WorldWideScience

Sample records for facilitative glucose transporter

  1. Expression, purification, and functional characterization of the insulin-responsive facilitative glucose transporter GLUT4.

    Science.gov (United States)

    Kraft, Thomas E; Hresko, Richard C; Hruz, Paul W

    2015-12-01

    The insulin-responsive facilitative glucose transporter GLUT4 is of fundamental importance for maintenance of glucose homeostasis. Despite intensive effort, the ability to express and purify sufficient quantities of structurally and functionally intact protein for biophysical analysis has previously been exceedingly difficult. We report here the development of novel methods to express, purify, and functionally reconstitute GLUT4 into detergent micelles and proteoliposomes. Rat GLUT4 containing FLAG and His tags at the amino and carboxy termini, respectively, was engineered and stably transfected into HEK-293 cells. Overexpression in suspension culture yielded over 1.5 mg of protein per liter of culture. Systematic screening of detergent solubilized GLUT4-GFP fusion protein via fluorescent-detection size exclusion chromatography identified lauryl maltose neopentyl glycol (LMNG) as highly effective for isolating monomeric GLUT4 micelles. Preservation of structural integrity and ligand binding was demonstrated via quenching of tryptophan fluorescence and competition of ATB-BMPA photolabeling by cytochalasin B. GLUT4 was reconstituted into lipid nanodiscs and proper folding was confirmed. Reconstitution of purified GLUT4 with amphipol A8-35 stabilized the transporter at elevated temperatures for extended periods of time. Functional activity of purified GLUT4 was confirmed by reconstitution of LMNG-purified GLUT4 into proteoliposomes and measurement of saturable uptake of D-glucose over L-glucose. Taken together, these data validate the development of an efficient means to generate milligram quantities of stable and functionally intact GLUT4 that is suitable for a wide array of biochemical and biophysical analyses.

  2. Ghrelin Facilitates GLUT2-, SGLT1- and SGLT2-mediated Intestinal Glucose Transport in Goldfish (Carassius auratus)

    Science.gov (United States)

    Blanco, Ayelén Melisa; Bertucci, Juan Ignacio; Ramesh, Naresh; Delgado, María Jesús; Valenciano, Ana Isabel; Unniappan, Suraj

    2017-01-01

    Glucose homeostasis is an important biological process that involves a variety of regulatory mechanisms. This study aimed to determine whether ghrelin, a multifunctional gut-brain hormone, modulates intestinal glucose transport in goldfish (Carassius auratus). Three intestinal glucose transporters, the facilitative glucose transporter 2 (GLUT2), and the sodium/glucose co-transporters 1 (SGLT1) and 2 (SGLT2), were studied. Immunostaining of intestinal sections found colocalization of ghrelin and GLUT2 and SGLT2 in mucosal cells. Some cells containing GLUT2, SGLT1 and SGLT2 coexpressed the ghrelin/growth hormone secretagogue receptor 1a (GHS-R1a). Intraperitoneal glucose administration led to a significant increase in serum ghrelin levels, as well as an upregulation of intestinal preproghrelin, ghrelin O-acyltransferase and ghs-r1 expression. In vivo and in vitro ghrelin treatment caused a concentration- and time-dependent modulation (mainly stimulatory) of GLUT2, SGLT1 and SGLT2. These effects were abolished by the GHS-R1a antagonist [D-Lys3]-GHRP-6 and the phospholipase C inhibitor U73122, suggesting that ghrelin actions on glucose transporters are mediated by GHS-R1a via the PLC/PKC signaling pathway. Finally, ghrelin stimulated the translocation of GLUT2 into the plasma membrane of goldfish primary intestinal cells. Overall, data reported here indicate an important role for ghrelin in the modulation of glucoregulatory machinery and glucose homeostasis in fish. PMID:28338019

  3. Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid†

    Science.gov (United States)

    Liu, Zijuan; Sanchez, Marco A.; Jiang, Xuan; Boles, Eckhard; Landfear, Scott M.; Rosen, Barry P.

    2006-01-01

    Arsenic exposure is associated with hypertension, diabetes and cancer. Some mammals methylate arsenic. Saccharomyces cerevisiae hexose permeases catalyze As(OH)3 uptake. Here we report that mammalian glucose transporter GLUT1 catalyzes As(OH)3 and CH3As(OH)2 uptake in yeast or in Xenopus laevis öocytes. Expression of GLUT1 in a yeast lacking other glucose transporters allows for growth on glucose. Yeast expressing yeast HXT1 or rat GLUT1 transport As(OH)3 and CH3As(OH)2. The Km of GLUT1 is to 1.2 mM for CH3As(OH)2, compared to a Km of 3 mM for glucose. Inhibition between glucose and CH3As(OH)2 is noncompetitive, suggesting differences between the translocation pathways of hexoses and arsenicals. Both human and rat GLUT1 catalyze uptake of both As(OH)3 and CH3As(OH)2 in öocytes. Thus GLUT1 may be a major pathway uptake of both inorganic and methylated arsenicals in erythrocytes or the epithelial cells of the blood-brain barrier, contributing to arsenic-related cardiovascular problems and neurotoxicity. PMID:17064664

  4. Paraoxonase 2 Facilitates Pancreatic Cancer Growth and Metastasis by Stimulating GLUT1-Mediated Glucose Transport.

    Science.gov (United States)

    Nagarajan, Arvindhan; Dogra, Shaillay Kumar; Sun, Lisha; Gandotra, Neeru; Ho, Thuy; Cai, Guoping; Cline, Gary; Kumar, Priti; Cowles, Robert A; Wajapeyee, Narendra

    2017-08-17

    Metabolic deregulation is a hallmark of human cancers, and the glycolytic and glutamine metabolism pathways were shown to be deregulated in pancreatic ductal adenocarcinoma (PDAC). To identify new metabolic regulators of PDAC tumor growth and metastasis, we systematically knocked down metabolic genes that were overexpressed in human PDAC tumor samples using short hairpin RNAs. We found that p53 transcriptionally represses paraoxonase 2 (PON2), which regulates GLUT1-mediated glucose transport via stomatin. The loss of PON2 initiates the cellular starvation response and activates AMP-activated protein kinase (AMPK). In turn, AMPK activates FOXO3A and its transcriptional target, PUMA, which induces anoikis to suppress PDAC tumor growth and metastasis. Pharmacological or genetic activation of AMPK, similar to PON2 inhibition, blocks PDAC tumor growth. Collectively, our results identify PON2 as a new modulator of glucose transport that regulates a pharmacologically tractable pathway necessary for PDAC tumor growth and metastasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. FGT-1 is a mammalian GLUT2-like facilitative glucose transporter in Caenorhabditis elegans whose malfunction induces fat accumulation in intestinal cells.

    Directory of Open Access Journals (Sweden)

    Shun Kitaoka

    Full Text Available Caenorhabditis elegans (C. elegans is an attractive animal model for biological and biomedical research because it permits relatively easy genetic dissection of cellular pathways, including insulin/IGF-like signaling (IIS, that are conserved in mammalian cells. To explore C. elegans as a model system to study the regulation of the facilitative glucose transporter (GLUT, we have characterized the GLUT gene homologues in C. elegans: fgt-1, R09B5.11, C35A11.4, F53H8.3, F48E3.2, F13B12.2, Y61A9LA.1, K08F9.1 and Y37A1A.3. The exogenous expression of these gene products in Xenopus oocytes showed transport activity to unmetabolized glucose analogue 2-deoxy-D-glucose only in FGT-1. The FGT-1-mediated transport activity was inhibited by the specific GLUT inhibitor phloretin and exhibited a Michaelis constant (Km of 2.8 mM. Mannose, galactose, and fructose were able to inhibit FGT-1-mediated 2-deoxy-D-glucose uptake (P < 0.01, indicating that FGT-1 is also able to transport these hexose sugars. A GFP fusion protein of FGT-1 was observed only on the basolateral membrane of digestive tract epithelia in C. elegans, but not in other tissues. FGT-1::eGFP expression was observed from early embryonic stages. The knockdown or mutation of fgt-1 resulted in increased fat staining in both wild-type and daf-2 (mammalian insulin receptor homologue mutant animals. Other common phenotypes of IIS mutant animals, including dauer formation and brood size reduction, were not affected by fgt-1 knockdown in wild-type or daf-2 mutants. Our results indicated that in C. elegans, FGT-1 is mainly a mammalian GLUT2-like intestinal glucose transporter and is involved in lipid metabolism.

  6. Metal-activated C-peptide Facilitates Glucose Clearance and the Release of a Nitric Oxide Stimulus via the GLUT1 Transporter

    Science.gov (United States)

    Meyer, Jennifer A.; Froelich, Jennifer M.; Reid, Gavin E.; Karunarathne, Welivitya K.A.; Spence, Dana M.

    2008-01-01

    Objective: Proinsulin C-peptide has been implicated in reducing complications associated with diabetes and improving blood flow. We hypothesized that incubation of erythrocytes with C-peptide would improve the ability of these cells to release ATP, a stimulus of nitric oxide production. Research Design and Methods: Erythrocytes obtained from rabbits (n=11) and humans (healthy and those with type 2 diabetes, n=7) were incubated with C-peptide (in the absence and presence of Fe (II) and Cr (III)) and the resulting ATP release was measured via chemiluminescence. This release was also measured in the presence and absence of phloretin, an inhibitor of the glucose transporter GLUT1, and mannose, a glycolysis inhibitor. To determine glucose transport, 14C-labelled glucose was added to erythrocytes in the presence and absence of the C- peptide/metal complex and the aforementioned inhibitors. Results: The release of ATP from the erythrocytes of patients with diabetes increased from 64 nmol/l (± 13 nmol/l) to 260 nmol/l (± 39 nmol/l) upon incubation of the cells in C-peptide. The C-peptide activity was dependent upon binding to Fe (II), which was extended upon binding to Cr (III). The increase in ATP release from the erythrocytes is due to metal-activated C-peptide stimulation of glucose transfer into the erythrocytes via the GLUT1 transporter. In the presence of C-peptide complexed to Cr (III), the amount of glucose transferred into the erythrocyte increased by 31%. Conclusions: When complexed to Fe (II) or Cr (III), C-peptide has the ability to promote ATP release from erythrocytes. This release is due to an increase in glucose transport through the GLUT1 transporter. PMID:17965850

  7. Glucose transport in adipose tissue

    NARCIS (Netherlands)

    Schoonen, AJM; Wientjes, KJC

    2005-01-01

    Based on the well-known extraction equation and the histology of subcutaneous adipose tissue, transport of glucose from capillary to microdialysis probe is described. Results are evaluated of previous studies by our group and others. Arguments are presented for a simple scheme in which the mean

  8. Mechanical stress and glucose concentration modulate glucose transport in cultured rat podocytes.

    Science.gov (United States)

    Lewko, Barbara; Bryl, Ewa; Witkowski, Jacek M; Latawiec, Elzbieta; Angielski, Stefan; Stepinski, Jan

    2005-02-01

    Recent studies show that mechanical stress modifies both morphology and protein expression in podocytes. Ambient glucose is another factor modulating protein synthesis in these cells. In diabetes, podocytes experience elevated glucose concentrations as well as mechanical strain generated by high intracapillary pressures. Both these factors are responsible for podocyte injury, leading to impairment of kidney glomerular function. In the present study, we examined the effects of glucose concentration and mechanical stress on glucose uptake in podocytes. Following a 24 h pre-incubation in low (2.5 mM, LG), normal (5.6 mM, NG) or high (30 mM, HG) glucose media, cultured rat podocytes were exposed to 4 h mechanical stress. We used the labelled glucose analogue, [3H]2-deoxy-D-glucose, to measure glucose uptake. The distribution of facilitative glucose transporters GLUT2 and GLUT4 was assessed by flow cytometry. In the control (static) cells, glucose uptake was similar in the three glucose groups. In mechanically stressed podocytes, glucose uptake increased 2-fold in the LG and NG groups but increased 3-fold in the HG group. In the NG cells, mechanical load increased the membrane expression of GLUT2 and reduced the membrane-bound GLUT4. In stretched HG cells, the membrane expression of both GLUT2 and GLUT4 was decreased. High glucose decreased the plasma membrane GLUT2 content in the stretched cells, whereas both static and stretched podocytes showed an elevation in GLUT4. Mechanical stress potentiated glucose uptake in podocytes and this effect was enhanced by high ambient glucose. The decreased expression of GLUT2 and GLUT4 on the surface of stretched cells suggests that the activity of other glucose transporters may be regulated by mechanical stress in podocytes.

  9. Is contraction-stimulated glucose transport feedforward regulated by Ca2+?

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Angin, Yeliz; Sylow, Lykke

    2014-01-01

    feedforward regulator of the translocation of glucose transporter 4 to the cell surface to facilitate transmembrane glucose transport. This review summarizes the evidence supporting the Ca(2+) feedforward model and its proposed signalling links to regulation of glucose transport in skeletal muscle and other......-stimulated glucose transport. A revised working model is proposed, in which muscle glucose transport during contraction is not directly regulated by SR Ca(2+) release but rather responds exclusively to feedback signals activated secondary to cross-bridge cycling and tension development....

  10. Glucose Transporters in Cardiac Metabolism and Hypertrophy

    Science.gov (United States)

    Shao, Dan; Tian, Rong

    2016-01-01

    The heart is adapted to utilize all classes of substrates to meet the high-energy demand, and it tightly regulates its substrate utilization in response to environmental changes. Although fatty acids are known as the predominant fuel for the adult heart at resting stage, the heart switches its substrate preference toward glucose during stress conditions such as ischemia and pathological hypertrophy. Notably, increasing evidence suggests that the loss of metabolic flexibility associated with increased reliance on glucose utilization contribute to the development of cardiac dysfunction. The changes in glucose metabolism in hypertrophied hearts include altered glucose transport and increased glycolysis. Despite the role of glucose as an energy source, changes in other nonenergy producing pathways related to glucose metabolism, such as hexosamine biosynthetic pathway and pentose phosphate pathway, are also observed in the diseased hearts. This article summarizes the current knowledge regarding the regulation of glucose transporter expression and translocation in the heart during physiological and pathological conditions. It also discusses the signaling mechanisms governing glucose uptake in cardiomyocytes, as well as the changes of cardiac glucose metabolism under disease conditions. PMID:26756635

  11. Identification of Glucose Transporters in Aspergillus nidulans

    Science.gov (United States)

    dos Reis, Thaila Fernanda; Menino, João Filipe; Bom, Vinícius Leite Pedro; Brown, Neil Andrew; Colabardini, Ana Cristina; Savoldi, Marcela; Goldman, Maria Helena S.; Rodrigues, Fernando; Goldman, Gustavo Henrique

    2013-01-01

    To characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and –E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose. PMID:24282591

  12. Diabetes increases facilitative glucose uptake and GLUT2 expression at the rat proximal tubule brush border membrane.

    Science.gov (United States)

    Marks, Joanne; Carvou, Nicolas J C; Debnam, Edward S; Srai, Surjit K; Unwin, Robert J

    2003-11-15

    The mechanism of renal glucose transport involves the reabsorption of filtered glucose from the proximal tubule lumen across the brush border membrane (BBM) via a sodium-dependent transporter, SGLT, and exit across the basolateral membrane via facilitative, GLUT-mediated, transport. The aim of the present study was to determine the effect of streptozotocin-induced diabetes on BBM glucose transport. We found that diabetes increased facilitative glucose transport at the BBM by 67.5 % (P < 0.05)--an effect that was abolished by overnight fasting. Western blotting and immunohistochemistry demonstrated GLUT2 expression at the BBM during diabetes, but the protein was undetectable at the BBM of control animals or diabetic animals that had been fasted overnight. Our findings indicate that streptozotocin-induced diabetes causes the insertion of GLUT2 into the BBM and this may provide a low affinity/high capacity route of entry into proximal tubule cells during hyperglycaemia.

  13. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle

    DEFF Research Database (Denmark)

    Ploug, T; Stallknecht, B M; Pedersen, O

    1990-01-01

    session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold...... by training in fast-twitch red muscle fibers. In parallel to this, Western blot demonstrated a approximately 47% increase in GLUT-1 protein and a approximately 31% increase in GLUT-4 protein. This indicates that the increases in maximum velocity for 3-MG transport in trained muscle is due to an increased...

  14. Sweet talk: insights into the nature and importance of glucose transport in lung epithelium.

    Science.gov (United States)

    Garnett, James P; Baker, Emma H; Baines, Deborah L

    2012-11-01

    For over 50 years, glucose has been recognised to cross the lung epithelial barrier and be transported by lung epithelial cells. However, until recently, research into these processes focused on their effects on lung liquid volume. Here, we consider a newly identified role for pulmonary glucose transport in maintaining low airway surface liquid (ASL) glucose concentrations and propose that this contributes to lung defence against infection. Glucose diffuses into ASL via paracellular pathways at a rate determined by paracellular permeability and the transepithelial glucose gradient. Glucose is removed from ASL in proximal airways via facilitative glucose transporters, down a concentration gradient generated by intracellular glucose metabolism. In the distal lung, glucose transport via sodium-coupled glucose transporters predominates. These processes vary between species but universally maintain ASL glucose at 3-20-fold lower concentrations than plasma. ASL glucose concentrations are increased in respiratory disease and by hyperglycaemia. Elevated ASL glucose in intensive care patients was associated with increased Staphylococcus aureus infection. Diabetic patients with and without chronic lung disease are at increased risk of respiratory infection. Understanding of mechanisms underlying lung glucose homeostasis could identify new therapeutic targets for control of ASL glucose and prevention and treatment of lung infection.

  15. Crystal structure of the human glucose transporter GLUT1

    Science.gov (United States)

    Deng, Dong; Xu, Chao; Sun, Pengcheng; Wu, Jianping; Yan, Chuangye; Hu, Mingxu; Yan, Nieng

    2014-06-01

    The glucose transporter GLUT1 catalyses facilitative diffusion of glucose into erythrocytes and is responsible for glucose supply to the brain and other organs. Dysfunctional mutations may lead to GLUT1 deficiency syndrome, whereas overexpression of GLUT1 is a prognostic indicator for cancer. Despite decades of investigation, the structure of GLUT1 remains unknown. Here we report the crystal structure of human GLUT1 at 3.2 Å resolution. The full-length protein, which has a canonical major facilitator superfamily fold, is captured in an inward-open conformation. This structure allows accurate mapping and potential mechanistic interpretation of disease-associated mutations in GLUT1. Structure-based analysis of these mutations provides an insight into the alternating access mechanism of GLUT1 and other members of the sugar porter subfamily. Structural comparison of the uniporter GLUT1 with its bacterial homologue XylE, a proton-coupled xylose symporter, allows examination of the transport mechanisms of both passive facilitators and active transporters.

  16. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Ploug, T.; Stallknecht, B.M.; Pedersen, O.; Kahn, B.B.; Ohkuwa, T.; Vinten, J.; Galbo, H. (Panum Institute, Copenhagen (Denmark))

    1990-12-01

    The effect of 10 wk endurance swim training on 3-O-methylglucose (3-MG) uptake (at 40 mM 3-MG) in skeletal muscle was studied in the perfused rat hindquarter. Training resulted in an increase of approximately 33% for maximum insulin-stimulated 3-MG transport in fast-twitch red fibers and an increase of approximately 33% for contraction-stimulated transport in slow-twitch red fibers compared with nonexercised sedentary muscle. A fully additive effect of insulin and contractions was observed both in trained and untrained muscle. Compared with transport in control rats subjected to an almost exhaustive single exercise session the day before experiment both maximum insulin- and contraction-stimulated transport rates were increased in all muscle types in trained rats. Accordingly, the increased glucose transport capacity in trained muscle was not due to a residual effect of the last training session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold by training in fast-twitch red muscle fibers. In parallel to this, Western blot demonstrated a approximately 47% increase in GLUT-1 protein and a approximately 31% increase in GLUT-4 protein. This indicates that the increases in maximum velocity for 3-MG transport in trained muscle is due to an increased number of glucose transporters.

  17. Osteopontin Upregulates the Expression of Glucose Transporters in Osteosarcoma Cells

    Science.gov (United States)

    Hsieh, I-Shan; Yang, Rong-Sen; Fu, Wen-Mei

    2014-01-01

    Osteosarcoma is the most common primary malignancy of bone. Even after the traditional standard surgical therapy, metastasis still occurs in a high percentage of patients. Glucose is an important source of metabolic energy for tumor proliferation and survival. Tumors usually overexpress glucose transporters, especially hypoxia-responsive glucose transporter 1 and glucose transporter 3. Osteopontin, hypoxia-responsive glucose transporter 1, and glucose transporter 3 are overexpressed in many types of tumors and have been linked to tumorigenesis and metastasis. In this study, we investigated the regulation of glucose transporters by osteopontin in osteosarcoma. We observed that both glucose transporters and osteopontin were upregulated in hypoxic human osteosarcoma cells. Endogenously released osteopontin regulated the expression of glucose transporter 1 and glucose transporter 3 in osteosarcoma and enhanced glucose uptake into cells via the αvβ3 integrin. Knockdown of osteopontin induced cell death in 20% of osteosarcoma cells. Phloretin, a glucose transporter inhibitor, also caused cell death by treatment alone. The phloretin-induced cell death was significantly enhanced in osteopontin knockdown osteosarcoma cells. Combination of a low dose of phloretin and chemotherapeutic drugs, such as daunomycin, 5-Fu, etoposide, and methotrexate, exhibited synergistic cytotoxic effects in three osteosarcoma cell lines. Inhibition of glucose transporters markedly potentiated the apoptotic sensitivity of chemotherapeutic drugs in osteosarcoma. These results indicate that the combination of a low dose of a glucose transporter inhibitor with cytotoxic drugs may be beneficial for treating osteosarcoma patients. PMID:25310823

  18. 胰岛素促进犬在体心肌细胞葡萄糖转运子4基因表达%Insulin facilitates glucose transporter 4 gene expression in canine heart in vivo

    Institute of Scientific and Technical Information of China (English)

    殷仁富; 陈金明; 吴宗贵; 仇韶华; 王咏梅; 武瑞美; 孔宪涛

    2001-01-01

    Objective To investigate the mechanism for that insulin facilitates increase of glucose uptake. Methods The expression of myocardial GLUT4 polypeptide was determined by semiquantitative immunoblotting. The expression of GLUT4 mRNA was determined by semiquantitative Northern blotting. Results After infusing insulin for 8 hours,the expression of GLUT4 mRNA and GLUT4 polypeptide was significantly higher in canine myocardium than in those found normal ones. The glucose uptake was upregulated at the same time.Conclusions Our findings suggest that insulin facilitates the expression of GLUT4 mRNA and GLUT4 polypeptide in canine hearts. Enhanced GLUT4 expression is one of the important molecular mechanism by which myocardial cells enhance glucose uptake by insulin stimulation.%目的 探索胰岛素促进心肌细胞葡萄糖摄取增加的机制。方法 采用Northern法分析心肌GLUT4 mRNA和免疫法分析心肌GLUT4多肽。结果 胰岛素刺激心肌GLUT4 mRNA和GLUT4多肽表达增加1~1.2倍。同时伴随心肌葡萄糖摄取增多。结论 胰岛素能刺激GLUT4 mRNA和GLUT4多肽表达,使GLUT4数增加,进而促进心肌葡萄糖摄取增多,胰岛素刺激心肌细胞GLUT4表达,可能是心肌增加葡萄糖摄取的重要分子学机制之一。

  19. [Glucose transporter type 1 (GLUT-1) deficiency].

    Science.gov (United States)

    Cano, A; Ticus, I; Chabrol, B

    2008-11-01

    Impaired glucose transport across the blood brain barrier results in glucose transporter type 1 (GLUT-1) deficiency syndrome, first described in 1991. It is characterized by infantile seizures refractory to anticonvulsive treatments, microcephaly, delays in mental and motor development, spasticity, ataxia, dysarthria and other paroxysmal neurologic phenomena, often occurring prior to meals. Affected infants are normal at birth following an uneventful pregnancy and delivery. Seizures usually begin between the age of one and four months and can be preceded by apneic episodes or abnormal eyes movements. Patients with atypical presentations such as mental retardation and intermittent ataxia without seizures, or movement disorders characterized by choreoathetosis and dystonia, have also been described. Glucose is the principal fuel source for the brain and GLUT-1 is the only vehicle by which glucose enters the brain. In case of GLUT-1 deficiency, the risk of clinical manifestations is increased in infancy and childhood, when the brain glucose demand is maximal. The hallmark of the disease is a low glucose concentration in the cerebrospinal fluid in a presence of normoglycemia (cerebrospinal fluid/blood glucose ratio less than 0.4). The GLUT-1 defect can be confirmed by molecular analysis of the SCL2A1 gene or in erythrocytes by glucose uptake studies and GLUT-1 immunoreactivity. Several heterozygous mutations, with a majority of de novo mutations, resulting in GLUT-1 haploinsufficiency, have been described. Cases with an autosomal dominant transmission have been established and adults can exhibit symptoms of this deficiency. Ketogenic diet is an effective treatment of epileptic manifestations as ketone bodies serve as an alternative fuel for the developing brain. However, this diet is not effective on cognitive impairment and other treatments are being evaluated. The physiopathology of this disorder is partially unclear and its understanding could explain the clinical

  20. Aquaporin-8-facilitated mitochondrial ammonia transport.

    Science.gov (United States)

    Soria, Leandro R; Fanelli, Elena; Altamura, Nicola; Svelto, Maria; Marinelli, Raúl A; Calamita, Giuseppe

    2010-03-05

    Aquaporin-8 (AQP8) is a membrane channel permeable to water and ammonia. As AQP8 is expressed in the inner mitochondrial membrane of several mammalian tissues, we studied the effect of the AQP8 expression on the mitochondrial transport of ammonia. Recombinant rat AQP8 was expressed in the yeast Saccharomyces cerevisiae. The presence of AQP8 in the inner membrane of yeast mitochondria was demonstrated by subcellular fractionation and immunoblotting analysis. The ammonia transport was determined in isolated mitochondria by stopped flow light scattering using formamide as ammonia analog. We found that the presence of AQP8 increased by threefold mitochondrial formamide transport. AQP8-facilitated mitochondrial formamide transport in rat native tissue was confirmed in liver (a mitochondrial AQP8-expressing tissue) vs. brain (a mitochondrial AQP8 non-expressing tissue). Comparative studies indicated that the AQP8-mediated mitochondrial movement of formamide was markedly higher than that of water. Together, our data suggest that ammonia diffusional transport is a major function for mitochondrial AQP8. 2010 Elsevier Inc. All rights reserved.

  1. The expression and regulation of glucose transporters in tumor cells

    Directory of Open Access Journals (Sweden)

    Pengfei Zhao

    2016-12-01

    Full Text Available Glucose transporter proteins are involved in many physiological and biochemical processes. In particular, the high expressions of sodium-glucose cotransporter and glucose transporter proteins in tumor cells show that these two transporters play a key role in tumor cell metabolism. Studying the crystal structure and conformation of human glucose transporter proteins has enabled the development of drugs based on specific binding sites, opening up a new path towards more effective cancer treatments. This mini review serves to summarize our existing understanding of the metabolic pathways of tumor cells, focusing on the roles of glucose transporter proteins.

  2. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing.

    Directory of Open Access Journals (Sweden)

    Pia V Röder

    Full Text Available Intestinal glucose absorption is mediated by SGLT1 whereas GLUT2 is considered to provide basolateral exit. Recently, it was proposed that GLUT2 can be recruited into the apical membrane after a high luminal glucose bolus allowing bulk absorption of glucose by facilitated diffusion. Moreover, SGLT1 and GLUT2 are suggested to play an important role in intestinal glucose sensing and incretin secretion. In mice that lack either SGLT1 or GLUT2 we re-assessed the role of these transporters in intestinal glucose uptake after radiotracer glucose gavage and performed Western blot analysis for transporter abundance in apical membrane fractions in a comparative approach. Moreover, we examined the contribution of these transporters to glucose-induced changes in plasma GIP, GLP-1 and insulin levels. In mice lacking SGLT1, tissue retention of tracer glucose was drastically reduced throughout the entire small intestine whereas GLUT2-deficient animals exhibited higher tracer contents in tissue samples than wild type animals. Deletion of SGLT1 resulted also in reduced blood glucose elevations and abolished GIP and GLP-1 secretion in response to glucose. In mice lacking GLUT2, glucose-induced insulin but not incretin secretion was impaired. Western blot analysis revealed unchanged protein levels of SGLT1 after glucose gavage. GLUT2 detected in apical membrane fractions mainly resulted from contamination with basolateral membranes but did not change in density after glucose administration. SGLT1 is unequivocally the prime intestinal glucose transporter even at high luminal glucose concentrations. Moreover, SGLT1 mediates glucose-induced incretin secretion. Our studies do not provide evidence for GLUT2 playing any role in either apical glucose influx or incretin secretion.

  3. The efficient intracellular sequestration of the insulin-regulatable glucose transporter (GLUT-4) is conferred by the NH2 terminus

    OpenAIRE

    1992-01-01

    GLUT-4 is the major facilitative glucose transporter isoform in tissues that exhibit insulin-stimulated glucose transport. Insulin regulates glucose transport by the rapid translocation of GLUT-4 from an intracellular compartment to the plasma membrane. A critical feature of this process is the efficient exclusion of GLUT-4 from the plasma membrane in the absence of insulin. To identify the amino acid domains of GLUT-4 which confer intracellular sequestration, we analyzed the subcellular dist...

  4. Exercise training, glucose transporters, and glucose transport in rat skeletal muscles

    Science.gov (United States)

    Rodnick, K. J.; Henriksen, E. J.; James, D. E.; Holloszy, J. O.

    1992-01-01

    It was previously found that voluntary wheel running induces an increase in the insulin-sensitive glucose transporter, i.e., the GLUT4 isoform, in rat plantaris muscle (K. J. Rodnick, J. O. Holloszy, C. E. Mondon, and D. E. James. Diabetes 39: 1425-1429, 1990). The present study was undertaken to determine whether 1) the increase in muscle GLUT4 protein is associated with an increase in maximally stimulated glucose transport activity, 2) a conversion of type IIb to type IIa or type I muscle fibers plays a role in the increase in GLUT4 protein, and 3) an increase in the GLUT1 isoform is a component of the adaptation of muscle to endurance exercise. Five weeks of voluntary wheel running that resulted in a 33% increase in citrate synthase activity induced a 50% increase in GLUT4 protein in epitrochlearis muscles of female Sprague-Dawley rats. The rate of 2-deoxy-glucose transport maximally stimulated with insulin or insulin plus contractions was increased approximately 40% (P less than 0.05). There was no change in muscle fiber type composition, evaluated by myosin ATPase staining, in the epitrochlearis. There was also no change in GLUT1 protein concentration. We conclude that an increase in GLUT4, but not of GLUT1 protein, is a component of the adaptive response of muscle to endurance exercise and that the increase in GLUT4 protein is associated with an increased capacity for glucose transport.

  5. GLP-1 analog raises glucose transport capacity of blood-brain barrier in Alzheimer's disease

    DEFF Research Database (Denmark)

    Gejl, M.; Brock, B.; Egefjord, L.

    2017-01-01

    Objectives: Glucose enters the brain tissue from plasma by facilitated diffusion across the two membranes of the endothelium of the blood-brain barrier (BBB), mediated by the glucose transporter 1 (GLUT1). There is evidence in Alzheimer's disease (AD) of reduction of glucose transport across...... claim that the GLP-1 analog liraglutide may prevent the decline of blood-brain glucose transfer in AD. Methods: In this 26-week test of the hypothesis, we randomized 38 patients with AD to treatment with the GLP-1 analog liraglutide (n = 18) or placebo (n = 20). We determined blood-brain glucose...... transport capacity (Tmax) with [18F]FDG (FDG) (ClinicalTrials.gov NCT01469351). Results: In both groups, the Tmax estimates declined in proportion to the duration of AD. The GLP-1 analog treatment very significantly (P 

  6. Facilitative plasma membrane transporters function during ER transit.

    Science.gov (United States)

    Takanaga, Hitomi; Frommer, Wolf B

    2010-08-01

    Although biochemical studies suggested a high permeability of the endoplasmic reticulum (ER) membrane for small molecules, proteomics identified few specialized ER transporters. To test functionality of transporters during ER passage, we tested whether glucose transporters (GLUTs, SGLTs) destined for the plasma membrane are active during ER transit. HepG2 cells were characterized by low-affinity ER transport activity, suggesting that ER uptake is protein mediated. The much-reduced capacity of HEK293T cells to take up glucose across the plasma membrane correlated with low ER transport. Ectopic expression of GLUT1, -2, -4, or -9 induced GLUT isoform-specific ER transport activity in HEK293T cells. In contrast, the Na(+)-glucose cotransporter SGLT1 mediated efficient plasma membrane glucose transport but no detectable ER uptake, probably because of lack of a sufficient sodium gradient across the ER membrane. In conclusion, we demonstrate that GLUTs are sufficient for mediating ER glucose transport en route to the plasma membrane. Because of the low volume of the ER, trace amounts of these uniporters contribute to ER solute import during ER transit, while uniporters and cation-coupled transporters carry out export from the ER, together potentially explaining the low selectivity of ER transport. Expression levels and residence time of transporters in the ER, as well as their coupling mechanisms, could be key determinants of ER permeability.

  7. Glucose sensing and signalling; regulation of intestinal glucose transport.

    Science.gov (United States)

    Shirazi-Beechey, S P; Moran, A W; Batchelor, D J; Daly, K; Al-Rammahi, M

    2011-05-01

    Epithelial cells lining the inner surface of the intestinal epithelium are in direct contact with a lumenal environment that varies dramatically with diet. It has long been suggested that the intestinal epithelium can sense the nutrient composition of lumenal contents. It is only recently that the nature of intestinal nutrient-sensing molecules and underlying mechanisms have been elucidated. There are a number of nutrient sensors expressed on the luminal membrane of endocrine cells that are activated by various dietary nutrients. We showed that the intestinal glucose sensor, T1R2+T1R3 and the G-protein, gustducin are expressed in endocrine cells. Eliminating sweet transduction in mice in vivo by deletion of either gustducin or T1R3 prevented dietary monosaccharide- and artificial sweetener-induced up-regulation of the Na+/glucose cotransporter, SGLT1 observed in wild-type mice. Transgenic mice, lacking gustducin or T1R3 had deficiencies in secretion of glucagon-like peptide 1 (GLP-1) and, glucose-dependent insulinotrophic peptide (GIP). Furthermore, they had an abnormal insulin profile and prolonged elevation of postprandial blood glucose in response to orally ingested carbohydrates. GIP and GLP-1 increase insulin secretion, while glucagon-like peptide 2 (GLP-2) modulates intestinal growth, blood flow and expression of SGLT1. The receptor for GLP-2 resides in enteric neurons and not in any surface epithelial cells, suggesting the involvement of the enteric nervous system in SGLT1 up-regulation. The accessibility of the glucose sensor and the important role that it plays in regulation of intestinal glucose absorption and glucose homeostasis makes it an attractive nutritional and therapeutic target for manipulation.

  8. Palmitate stimulates glucose transport in rat adipocytes by a mechanism involving translocation of the insulin sensitive glucose transporter (GLUT4)

    Science.gov (United States)

    Hardy, R. W.; Ladenson, J. H.; Henriksen, E. J.; Holloszy, J. O.; McDonald, J. M.

    1991-01-01

    In rat adipocytes, palmitate: a) increases basal 2-deoxyglucose transport 129 +/- 27% (p less than 0.02), b) decreases the insulin sensitive glucose transporter (GLUT4) in low density microsomes and increases GLUT4 in plasma membranes and c) increases the activity of the insulin receptor tyrosine kinase. Palmitate-stimulated glucose transport is not additive with the effect of insulin and is not inhibited by the protein kinase C inhibitors staurosporine and sphingosine. In rat muscle, palmitate: a) does not affect basal glucose transport in either the soleus or epitrochlearis and b) inhibits insulin-stimulated glucose transport by 28% (p less than 0.005) in soleus but not in epitrochlearis muscle. These studies demonstrate a potentially important differential role for fatty acids in the regulation of glucose transport in different insulin target tissues.

  9. Glucose transporter 1 localisation throughout pregnancy in the carnivore placenta

    DEFF Research Database (Denmark)

    Wooding, F.B.P.; Dantzer, Vibeke; Klisch, K.

    2007-01-01

    Glucose is one of the major fetal nutrients. Maternofetal transfer requires transport across the several placental membranes. This transfer is mediated by one or more of the fourteen known isoforms of glucose transporter. So far only Glucose Transporters 1 and 3 (GT1, GT3) have been shown...... to be located in placental membranes. GT1 may be the only one on the syncytiotrophoblast (human) or both may be present on the same membrane (rodents) or be required in sequence (ruminants, horses and elephant). This paper shows GT1 to be the only transporter demonstrable by immunocytochemistry in carnivore...

  10. Glucose-induced insulin resistance of skeletal-muscle glucose transport and uptake

    DEFF Research Database (Denmark)

    Richter, Erik; Hansen, B F; Hansen, S A

    1988-01-01

    in the presence of glucose and insulin. The data indicate that exposure to a moderately increased glucose concentration (12 mM) leads to rapidly developing resistance of skeletal-muscle glucose transport and uptake to maximal insulin stimulation. The effect of glucose is enhanced by simultaneous insulin exposure......, whereas exposure for 5 h to insulin itself does not cause measurable resistance to maximal insulin stimulation.......The ability of glucose and insulin to modify insulin-stimulated glucose transport and uptake was investigated in perfused skeletal muscle. Here we report that perfusion of isolated rat hindlimbs for 5 h with 12 mM-glucose and 20,000 microunits of insulin/ml leads to marked, rapidly developing...

  11. Regulation of Intestinal Glucose Absorption by Ion Channels and Transporters

    Directory of Open Access Journals (Sweden)

    Lihong Chen

    2016-01-01

    Full Text Available The absorption of glucose is electrogenic in the small intestinal epithelium. The major route for the transport of dietary glucose from intestinal lumen into enterocytes is the Na+/glucose cotransporter (SGLT1, although glucose transporter type 2 (GLUT2 may also play a role. The membrane potential of small intestinal epithelial cells (IEC is important to regulate the activity of SGLT1. The maintenance of membrane potential mainly depends on the activities of cation channels and transporters. While the importance of SGLT1 in glucose absorption has been systemically studied in detail, little is currently known about the regulation of SGLT1 activity by cation channels and transporters. A growing line of evidence suggests that cytosolic calcium ([Ca2+]cyt can regulate the absorption of glucose by adjusting GLUT2 and SGLT1. Moreover, the absorption of glucose and homeostasis of Ca2+ in IEC are regulated by cation channels and transporters, such as Ca2+ channels, K+ channels, Na+/Ca2+ exchangers, and Na+/H+ exchangers. In this review, we consider the involvement of these cation channels and transporters in the regulation of glucose uptake in the small intestine. Modulation of them may be a potential strategy for the management of obesity and diabetes.

  12. Regulation of Intestinal Glucose Absorption by Ion Channels and Transporters.

    Science.gov (United States)

    Chen, Lihong; Tuo, Biguang; Dong, Hui

    2016-01-14

    The absorption of glucose is electrogenic in the small intestinal epithelium. The major route for the transport of dietary glucose from intestinal lumen into enterocytes is the Na⁺/glucose cotransporter (SGLT1), although glucose transporter type 2 (GLUT2) may also play a role. The membrane potential of small intestinal epithelial cells (IEC) is important to regulate the activity of SGLT1. The maintenance of membrane potential mainly depends on the activities of cation channels and transporters. While the importance of SGLT1 in glucose absorption has been systemically studied in detail, little is currently known about the regulation of SGLT1 activity by cation channels and transporters. A growing line of evidence suggests that cytosolic calcium ([Ca(2+)]cyt) can regulate the absorption of glucose by adjusting GLUT2 and SGLT1. Moreover, the absorption of glucose and homeostasis of Ca(2+) in IEC are regulated by cation channels and transporters, such as Ca(2+) channels, K⁺ channels, Na⁺/Ca(2+) exchangers, and Na⁺/H⁺ exchangers. In this review, we consider the involvement of these cation channels and transporters in the regulation of glucose uptake in the small intestine. Modulation of them may be a potential strategy for the management of obesity and diabetes.

  13. Biological evaluation of two iodine-123-labeled D-glucose acetals prepared as glucose transporter radioligands

    Energy Technology Data Exchange (ETDEWEB)

    Brunet-Desruet, Marie-Dominique; Ghezzi, Catherine; Morin, Christophe; Comet, Michel; Fagret, Daniel

    1998-07-01

    Two iodinated acetals of D-glucose, 4,6-(R)-O-(2'-iodoethylidene)-{alpha}, {beta}-D-glucose and 4,6-(R)-O-(4'-iodobenzylidene)-{alpha}, {beta}-D-glucose , were prepared and their potential as suitable SPECT radioligands for imaging of glucose transporters was studied. Both are analogs of acetal D-glucose derivatives, which are known to bind to the exofacial sites of the glucose transport protein (GluT). To assess whether iodinated acetals 1 and 2 interacted with the glucose transporter, they were tested in vitro in human erythrocytes (GluT1) and neonatal rat cardiomyocytes (GluT4). The results indicated that 1 and 2 had a very low affinity for the glucose transporter and probably accumulated in cells. Study of their tissue distribution was carried out in the mouse in vivo: Both compounds showed fast tissue clearance with preferential renal elimination. It is concluded that iodinated acetals of D-glucose 1 and 2 are not suitable for GluT targeting in vivo.

  14. The insulin-like growth factor I receptor regulates glucose transport by astrocytes.

    Science.gov (United States)

    Hernandez-Garzón, Edwin; Fernandez, Ana M; Perez-Alvarez, Alberto; Genis, Laura; Bascuñana, Pablo; Fernandez de la Rosa, Ruben; Delgado, Mercedes; Angel Pozo, Miguel; Moreno, Estefania; McCormick, Peter J; Santi, Andrea; Trueba-Saiz, Angel; Garcia-Caceres, Cristina; Tschöp, Matthias H; Araque, Alfonso; Martin, Eduardo D; Torres Aleman, Ignacio

    2016-11-01

    Previous findings indicate that reducing brain insulin-like growth factor I receptor (IGF-IR) activity promotes ample neuroprotection. We now examined a possible action of IGF-IR on brain glucose transport to explain its wide protective activity, as energy availability is crucial for healthy tissue function. Using (18) FGlucose PET we found that shRNA interference of IGF-IR in mouse somatosensory cortex significantly increased glucose uptake upon sensory stimulation. In vivo microscopy using astrocyte specific staining showed that after IGF-IR shRNA injection in somatosensory cortex, astrocytes displayed greater increases in glucose uptake as compared to astrocytes in the scramble-injected side. Further, mice with the IGF-IR knock down in astrocytes showed increased glucose uptake in somatosensory cortex upon sensory stimulation. Analysis of underlying mechanisms indicated that IGF-IR interacts with glucose transporter 1 (GLUT1), the main facilitative glucose transporter in astrocytes, through a mechanism involving interactions with the scaffolding protein GIPC and the multicargo transporter LRP1 to retain GLUT1 inside the cell. These findings identify IGF-IR as a key modulator of brain glucose metabolism through its inhibitory action on astrocytic GLUT1 activity. GLIA 2016;64:1962-1971.

  15. Insulin facilitates transport of macromolecules and nutrients to muscles

    DEFF Research Database (Denmark)

    Christensen, N J; Hilsted, J

    1993-01-01

    , systolic blood pressure and plasma noradrenaline. These changes were absent or attenuated in diabetic patients (without neuropathy) after an oral glucose load. These responses were normalized by insulin infusion. Our results suggest that insulin facilitates the transfer of macromolecules and nutrients from...

  16. Harbor Expansion Facilitates Crude and Petrochemicals Transportation

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ Douwei Harbor attracting petrochem investment Substantial progress has been made in the preliminary preparation of Douwei Harbor project in Hui'an, Fujian Province. It is one of the major four transfer ports in China planned by the Ministry of Transportation. A number of projects, with a total investment approaching 10 billion yuan,will come under construction in the harbor zone.

  17. Glucose transport in isolated prosthecae of Asticcacaulis biprosthecum.

    Science.gov (United States)

    Larson, R J; Pate, J L

    1976-04-01

    Active transport of glucose in prosthecae isolated from cells of Asticcacaulis biprosthecum was stimulated by the non-physiological electron donor N, N, N', N'-tetramethyl-p-phenylenediamine dihydrochloride. Glucose uptake was mediated by two transport systems; the apparent Km of the high-affinity system was 1.8 muM and that of the low-affinity system was 34 muM. Free glucose accumulated within prosthecae at a concentration 60 to 200 times above that present externally, depending on the Km of the system being observed. The glucose transport system in prosthecae was stereospecific for D-glucose, and neither methyl alpha-D-glucopyranoside nor 2-deoxyglucose was transported. Uptake of glucose was inhibited by N-ethylmaleimide (NEM) and p-chloromercuribenzoate (PCMB), and the inhibition by PCMB but not by NEM was reversed by dithiothreitol. Glucose uptake was also inhibited by the uncoupling agents 5-chloro-3-t-butyl-2'-nitrosalicylanilide (S-13), 5-chloro-3-(p-chlorophenyl)-4'-chlorosalicylanilide (S-6), and carbonyl-cyanide m-chlorophenylhydrazone (CCCP) and by the respiratory inhibitor KCN. Efflux of glucose from preloaded prosthecae was induced by PCMB and KCN, but not by S-13 or CCCP. Glucose uptake was not affected by arsenate or an inhibitor of membrane-bound adenosine triphosphatases, N, N'-dicyclohexylcarbodiimide. The lack of inhibition by these two compounds, combined with the extremely low levels of adenosine 5'-triphosphate present in prosthecae, indicates that adenosine 5'-triphosphate is not involved in the transport of glucose by prosthecae.

  18. Dose-response investigation into glucose facilitation of memory performance and mood in healthy young adults.

    Science.gov (United States)

    Sünram-Lea, Sandra I; Owen, Lauren; Finnegan, Yvonne; Hu, Henglong

    2011-08-01

    It has been suggested that the memory enhancing effect of glucose follows an inverted U-shaped curve, with 25 g resulting in optimal facilitation in healthy young adults. The aim of this study was to further investigate the dose dependency of the glucose facilitation effect in this population across different memory domains and to assess moderation by interindividual differences in glucose regulation and weight. Following a double-blind, repeated measures design, 30 participants were administered drinks containing five different doses of glucose (0 g, 15 g, 25 g, 50 g, and 60 g) and were tested across a range of memory tasks. Glycaemic response and changes in mood state were assessed following drink administration. Analysis of the data showed that glucose administration did not affect mood, but significant glucose facilitation of several memory tasks was observed. However, dose-response curves differed depending on the memory task with only performance on the long-term memory tasks adhering largely to the previously observed inverted U-shaped dose-response curve. Moderation of the response profiles by interindividual differences in glucose regulation and weight was observed. The current data suggest that dose-response function and optimal dose might depend on cognitive domain and are moderated by interindividual differences in glucose regulation and weight.

  19. Asymmetric subcellular distribution of glucose transporters in the endothelium of small contractile arteries.

    Science.gov (United States)

    Gaudreault, N; Scriven, D R L; Moore, E D W

    2006-01-01

    The authors have recently reported the presence and asymmetric distribution of the glucose transporters GLUT-1 to -5 and SGLT-1 in the endothelium of rat coronary artery (Gaudreault et al. 2004, Diabetologica, 47, 2081-2092). In the present study the authors investigate and compare the presence and subcellular distribution of the classic glucose transporter isoforms in endothelial cells of cerebral, renal, and mesenteric arteries. The GLUTs and SGLT-1 were examined with immunohistochemistry and wide-field fluorescence microscopy coupled to deconvolution in en face preparation of intact artery. We identified GLUT-1 to -5 and SGLT-1 in the endothelial cells of all three vascular beds. The relative level of expression for each isoform was found comparable amongst arteries. Clusters of the glucose transporter isoforms were found at a high density in proximity to the cell-to-cell junctions. In addition, a consistent asymmetric distribution of GLUT-1 to -5 was found, predominantly located on the abluminal side of the endothelium in all three vascular beds examined (ranging from 68% to 91%, p<.05). The authors conclude that the expression and subcellular distribution of glucose transporters are similar in endothelial cells from vascular beds of comparable diameter and suggest that their subcellular organization may facilitate transendothelial transport of glucose in small contractile arteries.

  20. Evidence for rotational contribution to protein-facilitated proton transport.

    Science.gov (United States)

    Gros, G; Lavalette, D; Moll, W; Gros, H; Amand, B; Pochon, F

    1984-01-01

    Two modes of molecular motion of carrier molecules can, in principle, lead to a facilitated transport of a substrate: translational and rotational diffusion. In the present study, which deals with the mechanism of the facilitated diffusion of H+ and O2 in solutions of earthworm hemoglobin, examples for both types of facilitation are presented. Only translational, not rotational, diffusion of earthworm hemoglobin appears to lead to a facilitated O2 flux. In contrast, substantial facilitated H+ fluxes of comparable size arise from rotational diffusion as well as from translational diffusion of this large protein. This is derived from measurements of facilitated H+ and O2 fluxes in earthworm hemoglobin solutions and determinations of the rotational and translational diffusion coefficients of earthworm hemoglobin with the help of a theoretical treatment of facilitated diffusion by rotational carrier diffusion. H+ transport by rotational protein diffusion appears to be a case where the often-postulated mechanism of facilitated transport by rotation of a carrier lends itself to experimental verification. Images PMID:6324213

  1. Characteristics of glucose transport across the microvillous membranes of human term placenta

    Directory of Open Access Journals (Sweden)

    Ravinderjit Kaur Anand

    Full Text Available Transport characteristics of D-glucose were studied in the microvillous vesicles isolated from the human term placenta. Transport occurred by selective and rapid facilitated diffusion system which was inhibitable by phloretin and HgCl2. The transport was dependent on a transmembrane. Na+-gradient indicating a "secondary active transport" system operating. The transport influx was saturable and the kinetic analysis based on Hanes-Woolf plot produced a kt and Jmax value of 1.2 mM and 34 nmoles. mgprotein-1.min-1, respectively. The efflux of D-glucose from the membrane vesicles in a pre-equilibrated assay conditions showed a distinct biphasic pattern differing significantly in the half time efflux. The t1/2 of the fast and slow components was found to be 15 sec and 660 sec, respectively. The transport showed distinct sensitivity to temperature and the Ea values both below and above the transition temperature of 37 ºC, as calculated from the Arrhenius plot were found to be 7600 and 5472 kCa1.mol-1, respectively. Inhibition studies with a number of sugars for hexose transport pathway showed that the glucose epimers, phosphorylated sugars, and even the disaccharides and the pentose sugars competed effectively with D-glucose. The influx was also inhibited by a number of steroids such as progesterone, 17α-hydroxyprogesterone, testosterone and estrogen. Insulin was found to increase glucose transport in a dose- dependent fashion at a concentration of 0.2-1 unit.ml-1. Ouabain, dinitrophenoi and nicotine strongly inhibited D-glucose uptake in the membrane vesicles.

  2. Peritoneal transport characteristics with glucose polymer based dialysate.

    Science.gov (United States)

    Ho-dac-Pannekeet, M M; Schouten, N; Langendijk, M J; Hiralall, J K; de Waart, D R; Struijk, D G; Krediet, R T

    1996-09-01

    /PNa+ decreased with 3.86% glucose until 60 minutes, followed by a subsequent increase. The ultrafiltration coefficient (UFC) of the total peritoneal membrane was assessed using 3.86% glucose (0.18 +/- 0.04 ml/min/mm Hg), and the UFC of the small pores was assessed using icodextrin (0.06 +/- 0.008 ml/min/mm Hg). The difference between these represented the UFC through the transcellular pores, which averaged 50.5% of the total UFC, but with a very wide range (0 to 85%). An inverse relation existed between the duration of CAPD treatment and the total ultrafiltration coefficient (r = -0.68, P < 0.04), which could be attributed to a lower UFC of the transcellular pores in long-term patients (r = -0.66, P < 0.05), but not to the UFC of the small pores (r = -0.48, NS). The TCUFRo-60 min through the transcellular pores correlated with the sodium gradient, corrected for diffusion, in the first hour of the dwell (r = 0.69, P < 0.04), indicating that both parameters indeed measure transcellular water transport. It can be concluded that the glucose polymer solution induced sustained ultrafiltration and had no effect on peritoneal membrane characteristics. In addition, the results of the present study support the hypothesis that the glucose polymer solutions exerts its osmotic pressure across intercellular pores with radii of about 40 A. This leads to increased clearances of low molecular weight proteins such as beta 2m that are transported through these pores without sieving of Na+. The latter, as found during 3.86% glucose dialysate, is probably caused by transcellular water transport. The transcellular water transport accounted for 50% of the total ultrafiltration with glucose based dialysis solutions. It was lower in long-term CAPD patients.

  3. Glucose Transporter 4 (GLUT4) is Not Necessary for Overload-Induced Glucose Uptake or Hypertrophic Growth in Mouse Skeletal Muscle.

    Science.gov (United States)

    McMillin, Shawna L; Schmidt, Denise L; Kahn, Barbara B; Witczak, Carol A

    2017-03-09

    Glucose transporter 4 (GLUT4) is necessary for acute insulin- and contraction-induced skeletal muscle glucose uptake, but its role in chronic muscle loading (overload)-induced glucose uptake is unknown. Our goal was to determine if GLUT4 is required for overload-induced glucose uptake. Overload was induced in mouse plantaris muscle by unilateral synergist ablation. After 5 days, muscle weights and ex vivo [(3)H]-2-deoxy-D-glucose uptake were assessed. Overload-induced muscle glucose uptake and hypertrophic growth were not impaired in muscle-specific GLUT4 knockout mice, demonstrating that GLUT4 is not necessary for these processes. To assess which transporter(s) mediate overload-induced glucose uptake, chemical inhibitors were utilized. The facilitative GLUT inhibitor, cytochalasin B, but not the sodium-dependent glucose-co-transport inhibitor, phloridzin, prevented overload-induced uptake demonstrating that GLUT(s) mediate this effect. To assess which GLUT, hexose competition experiments were performed. Overload-induced [(3)H]-2-deoxy-D-glucose uptake was not inhibited by D-fructose, demonstrating that the fructose-transporting GLUT2, GLUT5, GLUT8, and GLUT12, do not mediate this effect. To assess additional GLUTs, immunoblots were performed. Overload increased GLUT1, GLUT3, GLUT6 and GLUT10 protein levels 2- to 5-fold. Collectively, these results demonstrate that GLUT4 is not necessary for overload-induced muscle glucose uptake or hypertrophic growth, and suggest that GLUT1, GLUT3, GLUT6 and/or GLUT10 mediate overload-induced glucose uptake.

  4. The role of cysteine residues in glucose-transporter-GLUT1-mediated transport and transport inhibition.

    Science.gov (United States)

    Wellner, M; Monden, I; Keller, K

    1994-01-01

    The role of cysteine residues in transport function of the glucose transporter GLUT1 was investigated by a mutagenesis-expression strategy. Each of the six cysteine residues was individually replaced by site-directed mutagenesis. Expression of the heterologous wild-type or mutant glucose transporters and transport measurements at two hexose concentrations (50 microM and 5 mM) were undertaken in Xenopus oocytes. The catalytic activity of GLUT1 was retained, despite substitution of each single cysteine residue, which indicated that no individual residue is essential for hexose transport. This finding questions the involvement of oligomerization or intramolecular stabilization by a single disulphide bond as a prerequisite for transporter activation under basal conditions. Application of the impermeant mercurial thiol-group-reactive reagent p-chloromercuribenzenesulphonate (pCMBS) to the external or internal surface of plasma membrane demonstrated that cysteine-429, within the sixth external loop, and cysteine-207, at the beginning of the large intracellular loop which connects transmembrane segments 6 and 7, are the residues which are involved in transport inhibition by impermeant thiol-group-reactive reagents from either side of the cell. These data support the predicted membrane topology of the transport protein by transport measurements. If residues other than the cysteines at positions 429 or 207 are exposed to either side of the plasma membrane by conformational changes, they do not contribute to the transport inhibition by pCMBS. Application of pCMBS to one side of the plasma membrane also inhibited transport from the opposite direction, most likely due to the hindrance of sugar-induced interconversion of transporter conformation. PMID:8192671

  5. Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes

    Science.gov (United States)

    Fuente-Martín, Esther; García-Cáceres, Cristina; Granado, Miriam; de Ceballos, María L.; Sánchez-Garrido, Miguel Ángel; Sarman, Beatrix; Liu, Zhong-Wu; Dietrich, Marcelo O.; Tena-Sempere, Manuel; Argente-Arizón, Pilar; Díaz, Francisca; Argente, Jesús; Horvath, Tamas L.; Chowen, Julie A.

    2012-01-01

    Glial cells perform critical functions that alter the metabolism and activity of neurons, and there is increasing interest in their role in appetite and energy balance. Leptin, a key regulator of appetite and metabolism, has previously been reported to influence glial structural proteins and morphology. Here, we demonstrate that metabolic status and leptin also modify astrocyte-specific glutamate and glucose transporters, indicating that metabolic signals influence synaptic efficacy and glucose uptake and, ultimately, neuronal function. We found that basal and glucose-stimulated electrical activity of hypothalamic proopiomelanocortin (POMC) neurons in mice were altered in the offspring of mothers fed a high-fat diet. In adulthood, increased body weight and fasting also altered the expression of glucose and glutamate transporters. These results demonstrate that whole-organism metabolism alters hypothalamic glial cell activity and suggest that these cells play an important role in the pathology of obesity. PMID:23064363

  6. Diabetic ketoacidosis, sodium glucose transporter-2 inhibitors and the kidney.

    Science.gov (United States)

    Palmer, Biff F; Clegg, Deborah J; Taylor, Simeon I; Weir, Matthew R

    2016-08-01

    Diabetic ketoacidosis is a serious metabolic condition that may occur in patients with either Type 1 or Type 2 diabetes. The accumulation of ketoacids in the serum is a consequence of insulin deficiency and glucagon excess. Sodium Glucose Transporter 2 (SGLT2) inhibitors are novel therapeutic treatments for improving glucose homeostasis in patients with diabetes. Through reductions in glucose reabsorption by the kidney, they lower serum glucose in patients with Type 2 diabetes and they improve glucose control whether used alone or in combination with other therapies. Mechanistically, these drugs increase serum ketoacids and increase glucagon production, which in some individuals, can lead to formation of diabetic ketoacidosis. This review will first focus in how the kidney normally handles ketoacids, and second will discuss how the SGLT2 inhibitors affect the kidney in such a way so as to enhance the risk for development of ketoacidosis in susceptible individuals.

  7. Regulation of endogenous glucose production in glucose transporter 4 over-expressing mice.

    Directory of Open Access Journals (Sweden)

    Eric D Berglund

    Full Text Available Strategies to amplify whole-body glucose disposal are key therapies to treat type 2 diabetes. Mice that over-express glucose transporter 4 (Glut4 in skeletal muscle, heart, and adipose tissue (G4Tg exhibit increased fasting glucose disposal and thus lowered blood glucose. Intriguingly, G4Tg mice also exhibit improved insulin-stimulated suppression of endogenous glucose production even though Glut4 is not present in the liver. It is unclear, however, if hepatic gluco-regulation is altered in G4Tg mice in the basal, non-insulin-stimulated state. The current studies were performed to examine fasting hepatic glucose metabolism in G4Tg mice and to determine whether gluco-regulatory adaptations exist in the non-insulin-stimulated condition. To test this question, phloridzin-glucose clamps were used to match blood glucose and pancreatic hormone levels while tracer dilution techniques were used to measure glucose flux. These techniques were performed in chronically-catheterized, conscious, and un-stressed 5h-fasted G4Tg and wild-type (WT littermates. Results show reduced blood glucose, hepatic glycogen content, and hepatic glucokinase (GK activity/expression as well as higher endogenous glucose production, glucose disposal, arterial glucagon, and hepatic glucose-6-phosphatase (G6Pase activity/expression in G4Tg mice versus WT controls. Clamping blood glucose for 90 min at ~115 mg/dLin G4Tg and WT mice normalized nearly all variables. Notably, however, net hepatic glycogen synthetic rates were disproportionately elevated compared to changes in blood glucose. In conclusion, these studies demonstrate that basal improvements in glucose tolerance due to increased uptake in extra-hepatic sites provoke important gluco-regulatory adaptations in the liver. Although changes in blood glucose underlie the majority of these adaptations, net hepatic glycogen synthesis is sensitized. These data emphasize that anti-diabetic therapies that target skeletal muscle, heart

  8. Berberine stimulates glucose transport through a mechanism distinct from insulin.

    Science.gov (United States)

    Zhou, Libin; Yang, Ying; Wang, Xiao; Liu, Shangquan; Shang, Wenbin; Yuan, Guoyue; Li, Fengying; Tang, Jinfeng; Chen, Mingdao; Chen, Jialun

    2007-03-01

    Berberine exerts a hypoglycemic effect, but the mechanism remains unknown. In the present study, the effect of berberine on glucose uptake was characterized in 3T3-L1 adipocytes. It was revealed that berberine stimulated glucose uptake in 3T3-L1 adipocytes in a dose- and time-dependent manner with the maximal effect at 12 hours. Glucose uptake was increased by berberine in 3T3-L1 preadipocytes as well. Berberine-stimulated glucose uptake was additive to that of insulin in 3T3-L1 adipocytes, even at the maximal effective concentrations of both components. Unlike insulin, the effect of berberine on glucose uptake was insensitive to wortmannin, an inhibitor of phosphatidylinositol 3-kinase, and SB203580, an inhibitor of p38 mitogen-activated protein kinase. Berberine activated extracellular signal-regulated kinase (ERK) 1/2, but PD98059, an ERK kinase inhibitor, only decreased berberine-stimulated glucose uptake by 32%. Berberine did not induce Ser473 phosphorylation of Akt nor enhance insulin-induced phosphorylation of Akt. Meanwhile, the expression and cellular localization of glucose transporter 4 (GLUT4) were not altered by berberine. Berberine did not increase GLUT1 gene expression. However, genistein, a tyrosine kinase inhibitor, completely blocked berberine-stimulated glucose uptake in 3T3-L1 adipocytes and preadipocytes, suggesting that berberine may induce glucose transport via increasing GLUT1 activity. In addition, berberine increased adenosine monophosphate-activated protein kinase and acetyl-coenzyme A carboxylase phosphorylation. These findings suggest that berberine increases glucose uptake through a mechanism distinct from insulin, and activated adenosine monophosphate-activated protein kinase seems to be involved in the metabolic effect of berberine.

  9. Structural advances for the major facilitator superfamily (MFS) transporters.

    Science.gov (United States)

    Yan, Nieng

    2013-03-01

    The major facilitator superfamily (MFS) is one of the largest groups of secondary active transporters conserved from bacteria to humans. MFS proteins selectively transport a wide spectrum of substrates across biomembranes and play a pivotal role in multiple physiological processes. Despite intense investigation, only seven MFS proteins from six subfamilies have been structurally elucidated. These structures were captured in distinct states during a transport cycle involving alternating access to binding sites from either side of the membrane. This review discusses recent progress in MFS structure analysis and focuses on the molecular basis for substrate binding, co-transport coupling, and alternating access.

  10. Kinetics of glucose transport in rat muscle

    DEFF Research Database (Denmark)

    Ploug, Thorkil; Galbo, H; Vinten, J

    1987-01-01

    -MG concentration exhibited Michaelis-Menten kinetics. Uptake by simple diffusion could not be detected. The maximum 3-O-MG transport velocity (Vmax) was increased more by maximum isometric contractions (10- to 40-fold, depending on fiber type) than by insulin (20,000 microU/ml; 3- to 20-fold) in both red and white...

  11. Brain Glucose Transporter (Glut3) Haploinsufficiency Does Not Impair Mouse Brain Glucose Uptake

    OpenAIRE

    Stuart, Charles A.; Ross, Ian R.; Howell, Mary E. A.; McCurry, Melanie P.; Wood, Thomas G.; Ceci, Jeffrey D.; Kennel, Stephen J.; Wall, Jonathan

    2011-01-01

    Mouse brain expresses three principle glucose transporters. Glut1 is an endothelial marker and is the principal glucose transporter of the blood-brain barrier. Glut3 and Glut6 are expressed in glial cells and neural cells. A mouse line with a null allele for Glut3 has been developed. The Glut3−/− genotype is intrauterine lethal by seven days post-coitis, but the heterozygous (Glut3+/−) littermate survives, exhibiting rapid post-natal weight gain, but no seizures or other behavioral aberration...

  12. Characterization of 6-deoxy-6-iodo-D-glucose: A potential new tool to assess glucose transport

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Christelle; Tanti, Jean-Francois; Gremeaux, Thierry; Morin, Christophe; Van Obberghen, Emmanuel; Comet, Michel; Le Marchand-Brustel, Yannick

    1997-01-01

    6-deoxy-6-iodo-D-glucose (6-DIG) was rapidly taken up by adipocytes. Insulin increased 6-DIG transport in adipocytes isolated from both rats and mice. This stimulation was more important in rat than in mouse adipocytes, in agreement with their respective amount of Glut 4 transporters. In two insulin-resistant states, the biological behavior of 6-DIG and 3-O-methyl-D-glucose was similar. These results indicated that 6-DIG, which was transported into the cells via the glucose transporters, could be potentially useful to measure modifications of glucose transport.

  13. Effect of aspirin on glucose-D transport in intestine of rat

    Institute of Scientific and Technical Information of China (English)

    Mazhar Mushtaq; Farah Deeba Khan; M. Naeem Akhtar; Saghir Ahmad Jafri; Mehboob Bari

    2009-01-01

    Objective: The present study was designed to evaluate the effect a commonly prescribed Non Steroidal Anti In-flammatory Drug (NSAID) i.e. aspirin on brush border membrane in terms of changes in the intestinal transport level of glucose which is monosaccharide with absolute requirement in the body and hence its absorption is directly proportional on the morphology of the intestinal mucosa. Method: Albino rats (Rattus Norvegicus) were divided into two different groups, Group Ⅰ (Control), Group Ⅱ ( aspirin-treated, 50 mg aspirin/kg of body weight). The treatment was continued for 28 days. On the 29th day after o-, vernight fasting, intestine was removed from animals of both groups. Changes in transport of glucose-D in intestine were studied. Result: The results indicated a significant decrease in the transport of glucose-D in aspirin treated group as compared to the con-trol group. Conclusion: Cautious use of NSAID is recommended in commonly observed symptom such as headache and to those patients who are given as a prophylaxis for thrombosis.

  14. Facilitated oxygen transport in liquid membranes: review and new concepts

    NARCIS (Netherlands)

    Figoli, A.; Sager, W.F.C.; Mulder, M.H.V.

    2001-01-01

    In this paper, an overview is given on membranes with oxygen facilitated transport properties to enrich the oxygen content in air. Special emphasis is paid to recent developments of oxygen carrier systems and carrier containing membranes. Concepts leading to a structural evolution of supported liqui

  15. Effects of ketamine on glucose uptake by glucose transporter type 3 expressed in Xenopus oocytes: The role of protein kinase C

    Energy Technology Data Exchange (ETDEWEB)

    Tomioka, Shigemasa, E-mail: tomioka@dent.tokushima-u.ac.jp [Department of Dental Anesthesiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 18-15, Tokushima City, Tokushima 770-8504 (Japan); Kaneko, Miyuki [Department of Dental Anesthesiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 18-15, Tokushima City, Tokushima 770-8504 (Japan); Satomura, Kazuhito [First Department of Oral and Maxillofacial Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 18-15, Tokushima City, Tokushima 770-8504 (Japan); Mikyu, Tomiko; Nakajo, Nobuyoshi [Department of Dental Anesthesiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 18-15, Tokushima City, Tokushima 770-8504 (Japan)

    2009-10-09

    We investigated the effects of ketamine on the type 3 facilitative glucose transporter (GLUT3), which plays a major role in glucose transport across the plasma membrane of neurons. Human-cloned GLUT3 was expressed in Xenopus oocytes by injection of GLUT3 mRNA. GLUT3-mediated glucose uptake was examined by measuring oocyte radioactivity following incubation with 2-deoxy-D-[1,2-{sup 3}H]glucose. While ketamine and S(+)-ketamine significantly increased GLUT3-mediated glucose uptake, this effect was biphasic such that higher concentrations of ketamine inhibited glucose uptake. Ketamine (10 {mu}M) significantly increased V{sub max} but not K{sub m} of GLUT3 for 2-deoxy-D-glucose. Although staurosporine (a protein kinase C inhibitor) increased glucose uptake, no additive or synergistic interactions were observed between staurosporine and racemic ketamine or S(+)-ketamine. Treatment with ketamine or S(+)-ketamine partially prevented GLUT3 inhibition by the protein kinase C activator phorbol-12-myrisate-13-acetate. Our results indicate that ketamine increases GLUT3 activity at clinically relevant doses through a mechanism involving PKC inhibition.

  16. Pathogenic mutations causing glucose transport defects in GLUT1 transporter: The role of intermolecular forces in protein structure-function.

    Science.gov (United States)

    Raja, Mobeen; Kinne, Rolf K H

    2015-01-01

    Two families of glucose transporter - the Na(+)-dependent glucose cotransporter-1 (SGLT family) and the facilitated diffusion glucose transporter family (GLUT family) - play a crucial role in the translocation of glucose across the epithelial cell membrane. How genetic mutations cause life-threatening diseases like GLUT1-deficiency syndrome (GLUT1-DS) is not well understood. In this review, we have combined previous functional data with our in silico analyses of the bacterial homologue of GLUT members, XylE (an outward-facing, partly occluded conformation) and previously proposed GLUT1 homology model (an inward-facing conformation). A variety of native and mutant side chain interactions were modeled to highlight the potential roles of mutations in destabilizing protein-protein interaction hence triggering structural and functional defects. This study sets the stage for future studies of the structural properties that mediate GLUT1 dysfunction and further suggests that both SGLT and GLUT families share conserved domains that stabilize the transporter structure/function via a similar mechanism.

  17. Expression of conventional and novel glucose transporters, GLUT1, -9, -10, and -12, in vascular smooth muscle cells

    OpenAIRE

    Pyla, Rajkumar; Poulose, Ninu; Jun, John Y.; Segar, Lakshman

    2013-01-01

    Intimal hyperplasia is characterized by exaggerated proliferation of vascular smooth muscle cells (VSMCs). Enhanced VSMC growth is dependent on increased glucose uptake and metabolism. Facilitative glucose transporters (GLUTs) are comprised of conventional GLUT isoforms (GLUT1–5) and novel GLUT isoforms (GLUT6–14). Previous studies demonstrate that GLUT1 overexpression or GLUT10 downregulation contribute to phenotypic changes in VSMCs. To date, the expression profile of all 14 GLUT isoforms h...

  18. Berberine acutely activates the glucose transport activity of GLUT1.

    Science.gov (United States)

    Cok, Alexandra; Plaisier, Christina; Salie, Matthew J; Oram, Daniel S; Chenge, Jude; Louters, Larry L

    2011-07-01

    Berberine, which has a long history of use in Chinese medicine, has recently been shown to have efficacy in the treatment of diabetes. While the hypoglycemic effect of berberine has been clearly documented in animal and cell line models, such as 3T3-L1 adipocytes and L6 myotube cells, the mechanism of action appears complex with data implicating activation of the insulin signaling pathway as well as activation of the exercise or AMP kinase-mediated pathway. There have been no reports of the acute affects of berberine on the transport activity of the insulin-insensitive glucose transporter, GLUT1. Therefore, we examined the acute effects of berberine on glucose uptake in L929 fibroblast cells, a cell line that express only GLUT1. Berberine- activated glucose uptake reaching maximum stimulation of five-fold at >40 μM. Significant activation (P berberine effect was not additive to the maximal stimulation by other known stimulants, azide, methylene blue or glucose deprivation, suggesting shared steps between berberine and these stimulants. Berberine significantly reduced the K(m) of glucose uptake from 6.7 ± 1.9 mM to 0.55 ± 0.08 mM, but had no effect on the V(max) of uptake. Compound C, an inhibitor of AMP kinase, did not affect berberine-stimulated glucose uptake, but inhibitors of downstream kinases partially blocked berberine stimulation. SB203580 (inhibitor of p38 MAP kinase) did not affect submaximal berberine activation, but did lower maximal berberine stimulation by 26%, while PD98059 (inhibitor of ERK kinase) completely blocked submaximal berberine activation and decreased the maximal stimulation by 55%. It appears from this study that a portion of the hypoglycemic effects of berberine can be attributed to its acute activation of the transport activity of GLUT1.

  19. Hepatic expression and cellular distribution of the glucose transporter family

    Institute of Scientific and Technical Information of China (English)

    Sumera Karim; David H Adams; Patricia F Lalor

    2012-01-01

    Glucose and other carbohydrates are transported into cells using members of a family of integral membrane glucose transporter (GLUT) molecules.To date 14 members of this family,also called the solute carrier 2A proteins have been identified which are divided on the basis of transport characteristics and sequence similarities into several families (Classes 1 to 3).The expression of these different receptor subtypes varies between different species,tissues and cellular subtypes and each has differential sensitivities to stimuli such as insulin.The liver is a contributor to metabolic carbohydrate homeostasis and is a major site for synthesis,storage and redistribution of carbohydrates.Situations in which the balance of glucose homeostasis is upset such as diabetes or the metabolic syndrome can lead metabolic disturbances that drive chronic organ damage and failure,confirming the importance of understanding the molecular regulation of hepatic glucose homeostasis.There is a considerable literature describing the expression and function of receptors that regulate glucose uptake and release by hepatocytes,the most import cells in glucose regulation and glycogen storage.However there is less appreciation of the roles of GLUTs expressed by non parenchymal cell types within the liver,all of which require carbohydrate to function.A better understanding of the detailed cellular distribution of GLUTs in human liver tissue may shed light on mechanisms underlying disease pathogenesis.This review summarises the available literature on hepatocellular expression of GLUTs in health and disease and highlights areas where further investigation is required.

  20. Enhancement of glucose transport by selected plant foods in muscle cell line L6.

    Science.gov (United States)

    Noipha, K; Ratanachaiyavong, S; Ninla-Aesong, P

    2010-08-01

    Glucose uptake activity of 11 plant foods was assessed in L6 myotubes. Among them onion and ginger showed potent enhancement of glucose transport. This effect required new protein synthesis of glucose transporters. In addition, onion-induced glucose uptake in L6 myotubes was mediated through activation of phosphoinositide 3-kinase.

  1. Altered DNA methylation of glucose transporter 1 and glucose transporter 4 in patients with major depressive disorder.

    Science.gov (United States)

    Kahl, Kai G; Georgi, Karsten; Bleich, Stefan; Muschler, Marc; Hillemacher, Thomas; Hilfiker-Kleinert, Denise; Schweiger, Ulrich; Ding, Xiaoqi; Kotsiari, Alexandra; Frieling, Helge

    2016-05-01

    Alterations in brain glucose metabolism and in peripheral glucose metabolism have frequently been observed in major depressive disorder (MDD). The insulin independent glucose transporter 1 (GLUT1) plays a key role in brain metabolism while the insulin-dependent GLUT4 is the major glucose transporter for skeletal and cardiac muscle. We therefore examined methylation of GLUT1 and GLUT4 in fifty-two depressed inpatients and compared data to eighteen healthy comparison subjects. DNA methylation of the core promoter regions of GLUT1 and GLUT4 was assessed by bisulfite sequencing. Further factors determined were fasting glucose, cortisol, insulin, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). We found significantly increased methylation of the GLUT1 in depressed inpatients compared to healthy comparison subjects (CG). Further findings comprise increased concentrations of fasting cortisol, glucose, insulin, and increased IL-6 and TNF-α. After six weeks of inpatient treatment, significantly lower GLUT1 methylation was observed in remitted patients compared to non-remitters. GLUT4 methylation was not different between depressed patients and CG, and did not differ between remitted and non-remitted patients. Although preliminary we conclude from our results that the acute phase of major depressive disorder is associated with increased GLUT1 methylation and mild insulin resistance. The successful treatment of depression is associated with normalization of GLUT1 methylation in remitters, indicating that this condition may be reversible. Failure of normalization of GLUT1 methylation in non-remitters may point to a possible role of impeded brain glucose metabolism in the maintenance of MDD.

  2. Steady-state brain glucose transport kinetics re-evaluated with a four-state conformational model

    Directory of Open Access Journals (Sweden)

    João M N Duarte

    2009-10-01

    Full Text Available Glucose supply from blood to brain occurs through facilitative transporter proteins. A near linear relation between brain and plasma glucose has been experimentally determined and described by a reversible model of enzyme kinetics. A conformational four-state exchange model accounting for trans-acceleration and asymmetry of the carrier was included in a recently developed multi-compartmental model of glucose transport. Based on this model, we demonstrate that brain glucose (Gbrain as function of plasma glucose (Gplasma can be described by a single analytical equation namely comprising three kinetic compartments: blood, endothelial cells and brain. Transport was described by four parameters: apparent half saturation constant Kt, apparent maximum rate constant Tmax, glucose consumption rate CMRglc, and the iso-inhibition constant Kii that suggests Gbrain as inhibitor of the isomerisation of the unloaded carrier. Previous published data, where Gbrain was quantified as a function of plasma glucose by either biochemical methods or NMR spectroscopy, were used to determine the aforementioned kinetic parameters. Glucose transport was characterized by Kt ranging from 1.5 to 3.5 mM, Tmax/CMRglc from 4.6 to 5.6, and Kii from 51 to 149 mM. It was noteworthy that Kt was on the order of a few mM, as previously determined from the reversible model. The conformational four-state exchange model of glucose transport into the brain includes both efflux and transport inhibition by Gbrain, predicting that Gbrain eventually approaches a maximum concentration. However, since Kii largely exceeds Gplasma, iso-inhibition is unlikely to be of substantial importance for plasma glucose below 25 mM. As a consequence, the reversible model can account for most experimental observations under euglycaemia and moderate cases of hypo- and hyperglycaemia.

  3. Facilitated Ion Transport in Smectic Ordered Ionic Liquid Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Hong [Materials Architecturing Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5 Seongbuk-gu Seoul 136-791 South Korea; School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, 599 Gwanak-ro Gwanak-gu Seoul 151-742 South Korea; Han, Kee Sung [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Lee, Je Seung [Department of Chemistry, Kyung Hee University, 26 Kyungheedae-ro Dongdaemun-gu Seoul 02447 South Korea; Lee, Albert S. [Materials Architecturing Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5 Seongbuk-gu Seoul 136-791 South Korea; Park, Seo Kyung [Department of Chemistry, Kyung Hee University, 26 Kyungheedae-ro Dongdaemun-gu Seoul 02447 South Korea; Hong, Sung Yun [Department of Chemistry, Kyung Hee University, 26 Kyungheedae-ro Dongdaemun-gu Seoul 02447 South Korea; Lee, Jong-Chan [School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, 599 Gwanak-ro Gwanak-gu Seoul 151-742 South Korea; Mueller, Karl T. [Department of Chemistry, Pennsylvania State University, University Park PA 16802 USA; Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Hong, Soon Man [Materials Architecturing Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5 Seongbuk-gu Seoul 136-791 South Korea; Nanomaterials Science and Engineering, University of Science and Technology, Gajeong-ro Yuseong-gu Daejeon 305-350 South Korea; Koo, Chong Min [Materials Architecturing Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5 Seongbuk-gu Seoul 136-791 South Korea; Nanomaterials Science and Engineering, University of Science and Technology, Gajeong-ro Yuseong-gu Daejeon 305-350 South Korea

    2016-09-08

    We investigated a novel ionic mixture of an imidazolium-based room temperature IL containing ethylene oxide functionalized phosphite anion and a lithium salt that self-assembles into a smectic-ordered IL crystal. The two key features in this work are the unique origin of the smectic order of the ionic mixtures and the facilitated ion transport behavior in the smectic ordered IL crystal. In fact, the IL crystals are self-assembled through Coulombic interactions between ion species, not through the hydrophilic-phobic interactions between charged ion heads and hydrophobic long alkyl pendants or the steric interaction between mesogenic moieties. Furthermore, the smectic order in the IL crystal ionogel facilitates exceptional and remarkable ionic transport. Large ionic conductivity, viscoelastic robustness, and additional electrochemical stability of the IL crystal ionogels provide promising opportunities for future electrochemical applications.

  4. GAS BUBBLE-FACILITATED TRANSPORT OF METALS IN LITHOSPHERE

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A physicochemical model for transport of mobile forms of occurrence of elements by gas bubbles in porous medium-gas bubble-facilitated transport of metals in the lithosphere is proposed and its corresponding mathematical model is discussed. The physico-chemical model consists of three phases: water with dissolved metallic elements, gas bubbles and solid matrix of the porous medium. In the model the gas bubbles act as carriers to transport the elements in the pore water from the depth in the lithosphere to the Earth's surface. In the process of transportation the elements dissipate in porous rocks and consequently a new kind of geochemical halo-jet halo of dispersion is formed in the rocks. In order to describe the transport and fate of the elements in the porous rocks a nonlinear quasiconvection mathematical model is developed, in which the transport of elements is modeled by a quasiconvection of gas bubbles with the elements and the interaction of elements with the porous medium is represented by a second-order chemical kinetics. A finite difference scheme is provided to solve the nonlinear quasiconvection model. From the numerical solutions a stabilization effect of concentration front in the transportation of elements in the porous medium is discovered. The sensitivities of the stabilization effect to model parameters are analyzed. To verify the reality of the mathematical model, physicochemical modeling experiments are conducted. The obtained experimental data support the proposed model in this work.

  5. Low Red Blood Cell Vitamin C Concentrations Induce Red Blood Cell Fragility: A Link to Diabetes Via Glucose, Glucose Transporters, and Dehydroascorbic Acid

    Directory of Open Access Journals (Sweden)

    Hongbin Tu

    2015-11-01

    Full Text Available Strategies to prevent diabetic microvascular angiopathy focus on the vascular endothelium. Because red blood cells (RBCs are less deformable in diabetes, we explored an original concept linking decreased RBC deformability to RBC ascorbate and hyperglycemia. We characterized ascorbate concentrations from human and mouse RBCs and plasma, and showed an inverse relationship between RBC ascorbate concentrations and deformability, measured by osmotic fragility. RBCs from ascorbate deficient mice were osmotically sensitive, appeared as spherocytes, and had decreased β-spectrin. These aberrancies reversed with ascorbate repletion in vivo. Under physiologic conditions, only ascorbate's oxidation product dehydroascorbic acid (DHA, a substrate for facilitated glucose transporters, was transported into mouse and human RBCs, with immediate intracellular reduction to ascorbate. In vitro, glucose inhibited entry of physiologic concentrations of dehydroascorbic acid into mouse and human RBCs. In vivo, plasma glucose concentrations in normal and diabetic mice and humans were inversely related to respective RBC ascorbate concentrations, as was osmotic fragility. Human RBC β-spectrin declined as diabetes worsened. Taken together, hyperglycemia in diabetes produced lower RBC ascorbate with increased RBC rigidity, a candidate to drive microvascular angiopathy. Because glucose transporter expression, DHA transport, and its inhibition by glucose differed for mouse versus human RBCs, human experimentation is indicated.

  6. Glucose transport by epithelia prepared from harvested enterocytes

    DEFF Research Database (Denmark)

    Kimura, Yasuhiro; van der Merwe, Marie; Bering, Stine Brandt

    2015-01-01

    , forskolin, and health status exceeding those we have measured using intact tissues. Our findings indicate that epithelia prepared from harvested enterocytes provide an alternative approach for comparative studies of the characteristics of nutrient transport by the upper villus epithelium and the responses...... transporter SGLT-1. Similarly, accumulation of (14)C D-glucose by the epithelia was inhibited by phloridzin, but not phloretin, and was stimulated by pre-exposure to AMP and adenosine, apparently by a microtubule-based mechanism that is disrupted by nocodazole, with the magnitudes of responses to adenosine...

  7. Recent achievements in facilitated transport membranes for separation processes

    Directory of Open Access Journals (Sweden)

    H. C. Ferraz

    2007-03-01

    Full Text Available Membrane separation processes have been extensively used for some important industrial separations, substituting traditional methods. However, some applications require the development of new membranes. In this work, we discuss recent progress achieved in this field, focusing on gas and liquid separation using facilitated transport membranes. The advantages of using a carrier species either in a liquid membrane or fixed in a polymer matrix to enhance both the flux and the selectivity of the transport are summarized. The most probable transport mechanisms in these membranes are presented and the improvements needed to spread this technology are also discussed. As examples, we discuss our very successful experiences in air fractioning, olefin/paraffin separation and sugar recovery using liquid and fixed carrier membranes.

  8. Colloid-Facilitated Plutonium Transport in Fractured Tuffaceous Rock.

    Science.gov (United States)

    Wolfsberg, Andrew; Dai, Zhenxue; Zhu, Lin; Reimus, Paul; Xiao, Ting; Ware, Doug

    2017-05-16

    Colloids have the potential to enhance the mobility of strongly sorbing radionuclide contaminants in groundwater at underground nuclear test sites. This study presents an experimental and numerical investigation of colloid-facilitated plutonium transport in fractured porous media to identify plutonium reactive transport processes. The transport parameters for dispersion, diffusion, sorption, and filtration are estimated with inverse modeling by minimizing the least-squares objective function of multicomponent concentration data from multiple transport experiments with the shuffled complex evolution metropolis algorithm. Capitalizing on an unplanned experimental artifact that led to colloid formation, we adopt a stepwise strategy to first interpret the data from each experiment separately and then to incorporate multiple experiments simultaneously to identify a suite of plutonium-colloid transport processes. Nonequilibrium or kinetic attachment and detachment of plutonium-colloid in fractures were clearly demonstrated and captured in the inverted modeling parameters along with estimates of the source plutonium fraction that formed plutonium-colloids. The results from this study provide valuable insights for understanding the transport mechanisms and environmental impacts of plutonium in groundwater aquifers.

  9. A tale of two glucose transporters: how GLUT2 re-emerged as a contender for glucose transport into the human beta cell.

    Science.gov (United States)

    van de Bunt, M; Gloyn, A L

    2012-09-01

    Finding novel causes for monogenic forms of diabetes is important as, alongside the clinical implications of such a discovery, it can identify critical proteins and pathways required for normal beta cell function in humans. It is increasingly apparent that there are significant differences between rodent and human islets. One example that has generated interest is the relative importance of the glucose transporter GLUT2 in rodent and human beta cells. The central role of GLUT2 in rodent beta cells is well established, but a number of studies have suggested that other glucose transporters, namely GLUT1 and GLUT3, may play an important role in facilitating glucose transport into human beta cells. In this issue of Diabetologia Sansbury et al (DOI: 10.1007/s00125-012-2595-0 ) report homozygous loss of function mutations in SLC2A2, which encodes GLUT2, as a rare cause of neonatal diabetes. Evidence for a beta cell defect in these subjects comes from very low birthweights, lack of endogenous insulin secretion and a requirement for insulin therapy. Neonatal diabetes is not a consistent feature of SLC2A2 mutations. It is only found in a small percentage of cases (~4%) and the diabetes largely resolves before 18 months of age. This discovery is significant as it suggests that GLUT2 plays an important role in human beta cells, but the interplay and relative roles of other transporters differ from those in rodents. This finding should encourage efforts to delineate the precise role of GLUT2 in the human beta cell at different developmental time points and is a further reminder of critical differences between human and rodent islets.

  10. Influence of blood glucose on the expression of glucose transporter proteins 1 and 3 in the brain of diabetic rats

    Institute of Scientific and Technical Information of China (English)

    HOU Wei-kai; FU Chun-li; ZHANG Wen-wen; CHEN Li; XIAN Yu-xin; ZHANG Li; LAI Hong; HOU Xin-guo; XU Yu-xin; YU Ting; XU Fu-yu; SONG Jun

    2007-01-01

    Background The delivery of glucose from the blood to the brain involves its passage across the endothelial cells of the blood-brain barrier (BBB), which is mediated by the facilitative glucose transporter protein 1 (GLUT1), and then across the neural cell membranes, which is mediated by GLUT3. This study aimed to evaluate the dynamic influence of hyperglycemia on the expression of these GLUTs by measuring their expression in the brain at different blood glucose levels in a rat model of diabetes. This might help to determine the proper blood glucose threshold level in the treatment of diabetic apoplexy.Methods Diabetes mellitus was induced with streptozotocin (STZ) in 30 rats. The rats were randomly divided into 3 groups: diabetic group without blood glucose control (group DM1), diabetic rats treated with low dose insulin (group DM2),and diabetic rats treated with high dose insulin (group DM3). The mRNA and protein levels of GLUT1 and GLUT3 were assayed by reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry, respectively.Results Compared with normal control rats, the GLUT1 mRNA was reduced by 46.08%, 29.80%, 19.22% (P<0.01) in DM1, DM2, and DM3 group, respectively; and the GLUT3 mRNA was reduced by 75.00%, 46.75%, and 17.89% (P<0.01)in DM1, DM2, and DM3 group, respectively. The abundance of GLUT1 and GLUT3 proteins had negative correlation with the blood glucose level (P<0.01). The density of microvessels in the brain of diabetic rats did not change significantly compared with normal rats.Conclusions Chronic hyperglycemia downregulates GLUT1 and GLUT3 expression at both mRNA and protein levels in the rat brain, which is not due to the decrease of the density of microvessels. The downregulation of GLUT1 and GLUT3 expression might be the adaptive reaction of the body to prevent excessive glucose entering the cell that may lead to cell damage.

  11. Septin 7 forms a complex with CD2AP and nephrin and regulates glucose transporter trafficking.

    Science.gov (United States)

    Wasik, Anita A; Polianskyte-Prause, Zydrune; Dong, Meng-Qiu; Shaw, Andrey S; Yates, John R; Farquhar, Marilyn G; Lehtonen, Sanna

    2012-09-01

    Podocytes are insulin-sensitive and take up glucose in response to insulin. This requires nephrin, which interacts with vesicle-associated membrane protein 2 (VAMP2) on GLUT4 storage vesicles (GSVs) and facilitates their fusion with the plasma membrane. In this paper, we show that the filament-forming GTPase septin 7 is expressed in podocytes and associates with CD2-associated protein (CD2AP) and nephrin, both essential for glomerular ultrafiltration. In addition, septin 7 coimmunoprecipitates with VAMP2. Subcellular fractionation of cultured podocytes revealed that septin 7 is found in both cytoplasmic and membrane fractions, and immunofluorescence microscopy showed that septin 7 is expressed in a filamentous pattern and is also found on vesicles and the plasma membrane. The filamentous localization of septin 7 depends on CD2AP and intact actin organization. A 2-deoxy-d-glucose uptake assay indicates that depletion of septin 7 by small interfering RNA or alteration of septin assembly by forchlorfenuron facilitates glucose uptake into cells and further, knockdown of septin 7 increased the interaction of VAMP2 with nephrin and syntaxin 4. The data indicate that septin 7 hinders GSV trafficking and further, the interaction of septin 7 with nephrin in glomeruli suggests that septin 7 may participate in the regulation of glucose transport in podocytes.

  12. Molecular Dynamics Simulations of the Human Glucose Transporter GLUT1.

    Directory of Open Access Journals (Sweden)

    Min-Sun Park

    Full Text Available Glucose transporters (GLUTs provide a pathway for glucose transport across membranes. Human GLUTs are implicated in devastating diseases such as heart disease, hyper- and hypo-glycemia, type 2 diabetes and cancer. The human GLUT1 has been recently crystalized in the inward-facing open conformation. However, there is no other structural information for other conformations. The X-ray structures of E. coli Xylose permease (XylE, a glucose transporter homolog, are available in multiple conformations with and without the substrates D-xylose and D-glucose. XylE has high sequence homology to human GLUT1 and key residues in the sugar-binding pocket are conserved. Here we construct a homology model for human GLUT1 based on the available XylE crystal structure in the partially occluded outward-facing conformation. A long unbiased all atom molecular dynamics simulation starting from the model can capture a new fully opened outward-facing conformation. Our investigation of molecular interactions at the interface between the transmembrane (TM domains and the intracellular helices (ICH domain in the outward- and inward-facing conformation supports that the ICH domain likely stabilizes the outward-facing conformation in GLUT1. Furthermore, inducing a conformational transition, our simulations manifest a global asymmetric rocker switch motion and detailed molecular interactions between the substrate and residues through the water-filled selective pore along a pathway from the extracellular to the intracellular side. The results presented here are consistent with previously published biochemical, mutagenesis and functional studies. Together, this study shed light on the structure and functional relationships of GLUT1 in multiple conformational states.

  13. Contribution of Glucose Transport to the Control of the Glycolytic Flux in Trypanosoma brucei

    Science.gov (United States)

    Bakker, Barbara M.; Walsh, Michael C.; Ter Kuile, Benno H.; Mensonides, Femke I. C.; Michels, Paul A. M.; Opperdoes, Fred R.; Westerhoff, Hans V.

    1999-08-01

    The rate of glucose transport across the plasma membrane of the bloodstream form of Trypanosoma brucei was modulated by titration of the hexose transporter with the inhibitor phloretin, and the effect on the glycolytic flux was measured. A rapid glucose uptake assay was developed to measure the transport activity independently of the glycolytic flux. Phloretin proved a competitive inhibitor. When the effect of the intracellular glucose concentration on the inhibition was taken into account, the flux control coefficient of the glucose transporter was between 0.3 and 0.5 at 5 mM glucose. Because the flux control coefficients of all steps in a metabolic pathway sum to 1, this result proves that glucose transport is not the rate-limiting step of trypanosome glycolysis. Under physiological conditions, transport shares the control with other steps. At glucose concentrations much lower than physiological, the glucose carrier assumed all control, in close agreement with model predictions.

  14. Adipocyte glucose transport regulation by eicosanoid precursors and inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.C.C.

    1987-01-01

    Glucose uptake and free fatty acid release by adipocytes are increased by catecholamines. The mechanism of the stimulatory action of catecholamines on glucose uptake may be via eicosanoid production from release fatty acids. Rats were fed iso-nutrient diets with high or low safflower oil. After one month, 5 rats per diet group were fed diets with aspirin or without aspirin for 2 days. Isolated adipocytes from epididymal fat pads were incubated at 37/sup 0/C, gassed with 95% O/sub 2/-5% CO/sub 2/ in KRB buffer with 3% bovine serum albumin and with or without eicosanoid modifiers; a stimulator (10/sup -5/ M norepinephrine, N), or inhibitors (167 ..mu..l of antiserum to prostaglandin E (AntiE) per 1600 ..mu..l or 23mM Asp), or combinations of these. At 2-, 5-, and 10-min incubation, samples of incubation mixtures were taken to measure 2-deoxy glucose transport using /sup 3/H-2-deoxy glucose, /sup 14/C-inulin, and liquid scintillation counter.

  15. Decreased glucose transporter 1 gene expression and glucose uptake in fetal brain exposed to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Pullen, G.L.; Srivenugopal, K.S.; Yuan Xiaohua; Snyder, A.K. (Veterans Affairs Medical Center, North Chicago, IL (United States) Chicago Medical School, North Chicago, IL (United States))

    1992-01-01

    Using pregnant rats fed equicaloric liquid diets (AF, ad libitum-fed controls; PF, pair-fed controls; EF, ethanol-fed), the authors have previously shown that maternal alcoholism produces a specific and significant decrease of glucose in the fetal brain, which is accompanied by growth retardation. To further define the mechanisms of ethanol-induced perturbations in fetal fuel supply, they have examined (I) the uptake of 2-deoxyglucose (2-DG) by dissociated brain cells from fetal rats that were exposed to ethanol in utero and (II) the steady-state levels of the glucose transporter-1 (GT-1) mRNA. A 9% decrease in brain weight and a 54.8% reduction in 2-DG uptake into brain cells were found in offspring of EF mothers compared to the AF group. Brain weight correlated with the rate of 2-DG uptake. Northern blot analysis showed a 50% reduction of GT-1 mRNA in EF brain relative to that in the AF and PF groups. They conclude that glucose transport into the brain is an important parameter altered by maternal ethanol ingestion.

  16. Integration of a 'proton antenna' facilitates transport activity of the monocarboxylate transporter MCT4.

    Science.gov (United States)

    Noor, Sina Ibne; Pouyssegur, Jacques; Deitmer, Joachim W; Becker, Holger M

    2017-01-01

    Monocarboxylate transporters (MCTs) mediate the proton-coupled transport of high-energy metabolites like lactate and pyruvate and are expressed in nearly every mammalian tissue. We have shown previously that transport activity of MCT4 is enhanced by carbonic anhydrase II (CAII), which has been suggested to function as a 'proton antenna' for the transporter. In the present study, we tested whether creation of an endogenous proton antenna by introduction of a cluster of histidine residues into the C-terminal tail of MCT4 (MCT4-6xHis) could facilitate MCT4 transport activity when heterologously expressed in Xenopus oocytes. Our results show that integration of six histidines into the C-terminal tail does indeed increase transport activity of MCT4 to the same extent as did coexpression of MCT4-WT with CAII. Transport activity of MCT4-6xHis could be further enhanced by coexpression with extracellular CAIV, but not with intracellular CAII. Injection of an antibody against the histidine cluster into MCT4-expressing oocytes decreased transport activity of MCT4-6xHis, while leaving activity of MCT4-WT unaltered. Taken together, these findings suggest that transport activity of the proton-coupled monocarboxylate transporter MCT4 can be facilitated by integration of an endogenous proton antenna into the transporter's C-terminal tail.

  17. Diet effects on glucose absorption in the small intestine of neonatal calves: importance of intestinal mucosal growth, lactase activity, and glucose transporters.

    Science.gov (United States)

    Steinhoff-Wagner, Julia; Zitnan, Rudolf; Schönhusen, Ulrike; Pfannkuche, Helga; Hudakova, Monika; Metges, Cornelia C; Hammon, Harald M

    2014-10-01

    Colostrum (C) feeding in neonatal calves improves glucose status and stimulates intestinal absorptive capacity, leading to greater glucose absorption when compared with milk-based formula feeding. In this study, diet effects on gut growth, lactase activity, and glucose transporters were investigated in several gut segments of the small intestine. Fourteen male German Holstein calves received either C of milkings 1, 3, and 5 (d 1, 2, and 3 in milk) or respective formulas (F) twice daily from d 1 to d 3 after birth. Nutrient content, and especially lactose content, of C and respective F were the same. On d 4, calves were fed C of milking 5 or respective F and calves were slaughtered 2h after feeding. Tissue samples from duodenum and proximal, mid-, and distal jejunum were taken to measure villus size and crypt depth, mucosa and brush border membrane vesicles (BBMV) were taken to determine protein content, and mRNA expression and activity of lactase and mRNA expression of sodium-dependent glucose co-transporter-1 (SGLT1) and facilitative glucose transporter (GLUT2) were determined from mucosal tissue. Additionally, protein expression of SGLT1 in BBMV and GLUT2 in crude mucosal membranes and BBMV were determined, as well as immunochemically localized GLUT2 in the intestinal mucosa. Villus circumference, area, and height were greater, whereas crypt depth was smaller in C than in F. Lactase activity tended to be greater in C than in F. Protein expression of SGLT1 was greater in F than in C. Parameters of villus size, lactase activity, SGLT1 protein expression, as well as apical and basolateral GLUT2 localization in the enterocytes differed among gut segments. In conclusion, C feeding, when compared with F feeding, enhances glucose absorption in neonatal calves primarily by stimulating mucosal growth and increasing absorptive capacity in the small intestine, but not by stimulating abundance of intestinal glucose transporters.

  18. Glucose transport by epithelia prepared from harvested enterocytes

    DEFF Research Database (Denmark)

    Kimura, Yasuhiro; van der Merwe, Marie; Bering, Stine Brandt;

    2015-01-01

    a simple, novel, and reproducible method for preparing functional epithelia using differentiated enterocytes harvested from the small intestine upper villus of adult mice and preterm pigs with and without necrotizing enterocolitis. Concentrative, rheogenic glucose uptake was used as an indicator...... of epithelial function and was demonstrated by cellular accumulation of tracer (14)C D-glucose and Ussing chamber based short-circuit currents. Assessment of the epithelia by light and immunofluorescent microscopy revealed the harvested enterocytes remain differentiated and establish cell-cell connections......, forskolin, and health status exceeding those we have measured using intact tissues. Our findings indicate that epithelia prepared from harvested enterocytes provide an alternative approach for comparative studies of the characteristics of nutrient transport by the upper villus epithelium and the responses...

  19. Ethanolic extract of Allium cepa stimulates glucose transporter typ 4-mediated glucose uptake by the activation of insulin signaling.

    Science.gov (United States)

    Gautam, Sudeep; Pal, Savita; Maurya, Rakesh; Srivastava, Arvind K

    2015-02-01

    The present work was undertaken to investigate the effects and the molecular mechanism of the standardized ethanolic extract of Allium cepa (onion) on the glucose transport for controlling diabetes mellitus. A. cepa stimulates glucose uptake by the rat skeletal muscle cells (L6 myotubes) in both time- and dose-dependent manners. This effect was shown to be mediated by the increased translocation of glucose transporter typ 4 protein from the cytoplasm to the plasma membrane as well as the synthesis of glucose transporter typ 4 protein. The effect of A. cepa extract on glucose transport was stymied by wortmannin, genistein, and AI½. In vitro phosphorylation analysis revealed that, like insulin, A. cepa extract also enhances the tyrosine phosphorylation of the insulin receptor-β, insulin receptor substrate-1, and the serine phosphorylation of Akt under both basal and insulin-stimulated conditions without affecting the total amount of these proteins. Furthermore, it is also shown that the activation of Akt is indispensable for the A. cepa-induced glucose uptake in L6 myotubes. Taken together, these findings provide ample evidence that the ethanolic extract of A. cepa stimulates glucose transporter typ 4 translocation-mediated glucose uptake by the activation of the phosphatidylinositol-4,5-bisphosphate 3-kinase/Akt dependent pathway.

  20. Sodium glucose transporter 2 (SGLT2 inhibition and ketogenesis

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2015-01-01

    Full Text Available Sodium glucose transporter 2 (SGLT2 inhibitors are a recently developed class of drug that have been approved for use in type 2 diabetes. Their unique extra-pancreatic glucuretic mode of action has encouraged their usage in type 1 diabetes as well. At the same time, reports of pseudo ketoacidosis and ketoacidosis related to their use have been published. No clear mechanism for this phenomenon has been demonstrated so far. This communication delves into the biochemical effects of SGLT2 inhibition, discusses the utility of these drugs and proposes steps to maximize safe usage of the molecules.

  1. Screening for Inhibitors of Essential Leishmania Glucose Transporters

    Science.gov (United States)

    2013-07-01

    600 are natural products , and ~400 are other bioactive components. The library was constructed to have a wide range of biological activities and...within each plate. Each well contained 20 µl of ∆lmxgt parasites, complemented with either LmxGT2 or GLUT1, suspended in DME -L medium (7) at an initial...expressing the LmGT2 transporter was grown for 72 hr in DME -L medium containing 5 mM glucose in the presence of compounds (2000) from the MicroSource

  2. Sodium glucose transporter 2 (SGLT2) inhibition and ketogenesis.

    Science.gov (United States)

    Kalra, Sanjay; Sahay, Rakesh; Gupta, Yashdeep

    2015-01-01

    Sodium glucose transporter 2 (SGLT2) inhibitors are a recently developed class of drug that have been approved for use in type 2 diabetes. Their unique extra-pancreatic glucuretic mode of action has encouraged their usage in type 1 diabetes as well. At the same time, reports of pseudo ketoacidosis and ketoacidosis related to their use have been published. No clear mechanism for this phenomenon has been demonstrated so far. This communication delves into the biochemical effects of SGLT2 inhibition, discusses the utility of these drugs and proposes steps to maximize safe usage of the molecules.

  3. Golgi localized barley MTP8 proteins facilitate Mn transport.

    Science.gov (United States)

    Pedas, Pai; Schiller Stokholm, Michaela; Hegelund, Josefine Nymark; Ladegård, Anne Hald; Schjoerring, Jan Kofod; Husted, Søren

    2014-01-01

    Many metabolic processes in plants are regulated by manganese (Mn) but limited information is available on the molecular mechanisms controlling cellular Mn homeostasis. In this study, a yeast assay was used to isolate and characterize two genes, MTP8.1 and MTP8.2, which encode membrane-bound proteins belonging to the cation diffusion facilitator (CDF) family in the cereal species barley (Hordeum vulgare). Transient expression in onion epidermal cells showed that MTP8.1 and MTP8.2 proteins fused to the green fluorescent protein (GFP) are localized to Golgi. When heterologously expressed in yeast, MTP8.1 and MTP8.2 were found to be Mn transporters catalysing Mn efflux in a similar manner as the Golgi localized endogenous yeast protein Pmr1p. The level of MTP8.1 transcripts in barley roots increased with external Mn supply ranging from deficiency to toxicity, while MTP8.2 transcripts decreased under the same conditions, indicating non-overlapping functions for the two genes. In barley leaves, the expression of both MTP8 genes declined in response to toxic Mn additions to the roots suggesting a role in ensuring proper delivery of Mn to Golgi. Based on the above we suggest that barley MTP8 proteins are involved in Mn loading to the Golgi apparatus and play a role in Mn homeostasis by delivering Mn to Mn-dependent enzymes and/or by facilitating Mn efflux via secretory vesicles. This study highlights the importance of MTP transporters in Mn homeostasis and is the first report of Golgi localized Mn2+ transport proteins in a monocot plant species.

  4. Golgi localized barley MTP8 proteins facilitate Mn transport.

    Directory of Open Access Journals (Sweden)

    Pai Pedas

    Full Text Available Many metabolic processes in plants are regulated by manganese (Mn but limited information is available on the molecular mechanisms controlling cellular Mn homeostasis. In this study, a yeast assay was used to isolate and characterize two genes, MTP8.1 and MTP8.2, which encode membrane-bound proteins belonging to the cation diffusion facilitator (CDF family in the cereal species barley (Hordeum vulgare. Transient expression in onion epidermal cells showed that MTP8.1 and MTP8.2 proteins fused to the green fluorescent protein (GFP are localized to Golgi. When heterologously expressed in yeast, MTP8.1 and MTP8.2 were found to be Mn transporters catalysing Mn efflux in a similar manner as the Golgi localized endogenous yeast protein Pmr1p. The level of MTP8.1 transcripts in barley roots increased with external Mn supply ranging from deficiency to toxicity, while MTP8.2 transcripts decreased under the same conditions, indicating non-overlapping functions for the two genes. In barley leaves, the expression of both MTP8 genes declined in response to toxic Mn additions to the roots suggesting a role in ensuring proper delivery of Mn to Golgi. Based on the above we suggest that barley MTP8 proteins are involved in Mn loading to the Golgi apparatus and play a role in Mn homeostasis by delivering Mn to Mn-dependent enzymes and/or by facilitating Mn efflux via secretory vesicles. This study highlights the importance of MTP transporters in Mn homeostasis and is the first report of Golgi localized Mn2+ transport proteins in a monocot plant species.

  5. Steviol Glycosides Modulate Glucose Transport in Different Cell Types

    Science.gov (United States)

    Rizzo, Benedetta; Zambonin, Laura; Leoncini, Emanuela; Vieceli Dalla Sega, Francesco; Prata, Cecilia; Fiorentini, Diana; Hrelia, Silvana

    2013-01-01

    Extracts from Stevia rebaudiana Bertoni, a plant native to Central and South America, have been used as a sweetener since ancient times. Currently, Stevia extracts are largely used as a noncaloric high-potency biosweetener alternative to sugar, due to the growing incidence of type 2 diabetes mellitus, obesity, and metabolic disorders worldwide. Despite the large number of studies on Stevia and steviol glycosides in vivo, little is reported concerning the cellular and molecular mechanisms underpinning the beneficial effects on human health. The effect of four commercial Stevia extracts on glucose transport activity was evaluated in HL-60 human leukaemia and in SH-SY5Y human neuroblastoma cells. The extracts were able to enhance glucose uptake in both cellular lines, as efficiently as insulin. Our data suggest that steviol glycosides could act by modulating GLUT translocation through the PI3K/Akt pathway since treatments with both insulin and Stevia extracts increased the phosphorylation of PI3K and Akt. Furthermore, Stevia extracts were able to revert the effect of the reduction of glucose uptake caused by methylglyoxal, an inhibitor of the insulin receptor/PI3K/Akt pathway. These results corroborate the hypothesis that Stevia extracts could mimic insulin effects modulating PI3K/Akt pathway. PMID:24327825

  6. Steviol Glycosides Modulate Glucose Transport in Different Cell Types

    Directory of Open Access Journals (Sweden)

    Benedetta Rizzo

    2013-01-01

    Full Text Available Extracts from Stevia rebaudiana Bertoni, a plant native to Central and South America, have been used as a sweetener since ancient times. Currently, Stevia extracts are largely used as a noncaloric high-potency biosweetener alternative to sugar, due to the growing incidence of type 2 diabetes mellitus, obesity, and metabolic disorders worldwide. Despite the large number of studies on Stevia and steviol glycosides in vivo, little is reported concerning the cellular and molecular mechanisms underpinning the beneficial effects on human health. The effect of four commercial Stevia extracts on glucose transport activity was evaluated in HL-60 human leukaemia and in SH-SY5Y human neuroblastoma cells. The extracts were able to enhance glucose uptake in both cellular lines, as efficiently as insulin. Our data suggest that steviol glycosides could act by modulating GLUT translocation through the PI3K/Akt pathway since treatments with both insulin and Stevia extracts increased the phosphorylation of PI3K and Akt. Furthermore, Stevia extracts were able to revert the effect of the reduction of glucose uptake caused by methylglyoxal, an inhibitor of the insulin receptor/PI3K/Akt pathway. These results corroborate the hypothesis that Stevia extracts could mimic insulin effects modulating PI3K/Akt pathway.

  7. Steviol glycosides modulate glucose transport in different cell types.

    Science.gov (United States)

    Rizzo, Benedetta; Zambonin, Laura; Angeloni, Cristina; Leoncini, Emanuela; Dalla Sega, Francesco Vieceli; Prata, Cecilia; Fiorentini, Diana; Hrelia, Silvana

    2013-01-01

    Extracts from Stevia rebaudiana Bertoni, a plant native to Central and South America, have been used as a sweetener since ancient times. Currently, Stevia extracts are largely used as a noncaloric high-potency biosweetener alternative to sugar, due to the growing incidence of type 2 diabetes mellitus, obesity, and metabolic disorders worldwide. Despite the large number of studies on Stevia and steviol glycosides in vivo, little is reported concerning the cellular and molecular mechanisms underpinning the beneficial effects on human health. The effect of four commercial Stevia extracts on glucose transport activity was evaluated in HL-60 human leukaemia and in SH-SY5Y human neuroblastoma cells. The extracts were able to enhance glucose uptake in both cellular lines, as efficiently as insulin. Our data suggest that steviol glycosides could act by modulating GLUT translocation through the PI3K/Akt pathway since treatments with both insulin and Stevia extracts increased the phosphorylation of PI3K and Akt. Furthermore, Stevia extracts were able to revert the effect of the reduction of glucose uptake caused by methylglyoxal, an inhibitor of the insulin receptor/PI3K/Akt pathway. These results corroborate the hypothesis that Stevia extracts could mimic insulin effects modulating PI3K/Akt pathway.

  8. Domain assembly of the GLUT1 glucose transporter.

    Science.gov (United States)

    Cope, D L; Holman, G D; Baldwin, S A; Wolstenholme, A J

    1994-01-01

    A full-length construct of the glucose transporter isoform GLUT1 has been expressed in Sf9 (Spodoptera frugiperida Clone 9) insect cells, and a photolabelling approach has been used to show that the expressed protein binds the bismannose compound 2-N-4-(1-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis-(D-mannos- 4-yloxy)-2-propylamine (ATB-BMPA) and cytochalasin B at its exofacial and endofacial binding sites respectively. Constructs of GLUT1 which produce either the N-terminal (amino acids 1-272) or C-terminal (amino acids 254-492) halves are expressed at levels in the plasma membrane which are similar to that of the full-length GLUT1 (approximately 200 pmol/mg of membrane protein), but do not bind either ATB-BMPA or cytochalasin B. When Sf9 cells are doubly infected with virus constructs producing both the C- and N-terminal halves of GLUT1, then the ligand labelling is restored. Only the C-terminal half is labelled, and, therefore, the labelling of this domain is dependent on the presence of the N-terminal half of the protein. These results suggest that the two halves of GLUT1 can assemble to form a stable complex and support the concept of a bilobular structure for the intact glucose transporters in which separate C- and N-domain halves pack together to produce a ligand-binding conformation. Images Figure 1 PMID:8002929

  9. Diabetic Hyperglycemia: Link to Impaired Glucose Transport in Pancreatic β Cells

    Science.gov (United States)

    Unger, Roger H.

    1991-03-01

    Glucose uptake into pancreatic β cells by means of the glucose transporter GLUT-2, which has a high Michaelis constant, is essential for the normal insulin secretory response to hyperglycemia. In both autoimmune and nonautoimmune diabetes, this glucose transport is reduced as a consequence of down-regulation of the normal β-cell transporter. In autoimmune diabetes, circulating immunoglobulins can further impair this glucose transport by inhibiting functionally intact transporters. Insights into mechanisms of the unresponsiveness of β cells to hyperglycemia may improve the management and prevention of diabetes.

  10. Colloid facilitated transport of lanthanides through discrete fractures in chalk

    Science.gov (United States)

    Tran, Emily; Klein Ben-David, Ofra; Teutsch, Nadya; Weisbrod, Noam

    2015-04-01

    Geological disposal of high-level radioactive waste is the internationally agreed-upon, long term solution for the disposal of long lived radionuclides and spent fuel. Eventually, corrosion of the waste canisters may lead to leakage of their hazardous contents, and the radionuclides can ultimately make their way into groundwater and pose a threat to the biosphere. Engineered bentonite barriers placed around nuclear waste repositories are generally considered sufficient to impede the transport of radionuclides from their storage location to the groundwater. However, colloidal-sized mobile bentonite particles eroding from these barriers have come under investigation as a potential transport vector for radionuclides sorbed to them. In addition, the presence of organic matter in groundwater has been shown to additionally facilitate the uptake of radionuclides by the clay colloids. This study aims to evaluate the transport behaviors of radionuclides in colloid-facilitated transport through a fractured chalk matrix and under geochemical conditions representative of the Negev desert, Israel. Lanthanides are considered an acceptable substitute to actinides for research on radionuclide transportation due to their similar chemical behavior. In this study, the migration of Ce both with and without colloidal particles was explored and compared to the migration of a conservative tracer (bromide). Tracer solutions containing known concentrations of Ce, bentonite colloids, humic acid and bromide were prepared in a matrix solution containing salt concentrations representative of that of the average rain water found in the Negev. These solutions were then injected into a flow system constructed around a naturally fractured chalk core. Samples were analyzed for Ce and Br using ICP-MS, and colloid concentrations were determined using spectrophotographic analysis. Breakthrough curves comparing the rates of transportation of each tracer were obtained, allowing for comparison of

  11. Glucose transporter-1 (GLUT-1) immunoreactivity in benign, premalignant and malignant lesions of the gallbladder.

    Science.gov (United States)

    Legan, Mateja; Tevžič, Spela; Tolar, Ana; Luzar, Boštjan; Marolt, Vera Ferlan

    2011-03-01

    GLUT-1 is a transmembrane glucose transport protein that allows the facilitated transport of glucose into cells, normally expressed in tissues which depend mainly on glucose metabolism. Enhanced expression of GLUT-1 can also be found in a large spectrum of carcinomas. This study aimed to investigate GLUT-1 expression in gallbladder tissue: from normal tissue samples, hyperplasias, low-grade and high-grade dysplasias to gallbladder carcinomas. In all, 115 archived samples of gallbladder tissue from 68 patients, presented after cholecystectomy, were immunohistochemically stained for GLUT-1. According to the intensity of GLUT-1 immunoreactivity, samples were divided into negative (stained 0-10% of cells stained), positive with weak to moderate (10-50%) and positive with strong (>50%) GLUT-1 expression. The GLUT-1 immunoreactivity of the samples showed a characteristic increase from premalignant lesions to carcinomas. Normal gallbladder tissue samples did not express GLUT-1 (100%). Weak expression was shown only focally in hyperplasias, but to a greater extent with low-grade dysplasias (20%), high-grade dysplasias (40%) and carcinomas (51.8%). Normal gallbladder tissue is GLUT-1 negative. GLUT-1 expression in carcinoma tissue is significantly higher than in dysplastic lesions. Strong GLUT-1 expression indicates 100% specificity for detecting gallbladder carcinomas. Therefore, GLUT-1 is a candidate as a diagnostic as well as a tissue prognostic marker in gallbladder carcinoma patients.

  12. Glucose transporters and maximal transport are increased in endurance-trained rat soleus

    Science.gov (United States)

    Slentz, C. A.; Gulve, E. A.; Rodnick, K. J.; Henriksen, E. J.; Youn, J. H.; Holloszy, J. O.

    1992-01-01

    Voluntary wheel running induces an increase in the concentration of the regulatable glucose transporter (GLUT4) in rat plantaris muscle but not in soleus muscle (K. J. Rodnick, J. O. Holloszy, C. E. Mondon, and D. E. James. Diabetes 39: 1425-1429, 1990). Wheel running also causes hypertrophy of the soleus in rats. This study was undertaken to ascertain whether endurance training that induces enzymatic adaptations but no hypertrophy results in an increase in the concentration of GLUT4 protein in rat soleus (slow-twitch red) muscle and, if it does, to determine whether there is a concomitant increase in maximal glucose transport activity. Female rats were trained by treadmill running at 25 m/min up a 15% grade, 90 min/day, 6 days/wk for 3 wk. This training program induced increases of 52% in citrate synthase activity, 66% in hexokinase activity, and 47% in immunoreactive GLUT4 protein concentration in soleus muscles without causing hypertrophy. Glucose transport activity stimulated maximally with insulin plus contractile activity was increased to roughly the same extent (44%) as GLUT4 protein content in soleus muscle by the treadmill exercise training. In a second set of experiments, we examined whether a swim-training program increases glucose transport activity in the soleus in the presence of a maximally effective concentration of insulin. The swimming program induced a 44% increase in immunoreactive GLUT4 protein concentration. Glucose transport activity maximally stimulated with insulin was 62% greater in soleus muscle of the swimmers than in untrained controls. Training did not alter the basal rate of 2-deoxyglucose uptake.(ABSTRACT TRUNCATED AT 250 WORDS).

  13.  The role of glucose transporter 1 (GLUT1 in the diagnosis and therapy of tumors

    Directory of Open Access Journals (Sweden)

    Paweł Jóźwiak

    2012-03-01

    Full Text Available  Malignant cells are known to enhance glucose metabolism, to increase glucose uptake and to inhibit the process of oxidative phosphorylation. Accelerated glycolysis is one of the biochemical characteristics of cancer cells that allow them to compensate the inefficient extraction of energy from glucose in order to continue their uncontrolled growth and proliferation. Upregulation of glucose transport across the plasma membrane is mediated by a family of facilitated glucose transporter proteins named GLUT. Overexpression of GLUTs, especially the hypoxia-responsive GLUT1, has been frequently observed in various human carcinomas. Many studies have reported a correlation between GLUT1 expression level and the grade of tumor aggressiveness, which suggests that GLUT1 expression may be of prognostic significance. Therefore, GLUT1 is a key rate-limiting factor in the transport and glucose metabolism in cancer cells. This paper presents the current state of knowledge on GLUT1 regulation as well as its utility in the diagnosis and therapy of cancers.

  14. The glucose metabolite methylglyoxal inhibits expression of the glucose transporter genes by inactivating the cell surface glucose sensors Rgt2 and Snf3 in yeast.

    Science.gov (United States)

    Roy, Adhiraj; Hashmi, Salman; Li, Zerui; Dement, Angela D; Cho, Kyu Hong; Kim, Jeong-Ho

    2016-03-01

    Methylglyoxal (MG) is a cytotoxic by-product of glycolysis. MG has inhibitory effect on the growth of cells ranging from microorganisms to higher eukaryotes, but its molecular targets are largely unknown. The yeast cell-surface glucose sensors Rgt2 and Snf3 function as glucose receptors that sense extracellular glucose and generate a signal for induction of expression of genes encoding glucose transporters (HXTs). Here we provide evidence that these glucose sensors are primary targets of MG in yeast. MG inhibits the growth of glucose-fermenting yeast cells by inducing endocytosis and degradation of the glucose sensors. However, the glucose sensors with mutations at their putative ubiquitin-acceptor lysine residues are resistant to MG-induced degradation. These results suggest that the glucose sensors are inactivated through ubiquitin-mediated endocytosis and degraded in the presence of MG. In addition, the inhibitory effect of MG on the glucose sensors is greatly enhanced in cells lacking Glo1, a key component of the MG detoxification system. Thus the stability of these glucose sensors seems to be critically regulated by intracellular MG levels. Taken together, these findings suggest that MG attenuates glycolysis by promoting degradation of the cell-surface glucose sensors and thus identify MG as a potential glycolytic inhibitor.

  15. Colloid Facilitated Transport of Plutonium in Fractured Volcanic Tuff

    Science.gov (United States)

    Kersting, A. B.; Zhao, P.; Walensky, J. R.; Roberts, S. K.; Johnson, M. R.; Zavarin, M.; Ramon, E. C.

    2004-12-01

    The transport of low-solubility radionuclides in a colloidal- or colloidal bound state is frequently suspected or observed. Groundwater contaminated with radionuclides associated with underground nuclear tests was collected from several different well locations at the Nevada Test Site (NTS). In each case, the low-levels of plutonium detected in the groundwater were overwhelmingly (>95percent) associated with the colloidal and not the dissolved fraction of the groundwater. The colloidal fractions consisted of secondary minerals such as clays and zeolites. To better understand the mechanisms controlling the potential colloidal transport of plutonium, colloid-facilitated fracture flow laboratory experiments are being conducted. Pseudocolloids consisting of Pu(IV) sorbed to clinoptilolite were combined with a radionuclide solution cocktail consisting of Np, U, Cs, Sr, Sm and 3H and Re (analog to Tc) tracers in NTS-type synthetic groundwater (4.5mM NaHCO3-). The cocktail was injected into a smooth fracture in a volcanic tuff rock core from the NTS and the effluent analyzed. Autoradiography and secondary ion mass spectrometry will be used to understand the mineral -colloid-radionuclide interactions in the fracture volcanic tuff.

  16. Effect of physical training on glucose transporter protein and mRNA levels in rat adipocytes

    DEFF Research Database (Denmark)

    Stallknecht, B; Andersen, P H; Vinten, J

    1993-01-01

    Physical training increases insulin-stimulated glucose transport and the number of glucose transporters in adipocytes measured by cytochalasin B binding. In the present study we used immunoblotting to measure the abundance of two glucose transporters (GLUT-4, GLUT-1) in white adipocytes from....../or intrinsic activity). GLUT-1 protein and mRNA levels/adipocyte volume did not change with age or training....

  17. PFLOTRAN: Recent Developments Facilitating Massively-Parallel Reactive Biogeochemical Transport

    Science.gov (United States)

    Hammond, G. E.

    2015-12-01

    With the recent shift towards modeling carbon and nitrogen cycling in support of climate-related initiatives, emphasis has been placed on incorporating increasingly mechanistic biogeochemistry within Earth system models to more accurately predict the response of terrestrial processes to natural and anthropogenic climate cycles. PFLOTRAN is an open-source subsurface code that is specialized for simulating multiphase flow and multicomponent biogeochemical transport on supercomputers. The object-oriented code was designed with modularity in mind and has been coupled with several third-party simulators (e.g. CLM to simulate land surface processes and E4D for coupled hydrogeophysical inversion). Central to PFLOTRAN's capabilities is its ability to simulate tightly-coupled reactive transport processes. This presentation focuses on recent enhancements to the code that enable the solution of large parameterized biogeochemical reaction networks with numerous chemical species. PFLOTRAN's "reaction sandbox" is described, which facilitates the implementation of user-defined reaction networks without the need for a comprehensive understanding of PFLOTRAN software infrastructure. The reaction sandbox is written in modern Fortran (2003-2008) and leverages encapsulation, inheritance, and polymorphism to provide the researcher with a flexible workspace for prototyping reactions within a massively parallel flow and transport simulation framework. As these prototypical reactions mature into well-accepted implementations, they can be incorporated into PFLOTRAN as native biogeochemistry capability. Users of the reaction sandbox are encouraged to upload their source code to PFLOTRAN's main source code repository, including the addition of simple regression tests to better ensure the long-term code compatibility and validity of simulation results.

  18. Glucose transporter expression in human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Handberg, A; Beck-Nielsen, H

    2000-01-01

    amplification (TSA) technique to detect the localization of glucose transporter expression in human skeletal muscle. We found expression of GLUT-1, GLUT-3, and GLUT-4 in developing human muscle fibers showing a distinct expression pattern. 1) GLUT-1 is expressed in human skeletal muscle cells during gestation......, but its expression is markedly reduced around birth and is further reduced to undetectable levels within the first year of life; 2) GLUT-3 protein expression appears at 18 wk of gestation and disappears after birth; and 3) GLUT-4 protein is diffusely expressed in muscle cells throughout gestation, whereas...... after birth, the characteristic subcellular localization is as seen in adult muscle fibers. Our results show that GLUT-1, GLUT-3, and GLUT-4 seem to be of importance during muscle fiber growth and development. GLUT-5 protein was undetectable in fetal and adult skeletal muscle fibers. In adult muscle...

  19. A Simple Flow Cytometric Method to Measure Glucose Uptake and Glucose Transporter Expression for Monocyte Subpopulations in Whole Blood.

    Science.gov (United States)

    Palmer, Clovis S; Anzinger, Joshua J; Butterfield, Tiffany R; McCune, Joseph M; Crowe, Suzanne M

    2016-08-12

    Monocytes are innate immune cells that can be activated by pathogens and inflammation associated with certain chronic inflammatory diseases. Activation of monocytes induces effector functions and a concomitant shift from oxidative to glycolytic metabolism that is accompanied by increased glucose transporter expression. This increased glycolytic metabolism is also observed for trained immunity of monocytes, a form of innate immunological memory. Although in vitro protocols examining glucose transporter expression and glucose uptake by monocytes have been described, none have been examined by multi-parametric flow cytometry in whole blood. We describe a multi-parametric flow cytometric protocol for the measurement of fluorescent glucose analog 2-NBDG uptake in whole blood by total monocytes and the classical (CD14(++)CD16(-)), intermediate (CD14(++)CD16(+)) and non-classical (CD14(+)CD16(++)) monocyte subpopulations. This method can be used to examine glucose transporter expression and glucose uptake for total monocytes and monocyte subpopulations during homeostasis and inflammatory disease, and can be easily modified to examine glucose uptake for other leukocytes and leukocyte subpopulations within blood.

  20. Influence of preovulatory estradiol on conceptus survival and uterine glucose transporter expression

    Science.gov (United States)

    Glucose is an essential component of uterine secretions, and is delivered into the uterine lumen by glucose transporters. We have previously reported increased concentrations of glucose in uterine flushes of cows that exhibited estrus. Our objective in the present study was to determine the effects...

  1. Magnetic fields facilitate DNA-mediated charge transport

    CERN Document Server

    Wong, Jiun Ru; Shu, Jian-Jun; Shao, Fangwei

    2015-01-01

    Exaggerate radical-induced DNA damage under magnetic fields is of great concerns to medical biosafety and to bio-molecular device based upon DNA electronic conductivity. In this report, the effect of applying an external magnetic field (MF) on DNA-mediated charge transport (CT) was investigated by studying guanine oxidation by a kinetics trap (8CPG) via photoirradiation of anthraquinone (AQ) in the presence of an external MF. Positive enhancement in CT efficiencies was observed in both the proximal and distal 8CPG after applying a static MF of 300 mT. MF assisted CT has shown sensitivities to magnetic field strength, duplex structures, and the integrity of base pair stacking. MF effects on spin evolution of charge injection upon AQ irradiation and alignment of base pairs to CT-active conformation during radical propagation were proposed to be the two major factors that MF attributed to facilitate DNA-mediated CT. Herein, our results suggested that the electronic conductivity of duplex DNA can be enhanced by a...

  2. Effects of noradrenaline on the cell-surface glucose transporters in cultured brown adipocytes: novel mechanism for selective activation of GLUT1 glucose transporters.

    Science.gov (United States)

    Shimizu, Y; Satoh, S; Yano, H; Minokoshi, Y; Cushman, S W; Shimazu, T

    1998-01-01

    Glucose transport into rat brown adipocytes has been shown to be stimulated directly by the sympathetic neurotransmitter, noradrenaline, without a significant increase in the protein content of either GLUT1 or GLUT4 glucose transporter in the plasma membrane [Shimizu, Kielar, Minokoshi and Shimazu (1996) Biochem. J. 314, 485-490]. In the present study, we labelled the exofacial glucose-binding sites of GLUT1 and GLUT4 with a membrane-impermeant photoaffinity reagent, 2-N-[4-(1-azitrifluoroethyl)benzoyl]-[2-3H]1,3-bis- (D-mannos-4-yloxy)-2-propylamine (ATB-[3H]BMPA), to determine which isoform is responsible for the noradrenaline-induced increase in glucose transport into intact brown adipocytes in culture. Insulin stimulated the rate of hexose transport by increasing ATB-[3H]BMPA-labelled cell-surface GLUT4. In contrast, the noradrenaline-induced increase in glucose transport was not accompanied by an increased ATB-[3H]BMPA labelling of GLUT4, nor with an increased amount of GLUT4 in the plasma membrane fraction as assessed by Western blotting, indicating that noradrenaline does not promote the translocation of GLUT4. However, noradrenaline induced an increase in photoaffinity labelling of cell-surface GLUT1 without an apparent increase in the immunoreactive GLUT1 protein in the plasma membrane. This is suggestive of an increased affinity of GLUT1 for the ligand. In fact, the Ki value of non-radioactive ATB-BMPA for 2-deoxy-D-glucose uptake was significantly decreased after treatment of the cells with noradrenaline. The increased photoaffinity labelling of GLUT1 and increased glucose transport caused by noradrenaline were inhibited by a cAMP antagonist, cAMP-S Rp-isomer. These results demonstrate that noradrenaline stimulates glucose transport in brown adipocytes by enhancing the functional activity of GLUT1 through a cAMP-dependent mechanism. PMID:9461536

  3. Glucose transporter 8 (GLUT8) regulates enterocyte fructose transport and global mammalian fructose utilization.

    Science.gov (United States)

    DeBosch, Brian J; Chi, Maggie; Moley, Kelle H

    2012-09-01

    Enterocyte fructose absorption is a tightly regulated process that precedes the deleterious effects of excess dietary fructose in mammals. Glucose transporter (GLUT)8 is a glucose/fructose transporter previously shown to be expressed in murine intestine. The in vivo function of GLUT8, however, remains unclear. Here, we demonstrate enhanced fructose-induced fructose transport in both in vitro and in vivo models of enterocyte GLUT8 deficiency. Fructose exposure stimulated [(14)C]-fructose uptake and decreased GLUT8 protein abundance in Caco2 colonocytes, whereas direct short hairpin RNA-mediated GLUT8 knockdown also stimulated fructose uptake. To assess GLUT8 function in vivo, we generated GLUT8-deficient (GLUT8KO) mice. GLUT8KO mice exhibited significantly greater jejunal fructose uptake at baseline and after high-fructose diet (HFrD) feeding vs. wild-type mice. Strikingly, long-term HFrD feeding in GLUT8KO mice exacerbated fructose-induced increases in blood pressure, serum insulin, low-density lipoprotein and total cholesterol vs. wild-type controls. Enhanced fructose uptake paralleled with increased abundance of the fructose and glucose transporter, GLUT12, in HFrD-fed GLUT8KO mouse enterocytes and in Caco2 cultures exposed to high-fructose medium. We conclude that GLUT8 regulates enterocyte fructose transport by regulating GLUT12, and that disrupted GLUT8 function has deleterious long-term metabolic sequelae. GLUT8 may thus represent a modifiable target in the prevention and treatment of malnutrition or the metabolic syndrome.

  4. Glucose transporter-1 deficiency syndrome: The expanding clinical and genetic spectrum of a treatable disorder

    NARCIS (Netherlands)

    W.G. Leen (Wilhelmina); J. Klepper (Joerg); M.M. Verbeek (Marcel); M. Leferink (Maike); T. Hofste (Tom); B.G.M. van Engelen (Baziel); R.A. Wevers (Ron); T. Arthur (Todd); N. Bahi-Buisson (Nadia); D. Ballhausen (Diana); J. Bekhof (Jolita); P. van Bogaert (Patrick); I. Carrilho (Inês); B. Chabrol (Brigitte); M.P. Champion (Michael); J. Coldwell (James); P. Clayton (Peter); E. Donner (Elizabeth); A. Evangeliou (Athanasios); F. Ebinger (Friedrich); K. Farrell (Kevin); R.J. Forsyth (Rob); C.G.E.L. de Goede (Christian); S. Gross (Stephanie); S. Grünewald (Sonja); H. Holthausen (Hans); S. Jayawant (Sandeep); K. Lachlan (Katherine); V. Laugel (Vincent); K. Leppig (Kathy); M.J. Lim (Ming); G.M.S. Mancini (Grazia); A.D. Marina; L. Martorell (Loreto); J. McMenamin (Joe); M.E.C. Meuwissen (Marije); H. Mundy (Helen); N.O. Nilsson (Nils); A. Panzer (Axel); B.T. Poll-The; C. Rauscher (Christian); C.M.R. Rouselle (Christophe); I. Sandvig (Inger); T. Scheffner (Thomas); E. Sheridan (Eamonn); N. Simpson (Neil); P. Sykora (Parol); R. Tomlinson (Richard); J. Trounce (John); D.W.M. Webb (David); B. Weschke (Bernhard); H. Scheffer (Hans); M.A. Willemsen (Michél)

    2010-01-01

    textabstractGlucose transporter-1 deficiency syndrome is caused by mutations in the SLC2A1 gene in the majority of patients and results in impaired glucose transport into the brain. From 2004-2008, 132 requests for mutational analysis of the SLC2A1 gene were studied by automated Sanger sequencing an

  5. Glucose transporter-1 deficiency syndrome : the expanding clinical and genetic spectrum of a treatable disorder

    NARCIS (Netherlands)

    Leen, Wilhelmina G.; Klepper, Joerg; Verbeek, Marcel M.; Leferink, Maike; Hofste, Tom; van Engelen, Baziel G.; Wevers, Ron A.; Arthur, Todd; Bahi-Buisson, Nadia; Ballhausen, Diana; Bekhof, Jolita; van Bogaert, Patrick; Carrilho, Ines; Chabrol, Brigitte; Champion, Michael P.; Coldwell, James; Clayton, Peter; Donner, Elizabeth; Evangeliou, Athanasios; Ebinger, Friedrich; Farrell, Kevin; Forsyth, Rob J.; de Goede, Christian G. E. L.; Gross, Stephanie; Grunewald, Stephanie; Holthausen, Hans; Jayawant, Sandeep; Lachlan, Katherine; Laugel, Vincent; Leppig, Kathy; Lim, Ming J.; Mancini, Grazia; Della Marina, Adela; Martorell, Loreto; McMenamin, Joe; Meuwissen, Marije E. C.; Mundy, Helen; Nilsson, Nils O.; Panzer, Axel; Poll-The, Bwee T.; Rauscher, Christian; Rouselle, Christophe M. R.; Sandvig, Inger; Scheffner, Thomas; Sheridan, Eamonn; Simpson, Neil; Sykora, Parol; Tomlinson, Richard; Trounce, John; Webb, David; Weschke, Bernhard; Scheffer, Hans; Willemsen, Michel A.

    2010-01-01

    Glucose transporter-1 deficiency syndrome is caused by mutations in the SLC2A1 gene in the majority of patients and results in impaired glucose transport into the brain. From 2004-2008, 132 requests for mutational analysis of the SLC2A1 gene were studied by automated Sanger sequencing and multiplex

  6. Glucose Transporter Type 1 Deficiency Syndrome with Carbohydrate-Responsive Symptoms but without Epilepsy

    Science.gov (United States)

    Koy, Anne; Assmann, Birgit; Klepper, Joerg; Mayatepek, Ertan

    2011-01-01

    Glucose transporter type 1 deficiency syndrome (GLUT1-DS) is caused by a defect in glucose transport across the blood-brain barrier. The main symptoms are epilepsy, developmental delay, movement disorders, and deceleration of head circumference. A ketogenic diet has been shown to be effective in controlling epilepsy in GLUT1-DS. We report a female…

  7. Role of the AMPKgamma3 isoform in hypoxia-stimulated glucose transport in glycolytic skeletal muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul S; Glund, Stephan; Tom, Robby Z

    2009-01-01

    Skeletal muscle glucose transport is regulated via the canonical insulin-signaling cascade as well as by energy-sensing signals. 5'-AMP-activated protein kinase (AMPK) has been implicated in the energy status regulation of glucose transport. We determined the role of the AMPKgamma3 isoform...

  8. [High glucose dialysate enhances peritoneal fibrosis through upregulating glucose transporters GLUT1 and SGLT1].

    Science.gov (United States)

    Hong, Mengqi; Nie, Zhenyu; Chen, Zhengyue; Yu, Xiongwei; Bao, Beiyan

    2016-05-25

    Objective: To investigate the role of glucose transporter 1 (GLUT1) and sodium-glucose cotransporter 1 (SGLT1) in high glucose dialysate-induced peritoneal fibrosis. Methods: Thirty six male SD rats were randomly divided into 6 groups (6 in each):normal control group, sham operation group, peritoneal dialysis group (PD group), PD+phloretin group (PD+T group), PD+phlorizin group (PD+Z group), PD+phloretin+phlorizin group (PD+T+Z group). Rat model of uraemia was established using 5/6 nephrotomy, and 2.5% dextrose peritoneal dialysis solution was used in peritoneal dialysis. Peritoneal equilibration test was performed 24 h after dialysis to evaluate transport function of peritoneum in rats; HE staining was used to observe the morphology of peritoneal tissue; and immunohistochemistry was used to detect the expression of GLUT1, SGLT1, TGF-β1 and connective tissue growth factor (CTGF) in peritoneum. Human peritoneal microvascular endothelial cells (HPECs) were divided into 5 groups:normal control group, peritoneal dialysis group (PD group), PD+phloretin group (PD+T group), PD+phlorezin group (PD+Z group), and PD+phloretin+phlorezin group (PD+T+Z group). Real time PCR and Western blotting were used to detect mRNA and protein expressions of GLUT1, SGLT1, TGF-β1, CTGF in peritoneal membrane and HPECs. Results:In vivo, compared with sham operation group, rats in PD group had thickened peritoneum, higher ultrafiltration volume, and the mRNA and protein expressions of GLUT1, SGLT1, CTGF, TGF-β1 were significantly increased (all P<0.05); compared with PD group, thickened peritoneum was attenuated, and the mRNA and protein expressions of GLUT1, SGLT1, CTGF, TGF-β1 were significantly decreased in PD+T, PD+Z and PD+T+Z groups (all P<0.05). Pearson's correlation analysis showed that the expressions of GLUT1, SGLT1 in peritoneum were positively correlated with the expressions of TGF-β1 and CTGF (all P<0.05). In vitro, the mRNA and protein expressions of GLUT1, SGLT1, TGF-β1

  9. Sites of glucose transporter-4 vesicle fusion with the plasma membrane correlate spatially with microtubules.

    Directory of Open Access Journals (Sweden)

    Jennine M Dawicki-McKenna

    Full Text Available In adipocytes, vesicles containing glucose transporter-4 (GLUT4 redistribute from intracellular stores to the cell periphery in response to insulin stimulation. Vesicles then fuse with the plasma membrane, facilitating glucose transport into the cell. To gain insight into the details of microtubule involvement, we examined the spatial organization and dynamics of microtubules in relation to GLUT4 vesicle trafficking in living 3T3-L1 adipocytes using total internal reflection fluorescence (TIRF microscopy. Insulin stimulated an increase in microtubule density and curvature within the TIRF-illuminated region of the cell. The high degree of curvature and abrupt displacements of microtubules indicate that substantial forces act on microtubules. The time course of the microtubule density increase precedes that of the increase in intensity of fluorescently-tagged GLUT4 in this same region of the cell. In addition, portions of the microtubules are highly curved and are pulled closer to the cell cortex, as confirmed by Parallax microscopy. Microtubule disruption delayed and modestly reduced GLUT4 accumulation at the plasma membrane. Quantitative analysis revealed that fusions of GLUT4-containing vesicles with the plasma membrane, detected using insulin-regulated aminopeptidase with a pH-sensitive GFP tag (pHluorin, preferentially occur near microtubules. Interestingly, long-distance vesicle movement along microtubules visible at the cell surface prior to fusion does not appear to account for this proximity. We conclude that microtubules may be important in providing spatial information for GLUT4 vesicle fusion.

  10. Metformin-induced regulation of the intestinal D-glucose transporters.

    OpenAIRE

    Sakar, Yassine; Meddah, Bouchra; El Abbes Faouzi, Moulay; Cherrah, Yahia; Bado, André; Ducroc, Robert

    2010-01-01

    International audience; Metformin is an orally administered drug that lowers blood glucose and improves insulin sensitivity in patients with non insulin-dependent diabetes. Although the antihyperglycemic effect of metformin has been extensively studied, its cellular mechanism(s) of action (including the effect on enterocyte) remains to be defined. This study was designed to examine the effect of metformin on glucose transporters in enterocyte. Na(+)-dependent glucose transporter-1 (SGLT-1) ac...

  11. Adaptive evolution for fast growth on glucose and the effects on the regulation of glucose transport system in Clostridium tyrobutyricum.

    Science.gov (United States)

    Jiang, Ling; Li, Shuang; Hu, Yi; Xu, Qing; Huang, He

    2012-03-01

    Laboratory adaptive evolution of microorganisms offers the possibility of relating acquired mutations to increased fitness of the organism under the conditions used. By combining a fibrous-bed bioreactor, we successfully developed a simple and valuable adaptive evolution strategy in repeated-batch fermentation mode with high initial substrate concentration and evolved Clostridium tyrobutyricum mutant with significantly improved butyric acid volumetric productivity up to 2.25 g/(L h), which is the highest value in batch fermentation reported so far. Further experiments were conducted to pay attention to glucose transport system in consideration of the high glucose consumption rate resulted from evolution. Complete characterization and comparison of the glucose phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) were carried out in the form of toluene-treated cells and cell-free extracts derived from both C. tyrobutyricum wide-type and mutant, while an alternative glucose transport route that requires glucokinase was confirmed by the phenomena of resistance to the glucose analogue 2-deoxyglucose and ATP-dependent glucose phosphorylation. Our results suggest that C. tyrobutyricum mutant is defective in PTS activity and compensates for this defect with enhanced glucokinase activity, resulting in the efficient uptake and consumption of glucose during the whole metabolism.

  12. Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1

    DEFF Research Database (Denmark)

    Sylow, Lykke; Møller, Lisbeth L V; Kleinert, Maximilian

    2015-01-01

    Alternatives to the canonical insulin signaling pathway for glucose transport are muscle contraction/exercise. Mechanical stress is an integrated part of the muscle contraction/relaxation cycle and passive stretch has been shown to increase muscle glucose transport. However, the signaling mechanism...... regulating stretch-stimulated glucose transport is not well understood. We recently reported that the actin cytoskeleton regulating GTPase, Rac1 was activated in mouse muscle in response to stretching. Rac1 is a regulator of contraction- and insulin-stimulated glucose transport but its role in stretch...... part of the mechanical stress-component of the contraction-stimulus to glucose transport in skeletal muscle. This article is protected by copyright. All rights reserved....

  13. In Silico Modeling-based Identification of Glucose Transporter 4 (GLUT4)-selective Inhibitors for Cancer Therapy.

    Science.gov (United States)

    Mishra, Rama K; Wei, Changyong; Hresko, Richard C; Bajpai, Richa; Heitmeier, Monique; Matulis, Shannon M; Nooka, Ajay K; Rosen, Steven T; Hruz, Paul W; Schiltz, Gary E; Shanmugam, Mala

    2015-06-05

    Tumor cells rely on elevated glucose consumption and metabolism for survival and proliferation. Glucose transporters mediating glucose entry are key proximal rate-limiting checkpoints. Unlike GLUT1 that is highly expressed in cancer and more ubiquitously expressed in normal tissues, GLUT4 exhibits more limited normal expression profiles. We have previously determined that insulin-responsive GLUT4 is constitutively localized on the plasma membrane of myeloma cells. Consequently, suppression of GLUT4 or inhibition of glucose transport with the HIV protease inhibitor ritonavir elicited growth arrest and/or apoptosis in multiple myeloma. GLUT4 inhibition also caused sensitization to metformin in multiple myeloma and chronic lymphocytic leukemia and a number of solid tumors suggesting the broader therapeutic utility of targeting GLUT4. This study sought to identify selective inhibitors of GLUT4 to develop a more potent cancer chemotherapeutic with fewer potential off-target effects. Recently, the crystal structure of GLUT1 in an inward open conformation was reported. Although this is an important achievement, a full understanding of the structural biology of facilitative glucose transport remains elusive. To date, there is no three-dimensional structure for GLUT4. We have generated a homology model for GLUT4 that we utilized to screen for drug-like compounds from a library of 18 million compounds. Despite 68% homology between GLUT1 and GLUT4, our virtual screen identified two potent compounds that were shown to target GLUT4 preferentially over GLUT1 and block glucose transport. Our results strongly bolster the utility of developing GLUT4-selective inhibitors as anti-cancer therapeutics.

  14. Decreased [{sup 18}F]fluoro-2-deoxy-D-glucose incorporation and increased glucose transport are associated with resistance to 5FU in MCF7 cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tim A.D. [PET Unit, Department of Biomedical Physics, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD (United Kingdom)], E-mail: t.smith@biomed.abdn.ac.uk; Sharma, Rituka I. [PET Unit, Department of Biomedical Physics, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD (United Kingdom); Wang, Weiguang G. [Department of Medicine and Therapeutics, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD (United Kingdom); School of Applied Sciences, University of Wolverhampton, City Campus-South, Wolverhampton WV1 1SB (United Kingdom); Welch, Andy E.; Schweiger, Lutz F. [PET Unit, Department of Biomedical Physics, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD (United Kingdom); Collie-Duguid, Elaina S.R. [Department of Medicine and Therapeutics, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD (United Kingdom)

    2007-11-15

    Introduction: Tumor refractoriness to chemotherapy is frequently due to the acquisition of resistance. Resistant cells selected by exposure to chemotherapy agents may exhibit differences in [{sup 18}F]fluoro-2-deoxy-D-glucose (FDG) incorporation, as compared with sensitive cells. Methods: FDG incorporation, hexokinase (HK) activity, glucose transport and ATP content were determined in clones of 5-fluorouracil (5FU)-resistant MCF7 cells, established by long-term exposure to increasing 5FU concentrations, and in parental MCF7 cells. Results: FDG incorporation was decreased in MCF7 cells resistant to 5FU; HK activity was similar in the resistant and sensitive cells, while glucose transport was increased, as compared with sensitive cells. Treatment of cells with the glucose efflux inhibitor phloretin increased FDG incorporation to similar levels in the resistant and sensitive cells. Analysis of microarray data demonstrated the expression of GLUT1, 8 and 10 transporters in MCF7 cells. GLUT8 and 10 expression was decreased in the resistant cells, while GLUT1 was only increased in cells resistant to the lowest 5FU concentration. Conclusion: FDG incorporation in 5FU-resistant MCF7 cells is decreased, as compared with sensitive cells. Our findings also suggest that this may be due to high rates of membrane glucose transport in the resistant cells resulting in enhanced efflux of FDG. We believe that this is the first demonstration that facilitative glucose transporters can actually decrease the incorporation of FDG.

  15. A novel strategy for the treatment of diabetes mellitus - sodium glucose co-transport inhibitors.

    Science.gov (United States)

    Niazi, Asfandyar Khan; Niazi, Saad Hameed

    2010-12-01

    Diabetes is one of the most common chronic diseases, affecting almost 3 million in Canada alone and is characterized by increased blood glucose levels. Treatment varies from lifestyle changes to oral anti-diabetics and/or insulin. Sodium glucose co-transport inhibitors may offer promising treatment for patients suffering from diabetes. The inhibitors act by increasing the loss of glucose in urine by decreasing the reabsorption of glucose from the proximal tubules of nephrons. The aim of this review was to assess the efficacy of sodium glucose co-transport inhibitors in the treatment of diabetes as well as any adverse effects. Databases such as MEDLINE, COCHRANE and EMBASE were systematically searched for literature on the efficacy of sodium glucose co-transport inhibitors in improving the glycemic control of patients with diabetes. Research showed that sodium glucose co-transport inhibitors significantly decreased blood glucose levels by increasing glucosuria. Due to the diuretic effects of these inhibitors, diabetic patients who were suffering from hypertension showed a decrease in blood pressure. The caloric loss associated with these inhibitors resulted in weight loss as well. The most common adverse effect seen in patients on these medications was mycotic infection of the urinary or genital tract. Sodium glucose co-transport inhibitors may be an effective line of treatment for diabetes. Although short-term research has shown these drugs to be safe and well-tolerated, studies should be conducted to assess the long-term effects of these drugs.

  16. AICAR administration affects glucose metabolism by upregulating the novel glucose transporter, GLUT8, in equine skeletal muscle.

    Science.gov (United States)

    de Laat, M A; Robinson, M A; Gruntmeir, K J; Liu, Y; Soma, L R; Lacombe, V A

    2015-09-01

    Equine metabolic syndrome is characterized by obesity and insulin resistance (IR). Currently, there is no effective pharmacological treatment for this insidious disease. Glucose uptake is mediated by a family of glucose transporters (GLUT), and is regulated by insulin-dependent and -independent pathways, including 5-AMP-activated protein kinase (AMPK). Importantly, the activation of AMPK, by 5-aminoimidazole-4-carboxamide-1-D-ribofuranoside (AICAR) stimulates glucose uptake in both healthy and diabetic humans. However, whether AICAR promotes glucose uptake in horses has not been established. It is hypothesized that AICAR administration would enhance glucose transport in equine skeletal muscle through AMPK activation. In this study, the effect of an intravenous AICAR infusion on blood glucose and insulin concentrations, as well as on GLUT expression and AMPK activation in equine skeletal muscle (quantified by Western blotting) was examined. Upon administration, plasma AICAR rapidly reached peak concentration. Treatment with AICAR resulted in a decrease (P change in lactate concentration. The ratio of phosphorylated to total AMPK was increased (P managing IR requires investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Zinc finger protein 407 (ZFP407) regulates insulin-stimulated glucose uptake and glucose transporter 4 (Glut4) mRNA.

    Science.gov (United States)

    Buchner, David A; Charrier, Alyssa; Srinivasan, Ethan; Wang, Li; Paulsen, Michelle T; Ljungman, Mats; Bridges, Dave; Saltiel, Alan R

    2015-03-06

    The glucose transporter GLUT4 facilitates insulin-stimulated glucose uptake in peripheral tissues including adipose, muscle, and heart. GLUT4 function is impaired in obesity and type 2 diabetes leading to hyperglycemia and an increased risk of cardiovascular disease and neuropathy. To better understand the regulation of GLUT4 function, a targeted siRNA screen was performed and led to the discovery that ZFP407 regulates insulin-stimulated glucose uptake in adipocytes. The decrease in insulin-stimulated glucose uptake due to ZFP407 deficiency was attributed to a reduction in GLUT4 mRNA and protein levels. The decrease in GLUT4 was due to both decreased transcription of Glut4 mRNA and decreased efficiency of Glut4 pre-mRNA splicing. Interestingly, ZFP407 coordinately regulated this decrease in transcription with an increase in the stability of Glut4 mRNA, resulting in opposing effects on steady-state Glut4 mRNA levels. More broadly, transcriptome analysis revealed that ZFP407 regulates many peroxisome proliferator-activated receptor (PPAR) γ target genes beyond Glut4. ZFP407 was required for the PPARγ agonist rosiglitazone to increase Glut4 expression, but was not sufficient to increase expression of a PPARγ target gene reporter construct. However, ZFP407 and PPARγ co-overexpression synergistically activated a PPARγ reporter construct beyond the level of PPARγ alone. Thus, ZFP407 may represent a new modulator of the PPARγ signaling pathway.

  18. Adenovirus-mediated transfection with glucose transporter 3 suppresses PC12 cell apoptosis following ischemic injury

    Institute of Scientific and Technical Information of China (English)

    Junliang Li; Xinke Xu; Shanyi Zhang; Meiguang Zheng; Zhonghua Wu; Yinlun Weng; Leping Ouyang; Jian Yu; Fangcheng Li

    2012-01-01

    In this study, we investigated the effects of adenovirus-mediated transfection of PC12 cells with glucose transporter 3 after ischemic injury. The results of flow cytometry and TUNEL showed that exogenous glucose transporter 3 significantly suppressed PC12 cell apoptosis induced by ischemic injury. The results of isotopic scintiscan and western blot assays showed that, the glucose uptake rate was significantly increased and nuclear factor kappaB expression was significantly decreased after adenovirus-mediated transfection of ischemic PC12 cells with glucose transporter 3. These results suggest that adenovirus-mediated transfection of cells with glucose transporter 3 elevates the energy metabolism of PC12 cells with ischemic injury, and inhibits cell apoptosis.

  19. Disruption of microtubules in rat skeletal muscle does not inhibit insulin- or contraction-stimulated glucose transport

    DEFF Research Database (Denmark)

    Ai, Hua; Ralston, Evelyn; Lauritzen, Hans P M M

    2003-01-01

    or epitrochlearis muscles. In contrast, nocodazole, another microtubule-disrupting drug, rapidly and dose dependently blocked insulin- and contraction-stimulated glucose transport. A similar discrepancy between colchicine and nocodazole was also found in their ability to block glucose transport in muscle giant...... "ghost" vesicles. This suggests that the ability of insulin and contractions to stimulate glucose transport in muscle does not require an intact microtubule network and that nocodazole inhibits glucose transport independently of its microtubule-disrupting effect....

  20. Glucose uptake and growth of glucose-limited chemostat cultures of Aspergillus niger and a disruptant lacking MstA, a high-affinity glucose transporter

    DEFF Research Database (Denmark)

    Jørgensen, Thomas R; vanKuyk, Patricia A; Poulsen, Bjarne R

    2007-01-01

    This is a study of high-affinity glucose uptake in Aspergillus niger and the effect of disruption of a high-affinity monosaccharide-transporter gene, mstA. The substrate saturation constant (K(s)) of a reference strain was about 15 microM in glucose-limited chemostat culture. Disruption of mst......-affinity uptake system of A. niger. The mstA disruptant and a reference strain were cultivated in glucose-limited chemostat cultures at low, intermediate and high dilution rate (D=0.07 h(-1), 0.14 h(-1) and 0.20 h(-1)). Mycelium harvested from steady-state cultures was subjected to glucose uptake assays...

  1. The Glucose Sensor-Like Protein Hxs1 Is a High-Affinity Glucose Transporter and Required for Virulence in Cryptococcus neoformans

    Science.gov (United States)

    Baker, Gregory M.; Fahmy, Hany; Jiang, Linghuo; Xue, Chaoyang

    2013-01-01

    Cryptococcus is a major fungal pathogen that frequently causes systemic infection in patients with compromised immunity. Glucose, an important signal molecule and the preferred carbon source for Cryptococcus, plays a critical role in fungal development and virulence. Cryptococcus contains more than 50 genes sharing high sequence homology with hexose transporters in Saccharomyces cerevisiae. However, there is no report on their function in glucose sensing or transport. In this study, we investigated two hexose transporter-like proteins (Hxs1 and Hxs2) in Cryptococcus that share the highest sequence identity with the glucose sensors Snf3 and Rgt2 in S. cerevisiae. The expression of HXS1 is repressed by high glucose, while the HXS2 expression is not regulated by glucose. Functional studies showed that Hxs1 is required for fungal resistance to oxidative stress and fungal virulence. The hxs1Δ mutant exhibited a significant reduction in glucose uptake activity, indicating that Hxs1 is required for glucose uptake. Heterologous expression of Cryptococcus HXS1 rendered the S. cerevisiae mutant lacking all 20 hexose transporters a high glucose uptake activity, demonstrating that Hxs1 functions as a glucose transporter. Heterologous expression of HXS1 in the snf3Δ rgt2Δ double mutant did not complement its growth in YPD medium containing the respiration inhibitor antimycin A, suggesting that Hxs1 may not function as a glucose sensor. Taken together, our results demonstrate that Hxs1 is a high-affinity glucose transporter and required for fungal virulence. PMID:23691177

  2. Colloid Facilitated Transport of Radioactive Cations in the Vadose Zone: Field Experiments Oak Ridge

    Energy Technology Data Exchange (ETDEWEB)

    James E. Saiers

    2012-09-20

    The overarching goal of this study was to improve understanding of colloid-facilitated transport of radioactive cations through unsaturated soils and sediments. We conducted a suite of laboratory experiments and field experiments on the vadose-zone transport of colloids, organic matter, and associated contaminants of interest to the U.S. Department of Energy (DOE). The laboratory and field experiments, together with transport modeling, were designed to accomplish the following detailed objectives: 1. Evaluation of the relative importance of inorganic colloids and organic matter to the facilitation of radioactive cation transport in the vadose zone; 2. Assessment of the role of adsorption and desorption kinetics in the facilitated transport of radioactive cations in the vadose zone; 3. Examination of the effects of rainfall and infiltration dynamics and in the facilitated transport of radioactive cations through the vadose zone; 4. Exploration of the role of soil heterogeneity and preferential flow paths (e.g., macropores) on the facilitated transport of radioactive cations in the vadose zone; 5. Development of a mathematical model of facilitated transport of contaminants in the vadose zone that accurately incorporates pore-scale and column-scale processes with the practicality of predicting transport with readily available parameters.

  3. Plasmodesmata: intercellular tunnels facilitating transport of macromolecules in plants.

    Science.gov (United States)

    Kragler, Friedrich

    2013-04-01

    In plants, intercellular structures named plasmodesmata (PD) form a continuous cytoplasmic network between neighboring cells. PD pores provide channels for intercellular symplasmic (cell-to-cell) transport throughout most tissues of the plant body. Cell-defining proteins, such as transcription factors, and regulatory non-coding sequences, such as short interfering RNA, micro RNA, protein-encoding messenger RNAs, viroids, and viral RNA/DNA genomes move via PD channels to adjacent cells. PD-mediated intercellular transport of macromolecules is a regulated process depending on the tissue, developmental stage, and nature of the transported macromolecule. In this review, PD channels and their similarity to tunneling nanotubes present in animals are highlighted. In addition, homeodomain protein movement and cellular components regulating transport are discussed.

  4. Expression of hexokinases and glucose transporters in treated and untreated oesophageal adenocarcinoma

    NARCIS (Netherlands)

    Fonteyne, Philippe; Casneuf, Veerle; Pauwels, Patrick; Van Damme, Nancy; Peeters, Marc; Dierckx, Rudi; Van de Wiele, Christophe

    2009-01-01

    The aim of this study was to assess the expression pattern of the high glucose affinity glucose transporters GLUT 1, 2, 3, 4, 8 and 9 and of hexokinases I, II and III in newly diagnosed oesophageal adenocarcinoma by means of immunohistochemistry. Twenty patients eligible to undergo primary surgery a

  5. Glucose Transport into Everted Sacs of the Small Intestine of Mice

    Science.gov (United States)

    Hamilton, Kirk L.; Butt, A. Grant

    2013-01-01

    The Na[superscript +]-glucose cotransporter is a key transport protein that is responsible for absorbing Na[superscript +] and glucose from the luminal contents of the small intestine and reabsorption by the proximal straight tubule of the nephron. Robert K. Crane originally described the cellular model of absorption of Na[superscript +] and…

  6. Expression of hexokinases and glucose transporters in treated and untreated oesophageal adenocarcinoma

    NARCIS (Netherlands)

    Fonteyne, Philippe; Casneuf, Veerle; Pauwels, Patrick; Van Damme, Nancy; Peeters, Marc; Dierckx, Rudi; Van de Wiele, Christophe

    2009-01-01

    The aim of this study was to assess the expression pattern of the high glucose affinity glucose transporters GLUT 1, 2, 3, 4, 8 and 9 and of hexokinases I, II and III in newly diagnosed oesophageal adenocarcinoma by means of immunohistochemistry. Twenty patients eligible to undergo primary surgery a

  7. Peritoneal transport characteristics with glucose polymer-based dialysis fluid in children.

    NARCIS (Netherlands)

    Rusthoven, E.; Krediet, R.T.; Willems, J.L.; Monnens, L.A.H.; Schröder, C.H.

    2004-01-01

    Scarce data are available on the use of glucose polymer-based dialysate in children. The effects of glucose polymer-based dialysate on peritoneal fluid kinetics and solute transport were studied in pediatric patients who were on chronic peritoneal dialysis, and a comparison was made with previously

  8. Analytical solution for facilitated transport across a membrane

    NARCIS (Netherlands)

    Marzouqi, Mohamed Hassan Al-; Hogendoorn, Kees J.A.; Versteeg, Geert F.

    2002-01-01

    An analytical expression for the facilitation factor of component A across a liquid membrane is derived in case of an instantaneous reaction A(g) + B(l) ⇔ AB(l) inside the liquid membrane. The present expression has been derived based on earlier analytical results obtained for the enhancement factor

  9. Analytical Solution for facilitated transport across a membrane

    NARCIS (Netherlands)

    Al-marzouqi, M.; Hogendoorn, Kees; Versteeg, Geert

    2002-01-01

    An analytical expression for the facilitation factor of component A across a liquid membrane is derived in case of an instantaneous reaction A(g)+B(l)AB(l) inside the liquid membrane. The present expression has been derived based on the analytical results of Olander (A.I.Ch.E. J. 6(2) (1960) 233)

  10. Reversible white matter lesions during ketogenic diet therapy in glucose transporter 1 deficiency syndrome.

    Science.gov (United States)

    Shiohama, Tadashi; Fujii, Katsunori; Takahashi, Satoru; Nakamura, Fumito; Kohno, Yoichi

    2013-12-01

    Glucose transporter type 1 deficiency syndrome is caused by brain energy failure resulting from a disturbance in glucose transport. We describe a 4-year-old boy with classical type glucose transporter type 1 deficiency syndrome with a heterozygous splice acceptor site mutation (c.517-2A>G) in the SLCA2A1 gene. We initiated a ketogenic diet at 4 months of age. However, even though his condition was good during ketogenic diet therapy, multiple cerebral white matter and right cerebellum lesions appeared at 9 months of age. The lesions in the cerebral white matter subsequently disappeared, indicating that white matter lesions during diet therapy may be reversible and independent of the ketogenic diet. This is the first report of reversible white matter lesions during ketogenic diet therapy in glucose transporter type 1 deficiency syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Oxidant stress and skeletal muscle glucose transport: roles of insulin signaling and p38 MAPK.

    Science.gov (United States)

    Kim, John S; Saengsirisuwan, Vitoon; Sloniger, Julie A; Teachey, Mary K; Henriksen, Erik J

    2006-09-01

    Oxidative stress can impact the regulation of glucose transport activity in a variety of cell lines. In the present study, we assessed the direct effects of an oxidant stress on the glucose transport system in intact mammalian skeletal muscle preparations. Type IIb (epitrochlearis) and type I (soleus) muscles from insulin-sensitive lean Zucker rats were incubated in 8 mM glucose for 2 h in the absence or presence of 100 mU/ml glucose oxidase to produce the oxidant hydrogen peroxide (H(2)O(2)) (60-90 microM). Glucose transport, glycogen synthase activity, and metabolic signaling factors were then assessed. H(2)O(2) significantly (p oxidant stress was prevented by the PI3-kinase inhibitor wortmannin. The oxidant stress also significantly increased phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) and 5'-AMP-dependent protein kinase. Interestingly, selective inhibition of p38 MAPK using A304000 substantially reduced the activation of glucose transport induced by the oxidant stress. These results support a direct role for oxidative stress in the activation of the glucose transport system in mammalian skeletal muscle and indicate that this process involves engagement of and possible interactions between the PI3-kinase-dependent signaling pathway and activation of p38 MAPK.

  12. Understanding transport by the major facilitator superfamily (MFS): structures pave the way.

    Science.gov (United States)

    Quistgaard, Esben M; Löw, Christian; Guettou, Fatma; Nordlund, Pär

    2016-02-01

    Members of the major facilitator superfamily (MFS) of transport proteins are essential for the movement of a wide range of substrates across biomembranes. As this transport requires a series of conformational changes, structures of MFS transporters captured in different conformational states are needed to decipher the transport mechanism. Recently, a large number of MFS transporter structures have been determined, which has provided us with an unprecedented opportunity to understand general aspects of the transport mechanism. We propose an updated model for the conformational cycle of MFS transporters, the 'clamp-and-switch model', and discuss the role of so-called 'gating residues' and the substrate in modulating these conformational changes.

  13. A glucose transporter can mediate ribose uptake: definition of residues that confer substrate specificity in a sugar transporter.

    Science.gov (United States)

    Naula, Christina M; Logan, Flora J; Logan, Flora M; Wong, Pui Ee; Barrett, Michael P; Burchmore, Richard J

    2010-09-24

    Sugars, the major energy source for many organisms, must be transported across biological membranes. Glucose is the most abundant sugar in human plasma and in many other biological systems and has been the primary focus of sugar transporter studies in eukaryotes. We have previously cloned and characterized a family of glucose transporter genes from the protozoan parasite Leishmania. These transporters, called LmGT1, LmGT2, and LmGT3, are homologous to the well characterized glucose transporter (GLUT) family of mammalian glucose transporters. We have demonstrated that LmGT proteins are important for parasite viability. Here we show that one of these transporters, LmGT2, is a more effective carrier of the pentose sugar d-ribose than LmGT3, which has a 6-fold lower relative specificity (V(max)/K(m)) for ribose. A pair of threonine residues, located in the putative extracellular loops joining transmembrane helices 3 to 4 and 7 to 8, define a filter that limits ribose approaching the exofacial substrate binding pocket in LmGT3. When these threonines are substituted by alanine residues, as found in LmGT2, the LmGT3 permease acquires ribose permease activity that is similar to that of LmGT2. The location of these residues in hydrophilic loops supports recent suggestions that substrate recognition is separated from substrate binding and translocation in this important group of transporters.

  14. Early alterations in soleus GLUT-4, glucose transport, and glycogen in voluntary running rats

    Science.gov (United States)

    Henriksen, Erik J.; Halseth, Amy E.

    1994-01-01

    Voluntary wheel running (WR) by juvenile female rats was used as a noninterventional model of soleus muscle functional overload to study the regulation of insulin-stimulated glucose transport activity by the glucose transporter (GLUT-4 isoform) protein level and glycogen concentration. Soleus total protein content was significantly greater (+18%;P greater than 0.05) than in age-matched controls after 1 wk of WR, and this hypertrophic response continued in weeks 2-4 (+24-32%). GLUT-4 protein was 39% greater than in controls in 1-wk WR soleus, and this adaptation was accompanied by a similar increase in in vitro insulin-stimulated glucose transport activity(+29%). After 2 and 4 wk of WR, however, insulin-stimulated glucose transport activity had returned to control levels, despite a continued elevation (+25-28%) of GLUT-4 protein. At these two time points, glycogen concentration was significantly enhanced in WR soleus (+21-42%), which coincided with significant reductions in glycogen synthase activity ratios (-23 to-41%). These results indicate that, in this model of soleus muscle functional overload, the GLUT-4 protein level may initially regulate insulin-stimulated glucose transport activity in the absence of changes in other modifying factors. However,this regulation of glucose transport activity by GLUT-4 protein may be subsequently overridden by elevated glycogen concentration.

  15. Role of glucose in chewing gum-related facilitation of cognitive function.

    Science.gov (United States)

    Stephens, Richard; Tunney, Richard J

    2004-10-01

    This study tests the hypothesis that chewing gum leads to cognitive benefits through improved delivery of glucose to the brain, by comparing the cognitive performance effects of gum and glucose administered separately and together. Participants completed a battery of cognitive tests in a fully related 2 x 2 design, where one factor was Chewing Gum (gum vs. mint sweet) and the other factor was Glucose Co-administration (consuming a 25 g glucose drink vs. consuming water). For four tests (AVLT Immediate Recall, Digit Span, Spatial Span and Grammatical Transformation), beneficial effects of chewing and glucose were found, supporting the study hypothesis. However, on AVLT Delayed Recall, enhancement due to chewing gum was not paralleled by glucose enhancement, suggesting an alternative mechanism. The glucose delivery model is supported with respect to the cognitive domains: working memory, immediate episodic long-term memory and language-based attention and processing speed. However, some other mechanism is more likely to underlie the facilitatory effect of chewing gum on delayed episodic long-term memory.

  16. A karyopherin alpha2 nuclear transport pathway is regulated by glucose in hepatic and pancreatic cells.

    Science.gov (United States)

    Cassany, Aurélia; Guillemain, Ghislaine; Klein, Christophe; Dalet, Véronique; Brot-Laroche, Edith; Leturque, Armelle

    2004-01-01

    We studied the role of the karyopherin alpha2 nuclear import carrier (also known as importin alpha2) in glucose signaling. In mhAT3F hepatoma cells, GFP-karyopherin alpha2 accumulated massively in the cytoplasm within minutes of glucose extracellular addition and returned to the nucleus after glucose removal. In contrast, GFP-karyopherin alpha1 distribution was unaffected regardless of glucose concentration. Glucose increased GFP-karyopherin alpha2 nuclear efflux by a factor 80 and its shuttling by a factor 4. These glucose-induced movements were not due to glycolytic ATP production. The mechanism involved was leptomycin B-insensitive, but phosphatase- and energy-dependent. HepG2 and COS-7 cells displayed no glucose-induced GFP-karyopherin alpha2 movements. In pancreatic MIN-6 cells, the glucose-induced movements of karyopherin alpha2 and the stimulation of glucose-induced gene transcription were simultaneously lost between passages 28 and 33. Thus, extracellular glucose regulates a nuclear transport pathway by increasing the nuclear efflux and shuttling of karyopherin alpha2 in cells in which glucose can stimulate the transcription of sugar-responsive genes.

  17. Insulin stimulated-glucose transporter Glut 4 is expressed in the retina.

    Directory of Open Access Journals (Sweden)

    Gustavo Sánchez-Chávez

    Full Text Available The vertebrate retina is a very metabolically active tissue whose energy demands are normally met through the uptake of glucose and oxygen. Glucose metabolism in this tissue relies upon adequate glucose delivery from the systemic circulation. Therefore, glucose transport depends on the expression of glucose transporters. Here, we show retinal expression of the Glut 4 glucose transporter in frog and rat retinas. Immunohistochemistry and in situ hybridization studies showed Glut 4 expression in the three nuclear layers of the retina: the photoreceptor, inner nuclear and ganglionar cell layers. In the rat retina immunoprecipitation and Western blot analysis revealed a protein with an apparent molecular mass of 45 kDa. ¹⁴C-glucose accumulation by isolated rat retinas was significantly enhanced by physiological concentrations of insulin, an effect blocked by inhibitors of phosphatidyl-inositol 3-kinase (PI3K, a key enzyme in the insulin-signaling pathway in other tissues. Also, we observed an increase in ³H-cytochalasin binding sites in the presence of insulin, suggesting an increase in transporter recruitment at the cell surface. Besides, insulin induced phosphorylation of Akt, an effect also blocked by PI3K inhibition. Expression of Glut 4 was not modified in retinas of a type 1 diabetic rat model. To our knowledge, our results provide the first evidence of Glut4 expression in the retina, suggesting it as an insulin- responsive tissue.

  18. Effect of pycnogenol on glucose transport in mature 3T3-L1 adipocytes.

    Science.gov (United States)

    Lee, Hee-Hyun; Kim, Kui-Jin; Lee, Ok-Hwan; Lee, Boo-Yong

    2010-08-01

    Pycnogenol, a procyanidins-enriched extract of Pinus maritima bark, possesses antidiabetic properties, which improves the altered parameters of glucose metabolism that are associated with type 2 diabetes mellitus (T2DM). Since the insulin-stimulated antidiabetic activities of natural bioactive compounds are mediated by GLUT4 via the phosphatidylinositol-3-kinase (PI3K) and/or p38 mitogen activated protein kinase (p38-MAPK) pathway, the effects of pycnogenol were examined on the molecular mechanism of glucose uptake by the glucose transport system. 3T3-L1 adipocytes were treated with various concentrations of pycnogenol, and glucose uptake was examined using a non-radioisotope enzymatic assay and by molecular events associated with the glucose transport system using semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). The results show that pycnogenol increased glucose uptake in fully differentiated 3T3-L1 adipocytes and increased the relative abundance of both GLUT4 and Akt mRNAs through the PI3K pathway in a dose dependent manner. Furthermore, pycnogenol restored the PI3K antagonist-induced inhibition of glucose uptake in the presence of wartmannin, an inhibitor of the PI3K. Overall, these results indicate that pycnogenol may stimulate glucose uptake via the PI3K dependent tyrosine kinase pathways involving Akt. Further the results suggest that pycnogenol might be useful in maintaining blood glucose control.

  19. Interleukin 1 stimulates hexose transport in fibroblasts by increasing the expression of glucose transporters.

    Science.gov (United States)

    Bird, T A; Davies, A; Baldwin, S A; Saklatvala, J

    1990-08-15

    Exposure of quiescent cultures of human gingival fibroblasts (HuGi) and porcine synovicocytes (PSF) to human recombinant interleukin 1 alpha or -beta (IL1 alpha and -beta) enhanced the rate of glycolysis as judged by increased lactate production. The cytokines also increased uptake of [3H]2-deoxyglucose (DG) in a time- and dose-dependent manner. Stimulation of DG uptake was first evident 6-8 h following addition of IL1 and was maximal by 24-30 h. IL1 alpha and -beta were equipotent. Half-maximal stimulation occurred at approximately 1 pM IL1; maximal stimulation (2.5-4.5-fold in HuGi, 3-7-fold in PSF) was obtained with approximately 80 pM IL1. The dose-response curves for lactate production and DG uptake were similar. Increased DG uptake was blocked by specific antisera to IL1 and by inhibitors of protein and RNA synthesis but not by indomethacin, an inhibitor of prostaglandin production. DG uptake was enhanced by IL1 in serum-starved cells in the presence of neutralizing anti-platelet-derived growth factor serum. The effect was therefore not secondary to prostaglandin or platelet-derived growth factor production. No increase in cell cycling was detected in IL1-treated cells under the experimental conditions. Kinetic analysis revealed that the Vmax for DG uptake was increased by IL1 (from 36 to 144 pmol/min/mg of cell protein), whereas the Km was unchanged. HuGi cells were pulse-labeled with [35S]methionine following exposure to IL1. Cell lysates were immunoprecipitated using a specific antiserum raised against human erythrocyte glucose transporter. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis/autoradiography of these immunoprecipitates revealed dose- and time-dependent increases in the net rate of glucose transporter synthesis which mirrored the changes in DG uptake.

  20. Decreased muscle GLUT-4 and contraction-induced glucose transport after eccentric contractions

    DEFF Research Database (Denmark)

    Kristiansen, S; Asp, Svend; Richter, Erik

    1996-01-01

    Eccentric exercise causes muscle damage and decreased muscle glycogen and glucose transporter isoform (GLUT-4) protein content. We investigated whether the contraction-induced increase in skeletal muscle glucose transport and muscle performance is affected by prior eccentric contractions. The calf...... than in CT rats. In the GW and GR muscle, prior eccentric exercise decreased contraction-induced stimulation of glucose transport compared with CT, ST, and CC rats despite no difference in tension development and oxygen uptake among the groups. There was no change in total GLUT-4 content and glucose...... muscles from rats were stimulated for eccentric (EC) or concentric (CC) contractions or were passively stretched (ST). Muscles from unstimulated control (CT) rats were also studied. Two days later, all rats had their isolated hindlimbs perfused either at rest or during 15 min of isometric muscle...

  1. Glucose transporter-8 (GLUT8) mediates glucose intolerance and dyslipidemia in high-fructose diet-fed male mice.

    Science.gov (United States)

    DeBosch, Brian J; Chen, Zhouji; Finck, Brian N; Chi, Maggie; Moley, Kelle H

    2013-11-01

    Members of the glucose transporter (GLUT) family of membrane-spanning hexose transporters are subjects of intensive investigation for their potential as modifiable targets to treat or prevent obesity, metabolic syndrome, and type 2 diabetes mellitus. Mounting evidence suggests that the ubiquitously expressed class III dual-specificity glucose and fructose transporter, GLUT8, has important metabolic homeostatic functions. We therefore tested the hypothesis that GLUT8 mediates the deleterious metabolic effects of chronic high-fructose diet exposure. Here we demonstrate resistance to high-fructose diet-induced glucose intolerance and dyslipidemia concomitant with enhanced oxygen consumption and thermogenesis in GLUT8-deficient male mice. Independent of diet, significantly lower systolic blood pressure both at baseline and after high-fructose diet feeding was also observed by tail-cuff plethysmography in GLUT8-deficient mice vs wild-type controls. Resistance to fructose-induced metabolic dysregulation occurred in the context of enhanced hepatic peroxisome proliferator antigen receptor-γ (PPARγ) protein abundance, whereas in vivo hepatic adenoviral GLUT8 overexpression suppressed hepatic PPARγ expression. Taken together, these findings suggest that GLUT8 blockade prevents fructose-induced metabolic dysregulation, potentially by enhancing hepatic fatty acid metabolism through PPARγ and its downstream targets. We thus establish GLUT8 as a promising target in the prevention of diet-induced obesity, metabolic syndrome, and type 2 diabetes mellitus in males.

  2. Piracetam and TRH analogues antagonise inhibition by barbiturates, diazepam, melatonin and galanin of human erythrocyte D-glucose transport

    Science.gov (United States)

    Naftalin, Richard J; Cunningham, Philip; Afzal-Ahmed, Iram

    2004-01-01

    Nootropic drugs increase glucose uptake into anaesthetised brain and into Alzheimer's diseased brain. Thyrotropin-releasing hormone, TRH, which has a chemical structure similar to nootropics increases cerebellar uptake of glucose in murine rolling ataxia. This paper shows that nootropic drugs like piracetam (2-oxo 1 pyrrolidine acetamide) and levetiracetam and neuropeptides like TRH antagonise the inhibition of glucose transport by barbiturates, diazepam, melatonin and endogenous neuropeptide galanin in human erythrocytes in vitro. The potencies of nootropic drugs in opposing scopolamine-induced memory loss correlate with their potencies in antagonising pentobarbital inhibition of erythrocyte glucose transport in vitro (PPiracetam and TRH have no direct effects on net glucose transport, but competitively antagonise hypnotic drug inhibition of glucose transport. Other nootropics, like aniracetam and levetiracetam, while antagonising pentobarbital action, also inhibit glucose transport. Analeptics like bemigride and methamphetamine are more potent inhibitors of glucose transport than antagonists of hypnotic action on glucose transport. There are similarities between amino-acid sequences in human glucose transport protein isoform 1 (GLUT1) and the benzodiazepine-binding domains of GABAA (gamma amino butyric acid) receptor subunits. Mapped on a 3D template of GLUT1, these homologies suggest that the site of diazepam and piracetam interaction is a pocket outside the central hydrophilic pore region. Nootropic pyrrolidone antagonism of hypnotic drug inhibition of glucose transport in vitro may be an analogue of TRH antagonism of galanin-induced narcosis. PMID:15148255

  3. Bubble-Facilitated VOC Transport from LNAPL Smear Zones and Its Potential Effect on Vapor Intrusion.

    Science.gov (United States)

    Soucy, Nicole C; Mumford, Kevin G

    2017-02-10

    Most conceptual and mathematical models of soil vapor intrusion assume that the transport of volatile organic compounds (VOCs) from a source toward a building is limited by diffusion through the soil gas. Under conditions where advection occurs, transport rates are higher and can lead to higher indoor air concentrations. Advection-dominated conditions can be created by gas bubble flow in the saturated zone. A series of laboratory column experiments were conducted to measure mass flux due to bubble-facilitated VOC transport from light nonaqueous phase liquid (LNAPL) smear zones. Smear zones that contained both LNAPL residual and trapped gas, as well as those that contained only LNAPL residual, were investigated. Results showed that the VOC mass flux due to bubble-facilitated transport was orders-of-magnitude higher than under diffusion-limited conditions. Results also showed that the mass flux due to bubble-facilitated transport was intermittent, and increased with an increased supply of dissolved gases.

  4. Expression and Localization of Glucose Transporters in Rodent Submandibular Salivary Glands

    Directory of Open Access Journals (Sweden)

    Sibel Cetik

    2014-04-01

    Full Text Available Background/Aim: The submandibular gland is one of the three major salivary glands, producing a mixed secretion; this saliva is hypotonic compared to plasma. It also secretes glucose, but the mechanisms responsible for this process are poorly understood. Our study addressed the question whether glucose transporters are expressed and how are they localized within specific rodent submandibular cells, in order to estimate a possible implication in salivary glucose disposal. Methods: Immunohistochemistry, RT-qPCR and Western blotting were performed to determine the presence/localization of glucose transporters in rodent submandibular glands. Results: GLUT4 was identified in the submandibular salivary gland at both mRNA and protein level. The immunohistochemical analysis revealed its localization preponderantly in the ductal cells of the gland, near to the basolateral. SGLT1 and GLUT1 were highly expressed in submandibular tissues in both acinar and ductal cells, but not GLUT2. These results were confirmed by RT-qPCR. It was also documented that insulin stimulates the net uptake of D-glucose by ductal rings prepared from submandibulary salivary glands, the relative magnitude of such an enhancing action being comparable to that found in hemidiaphragms. Conclusion: At least three major glucose transporters are expressed in the rodent submandibular glands, of which GLUT4 is specifically localized near the basolateral side of ductal structures. This points-out its possible role in regulating glucose uptake from the bloodstream, most likely to sustain ductal cellular metabolism.

  5. IDENTIFICATION OF GLUCOSE TRANSPORTER-1 AND ITS FUNCTIONAL ASSAY IN MOUSE GLOMERULAR MESANGIAL CELLS CULTURED IN VITRO

    Institute of Scientific and Technical Information of China (English)

    章精; 刘志红; 刘栋; 黎磊石

    2001-01-01

    Objective. To evaluate the role of glucose transporter-l (GLUT1) in the glucose uptake of glomerular mesangial cells. Methods. Cultured C57/SJL mouse mesangial cells were used in the study. The expression of GLUT1 mRNA was detected by RT-PCR. The expression of GLUT1 protein was detected by immunofluorescence and flow cytometry. The uptake of glucose and its kinetics were determined by 2-deoxy-[3H] -D-glucose uptake. Results. Both GLUT1 mRNA and protein were found in mouse glomerular mesangial cells. 2-deoxy-D-glucose uptake and kinetics assay showed that this glucose transporter had high affinity for glucose and the glucose uptake specificity was further confirmed by phloretin. Conclusion. Functional GLUT1 did present in mouse mesangial cells cultured in vitro and it might be the predominant transporter mediated the uptake of glucose into mesangial cells.

  6. Sodium-glucose co-transporter-2 inhibitors as add-on therapy to insulin: rationale and evidences.

    Science.gov (United States)

    Singh, Awadhesh Kumar; Singh, Ritu

    2016-01-01

    Sodium-glucose co-transporter-2 inhibitors (SGLT-2I) are recently approved class of anti-hyperglycaemic agents for the treatment of type 2 diabetes mellitus (T2DM). SGLT-2I inhibits renal glucose reabsorption, thereby ensuing urinary glucose excretion in a dose-dependent manner. This caloric loss and osmotic diuresis, secondary to increased urinary glucose excretion, has a unique potential to counter insulin induced weight gain and fluid retention, with little potential of hypoglycemic exacerbation. Also, as these agents act independently of insulin secretion or action, they are effective even in long-standing diabetes with depleted β-cell reserve. Improvement in insulin sensitivity, as observed with SGLT-2I can also facilitate insulin action. Furthermore, significant reduction in total daily insulin dosage and reduction of body weight as observed during combination therapy renders SGLT-2I, a near-ideal partner to insulin. This review aims to evaluate the safety and efficacy of currently used SGLT-2I as an add-on to insulin therapy in the treatment of T2DM.

  7. Facilitated catecholamine transport through bulk and polymer-supported liquid membranes

    NARCIS (Netherlands)

    Paugam, Marie-France; Bien, Jeffrey T.; Smith, Bradley D.; Chrisstoffels, L.A.J.; de Jong, Feike; Reinhoudt, David

    1996-01-01

    A series of crown boronic acids, 1-4, were synthesized and studied as carriers for catecholamine transport through bulk liquid membranes (BLMs) and supported liquid membranes (SLMs). Carrier 1 greatly facilitated the transport of primary catecholamines through BLMs; whereas, the more lipophilic anal

  8. Oat β-glucan depresses SGLT1- and GLUT2-mediated glucose transport in intestinal epithelial cells (IEC-6).

    Science.gov (United States)

    Abbasi, Nazanin N; Purslow, Peter P; Tosh, Susan M; Bakovic, Marica

    2016-06-01

    Oat β-glucan consumption is linked to reduced risk factors associated with diabetes and obesity by lowering glycemic response and serum level of low-density lipoproteins. The purpose of this study was to identify the mechanism of action of oat β-glucan at the interface between the gut wall and the lumen responsible for attenuating glucose levels. We proposed that viscous oat β-glucan acts as a physical barrier to glucose uptake in normally absorptive gut epithelial cells IEC-6 by affecting the expression of intestinal glucose transporters. Concentration and time-dependent changes in glucose uptake were established by using a nonmetabolizable glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose. The effectiveness of nutrient transport in IEC-6 cells was shown by significant differences in glucose uptake and corresponding transporter expression. The expressions of glucose transporters sodium-glucose-linked transport protein 1 (SGLT1) and glucose transporter 2 (GLUT2) increased with time (0-60 minutes) and glucose levels (5-25 mmol/L). The suppression of glucose uptake and SGLT1 and GLUT2 expression by increasing concentrations (4-8 mg/mL) of oat β-glucan demonstrated a direct effect of the physical properties of oat β-glucan on glucose transport. These results affirmed oat β-glucan as a dietary agent for minimizing postprandial glucose and showed that modulating the activity of the key intestinal glucose transporters with oat β-glucan could be an effective way of lowering blood glucose levels in patients with diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Proton-coupled sugar transport in the prototypical major facilitator superfamily protein XylE.

    Science.gov (United States)

    Wisedchaisri, Goragot; Park, Min-Sun; Iadanza, Matthew G; Zheng, Hongjin; Gonen, Tamir

    2014-08-04

    The major facilitator superfamily (MFS) is the largest collection of structurally related membrane proteins that transport a wide array of substrates. The proton-coupled sugar transporter XylE is the first member of the MFS that has been structurally characterized in multiple transporting conformations, including both the outward and inward-facing states. Here we report the crystal structure of XylE in a new inward-facing open conformation, allowing us to visualize the rocker-switch movement of the N-domain against the C-domain during the transport cycle. Using molecular dynamics simulation, and functional transport assays, we describe the movement of XylE that facilitates sugar translocation across a lipid membrane and identify the likely candidate proton-coupling residues as the conserved Asp27 and Arg133. This study addresses the structural basis for proton-coupled substrate transport and release mechanism for the sugar porter family of proteins.

  10. Role of vitamin D on the expression of glucose transporters in L6 myotubes

    Directory of Open Access Journals (Sweden)

    Bubblu Tamilselvan

    2013-01-01

    Full Text Available Altered expression of glucose transporters is a major characteristic of diabetes. Vitamin D has evolved widespread interest in the pathogenesis and prevention of diabetes. The present study was designed to investigate the effect of vitamin D in the overall regulation of muscle cell glucose transporter expression. L6 cells were exposed to type 1 and type 2 diabetic conditions and the effect of calcitriol (1,25, dihydroxy cholicalciferol on the expression of glucose transporters was studied by real time polymerase chain reaction (RT-PCR. There was a significant decrease in glucose transporter type 1 (GLUT1, GLUT4, vitamin D receptor (VDR, and IR expression in type 1 and 2 diabetic model compared to control group. Treatment of myoblasts with 10-7 M calcitriol for 24 h showed a significant increase in GLUT1, GLUT4, VDR, and insulin receptor (IR expression. The results indicate a potential antidiabetic function of vitamin D on GLUT1, GLUT4, VDR, and IR by improving receptor gene expression suggesting a role for vitamin D in regulation of expression of the glucose transporters in muscle cells.

  11. Sodium Glucose Co-transporter Type 2 (SGLT2) Inhibitors: Targeting the Kidney to Improve Glycemic Control in Diabetes Mellitus

    OpenAIRE

    Bays, Harold

    2013-01-01

    Although hyperglycemia is a key therapeutic focus in the management of patients with type 2 diabetes mellitus (T2DM), many patients experience sub-optimal glycemic control. Current glucose-lowering agents involve the targeting of various body organs. Sodium glucose co-transporter type 2 (SGLT2) inhibitors target the kidney, reduce renal glucose reabsorption, and increase urinary glucose elimination, thus lowering glucose blood levels. This review examines some of the key efficacy and safety d...

  12. Glucose uptake mediated by glucose transporter 1 is essential for early tooth morphogenesis and size determination of murine molars.

    Science.gov (United States)

    Ida-Yonemochi, Hiroko; Nakatomi, Mitsushiro; Harada, Hidemitsu; Takata, Hiroki; Baba, Otto; Ohshima, Hayato

    2012-03-01

    Glucose is an essential source of energy for body metabolism and is transported into cells by glucose transporters (GLUTs). Well-characterized class I GLUT is subdivided into GLUTs1-4, which are selectively expressed depending on tissue glucose requirements. However, there is no available data on the role of GLUTs during tooth development. This study aims to clarify the functional significance of class I GLUT during murine tooth development using immunohistochemistry and an in vitro organ culture experiment with an inhibitor of GLUTs1/2, phloretin, and Glut1 and Glut2 short interfering RNA (siRNA). An intense GLUT1-immunoreaction was localized in the enamel organ of bud-stage molar tooth germs, where the active cell proliferation occurred. By the bell stage, the expression of GLUT1 in the dental epithelium was dramatically decreased in intensity, and subsequently began to appear in the stratum intermedium at the late bell stage. On the other hand, GLUT2-immunoreactivity was weakly observed in the whole tooth germs throughout all stages. The inhibition of GLUTs1/2 by phloretin in the bud-stage tooth germs induced the disturbance of primary enamel knot formation, resulting in the developmental arrest of the explants and the squamous metaplasia of dental epithelial cells. Furthermore, the inhibition of GLUTs1/2 in cap-to-bell-stage tooth germs reduced tooth size in a dose dependent manner. These findings suggest that the expression of GLUT1 and GLUT2 in the dental epithelial and mesenchymal cells seems to be precisely and spatiotemporally controlled, and the glucose uptake mediated by GLUT1 plays a crucial role in the early tooth morphogenesis and tooth size determination. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Transport of alpha- and beta-D-glucose by the intact human red cell

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, A.; Melchior, D.L.

    1985-07-16

    The kinetics of alpha- and beta-D-glucose mutarotation and the transport of these anomers by intact human red cells were determined at 0.6 and 36.6 degrees C. The mutarotation coefficients for alpha- and beta-D-glucose in cell-free tris(hydroxymethyl)aminomethane medium (pH 7.4) at 0.6 degrees C are (2.25 +/- 0.2) and (1.73 +/- 0.42) X 10(-3) min-1, respectively, and at 36.6 degrees C are (69 +/- 12) and (75 +/- 5) X 10(-3) min-1, respectively. These values are in good agreement with previous estimates. At 0.6 degrees C, the red cell contains no detectable mutarotase activity. Initial rates of sugar uptake were measured by using radiolabeled D-glucose and time courses of uptake by turbidimetry. The time courses of alpha- and beta-D-glucose and an equilibrium mixture of alpha- and beta-D-glucose infinite-cis entry are identical at 0.66 degrees C (n = 41) where negligible mutarotation is observed. The apparent Ki values for inhibition of radiolabeled D-glucose initial uptake by unlabeled alpha- or beta-D-glucose at 0.6 degrees C are identical (1.6 mM). The calculated Vmax parameters for uptake of the radiolabeled anomers at this temperature are also indistinguishable. The time courses of infinite-cis alpha- and beta-D-glucose uptake at 36.66 degrees C are identical (n = 40). While D-glucose mutarotation is more rapid at this temperature, the anomers of D-glucose are not transported differently by the red cell hexose transfer system.

  14. Effects of Prolonged Glucose Infusion on Insulin Signal Transduction and Glucose Transport in Rat Skeletal Muscle

    OpenAIRE

    Houdali, Basel

    2000-01-01

    Der Effekt einer in vivo Glucoseinfusion auf die Insulinwirkung im Skelettmuskel der Ratte wurde untersucht. Dazu wurden Dauerkatheter in die rechte Jugularvene implantiert und bis zum rechten Vorhof vorgeschoben. Anschließend wurden die Katheter mit einem Perfusor verbunden. Nach einer zweitägigen Erholungsphase vom Operationsstress, wurde 50%ige Glucose mit einer Infusionsrate von 2 ml/h für zwei oder fünf Tage durchgeführt. Die Kontrolltiere erhielten eine 0,45% Kochsalzinfusion für die...

  15. DAPAGLIFLOZIN: SELECTIVE SODIUM-GLUCOSE CO-TRANSPORTER-2 INHIBITOR IN TYPE 2 DIABETES

    Directory of Open Access Journals (Sweden)

    Sudhakar Pemminati

    2011-11-01

    Full Text Available Dapagliflozin is a promising new drug that targets the so far untapped renal glucose reabsorption. By inhibiting sodium-glucose co-transporter-2 (SGLT2 which is mainly localized in the S1 segment of the proximal tubule, Dapagliflozin promotes renal glucose excretion and reduces hyperglycemia in an insulin-independent manner. Dapagliflozin also produces pronounced weight loss which may be an advantage in patients on sulfonylureas and insulin. Dapagliflozin has the potential to be used as monotherapy, as well as in combination with all approved antidiabetic agents.

  16. Atypical antipsychotic drugs directly impair insulin action in adipocytes: effects on glucose transport, lipogenesis, and antilipolysis.

    Science.gov (United States)

    Vestri, Helliner S; Maianu, Lidia; Moellering, Douglas R; Garvey, W Timothy

    2007-04-01

    Treatment with second-generation antipsychotics (SGAs) has been associated with weight gain and the development of diabetes mellitus, although the mechanisms are unknown. We tested the hypothesis that SGAs exert direct cellular effects on insulin action and substrate metabolism in adipocytes. We utilized two cultured cell models including 3T3-L1 adipocytes and primary cultured rat adipocytes, and tested for effects of SGAs risperidone (RISP), clozapine (CLZ), olanzapine (OLZ), and quetiapine (QUE), together with conventional antipsychotic drugs butyrophenone (BUTY), and trifluoperazine (TFP), over a wide concentration range from 1 to 500 microM. The effects of antipsychotic drugs on basal and insulin-stimulated rates of glucose transport were studied at 3 h, 15 h, and 3 days. Both CLZ and OLZ (but not RISP) at doses as low as 5 microM were able to significantly decrease the maximal insulin-stimulated glucose transport rate by approximately 40% in 3T3-L1 cells, whereas CLZ and RISP reduced insulin-stimulated glucose transport rates in primary cultured rat adipocytes by approximately 50-70%. Conventional drugs (BUTY and TFP) did not affect glucose transport rates. Regarding intracellular glucose metabolism, both SGAs (OLZ, QUE, RISP) and conventional drugs (BUTY and TFP) increased basal and/or insulin-stimulated glucose oxidation rates, whereas rates of lipogenesis were increased by CLZ, OLZ, QUE, and BUTY. Finally, rates of lipolysis in response to isoproterenol were reduced by the SGAs (CLZ, OLZ, QUE, RISP), but not by BUTY or TFP. These experiments demonstrate that antipsychotic drugs can differentially affect insulin action and metabolism through direct cellular effects in adipocytes. However, only SGAs were able to impair the insulin-responsive glucose transport system and to impair lipolysis in adipocytes. Thus, SGAs directly induce insulin resistance and alter lipogenesis and lipolysis in favor of progressive lipid accumulation and adipocyte enlargement. These

  17. Differential regulation of glucose transport activity in yeast by specific cAMP signatures.

    Science.gov (United States)

    Bermejo, Clara; Haerizadeh, Farzad; Sadoine, Mayuri S C; Chermak, Diane; Frommer, Wolf B

    2013-06-15

    Successful colonization and survival in variable environments require a competitive advantage during the initial growth phase after experiencing nutrient changes. Starved yeast cells anticipate exposure to glucose by activating the Hxt5p (hexose transporter 5) glucose transporter, which provides an advantage during early phases after glucose resupply. cAMP and glucose FRET (fluorescence resonance energy transfer) sensors were used to identify three signalling pathways that co-operate in the anticipatory Hxt5p activity in glucose-starved cells: as expected the Snf1 (sucrose nonfermenting 1) AMP kinase pathway, but, surprisingly, the sugar-dependent G-protein-coupled Gpr1 (G-protein-coupled receptor 1)/cAMP/PKA (protein kinase A) pathway and the Pho85 (phosphate metabolism 85)/Plc (phospholipase C) 6/7 pathway. Gpr1/cAMP/PKA are key elements of a G-protein-coupled sugar response pathway that produces a transient cAMP peak to induce growth-related genes. A novel function of the Gpr1/cAMP/PKA pathway was identified in glucose-starved cells: during starvation the Gpr1/cAMP/PKA pathway is required to maintain Hxt5p activity in the absence of glucose-induced cAMP spiking. During starvation, cAMP levels remain low triggering expression of HXT5, whereas cAMP spiking leads to a shift to the high capacity Hxt isoforms.

  18. Flozins, inhibitors of type 2 renal sodium-glucose co-transporter – not only antihyperglycemic drugs

    OpenAIRE

    Mizerski Grzegorz; Kicinski Pawel; Jaroszynski Andrzej

    2015-01-01

    The kidneys play a crucial role in the regulation of the carbohydrate metabolism. In normal physiological conditions, the glucose that filters through the renal glomeruli is subsequently nearly totally reabsorbed in the proximal renal tubules. Two transporters are engaged in this process: sodium-glucose co-transporter type 1 (SGLT1), and sodium-glucose co-transporter type type 2 (SGLT2) - this being located in the luminal membrane of the renal tubular epithelial cells. It was found that the a...

  19. PACSIN3 Overexpression Increases Adipocyte Glucose Transport through GLUT1

    Science.gov (United States)

    Roach, William; Plomann, Markus

    2007-01-01

    PACSIN family members regulate intracellular vesicle trafficking via their ability to regulate cytoskeletal rearrangement. These processes are known to be involved in trafficking of GLUT1 and GLUT4 in adipocytes. In this study PACSIN3 was observed to be the only PACSIN isoform that increases in expression during 3T3-L1 adipocyte differentiation. Overexpression of PACSIN3 in 3T3-L1 adipocytes caused an elevation of glucose uptake. Subcellular fractionation revealed that PACSIN3 overexpression elevated GLUT1 plasma membrane localization without effecting GLUT4 distribution. In agreement with this result, examination of GLUT exofacial presentation at the cell surface by photoaffinity labeling revealed significantly increased GLUT1, but not GLUT4, after overexpression of PACSIN3. These results establish a role for PACSIN3 in regulating glucose uptake in adipocytes via its preferential participation in GLUT1 trafficking. They are consistent with the proposal, which is supported by a recent study, that GLUT1, but not GLUT4, is predominantly endocytosed via the coated pit pathway in unstimulated 3T3-L1 adipocytes. PMID:17320047

  20. New mathematical model for fluid-glucose-albumin transport in peritoneal dialysis

    CERN Document Server

    Cherniha, Roman

    2011-01-01

    A mathematical model for fluid transport in peritoneal dialysis is constructed. The model is based on a three-component nonlinear system of two-dimensional partial differential equations for fluid, glucose and albumin transport with the relevant boundary and initial conditions. Non-constant steady-state solutions of the model are studied. The restrictions on the parameters arising in the model are established with the aim to obtain exact formulae for the non-constant steady-state solutions. As the result, the exact formulae for the fluid fluxes from blood to tissue and across the tissue were constructed together with two linear autonomous ODEs for glucose and albumin concentrations. The analytical results were checked for their applicability for the description of fluid-glucose-albumin transport during peritoneal dialysis.

  1. CREB1 regulates glucose transport of glioma cell line U87 by targeting GLUT1.

    Science.gov (United States)

    Chen, Jiaying; Zhang, Can; Mi, Yang; Chen, Fuxue; Du, Dongshu

    2017-06-23

    Glioma is stemmed from the glial cells in the brain, which is accounted for about 45% of all intracranial tumors. The characteristic of glioma is invasive growth, as well as there is no obvious boundary between normal brain tissue and glioma tissue, so it is difficult to resect completely with worst prognosis. The metabolism of glioma is following the Warburg effect. Previous researches have shown that GLUT1, as a glucose transporter carrier, affected the Warburg effect, but the molecular mechanism is not very clear. CREB1 (cAMP responsive element-binding protein1) is involved in various biological processes, and relevant studies confirmed that CREB1 protein regulated the expression of GLUT1, thus mediating glucose transport in cells. Our experiments mainly reveal that the CREB1 could affect glucose transport in glioma cells by regulating the expression of GLUT1, which controlled the metabolism of glioma and affected the progression of glioma.

  2. Decreased insulin action on muscle glucose transport after eccentric contractions in rats

    DEFF Research Database (Denmark)

    Asp, S; Richter, Erik

    1996-01-01

    We have recently shown that eccentric contractions (Ecc) of rat calf muscles cause muscle damage and decreased glycogen and glucose transporter GLUT-4 protein content in the white (WG) and red gastrocnemius (RG) but not in the soleus (S) (S. Asp, S. Kristiansen, and E. A. Richter. J. Appl. Physiol....... 79: 1338-1345, 1995). To study whether these changes affect insulin action, hindlimbs were perfused at three different insulin concentrations (0, 200, and 20,000 microU/ml) 2 days after one-legged eccentric contractions of the calf muscles. Compared with control, basal glucose transport was slightly...... velocity of glycogen synthase increased similarly with increasing insulin concentrations in Ecc- and control WG and RG. We conclude that insulin action on glucose transport but not glycogen synthase activity is impaired in perfused muscle exposed to prior eccentric contractions....

  3. Glucose transporter type 1 deficiency syndrome effectively treated with modified Atkins diet.

    Science.gov (United States)

    Haberlandt, Edda; Karall, Daniela; Jud, Veronika; Baumgartner, Sara Sigl; Zotter, Sibylle; Rostasy, Kevin; Baumann, Matthias; Scholl-Buergi, Sabine

    2014-04-01

    This is a report on the successful treatment of a 6-year-old girl with genetically proven glucose transporter type 1 deficiency syndrome (GLUT1-DS) with modified Atkins diet (MAD). GLUT1-DS is an inborn disorder of glucose transport across the blood-brain barrier, which leads to energy deficiency of the brain with a broad spectrum of neurological symptoms including therapy-resistant epilepsy. Usually classical ketogenic diet (KD) is the standard treatment for patients with GLUT1-DS. Treatment with MAD, a variant of KD, for an observation period of 17 months resulted in improvement of seizures, alertness, cognitive abilities, and electroencephalography in this patient.

  4. Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Murrin L Charles

    2011-03-01

    Full Text Available Abstract Background Methamphetamine (METH, an addictive psycho-stimulant drug with euphoric effect is known to cause neurotoxicity due to oxidative stress, dopamine accumulation and glial cell activation. Here we hypothesized that METH-induced interference of glucose uptake and transport at the endothelium can disrupt the energy requirement of the blood-brain barrier (BBB function and integrity. We undertake this study because there is no report of METH effects on glucose uptake and transport across the blood-brain barrier (BBB to date. Results In this study, we demonstrate that METH-induced disruption of glucose uptake by endothelium lead to BBB dysfunction. Our data indicate that a low concentration of METH (20 μM increased the expression of glucose transporter protein-1 (GLUT1 in primary human brain endothelial cell (hBEC, main component of BBB without affecting the glucose uptake. A high concentration of 200 μM of METH decreased both the glucose uptake and GLUT1 protein levels in hBEC culture. Transcription process appeared to regulate the changes in METH-induced GLUT1 expression. METH-induced decrease in GLUT1 protein level was associated with reduction in BBB tight junction protein occludin and zonula occludens-1. Functional assessment of the trans-endothelial electrical resistance of the cell monolayers and permeability of dye tracers in animal model validated the pharmacokinetics and molecular findings that inhibition of glucose uptake by GLUT1 inhibitor cytochalasin B (CB aggravated the METH-induced disruption of the BBB integrity. Application of acetyl-L-carnitine suppressed the effects of METH on glucose uptake and BBB function. Conclusion Our findings suggest that impairment of GLUT1 at the brain endothelium by METH may contribute to energy-associated disruption of tight junction assembly and loss of BBB integrity.

  5. Role of Akt substrate of 160 kDa in insulin-stimulated and contraction-stimulated glucose transport

    DEFF Research Database (Denmark)

    Cartee, Gregory D; Wojtaszewski, Jørgen F P

    2007-01-01

    Insulin and exercise, the most important physiological stimuli to increase glucose transport in skeletal muscle, trigger a redistribution of GLUT4 glucose transporter proteins from the cell interior to the cell surface, thereby increasing glucose transport capacity. The most distal insulin...... signaling protein that has been linked to GLUT4 translocation, Akt substrate of 160 kDa (AS160), becomes phosphorylated in insulin-stimulated 3T3-L1 adipocytes; this is important for insulin-stimulated GLUT4 translocation and glucose transport. Insulin also induces a rapid and dose-dependent increase in AS....../contraction-stimulated glucose uptake is currently inconclusive. The distinct signaling pathways that are stimulated by insulin and exercise/contraction converge at AS160. Although AS160 phosphorylation is apparently important for insulin-stimulated GLUT4 translocation and glucose transport, it is uncertain whether elevated AS...

  6. Tryptic digestion of the human erythrocyte glucose transporter: effects on ligand binding and tryptophan fluorescence.

    Science.gov (United States)

    May, J M; Qu, Z C; Beechem, J M

    1993-09-21

    The conformation of the human erythrocyte glucose transport protein has been shown to determine its susceptibility to enzymatic cleavage on a large cytoplasmic loop. We took the converse approach and investigated the effects of tryptic digestion on the conformational structure of this protein. Exhaustive tryptic digestion of protein-depleted erythrocyte ghosts decreased the affinity of the residual transporter for cytochalasin B by 3-fold but did not affect the total number of binding sites. Tryptic digestion also increased the affinity of the residual transporter for D-glucose and inward-binding sugar phenyl beta-D-glucopyranoside but decreased that for the outward-binding 4,6-O-ethylidene glucose. These results suggest that tryptic cleavage stabilized the remaining transporter in an inward-facing conformation, but one with decreased affinity for cytochalasin B. The steady-state fluorescence emission scan of the purified reconstituted glucose transport protein was unaffected by tryptic digestion. Addition of increasing concentrations of potassium iodide resulted in linear Stern-Volmer plots, which were also unaffected by prior tryptic digestion. The tryptophan oxidant N-bromosuccinimide was investigated to provide a more sensitive measure of tryptophan environment. This agent irreversibly inhibited 3-O-methylglucose transport in intact erythrocytes and cytochalasin B binding in protein-depleted ghosts, with a half-maximal effect observed for each activity at about 0.3-0.4 nM. Treatment of purified glucose transport protein with N-bromosuccinimide resulted in a time-dependent quench of tryptophan fluorescence, which was resolved into two components by nonlinear regression using global analysis. Tryptic digestion retarded the rate of oxidation of the more slowly reacting class of tryptophans. (ABSTRACT TRUNCATED AT 250 WORDS)

  7. Facilitators for travelling with local public transport among people with mild cognitive limitations after stroke.

    Science.gov (United States)

    Ståhl, Agneta; Månsson Lexell, Eva

    2017-01-24

    Previous research of how people with stroke manage public transport has mainly focused on barriers due to physical limitations whereas the influence of cognitive limitations is scarce. There is also a lack of knowledge of facilitators that can help to overcome these barriers. The aim of this study was to describe facilitators for travelling with public transport, e.g. local buses, among people with mild cognitive limitations after stroke. A multiple case study research design was used, where quantitative and qualitative data were utilized, and analysed according to a mixed methods design. The case descriptions reveal how people with mild cognitive limitations after stroke manage their trips but constantly have to be prepared to solve problems to unexpected events. Personal characteristics and other individual strategies together with support and solutions from society were important facilitators for travelling with bus. This study takes a new approach by specifically describing facilitators for travelling with public transport among people with mild cognitive limitations after stroke. To facilitate participation in society for this particular traveller group, occupational therapists have an important role when new technology and interventions that target bus travels, and other modes of transport are developed.

  8. Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations

    DEFF Research Database (Denmark)

    Hespel, P; Richter, Erik

    1990-01-01

    1. Glucose uptake and transport, muscle glycogen, free glucose and glucose-6-phosphate concentrations were studied in perfused resting and contracting rat skeletal muscle with different pre-contraction glycogen concentrations. Rats were pre-conditioned by a combination of swimming exercise and diet......, resulting in either low (glycogen-depleted rats), normal (control rats) or high (supercompensated rats) muscle glycogen concentrations at the time their hindlimbs were perfused. 2. Compared with control rats, pre-contraction muscle glycogen concentration was approximately 40% lower in glycogen-depleted rats......, whereas it was 40% higher in supercompensated rats. Muscle glycogen break-down correlated positively (r = 0.76; P less than 0.001) with pre-contraction muscle glycogen concentration. 3. Glucose uptake during contractions was approximately 50% higher in glycogen-depleted hindquarters than in control...

  9. Heat stress reduces intestinal barrier integrity and favors intestinal glucose transport in growing pigs.

    Science.gov (United States)

    Pearce, Sarah C; Mani, Venkatesh; Boddicker, Rebecca L; Johnson, Jay S; Weber, Thomas E; Ross, Jason W; Rhoads, Robert P; Baumgard, Lance H; Gabler, Nicholas K

    2013-01-01

    Excessive heat exposure reduces intestinal integrity and post-absorptive energetics that can inhibit wellbeing and be fatal. Therefore, our objectives were to examine how acute heat stress (HS) alters intestinal integrity and metabolism in growing pigs. Animals were exposed to either thermal neutral (TN, 21°C; 35-50% humidity; n=8) or HS conditions (35°C; 24-43% humidity; n=8) for 24 h. Compared to TN, rectal temperatures in HS pigs increased by 1.6°C and respiration rates by 2-fold (Pintestinal integrity was compromised in the HS pigs (ileum and colon TER decreased; PIntestinal permeability was accompanied by an increase in protein expression of myosin light chain kinase (PIntestinal glucose transport and blood glucose were elevated due to HS (Pintestinal integrity and increase intestinal stress and glucose transport.

  10. Regulation of human trophoblast GLUT1 glucose transporter by insulin-like growth factor I (IGF-I.

    Directory of Open Access Journals (Sweden)

    Marc U Baumann

    Full Text Available Glucose transport to the fetus across the placenta takes place via glucose transporters in the opposing faces of the barrier layer, the microvillous and basal membranes of the syncytiotrophoblast. While basal membrane content of the GLUT1 glucose transporter appears to be the rate-limiting step in transplacental transport, the factors regulating transporter expression and activity are largely unknown. In view of the many studies showing an association between IGF-I and fetal growth, we investigated the effects of IGF-I on placental glucose transport and GLUT1 transporter expression. Treatment of BeWo choriocarcinoma cells with IGF-I increased cellular GLUT1 protein. There was increased basolateral (but not microvillous uptake of glucose and increased transepithelial transport of glucose across the BeWo monolayer. Primary syncytial cells treated with IGF-I also demonstrated an increase in GLUT1 protein. Term placental explants treated with IGF-I showed an increase in syncytial basal membrane GLUT1 but microvillous membrane GLUT1 was not affected. The placental dual perfusion model was used to assess the effects of fetally perfused IGF-I on transplacental glucose transport and syncytial GLUT1 content. In control perfusions there was a decrease in transplacental glucose transport over the course of the perfusion, whereas in tissues perfused with IGF-I through the fetal circulation there was no change. Syncytial basal membranes from IGF-I perfused tissues showed an increase in GLUT1 content. These results demonstrate that IGF-I, whether acting via microvillous or basal membrane receptors, increases the basal membrane content of GLUT1 and up-regulates basal membrane transport of glucose, leading to increased transepithelial glucose transport. These observations provide a partial explanation for the mechanism by which IGF-I controls nutrient supply in the regulation of fetal growth.

  11. Glucose transporter-1 (GLUT1) deficiency syndrome: diagnosis and treatment in late childhood.

    NARCIS (Netherlands)

    Gramer, G.; Wolf, N.I.; Vater, D.; Bast, T.; Santer, R.; Kamsteeg, E.J.; Wevers, R.A.; Ebinger, F.

    2012-01-01

    BACKGROUND: Typical cases of glucose transporter-1 deficiency syndrome (GLUT1-DS) present with early-onset epilepsy. We report symptoms, diagnostic results, and effects of therapy in two patients diagnosed with GLUT1-DS at the age of 10 and 15 years, respectively. PATIENTS: Patient 1: After four cer

  12. Wortmannin inhibits both insulin- and contraction-stimulated glucose uptake and transport in rat skeletal muscle

    DEFF Research Database (Denmark)

    Wojtaszewski, Jørgen; Hansen, B F; Ursø, Birgitte

    1996-01-01

    The role of phosphatidylinositol (PI) 3-kinase for insulin- and contraction-stimulated muscle glucose transport was investigated in rat skeletal muscle perfused with a cell-free perfusate. The insulin receptor substrate-1-associated PI 3-kinase activity was increased sixfold upon insulin stimulat...

  13. Glucose transporter-1 (GLUT1) deficiency syndrome: diagnosis and treatment in late childhood.

    NARCIS (Netherlands)

    Gramer, G.; Wolf, N.I.; Vater, D.; Bast, T.; Santer, R.; Kamsteeg, E.J.; Wevers, R.A.; Ebinger, F.

    2012-01-01

    BACKGROUND: Typical cases of glucose transporter-1 deficiency syndrome (GLUT1-DS) present with early-onset epilepsy. We report symptoms, diagnostic results, and effects of therapy in two patients diagnosed with GLUT1-DS at the age of 10 and 15 years, respectively. PATIENTS: Patient 1: After four cer

  14. Glucose transporter-1 (GLUT1) deficiency syndrome: diagnosis and treatment in late childhood.

    NARCIS (Netherlands)

    Gramer, G.; Wolf, N.I.; Vater, D.; Bast, T.; Santer, R.; Kamsteeg, E.J.; Wevers, R.A.; Ebinger, F.

    2012-01-01

    BACKGROUND: Typical cases of glucose transporter-1 deficiency syndrome (GLUT1-DS) present with early-onset epilepsy. We report symptoms, diagnostic results, and effects of therapy in two patients diagnosed with GLUT1-DS at the age of 10 and 15 years, respectively. PATIENTS: Patient 1: After four

  15. The Ca(2+)-ATPase pump facilitates bidirectional proton transport across the sarco/endoplasmic reticulum.

    Science.gov (United States)

    Espinoza-Fonseca, L Michel

    2017-03-28

    Ca(2+) transport across the sarco/endoplasmic reticulum (SR) plays an essential role in intracellular Ca(2+) homeostasis, signalling, cell differentiation and muscle contractility. During SR Ca(2+) uptake and release, proton fluxes are required to balance the charge deficit generated by the exchange of Ca(2+) and other ions across the SR. During Ca(2+) uptake by the SR Ca(2+)-ATPase (SERCA), two protons are countertransported from the SR lumen to the cytosol, thus partially compensating for the charge moved by Ca(2+) transport. Studies have shown that protons are also transported from the cytosol to the lumen during Ca(2+) release, but a transporter that facilitates proton transport into the SR lumen has not been described. In this article we propose that SERCA forms pores that facilitate bidirectional proton transport across the SR. We describe the location and structure of water-filled pores in SERCA that form cytosolic and luminal pathways for protons to cross the SR membrane. Based on this structural information, we suggest mechanistic models for proton translocation to the cytosol during active Ca(2+) transport, and into the SR lumen during SERCA inhibition by endogenous regulatory proteins. Finally, we discuss the physiological consequences of SERCA-mediated bidirectional proton transport across the SR membrane of muscle and non-muscle cells.

  16. Regulation of glucose transport by ROCK1 differs from that of ROCK2 and is controlled by actin polymerization.

    Science.gov (United States)

    Chun, Kwang-Hoon; Araki, Kazushi; Jee, Yuna; Lee, Dae-Ho; Oh, Byung-Chul; Huang, Hu; Park, Kyong Soo; Lee, Sam W; Zabolotny, Janice M; Kim, Young-Bum

    2012-04-01

    A role of Rho-associated coiled-coil-containing protein kinase (ROCK)1 in regulating whole-body glucose homeostasis has been reported. However, cell-autonomous effects of ROCK1 on insulin-dependent glucose transport in adipocytes and muscle cells have not been elucidated. To determine the specific role of ROCK1 in glucose transport directly, ROCK1 expression in 3T3-L1 adipocytes and L6 myoblasts was biologically modulated. Here, we show that small interfering RNA-mediated ROCK1 depletion decreased insulin-induced glucose transport in adipocytes and myoblasts, whereas adenovirus-mediated ROCK1 expression increased this in a dose-dependent manner, indicating that ROCK1 is permissive for glucose transport. Inhibition of ROCK1 also impaired glucose transporter 4 translocation in 3T3-L1 adipocytes. Importantly, the ED₅₀ of insulin for adipocyte glucose transport was reduced when ROCK1 was expressed, leading to hypersensitivity to insulin. These effects are dependent on actin cytoskeleton remodeling, because inhibitors of actin polymerization significantly decreased ROCK1's effect to promote insulin-stimulated glucose transport. Unlike ROCK2, ROCK1 binding to insulin receptor substrate (IRS)-1 was not detected by immunoprecipitation, although cell fractionation demonstrated both ROCK isoforms localize with IRS-1 in low-density microsomes. Moreover, insulin's ability to increase IRS-1 tyrosine 612 and serine 632/635 phosphorylation was attenuated by ROCK1 suppression. Replacing IRS-1 serine 632/635 with alanine reduced insulin-stimulated phosphatidylinositol 3-kinase activation and glucose transport in 3T3-L1 adipocytes, indicating that phosphorylation of these serine residues of IRS-1, which are substrates of the ROCK2 isoform in vitro, are crucial for maximal stimulation of glucose transport by insulin. Our studies identify ROCK1 as an important positive regulator of insulin action on glucose transport in adipocytes and muscle cells.

  17. The Structure of a Sugar Transporter of the Glucose EIIC Superfamily Provides Insight into the Elevator Mechanism of Membrane Transport.

    Science.gov (United States)

    McCoy, Jason G; Ren, Zhenning; Stanevich, Vitali; Lee, Jumin; Mitra, Sharmistha; Levin, Elena J; Poget, Sebastien; Quick, Matthias; Im, Wonpil; Zhou, Ming

    2016-06-07

    The phosphoenolpyruvate:carbohydrate phosphotransferase systems are found in bacteria, where they play central roles in sugar uptake and regulation of cellular uptake processes. Little is known about how the membrane-embedded components (EIICs) selectively mediate the passage of carbohydrates across the membrane. Here we report the functional characterization and 2.55-Å resolution structure of a maltose transporter, bcMalT, belonging to the glucose superfamily of EIIC transporters. bcMalT crystallized in an outward-facing occluded conformation, in contrast to the structure of another glucose superfamily EIIC, bcChbC, which crystallized in an inward-facing occluded conformation. The structures differ in the position of a structurally conserved substrate-binding domain that is suggested to play a central role in sugar transport. In addition, molecular dynamics simulations suggest a potential pathway for substrate entry from the periplasm into the bcMalT substrate-binding site. These results provide a mechanistic framework for understanding substrate recognition and translocation for the glucose superfamily EIIC transporters.

  18. Sucrose nonfermenting AMPK-related kinase (SNARK) mediates contraction-stimulated glucose transport in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Koh, Ho-Jin; Toyoda, Taro; Fujii, Nobuharu;

    2010-01-01

    . Whole-body SNARK heterozygotic knockout mice also had impaired contraction-stimulated glucose transport in skeletal muscle, and knockdown of SNARK in C2C12 muscle cells impaired sorbitol-stimulated glucose transport. SNARK is activated by muscle contraction and is a unique mediator of contraction...

  19. Peritoneal transport dynamics of glucose and icodextrin: the in vitro comparative studies.

    Science.gov (United States)

    Czyzewska, Krystyna; Szary, Beata; Grzelak, Teresa

    2005-01-01

    We performed in vitro experiments with the isolated rabbit parietal peritoneum to evaluate the importance of fluid stirring intensification and of chemical modification of mesothelium and interstitium to the peritoneal transport of glucose and icodextrin. We used a mathematical model of mass transport to calculate the diffusive permeability coefficient, P, in centimeters per second. In control conditions (intact tissue; stirring rate: 11 mL/min), the rate of glucose (2.0 g/dL) transfer remained constant, and no differences were observed for transport from the interstitial to the mesothelial (I-->M) side of the membrane or in the opposite direction (M-->I). The value of P (+/- standard error of the mean) was 2.731 +/- 0.472 x 10(-4) cm/s. In contrast, the icodextrin (7.5 g/dL) I-->M transport rate was higher than that for M-->I (P: 0.319 +/- 0.038 x 10(-4) cm/s and 0.194 +/- 0.035 x 10(-4) cm/s respectively). Dynamics of the icodextrin M-->I transfer were constant, but I-->M increased by 50% over time. The intensification of the stirring rate increased the value of P at varying rates: the increase was greater for icodextrin than for glucose, and greater for the I-->M transport direction than for the M-->I direction for both solutes. Chemical modification (by 2.5 mmol/L sodium deoxycholate) increased glucose and icodextrin I-->M transfer a mean of 41% and 81% respectively, but increased M-->I transfer by 70% and 224% respectively. The dynamics of glucose and icodextrin peritoneal transfer in vitro are different: glucose diffusion is constant, but I-->M icodextrin transfer increases over time and is greater than M-->I transfer Fluid stirring intensification and chemical injury to the peritoneum enhance diffusion of glucose and icodextrin. Glucose and icodextrin M-->I transfer but not I-->M transfer is restricted more by tissue barriers than by stagnant fluid layers.

  20. A major facilitator superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis.

    Science.gov (United States)

    Remy, Estelle; Cabrito, Tânia R; Baster, Pawel; Batista, Rita A; Teixeira, Miguel C; Friml, Jiri; Sá-Correia, Isabel; Duque, Paula

    2013-03-01

    Many key aspects of plant development are regulated by the polarized transport of the phytohormone auxin. Cellular auxin efflux, the rate-limiting step in this process, has been shown to rely on the coordinated action of PIN-formed (PIN) and B-type ATP binding cassette (ABCB) carriers. Here, we report that polar auxin transport in the Arabidopsis thaliana root also requires the action of a Major Facilitator Superfamily (MFS) transporter, Zinc-Induced Facilitator-Like 1 (ZIFL1). Sequencing, promoter-reporter, and fluorescent protein fusion experiments indicate that the full-length ZIFL1.1 protein and a truncated splice isoform, ZIFL1.3, localize to the tonoplast of root cells and the plasma membrane of leaf stomatal guard cells, respectively. Using reverse genetics, we show that the ZIFL1.1 transporter regulates various root auxin-related processes, while the ZIFL1.3 isoform mediates drought tolerance by regulating stomatal closure. Auxin transport and immunolocalization assays demonstrate that ZIFL1.1 indirectly modulates cellular auxin efflux during shootward auxin transport at the root tip, likely by regulating plasma membrane PIN2 abundance. Finally, heterologous expression in yeast revealed that ZIFL1.1 and ZIFL1.3 share H(+)-coupled K(+) transport activity. Thus, by determining the subcellular and tissue distribution of two isoforms, alternative splicing dictates a dual function for the ZIFL1 transporter. We propose that this MFS carrier regulates stomatal movements and polar auxin transport by modulating potassium and proton fluxes in Arabidopsis cells.

  1. Effects of electroacupuncture on microcirculatory blood flow and glucose transporter function in the hippocampus

    Institute of Scientific and Technical Information of China (English)

    Yan Lu; Bingbing Han; Shijun Wang

    2011-01-01

    Nerve cell metabolism in post brain ischemia depends on increased microcirculation perfusion and transport function of microvascular endothelial cells. In the present study, a rat model of middle cerebral artery occlusion was established to investigate the influence of electroacupuncture(EA)on hippocampal CA1 cerebral blood flow and glucose transporter 1(GLUT1)expression in the microvascular endothelial cp.lls. Following EA at Neiguan(PC 6), the cerebral blood flow in the ischemic hippocampal CA1 region was significantly elevated, the number and microvascular integrated absorbance of the GLUTl-positive cells were significantly increased, nerve cell damage was ameliorated, and GLUT1 protein expression in the ischemic hippocampus was significantly increased. Results demonstrate that EA increased the cerebral blood flow of the hippocampal CA1 region and improved the glucose transport function, thereby attenuating neuronal injuries.

  2. A Randomized Controlled Trial of the Use of Oral Glucose with or without Gentle Facilitated Tucking of Infants during Neonatal Echocardiography.

    Directory of Open Access Journals (Sweden)

    Pascal M Lavoie

    Full Text Available To compare the effect of oral glucose given with or without facilitated tucking (FT, versus placebo (water to facilitate image acquisition during a targeted neonatal echocardiography (TNE.Factorial, double blind, randomized controlled trial.Tertiary neonatal intensive care unit (NICU.Infants born between 26 and 42 weeks of gestation (GA.One of four treatment groups: oral water (placebo, oral glucose (25%, facilitated tucking with oral water or facilitated tucking with oral glucose, during a single, structured TNE. All infants received a soother.Change in Behavioral Indicators of Infant Pain (BIIP scores.104 preterm infants were randomized (mean ± SD GA: 33.4 ± 3.5 weeks. BIIP scores remained low during the echocardiography scan (median, [IQ range]: 0, [0 to 1]. There were no differences in the level of agitation of infants amongst the treatment groups, with estimated reductions in mean BIIP relative to control of 0.27 (95%CI -0.40 to 0.94 with use of oral glucose and .04 (-0.63 to 0.70 with facilitated tucking. There were also no differences between treatment groups in the quality and duration of the echocardiography scans.In stable infants in the NICU, a TNE can be performed with minimal disruption in a majority of cases, simply by providing a soother. The use of 25% glucose water in this context did not provide further benefit in reducing agitation and improving image acquisition.Clinical Trials.gov: NCT01253889.

  3. Colloid-Facilitated Transport of Low-Solubility Radionuclides: A Field, Experimental, and Modeling Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, A B; Reimus, P W; Abdel-Fattah, A; Allen, P G; Anghel, I; Benedict, F C; Esser, B K; Lu, N; Kung, K S; Nelson, J; Neu, M P; Reilly, S D; Smith, D K; Sylwester, E R; Wang, L; Ware, S D; Warren, RG; Williams, R W; Zavarin, M; Zhao, P

    2003-02-01

    For the last several years, the Underground Test Area (UGTA) program has funded a series of studies carried out by scientists to investigate the role of colloids in facilitating the transport of low-solubility radionuclides in groundwater, specifically plutonium (Pu). Although the studies were carried out independently, the overarching goals of these studies has been to determine if colloids in groundwater at the NTS can and will transport low-solubility radionuclides such as Pu, define the geochemical mechanisms under which this may or may not occur, determine the hydrologic parameters that may or may not enhance transport through fractures and provide recommendations for incorporating this information into future modeling efforts. The initial motivation for this work came from the observation in 1997 and 1998 by scientists from Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL) that low levels of Pu originally from the Benham underground nuclear test were detected in groundwater from two different aquifers collected from wells 1.3 km downgradient (Kersting et al., 1999). Greater than 90% of the Pu and other radionuclides were associated with the naturally occurring colloidal fraction (< 1 micron particles) in the groundwater. The colloids consisted mainly of zeolite (mordenite, clinoptilolite/heulandite), clays (illite, smectite) and cristobalite (SiO{sub 2}). These minerals were also identified as alteration mineral components in the host rock aquifer, a rhyolitic tuff. The observation that Pu can and has migrated in the subsurface at the NTS has forced a rethinking of our basic assumptions regarding the mechanical and geochemical transport pathways of low-solubility radionuclides. If colloid-facilitated transport is the primary mechanism for transporting low-solubility radionuclides in the subsurface, then current transport models based solely on solubility arguments and retardation estimates may underestimate the flux and

  4. Mathematical Basis and Test Cases for Colloid-Facilitated Radionuclide Transport Modeling in GDSA-PFLOTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-31

    This report provides documentation of the mathematical basis for a colloid-facilitated radionuclide transport modeling capability that can be incorporated into GDSA-PFLOTRAN. It also provides numerous test cases against which the modeling capability can be benchmarked once the model is implemented numerically in GDSA-PFLOTRAN. The test cases were run using a 1-D numerical model developed by the author, and the inputs and outputs from the 1-D model are provided in an electronic spreadsheet supplement to this report so that all cases can be reproduced in GDSA-PFLOTRAN, and the outputs can be directly compared with the 1-D model. The cases include examples of all potential scenarios in which colloid-facilitated transport could result in the accelerated transport of a radionuclide relative to its transport in the absence of colloids. Although it cannot be claimed that all the model features that are described in the mathematical basis were rigorously exercised in the test cases, the goal was to test the features that matter the most for colloid-facilitated transport; i.e., slow desorption of radionuclides from colloids, slow filtration of colloids, and equilibrium radionuclide partitioning to colloids that is strongly favored over partitioning to immobile surfaces, resulting in a substantial fraction of radionuclide mass being associated with mobile colloids.

  5. Colloid facilitated transport in fractured rocks : parameter estimation and comparison with experimental data.

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, H. S. (Hari Selvi); Wolfsberg, A. V. (Andrew V.); Reimus, P. W. (Paul William); Ware, S. D. (Stuart D.); Lu, G. (Guoping)

    2003-01-01

    Colloid-facilitated migration of plutonium in fractured rock has been implicated in both field and laboratory studies . Other reactive radionuclides may also experience enhanced mobility due to groundwater colloids. Model prediction of this process is necessary for assessment of contaminant boundaries in systems for which radionuclides are already in the groundwater and for performance assessment of potential repositories for radioactive waste. Therefore, a reactive transport model is developed and parameterized using results from controlled laboratory fracture column experiments. Silica, montmorillonite and clinoptilolite colloids are used in the experiments along with plutonium and Tritium . . The goal of the numerical model is to identify and parameterize the physical and chemical processes that affect the colloid-facilitated transport of plutonium in the fractures. The parameters used in this model are similar in form to those that might be used in a field-scale transport model.

  6. Septin 7 forms a complex with CD2AP and nephrin and regulates glucose transporter trafficking

    OpenAIRE

    Wasik, A. A.; Polianskyte-Prause, Z.; Dong, M.-Q.; Shaw, A S; Yates, J R; Farquhar, M. G.; Lehtonen, S

    2012-01-01

    Podocytes are insulin-sensitive and take up glucose in response to insulin. This requires nephrin, which interacts with vesicle-associated membrane protein 2 (VAMP2) on GLUT4 storage vesicles (GSVs) and facilitates their fusion with the plasma membrane. In this paper, we show that the filament-forming GTPase septin 7 is expressed in podocytes and associates with CD2-associated protein (CD2AP) and nephrin, both essential for glomerular ultrafiltration. In addition, septin 7 coimmunoprecipitate...

  7. Validation of a nomogram for predicting regression from impaired fasting glucose to normoglycaemia to facilitate clinical decision making.

    Science.gov (United States)

    Guo, Vivian Yw; Yu, Esther Yt; Wong, Carlos Kh; Sit, Regina Ws; Wang, Jenny Hl; Ho, S Y; Lam, Cindy Lk

    2016-08-01

    In Hong Kong, fasting plasma glucose (FPG) is the most popular screening test for diabetes mellitus (DM) in primary care. Individuals with impaired fasting glucose (IFG) are commonly encountered. To explore the determinants of regression to normoglycaemia among primary care patients with IFG based on non-invasive variables and to establish a nomogram for the prediction of regression from IFG. This cohort study consisted of 1197 primary care patients with IFG. These subjects were invited to repeat a FPG test and 75-g 2-hour oral glucose tolerance test (2h-OGTT) to determine the glycaemia change. Normoglycaemia was defined as FPG <5.6 mmol/L and 2h-OGTT <7.8 mmol/L. Stepwise logistic regression model was developed to predict the regression to normoglycaemia with non-invasive variables, using a randomly selected training dataset (810 subjects). The model was validated on the remaining testing dataset (387 subjects). Area under the receiver operating characteristic curve (AUC) and Hosmer-Lemeshow test were used to evaluate discrimination and calibration of the model. A nomogram was constructed based on the model. After a mean follow-up period of 6.1 months, 180 subjects (15.0%) had normoglycaemia based on the repeated FPG and 2h-OGTT results at follow-up. Subjects without central obesity or hypertension, with moderate-to-high-level physical activity and a lower baseline FPG level, were more likely to regress to normoglycaemia. The prediction model had acceptable discrimination (AUC = 0.705) and calibration (P = 0.840). The simple-to-use nomogram could facilitate identification of subjects with low risk of progression to DM and thus aid in clinical decision making and resource prioritization in the primary care setting. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Sodium-glucose co-transporter-2 inhibitors and euglycemic ketoacidosis: Wisdom of hindsight

    OpenAIRE

    Awadhesh Kumar Singh

    2015-01-01

    Sodium-glucose co-transporter-2 inhibitors (SGLT-2i) are newly approved class of oral anti-diabetic drugs, in the treatment of type 2 diabetes, which reduces blood glucose through glucouresis via the kidney, independent, and irrespective of available pancreatic beta-cells. Studies conducted across their clinical development program found, a modest reduction in glycated hemoglobin ranging from −0.5 to −0.8%, without any significant hypoglycemia. Moreover, head-to-head studies versus active com...

  9. Sensitivity analyses of a colloid-facilitated contaminant transport model for unsaturated heterogeneous soil conditions.

    Science.gov (United States)

    Périard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean

    2013-04-01

    Certain contaminants may travel faster through soils when they are sorbed to subsurface colloidal particles. Indeed, subsurface colloids may act as carriers of some contaminants accelerating their translocation through the soil into the water table. This phenomenon is known as colloid-facilitated contaminant transport. It plays a significant role in contaminant transport in soils and has been recognized as a source of groundwater contamination. From a mechanistic point of view, the attachment/detachment of the colloidal particles from the soil matrix or from the air-water interface and the straining process may modify the hydraulic properties of the porous media. Šimůnek et al. (2006) developed a model that can simulate the colloid-facilitated contaminant transport in variably saturated porous media. The model is based on the solution of a modified advection-dispersion equation that accounts for several processes, namely: straining, exclusion and attachement/detachement kinetics of colloids through the soil matrix. The solutions of these governing, partial differential equations are obtained using a standard Galerkin-type, linear finite element scheme, implemented in the HYDRUS-2D/3D software (Šimůnek et al., 2012). Modeling colloid transport through the soil and the interaction of colloids with the soil matrix and other contaminants is complex and requires the characterization of many model parameters. In practice, it is very difficult to assess actual transport parameter values, so they are often calibrated. However, before calibration, one needs to know which parameters have the greatest impact on output variables. This kind of information can be obtained through a sensitivity analysis of the model. The main objective of this work is to perform local and global sensitivity analyses of the colloid-facilitated contaminant transport module of HYDRUS. Sensitivity analysis was performed in two steps: (i) we applied a screening method based on Morris' elementary

  10. Ontogenic Changes of Villus Growth, Lactase Activity, and Intestinal Glucose Transporters in Preterm and Term Born Calves with or without Prolonged Colostrum Feeding.

    Science.gov (United States)

    Steinhoff-Wagner, Julia; Schönhusen, Ulrike; Zitnan, Rudolf; Hudakova, Monika; Pfannkuche, Helga; Hammon, Harald M

    2015-01-01

    Oral glucose supply is important for neonatal calves to stabilize postnatal plasma glucose concentration. The objective of this study was to investigate ontogenic development of small intestinal growth, lactase activity, and glucose transporter in calves (n = 7 per group) that were born either preterm (PT; delivered by section 9 d before term) or at term (T; spontaneous vaginal delivery) or spontaneously born and fed colostrum for 4 days (TC). Tissue samples from duodenum and proximal, mid, and distal jejunum were taken to measure villus size and crypt depth, protein concentration of mucosa and brush border membrane vesicles (BBMV), total DNA and RNA concentration of mucosa, mRNA expression and activity of lactase, and mRNA expression of sodium-dependent glucose co-transporter-1 (SGLT1) and facilitative glucose transporter 2 (GLUT2) in mucosal tissue. Additionally, protein expression of SGLT1 in BBMV and GLUT2 in crude mucosal membranes and immunochemical localization of GLUT2 in the enterocytes were determined. Villus height in distal jejunum was lower in TC than in T. Crypt depth in all segments was largest and the villus height/crypt depth ratio in jejunum was smallest in TC calves. Concentration of RNA was highest in duodenal mucosa of TC calves, but neither lactase mRNA and activity nor SGLT1 and GLUT2 mRNA and protein expression differed among groups. Localization of GLUT2 in the apical membrane was greater, whereas in the basolateral membrane was lower in TC than in T and PT calves. Our study indicates maturation processes after birth for mucosal growth and trafficking of GLUT2 from the basolateral to the apical membrane. Minor differences of mucosal growth, lactase activity, and intestinal glucose transporters were seen between PT and T calves, pointing at the importance of postnatal maturation and feeding for mucosal growth and GLUT2 trafficking.

  11. Ontogenic Changes of Villus Growth, Lactase Activity, and Intestinal Glucose Transporters in Preterm and Term Born Calves with or without Prolonged Colostrum Feeding.

    Directory of Open Access Journals (Sweden)

    Julia Steinhoff-Wagner

    Full Text Available Oral glucose supply is important for neonatal calves to stabilize postnatal plasma glucose concentration. The objective of this study was to investigate ontogenic development of small intestinal growth, lactase activity, and glucose transporter in calves (n = 7 per group that were born either preterm (PT; delivered by section 9 d before term or at term (T; spontaneous vaginal delivery or spontaneously born and fed colostrum for 4 days (TC. Tissue samples from duodenum and proximal, mid, and distal jejunum were taken to measure villus size and crypt depth, protein concentration of mucosa and brush border membrane vesicles (BBMV, total DNA and RNA concentration of mucosa, mRNA expression and activity of lactase, and mRNA expression of sodium-dependent glucose co-transporter-1 (SGLT1 and facilitative glucose transporter 2 (GLUT2 in mucosal tissue. Additionally, protein expression of SGLT1 in BBMV and GLUT2 in crude mucosal membranes and immunochemical localization of GLUT2 in the enterocytes were determined. Villus height in distal jejunum was lower in TC than in T. Crypt depth in all segments was largest and the villus height/crypt depth ratio in jejunum was smallest in TC calves. Concentration of RNA was highest in duodenal mucosa of TC calves, but neither lactase mRNA and activity nor SGLT1 and GLUT2 mRNA and protein expression differed among groups. Localization of GLUT2 in the apical membrane was greater, whereas in the basolateral membrane was lower in TC than in T and PT calves. Our study indicates maturation processes after birth for mucosal growth and trafficking of GLUT2 from the basolateral to the apical membrane. Minor differences of mucosal growth, lactase activity, and intestinal glucose transporters were seen between PT and T calves, pointing at the importance of postnatal maturation and feeding for mucosal growth and GLUT2 trafficking.

  12. Insights from the Fungus Fusarium oxysporum Point to High Affinity Glucose Transporters as Targets for Enhancing Ethanol Production from Lignocellulose

    Science.gov (United States)

    Ali, Shahin S.; Nugent, Brian; Mullins, Ewen; Doohan, Fiona M.

    2013-01-01

    Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt) from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km(glucose) was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing. PMID:23382943

  13. Insights from the fungus Fusarium oxysporum point to high affinity glucose transporters as targets for enhancing ethanol production from lignocellulose.

    Directory of Open Access Journals (Sweden)

    Shahin S Ali

    Full Text Available Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km((glucose was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing.

  14. Molecular dynamics simulation studies of GLUT4: substrate-free and substrate-induced dynamics and ATP-mediated glucose transport inhibition.

    Directory of Open Access Journals (Sweden)

    Suma Mohan

    Full Text Available BACKGROUND: Glucose transporter 4 (GLUT4 is an insulin facilitated glucose transporter that plays an important role in maintaining blood glucose homeostasis. GLUT4 is sequestered into intracellular vesicles in unstimulated cells and translocated to the plasma membrane by various stimuli. Understanding the structural details of GLUT4 will provide insights into the mechanism of glucose transport and its regulation. To date, a crystal structure for GLUT4 is not available. However, earlier work from our laboratory proposed a well validated homology model for GLUT4 based on the experimental data available on GLUT1 and the crystal structure data obtained from the glycerol 3-phosphate transporter. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, the dynamic behavior of GLUT4 in a membrane environment was analyzed using three forms of GLUT4 (apo, substrate and ATP-substrate bound states. Apo form simulation analysis revealed an extracellular open conformation of GLUT4 in the membrane favoring easy exofacial binding of substrate. Simulation studies with the substrate bound form proposed a stable state of GLUT4 with glucose, which can be a substrate-occluded state of the transporter. Principal component analysis suggested a clockwise movement for the domains in the apo form, whereas ATP substrate-bound form induced an anti-clockwise rotation. Simulation studies suggested distinct conformational changes for the GLUT4 domains in the ATP substrate-bound form and favor a constricted behavior for the transport channel. Various inter-domain hydrogen bonds and switching of a salt-bridge network from E345-R350-E409 to E345-R169-E409 contributed to this ATP-mediated channel constriction favoring substrate occlusion and prevention of its release into cytoplasm. These data are consistent with the biochemical studies, suggesting an inhibitory role for ATP in GLUT-mediated glucose transport. CONCLUSIONS/SIGNIFICANCE: In the absence of a crystal structure for any

  15. Glucose transporters and in vivo glucose uptake in skeletal and cardiac muscle: fasting, insulin stimulation and immunoisolation studies of GLUT1 and GLUT4.

    Science.gov (United States)

    Kraegen, E W; Sowden, J A; Halstead, M B; Clark, P W; Rodnick, K J; Chisholm, D J; James, D E

    1993-01-01

    Our aim was to study glucose transporters GLUT1 and GLUT4 in relation to in vivo glucose uptake in rat cardiac and skeletal muscle. The levels of both transporters were of a similar order of magnitude in whole muscle tissue (GLUT1/GLUT4 ratio varied from 0.1 to 0.6), suggesting that both may have an important physiological role in regulating muscle glucose metabolism. GLUT4 correlated very strongly (r2 = 0.97) with maximal insulin-stimulated glucose uptake (Rg' max., estimated using the glucose clamp plus 2-deoxy[3H]glucose bolus technique) in six skeletal muscles and heart. A distinct difference in regulation of the two transporters was evident in heart: in 5 h-fasted rats, basal glucose uptake and GLUT1 levels in heart were very high and both were reduced, by 90 and 60% respectively, by 48 h fasting. However, in heart (and in red skeletal muscle), neither GLUT4 levels nor Rg' max. were reduced by 48 h fasting. GLUT1 was shown to be specifically expressed in cardiac myocytes, because intracellular vesicles enriched in GLUT4 contained significant levels of GLUT1. In conclusion, the high association of muscle GLUT4 content with insulin responsiveness in different muscles, and the preservation of both with fasting, supports a predominant role of GLUT4 in insulin-mediated glucose uptake. GLUT1 may play an important role in mediating cardiac muscle glucose uptake in the basal metabolic state. Marked changes in GLUT1 expression with alterations in the metabolic state, such as prolonged fasting, may play an important role in cardiac glucose metabolism. Images Figure 1 Figure 2 PMID:8216230

  16. Simulation of carrier-facilitated transport of phenanthrene in a layered soil profile

    Science.gov (United States)

    Prechtel, Alexander; Knabner, Peter; Schneid, Eckhard; Totsche, Kai Uwe

    2002-06-01

    The appropriate prediction of the fate of the contaminant is an essential step when evaluating the risk of severe groundwater pollutions—in particular in the context of natural attenuation. We numerically study the reactive transport of phenanthrene at the field scale in a multilayer soil profile based on experimental data. The effect of carrier facilitation by dissolved organic carbon is emphasized and incorporated in the model. Previously published simulations are restricted to the saturated zone and/or to homogeneous soil columns at the laboratory scale. A numerical flow and transport model is extended and applied to understand and quantify the relevant processes in the case of a strongly sorbing hydrophobic organic compound that is subject to carrier facilitation in the unsaturated zone. The contaminant migration is investigated on long- and short-term time scales and compared to predictions without carrier facilitation. The simulations demonstrate the importance of carrier facilitation and suggest strongly to take this aspect into account. By carrier facilitation breakthrough times at the groundwater level decreased from 500 to approximately 8 years and concentration peaks increased by two orders of magnitude in the long-term simulation assuming a temporary spill in an initially unpolluted soil with a non-sorbing carrier.

  17. Expression of glucocorticoid receptor and glucose transporter-1 during placental development in the diabetic rat

    Directory of Open Access Journals (Sweden)

    Ramazan Demir

    2011-07-01

    Full Text Available In various tissues, glucocorticoids (GCs are known to downregulate glucose transport systems; however, their effects on glucose transporters (GLUTs in the placenta of a diabetic rat are unknown. Glucocorticoid hormone action within the cell is regulated by the glucocorticoid receptor (GR. Thus, this study was designed to investigate the relationship between GR and glucose transporter expression in the placenta of the diabetic rat. Our immunohistochemical results indicated that GR and glucose transporter protein 1 (GLUT 1 are expressed ubiquitously in the trophoblast and endothelial cells of the labyrinthine zone, where maternal fetal transport takes place in the rat placenta. Expression of GR in the junctional zone of the rat placenta was detected in giant cells, and in some spongiotrophoblast cells, but not in the glycogen cells. GLUT 1 was present, especially in glycogen cells during early pregnancy, and in the spongiotrophoblast cells of the junctional zone during late pregnancy. Amounts of GR and GLUT 1 protein were increased towards the end of gestation both in the control and the diabetic placenta. However, at days 17 and 19 of gestation, only the placental GR protein was significantly increased in the streptozotocin-induced diabetic rats compared to control rats. Diabetes led to a significant decrease in placental weight at gestation day 15. In contrast, at gestational days 17 and 21, the weights of the diabetic placenta were significantly increased as compared with the controls. Moreover, diabetes induced fetus intrauterine growth retardation at gestational days 13, 17 and 21. In conclusion, the localization pattern of GR and GLUT 1 proteins in the same cell types led us to believe that there might be a relationship between GR and GLUT 1 expressions at the cellular level. GLUT 1 does not play a pivotal role in diabetic pregnancies. However, placental growth abnormalities during diabetic pregnancy may be related to the amount of GR

  18. Implications of Glucose Transporter Protein Type 1 (GLUT1)-Haplodeficiency in Embryonic Stem Cells for Their Survival in Response to Hypoxic Stress

    Science.gov (United States)

    Heilig, Charles; Brosius, Frank; Siu, Brian; Concepcion, Luis; Mortensen, Richard; Heilig, Kathleen; Zhu, Min; Weldon, Richard; Wu, Guimei; Conner, David

    2003-01-01

    Glucose transporter protein type 1 (GLUT1) is a major glucose transporter of the fertilized egg and preimplantation embryo. Haploinsufficiency for GLUT1 causes the GLUT1 deficiency syndrome in humans, however the embryo appears unaffected. Therefore, here we produced heterozygous GLUT1 knockout murine embryonic stem cells (GT1+/−) to study the role of GLUT1 deficiency in their growth, glucose metabolism, and survival in response to hypoxic stress. GT1(−/−) cells were determined to be nonviable. Both the GLUT1 and GLUT3 high-affinity, facilitative glucose transporters were expressed in GT1(+/+) and GT1(+/−) embryonic stem cells. GT1(+/−) demonstrated 49 ± 4% reduction of GLUT1 mRNA. This induced a posttranscriptional, GLUT1 compensatory response resulting in 24 ± 4% reduction of GLUT1 protein. GLUT3 was unchanged. GLUT8 and GLUT12 were also expressed and unchanged in GT1(+/−). Stimulation of glycolysis by azide inhibition of oxidative phosphorylation was impaired by 44% in GT1(+/−), with impaired up-regulation of GLUT1 protein. Hypoxia for up to 4 hours led to 201% more apoptosis in GT1(+/−) than in GT1(+/+) controls. Caspase-3 activity was 76% higher in GT1(+/−) versus GT1(+/+) at 2 hours. Heterozygous knockout of GLUT1 led to a partial GLUT1 compensatory response protecting nonstressed cells. However, inhibition of oxidative phosphorylation and hypoxia both exposed their increased susceptibility to these stresses. PMID:14578187

  19. Lack of SLC2A1 (glucose transporter 1) mutations in 30 Italian patients with alternating hemiplegia of childhood.

    Science.gov (United States)

    De Grandis, Elisa; Stagnaro, Michela; Biancheri, Roberta; Giannotta, Melania; Gobbi, Giuseppe; Traverso, Monica; Veneselli, Edvige; Zara, Federico

    2013-07-01

    Alternating hemiplegia of childhood is a rare, predominantly sporadic disorder. Diagnosis is clinical, and little is known about genetics. Glucose transporter 1 deficiency syndrome shares with alternating hemiplegia of childhood paroxysmal and nonparoxysmal symptoms. The aim of the study was to investigate glucose transporter 1 mutations in 30 Italian patients. Genetic material was analyzed by DNA amplification and glucose transporter 1 region sequencing. Mutational analysis findings of the SLC2A1 gene were negative in all patients. The pattern of movement disorders was reviewed. Interictal dystonia and multiple paroxysmal events were typical of alternating hemiplegia of childhood. In conclusion, alternating hemiplegia of childhood is a heterogeneous clinical condition, and although glucose transporter 1 deficiency can represent an undiagnosed cause of this disorder, mutational analysis is not routinely recommended. Alternatively, a careful clinical analysis and the 3-O-methyl-D-glucose uptake test can allow prompt identification of a subgroup of patients with alternating hemiplegia of childhood treatable with a ketogenic diet.

  20. Water transport by the Na+/glucose cotransporter under isotonic conditions

    DEFF Research Database (Denmark)

    Zeuthen, T; Meinild, A K; Klaerke, D A;

    1997-01-01

    Solute cotransport in the Na+/glucose cotransporter is directly coupled to significant water fluxes. The water fluxes are energized by the downhill fluxes of the other substrates by a mechanism within the protein itself. In the present paper we investigate the Na+/glucose cotransporter expressed...... in Xenopus oocytes. We present a method which allows short-term exposures to sugar under voltage clamp conditions. We demonstrate that water is cotransported with the solutes despite no osmotic differences between the external and intracellular solutions. There is a fixed ratio of 195:1 between the number...... of water molecules and the number of Na+ ions transported, equivalent to 390 water molecules per glucose molecule. Unstirred layer effects are ruled out on the basis of experiments on native oocytes incubated with the ionophores gramicidin D or nystatin....

  1. Ca2+ effects on glucose transport and fatty acid oxidation in L6 skeletal muscle cell cultures

    Directory of Open Access Journals (Sweden)

    Darrick Balu

    2016-03-01

    We did find a Ca2+ stimulation (using either caffeine or ionomycin of fatty acid oxidation. This was observed in the absence (but not the presence of added glucose. We conclude that Ca2+ stimulates fatty acid oxidation at a mitochondrial site, secondary to malonyl CoA inhibition (represented by the presence of glucose in our experiments. In summary, the experiments resolve a controversy on Ca2+ stimulation of glucose transport by skeletal muscle, introduce an important experimental consideration for the measurement of glucose transport, and uncover a new site of action for Ca2+ stimulation of fatty acid oxidation.

  2. Description of glucose transport in isolated bovine mammary epithelial cells by a three-compartment model.

    Science.gov (United States)

    Xiao, Changting; Quinton, V Margaret; Cant, John P

    2004-04-01

    Initial rates of glucose entry into isolated bovine mammary epithelial cells display moderate degrees of asymmetry and cooperative interactions between export and import sites. The present study examined the hypothesis that these kinetic features are due to compartmentalization of intracellular glucose. Net uptake of 3-O-methyl-d-[1-(3)H]glucose (3-OMG) by isolated bovine mammary epithelial cells was measured at 37 degrees C. The time course of 3-OMG net uptake was better fitted by a double-exponential equation than by a single- or triple-exponential equation. Compartmental analysis of the time course curve suggested that translocated 3-OMG is distributed into two compartments with fractional volumes of 32.6 +/- 5.7% and 67.4 +/- 5.7%, respectively. The results support the view that glucose transport in bovine mammary epithelial cells is a multistep process consisting of two serial steps: fast, carrier-mediated, symmetric translocation of sugar across the cell plasma membrane into a small compartment and subsequent slow exchange of posttranslocated sugar between two intracellular compartments. A three-compartment model of this system successfully simulated the observed time course of 3-OMG net uptake and the observed dependence of unidirectional entry rates on intra- and extracellular 3-OMG concentrations. Simulations indicated that backflux of radiolabeled sugar from the small compartment to extracellular space during 15 s of incubation gives rise to the apparent asymmetry, trans-stimulation, and cooperativity of mammary glucose transport kinetics. The fixed-site carrier model overestimated the rate of glucose accumulation in cells, and its features can be accounted for by the compartmentalization of intracellular sugar.

  3. Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells.

    Science.gov (United States)

    Ko, Sung-Kyun; Kim, Sung Kuk; Share, Andrew; Lynch, Vincent M; Park, Jinhong; Namkung, Wan; Van Rossom, Wim; Busschaert, Nathalie; Gale, Philip A; Sessler, Jonathan L; Shin, Injae

    2014-10-01

    Anion transporters based on small molecules have received attention as therapeutic agents because of their potential to disrupt cellular ion homeostasis. However, a direct correlation between a change in cellular chloride anion concentration and cytotoxicity has not been established for synthetic ion carriers. Here we show that two pyridine diamide-strapped calix[4]pyrroles induce coupled chloride anion and sodium cation transport in both liposomal models and cells, and promote cell death by increasing intracellular chloride and sodium ion concentrations. Removing either ion from the extracellular media or blocking natural sodium channels with amiloride prevents this effect. Cell experiments show that the ion transporters induce the sodium chloride influx, which leads to an increased concentration of reactive oxygen species, release of cytochrome c from the mitochondria and apoptosis via caspase activation. However, they do not activate the caspase-independent apoptotic pathway associated with the apoptosis-inducing factor. Ion transporters, therefore, represent an attractive approach for regulating cellular processes that are normally controlled tightly by homeostasis.

  4. A receptor state space model of the insulin signalling system in glucose transport.

    Science.gov (United States)

    Gray, Catheryn W; Coster, Adelle C F

    2015-12-01

    Insulin is a potent peptide hormone that regulates glucose levels in the blood. Insulin-sensitive cells respond to insulin stimulation with the translocation of glucose transporter 4 (GLUT4) to the plasma membrane (PM), enabling the clearance of glucose from the blood. Defects in this process can give rise to insulin resistance and ultimately diabetes. One widely cited model of insulin signalling leading to glucose transport is that of Sedaghat et al. (2002) Am. J. Physiol. Endocrinol. Metab. 283, E1084-E1101. Consisting of 20 deterministic ordinary differential equations (ODEs), it is the most comprehensive model of insulin signalling to date. However, the model possesses some major limitations, including the non-conservation of key components. In the current work, we detail mathematical and sensitivity analyses of the Sedaghat model. Based on the results of these analyses, we propose a reduced state space model of the insulin receptor subsystem. This reduced model maintains the input-output relation of the original model but is computationally more efficient, analytically tractable and resolves some of the limitations of the Sedaghat model.

  5. Tea catechins modulate the glucose transport system in 3T3-L1 adipocytes.

    Science.gov (United States)

    Ueda, Manabu; Furuyashiki, Takashi; Yamada, Kayo; Aoki, Yukiko; Sakane, Iwao; Fukuda, Itsuko; Yoshida, Ken-Ichi; Ashida, Hitoshi

    2010-11-01

    In this study, we investigated the effects of tea catechins on the translocation of glucose transporter (GLUT) 4 in 3T3-L1 adipocytes. We found that the ethyl acetate fraction of green tea extract, containing abundant catechins, most decreased insulin-induced glucose uptake activity in 3T3-L1 cells. When the cells were treated with 50 μM catechins in the absence or presence of insulin for 30 min, nongallate-type catechins increased glucose uptake activity without insulin, whereas gallate-type catechins decreased insulin-induced glucose uptake activity. (-)-Epicatechin (EC) and (-)-epigallocatechin (EGC), nongallate-type catechins, increased glucose uptake activity in the dose- and time-dependent manner, whereas (-)-catechin 3-gallate (Cg) and (-)-epigallocatechin 3-gallate (EGCg), gallate-type catechins, decreased insulin-induced glucose uptake activity in the dose- and time-dependent manner. When the cells were treated with 50 μM catechins for 30 min, EC and EGC promoted GLUT4 translocation, whereas Cg and EGCg decreased the insulin-induced translocation in the cells. EC and EGC increased phosphorylation of PKCλ/ζ without phosphorylation of insulin receptor (IR) and Akt. Wortmannin and LY294002, inhibitors for phosphatidylinositol 3'-kinase (PI3K), decreased EC- and EGC-induced glucose uptake activity in the cells. Cg and EGCg decreased phosphorylation of PKCλ/ζ in the presence of insulin without affecting insulin-induced phosphorylation of IR, and Akt. Therefore, EC and EGC promote the translocation of GLUT4 through activation of PI3K, and Cg and EGCg inhibit insulin-induced translocation of GLUT4 by the insulin signaling pathway in 3T3-L1 cells.

  6. Sodium glucose co-transporter inhibitors – A new class of old drugs

    Science.gov (United States)

    Malhotra, Aneeta; Kudyar, Surbhi; Gupta, Anil K.; Kudyar, Rattan P.; Malhotra, Pavan

    2015-01-01

    Sodium glucose co-transporter (SGLT) inhibitors are a new class of drugs which are used in the pharmacotherapy of Type-II diabetes, which happens to be a major risk factor for developing both micro as well as macro-vascular complications. These drugs inhibit the glucose reabsorption by inhibiting SGLT, which exhibits a novel and promising mechanism of action by promoting the urinary glucose excretion hence providing a basis of therapeutic intervention. Results of SGLT-II inhibitors are very encouraging as there is a significant elevation of GLP-1 level, which forms the basis of relevance in treatment of diabetes. It targets the HbA1C and keeps a check on its levels. It also exerts other positive benefits such as weight loss, reduction in blood glucose levels, reduction in blood pressure and improvement in insulin resistance and β-cell dysfunction: All contributing to effective glycemic control. SGLT inhibition will develop as effective modality as it has the capability of inhibiting reabsorption of greater percentage of filtered glucose load. PMID:26539362

  7. Glucose transporter 1-mediated glucose uptake is limiting for B-cell acute lymphoblastic leukemia anabolic metabolism and resistance to apoptosis

    Science.gov (United States)

    Liu, T; Kishton, R J; Macintyre, A N; Gerriets, V A; Xiang, H; Liu, X; Abel, E D; Rizzieri, D; Locasale, J W; Rathmell, J C

    2014-01-01

    The metabolic profiles of cancer cells have long been acknowledged to be altered and to provide new therapeutic opportunities. In particular, a wide range of both solid and liquid tumors use aerobic glycolysis to supply energy and support cell growth. This metabolic program leads to high rates of glucose consumption through glycolysis with secretion of lactate even in the presence of oxygen. Identifying the limiting events in aerobic glycolysis and the response of cancer cells to metabolic inhibition is now essential to exploit this potential metabolic dependency. Here, we examine the role of glucose uptake and the glucose transporter Glut1 in the metabolism and metabolic stress response of BCR-Abl+ B-cell acute lymphoblastic leukemia cells (B-ALL). B-ALL cells were highly glycolytic and primary human B-ALL samples were dependent on glycolysis. We show B-ALL cells express multiple glucose transporters and conditional genetic deletion of Glut1 led to a partial loss of glucose uptake. This reduced glucose transport capacity, however, was sufficient to metabolically reprogram B-ALL cells to decrease anabolic and increase catabolic flux. Cell proliferation decreased and a limited degree of apoptosis was also observed. Importantly, Glut1-deficient B-ALL cells failed to accumulate in vivo and leukemic progression was suppressed by Glut1 deletion. Similarly, pharmacologic inhibition of aerobic glycolysis with moderate doses of 2-deoxyglucose (2-DG) slowed B-ALL cell proliferation, but extensive apoptosis only occurred at high doses. Nevertheless, 2-DG induced the pro-apoptotic protein Bim and sensitized B-ALL cells to the tyrosine kinase inhibitor Dasatinib in vivo. Together, these data show that despite expression of multiple glucose transporters, B-ALL cells are reliant on Glut1 to maintain aerobic glycolysis and anabolic metabolism. Further, partial inhibition of glucose metabolism is sufficient to sensitize cancer cells to specifically targeted therapies, suggesting

  8. Comparative study of glucose transporters GLUT-2 and GLUT-5 in ostriches gastrointestinal tract

    Directory of Open Access Journals (Sweden)

    Piret Hussar

    2016-10-01

    Full Text Available The knowledge about transport of sugars in animals and birds gastrointestinal tract is very important for science as carbohydrates are the main energy source of food. Since until now there is few information about the localization of glucose transporters - integral membrane proteins that mediate the transport of glucose and related substances across the cellular membranes - in birds gastrointestinal tract, the aim of the present study was to localize glucose transporters-2 and -5 (GLUT-2 and -5 in three parts of the ostriches gastrointestinal tract – proventriculus, duodenum and ileum - comparatively in ostrich chicken in their early ontogenesis period. Material from the superficial gland zone of the proventriculus, duodenum and terminal zone of the ileum were collected from eight female ostriches (Struthio camelus var. Domesticus: two chickens after hatching, three 7 and three 30-days old ostriches. The material was fixed with 10% formalin, embedded into paraffin, slices 7 μm thick were cut followed by immunohistochemical staining with polyclonal primary antibodies Rabbit anti-GLUT-2 and Rabbit anti-GLUT-5, carried out according to the manufacturers guidelines (IHC kit, Abcam, UK. The results showed that the staining for both antibodies was weaker in all parts of the gastrointestinal tract of ostriches after hatching compared to 7 and 30 days old ostriches showing that the gastrointestinal tract of ostriches immediately after hatching is not entirely capable of transportation of carbohydrates. The results of our study may indicate the possibility of a close relationship between feeding and the ability to transport sugars in the gastrointestinal tract.

  9. Association between coenzyme Q10 and glucose transporter (GLUT1) deficiency

    OpenAIRE

    Yubero, Delia; O’Callaghan, Mar; Montero, Raquel; Ormazabal, Aida; Armstrong, Judith; Espinos, Carmina; Rodríguez, Maria A; Jou, Cristina; Castejon, Esperanza; Aracil, Maria A; Cascajo, Maria V; Gavilan, Angela; Briones, Paz; Jimenez-Mallebrera, Cecilia; Pineda, Mercedes

    2014-01-01

    Background It has been demonstrated that glucose transporter (GLUT1) deficiency in a mouse model causes a diminished cerebral lipid synthesis. This deficient lipid biosynthesis could contribute to secondary CoQ deficiency. We report here, for the first time an association between GLUT1 and coenzyme Q10 deficiency in a pediatric patient. Case presentation We report a 15 year-old girl with truncal ataxia, nystagmus, dysarthria and myoclonic epilepsy as the main clinical features. Blood lactate ...

  10. Molecular cloning of glucose transporter 1 in grouper Epinephelus coioides and effects of an acute hyperglycemia stress on its expression and glucose tolerance.

    Science.gov (United States)

    Liu, Hongyu; Dong, Xiaohui; Chi, Shuyan; Yang, Qihui; Zhang, Shuang; Chen, Liqiao; Tan, Beiping

    2017-02-01

    The glucose transporter family proteins play pivotal roles in glucose metabolism. In this study, we successfully cloned the orange spotted grouper (Epinephelus coioides) glucose transporter 1 (EcGlut1) gene (GenBank accession: JQ623903). The full-length EcGlut1 cDNA was 2126 bp with a 1476 bp ORF, a 437bp5'-UTR and 223bp3'-UTR. EcGlut1 is predicted to encode a 491 amino acid protein with a MW of 53.9 kDa, a pI of 8.66 and a Pfam domain. Bioinformatics analysis revealed that EcGlut1 was evolutionally conserved between fishes with 80-89 % amino acid identities. EcGlut1 was expressed predominantly in heart and liver and at lower levels in muscle, intestine, stomach and brain. We also investigated the effect of acute hyperglycemia stress on EcGlut1 expression. In glucose tolerance test, changes in EcGlut1 mRNA expression in response to glucose injection and glucose metabolism-related indictors were assessed at the same time. Glucose injection significantly suppressed EcGlut1 mRNA expression in liver at 12 h and in brain at 24 h postinjection (P < 0.05). EcGlut1 mRNA levels in heart were increased at 6 h (P < 0.05). Plasma glucose level increased significantly and reached its maximum at 3 h postinjection (P < 0.05). The spatiotemporal expression of EcGlut1 and glucose metabolism suggested that orange spotted grouper might rely on fat anabolism to reduce acute hyperglycemia stress and the delayed transcription of EcGlut1 gene might be one reason for glucose intolerance in E. coioides.

  11. Constructing CO2-facilitated transport highway in supported ionic liquid membranes

    Science.gov (United States)

    Sun, Xiang Jun; Luo, Ju Jie; Zhang, Meng; Li, Jin Ping

    2014-01-01

    A Carbon dioxide-facilitated transport highway (CO2-FTH) on the microporous surface of a membrane matrix was designed using the amino carrier 3-aminopropyltriethoxysilane (APTES). Owing to the reversible reaction between CO2 molecules and fixed-site carriers, this supported ionic liquid membrane was able to selectively transfer CO2 more quickly. This concept may inspire means of fabricating a highly permeable and selective membrane to break through Robeson's upper bound.

  12. Icodextrin peritoneal transport in vitro: effect of sodium deoxycholate, glucose, and methylglyoxal.

    Science.gov (United States)

    Szary, Beata; Grzelak, Teresa; Czyzewska, Krystyna

    2007-02-01

    The aim of the in vitro studies was to examine the effect of sodium deoxycholate, glucose, and methylglyoxal on icodextrin peritoneal transfer. The rabbit peritoneum in a modified Ussing chamber was an experimental model. Transport and morphometric analyses were performed. In the first of them, the icodextrin (7.5 g/dL) diffusion from the mesothelial to the interstitial side of the membrane, expressed as a diffusive permeability coefficient (P), was evaluated in the control stage, after chemical modification of the membrane using sodium deoxycholate (104 mg/dL), after the addition of glucose (1.8 g/dL) and methylglyoxal (1 mg/dL), in the separate experimental series. In the second morphometric studies, the thickness and transverse cross-section surface area of native tissue, in 75 min of experiment and after application of sodium deoxycholate, were investigated. In the control conditions, the rate of glucose polymer passage remained constant. A mean value of P +/- SD was 0.194 +/- 0.126 (x10(-4), cm/s) during 120 min of the study. The transfer of icodextrin was enhanced by 224% after 3 min of incubation of the peritoneum with sodium deoxycholate. The introduction of glucose into the circulating medium with icodextrin caused the increase of P values for glucose polymer by 94% during 60 min. In the same conditions, the usage of methylglyoxal did not change transport parameters. Both thickness and transverse cross-section surface area of the native tissue in 75 min of the study did not differ. It was 4.87 microm and 12.50 x 10(2) microm(2) for the mesothelial layer, and 63.83 microm and 208.10 x 10(2) microm(2) for the whole peritoneal membrane. The application of sodium deoxycholate caused the decrease of mesothelium thickness by 20% but the increase of thickness and transverse cross-section surface area of the peritoneum by 37% in comparison with 75 min of experiment. In conclusion, sodium deoxycholate and glucose, but not methylglyoxal, intensify peritoneal

  13. Colloid-Facilitated Transport of Low-Solubility Radionuclides: A Field, Experimental, and Modeling Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, A B; Reimus, P W; Abdel-Fattah, A; Allen, P G; Anghel, I; Benedict, F C; Esser, B K; Lu, N; Kung, K S; Nelson, J; Neu, M P; Reilly, S D; Smith, D K; Sylwester, E R; Wang, L; Ware, S D; Warren, RG; Williams, R W; Zavarin, M; Zhao, P

    2003-02-01

    For the last several years, the Underground Test Area (UGTA) program has funded a series of studies carried out by scientists to investigate the role of colloids in facilitating the transport of low-solubility radionuclides in groundwater, specifically plutonium (Pu). Although the studies were carried out independently, the overarching goals of these studies has been to determine if colloids in groundwater at the NTS can and will transport low-solubility radionuclides such as Pu, define the geochemical mechanisms under which this may or may not occur, determine the hydrologic parameters that may or may not enhance transport through fractures and provide recommendations for incorporating this information into future modeling efforts. The initial motivation for this work came from the observation in 1997 and 1998 by scientists from Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL) that low levels of Pu originally from the Benham underground nuclear test were detected in groundwater from two different aquifers collected from wells 1.3 km downgradient (Kersting et al., 1999). Greater than 90% of the Pu and other radionuclides were associated with the naturally occurring colloidal fraction (< 1 micron particles) in the groundwater. The colloids consisted mainly of zeolite (mordenite, clinoptilolite/heulandite), clays (illite, smectite) and cristobalite (SiO{sub 2}). These minerals were also identified as alteration mineral components in the host rock aquifer, a rhyolitic tuff. The observation that Pu can and has migrated in the subsurface at the NTS has forced a rethinking of our basic assumptions regarding the mechanical and geochemical transport pathways of low-solubility radionuclides. If colloid-facilitated transport is the primary mechanism for transporting low-solubility radionuclides in the subsurface, then current transport models based solely on solubility arguments and retardation estimates may underestimate the flux and

  14. Expression of GLUT1 and GLUT3 glucose transporters in endometrial and breast cancers.

    Science.gov (United States)

    Krzeslak, Anna; Wojcik-Krowiranda, Katarzyna; Forma, Ewa; Jozwiak, Paweł; Romanowicz, Hanna; Bienkiewicz, Andrzej; Brys, Magdalena

    2012-07-01

    Cancer cells have accelerated metabolism and high glucose requirements. The up-regulation of specific glucose transporters may represent a key mechanism by which malignant cells may achieve increased glucose uptake to support the high rate of glycolysis. In present study we analyzed the mRNA and protein expression of GLUT1 and GLUT3 glucose transporters by quantitative real-time polymerase chain reaction (Q-PCR) and Western blotting technique in 76 cases of endometrial carcinoma and 70 cases of breast carcinoma. SLC2A1 and SLCA2A3 mRNAs expression was found, respectively in 100% and 97.4% samples of endometrial cancers and only in 50% and 40% samples of breast cancers. In endometrial cancers GLUT1 and GLUT3 protein expression was identified in 67.1% and 30.3% of cases. Analogously, in breast cancers in 48.7% and 21% of samples, respectively. The results showed that both endometrial and breast poorly differentiated tumors (grade 2 and 3) had significantly higher GLUT1 and GLUT3 expression than well-differentiated tumors (grade 1). Statistically significant association was found between SLCA2A3 mRNA expression and estrogen and progesterone receptors status in breast cancers. GLUT1 has been reported to be involved in the uptake of glucose by endometrial and breast carcinoma cells earlier and the present study determined that GLUT3 expression is also involved. GLUT1 and GLUT3 seem to be important markers in endometrial and breast tumors differentiation.

  15. Placental glucose and amino acid transport in calorie-restricted wild-type and Glut3 null heterozygous mice.

    Science.gov (United States)

    Ganguly, Amit; Collis, Laura; Devaskar, Sherin U

    2012-08-01

    Calorie restriction (CR) decreased placenta and fetal weights in wild-type (wt) and glucose transporter (Glut) 3 heterozygous null (glut3(+/-)) mice. Because placental nutrient transport is a primary energy determinant of placentofetal growth, we examined key transport systems. Maternal CR reduced intra- and transplacental glucose and leucine transport but enhanced system A amino acid transport in wt mice. These transport perturbations were accompanied by reduced placental Glut3 and leucine amino acid transporter (LAT) family member 2, no change in Glut1 and LAT family member 1, but increased sodium coupled neutral amino acid transporter (SNAT) and SNAT2 expression. We also noted decreased total and active phosphorylated forms of mammalian target of rapamycin, which is the intracellular nutrient sensor, the downstream total P70S6 kinase, and pS6 ribosomal protein with no change in total and phosphorylated 4E-binding protein 1. To determine the role of placental Glut3 in mediating CR-induced placental transport changes, we next investigated the effect of gestational CR in glut3(+/-) mice. In glut3(+/-) mice, a key role of placental Glut3 in mediating transplacental and intraplacental glucose transport was established. In addition, reduced Glut3 results in a compensatory increase of leucine and system A transplacental transport. On the other hand, diminished Glut3-mediated intraplacental glucose transport reduced leucine transport and mammalian target of rapamycin and preserved LAT and enhancing SNAT. CR in glut3(+/-) mice further reduced transplacental glucose transport and enhanced system A amino acid transport, although the increased leucine transport was lost. In addition, increased Glut3 was seen and preserved Glut1, LAT, and SNAT. These placental changes collectively protect survival of wt and glut3(+/-) fetuses against maternal CR-imposed reduction of macromolecular nutrients.

  16. Piracetam and TRH analogues antagonise inhibition by barbiturates, diazepam, melatonin and galanin of human erythrocyte D-glucose transport

    OpenAIRE

    2004-01-01

    Nootropic drugs increase glucose uptake into anaesthetised brain and into Alzheimer's diseased brain. Thyrotropin-releasing hormone, TRH, which has a chemical structure similar to nootropics increases cerebellar uptake of glucose in murine rolling ataxia. This paper shows that nootropic drugs like piracetam (2-oxo 1 pyrrolidine acetamide) and levetiracetam and neuropeptides like TRH antagonise the inhibition of glucose transport by barbiturates, diazepam, melatonin and endogenous neuropeptide...

  17. Myocardial glucose transporters and glycolytic metabolism during ischemia in hyperglycemic diabetic swine.

    Science.gov (United States)

    Stanley, W C; Hall, J L; Smith, K R; Cartee, G D; Hacker, T A; Wisneski, J A

    1994-01-01

    We assessed the effects of 4 weeks of streptozocin-induced diabetes on regional myocardial glycolytic metabolism during ischemia in anesthetized open-chest domestic swine. Diabetic animals were hyperglycemic (12.0 +/- 2.1 v 6.6 +/- .5 mmol/L), and had lower fasting insulin levels (27 +/- 8 v 79 +/- 19 pmol/L). Myocardial glycolytic metabolism was studied with coronary flow controlled by an extracorporeal perfusion circuit. Left anterior descending coronary artery (LAD) flow was decreased by 50% for 45 minutes and left circumflex (CFX) flow was constant. Myocardial glucose uptake and extraction were measured with D-[6-3H]-2-deoxyglucose (DG) and myocardial blood flow was measured with microspheres. The rate of glucose conversion to lactate and lactate uptake and output were assessed with a continuous infusion of [6-14C]glucose and [U-13C]lactate into the coronary perfusion circuit. Both diabetic and nondiabetic animals had sharp decreases in subendocardial blood flow during ischemia (from 1.21 +/- .10 to 0.43 +/- .08 mL.g-1.min-1 in the nondiabetic group, and from 1.30 +/- .15 to 0.55 +/- .11 in the diabetic group). Diabetes had no significant effect on myocardial glucose uptake or glucose conversion to lactate under either well-perfused or ischemic conditions. Forty-five minutes of ischemia resulted in significant glycogen depletion in the subendocardium in both nondiabetic and diabetic animals, with no differences between the two groups. Glycolytic metabolism is not impaired in hyperglycemic diabetic swine after 1 month of the disease when compared with that in normoglycemic nondiabetic animals. The myocardial content of the insulin-regulatable glucose transporter (GLUT 4) was measured in left ventricular biopsies.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Effect of fiber type and nutritional state on AICAR- and contraction-stimulated glucose transport in rat muscle

    DEFF Research Database (Denmark)

    Ai, Hua; Ihlemann, Jacob; Hellsten, Ylva

    2002-01-01

    )- and alpha(2)-isoforms of AMPK. Expression of both isoforms varied with fiber types, and alpha(2) was highly expressed in nuclei. In conclusion, AICAR-stimulated glucose transport varies with muscle fiber type and nutritional state. AMPK is unlikely to be the sole mediator of contraction-stimulated glucose...

  19. Effect of vanadate on glucose transporter (GLUT4) intrinsic activity in skeletal muscle plasma membrane giant vesicles

    DEFF Research Database (Denmark)

    Kristiansen, S; Youn, J; Richter, Erik

    1996-01-01

    for 1.5 h with concentrations of vanadate ranging from 3 to 40 mmol l-1 at 34 degrees C before being used for determination of glucose transport. The dose-response curve showed that vanadate decreased the specific D-glucose uptake by a maximum of 70% compared with a control preparation. The vanadate...

  20. Glucose Transport in the Extremely Thermoacidophilic Sulfolobus solfataricus Involves a High-Affinity Membrane-Integrated Binding Protein

    NARCIS (Netherlands)

    Albers, Sonja-V.; Elferink, Marieke G.L.; Charlebois, Robert L.; Sensen, Christoph W.; Driessen, Arnold J.M.; Konings, Wil N.

    1999-01-01

    The archaeon Sulfolobus solfataricus grows optimally at 80°C and pH 2.5 to 3.5 on carbon sources such as yeast extracts, tryptone, and various sugars. Cells rapidly accumulate glucose. This transport activity involves a membrane-bound glucose-binding protein that interacts with its substrate with

  1. Epigenetic Regulation of Glucose Transporters in Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    O' Byrne, Kenneth J.; Baird, Anne-Marie; Kilmartin, Lisa; Leonard, Jennifer; Sacevich, Calen; Gray, Steven G., E-mail: sgray@stjames.ie [Department of Clinical Medicine, Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James' s Hospital, Dublin 8 (Ireland)

    2011-03-25

    Due to their inherently hypoxic environment, cancer cells often resort to glycolysis, or the anaerobic breakdown of glucose to form ATP to provide for their energy needs, known as the Warburg effect. At the same time, overexpression of the insulin receptor in non-small cell lung cancer (NSCLC) is associated with an increased risk of metastasis and decreased survival. The uptake of glucose into cells is carried out via glucose transporters or GLUTs. Of these, GLUT-4 is essential for insulin-stimulated glucose uptake. Following treatment with the epigenetic targeting agents histone deacetylase inhibitors (HDACi), GLUT-3 and GLUT-4 expression were found to be induced in NSCLC cell lines, with minimal responses in transformed normal human bronchial epithelial cells (HBECs). Similar results for GLUT-4 were observed in cells derived from liver, muscle, kidney and pre-adipocytes. Bioinformatic analysis of the promoter for GLUT-4 indicates that it may also be regulated by several chromatin binding factors or complexes including CTCF, SP1 and SMYD3. Chromatin immunoprecipitation studies demonstrate that the promoter for GLUT-4 is dynamically remodeled in response to HDACi. Overall, these results may have value within the clinical setting as (a) it may be possible to use this to enhance fluorodeoxyglucose (18F) positron emission tomography (FDG-PET) imaging sensitivity; (b) it may be possible to target NSCLC through the use of HDACi and insulin mediated uptake of the metabolic targeting drugs such as 2-deoxyglucose (2-DG); or (c) enhance or sensitize NSCLC to chemotherapy.

  2. DHHC7 Palmitoylates Glucose Transporter 4 (Glut4) and Regulates Glut4 Membrane Translocation.

    Science.gov (United States)

    Du, Keyong; Murakami, Shoko; Sun, Yingmin; Kilpatrick, Casey L; Luscher, Bernhard

    2017-02-17

    Insulin-dependent translocation of glucose transporter 4 (Glut4) to the plasma membrane plays a key role in the dynamic regulation of glucose homeostasis. We recently showed that this process is critically dependent on palmitoylation of Glut4 at Cys-223. To gain further insights into the regulation of Glut4 palmitoylation, we set out to identify the palmitoyl acyltransferase (PAT) involved. Here we report that among 23 mammalian DHHC proteins, DHHC7 is the major Glut4 PAT, based on evidence that ectopic expression of DHHC7 increased Glut4 palmitoylation, whereas DHHC7 knockdown in 3T3-L1 adipocytes and DHHC7 KO in adipose tissue and muscle decreased Glut4 palmitoylation. Moreover, inactivation of DHHC7 suppressed insulin-dependent Glut4 membrane translocation in both 3T3-L1 adipocytes and primary adipocytes. Finally, DHHC7 KO mice developed hyperglycemia and glucose intolerance, thereby confirming that DHHC7 represents the principal PAT for Glut4 and that this mechanism is essential for insulin-regulated glucose homeostasis.

  3. Metabolic Control of Type 2 Diabetes by Targeting the GLUT4 Glucose Transporter: Intervention Approaches.

    Science.gov (United States)

    Alam, Fahmida; Islam, Md Asiful; Khalil, Md Ibrahim; Gan, Siew Hua

    2016-01-01

    Type 2 diabetes mellitus (T2DM), the most common form of diabetes, is characterized by insulin resistance in the hepatic and peripheral tissues. Glucose transporter 4 (GLUT4) plays a major role in the pathophysiology of T2DM. Its defective expression or translocation to the peripheral cell plasma membrane in T2DM patients hinders the entrance of glucose into the cell for energy production. In addition to suitable drugs, an appropriate diet and/or exercise can be implemented to target the increase in GLUT4 expression, GLUT4 concentrations and GLUT4 translocation to the cell surface when managing the glucose metabolism of T2DM patients. In this review, we discussed successful intervention strategies that were individually administered or coupled with diet and/or exercise and affected the expression and translocation of GLUT4 in T2DM while reducing the excess glucose load from the blood. Additionally, some potentially good synthetic and natural compounds, which can activate the insulin-independent GLUT4 signaling pathways for the efficient management of T2DM, are highlighted as possible targets or emerging alternative sources for future anti-diabetic drug development.

  4. The cmbT gene encodes a novel major facilitator multidrug resistance transporter in Lactococcus lactis.

    Science.gov (United States)

    Filipic, Brankica; Golic, Natasa; Jovcic, Branko; Tolinacki, Maja; Bay, Denice C; Turner, Raymond J; Antic-Stankovic, Jelena; Kojic, Milan; Topisirovic, Ljubisa

    2013-01-01

    Functional characterization of the multidrug resistance CmbT transporter was performed in Lactococcus lactis. The cmbT gene is predicted to encode an efflux protein homologous to the multidrug resistance major facilitator superfamily. The cmbT gene (1377 bp) was cloned and overexpressed in L. lactis NZ9000. Results from cell growth studies revealed that the CmbT protein has an effect on host cell resistance to lincomycin, cholate, sulbactam, ethidium bromide, Hoechst 33342, sulfadiazine, streptomycin, rifampicin, puromycin and sulfametoxazole. Moreover, in vivo transport assays showed that overexpressed CmbT-mediated extrusion of ethidium bromide and Hoechst 33342 was higher than in the control L. lactis NZ9000 strain. CmbT-mediated extrusion of Hoechst 33342 was inhibited by the ionophores nigericin and valinomycin known to dissipate proton motive force. This indicates that CmbT-mediated extrusion is based on a drug-proton antiport mechanism. Taking together results obtained in this study, it can be concluded that CmbT is a novel major facilitator multidrug resistance transporter candidate in L. lactis, with a possible signaling role in sulfur metabolism.

  5. Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits

    Science.gov (United States)

    Yu, Panpan; Lin, Mei-Yao; Chen, Yanmin

    2016-01-01

    Although neuronal regeneration is a highly energy-demanding process, axonal mitochondrial transport progressively declines with maturation. Mature neurons typically fail to regenerate after injury, thus raising a fundamental question as to whether mitochondrial transport is necessary to meet enhanced metabolic requirements during regeneration. Here, we reveal that reduced mitochondrial motility and energy deficits in injured axons are intrinsic mechanisms controlling regrowth in mature neurons. Axotomy induces acute mitochondrial depolarization and ATP depletion in injured axons. Thus, mature neuron-associated increases in mitochondria-anchoring protein syntaphilin (SNPH) and decreases in mitochondrial transport cause local energy deficits. Strikingly, enhancing mitochondrial transport via genetic manipulation facilitates regenerative capacity by replenishing healthy mitochondria in injured axons, thereby rescuing energy deficits. An in vivo sciatic nerve crush study further shows that enhanced mitochondrial transport in snph knockout mice accelerates axon regeneration. Understanding deficits in mitochondrial trafficking and energy supply in injured axons of mature neurons benefits development of new strategies to stimulate axon regeneration. PMID:27268498

  6. Inhibition of protein kinase CbetaII increases glucose uptake in 3T3-L1 adipocytes through elevated expression of glucose transporter 1 at the plasma membrane.

    NARCIS (Netherlands)

    Bosch, R.R.; Bazuine, M.; Wake, M.M.; Span, P.N.; Olthaar, A.J.; Schurmann, A.; Maassen, J.A.; Hermus, A.R.M.M.; Willems, P.H.G.M.; Sweep, C.G.J.

    2003-01-01

    The mechanism via which diacylglycerol-sensitive protein kinase Cs (PKCs) stimulate glucose transport in insulin-sensitive tissues is poorly defined. Phorbol esters, such as phorbol-12-myristate-13-acetate (PMA), are potent activators of conventional and novel PKCs. Addition of PMA increases the rat

  7. Analysis of metabolism of 6FDG: a PET glucose transport tracer

    Energy Technology Data Exchange (ETDEWEB)

    Muzic, Raymond F., E-mail: raymond.muzic@case.edu [Department of Radiology, Case Western Reserve University, Cleveland, OH 44106 (United States); Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States); Chandramouli, Visvanathan [Department of Radiology, Case Western Reserve University, Cleveland, OH 44106 (United States); Huang, Hsuan-Ming [Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States); Wu Chunying; Wang Yanming [Department of Radiology, Case Western Reserve University, Cleveland, OH 44106 (United States); Ismail-Beigi, Faramarz [Department of Medicine, Case Western Reserve University, Cleveland, OH 44106 (United States)

    2011-07-15

    Introduction: We are developing {sup 18}F-labeled 6-fluoro-6-deoxy-D-glucose ([{sup 18}F]6FDG) as a tracer of glucose transport. As part of this process it is important to characterize and quantify putative metabolites. In contrast to the ubiquitous positron emission tomography (PET) tracer {sup 18}F-labeled 2-fluoro-2-deoxy-D-glucose ([{sup 18}F]2FDG) which is phosphorylated and trapped intracellularly, the substitution of fluorine for a hydroxyl group at carbon-6 in [{sup 18}F]6FDG should prevent its phosphorylation. Consequently, [{sup 18}F]6FDG has the potential to trace the transport step of glucose metabolism without the confounding effects of phosphorylation and subsequent steps of metabolism. Herein the focus is to determine whether, and the degree to which, [{sup 18}F]6FDG remains unchanged following intravenous injection. Methods: Biodistribution studies were performed using 6FDG labeled with {sup 18}F or with the longer-lived radionuclides {sup 3}H and {sup 14}C. Tissues were harvested at 1, 6, and 24 h following intravenous administration and radioactivity was extracted from the tissues and analyzed using a combination of ion exchange columns, high-performance liquid chromatography, and chemical reactivity. Results: At the 1 h time-point, the vast majority of radioactivity in the liver, brain, heart, skeletal muscle, and blood was identified as 6FDG. At the 6-h and 24-h time points, there was evidence of a minor amount of radioactive material that appeared to be 6-fluoro-6-deoxy-D-sorbitol and possibly 6-fluoro-6-deoxy-D-gluconic acid. Conclusion: On the time scale typical of PET imaging studies radioactive metabolites of [{sup 18}F]6FDG are negligible.

  8. Relationship between cerebral sodium-glucose transporter and hyperglycemia in cerebral ischemia.

    Science.gov (United States)

    Yamazaki, Yui; Harada, Shinichi; Tokuyama, Shogo

    2015-09-14

    Post-ischemic hyperglycemia exacerbates the development of cerebral ischemia. To elucidate this exacerbation mechanism, we focused on sodium-glucose transporter (SGLT) as a mediator that lead hyperglycemia to cerebral ischemia. SGLT transport glucose into the cell, together with sodium ion, using the sodium concentration gradient. We have previously reported that suppression of cerebral SGLT ameliorates cerebral ischemic neuronal damage. However, detail relationship cerebral between SGLT and post-ischemic hyperglycemia remain incompletely defined. Therefore, we examined the involvement of cerebral SGLT on cerebral ischemic neuronal damage with or without hyperglycemic condition. Cell survival rate of primary cultured neurons was assessed by biochemical assay. A mouse model of focal ischemia was generated using a middle cerebral artery occlusion (MCAO). Neuronal damage was assessed with histological and behavioral analyses. Concomitant hydrogen peroxide/glucose treatment exacerbated hydrogen peroxide alone-induced cell death. Although a SGLT family-specific inhibitor, phlorizin had no effect on developed hydrogen peroxide alone-induced cell death, it suppressed cell death induced by concomitant hydrogen peroxide/glucose treatment. α-MG induced a concentration-dependent and significant decrease in neuronal survival. PHZ administered on immediately after reperfusion had no effect, but PHZ given at 6h after reperfusion had an effect. Our in vitro study indicates that SGLT is not involved in neuronal cell death in non-hyperglycemic condition. We have already reported that post-ischemic hyperglycemia begins to develop at 6h after MCAO. Therefore, current our in vivo study show post-ischemic hyperglycemic condition may be necessary for the SGLT-mediated exacerbation of cerebral ischemic neuronal damage.

  9. Modulation of glucose transporter 1 (GLUT1 expression levels alters mouse mammary tumor cell growth in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Christian D Young

    Full Text Available Tumor cells exhibit an altered metabolism characterized by elevated aerobic glycolysis and lactate secretion which is supported by an increase in glucose transport and consumption. We hypothesized that reducing or eliminating the expression of the most prominently expressed glucose transporter(s would decrease the amount of glucose available to breast cancer cells thereby decreasing their metabolic capacity and proliferative potential.Of the 12 GLUT family glucose transporters expressed in mice, GLUT1 was the most abundantly expressed at the RNA level in the mouse mammary tumors from MMTV-c-ErbB2 mice and cell lines examined. Reducing GLUT1 expression in mouse mammary tumor cell lines using shRNA or Cre/Lox technology reduced glucose transport, glucose consumption, lactate secretion and lipid synthesis in vitro without altering the concentration of ATP, as well as reduced growth on plastic and in soft agar. The growth of tumor cells with reduced GLUT1 expression was impaired when transplanted into the mammary fat pad of athymic nude mice in vivo. Overexpression of GLUT1 in a cell line with low levels of endogenous GLUT1 increased glucose transport in vitro and enhanced growth in nude mice in vivo as compared to the control cells with very low levels of GLUT1.These studies demonstrate that GLUT1 is the major glucose transporter in mouse mammary carcinoma models overexpressing ErbB2 or PyVMT and that modulation of the level of GLUT1 has an effect upon the growth of mouse mammary tumor cell lines in vivo.

  10. Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor.

    Science.gov (United States)

    Scheen, André J

    2014-03-01

    Empagliflozin is an orally active, potent and selective inhibitor of sodium glucose co-transporter 2 (SGLT2), currently in clinical development to improve glycaemic control in adults with type 2 diabetes mellitus (T2DM). SGLT2 inhibitors, including empagliflozin, are the first pharmacological class of antidiabetes agents to target the kidney in order to remove excess glucose from the body and, thus, offer new options for T2DM management. SGLT2 inhibitors exert their effects independently of insulin. Following single and multiple oral doses (0.5-800 mg), empagliflozin was rapidly absorbed and reached peak plasma concentrations after approximately 1.33-3.0 h, before showing a biphasic decline. The mean terminal half-life ranged from 5.6 to 13.1 h in single rising-dose studies, and from 10.3 to 18.8 h in multiple-dose studies. Following multiple oral doses, increases in exposure were dose-proportional and trough concentrations remained constant after day 6, indicating a steady state had been reached. Oral clearance at steady state was similar to corresponding single-dose values, suggesting linear pharmacokinetics with respect to time. No clinically relevant alterations in pharmacokinetics were observed in mild to severe hepatic impairment, or in mild to severe renal impairment and end-stage renal disease. Clinical studies did not reveal any relevant drug-drug interactions with several other drugs commonly prescribed to patients with T2DM, including warfarin. Urinary glucose excretion (UGE) rates were higher with empagliflozin versus placebo and increased with dose, but no relevant impact on 24-h urine volume was observed. Increased UGE resulted in proportional reductions in fasting plasma glucose and mean daily glucose concentrations.

  11. Continuous-culture study of the regulation of glucose and fructose transport in Kluyveromyces marxianus CBS 6556.

    Science.gov (United States)

    Postma, E; Van den Broek, P J

    1990-01-01

    Regulation of transport of D-glucose and D-fructose was studied in Kluyveromyces marxianus grown in continuous culture. Both substrates could be transported by at least two different transport systems, low-affinity transport and high-affinity proton-sugar symport. The low-affinity transporter, specific for both glucose and fructose, was constitutively present and was apparently not regulated by carbon catabolite repression. Regulation of the activity of the glucose- and fructose-specific proton symport systems appeared to proceed mainly through catabolite repression. Activation of symport did not need the presence of specific inductor molecules in the medium. Nevertheless, the capacities of the proton-sugar symporters varied in cells grown on a wide variety of carbon sources. The possibility that the control of proton symport activity is related to the presence of specific intracellular metabolites is discussed. PMID:2160928

  12. Forskolin photoaffinity labels with specificity for adenylyl cyclase and the glucose transporter

    Energy Technology Data Exchange (ETDEWEB)

    Morris, D.I.; Robbins, J.D.; Ruoho, A.E.; Sutkowski, E.M.; Seamon, K.B. (Division of Biochemistry and Biophysics, Food and Drug Administration, Bethesda, MD (USA))

    1991-07-15

    Two photolabels, N-(3-(4-azido-3-125I-phenyl)-propionamide)-6- aminoethylcarbamylforskolin(125I-6-AIPP-Fsk) and N-(3-(4-azido-3-125I-phenyl)propionamide)-7-aminoethylcarbamyl-7- desacetylforskolin (125I-7-AIPP-Fsk) were synthesized with specific activities of 2200 Ci/mmol and used to label adenylyl cyclase and the glucose transporter. The affinities of the photolabels for adenylyl cyclase were determined by their inhibition of (3H)forskolin binding to bovine brain membranes. 6-AIPP-Fsk and 7-AIPP-Fsk inhibited (3H)forskolin binding with IC50 values of 15 nM and 200 nM, respectively. 125I-6-AIPP-Fsk labeled a 115-kDa protein in control and GTP {gamma} S-preactivated bovine brain membranes. This labeling was inhibited by forskolin but not by 1,9-dideoxyforskolin or cytochalasin B. 125I-6-AIPP-Fsk labeling of partially purified adenylyl cyclase was inhibited by forskolin but not by 1,9-dideoxyforskolin. 125I-7-AIPP-Fsk specifically labeled a 45-kDa protein and not a 115-kDa protein in control and GTP {gamma} S-preactivated brain membranes. This labeling was inhibited by forskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose but not cytochalasin E or L-glucose. Human erythrocyte membranes were photolyzed with 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk. 125I-7-AIPP-Fsk, but not 125I-6-AIPP-Fsk, strongly labeled a broad 45-70-kDa band. Forskolin, 7-bromoacetyl-7-desacetylforskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose, but not cytochalasin E or L-glucose, inhibited 125I-7-AIPP-Fsk labeling of the 45-70-kDa band. 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk are high affinity photolabels with specificity for adenylyl cyclase and the glucose transporter, respectively.

  13. Reduction of glucose uptake through inhibition of hexose transporters and enhancement of their endocytosis by methylglyoxal in Saccharomyces cerevisiae.

    Science.gov (United States)

    Yoshida, Aya; Wei, Dandan; Nomura, Wataru; Izawa, Shingo; Inoue, Yoshiharu

    2012-01-02

    Diabetes mellitus is characterized by an impairment of glucose uptake even though blood glucose levels are increased. Methylglyoxal is derived from glycolysis and has been implicated in the development of diabetes mellitus, because methylglyoxal levels in blood and tissues are higher in diabetic patients than in healthy individuals. However, it remains to be elucidated whether such factors are a cause, or consequence, of diabetes. Here, we show that methylglyoxal inhibits the activity of mammalian glucose transporters using recombinant Saccharomyces cerevisiae cells genetically lacking all hexose transporters but carrying cDNA for human GLUT1 or rat GLUT4. We found that methylglyoxal inhibits yeast hexose transporters also. Glucose uptake was reduced in a stepwise manner following treatment with methylglyoxal, i.e. a rapid reduction within 5 min, followed by a slow and gradual reduction. The rapid reduction was due to the inhibitory effect of methylglyoxal on hexose transporters, whereas the slow and gradual reduction seemed due to endocytosis, which leads to a decrease in the amount of hexose transporters on the plasma membrane. We found that Rsp5, a HECT-type ubiquitin ligase, is responsible for the ubiquitination of hexose transporters. Intriguingly, Plc1 (phospholipase C) negatively regulated the endocytosis of hexose transporters in an Rsp5-dependent manner, although the methylglyoxal-induced endocytosis of hexose transporters occurred irrespective of Plc1. Meanwhile, the internalization of hexose transporters following treatment with methylglyoxal was delayed in a mutant defective in protein kinase C.

  14. Topology mapping of insulin-regulated glucose transporter GLUT4 using computational biology.

    Science.gov (United States)

    Chakraborty, Chiranjib; Bandyopadhyay, Sanghamitra; Maulik, Ujjwal; Agoramoorthy, Govindasamy

    2013-01-01

    The type 2 diabetes is increasing rapidly around the globe. The primary cause for this is insulin resistance due to the disruption of the insulin signal transduction mechanism. Insulin signal transduction stimulates glucose transport through the glucose transporter GLUT4, by promoting the exocytosis process. Understanding the structural topology of GLUT4 mechanism will increase our understanding of the dynamic activities about glucose transport and its regulation in the membrane environment. However, little is known about the topology of GLUT4. In this article, we have determined the amino acid composition, disulfide topology, structure conformation pattern of GLUT4. The amino acid composition portrays that leucine composition is the highest contributing to 15.5% among all other amino acids. Three cysteine residues such as Cys223, Cys361, and Cys363 were observed and the last two were associated with one disulfide bond formation. We have generated surface cavities to know the clefts/pockets on the surface of this protein that showed few irregular cavities placed mostly in the transmembrane-helical part. Besides, topology mapping of 12 transmembrane-helixes was done to predict N- and O-glycosylation sites and to show the highly glycosylated GLUT4 that includes both N- and O-glycosylation sites. Furthermore, hydrophobic segment and molecular charge distribution were analyzed. This article shows that bioinformatics tools can provide a rapid methodology to predict the topology of GLUT4. It also provides insights into the structural details and structural functioning relationships in the human GLUT4. The results can be of great help to advance future drug development research using GLUT4 as a target protein.

  15. Human transporters, PEPT1/2, facilitate melatonin transportation into mitochondria of cancer cells: An implication of the therapeutic potential.

    Science.gov (United States)

    Huo, Xiaokui; Wang, Chao; Yu, Zhenlong; Peng, Yulin; Wang, Shumei; Feng, Shengnan; Zhang, Shouji; Tian, Xiangge; Sun, Chengpeng; Liu, Kexin; Deng, Sa; Ma, Xiaochi

    2017-05-01

    Melatonin is present in virtually all organisms from bacteria to mammals, and it exhibits a broad spectrum of biological functions, including synchronization of circadian rhythms and oncostatic activity. Several functions of melatonin are mediated by its membrane receptors, but others are receptor-independent. For the latter, melatonin is required to penetrate membrane and enters intracellular compartments. However, the mechanism by which melatonin enters cells remains debatable. In this study, it was identified that melatonin and its sulfation metabolites were the substrates of oligopeptide transporter (PEPT) 1/2 and organic anion transporter (OAT) 3, respectively. The docking analysis showed that the binding of melatonin to PEPT1/2 was attributed to their low binding energy and suitable binding conformation in which melatonin was embedded in the active site of PEPT1/2 and fitted well with the cavity in three-dimensional space. PEPT1/2 transporters play a pivotal role in melatonin uptake in cells. Melatonin's membrane transportation via PEPT1/2 renders its oncostatic effect in malignant cells. For the first time, PEPT1/2 were identified to localize in the mitochondrial membrane of human cancer cell lines of PC3 and U118. PEPT1/2 facilitated the transportation of melatonin into mitochondria. Melatonin accumulation in mitochondria induced apoptosis of PC3 and U118 cells. Thus, PEPT1/2 can potentially be used as a cancer cell-targeted melatonin delivery system to improve the therapeutic effects of melatonin in cancer treatment. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Interaction of Peptide Transporter 1 With D-Glucose and L-Glutamic Acid; Possible Involvement of Taste Receptors.

    Science.gov (United States)

    Arakawa, Hiroshi; Ohmachi, Taichi; Ichiba, Kiko; Kamioka, Hiroki; Tomono, Takumi; Kanagawa, Masahiko; Idota, Yoko; Hatano, Yasuko; Yano, Kentaro; Morimoto, Kaori; Ogihara, Takuo

    2016-01-01

    We investigated the influence of sweet and umami (savory) tastants on the intestinal absorption of cephalexin (CEX), a substrate of peptide transporter 1 (PEPT1, SLC15A1) in rats. After oral administration of glucose or mannitol to rats, CEX was administered together with a second dose of glucose or mannitol. Western blot analysis indicated that expression of PEPT1 in rat jejunum membrane was decreased by glucose, compared to mannitol. Furthermore, the maximum plasma concentration (Cmax) of orally administered CEX was reduced by glucose compared to mannitol. The effect of glucose was diminished by nifedipine, a L-type Ca(2+) channel blocker. We also found that Cmax of orally administered CEX was reduced by treatment with L-glutamic acid, compared to D-glutamic acid. Thus, excessive intake of glucose and L-glutamic acid may impair oral absorption of PEPT1 substrates.

  17. Characterization of the avian GLUT1 glucose transporter: differential regulation of GLUT1 and GLUT3 in chicken embryo fibroblasts.

    Science.gov (United States)

    Wagstaff, P; Kang, H Y; Mylott, D; Robbins, P J; White, M K

    1995-01-01

    Vertebrate cells that are transformed by oncogenes such as v-src or are stimulated by mitogens have increased rates of glucose uptake. In rodent cells, the mechanisms whereby glucose transport is up-regulated are well understood. Stimulation of glucose transport involves an elevation in mRNA encoding the GLUT1 glucose transporter that is controlled at the levels of both transcription and mRNA stability. Cloning and sequencing of chicken GLUT1 cDNA showed that it shares 95% amino acid sequence similarity to mammalian GLUT1s. Nevertheless, unlike mammalian GLUT1 mRNA, it was not induced by v-src, serum addition, or treatment with the tumor promoter 12-O-tetradecanoylphorbol 13-acetate in chicken embryo fibroblasts. Rather, the induction of glucose transport in chicken embryo fibroblasts by v-src, serum, and 12-O-tetradecanoylphorbol 13-acetate was associated with induction of GLUT3 mRNA level and GLUT3 transcription. Rat fibroblasts were also found to express both GLUT1 and GLUT3 isoforms, but v-src induced GLUT1 and not GLUT3. This suggests that animal cells require both a basal and an upregulatable glucose transporter and that these functions have been subsumed by different GLUT isoforms in avian and mammalian cells. Images PMID:8589457

  18. Overexpression of glucose transporter-1 (GLUT-1) predicts poor prognosis in epithelial ovarian cancer.

    Science.gov (United States)

    Cho, Hanbyoul; Lee, You Sun; Kim, Julie; Chung, Joon-Yong; Kim, Jae-Hoon

    2013-11-01

    Illumina microarray was used to identify differentially expressed genes in three epithelial ovarian cancer (EOC) cells. To validate the microarray data, mRNA and protein level of glucose transporter-1 (GLUT-1) was examined. GLUT-1 had an EOC/normal cells ratio of 5.51 based on microarray. Real-time PCR and immunohistochemistry demonstrated that GLUT-1 expression was significantly increased in EOC (p = .029 and p GLUT-1 overexpression (HR = 4.80, p = .027) and lymph node metastases (HR = 8.35, p = .016) conferred a significantly worse overall survival. In conclusion, GLUT-1 expression is remarkably upregulated in EOC and predicts a poor overall survival.

  19. Water transport by the Na+/glucose cotransporter under isotonic conditions

    DEFF Research Database (Denmark)

    Zeuthen, T; Meinild, A K; Klaerke, D A

    1997-01-01

    in Xenopus oocytes. We present a method which allows short-term exposures to sugar under voltage clamp conditions. We demonstrate that water is cotransported with the solutes despite no osmotic differences between the external and intracellular solutions. There is a fixed ratio of 195:1 between the number...... of water molecules and the number of Na+ ions transported, equivalent to 390 water molecules per glucose molecule. Unstirred layer effects are ruled out on the basis of experiments on native oocytes incubated with the ionophores gramicidin D or nystatin....

  20. Novel Roles for the Insulin-Regulated Glucose Transporter-4 in Hippocampally Dependent Memory.

    Science.gov (United States)

    Pearson-Leary, Jiah; McNay, Ewan C

    2016-11-23

    The insulin-regulated glucose transporter-4 (GluT4) is critical for insulin- and contractile-mediated glucose uptake in skeletal muscle. GluT4 is also expressed in some hippocampal neurons, but its functional role in the brain is unclear. Several established molecular modulators of memory processing regulate hippocampal GluT4 trafficking and hippocampal memory formation is limited by both glucose metabolism and insulin signaling. Therefore, we hypothesized that hippocampal GluT4 might be involved in memory processes. Here, we show that, in male rats, hippocampal GluT4 translocates to the plasma membrane after memory training and that acute, selective intrahippocampal inhibition of GluT4-mediated glucose transport impaired memory acquisition, but not memory retrieval. Other studies have shown that prolonged systemic GluT4 blockade causes insulin resistance. Unexpectedly, we found that prolonged hippocampal blockade of glucose transport through GluT4-upregulated markers of hippocampal insulin signaling prevented task-associated depletion of hippocampal glucose and enhanced both working and short-term memory while also impairing long-term memory. These effects were accompanied by increased expression of hippocampal AMPA GluR1 subunits and the neuronal GluT3, but decreased expression of hippocampal brain-derived neurotrophic factor, consistent with impaired ability to form long-term memories. Our findings are the first to show the cognitive impact of brain GluT4 modulation. They identify GluT4 as a key regulator of hippocampal memory processing and also suggest differential regulation of GluT4 in the hippocampus from that in peripheral tissues. The role of insulin-regulated glucose transporter-4 (GluT4) in the brain is unclear. In the current study, we demonstrate that GluT4 is a critical component of hippocampal memory processes. Memory training increased hippocampal GluT4 translocation and memory acquisition was impaired by GluT4 blockade. Unexpectedly, whereas long

  1. Effects of glucose and insulin on the H9c2 (2-1) cell proliferation may be mediated through regulating glucose transporter 4 expression

    Institute of Scientific and Technical Information of China (English)

    LIU Qian; HUANG Qing-xian; LOU Fu-chen; ZHANG Li; WANG Kun; YU Shan; XU Hua

    2013-01-01

    Background The change of glucose transporter 4 (GLUT4) expression could influence glucose uptake in the myocardial cells and then effect myocardial metabolism,which maybe one of the factor for the diabetes cardiovascular disease.This study aimed to explore the influence of glucose and insulin at different concentrations on H9c2 (2-1) cell proliferation and its GLUT4 expression in vitro,and evaluate the correlation between myocardial cells proliferation and GLUT4 expression.This might be helpful for understanding the relationship between glucose metabolism and cardiovascular disease.Methods According to glucose concentrations in culture medium,cultured H9c2 rat myocardial cells were divided into five groups:control group (NC,glucose concentration 5.0 mmol/L),low glucose group (LG,glucose concentration 0.1 mmol/L),high glucose group 1 (HG1,glucose concentration 10 mmol/L),high glucose group 2 (HG2,glucose concentration 15 mmol/L),high glucose group 3 (HG3,glucose concentration 20 mmol/L).Then according to different insulin concentrations in culture medium,each group was further divided into two subgroups:normal insulin subgroup (INSc,insulin concentration 3.8 mU/L),high insulin subgroup (INSh,insulin concentration 7.6 mU/L).H9c2 (2-1) cells were cultured for 1,2,3 days,the proliferation of cells were assayed by cell counting Kit-8 assay,the expressions of GLUT4 mRNA and protein were detected with RT-PCR and Western Blotting technique,and the relation between myocardial cells proliferation and GLUT4 expression was evaluated.Results Compared with NC group,cell proliferation (OD value) was lower in LG,HG2,HG3 group but higher in HG1 group on the second and the third day (P <0.05).There was a negative correlation between OD value and the glucose level in HG1,HG2,HG3 groups (P <0.05).OD value in INSc subgroups was lower than that in INSh subgroups (P <0.05).GLUT4 mRNA was lower in LG,HG2,HG3 groups than that in NC group (P <0.05).Compared with NC group,GLUT4 m

  2. Channel-facilitated molecular transport: The role of strength and spatial distribution of interactions

    Science.gov (United States)

    Uppulury, Karthik; Kolomeisky, Anatoly B.

    2016-12-01

    Molecular transport across channels and pores is critically important for multiple natural and industrial processes. Recent advances in single-molecule techniques have allowed researchers to probe translocation through nanopores with unprecedented spatial and temporal resolution. However, our understanding of the mechanisms of channel-facilitated molecular transport is still not complete. We present a theoretical approach that investigates the role of molecular interactions in the transport through channels. It is based on the discrete-state stochastic analysis that provides a fully analytical description of this complex process. It is found that a spatial distribution of the interactions strongly influences the translocation dynamics. We predict that there is the optimal distribution that leads to the maximal flux through the channel. It is also argued that the channel transport depends on the strength of the molecule-pore interactions, on the shape of interaction potentials and on the relative contributions of entrance and diffusion processes in the system. These observations are discussed using simple physical-chemical arguments.

  3. Roles of major facilitator superfamily transporters in phosphate response in Drosophila.

    Directory of Open Access Journals (Sweden)

    Clemens Bergwitz

    Full Text Available The major facilitator superfamily (MFS transporter Pho84 and the type III transporter Pho89 are responsible for metabolic effects of inorganic phosphate in yeast. While the Pho89 ortholog Pit1 was also shown to be involved in phosphate-activated MAPK in mammalian cells, it is currently unknown, whether orthologs of Pho84 have a role in phosphate-sensing in metazoan species. We show here that the activation of MAPK by phosphate observed in mammals is conserved in Drosophila cells, and used this assay to characterize the roles of putative phosphate transporters. Surprisingly, while we found that RNAi-mediated knockdown of the fly Pho89 ortholog dPit had little effect on the activation of MAPK in Drosophila S2R+ cells by phosphate, two Pho84/SLC17A1-9 MFS orthologs (MFS10 and MFS13 specifically inhibited this response. Further, using a Xenopus oocyte assay, we show that MSF13 mediates uptake of [(33P]-orthophosphate in a sodium-dependent fashion. Consistent with a role in phosphate physiology, MSF13 is expressed highest in the Drosophila crop, midgut, Malpighian tubule, and hindgut. Altogether, our findings provide the first evidence that Pho84 orthologs mediate cellular effects of phosphate in metazoan cells. Finally, while phosphate is essential for Drosophila larval development, loss of MFS13 activity is compatible with viability indicating redundancy at the levels of the transporters.

  4. Roles of major facilitator superfamily transporters in phosphate response in Drosophila.

    Science.gov (United States)

    Bergwitz, Clemens; Rasmussen, Matthew D; DeRobertis, Charles; Wee, Mark J; Sinha, Sumi; Chen, Hway H; Huang, Joanne; Perrimon, Norbert

    2012-01-01

    The major facilitator superfamily (MFS) transporter Pho84 and the type III transporter Pho89 are responsible for metabolic effects of inorganic phosphate in yeast. While the Pho89 ortholog Pit1 was also shown to be involved in phosphate-activated MAPK in mammalian cells, it is currently unknown, whether orthologs of Pho84 have a role in phosphate-sensing in metazoan species. We show here that the activation of MAPK by phosphate observed in mammals is conserved in Drosophila cells, and used this assay to characterize the roles of putative phosphate transporters. Surprisingly, while we found that RNAi-mediated knockdown of the fly Pho89 ortholog dPit had little effect on the activation of MAPK in Drosophila S2R+ cells by phosphate, two Pho84/SLC17A1-9 MFS orthologs (MFS10 and MFS13) specifically inhibited this response. Further, using a Xenopus oocyte assay, we show that MSF13 mediates uptake of [(33)P]-orthophosphate in a sodium-dependent fashion. Consistent with a role in phosphate physiology, MSF13 is expressed highest in the Drosophila crop, midgut, Malpighian tubule, and hindgut. Altogether, our findings provide the first evidence that Pho84 orthologs mediate cellular effects of phosphate in metazoan cells. Finally, while phosphate is essential for Drosophila larval development, loss of MFS13 activity is compatible with viability indicating redundancy at the levels of the transporters.

  5. Facilitated transport of heavy metals by bacterial colloids in sand columns

    Science.gov (United States)

    Guiné, V.; Martins, J.; Gaudet, J. P.

    2003-05-01

    The aim of this work is to evaluate the ability of biotic collois (e.g. bacterial cells) to facilitate the transport of heavy metals in soils. and to identify the main factors influencing colloid transport in order to detelmine the geo-chemical conditions where this secondary transport process may become dominant. The model colloids studied here are living cells of Escherichia coli and Ralstonia metallidurans. We studied the transport of mercury zinc, and cadmium in columns of Fontainebleau sand. The properties (i.e. optical and morphological properties, charge (zeta potential, zeta) and hydrophobia (water/hexadecane distribution parameter, K_{hw})) of the bacterial cells surface were characterised, as well as their potential for heavy metals sorption (kinetic and isotherm). Both surface charge (zeta=-54 and -14 mV) and hydrophobia (K_{hw} = 0.25 and 0.05) differ strongly for the two bacteria. Column studies were conducted with bacteria and heavy metals separately or simultaneously. The cell surface differences led to different transport behaviour of the two bacteria, although the retardation factor is close to 1 for both. We observed that colloid mobility increases when increasing bacterial cells concentration and when decreasing the ionic strength. We also observed that bacterial colloids appeared as excellent vectors for Hg, Zn and Cd. Indeed, heavy metals adsorbed on the Fontainebleau sand when injected alone in columns (retardation factors of 1.4 ; 2.9 and 3.8 for Hg, Zn and Cd, respectively); whereas no retardation (R≈1) is observed when injected in the presence of both bacteria. Moreover, transport of bio-sorbed metal appears to be 4 to 6 times higher than dissolved heavy-metal.

  6. Immunocytochemical analysis of glucose transporter protein-1 (GLUT-1) in typical, brain invasive, atypical and anaplastic meningioma.

    Science.gov (United States)

    van de Nes, Johannes A P; Griewank, Klaus G; Schmid, Kurt-Werner; Grabellus, Florian

    2015-02-01

    Glucose transporter-1 (GLUT-1) is one of the major isoforms of the family of glucose transporter proteins that facilitates the import of glucose in human cells to fuel anaerobic metabolism. The present study was meant to determine the extent of the anaerobic/hypoxic state of the intratumoral microenvironment by staining for GLUT-1 in intracranial non-embolized typical (WHO grade I; n = 40), brain invasive and atypical (each WHO grade II; n = 38) and anaplastic meningiomas (WHO grade III, n = 6). In addition, GLUT-1 staining levels were compared with the various histological criteria used for diagnosing WHO grade II and III meningiomas, namely, brain invasion, increased mitotic activity and atypical cytoarchitectural change, defined by the presence of at least three out of hypercellularity, sheet-like growth, prominent nucleoli, small cell change and "spontaneous" necrosis. The level of tumor hypoxia was assessed by converting the extent and intensity of the stainings by multiplication in an immunoreactive score (IRS) and statistically evaluated. The results were as follows. (1) While GLUT-1 expression was found to be mainly weak in WHO grade I meningiomas (IRS = 1-4) and to be consistently strong in WHO grade III meningiomas (IRS = 6-12), in WHO grade II meningiomas GLUT-1 expression was variable (IRS = 1-9). (2) Histologically typical, but brain invasive meningiomas (WHO grade II) showed no or similarly low levels of GLUT-1 expression as observed in WHO grade I meningiomas (IRS = 0-4). (3) GLUT-1 expression was observed in the form of a patchy, multifocal staining reaction in 76% of stained WHO grade I-III meningiomas, while diffuse staining (in 11%) and combined multifocal and areas of diffuse staining (in 13%) were only detected in WHO grades II and III meningiomas, except for uniform staining in angiomatous WHO grade I meningioma. (4) "Spontaneous" necrosis and small cell change typically occurred away from the intratumoral capillary

  7. Elevated skeletal muscle glucose transporter levels in exercise-trained middle-aged men.

    Science.gov (United States)

    Houmard, J A; Egan, P C; Neufer, P D; Friedman, J E; Wheeler, W S; Israel, R G; Dohm, G L

    1991-10-01

    Exercise training has been proposed to improve whole body insulin sensitivity through a postreceptor adaptation in skeletal muscle. This study examined if levels of the insulin-responsive muscle glucose transporter protein (GLUT-4) were associated with improved insulin sensitivity in trained vs. sedentary middle-aged individuals. Muscle GLUT-4 levels and oral glucose tolerance test (OGTT) responses were obtained in age-matched trained and sedentary men (n = 11). Plasma insulin levels during the OGTT were significantly lower (P less than 0.01) in the trained men, whereas no differences were seen in plasma glucose responses. GLUT-4 protein content was approximately twofold higher in the trained men (2.41 +/- 0.17 vs. 1.36 +/- 0.11 micrograms standard, P less than 0.001). OGTT responses and GLUT-4 levels were not altered 15-18 h after a standard exercise bout in six representative sedentary subjects. These data suggest that GLUT-4 levels are increased in conjunction with insulin sensitivity in chronically exercise-trained middle-aged men. This finding suggests a possible mechanism for the improved insulin sensitivity observed with exercise training in humans.

  8. Fabrication of CO2 Facilitated Transport Channels in Block Copolymer through Supramolecular Assembly

    Directory of Open Access Journals (Sweden)

    Yao Wang

    2014-05-01

    Full Text Available In this paper, the molecule 12-amidine dodecanoic acid (M with ending groups of carboxyl and amidine groups respectively was designed and synthesized as CO2-responsive guest molecules. The block copolymer polystyrene-b-polyethylene oxide (PS-b-PEO was chosen as the host polymer to fabricate a composite membrane through H-bonding assembly with guest molecule M. We attempted to tune the phase separation structure of the annealed film by varying the amount of M added, and investigated the nanostructures via transmission electron microscope (TEM, fourier transform infrared (FT-IR etc. As a result, a reverse worm-like morphology in TEM image of bright PS phase in dark PEO/M matrix was observed for PS-b-PEO/M1 membrane in which the molar ratio of EO unit to M was 1:1. The following gas permeation measurement indicated that the gas flux of the annealed membranes dramatically increased due to the forming of ordered phase separation structure. As we expected, the obtained composite membrane PS-b-PEO/M1 with EO:M mole ratio of 1:1 presented an evident selectivity for moist CO2 permeance, which is identical with our initial proposal that the guest molecule M in the membranes will play the key role for CO2 facilitated transportation since the amidine groups of M could react reversibly with CO2 molecules in membranes. This work provides a supramolecular approach to fabricating CO2 facilitated transport membranes.

  9. Effect of puerarin on the P13K pathway for glucose transportation and insulin signal transduction in adipocytes

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ying; ZHOU You; YIN Hui-jun; ZHANG Ying

    2009-01-01

    To explore the effect of puerarin on insulin receptor (IR), insulin receptor substrate-1 (IRS-1) and protein expression of protein kinase B(PKB) in the P13K pathway of the glucose consumption, transportation and insulin signal transduction in 3T3-L1 adipocytes with insulin resistance. The insulin resistance 3T3-L1 adiocytes model was established by free fatty acid induction. The model cells were managed with puerarin in different concentrations. Glucose consumption was detected with glucose oxidase method, glucose transportation rate was determined by 2-deoxy-3 H glucose ingesting method, and the IR, IRS-1 and PKB expression were determined by Western blot. Glucose consumption and transportation were significantly decreased in the model adipocytes, but increased after treated with puerarin (P < 0. 01 ). Moreover, the level of tyrosine phosphorylation of IR subunit βwas higher in the puerarin treated groups, and that of IRS-1 was higher in the group treated with low dose puerarin than that in the model group. The 3T3-L1 adipocytes of insulin resistance model could be induced by free fatty acid successfully, puerarin could promote the glucose utilization in them to alleviate the insulin resistance, which may be related with the action in advancing the tyrosine phosphorylation of IR and IRS-1.

  10. Zinc transporter 5 and zinc transporter 7 induced by high glucose protects peritoneal mesothelial cells from undergoing apoptosis.

    Science.gov (United States)

    Zhang, Xiuli; Liang, Dan; Guo, Baolei; Deng, Wenyan; Chi, Zhi-Hong; Cai, Yuan; Wang, Lining; Ma, Jianfei

    2013-04-01

    Zinc is an essential micronutrient and cytoprotectant involved in many types of apoptosis. The zinc transporter family SLC30A (ZnTs) is an important factor in the regulation of zinc homeostasis; however, its function in apoptosis in peritoneal mesothelial cells (PMCs) remains unknown. This study explores the regulation of zinc transporters and how they play a role in cell survival, particularly in rat peritoneal mesothelial cells (RPMCs), surrounding glucose concentrations, and the molecular mechanism involved. The messenger RNA (mRNA) transcripts were quantitatively measured by real-time polymerase chain reaction for all known nine zinc transport exporters (SLC30A1-8,10), as well as in primary RPMCs and the cells cultured under nonstimulated and HG-stimulated conditions. While many zinc transporters were constitutively expressed, ZnT5 mRNA and ZnT7 mRNA were strongly induced by HG. Overexpression of ZnT5 and ZnT7 respectively resulted in a decrease in the expression of caspace 3, caspace 8, BAX, and AIF and coincided with cell survival in the presence of HG. Inhibition of ZnT5 and ZnT7 expression using considerable siRNA-mediated knockdown of RPMCs was examined and, afterwards, the impact on cell apoptosis was investigated. Increased levels of apoptosis were observed after knockdown of ZnT5 and ZnT7. Furthermore, overexpression of ZnT5 and ZnT7 is accompanied by activation of PI3K/Akt pathway and inhibiting HG-induced apoptosis. This study suggests that the zinc transporting system in RPMCs is influenced by exposure to HG, particularly ZnT5 and ZnT7. This may account for the inhibition of HG-induced RPMC apoptosis and peritoneum injury, likely through targeting PI3K/Akt pathway-mediated cell survival.

  11. Endoproteolytic cleavage of TUG protein regulates GLUT4 glucose transporter translocation.

    Science.gov (United States)

    Bogan, Jonathan S; Rubin, Bradley R; Yu, Chenfei; Löffler, Michael G; Orme, Charisse M; Belman, Jonathan P; McNally, Leah J; Hao, Mingming; Cresswell, James A

    2012-07-06

    To promote glucose uptake into fat and muscle cells, insulin causes the translocation of GLUT4 glucose transporters from intracellular vesicles to the cell surface. Previous data support a model in which TUG traps GLUT4-containing vesicles and tethers them intracellularly in unstimulated cells and in which insulin mobilizes this pool of vesicles by releasing this tether. Here we show that TUG undergoes site-specific endoproteolytic cleavage, which separates a GLUT4-binding, N-terminal region of TUG from a C-terminal region previously suggested to bind an intracellular anchor. Cleavage is accelerated by insulin stimulation in 3T3-L1 adipocytes and is highly dependent upon adipocyte differentiation. The N-terminal TUG cleavage product has properties of a novel 18-kDa ubiquitin-like modifier, which we call TUGUL. The C-terminal product is observed at the expected size of 42 kDa and also as a 54-kDa form that is released from membranes into the cytosol. In transfected cells, intact TUG links GLUT4 to PIST and also binds Golgin-160 through its C-terminal region. PIST is an effector of TC10α, a GTPase previously shown to transmit an insulin signal required for GLUT4 translocation, and we show using RNAi that TC10α is required for TUG proteolytic processing. Finally, we demonstrate that a cleavage-resistant form of TUG does not support highly insulin-responsive GLUT4 translocation or glucose uptake in 3T3-L1 adipocytes. Together with previous results, these data support a model whereby insulin stimulates TUG cleavage to liberate GLUT4 storage vesicles from the Golgi matrix, which promotes GLUT4 translocation to the cell surface and enhances glucose uptake.

  12. Immunohistochemical Evaluation of Glucose Transporter Type 1 in Epithelial Dysplasia and Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Pereira, Karuza Maria Alves; Feitosa, Sthefane Gomes; Lima, Ana Thayssa Tomaz; Luna, Ealber Carvalho Macedo; Cavalcante, Roberta Barroso; de Lima, Kenio Costa; Chaves, Filipe Nobre; Costa, Fábio Wildson Gurgel

    2016-01-01

    Oral squamous cell carcinoma (OSCC) is the most common malignancy of the oral cavity and some of these have been documented in association or preceded by oral epithelial dysplasia (OED). Aggressive cancers with fast growth have demonstrated overexpression of some glucose transporters (GLUTs). Thus, the aim of this study was to analyze the immunohistochemical expression of the glucose transporter, GLUT-1, in OEDs and OSCCs, seeking to better elucidate the biological behavior of neoplasias. Fifteen cases were selected this research of both lesions. Five areas were analyzed from each case by counting the percentage of positive cells at 400x magnification. Immunoreactivity of GLUT-1 was observed in 100% of the samples ranging from 54.2% to 86.2% for the OSCC and 73.9% to 97.4% for the OED. Statistical test revealed that there was greater overexpression of GLUT-1 in OED than the OSCC (p=0.01). It is believed the high expression of GLUT-1 may reflect the involvement of GLUT-1 in early stages of oral carcinogenesis.

  13. Modified Atkins diet therapy for a case with glucose transporter type 1 deficiency syndrome.

    Science.gov (United States)

    Ito, Susumu; Oguni, Hirokazu; Ito, Yasushi; Ishigaki, Keiko; Ohinata, Junko; Osawa, Makiko

    2008-03-01

    Glucose transporter type 1 deficiency syndrome (GLUT-1 DS), giving rise to impaired glucose transport across the blood-brain barrier, is characterized by infantile seizures, complex motor disorders, global developmental delay, acquired microcephaly, and hypoglycorrhachia. GLUT-1 DS can be treated effectively with a ketogenic diet because it can provide an alternative fuel for brain metabolism; however, the excessive restriction of food intake involved frequently makes it difficult for patients to initiate or continue the diet. Recently, the modified Atkins diet, which is much less restrictive in terms of the total calorie and protein intake than the classical ketogenic diet, has been shown to be effective and well tolerated in children with intractable epilepsy. We successfully introduced the modified Atkins diet to a 7-year-old boy with GLUT-1 DS, whose caregivers refused ketogenic diet treatment because of strong concerns over restricting the diet. The modified Atkins diet should be considered for patients with GLUT-1 DS as an alternative to the traditional ketogenic diet.

  14. A Protein Kinase C Phosphorylation Motif in GLUT1 Affects Glucose Transport and is Mutated in GLUT1 Deficiency Syndrome.

    Science.gov (United States)

    Lee, Eunice E; Ma, Jing; Sacharidou, Anastasia; Mi, Wentao; Salato, Valerie K; Nguyen, Nam; Jiang, Youxing; Pascual, Juan M; North, Paula E; Shaul, Philip W; Mettlen, Marcel; Wang, Richard C

    2015-06-04

    Protein kinase C has been implicated in the phosphorylation of the erythrocyte/brain glucose transporter, GLUT1, without a clear understanding of the site(s) of phosphorylation and the possible effects on glucose transport. Through in vitro kinase assays, mass spectrometry, and phosphospecific antibodies, we identify serine 226 in GLUT1 as a PKC phosphorylation site. Phosphorylation of S226 is required for the rapid increase in glucose uptake and enhanced cell surface localization of GLUT1 induced by the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Endogenous GLUT1 is phosphorylated on S226 in primary endothelial cells in response to TPA or VEGF. Several naturally occurring, pathogenic mutations that cause GLUT1 deficiency syndrome disrupt this PKC phosphomotif, impair the phosphorylation of S226 in vitro, and block TPA-mediated increases in glucose uptake. We demonstrate that the phosphorylation of GLUT1 on S226 regulates glucose transport and propose that this modification is important in the physiological regulation of glucose transport.

  15. Molecular mechanisms beyond glucose transport in diabetes-related male infertility.

    Science.gov (United States)

    Alves, M G; Martins, A D; Rato, L; Moreira, P I; Socorro, S; Oliveira, P F

    2013-05-01

    Diabetes mellitus (DM) is one of the greatest public health threats in modern societies. Although during a few years it was suggested that DM had no significant effect in male reproductive function, this view has been challenged in recent years. The increasing incidence of DM worldwide will inevitably result in a higher prevalence of this pathology in men of reproductive age and subfertility or infertility associated with DM is expected to dramatically rise in upcoming years. From a clinical perspective, the evaluation of semen parameters, as well as spermatozoa deoxyribonucleic acid (DNA) integrity, are often studied due to their direct implications in natural and assisted conception. Nevertheless, recent studies based on the molecular mechanisms beyond glucose transport in testicular cells provide new insights in DM-induced alterations in male reproductive health. Testicular cells have their own glucose sensing machinery that react to hormonal fluctuations and have several mechanisms to counteract hyper- and hypoglycemic events. Moreover, the metabolic cooperation between testicular cells is crucial for normal spermatogenesis. Sertoli cells (SCs), which are the main components of blood-testis barrier, are not only responsible for the physical support of germ cells but also for lactate production that is then metabolized by the developing germ cells. Any alteration in this tied metabolic cooperation may have a dramatic consequence in male fertility potential. Therefore, we present an overview of the clinical significance of DM in the male reproductive health with emphasis on the molecular mechanisms beyond glucose fluctuation and transport in testicular cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates.

    Science.gov (United States)

    Bienert, Gerd Patrick; Bienert, Manuela Désirée; Jahn, Thomas Paul; Boutry, Marc; Chaumont, François

    2011-04-01

    Major intrinsic proteins (MIPs) transport water and uncharged solutes across membranes in all kingdoms of life. Recently, an uncharacterized MIP subfamily was identified in the genomes of plants and fungi and named X Intrinsic Proteins (XIPs). Here, we describe the genetic features, localization, expression, and functions of a group of Solanaceae XIPs. XIP cDNA and gDNA were cloned from tobacco, potato, tomato, and morning glory. A conserved sequence motif in the first intron of Solanaceae XIPs initiates an RNA-processing mechanism that results in two splice variants (α and β). When transiently or stably expressed in tobacco plants, yellow fluorescent protein-tagged NtXIP1;1α and NtXIP1;1β were both localized in the plasma membrane. Transgenic tobacco lines expressing NtXIP1;1-promoter-GUS constructs and RT-PCR studies showed that NtXIP1;1 was expressed in all organs. The NtXIP1;1 promoter was mainly active in cell layers facing the environment in all above-ground tissues. Heterologous expression of Solanaceae XIPs in Xenopus laevis oocytes and various Saccharomyces cerevisiae mutants demonstrated that these isoforms facilitate the transport of bulky solutes, such as glycerol, urea, and boric acid. In contrast, permeability for water was undetectable. These data suggest that XIPs function in the transport of uncharged solutes across the cell plasma membrane in specific plant tissues, including at the interface between the environment and external cell layers.

  17. Characterization of putative multidrug resistance transporters of the major facilitator-superfamily expressed in Salmonella Typhi.

    Science.gov (United States)

    Shaheen, Aqsa; Ismat, Fouzia; Iqbal, Mazhar; Haque, Abdul; De Zorzi, Rita; Mirza, Osman; Walz, Thomas; Rahman, Moazur

    2015-05-01

    Multidrug resistance mediated by efflux pumps is a well-known phenomenon in infectious bacteria. Although much work has been carried out to characterize multidrug efflux pumps in Gram-negative and Gram-positive bacteria, such information is still lacking for many deadly pathogens. The aim of this study was to gain insight into the substrate specificity of previously uncharacterized transporters of Salmonella Typhi to identify their role in the development of multidrug resistance. S. Typhi genes encoding putative members of the major facilitator superfamily were cloned and expressed in the drug-hypersensitive Escherichia coli strain KAM42, and tested for transport of 25 antibacterial compounds, including representative antibiotics of various classes, antiseptics, dyes and detergents. Of the 15 tested putative transporters, STY0901, STY2458 and STY4874 exhibited a drug-resistance phenotype. Among these, STY4874 conferred resistance to at least ten of the tested antimicrobials: ciprofloxacin, norfloxacin, levofloxacin, kanamycin, streptomycin, gentamycin, nalidixic acid, chloramphenicol, ethidium bromide, and acriflavine, including fluoroquinolone antibiotics, which were drugs of choice to treat S. Typhi infections. Cell-based functional studies using ethidium bromide and acriflavine showed that STY4874 functions as a H(+)-dependent exporter. These results suggest that STY4874 may be an important drug target, which can now be tested by studying the susceptibility of a STY4874-deficient S. Typhi strain to antimicrobials.

  18. Specificity of drug transport mediated by CaMDR1: a major facilitator of Candida albicans

    Indian Academy of Sciences (India)

    Avmeet Kohli; Vinita Gupta; Shankarling Krishnamurthy; Seyed E Hasnain; Rajendra Prasad

    2001-09-01

    CaMDR1 encodes a major facilitator superfamily (MFS) protein in Candida albicans whose expression has been linked to azole resistance and which is frequently encountered in this human pathogenic yeast. In this report we have overexpressed CaMdr1p in Sf9 insect cells and demonstrated for the first time that it can mediate methotrexate (MTX) and fluconazole (FLC) transport. MTX appeared to be a better substrate for CaMdr1p among these two tested drugs. Due to severe toxicity of these drugs to insect cells, further characterization of CaMdr1p as a drug transporter could not be done with this system. Therefore, as an alternative, CaMdr1p and Cdr1p, which is an ABC protein (ATP binding cassette) also involved in azole resistance in C. albicans, were independently expressed in a common hypersensitive host JG436 of Saccharomyces cerevisiae. This allowed a better comparison between the functionality of the two export pumps. We observed that while both FLC and MTX are effluxed by CaMdr1p, MTX appeared to be a poor substrate for Cdr1p. JG436 cells expressing Cdr1p thus conferred resistance to other antifungal drugs but remained hypersensitive to MTX. Since MTX is preferentially transported by CaMdr1p, it can be used for studying the function of this MFS protein.

  19. Characterization of cerebral glucose dynamics in vivo with a four-state conformational model of transport at the blood-brain barrier.

    Science.gov (United States)

    Duarte, João M N; Gruetter, Rolf

    2012-05-01

    Determination of brain glucose transport kinetics in vivo at steady-state typically does not allow distinguishing apparent maximum transport rate (T(max)) from cerebral consumption rate. Using a four-state conformational model of glucose transport, we show that simultaneous dynamic measurement of brain and plasma glucose concentrations provide enough information for independent and reliable determination of the two rates. In addition, although dynamic glucose homeostasis can be described with a reversible Michaelis-Menten model, which is implicit to the large iso-inhibition constant (K(ii)) relative to physiological brain glucose content, we found that the apparent affinity constant (K(t)) was better determined with the four-state conformational model of glucose transport than with any of the other models tested. Furthermore, we confirmed the utility of the present method to determine glucose transport and consumption by analysing the modulation of both glucose transport and consumption by anaesthesia conditions that modify cerebral activity. In particular, deep thiopental anaesthesia caused a significant reduction of both T(max) and cerebral metabolic rate for glucose consumption. In conclusion, dynamic measurement of brain glucose in vivo in function of plasma glucose allows robust determination of both glucose uptake and consumption kinetics.

  20. Experimental lead poisoning and intestinal transport of glucose, amino acids, and sodium.

    Science.gov (United States)

    Wapnir, R A; Exeni, R A; McVicar, M; Lipshitz, F

    1977-03-01

    Juvenile rats fed a diet containing 1% lead acetate for 7 weeks, in addition to an impaired growth rate and renal function derangements, suffered malabsorption of glucose and certain amino acids, as assessed by an in vivo perfusion technique. The reduction in glucose absorption ranged between 10% and 31% when the carbohydrate was pumped in concentrations of 2-80 mM. This alteration was compatible with a noncompetitive type of transport inhibition. The intestinal absorption of glycine, lysine, and phenylalanine were, respectively, decreased 22, 18, and 15% when these amino acids were present at 1 mM levels. Sodium transport was severely reduced (57.6 +/- 17.9 (SEM) vs. 124.2 +/- 17.4 muEq/min-cm) and intestinal mucosa (Na+-K+)-ATPase was concomitantly lower in the lead-intoxicated rats (186.4 +/- 19.0 vs 268.4 +/- 29.8 nmol P/min-mg protein). However, this enzyme was not altered in liver and kidney. Furthermore, intestinal mucosa fructose-1,6-diphosphatase, succinic dehydrogenase, pyruvate kinase, and tryptophan hydroxylase were not different in experimental and control animals. These studies substantiate the presence of functional and biochemical abnormalities in the intestinal mucosa of young rats when fed substantial amounts of a soluble lead salt. It is, therefore, reasonable to accept the possibility that physiologic damage occurs in tissues directly subjected to high and persistent levels of a toxic agents, as it occurs in other organs, underscoring the parallelism between transport mechanisms at the renal and intestinal levels.

  1. Prolactin-induced Subcellular Targeting of GLUT1 Glucose Transporter in Living Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Arieh Riskin

    2015-10-01

    Full Text Available Background: Studying the biological pathways involved in mammalian milk production during lactation could have many clinical implications. The mammary gland is unique in its requirement for transport of free glucose into the cell for the synthesis of lactose, the primary carbohydrate in milk. Objective: To study GLUT1 trafficking and subcellular targeting in living mammary epithelial cells (MEC in culture. Methods: Immunocytochemistry was used to study GLUT1 hormonally regulated subcellular targeting in human MEC (HMEC. To study GLUT1 targeting and recycling in living mouse MEC (MMEC in culture, we constructed fusion proteins of GLUT1 and green fluorescent protein (GFP and expressed them in CIT3 MMEC. Cells were maintained in growth medium (GM, or exposed to secretion medium (SM, containing prolactin. Results: GLUT1 in HMEC localized primarily to the plasma membrane in GM. After exposure to prolactin for 4 days, GLUT1 was targeted intracellularly and demonstrated a perinuclear distribution, co-localizing with lactose synthetase. The dynamic trafficking of GFP-GLUT1 fusion proteins in CIT3 MMEC suggested a basal constitutive GLUT1 recycling pathway between an intracellular pool and the cell surface that targets most GLUT1 to the plasma membrane in GM. Upon exposure to prolactin in SM, GLUT1 was specifically targeted intracellularly within 90–110 minutes. Conclusions: Our studies suggest intracellular targeting of GLUT1 to the central vesicular transport system upon exposure to prolactin. The existence of a dynamic prolactin-induced sorting machinery for GLUT1 could be important for transport of free glucose into the Golgi for lactose synthesis during lactation.

  2. The effects of sodium-glucose co-transporter 2 inhibitors in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Storgaard, Heidi; Gluud, Lise Lotte; Christensen, Mikkel

    2014-01-01

    to the knowledge regarding the beneficial and harmful effects of SGLT-2i in patients with type 2 diabetes. We plan to publish the study irrespective of the results. RESULTS: The study will be disseminated by peer-review publication and conference presentation. TRIAL REGISTRATION NUMBER: PROSPERO CRD42014008960......INTRODUCTION: Sodium-glucose co-transporter 2 inhibitors (SGLT-2i) increase urinary glucose excretion through a reduced renal glucose reabsorption. We plan to perform a systematic review of SGLT-2i for treatment of type 2 diabetes. METHODS AND ANALYSIS: A systematic review with meta......-analyses of randomised clinical trials on SGLT-2i versus placebo, other oral glucose lowering drugs or insulin for patients with type 2 diabetes will be performed. The primary end point will be the glycated haemoglobin. Secondary end points will include changes in body weight, body mass index, fasting plasma glucose...

  3. In Vitro Infection of Trypanosoma cruzi Causes Decrease in Glucose Transporter Protein-1 (GLUT1 Expression in Explants of Human Placental Villi Cultured under Normal and High Glucose Concentrations

    Directory of Open Access Journals (Sweden)

    Luciana Mezzano

    2012-01-01

    Full Text Available Trypanosoma cruzi, the etiologic Chagas' disease agent, induces changes in protein pattern of the human placenta syncytiotrophoblast. The glucose transporter protein-1 (GLUT1 is the primary isoform involved in transplacental glucose transport. We carried out in vitro assays to determine if T. cruzi infection would induce changes in placental GLUT1 protein expression under normal and high concentration of glucose. Using Western blot and immunohistological techniques, GLUT1 expression was determined in normal placental villi cultured under normal or high concentrations of glucose, with or without in vitro T. cruzi infection, for 24 and 48 hours. High glucose media or T. cruzi infection alone reduced GLUT1 expression. A yet more accentuated reduction was observed when infection and high glucose condition took place together. We inform, for the first time, that T. cruzi infection may induce reduction of GLUT1 expression under normal and high glucose concentrations, and this effect is synergic to high glucose concentrations.

  4. Insulin-sensitive regulation of glucose transport and GLUT4 translocation in skeletal muscle of GLUT1 transgenic mice.

    Science.gov (United States)

    Etgen, G J; Zavadoski, W J; Holman, G D; Gibbs, E M

    1999-01-01

    Skeletal muscle glucose transport was examined in transgenic mice overexpressing the glucose transporter GLUT1 using both the isolated incubated-muscle preparation and the hind-limb perfusion technique. In the absence of insulin, 2-deoxy-d-glucose uptake was increased approximately 3-8-fold in isolated fast-twitch muscles of GLUT1 transgenic mice compared with non-transgenic siblings. Similarly, basal glucose transport activity was increased approximately 4-14-fold in perfused fast-twitch muscles of transgenic mice. In non-transgenic mice insulin accelerated glucose transport activity approximately 2-3-fold in isolated muscles and to a much greater extent ( approximately 7-20-fold) in perfused hind-limb preparations. The observed effect of insulin on glucose transport in transgenic muscle was similarly dependent upon the technique used for measurement, as insulin had no effect on isolated fast-twitch muscle from transgenic mice, but significantly enhanced glucose transport in perfused fast-twitch muscle from transgenic mice to approximately 50-75% of the magnitude of the increase observed in non-transgenic mice. Cell-surface glucose transporter content was assessed via 2-N-4-(l-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis-(d -mannos-4-yloxy)-2-propylamine photolabelling methodology in both isolated and perfused extensor digitorum longus (EDL). Cell-surface GLUT1 was enhanced by as much as 70-fold in both isolated and perfused EDL of transgenic mice. Insulin did not alter cell-surface GLUT1 in either transgenic or non-transgenic mice. Basal levels of cell-surface GLUT4, measured in either isolated or perfused EDL, were similar in transgenic and non-transgenic mice. Interestingly, insulin enhanced cell-surface GLUT4 approximately 2-fold in isolated EDL and approximately 6-fold in perfused EDL of both transgenic and non-transgenic mice. In summary, these results reveal differences between isolated muscle and perfused hind-limb techniques, with the latter method showing a

  5. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters.

    Science.gov (United States)

    Gonçalves, Davi L; Matsushika, Akinori; de Sales, Belisa B; Goshima, Tetsuya; Bon, Elba P S; Stambuk, Boris U

    2014-09-01

    Since the uptake of xylose is believed to be one of the rate-limiting steps for xylose ethanol fermentation by recombinant Saccharomyces cerevisiae strains, we transformed a hxt-null strain lacking the major hexose transporters (hxt1Δ-hxt7Δ and gal2Δ) with an integrative plasmid to overexpress the genes for xylose reductase (XYL1), xylitol dehydrogenase (XYL2) and xylulokinase (XKS1), and analyzed the impact that overexpression of the HXT1, HXT2, HXT5 or HXT7 permeases have in anaerobic batch fermentations using xylose, glucose, or xylose plus glucose as carbon sources. Our results revealed that the low-affinity HXT1 permease allowed the maximal consumption of sugars and ethanol production rates during xylose/glucose co-fermentations, but was incapable to allow xylose uptake when this sugar was the only carbon source. The moderately high-affinity HXT5 permease was a poor glucose transporter, and it also did not allow significant xylose uptake by the cells. The moderately high-affinity HXT2 permease allowed xylose uptake with the same rates as those observed during glucose consumption, even under co-fermentation conditions, but had the drawback of producing incomplete fermentations. Finally, the high-affinity HXT7 permease allowed efficient xylose fermentation, but during xylose/glucose co-fermentations this permease showed a clear preference for glucose. Thus, our results indicate that approaches to engineer S. cerevisiae HXT transporters to improve second generation bioethanol production need to consider the composition of the biomass sugar syrup, whereby the HXT1 transporter seems more suitable for hydrolysates containing xylose/glucose blends, whereas the HXT7 permease would be a better choice for xylose-enriched sugar streams.

  6. Contraction-stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmatic reticulum Ca2+ release

    Directory of Open Access Journals (Sweden)

    Thomas E. Jensen

    2014-10-01

    Full Text Available Understanding how muscle contraction orchestrates insulin-independent muscle glucose transport may enable development of hyperglycemia-treating drugs. The prevailing concept implicates Ca2+ as a key feed forward regulator of glucose transport with secondary fine-tuning by metabolic feedback signals through proteins such as AMPK. Here, we demonstrate in incubated mouse muscle that Ca2+ release is neither sufficient nor strictly necessary to increase glucose transport. Rather, the glucose transport response is associated with metabolic feedback signals through AMPK, and mechanical stress-activated signals. Furthermore, artificial stimulation of AMPK combined with passive stretch of muscle is additive and sufficient to elicit the full contraction glucose transport response. These results suggest that ATP-turnover and mechanical stress feedback are sufficient to fully increase glucose transport during muscle contraction, and call for a major reconsideration of the established Ca2+ centric paradigm.

  7. The biological activity of Coccinia indica on glucose transporter 1 (GLUT1 promoter

    Directory of Open Access Journals (Sweden)

    Juntipa Purintrapiban

    2009-08-01

    Full Text Available Plant derivatives with purported hypoglycemic properties have been used in traditional medicine around the world. Coccinia indica (ivy gourd is used in traditional medicine to treat diabetics in many countries. C. indica is able to cause a reduction in blood glucose level and has shown hypoglycemic activity in vitro and in vivo. However, the mechanism of this effect remains unknown. In this study, we generated the pGL3-glucose transporter 1 (GLUT1 promoter to elucidate the molecular mechanism of the regulation of GLUT1 gene expression in response to a water extract of C. indica stem (CIextract. A fragment of 2.1 kb of rat GLUT1 promoter, located at -2,106 to +134, was linked to firefly luciferase. The regulating transcription was analyzed in transient expression assay after transfection and exposure of L6 myocytes with the GLUT1 promoter system and CI extract, respectively. Under normal condition (5 mM glucose, promoter activity induced by 0.15 mg CI extract was markedly increased by 5.71 fold from the basal value. CI extract was more effective than 2 mM metformin. Surprisingly, promoter activity in hyperglycemic condition (15 mM glucose induced by 0.50 mg CI was increased by 1.63 fold from the basal value. In addition, CI extract increased the 2-deoxyglucose (2-DG uptake in L6myocytes in a dose-dependent manner in both conditions, 5 mM and 15 mM glucose. GLUT1 protein was determined by Western blot analysis and the level also increased in a dose-dependent fashion. Interestingly, the activity of the -273 to +134 of GLUT1 promoter was increased by 2.12 fold from the basal value. This site is the transcription initiation site containing GC box and TATA box. These observations suggest that the hypoglycemic action of C. indica may regulate through the activation of GLUT1 promoter resulting in an increase of the GLUT1 protein expression.

  8. Immunohistochemical expression of the glucose transporters Glut-1 and Glut-3 in human malignant melanomas and benign melanocytic lesions

    Directory of Open Access Journals (Sweden)

    Parente Paola

    2008-09-01

    Full Text Available Abstract Background Reported data indicate that cancer cells have increased rates of glucose metabolism, as determined by 18FDG-PET imaging in patients with malignancies. The results of many studies have demonstrated that the expression of glucose transporters, especially Glut-1, is increased in a variety of malignancies. This study was undertaken to assess the differential expression of Glut-1 and Glut-3 by benign and malignant melanocytic lesions. Methods Immunohistochemical staining for Glut-1 and Glut-3 was performed on paraffin-embedded tissue sections prepared from melanocytic nevi (12 cases, Spitz nevi (12 cases and primary cutaneous malignant melanomas (20 cases. Results We observed immunoreactivity for Glut-1 in all melanocytic nevi, 9 of the 12 Spitz nevi and in 9 of the 20 malignant melanomas, whereas Glut-3 was expressed in all the melanocytic lesions, both benign and malignant. Conclusion These findings indicate that the glucose transporters Glut-1 and Glut-3 play a role in the glucose metabolism of melanocytic cells. Glut-1 was present in the majority of benign nevi, whereas its expression was downregulated in 55% of malignant melanomas. Our results suggest that glucose transporter Glut-1 expression can significantly discriminate between human malignant melanoma and benign melanocytic nevi, and support the idea that additional mechanisms other than Glut-1 may contribute to glucose uptake in melanomas.

  9. Colloid facilitated transport in fractured rock : parameter estimation and comparison with experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, H. S. (Hari Selvi); Wolfsberg, A. V. (Andrew V.)

    2002-01-01

    Many contaminants in groundwater strongly interact with the immobile porous matrix, which retards their movement relative to groundwater flow. Colloidal particles, which are often present in groundwater, have a relatively small size and large specific surface area which makes it possible for them to also adsorb pollutants. The sorption of tracers to colloids may enhance their mobility in groundwater, relative to the case where colloids are not present. A class of pollutants for which colloid-facilitated transport may be of particular significance are radioactive isotopes. A major reason for why geologic repositories are considered suitable for the disposal of spent nuclear fuel is the strong affinity of many radionuclides to adsorb onto the porous matrix. Therefore, radionuclides accidentally released, would be contained in the geological media by adsorption or filtration until sufficient decay takes place. However, the presence of colloids may enhance radionuclide mobility in the groundwater, and reduce the efficiency of geologic media to act as a natural barrier.

  10. Chronic intermittent hypoxia from pedo-stage decreases glucose transporter 4 expression in adipose tissue and causes insulin resistance.

    Science.gov (United States)

    Chen, Lin; Cao, Zhao-long; Han, Fang; Gao, Zhan-cheng; He, Quan-ying

    2010-02-20

    The persistence of sleep disordered breathing (SDB) symptoms after tonsil and/or adenoid (T&A) surgery are common in children with obstructive sleep apnea (OSA). We tested the hypothesis that disturbances of glucose transporters (GLUTs) in intraabdominal adipose tissue caused by chronic intermittent hypoxia (CIH) from the pedo-period could facilitate the appearance of periphery insulin resistance in Sprague-Dawley (SD) rats. We tested the hypothesis that the changes of GLUTs in adipose tissue may be one of the reasons for persistent SDB among clinical OSA children after T&A surgery. Thirty 21-day-old SD rats were randomly divided into a CIH group, a chronic continuous hypoxia (CCH) group, and a normal oxygen group (control group) and exposed for 40 days. The changes of weight, fasting blood glucose and fasting blood insulin levels were measured. Hyperinsulinemic-euglycemic clamp techniques were used to measure insulin resistance in each animal. Real-time quantitative PCR and Western blotting were used to measure GLUT mRNA and proteins in intraabdominal adipose tissue. Additional intraabdomial white adipose tissue (WAT) was also processed into paraffin sections and directly observed for GLUTs1-4 expression. When compared with control group, CIH increased blood fasting insulin levels, (245.07 +/- 53.89) pg/ml vs. (168.63 +/- 38.70) pg/ml, P = 0.038, and decreased the mean glucose infusion rate (GIR), (7.25 +/- 1.29) mg x kg(-1) x min(-1) vs. (13.34 +/- 1.54) mg x kg(-1) x min(-1), P < 0.001. GLUT-4 mRNA and protein expression was significantly reduced after CIH compared with CCH or normal oxygen rats, 0.002 +/- 0.002 vs. 0.039 +/- 0.009, P < 0.001; 0.642 +/- 0.073 vs. 1.000 +/- 0.103, P = 0.035. CIH in young rats could induce insulin resistance via adverse effects on glycometabolism. These findings emphasize the importance of early detection and treatment of insulin insensitivity in obese childhood OSA.

  11. Chronic intermittent hypoxia from pedo-stage decreases glucose transporter 4 expression in adipose tissue and causes insulin resistance

    Institute of Scientific and Technical Information of China (English)

    CHEN Lin; CAO Zhao-long; HAN Fang; GAO Zhan-cheng; HE Quan-ying

    2010-01-01

    Background The persistence of sleep disordered breathing (SDB) symptoms after tonsil and/or adenoid (T&A) surgery are common in children with obstructive sleep apnea (OSA). We tested the hypothesis that disturbances of glucose transporters (GLUTs) in intraabdominal adipose tissue caused by chronic intermittent hypoxia (CIH) from the pedo-period could facilitate the appearance of periphery insulin resistance in Sprague-Dawley (SD) rats. We tested the hypothesis that the changes of GLUTs in adipose tissue may be one of the reasons for persistent SDB among clinical OSA children after T&A surgery.Methods Thirty 21-day-old SD rats were randomly divided into a CIH group, a chronic continuous hypoxia (CCH) group, and a normal oxygen group (control group) and exposed for 40 days. The changes of weight, fasting blood glucose and fasting blood insulin levels were measured. Hyperinsulinemic-euglycemic clamp techniques were used to measure insulin resistance in each animal. Real-time quantitative PCR and Westem blotting were used to measure GLUT Mrna and proteins in intraabdominal adipose tissue. Additional intraabdomial white adipose tissue (WAT) was also processed into paraffin sections and directly observed for GLUTs1-4 expression.Results When compared with control group, CIH increased blood fasting insulin levels, (245.07±53.89) pg/ml vs. (168.63±38.70) pg/ml, p=0.038, and decreased the mean glucose infusion rate (GIR), (7.25±1.29) mg·kg~(-1)·min~(-1) vs. (13.34±1.54) mg·kg~(-1)·min~(-1), P<0.001. GLUT-4 Mrna and protein expression was significantly reduced after CIH compared with CCH or normal oxygen rats, 0.002±0.002 vs. 0.039±0.009, P <0.001; 0.642±0.073 vs. 1.000±0.103, P=0.035.Conclusions CIH in young rats could induce insulin resistance via adverse effects on glycometabolism. These findings emphasize the importance of early detection and treatment of insulin insensitivity in obese childhood OSA.

  12. The Influence of Initial Peritoneal Transport Characteristics, Inflammation, and High Glucose Exposure on Prognosis for Peritoneal Membrane Function

    Science.gov (United States)

    Fernández-Reyes, M. José; Bajo, M. Auxiliadora; Del Peso, Gloria; Ossorio, Marta; Díaz, Raquel; Carretero, Beatriz; Selgas, Rafael

    2012-01-01

    ♦ Background: Fast transport status, acquired with time on peritoneal dialysis (PD), is a pathology induced by peritoneal exposure to bioincompatible solutions. Fast transport has important clinical consequences and should be prevented. ♦ Objective: We analyzed the repercussions of initial peritoneal transport characteristics on the prognosis for peritoneal membrane function, and also whether the influence of peritonitis and high exposure to glucose are different according to the initial peritoneal transport characteristics or the moment when such events occur. ♦ Methods: The study included 275 peritoneal dialysis patients with at least 2 peritoneal function studies (at baseline and 1 year). Peritoneal kinetic studies were performed at baseline and annually. Those studies consist of a 4-hour dwell with glucose (1.5% during 1981 - 1990, and 2.27% during 1991 - 2002) to calculate the peritoneal mass transfer coefficients of urea and creatinine (milliliters per minute) using a previously described mathematical model. ♦ Results: Membrane prognosis and technique survival were independent of baseline transport characteristics. Fast transport and ultrafiltration (UF) failure are reversible conditions, provided that peritonitis and high glucose exposure are avoided during the early dialysis period. The first year on PD is a main determining factor for the membrane’s future, and the mass transfer coefficient of creatinine at year 1 is the best functional predictor of future PD history. After 5 years on dialysis, permeability frequently increases, and UF decreases. Icodextrin is associated with peritoneal protection. ♦ Conclusions: Peritoneal membrane prognosis is independent of baseline transport characteristics. Intrinsic fast transport and low UF are reversible conditions when peritonitis and high glucose exposure are avoided during the early dialysis period. Icodextrin helps in glucose avoidance and is associated with peritoneal protection. PMID:22473036

  13. The sentrin-conjugating enzyme mUbc9 interacts with GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal muscle cells

    Science.gov (United States)

    Giorgino, Francesco; de Robertis, Ottilia; Laviola, Luigi; Montrone, Carmela; Perrini, Sebastio; McCowen, Karen C.; Smith, Robert J.

    2000-01-01

    Glucose transport in insulin-regulated tissues is mediated by the GLUT4 and GLUT1 transporters. Using the yeast two-hybrid system, we have cloned the sentrin-conjugating enzyme mUbc9 as a protein that interacts with the GLUT4 COOH-terminal intracellular domain. The mUbc9 enzyme was found to bind directly to GLUT4 and GLUT1 through an 11-aa sequence common to the two transporters and to modify both transporters covalently by conjugation with the mUbc9 substrate, sentrin. Overexpression of mUbc9 in L6 skeletal muscle cells decreased GLUT1 transporter abundance 65%, resulting in decreased basal glucose transport. By contrast, mUbc9 overexpression increased GLUT4 abundance 8-fold, leading to enhanced transport stimulation by insulin. A dominant-negative mUbc9 mutant lacking catalytic activity had effects opposite to those of wild-type mUbc9. The regulation of GLUT4 and GLUT1 was specific, as evidenced by an absence of mUbc9 interaction with or regulation of the GLUT3 transporter isoform in L6 skeletal muscle cells. The mUbc9 sentrin-conjugating enzyme represents a novel regulator of GLUT1 and GLUT4 protein levels with potential importance as a determinant of basal and insulin-stimulated glucose uptake in normal and pathophysiological states. PMID:10655495

  14. Intestinal D-glucose transport and membrane fluidity along crypt-villus axis of streptozocin-induced diabetic rats.

    Science.gov (United States)

    Dudeja, P K; Wali, R K; Klitzke, A; Brasitus, T A

    1990-10-01

    Diabetes was induced in male Lewis rats by a single injection of streptozocin (50 mg/kg body wt ip). After 10-14 days, diabetic and age- and sex-matched control animals were killed, and their proximal small intestines were removed. Villus-tip, mid-villus, and lower-villus enterocytes were harvested from each group with a method that combined divalent cation chelation with mild mechanical dissociation. These fractions were used as starting material to prepare brush-border membrane vesicles. Preparations from each of these fractions were then analyzed and compared with respect to their Na(+)-gradient-dependent and Na(+)-independent D-glucose transport, lipid fluidity, and lipid composition. The results of these experiments demonstrated that 1) maximum rates of Na(+)-gradient-dependent D-glucose transport (Vmax) were greatest in membrane vesicles prepared from mature cells (villus tip and mid villus) of control rats; 2) the glucose concentration producing half-maximal rates of transport (Km), however, was significantly lower in lower-villus membrane vesicles of control rats, suggesting that a distinct glucose transporter existed in the membranes of these relatively immature enterocytes; 3) Na(+)-gradient-dependent, but not Na(+)-independent, D-glucose uptake was greater in diabetic membrane vesicles prepared from mid-villus and lower-villus fractions but not in vesicles prepared from villus-tip cells; and 4) no obvious relationship between alterations in membrane lipid fluidity and enhanced uptake of Na(+)-gradient-dependent D-glucose by these transporter(s) could be established in this experimental model of acute diabetes mellitus.

  15. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development.

    Science.gov (United States)

    Liu, Xiaozhu; Zhang, Yan; Yang, Chao; Tian, Zhihong; Li, Jianxiong

    2016-04-22

    Plants transport photoassimilates from source organs to sink tissues through the phloem translocation pathway. In the transport phloem, sugars that escape from the sieve tubes are released into the apoplasmic space between the sieve element/companion cell complex (SE/CC) and phloem parenchyma cells (PPCs) during the process of long-distance transport. The competition for sugar acquisition between SE/CC and adjoining PPCs is mediated by plasma membrane translocators. YFP-tagged AtSWEET4 protein is localized in the plasma membrane, and PromoterAtSWEET4-GUS analysis showed that AtSWEET4 is expressed in the stele of roots and veins of leaves and flowers. Overexpression of AtSWEET4 in Arabidopsis increases plant size and accumulates more glucose and fructose. By contrast, knock-down of AtSWEET4 by RNA-interference leads to small plant size, reduction in glucose and fructose contents, chlorosis in the leaf vein network, and reduction in chlorophyll content in leaves. Yeast assays demonstrated that AtSWEET4 is able to complement both fructose and glucose transport deficiency. Transgenic plants of AtSWEET4 overexpression exhibit higher freezing tolerance and support more growth of bacterium Pseudomonas syringae pv. phaseolicola NPS3121. We conclude that AtSWEET4 plays an important role in mediating sugar transport in axial tissues during plant growth and development.

  16. Phylogenetic analysis and tissue distribution of elasmobranch glucose transporters and their response to feeding

    Directory of Open Access Journals (Sweden)

    Courtney A. Deck

    2016-03-01

    Full Text Available Elasmobranch diets consist of high quantities of protein and lipids, but very low levels of carbohydrates including glucose. Reflecting this diet, most tissues use lipids and ketone bodies as their main metabolic fuel. However, the rectal gland has been shown to be dependent on glucose as a fuel, so we hypothesized that glucose transporters (GLUTs would be present and upregulated in the gland during times of activation (e.g. following a meal. In this study, we searched for and identified putative class I GLUTs in three elasmobranchs and a holocephalan using transcriptomes, and used these to reconstruct a Bayesian phylogeny. We determined that each of the four species possessed three of the four class I GLUT sequences, but the identities of the isoforms present in each species differed between the elasmobranchs (GLUT1, 3 and 4 and the holocephalan (GLUT1, 2 and 3. We then used qPCR to measure mRNA levels of these GLUTs in the rectal gland, liver, intestine, and muscle of fed and starved spiny dogfish (Squalus suckleyi. The rectal gland data showed higher mRNA levels of GLUT4 in the starved relative to the fed fish. In the muscle, both GLUT1 and 4 were significantly elevated at 24 h post-feeding, as was the case for GLUT4 in the liver. In the intestine on the other hand, GLUT4 was significantly elevated by 6 h post-feeding, remaining elevated through 48 h. We suggest that GLUT4 has taken on the role of GLUT2 in elasmobranchs as the expression patterns observed in the liver and intestine are representative of GLUT2 in other vertebrates.

  17. Conditioning causes an increase in glucose transporter-4 levels in mononuclear cells in sled dogs.

    Science.gov (United States)

    Schnurr, Theresia M; Reynolds, Arleigh J; Gustafson, Sally J; Duffy, Lawrence K; Dunlap, Kriya L

    2014-10-01

    This study was designed to investigate the effects of physical conditioning on the expression of the insulin sensitive glucose transporter-4 protein (GLUT4) on mononuclear cells and HOMA-IR levels in dogs and compared to results reported in human skeletal muscle and the skeletal muscle of rodent models. Blood was sampled from conditioned dogs (n = 8) and sedentary dogs (n = 8). The conditioned dogs were exercised four months prior the experiment and were following a uniform training protocol, whereas the sedentary dogs were not. GLUT4 expression in mononuclear cells and plasma insulin levels were measured using commercially available enzyme-linked immunosorbent assay (ELISA). Blood glucose levels were determined using blood plasma. HOMA-IR was calculated using plasma insulin and blood glucose levels using the linear approximation formula. Our results indicate that the state of conditioning had a significant effect on the GLUT4 expression at the surface of mononuclear cells. HOMA-IR was also affected by conditioning in dogs. GLUT4 levels in mononuclear cells of sled dogs were inversely correlated with the homeostasis model assessment of insulin sensitivity. This study demonstrates that conditioning increases GLUT4 levels in mononuclear cells of sled dogs as it has been previously reported in skeletal muscle. Our results support the potential of white blood cells as a proxy tissue for studying insulin signaling and may lead to development of a minimally invasive and direct marker of insulin resistance. This may be the first report of GLUT4 in mononuclear cells in response to exercise and measured with ELISA.

  18. Colloid-Facilitated Transport of Cations in an Unsaturated Fractured Soil Under Transient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Joseph [Univ. of Colorado, Boulder, CO (United States)

    2015-01-31

    Rainfall experiments were conducted using intact soil cores and an instrumented soil pedon to examine the effect of physical heterogeneity and rainfall characteristics on the mobilization of colloids, organic matter, cesium, and strontium in a fractured soil. To measure the spatial variability of infiltration of colloids and contaminants, samples were collected through a 19-port grid placed below the soil core in laboratory study and in 27 samplers at multiple depths in the soil pedon in the field study. Cesium and strontium were applied to the soil cores and the soil pedon prior to mobilization experiments. Rainwater solutions of multiple ionic strengths and organic matter concentrations were applied to the soil cores and soil pedon to mobilize in situ colloids, cesium, and strontium. The mobilization of colloids and metal cations occurred through preferential flow paths in the soil cores. Compared to steady rainfall, greater amounts of colloids were mobilized during rainfall interrupted by pauses, which indicates that the supply of colloids to be mobilized was replenished during the pauses. A maximum in the amount of mobilized colloids were mobilized during a rainfall following a pause of 2.5 d. Pauses of shorter or longer duration resulted in less colloid mobilization. Freeze-thaw cycles, a transient condition in winter, enhanced colloid mobilization and colloid-facilitated transport of cesium and strontium in the soil cores. The exchange of solutes between the soil matrix and macropores caused a hysteretic mobilization of colloids, cesium, and strontium during changes in ionic strength. Colloid-facilitated mobilization of cesium and strontium was important at low ionic strength in fractures where slow flow allowed greater exchange of flow between the fractures and the surrounding matrix. The release of cesium and strontium by cation exchange occurred at high ionic strength in fractures where there is a little exchange of pore water with the surrounding matrix

  19. Exercise-induced increase in glucose transport, GLUT-4, and VAMP-2 in plasma membrane from human muscle

    DEFF Research Database (Denmark)

    Kristiansen, S; Hargreaves, Mark; Richter, Erik

    1996-01-01

    contractions may induce trafficking of GLUT-4-containing vesicles via a mechanism similar to neurotransmitter release. Our results demonstrate for the first time exercise-induced translocation of GLUT-4 and VAMP-2 to the plasma membrane of human muscle and increased sarcolemmal glucose transport.......A major effect of muscle contractions is an increase in sarcolemmal glucose transport. We have used a recently developed technique to produce sarcolemmal giant vesicles from human muscle biopsy samples obtained before and after exercise. Six men exercised for 10 min at 50% maximal O2 uptake (Vo2max...

  20. The small SLC43 family: facilitator system l amino acid transporters and the orphan EEG1.

    Science.gov (United States)

    Bodoy, Susanna; Fotiadis, Dimitrios; Stoeger, Claudia; Kanai, Yoshikatsu; Palacín, Manuel

    2013-01-01

    The SLC43 family is composed of only three genes coding for the plasma membrane facilitator system l amino acid transporters LAT3 (SLC43A1; TC 2.A.1.44.1) and LAT4 (SLC43A2; TC 2.A.1.44.2), and the orphan protein EEG1 (SLC43A3; TC 2.A.1.44.3). Besides the known mechanism of transport of LAT3 and LAT4, their physiological roles still remain quite obscure. Morphants suggested a role of LAT3 in renal podocyte development in zebrafish. Expression in liver and skeletal muscle, and up-regulation by starvation suggest a role of LAT3 in the flux of branched-chain amino acids (BCAAs) from liver and skeletal muscle to the bloodstream. Finally, LAT3 is up-regulated in androgen-dependent cancers, suggesting a role in mTORC1 signaling in this type of tumors. In addition, LAT4 might contribute to the transfer of BCAAs from mother to fetus. Unfortunately, the EEG1 mouse model (EEG1(Y221∗)) described here has not yet offered a clue to the physiological role of this orphan protein.

  1. Sodium-glucose co-transporter-2 inhibitors and euglycemic ketoacidosis: Wisdom of hindsight

    Directory of Open Access Journals (Sweden)

    Awadhesh Kumar Singh

    2015-01-01

    Full Text Available Sodium-glucose co-transporter-2 inhibitors (SGLT-2i are newly approved class of oral anti-diabetic drugs, in the treatment of type 2 diabetes, which reduces blood glucose through glucouresis via the kidney, independent, and irrespective of available pancreatic beta-cells. Studies conducted across their clinical development program found, a modest reduction in glycated hemoglobin ranging from −0.5 to −0.8%, without any significant hypoglycemia. Moreover, head-to-head studies versus active comparators yielded comparable efficacy. Interestingly, weight and blood pressure reduction were additionally observed, which was not only consistent but significantly superior to active comparators, including metformin, sulfonylureas, and dipeptydylpeptide-4 inhibitors. Indeed, these additional properties makes this class a promising oral anti-diabetic drug. Surprisingly, a potentially fatal unwanted side effect of diabetic ketoacidosis has been noted with its widespread use, albeit rarely. Nevertheless, this has created a passé among the clinicians. This review is an attempt to pool those ketosis data emerging with SGLT-2i, and put a perspective on its implicated mechanism.

  2. A potential role for glucose transporters in the evolution of human brain size.

    Science.gov (United States)

    Fedrigo, Olivier; Pfefferle, Adam D; Babbitt, Courtney C; Haygood, Ralph; Wall, Christine E; Wray, Gregory A

    2011-01-01

    Differences in cognitive abilities and the relatively large brain are among the most striking differences between humans and their closest primate relatives. The energy trade-off hypothesis predicts that a major shift in energy allocation among tissues occurred during human origins in order to support the remarkable expansion of a metabolically expensive brain. However, the molecular basis of this adaptive scenario is unknown. Two glucose transporters (SLC2A1 and SLC2A4) are promising candidates and present intriguing mutations in humans, resulting, respectively, in microcephaly and disruptions in whole-body glucose homeostasis. We compared SLC2A1 and SLC2A4 expression between humans, chimpanzees and macaques, and found compensatory and biologically significant expression changes on the human lineage within cerebral cortex and skeletal muscle, consistent with mediating an energy trade-off. We also show that these two genes are likely to have undergone adaptation and participated in the development and maintenance of a larger brain in the human lineage by modulating brain and skeletal muscle energy allocation. We found that these two genes show human-specific signatures of positive selection on known regulatory elements within their 5'-untranslated region, suggesting an adaptation of their regulation during human origins. This study represents the first case where adaptive, functional and genetic lines of evidence implicate specific genes in the evolution of human brain size. Copyright © 2011 S. Karger AG, Basel.

  3. Sodium-glucose co-transporter-2 inhibitors and euglycemic ketoacidosis: Wisdom of hindsight

    Science.gov (United States)

    Singh, Awadhesh Kumar

    2015-01-01

    Sodium-glucose co-transporter-2 inhibitors (SGLT-2i) are newly approved class of oral anti-diabetic drugs, in the treatment of type 2 diabetes, which reduces blood glucose through glucouresis via the kidney, independent, and irrespective of available pancreatic beta-cells. Studies conducted across their clinical development program found, a modest reduction in glycated hemoglobin ranging from −0.5 to −0.8%, without any significant hypoglycemia. Moreover, head-to-head studies versus active comparators yielded comparable efficacy. Interestingly, weight and blood pressure reduction were additionally observed, which was not only consistent but significantly superior to active comparators, including metformin, sulfonylureas, and dipeptydylpeptide-4 inhibitors. Indeed, these additional properties makes this class a promising oral anti-diabetic drug. Surprisingly, a potentially fatal unwanted side effect of diabetic ketoacidosis has been noted with its widespread use, albeit rarely. Nevertheless, this has created a passé among the clinicians. This review is an attempt to pool those ketosis data emerging with SGLT-2i, and put a perspective on its implicated mechanism. PMID:26693421

  4. Glucose transporter 1 (GLUT1) expression is associated with intestinal type of gastric carcinoma.

    Science.gov (United States)

    Kim, W. S.; Kim, Y. Y.; Jang, S. J.; Kimm, K.; Jung, M. H.

    2000-01-01

    Increased expression of glucose transporter1 (GLUT1) has been reported in many human cancers. We hypothesized that the degree of GLUT1 might provide a useful biological information in gastric adenocarcinoma. RT-PCR and immunostaining were used to analyze GLUT1 expression in gastric cancer. RT-PCR showed GLUT1 expression was not largely detected in normal gastric tissue but was detected in cancerous gastric tissue of counterpart. By immunohistochemistry, GLUT1 protein was absent in normal gastric epithelium and intestinal metaplasia. 11 of 65 patients with gastric adenocarcinoma had specific GLUT1 immunostaining in a plasma membrane pattern with varied intensities. GLUT1 protein did not show any significant correlation with tumor stage and nodal metastasis (p>0.05 by Mann-Whitney test). However, the positive immunostaining for GLUT1 is associated with intestinal differentiation (p=0.003). Our results suggest that GLUT1 protein is associated with intestinal type of gastric cancer. PMID:10983690

  5. Unusual phenotype of glucose transport protein type 1 deficiency syndrome: A case report and literature review

    Directory of Open Access Journals (Sweden)

    Annio Posar

    2014-01-01

    Full Text Available The glucose transport protein type 1 (GLUT1 deficit causes a chronic brain energy failure. The classic phenotype of GLUT1 deficiency syndrome is characterized by: Mild to severe motor delay and mental retardation; infantile-onset epilepsy; head growth deceleration; movement disorders (ataxia, dystonia, spasticity; and non-epileptic paroxysmal events (intermittent ataxia, periodic confusion, recurrent headaches. During last years the classic phenotype of this syndrome, as originally reported, has expanded. We report the atypical phenotype of a boy with GLUT1 deficiency syndrome, characterized by mild mental retardation and drug-resistant absence seizures with onset at the age of 6 years, without movement disorders nor decrease of head circumference. A prompt diagnosis of this disorder is mandatory since the ketogenic diet might represent an effective treatment.

  6. In vivo measurements of brain glucose transport using the reversible Michaelis-Menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia.

    Science.gov (United States)

    Choi, I Y; Lee, S P; Kim, S G; Gruetter, R

    2001-06-01

    Glucose is the major substrate that sustains normal brain function. When the brain glucose concentration approaches zero, glucose transport across the blood-brain barrier becomes rate limiting for metabolism during, for example, increased metabolic activity and hypoglycemia. Steady-state brain glucose concentrations in alpha-chloralose anesthetized rats were measured noninvasively as a function of plasma glucose. The relation between brain and plasma glucose was linear at 4.5 to 30 mmol/L plasma glucose, which is consistent with the reversible Michaelis-Menten model. When the model was fitted to the brain glucose measurements, the apparent Michaelis-Menten constant, Kt, was 3.3 +/- 1.0 mmol/L, and the ratio of the maximal transport rate relative to CMRglc, Tmax/CMRglc, was 2.7 +/- 0.1. This Kt is comparable to the authors' previous human data, suggesting that glucose transport kinetics in humans and rats are similar. Cerebral blood flow (CBF) was simultaneously assessed and constant above 2 mmol/L plasma glucose at 73 +/- 6 mL 100 g(-1) min(-1). Extrapolation of the reversible Michaelis-Menten model to hypoglycemia correctly predicted the plasma glucose concentration (2.1 +/- 0.6 mmol/L) at which brain glucose concentrations approached zero. At this point, CBF increased sharply by 57% +/- 22%, suggesting that brain glucose concentration is the signal that triggers defense mechanisms aimed at improving glucose delivery to the brain during hypoglycemia.

  7. Interactions of androgens, green tea catechins and the antiandrogen flutamide with the external glucose-binding site of the human erythrocyte glucose transporter GLUT1

    Science.gov (United States)

    Naftalin, Richard J; Afzal, Iram; Cunningham, Philip; Halai, Mansur; Ross, Clare; Salleh, Naguib; Milligan, Stuart R

    2003-01-01

    This study investigates the effects of androgens, the antiandrogen flutamide and green tea catechins on glucose transport inhibition in human erythrocytes. These effects may relate to the antidiabetogenic effects of green tea. Testosterone, 4-androstene-3,17-dione, dehydroepiandrosterone (DHEA) and DHEA-3-acetate inhibit glucose exit from human erythrocytes with half-maximal inhibitions (Ki) of 39.2±8.9, 29.6±3.7, 48.1±10.2 and 4.8±0.98 μM, respectively. The antiandrogen flutamide competitively relieves these inhibitions and of phloretin. Dehydrotestosterone has no effect on glucose transport, indicating the differences between androgen interaction with GLUT1 and human androgen receptor (hAR). Green tea catechins also inhibit glucose exit from erythrocytes. Epicatechin 3-gallate (ECG) has a Ki ECG of 0.14±0.01 μM, and epigallocatechin 3-gallate (EGCG) has a Ki EGCG of 0.97±0.13 μM. Flutamide reverses these effects. Androgen-screening tests show that the green tea catechins do not act genomically. The high affinities of ECG and EGCG for GLUT1 indicate that this might be their physiological site of action. There are sequence homologies between GLUT1 and the ligand-binding domain (LBD) of hAR containing the amino-acid triads Arg 126, Thr 30 and Asn 288, and Arg 126, Thr 30 and Asn 29, with similar 3D topology to the polar groups binding 3-keto and 17-β OH steroid groups in hAR LBD. These triads are appropriately sited for competitive inhibition of glucose import at the external opening of the hydrophilic pore traversing GLUT1. PMID:12970085

  8. Glucose elevates NITRATE TRANSPORTER2.1 protein levels and nitrate transport activity independently of its HEXOKINASE1-mediated stimulation of NITRATE TRANSPORTER2.1 expression.

    Science.gov (United States)

    de Jong, Femke; Thodey, Kate; Lejay, Laurence V; Bevan, Michael W

    2014-01-01

    Mineral nutrient uptake and assimilation is closely coordinated with the production of photosynthate to supply nutrients for growth. In Arabidopsis (Arabidopsis thaliana), nitrate uptake from the soil is mediated by genes encoding high- and low-affinity transporters that are transcriptionally regulated by both nitrate and photosynthate availability. In this study, we have studied the interactions of nitrate and glucose (Glc) on gene expression, nitrate transport, and growth using glucose-insensitive2-1 (gin2-1), which is defective in sugar responses. We confirm and extend previous work by showing that HEXOKINASE1-mediated oxidative pentose phosphate pathway (OPPP) metabolism is required for Glc-mediated NITRATE TRANSPORTER2.1 (NRT2.1) expression. Treatment with pyruvate and shikimate, two products derived from intermediates of the OPPP that are destined for amino acid production, restores wild-type levels of NRT2.1 expression, suggesting that metabolites derived from OPPP metabolism can, together with Glc, directly stimulate high levels of NRT2.1 expression. Nitrate-mediated NRT2.1 expression is not influenced by gin2-1, showing that Glc does not influence NRT2.1 expression through nitrate-mediated mechanisms. We also show that Glc stimulates NRT2.1 protein levels and transport activity independently of its HEXOKINASE1-mediated stimulation of NRT2.1 expression, demonstrating another possible posttranscriptional mechanism influencing nitrate uptake. In gin2-1 plants, nitrate-responsive biomass growth was strongly reduced, showing that the supply of OPPP metabolites is essential for assimilating nitrate for growth.

  9. Muscle Mitochondrial ATP Synthesis and Glucose Transport/Phosphorylation in Type 2 Diabetes

    OpenAIRE

    Julia Szendroedi; Schmid, Albrecht I; Marek Chmelik; Christian Toth; Attila Brehm; Martin Krssak; Peter Nowotny; Michael Wolzt; Werner Waldhausl; Michael Roden

    2007-01-01

    Editors' Summary Background. Diabetes mellitus is an increasingly common chronic disease characterized by high blood sugar (glucose) levels. In normal individuals, blood sugar levels are maintained by the hormone insulin. Insulin is released by the pancreas when blood glucose levels rise after eating (glucose is produced by the digestion of food) and “instructs” insulin-responsive muscle and fat cells to take up glucose from the bloodstream. The cells then use glucose as a fuel or convert it ...

  10. Electron transport phosphorylation in rumen butyrivibrios: unprecedented ATP yield for glucose fermentation to butyrate

    Directory of Open Access Journals (Sweden)

    Timothy eHackmann

    2015-06-01

    Full Text Available From a genomic analysis of rumen butyrivibrios (Butyrivibrio and Pseudobutyrivibrio spp., we have re-evaluated the contribution of electron transport phosphorylation to ATP formation in this group. This group is unique in that most (76% genomes were predicted to possess genes for both Ech and Rnf transmembrane ion pumps. These pumps act in concert with the NifJ and Bcd-Etf to form a electrochemical potential (ΔμH+ and ΔμNa+, which drives ATP synthesis by electron transport phosphorylation. Of the 62 total butyrivibrio genomes currently available from the Hungate 1000 project, all 62 were predicted to possess NifJ, which reduces oxidized ferredoxin (Fdox during pyruvate conversion to acetyl-CoA. All 62 possessed all subunits of Bcd-Etf, which reduces Fdox and oxidizes reduced NAD (NADred during crotonyl-CoA reduction. Additionally, 61 genomes possessed all subunits of the Rnf, which generates ΔμH+ or ΔμNa+ from oxidation of reduced Fd and reduction of oxidized NAD (NADox. Further, 47 genomes possessed all 6 subunits of the Ech, which generates ΔμH+ from oxidation of reduced Fd (Fdred. For glucose fermentation to butyrate and H2, the electrochemical potential established should drive synthesis of ~1.5 ATP by the F0F1-ATP synthase (possessed by all 62 genomes. The total yield is ~4.5 ATP/glucose after accounting for 3 ATP formed by classic substrate-level phosphorylation, and it is one the highest yields for any glucose fermentation. The yield was the same when unsaturated fatty acid bonds, not H+, served as the electron acceptor (as during biohydrogenation. Possession of both Ech and Rnf had been previously documented in only a few sulfate-reducers, was rare in other rumen prokaryotic genomes in our analysis, and may confer an energetic advantage to rumen butyrivibrios. This unique energy conservation system might enhance the butyrivibrios’ ability to overcome growth inhibition by unsaturated fatty acids, as postulated herein.

  11. Sequence and functional analysis of GLUT10: a glucose transporter in the Type 2 diabetes-linked region of chromosome 20q12-13.1.

    Science.gov (United States)

    Dawson, P A; Mychaleckyj, J C; Fossey, S C; Mihic, S J; Craddock, A L; Bowden, D W

    2001-01-01

    We have carried out a detailed sequence and functional analysis of a novel human facilitative glucose transporter, designated GLUT10, located in the Type 2 diabetes-linked region of human chromosome 20q12-13.1. The GLUT10 gene is located between D20S888 and D20S891 and is encoded by 5 exons spanning 26.8 kb of genomic DNA. The human GLUT10 cDNA encodes a 541 amino acid protein that shares between 31 and 35% amino acid identity with human GLUT1-8. The predicted amino acid sequence of GLUT10 is nearly identical in length to the recently described GLUT9 homologue, but is longer than other known members of the GLUT family. In addition, we have cloned the mouse cDNA homolog of GLUT10 that encodes a 537 amino acid protein that shares 77.3% identity with human GLUT10. The amino acid sequence probably has 12 predicted transmembrane domains and shares characteristics of other mammalian glucose transporters. Human and mouse GLUT10 retain several sequence motifs characteristic of mammalian glucose transporters including VP497ETKG in the cytoplasmic C-terminus, G73R[K,R] between TMD2 and TMD3 (PROSITE PS00216), VD92RAGRR between TMD8 and TMD9 (PROSITE PS00216), Q242QLTG in TMD7, and tryptophan residues W430 (TMD10) and W454 (TMD11), that correspond to trytophan residues previously implicated in GLUT1 cytochalasin B binding and hexose transport. Neither human nor mouse GLUT10 retains the full P[E,D,N]SPR motif after Loop6 but instead is replaced with P186AG[T,A]. A PROSITE search also shows that GLUT10 has lost the SUGAR TRANSPORT 2 pattern (PS00217), a result of the substitution G113S in TMD4, while all other known human GLUTs retain the glycine and the pattern match. The significance of this substitution is unknown. Sites for N-linked glycosylation are predicted at N334ATG between TMD8 and TMD9 and N526STG in the cytoplasmic C-terminus. Northern hybridization analysis identified a single 4.4-kb transcript for GLUT10 in human heart, lung, brain, liver, skeletal muscle

  12. Uptake and phloem transport of glucose-fipronil conjugate in Ricinus communis involve a carrier-mediated mechanism.

    Science.gov (United States)

    Wu, Han-Xiang; Yang, Wen; Zhang, Zhi-Xiang; Huang, Ting; Yao, Guang-Kai; Xu, Han-Hong

    2012-06-20

    Some compounds containing glucose are absorbed via the monosaccharide transporters of the plasma membrane. A glucose-fipronil conjugate, N-[3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazol-5-yl]-1-(β-d-glucopyranosyl)-1H-1,2,3-triazole-4-methanamine (GTF), has been synthesized in our previous work. GTF exhibits moderate phloem mobility in Ricinus communis. In the current paper, we demonstrate that the uptake of GTF by Ricinus seedling cotyledon discs is partly mediated by an active carrier system (K(m)1 = 0.17 mM; V(max)1 = 2.2 nmol cm(-2) h(-1)). Four compounds [d-glucose, sucrose, phloridzin, and carbonyl cyanide m-chlorophenylhydrazone (CCCP)] were examined for their effect on GTF uptake. Phloridzin as well as CCCP markedly inhibit GTF uptake, and d-glucose weakly competes with it. The phloem transport of GTF in Ricinus seedlings is found to involve an active carrier-mediated mechanism that effectively contributes to the GTF phloem loading. The results prove that adding a glucose core is a reasonable and feasible approach to confer phloem mobility to fipronil by utilizing plant monosaccharide transporters.

  13. Facilitated transport of titanium dioxide nanoparticles by humic substances in saturated porous media under acidic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruichang [Chinese Academy of Sciences, Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science (China); Zhang, Haibo; Tu, Chen; Hu, Xuefeng; Li, Lianzhen [Chinese Academy of Sciences, Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (China); Luo, Yongming, E-mail: ymluo@yic.ac.cn; Christie, Peter [Chinese Academy of Sciences, Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science (China)

    2015-04-15

    The transport behavior of titanium dioxide nanoparticles (TiO{sub 2} NPs, 30 nm in diameter) was studied in well-defined porous media composed of clean quartz sand over a range of solution chemistry under acidic conditions. Transport of TiO{sub 2} NPs was dramatically enhanced by humic substances (HS) at acidic pH (4.0, 5.0 and 6.0), even at a low HS concentration of 0.5 mg L{sup −1}. Facilitated transport of TiO{sub 2} NPs was likely attributable to the increased stability of TiO{sub 2} NPs and repulsive interaction between TiO{sub 2} NPs and quartz sands due to the adsorbed HS. The mobility of TiO{sub 2} NPs was also increased with increasing pH from 4.0 to 6.0. Although transport of TiO{sub 2} NPs was insensitive to low ionic strength, it was significantly inhibited by high concentrations of NaCl and CaCl{sub 2}. In addition, calculated Derjaguin–Landau–Verwey–Overbeek (DLVO) interaction energy indicated that high energy barriers were responsible for the high mobility of TiO{sub 2} NPs, while the secondary energy minimum could play an important role in the retention of TiO{sub 2} NPs at 100 mmol L{sup −1} NaCl. Straining and gravitational settlement of larger TiO{sub 2} NPs aggregates at 1 mg L{sup −1} HS, pH 5.0, and 2 mmol L{sup −1} CaCl{sub 2} could be responsible for the significant retention even in the presence of high energy barriers. Moreover, more favorable interaction between approaching TiO{sub 2} NPs and TiO{sub 2} NPs that had been already deposited on the collector resulted in a ripening-shape breakthrough curve at 2 mmol L{sup −1} CaCl{sub 2}. Overall, a combination of mechanisms including DLVO-type force, straining, and physical filtration was involved in the retention of TiO{sub 2} NPs over the range of solution chemistry examined in this study.

  14. Ebullition-facilitated transport of manufactured gas plant tar from contaminated sediment.

    Science.gov (United States)

    McLinn, Eugene L; Stolzenburg, Thomas R

    2009-11-01

    Manufactured gas plant (MGP) tar and wastewater solids historically were discharged into the Penobscot River, Maine,USA, via a sewer at the Bangor Landing site. The tar and wastewater solids accumulated in riverbed sediment over a 5-hectare area downstream from the sewer outfall. Much of the tarry sediment is a hardened mass at the bottom of the river, but in part of the tar deposit (the active zone), the tar remains unhardened. In the active zone, anaerobic biodegradation of organic matter generates methane and carbon dioxide; as gas accumulates and migrates upward, it entrains tar, eventually dragging the tar from the sediment to surface water. Understanding the migration mechanisms in different portions of the tar deposit is critical for modeling the risk posed by the tar at the Bangor Landing site, because during gas-facilitated tar migration, the tar is brought to the water surface, instead of remaining in the sediment. Tar migration from sediment poses a potential human health risk because of the high concentrations of polycyclic aromatic hydrocarbons in the tar. Migration from sediment to the water surface greatly increases the potential exposure of human and ecological receptors to tar that reaches the water surface. In order for tar to migrate from sediment to surface water, three conditions are necessary: the sediment must contain liquid tar, the sediment must produce gas bubbles, and the gas must come into contact with the tarry sediment. Failure to consider facilitated transport of MGP tar from sediment can cause underestimation of site risk and can lead to failure of remedial measures.

  15. Sodium-glucose co-transporter 2 (SGLT2 inhibitors: a growing class of anti-diabetic agents

    Directory of Open Access Journals (Sweden)

    Eva M Vivian

    2014-12-01

    Full Text Available Although several treatment options are available to reduce hyperglycemia, only about half of individuals with diagnosed diabetes mellitus (DM achieve recommended glycemic targets. New agents that reduce blood glucose concentrations by novel mechanisms and have acceptable safety profiles are needed to improve glycemic control and reduce the complications associated with type 2 diabetes mellitus (T2DM. The renal sodium-glucose co-transporter 2 (SGLT2 is responsible for reabsorption of most of the glucose filtered by the kidney. Inhibitors of SGLT2 lower blood glucose independent of the secretion and action of insulin by inhibiting renal reabsorption of glucose, thereby promoting the increased urinary excretion of excess glucose. Canagliflozin, dapagliflozin, and empagliflozin are SGLT2 inhibitors approved as treatments for T2DM in the United States, Europe, and other countries. Canagliflozin, dapagliflozin, and empagliflozin increase renal excretion of glucose and improve glycemic parameters in patients with T2DM when used as monotherapy or in combination with other antihyperglycemic agents. Treatment with SGLT2 inhibitors is associated with weight reduction, lowered blood pressure, and a low intrinsic propensity to cause hypoglycemia. Overall, canagliflozin, dapagliflozin, and empagliflozin are well tolerated. Cases of genital infections and, in some studies, urinary tract infections have been more frequent in canagliflozin-, dapagliflozin-, and empagliflozin-treated patients compared with those receiving placebo. Evidence from clinical trials suggests that SGLT2 inhibitors are a promising new treatment option for T2DM.

  16. Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats

    Energy Technology Data Exchange (ETDEWEB)

    Sertié, R.A.L.; Andreotti, S. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Proença, A.R.G. [Laboratório de Biotecnologia, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, SP (Brazil); Campaña, A.B.; Lima, F.B. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2015-05-26

    As it is a common observation that obesity tends to occur after discontinuation of exercise, we investigated how white adipocytes isolated from the periepididymal fat of animals with interrupted physical training transport and oxidize glucose, and whether these adaptations support the weight regain seen after 4 weeks of physical detraining. Male Wistar rats (45 days old, weighing 200 g) were divided into two groups (n=10): group D (detrained), trained for 8 weeks and detrained for 4 weeks; and group S (sedentary). The physical exercise was carried out on a treadmill for 60 min/day, 5 days/week for 8 weeks, at 50-60% of the maximum running capacity. After the training protocol, adipocytes isolated from the periepididymal adipose tissue were submitted to glucose uptake and oxidation tests. Adipocytes from detrained animals increased their glucose uptake capacity by 18.5% compared with those from sedentary animals (P<0.05). The same cells also showed a greater glucose oxidation capacity in response to insulin stimulation (34.55%) compared with those from the S group (P<0.05). We hypothesize that, owing to the more intense glucose entrance into adipose cells from detrained rats, more substrate became available for triacylglycerol synthesis. Furthermore, this increased glucose oxidation rate allowed an increase in energy supply for triacylglycerol synthesis. Thus, physical detraining might play a role as a possible obesogenic factor for increasing glucose uptake and oxidation by adipocytes.

  17. Regulation of the GLUT1 glucose transporter in cultured myocytes: total number and subcellular distribution as determined by photoaffinity labelling.

    Science.gov (United States)

    el-Kebbi, I M; Roser, S; Pollet, R J; Cushman, S W; Wilson, C M

    1994-01-01

    We have used the impermeant photoaffinity label 2-N-4-(1-azi-2,2,2-trifluoroethyl)benzoyl-[2-3H] 1,3-bis-(D-mannos-4-yloxy)-2-propylamine (ATB-[2-3H]BMPA) to identify and quantify the glucose transporters on the surface of BC3H-1 cells, a continuously cultured skeletal-muscle cell line lacking the MyoD transcription factor required for cell fusion. ATB-[2-3H]BMPA was used in combination with immunoprecipitation of the GLUT1 glucose transporter, the only isoform expressed in these cells. The total cellular GLUT1 content was also determined by photolabelling and immunoprecipitation after cell permeabilization with digitonin (0.025%). In glucose-starved cells, 85% of the glucose transporters were present at the cell surface in the basal state, with little change in response to insulin (200 nM), correlating with lack of additional 2-deoxyglucose uptake in response to insulin. Feeding the cells with glucose (25 mM) for 24 h resulted in an 80% decrease in the total GLUT1 content relative to starved cells, of which only 25% were present on the cell surface. This was associated with an 85% decrease in 2-deoxyglucose uptake. In addition, acute stimulation of the fed cells with insulin or phorbol 12-myristate 13-acetate (PMA) led to an increase in GLUT1 at the cell surface, and, in correspondence, an increase in 2-deoxyglucose uptake by approx. 2- and 4-fold respectively. We conclude that exofacial photoaffinity labelling of glucose transporters with ATB-[2-3H]BMPA in the presence and absence of digitonin, followed by specific immunoprecipitation, provides an accurate measure of total and cell-surface glucose transporters in differentiated BC3H-1 muscle cells. This technique demonstrates that glucose pre-feeding (1) decreases the total number of GLUT1 and (2) redistributes the majority of the remaining transporters to an intracellular site, where they can now be translocated to the cell surface in response to insulin and PMA. PMID:8037688

  18. Exercise-induced increase in glucose transport, GLUT-4, and VAMP-2 in plasma membrane from human muscle

    DEFF Research Database (Denmark)

    Kristiansen, S; Hargreaves, Mark; Richter, Erik

    1996-01-01

    ) and then to fatigue at 100% Vo2max (5.7 +/- 0.2 min). Vesicle glucose transport at 5 mM increased from 3.3 +/- 0.6 pmol.microgram-1.min-1 at rest to 6.6 +/- 1.0 pmol.microgram-1.min-1 at fatigue (mean +/- SE, n = 6, P increase in glucose transport was associated with a 1.6-fold increase in vesicle GLUT......A major effect of muscle contractions is an increase in sarcolemmal glucose transport. We have used a recently developed technique to produce sarcolemmal giant vesicles from human muscle biopsy samples obtained before and after exercise. Six men exercised for 10 min at 50% maximal O2 uptake (Vo2max......-4 protein content. Glucose transport normalized to GLUT-4 protein content also increased with exercise, suggesting increased intrinsic activity of GLUT-4. Furthermore, exercise resulted in a 1.4-fold increase in sarcolemmal vesicle-associated membrane protein (VAMP-2) content, suggesting that muscle...

  19. Mass transfer model of nanoparticle-facilitated contaminant transport in saturated porous media.

    Science.gov (United States)

    Johari, Wan Lutfi Wan; Diamessis, Peter J; Lion, Leonard W

    2010-02-01

    A one-dimensional model has been evaluated for transport of hydrophobic contaminants, such as polycyclic aromatic hydrocarbon (PAH) compounds, facilitated by synthetic amphiphilic polyurethane (APU) nanoparticles in porous media. APU particles synthesized from poly(ethylene glycol)-modified urethane acrylate (PMUA) precursor chains have been shown to enhance the desorption rate and mobility of phenanthrene (PHEN) in soil. A reversible process governed by attachment and detachment rates was considered to describe the PMUA binding in soil in addition to PMUA transport through advection and dispersion. Ultimately, an irreversible second-order PMUA attachment rate in which the fractional soil saturation capacity with PMUA was a rate control was found to be adequate to describe the retention of PMUA particles. A gamma-distributed site model (GS) was used to describe the spectrum of physical/chemical constraints for PHEN transfer from solid to aqueous phases. Instantaneous equilibrium was assumed for PMUA-PHEN interactions. The coupled model for PMUA and PHEN behavior successfully described the enhanced elution profile of PHEN by PMUA. Sensitivity analysis was performed to analyze the significance of model parameters on model predictions. The adjustable parameter alpha in the gamma-distribution shapes the contaminant desorption distribution profile as well as elution and breakthrough curves. Model simulations show the use of PMUA can be also expected to improve the release rate of PHEN in soils with higher organic carbon content. The percentage removal of PHEN mass over time is shown to be influenced by the concentration of PMUA added and this information can be used to optimize cost and time require to accomplish a desired remediation goal.

  20. Aqueous extract of tamarind seeds selectively increases glucose transporter-2, glucose transporter-4, and islets' intracellular calcium levels and stimulates β-cell proliferation resulting in improved glucose homeostasis in rats with streptozotocin-induced diabetes mellitus.

    Science.gov (United States)

    Sole, Sushant Shivdas; Srinivasan, B P

    2012-08-01

    Tamarindus indica Linn. has been in use for a long time in Asian food and traditional medicine for different diseases including diabetes and obesity. However, the molecular mechanisms of these effects have not been fully understood. In view of the multidimensional activity of tamarind seeds due to their having high levels of polyphenols and flavonoids, we hypothesized that the insulin mimetic effect of aqueous tamarind seed extract (TSE) might increase glucose uptake through improvement in the expression of genes of the glucose transporter (GLUT) family and sterol regulatory element-binding proteins (SREBP) 1c messenger RNA (mRNA) in the liver. Daily oral administration of TSE to streptozotocin (STZ)-induced (90 mg/kg intraperitoneally) type 2 diabetic male Wistar rats at different doses (120 and 240 mg/kg body weight) for 4 weeks showed positive correlation with intracellular calcium and insulin release in isolated islets of Langerhans. Tamarind seed extract supplementation significantly improved the GLUT-2 protein and SREBP-1c mRNA expression in the liver and GLUT-4 protein and mRNA expression in the skeletal muscles of diabetic rats. The elevated levels of serum nitric oxide (NO), glycosylated hemoglobin level (hemoglobin (A1c)) and tumor necrosis factor α (TNF-α) decreased after TSE administration. Immunohistochemical findings revealed that TSE abrogated STZ-induced apoptosis and increased β-cell neogenesis, indicating its effect on islets and β-cell mass. In conclusion, it was found that the antidiabetic effect of TSE on STZ-induced diabetes resulted from complex mechanisms of β-cell neogenesis, calcium handling, GLUT-2, GLUT-4, and SREBP-1c. These findings show the scope for formulating a new herbal drug for diabetes therapy.

  1. Caffeamide 36-13 Regulates the Antidiabetic and Hypolipidemic Signs of High-Fat-Fed Mice on Glucose Transporter 4, AMPK Phosphorylation, and Regulated Hepatic Glucose Production

    Directory of Open Access Journals (Sweden)

    Yueh-Hsiung Kuo

    2014-01-01

    Full Text Available This study was to investigate the antidiabetic and antihyperlipidemic effects of (E-3-[3, 4-dihydroxyphenyl-1-(piperidin-1-ylprop-2-en-1-one] (36-13 (TS, one of caffeic acid amide derivatives, on high-fat (HF- fed mice. The C57BL/6J mice were randomly divided into the control (CON group and the experimental group, which was firstly fed a HF diet for 8 weeks. Then, the HF group was subdivided into four groups and was given TS orally (including two doses or rosiglitazone (Rosi or vehicle for 4 weeks. Blood, skeletal muscle, and tissues were examined by measuring glycaemia and dyslipidemia-associated events. TS effectively prevented HF diet-induced increases in the levels of blood glucose, triglyceride, insulin, leptin, and free fatty acid (FFA and weights of visceral fa; moreover, adipocytes in the visceral depots showed a reduction in size. TS treatment significantly increased the protein contents of glucose transporter 4 (GLUT4 in skeletal muscle; TS also significantly enhanced Akt phosphorylation in liver, whereas it reduced the expressions of phosphoenolpyruvate carboxykinase (PEPCK and glucose-6-phosphatase (G6Pase. Moreover, TS enhanced phosphorylation of AMP-activated protein kinase (phospho-AMPK both in skeletal muscle and liver tissue. Therefore, it is possible that the activation of AMPK by TS resulted in enhanced glucose uptake in skeletal muscle, contrasting with diminished gluconeogenesis in liver. TS exhibits hypolipidemic effect by decreasing the expressions of fatty acid synthase (FAS. Thus, antidiabetic properties of TS occurred as a result of decreased hepatic glucose production by PEPCK and G6Pase downregulation and improved insulin sensitization. Thus, amelioration of diabetic and dyslipidemic state by TS in HF-fed mice occurred by regulation of GLUT4, G6Pase, and FAS and phosphorylation of AMPK.

  2. Effects of acute hyperinsulinemia on insulin signal transduction and glucose transporters in ovine fetal skeletal muscle.

    Science.gov (United States)

    Anderson, Marianne S; Thamotharan, M; Kao, Doris; Devaskar, Sherin U; Qiao, Liping; Friedman, Jacob E; Hay, William W

    2005-02-01

    To test the effects of acute fetal hyperinsulinemia on the pattern and time course of insulin signaling in ovine fetal skeletal muscle, we measured selected signal transduction proteins in the mitogenic, protein synthetic, and metabolic pathways in the skeletal muscle of normally growing fetal sheep in utero. In experiment 1, 4-h hyperinsulinemic-euglycemic clamps were conducted in anesthetized twin fetuses to produce selective fetal hyperinsulinemia-euglycemia in one twin and euinsulinemia-euglycemia in the other. Serial skeletal muscle biopsies were taken from each fetus during the clamp and assayed by Western blot for selected insulin signal transduction proteins. Tyrosine phosphorylation of the insulin receptor, insulin receptor substrate-1, and the p85 subunit of phosphatidylinositol 3-kinase doubled at 30 min and gradually returned to control values by 240 min. Phosphorylation of extracellular signal-regulated kinase 1,2 was increased fivefold through 120 min of insulin infusion and decreased to control concentration by 240 min. Protein kinase B phosphorylation doubled at 30 min and remained elevated throughout the study. Phosphorylation of p70 S6K increased fourfold at 30, 60, and 120 min. In the second experiment, a separate group of nonanesthetized singleton fetuses was clamped to intermediate and high hyperinsulinemic-euglycemic conditions for 1 h. GLUT4 increased fourfold in the plasma membrane at 1 h, and hindlimb glucose uptake increased significantly at the higher insulin concentration. These data demonstrate that an acute increase in fetal plasma insulin concentration stimulates a unique pattern of insulin signal transduction proteins in intact skeletal muscle, thereby increasing pathways for mRNA translation, glucose transport, and cell growth.

  3. Role of LiBF4 in Ionic Liquid Membranes for Facilitated CO2 Transport.

    Science.gov (United States)

    Choi, Yeji; Hong, Gil Hwan; Kang, Sang Wook

    2016-03-01

    The ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM BF4)/LiBF4 electrolyte was prepared for highly selective facilitated CO2 transport membranes. When LiBF4 was incorporated into BMIM BF4, synergy effects by free Li+ ion and imidazolium cations is expected to enhance the separation performance for CO2/N2 and CO2/CH4. The free state of BF4- ions in BMIM BF4/LiBF4 solutions was investigated by FT-Raman spectroscopy. For the coordination of LiBF4 with BMIMBF4, thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) was utilized. Electrolyte membranes consisting of BMIM BF4 and LiBF4 showed selectivities of 8.40 and 8.25 for CO2/N2 and CO2/CH4, respectively. Neat BMIM BF4 membrane showed selectivities of 5.0 and 4.8, respectively. Enhanced separation performance was attributed to increased free Li+ and abundant free imidazolium cations.

  4. Protist-facilitated transport of soil bacteria in an artificial soil micromodel

    Science.gov (United States)

    Rubinstein, R. L.; Cousens, V.; Gage, D. J.; Shor, L. M.

    2013-12-01

    Soil bacteria within the rhizosphere benefit plants by protecting roots from pathogens, producing growth factors, and improving nutrient availability. These effects can greatly improve overall plant health and increase crop yield, but as roots grow out from the tips they quickly outpace their bacterial partners. Some soil bacteria are motile and can chemotact towards root tips, but bacterial mobility in unsaturated soils is limited to interconnected hydrated pores. Mobility is further reduced by the tendency of soil bacteria to form biofilms. The introduction of protists to the rhizosphere has been shown to benefit plants, purportedly by selective grazing on harmful bacteria or release of nutrients otherwise sequestered in bacteria. We propose that an additional benefit to the presence of protists is the facilitated transport of beneficial bacteria along root systems. Using microfluidic devices designed to imitate narrow, fluid-filled channels in soil, we have shown that the distribution of bacteria through micro-channels is accelerated in the presence of protists. Furthermore, we have observed that even with predation effects, the bacteria remain viable and continue to reproduce for the duration of our experiments. These results expand upon our understanding of complex bio-physical interactions in the rhizosphere system, and may have important implications for agricultural practices.

  5. Ginsenosides, ingredients of the root of Panax ginseng, are not substrates but inhibitors of sodium-glucose transporter 1.

    Science.gov (United States)

    Gao, Shengli; Kushida, Hirotaka; Makino, Toshiaki

    2017-01-01

    Recent pharmacokinetic studies have revealed that ginsenosides, the major ingredients of ginseng (the roots of Panax ginseng), are present in the plasma collected from subjects receiving ginseng, and speculated that ginsenosides might be actively transported via glucose transporters. We evaluated whether ginsenosides Rb1 and Rg1, and their metabolites from enteric bacteria act as substrates of sodium-glucose cotransporter (SGLT) 1, the major glucose transporter expressed on the apical side of intestinal epithelial cells. First, we evaluated the competing effects of ginseng extract and ginsenosides on the uptake of [(14)C]methyl-glucose, a substrate of SGLT1, by SGLT1-overexpressing HEK293 cells. A boiling water extract of ginseng inhibited SGLT1 in a concentration-dependent manner with an IC50 value of 0.85 mg/ml. By activity-guided fractionation, we determined that the fraction containing ginsenosides displayed an inhibitory effect on SGLT1. Of the ginsenosides evaluated, protopanaxatriol-type ginsenosides were not found to inhibit SGLT1, whereas protopanaxadiol-type ginsenosides, including ginsenosides Rd, Rg3, Rh2, F2 and compound K, exhibited significant inhibitory effects on SGLT1, with ginsenoside F2 having the highest activity with an IC50 value of 23.0 µM. Next, we measured the uptake of ginsenoside F2 and compound K into Caco-2 cells, a cell line frequently used to evaluate the intestinal absorption of drugs. The uptake of ginsenoside F2 and compound K into Caco-2 cells was not competitively inhibited by glucose. Furthermore, the uptake of ginsenoside F2 and compound K into SGLT1-overexpressing HEK293 cells was not significantly higher than into mock cells. Ginsenoside F2 and compound K did not appear to be substrates of SGLT1, although these compounds could inhibit SGLT1. Ginsenosides might be absorbed by passive diffusion through the intestinal membrane or actively transported via unknown transporters other than SGLT1.

  6. Ontogenetic profile and thyroid hormone regulation of type-1 and type-8 glucose transporters in rat Sertoli cells.

    Science.gov (United States)

    Carosa, Eleonora; Radico, Carla; Giansante, Nadia; Rossi, Simona; D'Adamo, Fabio; Di Stasi, Savino M; Lenzi, Andrea; Jannini, Emmanuele A

    2005-04-01

    The glucose transporters (GLUTs) gene encode glycoproteins responsible for facilitating transfer of glucose across plasma membrane. In testis, different members of this family are present. In particular the main GLUT mRNA expression within the adult testis is the type 8, while type 1 is more expressed in prepubertal testis. Thyroid hormone, which receptors and function have been characterized in the testis, plays a crucial role in the cellular energetic metabolism. In fact, in the immature Sertoli cells, GLUT1 is up regulated by l-triiodothyronine (T(3)). The aim of this paper is to investigate the expression profile of GLUT1 and GLUT8 in the testis during development and in adulthood and analyse the role of T(3) on their expression. To analyse the expression of GLUT8 and GLUT1 we performed Northern blot and RT-PCR experiments in the whole testis and in Sertoli cells from rats of different ages. Treatments in vivo and in vitro with T(3) were used to study the effect of thyroid hormones on GLUT1 and GLUT8 expression. The activity of the rat GLUT1 promoter and its regulation by T(3) was studied with transient transfections in gonadal and non-gonadal cell lines and in primary Sertoli cell cultures. GLUT8 is expressed at a low level in the prepubertal testis and Sertoli cells and does not appear to be under T(3) control. GLUT1 is the predominant form in immature Sertoli cells. The effect of T(3) on its mRNA accumulation was quantified and confirmed by RT-PCR (control: 0.65 +/- 0.17; T(3): 1.23 +/- 0.04, arbitrary units, p regulate GLUT1 promoter in any cell line tested. This is confirmed by the evidence that, upon extensive analysis, the rat GLUT1 promoter and the first intron sequence do not shows any thyroid responsive elements. Our data demonstrate that GLUT1 and GLUT8 are both expressed in prepubertal testis, but only GLUT1 is regulated by T(3). In addition, we found that the effect of T(3) cannot be attributed to its action on GLUT1 promoter.

  7. Alternating Carrier Models of Asymmetric Glucose Transport Violate the Energy Conservation Laws

    Science.gov (United States)

    Naftalin, Richard J

    2008-01-01

    Alternating access transporters with high-affinity externally facing sites and low-affinity internal sites relate substrate transit directly to the unliganded asymmetric “carrier” (Ci) distribution. When both bathing solutions contain equimolar concentrations of ligand, zero net flow of the substrate-carrier complex requires a higher proportion of unliganded low-affinity inside sites (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\propto}1/K_{{\\mathrm{D}}}^{{\\mathrm{in}}}\\end{equation*}\\end{document}) and slower unliganded “free” carrier transit from inside to outside than in the reverse direction. However, asymmetric rates of unliganded carrier movement, kij, imply that an energy source, ΔGcarrier = RT ln (koi/kio) = RT ln (Cin/Cout) = RT ln (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}K_{{\\mathrm{D}}}^{{\\mathrm{in}}}/K_{{\\mathrm{D}}}^{{\\mathrm{out}}}\\end{equation*}\\end{document}), where R is the universal gas constant (8.314 Joules/M/K°), and T is the temperature, assumed here to be 300 K°, sustains the asymmetry. Without this invalid assumption, the constraints of carrier path cyclicity, combined with asymmetric ligand affinities and equimolarity at equilibrium, are irreconcilable, and any passive asymmetric uniporter or cotransporter model system, e.g., Na-glucose cotransporters, espousing this fundamental error is untenable. With glucose transport via GLUT1, the higher maximal rate and Km of net ligand exit compared to net ligand entry is only properly

  8. Replacement of both tryptophan residues at 388 and 412 completely abolished cytochalasin B photolabelling of the GLUT1 glucose transporter.

    Science.gov (United States)

    Inukai, K; Asano, T; Katagiri, H; Anai, M; Funaki, M; Ishihara, H; Tsukuda, K; Kikuchi, M; Yazaki, Y; Oka, Y

    1994-01-01

    A mutated GLUT1 glucose transporter, a Trp-388, 412 mutant whose tryptophans 388 and 412 were both replaced by leucines, was constructed by site-directed mutagenesis and expressed in Chinese hamster ovary cells. Glucose transport activity was decreased to approx. 30% in the Trp-388, 412 mutant compared with that in the wild type, a similar decrease in transport activity had been observed previously in the Trp-388 mutant and the Trp-412 mutant which had leucine at 388 and 412 respectively. Cytochalasin B labelling of the Trp-388 mutant was only decreased rather than abolished, a result similar to that obtained previously for the Trp-412 mutant. Cytochalasin B labelling was finally abolished completely in the Trp-388, 412 mutant, while cytochalasin B binding to this mutant was decreased to approx. 30% of that of the wild-type GLUT1 at the concentration used for photolabelling. This level of binding is thought to be adequate to detect labelling, assuming that the labelling efficiency of these transporters is similar. These findings suggest that cytochalasin B binds to the transmembrane domain of the glucose transporter in the vicinity of helix 10-11, and is inserted covalently by photoactivation at either the 388 or the 412 site. Images Figure 1 Figure 2 PMID:8092986

  9. Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand: Effects of solution ionic strength and composition

    Science.gov (United States)

    Column experiments were conducted to investigate the facilitated transport of Cu in association with hydroxyapatite nanoparticles (nHAP) in water-saturated quartz sand at different solution concentrations of NaCl (0 to 100 mM) or CaCl2 (0.1 to 1.0 mM). The experimental breakthrough curves and retent...

  10. High-Affinity Glucose Transport in Aspergillus nidulans Is Mediated by the Products of Two Related but Differentially Expressed Genes

    Science.gov (United States)

    Ventura, Luisa; González, Ramón; Ramón, Daniel; MacCabe, Andrew P.

    2014-01-01

    Independent systems of high and low affinity effect glucose uptake in the filamentous fungus Aspergillus nidulans. Low-affinity uptake is known to be mediated by the product of the mstE gene. In the current work two genes, mstA and mstC, have been identified that encode high-affinity glucose transporter proteins. These proteins' primary structures share over 90% similarity, indicating that the corresponding genes share a common origin. Whilst the function of the paralogous proteins is little changed, they differ notably in their patterns of expression. The mstC gene is expressed during the early phases of germination and is subject to CreA-mediated carbon catabolite repression whereas mstA is expressed as a culture tends toward carbon starvation. In addition, various pieces of genetic evidence strongly support allelism of mstC and the previously described locus sorA. Overall, our data define MstC/SorA as a high-affinity glucose transporter expressed in germinating conidia, and MstA as a high-affinity glucose transporter that operates in vegetative hyphae under conditions of carbon limitation. PMID:24751997

  11. High-affinity glucose transport in Aspergillus nidulans is mediated by the products of two related but differentially expressed genes.

    Directory of Open Access Journals (Sweden)

    Josep V Forment

    Full Text Available Independent systems of high and low affinity effect glucose uptake in the filamentous fungus Aspergillus nidulans. Low-affinity uptake is known to be mediated by the product of the mstE gene. In the current work two genes, mstA and mstC, have been identified that encode high-affinity glucose transporter proteins. These proteins' primary structures share over 90% similarity, indicating that the corresponding genes share a common origin. Whilst the function of the paralogous proteins is little changed, they differ notably in their patterns of expression. The mstC gene is expressed during the early phases of germination and is subject to CreA-mediated carbon catabolite repression whereas mstA is expressed as a culture tends toward carbon starvation. In addition, various pieces of genetic evidence strongly support allelism of mstC and the previously described locus sorA. Overall, our data define MstC/SorA as a high-affinity glucose transporter expressed in germinating conidia, and MstA as a high-affinity glucose transporter that operates in vegetative hyphae under conditions of carbon limitation.

  12. Insulin Resistance in Nondiabetic Peritoneal Dialysis Patients: Associations with Body Composition, Peritoneal Transport, and Peritoneal Glucose Absorption.

    Science.gov (United States)

    Bernardo, Ana Paula; Oliveira, Jose C; Santos, Olivia; Carvalho, Maria J; Cabrita, Antonio; Rodrigues, Anabela

    2015-12-07

    Insulin resistance has been associated with cardiovascular disease in peritoneal dialysis patients. Few studies have addressed the impact of fast transport status or dialysis prescription on insulin resistance. The aim of this study was to test whether insulin resistance is associated with obesity parameters, peritoneal transport rate, and glucose absorption. Insulin resistance was evaluated with homeostasis model assessment method (HOMA-IR), additionally corrected by adiponectin (HOMA-AD). Enrolled patients were prevalent nondiabetics attending at Santo António Hospital Peritoneal Dialysis Unit, who were free of hospitalization or infectious events in the previous 3 months (51 patients aged 50.4 ± 15.9 years, 59% women). Leptin, adiponectin, insulin-like growth factor-binding protein 1 (IGFBP-1), and daily glucose absorption were also measured. Lean tissue index, fat tissue index (FTI), and relative fat mass (rel.FM) were assessed using multifrequency bioimpedance. Patients were categorized according to dialysate to plasma creatinine ratio at 4 hours, 3.86% peritoneal equilibration test, and obesity parameters. Obesity was present in 49% of patients according to rel.FM. HOMA-IR correlated better with FTI than with body mass index. Significant correlations were found in obese, but not in nonobese patients, between HOMA-IR and leptin, leptin/adiponectin ratio (LAR), and IGFBP-1. HOMA-IR correlated with HOMA-AD, but did not correlate with glucose absorption or transport rate. There were no significant differences in insulin resistance indices, glucose absorption, and body composition parameters between fast and nonfast transporters. A total of 18 patients (35.3%) who had insulin resistance presented with higher LAR and rel.FM (7.3 [12.3, interquartile range] versus 0.7 [1.4, interquartile range], Pinsulin resistance. FTI and LAR were independent correlates of HOMA-IR in multivariate analysis adjusted for glucose absorption and small-solute transport (r=0

  13. Thiazolidinediones mimic glucose starvation in facilitating Sp1 degradation through the up-regulation of beta-transducin repeat-containing protein.

    Science.gov (United States)

    Wei, Shuo; Chuang, Hsiao-Ching; Tsai, Wan-Chi; Yang, Hsiao-Ching; Ho, Shiuh-Rong; Paterson, Andrew J; Kulp, Samuel K; Chen, Ching-Shih

    2009-07-01

    This study investigated the mechanism by which the transcription factor Sp1 is degraded in prostate cancer cells. We recently developed a thiazolidinedione derivative, (Z)-5-(4-hydroxy-3-trifluoromethylbenzylidene)-3-(1-methylcyclohexyl)-thiazolidine-2,4-dione (OSU-CG12), that induces Sp1 degradation in a manner paralleling that of glucose starvation. Based on our finding that thiazolidinediones suppress beta-catenin and cyclin D1 by up-regulating the E3 ligase SCF(beta-TrCP), we hypothesized that beta-transducin repeat-containing protein (beta-TrCP) targets Sp1 for proteasomal degradation in response to glucose starvation or OSU-CG12. Here we show that either treatment of LNCaP cells increased specific binding of Sp1 with beta-TrCP. This direct binding was confirmed by in vitro pull-down analysis with bacterially expressed beta-TrCP. Although ectopic expression of beta-TrCP enhanced the ability of OSU-CG12 to facilitate Sp1 degradation, suppression of endogenous beta-TrCP function by a dominant-negative mutant or small interfering RNA-mediated knockdown blocked OSU-CG12-facilitated Sp1 ubiquitination and/or degradation. Sp1 contains a C-terminal conventional DSG destruction box ((727)DSGAGS(732)) that mediates beta-TrCP recognition and encompasses a glycogen synthase kinase 3beta (GSK3beta) phosphorylation motif (SXXXS). Pharmacological and molecular genetic approaches and mutational analyses indicate that extracellular signal-regulated kinase-mediated phosphorylation of Thr739 and GSK3beta-mediated phosphorylation of Ser728 and Ser732 were critical for Sp1 degradation. The ability of OSU-CG12 to mimic glucose starvation to activate beta-TrCP-mediated Sp1 degradation has translational potential to foster novel strategies for cancer therapy.

  14. Effect of training and detraining on skeletal muscle glucose transporter (GLUT4) content in rats.

    Science.gov (United States)

    Neufer, P D; Shinebarger, M H; Dohm, G L

    1992-09-01

    The aim of the present study was to examine the effects of treadmill exercise training and detraining on the skeletal muscle fiber type specific expression of the insulin-regulated glucose transporter protein (GLUT4) in rats. GLUT4 protein content was determined by Western and dot-blot analysis, using a polyclonal antibody raised against the carboxy-terminal peptide. Rats were sacrificed 24 h after the last training session. There were no significant changes in muscle GLUT4 after 1 day or 1 week of training. Six weeks of training increased GLUT4 protein content 1.4- to 1.7-fold (p < 0.05) over controls in the soleus and red vastus lateralis, whereas no significant change was evident in the white vastus lateralis muscle. GLUT4 protein content in both soleus and red vastus lateralis muscle returned to near control values after 7 days of detraining. Similar to GLUT4, citrate synthase activity showed no change after 1 day or 1 week of training, increased 1.8-fold over controls after 6 weeks of training, but returned to control values after 7 days detraining. These findings demonstrate that muscle GLUT4 protein is increased in rats with as little as 6 weeks of treadmill exercise training but that the adaptation is lost within 1 week of detraining. It is suggested that expression of the GLUT4 protein is coordinated with the well-documented adaptations in oxidative enzyme activity with endurance training and detraining.

  15. Apigenin inhibits the proliferation of adenoid cystic carcinoma via suppression of glucose transporter-1

    Science.gov (United States)

    FANG, JIN; BAO, YANG-YANG; ZHOU, SHUI-HONG; FAN, JUN

    2015-01-01

    Apigenin is a natural phyto-oestrogen flavonoid, which exerts various biological effects, including anti-oxidative, anti-inflammatory and anticancer activities. In addition, apigenin has recently been reported to target hypoxic markers; however, there are currently no studies regarding the association between apigenin and glucose transporter-1 (GLUT-1) in adenoid cystic carcinoma (ACC). The present study investigated whether apigenin inhibits the proliferation of ACC cells or suppresses the expression of GLUT-1 in ACC cells. The results of the present study demonstrated that apigenin inhibits ACC-2 cell growth in a dose- and time-dependent manner. Treatment with apigenin also induced apoptosis and G2/M-phase arrest in a dose- and time-dependent manner. Corresponding with the above results, the expression levels of GLUT-1 were significantly decreased following treatment in a dose- and time-dependent manner. These results suggest that the inhibition of ACC-2 cell growth by apigenin may be due to the decreased expression of GLUT-1. PMID:26300442

  16. Impairment of tight junctions and glucose transport in endothelial cells of human cerebral cavernous malformations.

    Science.gov (United States)

    Schneider, Hannah; Errede, Mariella; Ulrich, Nils H; Virgintino, Daniela; Frei, Karl; Bertalanffy, Helmut

    2011-06-01

    Cerebral cavernous malformations (CCMs) often cause hemorrhages that can result in severe clinical manifestations, including hemiparesis and seizures. The underlying mechanisms of the aggressive behavior of CCMs are undetermined to date, but alterations of vascular matrix components may be involved. We compared the localization of the tight junction proteins (TJPs) in 12 CCM specimens and the expression of glucose transporter 1 (GLUT-1), which is sensitive to alterations in TJP levels, in 5 CCM specimens with those in 5 control temporal lobectomy specimens without CCM by immunofluorescence microscopy. The TJPs occludin, claudin-5, and zonula occludens ZO-1 were downregulated at intercellular contact sites and partly redistributed within the surrounding tissue in the CCM samples; there was also a marked reduction of GLUT-1 immunoreactivity compared with that in control specimens. Corresponding analysis using quantitative real-time reverse transcription polymerase chain reaction on 8 CCM and 8 control specimens revealed significant downregulation of mRNA expression of occludin, claudin-5, ZO-1, and GLUT-1. The altered expression and localization of the TJPs at interendothelial contact sites accompanied by a reduction of GLUT-1 expression in dilated CCM microvessels likely affect vascular matrix stability and may contribute to hemorrhages of CCMs.

  17. Relation Between Fluorodeoxyglucose Uptake and Glucose Transporter 1 Expression in Gastric signet Ring Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Bong Hoi; Song, Hee Sung; An, Young Sil; Han, Sang Uk; Kim, Jang Hee; Yoon, Joon kee [Ajou Univ. School of medicine, Suwon (Korea, Republic of)

    2011-03-15

    Gastic signet ring cell carcinoma (GSRC) is known to have low fluorodeoxyglucose (FDG) uptake. The aim of the study was to investigate the relation between FDG uptake and glucose transporter (GLUT) 1 expression and clinicopathologic parameters in cases of GSRC. Forty patients (28 men, mean age 54{+-}12 years) with histologically confirmed GSRC who underwent pre operative [{sup 18}F]FDG PET/CT were enrolled. Maximum standardized uptake values (SUVmax) were compared with clinicopathologic parameters and GLUT 1 expression. Cases were divided based on GLUT 1 expression in tumor tissues into a membranous group (n=17) and a cytoplasmic group (n=23). Mean SUVmax was significantly higher in the membranous group than in the cytoplasmic group (6.06{+-}2.79 vs, 3.67{+-}1.54, P=0.03). Gastric wall invasion, depth of invasion, extent of LN metastasis, overall stage, and tumor size were found to be related to SUVmax. On the other hand, age, sex, and the presence of distant metastasis were not related to SUVmax. Multiveriate analysis revealed that membranous GLCT 1 expression and the extent of LN metastasis independently predicted high FDG uptake. This study demonstrates that high FDG uptake is mediated by membranous GLUT 1 expression in GSRC.

  18. Glucose transporter 1-positive endothelial cells in infantile hemangioma exhibit features of facultative stem cells

    Science.gov (United States)

    Huang, Lan; Nakayama, Hironao; Klagsbrun, Michael; Mulliken, John B.; Bischoff, Joyce

    2014-01-01

    Endothelial glucose transporter 1 (GLUT1) is a definitive and diagnostic marker for infantile hemangioma (IH), a vascular tumor of infancy. To date, GLUT1-positive endothelial cells in IH have not been quantified nor directly isolated and studied. We isolated GLUT1-positive and GLUT1-negative endothelial cells from IH specimens and characterized their proliferation, differentiation and response to propranolol, a first-line therapy for IH, and to rapamycin, an mTOR pathway inhibitor used to treat an increasingly wide array of proliferative disorders. Although freshly isolated GLUT1-positive cells, selected using anti-GLUT1 magnetic beads, expressed endothelial markers CD31, VE-Cadherin and VEGFR2, they converted to a mesenchymal phenotype after three weeks in culture. In contrast, GLUT1-negative endothelial cells exhibited a stable endothelial phenotype in vitro. GLUT1-selected cells were clonogenic when plated as single cells and could be induced to re-differentiate into endothelial cells, or into pericyte/smooth muscle cells or into adipocytes, indicating a stem cell-like phenotype. These data demonstrate that, although they appear and function in the tumor as bona fide endothelial cells, the GLUT1-positive endothelial cells display properties of facultative stem cells. Pretreatment with rapamycin for 4 days significantly slowed proliferation of GLUT1-selected cells, whereas propranolol pretreatment had no effect. These results reveal for the first time the facultative nature of GLUT1-positive endothelial cells in infantile hemangioma. PMID:25187207

  19. [Recent knowledge of the function of glucose transport molecules in cell membranes, of the regulation of their composition and of modification of their activity and changes in concentration in diseases (diabetes mellitus, Tumors)].

    Science.gov (United States)

    Kolb, E

    1991-11-01

    In the outer membrane of animal cells there exist different isoforms of glucose-transporters (GluT), that contain pores for the facilitative intake of glucose. The content of the various forms of GluT in the different cells is influenced by the stage of development and by the plasma-concentration of glucose. In the regulation of the glucose-concentration in the plasma the content of the skeletal musculature and of the adipose tissue in GluT type 4 plays an important role: It is insulin-dependent. In diabetes mellitus the content of the outer membranes of the cells of the mentioned tissues in GluT 4 is - in dependence of the degree of the disturbance - more or less reduced. The binding of insulin to the receptor in the musculature and in adipose tissue stimulates the transport of GluT 4 from the interior of the cells to the outer membrane. Fasting causes an increase in the content of GluT 4 in the musculature and a decrease in the adipose tissue. Tumor-cells have an increased uptake of glucose with the help of GluT.

  20. An L-Glutamine Transporter Isoform for Neurogenesis Facilitated by L-Theanine.

    Science.gov (United States)

    Yoneda, Yukio

    2017-06-09

    L-Theanine (=γ-glutamylethylamide) is an amino acid ingredient in green tea with a structural analogy to L-glutamine (L-GLN) rather than L-glutamic acid (L-GLU), with regards to the absence of a free carboxylic acid moiety from the gamma carbon position. L-theanine markedly inhibits [(3)H]L-GLN uptake without affecting [(3)H]L-GLU uptake in cultured neurons and astroglia. In neural progenitor cells with sustained exposure to L-theanine, upregulation of the L-GLN transporter isoform Slc38a1 expression and promotion of both proliferation and neuronal commitment are seen along with marked acceleration of the phosphorylation of mammalian target of rapamycin (mTOR) and relevant downstream proteins. Stable overexpression of Slc38a1 leads to promotion of cellular growth with facilitated neuronal commitment in pluripotent embryonic carcinoma P19 cells. In P19 cells stably overexpressing Slc38a1, marked phosphorylation is seen with mTOR and downstream proteins in a fashion insensitive to the additional stimulation by L-theanine. The green tea amino acid L-theanine could thus elicit pharmacological actions to up-regulate Slc38a1 expression for activation of the mTOR signaling pathway required for cell growth together with accelerated neurogenesis after sustained exposure in undifferentiated neural progenitor cells. In this review, I summarize a novel pharmacological property of the green tea amino acid L-theanine for embryonic and adult neurogenesis with a focus on the endogenous amino acid analog L-GLN. A possible translational strategy is also discussed on the development of dietary supplements and nutraceuticals enriched of L-theanine for the prophylaxis of a variety of untoward impairments and malfunctions seen in patients with different neurodegenerative and/or neuropsychiatric disorders.

  1. Genetic changes during a laboratory adaptive evolution process that allowed fast growth in glucose to an Escherichia coli strain lacking the major glucose transport system

    Directory of Open Access Journals (Sweden)

    Aguilar César

    2012-08-01

    Full Text Available Abstract Background Escherichia coli strains lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS, which is the major bacterial component involved in glucose transport and its phosphorylation, accumulate high amounts of phosphoenolpyruvate that can be diverted to the synthesis of commercially relevant products. However, these strains grow slowly in glucose as sole carbon source due to its inefficient transport and metabolism. Strain PB12, with 400% increased growth rate, was isolated after a 120 hours adaptive laboratory evolution process for the selection of faster growing derivatives in glucose. Analysis of the genetic changes that occurred in the PB12 strain that lacks PTS will allow a better understanding of the basis of its growth adaptation and, therefore, in the design of improved metabolic engineering strategies for enhancing carbon diversion into the aromatic pathways. Results Whole genome analyses using two different sequencing methodologies: the Roche NimbleGen Inc. comparative genome sequencing technique, and high throughput sequencing with Illumina Inc. GAIIx, allowed the identification of the genetic changes that occurred in the PB12 strain. Both methods detected 23 non-synonymous and 22 synonymous point mutations. Several non-synonymous mutations mapped in regulatory genes (arcB, barA, rpoD, rna and in other putative regulatory loci (yjjU, rssA and ypdA. In addition, a chromosomal deletion of 10,328 bp was detected that removed 12 genes, among them, the rppH, mutH and galR genes. Characterization of some of these mutated and deleted genes with their functions and possible functions, are presented. Conclusions The deletion of the contiguous rppH, mutH and galR genes that occurred simultaneously, is apparently the main reason for the faster growth of the evolved PB12 strain. In support of this interpretation is the fact that inactivation of the rppH gene in the parental PB11 strain substantially increased

  2. Role of the water extract from Coccinia indica stem on the stimulation of glucose transport in L8 myotubes

    Directory of Open Access Journals (Sweden)

    Chaweewan Jansakul

    2006-11-01

    Full Text Available Hypoglycemic effect of Coccinia indica used for treatment of diabetes in traditional remedies has known to relate with increased transport of glucose into peripheral tissues. However, the cellular mechanisms for this effect remain unclear. This present study reports that the water extract (WE of C. indica stem exhibited a dose-dependent induction of 2-deoxyglucose (2-DG uptake in rat L8 myotubes. Maximal uptake was observed with approximately 3-fold increase in 2-DG transport in 16 h treatment compared with the control. Effect of WE was stronger than that of 1 mM metformin. The effects of insulin and WE were additive. WE-induced glucose uptake was significantly inhibited by cycloheximide and partially reversed by SB203580. GLUT1 protein was markedly increased in response to WE. Conversely, WE had no effect on GLUT4 protein level. Redistribution of GLUT4 to the plasma membrane was demonstrated. Triterpenoids and carbohydrates were detected in WE. In conclusion, new GLUT1 protein synthesis is necessary for WEstimulated glucose transport while p38-MAPK-dependent activation of transporter intrinsic activity partly contributes to WE action. These results may explain and support the use of C. indica for the prevention and treatment of diabetes.

  3. Suppressed intrinsic catalytic activity of GLUT1 glucose transporters in insulin-sensitive 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, S.A.; Buxton, J.M.; Czech, M.P. (Univ. of Massachusetts Medical Center, Worcester (United States))

    1991-09-01

    Previous studies indicated that the erythroid-type (GLUT1) glucose transporter isoform contributes to basal but not insulin-stimulated hexose transport in mouse 3T3-L1 adipocytes. In the present studies it was found that basal hexose uptake in 3T3-L1 adipocytes was about 50% lower than that in 3T3-L1 or CHO-K1 fibroblasts. Intrinsic catalytic activities of GLUT1 transporters in CHO-K1 and 3T3-L1 cells were compared by normalizing these hexose transport rates to GLUT1 content on the cell surface, as measured by two independent methods. Cell surface GLUT1 levels in 3T3-L1 fibroblasts and adipocytes were about 10- and 25-fold higher, respectively, than in CHO-K1 fibroblasts, as assessed with an anti-GLUT1 exofacial domain antiserum, delta. The large excess of cell surface GLUT1 transporters in 3T3-L1 adipocytes relative to CHO-K1 fibroblasts was confirmed by GLUT1 protein immunoblot analysis and by photoaffinity labeling (with 3-({sup 125}I)iodo-4-azidophenethylamido-7-O-succinyldeacetylforskolin) of glucose transporters in isolated plasma membranes. Thus, GLUT1 intrinsic activity is markedly reduced in 3T3-L1 fibroblasts compared with the CHO-K1 fibroblasts, and further reduction occurs upon differentiation to adipocytes. The authors conclude that a mechanism that markedly suppresses basal hexose transport catalyzed by GLUT1 is a major contributor to the dramatic insulin sensitivity of glucose uptake in 3T3-L1 adipocytes.

  4. A new Michaelis-Menten-based kinetic model for transport and phosphorylation of glucose and its analogs in skeletal muscle.

    Science.gov (United States)

    Huang, Hsuan-Ming; Ismail-Beigi, Faramarz; Muzic, Raymond F

    2011-08-01

    A new model is introduced that individually resolves the delivery, transport, and phosphorylation steps of metabolism of glucose and its analogs in skeletal muscle by interpreting dynamic positron emission tomography (PET) data. The model uniquely utilizes information obtained from the competition between glucose and its radiolabeled analogs. Importantly, the model avoids use of a lumped constant which may depend on physiological state. Four basic physiologic quantities constitute our model parameters, including the fraction of total tissue space occupied by interstitial space (f(IS)), a flow-extraction product and interstitial (IS(g)) and intracellular (IC(g)) glucose concentrations. Using the values of these parameters, cellular influx (CI) and efflux (CE) of glucose, glucose phosphorylation rate (PR), and maximal transport (V(G)) and phosphorylation capacities (V(H)) can all be determined. Herein, the theoretical derivation of our model is addressed and characterizes its properties via simulation. Specifically, the model performance is evaluated by simulation of basal and euglycemic hyperinsulinemic (EH) conditions. In fitting the model-generated, synthetic data (including noise), mean estimates of all but IC(g) of the parameter values are within 5% of their values for both conditions. In addition, mean errors of CI, PR, and V(G) are less than 5% whereas those of VH and CE are not. It is concluded that under the conditions tested, the novel model can provide accurate parameter estimates and physiological quantities, except IC(g) and two quantities that are dependent on IC(g), namely CE and VH. However, the ability to estimate IC(g) seems to improve with increases in intracellular glucose concentrations as evidenced by comparing IC(g) estimates under basal vs EH conditions.

  5. 心肌细胞缺氧通过激活AMPK促进GLUT4移位和葡萄糖摄取%Myocardial hypoxia facilitates translocation of GLUT4 and glucose uptake by activation of AMPK

    Institute of Scientific and Technical Information of China (English)

    殷仁富; 陈金明

    2000-01-01

    目的:探讨心肌缺氧时AMP激活的蛋白激酶(AMPK)激活对葡萄糖转运子4(GLUT4)移位和葡萄糖摄取的作用。方法:大鼠心室肌经500μmol/L腺嘌呤-9-β-D核糖呋喃腺苷(AICAR)孵育,用放射性核素分析技术测定其葡萄糖摄取量和AMPK活力,应用western印迹法分析心肌细胞GLUT4含量。结果:AMPK特异性激活剂AICAR和氰化钾可使心肌葡萄糖摄取增加(1倍和1.5倍),但均受araA抑制。AICAR增加心肌AMPK活力和葡萄糖摄取,而araA则有抑制作用。心肌细胞质膜GLUT4分布明显增加而细胞器膜GLUT4分布相应减少。结论:氰化钾所致的心肌缺氧与AICAR一样可通过AMPK激活途径,促进GLUT4移位和葡萄糖摄取,它有别于胰岛素所通过的P13K激活途径。%Objective:To investigate the effects of AMP-activated proteinkinase (AMPK) activation on translocation of glucose transporter-4(GLUT4) and glucose uptake in hypoxic rat myocardium.Methods..Left ventricular papillary muscle was treated with 500 μmol/L araA,and glucose concentration was determined after incubated with insulin,potassium cyanide and 5- aminoimidazole- 4- carhoxyamide-l-β-D-ribofuranoside (AICAR).Myocardial GLUT4 content and AMPK activity were studied.Results:AICAR and potassium cyanide increased myocardial glucose uptake by 1 and 1.5 times respectively.The effects of both AICAR and potassium cyanide were inhibited by araA.AICAR increased myocardial AMPK activity whereas araA inhibited it.After incubating with AICAR and potassium cyanide,GLUT4 content increased in myocardial sarcolemma significantly and decreased in intracellular membrane at the same time.Conclusion:The activated AMPK pathway,through which myocardial hypoxia is induced by potassium cyanide and AICAR,facilitates translocation of GLUT4 and glucose uptake,which is different from insulin activated PI3K pathway.

  6. Colloid-Facilitated Radionuclide Transport: Current State of Knowledge from a Nuclear Waste Repository Risk Assessment Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-25

    This report provides an overview of the current state of knowledge of colloid-facilitated radionuclide transport from a nuclear waste repository risk assessment perspective. It draws on work that has been conducted over the past 3 decades, although there is considerable emphasis given to work that has been performed over the past 3-5 years as part of the DOE Used Fuel Disposition Campaign. The timing of this report coincides with the completion of a 3-year DOE membership in the Colloids Formation and Migration (CFM) partnership, an international collaboration of scientists studying colloid-facilitated transport of radionuclides at both the laboratory and field-scales in a fractured crystalline granodiorite at the Grimsel Test Site in Switzerland. This Underground Research Laboratory has hosted the most extensive and carefully-controlled set of colloid-facilitated solute transport experiments that have ever been conducted in an in-situ setting, and a summary of the results to date from these efforts, as they relate to transport over long time and distance scales, is provided in Chapter 3 of this report.

  7. Diabetes Alters the Expression and Translocation of the Insulin-Sensitive Glucose Transporters 4 and 8 in the Atria.

    Directory of Open Access Journals (Sweden)

    Zahra Maria

    Full Text Available Although diabetes has been identified as a major risk factor for atrial fibrillation, little is known about glucose metabolism in the healthy and diabetic atria. Glucose transport into the cell, the rate-limiting step of glucose utilization, is regulated by the Glucose Transporters (GLUTs. Although GLUT4 is the major isoform in the heart, GLUT8 has recently emerged as a novel cardiac isoform. We hypothesized that GLUT-4 and -8 translocation to the atrial cell surface will be regulated by insulin and impaired during insulin-dependent diabetes. GLUT protein content was measured by Western blotting in healthy cardiac myocytes and type 1 (streptozotocin-induced, T1Dx diabetic rodents. Active cell surface GLUT content was measured using a biotinylated photolabeled assay in the perfused heart. In the healthy atria, insulin stimulation increased both GLUT-4 and -8 translocation to the cell surface (by 100% and 240%, respectively, P<0.05. Upon insulin stimulation, we reported an increase in Akt (Th308 and s473 sites and AS160 phosphorylation, which was positively (P<0.05 correlated with GLUT4 protein content in the healthy atria. During diabetes, active cell surface GLUT-4 and -8 content was downregulated in the atria (by 70% and 90%, respectively, P<0.05. Akt and AS160 phosphorylation was not impaired in the diabetic atria, suggesting the presence of an intact insulin signaling pathway. This was confirmed by the rescued translocation of GLUT-4 and -8 to the atrial cell surface upon insulin stimulation in the atria of type 1 diabetic subjects. In conclusion, our data suggest that: 1 both GLUT-4 and -8 are insulin-sensitive in the healthy atria through an Akt/AS160 dependent pathway; 2 GLUT-4 and -8 trafficking is impaired in the diabetic atria and rescued by insulin treatment. Alterations in atrial glucose transport may induce perturbations in energy production, which may provide a metabolic substrate for atrial fibrillation during diabetes.

  8. Post-Translational Regulation of the Glucose-6-Phosphatase Complex by Cyclic Adenosine Monophosphate Is a Crucial Determinant of Endogenous Glucose Production and Is Controlled by the Glucose-6-Phosphate Transporter.

    Science.gov (United States)

    Soty, Maud; Chilloux, Julien; Delalande, François; Zitoun, Carine; Bertile, Fabrice; Mithieux, Gilles; Gautier-Stein, Amandine

    2016-04-01

    The excessive endogenous glucose production (EGP) induced by glucagon participates in the development of type 2 diabetes. To further understand this hormonal control, we studied the short-term regulation by cyclic adenosine monophosphate (cAMP) of the glucose-6-phosphatase (G6Pase) enzyme, which catalyzes the last reaction of EGP. In gluconeogenic cell models, a 1-h treatment by the adenylate cyclase activator forskolin increased G6Pase activity and glucose production independently of any change in enzyme protein amount or G6P content. Using specific inhibitors or protein overexpression, we showed that the stimulation of G6Pase activity involved the protein kinase A (PKA). Results of site-directed mutagenesis, mass spectrometry analyses, and in vitro phosphorylation experiments suggested that the PKA stimulation of G6Pase activity did not depend on a direct phosphorylation of the enzyme. However, the temperature-dependent induction of both G6Pase activity and glucose release suggested a membrane-based mechanism. G6Pase is composed of a G6P transporter (G6PT) and a catalytic unit (G6PC). Surprisingly, we demonstrated that the increase in G6PT activity was required for the stimulation of G6Pase activity by forskolin. Our data demonstrate the existence of a post-translational mechanism that regulates G6Pase activity and reveal the key role of G6PT in the hormonal regulation of G6Pase activity and of EGP.

  9. High glucose decreases the expression of ATP-binding cassette transporter G1 in human vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    Jiahong Xue; Zuyi Yuan; Yue Wu; Yan Zhao; Zhaofei Wan

    2008-01-01

    Objective:ATP-binding cassette transporters(ABC) A1 and G1 play an important role in mediating cholesterol efflux and preventing macrophage foam cell formation. In this study, we examined the regulation of ABC transporters by high glucose in human vascular smooth muscle cells(VSMCs), the other precursor of foam cells. Methods:Incubation of human VSMCs with D-ghicose(5 to 30 mM) for 1 to 7 days in the presence or absence of antioxidant and nuclear factor(NF)-kB inhibitors, the expressions of ABCA1 and ABCG1 were analyzed by real time PCR and Western blotting. Results:High glucose decreased ABCG1 mRNA and protein expression in cultured VSMCs, whereas the expression of ABCA1 was not significantly decreased. Down-regulation of ABCG1 mRNA expression by high glucose was abolished by antioxidant N-acetyl-L-cysteine(NAC) and NF-kB inhibitors, BAY 11-7085 and tosyl-phenylalanine chloromethyl-ketone(TPCK). Conclusion:High glucose suppresses the expression of ABCG1 in VSMCs, which is the possible mechanism of VSMC derived foam cell transformation.

  10. LONG-TERM COLLOID MOBILIZATION AND COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES IN A SEMI-ARID VADOSE ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Markus Flury; James B. Harsh; Fred Zhang; Glendon W. Gee; Earl D. Mattson; Peter C. L

    2012-08-01

    The main purpose of this project was to improve the fundamental mechanistic understanding and quantification of long-term colloid mobilization and colloid-facilitated transport of radionuclides in the vadose zone, with special emphasis on the semi-arid Hanford site. While we focused some of the experiments on hydrogeological and geochemical conditions of the Hanford site, many of our results apply to colloid and colloid-facilitated transport in general. Specific objectives were (1) to determine the mechanisms of colloid mobilization and colloid-facilitated radionuclide transport in undisturbed Hanford sediments under unsaturated flow, (2) to quantify in situ colloid mobilization and colloid-facilitated radionuclidetransport from Hanford sediments under field conditions, and (3) to develop a field-scale conceptual and numerical model for colloid mobilization and transport at the Hanford vadose zone, and use that model to predict long-term colloid and colloid- facilitated radionuclide transport. To achieve these goals and objectives, we have used a combination of experimental, theoretical, and numerical methods at different spatial scales, ranging from microscopic investigationsof single particle attachment and detachment to larger-scale field experiments using outdoor lysimeters at the Hanford site. Microscopic and single particle investigations provided fundamental insight into mechanisms of colloid interactions with the air-water interface. We could show that a moving air water interface (such as a moving water front during infiltration and drainage) is very effective in removing and mobilizing particles from a stationary surface. We further demonstrated that it is particularly the advancing air-water interface which is mainly responsible for colloid mobilization. Forces acting on the colloids calculated from theory corroborated our experimental results, and confirm that the detachment forces (surface tension forces) during the advancing air-water interface

  11. Benefits and Harms of Sodium-Glucose Co-Transporter 2 Inhibitors in Patients with Type 2 Diabetes

    DEFF Research Database (Denmark)

    Storgaard, Heidi; Gluud, Lise L; Bennett, Cathy

    2016-01-01

    OBJECTIVE: Sodium-glucose co-transporter 2 inhibitors (SGLT2-i) are a novel drug class for the treatment of diabetes. We aimed at describing the maximal benefits and risks associated with SGLT2-i for patients with type 2 diabetes. DESIGN: Systematic review and meta-analysis. DATA SOURCES AND STUDY...... increased risk in non-serious adverse events. The analyses may overestimate the intervention benefit due bias....

  12. Expression Patterns of Glucose Transporter-1 Gene and Thyroid Specific Genes in Human Papillary Thyroid Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sungeun; Chung, Junekey; Min Haesook and others

    2014-06-15

    The expression of glucose transporter-1 (Glut-1) gene and those of major thyroid-specific genes were examined in papillary carcinoma tissues, and the expressions of these genes were compared with cancer differentiation grades. Twenty-four human papillary carcinoma tissues were included in this study. The expressions of Glut-1- and thyroid-specific genes [sodium/iodide symporter (NIS), thyroid peroxidase, thyroglobulin, TSH receptor and pendrin] were analyzed by RT-PCR. Expression levels were expressed as ratios versus the expression of beta-actin. Pathologic differentiation of papillary carcinoma was classified into a relatively well-differentiated group (n=13) and relatively less differentiated group (n=11). Glut-1 gene expression was significantly higher in the less differentiated group (0.66±0.04) than in the well-differentiated group (0.59±0.07). The expression levels of the NIS, PD and TG genes were significantly higher in the well-differentiated group (NIS: 0.67±0.20, PD: 0.65±0.21, TG: 0.74±0.16) than in the less differentiated group (NIS: 0.36±0.05, PD: 0.49±0.08, TG: 0.60±0.11), respectively. A significant negative correlation was found between Glut-1 and NIS expression, and positive correlations were found between NIS and TG, and between NIS and PD. The NIS, PD and TG genes were highly expressed in well-differentiated thyroid carcinomas, whereas the Glut-1 gene was highly expressed in less differentiated thyroid carcinomas. These findings provide a molecular rationale for the management of papillary carcinoma, especially in the selection of FDG PET or radioiodine whole-body scan and I-131-based therapy.

  13. Expression of glucose transporter 4 in endometrium of polycystic ovary syndrome

    Institute of Scientific and Technical Information of China (English)

    Wang Wei; Li Xiao-dong; Hao Gui-min; Xu Su-xin; Cui Na; Cao Jin-feng

    2008-01-01

    Objective:The aim of this study was to detect the expression of glucose transporter 4(GLUT4),insulin(INS)and insulin receptor(INS-R)genes and proteins in endometrium of patients with polycystic ovarian syndrome(P-COS)and control group and investigate the relationship between GLUT4 and insulin resistance(IR).Methods:The patients with PCOS were divided into two groups:hypertestosteronemia(h-T)group and hyperin-sulinemia(h-I)group.The expression of GLUT4,INS and INS-R genes and proteins in endometrium of PCOS groups and control group was detected by immunohistochemistry and reverse transcription-polymerase chain reaction.Results:There was the expression of GLUT4,INS and INS-R proteins and genes in endometrium of PCOS groups and control group.Compared with the control group,PCOS groups were significantly lower in the expres-sion of GLUT4 protein and gene as well as INS-R protein and gene but much stronger in the expression of INS pro-tein and gene.The GLUT4 gene expression in h-I group was lower than that of h-T group but the expression of INS protein in h-I group was siginificantly higher than that of h-T group.Conclusion:The expression of GLUT4,INS and INS-R in endometrium of PCOS and control groups is con-firmed.Hyperinsulinemia and hyperandrogen can cause the expression of GLUT4 to decrease.The decreased ex-pression of GLUT4 in PCOS may be related with the IR of endometrium.

  14. Quantitative PCR for glucose transporter and tristetraprolin family gene expression in cultured mouse adipocytes and macrophages.

    Science.gov (United States)

    Cao, Heping; Cao, Fangping; Roussel, Anne-Marie; Anderson, Richard A

    2013-12-01

    Quantitative real-time PCR (qPCR) such as TaqMan and SYBR Green qPCR are widely used for gene expression analysis. The drawbacks of SYBR Green assay are that the dye binds to any double-stranded DNA which can generate false-positive signals and that the length of the amplicon affects the intensity of the amplification. Previous results demonstrate that TaqMan assay is more sensitive but generates lower calculated expression levels than SYBR Green assay in quantifying seven mRNAs in tung tree tissues. The objective of this study is to expand the analysis using animal cells. We compared both qPCR assays for quantifying 24 mRNAs including those coding for glucose transporter (Glut) and mRNA-binding protein tristetraprolin (TTP) in mouse 3T3-L1 adipocytes and RAW264.7 macrophages. The results showed that SYBR Green and TaqMan qPCR were reliable for quantitative gene expression in animal cells. This result was supported by validation analysis of Glut and TTP family gene expression. However, SYBR Green qPCR overestimated the expression levels in most of the genes tested. Finally, both qPCR instruments (Bio-Rad's CFX96 real-time system and Applied Biosystems' Prism 7700 real-time PCR instrument) generated similar gene expression profiles in the mouse cells. These results support the conclusion that both qPCR assays (TaqMan and SYBR Green qPCR) and both qPCR instruments (Bio-Rad's CFX96 real-time system and Applied Biosystems' Prism 7700 real-time PCR instrument) are reliable for quantitative gene expression analyses in animal cells but SYBR Green qPCR generally overestimates gene expression levels than TaqMan qPCR.

  15. Maltose and maltodextrin utilization by Listeria monocytogenes depend on an inducible ABC transporter which is repressed by glucose.

    Directory of Open Access Journals (Sweden)

    Shubha Gopal

    Full Text Available BACKGROUND: In the environment as well as in the vertebrate intestine, Listeriae have access to complex carbohydrates like maltodextrins. Bacterial exploitation of such compounds requires specific uptake and utilization systems. METHODOLOGY/PRINCIPAL FINDINGS: We could show that Listeria monocytogenes and other Listeria species contain genes/gene products with high homology to the maltodextrin ABC transporter and utilization system of B. subtilis. Mutant construction and growth tests revealed that the L. monocytogenes gene cluster was required for the efficient utilization of maltodextrins as well as maltose. The gene for the ATP binding protein of the transporter was located distant from the cluster. Transcription analyses demonstrated that the system was induced by maltose/maltodextrins and repressed by glucose. Its induction was dependent on a LacI type transcriptional regulator. Repression by glucose was independent of the catabolite control protein CcpA, but was relieved in a mutant defective for Hpr kinase/phosphorylase. CONCLUSIONS/SIGNIFICANCE: The data obtained show that in L. monocytogenes the uptake of maltodextrin and, in contrast to B. subtilis, also maltose is exclusively mediated by an ABC transporter. Furthermore, the results suggest that glucose repression of the uptake system possibly is by inducer exclusion, a mechanism not described so far in this organism.

  16. A three-year-old boy with glucose transporter type 1 deficiency syndrome presenting with episodic ataxia.

    Science.gov (United States)

    Ohshiro-Sasaki, Akiko; Shimbo, Hiroko; Takano, Kyoko; Wada, Takahito; Osaka, Hitoshi

    2014-01-01

    Glucose transporter type 1 deficiency syndrome is a metabolic encephalopathy that results from impaired glucose transport into the brain as the result of a mutation of the SLC2A1 gene. It has been recognized recently that these patients can present with a much broader clinical spectrum than previously thought. We describe a 3-year-old boy presenting with episodic ataxia. Our patient exhibited periodic abnormal eye movements, including opsoclonus, since he was 4 months of age. At 2 years of age, he experienced acute cerebellar ataxia after a vaccination. Since then, he has had periodic attacks of ataxic gait, repeated vomiting, and abnormal eye movement. He was diagnosed as having episodic ataxia type 2 because the administration of acetazolamide seemed effective. By 3 years and 10 months of age, he exhibited mild mental retardation and mild trunk ataxia. The attacks were more likely to occur when he was hungry. Molecular analysis revealed that the SLC2A1 gene had a de novo mutation of heterozygous seven nucleotide insertion within exon 7, resulting in a frameshift. He has recently begun a modified Atkins diet; the frequency of attacks has been reduced, and his psychomotor and language skills have begun to develop. Glucose transporter type 1 deficiency syndrome should be considered in the differential diagnosis in children with episodic ataxia, even if acetazolamide is effective. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Facilitated Anion Transport Induces Hyperpolarization of the Cell Membrane That Triggers Differentiation and Cell Death in Cancer Stem Cells.

    Science.gov (United States)

    Soto-Cerrato, Vanessa; Manuel-Manresa, Pilar; Hernando, Elsa; Calabuig-Fariñas, Silvia; Martínez-Romero, Alicia; Fernández-Dueñas, Víctor; Sahlholm, Kristoffer; Knöpfel, Thomas; García-Valverde, María; Rodilla, Ananda M; Jantus-Lewintre, Eloisa; Farràs, Rosa; Ciruela, Francisco; Pérez-Tomás, Ricardo; Quesada, Roberto

    2015-12-23

    Facilitated anion transport potentially represents a powerful tool to modulate various cellular functions. However, research into the biological effects of small molecule anionophores is still at an early stage. Here we have used two potent anionophore molecules inspired in the structure of marine metabolites tambjamines to gain insight into the effect induced by these compounds at the cellular level. We show how active anionophores, capable of facilitating the transmembrane transport of chloride and bicarbonate in model phospholipid liposomes, induce acidification of the cytosol and hyperpolarization of plasma cell membranes. We demonstrate how this combined effect can be used against cancer stem cells (CSCs). Hyperpolarization of cell membrane induces cell differentiation and loss of stemness of CSCs leading to effective elimination of this cancer cell subpopulation.

  18. Bubble-facilitated VOC transport from LNAPL smear zones and its potential effect on vapor intrusion: Laboratory experiments

    Science.gov (United States)

    Soucy, N. C.; Mumford, K. G.

    2016-12-01

    Light non-aqueous phase liquid (LNAPL) sources can pose a significant threat to indoor air through the volatilization of hydrocarbons from the source and the subsequent transport of vapor through the soil. If subjected to the rise and fall of a water table, an LNAPL source can become a smear zone that consists of trapped discontinuous LNAPL blobs (residual) and has a higher aqueous permeability and higher surface area-to-volume ratio than pool sources. The rise and fall of a water table can also trap atmospheric air bubbles alongside the LNAPL. If these bubbles expand and become mobile, either through partitioning of volatile organic compounds (VOCs) or the production of biogenic gases, bubble-facilitated vertical vapor transport can occur. It is important to understand the bubble-facilitated transport of VOCs as it is a mechanism that could lead to faster transport. The transport of VOCs from smear zones was investigated using laboratory column and visualization experiments. In the column experiments, pentane LNAPL was emplaced in a 5 cm sand-packed source zone and the water level was raised and lowered to trap residual LNAPL and air bubbles. Each column also contained a 10 cm-high zone of clean saturated sand, and a 10 cm vadose zone of 4 mm-diameter glass beads. Water was pumped through the source and occlusion zones, and air flowed across the top of the column, where vapor samples were collected and analyzed immediately by gas chromatography. In the visualization experiments, pentane LNAPL was emplaced in a two-dimensional cell designed to allow visualization of mobilized LNAPL and gas through glass walls. Results of the column experiments showed VOC mass fluxes in test columns were 1-2 orders of magnitude greater than in the control columns. In addition, the flux signal was intermittent, consistent with expectations of bubble-facilitated transport. The results from the visualization experiments showed gas fingers growing and mobilizing over time, and supports

  19. Flozins, inhibitors of type 2 renal sodium-glucose co-transporter – not only antihyperglycemic drugs

    Directory of Open Access Journals (Sweden)

    Mizerski Grzegorz

    2015-09-01

    Full Text Available The kidneys play a crucial role in the regulation of the carbohydrate metabolism. In normal physiological conditions, the glucose that filters through the renal glomeruli is subsequently nearly totally reabsorbed in the proximal renal tubules. Two transporters are engaged in this process: sodium-glucose co-transporter type 1 (SGLT1, and sodium-glucose co-transporter type type 2 (SGLT2 - this being located in the luminal membrane of the renal tubular epithelial cells. It was found that the administration of dapagliflozin, a selective SGLT2 inhibitor, in patients with type 2 diabetes, is associated with the reduction of HbA1c concentration by 0.45-1.11%. Additional benefits from the treatment with dapagliflozin are the reduction of arterial blood pressure and a permanent reduction of body weight. This outcome is related to the effect of osmotic diuresis and to the considerable loss of the glucose load by way of urine excretion. Dapagliflozin may be successfully applied in type 2 diabetes monotherapy, as well as in combined therapy (including insulin, where it is equally effective as other oral anti-diabetic drugs. Of note: serious adverse effects of dapagliflozin administration are rarely observed. What is more, episodes of severe hypoglycaemia related with the treatment occur only sporadically, most often in the course of diabetes polytherapy. The most frequent effects of the SGLT2 inhibitors are inseparably associated with the mechanism of their action (the glucuretic effect, and cover urogenital infections with a mild clinical course. At present, clinical trials are being continued of the administration of several subsequent drugs from this group, the most advanced of these being the use of canagliflozin and empagliflozin.

  20. Skeletal muscle sodium glucose co-transporters in older adults with type 2 diabetes undergoing resistance training

    Directory of Open Access Journals (Sweden)

    Francisco Castaneda, Jennifer E. Layne, Carmen Castaneda

    2006-01-01

    Full Text Available We examined the expression of the sodium-dependent glucose co-transporter system (hSGLT3 in skeletal muscle of Hispanic older adults with type 2 diabetes. Subjects (65±8 yr were randomized to resistance training (3x/wk, n=13 or standard of care (controls, n=5 for 16 weeks. Skeletal muscle hSGLT3 and GLUT4 mRNA transcript levels were determined by real time RT-PCR. hSGLT3 transcripts increased by a factor of ten following resistance training compared to control subjects (0.10, P=0.03. There were no differences in GLUT4 mRNA expression levels between groups. Protein expression levels of these transporters were confirmed by immunohistochemistry and Western blotting. hSGLT3 after resistance exercise was found not to be co-localized with the nicotinic acetylcholine receptor. The change in hSGLT3 transcript levels in the vastus lateralis muscle was positively correlated with glucose uptake, as measured by the change in muscle glycogen stores (r=0.53, P=0.02; and with exercise intensity, as measured by the change in muscle strength (r=0.73, P=0.001. Group assignment was be the only independent predictor of hSGLT3 transcript levels, explaining 68% of its variability (P=0.01. Our data show that hSGLT3, but not GLTU4, expression was enhanced in skeletal muscle after 16 weeks of resistance training. This finding suggests that hSGLT3, an insulin-independent glucose transporter, is activated with exercise and it may play a significant role in glycemic control with muscle contraction. The hSGLT3 exact mechanism is not well understood and requires further investigation. However its functional significance regarding a reduction of glucose toxicity and improvement of insulin resistance is the subject of ongoing research.

  1. Empagliflozin: a new sodium-glucose co-transporter 2 (SGLT2 inhibitor for the treatment of type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Joshua J Neumiller

    2014-06-01

    Full Text Available Type 2 diabetes is increasing in prevalence worldwide, and hyperglycemia is often poorly controlled despite a number of therapeutic options. Unlike previously available agents, sodium-glucose co-transporter 2 (SGLT2 inhibitors offer an insulin-independent mechanism for improving blood glucose levels, since they promote urinary glucose excretion (UGE by inhibiting glucose reabsorption in the kidney. In addition to glucose control, SGLT2 inhibitors are associated with weight loss and blood pressure reductions, and do not increase the risk of hypoglycemia. Empagliflozin is a selective inhibitor of SGLT2, providing dose-dependent UGE increases in healthy volunteers, with up to 90 g of glucose excreted per day. It can be administered orally, and studies of people with renal or hepatic impairment indicated empagliflozin needed no dose adjustment based on pharmacokinetics. In Phase II trials in patients with type 2 diabetes, empagliflozin provided improvements in glycosylated hemoglobin (HbA1c and other measures of glycemic control when given as monotherapy or add-on to metformin, as well as reductions in weight and systolic blood pressure. As add-on to basal insulin, empagliflozin not only improved HbA1c levels but also reduced insulin doses. Across studies, empagliflozin was generally well tolerated with a similar rate of hypoglycemia to placebo; however, patients had a slightly increased frequency of genital infections, but not urinary tract infections, versus placebo. Phase III studies have also reported a good safety profile along with significant improvements in HbA1c, weight and blood pressure, with no increased risk of hypoglycemia versus placebo. Based on available data, it appears that empagliflozin may be a useful option in a range of patients; however, clinical decisions will be better informed by the results of ongoing studies, in particular, a large cardiovascular outcome study (EMPA-REG OUTCOME™.

  2. The sim Operon Facilitates the Transport and Metabolism of Sucrose Isomers in Lactobacillus casei ATCC 334

    OpenAIRE

    2008-01-01

    Inspection of the genome sequence of Lactobacillus casei ATCC 334 revealed two operons that might dissimilate the five isomers of sucrose. To test this hypothesis, cells of L. casei ATCC 334 were grown in a defined medium supplemented with various sugars, including each of the five isomeric disaccharides. Extracts prepared from cells grown on the sucrose isomers contained high levels of two polypeptides with Mrs of ~50,000 and ~17,500. Neither protein was present in cells grown on glucose, ma...

  3. Energy Coupling of Facilitated Transport of Inorganic Ions in Rhodopseudomonas sphaeroides

    NARCIS (Netherlands)

    Hellingwerf, K; Friedberg, Ilan; Lolkema, Juke S.; Michels, Paul A.M.; Konings, Wilhelmus

    1982-01-01

    Within the scope of a study on the effects of changes in medium composition on the proton motive force in Rhodopseudomonas sphaeroides, the energy coupling of sodium, phosphate, and potassium (rubidium) transport was investigated. Sodium was transported via an electroneutral exchange system against

  4. Two major facilitator superfamily sugar transporters from Trichoderma reesei and their roles in induction of cellulase biosynthesis.

    Science.gov (United States)

    Zhang, Weixin; Kou, Yanbo; Xu, Jintao; Cao, Yanli; Zhao, Guolei; Shao, Jing; Wang, Hai; Wang, Zhixing; Bao, Xiaoming; Chen, Guanjun; Liu, Weifeng

    2013-11-15

    Proper perception of the extracellular insoluble cellulose is key to initiating the rapid synthesis of cellulases by cellulolytic Trichoderma reesei. Uptake of soluble oligosaccharides derived from cellulose hydrolysis represents a potential point of control in the induced cascade. In this study, we identified a major facilitator superfamily sugar transporter Stp1 capable of transporting cellobiose by reconstructing a cellobiose assimilation system in Saccharomyces cerevisiae. The absence of Stp1 in T. reesei resulted in differential cellulolytic response to Avicel versus cellobiose. Transcriptional profiling revealed a different expression profile in the Δstp1 strain from that of wild-type strain in response to Avicel and demonstrated that Stp1 somehow repressed induction of the bulk of major cellulase and hemicellulose genes. Two other putative major facilitator superfamily sugar transporters were, however, up-regulated in the profiling. Deletion of one of them identified Crt1 that was required for growth and enzymatic activity on cellulose or lactose, but was not required for growth or hemicellulase activity on xylan. The essential role of Crt1 in cellulase induction did not seem to rely on its transporting activity because the overall uptake of cellobiose or sophorose by T. reesei was not compromised in the absence of Crt1. Phylogenetic analysis revealed that orthologs of Crt1 exist in the genomes of many filamentous ascomycete fungi capable of degrading cellulose. These data thus shed new light on the mechanism by which T. reesei senses and transmits the cellulose signal and offers potential strategies for strain improvement.

  5. Characteristics of glucose transport across the microvillous membranes of human term placenta Características del transporte de glucosa a través de las membranas con microvellosidades de la placenta humana a término

    Directory of Open Access Journals (Sweden)

    Ravinderjit Kaur Anand

    2006-02-01

    Full Text Available Transport characteristics of D-glucose were studied in the microvillous vesicles isolated from the human term placenta. Transport occurred by selective and rapid facilitated diffusion system which was inhibitable by phloretin and HgCl2. The transport was dependent on a transmembrane. Na+-gradient indicating a "secondary active transport" system operating. The transport influx was saturable and the kinetic analysis based on Hanes-Woolf plot produced a kt and Jmax value of 1.2 mM and 34 nmoles. mgprotein-1.min-1, respectively. The efflux of D-glucose from the membrane vesicles in a pre-equilibrated assay conditions showed a distinct biphasic pattern differing significantly in the half time efflux. The t1/2 of the fast and slow components was found to be 15 sec and 660 sec, respectively. The transport showed distinct sensitivity to temperature and the Ea values both below and above the transition temperature of 37 ºC, as calculated from the Arrhenius plot were found to be 7600 and 5472 kCa1.mol-1, respectively. Inhibition studies with a number of sugars for hexose transport pathway showed that the glucose epimers, phosphorylated sugars, and even the disaccharides and the pentose sugars competed effectively with D-glucose. The influx was also inhibited by a number of steroids such as progesterone, 17α-hydroxyprogesterone, testosterone and estrogen. Insulin was found to increase glucose transport in a dose- dependent fashion at a concentration of 0.2-1 unit.ml-1. Ouabain, dinitrophenoi and nicotine strongly inhibited D-glucose uptake in the membrane vesicles.Se estudiaron las características del transporte de la D-glucosa en las vesículas con microvellosidades aisladas de la placenta humana a término. El transporte ocurría por un sistema de difusión selectiva y facilitada rápida que podía inhibirse por floretina y por HgCl2. El transporte dependía de un gradiente de Na+ transmembrana,indicativo de un sistema operativo de "transporte activo

  6. Canagliflozin: a sodium glucose co-transporter 2 inhibitor for the treatment of type 2 diabetes mellitus.

    Science.gov (United States)

    Rosenthal, Norm; Meininger, Gary; Ways, Kirk; Polidori, David; Desai, Mehul; Qiu, Rong; Alba, Maria; Vercruysse, Frank; Balis, Dainius; Shaw, Wayne; Edwards, Robert; Bull, Scott; Di Prospero, Nicholas; Sha, Sue; Rothenberg, Paul; Canovatchel, William; Demarest, Keith

    2015-11-01

    The sodium glucose co-transporter 2 (SGLT2) inhibitor canagliflozin is a novel treatment option for adults with type 2 diabetes mellitus (T2DM). In patients with hyperglycemia, SGLT2 inhibition lowers plasma glucose levels by reducing the renal threshold for glucose (RTG ) and increasing urinary glucose excretion (UGE). Increased UGE is also associated with a mild osmotic diuresis and net caloric loss, which can lead to reductions in body weight and blood pressure (BP). After promising results from preclinical and phase I/II studies, the efficacy and safety of canagliflozin was evaluated in a comprehensive phase III development program in over 10,000 patients with T2DM on various background therapies. Canagliflozin improved glycemic control and provided reductions in body weight and BP versus placebo and active comparators in studies of up to 2 years' duration. Canagliflozin was generally well tolerated, with higher incidences of adverse events (AEs) related to the mechanism of action, including genital mycotic infections and AEs related to osmotic diuresis. Results from the preclinical and clinical studies led canagliflozin to be the first-in-class SGLT2 inhibitor approved in the United States, and support canagliflozin as a safe and effective therapeutic option across a broad range of patients with T2DM. © 2015 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  7. Adaptive evolution in the glucose transporter 4 gene Slc2a4 in Old World fruit bats (family: Pteropodidae).

    Science.gov (United States)

    Shen, Bin; Han, Xiuqun; Zhang, Junpeng; Rossiter, Stephen J; Zhang, Shuyi

    2012-01-01

    Frugivorous and nectarivorous bats are able to ingest large quantities of sugar in a short time span while avoiding the potentially adverse side-effects of elevated blood glucose. The glucose transporter 4 protein (GLUT4) encoded by the Slc2a4 gene plays a critical role in transmembrane skeletal muscle glucose uptake and thus glucose homeostasis. To test whether the Slc2a4 gene has undergone adaptive evolution in bats with carbohydrate-rich diets in relation to their insect-eating sister taxa, we sequenced the coding region of the Slc2a4 gene in a number of bat species, including four Old World fruit bats (Pteropodidae) and three New World fruit bats (Phyllostomidae). Our molecular evolutionary analyses revealed evidence that Slc2a4 has undergone a change in selection pressure in Old World fruit bats with 11 amino acid substitutions detected on the ancestral branch, whereas, no positive selection was detected in the New World fruit bats. We noted that in the former group, amino acid replacements were biased towards either Serine or Isoleucine, and, of the 11 changes, six were specific to Old World fruit bats (A133S, A164S, V377F, V386I, V441I and G459S). Our study presents preliminary evidence that the Slc2a4 gene has undergone adaptive changes in Old World fruit bats in relation to their ability to meet the demands of a high sugar diet.

  8. Adaptive evolution in the glucose transporter 4 gene Slc2a4 in Old World fruit bats (family: Pteropodidae.

    Directory of Open Access Journals (Sweden)

    Bin Shen

    Full Text Available Frugivorous and nectarivorous bats are able to ingest large quantities of sugar in a short time span while avoiding the potentially adverse side-effects of elevated blood glucose. The glucose transporter 4 protein (GLUT4 encoded by the Slc2a4 gene plays a critical role in transmembrane skeletal muscle glucose uptake and thus glucose homeostasis. To test whether the Slc2a4 gene has undergone adaptive evolution in bats with carbohydrate-rich diets in relation to their insect-eating sister taxa, we sequenced the coding region of the Slc2a4 gene in a number of bat species, including four Old World fruit bats (Pteropodidae and three New World fruit bats (Phyllostomidae. Our molecular evolutionary analyses revealed evidence that Slc2a4 has undergone a change in selection pressure in Old World fruit bats with 11 amino acid substitutions detected on the ancestral branch, whereas, no positive selection was detected in the New World fruit bats. We noted that in the former group, amino acid replacements were biased towards either Serine or Isoleucine, and, of the 11 changes, six were specific to Old World fruit bats (A133S, A164S, V377F, V386I, V441I and G459S. Our study presents preliminary evidence that the Slc2a4 gene has undergone adaptive changes in Old World fruit bats in relation to their ability to meet the demands of a high sugar diet.

  9. Connective Auxin Transport in the Shoot Facilitates Communication between Shoot Apices.

    Science.gov (United States)

    Bennett, Tom; Hines, Geneviève; van Rongen, Martin; Waldie, Tanya; Sawchuk, Megan G; Scarpella, Enrico; Ljung, Karin; Leyser, Ottoline

    2016-04-01

    The bulk polar movement of the plant signaling molecule auxin through the stem is a long-recognized but poorly understood phenomenon. Here we show that the highly polar, high conductance polar auxin transport stream (PATS) is only part of a multimodal auxin transport network in the stem. The dynamics of auxin movement through stems are inconsistent with a single polar transport regime and instead suggest widespread low conductance, less polar auxin transport in the stem, which we term connective auxin transport (CAT). The bidirectional movement of auxin between the PATS and the surrounding tissues, mediated by CAT, can explain the complex auxin transport kinetics we observe. We show that the auxin efflux carriers PIN3, PIN4, and PIN7 are major contributors to this auxin transport connectivity and that their activity is important for communication between shoot apices in the regulation of shoot branching. We propose that the PATS provides a long-range, consolidated stream of information throughout the plant, while CAT acts locally, allowing tissues to modulate and be modulated by information in the PATS.

  10. Zero-tension lysimeters: An improved design to monitor colloid-facilitated contaminant transport in the vadose zone

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M.L.; Scharf, R.L.; Shang, C.

    1995-04-24

    There is increasing evidence that mobile colloids facilitate the long-distance transport of contaminants. The mobility of fine particles and macromolecules has been linked to the movement of actinides, organic contaminants, and heavy metals through soil. Direct evidence for colloid mobility includes the presence of humic materials in deep aquifers as well as coatings of accumulated clay, organic matter, or sesquioxides on particle or aggregate surfaces in subsoil horizons of many soils. The potential for colloid-facilitated transport of contaminants from hazardous-waste sites requires adequate monitoring before, during, and after in-situ remediation treatments. Zero-tension lysimeters (ZTLs) are especially appropriate for sampling water as it moves through saturated soil, although some unsaturated flow events may be sampled as well. Because no ceramic barrier or fiberglass wick is involved to maintain tension on the water (as is the case with other lysimeters), particles suspended in the water as well as dissolved species may be sampled with ZTLs. In this report, a ZTL design is proposed that is more suitable for monitoring colloid-facilitated contaminant migration. The improved design consists of a cylinder made of polycarbonate or polytetrafluoroethylene (PTFE) that is placed below undisturbed soil material. In many soils, a hydraulically powered tube may be used to extract an undisturbed core of soil before placement of the lysimeter. In those cases, the design has significant advantages over conventional designs with respect to simplicity and speed of installation. Therefore, it will allow colloid-facilitated transport of contaminants to be monitored at more locations at a given site.

  11. Constructing recombinant replication-defective adenoviral vectors that express glucose transporter-1 through in vitro ligation

    Institute of Scientific and Technical Information of China (English)

    Fangcheng Li; Junliang Li; Ranyi Liu; Xinke Xu; Kaichang Yuan; Zhonghua Wu

    2008-01-01

    BACKGROUND: We constructed a homologous recombination bacterial method based on the pAdEasy system, a widely used system, for generating recombinant adenoviral vectors that express glucose transporter-1 (GLUT1) in rats.OBJECTIVE: This study was designed to investigate the feasibility of generating recombinant replication-defective adenoviral vectors that express GLUT1 in rats by in vitro ligation based on the Adeno-XTM system. DESIGN: An in vitro cell-based experiment. SETTING: This study was performed at the Linbaixin Medical Research Center of the Second Hospital Affiliated to Sun Yat-sen University and Central Laboratory for Prevention and Treatment of Tumor, Sun Yat-sen University between January and August 2004. MATERIALS: Male, adult, Sprague Dawley rats were used to extract total RNA from brain tissue. E. coli DH5?and human embryonic kidney 293 cells (HEK293 cells) used in the present study were cryo-preserved by the Second Hospital Affiliated to Sun Yat-sen University. Rabbit anti-rat GLUT1 polyclonal antibody (Chemicon, U.S.A.) and primers (Shanghai Boya Bioengineering Co., Ltd) were also used. METHODS: E1/E3-deleted replication-defective adenoviral vectors were used. Using in vitro ligation, the target gene was first sub-cloned into a shuttle vector plasmid to obtain the fragment containing target gene expression cassettes by enzyme digestion. Subsequently, the fragment was co-transformed with linearized adenoviral backbone vector into the E. coli strain. The recombinant adenoviral plasmid was transfected into HEK293 cells to assembly recombinant adenoviral vectors with replication capabilities. The procedure was repeated several times for recombinant adenoviral vectors amplification. MAIN OUTCOME MEASURES: Efficiency of recombinant adenoviral vectors to express the target gene was measured by gene and protein expression through polymerase chain reaction and Western Blot assays, respectively.RESULTS: Results demonstrated that recombinant adenoviral

  12. Glucose transport activity and photolabelling with 3-[125I]iodo-4-azidophenethylamido-7-O-succinyldeacetyl (IAPS)-forskolin of two mutants at tryptophan-388 and -412 of the glucose transporter GLUT1: dissociation of the binding domains of forskolin and glucose.

    Science.gov (United States)

    Schürmann, A; Keller, K; Monden, I; Brown, F M; Wandel, S; Shanahan, M F; Joost, H G

    1993-01-01

    The tryptophan residues 388 and 412 in the glucose transporter GLUT1 were altered to leucine (L) by site-directed mutagenesis and were transiently expressed in COS-7 cells. As assessed by immunoblotting, comparable numbers of glucose transporters were present in plasma membranes from cells transfected with wild-type GLUT1, GLUT1-L388 or GLUT1-L412. Transfection of the wild-type GLUT1 gave rise to a 3-fold increase in the reconstituted glucose transport activity recovered from plasma membranes. In contrast, transfection of GLUT1-L412 failed to increase the reconstituted transport activity, whereas transfection of GLUT1-L388 produced only a 70% increase. Photolabelling of GLUT1-L412 with 3-[125I]iodo-4-azidophenethylamido-7-O-succinyldeacetyl (125IAPS)-forskolin was not different from that of the wild-type GLUT1, whereas the GLUT1-L388 incorporated 70% less photolabel than did the wild-type GLUT1. These data suggest a dissociation of the binding sites of forskolin and glucose in GLUT1. Whereas both tryptophan-388 and tryptophan-412 appear indispensable for the function of the transporter, only tryptophan-388 is involved in the binding of the inhibitory ligand forskolin. Images Figure 1 Figure 2 PMID:8452538

  13. Functional Determinants of Metal Ion Transport and Selectivity in Paralogous Cation Diffusion Facilitator Transporters CzcD and MntE in Streptococcus pneumoniae.

    Science.gov (United States)

    Martin, Julia E; Giedroc, David P

    2016-01-19

    Cation diffusion facilitators (CDFs) are a large family of divalent metal transporters that collectively possess broad metal specificity and contribute to intracellular metal homeostasis and virulence in bacterial pathogens. Streptococcus pneumoniae expresses two homologous CDF efflux transporters, MntE and CzcD. Cells lacking mntE or czcD are sensitive to manganese (Mn) or zinc (Zn) toxicity, respectively, and specifically accumulate Mn or Zn, respectively, thus suggesting that MntE selectively transports Mn, while CzcD transports Zn. Here, we probe the origin of this metal specificity using a phenotypic growth analysis of pneumococcal variants. Structural homology to Escherichia coli YiiP predicts that both MntE and CzcD are dimeric and each protomer harbors four pairs of conserved metal-binding sites, termed the A site, the B site, and the C1/C2 binuclear site. We find that single amino acid mutations within both the transmembrane domain A site and the B site in both CDFs result in a cellular metal sensitivity similar to that of the corresponding null mutants. However, multiple mutations in the predicted cytoplasmic C1/C2 cluster of MntE have no impact on cellular Mn resistance, in contrast to the analogous substitutions in CzcD, which do have on impact on cellular Zn resistance. Deletion of the MntE-specific C-terminal tail, present only in Mn-specific bacterial CDFs, resulted in only a modest growth phenotype. Further analysis of MntE-CzcD functional chimeric transporters showed that Asn and Asp in the ND-DD A-site motif of MntE and the most N-terminal His in the HD-HD site A of CzcD (the specified amino acids are underlined) play key roles in transporter metal selectivity. Cation diffusion facilitator (CDF) proteins are divalent metal ion transporters that are conserved in organisms ranging from bacteria to humans and that play important roles in cellular physiology, from metal homeostasis and resistance to type I diabetes in vertebrates. The respiratory

  14. Structural basis of transport function in major facilitator superfamily protein from Trichoderma harzianum.

    Science.gov (United States)

    Chaudhary, Nitika; Sandhu, Padmani; Ahmed, Mushtaq; Akhter, Yusuf

    2017-02-01

    Trichothecenes are the sesquiterpenes secreted by Trichoderma spp. residing in the rhizosphere. These compounds have been reported to act as plant growth promoters and bio-control agents. The structural knowledge for the transporter proteins of their efflux remained limited. In this study, three-dimensional structure of Thmfs1 protein, a trichothecene transporter from Trichoderma harzianum, was homology modelled and further Molecular Dynamics (MD) simulations were used to decipher its mechanism. Fourteen transmembrane helices of Thmfs1 protein are observed contributing to an inward-open conformation. The transport channel and ligand binding sites in Thmfs1 are identified based on heuristic, iterative algorithm and structural alignment with homologous proteins. MD simulations were performed to reveal the differential structural behaviour occurring in the ligand free and ligand bound forms. We found that two discrete trichothecene binding sites are located on either side of the central transport tunnel running from the cytoplasmic side to the extracellular side across the Thmfs1 protein. Detailed analysis of the MD trajectories showed an alternative access mechanism between N and C-terminal domains contributing to its function. These results also demonstrate that the transport of trichodermin occurs via hopping mechanism in which the substrate molecule jumps from one binding site to another lining the transport tunnel. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Demonstration of a visual cell-based assay for screening glucose transporter 4 translocation modulators in real time

    Indian Academy of Sciences (India)

    Maleppillil Vavachan Vijayakumar; Amrendra Kumar Ajay; Manoj Kumar Bhat

    2010-12-01

    Insulin-stimulated translocation of glucose transporter 4 (GLUT4) to cell membrane leading to glucose uptake is the rate-limiting step in diabetes. It is also a defined target of antidiabetic drug research. Existing GLUT4 translocation assays are based on time-consuming immunoassays and are hampered by assay variability and low sensitivity. We describe a real-time, visual, cell-based qualitative GLUT4 translocation assay using CHO-HIRc-myc-GLUT4eGFP cells that stably express myc- and eGFP-tagged GLUT4 in addition to human insulin receptor (HIRc). GLUT4 translocation is visualized by live cell imaging based on GFP fluorescence by employing a cooled charge-coupled device camera attached to a fluorescent microscope. This video imaging method and further quantitative analysis of GLUT4 on the cell membrane provide rapid and foolproof visual evidence that this method is suitable for screening GLUT4 translocation modulators.

  16. Adolescents with clinical type 1 diabetes display reduced red blood cell glucose transporter isoform 1 (GLUT1).

    Science.gov (United States)

    Garg, Meena; Thamotharan, Manikkavasagar; Becker, Dorothy J; Devaskar, Sherin U

    2014-11-01

    Type 1 diabetic (T1D) adolescent children on insulin therapy suffer episodes of both hyper- and hypoglycemic episodes. Glucose transporter isoform GLUT1 expressed in blood-brain barrier (BBB) and red blood cells (RBC) compensates for perturbed circulating glucose toward protecting the supply to brain and RBCs. We hypothesized that RBC-GLUT1 concentration, as a surrogate for BBB-GLUT1, is altered in T1D children. To test this hypothesis, we measured RBC-GLUT1 by enzyme-linked immunosorbent assay (ELISA) in T1D children (n = 72; mean age 15.3 ± 0.2 yr) and control children (CON; n = 11; mean age 15.6 ± 0.9 yr) after 12 h of euglycemia and during a hyperinsulinemic-hypoglycemic clamp with a nadir blood glucose of ~3.3 mmol/L for 90 min (clamp I) or ~3 mmol/L for 45 min (clamp II). Reduced baseline RBC-GLUT1 was observed in T1D (2.4 ± 0.17 ng/ng membrane protein); vs. CON (4.2 ± 0.61 ng/ng protein) (p increasing during acute hypoglycemia over the durations examined, may demonstrate a vulnerability of impaired RBC glucose transport (serving as a surrogate for BBB), especially in those with the worst control. We speculate that this may contribute to the perturbed cognition seen in T1D adolescents.

  17. Insulin sensitivity and inhibition by forskolin, dipyridamole and pentobarbital of glucose transport in three L6 muscle cell lines

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    L6 skeletal muscle myoblasts stably overexpressing glucose transporter GLUT1 or GLUT4 with exofacial myc-epitope tags were characterized for their response to insulin. In clonally selected cultures, 2-deoxyglucose uptake into L6-GLUT1myc myoblasts and myotubes was linear within the time of study. In L6-GLUT1myc and L6-GLUT4myc myoblasts, 100 nmol/L insulin treatment increased the GLUT1 content of the plasma membrane by 1.58±0.01 fold and the GLUT4 content 1.96±0.11 fold, as well as the 2-deoxyglucose uptake 1.53±0.09 and 1.86±0.17 fold respectively, all by a wortmannin-inhibitable manner. The phosphorylation of Akt in these two cell lines was increased by insulin. L6-GLUT1myc myoblasts showed a dose-dependent stimulation of glucose uptake by insulin, with unaltered sensitivity and maximal responsiveness compared with wild type cells. By contrast, the improved insulin responsiveness and sensitivity of glucose uptake were observed in L6-GLUT4myc myoblasts. Earlier studies indicated that forskolin might affect insulin-stimulated GLUT4 translocation. A 65% decrease of insulin-stimulated 2-deoxyglucose uptake in GLUT4myc cells was not due to an effect on GLUT4 mobilization to the plasma membrane, but instead on direct inhibition of GLUT4. Forskolin and dipyridamole are more potent inhibitors of GLUT4 than GLUT1. Alternatively, pentobarbital inhibits GLUT1 more than GLUT4. The use of these inhibitors confirmed that the overexpressed GLUT1 or GLUT4 are the major functional glucose transporters in unstimulated and insulin-stimulated L6 myoblasts. Therefore, L6-GLUT1myc and L6-GLUT4myc cells provide a platform to screen compounds that may have differential effects on GLUT isoform activity or may influence GLUT isoform mobilization to the cell surface of muscle cells.

  18. Acetylation of TUG protein promotes the accumulation of GLUT4 glucose transporters in an insulin-responsive intracellular compartment.

    Science.gov (United States)

    Belman, Jonathan P; Bian, Rachel R; Habtemichael, Estifanos N; Li, Don T; Jurczak, Michael J; Alcázar-Román, Abel; McNally, Leah J; Shulman, Gerald I; Bogan, Jonathan S

    2015-02-13

    Insulin causes the exocytic translocation of GLUT4 glucose transporters to stimulate glucose uptake in fat and muscle. Previous results support a model in which TUG traps GLUT4 in intracellular, insulin-responsive vesicles termed GLUT4 storage vesicles (GSVs). Insulin triggers TUG cleavage to release the GSVs; GLUT4 then recycles through endosomes during ongoing insulin exposure. The TUG C terminus binds a GSV anchoring site comprising Golgin-160 and possibly other proteins. Here, we report that the TUG C terminus is acetylated. The TUG C-terminal peptide bound the Golgin-160-associated protein, ACBD3 (acyl-CoA-binding domain-containing 3), and acetylation reduced binding of TUG to ACBD3 but not to Golgin-160. Mutation of the acetylated residues impaired insulin-responsive GLUT4 trafficking in 3T3-L1 adipocytes. ACBD3 overexpression enhanced the translocation of GSV cargos, GLUT4 and insulin-regulated aminopeptidase (IRAP), and ACBD3 was required for intracellular retention of these cargos in unstimulated cells. Sirtuin 2 (SIRT2), a NAD(+)-dependent deacetylase, bound TUG and deacetylated the TUG peptide. SIRT2 overexpression reduced TUG acetylation and redistributed GLUT4 and IRAP to the plasma membrane in 3T3-L1 adipocytes. Mutation of the acetylated residues in TUG abrogated these effects. In mice, SIRT2 deletion increased TUG acetylation and proteolytic processing. During glucose tolerance tests, glucose disposal was enhanced in SIRT2 knock-out mice, compared with wild type controls, without any effect on insulin concentrations. Together, these data support a model in which TUG acetylation modulates its interaction with Golgi matrix proteins and is regulated by SIRT2. Moreover, acetylation of TUG enhances its function to trap GSVs within unstimulated cells and enhances insulin-stimulated glucose uptake.

  19. Analytical modeling for colloid-facilitated transport of N-member radionuclides chains in the fractured rock

    Institute of Scientific and Technical Information of China (English)

    TIEN Neng-Chuan; JEN Chun-Ping

    2007-01-01

    A previous analytical model for N-member radionuclide decay chains has been extended to include the effect of radionuclide sorption with groundwater colloids.Published distribution coefficients were employed in the nuclide decay chain to illustrate the present model.The colloid concentration was assumed constant in time and space owing to equilibrium between colloid generation and sedimentation by chemical and/or physical perturbations.Furthermore,the diffusion of colloids into the rock matrix was ignored because the diameter of colloid is relatively large and colloids and fracture surfaces are like-charged.The results indicated that colloids could facilitate the transport of radionuclides and the large adsorbability of nuclides with colloids enlarged the effect of acceleration by colloids.The influence of colloids on the radionuclide transport was expected to be crucial to the actinides with large adsorbability;however,the present results revealed that the low-adsorbing nuclides whose parent nuclides have large capability of sorption could be also facilitated significantly by colloids indirectly.Therefore.the role of colloids played in the transport of the radionuclides decay chain should be assessed carefully in the radioactive waste disposal.The analytical method presented herein is helpful to verify/validate further complex far-field models.

  20. Proteome scale census of major facilitator superfamily transporters in Trichoderma reesei using protein sequence and structure based classification enhanced ranking.

    Science.gov (United States)

    Chaudhary, Nitika; Kumari, Indu; Sandhu, Padmani; Ahmed, Mushtaq; Akhter, Yusuf

    2016-07-01

    Trichoderma spp. have been acknowledged as potent bio-control agents against microbial pathogens and also as plant growth promoters. Various secondary metabolites are attributed for these beneficial activities. Major facilitator superfamily (MFS) includes the large proportion of efflux-pumps which are linked with membrane transport of these secondary metabolites. We have carried out a proteome-wide identification of MFS transporters using protein sequence and structure based hierarchical method in Trichoderma reesei. 448 proteins out of 9115 were detected to carry transmembrane helices. MFS specific intragenic gene duplication and its context with transport function have been presented. Finally, using homology based techniques, domains and motifs of MFS families have been identified and utilized to classify them. From query dataset of 448 transmembrane proteins, 148 proteins are identified as potential MFS transporters. Sugar porter, drug: H(+) antiporter-1, monocarboxylate porter and anion: cation symporter emerged as major MFS families with 51, 35, 17 and 11 members respectively. Representative protein tertiary structures of these families are homology modeled for structure-function analysis. This study may help to understand the molecular basis of secretion and transport of agriculturally valuable secondary metabolites produced by these bio-control fungal agents which may be exploited in future for enhancing its biotechnological applications in eco-friendly sustainable development.

  1. Glucose transporter distribution in the vessels of the central nervous system of the axolotl Ambystoma mexicanum (Urodela: Ambystomatidae).

    Science.gov (United States)

    Lazzari, Maurizio; Bettini, Simone; Ciani, Franco; Franceschini, Valeria

    2008-10-01

    The GLUT-1 isoform of the glucose transporter is commonly considered a reliable molecular marker of blood-brain barrier endothelia in the neural vasculature organized in a three-dimensional network of single vessels. The central nervous system of the axolotl Ambystoma mexicanum is characterized by a vascular architecture that contains both single and paired vessels. The presence and distribution of the GLUT-1 transporter are studied in this urodele using both immunoperoxidase histochemistry and immunogold technique. Light microscopy reveals immunopositivity in both parenchymal and meningeal vessels. The transverse-sectioned pairs of vessels do not show the same size. Furthermore, in the same pair, the two elements often differ in diameter. The main regions of the central nervous system show a different percentage of the paired structures. Only immunogold cytochemistry reveals different staining intensity in the two adjoined elements of a vascular pair. Colloidal gold particles show an asymmetric distribution in the endothelia of both single and paired vessels. These particles are more numerous on the abluminal surface than on the luminal one. The particle density is calculated in both vascular types. The different values could indicate functional differences between single and paired vessels and between the two adjoined elements of a pair, regarding glucose transport.

  2. New HYDRUS Modules for Simulating Preferential Flow, Colloid-Facilitated Contaminant Transport, and Various Biogeochemical Processes in Soils

    Science.gov (United States)

    Simunek, J.; Sejna, M.; Jacques, D.; Langergraber, G.; Bradford, S. A.; van Genuchten, M. Th.

    2012-04-01

    We have dramatically expanded the capabilities of the HYDRUS (2D/3D) software package by developing new modules to account for processes not available in the standard HYDRUS version. These new modules include the DualPerm, C-Hitch, HP2/3, Wetland, and Unsatchem modules. The dual-permeability modeling approach of Gerke and van Genuchten [1993] simulating preferential flow and transport is implemented into the DualPerm module. Colloid transport and colloid-facilitated solute transport, the latter often observed for many contaminants, such as heavy metals, radionuclides, pharmaceuticals, pesticides, and explosives [Šimůnek et al., 2006] are implemented into the C-Hitch module. HP2 and HP3 are the two and three-dimensional alternatives of the HP1 module, currently available with HYDRUS-1D [Jacques and Šimůnek, 2005], that couple HYDRUS flow and transport routines with the generic geochemical model PHREEQC of Parkhurst and Appelo [1999]. The Wetland module includes two alternative approaches (CW2D of Langergraber and Šimůnek [2005] and CWM1 of Langergraber et al. [2009]) for modeling aerobic, anaerobic, and anoxic biogeochemical processes in natural and constructed wetlands. Finally, the Unsatchem module simulates the transport and reactions of major ions in a soil profile. Brief descriptions and an application of each module will be presented. Except for HP3, all modules simulate flow and transport processes in two-dimensional transport domains. All modules are fully supported by the HYDRUS graphical user interface. Further development of these modules, as well as of several other new modules (such as Overland), is still envisioned. Continued feedback from the research community is encouraged.

  3. A diacylglycerol kinase inhibitor, R59022, stimulates glucose transport through a MKK3/6-p38 signaling pathway in skeletal muscle cells.

    Science.gov (United States)

    Takahashi, Nobuhiko; Nagamine, Miho; Tanno, Satoshi; Motomura, Wataru; Kohgo, Yutaka; Okumura, Toshikatsu

    2007-08-17

    Diacylglycerol kinase (DGK) is one of lipid-regulating enzymes, catalyzes phosphorylation of diacylglycerol to phosphatidic acid. Because skeletal muscle, a major insulin-target organ for glucose disposal, expresses DGK, we investigated in the present study a role of DGK on glucose transport in skeletal muscle cells. PCR study showed that C2C12 myotubes expressed DGKalpha, delta, epsilon, zeta, or theta isoform mRNA. R59022, a specific inhibitor of DGK, significantly increased glucose transport, p38 and MKK3/6 activation in C2C12 myotubes. The R59022-induced glucose transport was blocked by SB203580, a specific p38 inhibitor. In contrast, R59022 failed to stimulate both possible known mechanisms to enhance glucose transport, an IRS1-PI3K-Akt pathway, muscle contraction signaling or GLUT1 and 4 expression. All these results suggest that DGK may play a role in glucose transport in the skeletal muscle cells through modulating a MKK3/6-p38 signaling pathway.

  4. [Fructose transporter in yeasts].

    Science.gov (United States)

    Lazar, Zbigniew; Dobrowolski, Adam; Robak, Małgorzata

    2014-01-01

    Study of hexoses transporter started with discovery of galactose permease in Saccharomyces cerevisiae. Glucose, fructose and mannose assimilation is assumed by numerous proteins encoded by different genes. To date over 20 hexoses transporters, belonging to Sugar Porter family and to Major Facilitator Superfamily, were known. Genome sequence analysis of Candida glabrata, Kluyveromyces lactis, Yarrowia lipolytica, S. cerevisaie and Debaryomyces hansenii reveled potential presence of 17-48 sugar porter proteins. Glucose transporters in S. cerevisiae have been already characterized. In this paper, hexoses transporters, responsible for assimilation of fructose by cells, are presented and compared. Fructose specific transporter are described for yeasts: Zygosaccharomyces rouxii, Zygosaccharomyces bailli, K. lactis, Saccharomyces pastorianus, S. cerevisiae winemaking strain and for fungus Botritys cinerea and human (Glut5p). Among six yeasts transporters, five are fructose specific, acting by facilitated diffusion or proton symport. Yeasts monosaccharides transporter studies allow understanding of sugars uptake and metabolism important aspects, even in higher eukaryotes cells.

  5. An Active Learning Exercise to Facilitate Understanding of Nephron Function: Anatomy and Physiology of Renal Transporters

    Science.gov (United States)

    Dirks-Naylor, Amie J.

    2016-01-01

    Renal transport is a central mechanism underlying electrolyte homeostasis, acid base balance and other essential functions of the kidneys in human physiology. Thus, knowledge of the anatomy and physiology of the nephron is essential for the understanding of kidney function in health and disease. However, students find this content difficult to…

  6. Transport of pollutants through porous media facilitated by colloids: Mathematical analysis of the hyperbolic case

    NARCIS (Netherlands)

    Toorn RA van der; Weerd H van de; LBG; RUL

    1995-01-01

    In dit rapport wordt een wiskundig model beschreven waarmee het advectief transport van verontreinigingen in grondwater onder invloed van colloiden bepaald kan worden. Er wordt vanuit gegaan dat de concentratie colloiden in het grondwater constant is en dat er geen binding van colloiden aan de

  7. Undergraduate Laboratory Experiment Facilitating Active Learning of Concepts in Transport Phenomena: Experiment with a Subliming Solid

    Science.gov (United States)

    Utgikar, Vivek P.

    2015-01-01

    An experiment based on the sublimation of a solid was introduced in the undergraduate Transport Phenomena course. The experiment required the students to devise their own apparatus and measurement techniques. The theoretical basis, assignment of the experiment, experimental results, and student/instructor observations are described in this paper.…

  8. An Active Learning Exercise to Facilitate Understanding of Nephron Function: Anatomy and Physiology of Renal Transporters

    Science.gov (United States)

    Dirks-Naylor, Amie J.

    2016-01-01

    Renal transport is a central mechanism underlying electrolyte homeostasis, acid base balance and other essential functions of the kidneys in human physiology. Thus, knowledge of the anatomy and physiology of the nephron is essential for the understanding of kidney function in health and disease. However, students find this content difficult to…

  9. Dissociation of glucose tracer uptake and glucose transporter distribution in the regionally ischaemic isolated rat heart: application of a new autoradiographic technique

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, Richard; Medina, Rodolfo A.; Garlick, Pamela B. [Department of Radiological Sciences, Guy' s, King' s and St Thomas' School of Medicine, Guy' s Campus, London, SE1 9RT (United Kingdom); Dearling, Jason L.J.; Flynn, Aiden A.; Pedley, Barbara R. [Cancer Research UK Targeting and Imaging Group, Academic Department of Oncology, University College London, Royal Free Campus, London, NW3 2PF (United Kingdom)

    2002-10-01

    Fluorine-18 fluoro-2-deoxyglucose ({sup 18}FDG) and carbon-14 2-deoxyglucose ({sup 14}C-2-DG) are both widely used tracers of myocardial glucose uptake and phosphorylation. We have recently shown, using positron emission tomography (PET) and nuclear magnetic resonance, that ischaemia-reperfusion (I-R) causes differential changes in their uptake. We describe here the novel application of an autoradiographic technique allowing the investigation of this phenomenon at high resolution, using tracer concentrations of both analogues in the dual-perfused isolated rat heart. We also investigate the importance of glucose transporter (GLUT 1 and GLUT 4) distribution in governing the observed phosphorylated analogue accumulation. Hearts (n=5) were perfused with Krebs buffer for 40 min, made regionally zero-flow ischaemic for 40 min and reperfused for 60 min with Krebs containing tracer {sup 18}FDG (200 MBq) and tracer {sup 14}C-2-DG (0.37 MBq). Hearts were then frozen and five sections (10 {mu}m) were cut per heart, fixed and exposed on phosphor storage plates for 18 h (for {sup 18}FDG) and then for a further 9 days (for {sup 14}C-2-DG). Quantitative digital images of tracer accumulation were obtained using a phosphor plate reader. The protocol was repeated in a second group of hearts and GLUT 1 and GLUT 4 distribution analysed. Post-ischaemic accumulation of {sup 18}FDG-6-P was inhibited by 38.2%{+-}1.7% and {sup 14}C-DG-6-P by 19.0%{+-}2.2%, compared with control (P<0.05). After placing seven ''lines of interrogation'' across each heart section and analysing the phosphorylated tracer accumulation along them, a transmural gradient of both tracers was observed; this was highest at the endocardium and lowest at the epicardium. GLUT 4 translocated to the sarcolemma in the ischaemic/reperfused region (from 24%{+-}3% to 59%{+-}5%), while there was no cellular redistribution of GLUT 1. We conclude that since decreased phosphorylated tracer accumulation occurs

  10. Perfusion-independent effect of bradykinin and fosinoprilate on glucose transport in Langendorff rat hearts

    NARCIS (Netherlands)

    Rett, K; Maerker, E; Renn, W; vanGilst, W; Haering, HU

    1997-01-01

    Angiotensin-converting enzyme (ACE) inhibitor-stimulated glucose metabolism and perfusion in muscle tissue seem to be, at least in part, mediated by kinins. However, the relative contribution of direct metabolic or secondary hemodynamically induced effects is unclear, It was the aim of this study to

  11. The glucose transporter GLUT1 is required for ErbB2-induced mammary tumorigenesis.

    Science.gov (United States)

    Wellberg, Elizabeth A; Johnson, Stevi; Finlay-Schultz, Jessica; Lewis, Andrew S; Terrell, Kristina L; Sartorius, Carol A; Abel, E Dale; Muller, William J; Anderson, Steven M

    2016-12-20

    Altered tumor cell metabolism is an emerging hallmark of cancer; however, the precise role for glucose in tumor initiation is not known. GLUT1 (SLC2A1) is expressed in breast cancer cells and is likely responsible for avid glucose uptake observed in established tumors. We have shown that GLUT1 was necessary for xenograft tumor formation from primary mammary cells transformed with the polyomavirus middle-T antigen but that it was not necessary for growth after tumors had formed in vivo, suggesting a differential requirement for glucose depending on the stage of tumorigenesis. To determine whether GLUT1 is required early during mammary tumorigenesis, we crossed MMTV-NIC mice, which express activated HER2/NEU/ERBB2 and Cre recombinase, to Slc2a1 (Flox/Flox) (GLUT1(Flox/Flox)) mice to generate NIC-GLUT1(+/+), NIC-GLUT1(Flox/+), and NIC-GLUT1(Flox/Flox) mice. In addition, we evaluated effects of glucose restriction or GLUT1 inhibition on transformation in MCF10A-ERBB2 breast epithelial cells in three-dimensional culture. Finally, we utilized global gene expression profiling data of primary human breast tumors to determine the relationship between SLC2A1 and stage of tumorigenesis. All of the NIC-GLUT1(+/+) mice developed tumors in less than 200 days. In contrast, only 1 NIC-GLUT1(Flox/Flox) mouse and 1 NIC-GLUT1(Flox/+) mouse developed mammary tumors, even after 18 months. Mammary gland development was not disrupted in NIC mice lacking GLUT1; however, epithelial content of mature glands was reduced compared to NIC-GLUT1(Flox/+) mice. In MCF10A-ERBB2 cells, glucose restriction or GLUT1 inhibition blocked transformation induced by activated ERBB2 through reduced cell proliferation. In human breast cancers, SLC2A1 was higher in ductal carcinoma in situ compared to the normal breast, but lower in invasive versus in situ lesions, suggesting the requirement for GLUT1 decreases as tumors progress. This study demonstrates a strict requirement for GLUT1 in the early stages of

  12. The phosphine oxides Cyanex 921 and Cyanex 923 as carriers for facilitated transport of chromium (VI)-chloride aqueous solutions.

    Science.gov (United States)

    Alguacil, Francisco José; López-Delgado, Aurora; Alonso, Manuel; Sastre, Ana Maria

    2004-11-01

    The behaviour of the phosphine oxides Cyanex 921 and Cyanex 923 in the facilitated transport of chromium (VI) from chloride solutions is described. Transport is studied as a function of several variables such as stirring speeds of the aqueous phases, membrane phase diluent, hydrochloric acid concentration in the source phase and chromium and carrier concentrations. The separation of chromium (VI) from other metals presented in the source phase as well as the behaviour of phosphine oxides with respect to other neutral organophosphorous derivatives (tri-n-butylphosphate (TBP) and dibutyl butylphosphonate (DBBP)) are also investigated. Moreover, by using hydrazine sulphate in the receiving phase, Cr(VI) is immediately reduced to the less toxic Cr(III).

  13. T tubules and surface membranes provide equally effective pathways of carbonic anhydrase-facilitated lactic acid transport in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Janine Hallerdei

    Full Text Available We have studied lactic acid transport in the fast mouse extensor digitorum longus muscles (EDL by intracellular and cell surface pH microelectrodes. The role of membrane-bound carbonic anhydrases (CA of EDL in lactic acid transport was investigated by measuring lactate flux in muscles from wildtype, CAIV-, CAIX- and CAXIV-single ko, CAIV-CAXIV double ko and CAIV-CAIX-CAXIV-triple ko mice. This was complemented by immunocytochemical studies of the subcellular localization of CAIV, CAIX and CAXIV in mouse EDL. We find that CAXIV and CAIX single ko EDL exhibit markedly but not maximally reduced lactate fluxes, whereas triple ko and double ko EDL show maximal or near-maximal inhibition of CA-dependent lactate flux. Interpretation of the flux measurements in the light of the immunocytochemical results leads to the following conclusions. CAXIV, which is homogeneously distributed across the surface membrane of EDL fibers, facilitates lactic acid transport across this membrane. CAIX, which is associated only with T tubular membranes, facilitates lactic acid transport across the T tubule membrane. The removal of lactic acid from the lumen of T tubuli towards the interstitial space involves a CO2-HCO3- diffusional shuttle that is maintained cooperatively by CAIX within the T tubule and, besides CAXIV, by the CAIV, which is strategically located at the opening of the T tubules. The data suggest that about half the CA-dependent muscular lactate flux occurs across the surface membrane, while the other half occurs across the membranes of the T tubuli.

  14. Place of sodium-glucose co-transporter type 2 inhibitors for treatment of type 2 diabetes

    Institute of Scientific and Technical Information of China (English)

    Nasser; Mikhail

    2014-01-01

    Inhibitors of sodium-glucose co-transporter type 2(SGLT2), such as canagliflozin and dapagliflozin, are recently approved for treatment of type 2 diabetes. These agents lower blood glucose mainly by increasing urinary glucose excretion. Compared with placebo, SGLT2 inhibitors reduce hemoglobin A1c(Hb A1c) levels by an average of 0.5%-0.8% when used as monotherapy or add-on therapy. Advantages of this drug class include modest weight loss of approximately 2 kg, low risk of hypoglycemia, and decrease blood pressure of approximately 4 mm Hg systolic and 2 mm Hg diastolic. These characteristics make these agents potential add-on therapy in patients with Hb A1 c levels close to 7%-8.0%, particularly if these patients are obese, hypertensive, and/or prone for hypoglycemia. Meanwhile, these drugs are limited by high frequency of genital mycotic infections. Less common adverse effects include urinary tract infections, hypotension, dizziness, and worsening renal function. SGLT2 inhibitors should be used with caution in the elderly because of increased adverse effects, and should not be used in chronic kidney disease due to decreased or lack of efficacy and nephrotoxicity. Overall, SGLT2 inhibitors are useful addition for treatment of select groups of patients with type 2 diabetes,but their efficacy and safety need to be established in long-term clinical trials.

  15. Facilitated transport of Au(CN2 and other metal-cyanide complexes using amines

    Directory of Open Access Journals (Sweden)

    Alguacil, F. J.

    2002-12-01

    Full Text Available The use of different amines, Hostarex A327 (tertiary, Amberlite LA2 (secondary and Primene JMT (primary, as carriers in the facilitated supported liquid membrane transport of metal-cyanide complexes, with special attention to gold, along with the addition of neutral organophosphorous derivatives (Lewis bases to the amine organic phase as synergistic agents for the transport of Au(CN2, at alkaline pH values and selectively against other metal-cyano complexes, is investigated.

    Se estudia el empleo de las aminas Hostarex A327, Amberlite LA2 y Primene JMT (terciaria, secundaria y primaria, respectivamente como reactivos del transporte facilitado, con membranas líquidas soportadas, de complejos metálicos cianurados, con especial atención al caso del oro. También se estudia la adición de derivados organofosforados neutros (bases de Lewis a la fase orgánica de la amina, como agentes sinérgicos del transporte de Au(CN 2, a pH alcalinos, y de forma selectiva frente a otros complejos metálicos cianurados.

  16. Novel role of a family of major facilitator transporters in biofilm development and virulence of Candida albicans.

    Science.gov (United States)

    Shah, Abdul Haseeb; Singh, Ashutosh; Dhamgaye, Sanjiveeni; Chauhan, Neeraj; Vandeputte, Patrick; Suneetha, Korivi Jyothiraj; Kaur, Rupinder; Mukherjee, Pranab K; Chandra, Jyotsna; Ghannoum, Mahmoud A; Sanglard, Dominique; Goswami, Shyamal K; Prasad, Rajendra

    2014-06-01

    The QDR (quinidine drug resistance) family of genes encodes transporters belonging to the MFS (major facilitator superfamily) of proteins. We show that QDR transporters, which are localized to the plasma membrane, do not play a role in drug transport. Hence, null mutants of QDR1, QDR2 and QDR3 display no alterations in susceptibility to azoles, polyenes, echinocandins, polyamines or quinolines, or to cell wall inhibitors and many other stresses. However, the deletion of QDR genes, individually or collectively, led to defects in biofilm architecture and thickness. Interestingly, QDR-lacking strains also displayed attenuated virulence, but the strongest effect was observed with qdr2∆, qdr3∆ and in qdr1/2/3∆ strains. Notably, the attenuated virulence and biofilm defects could be reversed upon reintegration of QDR genes. Transcripts profiling confirmed differential expression of many biofilm and virulence-related genes in the deletion strains as compared with wild-type Candida albicans cells. Furthermore, lipidomic analysis of QDR-deletion mutants suggests massive remodelling of lipids, which may affect cell signalling, leading to the defect in biofilm development and attenuation of virulence. In summary, the results of the present study show that QDR paralogues encoding MFS antiporters do not display conserved functional linkage as drug transporters and perform functions that significantly affect the virulence of C. albicans.

  17. Increased glucose transport in ras-transformed fibroblasts: a possible role for N-glycosylation of GLUT1.

    Science.gov (United States)

    Onetti, R; Baulida, J; Bassols, A

    1997-05-05

    2-Deoxyglucose uptake was enhanced in ts371 KiMuSV-NRK cells when growing at the permissive temperature to allow the expression of a transforming p21 ras protein. This change is due to a decrease in the K(m) by approximately 2.5-fold without affecting the V(max) of the transporter. The amount of the GLUT1 glucose transporter dit not increase as deduced from immunoblot experiments on total membranes. Nevertheless, ras-transformed GLUT1 displays a higher molecular mass due to an increased N-glycosylation of the protein. Experiments made in tunicamycin-treated cells indicates that a higher glycosylation is responsible for the increase in 2-deoxyglucose uptake in ras-transformed cells.

  18. Riluzole and gabapentinoids activate glutamate transporters to facilitate glutamate-induced glutamate release from cultured astrocytes

    OpenAIRE

    Yoshizumi, Masaru; Eisenach, James C.; Hayashida, Ken-ichiro

    2011-01-01

    We have recently demonstrated that the glutamate transporter activator riluzole paradoxically enhanced glutamate-induced glutamate release from cultured astrocytes. We further showed that both riluzole and the α2δ subunit ligand gabapentin activated descending inhibition in rats by increasing glutamate receptor signaling in the locus coeruleus and hypothesized that these drugs share common mechanisms to enhance glutamate release from astrocytes. In the present study, we examined the effects o...

  19. Facilitated transport of Hg(II) through novel activated composite membranes

    Energy Technology Data Exchange (ETDEWEB)

    Paez-Hernandez, M.E. [Universidad Autonoma Metropolitana-Azcapotzalco, Departamento de Materiales, Area de Ciencia de los Materiales, Col. Reynosa-Tamaulipas (Mexico); Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Pachuca, Hidalgo (Mexico); Aguilar-Arteaga, K. [Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Pachuca, Hidalgo (Mexico); Valiente, M. [Universitat Autonoma de Barcelona, Departament de Quimica, Unitat Analitica, Centre GTS, Facultat de Ciencies, Bellaterra, Barcelona (Spain); Ramirez-Silva, M.T. [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Quimica, Area de Quimica Analitica, Laboratorio R-105, Col. Vicentina, Mexico D.F. (Mexico); Romero-Romo, M.; Palomar-Pardave, M. [Universidad Autonoma Metropolitana-Azcapotzalco, Departamento de Materiales, Area de Ciencia de los Materiales, Col. Reynosa-Tamaulipas (Mexico)

    2004-10-01

    The results presented in this work deal with the prime application of activated composite membranes (ACMs) for the transport of Hg(II) ions in a continuous extraction-re-extraction system using di-(2-ethylhexyl)dithiophosphoric acid (DTPA) as carrier. The effects of variables such as the pH, the nature of the acid and the concentration of the casting solutions on the transport of Hg(II) are also investigated. When the ACM was prepared with a 0.5 M DTPA solution and when the feed solution contained 2.5 x 10{sup -4} M Hg(II) in 0.1 M HCl, the amount of mercury extracted was greater than 76%. The re-extracted mercury was subsequently recovered by means of a stripping phase comprising 0.3 M thiourea solution in 2 M H{sub 2}SO{sub 4}, yielding 54% of the initial amount of mercury after transport had taken place for 180 min. (orig.)

  20. Chemical factors influencing colloid-facilitated transport of contaminants in porous media

    Science.gov (United States)

    Roy, Sujoy B.; Dzombak, David A.

    1997-01-01

    The effects of colloids on the transport of two strongly sorbing solutesa hydrophobic organic compound, phenanthrene, and a metal ion, Ni2+were studied in sand-packed laboratory columns under different pH and ionic strength conditions. Two types of column experiments were performed as follows:  (i) sorption/mobilization experiments where the contaminant was first sorbed in the column under conditions where no colloids were released and mobilized under conditions where colloids were released as a result of ionic strength reduction in the influent; and (ii) transport experiments where the contaminant, dissolved or sorbed on colloids, was injected into columns packed with a strongly sorbing porous medium. In the first type of experiment, contaminant mobilization was significant only when all releasable colloids were flushed from the column. In all other cases, although high colloid particle concentrations were encountered, there was no marked effect on total contaminant concentrations. In the second type of experiment, colloid deposition efficiencies were shown to control the enhancement of transport. The deposition efficiency was a function of the pH (for a high organic content sand) and of the contaminant concentration (for a charged species such as Ni2+).

  1. Xylem-Transported Glucose as an Additional Carbon Source for Leaf Isoprene Formation in Quercus Robur L.

    Science.gov (United States)

    Graus, M.; Kreuzwieser, J.; Schnitzler, J.; Wisthaler, A.; Hansel, A.; Rennenberg, H.

    2003-04-01

    Isoprene is emitted from mature, photosynthesizing leaves of many plant species, particularly of trees. Current interest in understanding the biochemical and physiological mechanisms controlling isoprene formation is caused by the important role isoprene plays in atmospheric chemistry. Isoprene reacts with hydroxyl radicals (OH) thereby generating oxidizing agents such as ozone and organic peroxides. Ozone causes significant deterioration in air quality and can pose threats to human health therefore its control is a major goal in Europe and the United States. In recent years, much progress has been made in elucidating the pathways of isoprene biosynthesis. Nevertheless the regulatory mechanisms controlling isoprene emission are not completely understood. Light and temperature appear to be the main factors controlling short-term variations in isoprene emission. Exposure of plants to C-13 labeled carbon dioxide showed instantaneous assimilated carbon is the primary carbon source for isoprene formation. However, variations in diurnal and seasonal isoprene fluxes, which cannot be explained by temperature, light, and leaf development led to the suggestion that alternative carbon sources may exist contributing to isoprene emissions. The aim of the present study was to test whether xylem-transported carbohydrates act as additional sources for isoprene biosynthesis. For this purpose, [U-C-13] alpha-D-glucose was fed to photosynthesizing leaves via the xylem of Quercus robur L. seedlings and the incorporation of glucose derived C-13 into emitted isoprene was monitored in real time using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS). A rapid incorporation of C-13 from xylem-fed glucose into single (mass 70) and double (mass 71) C-13 labeled isoprene molecules was observed after a lag phase of approximately 5 to 10 minutes. This incorporation was temperature dependent and was highest (up to 13% C-13 of total carbon emitted as isoprene) at the temperature optimum of

  2. [Effect of natural or synthetic detergents on the transport of D-glucose in the membranes of vesicles of the brush border of the intestine of the rabbit].

    Science.gov (United States)

    Favilli, F; Iantomasi, T; Stio, M; Treves, C; Vanni, P; Vincenzini, M T

    1988-01-01

    We describe here the effects of natural and synthetic detergents on the D-glucose transport into brush-border membranes of vesicles of rabbit's intestine. Two synthetic detergents: Triton X-100 and dodecyltrimethylammonium bromide have been found very strong inhibitors (more than 50 p. 100 of inhibition of maximal D-glucose uptake). Kinetic studies showed that these detergents behaved as mixed type inhibitors. The Na+-dependent transport of amino acids (aspartic acid, lysine, phenylalanine) is only poorly affected by dodecyltrimethylammonium bromide, while Triton X-100 inhibits unspecifically all the transport studied.

  3. The sim operon facilitates the transport and metabolism of sucrose isomers in Lactobacillus casei ATCC 334.

    Science.gov (United States)

    Thompson, John; Jakubovics, Nicholas; Abraham, Bindu; Hess, Sonja; Pikis, Andreas

    2008-05-01

    Inspection of the genome sequence of Lactobacillus casei ATCC 334 revealed two operons that might dissimilate the five isomers of sucrose. To test this hypothesis, cells of L. casei ATCC 334 were grown in a defined medium supplemented with various sugars, including each of the five isomeric disaccharides. Extracts prepared from cells grown on the sucrose isomers contained high levels of two polypeptides with M(r)s of approximately 50,000 and approximately 17,500. Neither protein was present in cells grown on glucose, maltose or sucrose. Proteomic, enzymatic, and Western blot analyses identified the approximately 50-kDa protein as an NAD(+)- and metal ion-dependent phospho-alpha-glucosidase. The oligomeric enzyme was purified, and a catalytic mechanism is proposed. The smaller polypeptide represented an EIIA component of the phosphoenolpyruvate-dependent sugar phosphotransferase system. Phospho-alpha-glucosidase and EIIA are encoded by genes at the LSEI_0369 (simA) and LSEI_0374 (simF) loci, respectively, in a block of seven genes comprising the sucrose isomer metabolism (sim) operon. Northern blot analyses provided evidence that three mRNA transcripts were up-regulated during logarithmic growth of L. casei ATCC 334 on sucrose isomers. Internal simA and simF gene probes hybridized to approximately 1.5- and approximately 1.3-kb transcripts, respectively. A 6.8-kb mRNA transcript was detected by both probes, which was indicative of cotranscription of the entire sim operon.

  4. Effects of oil dispersants on settling of marine sediment particles and particle-facilitated distribution and transport of oil components.

    Science.gov (United States)

    Cai, Zhengqing; Fu, Jie; Liu, Wen; Fu, Kunming; O'Reilly, S E; Zhao, Dongye

    2017-01-15

    This work investigated effects of three model oil dispersants (Corexit EC9527A, Corexit EC9500A and SPC1000) on settling of fine sediment particles and particle-facilitated distribution and transport of oil components in sediment-seawater systems. All three dispersants enhanced settling of sediment particles. The nonionic surfactants (Tween 80 and Tween 85) play key roles in promoting particle aggregation. Yet, the effects varied with environmental factors (pH, salinity, DOM, and temperature). Strongest dispersant effect was observed at neutral or alkaline pH and in salinity range of 0-3.5wt%. The presence of water accommodated oil and dispersed oil accelerated settling of the particles. Total petroleum hydrocarbons in the sediment phase were increased from 6.9% to 90.1% in the presence of Corexit EC9527A, and from 11.4% to 86.7% for PAHs. The information is useful for understanding roles of oil dispersants in formation of oil-sediment aggregates and in sediment-facilitated transport of oil and PAHs in marine eco-systems.

  5. Bacillus cereus efflux protein BC3310 - a multidrug transporter of the unknown major facilitator family, UMF-2

    Directory of Open Access Journals (Sweden)

    Jasmin K Kroeger

    2015-10-01

    Full Text Available Phylogenetic classification divides the major facilitator superfamily (MFS into 82 families, including 25 families that are comprised of transporters with no characterized functions. This study describes functional data for BC3310 from Bacillus cereus ATCC 14579, a member of the unknown major facilitator family 2 (UMF 2. BC3310 was shown to be a multidrug efflux pump conferring resistance to ethidium bromide, SDS and silver nitrate when heterologously expressed in E. coli DH5α ΔacrAB. A conserved aspartate residue (D105 in putative transmembrane helix 4 was identified, which was essential for the energy dependent ethidium bromide efflux by BC3310. Transport proteins of the MFS comprise specific sequence motifs. Sequence analysis of UMF 2 proteins revealed that they carry a variant of the MFS motif A, which may be used as a marker to distinguish easily between this family and other MFS proteins. Genes orthologous to bc3310 are highly conserved within the B. cereus group of organisms and thus belong to the core genome, suggesting an important conserved functional role in the normal physiology of these bacteria.

  6. Mechanisms underlying the inhibitory effect of the feed contaminant deoxynivalenol on glucose absorption in broiler chickens.

    Science.gov (United States)

    Awad, W A; Ghareeb, K; Zentek, J

    2014-10-01

    Deoxynivalenol (DON), a major contaminant of cereals and grains, is of public health concern worldwide and has been shown to reduce the electrogenic transport of glucose. However, the full effects of Fusarium mycotoxins on nutrient absorption are still not clear. The aim of this study was to investigate whether decreased nutrient absorption was due to specific effects on transporter trafficking in the intestine and whether inhibition of phosphoinositol-3-kinase (PI-3-kinase) affected the electrogenic jejunal transport of glucose. Jejunal mucosa of 6-week-old broiler chickens were mounted in Ussing chambers and treated with DON, wortmannin (a specific inhibitor of PI-3-kinase), DON + wortmannin, phlorizin and cytochalasin B. DON was found to decrease the short-circuit current (Isc) after glucose addition. A similar decline in Isc after glucose addition was observed following pre-application of wortmannin, or phlorizin (Na(+)/glucose co-transporter, SGLT1 inhibitor). The results indicate that DON decreased glucose absorption in the absence of wortmannin or phlorizin but had no additional effect on glucose absorption in their presence. Glucose transport was not affected by cytochalasin B (facilitative glucose transporter, GLUT2 inhibitor). The study provides evidence that the suppressive effect of DON on the electrogenic transport of glucose may be due to an inhibitory activity of the PI3 kinase pathway and intestinal SGLT1. Furthermore, the effect of cytochalasin B on glucose transport in chicken tissues differs from that in mammals.

  7. Glucose transporter GLUT1 expression and clinical outcome in solid tumors: a systematic review and meta-analysis.

    Science.gov (United States)

    Wang, Ji; Ye, Chenyang; Chen, Cong; Xiong, Hanchu; Xie, Binbin; Zhou, Jichun; Chen, Yongxia; Zheng, Shu; Wang, Linbo

    2017-03-07

    Glucose transporter 1 (GLUT1), the uniporter protein encoded by the SLC2A1 gene, is a key rate-limiting factor in the transport of glucose in cancer cells, and frequently expressed in a significant proportion of human cancers. Numerous studies have reported paradoxical evidence of the relationship between GLUT1 expression and prognosis in solid human tumors. To address this discrepancy, we conducted a thorough search of Pubmed and Web of Science for studies evaluating the expression of GLUT1 and overall survival (OS) and disease-free survival (DFS) in patients with solid cancer from 1993 to April 2016. Data from published researches were extracted and computed into odds ratio (OR). A total of 26 studies including 2948 patients met our search criteria and were evaluated. Overexpression of GLUT1 was found to significantly correlate with poor 3-year OS (OR: 2.86; 95% CI, 1.90-4.32, P < 0.00001) and 5-year OS (OR: 2.52; 95% CI, 1.75-3.61, P < 0.00001) of solid tumors. Similar results were observed when analysis of DFS was performed. Subgroup analysis revealed that elevated GLUT1 expression was associated with worse prognosis of oral squamous cell carcinoma and breast cancer. Taken together, overexpression of GLUT1 is correlated with poor survival in most solid tumors, suggesting that the expression status of GLUT1 is a vital prognostic indicator and promising therapeutic target in solid tumors.

  8. A study of the role of glucose transporter 1 (Glut1) in white spot syndrome virus (WSSV) infection.

    Science.gov (United States)

    Huang, Huai-Ting; Chan, Hoi-Ling; Shih, Tsai-Yen; Chen, Li-Li

    2015-10-01

    White spot syndrome virus (WSSV) is a large enveloped DNA virus, and it causes a serious disease that has led to severe mortalities of cultured shrimps in many countries. To determine the mechanism of virus entry into the cell and to establish an antiviral strategy, the cell receptor for virus entry and receptor binding protein should be identified. A shrimp cell surface protein, glucose transporter1 (Glut1), was found to interact with WSSV in previous study. In this study, this Glut1 was confirmed to have the ability of transporting glucose, and this gene can also be found in other shrimp species. The interaction between Glut1 and some other WSSV envelope proteins in the infectome structure was verified by far western blot and His pull down assay. In vitro and in vivo neutralization using recombinant partial Glut1 revealed that the large extracellular portion of Glut1 could delay WSSV infection. Also, shrimps which were knocked-down Glut1 gene by treated with dsRNA before WSSV challenge showed decreased mortality. These results indeed provide a direction to develop efficient antiviral strategies or therapeutic methods by using Glut1.

  9. Mechanisms of expression and translocation of major fission yeast glucose transporters regulated by CaMKK/phosphatases, nuclear shuttling, and TOR.

    Science.gov (United States)

    Saitoh, Shigeaki; Mori, Ayaka; Uehara, Lisa; Masuda, Fumie; Soejima, Saeko; Yanagida, Mitsuhiro

    2015-01-15

    Hexose transporters are required for cellular glucose uptake; thus they play a pivotal role in glucose homeostasis in multicellular organisms. Using fission yeast, we explored hexose transporter regulation in response to extracellular glucose concentrations. The high-affinity transporter Ght5 is regulated with regard to transcription and localization, much like the human GLUT transporters, which are implicated in diabetes. When restricted to a glucose concentration equivalent to that of human blood, the fission yeast transcriptional regulator Scr1, which represses Ght5 transcription in the presence of high glucose, is displaced from the nucleus. Its displacement is dependent on Ca(2+)/calmodulin-dependent kinase kinase, Ssp1, and Sds23 inhibition of PP2A/PP6-like protein phosphatases. Newly synthesized Ght5 locates preferentially at the cell tips with the aid of the target of rapamycin (TOR) complex 2 signaling. These results clarify the evolutionarily conserved molecular mechanisms underlying glucose homeostasis, which are essential for preventing hyperglycemia in humans.

  10. GDM-Induced Macrosomia Is Reversed by Cav-1 via AMPK-Mediated Fatty Acid Transport and GLUT1-Mediated Glucose Transport in Placenta

    Science.gov (United States)

    Wang, Di; Yang, Ruirui; Sang, Hui; Han, Linlin; Zhu, Yuexia; Lu, Yanyan; Tan, Yeke; Shang, Zhanping

    2017-01-01

    Objective To investigate if the role of Cav-1 in GDM-induced macrosomia is through regulating AMPK signaling pathway in placenta. Methods We used diagnostic criteria of gestational diabetes mellitus (GDM) and macrosomia to separate and compare placental protein and mRNA levels from GDM with macrosomia group (GDMM), GDM with normal birth weight group (GDMN) and normal glucose tolerance (NGT) with normal birth weight group (CON). Western blotting was performed to examine differentially expressed proteins of caveolin-1 (Cav-1) and Adenosine monophosphate-activated protein kinase (AMPK) signaling pathway related proteins, including phosphorylated-AMPKα(Thr172), AMPKα, phosphorylated-Acetyl-CoA carboxylase(Ser79) (p-ACC(Ser79)), ACC and glucose transporter 1 (GLUT1) in placenta between the three groups. The mRNA levels of Cav-1, AMPKα, ACC and GLUT1 in placenta were measured by real time-PCR. Results In the GDMM placenta group, both protein and mRNA levels of Cav-1 were down-regulated, while GLUT1 was up-regulated; the phosphorylation and mRNA levels of ACC and AMPKα were decreased, but total ACC protein levels were increased compared to both the GDMN (pGLUT1 protein levels. Besides, in GDMM group placental mRNA levels, NBW had a positive correlation with GLUT1 (pGLUT1 (pGLUT1. Conclusion GDM-induced macrosomias have more severe inhibition of Cav-1 expression in placenta. Cav-1 is associated with placental glucose and fatty acid transport via the induction of AMPK signaling pathway and the reduction of GLUT1 signaling pathway to reverse GDM-induced macrosomia. PMID:28125642

  11. Unaltered lactate and glucose transporter levels in the MPTP mouse model of Parkinson's disease

    DEFF Research Database (Denmark)

    Puchades, Maja; Sogn, Carl Johan; Maehlen, Jan

    2013-01-01

    BACKGROUND: Metabolic impairment contributes to development of Parkinson's disease (PD). Mitochondrial dysfunction is involved in degeneration of nigral dopamine neurons. Also, in PD there are alterations in glucose metabolism in nigro-striatal pathways, and increased cerebral lactate levels have...... of MCT1, MCT2 and GLUT1 is not changed following dopaminergic neurodegeneration. This is in contrast to findings in other neurodegenerative disease, such as mesial temporal lobe epilepsy, where there are large alterations in MCT levels....

  12. Isotonic transport by the Na+-glucose cotransporter SGLT1 from humans and rabbit

    DEFF Research Database (Denmark)

    Zeuthen, T; Meinild, A K; Loo, D D;

    2001-01-01

    water transport was divided about equally between cotransport, osmosis across the SGLT1 and osmosis across the native oocyte membrane. 6. Coexpression of AQP1 with the SGLT1 increased the water permeability more than 10-fold and steady state isotonic transport was achieved after less than 2 s of sugar...

  13. Effects of muscle activity and fiber composition on glucose transport and GLUT-4.

    Science.gov (United States)

    Megeney, L A; Neufer, P D; Dohm, G L; Tan, M H; Blewett, C A; Elder, G C; Bonen, A

    1993-04-01

    We examined glucose uptake and GLUT-4 in rat muscles [soleus (Sol), plantaris (PL), extensor digitorum longus (EDL), tibialis anterior, and the red and white gastrocnemius (WG)]. In the normally innervated perfused rat hindlimb muscles the proportion of oxidative fibers was highly correlated with the muscle's insulin-stimulated 3-O-methyl-D-glucose (3-MG) uptake (R2 = 0.78) and GLUT-4 content (r = 0.94). Insulin-stimulated 3-MG uptake and GLUT-4 were also highly correlated (R2 = 0.996). In 3-day denervated muscles, insulin-stimulated 3-MG uptake was reduced in all six muscles (-41 to -14.6%, P 0.05). A very high correlation was observed between the decrements in GLUT-4 (%) and the decrements in 3-MG uptake (%; r = 0.99). The relatively greater loss in muscle activity (%) due to denervation in the Sol compared with the PL coincided with the reductions (%) in GLUT-4 and 3-MG uptake. These studies demonstrate that glucose uptake and GLUT-4 are regulated by insulin-independent means, namely the oxidative capacity of the muscle and the normal activity level of the muscle.

  14. Sodium-Glucose Linked Transporter-2 Inhibitors in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    L. Zanoli

    2015-01-01

    Full Text Available SGLT2 inhibitors are new antihyperglycaemic agents whose ability to lower glucose is directly proportional to GFR. Therefore, in chronic kidney disease (CKD the blood glucose lowering effect is reduced. Unlike many current therapies, the mechanism of action of SGLT2 inhibitors is independent of insulin action or beta-cell function. In addition, the mechanism of action of SGLT2 inhibitors is complementary and not alternative to other antidiabetic agents. SGLT2 inhibitors could be potentially effective in attenuating renal hyperfiltration and, consequently, the progression of CKD. Moreover, the reductions in intraglomerular pressure, systemic blood pressure, and uric acid levels induced by SGLT inhibition may potentially be of benefit in CKD subjects without diabetes. However, at present, only few clinical studies were designed to evaluate the effects of SGLT2 inhibitors in CKD. Consequently, safety and potential efficacy beyond blood glucose lowering should be better clarified in CKD. In this paper we provide an updated review of the use of SGLT2 inhibitors in clinical practice, with particular attention on subjects with CKD.

  15. Facilitating guest transport in clathrate hydrates by tuning guest-host interactions

    Energy Technology Data Exchange (ETDEWEB)

    Moudrakovski, Igor L.; Udachin, Konstantin A.; Ratcliffe, Christopher I. [National Research Council of Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6 (Canada); Alavi, Saman; Ripmeester, John A., E-mail: John.Ripmeester@nrc-cnrc.gc.ca [National Research Council of Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6 (Canada); Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3 (Canada)

    2015-02-21

    The understanding and eventual control of guest molecule transport in gas hydrates is of central importance for the efficient synthesis and processing of these materials for applications in the storage, separation, and sequestration of gases and natural gas production. Previously, some links have been established between dynamics of the host water molecules and guest-host hydrogen bonding interactions, but direct observation of transport in the form of cage-to-cage guest diffusion is still lacking. Recent calculations have suggested that pairs of different guest molecules in neighboring cages can affect guest-host hydrogen bonding and, therefore, defect injection and water lattice motions. We have chosen two sets of hydrate guest pairs, tetrahydrofuran (THF)-CO{sub 2} and isobutane-CO{sub 2}, that are predicted to enhance or to diminish guest–host hydrogen bonding interactions as compared to those in pure CO{sub 2} hydrate and we have studied guest dynamics in each using {sup 13}C nuclear magnetic resonance (NMR) methods. In addition, we have obtained the crystal structure of the THF-CO{sub 2} sII hydrate using the combined single crystal X-ray diffraction and {sup 13}C NMR powder pattern data and have performed molecular dynamics-simulation of the CO{sub 2} dynamics. The NMR powder line shape studies confirm the enhanced and delayed dynamics for the THF and isobutane containing hydrates, respectively, as compared to those in the CO{sub 2} hydrate. In addition, from line shape studies and 2D exchange spectroscopy NMR, we observe cage-to-cage exchange of CO{sub 2} molecules in the THF-CO{sub 2} hydrate, but not in the other hydrates studied. We conclude that the relatively rapid intercage guest dynamics are the result of synergistic guest A–host water–guest B interactions, thus allowing tuning of the guest transport properties in the hydrates by choice of the appropriate guest molecules. Our experimental value for inter-cage hopping is slower by a factor of 10

  16. Dietary Lipid and Carbohydrate Interactions: Implications on Lipid and Glucose Absorption, Transport in Gilthead Sea Bream (Sparus aurata) Juveniles.

    Science.gov (United States)

    Castro, Carolina; Corraze, Geneviève; Basto, Ana; Larroquet, Laurence; Panserat, Stéphane; Oliva-Teles, Aires

    2016-06-01

    A digestibility trial was performed with gilthead sea bream juveniles (IBW = 72 g) fed four diets differing in lipid source (fish oil, FO; or a blend of vegetable oil, VO) and starch content (0 %, CH-; or 20 %, CH+) to evaluate the potential interactive effects between carbohydrates and VO on the processes involved in digestion, absorption and transport of lipids and glucose. In fish fed VO diets a decrease in lipid digestibility and in cholesterol (C), High Density Lipoprotein(HDL)-C and Low Density Lipoprotein (LDL)-C (only in CH+ group) were recorded. Contrarily, dietary starch induced postprandial hyperglycemia and time related alterations on serum triacylglycerol (TAG), phospholipid (PL) and C concentrations. Fish fed a CH+ diet presented lower serum TAG than CH- group at 6 h post-feeding, and the reverse was observed at 12 h post-feeding for TAG and PL. Lower serum C and PL at 6 h post-feeding were recorded only in VOCH+ group. No differences between groups were observed in hepatic and intestinal transcript levels of proteins involved in lipid transport and hydrolysis (FABP, DGAT, GPAT, MTP, LPL, LCAT). Lower transcript levels of proteins related to lipid transport (ApoB, ApoA1, FABP2) were observed in the intestine of fish fed the CH+ diet, but remained unchanged in the liver. Overall, transcriptional mechanisms involved in lipid transport and absorption were not linked to changes in lipid serum and digestibility. Dietary starch affected lipid absorption and transport, probably due to a delay in lipid absorption. This study suggests that a combination of dietary VO and starch may negatively affect cholesterol absorption and transport.

  17. The major facilitator superfamily transporter Knq1p modulates boron homeostasis in Kluyveromyces lactis.

    Science.gov (United States)

    Svrbicka, Alexandra; Toth Hervay, Nora; Gbelska, Yvetta

    2016-03-01

    Boron is an essential micronutrient for living cells, yet its excess causes toxicity. To date, the mechanisms of boron toxicity are poorly understood. Recently, the ScATR1 gene has been identified encoding the main boron efflux pump in Saccharomyces cerevisiae. In this study, we analyzed the ScATR1 ortholog in Kluyveromyces lactis--the KNQ1 gene, to understand whether it participates in boron stress tolerance. We found that the KNQ1 gene, encoding a permease belonging to the major facilitator superfamily, is required for K. lactis boron tolerance. Deletion of the KNQ1 gene led to boron sensitivity and its overexpression increased K. lactis boron tolerance. The KNQ1 expression was induced by boron and the intracellular boron concentration was controlled by Knq1p. The KNQ1 promoter contains two putative binding motifs for the AP-1-like transcription factor KlYap1p playing a central role in oxidative stress defense. Our results indicate that the induction of the KNQ1 expression requires the presence of KlYap1p and that Knq1p like its ortholog ScAtr1p in S. cerevisiae functions as a boron efflux pump providing boron resistance in K. lactis.

  18. Osteopontin facilitates West Nile virus neuroinvasion via neutrophil "Trojan horse" transport.

    Science.gov (United States)

    Paul, Amber M; Acharya, Dhiraj; Duty, Laurel; Thompson, E Ashley; Le, Linda; Stokic, Dobrivoje S; Leis, A Arturo; Bai, Fengwei

    2017-07-05

    West Nile virus (WNV) can cause severe human neurological diseases including encephalitis and meningitis. The mechanisms by which WNV enters the central nervous system (CNS) and host-factors that are involved in WNV neuroinvasion are not completely understood. The proinflammatory chemokine osteopontin (OPN) is induced in multiple neuroinflammatory diseases and is responsible for leukocyte recruitment to sites of its expression. In this study, we found that WNV infection induced OPN expression in both human and mouse cells. Interestingly, WNV-infected OPN deficient (Opn (-/-)) mice exhibited a higher survival rate (70%) than wild type (WT) control mice (30%), suggesting OPN plays a deleterious role in WNV infection. Despite comparable levels of viral load in circulating blood cells and peripheral organs in the two groups, WNV-infected polymorphonuclear neutrophil (PMN) infiltration and viral burden in brain of Opn (-/-) mice were significantly lower than in WT mice. Importantly, intracerebral administration of recombinant OPN into the brains of Opn (-/-) mice resulted in increased WNV-infected PMN infiltration and viral burden in the brain, which was coupled to increased mortality. The overall results suggest that OPN facilitates WNV neuroinvasion by recruiting WNV-infected PMNs into the brain.

  19. Role of a major facilitator superfamily transporter in adaptation capacity of Penicillium funiculosum under extreme acidic stress.

    Science.gov (United States)

    Xu, Xiaoxue; Chen, Jinyin; Xu, Houjuan; Li, Duochuan

    2014-08-01

    Fungal species present in extreme low pH environments are expected to have adapted for tolerance to high H(+) concentrations. However, their adaptability mechanism is unclear. In this study, we isolated an acid-tolerant strain of Penicillium funiculosum, which can grow actively at pH 1.0 and thrived in pH 0.6. A major facilitator superfamily transporter (PfMFS) was isolated from an acid-sensitive random insertional mutant (M4) of the fungus. It encodes a putative protein of 551 residues and contains 14 transmembrane-spanning segments. A targeted mutant (M7) carrying an inactivated copy of PfMFS showed an obvious reduction of growth compared with the wild type (WT) and complementation of M7 with PfMFS restored the wild-type level of growth at pH 1.0. Further data showed that the wild-type showed higher intracellular pH than M7 in response to pH 1. Subcellular localization showed that PfMFS was a cell membrane protein. Homology modeling showed structural similarity with an MFS transporter EmrD from Escherichiacoli. These results demonstrate that the PfMFS transporter is involved in the acid resistance and intracellular pH homeostasis of P. funiculosum.

  20. Particle-facilitated lead and arsenic transport in abandoned mine sites soil influenced by simulated acid rain.

    Science.gov (United States)

    Shaoping, Hu; Xincai, Chen; Jiyan, Shi; Yingxu, Chen; Qi, Lin

    2008-05-01

    The role of acid rain in affecting Pb and As transport from mine tailings was investigated by pumping simulated acid rain at a infiltration rate of 10.2 cm/h through soil columns. Simulated acid rain with pH of 3.0, 4.5 and 5.6 were used as leaching solutions. Results showed that 86.9-95.9% of Pb and 90-91.8% of As eluted from the columns were adsorbed by particles in the leachates. Scanning electron microscopy (SEM) analysis showed that particles released from the columns were mainly composed of flocculated aggregates and plate or rod shaped discrete grains. Transmission electron microscopy (TEM) coupled with energy dispersive X-ray analysis (EDX) showed that these particles were predominantly silicate minerals. Results from our experiments demonstrated that when rapid infiltration conditions or a rainstorm exist, particle-facilitated transport of contaminants is likely to the dominant metal transport pathway influenced by acid rain.

  1. Broiler chickens (Ross strain) lack insulin-responsive glucose transporter GLUT4 and have GLUT8 cDNA.

    Science.gov (United States)

    Seki, Yoshinori; Sato, Kan; Kono, Tatsuyoshi; Abe, Hiroyuki; Akiba, Yukio

    2003-08-01

    Identification of insulin-responsive glucose transporter proteins, GLUT4 and GLUT8, was attempted in chickens that characteristically are hyperglycemic and insulin resistant. Northern blot analysis using rat GLUT4 cDNA probe and RT-PCR using primers designed against the conserved regions in mammalian GLUT4 cDNA were not successful in identifying GLUT4 homologue(s) in various chicken tissues. Furthermore, GLUT4 homologues could not be detected in chicken tissues by genomic Southern blot analyses using a rat GLUT4 cDNA probe. These data, therefore, suggest that the GLUT4 homologous gene is deficient in chicken tissues. However, GLUT8, another insulin-responsive glucose transporter in the blastocyst, was identified with the aid of RACE (rapid amplification of cDNA ends) reactions in the chicken testis. Chicken GLUT8 was composed of 1449 bp with a coding region for a 482 amino acid protein. The deduced amino acid sequence was 58.8, 56.3, and 56.8% identical with human, rat, and mouse GLUT8, respectively. By RT-PCR, GLUT8 mRNA expressions were detected in chicken brain, kidney, adrenal, spleen, lung, testis, and pancreas; and barely detectable in skeletal muscle, liver, adipose tissue, and heart. Here we firstly report that GLUT8 was identified in chickens, while GLUT4, a major insulin-responsive transporter in mammals, is deficient in these animals. We propose the hypothesis that the hyperglycemia and insulin resistance observable in chickens is associated with their possible deficiency of GLUT4.

  2. Hepatic OATP Transporter and Thyroid Hormone Receptor Interplay Determines Cholesterol and Glucose Homeostasis

    OpenAIRE

    Meyer zu Schwabedissen, Henriette E; Ware, Joseph A; Finkelstein, David; Chaudhry, Amarjit S.; Lemay, Sara; Leon-Ponte, Matilde; Strom, Stephen C.; Zaher, Hani; Schwarz, Ute I; Freeman, David J.; Schuetz, Erin G; Tirona, Rommel G; Kim, Richard B

    2011-01-01

    The role of Organic Anion Transporting Polypeptides (OATPs), particularly the members of OATP1B-subfamily, in hepatocellular handling of endogenous and exogenous compounds is an important and emerging area of research. Using a mouse model lacking Slco1b2, the murine ortholog of the OATP1B-subfamily, we previously demonstrated that genetic ablation causes reduced hepatic clearance capacity for substrates. In this report we focused on the physiological function of the hepatic OATP1B transporters.

  3. A Physical Interaction between the Dopamine Transporter and DJ-1 Facilitates Increased Dopamine Reuptake.

    Directory of Open Access Journals (Sweden)

    Beryl Luk

    Full Text Available The regulation of the dopamine transporter (DAT impacts extracellular dopamine levels after release from dopaminergic neurons. Furthermore, a variety of protein partners have been identified that can interact with and modulate DAT function. In this study we show that DJ-1 can potentially modulate DAT function. Co-expression of DAT and DJ-1 in HEK-293T cells leads to an increase in [3H] dopamine uptake that does not appear to be mediated by increased total DAT expression but rather through an increase in DAT cell surface localization. In addition, through a series of GST affinity purifications and co-immunoprecipitations, we provide evidence that the DAT can be found in a complex with DJ-1, which involve distinct regions within both DAT and DJ-1. Using in vitro binding experiments we also show that this complex can be formed in part by a direct interaction between DAT and DJ-1. Co-expression of a mini-gene that can disrupt the DAT/DJ-1 complex appears to block the increase in [3H] dopamine uptake by DJ-1. Mutations in DJ-1 have been linked to familial forms of Parkinson's disease, yet the normal physiological function of DJ-1 remains unclear. Our study suggests that DJ-1 may also play a role in regulating dopamine levels by modifying DAT activity.

  4. Colloid facilitated transport of humic substances in soil: laboratory experiment and modeling calculation.

    Science.gov (United States)

    Dinu, Marina; Moiseenko, Tatyana

    2016-04-01

    An understanding of ability to predict the fate and transport of colloids in soil systems are of great importance in many environmental and industrial applications. Especially, in the case study sizes and zeta potentials of lignin and humus components (as a parameter reflecting the mobility and tread of organic substances). The objects of investigation were water extracts of gleepodzolic soil of European territory of Russia and Western Siberia, as well as humus substances extracted from this soil. In this study, evaluation of size, molecular weight distribution and zeta potential were used to predict the mobility of the organic component fractions of the soil. Fractionation was performed using multistage filtration plant (100 Da) and measuring physic-chemical parameters measured with the Malvern Zetasizer Nano ZSP. Significant differences in the distribution of organic matter on the molecular weight, charge (sign) of the zeta potential and the size of the sample of European Russia in comparison with samples of Western Siberia have been found. Also, laboratory studies have demonstrated of any differences in physicochemical parameters as infrared spectra, ultraviolet spectra, complexing ability of samples of the same soil type but different areas of Russia. The results can be used in the prediction of the migration ability of fractions humus substances and their stability at change physic-chemical conditions (the coefficient of mobility of the organic components by calculated in MathCad). This work was supported by the grant № 14-17-00460 RSF from 07.11.2014

  5. Mature N-linked glycans facilitate UT-A1 urea transporter lipid raft compartmentalization.

    Science.gov (United States)

    Chen, Guangping; Howe, Ashley G; Xu, Gang; Fröhlich, Otto; Klein, Janet D; Sands, Jeff M

    2011-12-01

    The UT-A1 urea transporter is a glycoprotein with two different glycosylated forms of 97 and 117 kDa. In this study, we found the 117-kDa UT-A1 preferentially resides in lipid rafts, suggesting that the glycosylation status may interfere with UT-A1 lipid raft trafficking. This was confirmed by a site-directed mutagenesis study in MDCK cells. The nonglycosylated UT-A1 showed reduced localization in lipid rafts. By using sugar-specific binding lectins, we further found that the UT-A1 in nonlipid rafts contained a high amount of mannose, as detected by concanavalin A, while the UT-A1 in lipid rafts was the mature N-acetylglucosamine-containing form, as detected by wheat germ agglutinin. In the inner medulla (IM) of diabetic rats, the more abundant 117-kDa UT-A1 in lipid rafts was the mature glycosylation form, with high amounts of N-acetylglucosamine and sialic acid. In contrast, in the IM of normal rats, the predominant 97-kDa UT-A1 was the form enriched in mannose. Functionally, inhibition of glycosylation by tunicamycin or elimination of the glycosylation sites by mutation significantly reduced UT-A1 activity in oocytes. Taken together, our study reveals a new role of N-linked glycosylation in regulating UT-A1 activity by promoting UT-A1 trafficking into membrane lipid raft subdomains.

  6. Golgi localized barley MTP8 proteins facilitate Mn transport

    DEFF Research Database (Denmark)

    Pedas, Pai Rosager; Schiller, Michaela; Hegelund, Josefine Nymark

    2014-01-01

    Many metabolic processes in plants are regulated by manganese (Mn) but limited information is available on the molecular mechanisms controlling cellular Mn homeostasis. In this study, a yeast assay was used to isolate and characterize two genes, MTP8.1 and MTP8.2 , which encode membrane-bound pro......Many metabolic processes in plants are regulated by manganese (Mn) but limited information is available on the molecular mechanisms controlling cellular Mn homeostasis. In this study, a yeast assay was used to isolate and characterize two genes, MTP8.1 and MTP8.2 , which encode membrane...... in yeast, MTP8.1 and MTP8.2 were found to be Mn transporters catalysing Mn efflux in a similar manner as the Golgi localized endogenous yeast protein Pmr1p. The level of MTP8.1 transcripts in barley roots increased with external Mn supply ranging from deficiency to toxicity, while MTP8.2 transcripts...... decreased under the same conditions, indicating non-overlapping functions for the two genes. In barley leaves, the expression of both MTP8 genes declined in response to toxic Mn additions to the roots suggesting a role in ensuring proper delivery of Mn to Golgi. Based on the above we suggest that barley MTP...

  7. Enigma interacts with adaptor protein with PH and SH2 domains to control insulin-induced actin cytoskeleton remodeling and glucose transporter 4 translocation

    DEFF Research Database (Denmark)

    Barres, Romain; Grémeaux, Thierry; Gual, Philippe

    2006-01-01

    a critical role in actin cytoskeleton organization in fibroblastic cells. Because actin rearrangement is important for insulin-induced glucose transporter 4 (Glut 4) translocation, we studied the potential involvement of Enigma in insulin-induced glucose transport in 3T3-L1 adipocytes. Enigma m......RNA was expressed in differentiated adipocytes and APS and Enigma were colocalized with cortical actin. Expression of an APS mutant unable to bind Enigma increased the insulin-induced Glut 4 translocation to the plasma membrane. By contrast, overexpression of Enigma inhibited insulin-stimulated glucose transport...... and Glut 4 translocation without alterations in proximal insulin signaling. This inhibitory effect was prevented with the deletion of the LIM domains of Enigma. Using time-lapse fluorescent microscopy of green fluorescent protein-actin, we demonstrated that the overexpression of Enigma altered insulin...

  8. Transmembrane Segment 6 of the Glut1 Glucose Transporter Is an Outer Helix and Contains Amino Acid Side Chains Essential for Transport Activity*

    Science.gov (United States)

    Mueckler, Mike; Makepeace, Carol

    2008-01-01

    Experimental data and homology modeling suggest a structure for the exofacial configuration of the Glut1 glucose transporter in which 8 transmembrane helices form an aqueous cavity in the bilayer that is stabilized by four outer helices. The role of transmembrane segment 6, predicted to be an outer helix in this model, was examined by cysteine-scanning mutagenesis and the substituted cysteine accessibility method using the membrane-impermeant, sulfhydryl-specific reagent, p-chloromercuribenzene-sulfonate (pCMBS). A fully functional Glut1 molecule lacking all 6 native cysteine residues was used as a template to produce a series of 21 Glut1 point mutants in which each residue along helix 6 was individually changed to cysteine. These mutants were expressed in Xenopus oocytes, and their expression levels, functional activities, and sensitivities to inhibition by pCMBS were determined. Cysteine substitutions at Leu204 and Pro205 abolished transport activity, whereas substitutions at Ile192, Pro196, Gln200, and Gly201 resulted in inhibition of activity that ranged from ∼35 to ∼80%. Cysteine substitutions at Leu188, Ser191, and Leu199 moderately augmented specific transport activity relative to the control. These results were dramatically different from those previously reported for helix 12, the structural cognate of helix 6 in the pseudo-symmetrical structural model, for which none of the 21 single-cysteine mutants exhibited reduced activity. Only the substitution at Leu188 conferred inhibition by pCMBS, suggesting that most of helix 6 is not exposed to the external solvent, consistent with its proposed role as an outer helix. These data suggest that helix 6 contains amino acid side chains that are critical for transport activity and that structurally analogous outer helices may play distinct roles in the function of membrane transporters. PMID:18245775

  9. Combination of crystalloid (glucose) and colloid (icodextrin) osmotic agents markedly enhances peritoneal fluid and solute transport during the long PD dwell.

    Science.gov (United States)

    Freida, Philippe; Galach, Magda; Divino Filho, Jose C; Werynski, Andrzej; Lindholm, Bengt

    2007-01-01

    Fluid and sodium removal is often inadequate in peritoneal dialysis patients with high peritoneal solute transport rate, especially when residual renal function is declining. We studied the effects of using simultaneous crystalloid (glucose) and colloid (icodextrin) osmotic agents on the peritoneal transport of fluid, sodium, and other solutes during 15-hour single-dwell exchanges using 3.86% glucose, 7.5% icodextrin, and a combination fluid with 2.61% glucose and 6.8% icodextrin in 7 prevalent peritoneal dialysis patients with fast peritoneal solute transport rate. The combination fluid enhanced net ultrafiltration (mean 990 mL) and sodium removal (mean 158 mmol) compared with 7.5% icodextrin (mean net ultrafiltration 462 mL, mean net sodium removal 49 mmol). In contrast, the 3.86% glucose-based solution yielded negligible ultrafiltration (mean -85 mL) and sodium removal (mean 16 mmol). The combination solution resulted in significantly improved urea (+41%) and creatinine (+26%) clearances compared with 7.5% icodextrin. A solution containing both crystalloid (glucose 2.61%) and colloid (icodextrin 6.8%) osmotic agents enhanced fluid removal by twofold and sodium removal by threefold compared with 7.5% icodextrin solution during a dwell of 15 hours, indicating that such a combination solution could represent a new treatment option for anuric peritoneal dialysis patients with high peritoneal solute transport rate.

  10. Regulation of Glucose Transport in Quiescent, Lactating, and Neoplastic Mammary Epithelia

    Science.gov (United States)

    2000-10-01

    to facilitate lactation and increase the prevalence and duration of breastfeeding . This will improve the health and neurodevelopment of the nation’s...simplest possible, but artificial , system. Studies in more physiologically relevant model systems are under way. Future work will focus on...the next 5 It and was fully restored 15 h after I. Work Group on Breastfeeding , American Academy of Pediatrics 1997 Brcastfeeding lactation was resumed

  11. Safety of Sodium-Glucose Co-Transporter 2 Inhibitors during Ramadan Fasting: Evidence, Perceptions and Guidelines

    Directory of Open Access Journals (Sweden)

    Salem A. Beshyah

    2016-06-01

    Full Text Available Sodium-glucose co-transporter 2 (SGLT2 inhibitors are a new glucose-lowering therapy for T2DM with documented benefits on blood glucose, hypertension, weight reduction and long term cardiovascular benefit. They have an inherent osmotic diuretic effect and lead to some volume loss and possible dehydration. There is some concern about the safety of using SGLT2 inhibitors in Muslim type 2 diabetes mellitus (T2DM patients during the fast during Ramadan. Currently, there is a dearth of research data to help guide physicians and reassure patients.  One study confirmed good glycemic control with less risk of hypoglycemia and no marked volume depletion. Data in the elderly and in combination with diuretics are reassuring of their safe to use in Ramadan in general. SGLT2 inhibitor-related diabetic ketoacidosis has not been reported during Ramadan and is unlikely to be relevant. Survey of physicians revealed that the majority felt that SGLT2 inhibitors are generally safe in T2DM patients during Ramadan fasting but should be discontinued in certain high risk patients. Some professional groups with interest in diabetes and Ramadan fasting included SGLT2 inhibitors in their guidelines on management of diabetes during Ramadan. They acknowledged the lack of trial data, recommended caution in high risk groups, advised regular monitoring and emphasized pre-Ramadan patients’ education. In conclusion, currently, knowledge, data and experience with SGLT2 inhibitors in Ramadan are limited. Nonetheless, stable patients with normal kidney function and low risk of dehydration may safely use the SGLT2 inhibitors therapy. Higher risk patients should be observed carefully and managed on individual basis.

  12. Deletion of glycine transporter 1 (GlyT1) in forebrain neurons facilitates reversal learning: enhanced cognitive adaptability?

    Science.gov (United States)

    Singer, Philipp; Boison, Detlev; Möhler, Hanns; Feldon, Joram; Yee, Benjamin K

    2009-10-01

    Local availability of glycine near N-methyl-D-aspartate receptors (NMDARs) is partly regulated by neuronal glycine transporter 1 (GlyT1), which can therefore modulate NMDAR function because binding to the glycine site of the NMDAR is necessary for channel activation. Disrupting GlyT1 in forebrain neurons has been shown to enhance Pavlovian conditioning and object recognition memory. Here, the authors report that the same genetic manipulation facilitated reversal learning in the water maze test of reference memory, but did not lead to any clear improvement in a working memory version of the water maze test. Facilitation in a nonspatial discrimination reversal task conducted on a T maze was also observed, supporting the conclusion that forebrain neuronal GlyT1 may modulate the flexibility in (new) learning and relevant mnemonic functions. One possibility is that these phenotypes may reflect reduced susceptibility to certain forms of proactive interference. This may be relevant for the suggested clinical application of GlyT1 inhibitors in the treatment of cognitive deficits, including schizophrenia, which is characterized by cognitive inflexibility in addition to the positive symptoms of the disease.

  13. Stereoselective Actions of Methylenedioxypyrovalerone (MDPV) To Inhibit Dopamine and Norepinephrine Transporters and Facilitate Intracranial Self-Stimulation in Rats.

    Science.gov (United States)

    Kolanos, R; Partilla, J S; Baumann, M H; Hutsell, B A; Banks, M L; Negus, S S; Glennon, R A

    2015-05-20

    The designer stimulant methylenedioxypyrovalerone (MDPV) is a potent reuptake inhibitor at transporters for dopamine (DAT) and norepinephrine (NET) that produces a constellation of abuse-related behavioral effects. MDPV possesses a chiral center, and the abused formulation of the drug is a racemic mixture, but no data are available on the pharmacology of its isomers. Here, the individual optical isomers of MDPV were prepared and examined with respect to their neurochemical actions on neurotransmitter reuptake and behavioral effects in an assay of intracranial self-stimulation (ICSS) in rats. In assays of DAT uptake inhibition, S(+)MDPV (EC50 = 2.13 nM) was more potent than either (±)MDPV (EC50 = 4.85 nM) or R(-)MDPV (EC50 = 382.80 nM); the three drugs were less potent at NET uptake inhibition, with the same rank order of potency. Neither racemic MDPV nor its optical isomers inhibited the reuptake of serotonin at concentrations up to 10 μM. S(+)MDPV produced an abuse-related and dose-dependent facilitation of ICSS, and the potency of S(+)MDPV (significant facilitation at doses ≥ 0.1 mg/kg) was greater than that of the racemate (significant facilitation at doses ≥ 0.32 mg/kg). R(-)MDPV failed to alter ICSS at doses up to 100 times greater than the lowest effective dose of S(+)MDPV. The results indicate that abuse-related neurochemical and behavioral effects of racemic MDPV reside primarily with its S(+) isomer.

  14. Studies of genetic variability of the glucose transporter 2 promoter in patients with type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Møller, A M; Jensen, N M; Pildal, J

    2001-01-01

    This study was performed to test the hypothesis that genetic variation in the promoter of the glucose transporter 2 (GLUT2) might predispose to prediabetic phenotypes or type 2 diabetes. A total of 1611 bp comprising the minimal promoter region of the GLUT2 gene were examined by combined single-strand...... conformational polymorphism and heteroduplex analysis followed by direct sequencing of identified variants on genomic DNA from 96 randomly recruited Danish type 2 diabetic patients. We identified 4 nucleotide variants, -447g-->a, -149c-->a, -122t-->c, and -44g-->a. None of the variants were positioned in known.......0% (24.4-33.6), respectively] as in 241 age-matched glucose-tolerant subjects [13.1% (9.8-16.4), 11.2% (8.3-14.1), and 33.4% (28.8-38.0), respectively]. The -447g-->a mutation was only identified in a single diabetic patient and did not show cosegregation with diabetes in the family of the proband...

  15. Brain microvasculature defects and Glut1 deficiency syndrome averted by early repletion of the glucose transporter-1 protein.

    Science.gov (United States)

    Tang, Maoxue; Gao, Guangping; Rueda, Carlos B; Yu, Hang; Thibodeaux, David N; Awano, Tomoyuki; Engelstad, Kristin M; Sanchez-Quintero, Maria-Jose; Yang, Hong; Li, Fanghua; Li, Huapeng; Su, Qin; Shetler, Kara E; Jones, Lynne; Seo, Ryan; McConathy, Jonathan; Hillman, Elizabeth M; Noebels, Jeffrey L; De Vivo, Darryl C; Monani, Umrao R

    2017-01-20

    Haploinsufficiency of the SLC2A1 gene and paucity of its translated product, the glucose transporter-1 (Glut1) protein, disrupt brain function and cause the neurodevelopmental disorder, Glut1 deficiency syndrome (Glut1 DS). There is little to suggest how reduced Glut1 causes cognitive dysfunction and no optimal treatment for Glut1 DS. We used model mice to demonstrate that low Glut1 protein arrests cerebral angiogenesis, resulting in a profound diminution of the brain microvasculature without compromising the blood-brain barrier. Studies to define the temporal requirements for Glut1 reveal that pre-symptomatic, AAV9-mediated repletion of the protein averts brain microvasculature defects and prevents disease, whereas augmenting the protein late, during adulthood, is devoid of benefit. Still, treatment following symptom onset can be effective; Glut1 repletion in early-symptomatic mutants that have experienced sustained periods of low brain glucose nevertheless restores the cerebral microvasculature and ameliorates disease. Timely Glut1 repletion may thus constitute an effective treatment for Glut1 DS.

  16. Multiple signalling pathways redundantly control glucose transporter GLUT4 gene transcription in skeletal muscle

    DEFF Research Database (Denmark)

    Murgia, Marta; Elbenhardt Jensen, Thomas; Cusinato, Marzia

    2009-01-01

    Increased GLUT4 expression in skeletal muscle is an important benefit of regular exercise, resulting in improved insulin sensitivity and glucose tolerance. The Ca2+/calmodulin-dependent-kinase II (CaMKII), calcineurin and AMPK pathways have been implicated in GLUT4 gene regulation based...... on pharmacological evidence. Here, we have used a more specific genetic approach to establish the relative role of the three pathways in fast and slow muscles. Plasmids coding for protein inhibitors of CaMKII or calcineurin were co-transfected in vivo with a GLUT4 enhancer-reporter construct either in normal mice...... or in mice expressing a dominant negative AMPK mutant. GLUT4 reporter activity was not inhibited in the slow soleus muscle by blocking either CaMKII or calcineurin alone, but was inhibited by blocking both pathways. GLUT4 reporter activity was likewise unchanged in the soleus of dnAMPK mice...

  17. Inhibition of glucose-transporter 1 (GLUT-1) expression reversed Warburg effect in gastric cancer cell MKN45.

    Science.gov (United States)

    Zhang, Tian-Biao; Zhao, Ying; Tong, Zhao-Xue; Guan, Yi-Fu

    2015-01-01

    Glucose transporter-1 (GLUT-1) plays critical roles in cancer development and progression. Warburg effect (aerobic glycolysis) contributes greatly to tumorigenesis and could be targeted for tumor therapy. However, published data on the relationship between GLUT-1 and Warburg effect are scarce. In this study, gastric cancer cell, MKN45, was transfected with GLUT-1 shRNA using Lipofectamine 2000. Oxygen consumption, LDH activity, lactate production and cytoplasmic pyruvate were detected after MKN45 cells with GLUT-1 knockdown. In the last, hexokinase 1 (HK1), HK2, and pyruvate kinase M2 (PKM2) expression were detected by using western blot. In this study, we showed that inhibition of GLUT-1 expression reversed Warburg effect in MKN45 cells, and induced apoptosis.

  18. Effect of in vivo injection of cholera and pertussis toxin on glucose transport in rat skeletal muscle

    DEFF Research Database (Denmark)

    Ploug, Thorkil; Han, X; Petersen, L N

    1997-01-01

    hyperinsulinimia, increased plasma free fatty acid levels, increased adenosine 3',5'-cyclic monophosphate (cAMP) concentrations in muscle, but no difference in plasma catecholamines. Twenty-five hours after CTX treatment, GLUT-4 protein in both soleus and red gastrocnemius muscles was decreased, whereas no change...... in GLUT-1 protein content was found. In contrast, GLUT-4 mRNA was unchanged, but transcripts for GLUT-1 were increased > or = 150% in all three muscles from CTX-treated rats. The findings suggest that CTX via increased cAMP impairs basal as well as insulin- and contraction-stimulated muscle glucose...... transport, at least in part from a decrease in intramuscular GLUT-4 protein....

  19. Effects of isoleucine on glucose uptake through the enhancement of muscular membrane concentrations of GLUT1 and GLUT4 and intestinal membrane concentrations of Na+/glucose co-transporter 1 (SGLT-1) and GLUT2.

    Science.gov (United States)

    Zhang, Shihai; Yang, Qing; Ren, Man; Qiao, Shiyan; He, Pingli; Li, Defa; Zeng, Xiangfang

    2016-08-01

    Knowledge of regulation of glucose transport contributes to our understanding of whole-body glucose homoeostasis and human metabolic diseases. Isoleucine has been reported to participate in regulation of glucose levels in many studies; therefore, this study was designed to examine the effect of isoleucine on intestinal and muscular GLUT expressions. In an animal experiment, muscular GLUT and intestinal GLUT were determined in weaning pigs fed control or isoleucine-supplemented diets. Supplementation of isoleucine in the diet significantly increased piglet average daily gain, enhanced GLUT1 expression in red muscle and GLUT4 expression in red muscle, white muscle and intermediate muscle (P<0·05). In additional, expressions of Na+/glucose co-transporter 1 and GLUT2 were up-regulated in the small intestine when pigs were fed isoleucine-supplemented diets (P<0·05). C2C12 cells were used to examine the expressions of muscular GLUT and glucose uptake in vitro. In C2C12 cells supplemented with isoleucine in the medium, cellular 2-deoxyglucose uptake was increased (P<0·05) through enhancement of the expressions of GLUT4 and GLUT1 (P<0·05). The effect of isoleucine was greater than that of leucine on glucose uptake (P<0·05). Compared with newborn piglets, 35-d-old piglets have comparatively higher GLUT4, GLUT2 and GLUT5 expressions. The results of this study demonstrated that isoleucine supplementation enhanced the intestinal and muscular GLUT expressions, which have important implications that suggest that isoleucine could potentially increase muscle growth and intestinal development by enhancing local glucose uptake in animals and human beings.

  20. Glucose Transport in Cultured Animal Cells: An Exercise for the Undergraduate Cell Biology Laboratory

    Science.gov (United States)

    Ledbetter, Mary Lee S.; Lippert, Malcolm J.

    2002-01-01

    Membrane transport is a fundamental concept that undergraduate students of cell biology understand better with laboratory experience. Formal teaching exercises commonly used to illustrate this concept are unbiological, qualitative, or intricate and time consuming to prepare. We have developed an exercise that uses uptake of radiolabeled nutrient…

  1. Glucose Transport in Cultured Animal Cells: An Exercise for the Undergraduate Cell Biology Laboratory

    Science.gov (United States)

    Ledbetter, Mary Lee S.; Lippert, Malcolm J.

    2002-01-01

    Membrane transport is a fundamental concept that undergraduate students of cell biology understand better with laboratory experience. Formal teaching exercises commonly used to illustrate this concept are unbiological, qualitative, or intricate and time consuming to prepare. We have developed an exercise that uses uptake of radiolabeled nutrient…

  2. Transcriptional regulation of the gene for glucose transporter GLUT4 in skeletal muscle. Effects of diabetes and fasting.

    Science.gov (United States)

    Neufer, P D; Carey, J O; Dohm, G L

    1993-07-05

    GLUT4 glucose transporter protein and mRNA levels in rat skeletal muscle are decreased with streptozotocin (STZ)-induced diabetes and increased by fasting, indicating that GLUT4 expression may be regulated at the pretranslational level. The purpose of the present study was to determine whether GLUT4 is subject to transcriptional regulation in skeletal muscle under the altered metabolic conditions of diabetes and fasting. Nuclei were isolated from red and white portions of the quadriceps and gastrocnemius/plantaris muscles of control, 7-day STZ-diabetic, and 3-day fasted rats. STZ-induced diabetes resulted in a 35% reduction in GLUT4 transcription in red skeletal muscle and thus accounted for a major portion of the corresponding 50% reduction in GLUT4 mRNA observed in red skeletal muscle. STZ-induced diabetes had no significant effect on GLUT4 transcription or mRNA in white skeletal muscle. Fasting, however, significantly increased both GLUT4 transcription (2.2-fold) and mRNA (2.9-fold) in white skeletal muscle with no change detected for either parameter in red skeletal muscle. The nearly 2-fold higher steady-state GLUT4 mRNA in red versus white skeletal muscle of control rats was not associated with any difference in basal transcription. These findings demonstrate that expression of the GLUT4 glucose transporter protein in skeletal muscle is subject to regulation in vivo at the level of transcription of the GLUT4 gene. In addition, GLUT4 transcription is regulated in a fiber type-specific manner in response to the metabolic challenges elicited by STZ-induced diabetes and fasting.

  3. Zinc transporter ZIP14 functions in hepatic zinc, iron and glucose homeostasis during the innate immune response (endotoxemia.

    Directory of Open Access Journals (Sweden)

    Tolunay Beker Aydemir

    Full Text Available ZIP14 (slc39A14 is a zinc transporter induced in response to pro-inflammatory stimuli. ZIP14 induction accompanies the reduction in serum zinc (hypozincemia of acute inflammation. ZIP14 can transport Zn(2+ and non-transferrin-bound Fe(2+ in vitro. Using a Zip14(-/- mouse model we demonstrated that ZIP14 was essential for control of phosphatase PTP1B activity and phosphorylation of c-Met during liver regeneration. In the current studies, a global screening of ZIP transporter gene expression in response to LPS-induced endotoxemia was conducted. Following LPS, Zip14 was the most highly up-regulated Zip transcript in liver, but also in white adipose tissue and muscle. Using ZIP14(-/- mice we show that ZIP14 contributes to zinc absorption from the gastrointestinal tract directly or indirectly as zinc absorption was decreased in the KOs. In contrast, Zip14(-/- mice absorbed more iron. The Zip14 KO mice did not exhibit hypozincemia following LPS, but do have hypoferremia. Livers of Zip14-/- mice had increased transcript abundance for hepcidin, divalent metal transporter-1, ferritin and transferrin receptor-1 and greater accumulation of iron. The Zip14(-/- phenotype included greater body fat, hypoglycemia and higher insulin levels, as well as increased liver glucose and greater phosphorylation of the insulin receptor and increased GLUT2, SREBP-1c and FASN expression. The Zip14 KO mice exhibited decreased circulating IL-6 with increased hepatic SOCS-3 following LPS, suggesting SOCS-3 inhibited insulin signaling which produced the hypoglycemia in this genotype. The results are consistent with ZIP14 ablation yielding abnormal labile zinc pools which lead to increased SOCS-3 production through G-coupled receptor activation and increased cAMP production as well as signaled by increased pSTAT3 via the IL-6 receptor, which inhibits IRS 1/2 phosphorylation. Our data show the role of ZIP14 in the hepatocyte is multi-functional since zinc and iron trafficking are

  4. Cardiovascular mortality and morbidity in patients with type 2 diabetes following initiation of sodium-glucose co-transporter-2 inhibitors versus other glucose-lowering drugs (CVD-REAL Nordic)

    DEFF Research Database (Denmark)

    Birkeland, Kåre I; Jørgensen, Marit E; Carstensen, Bendix

    2017-01-01

    BACKGROUND: In patients with type 2 diabetes and a high cardiovascular risk profile, the sodium-glucose co-transporter-2 (SGLT2) inhibitors empagliflozin and canagliflozin have been shown to lower cardiovascular morbidity and mortality. Using real-world data from clinical practice, we aimed......% (36 362 of 91 320) were women and prevalence of cardiovascular disease was 25% (22 686 of 91 320). 94% of the total SGLT2 inhibitor exposure time was for use of dapagliflozin, with 5% for empagliflozin, and 1% for canagliflozin. Compared with other glucose-lowering drugs, use of SGLT2 inhibitors...

  5. Colloid-Facilitated Transport of 137Cs in Fracture-Fill Material. Experiments and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-29

    In this study, we demonstrate how a combination of batch sorption/desorption experiments and column transport experiments were used to effectively parameterize a model describing the colloid-facilitated transport of Cs in the Grimsel granodiorite/FFM system. Cs partition coefficient estimates onto both the colloids and the stationary media obtained from the batch experiments were used as initial estimates of partition coefficients in the column experiments, and then the column experiment results were used to obtain refined estimates of the number of different sorption sites and the adsorption and desorption rate constants of the sites. The desorption portion of the column breakthrough curves highlighted the importance of accounting for adsorption-desorption hysteresis (or a very nonlinear adsorption isotherm) of the Cs on the FFM in the model, and this portion of the breakthrough curves also dictated that there be at least two different types of sorption sites on the FFM. In the end, the two-site model parameters estimated from the column experiments provided excellent matches to the batch adsorption/desorption data, which provided a measure of assurance in the validity of the model.

  6. Bone effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Blevins, Thomas C; Farooki, Azeez

    2017-01-01

    Canagliflozin, a sodium glucose co-transporter 2 (SGLT2) inhibitor approved for the treatment of type 2 diabetes mellitus (T2DM), lowers blood glucose by inhibiting renal glucose reabsorption and increasing urinary glucose excretion. It has been reported that SGLT2 inhibitors may have potential adverse effects on bone, including increased fracture risk and decreased bone mineral density (BMD). Across clinical studies, canagliflozin was not associated with meaningful changes in serum or urine calcium, vitamin D, or parathyroid hormone. Minimal increases in serum phosphate and magnesium that were within normal limits were seen with canagliflozin versus placebo. Canagliflozin was associated with increases in serum collagen type 1 beta-carboxy telopeptide (beta-CTX), a bone resorption marker, and osteocalcin, a bone formation marker. Decreases in total hip BMD were seen with canagliflozin 100 and 300 mg versus placebo after 2 years (-1.7%, -2.1%, -0.8%; differences of -0.9% and -1.2%), but not at other skeletal sites (normal age-related bone loss, ~0.5-1.0%/year). Changes in beta-CTX and total hip BMD were significantly associated with weight loss, which is known to increase bone resorption markers and decrease BMD. Canagliflozin was associated with a higher fracture incidence in an interim analysis of the CANagliflozin cardioVascular Assessment Study (CANVAS) in patients with a history or high risk of cardiovascular disease (incidence per 100 patient-years of 1.6, 1.6, and 1.1 with canagliflozin 100 and 300 mg and placebo), but not in other clinical studies of patients with T2DM. Fractures tended to occur as early as 12 weeks after initiating treatment and were primarily located in the distal parts of the upper and lower extremities. The reason for increased fracture risk with canagliflozin treatment is unknown, but is likely not related to a direct effect of canagliflozin on bone-related biomarkers. Data from ongoing canagliflozin studies, including CANVAS, will

  7. GDM-Induced Macrosomia Is Reversed by Cav-1 via AMPK-Mediated Fatty Acid Transport and GLUT1-Mediated Glucose Transport in Placenta.

    Science.gov (United States)

    Yao, Guo; Zhang, Yafang; Wang, Di; Yang, Ruirui; Sang, Hui; Han, Linlin; Zhu, Yuexia; Lu, Yanyan; Tan, Yeke; Shang, Zhanping

    2017-01-01

    To investigate if the role of Cav-1 in GDM-induced macrosomia is through regulating AMPK signaling pathway in placenta. We used diagnostic criteria of gestational diabetes mellitus (GDM) and macrosomia to separate and compare placental protein and mRNA levels from GDM with macrosomia group (GDMM), GDM with normal birth weight group (GDMN) and normal glucose tolerance (NGT) with normal birth weight group (CON). Western blotting was performed to examine differentially expressed proteins of caveolin-1 (Cav-1) and Adenosine monophosphate-activated protein kinase (AMPK) signaling pathway related proteins, including phosphorylated-AMPKα(Thr172), AMPKα, phosphorylated-Acetyl-CoA carboxylase(Ser79) (p-ACC(Ser79)), ACC and glucose transporter 1 (GLUT1) in placenta between the three groups. The mRNA levels of Cav-1, AMPKα, ACC and GLUT1 in placenta were measured by real time-PCR. In the GDMM placenta group, both protein and mRNA levels of Cav-1 were down-regulated, while GLUT1 was up-regulated; the phosphorylation and mRNA levels of ACC and AMPKα were decreased, but total ACC protein levels were increased compared to both the GDMN (p<0.05) and CON groups (p<0.05). In GDMM placenta group, there was a significant negative correlation observed between neonatal birth weight (NBW) and protein expression levels of Cav-1, p-ACC(Ser79) and p-AMPKα(Thr172) (p<0.05), while positive relationship with ACC and GLUT1 protein levels. Besides, in GDMM group placental mRNA levels, NBW had a positive correlation with GLUT1 (p<0.05), while negative with Cav-1, AMPKα and ACC expression (p<0.05). Cav-1 protein expression was positively associated with p-AMPK and p-ACC (p<0.05), and negatively associated with GLUT1 (p<0.05). Interestingly, p-AMPK protein expression was closely related to p-ACC (p<0.05), but not with GLUT1. GDM-induced macrosomias have more severe inhibition of Cav-1 expression in placenta. Cav-1 is associated with placental glucose and fatty acid transport via the induction

  8. Preferential Transport and Metabolism of Glucose in Bergmann Glia over Purkinje Cells: A Multiphoton Study of Cerebellar Slices

    Institute of Scientific and Technical Information of China (English)

    L.F.BARROS; R.COURJARET; P.JAKOBY; A.LOAIZA; C.LOHR; J.W.DEITMER

    2009-01-01

    了解不同类型的细胞如何处理葡萄糖有助于解释能量供应是如何是如何根据大脑能量需求来进行调整的.荧光追踪结合共聚焦显微镜技术已用于研究培养的脑细胞摄取葡萄糖的实时动态过程.本文采用这种技术利用多光子显微镜观察急性制备的大鼠小脑脑片.带荧光的葡萄糖类似物2NBDG和6NBDG在小脑皮质的分子层中的转运速度比其在蒲肯野细胞胞体和颗粒细胞中快若干倍.洗脱游离示踪剂后,可见大部分磷酸化示踪剂都位于Bergmann胶质细胞,用胶质细胞标记物sulforhodamine 101免疫染色后进一步确认这一结果.有效回收荧光光漂白后显示,2NBDG-P可通过Bergmann胶质细胞之间的缝隙连接沿着分子层水平扩散.本文的结果表明在急性小脑切片中,Bergmann胶质细胞对葡萄糖的转运能力和糖酵解率高于蒲肯野细胞若干倍.由于小脑主要由葡萄糖提供能量,蒲肯野神经元被认为比Bergmann胶质细胞更耗能量,这些结果表明,在胶质细胞和神经元之间存在类似乳酸的能量代谢物介导的环路.%Knowing how different cell types handle glucose should help to decipher how energy supply is adjusted to energy demand in the brain. Previously, the uptake of glucose by cultured brain cells was studied in real-time using fluorescent tracers and confocal microscopy. Here, we have adapted this technique to acute slices prepared from the rat cerebellum by means of multiphoton microscopy. The transport of the fluorescent glucose analogs 2NBDG and 6NBDG was several-fold faster in the molecular layer of the cerebellar cortex than in Purkinje cell somata and granule cells. After washout of free tracer, it became apparent that most phosphorylated tracer was located in Bergmann glia, which was confirmed by counterstaining with the glial marker sulforhodamine 101. The effective recovery of fluorescence after photobleaching showed that 2NBDG-P can diffuse

  9. Exercise, GLUT4, and Skeletal Muscle Glucose Uptake

    DEFF Research Database (Denmark)

    Richter, Erik; Hargreaves, Mark

    2013-01-01

    Glucose is an important fuel for contracting muscle, and normal glucose metabolism is vital for health. Glucose enters the muscle cell via facilitated diffusion through the GLUT4 glucose transporter which translocates from intracellular storage depots to the plasma membrane and T-tubules upon...... muscle contraction. Here we discuss the current understanding of how exercise-induced muscle glucose uptake is regulated. We briefly discuss the role of glucose supply and metabolism and concentrate on GLUT4 translocation and the molecular signaling that sets this in motion during muscle contractions...... uptake relies on GLUT4 translocation, glucose uptake also depends on muscle GLUT4 expression which is increased following exercise. AMPK and CaMKII are key signaling kinases that appear to regulate GLUT4 expression via the HDAC4/5-MEF2 axis and MEF2-GEF interactions resulting in nuclear export of HDAC4...

  10. Insulin-stimulated glucose uptake in healthy and insulin-resistant skeletal muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul S

    2016-01-01

    transporter protein 4 (GLUT4) to the plasma membrane which leads to facilitated diffusion of glucose into the cell. Understanding the precise signaling events guiding insulin-stimulated glucose uptake is pivotal, because impairment in these signaling events leads to development of insulin resistance and type...

  11. Effect of ethanolic extract of Cryptolepis sanguinolenta stem on in vivo and in vitro glucose absorption and transport: Mechanism of its antidiabetic activity

    Directory of Open Access Journals (Sweden)

    A F Ajayi

    2012-01-01

    Full Text Available Objective: Extracts from various morphological parts of Cryptolepis sanguinolenta are widely used traditionally in folklore medicine in many parts of the world for the management, control, and/or treatment of a plethora of human ailments, including diabetes mellitus. In order to scientifically appraise some of the ethnomedical uses of Cryptolepis sanguinolenta, the present study was undertaken to investigate its influence at varying doses on intestinal glucose absorption and transport in relation to its hypoglycemic and hypolipidemic effects in rat experimental paradigms. Materials and Methods: The animals used were divided into four groups. Control animals received 2 ml of distilled water, while treated groups received 50, 150, and 250 mg/kg bw of Cryptolepis sanguinolenta extract per oral respectively daily for 21 days. Results: Cryptolepis sanguinolenta led to a significant decrease in glucose transport and absorption. It also caused significant reductions in plasma glucose, total cholesterol, triglyceride, and LDL cholesterol. Biochemical changes observed were suggestive of dose dependence. Histopathological studies also showed increased sizes of β cells of the pancreas. Conclusion: The findings in these normoglycemic laboratory animals suggest that Cryptolepis sanguinolenta has hypoglycemic and hypolipidemic activities, possibly by reducing glucose absorption and transport, and enhancing the structural and functional abilities of the β cells. This is the first study to report the effect of Cryptolepis sanguinolenta on intestinal glucose absorption. This effect could be attributed to its major bioactive principle, cryptolepine, an indoloquinoline alkaloid. This study thus lends credence to the use of Cryptolepis sanguinolenta in the management of diabetes mellitus.

  12. Apigenin inhibits the proliferation of adenoid cystic carcinoma via suppression of glucose transporter-1.

    Science.gov (United States)

    Fang, Jin; Bao, Yang-Yang; Zhou, Shui-Hong; Fan, Jun

    2015-11-01

    Apigenin is a natural phyto-oestrogen flavonoid, which exerts various biological effects, including anti‑oxidative, anti‑inflammatory and anticancer activities. In addition, apigenin has recently been reported to target hypoxic markers; however, there are currently no studies regarding the association between apigenin and glucose transporter‑1 (GLUT‑1) in adenoid cystic carcinoma (ACC). The present study investigated whether apigenin inhibits the proliferation of ACC cells or suppresses the expression of GLUT‑1 in ACC cells. The results of the present study demonstrated that apigenin inhibits ACC‑2 cell growth in a dose‑ and time‑dependent manner. Treatment with apigenin also induced apoptosis and G2/M‑phase arrest in a dose‑ and time‑dependent manner. Corresponding with the above results, the expression levels of GLUT‑1 were significantly decreased following treatment in a dose- and time-dependent manner. These results suggest that the inhibition of ACC-2 cell growth by apigenin may be due to the decreased expression of GLUT-1.

  13. Adenoviral-mediated placental gene transfer of IGF-1 corrects placental insufficiency via enhanced placental glucose transport mechanisms.

    Directory of Open Access Journals (Sweden)

    Helen N Jones

    Full Text Available Previous work in our laboratory demonstrated that over-expression of human insulin-like growth factor -1 (hIGF-1 in the placenta corrects fetal weight deficits in mouse, rat, and rabbit models of intrauterine growth restriction without changes in placental weight. The underlying mechanisms of this effect have not been elucidated. To investigate the effect of intra-placental IGF-1 over-expression on placental function we examined glucose transporter expression and localization in both a mouse model of IUGR and a model of human trophoblast, the BeWo Choriocarcinoma cell line.At gestational day 18, animals were divided into four groups; sham-operated controls, uterine artery branch ligation (UABL, UABL+Ad-hIGF-1 (10(8 PFU, UABL+Ad-LacZ (10(8 PFU. At gestational day 20, pups and placentas were harvested by C-section. For human studies, BeWo choriocarcinoma cells were grown in F12 complete medium +10%FBS. Cells were incubated in serum-free control media ± Ad-IGF-1 or Ad-LacZ for 48 hours. MOIs of 10∶1 and 100∶1 were utilized. The RNA, protein expression and localization of glucose transporters GLUT1, 3, 8, and 9 were analyzed by RT-PCR, Western blot and immunohistochemistry.In both the mouse placenta and BeWo, GLUT1 regulation was linked to altered protein localization. GLUT3, localized to the mouse fetal endothelial cells, was reduced in placental insufficiency but maintained with Ad-I GF-1 treatment. Interestingly, GLUT8 expression was reduced in the UABL placenta but up-regulated following Ad-IGF-1 in both mouse and human systems. GLUT9 expression in the mouse was increased by Ad-IGF-1 but this was not reflected in the BeWo, where Ad-IGF-1 caused moderate membrane relocalization.Enhanced GLUT isoform transporter expression and relocalization to the membrane may be an important mechanism in Ad-hIGF-1mediated correction of placental insufficiency.

  14. Over-expression of NYGGF4 (PID1) inhibits glucose transport in skeletal myotubes by blocking the IRS1/PI3K/AKT insulin pathway.

    Science.gov (United States)

    Wu, W L; Gan, W H; Tong, M L; Li, X L; Dai, J Z; Zhang, C M; Guo, X R

    2011-03-01

    Defects in insulin-stimulated glucose uptake in muscle are the important early events in the pathogenesis of insulin resistance. NYGGF4 (also named PID1) is a recently discovered gene which is suggested to be associated with obesity-associated insulin resistance. In this study, we aimed to investigate the effects of NYGGF4 on glucose uptake and insulin signaling in rat skeletal muscle cells. Rat L6 myoblasts were transfected with either an empty vector or an NYGGF4-expressing vector and induced to differentiate into mature L6 skeletal myotubes. Glucose uptake was determined by measuring uptake of 2-deoxy-d-[(3)H] glucose. Immunoblotting was performed to detect the translocation of insulin-sensitive glucose transporter 4 (GLUT4). Immunoblotting was also used to measure phosphorylation and total protein levels of the insulin signaling proteins including insulin receptor (IR), insulin receptor substrate 1 (IRS1), Akt, extracellular signal-regulated kinase 1 and 2 (ERK1/2), p38, and c-Jun-N-terminal kinase (JNK). NYGGF4 over-expression in L6 skeletal myotubes reduced insulin-stimulated glucose uptake and impaired insulin-stimulated GLUT4 translocation. It also diminished insulin-stimulated tyrosine phosphorylation of IRS1 and serine phosphorylation of Akt without affecting the phosphorylation of IR, ERK1/2, p38, or JNK. Over-expression of NYGGF4 inhibits glucose transport in skeletal myotubes by blocking the IRS1/PI3K/AKT insulin pathway. These observations highlight the potential role of NYGGF4 in glucose homeostasis and the development of insulin resistance in obesity. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Regulation of ATP-binding cassette transporters and cholesterol efflux by glucose in primary human monocytes and murine bone marrow-derived macrophages

    Science.gov (United States)

    Individuals with type 2 diabetes mellitus are at increased risk of developing atherosclerosis. This may be partially attributable to suppression of macrophage ATP-binding cassette (ABC) transporter mediated cholesterol efflux by sustained elevated blood glucose concentrations. Two models were used...

  16. Crystal structures of the ATPase subunit of the glucose ABC transporter from Sulfolobus solfataricus : Nucleotide-free and nucleotide-bound conformations

    NARCIS (Netherlands)

    Verdon, G.; Albers, S.V.; Dijkstra, B.W.; Driessen, A.J.M.; Thunnissen, A.M.W.H.

    2003-01-01

    The ABC-ATPase GlcV energizes a binding protein-dependent ABC transporter that mediates glucose uptake in Sulfolobus solfataricus. Here, we report high-resolution crystal structures of GlcV in different states along its catalytic cycle: distinct monomeric nucleotide-free states and monomeric

  17. Glucose-1-phosphate transport into protoplasts and chloroplasts from leaves of Arabidopsis.

    Science.gov (United States)

    Fettke, Joerg; Malinova, Irina; Albrecht, Tanja; Hejazi, Mahdi; Steup, Martin

    2011-04-01

    Almost all glucosyl transfer reactions rely on glucose-1-phosphate (Glc-1-P) that either immediately acts as glucosyl donor or as substrate for the synthesis of the more widely used Glc dinucleotides, ADPglucose or UDPglucose. In this communication, we have analyzed two Glc-1-P-related processes: the carbon flux from externally supplied Glc-1-P to starch by either mesophyll protoplasts or intact chloroplasts from Arabidopsis (Arabidopsis thaliana). When intact protoplasts or chloroplasts are incubated with [U-(14)C]Glc-1-P, starch is rapidly labeled. Incorporation into starch is unaffected by the addition of unlabeled Glc-6-P or Glc, indicating a selective flux from Glc-1-P to starch. However, illuminated protoplasts incorporate less (14)C into starch when unlabeled bicarbonate is supplied in addition to the (14)C-labeled Glc-1-P. Mesophyll protoplasts incubated with [U-(14)C]Glc-1-P incorporate (14)C into the plastidial pool of adenosine diphosphoglucose. Protoplasts prepared from leaves of mutants of Arabidopsis that lack either the plastidial phosphorylase or the phosphoglucomutase isozyme incorporate (14)C derived from external Glc-1-P into starch, but incorporation into starch is insignificant when protoplasts from a mutant possessing a highly reduced ADPglucose pyrophosphorylase activity are studied. Thus, the path of assimilatory starch biosynthesis initiated by extraplastidial Glc-1-P leads to the plastidial pool of adenosine diphosphoglucose, and at this intermediate it is fused with the Calvin cycle-driven route. Mutants lacking the plastidial phosphoglucomutase contain a small yet significant amount of transitory starch.

  18. In vivo assessment of cardiac insulin resistance by nuclear probes using an iodinated tracer of glucose transport

    Energy Technology Data Exchange (ETDEWEB)

    Briat, Arnaud; Slimani, Lotfi; Perret, Pascale; Villemain, Daniele; Fagret, Daniel; Ghezzi, Catherine [INSERM, E0340, Radiopharmaceutiques Biocliniques, Grenoble (France); Univ Grenoble, Grenoble (France); Halimi, Serge [Univ Grenoble, Grenoble (France); Hopital Michallon, Service de Diabetologie, CHRU Grenoble, Grenoble (France); Demongeot, Jacques [Univ Grenoble, Grenoble (France); CNRS, UMR 5525, Grenoble (France)

    2007-11-15

    Insulin resistance, implying depressed cellular sensitivity to insulin, is a risk factor for type 2 diabetes and cardiovascular disease. This study is the first step towards the development of a technique of insulin resistance measurement in humans with a new tracer of glucose transport, [{sup 123}I]6-deoxy-6-iodo-D-glucose (6DIG). We investigated 6DIG kinetics in anaesthetised control rats and in three models of insulin-resistant rats: fructose fed, Zucker and ZDF. The study of myocardial 6DIG activity was performed under two conditions: first, 6DIG was injected under the baseline condition and then it was injected after a bolus injection of insulin. After each injection, radioactivity was measured over 45 min by external detection via NaI probes, in the heart and blood. A tri-compartment model was developed to obtain fractional transfer coefficients of 6DIG from the blood to the heart. These coefficients were significantly increased with insulin in control rats and did not change significantly in insulin-resistant rats. The ratio of the coefficient obtained under insulin to that obtained under basal conditions gave an index of cardiac insulin resistance for each animal. The mean values of these ratios were significantly lower in insulin-resistant than in control rats: 1.16 {+-} 0.06 vs 2.28 {+-} 0.18 (p < 0.001) for the fructose-fed group, 0.92 {+-} 0.05 vs 1.62 {+-} 0.25 (p < 0.01) for the Zucker group and 1.34 {+-} 0.06 vs 2.01 {+-} 0.26 (p < 0.05) for the ZDF group. These results show that 6DIG could be a useful tracer to image cardiac insulin resistance. (orig.)

  19. Exercise-induced translocation of protein kinase C and production of diacylglycerol and phosphatidic acid in rat skeletal muscle in vivo. Relationship to changes in glucose transport.

    Science.gov (United States)

    Cleland, P J; Appleby, G J; Rattigan, S; Clark, M G

    1989-10-25

    Contraction-induced translocation of protein kinase C (Richter E.A., Cleland, P.J.F., Rattigan, S., and Clark, M.G. (1987) FEBS Lett. 217, 232-236) implies a role for this enzyme in muscle contraction or the associated metabolic adjustments. In the present study, this role is further examined particularly in relation to changes in glucose transport. Electrical stimulation of the sciatic nerve of the anesthetized rat in vivo led to a time-dependent translocation of protein kinase C and a 2-fold increase in the concentrations of both diacylglycerol and phosphatidic acid. Maximum values for the latter were reached at 2 min and preceded the maximum translocation of protein kinase C (10 min). Stimulation of muscles in vitro increased the rate of glucose transport, but this required 20 min to reach maximum. There was no reversal of translocation or decrease in the concentrations of diacylglycerol and phosphatidic acid even after 30 min of rest following a 5-min period of stimulation in vivo. Translocation was not influenced by variations in applied load at maximal fiber recruitment but was dependent on the frequency of nontetanic stimuli, reaching a maximum at 4 Hz. The relationship between protein kinase C and glucose transport was also explored by varying the number of tetanic stimuli. Whereas only one train of stimuli (200 ms, 100 Hz) was required for maximal effects on protein kinase C, diacylglycerol, and phosphatidic acid, more than 35 trains of stimuli were required to activate glucose transport. It is concluded that the production of diacylglycerol and the translocation of protein kinase C may be causally related. However, if the translocated protein kinase C is involved in the activation of glucose transport during muscle contractions, an accumulated exposure to Ca2+, resulting from multiple contractions, would appear to be necessary.

  20. Dual Functional Polymer Interlayer for Facilitating Ion Transport and Reducing Charge Recombination in Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Wang, Ying-Chiao; Li, Shao-Sian; Wen, Cheng-Yen; Chen, Liang-Yih; Ho, Kuo-Chuan; Chen, Chun-Wei

    2016-12-14

    Dye-sensitized solar cells (DSSCs) present low-cost alternatives to conventional wafer-based inorganic solar cells and have remarkable power conversion efficiency. To further enhance performance, we propose a new DSSC architecture with a novel dual-functional polymer interlayer that prevents charge recombination and facilitates ionic conduction, as well as maintaining dye loading and regeneration. Poly(vinylidene fluoride-trifluoroethylene) (p(VDF-TrFE)) was coated on the outside of a dye-sensitized TiO2 photoanode by a simple solution process that did not sacrifice the amount of adsorbed dye molecules in the DSSC device. Light-intensity-modulated photocurrent and photovoltage spectroscopy revealed that the proposed p(VDF-TrFE)-coated anode yielded longer electron lifetime and improved the injection of photogenerated electrons into TiO2, thereby reducing the electron transport time. Comparative cyclic voltammetry and UV-visible absorption spectroscopy based on a ferrocene-ferrocenium external standard material demonstrated that p(VDF-TrFE) enhanced the power conversion efficiency from 7.67% to 9.11%. This dual functional p(VDF-TrFE) interlayer is a promising candidate for improving the performance of DSSCs and can also be employed in other electrochemical devices.

  1. Development of facilitated transport membranes for the separation of olefins from gas streams; Entwicklung von Carriermembranen zur Olefinabtrennung aus Gasstroemen

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, J. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Chemie

    2001-07-01

    The current work is concerned with the development of highly selective facilitated transport membranes for olefin/paraffin separation. Adsorption measurements with 7 silver salts showed that silver-perchlorate was the most promising carrier material. This carrier was embedded into two different commercial available polyetherblockamides - Pebax trademark 4011 and Pebax trademark 2533 with up to 41 wt.-% of silver ions. The solubility of the carrier in polymer and the influence of humidity on the separation characteristics of the membranes were studied in detail. The aging of the membrane samples was investigated as well. A composite membrane with a top layer of Pebax trademark 2533/silver-perchlorate showed the best performance. Ethylene permeabilities in the range of 0.1 to 0.4 m{sup 3}/m{sup 2} h bar and gas mixture selectivities of 110 to 400 were measured with an humidified equimolar gas mixture of ethylene and ethane. Best results were obtained with membranes manufactured from proposely aging coating solutions and a sub-surface-structure. These membranes showed a permeability coefficient up to 1000 Barrer for ethylene with a gas mixture selectivity of 400. (orig.)

  2. Experimental evidence for ternary colloid-facilitated transport of Th(IV) with hematite (α-Fe2O3) colloids and Suwannee River fulvic acid.

    Science.gov (United States)

    Emerson, Hilary P; Hickok, Katherine A; Powell, Brian A

    2016-12-01

    Previous field experiments have suggested colloid-facilitated transport via inorganic and organic colloids as the primary mechanism of enhanced actinide transport in the subsurface at former nuclear weapons facilities. In this work, research was guided by the hypothesis that humic substances can enhance tetravalent actinide (An(IV)) migration by coating and mobilizing natural colloids in environmental systems and increasing An(IV) sorption to colloids. This mechanism is expected to occur under relatively acidic conditions where organic matter can sorb and coat colloid surfaces and facilitate formation of ternary colloid-ligand-actinide complexes. The objective of this work was to examine Th transport through packed columns in the presence of hematite colloids and/or Suwannee River fulvic acid (SRFA). In the presence of SRFA, with or without hematite colloids, significant transport (>60% recovery within the effluent) of thorium occurred through quartz columns. It is notable that the SRFA contributed to increased transport of both Th and hematite colloids, while insignificant transport occurred in the absence of fulvic acid. Further, in the presence of a natural sandy sediment (as opposed to pure quartz), transport is negligible in the presence of SRFA due to interactions with natural, clay-sized sediment coatings. Moreover, this data shows that the transport of Th through quartz columns is enhanced in ternary Th-colloid-SRFA and binary Th-SRFA systems as compared to a system containing only Th. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The expression of glucose transporter 4 in endometrium of polycystic ovary syndrome women and its change after metformin treatment

    Institute of Scientific and Technical Information of China (English)

    Lin Xian-hua; Ye Bi-lu; Xu Bing-seng; Zhao Jun-zhao; Lin Jin-ju; Yang Hai-yan

    2007-01-01

    Objective: To investigate the protein and messenger RNA expression of glucose transporter 4 in endometrium of women with polycystic ovary syndrome (PCOS), and to evaluate its change after three months treatment of metformin.Methods.Twenty-two patients with polycystic ovary syndrome (group A) and six non-PCOS infertile women (group B) were recruited in our hospital.The consent form was obtained from each patient.Endometrium and blood samples were obtained during the proliferative phase of the menstrual cycle.Reverse transeriptase-polymerase chain reaction (RT-PCR) and immunohistochemical method were applied to detect the expression of glucose transporter 4 (GLUT4) in endometrium.All PCOS patients received monotherapy of metformin after endometrium biopsy.Seven un-conceived patients (group A1) from group A who completed three months of metformin treatment were selected to perform the second time biopsy during proliferative phase.The expression of GLUT4 were remeasured as well.Results.There were no significant differences of the levels of E2, P and endometrium thickness on the biopsy day between group A and group B.But the basal levels of LH, T, LH/FSH ratio, and the ovarian volume were significantly higher in group A as compared with group B (P<0.001).The expression of GLUT4 in group A was significantly lower than that of group B (1.05±-0.13 vs 1.50±0.21, P<0.001).In group A1,the expression of GLUT4 in endometrium were changed from 1.08±0.08 to 1.27±0.16 before and after treatment (P<0.05).The results of immunohistochemical staining of GLUT4 in endometrium were coincident with the results of RT-PCR.The fast insulin level and the insulin sensitivity index were also improved obviously after three months of metformin therapy (P<0.05).Conclusions: Insulin-resistance status was proved existing in endometrium of PCOS women; A significant improvement of GLUT4 expression was observed in endometrium after metformin treatment, supporting that metformin can relief

  4. Expression of Glucose Transporters in the Prelaminar Region of the Optic-Nerve Head of the Pig as Determined by Immunolabeling and Tissue Culture

    Science.gov (United States)

    Carreras, F. Javier; Aranda, Carlos J.; Porcel, David; Rodriguez-Hurtado, Francisco; Martínez-Agustin, Olga; Zarzuelo, Antonio

    2015-01-01

    Background To develop the use of cultured tissue of the prelaminar optic nerve of the pig to explore possible alterations of the astrocyte-axon metabolic pathways in glaucoma, we map the distribution of the glucose transporters GLUT1 and GLUT3 in fresh and cultured tissue. Methods We monitor cell survival in cultures of the prelaminar optic-nerve tissue, measuring necrosis and apoptosis markers biochemically as well as morphologically, and establish the presence of the glucose transporters GLUT1 and GLUT3. We map the distribution of these transporters with immunolabeling in histological sections of the optic nerve using confocal and electronic transmission microscopy. Results We find that the main death type in prelaminar culture is apoptosis. Caspase 7 staining reveals an increment in apoptosis from day 1 to day 4 and a reduction from day 4 to day 8. Western blotting for GLUT1 shows stability with increased culture time. CLSM micrographs locate GLUT1 in the columnar astrocytes and in the area of axonal bundles. Anti-GLUT3 predominantly labels axonal bundles. TEM immunolabeling with colloidal gold displays a very specific distribution of GLUT-1 in the membranes of vascular endothelial cells and in periaxonal astrocyte expansions. The GLUT-3 isoform is observed with TEM only in axons in the axonal bundles. Conclusions Tissue culture is suitable for apoptosis-induction experiments. The results suggest that glucose is transported to the axonal cleft intracytoplasmically and delivered to the cleft by GLUT1 transporters. As monocarboxylate transporters have been reported in the prelaminar region of the optic-nerve head, this area is likely to use both lactate and glucose as energy sources. PMID:26030125

  5. Expression of glucose transporters in the prelaminar region of the optic-nerve head of the pig as determined by immunolabeling and tissue culture.

    Directory of Open Access Journals (Sweden)

    F Javier Carreras

    Full Text Available To develop the use of cultured tissue of the prelaminar optic nerve of the pig to explore possible alterations of the astrocyte-axon metabolic pathways in glaucoma, we map the distribution of the glucose transporters GLUT1 and GLUT3 in fresh and cultured tissue.We monitor cell survival in cultures of the prelaminar optic-nerve tissue, measuring necrosis and apoptosis markers biochemically as well as morphologically, and establish the presence of the glucose transporters GLUT1 and GLUT3. We map the distribution of these transporters with immunolabeling in histological sections of the optic nerve using confocal and electronic transmission microscopy.We find that the main death type in prelaminar culture is apoptosis. Caspase 7 staining reveals an increment in apoptosis from day 1 to day 4 and a reduction from day 4 to day 8. Western blotting for GLUT1 shows stability with increased culture time. CLSM micrographs locate GLUT1 in the columnar astrocytes and in the area of axonal bundles. Anti-GLUT3 predominantly labels axonal bundles. TEM immunolabeling with colloidal gold displays a very specific distribution of GLUT-1 in the membranes of vascular endothelial cells and in periaxonal astrocyte expansions. The GLUT-3 isoform is observed with TEM only in axons in the axonal bundles.Tissue culture is suitable for apoptosis-induction experiments. The results suggest that glucose is transported to the axonal cleft intracytoplasmically and delivered to the cleft by GLUT1 transporters. As monocarboxylate transporters have been reported in the prelaminar region of the optic-nerve head, this area is likely to use both lactate and glucose as energy sources.

  6. Aegeline from Aegle marmelos stimulates glucose transport via Akt and Rac1 signaling, and contributes to a cytoskeletal rearrangement through PI3K/Rac1.

    Science.gov (United States)

    Gautam, Sudeep; Ishrat, Nayab; Singh, Rohit; Narender, Tadigoppula; Srivastava, Arvind K

    2015-09-01

    Aegeline is an alkaloidal-amide, isolated from the leaves of Aegle marmelos and have shown antihyperglycemic as well as antidyslipidemic activities in the validated animal models of type 2 diabetes mellitus. Here we delineate, aegeline enhanced GLUT4 translocation mediated 2-deoxy-glucose uptake in both time and concentration-dependent manner. 2-deoxy-glucose uptake was completely stymied by the transport inhibitors (wortmannin and genistein) in C2C12 myotubes. Pharmacological inhibition of Akt (also known as protein kinase B) and Ras-related C3 botulinum toxin substrate 1 (Rac1) suggest that both Akt and Rac1 operate aegeline-stimulated glucose transport via distinct parallel pathways. Moreover, aegeline activates p21 protein-activated kinase 1 (PAK1) and cofilin (an actin polymerization regulator). Rac1 inhibitor (Rac1 inhib II) and PAK1 inhibitor (IPA-3) completely blocked aegeline-induced phosphorylation of cofilin and p21 protein-activated kinase 1 (PAK1). In summary, these findings suggest that aegeline stimulates the glucose transport through Akt and Rac1 dependent distinct parallel pathways and have cytoskeletal roles via stimulation of the PI3-kinase-Rac1-PAK1-cofilin pathway in the skeletal muscle cells. Therefore, multiple targets of aegeline in the improvement of insulin sensitivity of the skeletal muscle cells may be suggested.

  7. Secretion of natural and synthetic toxic compounds from filamentous fungi by membrane transporters of the ATP-binding cassette and major facilitator superfamily

    NARCIS (Netherlands)

    Stergiopoulos, I.; Zwiers, L.H.; Waard, De M.A.

    2002-01-01

    This review provides an overview of members of the ATP-binding cassette (ABC) and major facilitator superfamily (MFS) of transporters identified in filamentous fungi. The most common function of these membrane proteins is to provide protection against natural toxic compounds present in the environme

  8. Development of a Novel Method for in vivo Determination of Activation Energy of Glucose Transport Across S. cerevisiae Cellular Membranes. A Biosensor-like Approach.

    Science.gov (United States)

    Kormes, Diego J; Cortón, Eduardo

    2009-01-01

    Whereas biosensors have been usually proposed as analytical tools, used to investigate the surrounding media pursuing an analytical answer, we have used a biosensor-like device to characterize the microbial cells immobilized on it. We have studied the kinetics of transport and degradation of glucose at different concentrations and temperatures. When glucose concentrations of 15 and 1.5 mM were assayed, calculated activation energies were 25.2 and 18.4 kcal mol(-1), respectively, in good agreement with previously published data. The opportunity and convenience of using Arrhenius plots to estimate the activation energy in metabolic-related processes is also discussed.

  9. Canagliflozin, a sodium glucose co-transporter 2 inhibitor, reduces post-meal glucose excursion in patients with type 2 diabetes by a non-renal mechanism: results of a randomized trial.

    Science.gov (United States)

    Stein, Peter; Berg, Jolene K; Morrow, Linda; Polidori, David; Artis, Eunice; Rusch, Sarah; Vaccaro, Nicole; Devineni, Damayanthi

    2014-10-01

    Canagliflozin is a sodium glucose co-transporter 2 inhibitor approved for treating patients with type 2 diabetes. This study evaluated renal and non-renal effects of canagliflozin on postprandial plasma glucose (PG) excursion in patients with type 2 diabetes inadequately controlled with metformin. Patients (N=37) were randomized to a four-period crossover study with 3-day inpatient stays in each period and 2-week wash-outs between periods. Patients received Treatments (A) placebo/placebo, (B) canagliflozin 300 mg/placebo, (C) canagliflozin 300 mg/canagliflozin 300 mg, or (D) canagliflozin 300 mg/canagliflozin 150 mg on Day 2/Day 3 in one of four treatment sequences (similar urinary glucose excretion [UGE] expected for Treatments B-D). A mixed-meal tolerance test (MMTT) was given 20 minutes post-dose on Day 3 of each period. A single dose of canagliflozin 300 mg reduced both fasting and postprandial PG compared with placebo, with generally similar effects on fasting PG and UGE observed for Treatments B-D. An additional dose of canagliflozin 300 mg (Treatment C), but not 150 mg (Treatment D), prior to the MMTT on Day 3 provided greater postprandial PG reduction versus placebo (difference in incremental glucose AUC0-2h, -7.5% for B vs A; -18.5% for C vs A; -12.0% [P = 0.012] for C vs B), leading to modestly greater reductions in total glucose AUC0-2h with Treatment C versus Treatment B or D. Canagliflozin was generally well tolerated. These findings suggest that a non-renal mechanism (ie, beyond UGE) contributes to glucose lowering for canagliflozin 300 mg, but not 150 mg. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. A combined crystalloid and colloid pd solution as a glucose-sparing strategy for volume control in high-transport apd patients: a prospective multicenter study.

    Science.gov (United States)

    Freida, Philippe; Issad, Belkacem; Dratwa, Max; Lobbedez, Thierry; Wu, Lieling; Leypoldt, John K; Divino-Filho, Jose Carolino

    2009-01-01

    Evidence is accumulating that the continuous exposure to high glucose concentrations during peritoneal dialysis (PD) is an important cause of ultrafiltration (UF) failure. The cornerstone of prevention and treatment of UF failure is reduction of glucose exposure, which will also alleviate the systemic impact of significant free glucose absorption. The challenge for the future is to discover new therapeutic strategies to enhance fluid and sodium removal while diminishing glucose load and exposure using combinations of available osmotic agents. To investigate in patients on automated PD (APD) with a fast transport pattern whether there is a glucose-sparing advantage to replacing 7.5% icodextrin (ICO) during the long dwell with a mixed crystalloid and colloid PD fluid (bimodal UF) in an attempt to promote daytime UF and sodium removal while diminishing the glucose strength of the dialysate at night. A 2 parallel arm, 4 month, prospective nonrandomized study. PD units or university hospitals in 4 French and Belgian districts. During the 4-month intervention period, net UF and peritoneal sodium removal during the long dwell when treated by bimodal UF was about 2-fold higher than baseline (with ICO). The estimated percent change (95% confidence interval) from baseline in net daytime UF for the bimodal solution was 150% (106% - 193%), versus 18% (-7% - 43%) for ICO (p ICO (p ICO. Prescription of bimodal UF during the day in APD patients offers the opportunity to optimize the long dwell exchange in a complete 24-hour APD cycle. The current study demonstrated that a bimodal solution based on the mixing of glucose (2.6%) and icodextrin (6.8%) achieved the double target of significantly improving UF and peritoneal sodium removal by exploring a new concept of glucose-sparing PD therapy.

  11. Testicular glucose and its transporter GLUT 8 as a marker of age-dependent variation and its role in steroidogenesis in mice.

    Science.gov (United States)

    Banerjee, Arnab; Anuradha; Mukherjee, Kaustab; Krishna, Amitabh

    2014-11-01

    The present study evaluates the hypothesis, that glucose is essential for steroidogenesis and inadequate supply of glucose to the testis may be responsible for decline in steroidogenesis in mice during aging. Mice of different age groups (birth, weaning, puberty, reproductively active, and senescence) were utilized for this study. The changes in glucose, glucose transporter (GLUT), and insulin receptor (IR) level in the testis were evaluated and compared with the testicular steroidogenic parameters such as steroidogenic acute regulatory protein (StAR), 3β-hydroxy steroid dehydrogenase (3β-HSD) and circulating testosterone levels. The result showed significant correlation between changes in GLUT 8 and glucose levels with changes in StAR level in the testis and circulating testosterone level in the mice from birth to senescence. Immunohistochemical analysis showed intense immunostaining of GLUT 8 and IR in the interstitial cells, most likely Leydig cells, in testis of pubertal and reproductively active mice suggesting their relevance in steroidogenesis. The in vitro study showed a significant positive correlation between luteinizing hormone (LH)-induced increase in GLUT 8 and StAR (r = 0.82; P < 0.05) proteins level in the testes with increase in testosterone (r = 0.97; P < 0.05) synthesis of reproductively active mice. This study also showed increased release of lactate with increased uptake of glucose by the testis. Further, intra-testicular treatment of 2-deoxy glucose, to reproductively active mice caused a significant decrease in 3β-HSD enzyme activity in the testis. Based on these findings, it may be concluded that the changes in glucose level either directly or indirectly lead to changes in testicular steroidogenesis during aging.

  12. Prenatal Exposure to Sodium Arsenite Alters Placental Glucose 1, 3, and 4 Transporters in Balb/c Mice

    Directory of Open Access Journals (Sweden)

    Daniela Sarahí Gutiérrez-Torres

    2015-01-01

    Full Text Available Inorganic arsenic (iAs exposure induces a decrease in glucose type 4 transporter (GLUT4 expression on the adipocyte membrane, which may be related to premature births and low birth weight infants in women exposed to iAs at reproductive age. The aim of this study was to analyze the effect of sodium arsenite (NaAsO2 exposure on GLUT1, GLUT3, and GLUT4 protein expression and on placental morphology. Female Balb/c mice (n=15 were exposed to 0, 12, and 20 ppm of NaAsO2 in drinking water from 8th to 18th day of gestation. Morphological changes and GLUT1, GLUT3, and GLUT4 expression were evaluated in placentas by immunohistochemical and image analysis and correlated with iAs and arsenical species concentration, which were quantified by atomic absorption spectroscopy. NaAsO2 exposure induced a significant decrease in fetal and placental weight (P<0.01 and increases in infarctions and vascular congestion. Whereas GLUT1 expression was unchanged in placentas from exposed group, GLUT3 expression was found increased. In contrast, GLUT4 expression was significantly lower (P<0.05 in placentas from females exposed to 12 ppm. The decrease in placental GLUT4 expression might affect the provision of adequate fetal nutrition and explain the low fetal weight observed in the exposed groups.

  13. Insulin-induced glucose control improves HDL cholesterol levels but not reverse cholesterol transport in type 2 diabetic patients.

    Science.gov (United States)

    Fadini, Gian Paolo; Iori, Elisabetta; Marescotti, Maria Cristina; Vigili de Kreutzenberg, Saula; Avogaro, Angelo

    2014-08-01

    Type 2 diabetes (T2D) is characterized by low HDL cholesterol (HDL-C) and HDL dysfunction. We herein tested whether lowering HbA1c affects HDL-C and reverse cholesterol transport (RCT). Forty-two uncontrolled T2D patients initiating basal insulin were included. HbA1c, HDL-C and RCT were assessed at baseline and after 6 months. At baseline, HDL-C and RCT were directly correlated (r = 0.50; p HDL-C and RCT did not change. Follow-up HDL-C and RCT were still correlated (r = 0.31; p = 0.033) and ΔHDL-C correlated with ΔRCT (r = 0.32; p = 0.029). ΔHbA1c correlated with ΔHDL-C (r = 0.43, p = 0.001), but not with ΔRCT. In patients with ΔHbA1c above the median value (1.3%), HDL-C (but not RCT) increased significantly. In conclusion, glucose control correlates with increased HDL-C, but not with improved RCT. Thus, persistent HDL dysfunction despite improved HbA1c and HDL-C can contribute to residual cardiovascular risk in T2D. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Renal Safety of Canagliflozin, a Sodium Glucose Co-transporter 2 Inhibitor, in Patients With Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Desai, Mehul; Yavin, Yshai; Balis, Dainius; Sun, Don; Xie, John; Canovatchel, William; Rosenthal, Norm

    2017-01-12

    The incidence of renal-related adverse events (AEs) with canagliflozin in patients with type 2 diabetes mellitus from a pooled population of patients in 7 active- and placebo-controlled trials (N = 5,598) and in a 104-week study versus glimepiride (N = 1,450) was low and similar in canagliflozin and non-canagliflozin groups. In the study versus glimepiride, canagliflozin was associated with an initial acute decrease in estimated glomerular filtration rate (eGFR) that attenuated over time, while eGFR declined progressively over 104 weeks with glimepiride; the incidence of renal-related AEs with canagliflozin was generally stable over time, while the incidence with glimepiride increased over 104 weeks. In the analysis reported in this manuscript based on postmarketing reports from the US Food and Drug Administration Adverse Event Reporting System, a potential signal was identified for acute kidney injury with all approved sodium glucose co-transporter 2 (SGLT2) inhibitors (ie, canagliflozin, dapagliflozin, empagliflozin). The early onset of acute kidney injury events with SGLT2 inhibitors in postmarketing reports likely reflects the acute changes in eGFR due to the known renal haemodynamic effects of SGLT2 inhibition.