a liquid-lithium divertor target to achieve lower collisionality regime, the HHFW antenna upgrades to double its power handling capability in H-mode, and a beam-emission spectroscopy diagnostic to extend the localized turbulence measurements toward the ion gyro-radius scale from the present concentration on the electron gyro-radius scale. For the longer term, a new center stack to significantly expand the plasma operating parameters is planned along with a second NBI system to double the NBI heating and CD power and provide current profile control. These upgrades will enable NSTX to explore fully non-inductive operations over a much expanded plasma parameter space in terms of higher plasma temperature and lower collisionality, thereby significantly reducing the physics parameter gap between the present NSTX and the projected next-step ST experiments.

  16. Facility for a Low Power Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chalker, R. G.

    1949-09-14

    Preliminary investigation indicates that a reactor facility with ample research provisions for use by University or other interested groups, featuring safety in design, can be economically constructed in the Los Angeles area. The complete installation, including an underground gas-tight reactor building, with associated storage and experiment assembly building, administration offices, two general laboratory buildings, hot latoratory and lodge, can be constructed for approxinately $1,500,000. This does not include the cost of the reactor itself or of its auxiliary equipment,

  17. ARM Climate Research Facility Annual Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    J. Voyles

    2005-12-31

    Through the ARM Program, the DOE funded the development of several highly instrumented ground stations for studying cloud formation processes and their influence on radiative transfer, and for measuring other parameters that determine the radiative properties of the atmosphere. This scientific infrastructure, and resultant data archive, is a valuable national and international asset for advancing scientific knowledge of Earth systems. In fiscal year (FY) 2003, the DOE designated ARM sites as a national scientific user facility: the ARM Climate Research (ACRF). The ACRF has enormous potential to contribute to a wide range interdisciplinary science in areas such as meteorology, atmospheric aerosols, hydrology, biogeochemical cycling, and satellite validation, to name only a few.

  18. Europlanet Research Infrastructure: Planetary Sample Analysis Facilities

    Science.gov (United States)

    Cloquet, C.; Mason, N. J.; Davies, G. R.; Marty, B.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the third TNA: Planetary Sample Analysis Facilities. The modular infrastructure represents a major commitment of analytical instrumentation by three institutes and together forms a state-of-the-art analytical facility of unprecedented breadth. These centres perform research in the fields of geochemistry and cosmochemistry, studying fluids and rocks in order to better understand the keys cof the universe. Europlanet Research Infrastructure Facilities: Ion Probe facilities at CRPG and OU The Cameca 1270 Ion microprobe is a CNRS-INSU national facility. About a third of the useful analytical time of the ion probe (about 3 months each year) is allocated to the national community. French scientists have to submit their projects to a national committee for selection. The selected projects are allocated time in the following 6 months twice a year. About 15 to 20 projects are run each year. There are only two such instruments in Europe, with cosmochemistry only performed at CRPG. Different analyses can be performed on a routine basis, such as U-Pb dating on Zircon, Monazite or Pechblende, Li, B, C, O, Si isotopic ratios determination on different matrix, 26Al, 60Fe extinct radioactivity ages, light and trace elements contents . The NanoSIMS 50L - producing element or isotope maps with a spatial resolution down to ≈50nm. This is one of the cornerstone facilities of UKCAN, with 75% of available instrument time funded and

  19. Feminist Methodologies and Engineering Education Research

    Science.gov (United States)

    Beddoes, Kacey

    2013-01-01

    This paper introduces feminist methodologies in the context of engineering education research. It builds upon other recent methodology articles in engineering education journals and presents feminist research methodologies as a concrete engineering education setting in which to explore the connections between epistemology, methodology and theory.…

  20. A review of large-scale testing facilities in geotechnical earthquake engineering

    OpenAIRE

    Elgamal, A; Pitilakis, K.; Raptakis, D.; J. Garnier; GOPAL MADABHUSHI, SP; Pinto, A; Steidl, J.; STEWART, HE; STOKOE, KH; TAUCER, F; TOKIMATSU, K; WALLACE, JW

    2007-01-01

    In this new century, new large-scale testing facilities are being developed worldwide for earthquake engineering research. Concurrently, the advances in Information Technology (IT) are increasingly allowing unprecedented opportunities for : - remote access and tele-presence during extended remote off-site experimentation, - hybrid simulation of entire structural systems through a multi-site experimentation and computational overall model, and - near-real time data archival, processing and sha...

  1. Necessity for ethics in social engineering research

    CSIR Research Space (South Africa)

    Mouton, F

    2015-11-01

    Full Text Available Social engineering is deeply entrenched in the fields of both computer science and social psychology. Knowledge is required in both these disciplines to perform social engineering based research. Several ethical concerns and requirements need...

  2. Modern mechanical engineering research, development and education

    CERN Document Server

    2014-01-01

    This book covers modern subjects of mechanical engineering such as nanomechanics and nanotechnology, mechatronics and robotics, computational mechanics, biomechanics, alternative energies, sustainability as well as all aspects related with mechanical engineering education. The chapters help enhance the understanding of both the fundamentals of mechanical engineering and its application to the solution of problems in modern industry. This book is suitable for students, both in final undergraduate mechanical engineering courses or at the graduate level. It also serves as a useful reference for academics, mechanical engineering researchers, mechanical, materials and manufacturing engineers, professionals in related with mechanical engineering.

  3. Human factors engineering report for the cold vacuum drying facility

    Energy Technology Data Exchange (ETDEWEB)

    IMKER, F.W.

    1999-06-30

    The purpose of this report is to present the results and findings of the final Human Factors Engineering (HFE) technical analysis and evaluation of the Cold Vacuum Drying Facility (CVDF). Ergonomics issues are also addressed in this report, as appropriate. This report follows up and completes the preliminary work accomplished and reported by the Preliminary HFE Analysis report (SNF-2825, Spent Nuclear Fuel Project Cold Vacuum Drying Facility Human Factors Engineering Analysis: Results and Findings). This analysis avoids redundancy of effort except for ensuring that previously recommended HFE design changes have not affected other parts of the system. Changes in one part of the system may affect other parts of the system where those changes were not applied. The final HFE analysis and evaluation of the CVDF human-machine interactions (HMI) was expanded to include: the physical work environment, human-computer interface (HCI) including workstation and software, operator tasks, tools, maintainability, communications, staffing, training, and the overall ability of humans to accomplish their responsibilities, as appropriate. Key focal areas for this report are the process bay operations, process water conditioning (PWC) skid, tank room, and Central Control Room operations. These key areas contain the system safety-class components and are the foundation for the human factors design basis of the CVDF.

  4. Europlanet Research Infrastructure: Planetary Simulation Facilities

    Science.gov (United States)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of

  5. Thrust Area Report, Engineering Research, Development and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  6. Is Engineering Design Disappearing from Design Research?

    DEFF Research Database (Denmark)

    Andreasen, Mogens Myrup; Howard, Thomas J.

    2011-01-01

    on engineer-ing, we observe a declining focus on engineering design in design research, articu-lated in the composition of contributions to Design Society conferences. Engineer-ing design relates closely to the ‘materialisation’ of products and systems, i.e. the embodiment and detailing. The role of clever...... embodiment. Embodiment design is just as intellectually challenging as conceptualisation but seems much more engineering dependant and intriguing in its complexity of dependencies and unsure reasoning about properties by the fact that often a multidisciplinary team is necessary. This article should be seen...

  7. Future aerospace ground test facility requirements for the Arnold Engineering Development Center

    Science.gov (United States)

    Kirchner, Mark E.; Baron, Judson R.; Bogdonoff, Seymour M.; Carter, Donald I.; Couch, Lana M.; Fanning, Arthur E.; Heiser, William H.; Koff, Bernard L.; Melnik, Robert E.; Mercer, Stephen C.

    1992-01-01

    Arnold Engineering Development Center (AEDC) was conceived at the close of World War II, when major new developments in flight technology were presaged by new aerodynamic and propulsion concepts. During the past 40 years, AEDC has played a significant part in the development of many aerospace systems. The original plans were extended through the years by some additional facilities, particularly in the area of propulsion testing. AEDC now has undertaken development of a master plan in an attempt to project requirements and to plan for ground test and computational facilities over the coming 20 to 30 years. This report was prepared in response to an AEDC request that the National Research Council (NRC) assemble a committee to prepare guidance for planning and modernizing AEDC facilities for the development and testing of future classes of aerospace systems as envisaged by the U.S. Air Force.

  8. Future aerospace ground test facility requirements for the Arnold Engineering Development Center

    Science.gov (United States)

    Kirchner, Mark E.; Baron, Judson R.; Bogdonoff, Seymour M.; Carter, Donald I.; Couch, Lana M.; Fanning, Arthur E.; Heiser, William H.; Koff, Bernard L.; Melnik, Robert E.; Mercer, Stephen C.

    1992-01-01

    Arnold Engineering Development Center (AEDC) was conceived at the close of World War II, when major new developments in flight technology were presaged by new aerodynamic and propulsion concepts. During the past 40 years, AEDC has played a significant part in the development of many aerospace systems. The original plans were extended through the years by some additional facilities, particularly in the area of propulsion testing. AEDC now has undertaken development of a master plan in an attempt to project requirements and to plan for ground test and computational facilities over the coming 20 to 30 years. This report was prepared in response to an AEDC request that the National Research Council (NRC) assemble a committee to prepare guidance for planning and modernizing AEDC facilities for the development and testing of future classes of aerospace systems as envisaged by the U.S. Air Force.

  9. Development of semi-free jet test facility for supersonic engine; Choonsoku engine shiken shisetsu semi free jet shiken sochi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T.; Taguchi, H.; Omi, J.; Sakamoto, K. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    2000-01-01

    IHI has been developing the SETF (Supersonic Engine Test Facility) to aim at the research and development of engines for the next generation commercial supersonic transport in the NAL (National Aerospace Laboratory in Japan). The SETF will supply the functions to test the supersonic engine performance in high altitude flight condition and supersonic intake-engine matching. The semi-free jet test mode was adopted for the supersonic intake-engine matching test, but this test configuration has not been conducted previously in Japan and there were a large number of unknown factors. IHI has developed a sub-scale test model in cooperation with NAL to identify the test conditions and a start sequence of the semi-free jet test mode. In addition, the designs of facility component were optimized and verified by using the CFD (Computational Fluid Dynamics) method. (author)

  10. Elementary Analysis on the Technological Features of an Engineering Equipment Facile Diagnosis System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    From the point of systemic engineering, the general properties of an engineering equipment fault diagnosis system and the studying object of diagnosis engineering were discussed. With the developing course of fault diagnosis technology, the relationship be-tween facile diagnosis system and diagnosis engineering were also discussed. The basic structure and feature of a facile diagnosis system were discussed, and the isomorphic of a facile diagnosis system and precise diagnosis system was presented. The facile diagnosis requires the perfection of method, pertinence and apriority of knowledge , adaptability of the object being diagnosed and the approach to the aim of the diagnosis result, as well as the outstanding of main functions.

  11. Innovation and Research on Engineering Education

    DEFF Research Database (Denmark)

    de Graaff, Erik; Kolmos, Anette

    2014-01-01

    research as a discipline in its own right. The trend in Europe is to build on the experiences with social sciences research in higher education, aiming to involve practitioners in research in their own fields. At the end of the chapter, a taxonomy of engineering education research questions is proposed...... is obsolete by the time the enter practice. Recognition of these issues has recently resulted in worldwide increase of attention for innovation of engineering education. This chapter presents a brief outline of the traditions in higher engineering education culminating in the stage of research and development...... in the last century. Next, the recent revival of engineering education research is described, contrasting the developments in the USA with Europe and the rest of the world. The efforts in the USA appear to follow Boyer’s concept scholarship of teaching, and aim for the establishment of engineering education...

  12. EPM - The European Facility for human physiology research on ISS.

    Science.gov (United States)

    Rieschel, Mats; Nasca, Rosario; Junk, Peter; Gerhard, Ingo

    2002-07-01

    The European Physiology Modules (EPM) Facility is one of the four major Space Station facilities being developed within the framework of ESA's Microgravity Facilities for Columbus (MFC) programme. In order to allow a wide spectrum of physiological studies in weightlessness conditions, the facility provides the infrastructure to accommodate a variable set of scientific equipment. The initial EPM configuration supports experiments in the fields of neuroscience, bone & muscle research, cardiovascular research and metabolism. The International Space Life Science Working Group (ISLSWG) has recommended co-locating EPM with the 2 NASA Human Research Facility racks.

  13. How Large-Scale Research Facilities Connect to Global Research

    DEFF Research Database (Denmark)

    Lauto, Giancarlo; Valentin, Finn

    2013-01-01

    research. However, based on data on publications produced in 2006–2009 at the Neutron Science Directorate of Oak Ridge National Laboratory in Tennessee (United States), we find that internationalization of its collaborative research is restrained by coordination costs similar to those characterizing other......Policies for large-scale research facilities (LSRFs) often highlight their spillovers to industrial innovation and their contribution to the external connectivity of the regional innovation system hosting them. Arguably, the particular institutional features of LSRFs are conducive for collaborative...... institutional settings. Policies mandating LSRFs should consider that research prioritized on the basis of technological relevance limits the international reach of collaborations. Additionally, the propensity for international collaboration is lower for resident scientists than for those affiliated...

  14. Biometrics Research and Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As the Department of Defense moves forward in its pursuit of integrating biometrics technology into facility access control, the Global War on Terrorism and weapon...

  15. P-12 Engineering Education Research and Practice

    Science.gov (United States)

    Moore, Tamara; Richards, Larry G.

    2012-01-01

    This special issue of "Advances in Engineering Education" explores recent developments in P-12 Engineering Education. It includes papers devoted to research and practice, and reports some of the most exciting work in the field today. In our Call of Papers, we solicited two types of papers: Research papers and Practice papers. The former…

  16. User Facilities of the Office of Basic Energy Sciences: A National Resource for Scientific Research

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-01-01

    The BES user facilities provide open access to specialized instrumentation and expertise that enable scientific users from universities, national laboratories, and industry to carry out experiments and develop theories that could not be done at their home institutions. These forefront research facilities require resource commitments well beyond the scope of any non-government institution and open up otherwise inaccessible facets of Nature to scientific inquiry. For approved, peer-reviewed projects, instrument time is available without charge to researchers who intend to publish their results in the open literature. These large-scale user facilities have made significant contributions to various scientific fields, including chemistry, physics, geology, materials science, environmental science, biology, and biomedical science. Over 16,000 scientists and engineers.pdf file (27KB) conduct experiments at BES user facilities annually. Thousands of other researchers collaborate with these users and analyze the data measured at the facilities to publish new scientific findings in peer-reviewed journals.

  17. Research Trends with Cross Tabulation Search Engine

    Science.gov (United States)

    Yin, Chengjiu; Hirokawa, Sachio; Yau, Jane Yin-Kim; Hashimoto, Kiyota; Tabata, Yoshiyuki; Nakatoh, Tetsuya

    2013-01-01

    To help researchers in building a knowledge foundation of their research fields which could be a time-consuming process, the authors have developed a Cross Tabulation Search Engine (CTSE). Its purpose is to assist researchers in 1) conducting research surveys, 2) efficiently and effectively retrieving information (such as important researchers,…

  18. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  19. Quality Assurance of ARM Program Climate Research Facility Data

    Energy Technology Data Exchange (ETDEWEB)

    Peppler, RA; Kehoe, KE; Sonntag, KL; Bahrmann, CP; Richardson, SJ; Christensen, SW; McCord, RA; Doty, DJ; Wagener, Richard [BNL; Eagan, RC; Lijegren, JC; Orr, BW; Sisterson, DL; Halter, TD; Keck, NN; Long, CN; Macduff, MC; Mather, JH; Perez, RC; Voyles, JW; Ivey, MD; Moore, ST; Nitschke, DL; Perkins, BD; Turner, DD

    2008-03-01

    This report documents key aspects of the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) data quality assurance program as it existed in 2008. The performance of ACRF instruments, sites, and data systems is measured in terms of the availability, usability, and accessibility of the data to a user. First, the data must be available to users; that is, the data must be collected by instrument systems, processed, and delivered to a central repository in a timely manner. Second, the data must be usable; that is, the data must be inspected and deemed of sufficient quality for scientific research purposes, and data users must be able to readily tell where there are known problems in the data. Finally, the data must be accessible; that is, data users must be able to easily find, obtain, and work with the data from the central repository. The processes described in this report include instrument deployment and calibration; instrument and facility maintenance; data collection and processing infrastructure; data stream inspection and assessment; the roles of value-added data processing and field campaigns in specifying data quality and haracterizing the basic measurement; data archival, display, and distribution; data stream reprocessing; and engineering and operations management processes and procedures. Future directions in ACRF data quality assurance also are presented.

  20. The International Space University's variable gravity research facility design

    Science.gov (United States)

    Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

    1991-01-01

    A manned mission to Mars will require long travel times between Earth and Mars. However, exposure to long-duration zero gravity is known to be harmful to the human body. Some of the harmful effects are loss of heart and lung capacity, inability to stand upright, muscular weakness and loss of bone calcium. A variable gravity research facility (VGRF) that would be placed in low Earth orbit (LEO) was designed by students of the International Space University 1989 Summer Session held in Strasbourg, France, to provide a testbed for conducting experiments in the life and physical sciences in preparation for a mission to Mars. This design exercise was unique because it addressed all aspects concerning a large space project. The VGRF design was described which was developed by international participants specializing in the following areas: the politics of international cooperation, engineering, architecture, in-space physiology, material and life science experimentation, data communications, business, and management.

  1. Development of Software Engineering: A Research Perspective

    Institute of Scientific and Technical Information of China (English)

    Hong Mei; Dong-Gang Cao; Fu-Qing Yang

    2006-01-01

    In the past 40 years, software engineering has emerged as an important sub-field of computer science and has made significant contribution to the software industry. Now it is gradually becoming a new independent discipline. This paper presents a survey of software engineering development from a research perspective. Firstly, the history of software engineering is reviewed with focus on the driving forces of software technology, the software engineering framework and the milestones of software engineering development. Secondly, after reviewing the past academic efforts, the current research activities are surveyed and new challenges brought by Internet are analyzed. Software engineering researches and activities in China are also reviewed. The work in Peking University is described as a representative.

  2. Qualitative research methods in Software Engineering

    Directory of Open Access Journals (Sweden)

    Patrick Anya

    2014-12-01

    Full Text Available In the investigation of Software Engineering coexist two different research methods: 1 the quantitative that try to measure and analyze the casual relationship between the variables in a frame with free values, and 2 the qualitative that examine the creation process of meanings from which is generated new theorems or improve. Apply this methods separately in the research in software engineer makes evident that obtain results are incomplete and so is difficult to choose definitively wit which of them embark in a specific research. To approach this problem, in this article are described the quantitative methods as research methods to this engineer, and described its benefits and difficulties.

  3. Collaboration in Research and Engineering for Advanced Technology.

    Energy Technology Data Exchange (ETDEWEB)

    Vrieling, P. Douglas [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-01-01

    SNL/CA proposes the Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) facility to support customer-driven national security mission requirements while demonstrating a fiscally responsible approach to cost-control. SNL/CA realizes that due to the current backlog of capital projects in NNSA that following the normal Line Item process to procure capital funding is unlikely and therefore SNL/CA will be looking at all options including Alternative Financing.

  4. Stirling laboratory research engine survey report

    Science.gov (United States)

    Anderson, J. W.; Hoehn, F. W.

    1979-01-01

    As one step in expanding the knowledge relative to and accelerating the development of Stirling engines, NASA, through the Jet Propulsion Laboratory (JPL), is sponsoring a program which will lead to a versatile Stirling Laboratory Research Engine (SLRE). An objective of this program is to lay the groundwork for a commercial version of this engine. It is important to consider, at an early stage in the engine's development, the needs of the potential users so that the SLRE can support the requirements of educators and researchers in academic, industrial, and government laboratories. For this reason, a survey was performed, the results of which are described.

  5. A Bibliometric Analysis of Climate Engineering Research

    Science.gov (United States)

    Belter, C. W.; Seidel, D. J.

    2013-12-01

    The past five years have seen a dramatic increase in the number of media and scientific publications on the topic of climate engineering, or geoengineering, and some scientists are increasingly calling for more research on climate engineering as a possible supplement to climate change mitigation and adaptation strategies. In this context, understanding the current state of climate engineering research can help inform policy discussions and guide future research directions. Bibliometric analysis - the quantitative analysis of publications - is particularly applicable to fields with large bodies of literature that are difficult to summarize by traditional review methods. The multidisciplinary nature of the published literature on climate engineering makes it an ideal candidate for bibliometric analysis. Publications on climate engineering are found to be relatively recent (more than half of all articles during 1988-2011 were published since 2008), include a higher than average percentage of non-research articles (30% compared with 8-15% in related scientific disciplines), and be predominately produced by countries located in the Northern Hemisphere and speaking English. The majority of this literature focuses on land-based methods of carbon sequestration, ocean iron fertilization, and solar radiation management and is produced with little collaboration among research groups. This study provides a summary of existing publications on climate engineering, a perspective on the scientific underpinnings of the global dialogue on climate engineering, and a baseline for quantitatively monitoring the development of climate engineering research in the future.

  6. Feminist methodologies and engineering education research

    Science.gov (United States)

    Beddoes, Kacey

    2013-03-01

    This paper introduces feminist methodologies in the context of engineering education research. It builds upon other recent methodology articles in engineering education journals and presents feminist research methodologies as a concrete engineering education setting in which to explore the connections between epistemology, methodology and theory. The paper begins with a literature review that covers a broad range of topics featured in the literature on feminist methodologies. Next, data from interviews with engineering educators and researchers who have engaged with feminist methodologies are presented. The ways in which feminist methodologies shape their research topics, questions, frameworks of analysis, methods, practices and reporting are each discussed. The challenges and barriers they have faced are then discussed. Finally, the benefits of further and broader engagement with feminist methodologies within the engineering education community are identified.

  7. Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix II research laboratories and facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    This document contains summaries of the research facilities that support the Defense Programs Research and Technology Development Program for FY 1993. The nine program elements are aggregated into three program clusters as follows: (1) Advanced materials sciences and technologies; chemistry and materials, explosives, special nuclear materials (SNM), and tritium. (2) Design sciences and advanced computation; physics, conceptual design and assessment, and computation and modeling. (3) Advanced manufacturing technologies and capabilities; system engineering science and technology, and electronics, photonics, sensors, and mechanical components. Section I gives a brief summary of 23 major defense program (DP) research and technology facilities and shows how these major facilities are organized by program elements. Section II gives a more detailed breakdown of the over 200 research and technology facilities being used at the Laboratories to support the Defense Programs mission.

  8. Domain Engineering - A Software Engineering discipline in Need of Research

    DEFF Research Database (Denmark)

    Bjørner, Dines

    2000-01-01

    Before software can be developed its requirements must be stated. Before requirements can be expressed the application domain must be understood. In this paper we outline some of the basic facets of domain engineering. Domains seem, it is our experience, far more stable than computing requirements......, and these again seem more stable than software designs. Thus, almost like the universal laws of physics, it pays off to first develop theories of domains. But domain engineering, as in fact also requirements engineering, really is in need of thoroughly researched development principles, techniques and tools....... The aim of this paper is to advocate: that researchers study these development method components, and that universities focus their education on basing well-nigh any course on the use of formal techniques: Specification and verification, and that software engineers take heed: Start applying formal...

  9. Summaries of FY 1994 engineering research

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This report documents the Basic Energy Sciences Engineering Research Program for fiscal year 1994; it provides a summary of each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists.

  10. Ten recommendations for software engineering in research.

    Science.gov (United States)

    Hastings, Janna; Haug, Kenneth; Steinbeck, Christoph

    2014-01-01

    Research in the context of data-driven science requires a backbone of well-written software, but scientific researchers are typically not trained at length in software engineering, the principles for creating better software products. To address this gap, in particular for young researchers new to programming, we give ten recommendations to ensure the usability, sustainability and practicality of research software.

  11. Is Engineering Design Disappearing from Design Research?

    DEFF Research Database (Denmark)

    Andreasen, Mogens Myrup; Howard, Thomas J.

    2011-01-01

    Most systems and products need to be engineered during their design, based upon scientific insight into principles, mechanisms, materials and production pos-sibilities, leading to reliability, durability and value for the user. Despite the central importance and design’s crucial dependency...... on engineer-ing, we observe a declining focus on engineering design in design research, articu-lated in the composition of contributions to Design Society conferences. Engineer-ing design relates closely to the ‘materialisation’ of products and systems, i.e. the embodiment and detailing. The role of clever...... embodiment. Embodiment design is just as intellectually challenging as conceptualisation but seems much more engineering dependant and intriguing in its complexity of dependencies and unsure reasoning about properties by the fact that often a multidisciplinary team is necessary. This article should be seen...

  12. Shock Thermodynamic Applied Research Facility (STAR)

    Data.gov (United States)

    Federal Laboratory Consortium — The STAR facility, within Sandia's Solid Dynamic Physics Department, is one of a few institutions in the world with a major shock-physics program. This is the only...

  13. Northwestern University Facility for Clean Catalytic Process Research

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Tobin Jay [Northwestern University

    2013-05-08

    Northwestern University with DOE support created a Facility for Clean Catalytic Process Research. This facility is designed to further strengthen our already strong catalysis research capabilities and thus to address these National challenges. Thus, state-of-the art instrumentation and experimentation facility was commissioned to add far greater breadth, depth, and throughput to our ability to invent, test, and understand catalysts and catalytic processes, hence to improve them via knowledge-based design and evaluation approaches.

  14. Engineering research, development and technology. Thrust area report, FY93

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

  15. Office of Chief Scientist, Integrated Research Facility (OCSIRF)

    Data.gov (United States)

    Federal Laboratory Consortium — Introduction The Integrated Research Facility (IRF) is part of the Office of the Chief Scientist (OCS) for the Division of Clinical Research in the NIAID Office of...

  16. Index and Bulk Parameters for Frequency-Direction Spectra Measured at CERC Field Research Facility, September 1991 to August 1992

    Science.gov (United States)

    1994-05-01

    Index and Bulk Parameters for Frequency- Direction Spectra Measured at CERC Field Research Facility, September 1991 to August 1992 Accion For by...Prepared for U.S. Army Corps of Engineers Washington, DC 20314-1000 Under Civil Works Research Work Unit 32484 M US Army Corps of Engineers Waterways...that affect coastal engineering pro- jects. This effort was authorized by Headquarters, U.S. Army Corps o.’ Engi- neers (HQUSACE), under Civil Works

  17. DOE research and development and field facilities

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    This report describes the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Operations Centers, and other government-owned, contractor-operated facilities which are located in all regions of the United States. It gives brief descriptions of resources, activities, and capabilities of each field facility (sections III through V). These represent a cumulative capital investment of $12 billion and involve a work force of approximately 12,000 government (field) employees and approximately 100,000 contractor employees.

  18. Summaries of FY 1991 engineering research

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    This report documents the BES Engineering Research Program for fiscal year 1991; it provides a summary for each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists. The organizational chart for the DOE Office of Energy Research (OER) delineates the six Divisions within the OER Office of Basic Energy Sciences (BES). Each BES Division administers basic, mission oriented research programs in the area indicated by its title. The BES Engineering Research Program is one such program; it is administered by the Engineering and Geosciences Division of BES. In preparing this report we asked the principal investigators to submit summaries for their projects that were specifically applicable to fiscal year 1991. Major topics covered include fluid mechanics, fracture mechanics, chemical engineering and mechanical engineering.

  19. Magnetotelluric soundings on the Idaho National Engineering Laboratory Facility, Idaho

    Science.gov (United States)

    Stanley, William D.

    1982-04-01

    The magnetotelluric (MT) method was used as one of several geophysical tools to study part of the Idaho Engineering Laboratory (INEL) facility. The purpose of the geophysical study on INEL was to investigate the facility for a possible site to drill a geothermal exploration well. A successful geothermal well would be used to provide hot water for a chemical processing plant. The MT method was employed to map any large-scale structures or conductivity anomalies that might prove interesting as geothermal exploration targets. In addition to the MT data, direct current resistivity soundings, gravity data, aeromagnetic data, and seismic refraction data were obtained in the course of the geophysical study. In the MT survey described in this paper, an additional goal was to provide a better understanding of the electrical units mapped in the regional study of the Snake River Plain (SNRP) by Stanley et al. (1977). It was thought that a widespread conductive layer found beneath surface basalts in the 1977 study could be categorized petrologically by a deep well and additional MT soundings done nearby. Also, INEL is located on the margin of the SNRP, and it was desired to have MT data in the area to study the electrical nature of the margin of the plain. The MT sounding interpretations did not indicate any conductivity anomalies or significant structures near the chemical processing plant which could be used to guide the location of the proposed geothermal well to be drilled to a depth of 3 km. The initial interpretation of the MT sounding data was done with one-dimensional models consisting of four or five layers, the minimum number required to fit the data. After the test well (INEL-1) was completed, the electric log was used to guide an improved one-dimensional ID interpretation of the MT sounding data. Profile models derived from the well log provided good agreement with velocity models derived from refraction seismic data. A resolution study using generalized inverse

  20. Interim irradiated fuel storage facility for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lolich, Jose [INVAP SE, Bariloche (Argentina)

    2002-07-01

    In most research reactors irradiated fuel discharged from the reactor is initially stored underwater inside the reactor building for along period of time. This allows for heat dissipation and fission product decay. In most cases this initial storage is done in a irradiated fuel storage facility pool located closed to the reactor core. After a certain cooling time, the fuel discharged should be relocated for long-term interim storage in a Irradiated Fuel Storage (IFS) Facility. IFS facilities are required for the safe storage of irradiated nuclear fuel before it is reprocessed or conditioned for disposal as radioactive waste. The IFS Facility described in this report is not an integral part of an operating nuclear reactor. This facility many be either co-located with nuclear facilities (such as a nuclear reactor or reprocessing plant) or sited independently of other nuclear facilities. (author)

  1. An Engineering Approach to Management of Occupational and Community Noise Exposure at NASA Lewis Research Center

    Science.gov (United States)

    Cooper, Beth A.

    1997-01-01

    Workplace and environmental noise issues at NASA Lewis Research Center are effectively managed via a three-part program that addresses hearing conservation, community noise control, and noise control engineering. The Lewis Research Center Noise Exposure Management Program seeks to limit employee noise exposure and maintain community acceptance for critical research while actively pursuing engineered controls for noise generated by more than 100 separate research facilities and the associated services required for their operation.

  2. Biomedical engineering for health research and development.

    Science.gov (United States)

    Zhang, X-Y

    2015-01-01

    Biomedical engineering is a new area of research in medicine and biology, providing new concepts and designs for the diagnosis, treatment and prevention of various diseases. There are several types of biomedical engineering, such as tissue, genetic, neural and stem cells, as well as chemical and clinical engineering for health care. Many electronic and magnetic methods and equipments are used for the biomedical engineering such as Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI) scans, Electroencephalography (EEG), Ultrasound and regenerative medicine and stem cell cultures, preparations of artificial cells and organs, such as pancreas, urinary bladders, liver cells, and fibroblasts cells of foreskin and others. The principle of tissue engineering is described with various types of cells used for tissue engineering purposes. The use of several medical devices and bionics are mentioned with scaffold, cells and tissue cultures and various materials are used for biomedical engineering. The use of biomedical engineering methods is very important for the human health, and research and development of diseases. The bioreactors and preparations of artificial cells or tissues and organs are described here.

  3. Reengineering Biomedical Translational Research with Engineering Ethics.

    Science.gov (United States)

    Sunderland, Mary E; Nayak, Rahul Uday

    2015-08-01

    It is widely accepted that translational research practitioners need to acquire special skills and knowledge that will enable them to anticipate, analyze, and manage a range of ethical issues. While there is a small but growing literature that addresses the ethics of translational research, there is a dearth of scholarship regarding how this might apply to engineers. In this paper we examine engineers as key translators and argue that they are well positioned to ask transformative ethical questions. Asking engineers to both broaden and deepen their consideration of ethics in their work, however, requires a shift in the way ethics is often portrayed and perceived in science and engineering communities. Rather than interpreting ethics as a roadblock to the success of translational research, we suggest that engineers should be encouraged to ask questions about the socio-ethical dimensions of their work. This requires expanding the conceptual framework of engineering beyond its traditional focus on "how" and "what" questions to also include "why" and "who" questions to facilitate the gathering of normative, socially-situated information. Empowering engineers to ask "why" and "who" questions should spur the development of technologies and practices that contribute to improving health outcomes.

  4. Framework for systems engineering research

    CSIR Research Space (South Africa)

    Erasmus, L

    2013-08-01

    Full Text Available are done under controlled conditions. The observations are documented and the model is either accepted or rejected based on the empirical measurements. The research design is that of logic positivism. On the other end of the continuum one finds the cases... where a model do not exists, all the variables are not known, or ethics prohibit the researcher to keep the parameters under control. The complexity in the design of the research is just much higher than that of the hard sciences. Parameters cannot...

  5. Cryogenics Research and Engineering Experience

    Science.gov (United States)

    Toro Medina, Jaime A.

    2013-01-01

    Energy efficient storage, transfer and use of cryogens and cryogenic propellants on Earth and in space have a direct impact on NASA, government and commercial programs. Research and development on thermal insulation, propellant servicing, cryogenic components, material properties and sensing technologies provides industry, government and research institutions with the cross-cutting technologies to manage low-temperature applications. Under the direction of the Cryogenic Testing Lab at Kennedy Space Center, the work experience acquired allowed me to perform research, testing, design and analysis of current and future cryogenic technologies to be applied in several projects.

  6. A free-piston Stirling engine/linear alternator controls and load interaction test facility

    Science.gov (United States)

    Rauch, Jeffrey S.; Kankam, M. David; Santiago, Walter; Madi, Frank J.

    1992-01-01

    A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.

  7. A free-piston Stirling engine/linear alternator controls and load interaction test facility

    Science.gov (United States)

    Rauch, Jeffrey S.; Kankam, M. David; Santiago, Walter; Madi, Frank J.

    1992-08-01

    A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.

  8. FY08 Engineering Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Minichino, C; McNichols, D

    2009-02-24

    This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2008. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow.' Engineering's mission is carried out through basic research and technology development. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. Our technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice.' As we pursue this two-pronged approach, an enormous range of technological capabilities result. This report combines our work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

  9. Tracking Engineering Education Research and Development

    Directory of Open Access Journals (Sweden)

    Bill Williams

    2012-04-01

    Full Text Available In recent years, bibliometric analysis of publications has been receiving growing attention in engineering education research as an approach that can bring a number of benefits. In this paper two such forms, taxonomical analysis and citation analysis, are applied to papers from the first 2011 number of IEEE Transactions on Education (21 papers and from the two 2011 numbers of the ASEE-published Advances in Engineering Education (22 papers. In the former approach, seven taxonomical dimensions are used to characterize the papers and in the second the references cited in the 43 papers were studied so as to analyze how the researchers were informed by previous studies.The results suggest that the silo effect identified by Wankat for disciplinary engineering education journals in 2009 was still apparent in the IEEE Transactions on Education in 2011. The Advances in Engineering Education papers show a wide range of cited references, including reference disciplines outside of engineering education, and this suggests that research published there is likely to be informed by a broad range of previous studies which may be interpreted as a sign of a growing maturity of engineering education as a research discipline.

  10. Man-Vehicle Systems Research Facility - Design and operating characteristics

    Science.gov (United States)

    Shiner, Robert J.; Sullivan, Barry T.

    1992-01-01

    This paper describes the full-mission flight simulation facility at the NASA Ames Research Center. The Man-Vehicle Systems Research Facility (MVSRF) supports aeronautical human factors research and consists of two full-mission flight simulators and an air-traffic-control simulator. The facility is used for a broad range of human factors research in both conventional and advanced aviation systems. The objectives of the research are to improve the understanding of the causes and effects of human errors in aviation operations, and to limit their occurrence. The facility is used to: (1) develop fundamental analytical expressions of the functional performance characteristics of aircraft flight crews; (2) formulate principles and design criteria for aviation environments; (3) evaluate the integration of subsystems in contemporary flight and air traffic control scenarios; and (4) develop training and simulation technologies.

  11. A study of the operation of selected national research facilities

    Science.gov (United States)

    Eisner, M.

    1974-01-01

    The operation of national research facilities was studied. Conclusions of the study show that a strong resident scientific staff is required for successful facility operation. No unique scheme of scientific management is revealed except for the obvious fact that the management must be responsive to the users needs and requirements. Users groups provide a convenient channel through which these needs and requirements are communicated.

  12. Data-driven engineering design research

    DEFF Research Database (Denmark)

    Parraguez Ruiz, Pedro; Maier, Anja

    2017-01-01

    Engineering Design research relies on quantitative and qualitative data to describe design-related phenomena and prescribe improvements for design practice. Given data availability, privacy requirements and other constraints, most empirical data used in Engineering Design research can be described...... the already available and continuously growing body of open data sources to create opportunities for research in Engineering Design. Insights are illustrated by an examination of two examples: a study of open source software repositories and an analysis of open business registries in the cleantech industry...... as “closed”. Keeping such data closed is in many cases necessary and justifiable. However, this closedness also hinders replicability, and thus, may limit our possibilities to test the validity and reliability of research results in the field. This paper discusses implications and applications of using...

  13. Domain Engineering - A Software Engineering discipline in Need of Research

    DEFF Research Database (Denmark)

    Bjørner, Dines

    2000-01-01

    Before software can be developed its requirements must be stated. Before requirements can be expressed the application domain must be understood. In this paper we outline some of the basic facets of domain engineering. Domains seem, it is our experience, far more stable than computing requirements......, and these again seem more stable than software designs. Thus, almost like the universal laws of physics, it pays off to first develop theories of domains. But domain engineering, as in fact also requirements engineering, really is in need of thoroughly researched development principles, techniques and tools...... techniques. A brief example of describing stake-holder perspectives will be given - on the background of which we then proceed to survey the notions of domain intrinsics, domain support technologies, domain management & organisation, domain rules & regulations, domain human behaviour, etc. We show elsewhere...

  14. Engineers are from Mars and educators are from Venus: Research ...

    African Journals Online (AJOL)

    Engineers are from Mars and educators are from Venus: Research supervision in engineering and educational collaboration. ... problem-based learning in chemical engineering, the work-readiness of civil engineering students, or curriculum ...

  15. Methodologies of requirements engineering research and practice

    NARCIS (Netherlands)

    Wieringa, Roel J.; Gervasi, V.; Zowghi, D.; Easterbrook, S.; Sim, S.E.

    2003-01-01

    In this position paper I argue that RE practice is the problem analysis part of a design problem, and that this problem analysis part is a knowledge problem in which the requirements engineer tries to build a theory of a problem domain. RE research is a knowledge problem too, in which the researcher

  16. A Research Agenda for Security Engineering

    Directory of Open Access Journals (Sweden)

    Rich Goyette

    2013-08-01

    Full Text Available Despite nearly 30 years of research and application, the practice of information system security engineering has not yet begun to exhibit the traits of a rigorous scientific discipline. As cyberadversaries have become more mature, sophisticated, and disciplined in their tradecraft, the science of security engineering has not kept pace. The evidence of the erosion of our digital security – upon which society is increasingly dependent – appears in the news almost daily. In this article, we outline a research agenda designed to begin addressing this deficit and to move information system security engineering toward a mature engineering discipline. Our experience suggests that there are two key areas in which this movement should begin. First, a threat model that is actionable from the perspectives of risk management and security engineering should be developed. Second, a practical and relevant security-measurement framework should be developed to adequately inform security-engineering and risk-management processes. Advances in these areas will particularly benefit business/government risk assessors as well as security engineers performing security design work, leading to more accurate, meaningful, and quantitative risk analyses and more consistent and coherent security design decisions. Threat modelling and security measurement are challenging activities to get right – especially when they need to be applied in a general context. However, these are decisive starting points because they constitute the foundation of a scientific security-engineering practice. Addressing these challenges will require stronger and more coherent integration between the sub-disciplines of risk assessment and security engineering, including new tools to facilitate that integration. More generally, changes will be required in the way security engineering is both taught and practiced to take into account the holistic approach necessary from a mature, scientific

  17. Biomedical engineering frontier research and converging technologies

    CERN Document Server

    Jun, Ho-Wook; Shin, Jennifer; Lee, SangHoon

    2016-01-01

    This book provides readers with an integrative overview of the latest research and developments in the broad field of biomedical engineering. Each of the chapters offers a timely review written by leading biomedical engineers and aims at showing how the convergence of scientific and engineering fields with medicine has created a new basis for practically solving problems concerning human health, wellbeing and disease. While some of the latest frontiers of biomedicine, such as neuroscience and regenerative medicine, are becoming increasingly dependent on new ideas and tools from other disciplines, the paradigm shift caused by technological innovations in the fields of information science, nanotechnology, and robotics is opening new opportunities in healthcare, besides dramatically changing the ways we actually practice science. At the same time, a new generation of engineers, fluent in many different scientific “languages,” is creating entirely new fields of research that approach the “old” questions f...

  18. Organizational culture, safety culture, and safety performance at research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brown, William S.

    2000-07-30

    Organizational culture surveys of research facilities conducted several years ago and archival occupational injury reports were used to determine whether differences in safety performance are related to general organizational factors or to ''safety culture'' as reflected in specific safety-related dimensions. From among the organizations surveyed, a pair of facilities was chosen that were similar in size and scientific mission while differing on indices of work-related injuries. There were reliable differences in organizational style between the facilities, especially among workers in environment, safety, and health functions; differences between the facilities (and among job categories) on the safety scale were more modest and less regular.

  19. Council of Energy Engineering Research. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Richard J.

    2003-08-22

    The Engineering Research Program, a component program of the DOE Office of Basic Energy Sciences (BES), was established in 1979 to aid in resolving the numerous engineering issues arising from efforts to meet U.S. energy needs. The major product of the program became part of the body of knowledge and data upon which the applied energy technologies are founded; the product is knowledge relevant to energy exploration, production, conversion and use.

  20. FY06 Engineering Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Minichino, C; Alves, S W; Anderson, A T; Bennett, C V; Brown, C G; Brown, W D; Chinn, D; Clague, D; Clark, G; Cook, E G; Davidson, J C; Deri, R J; Dougherty, G; Fasenfest, B J; Florando, J N; Fulkerson, E S; Haugen, P; Heebner, J E; Hickling, T; Huber, R; Hunter, S L; Javedani, J; Kallman, J S; Kegelmeyer, L M; Koning, J; Kosovic, B; Kroll, J J; LeBlanc, M; Lin, J; Mariella, R P; Miles, R; Nederbragt, W W; Ness, K D; Nikolic, R J; Paglieroni, D; Pannu, S; Pierce, E; Pocha, M D; Poland, D N; Puso, M A; Quarry, M J; Rhee, M; Romero, C E; Rose, K A; Sain, J D; Sharpe, R M; Spadaccini, C M; Stolken, J S; Van Buuren, A; Wemhoff, A; White, D; Yao, Y

    2007-01-22

    This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2006. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. Engineering's investment in technologies is carried out primarily through two internal programs: the Laboratory Directed Research and Development (LDRD) program and the technology base, or ''Tech Base'', program. LDRD is the vehicle for creating technologies and competencies that are cutting-edge, or require discovery-class research to be fully understood. Tech Base is used to prepare those technologies to be more broadly applicable to a variety of Laboratory needs. The term commonly used for Tech Base projects is ''reduction to practice''. Thus, LDRD reports have a strong research emphasis, while Tech Base reports document discipline-oriented, core competency activities. This report combines the LDRD and Tech Base summaries into one volume, organized into six thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Precision Engineering; Engineering Systems for Knowledge and Inference; and Energy Manipulation.

  1. Shifts in search engine development: A review of past, present and future trends in research on search engines

    Directory of Open Access Journals (Sweden)

    Hamid R. Jamali

    2004-12-01

    Full Text Available The World Wide Web has developed fast and many people use search engines to capture information from the Web. This article reviews past, present and future of search engines. Papers published in four major Web and information management conferences were surveyed to track research interests in the last five years. Web search and information retrieval topics such as ranking, filtering and query formulation are still hot topics among researchers. The most important shifts and issues of the future of search engines are mentioned too. Search engine companies are trying to capture the Deep Web and extract structured data to offer high quality results. Using Web page structure, shared search engines, expert recommendations and different mobile search facilities seem to be features of the next generation of search engines.

  2. Reconstruction of polygonal prisms from point-clouds of engineering facilities

    Directory of Open Access Journals (Sweden)

    Akisato Chida

    2016-10-01

    Full Text Available The advent of high-performance terrestrial laser scanners has made it possible to capture dense point-clouds of engineering facilities. 3D shape acquisition from engineering facilities is useful for supporting maintenance and repair tasks. In this paper, we discuss methods to reconstruct box shapes and polygonal prisms from large-scale point-clouds. Since many faces may be partly occluded by other objects in engineering plants, we estimate possible box shapes and polygonal prisms and verify their compatibility with measured point-clouds. We evaluate our method using actual point-clouds of engineering plants.

  3. Facilities Management research in the Nordic Countries

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2011-01-01

    This article provides a brief overview of the short history of FM research in Denmark, Norway, Sweden and Finland, and presents current research topics and trends in these countries. It is based on information originally collected as part of the planning for the Danish research programme that led...

  4. Research Facilities for Solar Astronomy at ARIES

    Indian Academy of Sciences (India)

    P. Pant

    2006-06-01

    The solar observational facilities at ARIES (erstwhile U.P. State Observatory, UPSO), Nainital, began in the sixties with the acquisition of two moderate sized (25 cm, f/66 off-axis Skew Cassegrain and 15 cm, f/15 refractor) telescopes. Both these systems receive sunlight through a 45 cm and 25 cm coelostat respectively. The backend instruments to these systems comprised of a single pass grating spectrograph for spectroscopic study of the Sun and a Bernhard–Halle filter, coupled with a Robot recorder camera for solar patrolling in respectively. With the advancement in solar observing techniques with high temporal and spatial resolution in and other wavelengths, it became inevitable to acquire sophisticated instrumentation for data acquisition. In view of that, the above facilities were upgraded, owing to which the conventional photographic techniques were replaced by the CCD camera systems attached with two 15 cm, f/15 Coude refractor telescopes. These CCD systems include the Peltier cooled CCD camera and photometrics PXL high speed modular CCD camera which provide high temporal and spatial resolution of ∼ 25 ms and ∼ 1.3 arcsec respectively.

  5. Small Multi-Purpose Research Facility (SMiRF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Small Multi-Purpose Research Facility (SMiRF) evaluates the performance of the thermal protection systems required to provide long-term storage (up to 10 years)...

  6. Small Multi-Purpose Research Facility (SMiRF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Small Multi-Purpose Research Facility (SMiRF) evaluates the performance of the thermal protection systems required to provide long-term storage (up to 10 years)...

  7. Direct Connect Supersonic Combustion Facility (Research Cell 22)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC22 is a continuous-flow, direct-connect supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  8. Army/NASA small turboshaft engine digital controls research program

    Science.gov (United States)

    Sellers, J. F.; Baez, A. N.

    1981-01-01

    The emphasis of a program to conduct digital controls research for small turboshaft engines is on engine test evaluation of advanced control logic using a flexible microprocessor based digital control system designed specifically for research on advanced control logic. Control software is stored in programmable memory. New control algorithms may be stored in a floppy disk and loaded directly into memory. This feature facilitates comparative evaluation of different advanced control modes. The central processor in the digital control is an Intel 8086 16 bit microprocessor. Control software is programmed in assembly language. Software checkout is accomplished prior to engine test by connecting the digital control to a real time hybrid computer simulation of the engine. The engine currently installed in the facility has a hydromechanical control modified to allow electrohydraulic fuel metering and VG actuation by the digital control. Simulation results are presented which show that the modern control reduces the transient rotor speed droop caused by unanticipated load changes such as cyclic pitch or wind gust transients.

  9. A facility for using cluster research to study environmental problems

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    This report begins by describing the general application of cluster based research to environmental chemistry and the development of a Cluster Structure and Dynamics Research Facility (CSDRF). Next, four important areas of cluster research are described in more detail, including how they can impact environmental problems. These are: surface-supported clusters, water and contaminant interactions, time-resolved dynamic studies in clusters, and cluster structures and reactions. These facilities and equipment required for each area of research are then presented. The appendices contain workshop agenda and a listing of the researchers who participated in the workshop discussions that led to this report.

  10. Mechanical Engineering Department engineering research: Annual report, FY 1986

    Energy Technology Data Exchange (ETDEWEB)

    Denney, R.M.; Essary, K.L.; Genin, M.S.; Highstone, H.H.; Hymer, J.D.; Taft, S.O. (eds.)

    1986-12-01

    This report provides information on the five areas of research interest in LLNL's Mechanical Engineering Department. In Computer Code Development, a solid geometric modeling program is described. In Dynamic Systems and Control, structure control and structure dynamics are discussed. Fabrication technology involves machine cutting, interferometry, and automated optical component manufacturing. Materials engineering reports on composite material research and measurement of molten metal surface properties. In Nondestructive Evaluation, NMR, CAT, and ultrasound machines are applied to manufacturing processes. A model for underground collapse is developed. Finally, an alternative heat exchanger is investigated for use in a fusion power plant. Separate abstracts were prepared for each of the 13 reports in this publication. (JDH)

  11. CAS spearheads R&D program for research facilities

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ China's capacity for indigenous S&T innovation is believed to have been hampered by its lack of home- grown research facilities. To address the problem, a pilot program for the research and development of major S&T facilities has been launched at CAS. The kick-off meeting was held on 28 March in the CAS Technical Institute of Physics and Chemistry in Beijing.

  12. Naval Research Laboratory Major Facilities 2008

    Science.gov (United States)

    2008-10-01

    Mexico seawater throughout the year. The tropical climate is ideally suited for marine exposure testing. There is minimal climatic variation and a...TW magnetically insulated inductive voltage adder ( IVA ). Mercury is a focal point of research for several areas, including IVA power-flow research...nuclear weapons effects simulation, and particle-beam source and transport research for various applications. DESCRIPTION: Mercury is a 6-stage IVA . The

  13. National facility for neutron beam research

    Indian Academy of Sciences (India)

    K R Rao

    2004-07-01

    In this talk, the growth of neutron beam research (NBR) in India over the past five decades is traced beginning with research at Apsara. A range of problems in condensed matter physics could be studied at CIRUS, followed by sophisticated indegenous instrumentation and research at Dhruva. The talk ends with an overview of current scenario of NBR world-wide and future of Indian activities.

  14. Summaries of FY 1993 Engineering Research

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report documents the BES Engineering Research Program for fiscal year 1993; it provides a summary for each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists. The organizational chart for the DOE Office of Energy Research (OER) on the next page delineates the six Divisions within the OER Office of Basic Energy Sciences (BES). Each BES Division administers basic, mission oriented research programs in the area indicated by its title. The BES Engineering Research Program is one such program; it is administered by the Engineering and Geosciences Division of BES. In preparing this report we asked the principal investigators to submit summaries for their projects that were specifically applicable to fiscal year 1993. The summaries received have been edited if necessary.

  15. Aerodynamic and engineering design of a 1.5 s high quality microgravity drop tower facility

    Science.gov (United States)

    Belser, Valentin; Breuninger, Jakob; Reilly, Matthew; Laufer, René; Dropmann, Michael; Herdrich, Georg; Hyde, Truell; Röser, Hans-Peter; Fasoulas, Stefanos

    2016-12-01

    Microgravity experiments are essential for research in space science, biology, fluid mechanics, combustion, and material sciences. One way to conduct microgravity experiments on Earth is by using drop tower facilities. These facilities combine a high quality of microgravity, adequate payload masses and have the advantage of virtually unlimited repeatability under same experimental conditions, at a low cost. In a collaboration between the Institute of Space Systems (IRS) at the University of Stuttgart and Baylor University (BU) in Waco, Texas, a new drop tower is currently under development at the Center for Astrophysics, Space Physics and Engineering Research (CASPER). The design parameters of the drop tower ask for at least 1.5 s in free fall duration while providing a quality of at least 10-5 g. Previously, this quality has only been achieved in vacuum drop tower facilities where the capsule experiences virtually zero aerodynamic drag during its free fall. Since this design comes at high costs, a different drop tower design concept, which does not require an evacuated drop shaft, was chosen. It features a dual-capsule system in which the experiment capsule is shielded from aerodynamic forces by surrounding it with a drag shield during the drop. As no other dual-capsule drop tower has been able to achieve a quality as good as or better than 10-5 g previous work optimized the design with an aerodynamic perspective by using computational fluid dynamics (CFD) simulations to determine the ideal shape and size of the outer capsule and to specify the aerodynamically crucial dimensions for the overall system. Experiments later demonstrated that the required quality of microgravity can be met with the proposed design. The main focus of this paper is the mechanical realization of the capsule as well as the development and layout of the surrounding components, such as the release mechanism, the deceleration device and the drop shaft. Because the drop tower facility is a

  16. Engineering design of the Nova Laser Facility for inertial-confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, W W; Godwin, R O; Hurley, C A; Wallerstein, E. P.; Whitham, K.; Murray, J. E.; Bliss, E. S.; Ozarski, R. G.; Summers, M. A.; Rienecker, F.; Gritton, D. G.; Holloway, F. W.; Suski, G. J.; Severyn, J. R.

    1982-01-25

    The design of the Nova Laser Facility for inertial confinement fusion experiments at Lawrence Livermore National Laboratory is presented from an engineering perspective. Emphasis is placed upon design-to-performance requirements as they impact the various subsystems that comprise this complex experimental facility.

  17. Evaluation of Research in Engineering Science in Norway

    DEFF Research Database (Denmark)

    Van Brussel, Hendrik Van Brussel; Lindberg, Bengt; Cederwall, Klas

    This report presents the conclusions of Panel 1: Construction engineering, Production and Operation. The Research Council of Norway (NFR) appointed three expert panels to evaluate Research in Engineering Science in Norway .......This report presents the conclusions of Panel 1: Construction engineering, Production and Operation. The Research Council of Norway (NFR) appointed three expert panels to evaluate Research in Engineering Science in Norway ....

  18. Summaries of FY 1996 engineering research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This report documents the Basic Energy Sciences (BES) Engineering Research Program for fiscal year 1996; it provides a summary for each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists. Each BES Division administers basic, mission oriented research programs in the area indicated by its title. The BES Engineering Research Program is one such program; it is administered by the Engineering and Geosciences Division of BES. In preparing this report the principal investigators were asked to submit summaries for their projects that were specifically applicable to fiscal year 1996. The summaries received have been edited if necessary, but the press for timely publication made it impractical to have the investigators review and approve the revised summaries prior to publication. For more information about a given project, it is suggested that the investigators be contacted directly.

  19. Nuclear Safety Research and Facilities Department annual report 1999

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Jensen, Per Hedemann

    2000-01-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department´s research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and"Radioecology and Tracer Studies". The nuclear...... facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are includedtogether with a summary of the staff´s participation in national and international committees....

  20. Clinical research: making it work in the outpatient dialysis facility.

    Science.gov (United States)

    Doss, Sheila; Schiller, Brigitte; Fox, Rosemary; Moran, John

    2009-01-01

    Performing clinical research in the outpatient dialysis facility can be very challenging. Research protocols define time-specific and detailed procedures to be performed. In dialysis units where staff members are responsible for the delivery of life-sustaining therapy to an aging end stage renal disease patient population with multiple co-morbidities, these requirements can easily be considered too burdensome to be implemented successfully. In the authors'facility, clinical research has been successfully implemented with a close team approach supported by a dedicated research group and unit staff

  1. Nuclear Safety Research and Facilities Department annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Aarkrog, A.; Brodersen, K. [and others

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department`s research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 11 tabs., 39 ills.; 74 refs.

  2. Nuclear Safety Research and Facilities Department annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department`s research and development activities were organized in two research programmes: `Radiation Protection and Reactor Safety` and `Radioecology and Tracer Studies`. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au)

  3. Nuclear Safety Research and Facilities Department. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E. [eds.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  4. Environment for Auditory Research Facility (EAR)

    Data.gov (United States)

    Federal Laboratory Consortium — EAR is an auditory perception and communication research center enabling state-of-the-art simulation of various indoor and outdoor acoustic environments. The heart...

  5. Recent Upgrades at the Safety and Tritium Applied Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee Charles [Idaho National Laboratory; Merrill, Brad Johnson [Idaho National Laboratory; Stewart, Dean Andrew [Idaho National Laboratory; Loftus, Larry Shayne [Idaho National Laboratory

    2016-03-01

    This paper gives a brief overview of the Safety and Tritium Applied Research (STAR) facility operated by the Fusion Safety Program (FSP) at the Idaho National Laboratory (INL). FSP researchers use the STAR facility to carry out experiments in tritium permeation and retention in various fusion materials, including wall armor tile materials. FSP researchers also perform other experimentation as well to support safety assessment in fusion development. This lab, in its present two-building configuration, has been in operation for over ten years. The main experiments at STAR are briefly described. This paper discusses recent work to enhance personnel safety at the facility. The STAR facility is a Department of Energy less than hazard category 3 facility; the personnel safety approach calls for ventilation and tritium monitoring for radiation protection. The tritium areas of STAR have about 4 to 12 air changes per hour, with air flow being once through and then routed to the facility vent stack. Additional radiation monitoring has been installed to read the laboratory room air where experiments with tritium are conducted. These ion chambers and bubblers are used to verify that no significant tritium concentrations are present in the experiment rooms. Standby electrical power has been added to the facility exhaust blower so that proper ventilation will now operate during commercial power outages as well as the real-time tritium air monitors.

  6. A case study of collaborative facilities use in engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Monroe, Laura M [Los Alamos National Laboratory

    2009-01-01

    In this paper we describe the use of visualization tools and facilities in the collaborative design of a replacement weapons system, the Reliable Replacement Warhead. We used not only standard collaboration methods but also a range of visualization software and facilities to bring together domain specialists from laboratories across the country to collaborate on the design and integrate this disparate input early in the design.

  7. A Survey of Research Performed at NASA Langley Research Center's Impact Dynamics Research Facility

    Science.gov (United States)

    Jackson, K. E.; Fasanella, E. L.

    2003-01-01

    The Impact Dynamics Research Facility (IDRF) is a 240-ft-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The facility was originally built in 1963 as a lunar landing simulator, allowing the Apollo astronauts to practice lunar landings under realistic conditions. The IDRF was designated a National Historic Landmark in 1985 based on its significant contributions to the Apollo Program. In 1972, the facility was converted to a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft and structural components in support of the General Aviation (GA) aircraft industry, the US Department of Defense, the rotorcraft industry, and NASA in-house aeronautics and space research programs. The objective of this paper is to describe most of the major full-scale crash test programs that were performed at this unique, world-class facility since 1974. The past research is divided into six sub-topics: the civil GA aircraft test program, transport aircraft test program, military test programs, space test programs, basic research, and crash modeling and simulation.

  8. Using ethnographic methods in software engineering research

    DEFF Research Database (Denmark)

    Sharp, Helen, C.; Dittrich, Yvonne; De Souza, Cleidson

    2010-01-01

    This tutorial provides an overview of the role of ethnography in Software Engineering research. It describes the use of ethnographic methods as a means to provide an in-depth understanding of the socio-technological realities surrounding everyday software development practice. The knowledge gained...... can be used to improve processes, methods and tools as well as develop observed industrial practices. The tutorial begins with a brief historical account of ethnography in the fields of Software Engineering, CSCW, Information Systems and other related areas. This sets the stage for a more in......-depth discussion of methods for data collection and analysis used in ethnographic studies. It then describes how these methods can be and have been used by software engineering researchers to understand developers' work practices, to inform the development of processes, methods and tools and to evaluate...

  9. Using ethnographic methods in software engineering research

    DEFF Research Database (Denmark)

    Sharp, Helen, C.; Dittrich, Yvonne; De Souza, Cleidson

    2010-01-01

    This tutorial provides an overview of the role of ethnography in Software Engineering research. It describes the use of ethnographic methods as a means to provide an in-depth understanding of the socio-technological realities surrounding everyday software development practice. The knowledge gained......-depth discussion of methods for data collection and analysis used in ethnographic studies. It then describes how these methods can be and have been used by software engineering researchers to understand developers' work practices, to inform the development of processes, methods and tools and to evaluate...... can be used to improve processes, methods and tools as well as develop observed industrial practices. The tutorial begins with a brief historical account of ethnography in the fields of Software Engineering, CSCW, Information Systems and other related areas. This sets the stage for a more in...

  10. Experimental Research Progress of the VASIMR Engine

    Science.gov (United States)

    Squire, J. P.; Díaz, F. R. Chang; Jacobson, V. T.; McCaskill, G. E.; Winter, D. S.

    2002-01-01

    The Advanced Space Propulsion Laboratory (ASPL) of NASA's Johnson Space Center is performing research on a Variable Specific Impulse MagnetoPlasma Rocket (VASIMR). The VASIMR is a high power, radio frequency (RF) driven magnetoplasma rocket, capable of very high exhaust velocities, > 100 km/s. In addition, its unique architecture allows in- flight mission-optimization of thrust and specific impulse to enhance performance and reduce trip time. A NASA-led research team involving industry, academia and government facilities is pursuing the development of this concept in the United States. The ASPL's experimental research focuses on three major areas: helicon plasma production, ion cyclotron resonant acceleration (ICRA) and plasma expansion in a magnetic nozzle. The VASIMR experiment (VX-10) performs experimental research that demonstrates the thruster concept at a total RF power on the order of 10 kW. A flexible four- magnet system, with a 1.3 Tesla maximum magnetic field strength, is computer controlled to study axial magnetic field profile shape effects. Power generated at 10 - 50 MHz with about 5 kW is used to perform helicon plasma source development. A 3 MHz RF transmitter capable of 100 kW is available for ICRA experiments. The primary diagnostics are: gas mass flow controllers, RF input power, Langmuir probes, Mach probe, retarding potential analyzers (RPA), microwave interferometer, neutral pressure measurements and plasma light emission. In addition, many thermocouples are attached inside the vacuum chamber to measure heat loads around the plasma discharge. Helicon research so far has been done with hydrogen, deuterium, helium, nitrogen, argon, xenon and mixtures of these gases. Optimization studies have been performed with the magnetic field axial profile shape, gas flow rate, gas tube geometry and RF frequency. The highest performing discharges are found with a high magnetic field choke downstream of the helicon antenna. Upwards of a 40% gas utilization is

  11. Radiation applications research and facilities in AECL research company

    Science.gov (United States)

    Iverson, S. L.

    In the 60's and 70's Atomic Energy of Canada had a very active R&D program to discover and develop applications of ionizing radiation. Out of this grew the technology underlying the company's current product line of industrial irradiators. With the commercial success of that product line the company turned its R&D attention to other activities. Presently, widespread interest in the use of radiation for food processing and the possibility of developing reliable and competitive machine sources of radiation hold out the promise of a major increase in industrial use of radiation. While many of the applications being considered are straightforward applications of existing knowledge, others depend on more subtle effects including combined effects of two or more agents. Further research is required in these areas. In March 1985 a new branch, Radiation Applications Research, began operations with the objective of working closely with industry to develop and assist the introduction of new uses of ionizing radiation. The Branch is equipped with appropriate analytical equipment including HPLC (high performance liquid chromatograph) and GC/MS (gas chromatograph/mass spectrometer) as well as a Gammacell 220 and an I-10/1, one kilowatt 10 MeV electron accelerator. The accelerator is located in a specially designed facility equipped for experimental irradiation of test quantities of packaged products as well as solids, liquids and gases in various configurations. A conveyor system moves the packaged products from the receiving area, through a maze, past the electron beam at a controlled rate and finally to the shipping area. Other necessary capabilities, such as gamma and electron dosimetry and a microbiology laboratory, have also been developed. Initial projects in areas ranging from food through environmental and industrial applications have been assessed and the most promising have been selected for further work. As an example, the use of charcoal adsorbent beds to concentrate

  12. 77 FR 52701 - Board on Coastal Engineering Research

    Science.gov (United States)

    2012-08-30

    ... Department of the Army; Corps of Engineers Board on Coastal Engineering Research AGENCY: Department of the... Committee: Board on Coastal Engineering Research. Date of Meeting: September 18-20, 2012. Place: Starboard... coastal engineering field and the objectives of the Chief of Engineers. Proposed Agenda: The goal of the...

  13. Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements

    Science.gov (United States)

    Allen, G. C.; Beck, D. F.; Harmon, C. D.; Shipers, L. R.

    Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program.

  14. Engineering Education in Research-Intensive Universities

    Science.gov (United States)

    Alpay, E.; Jones, M. E.

    2012-01-01

    The strengths and weaknesses of engineering education in research-intensive institutions are reported and key areas for developmental focus identified. The work is based on a questionnaire and session summaries used during a two-day international conference held at Imperial College London. The findings highlight several common concerns, such as…

  15. Engine testing the design, building, modification and use of powertrain test facilities

    CERN Document Server

    MARTYR, A J

    2012-01-01

    Engine Testing is a unique, well-organized and comprehensive collection of the different aspects of engine and vehicle testing equipment and infrastructure for anyone involved in facility design and management, physical testing and the maintenance, upgrading and trouble shooting of testing equipment. Designed so that its chapters can all stand alone to be read in sequence or out of order as needed, Engine Testing is also an ideal resource for automotive engineers required to perform testing functions whose jobs do not involve engine testing on a regular basis. This recognized standard refer

  16. ARM Climate Research Facility Annual Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, J.

    2004-12-31

    Like a rock that slowly wears away beneath the pressure of a waterfall, planet earth?s climate is almost imperceptibly changing. Glaciers are getting smaller, droughts are lasting longer, and extreme weather events like fires, floods, and tornadoes are occurring with greater frequency. Why? Part of the answer is clouds and the amount of solar radiation they reflect or absorb. These two factors clouds and radiative transfer represent the greatest source of error and uncertainty in the current generation of general circulation models used for climate research and simulation. The U.S. Global Change Research Act of 1990 established an interagency program within the Executive Office of the President to coordinate U.S. agency-sponsored scientific research designed to monitor, understand, and predict changes in the global environment. To address the need for new research on clouds and radiation, the U.S. Department of Energy (DOE) established the Atmospheric Radiation Measurement (ARM) Program. As part of the DOE?s overall Climate Change Science Program, a primary objective of the ARM Program is improved scientific understanding of the fundamental physics related to interactions between clouds and radiative feedback processes in the atmosphere.

  17. Initial closed operation of the CELSS Test Facility Engineering Development Unit

    Science.gov (United States)

    Kliss, M.; Blackwell, C.; Zografos, A.; Drews, M.; MacElroy, R.; McKenna, R.; Heyenga, A. G.

    2003-01-01

    As part of the NASA Advanced Life Support Flight Program, a Controlled Ecological Life Support System (CELSS) Test Facility Engineering Development Unit has been constructed and is undergoing initial operational testing at NASA Ames Research Center. The Engineering Development Unit (EDU) is a tightly closed, stringently controlled, ground-based testbed which provides a broad range of environmental conditions under which a variety of CELSS higher plant crops can be grown. Although the EDU was developed primarily to provide near-term engineering data and a realistic determination of the subsystem and system requirements necessary for the fabrication of a comparable flight unit, the EDU has also provided a means to evaluate plant crop productivity and physiology under controlled conditions. This paper describes the initial closed operational testing of the EDU, with emphasis on the hardware performance capabilities. Measured performance data during a 28-day closed operation period are compared with the specified functional requirements, and an example of inferring crop growth parameters from the test data is presented. Plans for future science and technology testing are also discussed. Published by Elsevier Science Ltd on behalf of COSPAR.

  18. Research of Road Traffic Facilities System Based on GIS

    Directory of Open Access Journals (Sweden)

    Liu-Jian

    2013-06-01

    Full Text Available In order to improve the labor efficiency and economic benefit of road traffic facilities system and reduce resource waste, a scheme of road traffic facilities system based on GIS is provided in this paper. In the new scheme, firstly, we proposed Visual C++ embedding MapX component to program for the visualization of data and function analysis of space, and constructed core table in database and established property database and space database to improve efficiency; then we put forward the system function of traditional traffic facilities such as data collection, construction and management of engineering and so on. The results show that the system can ensure the safety and smooth of traffic than ever.

  19. Engineered Barrier Testing at the INEEL Engineered Barriers Test Facility: FY-1997 and FY-1999

    Energy Technology Data Exchange (ETDEWEB)

    Keck, K. N.; Porro, I.

    1998-09-01

    Engineered barriers of two designs are being tested at the Engineered Barriers Test Facility (EBTF) at the Idaho National Engineering and Environmental Laboratory. This report describes the test facility, barrier designs, and instruments used to monitor the test plots. Wetting tests conducted on the test plots in FY-97 are described and data collected from monitoring the test plots before, during and after the wetting tests are used to evaluate the performance of the covers during FY-97 and FY-98. Replicates of two engineered barrier designs were constructed in the EBTF cells. The first design comprises a thick, vegetated soil cover. The second design incorporates a capillary/biobarrier within the vegtated soil cover. The capillary barrier uses the textural break between an upper, fine textured soil and a lower, coarser-textured gravel layer to inhibit drainage under unsaturated conditions while increasing soil moisture storage in the root zone. Evaporation and transpiration by plants (although the test plots have not yet been vegetated) are used to recycle water stored in the soil back to the atmosphere. A geotextile fabric is used to maintain separation of the soil and gravel layers. A thick layer of cobbles beneath the gravel layer serves as a biobarrier to prevent intrusion of plant roots and burrowing animals into underlying waste (there is no waste in the test plots). Each test plot was instrumented with time domain reflectometry probes and neutron probe access tubes to measure moisture contents, tensiometers, heat dissipation sensors, and thermocouple psychrometers to measure matric potentials, thermocouples to measure soil temperature, and ion-exchange resin beads to monitor tracer movement. Each drainage sump is equipped with a tipping bucket instrument and pressure transducer to measure drainage. Precipitation is measured using a heated rain gauge located at the EBTF. Instrument calibration equation coefficients are presented, and data reduction

  20. Public Facilities Management and Action Research for Sustainability

    DEFF Research Database (Denmark)

    Galamba, Kirsten Ramskov

    practice inspired by the principles of FM. The bottom up change process had an employee perspective, and the work provides answers to the challenges of creating a culture allowing for critical reflections in relation to the impact of FM practice on societal sustainability.......Current work is the main product of a PhD study with the initial working title ‘Sustainable Facilities Management’ at Centre for Facilities Management – Realdania Research, DTU Management 1. December 2008 – 30. November 2011. Here the notion of Public Sustainable Facilities Management (FM...

  1. FAIR: The accelerator facility for antiproton and ion research

    Energy Technology Data Exchange (ETDEWEB)

    Sharkov, Boris [FAIR JCR GSI, Darmstad (Germany)

    2010-07-01

    This presentation outlines the current status of the facility for antiproton and ion research (FAIR). It is expected that the actual construction of the facility will commence in 2010 as the project has raised more than one billion euro in funding. The sequence and scope of the construction of the accelerator modules in accordance with modularized start version are described. Outstanding research opportunities offered by the modularized start version for all scientific FAIR communities from early on will allow to bridge the time until FAIR's completion with a world-leading research program. The green paper outlining a realistic path to achieve this goal is discussed.

  2. Aircraft Engine Noise Research and Testing at the NASA Glenn Research Center

    Science.gov (United States)

    Elliott, Dave

    2015-01-01

    The presentation will begin with a brief introduction to the NASA Glenn Research Center as well as an overview of how aircraft engine noise research fits within the organization. Some of the NASA programs and projects with noise content will be covered along with the associated goals of aircraft noise reduction. Topics covered within the noise research being presented will include noise prediction versus experimental results, along with engine fan, jet, and core noise. Details of the acoustic research conducted at NASA Glenn will include the test facilities available, recent test hardware, and data acquisition and analysis methods. Lastly some of the actual noise reduction methods investigated along with their results will be shown.

  3. Providing security for automated process control systems at hydropower engineering facilities

    Science.gov (United States)

    Vasiliev, Y. S.; Zegzhda, P. D.; Zegzhda, D. P.

    2016-12-01

    This article suggests the concept of a cyberphysical system to manage computer security of automated process control systems at hydropower engineering facilities. According to the authors, this system consists of a set of information processing tools and computer-controlled physical devices. Examples of cyber attacks on power engineering facilities are provided, and a strategy of improving cybersecurity of hydropower engineering systems is suggested. The architecture of the multilevel protection of the automated process control system (APCS) of power engineering facilities is given, including security systems, control systems, access control, encryption, secure virtual private network of subsystems for monitoring and analysis of security events. The distinctive aspect of the approach is consideration of interrelations and cyber threats, arising when SCADA is integrated with the unified enterprise information system.

  4. 75 FR 28593 - Board on Coastal Engineering Research

    Science.gov (United States)

    2010-05-21

    ... Department of the Army; Corps of Engineers Board on Coastal Engineering Research AGENCY: Department of the... Committee: Board on Coastal Engineering Research. Date of Meeting: June 22-24, 2010. Place: Hudson Ballroom... development of research projects in consonance with the needs of the coastal engineering field and the...

  5. 78 FR 13030 - Board on Coastal Engineering Research

    Science.gov (United States)

    2013-02-26

    ... Department of the Army; Corps of Engineers Board on Coastal Engineering Research AGENCY: Department of the... Committee: Board on Coastal Engineering Research. Date of Meeting: March 18-19, 2013. Place: Conference Room... development of research projects in consonance with the needs of the coastal engineering field and the...

  6. 78 FR 48659 - Board on Coastal Engineering Research

    Science.gov (United States)

    2013-08-09

    ... Department of the Army; Corps of Engineers Board on Coastal Engineering Research AGENCY: Department of the... advisory committee meeting will take place: Name of Committee: Board on Coastal Engineering Research. Date..., and the availability of space, the Board on Coastal Engineering Research meeting is open to the public...

  7. 76 FR 37084 - Board on Coastal Engineering Research

    Science.gov (United States)

    2011-06-24

    ... Department of the Army; Corps of Engineers Board on Coastal Engineering Research AGENCY: Department of the... Committee: Board on Coastal Engineering Research. Date of Meeting: July 26-28, 2011. Place: Crowne Jewel... development of research projects in consonance with the needs of the coastal engineering field and the...

  8. A case study of collaborative facilities in engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Monroe, Laura M [Los Alamos National Laboratory; Pugmire, David [ORNL

    2008-01-01

    In this paper we describe the use of visualization tools and facilities in the collaborative design of a replacement weapons system, the Reliable Replacement Warhead (RRW). We used not only standard collaboration methods but also a range of visualization software and facilities to bring together domain specialists from laboratories across the country to collaborate on the design and integrate this disparate input early in the design. This was the first time in U.S. weapons history that a weapon had been designed in this collaborative manner. Benefits included projected cost savings, design improvements and increased understanding across the project.

  9. Final Report: Performance Engineering Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Mellor-Crummey, John [Rice Univ., Houston, TX (United States)

    2014-10-27

    This document is a final report about the work performed for cooperative agreement DE-FC02-06ER25764, the Rice University effort of Performance Engineering Research Institute (PERI). PERI was an Enabling Technologies Institute of the Scientific Discovery through Advanced Computing (SciDAC-2) program supported by the Department of Energy's Office of Science Advanced Scientific Computing Research (ASCR) program. The PERI effort at Rice University focused on (1) research and development of tools for measurement and analysis of application program performance, and (2) engagement with SciDAC-2 application teams.

  10. Atmospheric Radiation Measurement (ARM) Climate Research Facility Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mather, James [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    Mission and Vision Statements for the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mission The ARM Climate Research Facility, a DOE scientific user facility, provides the climate research community with strategically located in situ and remote-sensing observatories designed to improve the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their interactions and coupling with the Earth’s surface. Vision To provide a detailed and accurate description of the Earth atmosphere in diverse climate regimes to resolve the uncertainties in climate and Earth system models toward the development of sustainable solutions for the nation's energy and environmental challenges.

  11. Engineering research, development and technology report

    Energy Technology Data Exchange (ETDEWEB)

    Langland, R T

    1999-02-01

    Nineteen ninety-eight has been a transition year for Engineering, as we have moved from our traditional focus on thrust areas to a more focused approach with research centers. These five new centers of excellence collectively comprise Engineering's Science and Technology program. This publication summarizes our formative year under this new structure. Let me start by talking about the differences between a thrust area and a research center. The thrust area is more informal, combining an important technology with programmatic priorities. In contrast, a research center is directly linked to an Engineering core technology. It is the purer model, for it is more enduring yet has the scope to be able to adapt quickly to evolving programmatic priorities. To put it another way, the mission of a thrust area was often to grow the programs in conjunction with a technology, whereas the task of a research center is to vigorously grow our core technologies. By cultivating each core technology, we in turn enable long-term growth of new programs.

  12. Sandia National Laboratories shock thermodynamics applied research (STAR) facility

    Energy Technology Data Exchange (ETDEWEB)

    Asay, J.R.

    1981-08-01

    The Sandia National Laboratories Shock Thermodynamics Applied Research (STAR) Facility has recently consolidated three different guns and a variety of instrumentation capabilities into a single location. The guns available at the facility consist of a single-stage light gas gun, a single-stage propellant gun and a two-stage light gas gun, which cover a velocity range from 15 m/s to 8 km/s. Instrumentation available at the facility includes optical and microwave interferometry, time-resolved holography, fast x-radiography, framing and streak photography, fast multi-wavelength pyrometry, piezoelectric and piezoresistive gauges and computer data reduction. This report discusses the guns and instrumentation available at the facility and selected recent applications.

  13. SWALE RESEARCH AT NRMRL’S URBAN WATERSHED RESEARCH FACILITY

    Science.gov (United States)

    Swales are “engineered ditches” that provide stable routing for stormwater runoff. Swales are green infrastructure, a low-cost drainage option for highways, farms, industrial, and commercial areas. Beyond enhancing local aesthetics, swales mitigate the pollutants carried by the...

  14. ARM Operations and Engineering Procedure Mobile Facility Site Startup

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, Jimmy W

    2015-05-01

    This procedure exists to define the key milestones, necessary steps, and process rules required to commission and operate an Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF), with a specific focus toward on-time product delivery to the ARM Data Archive. The overall objective is to have the physical infrastructure, networking and communications, and instrument calibration, grooming, and alignment (CG&A) completed with data products available from the ARM Data Archive by the Operational Start Date milestone.

  15. Converging clinical and engineering research on neurorehabilitation

    CERN Document Server

    Torricelli, Diego; Pajaro, Marta

    2013-01-01

    Restoring human motor and cognitive function has been a fascinating research area during the last century. Interfacing the human nervous system with electro-mechanical rehabilitation machines is facing its crucial passage from research to clinical practice, enhancing the potentiality of therapists, clinicians and researchers to rehabilitate, diagnose and generate knowledge. The 2012 International Conference on Neurorehabilitation (ICNR2012, www.icnr2012.org) brings together researchers and students from the fields of Clinical Rehabilitation, Applied Neurophysiology and Biomedical Engineering, covering a wide range of research topics:   · Clinical Impact of Technology · Brain-Computer Interface in Rehabilitation · Neuromotor & Neurosensory modeling and processing · Biomechanics in Rehabilitation · Neural Prostheses in Rehabilitation · Neuro-Robotics in Rehabilitation · Neuromodulation   This Proceedings book includes general contributions from oral and poster sessions, as well as from special sess...

  16. Air Force Engineering Research Initiation Grant Program

    Science.gov (United States)

    1994-06-21

    Wisconsin "Investigation of the Role of Structure in the Dynamic Response of Electrorheological Suspensions" RI-B-92-08 Prof. Yozo Mikata Old Dominion...on a direct output feedback control law. In this study, piezoelectric ceramic elements were used as both actuator and sensor. The rod vibration was... ELECTRORHEOLOGICAL SUSPENSIONS FINAL REPORT Air Force Engineering Research Initiation Grant RI-B-92-07 D. J. Klingenberg Department of Chemical

  17. Aeronautical Research Engineer Milt Thompson computing data

    Science.gov (United States)

    1956-01-01

    Milton O. Thompson was hired as an engineer at the National Advisory Committee for Aeronautics' High-Speed Flight Station (later renamed the National Aeronautics and Space Administration's Dryden Flight Research Center) on March 19, 1956. In 1958 he became a research pilot, but in this photo Milt is working on data from another pilot's research flight. Thompson began flying with the U.S. Navy as a pilot trainee at the age of 19. He subsequently served during World War II, with duty in China and Japan. Following six years of active naval service, he entered the University of Washington, in Seattle, Washington. Milt graduated in 1953 with a Bachelor of Science degree in Engineering. He remained in the Naval Reserves during college, and continued flying--not only naval aircraft but crop dusters and forest-spraying aircraft. After college graduation, Milt became a flight test engineer for the Boeing Aircraft Company in Seattle, where he was employed for two years before coming to the High-Speed Flight Station.

  18. 75 FR 62113 - Board on Coastal Engineering Research

    Science.gov (United States)

    2010-10-07

    ... Department of the Army; Corps of Engineers Board on Coastal Engineering Research AGENCY: Department of the... Committee: Board on Coastal Engineering Research. Date of Meeting: October 25-26, 2010. Place: Atlanta... consonance with the needs of the coastal engineering field and the objectives of the Chief of...

  19. Engineering research, development and technology FY99

    Energy Technology Data Exchange (ETDEWEB)

    Langland, R T

    2000-02-01

    The growth of computer power and connectivity, together with advances in wireless sensing and communication technologies, is transforming the field of complex distributed systems. The ability to deploy large numbers of sensors with a rapid, broadband communication system will enable high-fidelity, near real-time monitoring of complex systems. These technological developments will provide unprecedented insight into the actual performance of engineered and natural environment systems, enable the evolution of many new types of engineered systems for monitoring and detection, and enhance our ability to perform improved and validated large-scale simulations of complex systems. One of the challenges facing engineering is to develop methodologies to exploit the emerging information technologies. Particularly important will be the ability to assimilate measured data into the simulation process in a way which is much more sophisticated than current, primarily ad hoc procedures. The reports contained in this section on the Center for Complex Distributed Systems describe activities related to the integrated engineering of large complex systems. The first three papers describe recent developments for each link of the integrated engineering process for large structural systems. These include (1) the development of model-based signal processing algorithms which will formalize the process of coupling measurements and simulation and provide a rigorous methodology for validation and update of computational models; (2) collaborative efforts with faculty at the University of California at Berkeley on the development of massive simulation models for the earth and large bridge structures; and (3) the development of wireless data acquisition systems which provide a practical means of monitoring large systems like the National Ignition Facility (NIF) optical support structures. These successful developments are coming to a confluence in the next year with applications to NIF structural

  20. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    Energy Technology Data Exchange (ETDEWEB)

    Beres, Christopher M.; Fort, E. Joseph [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States); Boyle, James D. [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)

    2013-07-01

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

  1. Research Support Facility (RSF): Leadership in Building Performance (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-09-01

    This brochure/poster provides information on the features of the Research Support Facility including a detailed illustration of the facility with call outs of energy efficiency and renewable energy technologies. Imagine an office building so energy efficient that its occupants consume only the amount of energy generated by renewable power on the building site. The building, the Research Support Facility (RSF) occupied by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) employees, uses 50% less energy than if it were built to current commercial code and achieves the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED{reg_sign}) Platinum rating. With 19% of the primary energy in the U.S. consumed by commercial buildings, the RSF is changing the way commercial office buildings are designed and built.

  2. Micro-Jet Test Facility for Aerospace Propulsion Engineering Education

    OpenAIRE

    López Juste, Gregorio; Montañés García, José Luis; Velázquez, A.

    2009-01-01

    This paper describes the methodology that has been developed and implemented at the School ofAeronautics (ETSIA) of the Universidad Politecnica de Madrid (UPM) to familiarize aerospaceengineering students with the operation of real complex jet engine systems. This methodology has atwo-pronged approach: students carry out preparatory work by using, first, a gas turbineperformance prediction numerical code; then they validate their assumptions and results on anexperimental test rig. When lookin...

  3. The Atlantic rift in Engineering Education Research Methodology

    DEFF Research Database (Denmark)

    de Graaff, Erik

    2015-01-01

    In Europe educational research branched off from social sciences during the sixties of the last century. Combining theories and methods from pedagogy, sociology and psychology researchers explored the different fields of education, ranging from kindergarten till higher education including...... publishing in the European Journal of Engineering Education, aiming to identify a shift in methods used for engineering education research....... engineering. A revival of engineering education research started in the USA around the turn of the century. Building on the concept of ‘scholarship of teaching’, engineers were challenged to investigate their own role as educators. Since these researchers have their academic background mostly in engineering...

  4. The PIRATE Facility: at the crossroads of research and teaching

    Science.gov (United States)

    Kolb, U.

    2014-12-01

    I describe the Open University-owned 0.43m robotic observatory PIRATE, based in Mallorca. PIRATE is a cost-effective facility contributing to topical astrophysical research and an inspiring platform for distance education students to learn practical science.

  5. Thermal Testing Facilities and Efforts at Dryden Flight Research Center

    Science.gov (United States)

    Holguin, Andrew; Kostyk, Christopher B.

    2010-01-01

    This presentation provides the thermal testing panel discussion with an overview of the thermal test facilities at the Dryden Flight Research Center (DFRC) as well as highlights from the thermal test efforts of the past year. This presentation is a little more in-depth than the corresponding material in the center overview presentation.

  6. Geothermal research at the Puna Facility. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B.

    1986-04-01

    This report consists of a summary of the experiments performed to date at the Puna Geothermal Research Facility on silica in the geothermal fluid from the HGP-A well. Also presented are some results of investigations in commercial applications of the precipitated silica. (ACR)

  7. Gemini Observatory base facility operations: systems engineering process and lessons learned

    Science.gov (United States)

    Serio, Andrew; Cordova, Martin; Arriagada, Gustavo; Adamson, Andy; Close, Madeline; Coulson, Dolores; Nitta, Atsuko; Nunez, Arturo

    2016-08-01

    Gemini North Observatory successfully began nighttime remote operations from the Hilo Base Facility control room in November 2015. The implementation of the Gemini North Base Facility Operations (BFO) products was a great learning experience for many of our employees, including the author of this paper, the BFO Systems Engineer. In this paper we focus on the tailored Systems Engineering processes used for the project, the various software tools used in project support, and finally discuss the lessons learned from the Gemini North implementation. This experience and the lessons learned will be used both to aid our implementation of the Gemini South BFO in 2016, and in future technical projects at Gemini Observatory.

  8. Research progress in liver tissue engineering.

    Science.gov (United States)

    Zhang, Lei; Guan, Zheng; Ye, Jun-Song; Yin, Yan-Feng; Stoltz, Jean-François; de Isla, Natalia

    2017-01-01

    Liver transplantation is the definitive treatment for patients with end-stage liver diseases (ESLD). However, it is hampered by shortage of liver donor. Liver tissue engineering, aiming at fabricating new livers in vitro, provides a potential resolution for donor shortage. Three elements need to be considered in liver tissue engineering: seeding cell resources, scaffolds and bioreactors. Studies have shown potential cell sources as hepatocytes, hepatic cell line, mesenchymal stem cells and others. They need scaffolds with perfect biocompatiblity, suitable micro-structure and appropriate degradation rate, which are essential charateristics for cell attachment, proliferation and secretion in forming extracellular matrix. The most promising scaffolds in research include decellularized whole liver, collagens and biocompatible plastic. The development and function of cells in scaffold need a microenvironment which can provide them with oxygen, nutrition, growth factors, et al. Bioreactor is expected to fulfill these requirements by mimicking the living condition in vivo. Although there is great progress in these three domains, a large gap stays still between their researches and applications. Herein, we summarized the recent development in these three major fields which are indispensable in liver tissue engineering.

  9. Fuzzy information & engineering and operations research & management

    CERN Document Server

    Nasseri, Hadi

    2014-01-01

    Fuzzy Information & Engineering and Operations Research & Management is the monograph from submissions by the 6th International Conference on Fuzzy Information and Engineering (ICFIE2012, Iran) and by the 6th academic conference from Fuzzy Information  Engineering Branch of Operation Research Society of China (FIEBORSC2012, Shenzhen,China). It is  published by Advances in Intelligent and Soft Computing (AISC). We have received more than 300 submissions. Each paper of it has undergone a rigorous review process. Only high-quality papers are included in it containing papers as follows: I.                    Programming and Optimization. II.                 Lattice and Measures. III.               Algebras  and Equation. IV.               Forecasting, Clustering and Recognition. V.     Systems and Algorithm. VI.                 Graph and Network. VII. Others.

  10. Data-driven engineering design research: Opportunities using open data

    DEFF Research Database (Denmark)

    Parraguez Ruiz, Pedro; Maier, Anja

    2017-01-01

    Engineering Design research relies on quantitative and qualitative data to describe design-related phenomena and prescribe improvements for design practice. Given data availability, privacy requirements and other constraints, most empirical data used in Engineering Design research can be describe...

  11. ARM Climate Research Facility Monthly Instrument Report September 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-10-18

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  12. ARM Climate Research Facility Monthly Instrument Report August 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-09-28

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  13. ARM Climate Research Facility Instrumentation Status and Information February 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-03-25

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  14. ARM Climate Research Facility Monthly Instrument Report June 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-07-13

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  15. ARM Climate Research Facility Instrumentation Status and Information December 2009

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2010-12-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  16. ARM Climate Research Facility Instrumentation Status and Information October 2009

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2009-10-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  17. ARM Climate Research Facility Monthly Instrument Report May 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-06-21

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  18. ARM Climate Research Facility Instrumentation Status and Information April 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-05-15

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  19. ARM Climate Research Facility Instrumentation Status and Information March 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-04-19

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  20. ARM Climate Research Facility Instrumentation Status and Information January 2010

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2010-02-28

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  1. ARM Climate Research Facility Monthly Instrument Report July 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-08-18

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  2. Data Validation in the AEDC Engine Test Facility

    Science.gov (United States)

    2010-02-01

    TESTED RPR OUT OF TOLERANCE IF KRPRD = 1 KRPRN SETTING NEGATIVE RPR IF KRPRN = 1 KTPLSP TPL SPREAD OUT OF TOLERANCE IF KTPLSP = 1 KP2ST P2 STABILITY...DIFFERENCE BETWEEN AS-TESTED AND DESIRED RPR , % TPLSPD INLET PLENUM TEMPERATURE SPREAD, o F P2STBD ENGINE INLET TOTAL PRESSURE STABILITY, LBF/IN2...High out of tolerance from desired value 7,8 RPRTOL RPR , RPRD Checks as-tested RPR for Low or High out of tolerance from desired value 9

  3. Aerothermodynamic analysis of a Coanda/Refraction jet engine test facility.

    OpenAIRE

    Maraoui, André

    1988-01-01

    Approved for public release; distribution is unlimited A computer model of the Coanda Refraction Jet Engine Test Cell facility was developed using the PHOENICS computer code. The PIIOENICS code was utilized to determine the steady state aerothermal characteristics of the test cell during the testing of an E404 gas turbine engine with afterburner in operation. Computer generated aerothermodynamic field variables of pressure, velocity and temperature parameters were compared t...

  4. Design characteristics and requirements of irradiation holes for research reactor experimental facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol; Lee, B. C.; Chae, H. T.; Lee, C. S.; Seo, C. G

    2003-07-01

    In order to be helpful for the design of a new research reactor with high performance, are summarized the applications of research reactors in various fields and the design characteristics of experimental facility such as vertical irradiation holes and beam tubes. Basic requirements of such experimental facilities are also described. Research reactor has been widely utilized in various fields such as industry, engineering, medicine, life science, environment etc., and now the application fields are gradually being expanded together with the development of technology. Looking into the research reactors which are recently constructed or in plan, it seems that to develop a multi-purpose research reactor with intensive neutron beam research capability has become tendency. In the layout of the experimental facilities, the number and configuration of irradiation and beam holes should be optimized to meet required test conditions such as neutron flux at the early design stage. But, basically high neutron flux is required to perform experiments efficiently. In this aspect, neutron flux is regarded as one of important parameters to judge the degree of research reactor performance. One of main information for a new research reactor design is utilization demands and requirements of experimental holes. So basic requirements which should be considered in a new research reactor design were summarized from the survey of experimental facilities characteristics of various research reactors with around 20 MW thermal power and the experiences of HANARO utilization. Also is suggested an example of the requirements of experimental holes such as size, number and neutron flux, which are thought as minimum, in a new research reactor for exporting to developing countries such as Vietnam.

  5. A study on the direct use of spent PWR fuel in CANDU reactors. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Soo; Lee, Jae Sul; Choi, Jong Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This report summarizes the second year progress of phase II of DUPIC program which aims to verify experimentally the feasibility of direct use of spent PWR fuel in CANDU reactors. The project is to provide the experimental facilities and technologies that are required to perform the DUPIC experiment. As an early part of the project, engineering analysis of those facilities and construction of mock-up facility are described. Another scope of the project is to assess the DUPIC fuel cycle system and facilitate international cooperation. The progresses in this scope of work made during the fiscal year are also summarized in the report. 38 figs, 44 tabs, 8 refs. (Author).

  6. Environmental surveillance for Waste Management Facilities at the Idaho National Engineering Laboratory. Annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Wright, K.C.; Wilhelmsen, R.N.; Borsella, B.W.; Miles, M.

    1995-08-01

    This report describes calendar year 1994 environmental surveillance activities of Environmental Monitoring of Lockheed Martin Idaho Technologies, performed at Waste Management Facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Included are results of the sampling performed by the Radiological Environmental Surveillance Program, INEL Environmental Surveillance Program, and the United States Geological Survey. The primary purposes of monitoring are to evaluate environmental conditions, to provide and interpret data, to ensure compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1994 environmental surveillance data with US Department of Energy derived concentration guides and with data from previous years.

  7. COLLABORATION IN SOUTH AFRICAN ENGINEERING RESEARCH

    Directory of Open Access Journals (Sweden)

    R. Sooryamoorthy

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The production of scientific publications in engineering in South Africa has expanded over the last three decades. Because engineering is an important science, this expansion has implications for the growth and development of the economy. Drawing on a sample range of years of the publications stored in the ISI Web of Knowledge, the engineering publications of South Africans for a 30-year period from 1975-2005 are analysed. This analysis shows that the production of scientific publications in engineering by South African researchers has increased during the analysed period; that the number of researchers per publication has grown; that the number of countries collaborating with South Africa has increased; and that the number of sole-authored papers has decreased. Domestic collaboration (between researchers within South Africa has decreased, while international collaboration has grown considerably. The key objective of the paper is to find out whether the production of publications is related to the level of collaboration, and to see how collaboration can be regressed from other known variables. It is clear from the study that collaboration is a decisive factor in the production of scientific publications in engineering in South Africa.

    AFRIKAANSE OPSOMMING Die produksie van wetenskaplike publikasies in ingenieurswese in Suid-Afrika het oor die afgelope drie dekades toegeneem. Aangesien ingenieurswese ‘n belangrike wetenskap is, beïnvloed dié toename die groei en ontwikkeling van die ekonomie. Deur na ‘n monster van voormalige publikasies op die “ISI Web of Science” te kyk, is die publikasies in ingenieurswese deur Suid-Afrikaners oor ‘n 30 jaar periode van 1975-2005 geanaliseer. Die analise toon dat die produksie van wetenskaplike publikasies in ingenieurswese deur Suid-Afrikaanse navorsers toegeneem het oor dié tydperk; dat die aantal navorsers per publikasie gegroei het; dat daar ‘n toename was in die

  8. 77 FR 3240 - Board on Coastal Engineering Research

    Science.gov (United States)

    2012-01-23

    ... Engineering Research AGENCY: Department of the Army, DoD. ACTION: Notice of meeting. SUMMARY: In accordance... the following committee meeting: Name of Committee: Board on Coastal Engineering Research. DATES: Date... development of research projects in consonance with the needs of the coastal engineering field and the...

  9. Drastic reformation of Electrical and Electronics Engineering Laboratory(Researches)

    OpenAIRE

    青柳,稔; Minoru, Aoyagi

    2016-01-01

    The Department of Electrical and Electronic Engineering opened in 1978, as the Department of Electrical Engineering. In 1987, the Department of Electrical Engineering was renamed the Department of Electrical and Electronic Engineering. The Department of Electrical and Electronic Engineering has conducted basic educations and studies on electric and electronic engineering. In this paper, I will introduce an overview of recent researches and educations of the Department of Ele ctrical and Elect...

  10. Earthquake Engineering Research Center: 25th anniversry edition

    Science.gov (United States)

    1993-10-01

    The Earthquake Engineering Research Center exists to conduct research and develop technical information in all areas pertaining to earthquake engineering, including strong ground motion and ground failure, response of natural and manmade structures to earthquakes, design of structures to resist earthquakes, development of new systems for earthquake protection, and development of architectural and public policy aspects of earthquake engineering. The annual report for 1992-93 presents information on: Current Research Programs; Contracts and Grants; Public Service Program; National Information Service for Earthquake Engineering; Core Administration; Committees of the Earthquake Engineering Research Center; Research Participants - Faculty; and Research Participants - Students.

  11. BALU: Largest autoclave research facility in the world

    Directory of Open Access Journals (Sweden)

    Hakan Ucan

    2016-03-01

    Full Text Available Among the large-scale facilities operated at the Center for Lightweight-Production-Technology of the German Aerospace Center in Stade BALU is the world's largest research autoclave. With a loading length of 20m and a loading diameter of 5.8 m the main objective of the facility is the optimization of the curing process operated by components made of carbon fiber on an industrial scale. For this reason, a novel dynamic autoclaving control has been developed that is characterized by peripheral devices to expend the performance of the facility for differential applications, by sensing systems to detect the component state throughout the curing process and by a feedback system, which is capable to intervene into the running autoclave process.

  12. Summaries of FY 1997 engineering research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This report documents the Basic Energy Sciences (BES) Engineering Research Program for fiscal year 1997, it provides a summary for each of the program projects in addition to a brief program overview. The report is intended to provide staff of Congressional committees, other executive departments, and other DOE offices with substantive program information so as to facilitate governmental overview and coordination of Federal research programs. Of equal importance, its availability facilitates communication of program information to interested research engineers and scientists. The individual project summaries follow the program overview. The summaries are ordered alphabetically by name of institution; the table of contents lists all the institutions at which projects were sponsored in fiscal year 1997. Each project entry begins with an institutional-departmental heading. The names of investigators are listed immediately below the title. The funding level for fiscal year 1997 appears to the right of address. The summary description of the project completes the entry. A separate index of Principal Investigators includes phone number, fax number and e-main address, where available.

  13. Sustainability in facilities management: an overview of current research

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Sarasoja, Anna-Liisa; Ramskov Galamba, Kirsten

    2016-01-01

    the emerging sub-discipline of sustainable facilities management (SFM) on research, an overview of current studies is needed. The purpose of this literature review is to provide exactly this overview. Design/methodology/approach: This article identifies and examines current research studies on SFM through...... indicated that the current research varies in focus, methodology and application of theory, and it was concluded that the current research primary addresses environmental sustainability, whereas the current research which takes an integrated strategic approach to SFM is limited. The article includes lists...... of reviewed journals and articles to support the further development of SFM in research and practice. Research limitations/implications: The literature review includes literature from 2007 to 2012, to manage the analytical process within the project period. However, with the current categorisation...

  14. Implementation Plans for a Systems Microbiology and Extremophile Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, H. S.

    2009-04-20

    solve DOE problems. Recent advances in whole-genome sequencing for a variety of organisms and improvements in high-throughput instrumentation have contributed to a rapid transition of the biological research paradigm towards understanding biology at a systems level. As a result, biology is evolving from a descriptive to a quantitative, ultimately predictive science where the ability to collect and productively use large amounts of biological data is crucial. Understanding how the ensemble of proteins in cells gives rise to biological outcomes is fundamental to systems biology. These advances will require new technologies and approaches to measure and track the temporal and spatial disposition of proteins in cells and how networks of proteins and other regulatory molecules give rise to specific activities. The DOE has a strong interest in promoting the application of systems biology to understanding microbial function and this comprises a major focus of its Genomics:GTL program. A major problem in pursuing what has been termed “systems microbiology” is the lack of the facilities and infrastructure for conducting this new style of research. To solve this problem, the Genomics:GTL program has funded a number of large-scale research centers focused on either mission-oriented outcomes, such as bioenergy, or basic technologies, such as gene sequencing, high-throughput proteomics or the identification of protein complexes. Although these centers generate data that will be useful to the research community, their scientific goals are relatively narrow and are not designed to accommodate the general community need for advanced capabilities for systems microbiology research.

  15. Tissue Engineering of Cartilage on Ground-Based Facilities

    Science.gov (United States)

    Aleshcheva, Ganna; Bauer, Johann; Hemmersbach, Ruth; Egli, Marcel; Wehland, Markus; Grimm, Daniela

    2016-06-01

    Investigations under simulated microgravity offer the opportunity for a better understanding of the influence of altered gravity on cells and the scaffold-free three-dimensional (3D) tissue formation. To investigate the short-term influence, human chondrocytes were cultivated for 2 h, 4 h, 16 h, and 24 h on a 2D Fast-Rotating Clinostat (FRC) in DMEM/F-12 medium supplemented with 10 % FCS. We detected holes in the vimentin network, perinuclear accumulations of vimentin after 2 h, and changes in the chondrocytes shape visualised by F-actin staining after 4 h of FRC-exposure. Scaffold-free cultivation of chondrocytes for 7 d on the Random Positioning Machine (RPM), the FRC and the Rotating Wall Vessel (RWV) resulted in spheroid formation, a phenomenon already known from spaceflight experiments with chondrocytes (MIR Space Station) and thyroid cancer cells (SimBox/Shenzhou-8 space mission). The experiments enabled by the ESA-CORA-GBF programme gave us an optimal opportunity to study gravity-related cellular processes, validate ground-based facilities for our chosen cell system, and prepare long-term experiments under real microgravity conditions in space

  16. Natural gas for energy and industrial purposes. Cogenizing; Norwegian research facilities; Naturgass til energi- og industriformaal. Kogenering

    Energy Technology Data Exchange (ETDEWEB)

    Knoph, Per Olaf

    2006-07-01

    The presentation surveys the Polytec research facility in Haugesund and some of it's programs on energy efficiency and systems, Co2 and energy source applications. The Cogen plant principle and design is described. Cogenizing with an natural gas fuelled gas engine as an example is presented. Some aspects of energy efficiency and future perspectives are discussed. (tk)

  17. Collaborative Engineering for Research and Development

    Science.gov (United States)

    Davis, Jose M.; Keys, L. Ken; Chen, Injazz J.

    2004-01-01

    Research and development (R&D) organizations are being required to be relevant, to be more application-oriented, and to be partners in the strategic management of the business while meeting the same challenges as the rest of the organization, namely: (1) reduced time to market; (2) reduced cost; (3) improved quality; (4) increased reliability; and (5) increased focus on customer needs. Recent advances in computer technology and the Internet have created a new paradigm of collaborative engineering or collaborative product development (CPD), from which new types of relationships among researchers and their partners have emerged. Research into the applicability and benefits of CPD in a low/no production, R&D, and/or government environment is limited. In addition, the supply chain management (SCM) aspects of these relationships have not been studied. This paper presents research conducted at the NASA Glenn Research Center (GRC) investigating the applicability of CPD and SCM in an R&D organization. The study concentrates on the management and implementation of space research activities at GRC. Results indicate that although the organization is engaged in collaborative relationships that incorporate aspects of SCM, a number of areas, such as development of trust and information sharing merit special attention.

  18. International Space Station Research and Facilities for Life Sciences

    Science.gov (United States)

    Robinson, Julie A.; Ruttley, Tara M.

    2009-01-01

    Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.

  19. Operation and Performance Measurement on Engines in Sea Level Test Facilities

    Science.gov (United States)

    1984-03-01

    operations which may ho performed in order to imorove a % signal ci, change its existing form into another one for the purpose of electrical comnatibility ...facility that allows realistic gas turbine core engine cyclic testing with fully instrumented components. This corporate funded Low Cycle Fatigue

  20. Design strategies for the International Space University's variable gravity research facility

    Science.gov (United States)

    Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

    1990-01-01

    A variable gravity research facility named 'Newton' was designed by 58 students from 13 countries at the International Space University's 1989 summer session at the Universite Louis Pasteur, Strasbourge, France. The project was comprehensive in scope, including a political and legal foundation for international cooperation, development and financing; technical, science and engineering issues; architectural design; plausible schedules; and operations, crew issues and maintenance. Since log-term exposure to zero gravity is known to be harmful to the human body, the main goal was to design a unique variable gravity research facility which would find a practical solution to this problem, permitting a manned mission to Mars. The facility would not duplicate other space-based facilities and would provide the flexibility for examining a number of gravity levels, including lunar and Martian gravities. Major design alternatives included a truss versus a tether based system which also involved the question of docking while spinning or despinning to dock. These design issues are described. The relative advantages or disadvantages are discussed, including comments on the necessary research and technology development required for each.

  1. Hypergravity Facilities in the ESA Ground-Based Facility Program - Current Research Activities and Future Tasks

    Science.gov (United States)

    Frett, Timo; Petrat, Guido; W. A. van Loon, Jack J.; Hemmersbach, Ruth; Anken, Ralf

    2016-06-01

    Research on Artificial Gravity (AG) created by linear acceleration or centrifugation has a long history and could significantly contribute to realize long-term human spaceflight in the future. Employing centrifuges plays a prominent role in human physiology and gravitational biology. This article gives a short review about the background of Artificial Gravity with respect to hypergravity (including partial gravity) and provides information about actual ESA ground-based facilities for research on a variety of biosystems such as cells, plants, animals or, particularly, humans.

  2. Hardware Development Process for Human Research Facility Applications

    Science.gov (United States)

    Bauer, Liz

    2000-01-01

    The simple goal of the Human Research Facility (HRF) is to conduct human research experiments on the International Space Station (ISS) astronauts during long-duration missions. This is accomplished by providing integration and operation of the necessary hardware and software capabilities. A typical hardware development flow consists of five stages: functional inputs and requirements definition, market research, design life cycle through hardware delivery, crew training, and mission support. The purpose of this presentation is to guide the audience through the early hardware development process: requirement definition through selecting a development path. Specific HRF equipment is used to illustrate the hardware development paths. The source of hardware requirements is the science community and HRF program. The HRF Science Working Group, consisting of SCientists from various medical disciplines, defined a basic set of equipment with functional requirements. This established the performance requirements of the hardware. HRF program requirements focus on making the hardware safe and operational in a space environment. This includes structural, thermal, human factors, and material requirements. Science and HRF program requirements are defined in a hardware requirements document which includes verification methods. Once the hardware is fabricated, requirements are verified by inspection, test, analysis, or demonstration. All data is compiled and reviewed to certify the hardware for flight. Obviously, the basis for all hardware development activities is requirement definition. Full and complete requirement definition is ideal prior to initiating the hardware development. However, this is generally not the case, but the hardware team typically has functional inputs as a guide. The first step is for engineers to conduct market research based on the functional inputs provided by scientists. CommerCially available products are evaluated against the science requirements as

  3. A human factors engineering evaluation of the Multi-Function Waste Tank Facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Donohoo, D.T. [Pacific Northwest Lab., Richland, WA (United States); Sarver, T.L. [ARES Corp., San Francisco, CA (United States)

    1995-06-05

    This report documents the methods and results of a human factors engineering (HFE) review conducted on the Multi-Function Waste Tank Facility (MWTF), Westinghouse Hanford Company (WHC) Project 236A, to be constructed at the U.S. Department of Energy (DOE) facility at Hanford, Washington. This HFE analysis of the MWTF was initiated by WHC to assess how well the current facility and equipment design satisfies the needs of its operations and maintenance staff and other potential occupants, and to identify areas of the design that could benefit from improving the human interfaces at the facility. Safe and effective operations, including maintenance, is a primary goal for the MWTF. Realization of this goal requires that the MWTF facility, equipment, and operations be designed in a manner that is consistent with the abilities and limitations of its operating personnel. As a consequence, HFE principles should be applied to the MWTF design, construction, its operating procedures, and its training. The HFE review was focused on the 200-West Area facility as the design is further along than that of the 200-East Area. The review captured, to the greatest extent feasible at this stage of design, all aspects of the facility activities and included the major topics generally associated with HFE (e.g., communication, working environment). Lessons learned from the review of the 200 West facility will be extrapolated to the 200-East Area, as well as generalized to the Hanford Site.

  4. Recommendations for Health Monitoring and Reporting for Zebrafish Research Facilities.

    Science.gov (United States)

    Collymore, Chereen; Crim, Marcus J; Lieggi, Christine

    2016-07-01

    The presence of subclinical infection or clinical disease in laboratory zebrafish may have a significant impact on research results, animal health and welfare, and transfer of animals between institutions. As use of zebrafish as a model of disease increases, a harmonized method for monitoring and reporting the health status of animals will facilitate the transfer of animals, allow institutions to exclude diseases that may negatively impact their research programs, and improve animal health and welfare. All zebrafish facilities should implement a health monitoring program. In this study, we review important aspects of a health monitoring program, including choice of agents, samples for testing, available testing methodologies, housing and husbandry, cost, test subjects, and a harmonized method for reporting results. Facilities may use these recommendations to implement their own health monitoring program.

  5. ARM Climate Research Facility Quarterly Value-Added Product Report

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, Chitra

    2014-01-14

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  6. Basic Design of the Cold Neutron Research Facility in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hark Rho; Lee, K. H.; Kim, Y. K. (and others)

    2005-09-15

    The HANARO Cold Neutron Research Facility (CNRF) Project has been embarked in July 2003. The CNRF project has selected as one of the radiation technology development project by National Science and Technology Committee in June 2002. In this report, the output of the second project year is summarized as a basic design of cold neutron source and related systems, neutron guide, and neutron scattering instruments.

  7. ARM Climate Research Facility Quarterly Ingest Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Koontz, A. [DOE ARM Climate Research Facility, Washington, DC (United States); Sivaraman, C. [DOE ARM Climate Research Facility, Washington, DC (United States)

    2016-10-01

    The purpose of this report is to provide a concise status update for ingests maintained by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The report is divided into the following sections: (1) new ingests for which development has begun, (2) progress on existing ingests, (3) future ingests that have been recently approved, (4) other work that leads to an ingest, and (5) top requested ingests from the ARM Data Archive. New information is highlighted in blue text.

  8. ARM Climate Research Facility Quarterly Ingest Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Koontz, A. [ARM Climate Reesearch Facility, Washington, DC (United States); Sivaraman, C. [ARM Climate Reesearch Facility, Washington, DC (United States)

    2016-07-01

    The purpose of this report is to provide a concise status update for ingests maintained by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The report is divided into the following sections: (1) new ingests for which development has begun, (2) progress on existing ingests, (3) future ingests that have been recently approved, (4) other work that leads to an ingest, and (5) top requested ingests from the ARM Data Archive. New information is highlighted in blue text.

  9. ARM Climate Research Facility Quarterly Value-Added Product Report

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, Chitra

    2013-07-31

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  10. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    LR Roeder

    2007-12-01

    This annual report describes the purpose and structure of the program, and presents key accomplishments in 2007. Notable achievements include: • Successful review of the ACRF as a user facility by the DOE Biological and Environmental Research Advisory Committee. The subcommittee reinforced the importance of the scientific impacts of this facility, and its value for the international research community. • Leadership of the Cloud Land Surface Interaction Campaign. This multi-agency, interdisciplinary field campaign involved enhanced surface instrumentation at the ACRF Southern Great Plains site and, in concert with the Cumulus Humilis Aerosol Processing Study sponsored by the DOE Atmospheric Science Program, coordination of nine aircraft through the ARM Aerial Vehicles Program. • Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors to the site. • Key advancements in the representation of radiative transfer in weather forecast models from the European Centre for Medium-Range Weather Forecasts. • Development of several new enhanced data sets, ranging from best estimate surface radiation measurements from multiple sensors at all ACRF sites to the extension of time-height cloud occurrence profiles to Niamey, Niger, Africa. • Publication of three research papers in a single issue (February 2007) of the Bulletin of the American Meteorological Society.

  11. Agency Data on User Facilities

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the Aerospace Technical Facility Inventory is to facilitate the sharing of specialized capabilities within the aerospace research/engineering...

  12. Testing of the Engineering Model Electrical Power Control Unit for the Fluids and Combustion Facility

    Science.gov (United States)

    Kimnach, Greg L.; Lebron, Ramon C.; Fox, David A.

    1999-01-01

    The John H. Glenn Research Center at Lewis Field (GRC) in Cleveland, OH and the Sundstrand Corporation in Rockford, IL have designed and developed an Engineering Model (EM) Electrical Power Control Unit (EPCU) for the Fluids Combustion Facility, (FCF) experiments to be flown on the International Space Station (ISS). The EPCU will be used as the power interface to the ISS power distribution system for the FCF's space experiments'test and telemetry hardware. Furthermore. it is proposed to be the common power interface for all experiments. The EPCU is a three kilowatt 12OVdc-to-28Vdc converter utilizing three independent Power Converter Units (PCUs), each rated at 1kWe (36Adc @ 28Vdc) which are paralleled and synchronized. Each converter may be fed from one of two ISS power channels. The 28Vdc loads are connected to the EPCU output via 48 solid-state and current-limiting switches, rated at 4Adc each. These switches may be paralleled to supply any given load up to the 108Adc normal operational limit of the paralleled converters. The EPCU was designed in this manner to maximize allocated-power utilization. to shed loads autonomously, to provide fault tolerance. and to provide a flexible power converter and control module to meet various ISS load demands. Tests of the EPCU in the Power Systems Facility testbed at GRC reveal that the overall converted-power efficiency, is approximately 89% with a nominal-input voltage of 12OVdc and a total load in the range of 4O% to 110% rated 28Vdc load. (The PCUs alone have an efficiency of approximately 94.5%). Furthermore, the EM unit passed all flight-qualification level (and beyond) vibration tests, passed ISS EMI (conducted, radiated. and susceptibility) requirements. successfully operated for extended periods in a thermal/vacuum chamber, was integrated with a proto-flight experiment and passed all stability and functional requirements.

  13. Engineering Task Plan for the Integrity Assessment Examination of Double Contained Receiver Tanks (DCRT) Catch Tanks and Ancillary facilities

    Energy Technology Data Exchange (ETDEWEB)

    BECKER, D.L.

    2000-05-23

    This Engineering Task Plan (ETP) presents the integrity assessment examination of three DCRTs, seven catch tanks, and two ancillary facilities located in the 200 East and West Areas of the Hanford Site. The integrity assessment examinations, as described in this ETP, will provide the necessary information to enable the independently qualified registered professional engineer (IQRPE) to assess the condition and integrity of these facilities. The plan is consistent with the Double-Shell Tank Waste Transfer Facilities Integrity Assessment Plan.

  14. Human subject research for engineers a practical guide

    CERN Document Server

    de Winter, Joost C F

    2017-01-01

    This Brief introduces engineers to the main principles in ethics, research design, statistics, and publishing of human subject research. In recent years, engineering has become strongly connected to disciplines such as biology, medicine, and psychology. Often, engineers (and engineering students) are expected to perform human subject research. Typical human subject research topics conducted by engineers include human-computer interaction (e.g., evaluating the usability of software), exoskeletons, virtual reality, teleoperation, modelling of human behaviour and decision making (often within the framework of ‘big data’ research), product evaluation, biometrics, behavioural tracking (e.g., of work and travel patterns, or mobile phone use), transport and planning (e.g., an analysis of flows or safety issues), etc. Thus, it can be said that knowledge on how to do human subject research is indispensable for a substantial portion of engineers. Engineers are generally well trained in calculus and mechanics, but m...

  15. Yearbook facility engineering 2009. Facility engineering for electric power grids; Jahrbuch Anlagentechnik 2009. Anlagentechnik fuer elektrische Verteilungsnetze

    Energy Technology Data Exchange (ETDEWEB)

    Cichowski, Rolf Ruediger (ed.)

    2009-07-01

    The strong changes in the energy market - e.g. deregulation, the influence of the Bundesnetzagentur, globalisation of new technologies, constant issueing and adaptation of standards, require more and deeper knowledge than ever before. Issues like energy efficiency and utilisation of renewable energy sources not only govern public discussions but have also created new, variable professions which challenge experts of energy engineering. The yearbook provides an insight into specific issues, e.g. a calendar of events, trade fairs, product recommendations, services, and further hints for practicians. (orig.) [German] Durch die starken Veraenderungen im Energiemarkt, wie die Liberalisierung, die Einflussnahme auf die Gestaltung der Energieversorgung durch die Bundesnetzagentur, die Globalisierung, die neuen Techniken und damit staendige Anpassungen der Normen bzw. Bewaeltigung neuer Normen durch die Fachleute, nimmt die Vielfalt und der Umfang an notwendigen Kenntnissen staendig zu. Themen wie Energieeffizienz und Nutzung regenerativer Energien bestimmen nicht nur die oeffentliche Diskussion, sondern schlagen sich auch in neuen und sich aendernden beruflichen Taetigkeiten nieder. Dadurch sind die Fachleute der Energietechnik ausserordentlich herausgefordert. Zusaetzlich bietet das Jahrbuch spezifische Themen zu den jeweiligen Jahren, wie Kalendarium, Veranstaltungshinweise, Messen, Produktempfehlungen, Dienstleistungen und weitere Tipps fuer Praktiker. (orig.)

  16. Tracing Scientific Facilities through the Research Literature Using Persistent Identifiers

    Science.gov (United States)

    Mayernik, M. S.; Maull, K. E.

    2016-12-01

    Tracing persistent identifiers to their source publications is an easy task when authors use them, since it is a simple matter of matching the persistent identifier to the specific text string of the identifier. However, trying to understand if a publication uses the resource behind an identifier when such identifier is not referenced explicitly is a harder task. In this research, we explore the effectiveness of alternative strategies of associating publications with uses of the resource referenced by an identifier when it may not be explicit. This project is explored within the context of the NCAR supercomputer, where we are broadly interesting in the science that can be traced to the usage of the NCAR supercomputing facility, by way of the peer-reviewed research publications that utilize and reference it. In this project we explore several ways of drawing linkages between publications and the NCAR supercomputing resources. Identifying and compiling peer-reviewed publications related to NCAR supercomputer usage are explored via three sources: 1) User-supplied publications gathered through a community survey, 2) publications that were identified via manual searching of the Google scholar search index, and 3) publications associated with National Science Foundation (NSF) grants extracted from a public NSF database. These three sources represent three styles of collecting information about publications that likely imply usage of the NCAR supercomputing facilities. Each source has strengths and weaknesses, thus our discussion will explore how our publication identification and analysis methods vary in terms of accuracy, reliability, and effort. We will also discuss strategies for enabling more efficient tracing of research impacts of supercomputing facilities going forward through the assignment of a persistent web identifier to the NCAR supercomputer. While this solution has potential to greatly enhance our ability to trace the use of the facility through

  17. Engineering Research Division report on reports: calendar year 1979. [LLL

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C.L.; Johnston, S.J. (eds.)

    1980-03-01

    A bibliography of publications of members of the Engineering Research Division of the Electronics Engineering Department is presented for 1979. Abstracts for 148 publications are included, along with author and keywork indexes. (RWR)

  18. Engineering evaluation/cost analysis for the 233-S Plutonium Concentration Facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The deactivated 233-S Plutonium Concentration Facility (233-S Facility) is located in the 200 Area. The facility has undergone severe degradation due to exposure to extreme weather conditions. A rapid freeze and thaw cycle occurred at the Hanford Site during February 1996, which caused cracking to occur on portions of the building`s roof. This has resulted in significantly infiltration of water into the facility, which provides a pathway for potential release of radioactive material into the environment (air and/or ground). The weather caused several existing cracks in the concrete portions of the structure to lengthen, increasing the potential for failed confinement of the radioactive material in the building. Differential settlement has also occurred, causing portions of the facility to separate from the main building structure thus creating a potential for release of radioactive material t the environment. An expedited removal action is proposed to ensure that a release from the 233-S Facility does not occur. The US Department of Energy (DOE), Richland Operations Office (RL), in cooperation with the EPA, has prepared this Engineering Evaluation/Cost Analysis (EE/CA) pursuant to CERCLA. Based on the evaluation, RL has determined that hazardous substances in the 233-S Facility may present a potential threat to human health and/or the environment, and that an expedited removal action is warranted. The purpose of the EE/CA is to provide the framework for the evaluation and selection of a technology from a viable set of alternatives for a removal action.

  19. Capsule review of the DOE research and development and field facilities

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses, and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)

  20. Psychometric model for safety culture assessment in nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, C.S. do, E-mail: claudio.souza@ctmsp.mar.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), Av. Professor Lineu Prestes 2468, 05508-000 São Paulo, SP (Brazil); Andrade, D.A., E-mail: delvonei@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil); Mesquita, R.N. de, E-mail: rnavarro@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil)

    2017-04-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha

  1. Savannah River Plant, Project 8980: Engineering and design history of power and electrical facilities. Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    1957-01-01

    This section of the Engineering-and Design History presents a comprehensive account of the planning and extensive evaluation of the problems involved in reaching basic decisions for the design and installation of power facilities at the Savannah River Plant. The problems were complicated by the urgency of Pro. viding early start-up of facilities at a time when critical material shortages were acute, combined with basic requirements for reliable operation and unusual degrees of flexibility to meet a variety of production demands. Part I describes in detail the steam and water facilities, alternative schemes, and other considerations which were evaluated as a prelude to the final design of equipment and facilities. Included are discussions relating to steam boiler installations, electric power generation, diesel engine plants, mater supply for cooling, process and domestic use, and the numerous water treatment procedures employed for specific application. A comprehensive description of the development and design of electric power facilities is presented in Part II of this volume.

  2. Armstrong Flight Research Center Research Technology and Engineering Report 2015

    Science.gov (United States)

    Voracek, David F.

    2016-01-01

    I am honored to endorse the 2015 Neil A. Armstrong Flight Research Center’s Research, Technology, and Engineering Report. The talented researchers, engineers, and scientists at Armstrong are continuing a long, rich legacy of creating innovative approaches to solving some of the difficult problems and challenges facing NASA and the aerospace community.Projects at NASA Armstrong advance technologies that will improve aerodynamic efficiency, increase fuel economy, reduce emissions and aircraft noise, and enable the integration of unmanned aircraft into the national airspace. The work represented in this report highlights the Center’s agility to develop technologies supporting each of NASA’s core missions and, more importantly, technologies that are preparing us for the future of aviation and space exploration.We are excited about our role in NASA’s mission to develop transformative aviation capabilities and open new markets for industry. One of our key strengths is the ability to rapidly move emerging techniques and technologies into flight evaluation so that we can quickly identify their strengths, shortcomings, and potential applications.This report presents a brief summary of the technology work of the Center. It also contains contact information for the associated technologists responsible for the work. Don’t hesitate to contact them for more information or for collaboration ideas.

  3. Preliminary test results from the CELSS Test Facility Engineering Development Unit

    Science.gov (United States)

    Kliss, Mark H.; Macelroy, R. D.; Blackwell, C. C.; Borchers, B. A.; Drews, M. E.; Longabaugh, J. R.; Yendler, B. S.; Zografos, A. I.

    1994-01-01

    As part of the NASA Controlled Ecological Life Support System (CELSS) Program, a CELSS Test Facility (CTF) is being planned for installation on the Space Station. The CTF will be used to provide data on the productivity and efficiency of a variety of CELSS higher plant crops grown in the microgravity environment of the Space Station. Tight environmental control will be maintained while data on gas exchange rates and biomass accumulation rates are collected. In order to obtain an early realistic determination of the subsystem and system requirements necessary to provide the environmental conditions specified for CTF crop productivity experiments, an Engineering Development Unit (EDU) has been designed, constructed and is in the process of subsystem and system testing at NASA Ames Research Center. The EDU is a ground test-bed which will be used to characterize the integrated performance of major subsystem technologies, to evaluate hardware candidates and control strategies required for the CTF, and to further define the ability to meet CTF requirements within present Space Station constraints. This paper reviews the functional requirements for the EDU, and focuses on the performance evaluation and test results of the various subsystems. Preliminary integrated performance results and control system operation are addressed, and plans for future science and technology testing are discussed.

  4. Cost calculations for decommissioning and dismantling of nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I. (Studsvik Nuclear AB (Sweden)); Backe, S. (Institute for Energy Technology (Norway)); Cato, A.; Lindskog, S. (Swedish Nuclear Power Inspectorate (Sweden)); Efraimsson, H. (Swedish Radiation Protection Authority (Sweden)); Iversen, Klaus (Danish Decommissioning (Denmark)); Salmenhaara, S. (VTT Technical Research Centre of Finland (Finland)); Sjoeblom, R. (Tekedo AB, (Sweden))

    2008-07-15

    Today, it is recommended that planning of decommission should form an integral part of the activities over the life cycle of a nuclear facility (planning, building and operation), but it was only in the nineteen seventies that the waste issue really surface. Actually, the IAEA guidelines on decommissioning have been issued as recently as over the last ten years, and international advice on finance of decommissioning is even younger. No general international guideline on cost calculations exists at present. This implies that cost calculations cannot be performed with any accuracy or credibility without a relatively detailed consideration of the radiological prerequisites. Consequently, any cost estimates based mainly on the particulars of the building structures and installations are likely to be gross underestimations. The present study has come about on initiative by the Swedish Nuclear Power Inspectorate (SKI) and is based on a common need in Denmark, Finland, Norway and Sweden. The content of the report may be briefly summarised as follows. The background covers design and operation prerequisites as well as an overview of the various nuclear research facilities in the four participating countries: Denmark, Finland, Norway and Sweden. The purpose of the work has been to identify, compile and exchange information on facilities and on methodologies for cost calculation with the aim of achieving an 80 % level of confidence. The scope has been as follows: 1) to establish a Nordic network 2) to compile dedicated guidance documents on radiological surveying, technical planning and financial risk identification and assessment 3) to compile and describe techniques for precise cost calculations at early stages 4) to compile plant and other relevant data A separate section is devoted in the report to good practice for the specific purpose of early but precise cost calculations for research facilities, and a separate section is devoted to techniques for assessment of cost

  5. Radiological Characterization and Final Facility Status Report Tritium Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T.B.; Gorman, T.P.

    1996-08-01

    This document contains the specific radiological characterization information on Building 968, the Tritium Research Laboratory (TRL) Complex and Facility. We performed the characterization as outlined in its Radiological Characterization Plan. The Radiological Characterization and Final Facility Status Report (RC&FFSR) provides historic background information on each laboratory within the TRL complex as related to its original and present radiological condition. Along with the work outlined in the Radiological Characterization Plan (RCP), we performed a Radiological Soils Characterization, Radiological and Chemical Characterization of the Waste Water Hold-up System including all drains, and a Radiological Characterization of the Building 968 roof ventilation system. These characterizations will provide the basis for the Sandia National Laboratory, California (SNL/CA) Site Termination Survey .Plan, when appropriate.

  6. Atmospheric Radiation Measurement Climate Research Facility Annual Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    LR Roeder

    2005-11-30

    This annual report describes the purpose and structure of the ARM Climate Research Facility and ARM Science programs and presents key accomplishments in 2006. Noteworthy scientific and infrastructure accomplishments in 2006 include: • Collaborating with the Australian Bureau of Meteorology to lead the Tropical Warm Pool-International Cloud Experiment, a major international field campaign held in Darwin, Australia • Successfully deploying the ARM Mobile Facility in Niger, Africa • Developing the new ARM Aerial Vehicles Program (AVP) to provide airborne measurements • Publishing a new finding on the impacts of aerosols on surface energy budget in polar latitudes • Mitigating a long-standing double-Intertropical Convergence Zone problem in climate models using ARM data and a new cumulus parameterization scheme.

  7. Proceedings of Naval Facilities Engineering Command Ocean Engineering Conference Held at Washington DC on 23-25 September 1969

    Science.gov (United States)

    1969-09-01

    mangement action at the headquarters level. Members of the corrosion research community cannot obviate such mistakes by any amount of research, but...ENGINEERING CONFERENCE COMMITTEE Dr. M. Yachnis NAVFAC 04B4 Chairman D. Potter NAVEAC 04126E Parking and Publications E. Watkins NAIVFAC 04123F Hotel

  8. CAD, 3D modeling, engineering analysis, and prototype experimentation industrial and research applications

    CERN Document Server

    Zheng Li, Jeremy

    2015-01-01

    This succinct book focuses on computer aided design (CAD), 3-D modeling, and engineering analysis and the ways they can be applied effectively in research and industrial sectors including aerospace, defense, automotive, and consumer products. These efficient tools, deployed for R&D in the laboratory and the field, perform efficiently three-dimensional modeling of finished products, render complex geometrical product designs, facilitate structural analysis and optimal product design, produce graphic and engineering drawings, and generate production documentation. Written with an eye toward green energy installations and novel manufacturing facilities, this concise volume enables scientific researchers and engineering professionals to learn design techniques, control existing and complex issues, proficiently use CAD tools, visualize technical fundamentals, and gain analytic and technical skills. This book also: ·       Equips practitioners and researchers to handle powerful tools for engineering desi...

  9. New methods of researching healthcare facility users: the nursing workspace

    Directory of Open Access Journals (Sweden)

    Karen Keddy

    2012-10-01

    Full Text Available This study is entitled Embodied Professionalism: The relationship between the physicalnature of nursing work and nursing space. The analysis is based in a critical examination of existing approaches, assumptions, and attitudes in the research literature about who, what, and how to study the person-environment relationship in healthcare facilities. New methods of studying how nurses experience their work, their workplace and the objects in their workspace are needed in order to address important issues of this person-environment relationship. Nursing work is re-conceptualized asembodied professionalism which acknowledges the interconnections between the physical labor ofprofessional nursing work, time, and space. This is a qualitative case study of nursing activities on a surgical unit that are invisible, marginalized, and unaccounted for in the research literature. Instead of studying how nurses’ efficiency and productivity could be increased through design interventions, this study examines the physical nature of nursing work and the physical setting from the nurses’ perspective. Instead of viewing the healthcare facility as solely a place for healing, this approach views the healthcare facility as a place for working. A nurse’s goal can simply be the desire to ‘get the workdone.’ A qualitative research methodology and a mixed method approach is used in this study. The methods include structured interviews, location mapping, photo-documentation, architectural inventories, place-centered behavioral mapping, and focused observations. In order to get a better understanding of how nurses experience their workspace, an image-based visual research method, theexperiential collage, was designed. The findings from using these methods reveal the significant rolethat the physical activities of moving, searching, and recovering play in gaining insights into nurses’ socio-spatial experience of the nursing workspace.

  10. ARM Climate Research Facility: Outreach Tools and Strategies

    Science.gov (United States)

    Roeder, L.; Jundt, R.

    2009-12-01

    Sponsored by the Department of Energy, the ARM Climate Research Facility is a global scientific user facility for the study of climate change. To publicize progress and achievements and to reach new users, the ACRF uses a variety of Web 2.0 tools and strategies that build off of the program’s comprehensive and well established News Center (www.arm.gov/news). These strategies include: an RSS subscription service for specific news categories; an email “newsletter” distribution to the user community that compiles the latest News Center updates into a short summary with links; and a Facebook page that pulls information from the News Center and links to relevant information in other online venues, including those of our collaborators. The ACRF also interacts with users through field campaign blogs, like Discovery Channel’s EarthLive, to share research experiences from the field. Increasingly, field campaign Wikis are established to help ACRF researchers collaborate during the planning and implementation phases of their field studies and include easy to use logs and image libraries to help record the campaigns. This vital reference information is used in developing outreach material that is shared in highlights, news, and Facebook. Other Web 2.0 tools that ACRF uses include Google Maps to help users visualize facility locations and aircraft flight patterns. Easy-to-use comment boxes are also available on many of the data-related web pages on www.arm.gov to encourage feedback. To provide additional opportunities for increased interaction with the public and user community, future Web 2.0 plans under consideration for ACRF include: evaluating field campaigns for Twitter and microblogging opportunities, adding public discussion forums to research highlight web pages, moving existing photos into albums on FlickR or Facebook, and building online video archives through YouTube.

  11. Plasma facilities measuring equipment and high-voltage systems for basic research and technology

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, M.; Pawlowicz, W. [eds.] [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    The report presents short description and the main technical data of various devices and systems designed and constructed at the Thermonuclear Research Dept. of the Soltan Institute for Nuclear Studies (SINS) in Swierk n. Warsaw, Poland. Different Plasma-Focus (PF) facilities of energy ranging from several kJ to 360 kJ, as well as the Ion Implosion Facilities of energy equal to 400 kJ, are shortly described. We present different cameras and analyzers used for studies of ions and X-rays. We also describe e.g. IONOTRONs used for material engineering. High-Voltage Pulse Generators developed for the voltage range from 40 kV to 2.4 MV, various Data Acquisition Systems, and special Vacuum Stands. Some selected technical units used in high-voltage systems are also presented. (author). 32 figs.

  12. Security Research on Engineering Database System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Engine engineering database system is an oriented C AD applied database management system that has the capability managing distributed data. The paper discusses the security issue of the engine engineering database management system (EDBMS). Through studying and analyzing the database security, to draw a series of securi ty rules, which reach B1, level security standard. Which includes discretionary access control (DAC), mandatory access control (MAC) and audit. The EDBMS implem ents functions of DAC, ...

  13. Biomedical engineering research at DOE national labs

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-03-01

    Biomedical Engineering is the application of principles of physics, chemistry, nd engineering to problems of human health. The National Laboratories of the U.S. Department of Energy have been leaders in this scientific field since 1947. This inventory of their biomedical engineering projects was compiled in January 1999.

  14. SUPERDUCK Nearshore Processes Experiment: Summary of Studies, CERC (Coastal Engineering Research Facility) Field Research Facility

    Science.gov (United States)

    1988-09-01

    celc its-Il 1 Odeinlrmrk opttes rsece terv~esdea hsfra I .of, aeayadtoa eakcmuain rsec# nterv t$d fsfr Figure 12. Littoral Environment... resonant tuning by the bar under broad-banded wind wave forcing. 49. The offshore wind wave directional array (discussed under Linear Array Wave Gage in

  15. Research and education in thermal and power engineering with support of CFD technology

    OpenAIRE

    Filkoski, Risto; Cekerovska, Marija; Bunjaku, Florent

    2016-01-01

    Advanced mathematical methods offer opportunities for an in‐depth analysis, optimization and examination of various options to increase the overall efficiency of the thermal energy facilities. Computational fluid dynamics (CFD) technique, as a powerful engineering tool, has been extensively used for modelling and investigation of operational behaviour of thermal energy systems. Advanced CFD techniques help researchers in performing research work efficiently and in interpretation of test re...

  16. Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory (PSL): Altitude Investigation

    Science.gov (United States)

    Oliver, Michael J.

    2015-01-01

    The National Aeronautics and Space Administration conducted a full scale ice crystal icing turbofan engine test in the NASA Glenn Research Centers Propulsion Systems Laboratory (PSL) Facility in February 2013. Honeywell Engines supplied the test article, an obsolete, unmodified Lycoming ALF502-R5 turbofan engine serial number LF01 that experienced an un-commanded loss of thrust event while operating at certain high altitude ice crystal icing conditions. These known conditions were duplicated in the PSL for this testing.

  17. The Atlantic rift in Engineering Education Research Methodology

    DEFF Research Database (Denmark)

    de Graaff, Erik

    2015-01-01

    In Europe educational research branched off from social sciences during the sixties of the last century. Combining theories and methods from pedagogy, sociology and psychology researchers explored the different fields of education, ranging from kindergarten till higher education including...... engineering. A revival of engineering education research started in the USA around the turn of the century. Building on the concept of ‘scholarship of teaching’, engineers were challenged to investigate their own role as educators. Since these researchers have their academic background mostly in engineering...... and science, they tend to aim for ‘rigorous research’ according to the natural sciences. Worldwide the engineering education community has recognized the need to blend both the social sciences research approach and rigorous research. This paper explores the variation in research methods used by researchers...

  18. Extending Engineering Practice Research with Shared Qualitative Data

    Science.gov (United States)

    Trevelyan, James

    2016-01-01

    Research on engineering practice is scarce and sharing of qualitative research data can reduce the effort required for an aspiring researcher to obtain enough data from engineering workplaces to draw generalizable conclusions, both qualitative and quantitative. This paper describes how a large shareable qualitative data set on engineering…

  19. 76 FR 44648 - Research, Engineering and Development Advisory Committee

    Science.gov (United States)

    2011-07-26

    ..., DC on July 14, 2011. Paul Fontaine, Director (A), Research & Technology Development. BILLING CODE... Federal Aviation Administration Research, Engineering and Development Advisory Committee Pursuant to... given of a meeting of the FAA Research, Engineering and Development (R,E&D) Advisory Committee....

  20. 76 FR 12404 - Research, Engineering and Development Advisory Committee

    Science.gov (United States)

    2011-03-07

    ..., DC, on February 24, 2011. Paul Fontaine, Director (A), Research & Technology Development. BILLING... Federal Aviation Administration Research, Engineering and Development Advisory Committee Pursuant to... given of a meeting of the FAA Research, Engineering and Development (R,E&D) Advisory Committee....

  1. Congressional hearing reviews NSF major research and facilities projects

    Science.gov (United States)

    Showstack, Randy

    2012-03-01

    An 8 March congressional hearing about the U.S. National Science Foundation's Major Research Equipment and Facilities Construction (NSF MREFC) account focused on fiscal management and accountability of projects in that account and reviewed concerns raised by NSF's Office of Inspector General (OIG). NSF established the MREFC account in 1995 to better plan and manage investments in major equipment and facilities projects, which can cost from tens of millions to hundreds of millions of dollars, and the foundation has funded 17 MREFC projects since then. The Obama administration's proposed fiscal year (FY) 2013 budget includes funding for four MREFC projects: Advanced Laser Gravitational-Wave Observatory (AdvLIGO), Advanced Technology Solar Telescope (ATST), National Ecological Observatory (NEON), and Ocean Observatories Initiative (OOI). The hearing, held by a subcommittee of the House of Representatives' Committee on Science, Space, and Technology, reviewed management oversight throughout the life cycles of MREFC projects and concerns raised in recent OIG reports about the use of budget contingency funds. NSF's February 2012 manual called "Risk management guide for large facilities" states that cost contingency is "that portion of the project budget required to cover `known unknowns,'" such as planning and estimating errors and omissions, minor labor or material price fluctuations, and design developments and changes within the project scope. Committee members acknowledged measures that NSF has made to improve the MREFC oversight process, but they also urged the agency to continue to take steps to ensure better project management.

  2. PIRATE: A Remotely Operable Telescope Facility for Research and Education

    Science.gov (United States)

    Holmes, S.; Kolb, U.; Haswell, C. A.; Burwitz, V.; Lucas, R. J.; Rodriguez, J.; Rolfe, S. M.; Rostron, J.; Barker, J.

    2011-10-01

    We introduce PIRATE, a new remotely operable telescope facility for use in research and education, constructed from off-the-shelf hardware, operated by The Open University. We focus on the PIRATE Mark 1 operational phase, in which PIRATE was equipped with a widely used 0.35 m Schmidt-Cassegrain system (now replaced with a 0.425 m corrected Dall-Kirkham astrograph). Situated at the Observatori Astronòmic de Mallorca, PIRATE is currently used to follow up potential transiting extrasolar planet candidates produced by the SuperWASP North experiment, as well as to hunt for novae in M31 and other nearby galaxies. It is operated by a mixture of commercially available software and proprietary software developed at the Open University. We discuss problems associated with performing precision time-series photometry when using a German Equatorial Mount, investigating the overall performance of such off-the-shelf solutions in both research and teaching applications. We conclude that PIRATE is a cost-effective research facility, and it also provides exciting prospects for undergraduate astronomy. PIRATE has broken new ground in offering practical astronomy education to distance-learning students in their own homes.

  3. A Tether-Based Variable-Gravity Research Facility Concept

    Science.gov (United States)

    Sorensen, Kirk

    2006-01-01

    The recent announcement of a return to the Moon and a mission to Mars has made the question of human response to lower levels of gravity more important. Recent advances in tether technology spurred by NASA s research in MXER tethers has led to a re-examination of the concept of a variable-gravity research facility (xGRF) for human research in low Earth orbit. Breakthroughs in simplified inertial tracking have made it possible to consider eliminating the despun section of previous designs. This, in turn, improves the prospect of a facility based entirely around a tether, with the human module on one end and a countermass on the other. With such a configuration, propellantless spinup and spindown is also possible based on the conservation of angular momentum from a gravity-gradient configuration to a spinning configuration. This not only saves large amounts of propellant but vastly simplifies crew and consumable resupply operations, since these can now be done in a microgravity configuration. The importance of the science to be obtained and the performance improvements in this new design argue strongly for further investigation.

  4. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Design Requirements Document (DRD)

    Science.gov (United States)

    Rigo, H. S.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Bents, D. J.; Hatch, A. M.

    1981-01-01

    A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant.

  5. Cosmic muon flux measurements at the Kimballton Underground Research Facility

    Science.gov (United States)

    Kalousis, L. N.; Guarnaccia, E.; Link, J. M.; Mariani, C.; Pelkey, R.

    2014-08-01

    In this article, the results from a series of muon flux measurements conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ~ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon flux inside the mine as a function of the overburden. The results are in good agreement with muon flux calculations based on analytical models and MUSIC.

  6. Cosmic Muon Flux Measurements at the Kimballton Underground Research Facility

    CERN Document Server

    Kalousis, L N; Link, J M; Mariani, C; Pelkey, R

    2014-01-01

    In this article, the results from a series of muon flux measurements conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ~ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon flux inside the mine as a function of the overburden. The results are in good agreement with muon flux calculations based on analytical models and MUSIC.

  7. Engineer Research and Development Center's Materials Testing Center (MTC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Engineer Research and Development Center's Materials Testing Center (MTC) is committed to quality testing and inspection services that are delivered on time and...

  8. The Use of Web Search Engines in Information Science Research.

    Science.gov (United States)

    Bar-Ilan, Judit

    2004-01-01

    Reviews the literature on the use of Web search engines in information science research, including: ways users interact with Web search engines; social aspects of searching; structure and dynamic nature of the Web; link analysis; other bibliometric applications; characterizing information on the Web; search engine evaluation and improvement; and…

  9. The Use of Underground Research Laboratories to Support Repository Development Programs. A Roadmap for the Underground Research Facilities Network.

    Energy Technology Data Exchange (ETDEWEB)

    MacKinnon, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-26

    Under the auspices of the International Atomic Energy Agency (IAEA), nationally developed underground research laboratories (URLs) and associated research institutions are being offered for use by other nations. These facilities form an Underground Research Facilities (URF) Network for training in and demonstration of waste disposal technologies and the sharing of knowledge and experience related to geologic repository development, research, and engineering. In order to achieve its objectives, the URF Network regularly sponsors workshops and training events related to the knowledge base that is transferable between existing URL programs and to nations with an interest in developing a new URL. This report describes the role of URLs in the context of a general timeline for repository development. This description includes identification of key phases and activities that contribute to repository development as a repository program evolves from an early research and development phase to later phases such as construction, operations, and closure. This information is cast in the form of a matrix with the entries in this matrix forming the basis of the URF Network roadmap that will be used to identify and plan future workshops and training events.

  10. Strategies to Mitigate a Mycobacterium marinum Outbreak in a Zebrafish Research Facility

    Science.gov (United States)

    Snell, Kathy; Mittge, Erika; Melancon, Ellie; Montgomery, Rebecca; McFadden, Marcie; Camoriano, Javier; Kent, Michael L.; Whipps, Christopher M.; Peirce, Judy

    2016-01-01

    Abstract In 2011, the zebrafish research facility at the University of Oregon experienced an outbreak of Mycobacterium marinum that affected both research fish and facility staff. A thorough review of risks to personnel, the zebrafish veterinary care program, and zebrafish husbandry procedures at the research facility followed. In the years since 2011, changes have been implemented throughout the research facility to protect the personnel, the fish colony, and ultimately the continued success of the zebrafish model research program. In this study, we present the history of the outbreak, the changes we implemented, and recommendations to mitigate pathogen outbreaks in zebrafish research facilities. PMID:27351618

  11. International Conference on Research and Innovations in Mechanical Engineering

    CERN Document Server

    Singh, Paramjit; Singh, Harwinder; Brar, Gurinder

    2014-01-01

    This book comprises the proceedings of International Conference on Research and Innovations in Mechanical Engineering (ICRIME 2013) organized by Guru Nanak Dev Engineering College, Ludhiana with support from AICTE, TEQIP, DST and PTU, Jalandhar. This international conference served as a premier forum for communication of new advances and research results in the fields of mechanical engineering. The proceedings reflect the conference’s emphasis on strong methodological approaches and focus on applications within the domain of mechanical engineering. The contents of this volume aim to highlight new theoretical and experimental findings in the fields of mechanical engineering and closely related fields, including interdisciplinary fields such as robotics and mechatronics.

  12. Modern optical diagnostics in engine research

    Science.gov (United States)

    Leipertz, A.; Wensing, M.

    2007-10-01

    Different optical diagnistic techniques are used to gain insight into the single steps forming the functioning chain of the engine combustion process and the complex interplay between these single steps. Examples are given for the application of Mie scattering, laser-induced fluorescence, Raman scattering, CARS and laser-induced incandescence to study diesel engine, SI engine and HCCI combustion processes. The careful adaptation of each optical tool to one part of the engine process makes it possible to get valuable information with minimum change of the process investigated. The paper demonstrates that in addition to conventional engine measurement techniques, a number of different optical techniques must be applied -- and sometimes simultaneously -- to successfully determine the critical parameters of the processes and to investigate their influences on the performance and the quality of real engine combustion.

  13. Screening candidate systems engineers: a research design

    CSIR Research Space (South Africa)

    Goncalves, DP

    2009-07-01

    Full Text Available engineers for coaching. Thus, developing engineers that have sufficient potential can ensure the better allocation of company resources. As previously mentioned, there is also a lead time. If we assume a basic engineering degree and 3 years practical... curiosity Sociable - good communicator Ambitious - hardworking, dedicated, persevering Forward - willing to ask challenging questions, speak mind Innovative - creative, concept generation Self-motivated - achievement motivation, able to motivate...

  14. Professional ethics in biomedical engineering practice and research.

    Science.gov (United States)

    Monzon, Jorge E; Monzon-Wyngaard, Alvaro

    2008-01-01

    This paper discusses some guidelines for use with the accepted fundamental canons of ethics for engineers. We present some rules of practice and professional obligations emerging from these canons. Basic recommendations for engineers dissenting on ethical grounds are also presented. Ethical issues relating to Biomedical Engineering research are illustrated. We mention some cases that could be used to further understanding the ethical implications of biomedical engineering practice.

  15. Brain Cancer in Workers Employed at a Laboratory Research Facility.

    Directory of Open Access Journals (Sweden)

    James J Collins

    Full Text Available An earlier study of research facility workers found more brain cancer deaths than expected, but no workplace exposures were implicated.Adding four additional years of vital-status follow-up, we reassessed the risk of death from brain cancer in the same workforce, including 5,284 workers employed between 1963, when the facility opened, and 2007. We compared the work histories of the brain cancer decedents in relationship to when they died and their ages at death.As in most other studies of laboratory and research workers, we found low rates of total mortality, total cancers, accidents, suicides, and chronic conditions such as heart disease and diabetes. We found no new brain cancer deaths in the four years of additional follow-up. Our best estimate of the brain cancer standardized mortality ratio (SMR was 1.32 (95% confidence interval [95% CI] 0.66-2.37, but the SMR might have been as high as 1.69. Deaths from benign brain tumors and other non-malignant diseases of the nervous system were at or below expected levels.With the addition of four more years of follow-up and in the absence of any new brain cancers, the updated estimate of the risk of brain cancer death is smaller than in the original study. There was no consistent pattern among the work histories of decedents that indicated a common causative exposure.

  16. AMF3 ARM's Research Facility at Oliktok Point Alaska

    Science.gov (United States)

    Helsel, F.; Lucero, D. A.; Ivey, M.; Dexheimer, D.; Hardesty, J.; Roesler, E. L.

    2015-12-01

    Scientific Infrastructure To Support Atmospheric Science And Aerosol Science For The Department Of Energy's Atmospheric Radiation Measurement Programs Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF-3 instruments include: scanning precipitation Radar-cloud radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at AMF3 and the challenges of powering an Arctic site without the use of grid power.

  17. Systems Engineering and Safety Issues in Scientific Facilities Subject to Ionizing Radiations

    Directory of Open Access Journals (Sweden)

    Pierre Bonnal

    2013-10-01

    Full Text Available The conception and development of large- scale scientific facilities emitting ionizing radiations rely more on project management practices in use in the process industry than on systems engineering practices. This paper aims to highlight possible reasons for this present situation and to propose some ways to enhance systems engineering so that the specific radiation safety requirements are considered and integrated in the approach. To do so, we have reviewed lessons learned from the management of large-scale scientific projects and more specifically that of the Large Hadron Collider project at CERN. It is shown that project management and systems engineering practices are complementary and can beneficially be assembled in an integrated and lean managerial framework that grants the appropriate amount of focus to safety and radiation safety aspects.

  18. Systems Engineering and Safety Issues in Scientific Facilities Subject to Ionizing Radiations

    Directory of Open Access Journals (Sweden)

    Pierre Bonnal

    2013-10-01

    Full Text Available The conception and development of large-scale scientific facilities emitting ionizing radiations rely more on project management practices in use in the process industry than on systems engineering practices. This paper aims to highlight possible reasons for this present situation and to propose some ways to enhance systems engineering so that the specific radiation safety requirements are considered and integrated in the approach. To do so, we have reviewed lessons learned from the management of large-scale scientific projects and more specifically that of the Large Hadron Collider project at CERN. It is shown that project management and systems engineering practices are complementary and can beneficially be assembled in an integrated and lean managerial framework that grants the appropriate amount of focus to safety and radiation safety aspects.

  19. SCARF - The Swarm Satellite Constellation Application and Research Facility

    DEFF Research Database (Denmark)

    Olsen, Nils

    2014-01-01

    Swarm, a three-satellite constellation to study the dynamics of the Earth's magnetic field and its interactions with the Earth system, has been launched in November 2013. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution, which...... will bring new insights into the Earth system by improving our understanding of the Earth's interior and environment. In order to take advantage of the unique constellation aspect of Swarm, considerably advanced data analysis tools have been developed. Scientific users will also benefit significantly from...... derived products, the so-called Level-2 products, that take into account the features of the constellation. The Swarm SCARF (Satellite Constellation Application and Research Facility), a consortium of several research institutions, has been established with the goal of deriving Level-2 products...

  20. 2007 Research and Engineering Annual Report

    Science.gov (United States)

    Stoliker, Patrick; Bowers, Albion; Cruciani, Everlyn

    2008-01-01

    Selected research and technology activities at NASA Dryden Flight Research Center are summarized. These following activities exemplify the Center's varied and productive research efforts: Developing a Requirements Development Guide for an Automatic Ground Collision Avoidance System; Digital Terrain Data Compression and Rendering for Automatic Ground Collision Avoidance Systems; Nonlinear Flutter/Limit Cycle Oscillations Prediction Tool; Nonlinear System Identification Using Orthonormal Bases: Application to Aeroelastic/Aeroservoelastic Systems; Critical Aerodynamic Flow Feature Indicators: Towards Application with the Aerostructures Test Wing; Multidisciplinary Design, Analysis, and Optimization Tool Development Using a Genetic Algorithm; Structural Model Tuning Capability in an Object-Oriented Multidisciplinary Design, Analysis, and Optimization Tool; Extension of Ko Straight-Beam Displacement Theory to the Deformed Shape Predictions of Curved Structures; F-15B with Phoenix Missile and Pylon Assembly--Drag Force Estimation; Mass Property Testing of Phoenix Missile Hypersonic Testbed Hardware; ARMD Hypersonics Project Materials and Structures: Testing of Scramjet Thermal Protection System Concepts; High-Temperature Modal Survey of the Ruddervator Subcomponent Test Article; ARMD Hypersonics Project Materials and Structures: C/SiC Ruddervator Subcomponent Test and Analysis Task; Ground Vibration Testing and Model Correlation of the Phoenix Missile Hypersonic Testbed; Phoenix Missile Hypersonic Testbed: Performance Design and Analysis; Crew Exploration Vehicle Launch Abort System-Pad Abort-1 (PA-1) Flight Test; Testing the Orion (Crew Exploration Vehicle) Launch Abort System-Ascent Abort-1 (AA-1) Flight Test; SOFIA Flight-Test Flutter Prediction Methodology; SOFIA Closed-Door Aerodynamic Analyses; SOFIA Handling Qualities Evaluation for Closed-Door Operations; C-17 Support of IRAC Engine Model Development; Current Capabilities and Future Upgrade Plans of the C-17 Data

  1. Cold Neutron Research Facility begins operating at NIST

    Energy Technology Data Exchange (ETDEWEB)

    Zeman, E.J.

    1991-09-01

    Steady-state neutron beams are generally produced by fission in a nuclear reactor, whereas pulsed beams come from spallation neutron sources. Beams from a reactor have a distribution of wavelengths that is roughly Maxwellian, with a peak wavelength that depends on the temperature of the moderator that surrounds the fuel. Cold neutrons can be selected from the low-energy tail of the distribution, but the flux drops as 1/{lambda}{sup 4}. However, by shifting the whole spectrum to longer wavelengths one can dramatically increase the cold neutron flux. This is achieved by replacing part of the core moderator with a cold moderator, or cold source,' such as liquid deuterium (at about 30 K) or D{sub 2}O ice (at about 40 K). Neutrons lose energy to the moderator through collisions, producing a shifted spectrum from which one can select lower-energy neutrons with a roughly ten-fold improvement in the flux. Neutrons exhibit optical behavior such as refraction and total reflection. Thus one can use neutron guides - analogous to optical fibers - to conduct intense beams of neutrons from the reactor into a large experimental hall, dubbed a guide hall,' where background radiation is low. The Cold Neutron Research Facility was finally funded in 1987 and opened its doors this past June. CNRF is located at the 20-MW NIST research reactor, which began continuous operation in 1969. With some foresight, the designers of the original reactor allowed space for the addition of a cryogenic moderator, which is only now being exploited. NIST will develop 10 experimental stations for use by the research science community. Additional help in financing the facility comes from participating research teams made up of groups from industry, academe and government.

  2. CSU's MWV Observatory: A Facility for Research, Education and Outreach

    Science.gov (United States)

    Hood, John; Carpenter, N. D.; McCarty, C. B.; Samford, J. H.; Johnson, M.; Puckett, A. W.; Williams, R. N.; Cruzen, S. T.

    2014-01-01

    The Mead Westvaco Observatory (MWVO), located in Columbus State University's Coca-Cola Space Science Center, is dedicated to education and research in astronomy through hands-on engagement and public participation. The MWVO has recently received funding to upgrade from a 16-inch Meade LX-200 telescope to a PlaneWave CDK 24-inch Corrected Dall-Kirkham Astrograph telescope. This and other technological upgrades will allow this observatory to stream live webcasts for astronomical events, allowing a worldwide public audience to become a part of the growing astronomical community. This poster will explain the upgrades that are currently in progress as well as the results from the current calibrations. The goal of these upgrades is to provide facilities capable of both research-class projects and widespread use in education and public outreach. We will present our initial calibration and tests of the observatory equipment, as well as its use in webcasts of astronomical events, in solar observing through the use of specialized piggy-backed telescopes, and in research into such topics as asteroids, planetary and nebula imaging. We will describe a pilot research project on asteroid orbit refinement and light curves, to be carried out by Columbus State University students. We will also outline many of the K-12 educational and public outreach activities we have designed for these facilities. Support and funding for the acquisition and installation of the new PlaneWave CDK 24 has been provided by the International Museum and Library Services via the Museums for America Award.

  3. A research agenda for academic petroleum engineering programs

    Energy Technology Data Exchange (ETDEWEB)

    Calhoun, J.C. Jr.

    1990-03-31

    The development of a research agenda should be a direct way of portraying the scope of petroleum engineering, of identifying the critical technological issues faced by the profession,of elucidating the gaps between the existing research resources and the needs. and of outlining a program of research through which the petroleum engineering departments can be collectively of maximum service. Such an agenda would be of value to the profession of petroleum engineering, to industry and to government agencies, as well as to the faculty and students of the petroleum engineering departments. The purposes of the activity that led to this report, therefore, were to develop a statement to serve as a beginning research agenda for the petroleum engineering academic community; to bring together representatives of the petroleum engineering academic community to recognize the importance of developing a consensus posture with respect to research; and to provide a document that will assist in portraying to industry, government agencies and others the problems and needs of the petroleum engineering departments for conducting research. Contents of this report include; introduction; the background; the scope of petroleum engineering research; priority research topics and technological issues; non-technological research issues; and conclusions and recommendations.

  4. A research agenda for academic petroleum engineering programs. [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Calhoun, J.C. Jr.

    1990-03-31

    The development of a research agenda should be a direct way of portraying the scope of petroleum engineering, of identifying the critical technological issues faced by the profession,of elucidating the gaps between the existing research resources and the needs. and of outlining a program of research through which the petroleum engineering departments can be collectively of maximum service. Such an agenda would be of value to the profession of petroleum engineering, to industry and to government agencies, as well as to the faculty and students of the petroleum engineering departments. The purposes of the activity that led to this report, therefore, were to develop a statement to serve as a beginning research agenda for the petroleum engineering academic community; to bring together representatives of the petroleum engineering academic community to recognize the importance of developing a consensus posture with respect to research; and to provide a document that will assist in portraying to industry, government agencies and others the problems and needs of the petroleum engineering departments for conducting research. Contents of this report include; introduction; the background; the scope of petroleum engineering research; priority research topics and technological issues; non-technological research issues; and conclusions and recommendations.

  5. Environmental assessment: Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The U.S. Department of Energy (DOE) proposes to close the Waste Calcining Facility (WCF). The WCF is a surplus DOE facility located at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering Laboratory (INEL). Six facility components in the WCF have been identified as Resource Conservation and Recovery Ace (RCRA)-units in the INEL RCRA Part A application. The WCF is an interim status facility. Consequently, the proposed WCF closure must comply with Idaho Rules and Standards for Hazardous Waste contained in the Idaho Administrative Procedures Act (IDAPA) Section 16.01.05. These state regulations, in addition to prescribing other requirements, incorporate by reference the federal regulations, found at 40 CFR Part 265, that prescribe the requirements for facilities granted interim status pursuant to the RCRA. The purpose of the proposed action is to reduce the risk of radioactive exposure and release of hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce potential risks to human health and the environment, and to comply with the Idaho Hazardous Waste Management Act (HWMA) requirements.

  6. Desiccant contamination research: Report on the desiccant contamination test facility

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.A.; Bingham, C.E.

    1991-07-01

    The activity in the cooling systems research involves research on high performance dehumidifiers and chillers that can operate efficiently with the variable thermal outputs and delivery temperatures associated with solar collectors. It also includes work on advanced passive cooling techniques. This report describes the work conducted to improve the durability of solid desiccant dehumidifiers by investigating the causes of degradation of desiccant materials from airborne contaminants and thermal cycling. The performance of a dehumidifier strongly depends on the physical properties and durability of the desiccant material. To make durable and reliable dehumidifiers, an understanding is needed of how and to what degree the performance of a dehumidifier is affected by desiccant degradation. This report, an account of work under Cooling Systems Research, documents the efforts to design and fabricate a test facility to investigate desiccant contamination based on industry and academia recommendations. It also discusses the experimental techniques needed for obtaining high-quality data and presents plans for next year. Researchers of the Mechanical and Industrial Technology Division performed this work at the Solar Energy Research Institute in FY 1988 for DOE's Office of Solar Heat Technologies. 7 refs., 19 figs., 1 tab.

  7. Ethical considerations in tissue engineering research: Case studies in translation.

    Science.gov (United States)

    Baker, Hannah B; McQuilling, John P; King, Nancy M P

    2016-04-15

    Tissue engineering research is a complex process that requires investigators to focus on the relationship between their research and anticipated gains in both knowledge and treatment improvements. The ethical considerations arising from tissue engineering research are similarly complex when addressing the translational progression from bench to bedside, and investigators in the field of tissue engineering act as moral agents at each step of their research along the translational pathway, from early benchwork and preclinical studies to clinical research. This review highlights the ethical considerations and challenges at each stage of research, by comparing issues surrounding two translational tissue engineering technologies: the bioartificial pancreas and a tissue engineered skeletal muscle construct. We present relevant ethical issues and questions to consider at each step along the translational pathway, from the basic science bench to preclinical research to first-in-human clinical trials. Topics at the bench level include maintaining data integrity, appropriate reporting and dissemination of results, and ensuring that studies are designed to yield results suitable for advancing research. Topics in preclinical research include the principle of "modest translational distance" and appropriate animal models. Topics in clinical research include key issues that arise in early-stage clinical trials, including selection of patient-subjects, disclosure of uncertainty, and defining success. The comparison of these two technologies and their ethical issues brings to light many challenges for translational tissue engineering research and provides guidance for investigators engaged in development of any tissue engineering technology.

  8. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

  9. Engineering on abolishment measure of nuclear fuel facilities. Application of 3D-CAD to abolishment measure of nuclear fuel facilities

    Energy Technology Data Exchange (ETDEWEB)

    Annen, Sotonori; Sugitsue, Noritake [Japan Nuclear Cycle Development Inst., Ningyo Toge Environmental Engineering Center, Kamisaibara, Okayama (Japan)

    2001-12-01

    The Japan Nuclear Cycle Development Institute (JNC) progresses some advancing R and Ds required for establishment of the nuclear fuel cycle under considering on safety, economical efficiency, environmental compatibility, and so on. An important item among them is a technology on safe abolishment of a nuclear energy facility ended its role, which is called the abolishment measure technique. Here was introduced at a center of viewpoint called on use of three dimensional CAD (3D-CAD), on outlines of engineering system for abolishment measure (subdivision engineering system) under an object of nuclear fuel facilities, constructed through subdivision and removal of refinement conversion facilities, by the Ningyo-toge Environmental Engineering Center of JNC. (G.K.)

  10. National facilities study. Volume 2: Task group on aeronautical research and development facilities report

    Science.gov (United States)

    1994-01-01

    The Task Group on Aeronautics R&D Facilities examined the status and requirements for aeronautics facilities against the competitive need. Emphasis was placed on ground-based facilities for subsonic, supersonic and hypersonic aerodynamics, and propulsion. Subsonic and transonic wind tunnels were judged to be most critical and of highest priority. Results of the study are presented.

  11. Heat transfer results and operational characteristics of the NASA Lewis Research Center hot section cascade test facility

    Science.gov (United States)

    Gladden, H. J.; Yeh, F. C.; Fronek, D. L.

    1985-01-01

    The NASA Lewis Research Center gas turbine hot section test facility has been developed to provide a real-engine environment with well known boundary conditions for the aerothermal performance evaluation/verification of computer design codes. The initial aerothermal research data obtained are presented and the operational characteristics of the facility are discussed. This facility is capable of testing at temperatures and pressures up to 1600 K and 18 atm which corresponds to a vane exit Reynolds number range of 0.5 x 1 million to 2.5 x 1 million based on vane chord. The component cooling air temperature can be independently modulated between 330 and 700 K providing gas-to-coolant temperature ratios similar to current engine application. Research instrumentation of the test components provide conventional pressure and temperature measurements as well as metal temperatures measured by IR-photography. The primary data acquisition mode is steady state through a 704 channel multiplexer/digitizer. The test facility was configured as an annular cascade of full coverage film cooled vanes for the initial series of research tests.

  12. Neutron beam facilities at the Australian Replacement Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Shane; Robinson, Robert; Hunter, Brett [Physics Division, ANSTO, Lucas Heights (Australia)

    2001-03-01

    Australia is building a research reactor to replace the HIFAR reactor at Lucas Heights by the end of 2005. Like HIFAR, the Replacement Research Reactor will be multipurpose with capabilities for both neutron beam research and radioisotope production. It will be a pool-type reactor with thermal neutron flux (unperturbed) of 4 x 10{sup 14} n/cm{sup 2}/sec and a liquid D{sub 2} cold neutron source. Cold and thermal neutron beams for neutron beam research will be provided at the reactor face and in a large neutron guide hall. Supermirror neutron guides will transport cold and thermal neutrons to the guide hall. The reactor and the associated infrastructure, with the exception of the neutron beam instruments, is to be built by INVAP S.E. under contract. The neutron beam instruments will be developed by ANSTO, in consultation with the Australian user community. This status report includes a review the planned scientific capabilities, a description of the facility and a summary of progress to date. (author)

  13. Research in progress and other activities of the Institute for Computer Applications in Science and Engineering

    Science.gov (United States)

    1993-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics and computer science during the period April 1, 1993 through September 30, 1993. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustic and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  14. Orange County Government Solar Demonstration and Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Renee [Orange County Florida, Orlando, Florida (United States); Cunniff, Lori [Orange County Florida, Orlando, Florida (United States)

    2015-05-12

    Orange County Florida completed the construction of a 20 kilowatt Solar Demonstration and Research Facility in March 2015. The system was constructed at the Orange County/University of Florida Cooperative Extension Center whose electric service address is 6021 South Conway Road, Orlando, Florida 32802. The Solar Demonstration and Research Facility is comprised of 72 polycrystalline photovoltaic modules and 3 inverters which convert direct current from the solar panels to alternating current electricity. Each module produces 270 watts of direct current power, for a total canopy production of just under 20,000 watts. The solar modules were installed with a fixed tilt of 5 degrees and face south, toward the equator to maximize the amount of sunlight captures. Each year, the electricity generated by the solar array will help eliminate 20 metric tons of carbon dioxide emissions as well as provide covered parking for staff and visitors vehicles. The solar array is expected to generate 27,000 kilowatt hours of electricity annually equating to an estimated $266 savings in the monthly electric bill, or $3,180 annually for the Orange County/University of Florida Cooperative Extension Center. In addition to reducing the electric bill for the Extension Center, Orange County’s solar array also takes advantage of a rebate incentive offered by the local utility, Orlando Utility Commission, which provided a meter that measures the amount of power produced by the solar array. The local utility company’s Solar Photovoltaic Production Incentive will pay Orange County $0.05 per kilowatt hour for the power that is produced by the solar array. This incentive is provided in addition to Net Metering benefits, which is an effort to promote the use of clean, renewable energy on the electric grid. The Photovoltaic Solar Demonstration and Research Facility also serves an educational tool to the public; the solar array is tied directly into a data logger that provides real time power

  15. Orange County Government Solar Demonstration and Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Renee [Orange County Florida, Orlando, Florida (United States); Cunniff, Lori [Orange County Florida, Orlando, Florida (United States)

    2015-05-12

    Orange County Florida completed the construction of a 20 kilowatt Solar Demonstration and Research Facility in March 2015. The system was constructed at the Orange County/University of Florida Cooperative Extension Center whose electric service address is 6021 South Conway Road, Orlando, Florida 32802. The Solar Demonstration and Research Facility is comprised of 72 polycrystalline photovoltaic modules and 3 inverters which convert direct current from the solar panels to alternating current electricity. Each module produces 270 watts of direct current power, for a total canopy production of just under 20,000 watts. The solar modules were installed with a fixed tilt of 5 degrees and face south, toward the equator to maximize the amount of sunlight captures. Each year, the electricity generated by the solar array will help eliminate 20 metric tons of carbon dioxide emissions as well as provide covered parking for staff and visitors vehicles. The solar array is expected to generate 27,000 kilowatt hours of electricity annually equating to an estimated $266 savings in the monthly electric bill, or $3,180 annually for the Orange County/University of Florida Cooperative Extension Center. In addition to reducing the electric bill for the Extension Center, Orange County’s solar array also takes advantage of a rebate incentive offered by the local utility, Orlando Utility Commission, which provided a meter that measures the amount of power produced by the solar array. The local utility company’s Solar Photovoltaic Production Incentive will pay Orange County $0.05 per kilowatt hour for the power that is produced by the solar array. This incentive is provided in addition to Net Metering benefits, which is an effort to promote the use of clean, renewable energy on the electric grid. The Photovoltaic Solar Demonstration and Research Facility also serves an educational tool to the public; the solar array is tied directly into a data logger that provides real time power

  16. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  17. Assessment of activity-based pyroprocess costs for an engineering-scale facility in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ki; Ko, Won Il [Nuclear Fuel Cycle Analysis Department, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Bang, Sung Sig [Dept. of Business and Technology Management, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-12-15

    This study set the pyroprocess facility at an engineering scale as a cost object, and presented the cost consumed during the unit processes of the pyroprocess. For the cost calculation, the activity based costing (ABC) method was used instead of the engineering cost estimation method, which calculates the cost based on the conceptual design of the pyroprocess facility. The calculation results demonstrate that the pyroprocess facility's unit process cost is $194/kgHM for pretreatment, $298/kgHM for electrochemical reduction, $226/kgHM for electrorefining, and $299/kgHM for electrowinning. An analysis demonstrated that the share of each unit process cost among the total pyroprocess cost is as follows: 19% for pretreatment, 29% for electrochemical reduction, 22% for electrorefining, and 30% for electrowinning. The total unit cost of the pyroprocess was calculated at $1,017/kgHM. In the end, electrochemical reduction and the electrowinning process took up most of the cost, and the individual costs for these two processes was found to be similar. This is because significant raw material cost is required for the electrochemical reduction process, which uses platinum as an anode electrode. In addition, significant raw material costs are required, such as for Li3PO4, which is used a lot during the salt purification process.

  18. Assessment of activity-based pyroprocess costs for an engineering-scale facility in Korea

    Directory of Open Access Journals (Sweden)

    Sungki Kim

    2015-12-01

    Full Text Available This study set the pyroprocess facility at an engineering scale as a cost object, and presented the cost consumed during the unit processes of the pyroprocess. For the cost calculation, the activity based costing (ABC method was used instead of the engineering cost estimation method, which calculates the cost based on the conceptual design of the pyroprocess facility. The calculation results demonstrate that the pyroprocess facility's unit process cost is $194/kgHM for pretreatment, $298/kgHM for electrochemical reduction, $226/kgHM for electrorefining, and $299/kgHM for electrowinning. An analysis demonstrated that the share of each unit process cost among the total pyroprocess cost is as follows: 19% for pretreatment, 29% for electrochemical reduction, 22% for electrorefining, and 30% for electrowinning. The total unit cost of the pyroprocess was calculated at $1,017/kgHM. In the end, electrochemical reduction and the electrowinning process took up most of the cost, and the individual costs for these two processes was found to be similar. This is because significant raw material cost is required for the electrochemical reduction process, which uses platinum as an anode electrode. In addition, significant raw material costs are required, such as for Li3PO4, which is used a lot during the salt purification process.

  19. 48 CFR 235.015-70 - Special use allowances for research facilities acquired by educational institutions.

    Science.gov (United States)

    2010-10-01

    ... research facilities acquired by educational institutions. 235.015-70 Section 235.015-70 Federal Acquisition... acquired by educational institutions. (a) Definitions. As used in this subsection— (1) Research facility... 31.3. (b) Policy. (1) Educational institutions are to furnish the facilities necessary to...

  20. 36 CFR 1253.8 - Are NARA research room facilities closed on Federal holidays?

    Science.gov (United States)

    2010-07-01

    ... facilities closed on Federal holidays? 1253.8 Section 1253.8 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION PUBLIC AVAILABILITY AND USE LOCATION OF RECORDS AND HOURS OF USE § 1253.8 Are NARA research room facilities closed on Federal holidays? NARA research room facilities...

  1. Engineering validation for lithium target facility of the IFMIF under IFMIF/EVEDA project

    Directory of Open Access Journals (Sweden)

    E. Wakai

    2016-12-01

    Full Text Available The International Fusion Materials Irradiation Facility (IFMIF, presently in the Engineering Validation and Engineering Design Activities (EVEDA phase was started from 2007 under the frame of the Broader Approach (BA agreement. In the activities, a prototype Li loop with the world's highest flow rate of 3000L/min was constructed in 2010, and it succeeded in generating a 100mm wide and 25mm thick with a free-surface lithium flow along a concave back plate steadily at a high-speed of 15m/s at 250°C for 1300h. In the demonstration operation it was needed to develop the Li flowing measurement system with precious resolution less than 0.1mm, and a new wave height measuring method which is laser-probe method was developed for measurements of the 3D geometry of the liquid Li target surface. Using the device, the stability of the variation in the Li flowing thickness which is required in the IFMIF specification was ±1mm or less as the liquid Li target, and the result was satisfied with it and the feasibility of the long-term stable liquid Li flow was also verified. The results of the other engineering validation tests such as lithium purification tests of lithium target facility have also been evaluated and summarized.

  2. Small-bore hypervelocity Electromagnetic Launcher research facility

    Science.gov (United States)

    Hurn, T. W.; Chapelle, S.; Lupan, S. P.; Holland, L.; Homeyer, W. G.; Rawls, J. M.

    1993-01-01

    A small-bore hypervelocity Electromagnetic Launcher laboratory research facility has been developed which has launched a 2-g projectile to a velocity in excess of 3.5 km/sec. This turn-key laboratory includes a 1 cm, square-bore railgun with a helium gas preaccelerator; a modular 328 kJ capacitor bank; a fiber-optically linked programmable logic control system with a graphical operator interface; a data acquisition system with current, magnetic, and projectile position diagnostics; and a flight range which provides in-flight velocity measurements and safely stops and contains the projectile. The control system fires the preaccelerator and, on receipt of an optical signal, fires the capacitor bank modules simultaneously or in a staggered mode. Armature separation and stalling limit the overall performance of the system. Changes in pulse shape and bore materials significantly improved performance. Attention is given to methods used to minimize armature separation and improve performance.

  3. The NIST NBSR and Cold Neutron Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Rush, J.J. [National Inst. of Standards and Technology, Guthersburg, MD (United States)

    1994-12-31

    The 20 MW Neutron Beam Split-Core Reactor (NBSR) has nine radial thermal beam tubes, and a large, highly accessible (35cm) cold source serving an extensive network of eight guide tubes. In operation or under construction are twenty-five neutron beam instruments (20 for neutron scattering) and about a dozen other facilities for neutron trace analysis, dosimetry and irradiation. The 6 x 15cm cold neutron guides are coated with {sup 58}Ni, and the last three being installed this fall are coated top and bottom with supermirrors for further increases in intensity. The new semi-spherical liquid hydrogen source will be described, along with the eight scattering instruments (reflectometry, SANS and high-resolution spectroscopy) which have, or will have, an extensive use in biological research. These instruments will likely provide the best overall capability in the U.S. for the next decade for a number of applications in biomolecular structure and dynamics.

  4. ARM Climate Research Facility Quarterly Value-Added Product Report

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, C. [DOE ARM Climate Research Facility, Washington, DC (United States)

    2016-10-01

    The purpose of this report is to provide a concise status update for Value-Added Products (VAPs) implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun; (2) progress on existing VAPs; (3) future VAPs that have been recently approved; (4) other work that leads to a VAP; (5) top requested VAPs from the ARM Data Archive; and (6) a summary of VAP and data releases to production and evaluation. New information is highlighted in blue text. New information about processed data by the developer is highlighted in red text. The upcoming milestones and dates are highlighted in green.

  5. FILLER ENGINEERING FOR PAPERMAKING: COMPARISION WITH FIBER ENGINEERING AND SOME IMPORTANT RESEARCH TOPICS

    Directory of Open Access Journals (Sweden)

    Jing Shen

    2010-05-01

    Full Text Available Fibers and fillers are important raw materials for the preparation of paper products. Similar to fiber engineering, filler engineering for papermaking has become an active research area. There are similarities as well as differences between engineering involving each of these classes of materials. There are differences in such aspects as the nature of materials to be engineered, applicable engineering methods, and engineerablity of the material surfaces. The co-development of fiber engineering and filler engineering can potentially provide many benefits to the papermaking industry. For filler engineering, the relevant research topics broadly can include fibrous filler engineering, hollow/porous filler engineering, acid-stabilization of calcium carbonate fillers, surface encapsulation of naturally occurring polymers or their derivatives, preflocculation, precoagulation, cationic modification, filler/size hybrid formation, organic filler engineering, using combinations of different types of available fillers, multilayer deposition modification, modification with polymer latexes or dispersants, physical modification, mechanical modification, surface functionalization, fines-filler composite/hybrids or fiber-filler composite/ hybrid formation, in-situ polymerization modification, surface grafting, physical treatment in the presence of polymeric additives, filler precipitation, and core-shell composite filler engineering.

  6. Interdisciplinary Research for Engineering Skills Development Interdisciplinary Research for Engineering Skills Development

    Directory of Open Access Journals (Sweden)

    Angel E. González-Lizardo

    2012-02-01

    Full Text Available Este trabajo reporta los resultados de una experiencia interdisciplinaria de investigaciónpara estudiantes de ingeniería, en el Laboratorio de Ingeniería de Plasma (PEL por sussiglas en inglés de la Universidad Politécnica de Puerto Rico (UPPR. Los rasgos fuertes de esta experiencia y su relación con los resultados esperados por la Junta de Acreditación para Ingeniería y Tecnología (ABET por sus siglas en inglés son destacados, y una descripción cualitativa de los resultados en términos de la ejecución de los estudiantes durante la experiencia y después de ella. Se presenta un ejemplo de las diferentes actividades realizadas por un equipo de estudiantes subgraduados y su relación con los resultados esperados por ABET. La experiencia de investigación en el PEL provee a los estudiantes con una oportunidad única para practicar la ingeniería antes de su graduación, a través de problemas reales, innovación, colaboración con otras instituciones, y presentación de su trabajo a audiencias de científicos e ingenieros. This work reports the results of an ad hoc interdisciplinary research experience for undergraduate engineering students at the Plasma Engineering Laboratory (PEL of the Polytechnic University of Puerto Rico (PUPR. The strong features of this experience and their relationship with Accreditation Board for Engineering and Technology (ABET outcomes are pointed out, and a qualitative description of the results is discussed, in terms of the performance of the students during the experience and after it. An example of the different activities performed by a team of undergraduate students, and their relationship with the ABET outcomes is presented. The undergraduate research at the PEL provides the students with a unique opportunity to practice engineering before graduation through real life problems, innovation, collaboration with other institutions, and presentation of their work for engineering and scientific audiences.

  7. Department of Energy’s ARM Climate Research Facility External Data Center Operations Plan Located At Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Cialella, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gregory, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Lazar, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Liang, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ma, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tilp, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wagener, R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-01

    The External Data Center (XDC) Operations Plan describes the activities performed to manage the XDC, located at Brookhaven National Laboratory (BNL), for the Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility. It includes all ARM infrastructure activities performed by the Data Management and Software Engineering Group (DMSE) at BNL. This plan establishes a baseline of expectation within the ARM Operations Management for the group managing the XDC.

  8. Multi-Specimen Variable-G Facility for Life and Microgravity Sciences Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Multi-specimen Variable-G Facility (MVF) is a single locker sized centrifuge facility for life and microgravity sciences research on the International Space...

  9. Summary of informal workshop on state of ion beam facilities for atomic physics research

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.W.; Cocke, C.L.; Datz, S.; Kostroun, V.

    1984-11-13

    The present state of ion beam facilities for atomic physics research in the United States is assessed by means of a questionnaire and informal workshop. Recommendations for future facilities are given. 3 refs.

  10. Developing the OORCC: A Multifaceted Astronomical Research and Outreach Facility at the University of Oregon

    Science.gov (United States)

    Kwan, Teiler J.; Bullis, Jeremy; Gustafsson, Annika; Fisher, Robert Scott

    2015-01-01

    The University of Oregon (UO) owns and operates Pine Mountain Observatory (PMO), located in central Oregon on the summit of Pine Mountain at an elevation of 1980 meters. PMO consists of four telescopes ranging in size from 0.35 - 0.8 meters. The Oregon Observatory Remote Control Center (OORCC) is a remote-observing center within the Department of Physics on the UO campus (~140 miles from the observatory) that has a direct connection to PMO through a dedicated fiber-optic cable. With this facility, we will enable UO undergraduate student researchers, UO faculty, and the non-scientific community to fully control and operate a newly installed robotic telescope on the summit of Pine Mountain from Eugene, or any other authorized site in Oregon. In addition to providing undergraduates with instrumentation and engineering experience, we will implement research by photometrically monitoring bright and variable astronomical sources including main belt comets, Herbig Ae/Be stars, and active galactic nuclei in extragalactic systems. The primary objective with the OORCC is to manage a multifaceted astronomy and astrophysics research facility, extending as a state-wide resource for K-12 STEM activities and public outreach programs. With the OORCC, we intend to bring unique and enriching astronomy exposure to many different groups of people throughout the state of Oregon.

  11. Preoperational Subsurface Conditions at the Idaho Nuclear Technology and Engineering Center Service Wastewater Discharge Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ansley, Shannon L.

    2002-02-20

    The Idaho Nuclear Technology and Engineering Center (INTEC) Service Wastewater Discharge Facility replaces the existing percolation ponds as a disposal facility for the INTEC Service Waste Stream. A preferred alternative for helping decrease water content in the subsurface near INTEC, closure of the existing ponds is required by the INTEC Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Record of Decision (ROD) for Waste Area Group 3 Operable Unit 3-13 (DOE-ID 1999a). By August 2002, the replacement facility was constructed approximately 2 miles southwest of INTEC, near the Big Lost River channel. Because groundwater beneath the Idaho National Engineering and Environmental Laboratory (INEEL) is protected under Federal and State of Idaho regulations from degradation due to INEEL activities, preoperational data required by U.S. Department of Energy (DOE) Order 5400.1 were collected. These data include preexisting physical, chemical, and biological conditions that could be affected by the discharge; background levels of radioactive and chemical components; pertinent environmental and ecological parameters; and potential pathways for human exposure or environmental impact. This document presents specific data collected in support of DOE Order 5400.1, including: four quarters of groundwater sampling and analysis of chemical and radiological parameters; general facility description; site specific geology, stratigraphy, soils, and hydrology; perched water discussions; and general regulatory requirements. However, in order to avoid duplication of previous information, the reader is directed to other referenced publications for more detailed information. Documents that are not readily available are compiled in this publication as appendices. These documents include well and borehole completion reports, a perched water evaluation letter report, the draft INEEL Wellhead Protection Program Plan, and the Environmental Checklist.

  12. Preoperational Subsurface Conditions at the Idaho Nuclear Technology and Engineering Center Service Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ansley, Shannon Leigh

    2002-02-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) Service Wastewater Discharge Facility replaces the existing percolation ponds as a disposal facility for the INTEC Service Waste Stream. A preferred alternative for helping decrease water content in the subsurface near INTEC, closure of the existing ponds is required by the INTEC Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Record of Decision (ROD) for Waste Area Group 3 Operable Unit 3-13 (DOE-ID 1999a). By August 2002, the replacement facility was constructed approximately 2 miles southwest of INTEC, near the Big Lost River channel. Because groundwater beneath the Idaho National Engineering and Environmental Laboratory (INEEL) is protected under Federal and State of Idaho regulations from degradation due to INEEL activities, preoperational data required by U.S. Department of Energy (DOE) Order 5400.1 were collected. These data include preexisting physical, chemical, and biological conditions that could be affected by the discharge; background levels of radioactive and chemical components; pertinent environmental and ecological parameters; and potential pathways for human exposure or environmental impact. This document presents specific data collected in support of DOE Order 5400.1, including: four quarters of groundwater sampling and analysis of chemical and radiological parameters; general facility description; site specific geology, stratigraphy, soils, and hydrology; perched water discussions; and general regulatory requirements. However, in order to avoid duplication of previous information, the reader is directed to other referenced publications for more detailed information. Documents that are not readily available are compiled in this publication as appendices. These documents include well and borehole completion reports, a perched water evaluation letter report, the draft INEEL Wellhead Protection Program Plan, and the Environmental Checklist.

  13. Engineering therapeutic processes: from research to commodity

    Science.gov (United States)

    Galloway, Robert L.

    2014-03-01

    Three of the most important forces driving medical care are: patient specificity, treatment specificity and the move from discovery to design. Engineers while trained in specificity, efficiency, and design are often not trained in either biology or medical processes. Yet they are increasing critical to medical care. For example, modern medical imaging at US hospitals generates 1 exabyte (10^18 bytes) of data per year clearly beyond unassisted human analysis. It is not desirable to involve engineers in the acquisition, storage and analysis of this data, it is essential. While in the past we have nibbled around the edges of medical care, it is time and perhaps past time to insert ourselves more squarely into medical processes, making them more efficient, more specific and more robust. This requires engineers who understand biology and physicians who are willing to step away from classic medical thinking to try new approaches. But once the idea is proven in a laboratory, it must move into use and then into common practice. This requires additional engineering to make the process robust to noisy data and imprecise practices as well as workflow analysis to get the new technique into operating and treatment rooms. True innovation and true translation will require physicians, engineers, other medical stakeholders and even corporate involvement to take a new, important idea and move it not just to a patient but to all patients.

  14. Review for dynamic researches in civil engineering in recent years

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Structure dynamic research is a hot field in civil engineering.It involves in many challenge topics,such as dynamic analysis and tests under earthquake,wind or other dynamic excitations.This paper introduces main dynamic researches in civil engineering in recent years,which will be classified into five aspects,especially for researches published in Science in China Series E:Technological Sciences.

  15. SECONDARY WASTE/ETF (EFFLUENT TREATMENT FACILITY) PRELIMINARY PRE-CONCEPTUAL ENGINEERING STUDY

    Energy Technology Data Exchange (ETDEWEB)

    MAY TH; GEHNER PD; STEGEN GARY; HYMAS JAY; PAJUNEN AL; SEXTON RICH; RAMSEY AMY

    2009-12-28

    This pre-conceptual engineering study is intended to assist in supporting the critical decision (CD) 0 milestone by providing a basis for the justification of mission need (JMN) for the handling and disposal of liquid effluents. The ETF baseline strategy, to accommodate (WTP) requirements, calls for a solidification treatment unit (STU) to be added to the ETF to provide the needed additional processing capability. This STU is to process the ETF evaporator concentrate into a cement-based waste form. The cementitious waste will be cast into blocks for curing, storage, and disposal. Tis pre-conceptual engineering study explores this baseline strategy, in addition to other potential alternatives, for meeting the ETF future mission needs. Within each reviewed case study, a technical and facility description is outlined, along with a preliminary cost analysis and the associated risks and benefits.

  16. Heat engine regenerators: Research status and needs

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, R.A.

    1987-08-01

    The rapidly oscillating, variable density flows of regenerative heat engines provide a class of poorly understood unsteady flow and heat transfer problems. These problems are not currently amenable to direct experimental resolution. Experiences in engine development and test programs and efforts to develop analysis tools point to the regenerator as a key area of insufficient understanding. Focusing on flow and heat transfer in regenerators, this report discusses similarity parameters for the flows and reviews the experimental data currently available for Stirling analysis. Then a number of experimental results are presented from recent fundamental fluid mechanical and thermal investigations that shed additional light on the functioning of heat engine regenerators. Suggestions are made for approaches for further measurement and analysis efforts.

  17. The outline report of advanced basic engineering research in the fiscal year 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    The JNC has initiated the cooperation with universities and research institutes for advanced basic engineering on 1995. The number of research cooperation theme is increasing and satisfactorily improving in the forth year, 1998. The objective of this program is to promote the advanced basic engineering research with universities and research institutes in relation with the JNC's projects. The facilities and equipment of the JNC are mainly provided to the cooperation. The JNC has settled the research cooperation themes. The universities and research institute have applied to the themes with their issues, working plans and personnel. The JNC has selected the issues and personnel, and put into practice the cooperation with accepting guest staffs and/or research fellows from the universities. This report summarizes the results of the advanced basic engineering research cooperation executed in the fiscal year, 1998. The total number of issues is 34 for the 29 themes; those are categorized in to two groups. The one is related to the fast breeder reactor technologies and the other is on the environmental technologies. The 12 issues are finished in the fiscal year, 1998, in which the 9 issues are for the fast breeder reactor technologies and the 3 issues are for the environmental technologies. The themes/the issues, the host group, host key persons, university side key persons, a form of cooperation are summarized in the tables. The summary reports of research activities by the all cooperators are presented under the particular format. Those describe the total schedule, a form of cooperation, the research objective, the outline of research contents, main facilities for using, research status, research results, future schedules and bibliographies relevant to the research cooperation. The 25 tables and 158 figures are included. (Y. Tanaka)

  18. The Research of Software Engineering Curriculum Reform

    Science.gov (United States)

    Kuang, Li-Qun; Han, Xie

    With the problem that software engineering training can't meet the needs of the community, this paper analysis some outstanding reasons in software engineering curriculum teaching, such as old teaching contents, weak in practice and low quality of teachers etc. We propose the methods of teaching reform as guided by market demand, update the teaching content, optimize the teaching methods, reform the teaching practice, strengthen the teacher-student exchange and promote teachers and students together. We carried out the reform and explore positive and achieved the desired results.

  19. Anomalous radon concentration in a nuclear research facility

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, M.; Pena, P., E-mail: miguel.balcazar@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-08-15

    Radon monitoring in more than 60 selected points were part of surveillance radiation activities in the nuclear center of Mexico; three major facilities were inspected, the TRIGA Mark III research reactor, the Tandem Van de Graaff Accelerator and the Pelletron electron Accelerator. During a major maintenance activities in the research reactor, the air extraction system was not functioning for more than a month causing of a radon build up exhaled from the massive concrete of the building, reaching concentrations in some places up to 2.1 kb m{sup -3}. The irradiation room at the Tandem Accelerator presented high radon concentrations up to nearly 5 kb m{sup -3}, manly in the trenches were pipes and electric wires are located, the radon source was identified as originated from small caves under the floor. Low radon concentrations were found inside a similar building where a Pelletron accelerator is located. The reasons for the abnormal radon concentrations and the mitigation actions to remove any risk for the worker are discussed in detail in this paper. (author)

  20. In Situ Resource Utilization Technology Research and Facilities Supporting the NASA's Human Systems Research and Technology Life Support Program

    Science.gov (United States)

    Schlagheck, Ronald A.; Sibille, Laurent; Sacksteder, Kurt; Owens, Chuck

    2005-01-01

    The NASA Microgravity Science program has transitioned research required in support of NASA s Vision for Space Exploration. Research disciplines including the Materials Science, Fluid Physics and Combustion Science are now being applied toward projects with application in the planetary utilization and transformation of space resources. The scientific and engineering competencies and infrastructure in these traditional fields developed at multiple NASA Centers and by external research partners provide essential capabilities to support the agency s new exploration thrusts including In-Situ Resource Utilization (ISRU). Among the technologies essential to human space exploration, the production of life support consumables, especially oxygen and; radiation shielding; and the harvesting of potentially available water are realistically achieved for long-duration crewed missions only through the use of ISRU. Ongoing research in the physical sciences have produced a body of knowledge relevant to the extraction of oxygen from lunar and planetary regolith and associated reduction of metals and silicon for use meeting manufacturing and repair requirements. Activities being conducted and facilities used in support of various ISRU projects at the Glenn Research Center and Marshall Space Flight Center will be described. The presentation will inform the community of these new research capabilities, opportunities, and challenges to utilize their materials, fluids and combustion science expertise and capabilities to support the vision for space exploration.

  1. In Situ Resource Utilization Technology Research and Facilities Supporting the NASA's Human Systems Research and Technology Life Support Program

    Science.gov (United States)

    Schlagheck, Ronald A.; Sibille, Laurent; Sacksteder, Kurt; Owens, Chuck

    2005-01-01

    The NASA Microgravity Science program has transitioned research required in support of NASA s Vision for Space Exploration. Research disciplines including the Materials Science, Fluid Physics and Combustion Science are now being applied toward projects with application in the planetary utilization and transformation of space resources. The scientific and engineering competencies and infrastructure in these traditional fields developed at multiple NASA Centers and by external research partners provide essential capabilities to support the agency s new exploration thrusts including In-Situ Resource Utilization (ISRU). Among the technologies essential to human space exploration, the production of life support consumables, especially oxygen and; radiation shielding; and the harvesting of potentially available water are realistically achieved for long-duration crewed missions only through the use of ISRU. Ongoing research in the physical sciences have produced a body of knowledge relevant to the extraction of oxygen from lunar and planetary regolith and associated reduction of metals and silicon for use meeting manufacturing and repair requirements. Activities being conducted and facilities used in support of various ISRU projects at the Glenn Research Center and Marshall Space Flight Center will be described. The presentation will inform the community of these new research capabilities, opportunities, and challenges to utilize their materials, fluids and combustion science expertise and capabilities to support the vision for space exploration.

  2. 2007 Plant Metabolic Engineering Gordon Conference and Graduate Research Seminar

    Energy Technology Data Exchange (ETDEWEB)

    Erich Grotewold

    2008-09-15

    Plant Metabolic Engineering is an emerging field that integrates a diverse range of disciplines including plant genetics, genomics, biochemistry, chemistry and cell biology. The Gordon-Kenan Graduate Research Seminar (GRS) in Plant Metabolic Engineering was initiated to provide a unique opportunity for future researcher leaders to present their work in this field. It also creates an environment allowing for peer-review and critical assessment of work without the intimidation usually associated with the presence of senior investigators. The GRS immediately precedes the Plant Metabolic Engineering Gordon Research Conference and will be for and by graduate students and post-docs, with the assistance of the organizers listed.

  3. Biomedical engineering: A platform for research and innovation in ultrasound

    Science.gov (United States)

    Holland, Christy K.

    2001-05-01

    An undergraduate or graduate degree in biomedical engineering prepares students to solve problems at the interface between engineering and medicine. Biomedical engineering encompasses evolving areas such as advanced medical imaging for diagnosis and treatment of disease, tissue engineering for designing and manufacturing biological implants for damaged or diseased tissues and organs, and bioinformatics for determining which genes play a major role in health and disease. Biomedical engineering academic programs produce graduates with the ability to pursue successful careers in the biomedical device industry or to obtain advanced degrees leading to careers in biomedical engineering research, medicine, law or business. Biomedical engineering majors take courses in biology, anatomy, physics, chemistry, engineering, mathematics and medical product design and value life-long learning. Students learn to work effectively in interdisciplinary teams comprised of individuals with diverse social, cultural and technical backgrounds. Biomedical engineering is becoming increasingly important in imaging and image-guided research. Some examples of innovative ultrasound technology under development are ultrasound devices to accelerate the dissolution of blood clots, advanced surgical instruments with ultrasound guidance and ultrasound contrast agents for targeted drug delivery. Biomedical engineering is a great career choice for technically minded individuals who endeavor to work on applied problems that are medically relevant.

  4. Biomedical engineering: A platform for research and innovation in ultrasound

    Science.gov (United States)

    Holland, Christy K.

    2004-05-01

    An undergraduate or graduate degree in biomedical engineering prepares students to solve problems at the interface between engineering and medicine. Biomedical engineering encompasses evolving areas such as advanced medical imaging for diagnosis and treatment of disease, tissue engineering for designing and manufacturing biological implants for damaged or diseased tissues and organs, and bioinformatics for determining which genes play a major role in health and disease. Biomedical engineering academic programs produce graduates with the ability to pursue successful careers in the biomedical device industry or to obtain advanced degrees leading to careers in biomedical engineering research, medicine, law or business. Biomedical engineering majors take courses in biology, anatomy, physics, chemistry, engineering, mathematics and medical product design and value life-long learning. Students learn to work effectively in interdisciplinary teams comprised of individuals with diverse social, cultural and technical backgrounds. Biomedical engineering is becoming increasingly important in imaging and image-guided research. Some examples of innovative ultrasound technology under development are ultrasound devices to accelerate the dissolution of blood clots, advanced surgical instruments with ultrasound guidance and ultrasound contrast agents for targeted drug delivery. Biomedical engineering is a great career choice for technically minded individuals who endeavor to work on applied problems that are medically relevant.

  5. Artificial Sight Basic Research, Biomedical Engineering, and Clinical Advances

    CERN Document Server

    Humayun, Mark S; Chader, Gerald; Greenbaum, Elias

    2008-01-01

    Artificial sight is a frontier area of modern ophthalmology combining the multidisciplinary skills of surgical ophthalmology, biomedical engineering, biological physics, and psychophysical testing. Many scientific, engineering, and surgical challenges must be surmounted before widespread practical applications can be realized. The goal of Artificial Sight is to summarize the state-of-the-art research in this exciting area, and to describe some of the current approaches and initiatives that may help patients in a clinical setting. The Editors are active researchers in the fields of artificial sight, biomedical engineering and biological physics. They have received numerous professional awards and recognition for their work. The artificial sight team at the Doheny Eye Institute, led by Dr. Mark Humayun, is a world leader in this area of biomedical engineering and clinical research. Key Features Introduces and assesses the state of the art for a broad audience of biomedical engineers, biophysicists, and clinical...

  6. Status of Research in Biomedical Engineering 1968.

    Science.gov (United States)

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This status report is divided into eight sections. The first four represent the classical engineering or building aspects of bioengineering and deal with biomedical instrumentation, prosthetics, man-machine systems and computer and information systems. The next three sections are related to the scientific, intellectual and academic influence of…

  7. Engineered and Administrative Safety Systems for the Control of Prompt Radiation Hazards at Accelerator Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C.; /SLAC; Vylet, Vashek; /Duke U.; Walker, Lawrence S.; /SLAC

    2007-12-17

    The ANSI N43.1 Standard, currently in revision (ANSI 2007), sets forth the requirements for accelerator facilities to provide adequate protection for the workers, the public and the environment from the hazards of ionizing radiation produced during and from accelerator operations. The Standard also recommends good practices that, when followed, provide a level of radiation protection consistent with those established for the accelerator communities. The N43.1 Standard is suitable for all accelerator facilities (using electron, positron, proton, or ion particle beams) capable of producing radiation, subject to federal or state regulations. The requirements (see word 'shall') and recommended practices (see word 'should') are prescribed in a graded approach that are commensurate with the complexity and hazard levels of the accelerator facility. Chapters 4, 5 and 6 of the N43.1 Standard address specially the Radiation Safety System (RSS), both engineered and administrative systems, to mitigate and control the prompt radiation hazards from accelerator operations. The RSS includes the Access Control System (ACS) and Radiation Control System (RCS). The main requirements and recommendations of the N43.1 Standard regarding the management, technical and operational aspects of the RSS are described and condensed in this report. Clearly some aspects of the RSS policies and practices at different facilities may differ in order to meet the practical needs for field implementation. A previous report (Liu et al. 2001a), which reviews and summarizes the RSS at five North American high-energy accelerator facilities, as well as the RSS references for the 5 labs (Drozdoff 2001; Gallegos 1996; Ipe and Liu 1992; Liu 1999; Liu 2001b; Rokni 1996; TJNAF 1994; Yotam et al. 1991), can be consulted for the actual RSS implementation at various laboratories. A comprehensive report describing the RSS at the Stanford Linear Accelerator Center (SLAC 2006) can also serve as a

  8. Controlled Archaeological Test Site (CATS) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CATS facility is at the Construction Engineering Research Laboratory (CERL), Champaign, IL. This 1-acre test site includes a variety of subsurface features carefully...

  9. FY10 Engineering Innovations, Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, M A; Aceves, S M; Paulson, C N; Candy, J V; Bennett, C V; Carlisle, K; Chen, D C; White, D A; Bernier, J V; Puso, M A; Weisgraber, T H; Corey, B; Lin, J I; Wheeler, E K; Conway, A M; Kuntz, J D; Spadaccini, C M; Dehlinger, D A; Kotovsky, J; Nikolic, R; Mariella, R P; Foudray, A K; Tang, V; Guidry, B L; Ng, B M; Lemmond, T D; Chen, B Y; Meyers, C A; Houck, T L

    2011-01-11

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&D 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but

  10. Energy engineering: Student-researcher collaboration

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika; Ritchie, Ewen; Beckowska, Patrycja Maria

    2013-01-01

    ; student-researcher and researcher -researcher is analyzed. The problems of work division, synchronization, transportation, storing and dissemination are disused. The importance of a proper work method and collaboration between researchers at different levels is underlined. As a case study, a research......This article reports on cooperation methods between researchers and students at different levels. Levels included in this work are BSc, MSc and PhD student levels. At Aalborg University, Department of Energy Technology education and research are closely linked. The relationship between student-student...

  11. Anti-seismic research on nuclear engineering siting

    Institute of Scientific and Technical Information of China (English)

    Li CHEN; Lei NIE; Jijiang LI; Delong WANG; Xiangyu REN

    2006-01-01

    Nuclear engineering belongs to significant project; there is higher requirement on sitings. The study has discussed basic factors of selecting sites, anti-seismic research on sitings including the seismic ground motion, probability methods of seismic hazard analysis as well as interaction about structure and foundation, meanwhile provide the reason for nuclear engineering selecting sites.

  12. Career Pathways of Science, Engineering and Technology Research Postgraduates

    Science.gov (United States)

    Giles, Marnie; Ski, Chantal; Vrdoljak, Davorin

    2009-01-01

    Suitably qualified scientists and engineers are essential for research and development, innovation and, in turn, the growth of the economy. Science, engineering and technology skills are therefore necessary for Australia to remain competitive in a global market. This article reports findings from a nationwide study investigating the career…

  13. Case Study Research in Software Engineering Guidelines and Examples

    CERN Document Server

    Runeson, Per; Rainer, Austen; Regnell, Bjorn

    2012-01-01

    Based on their own experiences of in-depth case studies of software projects in international corporations, in this book the authors present detailed practical guidelines on the preparation, conduct, design and reporting of case studies of software engineering.  This is the first software engineering specific book on the case study research method.

  14. Development of a Taxonomy of Keywords for Engineering Education Research

    Science.gov (United States)

    Finelli, Cynthia J.; Borrego, Maura; Rasoulifar, Golnoosh

    2016-01-01

    The diversity of engineering education research provides an opportunity for cross-fertilisation of ideas and creativity, but it also can result in fragmentation of the field and duplication of effort. One solution is to establish a standardised taxonomy of engineering education terms to map the field and communicate and connect research…

  15. The research on HRM model of geosciences engineering perambulation enterprise

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Firstly,this paper defines the definition of geosciences engineering perambulation enterprise,which belongs to the knowledgeable enterprise;then,it summarizes the general HRM model presented by other researchers,based on those models,this paper builds a new HRM model of geosciences engineering perambulation enterprise.

  16. CosmoQuest: Training Educators and Engaging Classrooms in Citizen Science through a Virtual Research Facility

    Science.gov (United States)

    Buxner, Sanlyn; Bracey, Georgia; Summer, Theresa; Cobb, Whitney; Gay, Pamela L.; Finkelstein, Keely D.; Gurton, Suzanne; Felix-Strishock, Lisa; Kruse, Brian; Lebofsky, Larry A.; Jones, Andrea J.; Tweed, Ann; Graff, Paige; Runco, Susan; Noel-Storr, Jacob; CosmoQuest Team

    2016-10-01

    CosmoQuest is a Citizen Science Virtual Research Facility that engages scientists, educators, students, and the public in analyzing NASA images. Often, these types of citizen science activities target enthusiastic members of the public, and additionally engage students in K-12 and college classrooms. To support educational engagement, we are developing a pipeline in which formal and informal educators and facilitators use the virtual research facility to engage students in real image analysis that is framed to provide meaningful science learning. This work also contributes to the larger project to produce publishable results. Community scientists are being solicited to propose CosmoQuest Science Projects take advantage of the virtual research facility capabilities. Each CosmoQuest Science Project will result in formal education materials, aligned with Next Generation Science Standards including the 3-dimensions of science learning; core ideas, crosscutting concepts, and science and engineering practices. Participating scientists will contribute to companion educational materials with support from the CosmoQuest staff of data specialists and education specialists. Educators will be trained through in person and virtual workshops, and classrooms will have the opportunity to not only work with NASA data, but interface with NASA scientists. Through this project, we are bringing together subject matter experts, classrooms, and informal science organizations to share the excitement of NASA SMD science with future citizen scientists. CosmoQuest is funded through individual donations, through NASA Cooperative Agreement NNX16AC68A, and through additional grants and contracts that are listed on our website, cosmoquest.org.

  17. The Need for Cyber-Informed Engineering Expertise for Nuclear Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert Stephen [Idaho National Laboratory

    2015-12-01

    Engineering disciplines may not currently understand or fully embrace cyber security aspects as they apply towards analysis, design, operation, and maintenance of nuclear research reactors. Research reactors include a wide range of diverse co-located facilities and designs necessary to meet specific operational research objectives. Because of the nature of research reactors (reduced thermal energy and fission product inventory), hazards and risks may not have received the same scrutiny as normally associated with power reactors. Similarly, security may not have been emphasized either. However, the lack of sound cybersecurity defenses may lead to both safety and security impacts. Risk management methodologies may not contain the foundational assumptions required to address the intelligent adversary’s capabilities in malevolent cyber attacks. Although most research reactors are old and may not have the same digital footprint as newer facilities, any digital instrument and control function must be considered as a potential attack platform that can lead to sabotage or theft of nuclear material, especially for some research reactors that store highly enriched uranium. This paper will provide a discussion about the need for cyber-informed engineering practices that include the entire engineering lifecycle. Cyber-informed engineering as referenced in this paper is the inclusion of cybersecurity aspects into the engineering process. A discussion will consider several attributes of this process evaluating the long-term goal of developing additional cyber safety basis analysis and trust principles. With a culture of free information sharing exchanges, and potentially a lack of security expertise, new risk analysis and design methodologies need to be developed to address this rapidly evolving (cyber) threatscape.

  18. Use of engineered soils beneath low-level radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sandford, T.C.; Humphrey, D.N.; DeMascio, F.A. [Univ. of Maine, Orono, ME (United States). Dept. of Civil Engineering

    1993-03-01

    Current regulations are oriented toward locating low-level radioactive waste disposal facilities on sites that have a substantial natural soil barrier and are above the groundwater table. In some of the northern states, like Maine, the overburden soils are glacially derived and in most places provide a thin cover over bedrock with a high groundwater table. Thus, the orientation of current regulations can severely limit the availability of suitable sites. A common characteristic of many locations in glaciated regions is the rapid change of soil types that may occur and the heterogeneity within a given soil type. In addition, the bedrock may be fractured, providing avenues for water movement. A reliable characterization of these sites can be difficult, even with a detailed subsurface exploration program. Moreover, fluctuating groundwater and frost as well as the natural deposition processes have introduced macro features such as cracks, fissures, sand and silt seams, and root holes. The significant effect that these macro features have on the permeability and adsorptive capacity of a large mass is often ignored or poorly accounted for in the analyses. This paper will examine an alternate approach, which is to use engineered soils as a substitute for some or all of the natural soil and to treat the fractures in the underlying bedrock. The site selection would no longer be primarily determined by the natural soil and rock and could even be placed in locations with no existing soils. Engineered soils can be used for below- or aboveground facilities.

  19. Software, Software Engineering and Software Engineering Research:Some Unconventional Thoughts

    Institute of Scientific and Technical Information of China (English)

    David Notkin

    2009-01-01

    Software engineering is broadly discussed as falling far short of expectations. Data and examples are used to justify how software itself is often poor, how the engineering of software leaves much to be desired, and how research in software engineering has not made enough progress to help overcome these weaknesses. However, these data and examples are presented and interpreted in ways that are arguably imbalanced. This imbalance, usually taken at face value, may be distracting the field from making significant progress towards improving the effective engineering of software, a goal the entire community shares. Research dichotomies, which tend to pit one approach against another, often subtly hint that there is a best way to engineer software or a best way to perform research on software. This, too, may be distracting the field from important classes of progress.

  20. The research and practice of spacecraft software engineering

    Science.gov (United States)

    Chen, Chengxin; Wang, Jinghua; Xu, Xiaoguang

    2017-06-01

    In order to ensure the safety and reliability of spacecraft software products, it is necessary to execute engineering management. Firstly, the paper introduces the problems of unsystematic planning, uncertain classified management and uncontinuous improved mechanism in domestic and foreign spacecraft software engineering management. Then, it proposes a solution for software engineering management based on system-integrated ideology in the perspective of spacecraft system. Finally, a application result of spacecraft is given as an example. The research can provides a reference for executing spacecraft software engineering management and improving software product quality.

  1. Rotating Detonation Engine Research at NRL

    Science.gov (United States)

    2013-07-01

    description (201 0 International Combustion Symposium) Stagnation/back pressure effect ( JPC 201 0-6880) Engine sizing effect (AIAA2011-0581) Three...Symposium) Injection/inflow effects ( JPC 2011~044; ASM 2012-0617, ASM 2013-1178) the expansion region change RDE performance. Can this model be...used ta investigate pollutant formation? Exhaust flow ( JPC 2012-3943) Expansion Flow Chemistry Preliminary Fuel-Air Mixing studies •propel•- More

  2. Thermometric consideration for RF and microwave research in food engineering.

    Science.gov (United States)

    Ofoli, R Y

    1986-01-01

    A review of thermometric methods for the processing of food materials at RF and microwave frequencies is presented. Some areas of needed food engineering research are discussed, as well as factors of importance in the selection of temperature monitoring systems.

  3. Research Skills Enhancement in Future Mechanical Engineers

    Directory of Open Access Journals (Sweden)

    Jorge Lino Alves

    2011-04-01

    Full Text Available Nowadays, the Web is a common tool for students searching information about the subjects taught in the different university courses. Although this is a good tool for the first rapid knowledge, a deeper study is usually demanded.

    After many years of teaching a course about ceramic and composite materials in the Integrated Master in Mechanical Engineering of Faculty of Engineering of University of Porto, Portugal, the authors used the Bologna reformulation of the mechanical engineering course to introduce new teaching methodologies based on a project based learning methodology.

    One of the main innovations is a practical work that comprises the study of a recent ceramic scientific paper, using all the actual available tools, elaboration of a scientific report, work presentation and participation in a debate.

    With this innovative teaching method the enrolment of the students was enhanced with a better knowledge about the ceramics subject and the skills related with the CDIO competences.

    This paper presents the reasons for this implementation and explains the teaching methodology adopted as well as the changes obtained in the students’ final results.

  4. CNG INJECTOR RESEARCH FOR DUAL FUEL ENGINE

    Directory of Open Access Journals (Sweden)

    Adam Majczak

    2017-03-01

    Full Text Available The article presents the tests results of the prototype design of hydraulically assisted injector, that is designed for gas supply into diesel engines. The construction of the injector allows for it positioning in the glow plug socket, so that the gas is injected directly into the combustion chamber. The cycle analysis of the four-cylinder Andoria ADCR engine with a capacity of 2.6 dm3 for different crankshaft rotational speeds allowed to determine the necessary time for fuel injection. Because of that, it was possible to determine the required mass flow rate of the injector, for replacing as much of the original fuel by gaseous fuel. To ensure a high value of flow inside the injector, supply pressure equal to 1 MPa was applied. High gas supply pressure requires high value of valve opening forces. For this purpose a injector with hydraulic control system, using a liquid under pressure for the opening process was designed. On the basis of air pressure measurements in the flow line after the injector, the analysis of opening and closing of the valve was made. Measurements of outflow mass of the injector were also carried out. The results showed that the designed injector meets the requirements necessary to supply ADCR engine by the CNG fuel.

  5. FOSER - Future of Software Engineering Research

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — The 2010 Report of the Presidents Council of Advisors on Science and Technology PCAST, entitled ?Designing a Digital Future: Federally Funded Research and...

  6. A neutron tomography facility at a low power research reactor

    CERN Document Server

    Körner, S; Von Tobel, P; Rauch, H

    2001-01-01

    Neutron radiography (NR) provides a very efficient tool in the field of non-destructive testing as well as for many applications in fundamental research. A neutron beam penetrating a specimen is attenuated by the sample material and detected by a two-dimensional (2D) imaging device. The image contains information about materials and structure inside the sample because neutrons are attenuated according to the basic law of radiation attenuation. Contrary to X-rays, neutrons can be attenuated by some light materials, as for example, hydrogen and boron, but penetrate many heavy materials. Therefore, NR can yield important information not obtainable by more traditional methods. Nevertheless, there are many aspects of structure, both quantitative and qualitative, that are not accessible from 2D transmission images. Hence, there is an interest in three-dimensional neutron imaging. At the 250 kW TRIGA Mark II reactor of the Atominstitut in Austria a neutron tomography facility has been installed. The neutron flux at ...

  7. Burning plasma regime for Fussion-Fission Research Facility

    Science.gov (United States)

    Zakharov, Leonid E.

    2010-11-01

    The basic aspects of burning plasma regimes of Fusion-Fission Research Facility (FFRF, R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, P^DT=50-100 MW, P^fission=80-4000 MW, 1 m thick blanket), which is suggested as the next step device for Chinese fusion program, are presented. The mission of FFRF is to advance magnetic fusion to the level of a stationary neutron source and to create a technical, scientific, and technology basis for the utilization of high-energy fusion neutrons for the needs of nuclear energy and technology. FFRF will rely as much as possible on ITER design. Thus, the magnetic system, especially TFC, will take advantage of ITER experience. TFC will use the same superconductor as ITER. The plasma regimes will represent an extension of the stationary plasma regimes on HT-7 and EAST tokamaks at ASIPP. Both inductive discharges and stationary non-inductive Lower Hybrid Current Drive (LHCD) will be possible. FFRF strongly relies on new, Lithium Wall Fusion (LiWF) plasma regimes, the development of which will be done on NSTX, HT-7, EAST in parallel with the design work. This regime will eliminate a number of uncertainties, still remaining unresolved in the ITER project. Well controlled, hours long inductive current drive operation at P^DT=50-100 MW is predicted.

  8. The design status of the liquid lithium target facility of IFMIF at the end of the engineering design activities

    Energy Technology Data Exchange (ETDEWEB)

    Nitti, F.S., E-mail: francesco.nitti@enea.it [IFMIF/EVEDA Project Team, Rokkasho Japan (Japan); Ibarra, A. [CIEMAT, Madrid (Spain); Ida, M. [IHI Corporation, Tokyo (Japan); Favuzza, P. [ENEA Research Center Firenze (Italy); Furukawa, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Groeschel, F. [KIT Research Center, Karlsruhe (Germany); Heidinger, R. [F4E Research Center, Garching (Germany); Kanemura, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Knaster, J. [IFMIF/EVEDA Project Team, Rokkasho Japan (Japan); Kondo, H. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Micchiche, G. [ENEA Research Center, Brasimone (Italy); Sugimoto, M. [JAEA Research Center, Rokkasho Japan (Japan); Wakai, E. [JAEA Research Center, Tokai-mura, Ibaraki (Japan)

    2015-11-15

    Highlights: • Results of validation and design activity for the Li loop facility of IFMIF. • Demonstration of Li target stability, with surface disturbance <1 mm. • Demonstration of start-up and shut down procedures of Li loop. • Complete design of the heat removal system and C and O purification system. • Conceptual design of N and H isotopes purification systems. - Abstract: The International Fusion Material Irradiation Facility (IFMIF) is an experimental facility conceived for qualifying and characterizing structural materials for nuclear fusion applications. The Engineering Validation and Engineering Design Activity (EVEDA) is a fundamental step towards the final design. It presented two mandates: the Engineering Validation Activities (EVA), still on-going, and the Engineering Design Activities (EDA) accomplished on schedule in June 2013. Five main facilities are identified in IFMIF, among which the Lithium Target Facility constituted a technological challenge overcome thanks to the success of the main validation challenges impacting the design. The design of the liquid Lithium Target Facility at the end of the EDA phase is here detailed.

  9. EXPERIMENTAL AND COMPUTATIONAL ACTIVITIES AT THE OREGON STATE UNIVERSITY NEES TSUNAMI RESEARCH FACILITY

    Directory of Open Access Journals (Sweden)

    S.C. Yim

    2009-01-01

    Full Text Available A diverse series of research projects have taken place or are underway at the NEES Tsunami Research Facility at Oregon State University. Projects range from the simulation of the processes and effects of tsunamis generated by sub-aerial and submarine landslides (NEESR, Georgia Tech., model comparisons of tsunami wave effects on bottom profiles and scouring (NEESR, Princeton University, model comparisons of wave induced motions on rigid and free bodies (Shared-Use, Cornell, numerical model simulations and testing of breaking waves and inundation over topography (NEESR, TAMU, structural testing and development of standards for tsunami engineering and design (NEESR, University of Hawaii, and wave loads on coastal bridge structures (non-NEES, to upgrading the two-dimensional wave generator of the Large Wave Flume. A NEESR payload project (Colorado State University was undertaken that seeks to improve the understanding of the stresses from wave loading and run-up on residential structures. Advanced computational tools for coupling fluid-structure interaction including turbulence, contact and impact are being developed to assist with the design of experiments and complement parametric studies. These projects will contribute towards understanding the physical processes that occur during earthquake generated tsunamis including structural stress, debris flow and scour, inundation and overland flow, and landslide generated tsunamis. Analytical and numerical model development and comparisons with the experimental results give engineers additional predictive tools to assist in the development of robust structures as well as identification of hazard zones and formulation of hazard plans.

  10. The NASA Lewis Research Center Internal Fluid Mechanics Facility

    Science.gov (United States)

    Porro, A. R.; Hingst, W. R.; Wasserbauer, C. A.; Andrews, T. B.

    1991-01-01

    An experimental facility specifically designed to investigate internal fluid duct flows is described. It is built in a modular fashion so that a variety of internal flow test hardware can be installed in the facility with minimal facility reconfiguration. The facility and test hardware interfaces are discussed along with design constraints of future test hardware. The plenum flow conditioning approach is also detailed. Available instrumentation and data acquisition capabilities are discussed. The incoming flow quality was documented over the current facility operating range. The incoming flow produces well behaved turbulent boundary layers with a uniform core. For the calibration duct used, the boundary layers approached 10 percent of the duct radius. Freestream turbulence levels at the various operating conditions varied from 0.64 to 0.69 percent of the average freestream velocity.

  11. Shock Tube and Ballistic Range Facilities at NASA Ames Research Center

    Science.gov (United States)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cornelison, Charles J.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center are described. These facilities have been in operation since the 1960s and have supported many NASA missions and technology development initiatives. The facilities have world-unique capabilities that enable experimental studies of real-gas aerothermal, gas dynamic, and kinetic phenomena of atmospheric entry.

  12. Appreciating the Role of the Engineer in Building Science Research

    Science.gov (United States)

    Gilbert, Paul H.

    2006-05-01

    The engineering team will typically be brought into a science project, shortly before or just as the project is authorized by its funding agency. The project has thus been defined by studies and reports sufficiently to support a ``Baseline Estimate'' of the costs that will hopefully provide adequate funds for the completed science facilities. The engineering team can bring much to benefit the program. More than simply producing the required bidding documents and providing the non-scientific components of the new laboratory or observatory, the Engineer should be invited to become a part of the project team where he/she can bring the experience of the engineering team to the discussions. Matters such as how to plan, procure, sequence and construct, as well as how to control and report project costs and schedule performance would be useful topics. The common goal then becomes to provide a functioning facility within the budgeted funds to do the intended science. Along the way, lots of interesting issues, questions and challenges may emerge. These may or may not affect the outcome of the project, depending upon how they are handled. Some examples of personal experience of actual events that occurred on projects you may be familiar with, will be described and discussed.

  13. EU H2020 SERA: Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe

    Science.gov (United States)

    Giardini, Domenico; Saleh, Kauzar; SERA Consortium, the

    2017-04-01

    SERA - Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe - is a new infrastructure project awarded in the last Horizon 2020 call for Integrating Activities for Advanced Communities (INFRAIA-01-2016-2017). Building up on precursor projects like NERA, SHARE, NERIES, SERIES, etc., SERA is expected to contribute significantly to the access of data, services and research infrastructures, and to develop innovative solutions in seismology and earthquake engineering, with the overall objective of reducing the exposure to risks associated to natural and anthropogenic earthquakes. For instance, SERA will revise the European Seismic Hazard reference model for input in the current revision of the Eurocode 8 on Seismic Design of Buildings; we also foresee to develop the first comprehensive framework for seismic risk modeling at European scale, and to develop new standards for future experimental observations and instruments for earthquake engineering and seismology. To that aim, SERA is engaging 31 institutions across Europe with leading expertise in the operation of research facilities, monitoring infrastructures, data repositories and experimental facilities in the fields of seismology, anthropogenic hazards and earthquake engineering. SERA comprises 26 activities, including 5 Networking Activities (NA) to improve the availability and access of data through enhanced community coordination and pooling of resources, 6 Joint Research Activities (JRA) aimed at creating new European standards for the optimal use of the data collected by the European infrastructures, Virtual Access (VA) to the 5 main European services for seismology and engineering seismology, and Trans-national Access (TA) to 10 high-class experimental facilities for earthquake engineering and seismology in Europe. In fact, around 50% of the SERA resources will be dedicated to virtual and transnational access. SERA and EPOS (European Platform Observing System, a European Research

  14. Engineering education research: Impacts of an international network of female engineers on the persistence of Liberian undergraduate women studying engineering

    Science.gov (United States)

    Rimer, Sara; Reddivari, Sahithya; Cotel, Aline

    2015-11-01

    As international efforts to educate and empower women continue to rise, engineering educators are in a unique position to be a part of these efforts by encouraging and supporting women across the world at the university level through STEM education and outreach. For the past two years, the University of Michigan has been a part of a grassroots effort to encourage and support the persistence of engineering female students at University of Liberia. This effort has led to the implementation of a leadership camp this past August for Liberian engineering undergraduate women, meant to: (i) to empower engineering students with the skills, support, and inspiration necessary to become successful and well-rounded engineering professionals in a global engineering market; and (ii) to strengthen the community of Liberian female engineers by building cross-cultural partnerships among students resulting in a international network of women engineers. This session will present qualitative research findings on the impact of this grassroots effort on Liberian female students? persistence in engineering, and the future directions of this work.

  15. Re-Educating Jet-Engine-Researchers to Stay Relevant

    Science.gov (United States)

    Gal-Or, Benjamin

    2016-06-01

    To stay relevantly supported, jet-engine researchers, designers and operators should follow changing uses of small and large jet engines, especially those anticipated to be used by/in the next generation, JET-ENGINE-STEERED ("JES") fleets of jet drones but fewer, JES-Stealth-Fighter/Strike Aircraft. In addition, some diminishing returns from isolated, non-integrating, jet-engine component studies, vs. relevant, supersonic, shock waves control in fluidic-JES-side-effects on compressor stall dynamics within Integrated Propulsion Flight Control ("IPFC"), and/or mechanical JES, constitute key relevant methods that currently move to China, India, South Korea and Japan. The central roles of the jet engine as primary or backup flight controller also constitute key relevant issues, especially under post stall conditions involving induced engine-stress while participating in crash prevention or minimal path-time maneuvers to target. And when proper instructors are absent, self-study of the JES-STVS REVOLUTION is an updating must, where STVS stands for wing-engine-airframe-integrated, embedded stealthy-jet-engine-inlets, restructured engines inside Stealth, Tailless, canard-less, Thrust Vectoring IFPC Systems. Anti-terror and Airliners Super-Flight-Safety are anticipated to overcome US legislation red-tape that obstructs JES-add-on-emergency-kits-use.

  16. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  17. Tissue Engineering Organs for Space Biology Research

    Science.gov (United States)

    Vandenburgh, H. H.; Shansky, J.; DelTatto, M.; Lee, P.; Meir, J.

    1999-01-01

    Long-term manned space flight requires a better understanding of skeletal muscle atrophy resulting from microgravity. Atrophy most likely results from changes at both the systemic level (e.g. decreased circulating growth hormone, increased circulating glucocorticoids) and locally (e.g. decreased myofiber resting tension). Differentiated skeletal myofibers in tissue culture have provided a model system over the last decade for gaining a better understanding of the interactions of exogenous growth factors, endogenous growth factors, and muscle fiber tension in regulating protein turnover rates and muscle cell growth. Tissue engineering these cells into three dimensional bioartificial muscle (BAM) constructs has allowed us to extend their use to Space flight studies for the potential future development of countermeasures.

  18. Summaries of FY 1995 engineering research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The individual engineering project summaries follow the program overview. The summaries are ordered alphabetically by name of institution and so the table of contents lists all the institutions at which projects were sponsored in fiscal year 1995. Each project entry begins with an institutional-departmental heading. The names of investigators are listed immediately below the title. The funding level for fiscal year 1995 appears to the right of title; it is followed by the budget activity number. These numbers categorize the projects for budgetary purposes and the categories are described in the budget number index. A separate index of Principal Investigators includes phone number, fax number and e-mail address, where available. The fiscal year in which either the project began or was renewed and the anticipated duration in years are indicated respectively by the first two and last digits of the sequence directly below the budget activity number. The summary description of the project completes the entry.

  19. Facility Bench of Stationary Engines for Study of Emissions (E65-PO) CIEMAT; Instalacion Banco de Motores Estacionarios para Estudio de Emisiones (E65-PO) CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Rojas Garcia, E.; Rodriguez Maroto, J.J.

    2007-07-01

    The Project of Technology of Aerosols in Generation of Energy, of the Department of Fossil Fuels of the CIEMAT, began in the year 2004, a research activity line, based on the study of the emissions coming from internal combustion engines, particularly of Diesel technology. Activity was continued by the Polluting Emissions Group of the Department of Environment, when becoming the original Project in this Group. From the concession to the Group, of the project GR/AMB/0119/2004 Evaluation of the Emissions of Biodiesel supported by the Autonomous Community of Madrid together with the European Regional Development Fund (ERDF), this activity was encourage, with the design, assembly and to get ready of the facility Bench of stationary engines for study of emissions, located in the building 65 at CIEMAT, Madrid. The present report constitutes a detailed technical description of each one of the elements that the installation Bench of stationary engines for study of emissions it integrated within the framework of the referred project (GR/AMB/0119/2004) and whose capacity includes studies of the effects of the engine, fuel, operation conditions, and methodology of sampling and measurement of emissions (gases and particles). The fundamental parts of facility describes in the present report are: engine test cell (cabin of sound insulation , ventilation and refrigeration system, anti vibrations mounting, engine, dynamometric brake), lines of preconditioning of particles and gases emissions (exhaust line, primary and secondary dilution lines, gases cleaning system...), other general parts of facility (sampling and measurement station, service lines...). The present report not only reflects the characteristics of the systems involved, but rather also in certain cases specified the procedure and reason for their choice. (Author) 10 refs.

  20. Medical Applications of Non-Medical Research: Applications Derived from BES-Supported Research and Research at BES Facilities

    Science.gov (United States)

    1998-07-01

    This publication contains stories that illustrate how the Office of Basic Energy Sciences (BES) research and major user facilities have impacted the medical sciences in the selected topical areas of disease diagnosis, treatment (including drug development, radiation therapy, and surgery), understanding, and prevention.

  1. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  2. Research Capabilities for Oil-Free Turbomachinery Expanded by New Rotordynamic Simulator Facility

    Science.gov (United States)

    Howard, Samuel A.

    2004-01-01

    A new test rig has been developed for simulating high-speed turbomachinery shafting using Oil-Free foil air bearing technology. Foil air journal bearings are self-acting hydrodynamic bearings with a flexible inner sleeve surface using air as the lubricant. These bearings have been used in turbomachinery, primarily air cycle machines, for the past four decades to eliminate the need for oil lubrication. More recently, interest has been growing in applying foil bearings to aircraft gas turbine engines. They offer potential improvements in efficiency and power density, decreased maintenance costs, and other secondary benefits. The goal of applying foil air bearings to aircraft gas turbine engines prompted the fabrication of this test rig. The facility enables bearing designers to test potential bearing designs with shafts that simulate the rotating components of a target engine without the high cost of building actual flight hardware. The data collected from this rig can be used to make changes to the shaft and bearings in subsequent design iterations. The rest of this article describes the new test rig and demonstrates some of its capabilities with an initial simulated shaft system. The test rig has two support structures, each housing a foil air journal bearing. The structures are designed to accept any size foil journal bearing smaller than 63 mm (2.5 in.) in diameter. The bearing support structures are mounted to a 91- by 152-cm (3- by 5-ft) table and can be separated by as much as 122 cm (4 ft) and as little as 20 cm (8 in.) to accommodate a wide range of shaft sizes. In the initial configuration, a 9.5-cm (3.75-in.) impulse air turbine drives the test shaft. The impulse turbine, as well as virtually any number of "dummy" compressor and turbine disks, can be mounted on the shaft inboard or outboard of the bearings. This flexibility allows researchers to simulate various engine shaft configurations. The bearing support structures include a unique bearing mounting

  3. Developing Research Skills for Civil Engineers: A Library Contribution.

    Science.gov (United States)

    Bruce, C. S.; Brameld, G. H.

    1990-01-01

    A library instruction program has been instituted in civil engineering at the Queensland University of Technology (Australia) in an effort to improve the research skills of fourth year students working on research projects. Students with extended library instruction were found to have better information-seeking behavior than others. (Author/MSE)

  4. Engineering

    National Research Council Canada - National Science Library

    Includes papers in the following fields: Aerospace Engineering, Agricultural Engineering, Chemical Engineering, Civil Engineering, Electrical Engineering, Environmental Engineering, Industrial Engineering, Materials Engineering, Mechanical...

  5. Implementing Total Quality Management to Improve Facilities and Resources of Departments in Engineering Institute

    OpenAIRE

    2014-01-01

    This research work aims to understand Total Quality Management concepts and evaluating the extent of TQM implementation in Mechanical Engineering Department through student feedback survey. In keeping with the newer demands that have been placed on the self financed educational system by the various stakeholders, the technical educational system in particular, has been pressured to shift its focus from one in quantitative expansion to one with emphasis on quality. Growth and s...

  6. Research on formation density MWD instrument in engineering geological exploration

    Institute of Scientific and Technical Information of China (English)

    Dajun ZHAO; Guosheng JIANG; Youhong SUN; Junhua ZHENG; Zhuwen WANG

    2008-01-01

    A high efficiency method is very important in geological survey for a new city in China. Geophysical parameters are Measured While Drilling(MWD), and these parameters are processed and explained on the ground, so the method can replace conventional engineering geological exploration for drilling rock sample. According petroleum engineering MWD, using the different characters of different rock absorbs γ radial, with the method of storing data in hole and explaining data on the ground, engineering geological exploration formation density MWD is researched. The MWD works stabilized, and the performance is good with precise data.

  7. Robotics REU in Undergraduate Engineering Research

    OpenAIRE

    Shi, Wei; Berg, Devin; Liu, Cheng; Anderson, Cayte

    2016-01-01

    The Robotics REU program funded by National Science Foundation (NSF) brings together a dynamic and creative group of undergraduates from UW-Stout and regional universities to create an interdisciplinary research site at UW-Stout. Presented at Stout Summit, Menomonie, WI, 7 October 2016.

  8. Chemical Engineering Division research highlights, 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-08-01

    Separate abstracts are included for sections with information on lithium/metal sulfide batteries; electrochemical energy development; advanced fuel cell development; utilization of coal; magnetohydrodynamics technology; LMFBR and GCFR support work; fuel cycle studies; fusion reactor research; solar energy development; and basic energy science.

  9. Chemical Engineering Division research highlights, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Burris, L.; Webster, D. S.; Barney, D. L.; Cafasso, F. A.; Steindler, M. J.

    1980-06-01

    In 1979, CEN conducted research and development in the following areas: (1) high-temperature, rechargeable lithium/iron sulfide batteries for electric vehicles and electric utility load leveling; (2) ambient-temperature batteries - improved lead-acid, nickel/zinc, and nickel/iron - for electric vehicles; (3) molten carbonate fuel cells for use by electric utilities; (4) coal technology - mainly fluidized-bed combustion of coal in the presence of SO/sub 2/ sorbent of limestone; (5) heat- and seed- recovery technology for open-cycle magnetohydrodynamic systems; (6) solar energy collectors and thermal energy storage; (7) fast breeder reactor chemistry research - chemical support of reactor safety studies, chemistry of irradiated fuels, and sodium technology; (8) fuel cycle technology - reprocessing of nuclear fuels, management of nuclear wastes, geologic migration studies, and proof-of-breeding studies for the Light Water Breeder Reactor; (9) magnetic fusion research - lithium processing technology and materials research; and (10) basic energy sciences - homogeneous catalysis, thermodynamics of inorganic and organic materials, environmental chemistry, electrochemistry, and physical properties of salt vapors. Separate abstracts were prepared for each of these areas.

  10. Impacting Society through Engineering Design Research

    DEFF Research Database (Denmark)

    Howard, Thomas J.

    2011-01-01

    Following the recent ICED11 conference in Copenhagen, Thomas Howard, ICED11 Assistant Chair and Ass. Professor at DTU has written a reflection on design research and design practice, suggesting that in addition to benefiting society through the improved understanding of methods of and approaches...

  11. Fundamental heat transfer research for gas turbine engines

    Science.gov (United States)

    Metzger, D. E. (Editor)

    1980-01-01

    Thirty-seven experts from industry and the universities joined 24 NASA Lewis staff members in an exchange of ideas on trends in aeropropulsion research and technology, basic analyses, computational analyses, basic experiments, near-engine environment experiments, fundamental fluid mechanics and heat transfer, and hot technology as related to gas turbine engines. The workshop proceedings described include pre-workshop input from participants, presentations of current activity by the Lewis staff, reports of the four working groups, and a workshop summary.

  12. Environmental surveillance for EG&G Idaho Waste Management facilities at the Idaho National Engineering Laboratory. 1993 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelmsen, R.N.; Wright, K.C.; McBride, D.W.; Borsella, B.W.

    1994-08-01

    This report describes calendar year 1993 environmental surveillance activities of Environmental Monitoring of EG&G Idaho, Inc., performed at EG&G Idaho operated Waste Management facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Included are results of the sampling performed by the Radiological and Environmental Sciences Laboratory and the United States Geological Survey. The primary purposes of monitoring are to evaluate environmental conditions, to provide and interpret data, to ensure compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1993 environmental surveillance data with US Department of Energy derived concentration guides and with data from previous years.

  13. Experimental engineering section off-gas decontamination facility's fractionator column: installation and performance

    Energy Technology Data Exchange (ETDEWEB)

    Gilliam, T. M.; Fowler, V. L.; Inman, D. J.

    1978-03-01

    A detailed description of the third column recently installed in the Experimental Engineering Section Off-Gas Decontamination Facility (EES-ODF) is presented. The EES-ODF is being used to provide engineering-scale experiments (nominal gas and liquid flows of 5 scfm and 0.5 gpm, respectively) in the development of the Krypton Absorption in Liquid CO/sub 2/ (KALC) process. A detailed discussion of the column's construction is provided. This discussion includes the peripherals associated with the column, such as refrigeration, heat exchangers, instrumentation, etc. The compressibility of Goodloe packing (the packing in the other columns) and the possible reduced throughput due to this compression have revealed the desirablility of a random (i.e., noncompressible) packing. Toward this end, the third column is packed with a new random packing (PRO-PAK). A preliminary comparison between this packing and the woven wire mesh packing (Goodloe) used in the other two columns has been made. Experiments comparing the throughput capacity indicate that the PRO-PAK packing has approximately 60% the capacity of Goodloe for a CO/sub 2/ system. When used as a fractionator or stripper with the basic O/sub 2/-Kr-CO/sub 2/ KALC system, the PRO-PAK column produced HTU values less than or equal to the GOODLOE columns under similar operating conditions.

  14. Engineering Design Thinking and Information Gathering. Final Report. Research in Engineering and Technology Education

    Science.gov (United States)

    Mentzer, Nathan

    2011-01-01

    The objective of this research was to explore the relationship between information access and design solution quality of high school students presented with an engineering design problem. This objective is encompassed in the research question driving this inquiry: How does information access impact the design process? This question has emerged in…

  15. Conceptualization and design of a variable-gravity research facility

    Science.gov (United States)

    1987-01-01

    The goal is to provide facilities for the study of the effects of variable-gravity levels in reducing the physiological stresses upon the humans of long-term stay time in zero-g. The designs studied include: twin-tethered two module system with a central despun module with docking port and winch gear; and rigid arm tube facility using shuttle external tanks. Topics examined included: despun central capsule configuration, docking clearances, EVA requirements, crew selection, crew scheduling, food supply and preparation, waste handling, leisure use, biomedical issues, and psycho-social issues.

  16. SR-71 Research Engineer Marta Bohn-Meyer

    Science.gov (United States)

    1992-01-01

    This 1992 photo shows SR-71 flight engineer Marta Bohn-Meyer in front of one of NASA's SR-71 aircraft on the ramp at the Ames-Dryden Flight Research Facility (later, Dryden Flight Research Center), Edwards, California. An aerospace engineer who has been at Dryden since 1979, Bohn-Meyer is the first female crew member ever assigned to fly in the SR-71. Data from the SR-71 program carried out by NASA will be used to aid designers of future supersonic aircraft and propulsion systems. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes

  17. FY04 Engineering Technology Reports Laboratory Directed Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, R M

    2005-01-27

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2004, and exemplifies Engineering's more than 50-year history of developing the technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. Engineering's investment in technologies is carried out through two programs, the ''Tech Base'' program and the LDRD program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply technologies to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2004, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the long-term science and technology investments for the Directorate. The Centers represent technologies that have been identified as

  18. Global network on engineering education research and expertise in PBL

    DEFF Research Database (Denmark)

    Enemark, Stig; Kolmos, Anette; Moesby, Egon

    2006-01-01

    in order to facilitate better access to and co-operation within the PBL area. One of the absolute important tasks for UCPBL is to provide evidence for the effectiveness of PBL worldwide. Thus, there is a special attempt to establish links between engineering education researchers in this field......The UCPBL Centre for Problem Based Learning is based at Aalborg University, Denmark, known world-wide for its successful educational approach based on problem oriented project work. Due to more than 30 years of experience in utilizing PBL-learning principles in Engineering Education, an increasing....... This involves considerations concerning what is engineering education research – and how do we promote research based staff and educational development....

  19. Sharing Research Models: Using Software Engineering Practices for Facilitation.

    Science.gov (United States)

    Bryant, Stephanie P; Solano, Eric; Cantor, Susanna; Cooley, Philip C; Wagener, Diane K

    2011-03-01

    Increasingly, researchers are turning to computational models to understand the interplay of important variables on systems' behaviors. Although researchers may develop models that meet the needs of their investigation, application limitations-such as nonintuitive user interface features and data input specifications-may limit the sharing of these tools with other research groups. By removing these barriers, other research groups that perform related work can leverage these work products to expedite their own investigations. The use of software engineering practices can enable managed application production and shared research artifacts among multiple research groups by promoting consistent models, reducing redundant effort, encouraging rigorous peer review, and facilitating research collaborations that are supported by a common toolset. This report discusses three established software engineering practices- the iterative software development process, object-oriented methodology, and Unified Modeling Language-and the applicability of these practices to computational model development. Our efforts to modify the MIDAS TranStat application to make it more user-friendly are presented as an example of how computational models that are based on research and developed using software engineering practices can benefit a broader audience of researchers.

  20. FY03 Engineering Technology Reports Laboratory Directed Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Minichino, C

    2004-03-05

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2003, and exemplifies Engineering's 50-year history of researching and developing the engineering technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence, and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Engineering's investment in technologies is carried out through two programs, the LDRD program and the ''Tech Base'' program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge, or that require a significant level of research, or contain some unknown that needs to be fully understood. Tech Base is used to apply those technologies, or adapt them to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice.'' Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2003, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the science and technology investments for the Directorate. The Centers represent technology

  1. Photovoltaic Engineering Testbed: A Facility for Space Calibration and Measurement of Solar Cells on the International Space Station

    Science.gov (United States)

    Landis, Geoffrey A.; Bailey, Sheila G.; Jenkins, Phillip; Sexton, J. Andrew; Scheiman, David; Christie, Robert; Charpie, James; Gerber, Scott S.; Johnson, D. Bruce

    2001-01-01

    The Photovoltaic Engineering Testbed ("PET") is a facility to be flown on the International Space Station to perform calibration, measurement, and qualification of solar cells in the space environment and then returning the cells to Earth for laboratory use. PET will allow rapid turnaround testing of new photovoltaic technology under AM0 conditions.

  2. The high temperature materials laboratory: A research and user facility at the Oak Ridge National Laboratory

    Science.gov (United States)

    1992-10-01

    HTML is a modern facility for high-temperature ceramic research; it is also a major user facility, providing industry and university communities access to special research equipment for studying microstructure and microchemistry of materials. User research equipment is divided among six User Centers: Materials Analysis, X-ray Diffraction, Physical Properties, Mechanical Properties, Ceramic Specimen Preparation, and Residual Stress. This brochure provides brief descriptions of each of the major research instruments in the User Centers: scanning Auger microprobe, field emission SEMs, electron microprobe, multitechnique surface analyzer, analytical electron microscope, HRTEM, optical microscopy & image analysis, goniometer, scanning calorimetry, simultaneous thermal analysis, thermal properties (expansion, diffusivity, conductivity), high-temperature tensile test facilities, flexure, electromechanical test facilities (flexure, compression creep, environmental), microhardness microprobe, ceramic machining. Hands-on operation by qualified users is encouraged; staff is available. Both proprietary and nonproprietary research may be performed. Proprietary research is one on a full-cost recovery basis.

  3. Development and maintenance of a specific pathogen free (SPF) zebrafish research facility for Pseudoloma neurophilia

    OpenAIRE

    Kent, Michael L.; Buchner, Cari; Watral, Virginia G.; Sanders, Justin L; LaDu, Jane; Peterson, Tracy S.; Tanguay, Robert L.

    2011-01-01

    Pseudoloma neurophilia (Microsporidia) is very common in zebrafish research facilities. A new zebrafish facility was established at the Sinnhuber Aquatic Resource Laboratory (SARL) at Oregon State University, and thus we used this as an opportunity to establish a Specific Pathogen Free (SPF) colony of zebrafish for this microsporidium. Progeny from 10 zebrafish lines (n = 2,203) were initially transferred to the SARL facility in 2007 following PCR screening of broodstock and a subpopulation o...

  4. THE IMPACT OF THERMAL ENGINEERING RESEARCH ON GLOBAL CLIMATE CHANGE

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, Patrick [Arizona State University; Abdelaziz, Omar [ORNL; Otanicar, Todd [University of Tulsa; Phelan, Bernadette [Phelan Research Solutions, Inc.; Prasher, Ravi [Arizona State University; Taylor, Robert [University of New South Wales, Sydney, Australia; Tyagi, Himanshu [Indian Institute of Technology Ropar, India

    2014-01-01

    Global climate change is recognized by many people around the world as being one of the most pressing issues facing our society today. The thermal engineering research community clearly plays an important role in addressing this critical issue, but what kind of thermal engineering research is, or will be, most impactful? In other words, in what directions should thermal engineering research be targeted in order to derive the greatest benefit with respect to global climate change? To answer this question we consider the potential reduction in greenhouse gas (GHG) emissions, coupled with potential economic impacts, resulting from thermal engineering research. Here a new model framework is introduced that allows a technological, sector-by-sector analysis of GHG emissions avoidance. For each sector, we consider the maximum reduction in CO2 emissions due to such research, and the cost effectiveness of the new efficient technologies. The results are normalized on a country-by-country basis, where we consider the USA, the European Union, China, India, and Australia as representative countries or regions. Among energy supply-side technologies, improvements in coal-burning power generation are seen as having the most beneficial CO2 and economic impacts. The one demand-side technology considered, residential space cooling, offers positive but limited impacts. The proposed framework can be extended to include additional technologies and impacts, such as water consumption.

  5. Programmatic Need for a Zero Emission Steam Technology (ZEST) Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Meltzer, M; Followill, F; Johnson, J

    2001-06-30

    Lawrence Livermore National Laboratory (LLNL) is proposing to construct an on-site research facility for a novel electric power generation system that exploits clean-burning fossil fuels. This system, termed Zero Emission Steam Technology (ZEST), offers unique economic and environmental benefits, including: (1) Highly efficient power generation using the most advanced combustion and turbine technologies. (2) Ability to burn a range of fossil fuels, including natural gas, synthetic gas from coal (''coal syngas''), and coal-bed methane. (3) No oxides of nitrogen generated that would contribute to air pollution. (4) No greenhouse gases emitted. (5) Secure geologic sequestration of the carbon dioxide (CO{sub 2}) combustion product. (6) Use of the CO{sub 2} combustion product to enhance oil recovery in mature fields. The proposed research facility will provide a necessary step toward commercialization of ZEST. Despite the technology's promise, it will not be implemented by the U.S. electric power industry unless an agency such as DOE takes on the task of demonstrating its scientific and economic viability. The U.S. electric power industry typically requires 50,000 hours of operational data--nearly six years of continuous duty--before investing in a major new technology. Hence, there is a strong programmatic need for DOE to provide such data for ZEST, to accelerate commercial investment in this technology. The ZEST combustion process is based on rocket engine technology. It burns pure oxygen with a hydrocarbon fuel under stoichiometric conditions to produce power with virtually no oxides of nitrogen generated. The flexibility of ZEST's gas generator, which has independent temperature and pressure control, will allow modular upgrading of turbine systems as new, more efficient technology becomes available. It is envisioned that the ZEST research facility will serve as a testing laboratory for new turbine technology being designed by the U

  6. Field Research Facility Data Integration Framework Data Management Plan: Survey Lines Dataset

    Science.gov (United States)

    2016-08-01

    clearinghouse tool using the Environmental Systems Research Institute (Esri) Geoportal technology . Once the XML metadata is loaded into the Metadata Manager ...ER D C/ CH L SR -1 6- 4 Coastal Ocean Data Systems Program Field Research Facility Data Integration Framework Data Management Plan...Systems Program ERDC/CHL SR-16-4 August 2016 Field Research Facility Data Integration Framework Data Management Plan Survey Lines Dataset Michael F

  7. Performance Engineering Research Center and RECOVERY. Performance Engineering Research Institution SciDAC-e Augmentation. Performance enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, Jeffrey K. [Univ. of Maryland, College Park, MD (United States)

    2015-10-12

    This project concentrated on various ways to improve the measurement and tuning large-scale parallel applications. This project was supplement to the project DE-FC0206ER25763 (“Performance Engineering Research Center”). The research conducted during this project is summarized in this report. The complete details of the work are available in the ten publications listed at the end of the report. It also supported the Ph.D. studies of three students and one research scientist.

  8. Conceptual designs of near surface disposal facility for radioactive waste arising from the facilities using radioisotopes and research facilities for nuclear energy development and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Akihiro; Yoshimori, Michiro; Okoshi, Minoru; Yamamoto, Tadatoshi; Abe, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    Various kinds of radioactive waste is generating from the utilization of radioisotopes in the field of science, technology, etc. and the utilization and development of nuclear energy. In order to promote the utilization of radionuclides and the research activities, it is necessary to treat and dispose of radioactive waste safely and economically. Japan Nuclear Cycle Development Institute (JNC), Japan Radioisotope Association (JRIA) and Japan Atomic Energy Research Institute (JAERI), which are the major waste generators in Japan in these fields, are promoting the technical investigations for treatment and disposal of the radioactive waste co-operately. Conceptual design of disposal facility is necessary to demonstrate the feasibility of waste disposal business and to determine the some conditions such as the area size of the disposal facility. Three institutes share the works to design disposal facility. Based on our research activities and experiences of waste disposal, JAERI implemented the designing of near surface disposal facilities, namely, simple earthen trench and concrete vaults. The designing was performed based on the following three assumed site conditions to cover the future site conditions: (1) Case 1 - Inland area with low groundwater level, (2) Case 2 - Inland area with high groundwater level, (3) Case 3 - Coastal area. The estimation of construction costs and the safety analysis were also performed based on the designing of facilities. The safety assessment results show that the safety for concrete vault type repository is ensured by adding low permeability soil layer, i.e. mixture of soil and bentonite, surrounding the vaults not depending on the site conditions. The safety assessment results for simple earthen trench also show that their safety is ensured not depending on the site conditions, if they are constructed above groundwater levels. The construction costs largely depend on the depth for excavation to build the repositories. (author)

  9. Conceptual designs of near surface disposal facility for radioactive waste arising from the facilities using radioisotopes and research facilities for nuclear energy development and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Akihiro; Yoshimori, Michiro; Okoshi, Minoru; Yamamoto, Tadatoshi; Abe, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    Various kinds of radioactive waste is generating from the utilization of radioisotopes in the field of science, technology, etc. and the utilization and development of nuclear energy. In order to promote the utilization of radionuclides and the research activities, it is necessary to treat and dispose of radioactive waste safely and economically. Japan Nuclear Cycle Development Institute (JNC), Japan Radioisotope Association (JRIA) and Japan Atomic Energy Research Institute (JAERI), which are the major waste generators in Japan in these fields, are promoting the technical investigations for treatment and disposal of the radioactive waste co-operately. Conceptual design of disposal facility is necessary to demonstrate the feasibility of waste disposal business and to determine the some conditions such as the area size of the disposal facility. Three institutes share the works to design disposal facility. Based on our research activities and experiences of waste disposal, JAERI implemented the designing of near surface disposal facilities, namely, simple earthen trench and concrete vaults. The designing was performed based on the following three assumed site conditions to cover the future site conditions: (1) Case 1 - Inland area with low groundwater level, (2) Case 2 - Inland area with high groundwater level, (3) Case 3 - Coastal area. The estimation of construction costs and the safety analysis were also performed based on the designing of facilities. The safety assessment results show that the safety for concrete vault type repository is ensured by adding low permeability soil layer, i.e. mixture of soil and bentonite, surrounding the vaults not depending on the site conditions. The safety assessment results for simple earthen trench also show that their safety is ensured not depending on the site conditions, if they are constructed above groundwater levels. The construction costs largely depend on the depth for excavation to build the repositories. (author)

  10. Direct sunlight facility for testing and research in HCPV

    Science.gov (United States)

    Sciortino, Luisa; Agnello, Simonpietro; Barbera, Marco; Bonsignore, Gaetano; Buscemi, Alessandro; Candia, Roberto; Cannas, Marco; Collura, Alfonso; Di Cicca, Gaspare; Gelardi, Franco Mario; Cicero, Ugo Lo; Montagnino, Fabio Maria; Napoli, Gianluca; Paredes, Filippo; Spallino, Luisa; Varisco, Salvo

    2014-09-01

    A facility for testing different components for HCPV application has been developed in the framework of "Fotovoltaico ad Alta Efficienza" (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.

  11. Direct sunlight facility for testing and research in HCPV

    Energy Technology Data Exchange (ETDEWEB)

    Sciortino, Luisa, E-mail: luisa.sciortino@unipa.it; Agnello, Simonpietro, E-mail: luisa.sciortino@unipa.it; Bonsignore, Gaetano; Cannas, Marco; Gelardi, Franco Mario; Napoli, Gianluca; Spallino, Luisa [Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 PA (Italy); Barbera, Marco [Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 PA, Italy and Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento 1, 90134 PA (Italy); Buscemi, Alessandro; Montagnino, Fabio Maria; Paredes, Filippo [IDEA s.r.l., Contrada Molara, Zona Industriale III Fase, 90018 Termini Imerese (Panama) (Italy); Candia, Roberto; Collura, Alfonso; Di Cicca, Gaspare; Cicero, Ugo Lo; Varisco, Salvo [Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento 1, 90134 PA (Italy)

    2014-09-26

    A facility for testing different components for HCPV application has been developed in the framework of 'Fotovoltaico ad Alta Efficienza' (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.

  12. Development of the West Virginia University Small Microgravity Research Facility (WVU SMiRF)

    Science.gov (United States)

    Phillips, Kyle G.

    West Virginia University (WVU) has created the Small Microgravity Research Facility (SMiRF) drop tower through a WVU Research Corporation Program to Stimulate Competitive Research (PSCoR) grant on its campus to increase direct access to inexpensive and repeatable reduced gravity research. In short, a drop tower is a tall structure from which experimental payloads are dropped, in a controlled environment, and experience reduced gravity or microgravity (i.e. "weightlessness") during free fall. Currently, there are several methods for conducting scientific research in microgravity including drop towers, parabolic flights, sounding rockets, suborbital flights, NanoSats, CubeSats, full-sized satellites, manned orbital flight, and the International Space Station (ISS). However, none of the aforementioned techniques is more inexpensive or has the capability of frequent experimentation repeatability as drop tower research. These advantages are conducive to a wide variety of experiments that can be inexpensively validated, and potentially accredited, through repeated, reliable research that permits frequent experiment modification and re-testing. Development of the WVU SMiRF, or any drop tower, must take a systems engineering approach that may include the detailed design of several main components, namely: the payload release system, the payload deceleration system, the payload lifting and transfer system, the drop tower structure, and the instrumentation and controls system, as well as a standardized drop tower payload frame for use by those researchers who cannot afford to spend money on a data acquisition system or frame. In addition to detailed technical development, a budgetary model by which development took place is also presented throughout, summarized, and detailed in an appendix. After design and construction of the WVU SMiRF was complete, initial calibration provided performance characteristics at various payload weights, and full-scale checkout via

  13. A facile method to fabricate hydrogels with microchannel-like porosity for tissue engineering.

    Science.gov (United States)

    Hammer, Joshua; Han, Li-Hsin; Tong, Xinming; Yang, Fan

    2014-02-01

    Hydrogels are widely used as three-dimensional (3D) tissue engineering scaffolds due to their tissue-like water content, as well as their tunable physical and chemical properties. Hydrogel-based scaffolds are generally associated with nanoscale porosity, whereas macroporosity is highly desirable to facilitate nutrient transfer, vascularization, cell proliferation and matrix deposition. Diverse techniques have been developed for introducing macroporosity into hydrogel-based scaffolds. However, most of these methods involve harsh fabrication conditions that are not cell friendly, result in spherical pore structure, and are not amenable for dynamic pore formation. Human tissues contain abundant microchannel-like structures, such as microvascular network and nerve bundles, yet fabricating hydrogels containing microchannel-like pore structures remains a great challenge. To overcome these limitations, here we aim to develop a facile, cell-friendly method for engineering hydrogels with microchannel-like porosity using stimuli-responsive microfibers as porogens. Microfibers with sizes ranging 150-200 μm were fabricated using a coaxial flow of alginate and calcium chloride solution. Microfibers containing human embryonic kidney (HEK) cells were encapsulated within a 3D gelatin hydrogel, and then exposed to ethylenediaminetetraacetic acid (EDTA) solution at varying doses and duration. Scanning electron microscopy confirmed effective dissolution of alginate microfibers after EDTA treatment, leaving well-defined, interconnected microchannel structures within the 3D hydrogels. Upon release from the alginate fibers, HEK cells showed high viability and enhanced colony formation along the luminal surfaces of the microchannels. In contrast, HEK cells in non-EDTA treated control exhibited isolated cells, which remained entrapped in alginate microfibers. Together, our results showed a facile, cell-friendly process for dynamic microchannel formation within hydrogels, which may

  14. Science facilities and stakeholder management: how a pan-European research facility ended up in a small Swedish university town

    Science.gov (United States)

    Thomasson, Anna; Carlile, Colin

    2017-06-01

    This is the story of how a large research facility of broad European and global interest, the European Spallation Source (ESS), ended up in the small university town of Lund in Sweden. This happened in spite of the fact that a number of influential European countries were at one time or another competitors to host the facility. It is also a story about politics which attempts to illustrate how closely intertwined politics and science are, and how the interplay between those interests affects scientific progress. ESS became an arena for individual ambitions and political manoeuvring. The different stakeholders, in their striving to ensure that their own interests were realised, in various ways and with different degrees of success over the years, have influenced the key decisions that, during the already 30 year history of ESS, have driven the course that this project has taken. What emerges is that the interests of the stakeholders and the interests of the project itself are frequently not in harmony. This imposes challenges on the management of large research facilities as they have to not only navigate in the scientific landscape, which they often are more familiar with, but also in the political landscape. This story is therefore an attempt to shed light on the role of managers of large research facilities and the often delicate balancing act they have to perform when trying to comply with the different and often conflicting stakeholder interests. What is especially worthwhile examining, as we do in this paper, is the role that individuals, and the interaction between individuals, have played in the process. This shows that the focus of stakeholder theory on organisations, rather than the people in the organisations, needs to be redirected on to the individuals representing those organisations and their inter-relationships. At the same time it is clear that the developing field of stakeholder management theory has not emerged into the consciousness of science

  15. Scientific user facilities at Oak Ridge National Laboratory: New research capabilities and opportunities

    Science.gov (United States)

    Roberto, James

    2011-10-01

    Over the past decade, Oak Ridge National Laboratory (ORNL) has transformed its research infrastructure, particularly in the areas of neutron scattering, nanoscale science and technology, and high-performance computing. New facilities, including the Spallation Neutron Source, Center for Nanophase Materials Sciences, and Leadership Computing Facility, have been constructed that provide world-leading capabilities in neutron science, condensed matter and materials physics, and computational physics. In addition, many existing physics-related facilities have been upgraded with new capabilities, including new instruments and a high- intensity cold neutron source at the High Flux Isotope Reactor. These facilities are operated for the scientific community and are available to qualified users based on competitive peer-reviewed proposals. User facilities at ORNL currently welcome more than 2,500 researchers each year, mostly from universities. These facilities, many of which are unique in the world, will be reviewed including current and planned research capabilities, availability and operational performance, access procedures, and recent research results. Particular attention will be given to new neutron scattering capabilities, nanoscale science, and petascale simulation and modeling. In addition, user facilities provide a portal into ORNL that can enhance the development of research collaborations. The spectrum of partnership opportunities with ORNL will be described including collaborations, joint faculty, and graduate research and education.

  16. 77 FR 26321 - Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112

    Science.gov (United States)

    2012-05-03

    ... COMMISSION Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112 AGENCY... License No. R- 112, held by Reed College (the licensee), which authorizes continued operation of the Reed... renewed Facility Operating License No. R-112 will expire 20 years from its date of issuance. The...

  17. Effects of Transfer from Breeding to Research Facility on the Welfare of Rats

    NARCIS (Netherlands)

    Arts, J.W.M.; Oosterhuis, N.R.; Kramer, K.; Ohl, F.

    2014-01-01

    Transfer from the breeding facility to a research facility is a stressful event for laboratory animals. Heat stress has been reported to constitute one of the major concerns during transport of animals. This study measured ambient and body temperature, corticosterone and glucose levels, body weight,

  18. A novel DC Magnetron sputtering facility for space research and synchrotron radiation optics

    DEFF Research Database (Denmark)

    Hussain, A.M.; Christensen, Finn Erland; Pareschi, G.;

    1998-01-01

    A new DC magnetron sputtering facility has been build up at the Danish Space Research Institute (DSRI), specially designed to enable uniform coatings of large area curved optics, such as Wolter-I mirror optics used in space telescopes and curved optics used in synchrotron radiation facilities...

  19. Characterization of the fast neutron irradiation facility of the Portuguese Research Reactor after core conversion.

    Science.gov (United States)

    Marques, J G; Sousa, M; Santos, J P; Fernandes, A C

    2011-08-01

    The fast neutron irradiation facility of the Portuguese Research Reactor was characterized after the reduction in uranium enrichment and rearrangement of the core configuration. In this work we report on the determination of the hardness parameter and the 1MeV equivalent neutron flux along the facility, in the new irradiation conditions, following ASTM E722 standard.

  20. A laboratory facility for research on wind-driven rain intrusion in building envelope assemblies

    Science.gov (United States)

    Samuel V. Glass

    2010-01-01

    Moisture management is critical for durable, energy-efficient buildings. To address the need for research on wind-driven rain intrusion in wall assemblies, the U.S. Forest Products Laboratory is developing a new facility. This paper describes the underlying principle of this facility and its capabilities.

  1. Effects of Transfer from Breeding to Research Facility on the Welfare of Rats

    NARCIS (Netherlands)

    Arts, J.W.M.; Oosterhuis, N.R.; Kramer, K.; Ohl, F.

    2014-01-01

    Transfer from the breeding facility to a research facility is a stressful event for laboratory animals. Heat stress has been reported to constitute one of the major concerns during transport of animals. This study measured ambient and body temperature, corticosterone and glucose levels, body weight,

  2. ChE Undergraduate Research Projects in Biomedical Engineering.

    Science.gov (United States)

    Stroeve, Pieter

    1981-01-01

    Describes an undergraduate research program in biomedical engineering at the State University of New York at Buffalo. Includes goals and faculty comments on the program. Indicates that 58 percent of projects conducted between 1976 and 1980 have been presented at meetings or published. (SK)

  3. The Research Proposal in Biomechanical and Biological Engineering Courses

    Science.gov (United States)

    Harrison, Roger G.; Nollert, Matthias U.; Schmidtke, David W.; Sikavitsas, Vassilios I.

    2006-01-01

    Students in four biochemical and biological engineering courses for upper-­level undergraduates and graduate students were required to write a research proposal. Breaking the requirements down into segments (such as a summary with specific aims, rough draft, and final draft) due on different dates helped make the assignment more manageable for the…

  4. Advanced materials research for long-haul aircraft turbine engines

    Science.gov (United States)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  5. Research Challenges on Engineering Service-Oriented Applications

    NARCIS (Netherlands)

    Di Nitto, E.; Meliander, D.; Gorlatch, D.; Metzger, A.; Psaier, H.; Dustdar, S.; Razavian, M.; Tamburri, D.A.; Lago, P.

    2012-01-01

    This paper focuses on providing an overview of the research challenges that have been identified toward the end of the S-Cube network in the area of service engineering. These challenges concern the need for agility and dynamicity of the development process for service-based applications, the import

  6. DATA MANAGEMENT PLANNING IN ENGINEERING DESIGN AND MANUFACTURING RESEARCH

    DEFF Research Database (Denmark)

    Darlington, Mansur; Howard, Thomas J.; Ball, Alex

    2011-01-01

    There is a growing interest in maximizing the value of research data through their sharing and re-use. This desire is hampered by the prevailing culture in data management during the research activity which largely ignores the potential for re-use, and by a lack of understanding of the character...... of research data and of the barriers to and opportunities for their re-use. The work reported here characterizes engineering design and manufacture research data and explores the context of their development and current management. Insights from the work have resulted in the authors proposing a number of new...... approaches and tools which provide the basis for better management practice....

  7. DATA MANAGEMENT PLANNING IN ENGINEERING DESIGN AND MANUFACTURING RESEARCH

    DEFF Research Database (Denmark)

    Darlington, Mansur; Howard, Thomas J.; Ball, Alex;

    2011-01-01

    There is a growing interest in maximizing the value of research data through their sharing and re-use. This desire is hampered by the prevailing culture in data management during the research activity which largely ignores the potential for re-use, and by a lack of understanding of the character...... of research data and of the barriers to and opportunities for their re-use. The work reported here characterizes engineering design and manufacture research data and explores the context of their development and current management. Insights from the work have resulted in the authors proposing a number of new...... approaches and tools which provide the basis for better management practice....

  8. Global Relevance of Translational Research in Engineering and Project Management

    Directory of Open Access Journals (Sweden)

    Kriengsak Panuwatwanich

    2016-07-01

    Full Text Available In this issue of the EPPM journal, we include five interesting papers reporting on the research undertaken within the contexts of five different countries: Italy, Norway, Saudi Arabia, Romania and Iran. These papers address various key issues in engineering and project management, including green building rating system, agile project management, construction delays, awarding process of public construction projects and Building Information Modelling (BIM. A good mixture of both quantitative and qualitative research methods is also worth noting in this issue.

  9. Towards a portal and search engine to facilitate academic and research collaboration in engineering and education

    Science.gov (United States)

    Bonilla Villarreal, Isaura Nathaly

    While international academic and research collaborations are of great importance at this time, it is not easy to find researchers in the engineering field that publish in languages other than English. Because of this disconnect, there exists a need for a portal to find Who's Who in Engineering Education in the Americas. The objective of this thesis is to built an object-oriented architecture for this proposed portal. The Unified Modeling Language (UML) model developed in this thesis incorporates the basic structure of a social network for academic purposes. Reverse engineering of three social networks portals yielded important aspects of their structures that have been incorporated in the proposed UML model. Furthermore, the present work includes a pattern for academic social networks..

  10. Research progress on reconstruction of meniscus in tissue engineering.

    Science.gov (United States)

    Zhang, Yu; Li, Pengsong; Wang, Hai; Wang, Yiwei; Song, Kedong; Li, Tianqing

    2017-05-01

    Meniscus damages are most common in sports injuries and aged knees. One third of meniscus lesions are known as white-white zone or nonvascular zones, which are composed of chondrocyte and extracellular matrix composition only. Due to low vascularization the ability of regeneration in such zones is inherently limited, leading to impossible self-regeneration post damage. Meniscus tissue engineering is known for emerging techniques for treating meniscus damage, but there are questions that need to be answered, including an optimal and suitable cell source, the usability of growth factor, the selectivity of optimal biomaterial scaffolds as well as the technology for improving partial reconstruction of meniscus tears. This review focuses on current research on the in vitro reconstruction of the meniscus using tissue engineering methods with the expectation to develop a series of tissue engineering meniscus products for the benefit of sports injuries. With rapid growth of clinical demand, the key breakthrough of meniscus tissue engineering research foundation is enlarged to a great extent. This review discusses aspects of meniscus tissue engineering, which is relative to the clinical treatment of meniscus injuries for further support and establishment of fundamental and clinical studies.

  11. Development of a taxonomy of keywords for engineering education research

    Science.gov (United States)

    Finelli, Cynthia J.; Borrego, Maura; Rasoulifar, Golnoosh

    2016-05-01

    The diversity of engineering education research provides an opportunity for cross-fertilisation of ideas and creativity, but it also can result in fragmentation of the field and duplication of effort. One solution is to establish a standardised taxonomy of engineering education terms to map the field and communicate and connect research initiatives. This report describes the process for developing such a taxonomy, the EER Taxonomy. Although the taxonomy focuses on engineering education research in the United States, inclusive efforts have engaged 266 individuals from 149 cities in 30 countries during one multiday workshop, 7 conference sessions, and several other virtual and in-person activities. The resulting taxonomy comprises 455 terms arranged in 14 branches and 6 levels. This taxonomy was found to satisfy four criteria for validity and reliability: (1) keywords assigned to a set of abstracts were reproducible by multiple researchers, (2) the taxonomy comprised terms that could be selected as keywords to fully describe 243 articles in 3 journals, (3) the keywords for those 243 articles were evenly distributed across the branches of the taxonomy, and (4) the authors of 31 conference papers agreed with 90% of researcher-assigned keywords. This report also describes guidelines developed to help authors consistently assign keywords for their articles by encouraging them to choose terms from three categories: (1) context/focus/topic, (2) purpose/target/motivation, and (3) research approach.

  12. NTRCI Legacy Engine Research and Development Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith-Holbert, Connie [National Transportation Research Center, Inc., Knoxville, TN (United States); Petrolino, Joseph [National Transportation Research Center, Inc., Knoxville, TN (United States); Watkins, Bart [Power Source Technologies Inc., Corvallis, OR (United States); Irick, David [Power Source Technologies Inc., Corvallis, OR (United States)

    2011-12-31

    The Legacy engine is a completely new design, transitional diesel engine, replacing the reciprocating engine with a rotary engine. The Legacy engine offers significant advances over conventional internal combustion engines in 1) power to weight ratio; 2) multiple fuel acceptance; 3) fuel economy; and 4) environmental compliance. These advances are achieved through a combination of innovative design geometry, rotary motion, aspiration simplicity, and manufacturing/part simplicity. The key technical challenge to the Legacy engine's commercialization, and the focus of this project, was the development of a viable roton tip seal. The PST concept for the roton tip seal was developed into a manufacturable design. The design was evaluated using a custom designed and fabricated seal test fixture and further refined. This design was incorporated into the GEN2.5A prototype and tested for achievable compression pressure. The Decision Point at the end of Phase 1 of the project (described below) was to further optimize the existing tip seal design. Enhancements to the tip seal design were incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Compression pressures adequate for compression ignition of diesel fuel were achieved, although not consistently in all combustion volumes. The variation in compression pressures was characterized versus design features. As the roton tip seal performance was improved, results pointed toward inadequate performance of the housing side seals. Enhancement of the housing side seal system was accomplished using a custom designed side seal test fixture. The design enhancements developed with the test fixture were also incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Finally, to simplify the requirements for the roton tip seals and to enhance the introduction and combustion of fuel, a flush-mount fuel injector

  13. NTRCI Legacy Engine Research and Development Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith-Holbert, Connie [National Transportation Research Center, Inc., Knoxville, TN (United States); Petrolino, Joseph [National Transportation Research Center, Inc., Knoxville, TN (United States); Watkins, Bart [Power Source Technologies Inc., Corvallis, OR (United States); Irick, David [Power Source Technologies Inc., Corvallis, OR (United States)

    2011-12-31

    The Legacy engine is a completely new design, transitional diesel engine, replacing the reciprocating engine with a rotary engine. The Legacy engine offers significant advances over conventional internal combustion engines in 1) power to weight ratio; 2) multiple fuel acceptance; 3) fuel economy; and 4) environmental compliance. These advances are achieved through a combination of innovative design geometry, rotary motion, aspiration simplicity, and manufacturing/part simplicity. The key technical challenge to the Legacy engine's commercialization, and the focus of this project, was the development of a viable roton tip seal. The PST concept for the roton tip seal was developed into a manufacturable design. The design was evaluated using a custom designed and fabricated seal test fixture and further refined. This design was incorporated into the GEN2.5A prototype and tested for achievable compression pressure. The Decision Point at the end of Phase 1 of the project (described below) was to further optimize the existing tip seal design. Enhancements to the tip seal design were incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Compression pressures adequate for compression ignition of diesel fuel were achieved, although not consistently in all combustion volumes. The variation in compression pressures was characterized versus design features. As the roton tip seal performance was improved, results pointed toward inadequate performance of the housing side seals. Enhancement of the housing side seal system was accomplished using a custom designed side seal test fixture. The design enhancements developed with the test fixture were also incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Finally, to simplify the requirements for the roton tip seals and to enhance the introduction and combustion of fuel, a flush-mount fuel injector

  14. Advancing Global Capacity for Engineering Education Research: Relating Research to Practice, Policy and Industry

    Science.gov (United States)

    Jesiek, Brent K.; Borrego, Maura; Beddoes, Kacey

    2010-01-01

    Findings are presented from a series of moderated interactive sessions held at international engineering education conferences between July 2007 and December 2008, where attendees discussed the current state and future trajectory of engineering education research. More specifically, this study examines how session attendees described: (1) the…

  15. Engaging Scientists with the CosmoQuest Citizen Science Virtual Research Facility

    Science.gov (United States)

    Grier, Jennifer A.; Gay, Pamela L.; Buxner, Sanlyn; Noel-Storr, Jacob; CosmoQuest Team

    2016-10-01

    NASA Science Mission Directorate missions and research return more data than subject matter experts (SMEs - scientists and engineers) can effectively utilize. Citizen scientist volunteers represent a robust pool of energy and talent that SMEs can draw upon to advance projects that require the processing of large quantities of images, and other data. The CosmoQuest Virtual Research Facility has developed roles and pathways to engage SMEs in ways that advance the education of the general public while producing science results publishable in peer-reviewed journals, including through the CosmoQuest Facility Small Grants Program and CosmoAcademy. Our Facility Small Grants Program is open to SMEs to fund them to work with CosmoQuest and engage the public in analysis. Ideal projects have a specific and well-defined need for additional eyes and minds to conduct basic analysis and data collection (such as crater counting, identifying lineaments, etc.) Projects selected will undergo design and implementation as Citizen Science Portals, and citizen scientists will be recruited and trained to complete the project. Users regularly receive feedback on the quality of their data. Data returned will be analyzed by the SME and the CQ Science Team for joint publication in a peer-reviewed journal. SMEs are also invited to consider presenting virtual learning courses in the subjects of their choice in CosmoAcademy. The audience for CosmoAcademy are lifelong-learners and education professionals. Classes are capped at 10, 15, or 20 students. CosmoAcademy can also produce video material to archive seminars long-term. SMEs function as advisors in many other areas of CosmoQuest, including the Educator's Zone (curricular materials for K-12 teachers), Science Fair Projects, and programs that partner to produce material for podcasts and planetaria. Visit the CosmoQuest website at cosmoquest.org to learn more, and to investigate current opportunities to engage with us. CosmoQuest is funded

  16. Acoustic interactions between an altitude test facility and jet engine plumes: Theory and experiments

    Science.gov (United States)

    Ahuja, K. K.; Jones, R. R., III; Tam, C. K.; Massey, K. C.; Fleming, A. J.

    1992-01-01

    The overall objective of the described effort was to develop an understanding of the physical mechanisms involved in the flow/acoustic interactions experienced in full-scale altitude engine test facilities. This is done by conducting subscale experiments and through development of a theoretical model. Model cold jet experiments with an axisymmetric convergent nozzle are performed in a test setup that stimulates a supersonic jet exhausting into a cylindrical diffuser. The measured data consist of detailed flow visualization data and acoustic spectra for a free and a ducted plume. It is shown that duct resonance is most likely responsible by theoretical calculations. Theoretical calculations also indicate that the higher discrete tones observed in the measurements are related to the screech phenomena. Limited experiments on the sensitivity of a free 2-D, C-D nozzle to externally imposed sound are also presented. It is shown that a 2-D, C-D nozzle with a cutback is less excitable than a 2-D C-D nozzle with no cutback. At a pressure ratio of 1.5 unsteady separation from the diverging walls of the nozzle is noticed. This separation switches from one wall to the opposite wall thus providing an unsteady deflection of the plume. It is shown that this phenomenon is related to the venting provided by the cutback section.

  17. Landfill gas control facility with automatic wobbe-correction for Gas-Otto-Engines

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, K.; Pauli, H.

    1986-01-01

    In open sanitary landfills large amounts of energy-rich landfillgas is generated. Without a purposeful collection, this gas would escape into the covering layers and into the air and thus burden the environment. In the sanitary landfill of 'Gummersloch' near Berne, the gas is systematically collected and piped to the Senior and Nursing Home of Kuehlewil where it is utilised in a thermal power-coupling facility (heating power station) of the Bernese Power Plants (BKW) to produce power and heat. This plant, with additional equipment for the automatic wobbe-correction, has been in operation for about 2 years and has proved its worth in practical use. By way of the automatic wobbe-correction through the disturbance-variable feed-forward system, the uncontrolled occuring fluctuations of the gas quality are being, up to 40%, so levelled out, that a faultless operation is guaranteed. Actual experiences have confirmed that the adaption to changing gas qualities by means of the constant extended wobbe-index is ideally suited to the use of gas engines.

  18. AiResearch QCGAT engine: Acoustic test results

    Science.gov (United States)

    Kisner, L. S.

    1980-01-01

    The noise levels of the quiet, general aviation turbofan (QCGAT) engine were measured in ground static noise tests. The static noise levels were found to be markedly lower than the demonstrably quiet AiResearch model TFE731 engine. The measured QCGAT noise levels were correlated with analytical noise source predictions to derive free-field component noise predictions. These component noise sources were used to predict the QCGAT flyover noise levels at FAR Part 36 conditions. The predicted flyover noise levels are about 10 decibels lower than the current quietest business jets.

  19. Research on the User Interest Modeling of Personalized Search Engine

    Institute of Scientific and Technical Information of China (English)

    LI Zhengwei; XIA Shixiong; NIU Qiang; XIA Zhanguo

    2007-01-01

    At present, how to enable Search Engine to construct user personal interest model initially, master user's personalized information timely and provide personalized services accurately have become the hotspot in the research of Search Engine area.Aiming at the problems of user model's construction and combining techniques of manual customization modeling and automatic analytical modeling, a User Interest Model (UIM) is proposed in the paper. On the basis of it, the corresponding establishment and update algorithms of User Interest Profile (UIP) are presented subsequently. Simulation tests proved that the UIM proposed and corresponding algorithms could enhance the retrieval precision effectively and have superior adaptability.

  20. Multi-Specimen Variable-G Facility for Life and Microgravity Sciences Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Techshot, Inc. proposes to develop a Multi-specimen Variable-G Facility (MVF) for life and microgravity sciences research. The MVF incorporates a generic...

  1. Archive of Geosample Information from the British Ocean Sediment Core Research Facility (BOSCORF)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The British Ocean Sediment Core Research Facility (BOSCORF), National Oceanography Centre, is a contributor to the Index to Marine and Lacustrine Geological Samples...

  2. Safety Analysis Report: X17B2 beamline Synchrotron Medical Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gmuer, N.F.; Thomlinson, W.

    1990-02-01

    This report contains a safety analysis for the X17B2 beamline synchrotron medical research facility. Health hazards, risk assessment and building systems are discussed. Reference is made to transvenous coronary angiography. (LSP)

  3. Sub-scale Direct Connect Supersonic Combustion Facility (Research Cell 18)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC18 is a continuous-flow, direct-connect, supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  4. Energy-Efficiency & Water Institute Research Facility, Purdue University, (IN)

    Energy Technology Data Exchange (ETDEWEB)

    Nnanna, Agbai [Purdue Univ., West Lafayette, IN (United States)

    2015-01-30

    The renovation of the Schneider Avenue Building to construct two research laboratories within the building is complete. The research laboratories are for the Purdue Calumet Water Institute and the Energy Efficiency and Reliability Center. The Water Institute occupies approximately 1000+ SF of research space plus supporting offices. The Energy-Efficiency Center occupies approximately 1000+ SF that houses the research space. The labs will enhance the Water & Energy Institute’s research capabilities necessary to tackle these issues through the development of practical approaches critical to local government and industry. The addition of these research laboratories to the Purdue University Calumet campus is in both direct support of the University’s Strategic Plan as well as the 2008 Campus Master Plan that identifies a 20% shortage of research space.

  5. Autoignition Chemistry of Surrogate Fuel Components in an Engine Environment

    Science.gov (United States)

    2015-08-21

    Environment David L. Miller and Nicholas P. Cernansky Mechanical Engineering and Mechanics Drexel University, Philadelphia, Pennsylvania, 19104... Engineering and Mechanics Department at Drexel University, and utilized an existing single cylinder research engine facility. The facility...a single-cylinder, variable compression ratio research engine . The program objectives were to determine the branching pathways of JP-8 components at

  6. A facility for using cluster research to study environmental problems. Workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    This report begins by describing the general application of cluster based research to environmental chemistry and the development of a Cluster Structure and Dynamics Research Facility (CSDRF). Next, four important areas of cluster research are described in more detail, including how they can impact environmental problems. These are: surface-supported clusters, water and contaminant interactions, time-resolved dynamic studies in clusters, and cluster structures and reactions. These facilities and equipment required for each area of research are then presented. The appendices contain workshop agenda and a listing of the researchers who participated in the workshop discussions that led to this report.

  7. Integration and use of Microgravity Research Facility: Lessons learned by the crystals by vapor transport experiment and Space Experiments Facility programs

    Science.gov (United States)

    Heizer, Barbara L.

    1992-01-01

    The Crystals by Vapor Transport Experiment (CVTE) and Space Experiments Facility (SEF) are materials processing facilities designed and built for use on the Space Shuttle mid deck. The CVTE was built as a commercial facility owned by the Boeing Company. The SEF was built under contract to the UAH Center for Commercial Development of Space (CCDS). Both facilities include up to three furnaces capable of reaching 850 C minimum, stand-alone electronics and software, and independent cooling control. In addition, the CVTE includes a dedicated stowage locker for cameras, a laptop computer, and other ancillary equipment. Both systems are designed to fly in a Middeck Accommodations Rack (MAR), though the SEF is currently being integrated into a Spacehab rack. The CVTE hardware includes two transparent furnaces capable of achieving temperatures in the 850 to 870 C range. The transparent feature allows scientists/astronauts to directly observe and affect crystal growth both on the ground and in space. Cameras mounted to the rack provide photodocumentation of the crystal growth. The basic design of the furnace allows for modification to accommodate techniques other than vapor crystal growth. Early in the CVTE program, the decision was made to assign a principal scientist to develop the experiment plan, affect the hardware/software design, run the ground and flight research effort, and interface with the scientific community. The principal scientist is responsible to the program manager and is a critical member of the engineering development team. As a result of this decision, the hardware/experiment requirements were established in such a way as to balance the engineering and science demands on the equipment. Program schedules for hardware development, experiment definition and material selection, flight operations development and crew training, both ground support and astronauts, were all planned and carried out with the understanding that the success of the program science

  8. The National Ignition Facility (NIF) and High Energy Density Science Research at LLNL (Briefing Charts)

    Science.gov (United States)

    2013-06-21

    The National Ignition Facility ( NIF ) and High Energy Density Science Research at LLNL Presentation to: IEEE Pulsed Power and Plasma Science...Conference C. J. Keane Director, NIF User Office June 21, 2013 1491978-1-4673-5168-3/13/$31.00 ©2013 IEEE Report Documentation Page Form ApprovedOMB No...4. TITLE AND SUBTITLE The National Ignition Facility ( NIF ) and High Energy Density Science Research at LLNL 5a. CONTRACT NUMBER 5b. GRANT

  9. 75 FR 48411 - Research, Engineering and Development Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-08-10

    .... Barry Scott, Director, Research & Technology Development. BILLING CODE 4910-13-M ... Federal Aviation Administration Research, Engineering and Development Advisory Committee; Notice of... of a meeting of the FAA Research, Engineering and Development (R, E&D) Advisory Committee....

  10. Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns.

  11. 10-ft and 5-ft Wave Flume Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Engineer Research and Development Center (ERDC) Coastal and Hydraulics Laboratory (CHL) maintains and operates extensive laboratory facilities used for designing...

  12. 10-ft and 5-ft Wave Flume Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Engineer Research and Development Center (ERDC) Coastal and Hydraulics Laboratory (CHL) maintains and operates extensive laboratory facilities used for designing...

  13. Requirements Engineering Methods: A Classification Framework and Research Challenges

    CERN Document Server

    Jureta, Ivan

    2012-01-01

    Requirements Engineering Methods (REMs) support Requirements Engineering (RE) tasks, from elicitation, through modeling and analysis, to validation and evolution of requirements. Despite the growing interest to design, validate and teach REMs, it remains unclear what components REMs should have. A classification framework for REMs is proposed. It distinguishes REMs based on the domain-independent properties of their components. The classification framework is intended to facilitate (i) analysis, teaching and extension of existing REMs, (ii) engineering and validation of new REMs, and (iii) identifying research challenges in REM design. The framework should help clarify further the relations between REM and other concepts of interest in and to RE, including Requirements Problem and Solution, Requirements Modeling Language, and Formal Method.

  14. Research on the Fault Coefficient in Complex Electrical Engineering

    Directory of Open Access Journals (Sweden)

    Yi Sun

    2015-08-01

    Full Text Available Fault detection and isolation in a complex system are research hotspots and frontier problems in the reliability engineering field. Fault identification can be regarded as a procedure of excavating key characteristics from massive failure data, then classifying and identifying fault samples. In this paper, based on the fundamental of feature extraction about the fault coefficient, we will discuss the fault coefficient feature in complex electrical engineering in detail. For general fault types in a complex power system, even if there is a strong white Gaussian stochastic interference, the fault coefficient feature is still accurate and reliable. The results about comparative analysis of noise influence will also demonstrate the strong anti-interference ability and great redundancy of the fault coefficient feature in complex electrical engineering.

  15. NASA Space Engineering Research Center for VLSI systems design

    Science.gov (United States)

    1991-01-01

    This annual review reports the center's activities and findings on very large scale integration (VLSI) systems design for 1990, including project status, financial support, publications, the NASA Space Engineering Research Center (SERC) Symposium on VLSI Design, research results, and outreach programs. Processor chips completed or under development are listed. Research results summarized include a design technique to harden complementary metal oxide semiconductors (CMOS) memory circuits against single event upset (SEU); improved circuit design procedures; and advances in computer aided design (CAD), communications, computer architectures, and reliability design. Also described is a high school teacher program that exposes teachers to the fundamentals of digital logic design.

  16. The stem cell and tissue engineering research in Chinese ophthalmology

    Institute of Scientific and Technical Information of China (English)

    GE Jian; LIU Jingbo

    2007-01-01

    Much has been considerably developed recently in the ophthalmic research of stem cell (SC) and tissue engineering (TE).They have become closer to the clinical practice,standardized and observable.Leading edge research of SC and TE on the ocular surface reconstruction,neuroregeneration and protection,and natural animal model has become increasingly available.However,challenges remain on the way,especially on the aspects of function reconstruction and specific differentiation.This paper reviews the new developments in this area with an intention of identifying research priorities for the future.

  17. NSTX Report on FES Joint Facilities Research Milestone 2010

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, R.; Ahn, J- W.; Gray, T. K.; McLean, A. G.; Soukhanovskii, V. A.

    2011-03-24

    Annual Target: Conduct experiments on major fusion facilities to improve understanding of the heat transport in the tokamak scrape-off layer (SOL) plasma, strengthening the basis for projecting divertor conditions in ITER. The divertor heat flux profiles and plasma characteristics in the tokamak scrape-off layer will be measured in multiple devices to investigate the underlying thermal transport processes. The unique characteristics of C-Mod, DIII-D, and NSTX will enable collection of data over a broad range of SOL and divertor parameters (e.g., collisionality ν*, beta β, parallel heat flux q||, and divertor geometry). Coordinated experiments using common analysis methods will generate a data set that will be compared with theory and simulation.

  18. Research at the BNL Tandem Van de Graaff Facility, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    Research programs at the Brookhaven Van de Graaff accelerators are summarized. Major accomplishments of the laboratory are discussed including quasielastic reactions, high-spin spectroscopy, yrast spectra, fusion reactions, and atomic physics. The outside user program at the Laboratory is discussed. Research proposed for 1981 is outlined. (GHT)

  19. Hypergravity facilities in the ESA ground-based facility program: current research activities and future tasks

    NARCIS (Netherlands)

    Frett, T.; Petrat, G.; van Loon, J.J.W.A.; Hemmersbach, R.; Anken, R.

    2016-01-01

    Research on Artificial Gravity (AG) created by linear acceleration or centrifugation has a long history and could significantly contribute to realize long-term human spaceflight in the future. Employing centrifuges plays a prominent role in human physiology and gravitational biology. This article

  20. Engineering Evaluation/Cost Analysis for Power Burst Facility (PER-620) Final End State and PBF Vessel Disposal

    Energy Technology Data Exchange (ETDEWEB)

    B. C. Culp

    2007-05-01

    Preparation of this engineering evaluation/cost analysis is consistent with the joint U.S. Department of Energy and U.S. Environmental Protection Agency Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act, (DOE and EPA 1995) which establishes the Comprehensive Environmental, Response, Compensation, and Liability Act non-time critical removal action process as an approach for decommissioning. The scope of this engineering evaluation/cost analysis is to evaluate alternatives and recommend a preferred alternative for the final end state of the PBF and the final disposal location for the PBF vessel.

  1. Collaborative-Large scale Engineering Assessment Networks for Environmental Research: The Overview

    Science.gov (United States)

    Moo-Young, H.

    2004-05-01

    A networked infrastructure for engineering solutions and policy alternatives is necessary to assess, manage, and protect complex, anthropogenic ally stressed environmental resources effectively. Reductionist and discrete disciplinary methodologies are no longer adequate to evaluate and model complex environmental systems and anthropogenic stresses. While the reductonist approach provides important information regarding individual mechanisms, it cannot provide complete information about how multiple processes are related. Therefore, it is not possible to make accurate predictions about system responses to engineering interventions and the effectiveness of policy options. For example, experts cannot agree on best management strategies for contaminated sediments in riverine and estuarine systems. This is due, in part to the fact that existing models do not accurately capture integrated system dynamics. In addition, infrastructure is not available for investigators to exchange and archive data, to collaborate on new investigative methods, and to synthesize these results to develop engineering solutions and policy alternatives. Our vision for the future is to create a network comprising field facilities and a collaboration of engineers, scientists, policy makers, and community groups. This will allow integration across disciplines, across different temporal and spatial scales, surface and subsurface geographies, and air sheds and watersheds. Benefits include fast response to changes in system health, real-time decision making, and continuous data collection that can be used to anticipate future problems, and to develop sound engineering solutions and management decisions. CLEANER encompasses four general aspects: 1) A Network of environmental field facilities instrumented for the acquisition and analysis of environmental data; 2) A Virtual Repository of Data and information technology for engineering modeling, analysis and visualization of data, i.e. an environmental

  2. Paul Scherrer Institute Scientific and Technical Report 2000. Volume VI: Large Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Foroughi, Fereydoun; Bercher, Renate; Buechli, Carmen; Zumkeller, Lotty [eds.

    2001-07-01

    The PSI Department Large Research Facilities (GFA) joins the efforts to provide an excellent research environment to Swiss and foreign research groups on the experimental facilities driven by our high intensity proton accelerator complex. Its divisions care for the running, maintenance and enhancement of the accelerator complex, the primary proton beamlines, the targets and the secondary beams as well as the neutron spallation source SINQ. The division for technical support and coordination provides for technical support to the research facility complementary to the basic logistic available from the department for logistics and marketing. Besides running the facilities, the staff of the department is also involved in theoretical and experimental research projects. Some of them address basic scientific questions mainly concerning the properties of micro- or nanostructured materials: experiments as well as large scale computer simulations of molecular dynamics were performed to investigate nonclassical materials properties. Others are related to improvements or extensions of the capabilities of our facilities. We also report on intriguing results from applications of the neutron capture radiography, the prompt gamma activation method and the isotope production facility at SINQ.

  3. Practical considerations for disaster preparedness and continuity management in research facilities.

    Science.gov (United States)

    Mortell, Norman; Nicholls, Sam

    2013-10-01

    Many research facility managers, veterinarians and directors are familiar with the principles of Good Laboratory Practice, requirements of the Association for Assessment and Accreditation of Laboratory Animal Care International, tenets of biosecurity and standards of animal welfare and housing but may be less familiar with the ideas of business continuity. But business continuity considerations are as applicable to research facilities as they are to other institutions. The authors discuss how business continuity principles can be applied in the research context and propose that such application, or 'research continuity management,' enables a focused but wide-reaching approach to disaster preparedness.

  4. Department of Nuclear Safety Research and Nuclear Facilities annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Jacobsen, U.; Oelgaard, P.L. [eds.

    1996-03-01

    The report presents a summary of the work of the Department of Nuclear Safety Research and Nuclear Facilities in 1995. The department`s research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 5 tabs., 21 ills.

  5. A Review on the Regulatory Strategy of Human Factors Engineering Consideration in Pakistan Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sohail, Sabir [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Choi, Seong Nam [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    In this paper, the legal and regulatory infrastructure available in Pakistan for HFE requirements is assessed, and the methodology for strengthening of legal infrastructure is presented. The regulatory strategy on evaluation of HFE consideration should provide reviewers with guidance on review process. Therefore, the suggested methodology is based on preparation of guidance documents such as checklist, working procedures, S and Gs etc.; incorporation of PRM elements in regulatory system; and finally the development of PRM implementation criteria. Altogether, the scheme provide the enhancement in regulatory infrastructure and also the effective and efficient review process. The Three Mile Island (TMI) accident brought the general consensus among the nuclear community on the integration of human factors engineering (HFE) principles in all phases of nuclear power. This notion has further strengthened after the recent Fukushima nuclear accident. Much effort has been put over to incorporate the lesson learned and continuous technical evolution on HFE to device different standards. The total of 174 ergonomics standards are alone identified by Dul et al. (2004) published by International Organization for Standardization (ISO) and the European Committee for Standardization (CEN) and number of standards and HFE guidelines (S and Gs) are also published by organizations like Institute for Electrical and Electronics Engineering (IEEE), International Electrotechnical Commission (IEC), International Atomic Energy Agency (IAEA), United States Nuclear Regulatory Commission (USNRC), etc. The ambition of effective review on HFE integration in nuclear facility might be accomplished through the development of methodology for systematic implementation of S and Gs. Such kind of methodology would also be beneficial for strengthening the regulatory framework and practices for countries new in the nuclear arena and with small scale nuclear program. The objective of paper is to review the

  6. Characterizing interdisciplinarity of researchers and research topics using web search engines.

    Directory of Open Access Journals (Sweden)

    Hiroki Sayama

    Full Text Available Researchers' networks have been subject to active modeling and analysis. Earlier literature mostly focused on citation or co-authorship networks reconstructed from annotated scientific publication databases, which have several limitations. Recently, general-purpose web search engines have also been utilized to collect information about social networks. Here we reconstructed, using web search engines, a network representing the relatedness of researchers to their peers as well as to various research topics. Relatedness between researchers and research topics was characterized by visibility boost-increase of a researcher's visibility by focusing on a particular topic. It was observed that researchers who had high visibility boosts by the same research topic tended to be close to each other in their network. We calculated correlations between visibility boosts by research topics and researchers' interdisciplinarity at the individual level (diversity of topics related to the researcher and at the social level (his/her centrality in the researchers' network. We found that visibility boosts by certain research topics were positively correlated with researchers' individual-level interdisciplinarity despite their negative correlations with the general popularity of researchers. It was also found that visibility boosts by network-related topics had positive correlations with researchers' social-level interdisciplinarity. Research topics' correlations with researchers' individual- and social-level interdisciplinarities were found to be nearly independent from each other. These findings suggest that the notion of "interdisciplinarity" of a researcher should be understood as a multi-dimensional concept that should be evaluated using multiple assessment means.

  7. Characterizing interdisciplinarity of researchers and research topics using web search engines.

    Science.gov (United States)

    Sayama, Hiroki; Akaishi, Jin

    2012-01-01

    Researchers' networks have been subject to active modeling and analysis. Earlier literature mostly focused on citation or co-authorship networks reconstructed from annotated scientific publication databases, which have several limitations. Recently, general-purpose web search engines have also been utilized to collect information about social networks. Here we reconstructed, using web search engines, a network representing the relatedness of researchers to their peers as well as to various research topics. Relatedness between researchers and research topics was characterized by visibility boost-increase of a researcher's visibility by focusing on a particular topic. It was observed that researchers who had high visibility boosts by the same research topic tended to be close to each other in their network. We calculated correlations between visibility boosts by research topics and researchers' interdisciplinarity at the individual level (diversity of topics related to the researcher) and at the social level (his/her centrality in the researchers' network). We found that visibility boosts by certain research topics were positively correlated with researchers' individual-level interdisciplinarity despite their negative correlations with the general popularity of researchers. It was also found that visibility boosts by network-related topics had positive correlations with researchers' social-level interdisciplinarity. Research topics' correlations with researchers' individual- and social-level interdisciplinarities were found to be nearly independent from each other. These findings suggest that the notion of "interdisciplinarity" of a researcher should be understood as a multi-dimensional concept that should be evaluated using multiple assessment means.

  8. The collaborative program of research in engineering science

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    MIT and Idaho National Engineering Laboratory are continuing the program of collaborative research on energy-related engineering. The program involves research in the following areas: (1) mathematical modeling of thermal plasma systems, (2) high-temperature gas-particle reactions, (3) metal transfer in gas-metal arc welding, (4) multivariate control of gas-metal arc welding, (5) fundamentals of elastic-plastic fracture, (6) comminution of energy materials, and (7) synthesis and optimization of integrated chemical processes. A key objective of this collaborative program is to serve as a prototype for other university/laboratory collaborative programs. Another important goal is to enhance the transfer of new technology to the industrial sector.

  9. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    Science.gov (United States)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Cleveland, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSL--the first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal

  10. Research activity at the shock tube facility at NASA Ames

    Science.gov (United States)

    Sharma, Surendra P.

    1992-01-01

    The real gas phenomena dominate the relaxation process occurring in the flow around hypersonic vehicles. The air flow around these vehicles undergoes vibrational excitation, chemical dissociation, and ionization. These chemical and kinetic phenomena absorb energy, change compressibility, cause temperature to fall, and density to rise. In high-altitude, low density environments, the characteristic thicknesses of the shock layers can be smaller than the relaxation distances required for the gas to attain chemical and thermodynamic equilibrium. To determine the effects of chemical nonequilibrium over a realistic hypersonic vehicle, it would be desirable to conduct an experiment in which all aspects of fluid flow are simulated. Such an experiment is extremely difficult to setup. The only practical alternative is to develop a theoretical model of the phenomena and to compute the flow around the vehicle including the chemical nonequilibrium, and compare the results with the experiments conducted in the facilities under conditions where only a portion of the flow phenomena is simulated. Three types of experimental data are needed to assist the aerospace community in this model development process: (1) data which will enhance our phenomenological understanding of the relaxation process, (2) data on rate reactions for the relevant reactions, and (3) data on bulk properties, such as spectral radiation emitted by the gas, for a given set of aerodynamic conditions. NASA Ames is in a process of collecting such data by simulating the required aerothermochemical conditions in an electric arc driven shock tube.

  11. Diffraction studies applicable to 60-foot microwave research facilities

    Science.gov (United States)

    Schmidt, R. F.

    1973-01-01

    The principal features of this document are the analysis of a large dual-reflector antenna system by vector Kirchhoff theory, the evaluation of subreflector aperture-blocking, determination of the diffraction and blockage effects of a subreflector mounting structure, and an estimate of strut-blockage effects. Most of the computations are for a frequency of 15.3 GHz, and were carried out using the IBM 360/91 and 360/95 systems at Goddard Space Flight Center. The FORTRAN 4 computer program used to perform the computations is of a general and modular type so that various system parameters such as frequency, eccentricity, diameter, focal-length, etc. can be varied at will. The parameters of the 60-foot NRL Ku-band installation at Waldorf, Maryland, were entered into the program for purposes of this report. Similar calculations could be performed for the NELC installation at La Posta, California, the NASA Wallops Station facility in Virginia, and other antenna systems, by a simple change in IBM control cards. A comparison is made between secondary radiation patterns of the NRL antenna measured by DOD Satellite and those obtained by analytical/numerical methods at a frequency of 7.3 GHz.

  12. Fire-protection research for DOE facilities: FY 82 year-end report

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H.K.; Alvares, N.J.; Lipska-Quinn, A.E.; Beason, D.G.; Priante, S.J.; Foote, K.L.

    1983-09-02

    We summarize our research in FY 82 for the DOE-sponsored project, Fire Protection Research for DOE Facilities. This research program was initiated in 1977 to advance fire-protection strategies for energy technology facilities to keep abreast of the unique fire problems that develop along with energy technology research. Since 1977, the program has broadened its original scope, as reflected in previous year-end reports. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Using these experiments as models for methodology development, we are concurrently advancing three major task areas: (1) the identification of fire hazards unique to current fusion energy facilities; (2) the evaluation of accepted fire-management measures to meet and negate hazards; and (3) the performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models.

  13. Trends in aeropropulsion research and their impact on engineering education

    Science.gov (United States)

    Povinelli, Louis A.; Reichert, Bruce A.; Glassman, Arthur J.

    1992-01-01

    This presentation is concerned with the trends in aeropropulsion both in the U.S. and abroad and the impact of these trends on the educational process in our universities. In this paper, we shall outline the new directions for research which may be of interest to educators in the aeropropulsion field. Awareness of new emphases, such as emission reductions, noise control, maneuverability, speed, etc., will have a great impact on engineering educators responsible for restructuring courses in propulsion. The information presented herein will also provide some background material for possible consideration in the future development of propulsion courses. In describing aeropropulsion, we are concerned primarily with air-breathing propulsion; however many observations apply equally as well to rocket engine systems. Aeropropulsion research needs are primarily motivated by technologies required for advanced vehicle systems and frequently driven by external requirements such as economic competitiveness, environmental concern and national security. In this presentation, vehicle based research is first described, followed by a discussion of discipline and multidiscipline research necessary to implement the vehicle-focused programs. The importance of collaboration in research and the training of future researchers concludes this presentation.

  14. Summary of Research 1998, Department of Mechanical Engineering

    OpenAIRE

    Faculty of the Department of Mechanical Engineering, Naval Postgraduate School

    1998-01-01

    "The views expressed in this report are those of the authors and do not reflect the official policy or position of the Department of Defense or the U. S. Government. This report contains summaries of research projects in the Department of Mechanical Engineering. A list of recent publications is also included which consists of conference presentations and publications, books, contributions to books, published journal papers, technical reports, and thesis abstracts.

  15. Summary of Research 1996, Department of Mechanical Engineering

    OpenAIRE

    Faculty of the Department of Mechanical Engineering, Naval Postgraduate School

    1996-01-01

    The views expressed in this report are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government. This report contains summaries of research projects in the Department of Mechanical Engineering. A list of recent publications is also included which consists of conference presentations and publications, books, contributions to books, published journal papers, technical reports, and thesis abstracts.

  16. Summary of Research 1998, Department of Electrical and Computer Engineering

    OpenAIRE

    Faculty of the Department of Electrical and Computer Engineering, Naval Postgraduate School

    1998-01-01

    The views expressed in this report are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government. This report contains summaries of research projects in the Department of Electrical and Computer Engineering. A list of recent publications is also included which consists of conference presentations and publications, books, contributions to books, published journal papers, technical reports, and thesis abstracts.

  17. Summary of Research 1997, Department of Electrical and Computer Engineering

    OpenAIRE

    Faculty of the Department of Electrical and Computer Engineering, Naval Postgraduate School

    1997-01-01

    The views expressed in this report are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government. This report contains summaries of research projects in the Department of Electrical and Computer Engineering. A list of recent publications is also included which consists of conference presentations and publications, books, contributions to books, published journal papers, technical reports, and thesis abstracts.

  18. Biomedical engineering education in developing countries: research synthesis.

    Science.gov (United States)

    Douglas, Tania S

    2011-01-01

    Biomedical engineering (BME) contributes to development through improving human health. This paper examines BME education to address the needs of developing countries. Components of different BME programs described in the literature are synthesized to represent what has been proposed or implemented for the production of graduates able to address health problems in a manner suited to the local environment in which they occur. Published research on BME education is reviewed with reference to problem context, interventions and their mechanisms, and intended outcomes.

  19. FY2011 Engineering Innovations, Research, and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Kip [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, Harry E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Poyneer, Lisa A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shusteff, Maxim [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spadaccini, Christopher M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hopkins, Jonathan B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bernier, Joel V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); King, Michael J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Puso, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weisgraber, Todd H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Goldstein, Noah C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sales, Ana Paula De Oliveira [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dehlinger, Dietrich A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kotovsky, Jack [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kuntz, Joshua D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Voss, Lars F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wheeler, Elizabeth K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chang, John T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lehman, Sean K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vernon, Stephen P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tang, Vincent [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-04-24

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory’s Engineering Directorate for FY2011. These efforts exemplify Engineering’s nearly 60-year history of developing and applying the technology innovations needed for the Laboratory’s national security missions, and embody Engineering’s mission to “Enable program success today and ensure the Laboratory’s vitality tomorrow.

  20. Energy Engineering Analysis. Cutler Army Community Hospital and Associated Facilities, Fort Devens, Massachusetts. Volume 1 - executive summary. Final Submittal report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-10-01

    In February 1980, the Corps of Engineers, Norfolk District, initiated Contract No. DACA65-80-C-0003 with Reynolds, Smith and Hills, Architects-Engineers-Planners, Inc. of Jacksonville, Florida. This contract called for the performance of Energy Engineering Analysis Programs (EEAP) at three U.S. Army installations: Fort Devens, Massachusetts; Letterkenny Army Depot, Pennsylvania; and Seneca Army Depot, New York. The objective of these programs was the identification, evaluation and development of programming documents for energy conservation projects which meet the criteria of the Army`s Energy Conservation Investment Program (ECIP) and other funding mechanisms. The basic contract was modified by the Corps of Engineers several times to include additional increments of energy-related studies at each of the three installations. Work performed thus far for Fort Devens has included the following increments: A - ECIP`s for buildings and processes; B - ECIP`s for utilities and energy distribution systems and EMCS; C - Solar and renewable energy systems; D - Wood-Fired Steam Generation Plant; E - Coal conversion; and G - Projects identified in Increments A B that did not meet ECIP criteria In order to fulfill expanded requirements of the Army Facilities Energy Plan, the Corps of Engineers extended the contract with RSH to include a detailed energy audit of the Cutler Army Community Hospital and Associated Facilities at Fort Devens, Massachusetts. The Associated Facilities are the Vail Dental Clinic and the Oral Health Center. The energy audit consists of a field survey, analysis of energy conservation opportunities, and development of 1391`s and other programming documents for qualifying projects.