WorldWideScience

Sample records for facilitates collision avoidance

  1. Reactive Collision Avoidance Algorithm

    Science.gov (United States)

    Scharf, Daniel; Acikmese, Behcet; Ploen, Scott; Hadaegh, Fred

    2010-01-01

    The reactive collision avoidance (RCA) algorithm allows a spacecraft to find a fuel-optimal trajectory for avoiding an arbitrary number of colliding spacecraft in real time while accounting for acceleration limits. In addition to spacecraft, the technology can be used for vehicles that can accelerate in any direction, such as helicopters and submersibles. In contrast to existing, passive algorithms that simultaneously design trajectories for a cluster of vehicles working to achieve a common goal, RCA is implemented onboard spacecraft only when an imminent collision is detected, and then plans a collision avoidance maneuver for only that host vehicle, thus preventing a collision in an off-nominal situation for which passive algorithms cannot. An example scenario for such a situation might be when a spacecraft in the cluster is approaching another one, but enters safe mode and begins to drift. Functionally, the RCA detects colliding spacecraft, plans an evasion trajectory by solving the Evasion Trajectory Problem (ETP), and then recovers after the collision is avoided. A direct optimization approach was used to develop the algorithm so it can run in real time. In this innovation, a parameterized class of avoidance trajectories is specified, and then the optimal trajectory is found by searching over the parameters. The class of trajectories is selected as bang-off-bang as motivated by optimal control theory. That is, an avoiding spacecraft first applies full acceleration in a constant direction, then coasts, and finally applies full acceleration to stop. The parameter optimization problem can be solved offline and stored as a look-up table of values. Using a look-up table allows the algorithm to run in real time. Given a colliding spacecraft, the properties of the collision geometry serve as indices of the look-up table that gives the optimal trajectory. For multiple colliding spacecraft, the set of trajectories that avoid all spacecraft is rapidly searched on

  2. Neuromorphic UAS Collision Avoidance

    Data.gov (United States)

    National Aeronautics and Space Administration — Collision avoidance for unmanned aerial systems (UAS) traveling at high relative speeds is a challenging task. It requires both the detection of a possible collision...

  3. Airborne Collision Detection and Avoidance for Small UAS Sense and Avoid Systems

    Science.gov (United States)

    Sahawneh, Laith Rasmi

    The increasing demand to integrate unmanned aircraft systems (UAS) into the national airspace is motivated by the rapid growth of the UAS industry, especially small UAS weighing less than 55 pounds. Their use however has been limited by the Federal Aviation Administration regulations due to collision risk they pose, safety and regulatory concerns. Therefore, before civil aviation authorities can approve routine UAS flight operations, UAS must be equipped with sense-and-avoid technology comparable to the see-and-avoid requirements for manned aircraft. The sense-and-avoid problem includes several important aspects including regulatory and system-level requirements, design specifications and performance standards, intruder detecting and tracking, collision risk assessment, and finally path planning and collision avoidance. In this dissertation, our primary focus is on developing an collision detection, risk assessment and avoidance framework that is computationally affordable and suitable to run on-board small UAS. To begin with, we address the minimum sensing range for the sense-and-avoid (SAA) system. We present an approximate close form analytical solution to compute the minimum sensing range to safely avoid an imminent collision. The approach is then demonstrated using a radar sensor prototype that achieves the required minimum sensing range. In the area of collision risk assessment and collision prediction, we present two approaches to estimate the collision risk of an encounter scenario. The first is a deterministic approach similar to those been developed for Traffic Alert and Collision Avoidance (TCAS) in manned aviation. We extend the approach to account for uncertainties of state estimates by deriving an analytic expression to propagate the error variance using Taylor series approximation. To address unanticipated intruders maneuvers, we propose an innovative probabilistic approach to quantify likely intruder trajectories and estimate the probability of

  4. Power mobility with collision avoidance for older adults: user, caregiver, and prescriber perspectives.

    Science.gov (United States)

    Wang, Rosalie H; Korotchenko, Alexandra; Hurd Clarke, Laura; Mortenson, W Ben; Mihailidis, Alex

    2013-01-01

    Collision avoidance technology has the capacity to facilitate safer mobility among older power mobility users with physical, sensory, and cognitive impairments, thus enabling independence for more users. Little is known about consumers' perceptions of collision avoidance. This article draws on interviews (29 users, 5 caregivers, and 10 prescribers) to examine views on design and utilization of this technology. Data analysis identified three themes: "useful situations or contexts," "technology design issues and real-life application," and "appropriateness of collision avoidance technology for a variety of users." Findings support ongoing development of collision avoidance for older adult users. The majority of participants supported the technology and felt that it might benefit current users and users with visual impairments, but might be unsuitable for people with significant cognitive impairments. Some participants voiced concerns regarding the risk for injury with power mobility use and some identified situations where collision avoidance might be beneficial (driving backward, avoiding dynamic obstacles, negotiating outdoor barriers, and learning power mobility use). Design issues include the need for context awareness, reliability, and user interface specifications. User desire to maintain driving autonomy supports development of collaboratively controlled systems. This research lays the groundwork for future development by illustrating consumer requirements for this technology.

  5. Multi-actuators vehicle collision avoidance system - Experimental validation

    Science.gov (United States)

    Hamid, Umar Zakir Abdul; Zakuan, Fakhrul Razi Ahmad; Akmal Zulkepli, Khairul; Zulfaqar Azmi, Muhammad; Zamzuri, Hairi; Rahman, Mohd Azizi Abdul; Aizzat Zakaria, Muhammad

    2018-04-01

    The Insurance Institute for Highway Safety (IIHS) of the United States of America in their reports has mentioned that a significant amount of the road mishaps would be preventable if more automated active safety applications are adopted into the vehicle. This includes the incorporation of collision avoidance system. The autonomous intervention by the active steering and braking systems in the hazardous scenario can aid the driver in mitigating the collisions. In this work, a real-time platform of a multi-actuators vehicle collision avoidance system is developed. It is a continuous research scheme to develop a fully autonomous vehicle in Malaysia. The vehicle is a modular platform which can be utilized for different research purposes and is denominated as Intelligent Drive Project (iDrive). The vehicle collision avoidance proposed design is validated in a controlled environment, where the coupled longitudinal and lateral motion control system is expected to provide desired braking and steering actuation in the occurrence of a frontal static obstacle. Results indicate the ability of the platform to yield multi-actuators collision avoidance navigation in the hazardous scenario, thus avoiding the obstacle. The findings of this work are beneficial for the development of a more complex and nonlinear real-time collision avoidance work in the future.

  6. Automatic lateral emergency collision avoidance for a passenger car

    OpenAIRE

    Bevan, G.; Gollee, H.; O'Reilly, J.

    2007-01-01

    Longitudinal collision avoidance controllers are of limited benefit for preventing head-on collisions between road vehicles travelling at high speed or for preventing rear end collisions when there is insufficient separation between the vehicles. In these circumstances, aggressive lateral vehicle manoeuvres are more appropriate. This paper develops a controller architecture to perform an emergency lateral collision avoidance manoeuvre. Simulation results indicate significant improvements in c...

  7. Collision avoidance for multiple Lagrangian dynamical systems with gyroscopic forces

    Directory of Open Access Journals (Sweden)

    Lorenzo Sabattini

    2017-01-01

    Full Text Available This article introduces a novel methodology for dealing with collision avoidance for groups of mobile robots. In particular, full dynamics are considered, since each robot is modeled as a Lagrangian dynamical system moving in a three-dimensional environment. Gyroscopic forces are utilized for defining the collision avoidance control strategy: This kind of forces leads to avoiding collisions, without interfering with the convergence properties of the multi-robot system’s desired control law. Collision avoidance introduces, in fact, a perturbation on the nominal behavior of the system: We define a method for choosing the direction of the gyroscopic force in an optimal manner, in such a way that perturbation is minimized. Collision avoidance and convergence properties are analytically demonstrated, and simulation results are provided for validation purpose.

  8. Granting silence to avoid wireless collisions

    KAUST Repository

    Choi, Jung Il

    2010-10-01

    We describe grant-to-send, a novel collision avoidance algorithm for wireless mesh networks. Rather than announce packets it intends to send, a node using grant-to-send announces packets it expects to hear others send. We present evidence that inverting collision avoidance in this way greatly improves wireless mesh performance. Evaluating four protocols from 802.11 meshes and 802.15.4 sensor networks, we find that grant-to-send matches or outperforms CSMA and RTS/CTS in all cases. For example, in a 4-hop UDP flow, grantto- send can achieve 96% of the theoretical maximum throughput while maintaining a 99.9% packet delivery ratio. Grant-tosend is also general enough to replace protocol-specific collision avoidance mechanisms common to sensor network protocols. Grant-to-send is simple. For example, incorporating it into 802.11 requires only 11 lines of driver code and no hardware changes. Furthermore, as it reuses existing 802.11 mechanisms, grant-to-send inter-operates with current networks and can be incrementally deployed. © 2010 IEEE.

  9. Granting silence to avoid wireless collisions

    KAUST Repository

    Choi, Jung Il; Jain, Mayank; Kazandjieva, Maria A.; Levis, Philip

    2010-01-01

    We describe grant-to-send, a novel collision avoidance algorithm for wireless mesh networks. Rather than announce packets it intends to send, a node using grant-to-send announces packets it expects to hear others send. We present evidence that inverting collision avoidance in this way greatly improves wireless mesh performance. Evaluating four protocols from 802.11 meshes and 802.15.4 sensor networks, we find that grant-to-send matches or outperforms CSMA and RTS/CTS in all cases. For example, in a 4-hop UDP flow, grantto- send can achieve 96% of the theoretical maximum throughput while maintaining a 99.9% packet delivery ratio. Grant-tosend is also general enough to replace protocol-specific collision avoidance mechanisms common to sensor network protocols. Grant-to-send is simple. For example, incorporating it into 802.11 requires only 11 lines of driver code and no hardware changes. Furthermore, as it reuses existing 802.11 mechanisms, grant-to-send inter-operates with current networks and can be incrementally deployed. © 2010 IEEE.

  10. Design study of general aviation collision avoidance system

    Science.gov (United States)

    Bates, M. R.; Moore, L. D.; Scott, W. V.

    1972-01-01

    The selection and design of a time/frequency collision avoidance system for use in general aviation aircraft is discussed. The modifications to airline transport collision avoidance equipment which were made to produce the simpler general aviation system are described. The threat determination capabilities and operating principles of the general aviation system are illustrated.

  11. Radar-based collision avoidance for unmanned surface vehicles

    Science.gov (United States)

    Zhuang, Jia-yuan; Zhang, Lei; Zhao, Shi-qi; Cao, Jian; Wang, Bo; Sun, Han-bing

    2016-12-01

    Unmanned surface vehicles (USVs) have become a focus of research because of their extensive applications. To ensure safety and reliability and to perform complex tasks autonomously, USVs are required to possess accurate perception of the environment and effective collision avoidance capabilities. To achieve these, investigation into realtime marine radar target detection and autonomous collision avoidance technologies is required, aiming at solving the problems of noise jamming, uneven brightness, target loss, and blind areas in marine radar images. These technologies should also satisfy the requirements of real-time and reliability related to high navigation speeds of USVs. Therefore, this study developed an embedded collision avoidance system based on the marine radar, investigated a highly real-time target detection method which contains adaptive smoothing algorithm and robust segmentation algorithm, developed a stable and reliable dynamic local environment model to ensure the safety of USV navigation, and constructed a collision avoidance algorithm based on velocity obstacle (V-obstacle) which adjusts the USV's heading and speed in real-time. Sea trials results in multi-obstacle avoidance firstly demonstrate the effectiveness and efficiency of the proposed avoidance system, and then verify its great adaptability and relative stability when a USV sailing in a real and complex marine environment. The obtained results will improve the intelligent level of USV and guarantee the safety of USV independent sailing.

  12. Comparing Collision Avoidance Systems of Different Type of Transportation Mode

    Directory of Open Access Journals (Sweden)

    Serkan ÖZDEMİR

    2016-11-01

    Full Text Available Different modes of transportation are often used in our daily lives. Therefore, how safe these modes are commonly researched by researchers. Many models and methods are developed to avoid collision with the development of technology. This development is aimed to improving the safety of life and property. The technological developments also aim to reduce the minimum level of the human error. Technological devices developed to prevent collision are applied in systematic way according to type of transportation mode. When comparatively examined, it is similar to each other technology used in different modes. In this respect, proposed model and methods are similar in general. These approaches are generally based on position of vehicles relative to each other and also rules have been developed taking into consideration the possibilities that may occur. Real-time sensors used to avoid collision in vehicles reduce risk of collision and provide significant achievements on behalf of avoiding collision. Besides this, it has been considered important a communication network between vehicles. As a result, the importance of the technological devices developed to ensure collision avoidance is increasing in our life. Thus, the study aims to explain and compare the methods, models and techniques used in the different transportation modes so as to avoid collision.

  13. Human Robot Interaction for Hybrid Collision Avoidance System for Indoor Mobile Robots

    Directory of Open Access Journals (Sweden)

    Mazen Ghandour

    2017-06-01

    Full Text Available In this paper, a novel approach for collision avoidance for indoor mobile robots based on human-robot interaction is realized. The main contribution of this work is a new technique for collision avoidance by engaging the human and the robot in generating new collision-free paths. In mobile robotics, collision avoidance is critical for the success of the robots in implementing their tasks, especially when the robots navigate in crowded and dynamic environments, which include humans. Traditional collision avoidance methods deal with the human as a dynamic obstacle, without taking into consideration that the human will also try to avoid the robot, and this causes the people and the robot to get confused, especially in crowded social places such as restaurants, hospitals, and laboratories. To avoid such scenarios, a reactive-supervised collision avoidance system for mobile robots based on human-robot interaction is implemented. In this method, both the robot and the human will collaborate in generating the collision avoidance via interaction. The person will notify the robot about the avoidance direction via interaction, and the robot will search for the optimal collision-free path on the selected direction. In case that no people interacted with the robot, it will select the navigation path autonomously and select the path that is closest to the goal location. The humans will interact with the robot using gesture recognition and Kinect sensor. To build the gesture recognition system, two models were used to classify these gestures, the first model is Back-Propagation Neural Network (BPNN, and the second model is Support Vector Machine (SVM. Furthermore, a novel collision avoidance system for avoiding the obstacles is implemented and integrated with the HRI system. The system is tested on H20 robot from DrRobot Company (Canada and a set of experiments were implemented to report the performance of the system in interacting with the human and avoiding

  14. Self collision avoidance for humanoids using circular and elliptical capsule bounding volumes

    CSIR Research Space (South Africa)

    Dube, C

    2013-09-01

    Full Text Available motion of the humanoid. Collisions are avoided by adjusting the joint angles of the colliding segments based on the collision distance and the location of the collision points. A case study of a humanoid dance is used to test the self collision avoidance...

  15. Application of Decision Tree on Collision Avoidance System Design and Verification for Quadcopter

    Science.gov (United States)

    Chen, C.-W.; Hsieh, P.-H.; Lai, W.-H.

    2017-08-01

    The purpose of the research is to build a collision avoidance system with decision tree algorithm used for quadcopters. While the ultrasonic range finder judges the distance is in collision avoidance interval, the access will be replaced from operator to the system to control the altitude of the UAV. According to the former experiences on operating quadcopters, we can obtain the appropriate pitch angle. The UAS implement the following three motions to avoid collisions. Case1: initial slow avoidance stage, Case2: slow avoidance stage and Case3: Rapid avoidance stage. Then the training data of collision avoidance test will be transmitted to the ground station via wireless transmission module to further analysis. The entire decision tree algorithm of collision avoidance system, transmission data, and ground station have been verified in some flight tests. In the flight test, the quadcopter can implement avoidance motion in real-time and move away from obstacles steadily. In the avoidance area, the authority of the collision avoidance system is higher than the operator and implements the avoidance process. The quadcopter can successfully fly away from the obstacles in 1.92 meter per second and the minimum distance between the quadcopter and the obstacle is 1.05 meters.

  16. APPLICATION OF DECISION TREE ON COLLISION AVOIDANCE SYSTEM DESIGN AND VERIFICATION FOR QUADCOPTER

    Directory of Open Access Journals (Sweden)

    C.-W. Chen

    2017-08-01

    Full Text Available The purpose of the research is to build a collision avoidance system with decision tree algorithm used for quadcopters. While the ultrasonic range finder judges the distance is in collision avoidance interval, the access will be replaced from operator to the system to control the altitude of the UAV. According to the former experiences on operating quadcopters, we can obtain the appropriate pitch angle. The UAS implement the following three motions to avoid collisions. Case1: initial slow avoidance stage, Case2: slow avoidance stage and Case3: Rapid avoidance stage. Then the training data of collision avoidance test will be transmitted to the ground station via wireless transmission module to further analysis. The entire decision tree algorithm of collision avoidance system, transmission data, and ground station have been verified in some flight tests. In the flight test, the quadcopter can implement avoidance motion in real-time and move away from obstacles steadily. In the avoidance area, the authority of the collision avoidance system is higher than the operator and implements the avoidance process. The quadcopter can successfully fly away from the obstacles in 1.92 meter per second and the minimum distance between the quadcopter and the obstacle is 1.05 meters.

  17. PREDICTIVE POTENTIAL FIELD-BASED COLLISION AVOIDANCE FOR MULTICOPTERS

    Directory of Open Access Journals (Sweden)

    M. Nieuwenhuisen

    2013-08-01

    Full Text Available Reliable obstacle avoidance is a key to navigating with UAVs in the close vicinity of static and dynamic obstacles. Wheel-based mobile robots are often equipped with 2D or 3D laser range finders that cover the 2D workspace sufficiently accurate and at a high rate. Micro UAV platforms operate in a 3D environment, but the restricted payload prohibits the use of fast state-of-the-art 3D sensors. Thus, perception of small obstacles is often only possible in the vicinity of the UAV and a fast collision avoidance system is necessary. We propose a reactive collision avoidance system based on artificial potential fields, that takes the special dynamics of UAVs into account by predicting the influence of obstacles on the estimated trajectory in the near future using a learned motion model. Experimental evaluation shows that the prediction leads to smoother trajectories and allows to navigate collision-free through passageways.

  18. Wireless vehicular networks for car collision avoidance

    CERN Document Server

    2013-01-01

    Wireless Vehicular Networks for Car Collision Avoidance focuses on the development of the ITS (Intelligent Transportation Systems) in order to minimize vehicular accidents. The book presents and analyses a range of concrete accident scenarios while examining the causes of vehicular collision and proposing countermeasures based on wireless vehicular networks. The book also describes the vehicular network standards and quality of service mechanisms focusing on improving critical dissemination of safety information. With recommendations on techniques and protocols to consider when improving road safety policies in order to minimize crashes and collision risks.

  19. Collision Avoidance Functional Requirements for Step 1. Revision 6

    Science.gov (United States)

    2006-01-01

    This Functional Requirements Document (FRD) describes the flow of requirements from the high level operational objectives down to the functional requirements specific to cooperative collision avoidance for high altitude, long endurance unmanned aircraft systems. These are further decomposed into performance and safety guidelines that are backed up by analysis or references to various documents or research findings. The FRD should be considered when establishing future policies, procedures, and standards pertaining to cooperative collision avoidance.

  20. Self-protection Method for Flying Robots to Avoid Collision

    OpenAIRE

    Guosheng Wu; Luning Wang; Changyuan Fan; Xi Zhu

    2008-01-01

    This paper provides a new approach to solve the motion planning problems of flying robots in uncertain 3D dynamic environments. The robots controlled by this method can adaptively choose the fast way to avoid collision without information about the shapes and trajectories of obstacles. Based on sphere coordinates the new method accomplishes collision avoidance of flying robots without any other auxiliary positioning systems. The Self-protection System gives robots self-protection abilities to...

  1. Decision Support from Genetic Algorithms for Ship Collision Avoidance Route Planning and Alerts

    Science.gov (United States)

    Tsou, Ming-Cheng; Kao, Sheng-Long; Su, Chien-Min

    When an officer of the watch (OOW) faces complicated marine traffic, a suitable decision support tool could be employed in support of collision avoidance decisions, to reduce the burden and greatly improve the safety of marine traffic. Decisions on routes to avoid collisions could also consider economy as well as safety. Through simulating the biological evolution model, this research adopts the genetic algorithm used in artificial intelligence to find a theoretically safety-critical recommendation for the shortest route of collision avoidance from an economic viewpoint, combining the international regulations for preventing collisions at sea (COLREGS) and the safety domain of a ship. Based on this recommendation, an optimal safe avoidance turning angle, navigation restoration time and navigational restoration angle will also be provided. A Geographic Information System (GIS) will be used as the platform for display and operation. In order to achieve advance notice of alerts and due preparation for collision avoidance, a Vessel Traffic Services (VTS) operator and the OOW can use this system as a reference to assess collision avoidance at present location.

  2. Directional Collision Avoidance in Ad Hoc Networks

    National Research Council Canada - National Science Library

    Wang, Yu; Garcia-Luna-Aceves, J. J

    2004-01-01

    This paper analyzes the performance of directional collision avoidance schemes, in which antenna systems are used to direct the transmission and reception of control and data packets in channel access...

  3. Scheduled Collision Avoidance in wireless sensor network using Zigbee

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2014-01-01

    Transmission reliability and energy consumptions are two critical concerns associated with wireless sensor network (WSN) design for a long time and continuous operation. With the increase in reliability of the transmission, the energy consumption increases by affecting the efficiency of the network....... This paper proposes the Schedule based Collision Avoidance (SCA) algorithm for finding the tradeoff between reliability and energy efficiency by fusion of CSMA/CA and TDMA techniques in Zigbee/ IEEE802.15.4. It uses the multi-path data propagation for collision avoidance and effective utilization...... of the channel providing efficient energy consumption. It analyses different scheduling schemes to provide an appropriate solution for reducing collisions and improving network lifetime....

  4. LightForce: An Update on Orbital Collision Avoidance Using Photon Pressure

    Science.gov (United States)

    Stupl, Jan; Mason, James; De Vries, Willem; Smith, Craig; Levit, Creon; Marshall, William; Salas, Alberto Guillen; Pertica, Alexander; Olivier, Scot; Ting, Wang

    2012-01-01

    We present an update on our research on collision avoidance using photon-pressure induced by ground-based lasers. In the past, we have shown the general feasibility of employing small orbit perturbations, induced by photon pressure from ground-based laser illumination, for collision avoidance in space. Possible applications would be protecting space assets from impacts with debris and stabilizing the orbital debris environment. Focusing on collision avoidance rather than de-orbit, the scheme avoids some of the security and liability implications of active debris removal, and requires less sophisticated hardware than laser ablation. In earlier research we concluded that one ground based system consisting of a 10 kW class laser, directed by a 1.5 m telescope with adaptive optics, could avoid a significant fraction of debris-debris collisions in low Earth orbit. This paper describes our recent efforts, which include refining our original analysis, employing higher fidelity simulations and performing experimental tracking tests. We investigate the efficacy of one or more laser ground stations for debris-debris collision avoidance and satellite protection using simulations to investigate multiple case studies. The approach includes modeling of laser beam propagation through the atmosphere, the debris environment (including actual trajectories and physical parameters), laser facility operations, and simulations of the resulting photon pressure. We also present the results of experimental laser debris tracking tests. These tests track potential targets of a first technical demonstration and quantify the achievable tracking performance.

  5. Guide to the collision avoidance rules

    CERN Document Server

    Cockcroft, A N

    2004-01-01

    A Guide to the Collision Avoidance Rules is the essential reference to the safe operation of all vessels at sea. Published continuously since 1965, this respected and expert guide is the classic text for all who need to, practically and legally, understand and comply with the Rules. This sixth edition incorporates all of the amendments to the International Regulations for Preventing Collisions at Sea which came into force in November 2003.The books sets out all of the Rules with clear explanation of their meaning, and gives detailed examples of how the rules have been used in practice

  6. Research on embedded automobile collision avoidance system

    Directory of Open Access Journals (Sweden)

    TAO Feng

    2016-08-01

    Full Text Available Taking ARM embedded Linux operating system as the development platform,combined with AVR microcontroller,while optimizing the ranging algorithm and using air ultrasonic transducer,the measurement range of which can be up to 50 meter,this paper designs a high-precision,range far,low price,various models suitable automobile collision avoidance warning system.The system adopts Forlinx OK6410 development board for the master.AVR microcontroller is responsible for taking the data of traveling distance between vehicles,and with the ARM development board via RS232 communication transfers vehicle′s distance and speed information to the ARM development boards.The system uses the established collision avoidance model to get alarm information.Experiments show that the system can accurately send out alarm information within a certain range.It is innovative and practical.

  7. Collision avoidance in robotic environments

    International Nuclear Information System (INIS)

    Kreifeldt, J.G.

    1984-01-01

    A generalized approach to the problem of collision avoidance in robotic environments is presented. This approach transforms the three dimensional but dynamic real-world changing geometric space of the robot in its environment into a multidimensional but static space such that any possible geometric arrangement of the robotic space becomes a point in hyperspace. Major advantages of this approach include clarification of and potential solution to the basic problem of finding optimized, collision free movements from an initial to a final configuration. A major disadvantage of the approach is related to computational and data storage problems. However these latter are technically solvable while the clarification of the control and guidance problem gained through the transformational approach and its general elucidation power remain prime conceptual tools for the problem of robot design and operation

  8. Strategy and Evaluation of Vehicle Collision Avoidance Control via Hardware-in-the-Loop Platform

    Directory of Open Access Journals (Sweden)

    Sin-Li Chen

    2016-11-01

    Full Text Available This paper proposes a novel control approach for vehicle collision avoidance of urban vehicles. For safe driving in urban environments, this paper presents both one-dimensional and two-dimensional solutions, which can be applied to the collision avoidance via steering assistance, automatic braking, and warning of collision. Strategies are verified under the software CarSim, and the experimental evaluations are carried out under the combination of CarSim with a hardware-in-the-loop platform. The results show the feasibility and effectiveness of the proposed algorithm on vehicle collision avoidance.

  9. See-and-Avoid Collision Avoidance Using ADS-B Signal and Radar Sensing, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — IAI proposes an innovative collision avoidance radar and communication technology to detect and track both cooperative and non-cooperative targets. The system...

  10. Flocking Control of Multiple Mobile Agents with the Rules of Avoiding Collision

    Directory of Open Access Journals (Sweden)

    Hongtao Zhou

    2015-01-01

    Full Text Available This paper investigates the flocking and the coordinative control problems of multiple mobile agents with the rules of avoiding collision. We propose a set of control laws using hysteresis in adding new links and applying new potential function to guarantee that the fragmentation of the network can be avoided, under which all agents approach a common velocity vector, and asymptotically converge to a fixed value of interagent distances and collisions between agents can be avoided throughout the motion. Furthermore, we extend the flocking algorithm to solve the flocking situation of the group with a virtual leader agent. The laws can make all agents asymptotically approach the virtual leader and collisions can be avoided between agents in the motion evolution. Finally, some numerical simulations are showed to illustrate the theoretical results.

  11. Intelligent Local Avoided Collision (iLAC) MAC Protocol for Very High Speed Wireless Network

    Science.gov (United States)

    Hieu, Dinh Chi; Masuda, Akeo; Rabarijaona, Verotiana Hanitriniala; Shimamoto, Shigeru

    Future wireless communication systems aim at very high data rates. As the medium access control (MAC) protocol plays the central role in determining the overall performance of the wireless system, designing a suitable MAC protocol is critical to fully exploit the benefit of high speed transmission that the physical layer (PHY) offers. In the latest 802.11n standard [2], the problem of long overhead has been addressed adequately but the issue of excessive colliding transmissions, especially in congested situation, remains untouched. The procedure of setting the backoff value is the heart of the 802.11 distributed coordination function (DCF) to avoid collision in which each station makes its own decision on how to avoid collision in the next transmission. However, collision avoidance is a problem that can not be solved by a single station. In this paper, we introduce a new MAC protocol called Intelligent Local Avoided Collision (iLAC) that redefines individual rationality in choosing the backoff counter value to avoid a colliding transmission. The distinguishing feature of iLAC is that it fundamentally changes this decision making process from collision avoidance to collaborative collision prevention. As a result, stations can avoid colliding transmissions with much greater precision. Analytical solution confirms the validity of this proposal and simulation results show that the proposed algorithm outperforms the conventional algorithms by a large margin.

  12. Semi-autonomous Intersection Collision Avoidance through Job-shop Scheduling

    OpenAIRE

    Ahn, Heejin; Del Vecchio, Domitilla

    2016-01-01

    In this paper, we design a supervisor to prevent vehicle collisions at intersections. An intersection is modeled as an area containing multiple conflict points where vehicle paths cross in the future. At every time step, the supervisor determines whether there will be more than one vehicle in the vicinity of a conflict point at the same time. If there is, then an impending collision is detected, and the supervisor overrides the drivers to avoid collision. A major challenge in the design of a ...

  13. SU-F-BRB-05: Collision Avoidance Mapping Using Consumer 3D Camera

    Energy Technology Data Exchange (ETDEWEB)

    Cardan, R; Popple, R [Univ Alabama Birmingham, Birmingham, AL (United States)

    2015-06-15

    Purpose: To develop a fast and economical method of scanning a patient’s full body contour for use in collision avoidance mapping without the use of ionizing radiation. Methods: Two consumer level 3D cameras used in electronic gaming were placed in a CT simulator room to scan a phantom patient set up in a high collision probability position. A registration pattern and computer vision algorithms were used to transform the scan into the appropriate coordinate systems. The cameras were then used to scan the surface of a gantry in the treatment vault. Each scan was converted into a polygon mesh for collision testing in a general purpose polygon interference algorithm. All clinically relevant transforms were applied to the gantry and patient support to create a map of all possible collisions. The map was then tested for accuracy by physically testing the collisions with the phantom in the vault. Results: The scanning fidelity of both the gantry and patient was sufficient to produce a collision prediction accuracy of 97.1% with 64620 geometry states tested in 11.5 s. The total scanning time including computation, transformation, and generation was 22.3 seconds. Conclusion: Our results demonstrate an economical system to generate collision avoidance maps. Future work includes testing the speed of the framework in real-time collision avoidance scenarios. Research partially supported by a grant from Varian Medical Systems.

  14. Fighter/Attack Automatic Collision Avoidance Systems Business Case

    National Research Council Canada - National Science Library

    Mapes, Peter B

    2006-01-01

    .... This study concludes that implementation of Automatic Collision Avoidance Systems (Auto-CAS) in F-16, F/A-18, F/A-22, and F-35 aircraft would save aircrew lives and preserve, and enhance combat capability.

  15. Collision detection and avoidance during treatment planning

    International Nuclear Information System (INIS)

    Humm, John L.; Pizzuto, Domenico; Fleischman, Eric; Mohan, Radhe

    1995-01-01

    Purpose: To develop computer software that assists the planner avoid potential gantry collisions with the patient or patient support assembly during the treatment planning process. Methods and Materials: The approach uses a simulation of the therapy room with a scale model of the treatment machine. Because the dimensions of the machine and patient are known, one can calculate a priori whether any desired therapy field is possible or will result in a collision. To assist the planner, we have developed a graphical interface enabling the accurate visualization of each treatment field configuration with a 'room's eye view' treatment planning window. This enables the planner to be aware of, and alleviate any potential collision hazards. To circumvent blind spots in the graphic representation, an analytical software module precomputes whether each update of the gantry or turntable position is safe. Results: If a collision is detected, the module alerts the planner and suggests collision evasive actions such as either an extended distance treatment or the gantry angle of closest approach. Conclusions: The model enables the planner to experiment with unconventional noncoplanar treatment fields, and immediately test their feasibility

  16. A collision avoidance model for two-pedestrian groups: Considering random avoidance patterns

    Science.gov (United States)

    Zhou, Zhuping; Cai, Yifei; Ke, Ruimin; Yang, Jiwei

    2017-06-01

    Grouping is a common phenomenon in pedestrian crowds and group modeling is still an open challenging problem. When grouping pedestrians avoid each other, different patterns can be observed. Pedestrians can keep close with group members and avoid other groups in cluster. Also, they can avoid other groups separately. Considering this randomness in avoidance patterns, we propose a collision avoidance model for two-pedestrian groups. In our model, the avoidance model is proposed based on velocity obstacle method at first. Then grouping model is established using Distance constrained line (DCL), by transforming DCL into the framework of velocity obstacle, the avoidance model and grouping model are successfully put into one unified calculation structure. Within this structure, an algorithm is developed to solve the problem when solutions of the two models conflict with each other. Two groups of bidirectional pedestrian experiments are designed to verify the model. The accuracy of avoidance behavior and grouping behavior is validated in the microscopic level, while the lane formation phenomenon and fundamental diagrams is validated in the macroscopic level. The experiments results show our model is convincing and has a good expansibility to describe three or more pedestrian groups.

  17. An optimal control strategy for collision avoidance of mobile robots in non-stationary environments

    Science.gov (United States)

    Kyriakopoulos, K. J.; Saridis, G. N.

    1991-01-01

    An optimal control formulation of the problem of collision avoidance of mobile robots in environments containing moving obstacles is presented. Collision avoidance is guaranteed if the minimum distance between the robot and the objects is nonzero. A nominal trajectory is assumed to be known from off-line planning. The main idea is to change the velocity along the nominal trajectory so that collisions are avoided. Furthermore, time consistency with the nominal plan is desirable. A numerical solution of the optimization problem is obtained. Simulation results verify the value of the proposed strategy.

  18. Gaze movements and spatial working memory in collision avoidance: a traffic intersection task

    Directory of Open Access Journals (Sweden)

    Gregor eHardiess

    2013-06-01

    Full Text Available Street crossing under traffic is an everyday activity including collision detection as well as avoidance of objects in the path of motion. Such tasks demand extraction and representation of spatio-temporal information about relevant obstacles in an optimized format. Relevant task information is extracted visually by the use of gaze movements and represented in spatial working memory. In a virtual reality traffic intersection task, subjects are confronted with a two-lane intersection where cars are appearing with different frequencies, corresponding to high and low traffic densities. Under free observation and exploration of the scenery (using unrestricted eye and head movements the overall task for the subjects was to predict the potential-of-collision (POC of the cars or to adjust an adequate driving speed in order to cross the intersection without collision (i.e., to find the free space for crossing. In a series of experiments, gaze movement parameters, task performance, and the representation of car positions within working memory at distinct time points were assessed in normal subjects as well as in neurological patients suffering from homonymous hemianopia. In the following, we review the findings of these experiments together with other studies and provide a new perspective of the role of gaze behavior and spatial memory in collision detection and avoidance, focusing on the following questions: (i which sensory variables can be identified supporting adequate collision detection? (ii How do gaze movements and working memory contribute to collision avoidance when multiple moving objects are present and (iii how do they correlate with task performance? (iv How do patients with homonymous visual field defects use gaze movements and working memory to compensate for visual field loss? In conclusion, we extend the theory of collision detection and avoidance in the case of multiple moving objects and provide a new perspective on the combined

  19. Towards social autonomous vehicles: Efficient collision avoidance scheme using Richardson's arms race model.

    Science.gov (United States)

    Riaz, Faisal; Niazi, Muaz A

    2017-01-01

    This paper presents the concept of a social autonomous agent to conceptualize such Autonomous Vehicles (AVs), which interacts with other AVs using social manners similar to human behavior. The presented AVs also have the capability of predicting intentions, i.e. mentalizing and copying the actions of each other, i.e. mirroring. Exploratory Agent Based Modeling (EABM) level of the Cognitive Agent Based Computing (CABC) framework has been utilized to design the proposed social agent. Furthermore, to emulate the functionality of mentalizing and mirroring modules of proposed social agent, a tailored mathematical model of the Richardson's arms race model has also been presented. The performance of the proposed social agent has been validated at two levels-firstly it has been simulated using NetLogo, a standard agent-based modeling tool and also, at a practical level using a prototype AV. The simulation results have confirmed that the proposed social agent-based collision avoidance strategy is 78.52% more efficient than Random walk based collision avoidance strategy in congested flock-like topologies. Whereas practical results have confirmed that the proposed scheme can avoid rear end and lateral collisions with the efficiency of 99.876% as compared with the IEEE 802.11n-based existing state of the art mirroring neuron-based collision avoidance scheme.

  20. Towards social autonomous vehicles: Efficient collision avoidance scheme using Richardson's arms race model.

    Directory of Open Access Journals (Sweden)

    Faisal Riaz

    Full Text Available This paper presents the concept of a social autonomous agent to conceptualize such Autonomous Vehicles (AVs, which interacts with other AVs using social manners similar to human behavior. The presented AVs also have the capability of predicting intentions, i.e. mentalizing and copying the actions of each other, i.e. mirroring. Exploratory Agent Based Modeling (EABM level of the Cognitive Agent Based Computing (CABC framework has been utilized to design the proposed social agent. Furthermore, to emulate the functionality of mentalizing and mirroring modules of proposed social agent, a tailored mathematical model of the Richardson's arms race model has also been presented. The performance of the proposed social agent has been validated at two levels-firstly it has been simulated using NetLogo, a standard agent-based modeling tool and also, at a practical level using a prototype AV. The simulation results have confirmed that the proposed social agent-based collision avoidance strategy is 78.52% more efficient than Random walk based collision avoidance strategy in congested flock-like topologies. Whereas practical results have confirmed that the proposed scheme can avoid rear end and lateral collisions with the efficiency of 99.876% as compared with the IEEE 802.11n-based existing state of the art mirroring neuron-based collision avoidance scheme.

  1. Simulation of Pedestrian Behavior in the Collision-Avoidance Process considering Their Moving Preferences

    Directory of Open Access Journals (Sweden)

    Zhilu Yuan

    2017-01-01

    Full Text Available Walking habits can affect the self-organizing movement in pedestrian flow. In China, pedestrians prefer to walk along the right-hand side in the collision-avoidance process, and the same is true for the left-hand preference that is followed in several countries. Through experiments with pedestrian flow, we find that the relative position between pedestrians can affect their moving preferences. We propose a kind of collision-avoidance force based on the social force model, which considers the predictions of potential conflict and the relative position between pedestrians. In the simulation, we use the improved model to explore the effect of moving preference on the collision-avoidance process and self-organizing pedestrian movement. We conclude that the improved model can bring the simulation closer to reality and that moving preference is conducive to the self-adjustment of counterflow.

  2. Collision-Avoidance Characteristics of Grasping. Early Signs in Hand and Arm Kinematics

    NARCIS (Netherlands)

    Lommertzen, J.; Costa e Silva, E.; Meulenbroek, R.G.J.

    2009-01-01

    Grasping an object successfully implies avoiding colliding into it before the hand is closed around the object. The present study focuses on prehension kinematics that typically reflect collision-avoidance characteristics of grasping movements. Twelve participants repeatedly grasped

  3. How Much Control is Enough for Network Connectivity Preservation and Collision Avoidance?

    Science.gov (United States)

    Chen, Zhiyong; Fan, Ming-Can; Zhang, Hai-Tao

    2015-08-01

    For a multiagent system in free space, the agents are required to generate sufficiently large cohesive force for network connectivity preservation and sufficiently large repulsive force for collision avoidance. This paper gives an energy function based approach for estimating the control force in a general setting. In particular, the force estimated for network connectivity preservation and collision avoidance is separated from the force for other collective behavior of the agents. Moreover, the estimation approach is applied in three typical collective control scenarios including swarming, flocking, and flocking without velocity measurement.

  4. A Mathematical Model for Analysis on Ships Collision Avoidance ...

    African Journals Online (AJOL)

    This study develops a mathematical model for analysis on collision avoidance of ships. The obtained model provides information on the quantitative effect of the ship's engine's response and the applied reversing force on separation distance and stopping abilities of the ships. Appropriate evasive maneuvers require the ...

  5. Airborne Collision Avoidance System as a Cyber-Physical System

    Directory of Open Access Journals (Sweden)

    Andrei C. NAE

    2015-12-01

    Full Text Available In this paper the key concepts of ITS - Intelligent Transport Systems, CPS - Cyber-Physical Systems and SM - Smart Mobility are defined and correlated with the need for ACAS – Airborne Collision Avoidance System, as the last resort safety net and indispensable ingredient in civil aviation. Smart Mobility is addressed from a Cyber Physical-Systems perspective, detailing some of the elements that this entails. Here we consider the Air Transportations System of the future as a Cyber-Physical System and analyze the implications of doing so from different perspectives. The objective is to introduce a 4D collision avoidance shield technology which forms a last resort safety net technology for the next generation air transport (2050 and beyond. The new system will represent a step change over the performance of current technology. As conclusions, the benefits of implementing Transport Cyber-Physical Systems are discussed, as well as what this would require for future deployment.

  6. Using Distance Sensors to Perform Collision Avoidance Maneuvres on Uav Applications

    Science.gov (United States)

    Raimundo, A.; Peres, D.; Santos, N.; Sebastião, P.; Souto, N.

    2017-08-01

    The Unmanned Aerial Vehicles (UAV) and its applications are growing for both civilian and military purposes. The operability of an UAV proved that some tasks and operations can be done easily and at a good cost-efficiency ratio. Nowadays, an UAV can perform autonomous missions. It is very useful to certain UAV applications, such as meteorology, vigilance systems, agriculture, environment mapping and search and rescue operations. One of the biggest problems that an UAV faces is the possibility of collision with other objects in the flight area. To avoid this, an algorithm was developed and implemented in order to prevent UAV collision with other objects. "Sense and Avoid" algorithm was developed as a system for UAVs to avoid objects in collision course. This algorithm uses a Light Detection and Ranging (LiDAR), to detect objects facing the UAV in mid-flights. This light sensor is connected to an on-board hardware, Pixhawk's flight controller, which interfaces its communications with another hardware: Raspberry Pi. Communications between Ground Control Station and UAV are made via Wi-Fi or cellular third or fourth generation (3G/4G). Some tests were made in order to evaluate the "Sense and Avoid" algorithm's overall performance. These tests were done in two different environments: A 3D simulated environment and a real outdoor environment. Both modes worked successfully on a simulated 3D environment, and "Brake" mode on a real outdoor, proving its concepts.

  7. Ship Domain Model for Multi-ship Collision Avoidance Decision-making with COLREGs Based on Artificial Potential Field

    Directory of Open Access Journals (Sweden)

    TengFei Wang

    2017-03-01

    Full Text Available A multi-ship collision avoidance decision-making and path planning formulation is studied in a distributed way. This paper proposes a complete set of solutions for multi-ship collision avoidance in intelligent navigation, by using a top-to-bottom organization to structure the system. The system is designed with two layers: the collision avoidance decision-making and the path planning. Under the general requirements of the International Regulations for Preventing Collisions at Sea (COLREGs, the performance of distributed path planning decision-making for anti-collision is analyzed for both give-way and stand-on ships situations, including the emergency actions taken by the stand-on ship in case of the give-way ship’s fault of collision avoidance measures. The Artificial Potential Field method(APF is used for the path planning in details. The developed APF method combined with the model of ship domain takes the target ships’ speed and course in-to account, so that it can judge the moving characteristics of obstacles more accurately. Simulation results indicate that the system proposed can work effectiveness.

  8. Integrated trajectory control and collision avoidance for automated driving

    NARCIS (Netherlands)

    Verhaegh, J.; Ploeg, J.; Nunen, E. van; Teerhuis, A.

    2017-01-01

    This paper presents a method for trajectory control, based on feedback linearization to guide an Automatic Guided Vehicle (AGV). The novelty of this work, is the adaptation of a reference trajectory with respect to a desired velocity in real-time to avoid collisions using a time-scaling mechanism.

  9. Experiences of model year 2011 Dodge and Jeep owners with collision avoidance and related technologies.

    Science.gov (United States)

    Cicchino, Jessica B; McCartt, Anne T

    2015-01-01

    Crash avoidance technologies have the potential to prevent or mitigate many crashes, but their effectiveness depends on drivers' acceptance and proper use. Owners of 2011 Dodge Charger, Dodge Durango, and Jeep Grand Cherokee vehicles were interviewed about their experiences with their vehicles' technologies. Interviews were conducted in April 2013 with 215 owners of Dodge and Jeep vehicles with adaptive cruise control and forward collision warning and 215 owners with blind spot monitoring and rear cross-path detection. Most owners said that they always keep each collision avoidance technology turned on, and more than 90% of owners with each system would want the technology again on their next vehicle. The majority believed that the systems had helped prevent a collision; this ranged from 54% of drivers with forward collision warning to more than three-quarters with blind spot monitoring and rear cross-path detection. Some owners reported behavioral changes with the systems, but over-reliance on them is not prevalent. Reported use of the systems varied by the age and gender of the driver and duration of vehicle ownership to a greater degree than in previous surveys of luxury Volvo and Infiniti vehicles with collision avoidance technologies. Notably, drivers aged 40 and younger were most likely to report that forward collision warning had alerted them multiple times and that it had prevented a collision and that they follow the vehicle ahead less closely with adaptive cruise control. Reports of waiting for the alert from forward collision warning before braking were infrequent but increased with duration of ownership. However, these reports could reflect confusion of the system with adaptive cruise control, which alerts drivers when braking is necessary to maintain a preset speed or following distance but a crash is not imminent. Consistent with previous surveys of luxury vehicle owners with collision avoidance technologies, acceptance and use remains high among

  10. Method for Collision Avoidance Motion Coordination of Multiple Mobile Robots Using Central Observation

    Energy Technology Data Exchange (ETDEWEB)

    Ko, N.Y.; Seo, D.J. [Chosun University, Kwangju (Korea)

    2003-04-01

    This paper presents a new method driving multiple robots to their goal position without collision. Each robot adjusts its motion based on the information on the goal locations, velocity, and position of the robot and the velocity and position of the other robots. To consider the movement of the robots in a work area, we adopt the concept of avoidability measure. The avoidability measure figures the degree of how easily a robot can avoid other robots considering the following factors: the distance from the robot to the other robots, velocity of the robot and the other robots. To implement the concept in moving robot avoidance, relative distance between the robots is derived. Our method combines the relative distance with an artificial potential field method. The proposed method is simulated for several cases. The results show that the proposed method steers robots to open space anticipating the approach of other robots. In contrast, the usual potential field method sometimes fails preventing collision or causes hasty motion, because it initiates avoidance motion later than the proposed method. The proposed method can be used to move robots in a robot soccer team to their appropriate position without collision as fast as possible. (author). 21 refs., 10 figs., 13 tabs.

  11. A rear-end collision risk assessment model based on drivers' collision avoidance process under influences of cell phone use and gender-A driving simulator based study.

    Science.gov (United States)

    Li, Xiaomeng; Yan, Xuedong; Wu, Jiawei; Radwan, Essam; Zhang, Yuting

    2016-12-01

    Driver's collision avoidance performance has a direct link to the collision risk and crash severity. Previous studies demonstrated that the distracted driving, such as using a cell phone while driving, disrupted the driver's performance on road. This study aimed to investigate the manner and extent to which cell phone use and driver's gender affected driving performance and collision risk in a rear-end collision avoidance process. Forty-two licensed drivers completed the driving simulation experiment in three phone use conditions: no phone use, hands-free, and hand-held, in which the drivers drove in a car-following situation with potential rear-end collision risks caused by the leading vehicle's sudden deceleration. Based on the experiment data, a rear-end collision risk assessment model was developed to assess the influence of cell phone use and driver's gender. The cell phone use and driver's gender were found to be significant factors that affected the braking performances in the rear-end collision avoidance process, including the brake reaction time, the deceleration adjusting time and the maximum deceleration rate. The minimum headway distance between the leading vehicle and the simulator during the rear-end collision avoidance process was the final output variable, which could be used to measure the rear-end collision risk and judge whether a collision occurred. The results showed that although cell phone use drivers took some compensatory behaviors in the collision avoidance process to reduce the mental workload, the collision risk in cell phone use conditions was still higher than that without the phone use. More importantly, the results proved that the hands-free condition did not eliminate the safety problem associated with distracted driving because it impaired the driving performance in the same way as much as the use of hand-held phones. In addition, the gender effect indicated that although female drivers had longer reaction time than male drivers in

  12. Collision Avoidance from Multiple Passive Agents with Partially Predictable Behavior

    Directory of Open Access Journals (Sweden)

    Khalil Muhammad Zuhaib

    2017-09-01

    Full Text Available Navigating a robot in a dynamic environment is a challenging task, especially when the behavior of other agents such as pedestrians, is only partially predictable. Also, the kinodynamic constraints on robot motion add an extra challenge. This paper proposes a novel navigational strategy for collision avoidance of a kinodynamically constrained robot from multiple moving passive agents with partially predictable behavior. Specifically, this paper presents a new approach to identify the set of control inputs to the robot, named control obstacle, which leads it towards a collision with a passive agent moving along an arbitrary path. The proposed method is developed by generalizing the concept of nonlinear velocity obstacle (NLVO, which is used to avoid collision with a passive agent, and takes into account the kinodynamic constraints on robot motion. Further, it formulates the navigational problem as an optimization problem, which allows the robot to make a safe decision in the presence of various sources of unmodelled uncertainties. Finally, the performance of the algorithm is evaluated for different parameters and is compared to existing velocity obstacle-based approaches. The simulated experiments show the excellent performance of the proposed approach in term of computation time and success rate.

  13. Collision avoidance system cost-benefit analysis : volume I - technical manual

    Science.gov (United States)

    1981-09-01

    Collision-avoidance systems under development in the U.S.A., Japan and Germany were evaluated. The performance evaluation showed that the signal processing and the control law of a system were the key parameters that decided the system's capability, ...

  14. Towards social autonomous vehicles: Efficient collision avoidance scheme using Richardson’s arms race model

    Science.gov (United States)

    Niazi, Muaz A.

    2017-01-01

    This paper presents the concept of a social autonomous agent to conceptualize such Autonomous Vehicles (AVs), which interacts with other AVs using social manners similar to human behavior. The presented AVs also have the capability of predicting intentions, i.e. mentalizing and copying the actions of each other, i.e. mirroring. Exploratory Agent Based Modeling (EABM) level of the Cognitive Agent Based Computing (CABC) framework has been utilized to design the proposed social agent. Furthermore, to emulate the functionality of mentalizing and mirroring modules of proposed social agent, a tailored mathematical model of the Richardson’s arms race model has also been presented. The performance of the proposed social agent has been validated at two levels–firstly it has been simulated using NetLogo, a standard agent-based modeling tool and also, at a practical level using a prototype AV. The simulation results have confirmed that the proposed social agent-based collision avoidance strategy is 78.52% more efficient than Random walk based collision avoidance strategy in congested flock-like topologies. Whereas practical results have confirmed that the proposed scheme can avoid rear end and lateral collisions with the efficiency of 99.876% as compared with the IEEE 802.11n-based existing state of the art mirroring neuron-based collision avoidance scheme. PMID:29040294

  15. Altruistic Backoff: Collision Avoidance for Receiver-Initiated MAC Protocols for Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Orfanidis, Charalampos; Dragoni, Nicola

    2014-01-01

    In receiver-initiated medium access control (MAC) protocols for wireless sensor networks, communication is initiated by the receiver node which transmits beacons indicating its availability to receive data. In the case of multiple senders having traffic for a given receiver, such beacons form...... points where collisions are likely to happen. In this paper, we present altruistic backoff (AB), a novel collision avoidance mechanism that aims to avoid collisions before the transmission of a beacon. As a result of an early backoff, senders spend less time in idle listening waiting for a beacon, thus...... saving significant amounts of energy. We present an implementation of AB for Texas Instruments' eZ430-rf2500 sensor nodes and we evaluate its performance with simulations and experiments....

  16. Throughput and Fairness of Collision Avoidance Protocols in Ad Hoc Networks

    National Research Council Canada - National Science Library

    Garcia-Luna-Aceves, J. J; Wang, Yu

    2004-01-01

    .... In Section 1, The authors present an analytical modeling to derive the saturation throughput of these sender-initiated collision avoidance protocols in multi-hop ad hoc networks with nodes randomly...

  17. Characterization Test Procedures for Intersection Collision Avoidance Systems Based on Vehicle-to-Vehicle Communications

    Science.gov (United States)

    2015-12-01

    Characterization test procedures have been developed to quantify the performance of intersection collision avoidance (ICA) systems based on vehicle-to-vehicle communications. These systems warn the driver of an imminent crossing-path collision at a r...

  18. Operational support to collision avoidance activities by ESA's space debris office

    Science.gov (United States)

    Braun, V.; Flohrer, T.; Krag, H.; Merz, K.; Lemmens, S.; Bastida Virgili, B.; Funke, Q.

    2016-09-01

    The European Space Agency's (ESA) Space Debris Office provides a service to support operational collision avoidance activities. This support currently covers ESA's missions Cryosat-2, Sentinel-1A and -2A, the constellation of Swarm-A/B/C in low-Earth orbit (LEO), as well as missions of third-party customers. In this work, we describe the current collision avoidance process for ESA and third-party missions in LEO. We give an overview on the upgrades developed and implemented since the advent of conjunction summary messages (CSM)/conjunction data messages (CDM), addressing conjunction event detection, collision risk assessment, orbit determination, orbit and covariance propagation, process control, and data handling. We pay special attention to the effect of warning thresholds on the risk reduction and manoeuvre rates, as they are established through risk mitigation and analysis tools, such as ESA's Debris Risk Assessment and Mitigation Analysis (DRAMA) software suite. To handle the large number of CDMs and the associated risk analyses, a database-centric approach has been developed. All CDMs and risk analysis results are stored in a database. In this way, a temporary local "mini-catalogue" of objects close to our target spacecraft is obtained, which can be used, e.g., for manoeuvre screening and to update the risk analysis whenever a new ephemeris becomes available from the flight dynamics team. The database is also used as the backbone for a Web-based tool, which consists of the visualization component and a collaboration tool that facilitates the status monitoring and task allocation within the support team as well as communication with the control team. The visualization component further supports the information sharing by displaying target and chaser motion over time along with the involved uncertainties. The Web-based solution optimally meets the needs for a concise and easy-to-use way to obtain a situation picture in a very short time, and the support for

  19. An Effective Scheduling-Based RFID Reader Collision Avoidance Model and Its Resource Allocation via Artificial Immune Network

    OpenAIRE

    Wang, Shanjin; Li, Zhonghua; He, Chunhui; Li, Jianming

    2016-01-01

    Radio frequency identification, that is, RFID, is one of important technologies in Internet of Things. Reader collision does impair the tag identification efficiency of an RFID system. Many developed methods, for example, the scheduling-based series, that are used to avoid RFID reader collision, have been developed. For scheduling-based methods, communication resources, that is, time slots, channels, and power, are optimally assigned to readers. In this case, reader collision avoidance is equ...

  20. Advanced Whale Detection Methods to Improve Whale-Ship Collision Avoidance

    Science.gov (United States)

    McGillivary, P. A.; Tougher, B.

    2010-12-01

    Collisions between whales and ships are now estimated to account for fully a third of all whale deaths worldwide. Such collisions can incur costly ship repairs, and may damage or disable ship steering requiring costly response efforts from state and federal agencies. While collisions with rare whale species are problematic in further reducing their low population numbers, collisions with some of the more abundant whale species are also becoming more common as their populations increase. The problem is compounded as ship traffic likewise continues to grow, thus posing a growing risk to both whales and ships. Federal agencies are considering policies to alter shipping lanes to minimize whale-ship collisions off California and elsewhere. Similar efforts have already been undertaken for the Boston Harbor ship approach, where a bend in the shipping lane was introduced to reduce ship traffic through a favorite area of the highly endangered North Atlantic Right Whale. The Boston shipping approach lane was also flanked with a system of moorings with whale detection hydrophones which broadcast the presence of calling whales in or near the ship channel to approaching ships in real time. When so notified, ships can post lookouts to avoid whale collisions, and reduce speed to reduce the likelihood of whale death, which is highly speed dependent. To reduce the likelihood and seriousness of whale-ship collisions off California and Alaska in particular, there is a need to better know areas of particularly high use by whales, and consider implementation of reduced ship speeds in these areas. There is also an ongoing discussion of altering shipping lanes in the Santa Barbara Channel to avoid habitual Blue whales aggregation areas in particular. However, unlike the case for Boston Harbor, notification of ships that whales are nearby to reduce or avoid collisions is complicated because many California and Alaska whale species do not call regularly, and would thus be undetected by

  1. Supervised-machine Learning for Intelligent Collision Avoidance Decision-making and Sensor Tasking

    Data.gov (United States)

    National Aeronautics and Space Administration — Building an autonomous architecture that uses directed self-learning neuro-fuzzy networks with the aim of developing an intelligent autonomous collision avoidance...

  2. A Receiver-Initiated Collision-Avoidance Protocol for Multi-Channel Networks

    Science.gov (United States)

    2001-01-01

    00-00-2001 to 00-00-2001 4. TITLE AND SUBTITLE A Receiver-Initiated Collision-Avoidance Protocol for Multi-Channel Netowrks 5a. CONTRACT NUMBER...images. 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 10 19a. NAME OF RESPONSIBLE

  3. An Improved Differential Evolution Algorithm for Maritime Collision Avoidance Route Planning

    Directory of Open Access Journals (Sweden)

    Yu-xin Zhao

    2014-01-01

    Full Text Available High accuracy navigation and surveillance systems are pivotal to ensure efficient ship route planning and marine safety. Based on existing ship navigation and maritime collision prevention rules, an improved approach for collision avoidance route planning using a differential evolution algorithm was developed. Simulation results show that the algorithm is capable of significantly enhancing the optimized route over current methods. It has the potential to be used as a tool to generate optimal vessel routing in the presence of conflicts.

  4. Spatial Reuse and Collision Avoidance in Ad Hoc Networks with Directional Antennas

    National Research Council Canada - National Science Library

    Wang, Yu; Garcia-Luna-Aceves, J. J

    2002-01-01

    .... Some MAC protocols using directional antennas have been proposed in the past, which trade off spatial reuse and collision avoidance via a combination of omni-directional and directional transmission modes...

  5. Aerial vehicles collision avoidance using monocular vision

    Science.gov (United States)

    Balashov, Oleg; Muraviev, Vadim; Strotov, Valery

    2016-10-01

    In this paper image-based collision avoidance algorithm that provides detection of nearby aircraft and distance estimation is presented. The approach requires a vision system with a single moving camera and additional information about carrier's speed and orientation from onboard sensors. The main idea is to create a multi-step approach based on a preliminary detection, regions of interest (ROI) selection, contour segmentation, object matching and localization. The proposed algorithm is able to detect small targets but unlike many other approaches is designed to work with large-scale objects as well. To localize aerial vehicle position the system of equations relating object coordinates in space and observed image is solved. The system solution gives the current position and speed of the detected object in space. Using this information distance and time to collision can be estimated. Experimental research on real video sequences and modeled data is performed. Video database contained different types of aerial vehicles: aircrafts, helicopters, and UAVs. The presented algorithm is able to detect aerial vehicles from several kilometers under regular daylight conditions.

  6. An Effective Scheduling-Based RFID Reader Collision Avoidance Model and Its Resource Allocation via Artificial Immune Network

    Directory of Open Access Journals (Sweden)

    Shanjin Wang

    2016-01-01

    Full Text Available Radio frequency identification, that is, RFID, is one of important technologies in Internet of Things. Reader collision does impair the tag identification efficiency of an RFID system. Many developed methods, for example, the scheduling-based series, that are used to avoid RFID reader collision, have been developed. For scheduling-based methods, communication resources, that is, time slots, channels, and power, are optimally assigned to readers. In this case, reader collision avoidance is equivalent to an optimization problem related to resource allocation. However, the existing methods neglect the overlap between the interrogation regions of readers, which reduces the tag identification rate (TIR. To resolve this shortage, this paper attempts to build a reader-to-reader collision avoidance model considering the interrogation region overlaps (R2RCAM-IRO. In addition, an artificial immune network for resource allocation (RA-IRO-aiNet is designed to optimize the proposed model. For comparison, some comparative numerical simulations are arranged. The simulation results show that the proposed R2RCAM-IRO is an effective model where TIR is improved significantly. And especially in the application of reader-to-reader collision avoidance, the proposed RA-IRO-aiNet outperforms GA, opt-aiNet, and PSO in the total coverage area of readers.

  7. Fuzzy Reasoning as a Base for Collision Avoidance Decision Support System

    Directory of Open Access Journals (Sweden)

    tanja brcko

    2013-12-01

    Full Text Available Despite the generally high qualifications of seafarers, many maritime accidents are caused by human error; such accidents include capsizing, collision, and fire, and often result in pollution. Enough concern has been generated that researchers around the world have developed the study of the human factor into an independent scientific discipline. A great deal of progress has been made, particularly in the area of artificial intelligence. But since total autonomy is not yet expedient, the decision support systems based on soft computing are proposed to support human navigators and VTS operators in times of crisis as well as during the execution of everyday tasks as a means of reducing risk levels.This paper considers a decision support system based on fuzzy logic integrated into an existing bridge collision avoidance system. The main goal is to determine the appropriate course of avoidance, using fuzzy reasoning.

  8. LightForce Photon-Pressure Collision Avoidance: Efficiency Assessment on an Entire Catalogue of Space Debris

    Science.gov (United States)

    Stupl, Jan Michael; Faber, Nicolas; Foster, Cyrus; Yang Yang, Fan; Levit, Creon

    2013-01-01

    The potential to perturb debris orbits using photon pressure from ground-based lasers has been confirmed by independent research teams. Two useful applications of this scheme are protecting space assets from impacts with debris and stabilizing the orbital debris environment, both relying on collision avoidance rather than de-orbiting debris. This paper presents the results of a new assessment method to analyze the efficiency of the concept for collision avoidance. Earlier research concluded that one ground based system consisting of a 10 kW class laser, directed by a 1.5 m telescope with adaptive optics, can prevent a significant fraction of debris-debris collisions in low Earth orbit. That research used in-track displacement to measure efficiency and restricted itself to an analysis of a limited number of objects. As orbit prediction error is dependent on debris object properties, a static displacement threshold should be complemented with another measure to assess the efficiency of the scheme. In this paper we present the results of an approach using probability of collision. Using a least-squares fitting method, we improve the quality of the original TLE catalogue in terms of state and co-state accuracy. We then calculate collision probabilities for all the objects in the catalogue. The conjunctions with the highest risk of collision are then engaged by a simulated network of laser ground stations. After those engagements, the perturbed orbits are used to re-assess the collision probability in a 20 minute window around the original conjunction. We then use different criteria to evaluate the utility of the laser-based collision avoidance scheme and assess the number of base-line ground stations needed to mitigate a significant number of high probability conjunctions. Finally, we also give an account how a laser ground station can be used for both orbit deflection and debris tracking.

  9. Driver Behavioral Changes through Interactions with an Automatic Brake System for Collision Avoidance

    Science.gov (United States)

    Itoh, Makoto; Fujiwara, Yusuke; Inagaki, Toshiyuki

    This paper discusses driver's behavioral changes as a result of driver's use of an automatic brake system for preventing a rear-end collision from occurring. Three types of automatic brake systems are investigated in this study. Type 1 brake system applies a strong automatic brake when a collision is very imminent. Type 2 brake system initiates brake operation softly when a rear-end crash may be anticipated. Types 1 and 2 are for avoidance of a collision. Type 3 brake system, on the other hand, applies a strong automatic brake to reduce the damage when a collision can not be avoided. An experiment was conducted with a driving simulator in order to analyze the driver's possible behavioral changes. The results showed that the time headway (THW) during car following phase was reduced by use of an automatic brake system of any type. The inverse of time to collision (TTC), which is an index of the driver's brake timing, increased by use of Type 1 brake system when the deceleration rate of the lead vehicle was relatively low. However, the brake timing did not change when the drivers used Type 2 or 3 brake system. As a whole, dangerous behavioral changes, such as overreliance on a brake system, were not observed for either type of brake system.

  10. Collision Avoidance for Airport Traffic Concept Evaluation

    Science.gov (United States)

    Jones, Denise R.; Prinzel, Lawrence J., III; Otero, Sharon D.; Barker, Glover D.

    2009-01-01

    An initial Collision Avoidance for Airport Traffic (CAAT) concept for the Terminal Maneuvering Area (TMA) was evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center. CAAT is being designed to enhance surface situation awareness and provide cockpit alerts of potential conflicts during runway, taxi, and low altitude air-to-air operations. The purpose of the study was to evaluate the initial concept for an aircraft-based method of conflict detection and resolution (CD&R) in the TMA focusing on conflict detection algorithms and alerting display concepts. This paper gives an overview of the CD&R concept, simulation study, and test results.

  11. Concept of an enhanced V2X pedestrian collision avoidance system with a cost function-based pedestrian model.

    Science.gov (United States)

    Kotte, Jens; Schmeichel, Carsten; Zlocki, Adrian; Gathmann, Hauke; Eckstein, Lutz

    2017-05-29

    State-of-the-art collision avoidance and collision mitigation systems predict the behavior of pedestrians based on trivial models that assume a constant acceleration or velocity. New sources of sensor information-for example, smart devices such as smartphones, tablets, smartwatches, etc.-can support enhanced pedestrian behavior models. The objective of this article is the development and implementation of a V2Xpedestrian collision avoidance system that uses new information sources. A literature review of existing state-of-the-art pedestrian collision avoidance systems, pedestrian behavior models in advanced driver assistance systems (ADAS), and traffic simulations is conducted together with an analysis of existing studies on typical pedestrian patterns in traffic. Based on this analysis, possible parameters for predicting pedestrian behavior were investigated. The results led to new requirements from which a concept was developed and implemented. The analysis of typical pedestrian behavior patterns in traffic situations showed the complexity of predicting pedestrian behavior. Requirements for an improved behavior prediction were derived. A concept for a V2X collision avoidance system, based on a cost function that predicts pedestrian near future presence, and its implementation is presented. The concept presented considers several challenges such as information privacy, inaccuracies of the localization, and inaccuracies of the prediction. A concept for an enhanced V2X pedestrian collision avoidance system was developed and introduced. The concept uses new information sources such as smart devices to improve the prediction of the pedestrian's presence in the near future and considers challenges that come along with the usage of these information sources.

  12. A trial of retrofitted advisory collision avoidance technology in government fleet vehicles.

    Science.gov (United States)

    Thompson, James P; Mackenzie, Jamie R R; Dutschke, Jeffrey K; Baldock, Matthew R J; Raftery, Simon J; Wall, John

    2018-06-01

    In-vehicle collision avoidance technology (CAT) has the potential to prevent crash involvement. In 2015, Transport for New South Wales undertook a trial of a Mobileye 560 CAT system that was installed in 34 government fleet vehicles for a period of seven months. The system provided headway monitoring, lane departure, forward collision and pedestrian collision warnings, using audio and visual alerts. The purpose of the trial was to determine whether the technology could change the driving behaviour of fleet vehicle drivers and improve their safety. The evaluation consisted of three components: (1) analysis of objective data to examine effects of the technology on driving behaviour, (2) analysis of video footage taken from a sample of the vehicles to examine driving circumstances that trigger headway monitoring and forward collision warnings, and (3) a survey completed by 122 of the 199 individuals who drove the trial vehicles to examine experiences with, and attitudes to, the technology. Analysis of the objective data found that the system resulted in changes in behaviour with increased headway and improved lane keeping, but that these improvements dissipated once the warning alerts were switched off. Therefore, the system is capable of altering behaviour but only when it is actively providing alerts. In-vehicle video footage revealed that over a quarter of forward collision warnings were false alarms, in which a warning event was triggered despite there being no vehicle travelling ahead. The surveyed drivers recognised that the system could improve safety but most did not wish to use it themselves as they found it to be distracting and felt that it would not prevent them from having a crash. The results demonstrate that collision avoidance technology can improve driving behaviour but drivers may need to be educated about the potential benefits for their driving in order to accept the technology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Model of Optimal Collision Avoidance Manoeuvre on the Basis of Electronic Data Collection

    Directory of Open Access Journals (Sweden)

    Jelenko Švetak

    2005-11-01

    Full Text Available The results of the data analyses show that accidents mostlyinclude damages to the ship's hull and collisions. Generally allaccidents of ships can be divided into two basic categories.First, accidents in which measures for damage control shouldbe taken immediately, and second, those which require a littlemore patient reaction. The very fact that collisions belong to thefirst category provided the incentive for writing the current paper.The proposed model of optimal collision avoidance manoeuvreof ships on the basis of electronic data collection wasmade by means of the navigation simulator NTPRO- 1000,Transas manufacturer, Russian Federation.

  14. Small UAV Automatic Ground Collision Avoidance System Design Considerations and Flight Test Results

    Science.gov (United States)

    Sorokowski, Paul; Skoog, Mark; Burrows, Scott; Thomas, SaraKatie

    2015-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center Small Unmanned Aerial Vehicle (SUAV) Automatic Ground Collision Avoidance System (Auto GCAS) project demonstrated several important collision avoidance technologies. First, the SUAV Auto GCAS design included capabilities to take advantage of terrain avoidance maneuvers flying turns to either side as well as straight over terrain. Second, the design also included innovative digital elevation model (DEM) scanning methods. The combination of multi-trajectory options and new scanning methods demonstrated the ability to reduce the nuisance potential of the SUAV while maintaining robust terrain avoidance. Third, the Auto GCAS algorithms were hosted on the processor inside a smartphone, providing a lightweight hardware configuration for use in either the ground control station or on board the test aircraft. Finally, compression of DEM data for the entire Earth and successful hosting of that data on the smartphone was demonstrated. The SUAV Auto GCAS project demonstrated that together these methods and technologies have the potential to dramatically reduce the number of controlled flight into terrain mishaps across a wide range of aviation platforms with similar capabilities including UAVs, general aviation aircraft, helicopters, and model aircraft.

  15. CA-LOD: Collision Avoidance Level of Detail for Scalable, Controllable Crowds

    Science.gov (United States)

    Paris, Sébastien; Gerdelan, Anton; O'Sullivan, Carol

    The new wave of computer-driven entertainment technology throws audiences and game players into massive virtual worlds where entire cities are rendered in real time. Computer animated characters run through inner-city streets teeming with pedestrians, all fully rendered with 3D graphics, animations, particle effects and linked to 3D sound effects to produce more realistic and immersive computer-hosted entertainment experiences than ever before. Computing all of this detail at once is enormously computationally expensive, and game designers as a rule, have sacrificed the behavioural realism in favour of better graphics. In this paper we propose a new Collision Avoidance Level of Detail (CA-LOD) algorithm that allows games to support huge crowds in real time with the appearance of more intelligent behaviour. We propose two collision avoidance models used for two different CA-LODs: a fuzzy steering focusing on the performances, and a geometric steering to obtain the best realism. Mixing these approaches allows to obtain thousands of autonomous characters in real time, resulting in a scalable but still controllable crowd.

  16. USING DISTANCE SENSORS TO PERFORM COLLISION AVOIDANCE MANEUVRES ON UAV APPLICATIONS

    Directory of Open Access Journals (Sweden)

    A. Raimundo

    2017-08-01

    Full Text Available The Unmanned Aerial Vehicles (UAV and its applications are growing for both civilian and military purposes. The operability of an UAV proved that some tasks and operations can be done easily and at a good cost-efficiency ratio. Nowadays, an UAV can perform autonomous missions. It is very useful to certain UAV applications, such as meteorology, vigilance systems, agriculture, environment mapping and search and rescue operations. One of the biggest problems that an UAV faces is the possibility of collision with other objects in the flight area. To avoid this, an algorithm was developed and implemented in order to prevent UAV collision with other objects. “Sense and Avoid” algorithm was developed as a system for UAVs to avoid objects in collision course. This algorithm uses a Light Detection and Ranging (LiDAR, to detect objects facing the UAV in mid-flights. This light sensor is connected to an on-board hardware, Pixhawk’s flight controller, which interfaces its communications with another hardware: Raspberry Pi. Communications between Ground Control Station and UAV are made via Wi-Fi or cellular third or fourth generation (3G/4G. Some tests were made in order to evaluate the “Sense and Avoid” algorithm’s overall performance. These tests were done in two different environments: A 3D simulated environment and a real outdoor environment. Both modes worked successfully on a simulated 3D environment, and “Brake” mode on a real outdoor, proving its concepts.

  17. Collision avoidance in persons with homonymous visual field defects under virtual reality conditions.

    Science.gov (United States)

    Papageorgiou, Eleni; Hardiess, Gregor; Ackermann, Hermann; Wiethoelter, Horst; Dietz, Klaus; Mallot, Hanspeter A; Schiefer, Ulrich

    2012-01-01

    The aim of the present study was to examine the effect of homonymous visual field defects (HVFDs) on collision avoidance of dynamic obstacles at an intersection under virtual reality (VR) conditions. Overall performance was quantitatively assessed as the number of collisions at a virtual intersection at two difficulty levels. HVFDs were assessed by binocular semi-automated kinetic perimetry within the 90° visual field, stimulus III4e and the area of sparing within the affected hemifield (A-SPAR in deg(2)) was calculated. The effect of A-SPAR, age, gender, side of brain lesion, time since brain lesion and presence of macular sparing on the number of collisions, as well as performance over time were investigated. Thirty patients (10 female, 20 male, age range: 19-71 years) with HVFDs due to unilateral vascular brain lesions and 30 group-age-matched subjects with normal visual fields were examined. The mean number of collisions was higher for patients and in the more difficult level they experienced more collisions with vehicles approaching from the blind side than the seeing side. Lower A-SPAR and increasing age were associated with decreasing performance. However, in agreement with previous studies, wide variability in performance among patients with identical visual field defects was observed and performance of some patients was similar to that of normal subjects. Both patients and healthy subjects displayed equal improvement of performance over time in the more difficult level. In conclusion, our results suggest that visual-field related parameters per se are inadequate in predicting successful collision avoidance. Individualized approaches which also consider compensatory strategies by means of eye and head movements should be introduced. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Optimal Collision Avoidance Trajectories for Unmanned/Remotely Piloted Aircraft

    Science.gov (United States)

    2014-12-26

    collocation method to solve this problem and then analyzes these results for di↵erent collision avoidance scenarios. iv To my beautiful “ Proverbs 31” wife... le ( d e g ) Optimal Control JOCA Baseline 0 10 20 30 40 50 60 0.8 1 1.2 1.4 N z Control time (sec) N z Optimal Control JOCA Baseline (b...Optimal Control JOCA Baseline (a) Trajectory Deviation 0 10 20 30 40 50 60 70 −20 −10 0 10 20 µ Control time (sec) a n g le ( d e g

  19. Sequential Probability Ratio Test for Spacecraft Collision Avoidance Maneuver Decisions

    Science.gov (United States)

    Carpenter, J. Russell; Markley, F. Landis

    2013-01-01

    A document discusses sequential probability ratio tests that explicitly allow decision-makers to incorporate false alarm and missed detection risks, and are potentially less sensitive to modeling errors than a procedure that relies solely on a probability of collision threshold. Recent work on constrained Kalman filtering has suggested an approach to formulating such a test for collision avoidance maneuver decisions: a filter bank with two norm-inequality-constrained epoch-state extended Kalman filters. One filter models the null hypotheses that the miss distance is inside the combined hard body radius at the predicted time of closest approach, and one filter models the alternative hypothesis. The epoch-state filter developed for this method explicitly accounts for any process noise present in the system. The method appears to work well using a realistic example based on an upcoming, highly elliptical orbit formation flying mission.

  20. ITI-signals and prelimbic cortex facilitate avoidance acquisition and reduce avoidance latencies, respectively, in male WKY rats

    Directory of Open Access Journals (Sweden)

    Kevin D Beck

    2014-11-01

    Full Text Available As a model of anxiety disorder vulnerability, male Wistar-Kyoto (WKY rats acquire lever-press avoidance behavior more readily than outbred Sprague Dawley rats, and their acquisition is enhanced by the presence of a discrete signal presented during the inter-trial intervals (ITIs, suggesting it is perceived as a safety signal. A series of experiments were conducted to determine if this is the case. Additional experiments investigated if the avoidance facilitation relies upon processing through medial prefrontal cortex (mPFC. The results suggest that the ITI-signal facilitates acquisition during the early stages of the avoidance acquisition process, when the rats are initially acquiring escape behavior and then transitioning to avoidance behavior. Post-avoidance introduction of the visual ITI-signal into other associative learning tasks failed to confirm that the visual stimulus had acquired the properties of a conditioned inhibitor. Shortening the signal from the entirety of the 3 min ITI to only the first 5 s of the 3 min ITI slowed acquisition during the first 4 sessions, suggesting the flashing light is not functioning as a feedback signal. The prelimbic (PL cortex showed greater activation during the period of training when the transition from escape responding to avoidance responding occurs. Only combined PL+infralimbic cortex lesions modestly slowed avoidance acquisition, but PL cortex lesions slowed avoidance response latencies. Thus, the flashing light ITI-signal is not likely perceived as a safety signal nor is it serving as a feedback signal. The functional role of the PL cortex appears to be to increase the drive towards responding to the threat of the warning signal. Hence, avoidance susceptibility displayed by male WKY rats may be driven, in part, both by external stimuli (ITI signal as well as by enhanced threat recognition to the warning signal via the PL cortex.

  1. Intent-Estimation- and Motion-Model-Based Collision Avoidance Method for Autonomous Vehicles in Urban Environments

    Directory of Open Access Journals (Sweden)

    Rulin Huang

    2017-04-01

    Full Text Available Existing collision avoidance methods for autonomous vehicles, which ignore the driving intent of detected vehicles, thus, cannot satisfy the requirements for autonomous driving in urban environments because of their high false detection rates of collisions with vehicles on winding roads and the missed detection rate of collisions with maneuvering vehicles. This study introduces an intent-estimation- and motion-model-based (IEMMB method to address these disadvantages. First, a state vector is constructed by combining the road structure and the moving state of detected vehicles. A Gaussian mixture model is used to learn the maneuvering patterns of vehicles from collected data, and the patterns are used to estimate the driving intent of the detected vehicles. Then, a desirable long-term trajectory is obtained by weighting time and comfort. The long-term trajectory and the short-term trajectory, which are predicted using a constant yaw rate motion model, are fused to achieve an accurate trajectory. Finally, considering the moving state of the autonomous vehicle, collisions can be detected and avoided. Experiments have shown that the intent estimation method performed well, achieving an accuracy of 91.7% on straight roads and an accuracy of 90.5% on winding roads, which is much higher than that achieved by the method that ignores the road structure. The average collision detection distance is increased by more than 8 m. In addition, the maximum yaw rate and acceleration during an evasive maneuver are decreased, indicating an improvement in the driving comfort.

  2. Modeling of driver's collision avoidance maneuver based on controller switching model.

    Science.gov (United States)

    Kim, Jong-Hae; Hayakawa, Soichiro; Suzuki, Tatsuya; Hayashi, Koji; Okuma, Shigeru; Tsuchida, Nuio; Shimizu, Masayuki; Kido, Shigeyuki

    2005-12-01

    This paper presents a modeling strategy of human driving behavior based on the controller switching model focusing on the driver's collision avoidance maneuver. The driving data are collected by using the three-dimensional (3-D) driving simulator based on the CAVE Automatic Virtual Environment (CAVE), which provides stereoscopic immersive virtual environment. In our modeling, the control scenario of the human driver, that is, the mapping from the driver's sensory information to the operation of the driver such as acceleration, braking, and steering, is expressed by Piecewise Polynomial (PWP) model. Since the PWP model includes both continuous behaviors given by polynomials and discrete logical conditions, it can be regarded as a class of Hybrid Dynamical System (HDS). The identification problem for the PWP model is formulated as the Mixed Integer Linear Programming (MILP) by transforming the switching conditions into binary variables. From the obtained results, it is found that the driver appropriately switches the "control law" according to the sensory information. In addition, the driving characteristics of the beginner driver and the expert driver are compared and discussed. These results enable us to capture not only the physical meaning of the driving skill but the decision-making aspect (switching conditions) in the driver's collision avoidance maneuver as well.

  3. LightForce Photon-Pressure Collision Avoidance: Updated Efficiency Analysis Utilizing a Highly Parallel Simulation Approach

    Science.gov (United States)

    Stupl, Jan; Faber, Nicolas; Foster, Cyrus; Yang, Fan Yang; Nelson, Bron; Aziz, Jonathan; Nuttall, Andrew; Henze, Chris; Levit, Creon

    2014-01-01

    This paper provides an updated efficiency analysis of the LightForce space debris collision avoidance scheme. LightForce aims to prevent collisions on warning by utilizing photon pressure from ground based, commercial off the shelf lasers. Past research has shown that a few ground-based systems consisting of 10 kilowatt class lasers directed by 1.5 meter telescopes with adaptive optics could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. Our simulation approach utilizes the entire Two Line Element (TLE) catalogue in LEO for a given day as initial input. Least-squares fitting of a TLE time series is used for an improved orbit estimate. We then calculate the probability of collision for all LEO objects in the catalogue for a time step of the simulation. The conjunctions that exceed a threshold probability of collision are then engaged by a simulated network of laser ground stations. After those engagements, the perturbed orbits are used to re-assess the probability of collision and evaluate the efficiency of the system. This paper describes new simulations with three updated aspects: 1) By utilizing a highly parallel simulation approach employing hundreds of processors, we have extended our analysis to a much broader dataset. The simulation time is extended to one year. 2) We analyze not only the efficiency of LightForce on conjunctions that naturally occur, but also take into account conjunctions caused by orbit perturbations due to LightForce engagements. 3) We use a new simulation approach that is regularly updating the LightForce engagement strategy, as it would be during actual operations. In this paper we present our simulation approach to parallelize the efficiency analysis, its computational performance and the resulting expected efficiency of the LightForce collision avoidance system. Results indicate that utilizing a network of four LightForce stations with 20 kilowatt lasers, 85% of all conjunctions with a

  4. THE DEVELOPMENT OF METHOD AND ON-BOARD DEVICES FOR COLLISION AVOIDANCE WHEN OVERTAKING

    Directory of Open Access Journals (Sweden)

    Podryhalo, M.

    2013-06-01

    Full Text Available A method for improving the safety of overtaking maneuver by using the on-board collision avoidance system, which has an increased assessment reliability of safety of vehicles overtaking that move in the same direction is offered. The proposed system takes into account the main factors that affect the overtaking maneuver.

  5. The facilitative nature of avoidance coping within sports injury rehabilitation.

    Science.gov (United States)

    Carson, F; Polman, R C J

    2010-04-01

    Avoidance coping has commonly been reported within literature to be a debilitative process. However, in situations where goal attainment is reduced or eradicated avoidance coping strategies appear to have some benefit. The aim of this study was to identify the role of avoidance coping within the sports injury rehabilitation setting. A mixed methodological approach was utilized with four professional male rugby union players, concurrent with their rehabilitation from anterior cruciate ligament (ACL) surgery. Twice monthly interviews were conducted with each player, along with a self-report diary and the Coping with Health, Injuries and Problems (CHIP; Endler & Parker, 2000) inventory. Content analysis showed six higher-order themes split into two general dimensions: (a) behavioral avoidance coping (physical distraction, social interaction, maladaptive behaviors), and (b) cognitive avoidance coping (denial, thought stopping, cognitive distraction). Results suggest avoidance coping strategies facilitate control of short-term emotional states, as well has appearing to have long-term benefits for injured players. Particular benefits were associated with undertaking alternate work within the sports organization.

  6. SU-E-T-754: Three-Dimensional Patient Modeling Using Photogrammetry for Collision Avoidance

    Energy Technology Data Exchange (ETDEWEB)

    Popple, R; Cardan, R [Univ Alabama Birmingham, Birmingham, AL (United States)

    2015-06-15

    Purpose: To evaluate photogrammetry for creating a three-dimensional patient model. Methods: A mannequin was configured on the couch of a CT scanner to simulate a patient setup using an indexed positioning device. A CT fiducial was placed on the indexed CT table-overlay at the reference index position. Two dimensional photogrammetry targets were placed on the table in known positions. A digital SLR camera was used to obtain 27 images from different positions around the CT table. The images were imported into a commercial photogrammetry package and a 3D model constructed. Each photogrammetry target was identified on 2 to 5 images. The CT DICOM metadata and the position of the CT fiducial were used to calculate the coordinates of the photogrammetry targets in the CT image frame of reference. The coordinates were transferred to the photogrammetry software to orient the 3D model. The mannequin setup was transferred to the treatment couch of a linear accelerator and positioned at isocenter using in-room lasers. The treatment couch coordinates were noted and compared with prediction. The collision free regions were measured over the full range of gantry and table motion and were compared with predictions obtained using a general purpose polygon interference algorithm. Results: The reconstructed 3D model consisted of 180000 triangles. The difference between the predicted and measured couch positions were 5 mm, 1 mm, and 1 mm for longitudinal, lateral, and vertical, respectively. The collision prediction tested 64620 gantry table combinations in 11.1 seconds. The accuracy was 96.5%, with false positive and negative results occurring at the boundaries of the collision space. Conclusion: Photogrammetry can be used as a tool for collision avoidance during treatment planning. The results indicate that a buffer zone is necessary to avoid false negatives at the boundary of the collision-free zone. Testing with human patients is underway. Research partially supported by a grant

  7. 35-GHz radar sensor for automotive collision avoidance

    Science.gov (United States)

    Zhang, Jun

    1999-07-01

    This paper describes the development of a radar sensor system used for automotive collision avoidance. Because the heavy truck may have great larger radar cross section than a motorcyclist has, the radar receiver may have a large dynamic range. And multi-targets at different speed may confuse the echo spectrum causing the ambiguity between range and speed of target. To get more information about target and background and to adapt to the large dynamic range and multi-targets, a frequency modulated and pseudo- random binary sequences phase modulated continuous wave radar system is described. The analysis of this double- modulation system is given. A high-speed signal processing and data processing component are used to process and combine the data and information from echo at different direction and at every moment.

  8. Real-time Collision Avoidance and Path Optimizer for Semi-autonomous UAVs.

    Science.gov (United States)

    Hawary, A. F.; Razak, N. A.

    2018-05-01

    Whilst UAV offers a potentially cheaper and more localized observation platform than current satellite or land-based approaches, it requires an advance path planner to reveal its true potential, particularly in real-time missions. Manual control by human will have limited line-of-sights and prone to errors due to careless and fatigue. A good alternative solution is to equip the UAV with semi-autonomous capabilities that able to navigate via a pre-planned route in real-time fashion. In this paper, we propose an easy-and-practical path optimizer based on the classical Travelling Salesman Problem and adopts a brute force search method to re-optimize the route in the event of collisions using range finder sensor. The former utilizes a Simple Genetic Algorithm and the latter uses Nearest Neighbour algorithm. Both algorithms are combined to optimize the route and avoid collision at once. Although many researchers proposed various path planning algorithms, we find that it is difficult to integrate on a basic UAV model and often lacks of real-time collision detection optimizer. Therefore, we explore a practical benefit from this approach using on-board Arduino and Ardupilot controllers by manually emulating the motion of an actual UAV model prior to test on the flying site. The result showed that the range finder sensor provides a real-time data to the algorithm to find a collision-free path and eventually optimized the route successfully.

  9. Ultra-low power anti-crosstalk collision avoidance light detection and ranging using chaotic pulse position modulation approach

    International Nuclear Information System (INIS)

    Hao Jie; Gong Ma-li; Du Peng-fei; Lu Bao-jie; Zhang Fan; Zhang Hai-tao; Fu Xing

    2016-01-01

    A novel concept of collision avoidance single-photon light detection and ranging (LIDAR) for vehicles has been demonstrated, in which chaotic pulse position modulation is applied on the transmitted laser pulses for robust anti-crosstalk purposes. Besides, single-photon detectors (SPD) and time correlated single photon counting techniques are adapted, to sense the ultra-low power used for the consideration of compact structure and eye safety. Parameters including pulse rate, discrimination threshold, and number of accumulated pulses have been thoroughly analyzed based on the detection requirements, resulting in specified receiver operating characteristics curves. Both simulation and indoor experiments were performed to verify the excellent anti-crosstalk capability of the presented collision avoidance LIDAR despite ultra-low transmitting power. (paper)

  10. Interaction of Harsh Weather Operation and Collision Avoidance in Autonomous Navigation

    Directory of Open Access Journals (Sweden)

    Hans-Christoph Burmeister

    2015-03-01

    Full Text Available Taking into account the autonomous navigation system design and today’s state of the art navigation with regards to weather and collision avoidance this paper presents the architecture of the integrated approach, its links to existing rules and regulations and the test scenarios. These demonstrate how safe and efficient navigation of autonomous vessels can be achieved by showing the module's interaction and validating the feasibility of the approach. These analyses will be based on historical traffic data sets as well as simulation results.

  11. Usability Analysis of Collision Avoidance System in Vehicle-to-Vehicle Communication Environment

    Directory of Open Access Journals (Sweden)

    Hong Cho

    2014-01-01

    Full Text Available Conventional intelligent vehicles have performance limitations owing to the short road and obstacle detection range of the installed sensors. In this study, to overcome this limitation, we tested the usability of a new conceptual autonomous emergency braking (AEB system that employs vehicle-to-vehicle (V2V communication technology in the existing AEB system. To this end, a radar sensor and a driving and communication environment constituting the AEB system were simulated; the simulation was then linked by applying vehicle dynamics and control logic. The simulation results show that the collision avoidance relaxation rate of V2V communication-based AEB system was reduced compared with that of existing vehicle-mounted-sensor-based system. Thus, a method that can lower the collision risk of the existing AEB system, which uses only a sensor cluster installed on the vehicle, is realized.

  12. Safety and Convergence Analysis of Intersecting Aircraft Flows Under Decentralized Collision Avoidance

    Science.gov (United States)

    Dallal, Ahmed H.

    Safety is an essential requirement for air traffic management and control systems. Aircraft are not allowed to get closer to each other than a specified safety distance, to avoid any conflicts and collisions between aircraft. Forecast analysis predicts a tremendous increase in the number of flights. Subsequently, automated tools are needed to help air traffic controllers resolve air born conflicts. In this dissertation, we consider the problem of conflict resolution of aircraft flows with the assumption that aircraft are flowing through a fixed specified control volume at a constant speed. In this regard, several centralized and decentralized resolution rules have been proposed for path planning and conflict avoidance. For the case of two intersecting flows, we introduce the concept of conflict touches, and a collaborative decentralized conflict resolution rule is then proposed and analyzed for two intersecting flows. The proposed rule is also able to resolved airborne conflicts that resulted from resolving another conflict via the domino effect. We study the safety conditions under the proposed conflict resolution and collision avoidance rule. Then, we use Lyapunov analysis to analytically prove the convergence of conflict resolution dynamics under the proposed rule. The analysis show that, under the proposed conflict resolution rule, the system of intersecting aircraft flows is guaranteed to converge to safe, conflict free, trajectories within a bounded time. Simulations are provided to verify the analytically derived conclusions and study the convergence of the conflict resolution dynamics at different encounter angles. Simulation results show that lateral deviations taken by aircraft in each flow, to resolve conflicts, are bounded, and aircraft converged to safe and conflict free trajectories, within a finite time.

  13. Optimal Recovery Trajectories for Automatic Ground Collision Avoidance Systems (Auto GCAS)

    Science.gov (United States)

    Suplisson, Angela W.

    The US Air Force recently fielded the F-16 Automatic Ground Collision Avoidance System (Auto GCAS). This system meets the operational requirements of being both aggressive and timely, meaning that extremely agile avoidance maneuvers will be executed at the last second to avoid the ground. This small window of automatic operation maneuvering in close proximity to the ground makes the problem challenging. There currently exists no similar Auto GCAS for manned military 'heavy' aircraft with lower climb performance such as transport, tanker, or bomber aircraft. The F-16 Auto GCAS recovery is a single pre-planned roll to wings-level and 5-g pull-up which is very effective for fighters due to their high g and climb performance, but it is not suitable for military heavy aircraft. This research proposes a new optimal control approach to the ground collision avoidance problem for heavy aircraft by mapping the aggressive and timely requirements of the automatic recovery to the optimal control formulation which includes lateral maneuvers around terrain. This novel mapping creates two ways to pose the optimal control problem for Auto GCAS; one as a Max Distance with a Timely Trigger formulation and the other as a Min Control with an Aggressive Trigger formulation. Further, the optimal path and optimal control admitted by these two formulations are demonstrated to be equivalent at the point the automatic recovery is initiated for the simplified 2-D case. The Min Control formulation was demonstrated to have faster computational speed and was chosen for the 3-D case. Results are presented for representative heavy aircraft scenarios against 3-D digital terrain. The Min Control formulation was then compared to a Multi-Trajectory Auto GCAS with five pre-planned maneuvers. Metrics were developed to quantify the improvement from using an optimal approach versus the pre-planned maneuvers. The proposed optimal Min Control method was demonstrated to require less control or trigger later

  14. The Control Packet Collision Avoidance Algorithm for the Underwater Multichannel MAC Protocols via Time-Frequency Masking

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2016-01-01

    Full Text Available Establishing high-speed and reliable underwater acoustic networks among multiunmanned underwater vehicles (UUVs is basic to realize cooperative and intelligent control among different UUVs. Nevertheless, different from terrestrial network, the propagation speed of the underwater acoustic network is 1500 m/s, which makes the design of the underwater acoustic network MAC protocols a big challenge. In accordance with multichannel MAC protocols, data packets and control packets are transferred through different channels, which lowers the adverse effect of acoustic network and gradually becomes the popular issues of underwater acoustic networks MAC protocol research. In this paper, we proposed a control packet collision avoidance algorithm utilizing time-frequency masking to deal with the control packets collision in the control channel. This algorithm is based on the scarcity of the noncoherent underwater acoustic communication signals, which regards collision avoiding as separation of the mixtures of communication signals from different nodes. We first measure the W-Disjoint Orthogonality of the MFSK signals and the simulation result demonstrates that there exists time-frequency mask which can separate the source signals from the mixture of the communication signals. Then we present a pairwise hydrophones separation system based on deep networks and the location information of the nodes. Consequently, the time-frequency mask can be estimated.

  15. Design of an Automatic Forward and Back Collision Avoidance System for Automobiles

    Directory of Open Access Journals (Sweden)

    Tasneem Sanjana

    2018-01-01

    Full Text Available This paper is the extended reflection of work originally presented in conference of Electrical, Computer and Communication Engineering (ECCE-CUET 2017, entitled “Automated Anti Collision System for Automobiles”. Automated collision avoidance system is a trending technology of science in automobile engineering. The aim of this paper is to design a system which will prevent collision from the front as well as the back for automobiles. This paper gives an overview of secure and smooth journey of car (vehicles as well as the certainty of human life. This system is controlled by microcontroller ATMEGA32. Two Sharp distance sensors are used to detect object within the danger range where one is for front detection and other is for back detection. A crystal oscillator is used to produce the oscillation and generates the clock pulse of the microcontroller. An LCD and a GLCD are used to give information about the safe distance for front and rear respectively, and a buzzer is used as alarm. An actuator is used as automatic brake and inside the actuator there is a motor driver that runs the actuator. For coding “microC PRO for PIC” is used and “Proteus Design Suite Version 8 Software” is used for simulation.

  16. Zero Distribution of System with Unknown Random Variables Case Study: Avoiding Collision Path

    Directory of Open Access Journals (Sweden)

    Parman Setyamartana

    2014-07-01

    Full Text Available This paper presents the stochastic analysis of finding the feasible trajectories of robotics arm motion at obstacle surrounding. Unknown variables are coefficients of polynomials joint angle so that the collision-free motion is achieved. ãk is matrix consisting of these unknown feasible polynomial coefficients. The pattern of feasible polynomial in the obstacle environment shows as random. This paper proposes to model the pattern of this randomness values using random polynomial with unknown variables as coefficients. The behavior of the system will be obtained from zero distribution as the characteristic of such random polynomial. Results show that the pattern of random polynomial of avoiding collision can be constructed from zero distribution. Zero distribution is like building block of the system with obstacles as uncertainty factor. By scale factor k, which has range, the random coefficient pattern can be predicted.

  17. Modelling and Analysis of a Collision Avoidance Protocol using SPIN and UPPAAL

    DEFF Research Database (Denmark)

    Skou, Arne; Larsen, Kim Guldstrand; Jensen, Henrik Ejersbo

    1997-01-01

    , the modelling of the media becomes ackward due to the lack of broadcast communication in the PROMELA language. On the other hand we find it easy to model the timed aspects using the UPPAAL tool. Especially, the notion of committed locations supports the modelling of broadcast communication. However......This paper compares the tools SPIN and UPPAAL by modelling and verifying a Collision Avoidance Protocol for an Ethernet-like medium. We find that SPIN is well suited for modelling the untimed aspects of the protocol processes and for expressing the relevant (untimed) properties. However...

  18. Advanced Emergency Braking Controller Design for Pedestrian Protection Oriented Automotive Collision Avoidance System

    OpenAIRE

    Lie, Guo; Zejian, Ren; Pingshu, Ge; Jing, Chang

    2014-01-01

    Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the cu...

  19. Collision Avoidance Short Course: Conjunction Assessment Risk Analysis - NASA Robotic CARA. Part I: ; Theory

    Science.gov (United States)

    Hejduk, M. D.; Frigm, Ryan C.

    2015-01-01

    Satellite conjunction assessment is perhaps the fastest growing area in space situational awareness and protection with military, civil and commercial satellite owner-operators embracing more and more sophisticated processes to avoid the avoidable - namely collisions between high value space assets and orbital debris. NASA and Centre National d'Etudes Spatiales (CNES) have collaborated to offer an introductory short course on all the major aspects of the conjunctions assessment problem. This half-day course will cover satellite conjunction dynamics and theory. Joint Space Operations Center (JsPOC) conjunction data products, major risk assessment parameters and plots, conjunction remediation decision support, and present and future challenges. This briefing represents the NASA portion of the course.

  20. Design and development of a unit element microstrip antenna for aircraft collision avoidance system

    Science.gov (United States)

    De, Debajit; Sahu, Prasanna Kumar

    2017-10-01

    Aircraft/traffic alert and collision avoidance system (ACAS/TCAS) is an airborne system which is designed to provide the service as a last defense equipment for avoiding mid-air collisions between the aircraft. In the existing system, four monopole stub-elements are used as ACAS directional antenna and one blade type element is used as ACAS omnidirectional antenna. The existing ACAS antenna has some drawbacks such as low gain, large beamwidth, frequency and beam tuning/scanning issues etc. Antenna issues like unwanted signals reception may create difficulties to identify the possible threats. In this paper, the focus is on the design and development of a unit element microstrip antenna which can be used for ACAS application and to overcome the possible limitations associated with the existing techniques. Two proposed antenna models are presented here, which are single feed and dual feed microstrip dual patch slotted antenna. These are designed and simulated in CST Microwave Studio tool. The performance and other antenna characteristics have been explored from the simulation results followed by the antenna fabrication and measurement. A good reflection coefficient, Voltage Standing Wave Ratio (VSWR), narrow beamwidth, perfect directional radiation pattern, high gain and directivity make this proposed antenna a good candidate for this application.

  1. Design of a WSN-Based Monitoring System for Avoiding Collision of Tower Cranes

    Directory of Open Access Journals (Sweden)

    Jiannong Wang

    2014-07-01

    Full Text Available Tower cranes in large construction projects are likely to collide with other cranes close to them during the operation, which is a severe hazard to the security of the staff. Thus, a WSN- based monitoring system for avoiding collision of tower cranes is proposed. The 3D data positioning technology is used to install angle and position sensors at intervals in the cranes in order to collect position data in real time. After the data are sent to the upper computer, the computer calculates the distance using the 3D positioning technique and sets a proper threshold for alarm. When the measured distance is smaller than the threshold, the alarm is set off to prevent collision. In the experiment, three pairs of cranes 15-22 m in height that are located separately are tested in terms of errors in data collection and in alarms. The experimental results show that the proposed system has an alarm accuracy of 99.3 %, and thus, is highly applicable.

  2. LightForce Photon-pressure Collision Avoidance: Efficiency Analysis in the Current Debris Environment and Long-Term Simulation Perspective

    Science.gov (United States)

    Yang, Fan Y.; Nelson, Bron; Carlino, Roberto; Perez, Andres D.; Faber, Nicolas; Henze, Chris; Karacahoglu, Arif G.; O'Toole, Conor; Swenson, Jason; Stupl, Jan

    2015-01-01

    This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 10kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce's utility in the short-term, the remaining 15 percent of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planed simulation approach for that effort.

  3. Conceptual model for collision detection and avoidance for runway incursion prevention

    Science.gov (United States)

    Latimer, Bridgette A.

    The Federal Aviation Administration (FAA), National Transportation and Safety Board (NTSB), National Aeronautics and Space Administration (NASA), numerous corporate entities, and research facilities have each come together to determine ways to make air travel safer and more efficient. These efforts have resulted in the development of a concept known as the Next Generation (Next Gen) of Aircraft or Next Gen. The Next Gen concept promises to be a clear departure from the way in which aircraft operations are performed today. The Next Gen initiatives require that modifications are made to the existing National Airspace System (NAS) concept of operations, system level requirements, software (SW) and hardware (HW) requirements, SW and HW designs and implementations. A second example of the changes in the NAS is the shift away from air traffic controllers having the responsibility for separation assurance. In the proposed new scheme of free flight, each aircraft would be responsible for assuring that it is safely separated from surrounding aircraft. Free flight would allow the separation minima for enroute aircraft to be reduced from 2000 nautical miles (nm) to 1000 nm. Simply put "Free Flight is a concept of air traffic management that permits pilots and controllers to share information and work together to manage air traffic from pre-flight through arrival without compromising safety [107]." The primary goal of this research project was to create a conceptual model that embodies the essential ingredients needed for a collision detection and avoidance system. This system was required to operate in two modes: air traffic controller's perspective and pilot's perspective. The secondary goal was to demonstrate that the technologies, procedures, and decision logic embedded in the conceptual model were able to effectively detect and avoid collision risks from both perspectives. Embodied in the conceptual model are five distinct software modules: Data Acquisition, State

  4. Cost and benefit estimates of partially-automated vehicle collision avoidance technologies.

    Science.gov (United States)

    Harper, Corey D; Hendrickson, Chris T; Samaras, Constantine

    2016-10-01

    Many light-duty vehicle crashes occur due to human error and distracted driving. Partially-automated crash avoidance features offer the potential to reduce the frequency and severity of vehicle crashes that occur due to distracted driving and/or human error by assisting in maintaining control of the vehicle or issuing alerts if a potentially dangerous situation is detected. This paper evaluates the benefits and costs of fleet-wide deployment of blind spot monitoring, lane departure warning, and forward collision warning crash avoidance systems within the US light-duty vehicle fleet. The three crash avoidance technologies could collectively prevent or reduce the severity of as many as 1.3 million U.S. crashes a year including 133,000 injury crashes and 10,100 fatal crashes. For this paper we made two estimates of potential benefits in the United States: (1) the upper bound fleet-wide technology diffusion benefits by assuming all relevant crashes are avoided and (2) the lower bound fleet-wide benefits of the three technologies based on observed insurance data. The latter represents a lower bound as technology is improved over time and cost reduced with scale economies and technology improvement. All three technologies could collectively provide a lower bound annual benefit of about $18 billion if equipped on all light-duty vehicles. With 2015 pricing of safety options, the total annual costs to equip all light-duty vehicles with the three technologies would be about $13 billion, resulting in an annual net benefit of about $4 billion or a $20 per vehicle net benefit. By assuming all relevant crashes are avoided, the total upper bound annual net benefit from all three technologies combined is about $202 billion or an $861 per vehicle net benefit, at current technology costs. The technologies we are exploring in this paper represent an early form of vehicle automation and a positive net benefit suggests the fleet-wide adoption of these technologies would be beneficial

  5. Algorithms for Collision Detection Between a Point and a Moving Polygon, with Applications to Aircraft Weather Avoidance

    Science.gov (United States)

    Narkawicz, Anthony; Hagen, George

    2016-01-01

    This paper proposes mathematical definitions of functions that can be used to detect future collisions between a point and a moving polygon. The intended application is weather avoidance, where the given point represents an aircraft and bounding polygons are chosen to model regions with bad weather. Other applications could possibly include avoiding other moving obstacles. The motivation for the functions presented here is safety, and therefore they have been proved to be mathematically correct. The functions are being developed for inclusion in NASA's Stratway software tool, which allows low-fidelity air traffic management concepts to be easily prototyped and quickly tested.

  6. Changes in Drivers’ Visual Performance during the Collision Avoidance Process as a Function of Different Field of Views at Intersections

    Science.gov (United States)

    Yan, Xuedong; Zhang, Xinran; Zhang, Yuting; Li, Xiaomeng; Yang, Zhuo

    2016-01-01

    The intersection field of view (IFOV) indicates an extent that the visual information can be observed by drivers. It has been found that further enhancing IFOV can significantly improve emergent collision avoidance performance at intersections, such as faster brake reaction time, smaller deceleration rate, and lower traffic crash involvement risk. However, it is not known how IFOV affects drivers’ eye movements, visual attention and the relationship between visual searching and traffic safety. In this study, a driving simulation experiment was conducted to uncover the changes in drivers’ visual performance during the collision avoidance process as a function of different field of views at an intersection by using an eye tracking system. The experimental results showed that drivers’ ability in identifying the potential hazard in terms of visual searching was significantly affected by different IFOV conditions. As the IFOVs increased, drivers had longer gaze duration (GD) and more number of gazes (NG) in the intersection surrounding areas and paid more visual attention to capture critical visual information on the emerging conflict vehicle, thus leading to a better collision avoidance performance and a lower crash risk. It was also found that female drivers had a better visual performance and a lower crash rate than male drivers. From the perspective of drivers’ visual performance, the results strengthened the evidence that further increasing intersection sight distance standards should be encouraged for enhancing traffic safety. PMID:27716824

  7. Avoiding inappropriate paediatric admission: facilitating General Practitioner referral to Community Children’s Nursing Teams

    Directory of Open Access Journals (Sweden)

    Kyle Richard G

    2013-01-01

    Full Text Available Abstract Background Children’s emergency admissions in England are increasing. Community Children’s Nursing Teams (CCNTs have developed services to manage acutely ill children at home to reduce demand for unscheduled care. Referral between General Practitioners (GPs and CCNTs may reduce avoidable admissions and minimise the psychosocial and financial impact of hospitalisation on children, families and the NHS. However, facilitators of GP referral to CCNTs are not known. The aim of this study was to identify facilitators of GP referral to CCNTs. Methods Semi-structured interviews with 39 health professionals were conducted between June 2009 and February 2010 in three Primary Care Trusts served by CCNTs in North West England. Interviewees included GPs, Community Children’s Nurses (CCNs, consultant paediatricians, commissioners, and service managers. Qualitative data were analysed thematically using the Framework approach in NVivo 8. Results Five facilitators were identified: 1 CCN/CCNT visibility; 2 clear clinical governance procedures; 3 financial and organisational investment in the role of CCNTs in acute care pathways; 4 access and out of hours availability; 5 facilitative financial frameworks. Conclusion GPs required confidence in CCNs’ competence to safely manage acutely ill children at home and secure rapid referral if a child’s condition deteriorated. Incremental approaches to developing GP referral to CCNTs underpinned by clear clinical governance protocols are likely to be most effective in building GP confidence and avoiding inappropriate admission.

  8. Post-attack aposematic display in prey facilitates predator avoidance learning

    Directory of Open Access Journals (Sweden)

    Changku eKang

    2016-04-01

    Full Text Available Warning signals protect unpalatable prey from predation because predators who learn the association between the warning signal and prey unprofitability decrease attacks on the prey. Most of the research have focused on visual aposematic signals that are constantly presented and visible to the predators. But a variety of chemically defended insects are rather cryptic when resting, and only in response to predator attacks (post-attack they perform displays of conspicuous abdomens or hindwings normally hidden under forewings. The function of those displays in unpalatable insects is not well understood. We examined two adaptive hypotheses on this facultative aposematic display using wild-caught oriental tits (Parus minor as predators. First, we tested whether the display increases the rejection of the prey by predators upon seeing the display (i.e. at the moment of attack through learning trials (aposematic signaling hypothesis. Second, we tested whether the display facilitates the memory formation between cryptic visible form of the prey and prey defense so that it prevents the predators initiate an attack upon seeing the cryptic form (facilitation hypothesis. We found that predators learned to avoid attacking the prey which supports the facilitation hypothesis. However, the support for the aposematic signaling hypothesis was equivocal. Our results open new directions of research by highlighting the possibility that similar facilitation effects may contribute to the evolution of various forms of post-attack visual displays in chemically, or otherwise, defended animals.

  9. Risk management algorithm for rear-side collision avoidance using a combined steering torque overlay and differential braking

    Science.gov (United States)

    Lee, Junyung; Yi, Kyongsu; Yoo, Hyunjae; Chong, Hyokjin; Ko, Bongchul

    2015-06-01

    This paper describes a risk management algorithm for rear-side collision avoidance. The proposed risk management algorithm consists of a supervisor and a coordinator. The supervisor is designed to monitor collision risks between the subject vehicle and approaching vehicle in the adjacent lane. An appropriate criterion of intervention, which satisfies high acceptance to drivers through the consideration of a realistic traffic, has been determined based on the analysis of the kinematics of the vehicles in longitudinal and lateral directions. In order to assist the driver actively and increase driver's safety, a coordinator is designed to combine lateral control using a steering torque overlay by motor-driven power steering and differential braking by vehicle stability control. In order to prevent the collision while limiting actuator's control inputs and vehicle dynamics to safe values for the assurance of the driver's comfort, the Lyapunov theory and linear matrix inequalities based optimisation methods have been used. The proposed risk management algorithm has been evaluated via simulation using CarSim and MATLAB/Simulink.

  10. Two-Dimensional Distributed Velocity Collision Avoidance

    Science.gov (United States)

    2014-02-11

    place (i.e., in the global problem space) as much as possible in an effort to simplify the process/description. Additionally, to make some of the...guide agents without collision in the vast majority of cases. NAWCWD TP 8786 31 7.0 REFERENCES 1. P. L. Franchi . “Near Misses Between

  11. Effective usage of a clearance check to avoid a collision in Gamma Knife Perfexion radiosurgery with the Leksell skull frame

    International Nuclear Information System (INIS)

    Nakazawa, Hisato; Komori, Masataka; Tsugawa, Takahiko; Hagiwara, Masahiro; Hashizume, Chisa; Kobayashi, Tatsuya; Mori, Yoshimasa; Shibamoto, Yuta

    2014-01-01

    Skull frame attachment is one of the most significant issues with Gamma Knife radiosurgery. Because of the potential for suffering by patients, careful control of the frame position is required to avoid circumstances such as collision between the frame or the patient's head and the collimator helmet, and inaccessible target coordinates. This study sought to develop a simulation method to find the appropriate frame location on the patient's head by retrospective analysis of treatment plans for brain metastasis cases. To validate the accuracy of the collision warning, we compared the collision distance calculated using Leksell Gamma Plan (LGP) with actual measured distances. We then investigated isocenter coordinates in near-collision cases using data from 844 previously treated patients and created a clearance map by superimposing them on CT images for just the frame, post and stereotactic fiducial box. The differences in distance between the simulation in LGP and the measured values were <1.0 mm. In 177 patients, 213 lesions and 461 isocenters, there was a warning of one possible collision. The clearance map was helpful for simulating appropriate skull frame placement. The clearance simulation eliminates the psychological stress associated with potential collisions, and enables more comfortable treatment for the patient. (author)

  12. Unmanned Aircraft Systems Human-in-the-Loop Controller and Pilot Acceptability Study: Collision Avoidance, Self-Separation, and Alerting Times (CASSAT)

    Science.gov (United States)

    Comstock, James R., Jr.; Ghatas, Rania W.; Vincent, Michael J.; Consiglio, Maria C.; Munoz, Cesar; Chamberlain, James P.; Volk, Paul; Arthur, Keith E.

    2016-01-01

    The Federal Aviation Administration (FAA) has been mandated by the Congressional funding bill of 2012 to open the National Airspace System (NAS) to Unmanned Aircraft Systems (UAS). With the growing use of unmanned systems, NASA has established a multi-center "UAS Integration in the NAS" Project, in collaboration with the FAA and industry, and is guiding its research efforts to look at and examine crucial safety concerns regarding the integration of UAS into the NAS. Key research efforts are addressing requirements for detect-and-avoid (DAA), self-separation (SS), and collision avoidance (CA) technologies. In one of a series of human-in-the-loop experiments, NASA Langley Research Center set up a study known as Collision Avoidance, Self-Separation, and Alerting Times (CASSAT). The first phase assessed active air traffic controller interactions with DAA systems and the second phase examined reactions to the DAA system and displays by UAS Pilots at a simulated ground control station (GCS). Analyses of the test results from Phase I and Phase II are presented in this paper. Results from the CASSAT study and previous human-in-the-loop experiments will play a crucial role in the FAA's establishment of rules, regulations, and procedures to safely, efficiently, and effectively integrate UAS into the NAS.

  13. Perseveration effects in detection tasks with correlated decision intervals. [applied to pilot collision avoidance

    Science.gov (United States)

    Gai, E. G.; Curry, R. E.

    1978-01-01

    An investigation of the behavior of the human decisionmaker is described for a task related to the problem of a pilot using a traffic situation display to avoid collisions. This sequential signal detection task is characterized by highly correlated signals with time varying strength. Experimental results are presented and the behavior of the observers is analyzed using the theory of Markov processes and classical signal detection theory. Mathematical models are developed which describe the main result of the experiment: that correlation in sequential signals induced perseveration in the observer response and a strong tendency to repeat their previous decision, even when they were wrong.

  14. Analysis of Compression Algorithm in Ground Collision Avoidance Systems (Auto-GCAS)

    Science.gov (United States)

    Schmalz, Tyler; Ryan, Jack

    2011-01-01

    Automatic Ground Collision Avoidance Systems (Auto-GCAS) utilizes Digital Terrain Elevation Data (DTED) stored onboard a plane to determine potential recovery maneuvers. Because of the current limitations of computer hardware on military airplanes such as the F-22 and F-35, the DTED must be compressed through a lossy technique called binary-tree tip-tilt. The purpose of this study is to determine the accuracy of the compressed data with respect to the original DTED. This study is mainly interested in the magnitude of the error between the two as well as the overall distribution of the errors throughout the DTED. By understanding how the errors of the compression technique are affected by various factors (topography, density of sampling points, sub-sampling techniques, etc.), modifications can be made to the compression technique resulting in better accuracy. This, in turn, would minimize unnecessary activation of A-GCAS during flight as well as maximizing its contribution to fighter safety.

  15. Rear end collision: Causes and avoidance techniques

    NARCIS (Netherlands)

    Nekovee, Maziar; Bie, Jing; Naja, Rola

    2013-01-01

    Rear-end collision is one of the most frequent accidents occurring on roadways. This chapter investigates how vehicle’s local parameters in a platoon of cars (i.e., perception and information collection, vehicle speed, safe distance, braking parameters) affect the global behavior of the traffic

  16. Stereo-based Collision Avoidance System for Urban Traffic

    Science.gov (United States)

    Moriya, Takashi; Ishikawa, Naoto; Sasaki, Kazuyuki; Nakajima, Masato

    2002-11-01

    Numerous car accidents occur on urban road. However, researches done so far on driving assistance are subjecting highways whose environment is relatively simple and easy to handle, and new approach for urban settings is required. Our purpose is to extend its support to the following conditions in city traffic: the presence of obstacles such as pedestrians and telephone poles; the lane mark is not always drawn on a road; drivers may lack the sense of awareness of the lane mark. We propose a collision avoidance system, which can be applied to both highways and urban traffic environment. In our system, stereo cameras are set in front of a vehicle and the captured images are processed through a computer. We create a Projected Disparity Map (PDM) from stereo image pair, which is a disparity histogram taken along ordinate direction of obtained disparity image. When there is an obstacle in front, we can detect it by finding a peak appeared in the PDM. With a speed meter and a steering sensor, the stop distance and the radius of curvature of the self-vehicle are calculated, in order to set the observation-required area, which does not depend on lane marks, within a PDM. A danger level will be computed from the distance and the relative speed to the closest approaching object detected within the observation-required area. The method has been tested in urban traffic scenes and has shown to be effective for judging dangerous situation, and gives proper alarm to a driver.

  17. Head-Up Auditory Displays for Traffic Collision Avoidance System Advisories: A Preliminary Investigation

    Science.gov (United States)

    Begault, Durand R.

    1993-01-01

    The advantage of a head-up auditory display was evaluated in a preliminary experiment designed to measure and compare the acquisition time for capturing visual targets under two auditory conditions: standard one-earpiece presentation and two-earpiece three-dimensional (3D) audio presentation. Twelve commercial airline crews were tested under full mission simulation conditions at the NASA-Ames Man-Vehicle Systems Research Facility advanced concepts flight simulator. Scenario software generated visual targets corresponding to aircraft that would activate a traffic collision avoidance system (TCAS) aural advisory; the spatial auditory position was linked to the visual position with 3D audio presentation. Results showed that crew members using a 3D auditory display acquired targets approximately 2.2 s faster than did crew members who used one-earpiece head- sets, but there was no significant difference in the number of targets acquired.

  18. Dynamic Obstacle Avoidance for Unmanned Underwater Vehicles Based on an Improved Velocity Obstacle Method

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2017-11-01

    Full Text Available In view of a dynamic obstacle environment with motion uncertainty, we present a dynamic collision avoidance method based on the collision risk assessment and improved velocity obstacle method. First, through the fusion optimization of forward-looking sonar data, the redundancy of the data is reduced and the position, size and velocity information of the obstacles are obtained, which can provide an accurate decision-making basis for next-step collision avoidance. Second, according to minimum meeting time and the minimum distance between the obstacle and unmanned underwater vehicle (UUV, this paper establishes the collision risk assessment model, and screens key obstacles to avoid collision. Finally, the optimization objective function is established based on the improved velocity obstacle method, and a UUV motion characteristic is used to calculate the reachable velocity sets. The optimal collision speed of UUV is searched in velocity space. The corresponding heading and speed commands are calculated, and outputted to the motion control module. The above is the complete dynamic obstacle avoidance process. The simulation results show that the proposed method can obtain a better collision avoidance effect in the dynamic environment, and has good adaptability to the unknown dynamic environment.

  19. A probabilistic model for hydrokinetic turbine collision risks: exploring impacts on fish.

    Science.gov (United States)

    Hammar, Linus; Eggertsen, Linda; Andersson, Sandra; Ehnberg, Jimmy; Arvidsson, Rickard; Gullström, Martin; Molander, Sverker

    2015-01-01

    A variety of hydrokinetic turbines are currently under development for power generation in rivers, tidal straits and ocean currents. Because some of these turbines are large, with rapidly moving rotor blades, the risk of collision with aquatic animals has been brought to attention. The behavior and fate of animals that approach such large hydrokinetic turbines have not yet been monitored at any detail. In this paper, we conduct a synthesis of the current knowledge and understanding of hydrokinetic turbine collision risks. The outcome is a generic fault tree based probabilistic model suitable for estimating population-level ecological risks. New video-based data on fish behavior in strong currents are provided and models describing fish avoidance behaviors are presented. The findings indicate low risk for small-sized fish. However, at large turbines (≥5 m), bigger fish seem to have high probability of collision, mostly because rotor detection and avoidance is difficult in low visibility. Risks can therefore be substantial for vulnerable populations of large-sized fish, which thrive in strong currents. The suggested collision risk model can be applied to different turbine designs and at a variety of locations as basis for case-specific risk assessments. The structure of the model facilitates successive model validation, refinement and application to other organism groups such as marine mammals.

  20. A probabilistic model for hydrokinetic turbine collision risks: exploring impacts on fish.

    Directory of Open Access Journals (Sweden)

    Linus Hammar

    Full Text Available A variety of hydrokinetic turbines are currently under development for power generation in rivers, tidal straits and ocean currents. Because some of these turbines are large, with rapidly moving rotor blades, the risk of collision with aquatic animals has been brought to attention. The behavior and fate of animals that approach such large hydrokinetic turbines have not yet been monitored at any detail. In this paper, we conduct a synthesis of the current knowledge and understanding of hydrokinetic turbine collision risks. The outcome is a generic fault tree based probabilistic model suitable for estimating population-level ecological risks. New video-based data on fish behavior in strong currents are provided and models describing fish avoidance behaviors are presented. The findings indicate low risk for small-sized fish. However, at large turbines (≥5 m, bigger fish seem to have high probability of collision, mostly because rotor detection and avoidance is difficult in low visibility. Risks can therefore be substantial for vulnerable populations of large-sized fish, which thrive in strong currents. The suggested collision risk model can be applied to different turbine designs and at a variety of locations as basis for case-specific risk assessments. The structure of the model facilitates successive model validation, refinement and application to other organism groups such as marine mammals.

  1. Message Collision Avoidance Protocols for Detecting Stray Nodes in a Scuba Diving Group Using Ultrasonic Multi-Hop Message Communication

    Directory of Open Access Journals (Sweden)

    Shinya Kaido

    2017-12-01

    Full Text Available Recent years have seen a growing interest in underwater communication and some progress has been made in this area. However, underwater communication is still immature compared with terrestrial communication. A prime reason for this is that the underwater environment is intrinsically not suitable for propagation of electric waves. Instead, ultrasonic waves are mainly used for underwater communication. Since ultrasonic waves cannot provide sufficient communication speed or capacity, they cannot use existing network technologies, which assume use of radio waves. In particular, communication in shallow water is still an uncharted territory. Few communication technologies are employed in environments where people enjoy scuba diving. This paper addresses problems faced by recreational scuba divers. It proposes constructing an ad hoc mesh-shaped network between divers within a group and use ultrasonic waves as transmission media in order to enable the detection of a stray diver. It also proposes a communication protocol in which messages are relayed in multiple hops, and a message collision avoidance method, which is intended to reduce the rate of packet loss caused by message propagation delay. We have implemented the proposed methods in a network simulator, and compared them with an existing communication method that has no message collision avoidance function, in terms of the packet loss rate, the stray driver detection rate, and the rate of the ability to communicate in multiple hops.

  2. Verbal collision avoidance messages during simulated driving: perceived urgency, alerting effectiveness and annoyance.

    Science.gov (United States)

    Baldwin, Carryl L

    2011-04-01

    Matching the perceived urgency of an alert with the relative hazard level of the situation is critical for effective alarm response. Two experiments describe the impact of acoustic and semantic parameters on ratings of perceived urgency, annoyance and alerting effectiveness and on alarm response speed. Within a simulated driving context, participants rated and responded to collision avoidance system (CAS) messages spoken by a female or male voice (experiments 1 and 2, respectively). Results indicated greater perceived urgency and faster alarm response times as intensity increased from -2 dB signal to noise (S/N) ratio to +10 dB S/N, although annoyance ratings increased as well. CAS semantic content interacted with alarm intensity, indicating that at lower intensity levels participants paid more attention to the semantic content. Results indicate that both acoustic and semantic parameters independently and interactively impact CAS alert perceptions in divided attention conditions and this work can inform auditory alarm design for effective hazard matching. Matching the perceived urgency of an alert with the relative hazard level of the situation is critical for effective alarm response. Here, both acoustic and semantic parameters independently and interactively impacted CAS alert perceptions in divided attention conditions. This work can inform auditory alarm design for effective hazard matching. STATEMENT OF RELEVANCE: Results indicate that both acoustic parameters and semantic content can be used to design collision warnings with a range of urgency levels. Further, these results indicate that verbal warnings tailored to a specific hazard situation may improve hazard-matching capabilities without substantial trade-offs in perceived annoyance.

  3. Uav Positioning and Collision Avoidance Based on RSS Measurements

    Science.gov (United States)

    Masiero, A.; Fissore, F.; Guarnieri, A.; Pirotti, F.; Vettore, A.

    2015-08-01

    In recent years, Unmanned Aerial Vehicles (UAVs) are attracting more and more attention in both the research and industrial communities: indeed, the possibility to use them in a wide range of remote sensing applications makes them a very flexible and attractive solution in both civil and commercial cases (e.g. precision agriculture, security and control, monitoring of sites, exploration of areas difficult to reach). Most of the existing UAV positioning systems rely on the use of the GPS signal. Despite this can be a satisfactory solution in open environments where the GPS signal is available, there are several operating conditions of interest where it is unavailable or unreliable (e.g. close to high buildings, or mountains, in indoor environments). Consequently, a different approach has to be adopted in these cases. This paper considers the use ofWiFi measurements in order to obtain position estimations of the device of interest. More specifically, to limit the costs for the devices involved in the positioning operations, an approach based on radio signal strengths (RSS) measurements is considered. Thanks to the use of a Kalman filter, the proposed approach takes advantage of the temporal dynamic of the device of interest in order to improve the positioning results initially provided by means of maximum likelihood estimations. The considered UAVs are assumed to be provided with communication devices, which can allow them to communicate with each other in order to improve their cooperation abilities. In particular, the collision avoidance problem is examined in this work.

  4. Sequential Probability Ratio Test for Collision Avoidance Maneuver Decisions Based on a Bank of Norm-Inequality-Constrained Epoch-State Filters

    Science.gov (United States)

    Carpenter, J. R.; Markley, F. L.; Alfriend, K. T.; Wright, C.; Arcido, J.

    2011-01-01

    Sequential probability ratio tests explicitly allow decision makers to incorporate false alarm and missed detection risks, and are potentially less sensitive to modeling errors than a procedure that relies solely on a probability of collision threshold. Recent work on constrained Kalman filtering has suggested an approach to formulating such a test for collision avoidance maneuver decisions: a filter bank with two norm-inequality-constrained epoch-state extended Kalman filters. One filter models 1he null hypothesis 1ha1 the miss distance is inside the combined hard body radius at the predicted time of closest approach, and one filter models the alternative hypothesis. The epoch-state filter developed for this method explicitly accounts for any process noise present in the system. The method appears to work well using a realistic example based on an upcoming highly-elliptical orbit formation flying mission.

  5. SU-E-T-64: CG-Based Radiation Therapy Simulator with Physical Modeling for Avoidance of Collisions Between Gantry and Couch Or Patient

    International Nuclear Information System (INIS)

    Yamanouchi, M; Arimura, H; Yuda, I

    2014-01-01

    Purpose: It is time-consuming and might cause re-planning to check couch-gantry and patient-gantry collisions on a radiotherapy machine when using couch rotations for non-coplanar beam angles. The aim of this study was to develop a computer-graphics (CG)-based radiation therapy simulator with physical modeling for avoidance of collisions between gantry and couch or patient on a radiotherapy machine. Methods: The radiation therapy simulator was three-dimensionally constructed including a radiotherapy machine (Clinac iX, Varian Medical Systems), couch, and radiation treatment room according to their designs by using a physical-modeling-based computer graphics software (Blender, free and open-source). Each patient was modeled by applying a surface rendering technique to their planning computed tomography (CT) images acquired from 16-slice CT scanner (BrightSpeed, GE Healthcare). Immobilization devices for patients were scanned by the CT equipment, and were rendered as the patient planning CT images. The errors in the collision angle of the gantry with the couch or patient between gold standards and the estimated values were obtained by fixing the gantry angle for the evaluation of the proposed simulator. Results: The average error of estimated collision angles to the couch head side was -8.5% for gantry angles of 60 to 135 degree, and -5.5% for gantry angles of 225 to 300 degree. Moreover, the average error of estimated collision angles to the couch foot side was -1.1% for gantry angles of 60 to 135 degree, and 1.4% for gantry angles of 225 to 300 degree. Conclusion: The CG-based radiation therapy simulator could make it possible to estimate the collision angle between gantry and couch or patient on the radiotherapy machine without verifying the collision angles in the radiation treatment room

  6. Ketamine facilitates extinction of avoidance behavior and enhances synaptic plasticity in a rat model of anxiety vulnerability: Implications for the pathophysiology and treatment of anxiety disorders.

    Science.gov (United States)

    Fortress, Ashley M; Smith, Ian M; Pang, Kevin C H

    2018-05-08

    Anxiety disorders and posttraumatic stress disorder (PTSD) share a common feature of pathological avoidance behavior. The Wistar Kyoto (WKY) rat has been used as a model of anxiety vulnerability, expressing a behaviorally inhibited temperament, acquiring avoidance behavior more rapidly and displaying extinction-resistant avoidance compared to Sprague Dawley (SD) rats. Subanesthetic levels of ketamine have gained attention as a rapid antidepressant in treatment-resistant depression. While traditional antidepressants are commonly used to treat anxiety disorders and PTSD, the therapeutic utility of ketamine for these disorders is much less understood. The hippocampus is critical for the actions of antidepressants, is a structure of implicated in anxiety disorders and PTSD, and is necessary for extinction of avoidance in SD rats. WKY rats have impaired hippocampal long-term potentiation (LTP), suggesting that persistent avoidance in WKY rats may be due to deficient hippocampal synaptic plasticity. In the present study, we hypothesized that ketamine would facilitate extinction of avoidance learning in WKY rats, and do so by enhancing hippocampal synaptic plasticity. As predicted, ketamine facilitated extinction of avoidance behavior in a subset of WKY rats (responders), with effects lasting at least three weeks. Additionally, LTP in these rats was enhanced by ketamine. Ketamine was not effective in facilitating avoidance extinction or in modifying LTP in WKY non-responders. The results suggest that subanesthetic levels of ketamine may be useful for treating anxiety disorders by reducing avoidance behaviors when combined with extinction conditions. Moreover, ketamine may have its long-lasting behavioral effects through enhancing hippocampal synaptic plasticity. Copyright © 2018. Published by Elsevier Ltd.

  7. Optical Flow based Robot Obstacle Avoidance

    Directory of Open Access Journals (Sweden)

    Kahlouche Souhila

    2008-11-01

    Full Text Available In this paper we try to develop an algorithm for visual obstacle avoidance of autonomous mobile robot. The input of the algorithm is an image sequence grabbed by an embedded camera on the B21r robot in motion. Then, the optical flow information is extracted from the image sequence in order to be used in the navigation algorithm. The optical flow provides very important information about the robot environment, like: the obstacles disposition, the robot heading, the time to collision and the depth. The strategy consists in balancing the amount of left and right side flow to avoid obstacles, this technique allows robot navigation without any collision with obstacles. The robustness of the algorithm will be showed by some examples.

  8. A Rear-End Collision Avoidance Scheme for Intelligent Transportation System

    Directory of Open Access Journals (Sweden)

    Chen Chen

    2016-01-01

    Full Text Available In this paper, a rear-end collision control model is proposed using the fuzzy logic control scheme for the autonomous or cruising vehicles in Intelligent Transportation Systems (ITSs. Through detailed analysis of the car-following cases, our controller is established on some reasonable control rules. In addition, to refine the initialized fuzzy rules considering characteristics of the rear-end collisions, the genetic algorithm is introduced to reduce the computational complexity while maintaining accuracy. Numerical results indicate that our Genetic algorithm-optimized Fuzzy Logic Controller (GFLC outperforms the traditional fuzzy logic controller in terms of better safety guarantee and higher traffic efficiency.

  9. Nitric oxide facilitates active avoidance learning via enhancement of glutamate levels in the hippocampal dentate gyrus.

    Science.gov (United States)

    Wang, Shi; Pan, De-Xi; Wang, Dan; Wan, Peng; Qiu, De-Lai; Jin, Qing-Hua

    2014-09-01

    The hippocampus is a key structure for learning and memory in mammals, and long-term potentiation (LTP) is an important cellular mechanism responsible for learning and memory. Despite a number of studies indicating that nitric oxide (NO) is involved in the formation and maintenance of LTP as a retrograde messenger, few studies have used neurotransmitter release as a visual indicator in awake animals to explore the role of NO in learning-dependent long-term enhancement of synaptic efficiency. Therefore, in the present study, the effects of l-NMMA (a NO synthase inhibitor) and SNP (a NO donor) on extracellular glutamate (Glu) concentrations and amplitudes of field excitatory postsynaptic potential (fEPSP) were measured in the hippocampal dentate gyrus (DG) region during the acquisition and extinction of active-avoidance behavior in freely-moving conscious rats. In the control group, the extracellular concentration of Glu in the DG was significantly increased during the acquisition of active-avoidance behavior and gradually returned to baseline levels following extinction training. In the experimental group, the change in Glu concentration was significantly reduced by local microinjection of l-NMMA, as was the acquisition of the active-avoidance behavior. In contrast, the change in Glu concentration was significantly enhanced by SNP, and the acquisition of the active-avoidance behavior was significantly accelerated. Furthermore, in all groups, the changes in extracellular Glu were accompanied by corresponding changes in fEPSP amplitude and active-avoidance behavior. Our results suggest that NO in the hippocampal DG facilitates active avoidance learning via enhancements of glutamate levels and synaptic efficiency in rats. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Advanced Emergency Braking Controller Design for Pedestrian Protection Oriented Automotive Collision Avoidance System

    Directory of Open Access Journals (Sweden)

    Guo Lie

    2014-01-01

    Full Text Available Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the current distance between the host vehicle and the obstacle with the critical braking distance. To reflect the nonlinear time-varying characteristics and control effect of the longitudinal dynamics, the vehicle longitudinal dynamics model is established in CarSim. Then the braking controller with the structure of upper and lower layers is designed based on sliding mode control and the single neuron PID control when confronting deceleration or emergency braking conditions. Cosimulations utilizing CarSim and Simulink are finally carried out on a CarSim intelligent vehicle model to explore the effectiveness of the proposed controller. Results display that the designed controller has a good response in preventing colliding with the front vehicle or pedestrian.

  11. Advanced emergency braking controller design for pedestrian protection oriented automotive collision avoidance system.

    Science.gov (United States)

    Lie, Guo; Zejian, Ren; Pingshu, Ge; Jing, Chang

    2014-01-01

    Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the current distance between the host vehicle and the obstacle with the critical braking distance. To reflect the nonlinear time-varying characteristics and control effect of the longitudinal dynamics, the vehicle longitudinal dynamics model is established in CarSim. Then the braking controller with the structure of upper and lower layers is designed based on sliding mode control and the single neuron PID control when confronting deceleration or emergency braking conditions. Cosimulations utilizing CarSim and Simulink are finally carried out on a CarSim intelligent vehicle model to explore the effectiveness of the proposed controller. Results display that the designed controller has a good response in preventing colliding with the front vehicle or pedestrian.

  12. A Control of Collision and Deadlock Avoidance for Automated Guided Vehicles with a Fault-Tolerance Capability

    Directory of Open Access Journals (Sweden)

    Qin Li

    2016-04-01

    Full Text Available Based on a novel discrete-event zone-control model, in our previous papers [1, 2], we presented a time-efficient traffic control for automated guided vehicle (AGV systems to exclude inter-vehicle collisions and system deadlocks, together with a case study on container terminals. The traffic control allows each vehicle in an AGV system to freely choose its routes for any finite sequence of zone-to-zone transportation tasks and the routes can be constructed in an online fashion. In this paper, we extended our previous results with two practical goals: (1 to increase the utilization of the workspace area by reducing the minimally allowed area of each zone; (2 to avoid vehicle collisions and deadlocks with the occurrence of vehicle breakdowns. To achieve the first goal, we include one extra vehicle event that allows each vehicle to probe further ahead while it is moving on the guide-path. This leads to an extension of our previous discrete-event model and traffic control rules, which are presented in the first part of the paper. The second part of the paper concerns the second goal, for which an emergency traffic control scheme is designed as supplementary to the normal traffic control rules. As in our previous papers, the improved model and traffic control are applied to a simulation of quayside container transshipment at container terminals; our simulation results are compared with those from two interesting works in the literature.

  13. Smart Collision Avoidance and Hazard Routing Mechanism for Intelligent Transport Network

    Science.gov (United States)

    Singh, Gurpreet; Gupta, Pooja; Wahab, Mohd Helmy Abd

    2017-08-01

    The smart vehicular ad-hoc network is the network that consists of vehicles for smooth movement and better management of the vehicular connectivity across the given network. This research paper aims to propose a set of solution for the VANETs consisting of the automatic driven vehicles, also called as the autonomous car. Such vehicular networks are always prone to collision due to the natural or un-natural reasons which must be solved before the large-scale deployment of the autonomous transport systems. The newly designed intelligent transport movement control mechanism is based upon the intelligent data propagation along with the vehicle collision and traffic jam prevention schema [8], which may help the future designs of smart cities to become more robust and less error-prone. In the proposed model, the focus is on designing a new dynamic and robust hazard routing protocol for intelligent vehicular networks for improvement of the overall performance in various aspects. It is expected to improve the overall transmission delay as well as the number of collisions or adversaries across the vehicular network zone.

  14. Collision avoidance during teleoperation using whole arm proximity sensors coupled to a virtual environment

    International Nuclear Information System (INIS)

    Novak, J.L.; Feddema, J.T.; Miner, N.E.; Stansfield, S.A.

    1993-01-01

    Much of the current robotics effort at the US DOE is directed toward remote handling of hazardous waste. Telerobotic systems are being developed to remotely inspect, characterize, and process waste. This paper describes a collision avoidance system using Whole Arm Proximity (WHAP) sensors on an articulated robot arm. The capacitance-based sensors generate electric fields which completely encompass the robot arm and detect obstacles as they approach from any direction. The robot is moved through the workspace using a velocity command generated either by an operator through a force-sensing input device or a preprogrammed sequence of motions. The directional obstacle information gathered by the WHAP sensors is then used in a matrix column maximization algorithm that automatically selects the sensor closest to an obstacle during each robot controller cycle. The distance from this sensor to the obstacle is used to reduce the component of the command input velocity along the normal axis of the sensor, allowing graceful perturbation of the velocity command to prevent a collision. By scaling only the component of the velocity vector in the direction of the nearest obstacle, the control system restricts motion in the direction of an obstacle while permitting unconstrained motion in other directions. The actual robot joint positions and the WHAP sensor readings are communicated to an operator interface consisting of a graphical model of the Puma robot and its environment. Circles are placed on the graphical robot surface at positions corresponding to the locations of the WHAP sensor. As the individual sensors detect obstacles, the associated circles change color, providing the operator with visual feedback as to the location and relative size of the obstacle. At the same time, the graphical robot position is updated to reflect the actual state of the robot. This information permits the operator to plan alternative paths around unmodeled, but sensed, obstacles

  15. Driving-Simulator-Based Test on the Effectiveness of Auditory Red-Light Running Vehicle Warning System Based on Time-To-Collision Sensor

    Directory of Open Access Journals (Sweden)

    Xuedong Yan

    2014-02-01

    Full Text Available The collision avoidance warning system is an emerging technology designed to assist drivers in avoiding red-light running (RLR collisions at intersections. The aim of this paper is to evaluate the effect of auditory warning information on collision avoidance behaviors in the RLR pre-crash scenarios and further to examine the casual relationships among the relevant factors. A driving-simulator-based experiment was designed and conducted with 50 participants. The data from the experiments were analyzed by approaches of ANOVA and structural equation modeling (SEM. The collisions avoidance related variables were measured in terms of brake reaction time (BRT, maximum deceleration and lane deviation in this study. It was found that the collision avoidance warning system can result in smaller collision rates compared to the without-warning condition and lead to shorter reaction times, larger maximum deceleration and less lane deviation. Furthermore, the SEM analysis illustrate that the audio warning information in fact has both direct and indirect effect on occurrence of collisions, and the indirect effect plays a more important role on collision avoidance than the direct effect. Essentially, the auditory warning information can assist drivers in detecting the RLR vehicles in a timely manner, thus providing drivers more adequate time and space to decelerate to avoid collisions with the conflicting vehicles.

  16. Comparative Analysis of ACAS-Xu and DAIDALUS Detect-and-Avoid Systems

    Science.gov (United States)

    Davies, Jason T.; Wu, Minghong G.

    2018-01-01

    The Detect and Avoid (DAA) capability of a recent version (Run 3) of the Airborne Collision Avoidance System-Xu (ACAS-Xu) is measured against that of the Detect and AvoID Alerting Logic for Unmanned Systems (DAIDALUS), a reference algorithm for the Phase 1 Minimum Operational Performance Standards (MOPS) for DAA. This comparative analysis of the two systems' alerting and horizontal guidance outcomes is conducted through the lens of the Detect and Avoid mission using flight data of scripted encounters from a recent flight test. Results indicate comparable timelines and outcomes between ACAS-Xu's Remain Well Clear alert and guidance and DAIDALUS's corrective alert and guidance, although ACAS-Xu's guidance appears to be more conservative. ACAS-Xu's Collision Avoidance alert and guidance occurs later than DAIDALUS's warning alert and guidance, and overlaps with DAIDALUS's timeline of maneuver to remain Well Clear. Interesting discrepancies between ACAS-Xu's directive guidance and DAIDALUS's "Regain Well Clear" guidance occur in some scenarios.

  17. Activation of β-adrenoceptor facilitates active avoidance learning through enhancement of glutamate levels in the hippocampal dentate gyrus.

    Science.gov (United States)

    Lv, Jing; Feng, Hao; Chen, Ling; Wang, Wei-Yao; Yue, Xue-Ling; Jin, Qing-Hua

    2017-10-18

    Long-term potentiation (LTP) is widely accepted as the best studied model for neurophysiological mechanisms that could underlie learning and memory formation. Despite a number of studies indicating that β-adrenoceptors in the hippocampal dentate gyrus (DG) is involved in the modulation of learning and memory as well as LTP, few studies have used glutamate release as a visual indicator in awake animals to explore the role of β-adrenoceptors in learning-dependent LTP. Therefore, in the present study, the effects of propranolol (an antagonist of β-adrenoceptor) and isoproterenol (an agonist of β-adrenoceptor) on extracellular concentrations of glutamate and amplitudes of field excitatory postsynaptic potential were measured in the DG region during active avoidance learning in freely moving conscious rats. In the control group, the glutamate level in the DG was significantly increased during the acquisition of active avoidance behavior and returned to basal level following extinction training. In propranolol group, antagonism of β-adrenoceptors in the DG significantly reduced the change in glutamate level, and the acquisition of the active avoidance behavior was significantly inhibited. In contrast, the change in glutamate level was significantly enhanced by isoproterenol, and the acquisition of the active avoidance behavior was significantly accelerated. Furthermore, in all groups, the changes in glutamate level were accompanied by corresponding changes in field excitatory postsynaptic potential amplitude and active avoidance behavior. Our results suggest that activation of β-adrenoceptors in the hippocampal DG facilitates active avoidance learning by modulations of glutamate level and synaptic efficiency in rats.

  18. Sensor-based whole-arm obstacle avoidance for unstructured environments

    International Nuclear Information System (INIS)

    Wintenberg, AL.; Butler, P.L.; Babcock, S.M.; Ericson, M.N.; Britton, C.L. Jr.; Hamel, W.R.

    1992-01-01

    Whole-arm obstacle avoidance is needed for a variety of robotic applications in the Environmental Restoration and Waste Management (ER ampersand WM) Program. Typical industrial applications of robotics involve well-defined work spaces, allowing a predetermined knowledge of collision-free paths for manipulator motion. In the unstructured or poorly defined hazardous environments of the ER ampersand WM program, the potential for significant problems resulting from collisions between manipulators and the environment in which they are utilized is great. A sensing system under development, which will provide protection against such collisions, is described in this paper

  19. Artificial potential functions for highway driving with collision avoidance

    OpenAIRE

    Wolf , Michael T.; Burdick, Joel W.

    2008-01-01

    We present a set of potential function components to assist an automated or semi-automated vehicle in navigating a multi-lane, populated highway. The resulting potential field is constructed as a superposition of disparate functions for lane- keeping, road-staying, speed preference, and vehicle avoidance and passing. The construction of the vehicle avoidance potential is of primary importance, incorporating the structure and protocol of laned highway driving. Particularly, the shape and dimen...

  20. Development of an in-vehicle intersection collision countermeasure

    Science.gov (United States)

    Pierowicz, John A.

    1997-02-01

    Intersection collisions constitute approximately twenty-six percent of all accidents in the United States. Because of their complexity, and demands on the perceptual and decision making abilities of the driver, intersections present an increased risk of collisions between automobiles. This situation provides an opportunity to apply advanced sensor and processing capabilities to prevent these collisions. A program to determine the characteristics of intersection collisions and identify potential countermeasures will be described. This program, sponsored by the National Highway Traffic Safety Administration, utilized accident data to develop a taxonomy of intersection crashes. This taxonomy was used to develop a concept for an intersection collision avoidance countermeasure. The concept utilizes in-vehicle position, dynamic status, and millimeter wave radar system and an in-vehicle computer system to provide inputs to an intersection collision avoidance algorithm. Detection of potential violation of traffic control device, or proceeding into the intersection with inadequate gap will lead to the presentation of a warning to the driver. These warnings are presented to the driver primarily via a head-up display and haptic feedback. Roadside to vehicle communication provides information regarding phased traffic signal information. Active control of the vehicle's brake and steering systems are described. Progress in the development of the systems will be presented along with the schedule of future activities.

  1. Traffic jam driving with NMV avoidance

    Science.gov (United States)

    Milanés, Vicente; Alonso, Luciano; Villagrá, Jorge; Godoy, Jorge; de Pedro, Teresa; Oria, Juan P.

    2012-08-01

    In recent years, the development of advanced driver assistance systems (ADAS) - mainly based on lidar and cameras - has considerably improved the safety of driving in urban environments. These systems provide warning signals for the driver in the case that any unexpected traffic circumstance is detected. The next step is to develop systems capable not only of warning the driver but also of taking over control of the car to avoid a potential collision. In the present communication, a system capable of autonomously avoiding collisions in traffic jam situations is presented. First, a perception system was developed for urban situations—in which not only vehicles have to be considered, but also pedestrians and other non-motor-vehicles (NMV). It comprises a differential global positioning system (DGPS) and wireless communication for vehicle detection, and an ultrasound sensor for NMV detection. Then, the vehicle's actuators - brake and throttle pedals - were modified to permit autonomous control. Finally, a fuzzy logic controller was implemented capable of analyzing the information provided by the perception system and of sending control commands to the vehicle's actuators so as to avoid accidents. The feasibility of the integrated system was tested by mounting it in a commercial vehicle, with the results being encouraging.

  2. Sensor-based whole-arm obstacle avoidance for unstructured environments

    International Nuclear Information System (INIS)

    Wintenberg, A.L.; Butler, P.L.; Babcock, S.M.; Ericson, M.N.; Armstrong, G.A.; Britton, C.L. Jr.; Hamel, W.R.

    1992-01-01

    Whole-arm obstacle avoidance is needed for a variety of robotic applications in the Environmental Restoration and Waste Management (ER ampersand WM) Program. Typical industrial applications of robotics involve well-defined workspaces, allowing a predetermined knowledge of collision-free paths for manipulator motion. However, many hazardous environments are unstructured or poorly defined, providing a significant potential for collisions between manipulators and the environment. In order to allow applications of robotics in such situations, a sensing system is under development which will provide protection against collisions. Specifics of this system including system architecture and projected implementation are described

  3. [Micron]ADS-B Detect and Avoid Flight Tests on Phantom 4 Unmanned Aircraft System

    Science.gov (United States)

    Arteaga, Ricardo; Dandachy, Mike; Truong, Hong; Aruljothi, Arun; Vedantam, Mihir; Epperson, Kraettli; McCartney, Reed

    2018-01-01

    Researchers at the National Aeronautics and Space Administration Armstrong Flight Research Center in Edwards, California and Vigilant Aerospace Systems collaborated for the flight-test demonstration of an Automatic Dependent Surveillance-Broadcast based collision avoidance technology on a small unmanned aircraft system equipped with the uAvionix Automatic Dependent Surveillance-Broadcast transponder. The purpose of the testing was to demonstrate that National Aeronautics and Space Administration / Vigilant software and algorithms, commercialized as the FlightHorizon UAS"TM", are compatible with uAvionix hardware systems and the DJI Phantom 4 small unmanned aircraft system. The testing and demonstrations were necessary for both parties to further develop and certify the technology in three key areas: flights beyond visual line of sight, collision avoidance, and autonomous operations. The National Aeronautics and Space Administration and Vigilant Aerospace Systems have developed and successfully flight-tested an Automatic Dependent Surveillance-Broadcast Detect and Avoid system on the Phantom 4 small unmanned aircraft system. The Automatic Dependent Surveillance-Broadcast Detect and Avoid system architecture is especially suited for small unmanned aircraft systems because it integrates: 1) miniaturized Automatic Dependent Surveillance-Broadcast hardware; 2) radio data-link communications; 3) software algorithms for real-time Automatic Dependent Surveillance-Broadcast data integration, conflict detection, and alerting; and 4) a synthetic vision display using a fully-integrated National Aeronautics and Space Administration geobrowser for three dimensional graphical representations for ownship and air traffic situational awareness. The flight-test objectives were to evaluate the performance of Automatic Dependent Surveillance-Broadcast Detect and Avoid collision avoidance technology as installed on two small unmanned aircraft systems. In December 2016, four flight tests

  4. Simple Obstacle Avoidance Algorithm for Rehabilitation Robots

    NARCIS (Netherlands)

    Stuyt, Floran H.A.; Römer, GertWillem R.B.E.; Stuyt, Harry .J.A.

    2007-01-01

    The efficiency of a rehabilitation robot is improved by offering record-and-replay to operate the robot. While automatically moving to a stored target (replay) collisions of the robot with obstacles in its work space must be avoided. A simple, though effective, generic and deterministic algorithm

  5. Modelling seabird collision risk with off-shore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Mateos, Maria; Arroyo, Gonzalo Munoz; Rosario, Jose Juan Alonso del

    2011-07-01

    Full text: Recent concern about the adverse effects of collision mortality of avian migrants at wind farms has highlighted the need to understand bird-wind turbine interactions. Here, a stochastic collision model, based on data of seabird behaviour collected on- site, is presented, as a flexible and easy to take tool to assess the collisions probabilities of off-shore wind farms in a pre-construction phase. The collision prediction model considering the wind farm area as a risk window has been constructed as a stochastic model for avian migrants, based on Monte Carlo simulation. The model calculates the probable number of birds collided per time unit. Migration volume, wind farm dimensions, vertical and horizontal distribution of the migratory passage, flight direction and avoidance rates, between other variables, are taken into account in different steps of the model as the input variables. In order to assess the weighted importance of these factors on collision probability predictions, collision probabilities obtained from the set of scenarios resulting from the different combinations of the input variables were modelled by using Generalised Additive Models. The application of this model to a hypothetical project for erecting a wind farm at the Strait of Gibraltar showed that collision probability, and consequently mortality rates, strongly depend on the values of the avoidance rates taken into account, and the distribution of birds into the different altitude layers. These parameters should be considered as priorities to be addressed in post-construction studies. (Author)

  6. Moving Object Tracking and Avoidance Algorithm for Differential Driving AGV Based on Laser Measurement Technology

    Directory of Open Access Journals (Sweden)

    Pandu Sandi Pratama

    2012-12-01

    Full Text Available This paper proposed an algorithm to track the obstacle position and avoid the moving objects for differential driving Automatic Guided Vehicles (AGV system in industrial environment. This algorithm has several abilities such as: to detect the moving objects, to predict the velocity and direction of moving objects, to predict the collision possibility and to plan the avoidance maneuver. For sensing the local environment and positioning, the laser measurement system LMS-151 and laser navigation system NAV-200 are applied. Based on the measurement results of the sensors, the stationary and moving obstacles are detected and the collision possibility is calculated. The velocity and direction of the obstacle are predicted using Kalman filter algorithm. Collision possibility, time, and position can be calculated by comparing the AGV movement and obstacle prediction result obtained by Kalman filter. Finally the avoidance maneuver using the well known tangent Bug algorithm is decided based on the calculation data. The effectiveness of proposed algorithm is verified using simulation and experiment. Several examples of experiment conditions are presented using stationary obstacle, and moving obstacles. The simulation and experiment results show that the AGV can detect and avoid the obstacles successfully in all experimental condition. [Keywords— Obstacle avoidance, AGV, differential drive, laser measurement system, laser navigation system].

  7. Translational Entanglement and Teleportation of Matter Wavepackets by Collisions and Half-Collisions

    Science.gov (United States)

    Fisch, L.; Tal, A.; Kurizki, G.

    To date, the translationally-entangled state originally proposed by Einstein, Podolsky and Rosen (EPR) in 1935 has not been experimentally realized for massive particles. Opatrný and Kurizki [Phys. Rev. Lett. 86, 3180 (2000)] have suggested the creation of a position- and momentum-correlated, i.e., translationally-entangled, pair of particles approximating the EPR state by dissociation of cold diatomic molecules, and further manipulation of the EPR pair effecting matter-wave teleportation. Here we aim at setting the principles of and quantifying translational entanglement by collisions and half-collisions. In collisions, the resonance width s and the initial phase-space distributions are shown to determine the degree of post-collisional momentum entanglement. Half-collisions (dissociation) are shown to yield different types of approximate EPR states. We analyse a feasible realization of translational EPR entanglement and teleportation via cold-molecule Raman dissociation and subsequent collisions, resolving both practical and conceptual difficulties it has faced so far: How to avoid entanglement loss due to the wavepacket spreading of the dissociation fragments? How to measure both position and momentum correlations of the dissociation fragments with sufficient accuracy to verify their EPR correlations? How to reliably perform two-particle (Bell) position and momentum measurements on one of the fragments and the wavepacket to be teleported?

  8. Gamma-rays from deep inelastic collisions

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1979-01-01

    The γ-rays associated with deep inelastic collisions can give information about the magnitude and orientation of the angular momentum transferred in these events. In this review, special emphasis is placed on understanding the origin and nature of these γ-rays in order to avoid some of the ambiguities that can arise. The experimental information coming from these γ-ray studies is reviewed, and compared briefly with that obtained by other methods and also with the expectations from current models for deep inelastic collisions. 15 figures

  9. The production of Higgs bosons in high-energetic heavy-ion collisions

    International Nuclear Information System (INIS)

    Vidovic, M.

    1991-09-01

    The aim of this diploma thesis was to produce the Higgs boson in high-energetic, peripheral heavy-ion collisions by purely electromagnetic processes. In order to take only peripheral collisions into consideration and to avoid the strong hadronic background of central collisions the equivalent-photon method for the case of the Higgs boson was extended concerning an impact-parameter study. By this it was possible to exclude the contribution of central collisions by cut in the impact parameter at b=2R, in order to determine thus the production rate for purely peripheral collisions. (orig./HSI) [de

  10. Range Sensor-Based Efficient Obstacle Avoidance through Selective Decision-Making.

    Science.gov (United States)

    Shim, Youngbo; Kim, Gon-Woo

    2018-03-29

    In this paper, we address a collision avoidance method for mobile robots. Many conventional obstacle avoidance methods have been focused solely on avoiding obstacles. However, this can cause instability when passing through a narrow passage, and can also generate zig-zag motions. We define two strategies for obstacle avoidance, known as Entry mode and Bypass mode. Entry mode is a pattern for passing through the gap between obstacles, while Bypass mode is a pattern for making a detour around obstacles safely. With these two modes, we propose an efficient obstacle avoidance method based on the Expanded Guide Circle (EGC) method with selective decision-making. The simulation and experiment results show the validity of the proposed method.

  11. Range Sensor-Based Efficient Obstacle Avoidance through Selective Decision-Making

    Directory of Open Access Journals (Sweden)

    Youngbo Shim

    2018-03-01

    Full Text Available In this paper, we address a collision avoidance method for mobile robots. Many conventional obstacle avoidance methods have been focused solely on avoiding obstacles. However, this can cause instability when passing through a narrow passage, and can also generate zig-zag motions. We define two strategies for obstacle avoidance, known as Entry mode and Bypass mode. Entry mode is a pattern for passing through the gap between obstacles, while Bypass mode is a pattern for making a detour around obstacles safely. With these two modes, we propose an efficient obstacle avoidance method based on the Expanded Guide Circle (EGC method with selective decision-making. The simulation and experiment results show the validity of the proposed method.

  12. Modeling of Ship Collision Risk Index Based on Complex Plane and Its Realization

    OpenAIRE

    Xiaoqin Xu; Xiaoqiao Geng; Yuanqiao Wen

    2016-01-01

    Ship collision risk index is the basic and important concept in the domain of ship collision avoidance. In this paper, the advantages and deficiencies of the various calculation methods of ship collision risk index are pointed out. Then the ship collision risk model based on complex plane, which can well make up for the deficiencies of the widely-used evaluation model proposed by Kearon.J and Liu ruru is proposed. On this basis, the calculation method of collision risk index under the encount...

  13. COLLISION-AVOIDANCE FOR MOBILE ROBOTS USING REGION OF CERTAINTY: A PREDICTIVE APPROACH

    Directory of Open Access Journals (Sweden)

    B. MANUP

    2016-01-01

    Full Text Available In on-line environment, obstacles may exhibit different trajectory. Trajectory analysis of the obstacle is essential in determining its future location. If this analysis is accurate the futuristic region where robot and obstacle collision is likely to occur can be estimated. This enables the mobile robot to take corrective action prior to collision. In this approach, the motion pattern of the obstacle is analysed by taking into account the past co-ordinates traversed by the obstacle. Then the futuristic region where the obstacle is likely to occupy is predicted. This region is termed as region of certainty. Simulation results shows that the approach gives more reliable prediction as many number of sample points representing the past positions travelled by the obstacles are taken into consideration. The algorithm yielded better performance under higher obstacle velocity conditions and the results were compared with distance time transform method.

  14. Real-Time Hardware-in-the-Loop Laboratory Testing for Multisensor Sense and Avoid Systems

    Directory of Open Access Journals (Sweden)

    Giancarmine Fasano

    2013-01-01

    Full Text Available This paper focuses on a hardware-in-the-loop facility aimed at real-time testing of architectures and algorithms of multisensor sense and avoid systems. It was developed within a research project aimed at flight demonstration of autonomous non-cooperative collision avoidance for Unmanned Aircraft Systems. In this framework, an optionally piloted Very Light Aircraft was used as experimental platform. The flight system is based on multiple-sensor data integration and it includes a Ka-band radar, four electro-optical sensors, and two dedicated processing units. The laboratory test system was developed with the primary aim of prototype validation before multi-sensor tracking and collision avoidance flight tests. System concept, hardware/software components, and operating modes are described in the paper. The facility has been built with a modular approach including both flight hardware and simulated systems and can work on the basis of experimentally tested or synthetically generated scenarios. Indeed, hybrid operating modes are also foreseen which enable performance assessment also in the case of alternative sensing architectures and flight scenarios that are hardly reproducible during flight tests. Real-time multisensor tracking results based on flight data are reported, which demonstrate reliability of the laboratory simulation while also showing the effectiveness of radar/electro-optical fusion in a non-cooperative collision avoidance architecture.

  15. Who participates in tax avoidance?

    OpenAIRE

    Alstadsæter, Annette; Jacob, Martin

    2013-01-01

    This paper analyzes the sources of heterogeneity in legal tax avoidance strategies across individuals. Three conditions are required for a taxpayer to participate in tax avoidance: incentive, access, and awareness. Using rich Swedish administrative panel data with a unique link between corporate and individual tax returns, we analyze individual participation in legal tax planning around the 2006 Swedish tax reform. Our results suggest that closely held corporations are utilized to facilitate ...

  16. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  17. Collision risk in white-tailed eagles. Modelling kernel-based collision risk using satellite telemetry data in Smoela wind-power plant

    Energy Technology Data Exchange (ETDEWEB)

    May, Roel; Nygaard, Torgeir; Dahl, Espen Lie; Reitan, Ole; Bevanger, Kjetil

    2011-05-15

    Large soaring birds of prey, such as the white-tailed eagle, are recognized to be perhaps the most vulnerable bird group regarding risk of collisions with turbines in wind-power plants. Their mortalities have called for methods capable of modelling collision risks in connection with the planning of new wind-power developments. The so-called 'Band model' estimates collision risk based on the number of birds flying through the rotor swept zone and the probability of being hit by the passing rotor blades. In the calculations for the expected collision mortality a correction factor for avoidance behaviour is included. The overarching objective of this study was to use satellite telemetry data and recorded mortality to back-calculate the correction factor for white-tailed eagles. The Smoela wind-power plant consists of 68 turbines, over an area of approximately 18 km2. Since autumn 2006 the number of collisions has been recorded on a weekly basis. The analyses were based on satellite telemetry data from 28 white-tailed eagles equipped with backpack transmitters since 2005. The correction factor (i.e. 'avoidance rate') including uncertainty levels used within the Band collision risk model for white-tailed eagles was 99% (94-100%) for spring and 100% for the other seasons. The year-round estimate, irrespective of season, was 98% (95-99%). Although the year-round estimate was similar, the correction factor for spring was higher than the correction factor of 95% derived earlier from vantage point data. The satellite telemetry data may provide an alternative way to provide insight into relative risk among seasons, and help identify periods or areas with increased risk either in a pre- or post construction situation. (Author)

  18. Level dynamics: An approach to the study of avoided level crossings and transition to chaos

    International Nuclear Information System (INIS)

    Wang, S.; Chu, S.Y.

    1993-01-01

    The Dyson-Pechukas level dynamics has been reformulated and made suitable for studying avoided level crossings and transition to chaos. The N-level dynamics is converted into a many-body problem of one-dimensional Coulomb gas with N-constituent particles having intrinsic excitations. It is shown that local fluctuation of the level distribution is generated by a large number of avoided level crossings. The role played by avoided level crossings in generating chaoticity in level dynamics is similar to the role played by short-range collisions in causing thermalization in many-body dynamics. Furthermore, the effect of level changing rates in producing avoided level crossings is the same as particle velocities in causing particle-particle collisions. A one-dimensional su(2) Hamiltonian has been constructed as an illustration of the level dynamics, showing how the avoided level crossings cause the transition from a regular distribution to the chaotic Gaussian orthogonal ensemble (GOE) distribution of the levels. The existence of the one-dimensional su(2) Hamiltonian which can show both GOE and Poisson level statistics is remarkable and deserves further investigation

  19. Emotional valence and contextual affordances flexibly shape approach-avoidance movements

    Directory of Open Access Journals (Sweden)

    Ana Carolina eSaraiva

    2013-12-01

    Full Text Available Behaviour is influenced by the emotional content – or valence – of stimuli in our environment. Positive stimuli facilitate approach, whereas negative stimuli facilitate defensive actions such as avoidance (flight and attack (fight. Facilitation of approach or avoidance movements may also be influenced by whether it is the self that moves relative to a stimulus (self-reference or the stimulus that moves relative to the self (object-reference, adding flexibility and context-dependence to behaviour. Alternatively, facilitation of approach avoidance movements may happen in a predefined and muscle-specific way, whereby arm flexion is faster to approach positive (e.g. flexing the arm brings a stimulus closer and arm extension faster to avoid negative stimuli (e.g. extending the arm moves the stimulus away. While this allows for relatively fast responses, it may compromise the flexibility offered by contextual influences. Here we asked under which conditions approach-avoidance actions are influenced by contextual factors (i.e. reference-frame. We manipulated the reference-frame in which actions occurred by asking participants to move a symbolic manikin (representing the self towards or away from a positive or negative stimulus, and move a stimulus towards or away from the manikin. We also controlled for the type of movements used to approach or avoid in each reference. We show that the reference-frame influences approach-avoidance actions to emotional stimuli, but additionally we find muscle-specificity for negative stimuli in self-reference contexts. We speculate this muscle-specificity may be a fast and adaptive response to threatening stimuli. Our results confirm that approach-avoidance behaviour is flexible and reference-frame dependent, but can be muscle-specific depending on the context and valence of the stimulus. Reference-frame and stimulus-evaluation are key factors in guiding approach-avoidance behaviour towards emotional stimuli in our

  20. Effects of Vehicle Speed on Flight Initiation by Turkey Vultures: Implications for Bird-Vehicle Collisions

    Science.gov (United States)

    DeVault, Travis L.; Blackwell, Bradley F.; Seamans, Thomas W.; Lima, Steven L.; Fernández-Juricic, Esteban

    2014-01-01

    The avoidance of motorized vehicles is a common challenge for birds in the modern world. Birds appear to rely on antipredator behaviors to avoid vehicles, but modern vehicles (automobiles and aircraft) are faster than natural predators. Thus, birds may be relatively ill-equipped, in terms of sensory capabilities and behaviors, to avoid vehicles. We examined the idea that birds may be unable to accurately assess particularly high speeds of approaching vehicles, which could contribute to miscalculations in avoidance behaviors and ultimately cause collisions. We baited turkey vultures (Cathartes aura) to roads with animal carcasses and measured flight initiation distance and effective time-to-collision in response to a truck driving directly towards vultures from a starting distance of 1.13 km and at one of three speeds: 30, 60, or 90 kph (no vultures were struck). Flight initiation distance of vultures increased by a factor of 1.85 as speed increased from 30 to 90 kph. However, for 90-kph approaches there was no clear trend in flight initiation distance across replicates: birds appeared equally likely to initiate escape behavior at 40 m as at 220 m. Time-to-collision decreased by a factor of 0.62 with approach speeds from 30 to 90 kph. Also, at 90 kph, four vehicle approaches (17%) resulted in near collisions with vultures (time-to-collision ≤1.7 s), compared to none during 60 kph approaches and one during 30 kph approaches (4%). Our findings suggest that antipredator behaviors in turkey vultures, particularly stimulus processing and response, might not be well tuned to vehicles approaching at speeds ≥90 kph. The possible inability of turkey vultures to react appropriately to high-speed vehicles could be common among birds, and might represent an important determinant of bird-vehicle collisions. PMID:24503622

  1. Lesions of the lateral habenula facilitate active avoidance learning and threat extinction.

    Science.gov (United States)

    Song, Mihee; Jo, Yong Sang; Lee, Yeon-Kyung; Choi, June-Seek

    2017-02-01

    The lateral habenula (LHb) is an epithalamic brain structure that provides strong projections to midbrain monoaminergic systems that are involved in motivation, emotion, and reinforcement learning. LHb neurons are known to convey information about aversive outcomes and negative prediction errors, suggesting a role in learning from aversive events. To test this idea, we examined the effects of electrolytic lesions of the LHb on signaled two-way active avoidance learning in which rats were trained to avoid an unconditioned stimulus (US) by taking a proactive shuttling response to an auditory conditioned stimulus (CS). The lesioned animals learned the avoidance response significantly faster than the control groups. In a separate experiment, we also investigated whether the LHb contributes to Pavlovian threat (fear) conditioning and extinction. Following paired presentations of the CS and the US, LHb-lesioned animals showed normal acquisition of conditioned response (CR) measured with freezing. However, extinction of the CR in the subsequent CS-only session was significantly faster. The enhanced performance in avoidance learning and in threat extinction jointly suggests that the LHb normally plays an inhibitory role in learning driven by absence of aversive outcomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Recommended Screening Practices for Launch Collision Aviodance

    Science.gov (United States)

    Beaver, Brian A.; Hametz, Mark E.; Ollivierre, Jarmaine C.; Newman, Lauri K.; Hejduk, Matthew D.

    2015-01-01

    The objective of this document is to assess the value of launch collision avoidance (COLA) practices and provide recommendations regarding its implementation for NASA robotic missions. The scope of this effort is limited to launch COLA screens against catalog objects that are either spacecraft or debris. No modifications to manned safety COLA practices are considered in this effort. An assessment of the value of launch COLA can be broken down into two fundamental questions: 1) Does collision during launch represent a significant risk to either the payload being launched or the space environment? 2) Can launch collision mitigation be performed in a manner that provides meaningful risk reduction at an acceptable level of operational impact? While it has been possible to piece together partial answers to these questions for some time, the first attempt to comprehensively address them is documented in reference (a), Launch COLA Operations: an Examination of Data Products, Procedures, and Thresholds, Revision A. This report is the product of an extensive study that addressed fundamental technical questions surrounding launch collision avoidance analysis and practice. The results provided in reference (a) will be cited throughout this document as these two questions are addressed. The premise of this assessment is that in order to conclude that launch COLA is a value-added activity, the answer to both of these questions must be affirmative. A "no" answer to either of these questions points toward the conclusion that launch COLA provides little or no risk mitigation benefit. The remainder of this assessment will focus on addressing these two questions.

  3. Obstacle Avoidance for Redundant Manipulators Utilizing a Backward Quadratic Search Algorithm

    Directory of Open Access Journals (Sweden)

    Tianjian Hu

    2016-06-01

    Full Text Available Obstacle avoidance can be achieved as a secondary task by appropriate inverse kinematics (IK resolution of redundant manipulators. Most prior literature requires the time-consuming determination of the closest point to the obstacle for every calculation step. Aiming at the relief of computational burden, this paper develops what is termed a backward quadratic search algorithm (BQSA as another option for solving IK problems in obstacle avoidance. The BQSA detects possible collisions based on the root property of a category of quadratic functions, which are derived from ellipse-enveloped obstacles and the positions of each link's end-points. The algorithm executes a backward search for possible obstacle collisions, from the end-effector to the base, and avoids obstacles by utilizing a hybrid IK scheme, incorporating the damped least-squares method, the weighted least-norm method and the gradient projection method. Some details of the hybrid IK scheme, such as values of the damped factor, weights and the clamping velocity, are discussed, along with a comparison of computational load between previous methods and BQSA. Simulations of a planar seven-link manipulator and a PUMA 560 robot verify the effectiveness of BQSA.

  4. Distance Determination Method for Normally Distributed Obstacle Avoidance of Mobile Robots in Stochastic Environments

    Directory of Open Access Journals (Sweden)

    Jinhong Noh

    2016-04-01

    Full Text Available Obstacle avoidance methods require knowledge of the distance between a mobile robot and obstacles in the environment. However, in stochastic environments, distance determination is difficult because objects have position uncertainty. The purpose of this paper is to determine the distance between a robot and obstacles represented by probability distributions. Distance determination for obstacle avoidance should consider position uncertainty, computational cost and collision probability. The proposed method considers all of these conditions, unlike conventional methods. It determines the obstacle region using the collision probability density threshold. Furthermore, it defines a minimum distance function to the boundary of the obstacle region with a Lagrange multiplier method. Finally, it computes the distance numerically. Simulations were executed in order to compare the performance of the distance determination methods. Our method demonstrated a faster and more accurate performance than conventional methods. It may help overcome position uncertainty issues pertaining to obstacle avoidance, such as low accuracy sensors, environments with poor visibility or unpredictable obstacle motion.

  5. Evaluation of a Portable Collision Warning Device for Patients With Peripheral Vision Loss in an Obstacle Course.

    Science.gov (United States)

    Pundlik, Shrinivas; Tomasi, Matteo; Luo, Gang

    2015-04-01

    A pocket-sized collision warning device equipped with a video camera was developed to predict impending collisions based on time to collision rather than proximity. A study was conducted in a high-density obstacle course to evaluate the effect of the device on collision avoidance in people with peripheral field loss (PFL). The 41-meter-long loop-shaped obstacle course consisted of 46 stationary obstacles from floor to head level and oncoming pedestrians. Twenty-five patients with tunnel vision (n = 13) or hemianopia (n = 12) completed four consecutive loops with and without the device, while not using any other habitual mobility aid. Walking direction and device usage order were counterbalanced. Number of collisions and preferred percentage of walking speed (PPWS) were compared within subjects. Collisions were reduced significantly by approximately 37% (P < 0.001) with the device (floor-level obstacles were excluded because the device was not designed for them). No patient had more collisions when using the device. Although the PPWS were also reduced with the device from 52% to 49% (P = 0.053), this did not account for the lower number of collisions, as the changes in collisions and PPWS were not correlated (P = 0.516). The device may help patients with a wide range of PFL avoid collisions with high-level obstacles while barely affecting their walking speed.

  6. The risk of pedestrian collisions with peripheral visual field loss

    OpenAIRE

    Peli, Eli; Apfelbaum, Henry; Berson, Eliot L.; Goldstein, Robert B.

    2016-01-01

    Patients with peripheral field loss complain of colliding with other pedestrians in open-space environments such as shopping malls. Field expansion devices (e.g., prisms) can create artificial peripheral islands of vision. We investigated the visual angle at which these islands can be most effective for avoiding pedestrian collisions, by modeling the collision risk density as a function of bearing angle of pedestrians relative to the patient. Pedestrians at all possible locations were assumed...

  7. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation

    Science.gov (United States)

    Almasri, Marwah; Elleithy, Khaled; Alajlan, Abrar

    2015-01-01

    Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot’s wheels, and 24 fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes. PMID:26712766

  8. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation

    Directory of Open Access Journals (Sweden)

    Marwah Almasri

    2015-12-01

    Full Text Available Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot’s wheels, and 24 fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes.

  9. Collision risk investigation for an operational spacecraft caused by space debris

    Science.gov (United States)

    Zhang, Binbin; Wang, Zhaokui; Zhang, Yulin

    2017-04-01

    The collision probability between an operational spacecraft and a population of space debris is investigated. By dividing the 3-dimensional operational space of the spacecraft into several space volume cells (SVC) and proposing a boundary selection method to calculate the collision probability in each SVC, the distribution of the collision risk, as functions of the time, the orbital height, the declination, the impact elevation, the collision velocity, etc., can be obtained. Thus, the collision risk could be carefully evaluated over a time span for the general orbital configurations of the spacecraft and the space debris. As an application, the collision risk for the Tiangong-2 space laboratory caused by the cataloged space debris is discussed and evaluated. Results show that most of the collision threat comes from the front left and front right in Tiangong-2's local, quasi-horizontal plane. And the collision probability will also accumulate when Tiangong-2 moves to the largest declinations (about {±} 42°). As a result, the manned space activities should be avoided at those declinations.

  10. Collision-free motion coordination of heterogeneous robots

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Nak Yong [Chosun University, Gwangju (Korea, Republic of); Seo, Dong Jin [RedOne Technologies, Gwangju (Korea, Republic of); Simmons, Reid G. [Carnegie Mellon University, Pennsylvania (United States)

    2008-11-15

    This paper proposes a method to coordinate the motion of multiple heterogeneous robots on a network. The proposed method uses prioritization and avoidance. Priority is assigned to each robot; a robot with lower priority avoids the robots of higher priority. To avoid collision with other robots, elastic force and potential field force are used. Also, the method can be applied separately to the motion planning of a part of a robot from that of the other parts of the robot. This is useful for application to the robots of the type mobile manipulator or highly redundant robots. The method is tested by simulation, and it results in smooth and adaptive coordination in an environment with multiple heterogeneous robots

  11. Collision-free motion coordination of heterogeneous robots

    International Nuclear Information System (INIS)

    Ko, Nak Yong; Seo, Dong Jin; Simmons, Reid G.

    2008-01-01

    This paper proposes a method to coordinate the motion of multiple heterogeneous robots on a network. The proposed method uses prioritization and avoidance. Priority is assigned to each robot; a robot with lower priority avoids the robots of higher priority. To avoid collision with other robots, elastic force and potential field force are used. Also, the method can be applied separately to the motion planning of a part of a robot from that of the other parts of the robot. This is useful for application to the robots of the type mobile manipulator or highly redundant robots. The method is tested by simulation, and it results in smooth and adaptive coordination in an environment with multiple heterogeneous robots

  12. Multiple-Antenna Interference Cancellation for WLAN with MAC Interference Avoidance in Open Access Networks

    Directory of Open Access Journals (Sweden)

    Alexandr M. Kuzminskiy

    2007-10-01

    Full Text Available The potential of multiantenna interference cancellation receiver algorithms for increasing the uplink throughput in WLAN systems such as 802.11 is investigated. The medium access control (MAC in such systems is based on carrier sensing multiple-access with collision avoidance (CSMA/CA, which itself is a powerful tool for the mitigation of intrasystem interference. However, due to the spatial dependence of received signal strengths, it is possible for the collision avoidance mechanism to fail, resulting in packet collisions at the receiver and a reduction in system throughput. The CSMA/CA MAC protocol can be complemented in such scenarios by interference cancellation (IC algorithms at the physical (PHY layer. The corresponding gains in throughput are a result of the complex interplay between the PHY and MAC layers. It is shown that semiblind interference cancellation techniques are essential for mitigating the impact of interference bursts, in particular since these are typically asynchronous with respect to the desired signal burst. Semiblind IC algorithms based on second- and higher-order statistics are compared to the conventional no-IC and training-based IC techniques in an open access network (OAN scenario involving home and visiting users. It is found that the semiblind IC algorithms significantly outperform the other techniques due to the bursty and asynchronous nature of the interference caused by the MAC interference avoidance scheme.

  13. Multiple-Antenna Interference Cancellation for WLAN with MAC Interference Avoidance in Open Access Networks

    Directory of Open Access Journals (Sweden)

    Kuzminskiy Alexandr M

    2007-01-01

    Full Text Available The potential of multiantenna interference cancellation receiver algorithms for increasing the uplink throughput in WLAN systems such as 802.11 is investigated. The medium access control (MAC in such systems is based on carrier sensing multiple-access with collision avoidance (CSMA/CA, which itself is a powerful tool for the mitigation of intrasystem interference. However, due to the spatial dependence of received signal strengths, it is possible for the collision avoidance mechanism to fail, resulting in packet collisions at the receiver and a reduction in system throughput. The CSMA/CA MAC protocol can be complemented in such scenarios by interference cancellation (IC algorithms at the physical (PHY layer. The corresponding gains in throughput are a result of the complex interplay between the PHY and MAC layers. It is shown that semiblind interference cancellation techniques are essential for mitigating the impact of interference bursts, in particular since these are typically asynchronous with respect to the desired signal burst. Semiblind IC algorithms based on second- and higher-order statistics are compared to the conventional no-IC and training-based IC techniques in an open access network (OAN scenario involving home and visiting users. It is found that the semiblind IC algorithms significantly outperform the other techniques due to the bursty and asynchronous nature of the interference caused by the MAC interference avoidance scheme.

  14. Whole-arm obstacle avoidance system conceptual design

    International Nuclear Information System (INIS)

    Wintenberg, A.L.; Butler, P.L.; Babcock, S.M.; Ericson, M.N.; Britton, C.L. Jr.

    1993-04-01

    Whole-arm obstacle avoidance is needed for a variety of robotic applications in the Environmental Restoration and Waste Management (ER ampersand WM) Program. Typical industrial applications of robotics involve well-defined workspaces, allowing a predetermined knowledge of collision-free paths for manipulator motion. In the unstructured or poorly defined hazardous environments of the ER ampersand WM Program, the potential for significant problems resulting from collisions between manipulators and the environment in which they are utilized is great. The conceptual design for a sensing system that will provide protection against such collisions is described herein. The whole-arm obstacle avoidance system consists of a set of sensor ''bracelets,'' which cover the surface area of the manipulator links to the maximum extent practical, and a host processor. The host processor accepts commands from the robot control system, controls the operation of the sensors, manipulates data received from the bracelets, and makes the data available to the manipulator control system. The bracelets consist of a subset of the sensors, associated sensor interface electronics, and a bracelet interface. Redundant communications links between the host processor and the bracelets are provided, allowing single-point failure protection. The system allows reporting of 8-bit data from up to 1000 sensors at a minimum of 50 Hz. While the initial prototype implementation of the system utilizes capacitance proximity sensor, the system concept allows multiple types of sensors. These sensors are uniquely addressable, allowing remote calibration, thresholding at the bracelet, and correlation of a sensor measurement with the associated sensor and its location on the manipulator. Variable resolution allows high-speed, single-bit sensing as well as lower-speed higher-resolution sensing, which is necessary for sensor calibration and potentially useful in control

  15. Analysis of Massively Parallel Discrete-Ordinates Transport Sweep Algorithms with Collisions

    International Nuclear Information System (INIS)

    Bailey, T.S.; Falgout, R.D.

    2008-01-01

    We present theoretical scaling models for a variety of discrete-ordinates sweep algorithms. In these models, we pay particular attention to the way each algorithm handles collisions. A collision is defined as a processor having multiple angles with ready to be swept during one stage of the sweep. The models also take into account how subdomains are assigned to processors and how angles are grouped during the sweep. We describe a data driven algorithm that resolves collisions efficiently during the sweep as well as other algorithms that have been designed to avoid collisions completely. Our models are validated using the ARGES and AMTRAN transport codes. We then use the models to study and predict scaling trends in all of the sweep algorithms

  16. Wave packet methods for the direct calculation of energy-transfer moments in molecular collisions

    International Nuclear Information System (INIS)

    Bradley, K.S.; Schatz, G.C.; Balint-Kurti, G.G.

    1999-01-01

    The authors present a new wave packet based theory for the direct calculation of energy-transfer moments in molecular collision processes. This theory does not contain any explicit reference to final state information associated with the collision dynamics, thereby avoiding the need for determining vibration-rotation bound states (other than the initial state) for the molecules undergoing collision and also avoiding the calculation of state-to-state transition probabilities. The theory applies to energy-transfer moments of any order, and it generates moments for a wide range of translational energies in a single calculation. Two applications of the theory are made that demonstrate its viability; one is to collinear He + H 2 and the other to collinear He + CS 2 (with two active vibrational modes in CS 2 ). The results of these applications agree well with earlier results based on explicit calculation of transition probabilities

  17. Modeling of Ship Collision Risk Index Based on Complex Plane and Its Realization

    Directory of Open Access Journals (Sweden)

    Xiaoqin Xu

    2016-07-01

    Full Text Available Ship collision risk index is the basic and important concept in the domain of ship collision avoidance. In this paper, the advantages and deficiencies of the various calculation methods of ship collision risk index are pointed out. Then the ship collision risk model based on complex plane, which can well make up for the deficiencies of the widely-used evaluation model proposed by Kearon.J and Liu ruru is proposed. On this basis, the calculation method of collision risk index under the encountering situation of multi-ships is constructed, then the three-dimensional image and spatial curve of the risk index are figured out. Finally, single chip microcomputer is used to realize the model. And attaching this single chip microcomputer to ARPA is helpful to the decision-making of the marine navigators.

  18. Research on Intelligent Avoidance Method of Shipwreck Based on Bigdata Analysis

    Directory of Open Access Journals (Sweden)

    Li Wei

    2017-11-01

    Full Text Available In order to solve the problem that current avoidance method of shipwreck has the problem of low success rate of avoidance, this paper proposes a method of intelligent avoidance of shipwreck based on big data analysis. Firstly,our method used big data analysis to calculate the safe distance of approach of ship under the head-on situation, the crossing situation and the overtaking situation.On this basis, by calculating the risk-degree of collision of ships,our research determined the degree of immediate danger of ships.Finally, we calculated the three kinds of evaluation function of ship navigation, and used genetic algorithm to realize the intelligent avoidance of shipwreck.Experimental result shows that compared the proposed method with the traditional method in two in a recent meeting when the distance to closest point of approach between two ships is 0.13nmile, they can effectively evade.The success rate of avoidance is high.

  19. Collision analysis of one kind of chaos-based hash function

    International Nuclear Information System (INIS)

    Xiao Di; Peng Wenbing; Liao Xiaofeng; Xiang Tao

    2010-01-01

    In the last decade, various chaos-based hash functions have been proposed. Nevertheless, the corresponding analyses of them lag far behind. In this Letter, we firstly take a chaos-based hash function proposed very recently in Amin, Faragallah and Abd El-Latif (2009) as a sample to analyze its computational collision problem, and then generalize the construction method of one kind of chaos-based hash function and summarize some attentions to avoid the collision problem. It is beneficial to the hash function design based on chaos in the future.

  20. Welding Robot Collision-Free Path Optimization

    Directory of Open Access Journals (Sweden)

    Xuewu Wang

    2017-02-01

    Full Text Available Reasonable welding path has a significant impact on welding efficiency, and a collision-free path should be considered first in the process of welding robot path planning. The shortest path length is considered as an optimization objective, and obstacle avoidance is considered as the constraint condition in this paper. First, a grid method is used as a modeling method after the optimization objective is analyzed. For local collision-free path planning, an ant colony algorithm is selected as the search strategy. Then, to overcome the shortcomings of the ant colony algorithm, a secondary optimization is presented to improve the optimization performance. Finally, the particle swarm optimization algorithm is used to realize global path planning. Simulation results show that the desired welding path can be obtained based on the optimization strategy.

  1. Multiple-Vehicle Longitudinal Collision Mitigation by Coordinated Brake Control

    Directory of Open Access Journals (Sweden)

    Xiao-Yun Lu

    2014-01-01

    Full Text Available Rear-end collision often leads to serious casualties and traffic congestion. The consequences are even worse for multiple-vehicle collision. Many previous works focused on collision warning and avoidance strategies of two consecutive vehicles based on onboard sensor detection only. This paper proposes a centralized control strategy for multiple vehicles to minimize the impact of multiple-vehicle collision based on vehicle-to-vehicle communication technique. The system is defined as a coupled group of vehicles with wireless communication capability and short following distances. The safety relationship can be represented as lower bound limit on deceleration of the first vehicle and upper bound on maximum deceleration of the last vehicle. The objective is to determine the desired deceleration for each vehicle such that the total impact energy is minimized at each time step. The impact energy is defined as the relative kinetic energy between a consecutive pair of vehicles (approaching only. Model predictive control (MPC framework is used to formulate the problem to be constrained quadratic programming. Simulations show its effectiveness on collision mitigation. The developed algorithm has the potential to be used for progressive market penetration of connected vehicles in practice.

  2. Smoke-Free Universities Help Students Avoid Establishing Smoking by Means of Facilitating Quitting

    Directory of Open Access Journals (Sweden)

    Tatiana I Andreeva

    2015-12-01

    Full Text Available Background: This study aimed to clarify whether smoke-free policies affect the initiation or the quit­ting of smoking among young adults. Methods: In this natural quasi-experiment study, three universities with different enforcement of smoke-free policies were considered in Kazan City, Russian Federation. Exposure data were collected in 2008-2009 through measurement of particulate matter concentrations in typical sets of premises in each university to distinguish smoke-free universities (SFU and those not smoke-free (NSFU. All present third year students were surveyed in class in April-June 2011. Number of valid questionnaires equaled 635. The questionnaire was adapted from the Health Professions Students Survey and con­tained questions on smoking initiation, current tobacco use, willingness to quit, quit attempts, percep­tion of smoke-free policies enforcement, and the demographic data. Results: Among students of SFU, the percentage of current smokers was smaller than in NSFU: 42% vs. 64% in men and 32% vs. 43% in women. Prevalence of daily smoking was 11-12% in SFU, 26% in NSFU overall and 42% among male students. No advantage of SFU in limiting smoking initiation was found. Percentage of former smokers in SFU was 33% vs. 10% in NSFU. Among current smokers, 57% expressed willingness to quit in SFU and only 28% in NSFU. About 60% of current smokers in SFU attempted to quit within a year and only 36% did so in NSFU with 23% vs. 3% having done three or more attempts. Conclusion: Smoke-free universities help young adults to avoid establishing regular smoking by means of facilitating quitting smoking.

  3. Nuclear collisions in measurements of the cosmic ray charge spectrum with a counter telescope

    International Nuclear Information System (INIS)

    Lindstam, S.

    1975-06-01

    The importance of nuclear collisions of cosmic ray particles in a counter detector telescope is studied by simple Monte Carlo techniques. The interest concentrates on the charge region just below iron and the calculations are restricted to fully relativistic cosmic rays. It is found that it is difficult to avoid a blurring in the charge spectrum from nuclear collisions leading to considerable systematic errors in some abundance ratios. (Auth.)

  4. A Neural Model of Visually Guided Steering, Obstacle Avoidance, and Route Selection

    Science.gov (United States)

    Elder, David M.; Grossberg, Stephen; Mingolla, Ennio

    2009-01-01

    A neural model is developed to explain how humans can approach a goal object on foot while steering around obstacles to avoid collisions in a cluttered environment. The model uses optic flow from a 3-dimensional virtual reality environment to determine the position of objects on the basis of motion discontinuities and computes heading direction,…

  5. Collision Risk and Damage after Collision

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Hansen, Peter Friis; Nielsen, Lars Peter

    1996-01-01

    The paper presents a new and complete procedure for calculation of ship-ship collision rates on specific routes and the hull damage caused by such collisions.The procedure is applied to analysis of collision risks for Ro-Ro pasenger vessels. Given a collision the spatial probability distribution ...

  6. Autonomous Manoeuvring Systems for Collision Avoidance on Single Carriageway Roads

    Directory of Open Access Journals (Sweden)

    Óscar Gómez

    2012-11-01

    Full Text Available The accurate perception of the surroundings of a vehicle has been the subject of study of numerous automotive researchers for many years. Although several projects in this area have been successfully completed, very few prototypes have actually been industrialized and installed in mass produced cars. This indicates that these research efforts must continue in order to improve the present systems. Moreover, the trend to include communication systems in vehicles extends the potential of these perception systems transmitting their information via wireless to other vehicles that may be affected by the surveyed environment. In this paper we present a forward collision warning system based on a laser scanner that is able to detect several potential danger situations. Decision algorithms try to determine the most convenient manoeuvre when evaluating the obstacles’ positions and speeds, road geometry, etc. Once detected, the presented system can act on the actuators of the ego-vehicle as well as transmit this information to other vehicles circulating in the same area using vehicle-to-vehicle communications. The system has been tested for overtaking manoeuvres under different scenarios and the correct actions have been performed.

  7. Autonomous manoeuvring systems for collision avoidance on single carriageway roads.

    Science.gov (United States)

    Jiménez, Felipe; Naranjo, José Eugenio; Gómez, Oscar

    2012-11-29

    The accurate perception of the surroundings of a vehicle has been the subject of study of numerous automotive researchers for many years. Although several projects in this area have been successfully completed, very few prototypes have actually been industrialized and installed in mass produced cars. This indicates that these research efforts must continue in order to improve the present systems. Moreover, the trend to include communication systems in vehicles extends the potential of these perception systems transmitting their information via wireless to other vehicles that may be affected by the surveyed environment. In this paper we present a forward collision warning system based on a laser scanner that is able to detect several potential danger situations. Decision algorithms try to determine the most convenient manoeuvre when evaluating the obstacles' positions and speeds, road geometry, etc. Once detected, the presented system can act on the actuators of the ego-vehicle as well as transmit this information to other vehicles circulating in the same area using vehicle-to-vehicle communications. The system has been tested for overtaking manoeuvres under different scenarios and the correct actions have been performed.

  8. 1-3 Nuclear In-medium Effects of Strange Particles in Proton-nucleus Collisions

    Institute of Scientific and Technical Information of China (English)

    Feng; Zhaoqing[1

    2014-01-01

    Extraction of the in-medium properties of strange particles from heavy-ion collisions is very complicated, since he nuclear density varies in the evolution of nucleus-nucleus collisions. To avoid the uncertainties of the baryon ensities during the stage of strange particle production, one can investigate proton-nucleus collisions where the uclear density is definite around the saturation density. Dynamics of strange particles produced in the protoninduced uclear the reactions near the threshold energies has been investigated within the Lanzhou quantum olecular dynamics (LQMD) transport model. The in-medium modifications on particle production in densenuclear matter are considered through the corrections to the elementary cross sections via the effective mass and he mean-field potentials[1].

  9. Car Black Box with Speed Control in Desired Areas for Collision Avoidance

    Directory of Open Access Journals (Sweden)

    P. Poddar

    2012-10-01

    Full Text Available This paper presents an advanced step to the concept of car black-box in developing a comprehensive vehicle safety system which would not only record the video and audio, but also try to prevent a possible collision by limiting the speed of the vehicle in accident-prone areas. In case of an accident, the time and location (co-ordinates is sent through GSM to a preset number for immediate rescue and treatment. Recorded data can also be used for forensics, revealing the problems that caused the accident and give manufacturer an idea for improvement. So the motto is to develop an embedded integrated system consisting of a microcontroller, a power supply unit, sensors, memory, a motor driver unit and a GPS/GSM modem.

  10. Toyota drivers' experiences with Dynamic Radar Cruise Control, Pre-Collision System, and Lane-Keeping Assist.

    Science.gov (United States)

    Eichelberger, Angela H; McCartt, Anne T

    2016-02-01

    Advanced crash avoidance and driver assistance technologies potentially can prevent or mitigate many crashes. Previous surveys with drivers have found favorable opinions for many advanced technologies; however, these surveys are not necessarily representative of all drivers or all systems. As the technologies spread throughout the vehicle fleet, it is important to continue studying driver acceptance and use of them. This study focused on 2010-2013 Toyota Sienna and Prius models that were equipped with adaptive cruise control, forward collision avoidance, and lane departure warning and prevention (Prius models only). Telephone interviews were conducted in summer 2013 with 183 owners of vehicles with these technologies. About 9 in 10 respondents wanted adaptive cruise control and forward collision avoidance on their next vehicle, and 71% wanted lane departure warning/prevention again. Males and females reported some differences in their experiences with the systems; for example, males were more likely to have turned on lane departure warning/prevention than females, and when using this system, males reported more frequent warnings than did females. Relative to older drivers, drivers age 40 and younger were more likely to have seen or heard a forward collision warning. Consistent with the results in previous surveys of owners of luxury vehicles, the present survey found that driver acceptance of the technologies was high, although less so for lane departure warning/prevention. Experiences with the Toyota systems differed by driver age and gender to a greater degree than in previous surveys, suggesting that the responses of drivers may begin to differ as crash avoidance technology becomes available on a wider variety of vehicles. Crash avoidance technologies potentially can prevent or mitigate many crashes, but their success depends in part on driver acceptance. These systems will be effective only to the extent that drivers use them. Copyright © 2015 Elsevier Ltd and

  11. Biologically inspired collision avoidance system for unmanned vehicles

    Science.gov (United States)

    Ortiz, Fernando E.; Graham, Brett; Spagnoli, Kyle; Kelmelis, Eric J.

    2009-05-01

    In this project, we collaborate with researchers in the neuroscience department at the University of Delaware to develop an Field Programmable Gate Array (FPGA)-based embedded computer, inspired by the brains of small vertebrates (fish). The mechanisms of object detection and avoidance in fish have been extensively studied by our Delaware collaborators. The midbrain optic tectum is a biological multimodal navigation controller capable of processing input from all senses that convey spatial information, including vision, audition, touch, and lateral-line (water current sensing in fish). Unfortunately, computational complexity makes these models too slow for use in real-time applications. These simulations are run offline on state-of-the-art desktop computers, presenting a gap between the application and the target platform: a low-power embedded device. EM Photonics has expertise in developing of high-performance computers based on commodity platforms such as graphic cards (GPUs) and FPGAs. FPGAs offer (1) high computational power, low power consumption and small footprint (in line with typical autonomous vehicle constraints), and (2) the ability to implement massively-parallel computational architectures, which can be leveraged to closely emulate biological systems. Combining UD's brain modeling algorithms and the power of FPGAs, this computer enables autonomous navigation in complex environments, and further types of onboard neural processing in future applications.

  12. Volvo and Infiniti drivers' experiences with select crash avoidance technologies.

    Science.gov (United States)

    Braitman, Keli A; McCartt, Anne T; Zuby, David S; Singer, Jeremiah

    2010-06-01

    Vehicle-based crash avoidance systems can potentially reduce crashes, but success depends on driver acceptance and understanding. This study gauged driver use, experience, and acceptance among early adopters of select technologies. Telephone interviews were conducted in early 2009 with 380 owners of Volvo vehicles equipped with forward collision warning with autobrake, lane departure warning, side-view assist, and/or active bi-xenon headlights and 485 owners of Infiniti vehicles with lane departure warning/prevention. Most owners kept systems turned on most of the time, especially forward collision warning with autobrake and side-view assist. The exception was lane departure prevention; many owners were unaware they had it, and the system must be activated each time the vehicle is started. Most owners reported being safer with the technologies and would want them again on their next vehicles. Perceived false or unnecessary warnings were fairly common, particularly with side-view assist. Some systems were annoying, especially lane departure warning. Many owners reported safer driving behaviors such as greater use of turn signals (lane departure warning), increased following distance (forward collision warning), and checking side mirrors more frequently (side-view assist), but some reported driving faster at night (active headlights). Despite some unnecessary or annoying warnings, most Volvo and Infiniti owners use crash avoidance systems most of the time. Among early adopters, the first requirement of effective warning systems (that owners use the technology) seems largely met. Systems requiring activation by drivers for each trip are used less often. Owner experience with the latest technologies from other automobile manufacturers should be studied, as well as for vehicles on which technologies are standard (versus optional) equipment. The effectiveness of technologies in preventing and mitigating crashes and injuries, and user acceptance of interfaces, should be

  13. Middle Man Concept for In-Orbit Collision Risks Mitigation, CAESAR and CARA Examples

    Science.gov (United States)

    Moury, Monique; Newman, Lauri K.; Laporte, Francois

    2014-01-01

    This paper describes the conjunction analysis which has to be performed using data provided by JSpOC. This description not only demonstrates that Collision Avoidance is a 2- step process (close approach detection followed by risk evaluation for collision avoidance decision) but also leads to the conclusion that there is a need for a Middle Man role. After describing the Middle Man concept, this paper introduces two examples with their similarities and particularities: the American civil space effort delivered by the NASA CARA team (Conjunction Assessment Risk Analysis) and the French response CAESAR (Conjunction Assessment and Evaluation Service: Alerts and Recommendations). For both, statistics are presented and feedbacks discussed. All together, around 80 satellites are served by CARA and/or CAESAR. Both processes regularly evolve in order either to follow JSpOC upgrades or to improve analysis according to experience acquired during the past years.

  14. Towards a Collision-Free WLAN: Dynamic Parameter Adjustment in CSMA/E2CA

    Directory of Open Access Journals (Sweden)

    Bellalta Boris

    2011-01-01

    Full Text Available Carrier sense multiple access with enhanced collision avoidance (CSMA/ECA is a distributed MAC protocol that allows collision-free access to the medium in WLANs. The only difference between CSMA/ECA and the well-known CSMA/CA is that the former uses a deterministic backoff after successful transmissions. Collision-free operation is reached after a transient state during which some collisions may occur. This paper shows that the duration of the transient state can be shortened by appropriately setting the contention parameters. Standard absorbing Markov chain theory is used to describe the behaviour of the system in the transient state and to predict the expected number of slots to reach the collision-free operation. The paper also introduces CSMA/E2CA, in which a deterministic backoff is used two consecutive times after a successful transmission. CSMA/E2CA converges quicker to collision-free operation and delivers higher performance than CSMA/ECA, specially in harsh wireless scenarios with high frame-error rates. The last part of the paper addresses scenarios with a large number of contenders. We suggest dynamic parameter adjustment techniques to accommodate a varying (and potentially high number of contenders. The effectiveness of these adjustments in preventing collisions is validated by means of simulation.

  15. Validation of Essential Acoustic Parameters for Highly Urgent In-Vehicle Collision Warnings.

    Science.gov (United States)

    Lewis, Bridget A; Eisert, Jesse L; Baldwin, Carryl L

    2018-03-01

    Objective The aim of this study was to validate the importance of key acoustic criteria for use as in-vehicle forward collision warning (FCW) systems. Background Despite recent advances in vehicle safety, automobile crashes remain one of the leading causes of death. As automation allows for more control of noncritical functions by the vehicle, the potential for disengagement and distraction from the driving task also increases. It is, therefore, as important as ever that in-vehicle safety-critical interfaces are intuitive and unambiguous, promoting effective collision avoidance responses upon first exposure even under divided-attention conditions. Method The current study used a driving simulator to assess the effectiveness of two warnings, one that met all essential acoustic parameters, one that met only some essential parameters, and a no-warning control in the context of a lead vehicle-following task in conjunction with a cognitive distractor task and collision event. Results Participants receiving an FCW comprising five essential acoustic components had improved collision avoidance responses relative to a no-warning condition and an FCW missing essential elements on their first exposure. Responses to a consistently good warning (GMU Prime) improved with subsequent exposures, whereas continued exposure to the less optimal FCW (GMU Sub-Prime) resulted in poorer performance even relative to receiving no warning at all. Conclusions This study provides support for previous warning design studies and for the validity of five key acoustic parameters essential for the design of effective in-vehicle FCWs. Application Results from this study have implications for the design of auditory FCWs and in-vehicle display design.

  16. RAC-Multi: Reader Anti-Collision Algorithm for Multichannel Mobile RFID Networks

    Directory of Open Access Journals (Sweden)

    Kwangcheol Shin

    2009-12-01

    Full Text Available At present, RFID is installed on mobile devices such as mobile phones or PDAs and provides a means to obtain information about objects equipped with an RFID tag over a multi-channeled telecommunication networks. To use mobile RFIDs, reader collision problems should be addressed given that readers are continuously moving. Moreover, in a multichannel environment for mobile RFIDs, interference between adjacent channels should be considered. This work first defines a new concept of a reader collision problem between adjacent channels and then suggests a novel reader anti-collision algorithm for RFID readers that use multiple channels. To avoid interference with adjacent channels, the suggested algorithm separates data channels into odd and even numbered channels and allocates odd-numbered channels first to readers. It also sets an unused channel between the control channel and data channels to ensure that control messages and the signal of the adjacent channel experience no interference. Experimental results show that suggested algorithm shows throughput improvements ranging from 29% to 46% for tag identifications compared to the GENTLE reader anti-collision algorithm for multichannel RFID networks.

  17. Hesitant avoidance while walking: an error of social behavior generated by mutual interaction

    Directory of Open Access Journals (Sweden)

    Motoyasu eHonma

    2015-07-01

    Full Text Available Altering physical actions when responding to changing environmental demands is important but not always effectively performed. This ineffectiveness, which is an error of social behavior generated by mutual interactions, is not well understood. This study investigated mechanisms of a hesitant behavior that occurs in people walking toward each other, causing people to move in the same direction when attempting to avoid a collision. Using a motion capture device affixed to 17 pairs, we first confirmed the hesitant behavior by a difference between the experimental task, which involved an indeterminate situation to assess the actions of another individual, and the control task, which involved a predetermined avoiding direction, in a real-time situation involving two people. We next investigated the effect of three external factors: long distance until an event, synchronized walking cycle, and different foot relations in dyads on the hesitant behavior. A dramatic increase in freezing and near-collision behavior occurred in dyads for which the avoiding direction was not predetermined. The behavior related with the combination of long distance until an event, synchronized walking cycle, and different foot relations in dyads. We found that the hesitant behavior is influenced by an interpersonal relationship under enough distance to predict other movement. The hesitant behavior has possibly emerged as an undesired by-product of joint action. These results contribute to our understanding of the mechanisms of adaptive control of perception-action coupling in mutual interaction.

  18. Development of the KARI Space Debris Collision Risk Management System (KARISMA)

    Science.gov (United States)

    Kim, Hae-Dong; Lee, Sang-Cherl; Cho, Dong-Hyun; Seong, Jae-Dong

    2018-05-01

    Korea has been operating multi-purpose low-earth orbit (LEO) satellites such as the Korea multi-purpose satellite (KOMPSAT) since 1999 and the Communication, Ocean, and Meteorological Satellite (COMS), which was launched into geostationary orbit in 2006. The Korea Aerospace Research Institute (KARI) consequently became concerned about the deteriorating space debris environment. This led to the instigation, in 2011, of a project to develop the KARI space debris collision risk management system (KARISMA). In 2014, KARISMA was adopted as an official tool at the KARI ground station and is operated to mitigate collision risks while being continuously upgraded with input from satellite operators. The characteristics and architecture of KARISMA are described with detailed operational views. The user-friendly user interfaces including 2D and 3D displays of the results, conjunction geometries, and so on, are described in detail. The results of our analysis of the space collision risk faced by the KOMPSAT satellites as determined using KARISMA are presented, as well as optimized collision avoidance maneuver planning with maneuvering strategies for several conjunction events. Consequently, the development of KARISMA to provide detailed descriptions is expected to contribute significantly to satellite operators and owners who require tools with many useful functions to mitigate collision risk.

  19. Volvo drivers' experiences with advanced crash avoidance and related technologies.

    Science.gov (United States)

    Eichelberger, Angela H; McCartt, Anne T

    2014-01-01

    Crash avoidance technologies can potentially prevent or mitigate many crashes, but their success depends in part on driver acceptance. Owners of 2010-2012 model Volvo vehicles with several technologies were interviewed about their experiences. Interviews were conducted in summer 2012 with 155 owners of vehicles with City Safety as a standard feature; 145 owners with an optional technology package that included adaptive cruise control, distance alert, collision warning with full auto brake (and pedestrian detection on certain models), driver alert control, and lane departure warning; and 172 owners with both City Safety and the technology package. The survey response rates were 21 percent for owners with City Safety, 30 percent for owners with the technology package, and 27 percent for owners with both. Ten percent of owners opted out before the telephone survey began, and 18 percent declined to participate when called. Despite some annoyance, most respondents always leave the systems on, although fewer do so for lane departure warning (59%). For each of the systems, at least 80 percent of respondents with the system would want it on their next vehicle. Many respondents reported safer driving habits with the systems (e.g., following less closely with adaptive cruise control, using turn signals more often with lane departure warning). Fewer respondents reported potentially unsafe behavior, such as allowing the vehicle to brake for them at least some of the time. About one third of respondents experienced autonomous braking when they believed they were at risk of crashing, and about one fifth of respondents thought it had prevented a crash. About one fifth of respondents with the technology package reported that they were confused or misunderstood which safety system had activated in their vehicle. Consistent with the results for early adopters in the previous survey of Volvo and Infiniti owners, the present survey found that driver acceptance of the technologies

  20. Effects of psychotropic agents on extinction of lever-press avoidance in a rat model of anxiety vulnerability

    Directory of Open Access Journals (Sweden)

    Xilu eJiao

    2014-09-01

    Full Text Available Avoidance and its perseveration represent key features of anxiety disorders. Both pharmacological and behavioral approaches (i.e. anxiolytics and extinction therapy have been utilized to modulate avoidance behavior in patients. However, the outcome has not always been desirable. Part of the reason is attributed to the diverse neuropathology of anxiety disorders. Here, we investigated the effect of psychotropic drugs that target various monoamine systems on extinction of avoidance behavior using lever-press avoidance task. Here we used the Wistar-Kyoto (WKY rat, a unique rat model that exhibits facilitated avoidance and extinction resistance along with malfunction of the dopamine (DA system. Sprague Dawley (SD and WKY rats were trained to acquire lever-press avoidance. WKY rats acquired avoidance faster and to a higher level compared to SD rats. During pharmacological treatment, bupropion, and desipramine significantly reduced avoidance response selectively in WKY rats. However, after the discontinuation of drug treatment, only those WKY rats that were previously treated with desipramine exhibited lower avoidance response compared to the control group. In contrast, none of the psychotropic drugs facilitated avoidance extinction in SD rats. Instead, desipramine impaired avoidance extinction and increased non-reinforced response in SD rats. Interestingly, paroxetine, a widely used antidepressant and anxiolytic, exhibited the weakest effect in WKY rats and no effects at all in SD rats. Thus, our data suggest that malfunctions in brain catecholamine system could be one of the underlying etiologies of anxiety-like behavior, particularly avoidance perseveration. Pharmacological manipulation targeting DA and norepinephrine is more effective to facilitate extinction learning in this strain. The data from the present study may shed light on new pharmacological approaches to treat patients with anxiety disorders who are not responding to serotonin re

  1. Java Architecture for Detect and Avoid Extensibility and Modeling

    Science.gov (United States)

    Santiago, Confesor; Mueller, Eric Richard; Johnson, Marcus A.; Abramson, Michael; Snow, James William

    2015-01-01

    Unmanned aircraft will equip with a detect-and-avoid (DAA) system that enables them to comply with the requirement to "see and avoid" other aircraft, an important layer in the overall set of procedural, strategic and tactical separation methods designed to prevent mid-air collisions. This paper describes a capability called Java Architecture for Detect and Avoid Extensibility and Modeling (JADEM), developed to prototype and help evaluate various DAA technological requirements by providing a flexible and extensible software platform that models all major detect-and-avoid functions. Figure 1 illustrates JADEM's architecture. The surveillance module can be actual equipment on the unmanned aircraft or simulators that model the process by which sensors on-board detect other aircraft and provide track data to the traffic display. The track evaluation function evaluates each detected aircraft and decides whether to provide an alert to the pilot and its severity. Guidance is a combination of intruder track information, alerting, and avoidance/advisory algorithms behind the tools shown on the traffic display to aid the pilot in determining a maneuver to avoid a loss of well clear. All these functions are designed with a common interface and configurable implementation, which is critical in exploring DAA requirements. To date, JADEM has been utilized in three computer simulations of the National Airspace System, three pilot-in-the-loop experiments using a total of 37 professional UAS pilots, and two flight tests using NASA's Predator-B unmanned aircraft, named Ikhana. The data collected has directly informed the quantitative separation standard for "well clear", safety case, requirements development, and the operational environment for the DAA minimum operational performance standards. This work was performed by the Separation Assurance/Sense and Avoid Interoperability team under NASA's UAS Integration in the NAS project.

  2. Autonomous collision avoidance system by combined control of steering and braking using geometrically optimised vehicular trajectory

    Science.gov (United States)

    Hayashi, Ryuzo; Isogai, Juzo; Raksincharoensak, Pongsathorn; Nagai, Masao

    2012-01-01

    This study proposes an autonomous obstacle avoidance system not only by braking but also by steering, as one of the active safety technologies to prevent traffic accidents. The proposed system prevents the vehicle from colliding with a moving obstacle like a pedestrian jumping out from the roadside. In the proposed system, to avoid the predicted colliding position based on constant-velocity obstacle motion assumption, the avoidance trajectory is derived as connected two identical arcs. The system then controls the vehicle autonomously by the combined control of the braking and steering systems. In this paper, the proposed system is examined by real car experiments and its effectiveness is shown from the results of the experiments.

  3. Obstacle Avoidance of a Mobile Robot with Hierarchical Structure

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Gyu [Yeungnam College of Science and Technolgy, Taegu (Korea)

    2001-06-01

    This paper proposed a new hierarchical fuzzy-neural network algorithm for navigation of a mobile robot within unknown dynamic environment. Proposed navigation algorithm used the learning ability of the neural network and the feasibility of control highly nonlinear system of fuzzy theory. The proposed navigation algorithm used fuzzy algorithm for goal approach and fuzzy-network for effective collision avoidance. Some computer simulation results for a mobile robot equipped with ultrasonic range sensors show that the suggested navigation algorithm is very effective to escape in stationary and moving obstacles environment. (author). 11 refs., 14 figs., 2 tabs.

  4. A survey of autonomous vision-based See and Avoid for Unmanned Aircraft Systems

    Science.gov (United States)

    Mcfadyen, Aaron; Mejias, Luis

    2016-01-01

    This paper provides a comprehensive review of the vision-based See and Avoid problem for unmanned aircraft. The unique problem environment and associated constraints are detailed, followed by an in-depth analysis of visual sensing limitations. In light of such detection and estimation constraints, relevant human, aircraft and robot collision avoidance concepts are then compared from a decision and control perspective. Remarks on system evaluation and certification are also included to provide a holistic review approach. The intention of this work is to clarify common misconceptions, realistically bound feasible design expectations and offer new research directions. It is hoped that this paper will help us to unify design efforts across the aerospace and robotics communities.

  5. UAV formation control design with obstacle avoidance in dynamic three-dimensional environment.

    Science.gov (United States)

    Chang, Kai; Xia, Yuanqing; Huang, Kaoli

    2016-01-01

    This paper considers the artificial potential field method combined with rotational vectors for a general problem of multi-unmanned aerial vehicle (UAV) systems tracking a moving target in dynamic three-dimensional environment. An attractive potential field is generated between the leader and the target. It drives the leader to track the target based on the relative position of them. The other UAVs in the formation are controlled to follow the leader by the attractive control force. The repulsive force affects among the UAVs to avoid collisions and distribute the UAVs evenly on the spherical surface whose center is the leader-UAV. Specific orders or positions of the UAVs are not required. The trajectories of avoidance obstacle can be obtained through two kinds of potential field with rotation vectors. Every UAV can choose the optimal trajectory to avoid the obstacle and reconfigure the formation after passing the obstacle. Simulations study on UAV are presented to demonstrate the effectiveness of proposed method.

  6. Impact Parameter Dependence of π"-/π"+ Ratio in Probing the Nuclear Symmetry Energy Using Heavy-Ion Collisions

    International Nuclear Information System (INIS)

    He, Guo-Qiang; Wei, Gao-Feng; Lu, Yi-Xin; Cao, Xin-Wei

    2016-01-01

    The impact parameter dependence of π"-/π"+ ratio is examined in heavy-ion collisions at 400 MeV/nucleon within a transport model. It is shown that the sensitivity of π"-/π"+ ratio on symmetry energy shows a transition from central to peripheral collisions; that is, the stiffer symmetry energy leads to a larger π"-/π"+ ratio in peripheral collisions while the softer symmetry energy always leads this ratio to be larger in central collisions. After checking the kinematic energy distribution of π"-/π"+ ratio, we found this transition of sensitivity of π"-/π"+ ratio to symmetry energy is mainly from less energetic pions; that is, the softer symmetry energy gets the less energetic pions to form a smaller π"-/π"+ ratio in peripheral collisions while these pions generate a larger π"-/π"+ ratio in central collisions. Undoubtedly, the softer symmetry energy can also lead more energetic pions to form a larger π"-/π"+ ratio in peripheral collisions. Nevertheless, considering that most of pions are insufficiently energetic at this beam energy, we therefore suggest the π"-/π"+ ratio as a probe of the high-density symmetry energy effective only in central at most to midcentral collisions, thereby avoiding the possible information of low-density symmetry energy carried in π"-/π"+ ratio from peripheral collisions.

  7. High-Performance Computer Modeling of the Cosmos-Iridium Collision

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S; Cook, K; Fasenfest, B; Jefferson, D; Jiang, M; Leek, J; Levatin, J; Nikolaev, S; Pertica, A; Phillion, D; Springer, K; De Vries, W

    2009-08-28

    This paper describes the application of a new, integrated modeling and simulation framework, encompassing the space situational awareness (SSA) enterprise, to the recent Cosmos-Iridium collision. This framework is based on a flexible, scalable architecture to enable efficient simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel, high-performance computer systems available, for example, at Lawrence Livermore National Laboratory. We will describe the application of this framework to the recent collision of the Cosmos and Iridium satellites, including (1) detailed hydrodynamic modeling of the satellite collision and resulting debris generation, (2) orbital propagation of the simulated debris and analysis of the increased risk to other satellites (3) calculation of the radar and optical signatures of the simulated debris and modeling of debris detection with space surveillance radar and optical systems (4) determination of simulated debris orbits from modeled space surveillance observations and analysis of the resulting orbital accuracy, (5) comparison of these modeling and simulation results with Space Surveillance Network observations. We will also discuss the use of this integrated modeling and simulation framework to analyze the risks and consequences of future satellite collisions and to assess strategies for mitigating or avoiding future incidents, including the addition of new sensor systems, used in conjunction with the Space Surveillance Network, for improving space situational awareness.

  8. The risk of pedestrian collisions with peripheral visual field loss.

    Science.gov (United States)

    Peli, Eli; Apfelbaum, Henry; Berson, Eliot L; Goldstein, Robert B

    2016-12-01

    Patients with peripheral field loss complain of colliding with other pedestrians in open-space environments such as shopping malls. Field expansion devices (e.g., prisms) can create artificial peripheral islands of vision. We investigated the visual angle at which these islands can be most effective for avoiding pedestrian collisions, by modeling the collision risk density as a function of bearing angle of pedestrians relative to the patient. Pedestrians at all possible locations were assumed to be moving in all directions with equal probability within a reasonable range of walking speeds. The risk density was found to be highly anisotropic. It peaked at ≈45° eccentricity. Increasing pedestrian speed range shifted the risk to higher eccentricities. The risk density is independent of time to collision. The model results were compared to the binocular residual peripheral island locations of 42 patients with forms of retinitis pigmentosa. The natural residual island prevalence also peaked nasally at about 45° but temporally at about 75°. This asymmetry resulted in a complementary coverage of the binocular field of view. Natural residual binocular island eccentricities seem well matched to the collision-risk density function, optimizing detection of other walking pedestrians (nasally) and of faster hazards (temporally). Field expansion prism devices will be most effective if they can create artificial peripheral islands at about 45° eccentricities. The collision risk and residual island findings raise interesting questions about normal visual development.

  9. Design and analysis of full range adaptive cruise control with integrated collision a voidance strategy

    NARCIS (Netherlands)

    Mullakkal Babu, F.A.; Wang, M.; van Arem, B.; Happee, R.; Rosetti, R.; Wolf, D.

    2016-01-01

    Current Full Range Adaptive Cruise Control (FRACC) systems switch between separate adaptive cruise control and collision avoidance systems. This can lead to jerky responses and discomfort during the transition between the two control modes. We propose a Full Range Adaptive Cruise Control (FRACC)

  10. Multiple Moving Obstacles Avoidance of Service Robot using Stereo Vision

    Directory of Open Access Journals (Sweden)

    Achmad Jazidie

    2011-12-01

    Full Text Available In this paper, we propose a multiple moving obstacles avoidance using stereo vision for service robots in indoor environments. We assume that this model of service robot is used to deliver a cup to the recognized customer from the starting point to the destination. The contribution of this research is a new method for multiple moving obstacle avoidance with Bayesian approach using stereo camera. We have developed and introduced 3 main modules to recognize faces, to identify multiple moving obstacles and to maneuver of robot. A group of people who is walking will be tracked as a multiple moving obstacle, and the speed, direction, and distance of the moving obstacles is estimated by a stereo camera in order that the robot can maneuver to avoid the collision. To overcome the inaccuracies of vision sensor, Bayesian approach is used for estimate the absense and direction of obstacles. We present the results of the experiment of the service robot called Srikandi III which uses our proposed method and we also evaluate its performance. Experiments shown that our proposed method working well, and Bayesian approach proved increasing the estimation perform for absence and direction of moving obstacle.

  11. An Analysis of Possibilities How the Collision Between M/V ‘Baltic Ace’ and M/V ‘Corvus J’ Could Have Been Avoided

    Directory of Open Access Journals (Sweden)

    Kulbiej Eric

    2016-12-01

    Full Text Available The report presents the simulation results of collision between m/v ‘Baltic Ace’ and m/v ‘Corvus J’. The analysis was performed by means of navigation decision support system (NDSS in collision situations. This system (NAVDEC works out anti-collision manoeuvre using AIS (Automatic Identification System and ARPA (Automatic Radar Plotting Aids data. Then they are processed by specialized computing algorithms and presented to the operator on a display in the alphanumeric and graphic forms. The data on the specific navigational situation from the report of Bahamas Maritime Authority was used for the generation of signals transmitted to NDSS as a sequence of NMEA strings.

  12. Implementation of Obstacle-Avoidance Control for an Autonomous Omni-Directional Mobile Robot Based on Extension Theory

    Directory of Open Access Journals (Sweden)

    Yi-Chung Lai

    2012-10-01

    Full Text Available The paper demonstrates a following robot with omni-directional wheels, which is able to take action to avoid obstacles. The robot design is based on both fuzzy and extension theory. Fuzzy theory was applied to tune the PMW signal of the motor revolution, and correct path deviation issues encountered when the robot is moving. Extension theory was used to build a robot obstacle-avoidance model. Various mobile models were developed to handle different types of obstacles. The ultrasonic distance sensors mounted on the robot were used to estimate the distance to obstacles. If an obstacle is encountered, the correlation function is evaluated and the robot avoids the obstacle autonomously using the most appropriate mode. The effectiveness of the proposed approach was verified through several tracking experiments, which demonstrates the feasibility of a fuzzy path tracker as well as the extensible collision avoidance system.

  13. Time-based collision risk modeling for air traffic management

    Science.gov (United States)

    Bell, Alan E.

    Since the emergence of commercial aviation in the early part of last century, economic forces have driven a steadily increasing demand for air transportation. Increasing density of aircraft operating in a finite volume of airspace is accompanied by a corresponding increase in the risk of collision, and in response to a growing number of incidents and accidents involving collisions between aircraft, governments worldwide have developed air traffic control systems and procedures to mitigate this risk. The objective of any collision risk management system is to project conflicts and provide operators with sufficient opportunity to recognize potential collisions and take necessary actions to avoid them. It is therefore the assertion of this research that the currency of collision risk management is time. Future Air Traffic Management Systems are being designed around the foundational principle of four dimensional trajectory based operations, a method that replaces legacy first-come, first-served sequencing priorities with time-based reservations throughout the airspace system. This research will demonstrate that if aircraft are to be sequenced in four dimensions, they must also be separated in four dimensions. In order to separate aircraft in four dimensions, time must emerge as the primary tool by which air traffic is managed. A functional relationship exists between the time-based performance of aircraft, the interval between aircraft scheduled to cross some three dimensional point in space, and the risk of collision. This research models that relationship and presents two key findings. First, a method is developed by which the ability of an aircraft to meet a required time of arrival may be expressed as a robust standard for both industry and operations. Second, a method by which airspace system capacity may be increased while maintaining an acceptable level of collision risk is presented and demonstrated for the purpose of formulating recommendations for procedures

  14. The Color Red Supports Avoidance Reactions to Unhealthy Food.

    Science.gov (United States)

    Rohr, Michaela; Kamm, Friederike; Koenigstorfer, Joerg; Groeppel-Klein, Andrea; Wentura, Dirk

    2015-01-01

    Empirical evidence suggests that the color red acts like an implicit avoidance cue in food contexts. Thus specific colors seem to guide the implicit evaluation of food items. We built upon this research by investigating the implicit meaning of color (red vs. green) in an approach-avoidance task with healthy and unhealthy food items. Thus, we examined the joint evaluative effects of color and food: Participants had to categorize food items by approach-avoidance reactions, according to their healthfulness. Items were surrounded by task-irrelevant red or green circles. We found that the implicit meaning of the traffic light colors influenced participants' reactions to the food items. The color red (compared to green) facilitated automatic avoidance reactions to unhealthy foods. By contrast, approach behavior toward healthy food items was not moderated by color. Our findings suggest that traffic light colors can act as implicit cues that guide automatic behavioral reactions to food.

  15. Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser

    Science.gov (United States)

    Wei, Yuan; Li, Bowen; Wei, Xiaoming; Yu, Ying; Wong, Kenneth K. Y.

    2018-02-01

    The single-shot spectral dynamics of dual-color-soliton collisions inside a mode-locked laser is experimentally and numerically investigated. By using the all-optically dispersive Fourier transform, we spectrally unveil the collision-induced soliton self-reshaping process, which features dynamic spectral fringes over the soliton main lobe, and the rebuilding of Kelly sidebands with wavelength drifting. Meanwhile, the numerical simulations validate the experimental observation and provide additional insights into the physical mechanism of the collision-induced spectral dynamics from the temporal domain perspective. It is verified that the dynamic interference between the soliton and the dispersive waves is responsible for the observed collision-induced spectral evolution. These dynamic phenomena not only demonstrate the role of dispersive waves in the sophisticated soliton interaction inside the laser cavity, but also facilitate a deeper understanding of the soliton's inherent stability.

  16. Extinction of avoidance behavior by safety learning depends on endocannabinoid signaling in the hippocampus.

    Science.gov (United States)

    Micale, Vincenzo; Stepan, Jens; Jurik, Angela; Pamplona, Fabricio A; Marsch, Rudolph; Drago, Filippo; Eder, Matthias; Wotjak, Carsten T

    2017-07-01

    The development of exaggerated avoidance behavior is largely responsible for the decreased quality of life in patients suffering from anxiety disorders. Studies using animal models have contributed to the understanding of the neural mechanisms underlying the acquisition of avoidance responses. However, much less is known about its extinction. Here we provide evidence in mice that learning about the safety of an environment (i.e., safety learning) rather than repeated execution of the avoided response in absence of negative consequences (i.e., response extinction) allowed the animals to overcome their avoidance behavior in a step-down avoidance task. This process was context-dependent and could be blocked by pharmacological (3 mg/kg, s.c.; SR141716) or genetic (lack of cannabinoid CB1 receptors in neurons expressing dopamine D1 receptors) inactivation of CB1 receptors. In turn, the endocannabinoid reuptake inhibitor AM404 (3 mg/kg, i.p.) facilitated safety learning in a CB1-dependent manner and attenuated the relapse of avoidance behavior 28 days after conditioning. Safety learning crucially depended on endocannabinoid signaling at level of the hippocampus, since intrahippocampal SR141716 treatment impaired, whereas AM404 facilitated safety learning. Other than AM404, treatment with diazepam (1 mg/kg, i.p.) impaired safety learning. Drug effects on behavior were directly mirrored by drug effects on evoked activity propagation through the hippocampal trisynaptic circuit in brain slices: As revealed by voltage-sensitive dye imaging, diazepam impaired whereas AM404 facilitated activity propagation to CA1 in a CB1-dependent manner. In line with this, systemic AM404 enhanced safety learning-induced expression of Egr1 at level of CA1. Together, our data render it likely that AM404 promotes safety learning by enhancing information flow through the trisynaptic circuit to CA1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Autonomous dynamic obstacle avoidance for bacteria-powered microrobots (BPMs) with modified vector field histogram.

    Science.gov (United States)

    Kim, Hoyeon; Cheang, U Kei; Kim, Min Jun

    2017-01-01

    In order to broaden the use of microrobots in practical fields, autonomous control algorithms such as obstacle avoidance must be further developed. However, most previous studies of microrobots used manual motion control to navigate past tight spaces and obstacles while very few studies demonstrated the use of autonomous motion. In this paper, we demonstrated a dynamic obstacle avoidance algorithm for bacteria-powered microrobots (BPMs) using electric field in fluidic environments. A BPM consists of an artificial body, which is made of SU-8, and a high dense layer of harnessed bacteria. BPMs can be controlled using externally applied electric fields due to the electrokinetic property of bacteria. For developing dynamic obstacle avoidance for BPMs, a kinematic model of BPMs was utilized to prevent collision and a finite element model was used to characteristic the deformation of an electric field near the obstacle walls. In order to avoid fast moving obstacles, we modified our previously static obstacle avoidance approach using a modified vector field histogram (VFH) method. To validate the advanced algorithm in experiments, magnetically controlled moving obstacles were used to intercept the BPMs as the BPMs move from the initial position to final position. The algorithm was able to successfully guide the BPMs to reach their respective goal positions while avoiding the dynamic obstacles.

  18. A comparison of different informative vibrotactile forward collision warnings: does the warning need to be linked to the collision event?

    Directory of Open Access Journals (Sweden)

    Rob Gray

    Full Text Available Recent research demonstrates that auditory and vibrotactile forward collision warnings presenting a motion signal (e.g., looming or apparent motion across the body surface can facilitate speeded braking reaction times (BRTs. The purpose of the present study was to expand on this work by directly comparing warning signals in which the motion conveyed was constant across all collision events with signals in which the speed of motion was dependent on the closing velocity (CV. Two experiments were conducted using a simulated car-following task and BRTs were measured. In Experiment 1, increasing intensity (looming vibrotactile signals were presented from a single tactor attached to the driver's waist. When the increase in intensity was CV-linked, BRTs were significantly faster as compared to a no-warning condition, however, they were not significantly different from constant intensity and CV-independent looming warnings. In Experiment 2, a vertical array of three tactors was used to create motion either towards (upwards or away (downwards from the driver's head. When the warning signal presented upwards motion that was CV-linked, BRTs were significantly faster than all other warning types. Downwards warnings led to a significantly higher number of brake activations in false alarm situations as compared to upwards moving warnings. The effectiveness of dynamic tactile collision warnings would therefore appear to depend on both the link between the warning and collision event and on the directionality of the warning signal.

  19. Ungulate vehicle collisions in a peri-urban environment: consequences of transportation infrastructures planned assuming the absence of ungulates.

    Science.gov (United States)

    Zuberogoitia, Iñigo; del Real, Javier; Torres, Juan José; Rodríguez, Luis; Alonso, María; Zabala, Jabi

    2014-01-01

    Ungulate vehicle collisions (UVC) provoke serious damage, including human casualties, and a large number of measures have been developed around the world to avoid collisions. We analyse the main factors involved in UVC in a road network built in the absence of ungulates, where mitigation structures to avoid UVC were not adequately considered. Ungulate population greatly increased during the last two decades and now Roe Deer and Wild Boars are widely distributed over the study area, but even after this increase, the road network was not adapted to avoid UVC. A total of 235 Roe Deer (RDVC) and 153 Wild Boar vehicle collisions (WBVC) were recorded between January 2008 and December 2011. We randomly selected 289 sample points (87 RDVC, 60 WBVC and 142 controls) separated by at least 500 metres from the next closest point and measured 19 variables that could potentially influence the vehicle collisions. We detected variations in the frequency of RDVC on a monthly basis, and WBVC was higher at weekends but no significant differences were detected on a monthly basis. UVC were more likely to occur at locations where sinuosity of the road, velocity, surface of shrub and deciduous forest area were greater, the presence of fences entered with positive relationship and distance to the nearest building was less. RDVC were more likely to occur at locations where timber forest area increased and distance to the nearest building decreased and WBVC was related to open fields cover and also to the presence of fences. Sinuosity and velocity entered in both cases as significant factors. Major roads, in which the traffic volume is greater and faster, caused more accidents with ungulates than secondary roads. Nowadays, the high frequency of ungulate road-kills deserves a new strategy in order to adapt infrastructure and adopt mitigation measures.

  20. Ungulate vehicle collisions in a peri-urban environment: consequences of transportation infrastructures planned assuming the absence of ungulates.

    Directory of Open Access Journals (Sweden)

    Iñigo Zuberogoitia

    Full Text Available Ungulate vehicle collisions (UVC provoke serious damage, including human casualties, and a large number of measures have been developed around the world to avoid collisions. We analyse the main factors involved in UVC in a road network built in the absence of ungulates, where mitigation structures to avoid UVC were not adequately considered. Ungulate population greatly increased during the last two decades and now Roe Deer and Wild Boars are widely distributed over the study area, but even after this increase, the road network was not adapted to avoid UVC. A total of 235 Roe Deer (RDVC and 153 Wild Boar vehicle collisions (WBVC were recorded between January 2008 and December 2011. We randomly selected 289 sample points (87 RDVC, 60 WBVC and 142 controls separated by at least 500 metres from the next closest point and measured 19 variables that could potentially influence the vehicle collisions. We detected variations in the frequency of RDVC on a monthly basis, and WBVC was higher at weekends but no significant differences were detected on a monthly basis. UVC were more likely to occur at locations where sinuosity of the road, velocity, surface of shrub and deciduous forest area were greater, the presence of fences entered with positive relationship and distance to the nearest building was less. RDVC were more likely to occur at locations where timber forest area increased and distance to the nearest building decreased and WBVC was related to open fields cover and also to the presence of fences. Sinuosity and velocity entered in both cases as significant factors. Major roads, in which the traffic volume is greater and faster, caused more accidents with ungulates than secondary roads. Nowadays, the high frequency of ungulate road-kills deserves a new strategy in order to adapt infrastructure and adopt mitigation measures.

  1. Collision recognition and direction changes for small scale fish robots by acceleration sensors

    Science.gov (United States)

    Na, Seung Y.; Shin, Daejung; Kim, Jin Y.; Lee, Bae-Ho

    2005-05-01

    Typical obstacles are walls, rocks, water plants and other nearby robots for a group of small scale fish robots and submersibles that have been constructed in our lab. Sonar sensors are not employed to make the robot structure simple enough. All of circuits, sensors and processor cards are contained in a box of 9 x 7 x 4 cm dimension except motors, fins and external covers. Therefore, image processing results are applied to avoid collisions. However, it is useful only when the obstacles are located far enough to give images processing time for detecting them. Otherwise, acceleration sensors are used to detect collision immediately after it happens. Two of 2-axes acceleration sensors are employed to measure the three components of collision angles, collision magnitudes, and the angles of robot propulsion. These data are integrated to calculate the amount of propulsion direction change. The angle of a collision incident upon an obstacle is the fundamental value to obtain a direction change needed to design a following path. But there is a significant amount of noise due to a caudal fin motor. Because caudal fin provides the main propulsion for a fish robot, there is a periodic swinging noise at the head of a robot. This noise provides a random acceleration effect on the measured acceleration data at the collision. We propose an algorithm which shows that the MEMS-type accelerometers are very effective to provide information for direction changes in spite of the intrinsic noise after the small scale fish robots have made obstacle collision.

  2. [Effect of 5-HT1A receptors in the hippocampal DG on active avoidance learning in rats].

    Science.gov (United States)

    Jiang, Feng-ze; Lv, Jing; Wang, Dan; Jiang, Hai-ying; Li, Ying-shun; Jin, Qing-hua

    2015-01-01

    To investigate the effects of serotonin (5-HTIA) receptors in the hippocampal dentate gyrus (DG) on active avoidance learning in rats. Totally 36 SD rats were randomly divided into control group, antagonist group and agonist group(n = 12). Active avoidance learning ability of rats was assessed by the shuttle box. The extracellular concentrations of 5-HT in the DG during active avoidance conditioned reflex were measured by microdialysis and high performance liquid chromatography (HPLC) techniques. Then the antagonist (WAY-100635) or agonist (8-OH-DPAT) of the 5-HT1A receptors were microinjected into the DG region, and the active avoidance learning was measured. (1) During the active avoidance learning, the concentration of 5-HT in the hippocampal DG was significantly increased in the extinction but not establishment in the conditioned reflex, which reached 164.90% ± 26.07% (P active avoidance learning. (3) The microinjection of 8-OH-DPAT(an agonist of 5-HT1A receptor) into the DG significantly facilitated the establishment process and inhibited the extinction process during active avoidance conditioned reflex. The data suggest that activation of 5-HT1A receptors in hipocampal DG may facilitate active avoidance learning and memory in rats.

  3. Interactions of nitric oxide with α2 -adrenoceptors within the locus coeruleus underlie the facilitation of inhibitory avoidance memory by agmatine.

    Science.gov (United States)

    Shelkar, Gajanan P; Gakare, Sukanya G; Chakraborty, Suwarna; Dravid, Shashank M; Ugale, Rajesh R

    2016-09-01

    Agmatine, a putative neurotransmitter, plays a vital role in learning and memory. Although it is considered an endogenous ligand of imidazoline receptors, agmatine exhibits high affinity for α-adrenoceptors, NOS and NMDA receptors. These substrates within the locus coeruleus (LC) are critically involved in learning and memory processes. The hippocampus and LC of male Wistar rat were stereotaxically cannulated for injection. Effects of agmatine, given i.p. or intra-LC, on acquisition, consolidation and retrieval of inhibitory avoidance (IA) memory were measured. The NO donor S-nitrosoglutathione, non-specific (L-NAME) and specific NOS inhibitors (L-NIL, 7-NI, L-NIO), the α2 -adrenoceptor antagonist (yohimbine) or the corresponding agonist (clonidine) were injected intra-LC before agmatine. Intra-hippocampal injections of the NMDA antagonist, MK-801 (dizocilpine), were used to modify the memory enhancing effects of agmatine, SNG and yohimbine. Expression of tyrosine hydroxylase (TH) and eNOS in the LC was assessed immunohistochemically. Agmatine (intra-LC or i.p.) facilitated memory retrieval in the IA test. S-nitrosoglutathione potentiated, while L-NAME and L-NIO decreased, these effects of agmatine. L-NIL and 7-NI did not alter the effects of agmatine. Yohimbine potentiated, whereas clonidine attenuated, effects of agmatine within the LC. The effects of agmatine, S-nitrosoglutathione and yohimbine were blocked by intra-hippocampal MK-801. Agmatine increased the population of TH- and eNOS-immunoreactive elements in the LC. The facilitation of memory retrieval in the IA test by agmatine is probably mediated by interactions between eNOS, NO and noradrenergic pathways in the LC. © 2016 The British Pharmacological Society.

  4. Collision group and renormalization of the Boltzmann collision integral

    Science.gov (United States)

    Saveliev, V. L.; Nanbu, K.

    2002-05-01

    On the basis of a recently discovered collision group [V. L. Saveliev, in Rarefied Gas Dynamics: 22nd International Symposium, edited by T. J. Bartel and M. Gallis, AIP Conf. Proc. No. 585 (AIP, Melville, NY, 2001), p. 101], the Boltzmann collision integral is exactly rewritten in two parts. The first part describes the scattering of particles with small angles. In this part the infinity due to the infinite cross sections is extracted from the Boltzmann collision integral. Moreover, the Boltzmann collision integral is represented as a divergence of the flow in velocity space. Owing to this, the role of collisions in the kinetic equation can be interpreted in terms of the nonlocal friction force that depends on the distribution function.

  5. Professionalism in a changing tax environment : the impact of general anti-avoidance legislation on the accounting profession

    OpenAIRE

    Holst, Susan

    2016-01-01

    Tackling tax avoidance has become a priority for tax authorities. The accounting profession has been subject to significant criticism for its role in the promotion and facilitation of what may be regarded as aggressive tax avoidance. In response to this increasing issue of public concern, tax authorities have sought to tackle tax avoidance through the introduction of general anti-avoidance rules and supplementary provisions. These regulatory changes may be regarded as an attempt by tax author...

  6. Electron-molecule collisions

    International Nuclear Information System (INIS)

    Shimamura, I.; Takayanagi, K.

    1984-01-01

    The study of collision processes plays an important research role in modern physics. Many significant discoveries have been made by means of collision experiments. Based on theoretical, experimental, and computational studies, this volume presents an overview detailing the basic processes of electron-molecule collisions. The editors have collected papers-written by a group of international experts-that consider a diverse range of phenomena occurring in electronmolecule collisions. The volume discusses first the basic formulation for scattering problems and then gives an outline of the physics of electron-molecule collisions. The main topics covered are rotational transitions, vibrational transitions, dissociation of molecules in slow collisions, the electron-molecule collision as a spectroscopic tool for studying molecular electronic structures, and experimental and computational techniques for determining the cross sections. These well-referenced chapters are self-contained and can be read independently or consecutively. Authoritative and up-to-date, Electron-Molecule Collisions is a useful addition to the libraries of students and researchers in the fields of atomic, molecular, and chemical physics, and physical chemistry

  7. Exploring the role of experiential avoidance from the perspective of attachment theory and the dual process model.

    Science.gov (United States)

    Shear, M Katherine

    2010-01-01

    Avoidance can be adaptive and facilitate the healing process of acute grief or it can be maladaptive and hinder this same process. Maladaptive cognitive or behavioral avoidance comprises the central feature of the condition of complicated grief. This article explores the concept of experiential avoidance as it applies to bereavement, including when it is adaptive when it is problematic. Adaptive avoidance is framed using an attachment theory perspective and incorporates insights from the dual process model (DPM). An approach to clinical management of experiential avoidance in the syndrome of complicated grief is included.

  8. Autonomous dynamic obstacle avoidance for bacteria-powered microrobots (BPMs with modified vector field histogram.

    Directory of Open Access Journals (Sweden)

    Hoyeon Kim

    Full Text Available In order to broaden the use of microrobots in practical fields, autonomous control algorithms such as obstacle avoidance must be further developed. However, most previous studies of microrobots used manual motion control to navigate past tight spaces and obstacles while very few studies demonstrated the use of autonomous motion. In this paper, we demonstrated a dynamic obstacle avoidance algorithm for bacteria-powered microrobots (BPMs using electric field in fluidic environments. A BPM consists of an artificial body, which is made of SU-8, and a high dense layer of harnessed bacteria. BPMs can be controlled using externally applied electric fields due to the electrokinetic property of bacteria. For developing dynamic obstacle avoidance for BPMs, a kinematic model of BPMs was utilized to prevent collision and a finite element model was used to characteristic the deformation of an electric field near the obstacle walls. In order to avoid fast moving obstacles, we modified our previously static obstacle avoidance approach using a modified vector field histogram (VFH method. To validate the advanced algorithm in experiments, magnetically controlled moving obstacles were used to intercept the BPMs as the BPMs move from the initial position to final position. The algorithm was able to successfully guide the BPMs to reach their respective goal positions while avoiding the dynamic obstacles.

  9. Risk Reducing Effect of AIS Implementation on Collision Risk

    DEFF Research Database (Denmark)

    Lützen, Marie; Friis-Hansen, Peter

    2003-01-01

    AIS (Automatic Identification System) is a transponder system developed for sea traffic purposes. The system sends and receives important ship information and other safety-related information between other ships and shore-based AIS stations. The implementation of AIS has now been initiated and......, as a result, the community will undoubtedly observe an increase in navigational safety. However, to the authors? knowledge, no study has so far rigorously quantified the risk reducing effect of using AIS as an integrated part of the navigational system. The objective of this study is to fill this gap....... The risk reducing effect of AIS is quantified by building a Bayesian network facilitating an evaluation of the effect of AIS on the navigational officer?s reaction ability in a potential, critical collision situation. The time-dependent change in the risk reducing effect on ship collisions is analysed...

  10. Methodology for Collision Risk Assessment of an Airspace Flow Corridor Concept

    Science.gov (United States)

    Zhang, Yimin

    collision probability are the minimum separation, the probability that both flights fail to respond to traffic collision avoidance system, the probability that an NMAC results in a collision, the failure probability of the automatic dependent surveillance broadcast in receiver, and the conflict detection probability.

  11. Collision prediction models using multivariate Poisson-lognormal regression.

    Science.gov (United States)

    El-Basyouny, Karim; Sayed, Tarek

    2009-07-01

    This paper advocates the use of multivariate Poisson-lognormal (MVPLN) regression to develop models for collision count data. The MVPLN approach presents an opportunity to incorporate the correlations across collision severity levels and their influence on safety analyses. The paper introduces a new multivariate hazardous location identification technique, which generalizes the univariate posterior probability of excess that has been commonly proposed and applied in the literature. In addition, the paper presents an alternative approach for quantifying the effect of the multivariate structure on the precision of expected collision frequency. The MVPLN approach is compared with the independent (separate) univariate Poisson-lognormal (PLN) models with respect to model inference, goodness-of-fit, identification of hot spots and precision of expected collision frequency. The MVPLN is modeled using the WinBUGS platform which facilitates computation of posterior distributions as well as providing a goodness-of-fit measure for model comparisons. The results indicate that the estimates of the extra Poisson variation parameters were considerably smaller under MVPLN leading to higher precision. The improvement in precision is due mainly to the fact that MVPLN accounts for the correlation between the latent variables representing property damage only (PDO) and injuries plus fatalities (I+F). This correlation was estimated at 0.758, which is highly significant, suggesting that higher PDO rates are associated with higher I+F rates, as the collision likelihood for both types is likely to rise due to similar deficiencies in roadway design and/or other unobserved factors. In terms of goodness-of-fit, the MVPLN model provided a superior fit than the independent univariate models. The multivariate hazardous location identification results demonstrated that some hazardous locations could be overlooked if the analysis was restricted to the univariate models.

  12. Sex-specific positive and negative consequences of avoidance training during childhood on adult active avoidance learning in mice

    Directory of Open Access Journals (Sweden)

    Almuth eSpröwitz

    2013-10-01

    Full Text Available In humans and animals cognitive training during childhood plays an important role in shaping neural circuits and thereby determines learning capacity later in life. Using a negative feedback learning paradigm, the two-way active avoidance (TWA learning, we aimed to investigate in mice (i the age-dependency of TWA learning, (ii the consequences of pretraining in childhood on adult learning capacity and (iii the impact of sex on the learning paradigm in mice. Taken together, we show here for the first time that the beneficial or detrimental outcome of pretraining in childhood depends on the age during which TWA training is encountered, indicating that different, age-dependent long-term memory traces might be formed, which are recruited during adult TWA training and thereby either facilitate or impair adult TWA learning. While pretraining during infancy results in learning impairment in adulthood, pretraining in late adolescence improved avoidance learning.The experiments revealed a clear sex difference in the group of late-adolescent mice: female mice showed better avoidance learning during late adolescence compared to males, and the beneficial impact of late-adolescent pretraining on adult learning was more pronounced in females compared to males.

  13. Thoughts on non-perturbative thermalization and jet quenching in heavy ion collisions

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.

    2006-01-01

    We start by presenting physical arguments for the impossibility of perturbative thermalization leading to (non-viscous) Bjorken hydrodynamic description of heavy ion collisions. These arguments are complimentary to our more formal argument presented in [Yu.V. Kovchegov, hep-ph/0503038]. We argue that the success of hydrodynamic models in describing the quark-gluon system produced in heavy ion collisions could only be due to non-perturbative strong coupling effects. We continue by studying non-perturbative effects in heavy ion collisions at high energies. We model non-perturbative phenomena by an instanton ensemble. We show that non-perturbative instanton vacuum fields may significantly contribute to jet quenching in nuclear collisions. At the same time, the instanton ensemble contribution to thermalization is likely to be rather weak, leading to non-perturbative thermalization time comparable to the time of hadronization. This example illustrates that jet quenching is not necessarily a signal of a thermalized medium. Indeed, since the instanton models do not capture all the effects of QCD vacuum (e.g., they do not account for confinement), there may be other non-perturbative effects facilitating thermalization of the system

  14. Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions

    International Nuclear Information System (INIS)

    Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.; Alexandrov, Y.A.; Andreeva, N.P.; Badyal, S.K.; Basova, E.S.; Bhalla, K.B.; Bhasin, A.; Bhatia, V.S.; Bradnova, V.; Bubnov, V.I.; Cai, X.; Chasnikov, I.Y.; Chen, G.M.; Chernova, L.P.; Chernyavsky, M.M.; Dhamija, S.; Chenawi, K.El; Felea, D.; Feng, S.Q.; Gaitinov, A.S.; Ganssauge, E.R.; Garpman, S.; Gerassimov, S.G.; Gheata, A.; Gheata, M.; Grote, J.; Gulamov, K.G.; Gupta, S.K.; Gupta, V.K.; Henjes, U.; Jakobsson, B.; Kanygina, E.K.; Karabova, M.; Kharlamov, S.P.; Kovalenko, A.D.; Krasnov, S.A.; Kumar, V.; Larionova, V.G.; Li, Y.X.; Liu, L.S.; Lokanathan, S.; Lord, J.J.; Lukicheva, N.S.; Lu, Y.; Luo, S.B.; Mangotra, L.K.; Manhas, I.; Mittra, I.S.; Musaeva, A.K.; Nasyrov, S.Z.; Navotny, V.S.; Nystrand, J.; Otterlund, I.; Peresadko, N.G.; Qian, W.Y.; Qin, Y.M.; Raniwala, R.; Rao, N.K.; Roeper, M.; Rusakova, V.V.; Saidkhanov, N.; Salmanova, N.A.; Seitimbetov, A.M.; Sethi, R.; Singh, B.; Skelding, D.; Soderstrem, K.; Stenlund, E.; Svechnikova, L.N.; Svensson, T.; Tawfik, A.M.; Tothova, M.; Tretyakova, M.I.; Trofimova, T.P.; Tuleeva, U.I.; Vashisht, Vani; Vokal, S.; Vrlakova, J.; Wang, H.Q.; Wang, X.R.; Weng, Z.Q.; Wilkes, R.J.; Yang, C.B.; Yin, Z.B.; Yu, L.Z.; Zhang, D.H.; Zheng, P.Y.; Zhokhova, S.I.; Zhou, D.C.

    1999-01-01

    Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus

  15. Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, G I; Adamovich, M I; Aggarwal, M M; Alexandrov, Y A; Andreeva, N P; Badyal, S K; Basova, E S; Bhalla, K B; Bhasin, A; Bhatia, V S; Bradnova, V; Bubnov, V I; Cai, X; Chasnikov, I Y; Chen, G M; Chernova, L P; Chernyavsky, M M; Dhamija, S; Chenawi, K El; Felea, D; Feng, S Q; Gaitinov, A S; Ganssauge, E R; Garpman, S; Gerassimov, S G; Gheata, A; Gheata, M; Grote, J; Gulamov, K G; Gupta, S K; Gupta, V K; Henjes, U; Jakobsson, B; Kanygina, E K; Karabova, M; Kharlamov, S P; Kovalenko, A D; Krasnov, S A; Kumar, V; Larionova, V G; Li, Y X; Liu, L S; Lokanathan, S; Lord, J J; Lukicheva, N S; Lu, Y; Luo, S B; Mangotra, L K; Manhas, I; Mittra, I S; Musaeva, A K; Nasyrov, S Z; Navotny, V S; Nystrand, J; Otterlund, I; Peresadko, N G; Qian, W Y; Qin, Y M; Raniwala, R; Rao, N K; Roeper, M; Rusakova, V V; Saidkhanov, N; Salmanova, N A; Seitimbetov, A M; Sethi, R; Singh, B; Skelding, D; Soderstrem, K; Stenlund, E; Svechnikova, L N; Svensson, T; Tawfik, A M; Tothova, M; Tretyakova, M I; Trofimova, T P; Tuleeva, U I; Vashisht, Vani; Vokal, S; Vrlakova, J; Wang, H Q; Wang, X R; Weng, Z Q; Wilkes, R J; Yang, C B; Yin, Z B; Yu, L Z; Zhang, D H; Zheng, P Y; Zhokhova, S I; Zhou, D C

    1999-03-01

    Angular distributions of charged particles produced in {sup 16}O and {sup 32}S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b{sub NA}, that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus.

  16. Nucleus-nucleus collision as superposition of nucleon-nucleus collisions

    International Nuclear Information System (INIS)

    Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.

    1999-01-01

    Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus. (orig.)

  17. Real-Time Autonomous Obstacle Avoidance for Low-Altitude Fixed-Wing Aircraft

    Science.gov (United States)

    Owlia, Shahboddin

    The GeoSurv II is an Unmanned Aerial Vehicle (UAV) being developed by Carleton University and Sander Geophysics. This thesis is in support of the GeoSurv II project. The objective of the GeoSurv II project is to create a fully autonomous UAV capable of performing geophysical surveys. In order to achieve this level of autonomy, the UAV, which due to the nature of its surveys flies at low altitude, must be able to avoid potential obstacles such as trees, powerlines, telecommunication towers, etc. Developing a method to avoid these obstacles is the objective of this thesis. The literature is rich in methods for trajectory planning and mid-air collision avoidance with other aircraft. In contrast, in this thesis, a method for avoiding static obstacles that are not known a priori is developed. The potential flow theory and panel method are borrowed from fluid mechanics and are employed to generate evasive maneuvers when obstacles are encountered. By means of appropriate modelling of obstacles, the aircraft's constraints are taken into account such that the evasive maneuvers are feasible for the UAV. Moreover, the method is developed with consideration of the limitations of obstacle detection in GeoSurv II. Due to the unavailability of the GeoSurv II aircraft, and the lack of a complete model for GeoSurv II, the method developed is implemented on the non-linear model of the Aerosonde UAV. The Aerosonde model is then subjected to various obstacle scenarios and it is seen that the UAV successfully avoids the obstacles.

  18. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Mehtar-Tani, Yacine [Institute of Nuclear Theory, University of Washington,Seattle, WA 98195-1550 (United States); Tywoniuk, Konrad [Theoretical Physics Department, CERN,1211 Geneva 23 (Switzerland)

    2017-04-21

    We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the “soft drop declustering” procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.

  19. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    CERN Document Server

    Mehtar-Tani, Yacine

    2017-04-21

    We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the "soft drop declustering" procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.

  20. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    Science.gov (United States)

    Mehtar-Tani, Yacine; Tywoniuk, Konrad

    2017-04-01

    We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the "soft drop declustering" procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.

  1. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    International Nuclear Information System (INIS)

    Mehtar-Tani, Yacine; Tywoniuk, Konrad

    2017-01-01

    We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the “soft drop declustering” procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.

  2. The Concept of Collision-Free Motion Planning Using a Dynamic Collision Map

    Directory of Open Access Journals (Sweden)

    Keum-Bae Cho

    2014-09-01

    Full Text Available In this paper, we address a new method for the collision-free motion planning of a mobile robot in dynamic environments. The motion planner is based on the concept of a conventional collision map (CCM, represented on the L(travel length-T(time plane. We extend the CCM with dynamic information about obstacles, such as linear acceleration and angular velocity, providing useful information for estimating variation in the collision map. We first analyse the effect of the dynamic motion of an obstacle in the collision region. We then define the measure of collision dispersion (MOCD. The dynamic collision map (DCM is generated by drawing the MOCD on the CCM. To evaluate a collision-free motion planner using the DCM, we extend the DCM with MOCD, then draw the unreachable region and deadlocked regions. Finally, we construct a collision-free motion planner using the information from the extended DCM.

  3. Thermal bridges. Causes and impacts, information on reduction and avoidance; Waermebruecken. Ursachen und Auswirkungen, Hinweise zur Verringerung und Vermeidung

    Energy Technology Data Exchange (ETDEWEB)

    Feist, Wolfgang; Born, Rolf

    2012-11-15

    Thermal bridges increase the heat demand, affect the thermal comfort, facilitate mould cultures and cause structural damage. Many thermal bridges can be avoided by proper building construction details. At least the impact of thermal bridges can be avoided.

  4. Hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1981-01-01

    Qualitative picture of high energy hadron-nucleus collision process, emerging from the analysis of experimental data, is presented. Appropriate description procedure giving a possibility of reproducing various characteristics of this process in terms of the data on elementary hadron-nucleon interaction is proposed. Formula reproducing hadron-nucleus collision cross sections is derived. Inelastic collision cross sections for pion-nucleus and proton-nucleus reactions at wide energy interval are calculated for Pb, Ag, and Al targets. A-dependence of cross sections for pion-nucleus and proton-nucleus collisions at nearly 50 GeV/c momentum were calculated and compared with existing experimental data. Energy dependence of cross sections for hadron-nucleus collisions is determined simply by energy dependence of corresponding cross sections for hadron-nucleon collisions; A-dependence is determined simply by nuclear sizes and nucleon density distributions in nuclei

  5. Interactions of nitric oxide with α2‐adrenoceptors within the locus coeruleus underlie the facilitation of inhibitory avoidance memory by agmatine

    Science.gov (United States)

    Shelkar, Gajanan P; Gakare, Sukanya G; Chakraborty, Suwarna; Dravid, Shashank M

    2016-01-01

    Background and Purpose Agmatine, a putative neurotransmitter, plays a vital role in learning and memory. Although it is considered an endogenous ligand of imidazoline receptors, agmatine exhibits high affinity for α‐adrenoceptors, NOS and NMDA receptors. These substrates within the locus coeruleus (LC) are critically involved in learning and memory processes. Experimental Approach The hippocampus and LC of male Wistar rat were stereotaxically cannulated for injection. Effects of agmatine, given i.p. or intra‐LC, on acquisition, consolidation and retrieval of inhibitory avoidance (IA) memory were measured. The NO donor S‐nitrosoglutathione, non‐specific (L‐NAME) and specific NOS inhibitors (L‐NIL, 7‐NI, L‐NIO), the α2‐adrenoceptor antagonist (yohimbine) or the corresponding agonist (clonidine) were injected intra‐LC before agmatine. Intra‐hippocampal injections of the NMDA antagonist, MK‐801 (dizocilpine), were used to modify the memory enhancing effects of agmatine, SNG and yohimbine. Expression of tyrosine hydroxylase (TH) and eNOS in the LC was assessed immunohistochemically. Key Results Agmatine (intra‐LC or i.p.) facilitated memory retrieval in the IA test. S‐nitrosoglutathione potentiated, while L‐NAME and L‐NIO decreased, these effects of agmatine. L‐NIL and 7‐NI did not alter the effects of agmatine. Yohimbine potentiated, whereas clonidine attenuated, effects of agmatine within the LC. The effects of agmatine, S‐nitrosoglutathione and yohimbine were blocked by intra‐hippocampal MK‐801. Agmatine increased the population of TH‐ and eNOS‐immunoreactive elements in the LC. Conclusions and Implications The facilitation of memory retrieval in the IA test by agmatine is probably mediated by interactions between eNOS, NO and noradrenergic pathways in the LC. PMID:27273730

  6. MO-FG-CAMPUS-TeP1-03: Pre-Treatment Surface Imaging Based Collision Detection

    Energy Technology Data Exchange (ETDEWEB)

    Wiant, D; Maurer, J; Liu, H; Hayes, T; Shang, Q; Sintay, B [Cone Health Cancer Center, Greensboro, NC (United States)

    2016-06-15

    Purpose: Modern radiotherapy increasingly employs large immobilization devices, gantry attachments, and couch rotations for treatments. All of which raise the risk of collisions between the patient and the gantry / couch. Collision detection is often achieved by manually checking each couch position in the treatment room and sometimes results in extraneous imaging if collisions are detected after image based setup has begun. In the interest of improving efficiency and avoiding extra imaging, we explore the use of a surface imaging based collision detection model. Methods: Surfaces acquired from AlignRT (VisionRT, London, UK) were transferred in wavefront format to a custom Matlab (Mathworks, Natick, MA) software package (CCHECK). Computed tomography (CT) scans acquired at the same time were sent to CCHECK in DICOM format. In CCHECK, binary maps of the surfaces were created and overlaid on the CT images based on the fixed relationship of the AlignRT and CT coordinate systems. Isocenters were added through a graphical user interface (GUI). CCHECK then compares the inputted surfaces to a model of the linear accelerator (linac) to check for collisions at defined gantry and couch positions. Note, CCHECK may be used with or without a CT. Results: The nominal surface image field of view is 650 mm × 900 mm, with variance based on patient position and size. The accuracy of collision detections is primarily based on the linac model and the surface mapping process. The current linac model and mapping process yield detection accuracies on the order of 5 mm, assuming no change in patient posture between surface acquisition and treatment. Conclusions: CCHECK provides a non-ionizing method to check for collisions without the patient in the treatment room. Collision detection accuracy may be improved with more robust linac modeling. Additional gantry attachments (e.g. conical collimators) can be easily added to the model.

  7. Restricted Collision List method for faster Direct Simulation Monte-Carlo (DSMC) collisions

    Energy Technology Data Exchange (ETDEWEB)

    Macrossan, Michael N., E-mail: m.macrossan@uq.edu.au

    2016-08-15

    The ‘Restricted Collision List’ (RCL) method for speeding up the calculation of DSMC Variable Soft Sphere collisions, with Borgnakke–Larsen (BL) energy exchange, is presented. The method cuts down considerably on the number of random collision parameters which must be calculated (deflection and azimuthal angles, and the BL energy exchange factors). A relatively short list of these parameters is generated and the parameters required in any cell are selected from this list. The list is regenerated at intervals approximately equal to the smallest mean collision time in the flow, and the chance of any particle re-using the same collision parameters in two successive collisions is negligible. The results using this method are indistinguishable from those obtained with standard DSMC. The CPU time saving depends on how much of a DSMC calculation is devoted to collisions and how much is devoted to other tasks, such as moving particles and calculating particle interactions with flow boundaries. For 1-dimensional calculations of flow in a tube, the new method saves 20% of the CPU time per collision for VSS scattering with no energy exchange. With RCL applied to rotational energy exchange, the CPU saving can be greater; for small values of the rotational collision number, for which most collisions involve some rotational energy exchange, the CPU may be reduced by 50% or more.

  8. A particle-in-cell method for modeling small angle Coulomb collisions in plasmas

    International Nuclear Information System (INIS)

    Parker, S.E.

    1989-01-01

    We propose a computational method to self-consistently model small angle collisional effects. This method may be added to standard Particle-In-Cell (PIC) plasma simulations to include collisions, or as an alternative to solving the Fokker-Planck (FP) equation using finite difference methods. The distribution function is represented by a large number of particles. The particle velocities change due to the drag force, and the diffusion in velocity is represented by a random process. This is similar to previous Monte-Carlo methods except we calculate the drag force and diffusion tensor self- consistently. The particles are weighted to a grid in velocity space and associated ''Poisson equations'' are solved for the Rosenbluth potentials. The motivation is to avoid the very time consuming method of Coulomb scattering pair by pair. First the approximation for small angle Coulomb collisions is discussed. Next, the FP-PIC collision method is outlined. Then we show a test of the particle advance modeling an electron beam scattering off a fixed ion background. 4 refs

  9. Collision sensitive niche profile of the worst affected bird-groups at wind turbine structures in the Federal State of Brandenburg, Germany.

    Science.gov (United States)

    Bose, Anushika; Dürr, Tobias; Klenke, Reinhard A; Henle, Klaus

    2018-02-28

    Biodiversity-related impacts at wind energy facilities have increasingly become a cause of conservation concern, central issue being the collision of birds. Utilizing spatial information of their carcass detections at wind turbines (WTs), we quantified the detections in relation to the metric distances of the respective turbines to different land-use types. We used ecological niche factor analysis (ENFA) to identify combinations of land-use distances with respect to the spatial allocation of WTs that led to higher proportions of collisions among the worst affected bird-groups: Buntings, Crows, Larks, Pigeons and Raptors. We also assessed their respective similarities to the collision phenomenon by checking for overlaps amongst their distance combinations. Crows and Larks showed the narrowest "collision sensitive niche"; a part of ecological niche under higher risk of collisions with turbines, followed by that of Buntings and Pigeons. Raptors had the broadest niche showing significant overlaps with the collision sensitive niches of the other groups. This can probably be attributed to their larger home range combined with their hunting affinities to open landscapes. Identification of collision sensitive niches could be a powerful tool for landscape planning; helping avoid regions with higher risks of collisions for turbine allocations and thus protecting sensitive bird populations.

  10. Multichannel approach to the Glauber model for heavy-ion collisions

    International Nuclear Information System (INIS)

    Lenzi, S.M.; Zardi, F.; Vitturi, A.

    1990-01-01

    A formalism is developed in order to describe, within the Glauber model, the scattering processes between heavy ions in situations involving several coupled channels. The approach is based on a suitable truncation of the number of nuclear states which can be excited at each microscopic nucleon-nucleon collision. The set of coupled equations for the S-matrix elements of the conventional reaction theory is replaced by simple matrix relations, only involving the nucleon-nucleon scattering amplitude and the nuclear densities and transition densities. This method avoids the difficulties arising from the combinatorial aspects of the multiple scattering theories, the slow convergence of the series, and the problems of center-of-mass correlations. We discuss some specific examples of multichannel collisions where the multiple-scattering series can be summed to give analytic expressions for the scattering amplitude. We finally explicate the formalism for the perturbative treatment of mutual excitation and charge-exchange processes

  11. Ion-ion collisions

    International Nuclear Information System (INIS)

    Salzborn, Erhard; Melchert, Frank

    2000-01-01

    Collisions between ions belong to the elementary processes occurring in all types of plasmas. In this article we give a short overview about collisions involving one-electron systems. For collisions involving multiply-charged ions we limit the discussion to one specific quasi-one-electron system. (author)

  12. Behavior-based obstacle avoidance capability for biologically inspired eight-legged walking robot

    International Nuclear Information System (INIS)

    Izzeldin Ibrahim Mohd; Shamsudin M Amin; Adel Ali Syed Al-Jumaily

    1999-01-01

    Behavior-based approach has proven to be useful in making mobile robot working in real world situations. Since the behaviors are responsible for managing the interaction between the robots and its environment, observing their use can be exploited to model these interactions. A real-time obstacle avoidance algorithm has been developed and implemented. This algorithm permits the detection of unknown obstacle simultaneously with the steering of the mobile robot to avoid collisions and advance toward the target. In our approach the robot is initially given a set of behavior-producing modules to choose from, and the algorithm provides a memory-based approach to dynamically adapt the selection of the behaviors according to the history of their use. We developed a set of algorithms, which uses Subsumption Architecture (SA) for controlling an eight-legged walking robot operating in closed vicinity. This paper describes a successful application of these algorithms to Oct-Ib robot and experimental results of the robot navigating in complex environment. (Author)

  13. Using a collision model to design safer wind turbine rotors for birds

    International Nuclear Information System (INIS)

    Tucker, V.A.

    1996-01-01

    A mathematical model for collisions between birds and propeller-type turbine rotors identifies the variables that can be manipulated to reduce the probability that birds will collide with the rotor. This study defines a safety index--the clearance power density--that allows rotors of different sizes and designs to be compared in terms of the amount of wind energy converted to electrical energy per bird collision. The collision model accounts for variations in wind speed during the year and shows that for model rotors with simple, one-dimensional blades, the safety index increases in proportion to rotor diameter, and variable speed rotors have higher safety indexes than constant speed rotors. The safety index can also be increased by enlarging the region near the center of the rotor hub where the blades move slowly enough for birds to avoid them. Painting the blades to make them more visible might have this effect. Model rotors with practical designs can have safety indexes an order of magnitude higher than those for model rotors typical of the constant speeds rotors in common use today. This finding suggests that redesigned rotors could have collision rates with birds perhaps an order of magnitude lower than today's rotors, with no reduction in the production of wind power. The empirical data that exist for collisions between raptors, such as hawks and eagles, and rotors are consistent with the model: the numbers of raptor carcasses found beneath large variable speed rotors, relative to the numbers found under small constant speed rotors, are in the proportions predicted by the collision model rather than in proportion to the areas swept by the rotor blades. However, uncontrolled variables associated with these data prevent a stronger claim of support for the model

  14. Single dose testosterone administration alleviates gaze avoidance in women with Social Anxiety Disorder

    NARCIS (Netherlands)

    Enter, Dorien; Terburg, David|info:eu-repo/dai/nl/32304087X; Harrewijn, Anita; Spinhoven, Philip; Roelofs, Karin

    2015-01-01

    Gaze avoidance is one of the most characteristic and persistent social features in people with Social Anxiety Disorder (SAD). It signals social submissiveness and hampers adequate social interactions. Patients with SAD typically show reduced testosterone levels, a hormone that facilitates socially

  15. Design and performance evaluation of collision protection-based safety operation for a haptic robot-assisted catheter operating system.

    Science.gov (United States)

    Zhang, Linshuai; Guo, Shuxiang; Yu, Huadong; Song, Yu; Tamiya, Takashi; Hirata, Hideyuki; Ishihara, Hidenori

    2018-02-23

    The robot-assisted catheter system can increase operating distance thus preventing the exposure radiation of the surgeon to X-ray for endovascular catheterization. However, few designs have considered the collision protection between the catheter tip and the vessel wall. This paper presents a novel catheter operating system based on tissue protection to prevent vessel puncture caused by collision. The integrated haptic interface not only allows the operator to feel the real force feedback, but also combines with the newly proposed collision protection mechanism (CPM) to mitigate the collision trauma. The CPM can release the catheter quickly when the measured force exceeds a certain threshold, so as to avoid the vessel puncture. A significant advantage is that the proposed mechanism can adjust the protection threshold in real time by the current according to the actual characteristics of the blood vessel. To verify the effectiveness of the tissue protection by the system, the evaluation experiments in vitro were carried out. The results show that the further collision damage can be effectively prevented by the CPM, which implies the realization of relative safe catheterization. This research provides some insights into the functional improvements of safe and reliable robot-assisted catheter systems.

  16. Avoidance and Overuse of Indonesian Language among Balinese Children

    Directory of Open Access Journals (Sweden)

    Wayan Pageyasa

    2017-10-01

    Full Text Available The use of Indonesian language by children who speak the Balinese language, especially for children who live in rural areas is quite difficult. This is because their Balinese language is much different from Indonesian language. If they speak Indonesian language, they have to fall back to the language first. That is, language transfer process will take place from Balinese language to Indonesian language. This research aims to describe two phenomena of the language transfer process, namely avoidance and overuse (excessive use. Qualitative data were obtained from one Balinese child, namely Gede. Gede’s daily conversations were recorded to be analyzed. The researcher also used field notes. The results show that there is indeed avoidance and overuse in the use of Indonesian language by Gede.  The teachers must be aware of the student's avoidance and overuse of Indonesian language, then the teacher can choose a contextual teaching method that best fits their students’ need in order to enable them to cope with the avoidance and overuse in learning the second language. In conclusion, the Balinese child’s avoidance and overuse, displayed in his use of Indonesian Language, is a concequence of his prior knowledge of his first language (L1 as well as his cultural awareness.  Teachers should facilitate their students’ second language (L2 learning by being aware of their L1 prior knowledge and culture.

  17. Avoidance of collision risk

    OpenAIRE

    Dumitrache Ramona; Dumitrache Cosmin; Popescu Corina; Varsami Anastasia

    2011-01-01

    Over the past decades there has been a continuous increase in the public concern about general risk issues. The consequence of this trend is that whenever a catastrophic accident occurs - and receives media coverage - there is an immediate political and public demand for actions to prevent the same type of catastrophe in the future. Many of the past improvements in safety of marine structure have been triggered by disasters but there is a change in this trend nowadays. The maritime society is...

  18. NASA Lewis Launch Collision Probability Model Developed and Analyzed

    Science.gov (United States)

    Bollenbacher, Gary; Guptill, James D

    1999-01-01

    There are nearly 10,000 tracked objects orbiting the earth. These objects encompass manned objects, active and decommissioned satellites, spent rocket bodies, and debris. They range from a few centimeters across to the size of the MIR space station. Anytime a new satellite is launched, the launch vehicle with its payload attached passes through an area of space in which these objects orbit. Although the population density of these objects is low, there always is a small but finite probability of collision between the launch vehicle and one or more of these space objects. Even though the probability of collision is very low, for some payloads even this small risk is unacceptable. To mitigate the small risk of collision associated with launching at an arbitrary time within the daily launch window, NASA performs a prelaunch mission assurance Collision Avoidance Analysis (or COLA). For the COLA of the Cassini spacecraft, the NASA Lewis Research Center conducted an in-house development and analysis of a model for launch collision probability. The model allows a minimum clearance criteria to be used with the COLA analysis to ensure an acceptably low probability of collision. If, for any given liftoff time, the nominal launch vehicle trajectory would pass a space object with less than the minimum required clearance, launch would not be attempted at that time. The model assumes that the nominal positions of the orbiting objects and of the launch vehicle can be predicted as a function of time, and therefore, that any tracked object that comes within close proximity of the launch vehicle can be identified. For any such pair, these nominal positions can be used to calculate a nominal miss distance. The actual miss distances may differ substantially from the nominal miss distance, due, in part, to the statistical uncertainty of the knowledge of the objects positions. The model further assumes that these position uncertainties can be described with position covariance matrices

  19. Dash Cam videos on YouTube™ offer insights into factors related to moose-vehicle collisions.

    Science.gov (United States)

    Rea, Roy V; Johnson, Chris J; Aitken, Daniel A; Child, Kenneth N; Hesse, Gayle

    2018-03-26

    To gain a better understanding of the dynamics of moose-vehicle collisions, we analyzed 96 videos of moose-vehicle interactions recorded by vehicle dash-mounted cameras (Dash Cams) that had been posted to the video-sharing website YouTube™. Our objective was to determine the effects of road conditions, season and weather, moose behavior, and driver response to actual collisions compared to near misses when the collision was avoided. We identified 11 variables that were consistently observable in each video and that we hypothesized would help to explain a collision or near miss. The most parsimonious logistic regression model contained variables for number of moose, sight time, vehicle slows, and vehicle swerves (AIC c w = 0.529). This model had good predictive accuracy (AUC = 0.860, SE = 0.041). The only statistically significant variable from this model that explained the difference between moose-vehicle collisions and near misses was 'Vehicle slows'. Our results provide no evidence that road surface conditions (dry, wet, ice or snow), roadside habitat type (forested or cleared), the extent to which roadside vegetation was cleared, natural light conditions (overcast, clear, twilight, dark), season (winter, spring and summer, fall), the presence of oncoming traffic, or the direction from which the moose entered the roadway had any influence on whether a motorist collided with a moose. Dash Cam videos posted to YouTube™ provide a unique source of data for road safety planners trying to understand what happens in the moments just before a moose-vehicle collision and how those factors may differ from moose-vehicle encounters that do not result in a collision. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Probability of satellite collision

    Science.gov (United States)

    Mccarter, J. W.

    1972-01-01

    A method is presented for computing the probability of a collision between a particular artificial earth satellite and any one of the total population of earth satellites. The collision hazard incurred by the proposed modular Space Station is assessed using the technique presented. The results of a parametric study to determine what type of satellite orbits produce the greatest contribution to the total collision probability are presented. Collision probability for the Space Station is given as a function of Space Station altitude and inclination. Collision probability was also parameterized over miss distance and mission duration.

  1. Simulations of Converging Shock Collisions for Shock Ignition

    Science.gov (United States)

    Sauppe, Joshua; Dodd, Evan; Loomis, Eric

    2016-10-01

    Shock ignition (SI) has been proposed as an alternative to achieving high gain in inertial confinement fusion (ICF) targets. A central hot spot below the ignition threshold is created by an initial compression pulse, and a second laser pulse drives a strong converging shock into the fuel. The collision between the rebounding shock from the compression pulse and the converging shock results in amplification of the converging shock and increases the hot spot pressure above the ignition threshold. We investigate shock collision in SI drive schemes for cylindrical targets with a polystyrene foam interior using radiation-hydrodynamics simulations with the RAGE code. The configuration is similar to previous targets fielded on the Omega laser. The CH interior results in a lower convergence ratio and the cylindrical geometry facilitates visualization of the shock transit using an axial X-ray backlighter, both of which are important for comparison to potential experimental measurements. One-dimensional simulations are used to determine shock timing, and the effects of low mode asymmetries in 2D computations are also quantified. LA-UR-16-24773.

  2. Determination of allowable time for decision making in Collision Avoidance Systems in Free Flight Environment

    Directory of Open Access Journals (Sweden)

    В.П. Харченко

    2004-01-01

    Full Text Available  A method of a sequential time evaluation of choice of variant and decision making to avoid predicted dangerous approach of the aircraft at implementation of Free Flight concept in air traffic management is presented. Expressions for an evaluation of boundary instants by using the spline method are derived. Interval estimation is given by calculation of a confidence time interval.

  3. A Compact Magnetic Field-Based Obstacle Detection and Avoidance System for Miniature Spherical Robots

    Directory of Open Access Journals (Sweden)

    Fang Wu

    2017-05-01

    Full Text Available Due to their efficient locomotion and natural tolerance to hazardous environments, spherical robots have wide applications in security surveillance, exploration of unknown territory and emergency response. Numerous studies have been conducted on the driving mechanism, motion planning and trajectory tracking methods of spherical robots, yet very limited studies have been conducted regarding the obstacle avoidance capability of spherical robots. Most of the existing spherical robots rely on the “hit and run” technique, which has been argued to be a reasonable strategy because spherical robots have an inherent ability to recover from collisions. Without protruding components, they will not become stuck and can simply roll back after running into bstacles. However, for small scale spherical robots that contain sensitive surveillance sensors and cannot afford to utilize heavy protective shells, the absence of obstacle avoidance solutions would leave the robot at the mercy of potentially dangerous obstacles. In this paper, a compact magnetic field-based obstacle detection and avoidance system has been developed for miniature spherical robots. It utilizes a passive magnetic field so that the system is both compact and power efficient. The proposed system can detect not only the presence, but also the approaching direction of a ferromagnetic obstacle, therefore, an intelligent avoidance behavior can be generated by adapting the trajectory tracking method with the detection information. Design optimization is conducted to enhance the obstacle detection performance and detailed avoidance strategies are devised. Experimental results are also presented for validation purposes.

  4. Collision Mechanics

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Servis, D.P.; Zhang, Shengming

    1999-01-01

    The first section of the present report describes the procedures that are being programmed at DTU for evaluation of the external collision dynamics. Then follows a detailed description of a comprehensive finite element analysis of one collision scenario for MS Dextra carried out at NTUA. The last...

  5. Cluster-collision frequency. II. Estimation of the collision rate

    International Nuclear Information System (INIS)

    Amadon, A.S.; Marlow, W.H.

    1991-01-01

    Gas-phase cluster-collision rates, including effects of cluster morphology and long-range intermolecular forces, are calculated. Identical pairs of icosahedral or dodecahedral carbon tetrachloride clusters of 13, 33, and 55 molecules in two different relative orientations were discussed in the preceding paper [Phys. Rev. A 43, 5483 (1991)]: long-range interaction energies were derived based upon (i) exact calculations of the iterated, or many-body, induced-dipole interaction energies for the clusters in two fixed relative orientations; and (ii) bulk, or continuum descriptions (Lifshitz--van der Waals theory), of spheres of corresponding masses and diameters. In this paper, collision rates are calculated according to an exact description of the rates for small spheres interacting via realistic potentials. Utilizing the interaction energies of the preceding paper, several estimates of the collision rates are given by treating the discrete clusters in fixed relative orientations, by computing rotationally averaged potentials for the discrete clusters, and by approximating the clusters as continuum spheres. For the discrete, highly symmetric clusters treated here, the rates using the rotationally averaged potentials closely approximate the fixed-orientation rates and the values of the intercluster potentials for cluster surface separations under 2 A have negligible effect on the overall collision rates. While the 13-molecule cluster-collision rate differs by 50% from the rate calculated as if the cluster were bulk matter, the two larger cluster-collision rates differ by less than 15% from the macroscopic rates, thereby indicating the transition of microscopic to macroscopic behavior

  6. Use of Heuristics to Facilitate Scientific Discovery Learning in a Simulation Learning Environment in a Physics Domain

    Science.gov (United States)

    Veermans, Koen; van Joolingen, Wouter; de Jong, Ton

    2006-01-01

    This article describes a study into the role of heuristic support in facilitating discovery learning through simulation-based learning. The study compares the use of two such learning environments in the physics domain of collisions. In one learning environment (implicit heuristics) heuristics are only used to provide the learner with guidance…

  7. A quantum-mechanical study of atom-diatom collisions in a laser field

    International Nuclear Information System (INIS)

    Chang, Sintarng.

    1989-01-01

    A quantum-mechanical formalism, in both space-fixed (SF) and body-fixed (BF) coordinate systems, is developed for describing an S-state structureless atom (A) colliding with a Estate vibrating rotor diatomic molecule (BC) in the presence of a laser field. The additional Hamiltonians H rad and H int , which describe the laser field and its interaction with the atom-diatom collision system, have been added to the field-free Hamiltonian Ho. And the collision problem can be solved by this extended Hamiltonian. The laser field Hamiltonian is represented by the number state representation. The interaction Hamiltonian is expressed by rvec μ BC . rvec ε, where rvec μ BC is the dipole moment of the diatomic molecule BC, and rvec ε is the electric field strength of the laser field. Since the field-free total angular momentum J is coupling with the laser field, J and its z-axis projection M are no longer conserved. To facilitate the collision problem, the laser field is restricted to a single mode, and its interaction with the collision only involves dipole allowed transitions in which a single photon is absorbed or emitted. For convenience, the coupled-channel equations are solved by the real boundary conditions instead of the complex boundary conditions. On applying the real boundary conditions, the author obtains the K-matrix, which is related to the S-matrix by S = (I + iK)(I - iK) -1 . A model calculation is discussed for the Ar + CO collision system in a laser intensity of 10 9 W/cm 2

  8. Acquisition and extinction of human avoidance behavior: Attenuating effect of safety signals and associations with anxiety vulnerabilities

    Directory of Open Access Journals (Sweden)

    Jony eSheynin

    2014-09-01

    Full Text Available While avoidance behavior is often an adaptive strategy, exaggerated avoidance can be detrimental and result in the development of psychopathologies, such as anxiety disorders. A large animal literature shows that the acquisition and extinction of avoidance behavior in rodents depends on individual differences (e.g., sex, strain and might be modulated by the presence of environmental cues. However, there is a dearth of such reports in human literature, mainly due to the lack of adequate experimental paradigms. In the current study, we employed a computer-based task, where participants control a spaceship and attempt to gain points by shooting an enemy spaceship that appears on the screen. Warning signals predict on-screen aversive events; the participants can learn a protective response to escape or avoid these events. This task has been recently used to reveal facilitated acquisition of avoidance behavior in individuals with anxiety vulnerability, due to female sex or inhibited personality. Here, we extended the task to include an extinction phase, and tested the effect of signals that appeared during safe periods. Healthy young adults (n=122 were randomly assigned to a testing condition with or without such signals. Results showed that the addition of safety signals during the acquisition phase impaired acquisition (in females and facilitated extinction of the avoidance behavior. We also replicated our recent finding of an association between female sex and longer avoidance duration and further showed that females continued to demonstrate more avoidance behavior even on extinction trials when the aversive events no longer occurred. This study is the first to show sex differences on the acquisition and extinction of human avoidance behavior and to demonstrate the role of safety signals in such behavior, highlighting the potential relevance of safety signals for cognitive therapies that focus on extinction learning to treat anxiety symptoms.

  9. Model-Based Estimation of Collision Risks of Predatory Birds with Wind Turbines

    Directory of Open Access Journals (Sweden)

    Marcus Eichhorn

    2012-06-01

    Full Text Available The expansion of renewable energies, such as wind power, is a promising way of mitigating climate change. Because of the risk of collision with rotor blades, wind turbines have negative effects on local bird populations, particularly on raptors such as the Red Kite (Milvus milvus. Appropriate assessment tools for these effects have been lacking. To close this gap, we have developed an agent-based, spatially explicit model that simulates the foraging behavior of the Red Kite around its aerie in a landscape consisting of different land-use types. We determined the collision risk of the Red Kite with the turbine as a function of the distance between the wind turbine and the aerie and other parameters. The impact function comprises the synergistic effects of species-specific foraging behavior and landscape structure. The collision risk declines exponentially with increasing distance. The strength of this decline depends on the raptor's foraging behavior, its ability to avoid wind turbines, and the mean wind speed in the region. The collision risks, which are estimated by the simulation model, are in the range of values observed in the field. The derived impact function shows that the collision risk can be described as an aggregated function of distance between the wind turbine and the raptor's aerie. This allows an easy and rapid assessment of the ecological impacts of (existing or planned wind turbines in relation to their spatial location. Furthermore, it implies that minimum buffer zones for different landscapes can be determined in a defensible way. This modeling approach can be extended to other bird species with central-place foraging behavior. It provides a helpful tool for landscape planning aimed at minimizing the impacts of wind power on biodiversity.

  10. Laser-assisted atom-atom collisions

    International Nuclear Information System (INIS)

    Roussel, F.

    1984-01-01

    The basic layer-assisted atom-atom collision processes are reviewed in order to get a simpler picture of the main physical facts. The processes can be separated into two groups: optical collisions where only one atom is changing state during the collision, the other acting as a spectator atom, and radiative collisions where the states of the two atoms are changing during the collision. All the processes can be interpreted in terms of photoexcitation of the quasimolecule formed during the collisional process. (author)

  11. Hard probes in heavy ion collisions at the LHC: PDFs, shadowing and $pA$ collisions

    CERN Document Server

    Accardi, Alberto; Botje, M.; Brodsky, S.J.; Cole, B.; Eskola, K.J.; Fai, George I.; Frankfurt, L.; Fries, R.J.; Geist, Walter M.; Guzey, V.; Honkanen, H.; Kolhinen, V.J.; Kovchegov, Yu.V.; McDermott, M.; Morsch, A.; Qiu, Jian-wei; Salgado, C.A.; Strikman, M.; Takai, H.; Tapprogge, S.; Vogt, R.; Zhang, X.f.

    2003-01-01

    This manuscript is the outcome of the subgroup ``PDFs, shadowing and $pA$ collisions'' from the CERN workshop ``Hard Probes in Heavy Ion Collisions at the LHC''. In addition to the experimental parameters for $pA$ collisions at the LHC, the issues discussed are factorization in nuclear collisions, nuclear parton distributions (nPDFs), hard probes as the benchmark tests of factorization in $pA$ collisions at the LHC, and semi-hard probes as observables with potentially large nuclear effects. Also, novel QCD phenomena in $pA$ collisions at the LHC are considered. The importance of the $pA$ program at the LHC is emphasized.

  12. Development of a Tool to Measure Youths' Food Allergy Management Facilitators and Barriers.

    Science.gov (United States)

    Herbert, Linda Jones; Lin, Adora; Matsui, Elizabeth; Wood, Robert A; Sharma, Hemant

    2016-04-01

    This study's aims are to identify factors related to allergen avoidance and epinephrine carriage among youth with food allergy, develop a tool to measure food allergy management facilitators and barriers, and investigate its initial reliability and validity.  The Food Allergy Management Perceptions Questionnaire (FAMPQ) was developed based on focus groups with 19 adolescents and young adults with food allergy. Additional youth with food allergy (N = 92; ages: 13-21 years) completed food allergy clinical history and management questionnaires and the FAMPQ.  Internal reliability estimates for the FAMPQ Facilitators and Barriers subscales were acceptable to good. Youth who were adherent to allergen avoidance and epinephrine carriage had higher Facilitator scores. Poor adherence was more likely among youth with higher Barrier scores.  Initial FAMPQ reliability and validity is promising. Additional research is needed to develop FAMPQ clinical guidelines. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Associating crash avoidance maneuvers with driver attributes and accident characteristics: a mixed logit model approach.

    Science.gov (United States)

    Kaplan, Sigal; Prato, Carlo Giacomo

    2012-01-01

    a forgiving infrastructure within a sustainable safety systems, and rethinking in-vehicle collision warning systems. Future research should address the effectiveness of crash avoidance maneuvers and joint modeling of maneuver selection and crash severity.

  14. Obstacle avoidance for kinematically redundant robots using an adaptive fuzzy logic algorithm

    International Nuclear Information System (INIS)

    Beheshti, M.T.H.; Tehrani, A.K.

    1999-05-01

    In this paper the Adaptive Fuzzy Logic approach for solving the inverse kinematics of redundant robots in an environment with obstacles is presented. The obstacles are modeled as convex bodies. A fuzzy rule base that is updated via an adaptive law is used to solve the inverse kinematic problem. Additional rules have been introduced to take care of the obstacles avoidance problem. The proposed method has advantages such as high accuracy, simplicity of computations and generality for all redundant robots. Simulation results illustrate much better tracking performance than the dynamic base solution for a given trajectory in cartesian space, while guaranteeing a collision-free trajectory and observation of a mechanical joint limit

  15. A group-kinetic theory of turbulent collective collisions

    International Nuclear Information System (INIS)

    Tchen, C.M.; Misguich, J.H.

    1983-05-01

    The main objective is the derivation of the kinetic equation of turbulence which has a memory in the turbulent collision integral. We consider the basic pair-interaction, and the interaction between a fluctuation and the organized cluster of other fluctuations in the collection systems, called the multiple interaction. By a group-scaling procedure, a fluctuation is decomposed into three groups to represent the three coupled transport processes of evolution, transport coefficient, and relaxation. The kinetic equation of the scaled singlet distribution is capable of investigating the spectrum of turbulence without the need of the knowledge of the pair distribution. The exact propagator describes the detailed trajectory in the phase space, and is fundamental to the Lagrangian-Eulerian transformation. We calculate the propagator and its scaled groups by means of a probability of retrograde transition. Thus our derivation of the kinetic equation of the distribution involves a parallel development of the kinetic equations of the propagator and the transition probability. In this way, we can avoid the assumptions of independence and normality. Our result shows that the multiple interaction contributes to a shielding and an enchancement of the collision in weak turbulence and strong turbulence, respectively. The weak turbulence is dominated by the wave resonance, and the strong turbulence is dominated by the diffusion

  16. Physics of Nuclear Collisions at High Energy

    Energy Technology Data Exchange (ETDEWEB)

    Hwa, Rudolph C. [Univ. of Oregon, Eugene, OR (United States)

    2012-05-01

    A wide range of problems has been investigated in the research program during the period of this grant. Although the major effort has been in the subject of heavy-ion collisions, we have also studied problems in biological and other physical systems. The method of analysis used in reducing complex data in multiparticle production to simple descriptions can also be applied to the study of complex systems of very different nature. Phase transition is an important phenomenon in many areas of physics, and for heavy-ion collisions we study the fluctuations of multiplicities at the critical point. Human brain activities as revealed in EEG also involve fluctuations in time series, and we have found that our experience enables us to find the appropriate quantification of the fluctuations in ways that can differentiate stroke and normal subjects. The main topic that characterizes the research at Oregon in heavy-ion collisions is the recombination model for the treatment of the hadronization process. We have avoided the hydrodynamical model partly because there is already a large community engaged in it, but more significantly we have found the assumption of rapid thermalization unconvincing. Recent results in studying LHC physics lead us to provide more evidence that shower partons are very important even at low p_T, but are ignored by hydro. It is not easy to work in an environment where the conventional wisdom regards our approach as being incorrect because it does not adhere to the standard paradigm. But that is just what a vibrant research community needs: unconventional approach may find evidences that can challenge the orthodoxy. An example is the usual belief that elliptic flow in fluid dynamics gives rise to azimuthal anisotropy. We claim that it is only sufficient but not necessary. With more data from LHC and more independent thinkers working on the subject what is sufficient as a theory may turn out to be incorrect in reality. Another area of investigation that

  17. Bubble collisions and measures of the multiverse

    International Nuclear Information System (INIS)

    Salem, Michael P.

    2012-01-01

    To compute the spectrum of bubble collisions seen by an observer in an eternally-inflating multiverse, one must choose a measure over the diverging spacetime volume, including choosing an ''initial'' hypersurface below which there are no bubble nucleations. Previous calculations focused on the case where the initial hypersurface is pushed arbitrarily deep into the past. Interestingly, the observed spectrum depends on the orientation of the initial hypersurface, however one's ability observe the effect rapidly decreases with the ratio of inflationary Hubble rates inside and outside one's bubble. We investigate whether this conclusion might be avoided under more general circumstances, including placing the observer's bubble near the initial hypersurface. We find that it is not. As a point of reference, a substantial appendix reviews relevant aspects of the measure problem of eternal inflation

  18. Collision Repair Campaign

    Science.gov (United States)

    The Collision Repair Campaign targets meaningful risk reduction in the Collision Repair source category to reduce air toxic emissions in their communities. The Campaign also helps shops to work towards early compliance with the Auto Body Rule.

  19. Collision risks at sea: species composition and altitude distributions of birds in Danish offshore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Blew, J.; Hoffmann, M.; Nehls, G. [BioConsult SH (Germany)

    2007-07-01

    This study investigates the collision risks of birds in operating offshore wind farms, focussing on all bird species present in the direct vicinity of the wind farms, their altitude distribution and reactions. The project was conducted jointly by BioConsult SH and the University of Hamburg in the two Danish offshore wind farms Horns Rev (North Sea) and Nysted (Baltic Sea) in the framework of a Danish-German cooperation and financed by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU). Data were collected between March 2005 and November 2006, using a ship anchored at the edge of the offshore wind farms. In this way, bird species of all sizes could be considered. Daytime observations yielded data on species composition, flight routes and potential reactions of the birds. Radar observations provided altitude distributions inside and outside the wind farm area and also reactions. The results shall help to further describe and assess the collision risk of different species groups. Since data analysis is still running, exemplary results will be presented here. 114 species have been recorded in Nysted and 99 in Horns Rev, approximately 65% of which have been observed inside the wind farm areas. Migrating birds seem to avoid flying into the wind farms, whereas individuals present in the areas for extended time periods utilize areas within the wind farms. While a barrier effect exists for species on migration, resident species probably have a higher collision risk. Raptors migrating during daylight frequently enter the wind farm area on their flight routes, correcting their flight paths in order to avoid collisions. Radar results show that during times of intensive migration, the proportion of birds flying at high altitudes and thus above windmill height is higher than in times of low migration intensity. Consequently, there is a lower proportion of migrating birds flying within the risk area. Data will be further analysed to

  20. The collision that changed the world

    Directory of Open Access Journals (Sweden)

    Wally Broecker

    2015-07-01

    Full Text Available Abstract In connection with the Anthropocene, one might ask how climate is likely to evolve in the absence of man’s intervention and whether humans will be able to purposefully alter this course. In this commentary, I deal with the situation for very long time scales. I make a case that fifty million years ago, the collision between the northward drifting Indian land mass and Asia set the Earth’s climate on a new course. Ever since then, it has cooled. In the absence of some other dramatic disruption in the movement of the plates which make up our planet’s crust, on the time scale of tens of millions of years, this drift would cause the Earth to freeze over as it did during the late Precambrian. Evidence for this change in course comes from records of oxygen and lithium isotopic composition of foraminifer shells. It is reinforced by records of Mg to Ca in halite-hosted fluid inclusions and in marine CaCO3. In addition, the collision appears to have created abrupt changes in the sulfur isotope composition of marine barite and the carbon isotope composition of amber. Not only did this collision create the Himalaya, but more important, it led to a reorganization of the crustal plate motions. Through some combination of the building of mountains and lowering of sea level, these changes generated a mismatch between the supply of CO2 by planetary outgassing and that of calcium by the weathering of silicate rock. The tendency toward an oversupply of calcium has been compensated by a drawdown of the atmosphere’s CO2 content. This drawdown cooled the Earth, slowing down the supply of calcium. Although we are currently inadvertently compensating for this cooling by burning fossil fuels, the impacts of this CO2 on Earth climate will last no more than a tenth of a million years. So, if humans succeed in avoiding extinction, there will likely be a long-term effort to warm the planet.

  1. A Pre-Detection Based Anti-Collision Algorithm with Adjustable Slot Size Scheme for Tag Identification

    Directory of Open Access Journals (Sweden)

    Chiu-Kuo LIANG

    2015-06-01

    Full Text Available One of the research areas in RFID systems is a tag anti-collision protocol; how to reduce identification time with a given number of tags in the field of an RFID reader. There are two types of tag anti-collision protocols for RFID systems: tree based algorithms and slotted aloha based algorithms. Many anti-collision algorithms have been proposed in recent years, especially in tree based protocols. However, there still have challenges on enhancing the system throughput and stability due to the underlying technologies had faced different limitation in system performance when network density is high. Particularly, the tree based protocols had faced the long identification delay. Recently, a Hybrid Hyper Query Tree (H2QT protocol, which is a tree based approach, was proposed and aiming to speedup tag identification in large scale RFID systems. The main idea of H2QT is to track the tag response and try to predict the distribution of tag IDs in order to reduce collisions. In this paper, we propose a pre-detection tree based algorithm, called the Adaptive Pre-Detection Broadcasting Query Tree algorithm (APDBQT, to avoid those unnecessary queries. Our proposed APDBQT protocol can reduce not only the collisions but the idle cycles as well by using pre-detection scheme and adjustable slot size mechanism. The simulation results show that our proposed technique provides superior performance in high density environments. It is shown that the APDBQT is effective in terms of increasing system throughput and minimizing identification delay.

  2. Basins in ARC-continental collisions

    Science.gov (United States)

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  3. Piracetam, an AMPAkine drug, facilitates memory consolidation in the day-old chick.

    Science.gov (United States)

    Samartgis, Jodi R; Schachte, Leslie; Hazi, Agnes; Crowe, Simon F

    2012-12-01

    Piracetam is an AMPAkine drug that may have a range of different mechanisms at the cellular level, and which has been shown to facilitate memory, amongst its other effects. This series of experiments demonstrated that a 10mg/kg dose of piracetam facilitated memory consolidation in the day-old chick when injected from immediately until 120min after weak training (i.e. using a 20% v/v concentration of methyl anthranilate) with the passive avoidance learning task. Administration of piracetam immediately after training led to memory facilitation which lasted for up to 24h following training. This dose of the AMPAkine was not shown to facilitate memory reconsolidation. These findings support the contention that application of the AMPAkine piracetam facilitates memory using a weak training task, and extend the range of actions previously noted with NMDA-related agents to those which also facilitate the AMPA receptor. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. On impact mechanics in ship collisions

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    The purpose of this paper is to present analytical, closed-form expressions for the energy released for crushing and the impact impulse during ship collisions. Ship–ship collisions, ship collisions with rigid walls and ship collisions with flexible offshore structures are considered. The derived ...

  5. On Impact Mechanics in Ship Collisions

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    The purpose of this paper is to present analytical, closed-form expressions for the energy released for crushing and the impact impulse during ship collisions. Ship-ship collisions, ship collisions with rigid walls and ship collisions with flexible offshore structures are considered. The derived ...

  6. Gravitational waves from cosmic bubble collisions

    International Nuclear Information System (INIS)

    Kim, Dong-Hoon; Lee, Bum-Hoon; Lee, Wonwoo; Yang, Jongmann; Yeom, Dong-han

    2015-01-01

    Cosmic bubbles are nucleated through the quantum tunneling process. After nucleation they would expand and undergo collisions with each other. In this paper, we focus in particular on collisions of two equal-sized bubbles and compute gravitational waves emitted from the collisions. First, we study the mechanism of the collisions by means of a real scalar field and its quartic potential. Then, using this model, we compute gravitational waves from the collisions in a straightforward manner. In the quadrupole approximation, time-domain gravitational waveforms are directly obtained by integrating the energy-momentum tensors over the volume of the wave sources, where the energy-momentum tensors are expressed in terms of the scalar field, the local geometry and the potential. We present gravitational waveforms emitted during (i) the initial-to-intermediate stage of strong collisions and (ii) the final stage of weak collisions: the former is obtained numerically, in full General Relativity and the latter analytically, in the flat spacetime approximation. We gain qualitative insights into the time-domain gravitational waveforms from bubble collisions: during (i), the waveforms show the non-linearity of the collisions, characterized by a modulating frequency and cusp-like bumps, whereas during (ii), the waveforms exhibit the linearity of the collisions, featured by smooth monochromatic oscillations. (orig.)

  7. HELIOS: transformation laws for multiple-collision probabilities with angular dependence

    International Nuclear Information System (INIS)

    Villarino, E.A.; Stamm'ler, R.J.J.

    1996-01-01

    In the lattice code HELIOS, neutron and gamma transport in a given system is treated by the CCCP (current-coupling collision-probability) method. The system is partitioned into space elements which are coupled by currents. Inside the space elements first-flight probabilities are used to obtain the coefficients of the coupling equation and of the equations for the fluxes. The calculation of these coefficients is expensive in CPU time on two scores: the evaluation of the first-flight probabilities, and the matrix inversion to convert these probabilities into the desired coefficients. If the cross sections of two geometrically equal space elements, or of the same element at an earlier burnup level, differ less than a small fraction, considerable CPU time can be saved by using transformation laws. Previously, such laws were derived for first-flight probabilities; here, they are derived for the multiple-collision coefficients of the CCCP equations. They avoid not only the expensive calculations of the first-flight probabilities, but also the subsequent matrix inversion. Various examples illustrate the savings achieved by using these new transformation laws - or by directly using earlier calculated coefficients, if the cross section differences are negligible. (author)

  8. On the quantum Landau collision operator and electron collisions in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Daligault, Jérôme, E-mail: daligaul@lanl.gov [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-03-15

    The quantum Landau collision operator, which extends the widely used Landau/Fokker-Planck collision operator to include quantum statistical effects, is discussed. The quantum extension can serve as a reference model for including electron collisions in non-equilibrium dense plasmas, in which the quantum nature of electrons cannot be neglected. In this paper, the properties of the Landau collision operator that have been useful in traditional plasma kinetic theory and plasma transport theory are extended to the quantum case. We outline basic properties in connection with the conservation laws, the H-theorem, and the global and local equilibrium distributions. We discuss the Fokker-Planck form of the operator in terms of three potentials that extend the usual two Rosenbluth potentials. We establish practical closed-form expressions for these potentials under local thermal equilibrium conditions in terms of Fermi-Dirac and Bose-Einstein integrals. We study the properties of linearized quantum Landau operator, and extend two popular approximations used in plasma physics to include collisions in kinetic simulations. We apply the quantum Landau operator to the classic test-particle problem to illustrate the physical effects embodied in the quantum extension. We present useful closed-form expressions for the electron-ion momentum and energy transfer rates. Throughout the paper, similarities and differences between the quantum and classical Landau collision operators are emphasized.

  9. On the quantum Landau collision operator and electron collisions in dense plasmas

    Science.gov (United States)

    Daligault, Jérôme

    2016-03-01

    The quantum Landau collision operator, which extends the widely used Landau/Fokker-Planck collision operator to include quantum statistical effects, is discussed. The quantum extension can serve as a reference model for including electron collisions in non-equilibrium dense plasmas, in which the quantum nature of electrons cannot be neglected. In this paper, the properties of the Landau collision operator that have been useful in traditional plasma kinetic theory and plasma transport theory are extended to the quantum case. We outline basic properties in connection with the conservation laws, the H-theorem, and the global and local equilibrium distributions. We discuss the Fokker-Planck form of the operator in terms of three potentials that extend the usual two Rosenbluth potentials. We establish practical closed-form expressions for these potentials under local thermal equilibrium conditions in terms of Fermi-Dirac and Bose-Einstein integrals. We study the properties of linearized quantum Landau operator, and extend two popular approximations used in plasma physics to include collisions in kinetic simulations. We apply the quantum Landau operator to the classic test-particle problem to illustrate the physical effects embodied in the quantum extension. We present useful closed-form expressions for the electron-ion momentum and energy transfer rates. Throughout the paper, similarities and differences between the quantum and classical Landau collision operators are emphasized.

  10. Electron-molecule collisions

    CERN Document Server

    Takayanagi, Kazuo

    1984-01-01

    Scattering phenomena play an important role in modern physics. Many significant discoveries have been made through collision experiments. Amongst diverse kinds of collision systems, this book sheds light on the collision of an electron with a molecule. The electron-molecule collision provides a basic scattering problem. It is scattering by a nonspherical, multicentered composite particle with its centers having degrees of freedom of motion. The molecule can even disintegrate, Le., dissociate or ionize into fragments, some or all of which may also be molecules. Although it is a difficult problem, the recent theoretical, experimental, and computational progress has been so significant as to warrant publication of a book that specializes in this field. The progress owes partly to technical develop­ ments in measurements and computations. No less important has been the great and continuing stimulus from such fields of application as astrophysics, the physics of the earth's upper atmosphere, laser physics, radiat...

  11. Nonlinear energy transfer and current sheet development in localized Alfvén wavepacket collisions in the strong turbulence limit

    Science.gov (United States)

    Verniero, J. L.; Howes, G. G.; Klein, K. G.

    2018-02-01

    In space and astrophysical plasmas, turbulence is responsible for transferring energy from large scales driven by violent events or instabilities, to smaller scales where turbulent energy is ultimately converted into plasma heat by dissipative mechanisms. The nonlinear interaction between counterpropagating Alfvén waves, denoted Alfvén wave collisions, drives this turbulent energy cascade, as recognized by early work with incompressible magnetohydrodynamic (MHD) equations. Recent work employing analytical calculations and nonlinear gyrokinetic simulations of Alfvén wave collisions in an idealized periodic initial state have demonstrated the key properties that strong Alfvén wave collisions mediate effectively the transfer of energy to smaller perpendicular scales and self-consistently generate current sheets. For the more realistic case of the collision between two initially separated Alfvén wavepackets, we use a nonlinear gyrokinetic simulation to show here that these key properties persist: strong Alfvén wavepacket collisions indeed facilitate the perpendicular cascade of energy and give rise to current sheets. Furthermore, the evolution shows that nonlinear interactions occur only while the wavepackets overlap, followed by a clean separation of the wavepackets with straight uniform magnetic fields and the cessation of nonlinear evolution in between collisions, even in the gyrokinetic simulation presented here which resolves dispersive and kinetic effects beyond the reach of the MHD theory.

  12. Bubble collisions and measures of the multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Michael P., E-mail: salem@cosmos.phy.tufts.edu [Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2012-01-01

    To compute the spectrum of bubble collisions seen by an observer in an eternally-inflating multiverse, one must choose a measure over the diverging spacetime volume, including choosing an ''initial'' hypersurface below which there are no bubble nucleations. Previous calculations focused on the case where the initial hypersurface is pushed arbitrarily deep into the past. Interestingly, the observed spectrum depends on the orientation of the initial hypersurface, however one's ability observe the effect rapidly decreases with the ratio of inflationary Hubble rates inside and outside one's bubble. We investigate whether this conclusion might be avoided under more general circumstances, including placing the observer's bubble near the initial hypersurface. We find that it is not. As a point of reference, a substantial appendix reviews relevant aspects of the measure problem of eternal inflation.

  13. Strangeness in nuclear collisions

    International Nuclear Information System (INIS)

    Gazdzicki, M.; Roehrich, D.

    1996-01-01

    Data on the mean multiplicity of strange hadrons produced in minimum bias proton-proton and central nucleus-nucleus collisions at momenta between 2.8 and 400 GeV/c per nucleon have been compiled. The multiplicities for nucleon-nucleon interactions were constructed. The ratios of strange particle multiplicity to participant nucleon as well as to pion multiplicity are larger for central nucleus-nucleus collisions than for nucleon-nucleon interactions at all studied energies. The data at AGS energies suggest that the latter ratio saturates with increasing masses of the colliding nuclei. The strangeness to pion multiplicity ratio observed in nucleon-nucleon interactions increases with collision energy in the whole energy range studied. A qualitatively different behaviour is observed for central nucleus-nucleus collisions: the ratio rapidly increases when going from Dubna to AGS energies and changes little between AGS and SPS energies. This change in the behaviour can be related to the increase in the entropy production observed in central nucleus-nucleus collisions at the same energy range. The results are interpreted within a statistical approach. They are consistent with the hypothesis that the quark gluon plasma is created at SPS energies, the critical collision energy being between AGS and SPS energies. (orig.)

  14. Collision-produced atomic states

    International Nuclear Information System (INIS)

    Andersen, N.; Copenhagen Univ.

    1988-01-01

    The last 10-15 years have witnessed the development of a new, powerful class of experimental techniques for atomic collision studies, allowing partial or complete determination of the state of the atoms after a collision event, i.e. the full set of quantum-mechanical scattering amplitudes or - more generally - the density matrix describing the system. Evidently, such studies, involving determination of alignment and orientation parameters, provide much more severe tests of state-of-the-art scattering theories than do total or differential cross section measurements which depend on diagonal elements of the density matrix. The off-diagonal elements give us detailed information about the shape and dynamics of the atomic states. Therefore, close studies of collision-produced atomic states are currently leading to deeper insights into the fundamental physical mechanisms governing the dynamics of atomic collision events. The first part of the lectures deals with the language used to describe atomic states, while the second part presents a selection of recent results for model systems which display fundamental aspects of the collision physics in particularly instructive ways. I shall here restrict myself to atom-atom collisions. The discussion will be focused on states decaying by photon emission though most of the ideas can be easily modified to include electron emission as well. (orig./AH)

  15. Section of Atomic Collisions

    International Nuclear Information System (INIS)

    Berenyi, D.; Biri, S.; Gulyas, L.; Juhasz, Z.; Kover, A.; Orban, A.; Palinkas, J.; Papp, T.; Racz, R.; Ricz, S.

    2009-01-01

    The Section of Atomic Collisions is a research unit with extended activity in the field of atomic and molecular physics. Starting from the study of atomic processes at the beamlines of nuclear physics accelerators in the seventies, our research community became one of the centers of fundamental research in Atomki. We also have a strong connection to materials sciences especially along the line of electron and ion spectroscopy methods. Our present activity covers a wide range of topics from atomic collision mechanisms of fundamental interest, to the complex interactions of electrons, ions, photons and antiparticles with atoms, molecules, surfaces, and specific nanostructures. In the last few years, an increasing fraction of our present topics has become relevant for applications, e.g., molecular collision studies for the radiation therapy methods of tumors, or ion-nanostructure interactions for the future construction of small ion-focusing elements. Our section belongs to the Division of Atomic Physics. The other unit of the Division is the Section of Electron Spectroscopy and Materials Sciences. There are traditionally good connections and a strong collaboration between the groups of the two sections in many fields. From the very beginning of our research work in atomic collisions, external collaborations were of vital importance for us. We regularly organize international workshops in the field of fast ion-atom collisions and related small conferences in Debrecen from 1981. Recently, we organized the Conference on Radiation Damage in Biomolecular Systems (RADAM 2008, Debrecen), and coorganized the Conference on Elementary Processes in Atomic Systems (CEPAS 2008, Cluj). We have access to several large scale facilities in Europe within the framework of formal and informal collaborations. The next themes are in this article: Forward electron emission from energetic atomic collisions; Positron-atom collisions; Photon-atom interactions; Interference effects in electron

  16. Predictors of avoiding medical care and reasons for avoidance behavior.

    Science.gov (United States)

    Kannan, Viji Diane; Veazie, Peter J

    2014-04-01

    Delayed medical care has negative health and economic consequences; interventions have focused on appraising symptoms, with limited success in reducing delay. To identify predictors of care avoidance and reasons for avoiding care. Using the Health Information National Trends Survey (2007), we conducted logistic regressions to identify predictors of avoiding medical visits deemed necessary by the respondents; and, we then conducted similar analyses on reasons given for avoidance behavior. Independent variables included geographic, demographic, socioeconomic, personal health, health behavior, health care system, and cognitive characteristics. Approximately one third of adults avoided doctor visits they had deemed necessary. Although unadjusted associations existed, avoiding needed care was not independently associated with geographic, demographic, and socioeconomic characteristics. Avoidance behavior is characterized by low health self-efficacy, less experience with both quality care and getting help with uncertainty about health, having your feelings attended to by your provider, no usual source of care, negative affect, smoking daily, and fatalistic attitude toward cancer. Reasons elicited for avoidance include preference for self-care or alternative care, dislike or distrust of doctors, fear or dislike of medical treatments, time, and money; respondents also endorsed discomfort with body examinations, fear of having a serious illness, and thoughts of dying. Distinct predictors distinguish each of these reasons. Interventions to reduce patient delay could be improved by addressing the health-related behavioral, belief, experiential, and emotional traits associated with delay. Attention should also be directed toward the interpersonal communications between patients and providers.

  17. Harmful or helpful: perceived solicitous and facilitative partner responses are differentially associated with pain and sexual satisfaction in women with provoked vestibulodynia.

    Science.gov (United States)

    Rosen, Natalie O; Bergeron, Sophie; Glowacka, Maria; Delisle, Isabelle; Baxter, Mary Lou

    2012-09-01

    Provoked vestibulodynia (PVD) is a highly prevalent vulvovaginal pain condition that negatively affects women's emotional, sexual, and relationship well-being. Recent studies have investigated the role of interpersonal variables, including partner responses. We examined whether solicitous and facilitative partner responses were differentially associated with vulvovaginal pain and sexual satisfaction in women with PVD by examining each predictor while controlling for the other. One hundred twenty-one women (M age = 30.60, SD = 10.53) with PVD or self-reported symptoms of PVD completed the solicitous subscale of the spouse response scale of the Multidimensional Pain Inventory, and the facilitative subscale of the Spouse Response Inventory. Participants also completed measures of pain, sexual function, sexual satisfaction, trait anxiety, and avoidance of pain and sexual behaviors (referred to as "avoidance"). Dependent measures were the (i) Pain Rating Index of the McGill Pain Questionnaire with reference to pain during vaginal intercourse and (ii) Global Measure of Sexual Satisfaction Scale. Controlling for trait anxiety and avoidance, higher solicitous partner responses were associated with higher vulvovaginal pain intensity (β = 0.20, P = 0.03), and higher facilitative partner responses were associated with lower pain intensity (β = -0.20, P = 0.04). Controlling for sexual function, trait anxiety, and avoidance, higher facilitative partner responses were associated with higher sexual satisfaction (β = 0.15, P = 0.05). Findings suggest that facilitative partner responses may aid in alleviating vulvovaginal pain and improving sexual satisfaction, whereas solicitous partner responses may contribute to greater pain. © 2012 International Society for Sexual Medicine.

  18. Collision-induced destructive quantum interference

    International Nuclear Information System (INIS)

    Yang Xihua; Sun Zhenrong; Zhang Shi'an; Ding Liang'en; Wang Zugeng

    2005-01-01

    We conduct theoretical studies on the collision-induced destructive quantum interference of two-colour two-photon transitions in an open rhomb-type five-level system with a widely separated doublet by the density matrix approach. The effects of the collision-induced decay rates, the ratio of the transition dipole moments and the energy separation of the doublet on the interference are analysed. It is shown that a narrow dip appears in the excitation spectrum due to the collision-induced destructive interference, and that the narrow interference dip still exists even when the collision broadening is comparable to the energy separation of the doublet. The physical origin of the collision-induced destructive quantum interference is analysed in the dressed-atom picture

  19. A Collective Collision Operator for DSMC

    International Nuclear Information System (INIS)

    Gallis, Michail A.; Torczynski, John R.

    2000-01-01

    A new scheme to simulate elastic collisions in particle simulation codes is presented. The new scheme aims at simulating the collisions in the highly collisional regime, in which particle simulation techniques typically become computationally expensive.The new scheme is based on the concept of a grid-based collision field. According to this scheme, the particles perform a single collision with the background grid during a time step. The properties of the background field are calculated from the moments of the distribution function accumulated on the grid. The collision operator is based on the Langevin equation. Based on comparisons with other methods, it is found that the Langevin method overestimates the collision frequency for dilute gases

  20. Need for reaction coordinates to ensure a complete basis set in an adiabatic representation of ion-atom collisions

    Science.gov (United States)

    Rabli, Djamal; McCarroll, Ronald

    2018-02-01

    This review surveys the different theoretical approaches, used to describe inelastic and rearrangement processes in collisions involving atoms and ions. For a range of energies from a few meV up to about 1 keV, the adiabatic representation is expected to be valid and under these conditions, inelastic and rearrangement processes take place via a network of avoided crossings of the potential energy curves of the collision system. In general, such avoided crossings are finite in number. The non-adiabatic coupling, due to the breakdown of the Born-Oppenheimer separation of the electronic and nuclear variables, depends on the ratio of the electron mass to the nuclear mass terms in the total Hamiltonian. By limiting terms in the total Hamiltonian correct to first order in the electron to nuclear mass ratio, a system of reaction coordinates is found which allows for a correct description of both inelastic channels. The connection between the use of reaction coordinates in the quantum description and the electron translation factors of the impact parameter approach is established. A major result is that only when reaction coordinates are used, is it possible to introduce the notion of a minimal basis set. Such a set must include all avoided crossings including both radial coupling and long range Coriolis coupling. But, only when reactive coordinates are used, can such a basis set be considered as complete. In particular when the centre of nuclear mass is used as centre of coordinates, rather than the correct reaction coordinates, it is shown that erroneous results are obtained. A few results to illustrate this important point are presented: one concerning a simple two-state Landau-Zener type avoided crossing, the other concerning a network of multiple crossings in a typical electron capture process involving a highly charged ion with a neutral atom.

  1. Implicit beliefs of ability, approach-avoidance goals and cognitive anxiety among team sport athletes.

    Science.gov (United States)

    Stenling, Andreas; Hassmén, Peter; Holmström, Stefan

    2014-01-01

    People's implicit beliefs of ability have been suggested as an antecedent of achievement goal adoption, which has in turn been associated with behavioural, cognitive and affective outcomes. This study examined a conditional process model with team sport athletes' approach-avoidance achievement goals as mediators between their implicit beliefs of sport ability and sport-related cognitive anxiety. We expected gender to moderate the paths from implicit beliefs of ability to approach-avoidance goals and from approach-avoidance goals to cognitive anxiety. Team sport athletes with a mean age of 20 years (163 females and 152 males) responded to questionnaires about their implicit beliefs of sport ability, approach-avoidance goals and sport-related cognitive anxiety. Incremental beliefs, gender and the interaction between them predicted mastery-approach goals. Gender also predicted mastery-avoidance goals, with females reporting higher levels than males. Mastery-avoidance goals, gender and the interaction between them predicted cognitive anxiety, with females reporting higher levels of anxiety than males. Entity beliefs positively predicted performance-avoidance goals and the interaction between performance-approach and gender predicted anxiety. The indirect effects also showed gender differences in relation to performance-approach goals. Taken together, our results suggest that coaches trying to create a facilitating climate for their male and female athletes may be wise to consider their athletes' anxiety and achievement goal patterns as these may affect both the athletes' well-being and performance.

  2. Does a tow-bar increase the risk of neck injury in rear-end collisions?

    Science.gov (United States)

    Olesen, Anne Vingaard; Elvik, Rune; Andersen, Camilla Sloth; Lahrmann, Harry S

    2018-06-01

    Does a tow-bar increase the risk of neck injury in the struck car in a rear-end collision? The rear part of a modern car has collision zones that are rendered nonoperational when the car is equipped with a tow-bar. Past crash tests have shown that a car's acceleration was higher in a car equipped with a tow-bar and also that a dummy placed in a car with a tow-bar had higher peak acceleration in the lower neck area. This study aimed to investigate the association between the risk of neck injury in drivers and passengers, and the presence of a registered tow-bar on the struck car in a rear-end collision. We performed a merger of police reports, the National Hospital Discharge Registry, and the National Registry of Motor Vehicles in Denmark. We identified 9,370 drivers and passengers of whom 1,519 were diagnosed with neck injury within the first year after the collision. We found a statistically insignificant 5% decrease in the risk of neck injury in the occupants of the struck car when a tow-bar was fitted compared to when it was not fitted (hazard ratio=0.95; 95% confidence level=0.85-1.05; p=0.32). The result was controlled for gender, age, and the seat of the occupant. Several other collision and car characteristics and demographic information on the drivers and passengers were evaluated as confounders but were not statistically significant. The present study may serve as valuable input for a meta-analysis on the effect of a tow-bar because negative results are necessary in order to avoid publication bias. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Topics in atomic collision theory

    CERN Document Server

    Geltman, Sydney; Brueckner, Keith A

    1969-01-01

    Topics in Atomic Collision Theory originated in a course of graduate lectures given at the University of Colorado and at University College in London. It is recommended for students in physics and related fields who are interested in the application of quantum scattering theory to low-energy atomic collision phenomena. No attention is given to the electromagnetic, nuclear, or elementary particle domains. The book is organized into three parts: static field scattering, electron-atom collisions, and atom-atom collisions. These are in the order of increasing physical complexity and hence necessar

  4. Influence of turbulence on the drop growth in warm clouds, Part I: comparison of numerically and experimentally determined collision kernels

    Directory of Open Access Journals (Sweden)

    Christoph Siewert

    2014-09-01

    Full Text Available This study deals with the comparison of numerically and experimentally determined collision kernels of water drops in air turbulence. The numerical and experimental setups are matched as closely as possible. However, due to the individual numerical and experimental restrictions, it could not be avoided that the turbulent kinetic energy dissipation rate of the measurement and the simulations differ. Direct numerical simulations (DNS are performed resulting in a very large database concerning geometric collision kernels with 1470 individual entries. Based on this database a fit function for the turbulent enhancement of the collision kernel is developed. In the experiments, the collision rates of large drops (radius >7.5μm$> 7.5\\,\\text{\\textmu{}m}$ are measured. These collision rates are compared with the developed fit, evaluated at the measurement conditions. Since the total collision rates match well for all occurring dissipation rates the distribution information of the fit could be used to enhance the statistical reliability and for the first time an experimental collision kernel could be constructed. In addition to the collision rates, the drop size distributions at three consecutive streamwise positions are measured. The drop size distributions contain mainly small drops (radius <7.5μm$< 7.5\\,\\text{\\textmu{}m}$. The measured evolution of the drop size distribution is confronted with model calculations based on the newly derived fit of the collision kernel. It turns out that the observed fast evolution of the drop size distribution can only be modeled if the collision kernel for small drops is drastically increased. A physical argument for this amplification is missing since for such small drops, neither DNSs nor experiments have been performed. For large drops, for which a good agreement of the collision rates was found in the DNS and the experiment, the time for the evolution of the spectrum in the wind tunnel is too short to draw

  5. Peer conflict avoidance: associations with loneliness, social anxiety, and social avoidance.

    Science.gov (United States)

    Johnson, H D; LaVoie, J C; Spenceri, M C; Mahoney-Wernli, M A

    2001-02-01

    Failure to resolve peer conflict is associated with children's reports of loneliness, social anxiety, and social avoidance. Although these relationships are well established, researchers have not examined the association between the avoidance of peer conflict and various adjustment characteristics. The current study examined the association between avoidance of conflict and measures of loneliness, social anxiety, and social avoidance for 59 pupils in Grade 4 (31 boys and 28 girls) and 47 in Grade 8 (22 boys and 25 girls). Volunteers indicated that conflict avoidance based on autonomy, e.g., independence issues, and interpersonal issues, e.g., closeness and cohesion, was associated with scores on loneliness for boys and girls, respectively. Conflict avoidance for emotional and physical well-being and fear of punishment was associated with increased reports of loneliness and social anxiety for children in Grade 4.

  6. Vehicle Reference Generator for Collision-Free Trajectories in Hazardous Maneuvers

    Directory of Open Access Journals (Sweden)

    Cuauhtémoc Acosta Lúa

    2018-01-01

    Full Text Available This paper presents a reference generator for ground vehicles, based on potential fields adapted to the case of vehicular dynamics. The reference generator generates signals to be tracked by the vehicle, corresponding to a trajectory avoiding collisions with obstacles. This generator integrates artificial forces of potential fields of the object surrounding the vehicle. The reference generator is used with a controller to ensure the tracking of the accident-free reference. This approach can be used for vehicle autonomous driving or for active control of manned vehicles. Simulation results, presented for the autonomous driving, consider a scenario inspired by the so-called moose (or elk test, with the presence of other collaborative vehicles.

  7. Estrogenic involvement in social learning, social recognition and pathogen avoidance.

    Science.gov (United States)

    Choleris, Elena; Clipperton-Allen, Amy E; Phan, Anna; Valsecchi, Paola; Kavaliers, Martin

    2012-04-01

    Sociality comes with specific cognitive skills that allow the proper processing of information about others (social recognition), as well as of information originating from others (social learning). Because sociality and social interactions can also facilitate the spread of infection among individuals the ability to recognize and avoid pathogen threat is also essential. We review here various studies primarily from the rodent literature supporting estrogenic involvement in the regulation of social recognition, social learning (socially acquired food preferences and mate choice copying) and the recognition and avoidance of infected and potentially infected individuals. We consider both genomic and rapid estrogenic effects involving estrogen receptors α and β, and G-protein coupled estrogen receptor 1, along with their interactions with neuropeptide systems in the processing of social stimuli and the regulation and expression of these various socially relevant behaviors. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Collision avoidance using neural networks

    Science.gov (United States)

    Sugathan, Shilpa; Sowmya Shree, B. V.; Warrier, Mithila R.; Vidhyapathi, C. M.

    2017-11-01

    Now a days, accidents on roads are caused due to the negligence of drivers and pedestrians or due to unexpected obstacles that come into the vehicle’s path. In this paper, a model (robot) is developed to assist drivers for a smooth travel without accidents. It reacts to the real time obstacles on the four critical sides of the vehicle and takes necessary action. The sensor used for detecting the obstacle was an IR proximity sensor. A single layer perceptron neural network is used to train and test all possible combinations of sensors result by using Matlab (offline). A microcontroller (ARM Cortex-M3 LPC1768) is used to control the vehicle through the output data which is received from Matlab via serial communication. Hence, the vehicle becomes capable of reacting to any combination of real time obstacles.

  9. Exaggerated acquisition and resistance to extinction of avoidance behavior in treated heroin-dependent males

    Science.gov (United States)

    Sheynin, Jony; Moustafa, Ahmed A.; Beck, Kevin D.; Servatius, Richard J.; Casbolt, Peter A.; Haber, Paul; Elsayed, Mahmoud; Hogarth, Lee; Myers, Catherine E.

    2015-01-01

    Objective Addiction is often conceptualized as a behavioral strategy for avoiding negative experiences. In rodents, opioid intake has been associated with abnormal acquisition and extinction of avoidance behavior. Here, we tested the hypothesis that these findings would generalize to human opioid-dependent subjects. Method Adults meeting DSM-IV criteria for heroin-dependence and treated with opioid medication (n=27), and healthy controls (n=26), were recruited between March–October 2013 and given a computer-based task to assess avoidance behavior. On this task, subjects controlled a spaceship and could either gain points by shooting an enemy spaceship, or hide in safe areas to avoid on-screen aversive events. Results While groups did not differ on escape responding (hiding) during the aversive event, heroin-dependent males (but not females) made more avoidance responses during a warning signal that predicted the aversive event (ANOVA, sex × group interaction, p=0.007). This group was also slower to extinguish the avoidance response when the aversive event no longer followed the warning signal (p=0.011). This behavioral pattern resulted in reduced opportunity to obtain reward without reducing risk of punishment. Results suggest that differences in avoidance behavior cannot be easily explained by impaired task performance or by exaggerated motor activity in male patients. Conclusion This study provides evidence for abnormal acquisition and extinction of avoidance behavior in opioid-dependent patients. Interestingly, data suggest abnormal avoidance is demonstrated only by male patients. Findings shed light on cognitive and behavioral manifestations of opioid addiction, and may facilitate development of therapeutic approaches to help affected individuals. PMID:27046310

  10. Radiations from atomic collision processes

    International Nuclear Information System (INIS)

    Bernyi, D.

    1994-01-01

    The physics of atomic collision phenomena in which only the Coulomb forces have a role is an actual field or the research of the present days. The impact energy range in these collisions is very broad,it extends from the eV or even lower region to the GeV region or higher,i.e. it spans the region of three branches of physics,namely that of the atomic,the nuclear and the particle physics.To describe and explain the collision processes themselves, different models (collision mechanisms) are used and they are surveyed in the presentation. Different electromagnetic radiations and particles are emitted from the collision processes.Their features are shown in details together with the most important methods in their detection and study.Examples are given based on the literature and on the investigations of the author and his coworkers. The applications of the radiation from atomic collisions in other scientific fields and in the solution of different practical problems are also surveyed shortly. 16 figs., 2 tabs., 76 refs. (author)

  11. Behavioral facilitation: a cognitive model of individual differences in approach motivation.

    Science.gov (United States)

    Robinson, Michael D; Meier, Brian P; Tamir, Maya; Wilkowski, Benjamin M; Ode, Scott

    2009-02-01

    Approach motivation consists of the active, engaged pursuit of one's goals. The purpose of the present three studies (N = 258) was to examine whether approach motivation could be cognitively modeled, thereby providing process-based insights into personality functioning. Behavioral facilitation was assessed in terms of faster (or facilitated) reaction time with practice. As hypothesized, such tendencies predicted higher levels of approach motivation, higher levels of positive affect, and lower levels of depressive symptoms and did so across cognitive, behavioral, self-reported, and peer-reported outcomes. Tendencies toward behavioral facilitation, on the other hand, did not correlate with self-reported traits (Study 1) and did not predict avoidance motivation or negative affect (all studies). The results indicate a systematic relationship between behavioral facilitation in cognitive tasks and approach motivation in daily life. Results are discussed in terms of the benefits of modeling the cognitive processes hypothesized to underlie individual differences motivation, affect, and depression. (c) 2009 APA, all rights reserved

  12. Collision cross section calculations for polyatomic ions considering rotating diatomic/linear gas molecules

    International Nuclear Information System (INIS)

    Larriba-Andaluz, Carlos; Hogan, Christopher J.

    2014-01-01

    Structural characterization of ions in the gas phase is facilitated by measurement of ion collision cross sections (CCS) using techniques such as ion mobility spectrometry. Further information is gained from CCS measurement when comparison is made between measurements and accurately predicted CCSs for model ion structures and the gas in which measurements are made. While diatomic gases, namely molecular nitrogen and air, are being used in CCS measurement with increasingly prevalency, the majority of studies in which measurements are compared to predictions use models in which gas molecules are spherical or non-rotating, which is not necessarily appropriate for diatomic gases. Here, we adapt a momentum transfer based CCS calculation approach to consider rotating, diatomic gas molecule collisions with polyatomic ions, and compare CCS predictions with a diatomic gas molecule to those made with a spherical gas molecular for model spherical ions, tetra-alkylammonium ions, and multiply charged polyethylene glycol ions. CCS calculations are performed using both specular-elastic and diffuse-inelastic collisions rules, which mimic negligible internal energy exchange and complete thermal accommodation, respectively, between gas molecule and ion. The influence of the long range ion-induced dipole potential on calculations is also examined with both gas molecule models. In large part we find that CCSs calculated with specular-elastic collision rules decrease, while they increase with diffuse-inelastic collision rules when using diatomic gas molecules. Results clearly show the structural model of both the ion and gas molecule, the potential energy field between ion and gas molecule, and finally the modeled degree of kinetic energy exchange between ion and gas molecule internal energy are coupled to one another in CCS calculations, and must be considered carefully to obtain results which agree with measurements

  13. NA49: lead-lead collision

    CERN Multimedia

    1996-01-01

    This is an image of an actual lead ion collision taken from tracking detectors on the NA49 experiment, part of the heavy ion project at CERN. These collisions produce a very complicated array of hadrons as the heavy ions break up. It is hoped that one of these collisions will eventually create a new state of matter known as quark-gluon plasma.

  14. From collisions to clusters

    DEFF Research Database (Denmark)

    Loukonen, Ville; Bork, Nicolai; Vehkamaki, Hanna

    2014-01-01

    -principles molecular dynamics collision simulations of (sulphuric acid)1(water)0, 1 + (dimethylamine) → (sulphuric acid)1(dimethylamine)1(water)0, 1 cluster formation processes. The simulations indicate that the sticking factor in the collisions is unity: the interaction between the molecules is strong enough...... control. As a consequence, the clusters show very dynamic ion pair structure, which differs from both the static structure optimisation calculations and the equilibrium first-principles molecular dynamics simulations. In some of the simulation runs, water mediates the proton transfer by acting as a proton...... to overcome the possible initial non-optimal collision orientations. No post-collisional cluster break up is observed. The reasons for the efficient clustering are (i) the proton transfer reaction which takes place in each of the collision simulations and (ii) the subsequent competition over the proton...

  15. The epidemiology of bicyclist's collision accidents

    DEFF Research Database (Denmark)

    Larsen, L. B.

    1994-01-01

    of bicyclists and risk situations. The findings should make a basis for preventive programmes in order to decrease the number and severity of bicyclists collision accidents. Data from the emergency room in a 2 year period was combined with data from questionnaires. The study group consisted of 1021 bicyclists......The number of bicyclists injured in the road traffic in collision accidents and treated at the emergency room at Odense University Hospital has increased 66% from 1980 to 1989. The aim of this study was to examine the epidemiology of bicyclist's collision accidents and identify risk groups...... injured in collision accidents, and 1502 bicyclists injured in single accidents was used as a reference group. The young bicyclists 10-19 years of age had the highest incidence of injuries caused by collision accidents. The collision accidents had different characteristics according to counterpart. One...

  16. Designing a Mobile Game to Teach Conceptual Knowledge of Avoiding 'Phishing Attacks'

    OpenAIRE

    Asanka, Nalin; Love, Steve; Scott, Michael

    2012-01-01

    Phishing is a form of online identity theft, which attempts to appropriate confidential and sensitive information such as usernames and passwords from its victims. To facilitate cyberspace as a secure environment, phishing education needs to be made accessible to home computer users and mobile games enable embedded learning in a natural environment. Previously, we have introduced a mobile game design that aimed to enhance avoidance motivation and behavior to protect against phishing threats. ...

  17. Palatable food avoidance and acceptance learning with different stressors in female rats

    OpenAIRE

    Liang, Nu-Chu; Smith, Megan E.; Moran, Timothy H.

    2013-01-01

    Stress activates the hypothalamus- pituitary-adrenal (HPA) axis leading to the release of glucocorticoids (GC). Increased activity of the HPA axis and GC exposure has been suggested to facilitate the development of obesity and metabolic syndrome. Nonetheless, different stressors can produce distinct effects on food intake and may support different directions of food learning e.g. avoidance or acceptance. This study examined whether interoceptive (LiCl and exendin-4) and restraint stress suppo...

  18. Electron-hole collision limited transport in charge-neutral bilayer graphene

    Science.gov (United States)

    Nam, Youngwoo; Ki, Dong-Keun; Soler-Delgado, David; Morpurgo, Alberto F.

    2017-12-01

    Ballistic transport occurs whenever electrons propagate without collisions deflecting their trajectory. It is normally observed in conductors with a negligible concentration of impurities, at low temperature, to avoid electron-phonon scattering. Here, we use suspended bilayer graphene devices to reveal a new regime, in which ballistic transport is not limited by scattering with phonons or impurities, but by electron-hole collisions. The phenomenon manifests itself in a negative four-terminal resistance that becomes visible when the density of holes (electrons) is suppressed by gate-shifting the Fermi level in the conduction (valence) band, above the thermal energy. For smaller densities, transport is diffusive, and the measured conductivity is reproduced quantitatively, with no fitting parameters, by including electron-hole scattering as the only process causing velocity relaxation. Experiments on a trilayer device show that the phenomenon is robust and that transport at charge neutrality is governed by the same physics. Our results provide a textbook illustration of a transport regime that had not been observed previously and clarify the nature of conduction through charge-neutral graphene under conditions in which carrier density inhomogeneity is immaterial. They also demonstrate that transport can be limited by a fully electronic mechanism, originating from the same microscopic processes that govern the physics of Dirac-like plasmas.

  19. Avoidance behaviour response and esterase inhibition in the earthworm, Lumbricus terrestris, after exposure to chlorpyrifos.

    Science.gov (United States)

    Martínez Morcillo, S; Yela, J L; Capowiez, Y; Mazzia, C; Rault, M; Sanchez-Hernandez, Juan C

    2013-05-01

    The avoidance response of earthworms to polluted soils has been standardised using a simple and low-cost test, which facilitates soil toxicity screening. In this study, the avoidance response of Lumbricus terrestris was quantified in chlorpyrifos-spiked soils, depending on the pesticide concentration and exposure duration. The inhibition of acetylcholinesterase (AChE) and carboxylesterase (CbE) activities was also determined as indirect measures of pesticide bioavailability. The effects of different chlorpyrifos concentrations were examined in a standardised test (two-chamber system) with 0.6, 3 and 15 mg/kg chlorpyrifos. A modification of the test involved a pre-exposure step (24, 48 or 72 h) in soils spiked with 15 mg/kg. In both protocols, earthworms were unable to avoid the contaminated soils. However, the esterase activities showed that all earthworms were exposed to chlorpyrifos. Acetylcholinesterase activity did not change in earthworms in the standardised behavioural test (0.58 ± 0.20 U/mg protein, mean ± SD; n = 72), whereas the CbE activity was significantly inhibited (62-87 % inhibition) in earthworms exposed to 3 and 15 mg/kg. In the modified test, earthworms had greatly inhibited AChE activity (0.088 ± 0.034 U/mg protein, n = 72), which was supported by reactivation of the inhibited enzyme activity in the presence of pralidoxime (2-PAM). Similarly, the CbE activity was significantly inhibited in earthworms with all treatments. This study suggests that the avoidance behaviour test for organophosphorus-contaminated soils could be supported by specific biomarkers to facilitate a better understanding of pesticide exposure and toxicity during this test.

  20. Photon collisions as a glueball source

    International Nuclear Information System (INIS)

    Liu, H.C.

    1984-01-01

    Photon-photon and photon-nucleon collisions are suggested as a glueball source at small x in the collision center-of-mass frame. The glueball-production cross section is estimated through the two-gluon-fusion mechanism in perturbative quantum chromodynamics. The pointlike component of the photon structure function has a distinctive feature in that it consists almost purely of gluons at small x, which turns out to be very effective in producing glueballs. A much larger signal-to-noise ratio is expected in the glueball search in high-energy photon-photon and photon-nucleon collisions compared with hadron-hadron collisions. It is argued that the background due to soft collisions of the photons can be effectively reduced

  1. Bubble collisions in general relativity

    International Nuclear Information System (INIS)

    Siklos, S.T.C.; Wu, Z.C.; University of Science and Technology of China, Hofei, Anhwei)

    1983-01-01

    The collision of two bubbles of true vacuum in a background of false vacuum is considered in the context of General Relativity. It is found that in the thin wall approximation, the problem, can be solved exactly. The region to the future of the collision is described by the pseudo-Schwarzschild de Sitter metric. The parameters in this metric are found by solving the junction conditions at each collision. (author)

  2. CHARACTERIZATION OF WILD PIG VEHICLE COLLISIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, J; Paul E. Johns, P

    2007-05-23

    Wild pig (Sus scrofa) collisions with vehicles are known to occur in the United States, but only minimal information describing these accidents has been reported. In an effort to better characterize these accidents, data were collected from 179 wild pig-vehicle collisions from a location in west central South Carolina. Data included accident parameters pertaining to the animals involved, time, location, and human impacts. The age structure of the animals involved was significantly older than that found in the population. Most collisions involved single animals; however, up to seven animals were involved in individual accidents. As the number of animals per collision increased, the age and body mass of the individuals involved decreased. The percentage of males was significantly higher in the single-animal accidents. Annual attrition due to vehicle collisions averaged 0.8 percent of the population. Wild pig-vehicle collisions occurred year-round and throughout the 24-hour daily time period. Most accidents were at night. The presence of lateral barriers was significantly more frequent at the collision locations. Human injuries were infrequent but potentially serious. The mean vehicle damage estimate was $1,173.

  3. High energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Bhalla, K.B.

    1980-01-01

    An attempt is made to explain nucleus-nucleus collisions based on nuclear emulsion experiments. Peripheral and central collisions are described in detail. Assuming the fireball model, the concepts of geometry, kinematics and thermodynamics in this model are discussed. Projectile and target fragmentations are studied. The advantages of using nuclear emulsions as detectors, are mentioned. Proton-nucleus collisions and nucleus-nucleus collisions are compared. Interactions, of projectiles such as Ca, B and C on targets such as Pb, Ag, Br etc. at very high energies (approximately 300 to 1700 Gev) are listed. A comparison of the near multiplicities in these interactions is given. A generalized explanation is given on the processes involved in these interactions. (A.K.)

  4. High energy hadron-hadron collisions

    International Nuclear Information System (INIS)

    Chou, T.T.

    1990-01-01

    Results of a study on high energy collision with the geometrical model are summarized in three parts: (i) the elastic hadron-hadron collision, (ii) the inelastic hadron-hadron collision, and (iii) the e + e - annihilation. The geometrical description of high-energy elastic scattering developed earlier is still in general agreement with experiments at the CERN-S bar ppS energies. A simple one-parameter expression for the blackness of bar pp system has been proposed recently which describes very well all existing data from ISR to S bar ppS energies. The geometrical description has also been extended to include processes of fragmentation and diffraction dissociation and other phenomena. In the past five years, a unified physical picture for multiparticle emission in hadron-hadron and e + e - collisions was developed. It focuses on the idea of the wide range of values for the total angular momentum in hadron-hadron collisions. An extension of this consideration yields a theory for the momentum distribution of the outgoing particles which agrees with bar pp and e + e - collision experiments. The results and conclusions of this theory have been extrapolated to higher energies and yielded many predictions which can be experimentally tested. 37 refs

  5. Inverse kinematics research using obstacle avoidance geometry method for EAST Articulated Maintenance Arm (EAMA)

    International Nuclear Information System (INIS)

    Wang, Kun; Song, Yuntao; Wu, Huapeng; Wei, Xiaoyang; Khan, Shahab Ud-Din; Cheng, Yong

    2017-01-01

    Highlights: • An Obstacle Topology Partition Projection (OTPP) method of tokamak-like vessel for collision detection. • Median values preferentially of depth-first search algorithm for solving redundant inverse kinematics based on OTPP. • Application of RIK in grasping target objects. - Abstract: This paper proposed a new method for solving inverse kinematics (IK) of a redundant manipulator called EAST Articulated Maintenance Arm (EAMA), which is applied in the fusion reactor EAST (Experimental Advanced Superconducting Tokamak) and used to complete some maintenance tasks in the complex areas. However, it is difficult to realize remote control due to its redundancy, coupling structure and the complex operational environment. The IK research of the robot played a vital role to the manipulator’s motion control algorithm of remote handling (RH) technology. An Obstacle Topology Partition Projection (OTPP) approach integrated with Modified Inverse Depth First Search (MIDFS) method was presented. This is a kind of new geometric algorithm in order to solve the problem of IK for a high-redundancy manipulator. It can also be used to find a solution satisfying collision avoidance with optimal safety distance between the manipulator and obstacles. Simulations and experiments were conducted to demonstrate the efficiency and accuracy of the proposed method.

  6. Inverse kinematics research using obstacle avoidance geometry method for EAST Articulated Maintenance Arm (EAMA)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kun, E-mail: wangkun@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Lappeenranta University of Technology, Lappeenranta (Finland); University of Science and Technology of China, Hefei (China); Song, Yuntao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); University of Science and Technology of China, Hefei (China); Wu, Huapeng [Lappeenranta University of Technology, Lappeenranta (Finland); Wei, Xiaoyang; Khan, Shahab Ud-Din; Cheng, Yong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2017-06-15

    Highlights: • An Obstacle Topology Partition Projection (OTPP) method of tokamak-like vessel for collision detection. • Median values preferentially of depth-first search algorithm for solving redundant inverse kinematics based on OTPP. • Application of RIK in grasping target objects. - Abstract: This paper proposed a new method for solving inverse kinematics (IK) of a redundant manipulator called EAST Articulated Maintenance Arm (EAMA), which is applied in the fusion reactor EAST (Experimental Advanced Superconducting Tokamak) and used to complete some maintenance tasks in the complex areas. However, it is difficult to realize remote control due to its redundancy, coupling structure and the complex operational environment. The IK research of the robot played a vital role to the manipulator’s motion control algorithm of remote handling (RH) technology. An Obstacle Topology Partition Projection (OTPP) approach integrated with Modified Inverse Depth First Search (MIDFS) method was presented. This is a kind of new geometric algorithm in order to solve the problem of IK for a high-redundancy manipulator. It can also be used to find a solution satisfying collision avoidance with optimal safety distance between the manipulator and obstacles. Simulations and experiments were conducted to demonstrate the efficiency and accuracy of the proposed method.

  7. Photon-photon collisions

    International Nuclear Information System (INIS)

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e#betta# scattering. Considerable work has now been accumulated on resonance production by #betta##betta# collisions. Preliminary high statistics studies of the photon structure function F 2 /sup #betta#/(x,Q 2 ) are given and comments are made on the problems that remain to be solved

  8. Photon-photon collisions

    International Nuclear Information System (INIS)

    Haissinski, J.

    1986-06-01

    The discussions presented in this paper deal with the following points: distinctive features of gamma-gamma collisions; related processes; photon-photon elastic scattering in the continuum and γγ →gg; total cross section; γγ → V 1 V 2 (V=vector meson); radiative width measurements and light meson spectroscopy; exclusive channels at large /t/; jets and inclusive particle distribution in γγ collisions; and, the photon structure function F γ 2

  9. Electron capture in ion-molecule collisions at intermediate energy

    International Nuclear Information System (INIS)

    Kumura, M.

    1986-01-01

    Recent progress of theoretical charge transfer study in ion-molecule collisions at the intermediate energy is reviewed. Concept of close and distant collisions obtained from extensive ion-atom collision studies is identified so that it can be utilized to model two distinct collision processes. For a close collision, explicit representation of the whole collision complex is necessary to describe collision dynamics correctly, while a model potential approach for molecule is appropriate for a distant collision. It is shown that these two distinct models are indeed capable of reproducing experimental charge transfer cross sections. Some remarks for further theoretical study of ion-molecule collisions are also given. 21 refs., 8 figs

  10. About the Collision Repair Campaign

    Science.gov (United States)

    EPA developed the Collision Repair Campaign to focus on meaningful risk reduction in the Collision Repair source sector to complement ongoing community air toxics work and attain reductions at a faster rate.

  11. Distraction-related road traffic collisions

    African Journals Online (AJOL)

    drivers involved in road traffic collisions (RTC) were using mobile phones. Our study supports ... while driving. Keywords: Distraction, prevention, road traffic collision, mobile phone. ..... keeps us connected with others with great advantages.

  12. The temporal development of collision cascades in the binary collision approximation

    International Nuclear Information System (INIS)

    Robinson, M.T.

    1989-07-01

    A modified binary collision approximation (BCA) was developed to allow explicit evaluation of the times at which projectiles in a collision cascade reach significant points in their trajectories, without altering the ''event-driven'' character of the model. The modified BCA was used to study the temporal development of cascades in copper and gold, initiated by primary atoms of up to 10 keV initial kinetic energy. Cascades generated with time-ordered collisions show fewer ''distant'' Frenkel pairs than do cascades generated with velocity-ordered collisions. In the former, the slower projectiles tend to move in less-damaged crystal than they do in the latter. The effect is larger in Au than in Cu and increases with primary energy. As an approach to cascade nonlinearities, cascades were generated in which stopped cascade atoms were allowed to be redisplaced in later encounters. There were many more redisplacements in time-ordered cascades than in velocity-ordered ones. Because of the additional stopping introduced by the redisplacement events, the cascades in which they were allowed had fewer defects than occurred otherwise. This effect also was larger in Au than in Cu and larger at high energies although most of the redisplacement encounters involved only low-energy particles. 13 refs., 5 figs., 4 tabs

  13. Higher threat avoidance costs reduce avoidance behaviour which in turn promotes fear extinction in humans.

    Science.gov (United States)

    Rattel, Julina A; Miedl, Stephan F; Blechert, Jens; Wilhelm, Frank H

    2017-09-01

    Theoretical models specifying the underlying mechanisms of the development and maintenance of anxiety and related disorders state that fear responses acquired through classical Pavlovian conditioning are maintained by repeated avoidance behaviour; thus, it is assumed that avoidance prevents fear extinction. The present study investigated behavioural avoidance decisions as a function of avoidance costs in a naturalistic fear conditioning paradigm. Ecologically valid avoidance costs - manipulated between participant groups - were represented via time-delays during a detour in a gamified computer task. After differential acquisitions of shock-expectancy to a predictive conditioned stimulus (CS+), participants underwent extinction where they could either take a risky shortcut, while anticipating shock signaled by the CS+, or choose a costly avoidance option (lengthy detour); thus, they were faced with an approach-avoidance conflict. Groups with higher avoidance costs (longer detours) showed lower proportions of avoiders. Avoiders gave heightened shock-expectancy ratings post-extinction, demonstrating 'protecting from extinction', i.e. failure to extinguish. Moreover, there was an indirect effect of avoidance costs on protection from extinction through avoidance behaviour. No moderating role of trait-anxiety was found. Theoretical implications of avoidance behaviour are discussed, considering the involvement of instrumental learning in the maintenance of fear responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Sixteenth International Conference on the physics of electronic and atomic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.; Lucatorto, T.B. (eds.)

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.

  15. Sixteenth International Conference on the physics of electronic and atomic collisions

    International Nuclear Information System (INIS)

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.; Lucatorto, T.B.

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter

  16. The costs of avoiding environmental impacts from shale-gas surface infrastructure.

    Science.gov (United States)

    Milt, Austin W; Gagnolet, Tamara D; Armsworth, Paul R

    2016-12-01

    Growing energy demand has increased the need to manage conflicts between energy production and the environment. As an example, shale-gas extraction requires substantial surface infrastructure, which fragments habitats, erodes soils, degrades freshwater systems, and displaces rare species. Strategic planning of shale-gas infrastructure can reduce trade-offs between economic and environmental objectives, but the specific nature of these trade-offs is not known. We estimated the cost of avoiding impacts from land-use change on forests, wetlands, rare species, and streams from shale-energy development within leaseholds. We created software for optimally siting shale-gas surface infrastructure to minimize its environmental impacts at reasonable construction cost. We visually assessed sites before infrastructure optimization to test whether such inspection could be used to predict whether impacts could be avoided at the site. On average, up to 38% of aggregate environmental impacts of infrastructure could be avoided for 20% greater development costs by spatially optimizing infrastructure. However, we found trade-offs between environmental impacts and costs among sites. In visual inspections, we often distinguished between sites that could be developed to avoid impacts at relatively low cost (29%) and those that could not (20%). Reductions in a metric of aggregate environmental impact could be largely attributed to potential displacement of rare species, sedimentation, and forest fragmentation. Planners and regulators can estimate and use heterogeneous trade-offs among development sites to create industry-wide improvements in environmental performance and do so at reasonable costs by, for example, leveraging low-cost avoidance of impacts at some sites to offset others. This could require substantial effort, but the results and software we provide can facilitate the process. © 2016 Society for Conservation Biology.

  17. Energy transfer in diatom/diatom molecular collisions

    International Nuclear Information System (INIS)

    Sohlberg, K.W.

    1992-01-01

    In a collision of two molecules, the translational energy of the collision may be redistributed into internal energy of rotation, vibration, or electron motion, in one or both of the colliding partners. In addition, internal energy in one or more of these modes may be open-quotes quenchedclose quotes into translation, leading to a superelastic collision. Such energy transfer may take place by a number of mechanisms. This energy transfer is of fundamental importance in understanding chemical reaction dynamics. Nearly all chemical reactions take place through a bimolecular collision process (or multiple bimolecular collisions) and the quantum state specificity of the reaction can have a major role in determining the kinetics of the reaction, In particular, the author has investigated vibrational energy transfer in collisions between two diatomic molecules. In addition to serving as models for all molecular collision process, gas phase collisions of these species are ubiquitous in atmospheric phenomena which are of critical importance in answering the current questions about the human induced degradation of the earth's atmospheric. Classical trajectory methods have been used to explore the excitation of vibrations in gas-phase collisions of the nitrogen molecular ion with its parent molecule. The near symmetry of the reactants is shown to result in a high probability that the two molecules are excited by an equal amount of energy. This provides a possible explanation of the molecular beam measurements which show that the total number of vibrational energy quanta excited in the collision is, with a high probability that the two molecules are excited by an equal amount of energy. This provides a possible explanation of the molecular beam measurements which show that the total number of vibrational energy quanta excited in the collision is, with a high probability, even

  18. A Transient Dopamine Signal Represents Avoidance Value and Causally Influences the Demand to Avoid

    Science.gov (United States)

    Pultorak, Katherine J.; Schelp, Scott A.; Isaacs, Dominic P.; Krzystyniak, Gregory

    2018-01-01

    Abstract While an extensive literature supports the notion that mesocorticolimbic dopamine plays a role in negative reinforcement, recent evidence suggests that dopamine exclusively encodes the value of positive reinforcement. In the present study, we employed a behavioral economics approach to investigate whether dopamine plays a role in the valuation of negative reinforcement. Using rats as subjects, we first applied fast-scan cyclic voltammetry (FSCV) to determine that dopamine concentration decreases with the number of lever presses required to avoid electrical footshock (i.e., the economic price of avoidance). Analysis of the rate of decay of avoidance demand curves, which depict an inverse relationship between avoidance and increasing price, allows for inference of the worth an animal places on avoidance outcomes. Rapidly decaying demand curves indicate increased price sensitivity, or low worth placed on avoidance outcomes, while slow rates of decay indicate reduced price sensitivity, or greater worth placed on avoidance outcomes. We therefore used optogenetics to assess how inducing dopamine release causally modifies the demand to avoid electrical footshock in an economic setting. Increasing release at an avoidance predictive cue made animals more sensitive to price, consistent with a negative reward prediction error (i.e., the animal perceives they received a worse outcome than expected). Increasing release at avoidance made animals less sensitive to price, consistent with a positive reward prediction error (i.e., the animal perceives they received a better outcome than expected). These data demonstrate that transient dopamine release events represent the value of avoidance outcomes and can predictably modify the demand to avoid. PMID:29766047

  19. Microscopic model of nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Harvey, B.G.

    1986-04-01

    The collision of two nuclei is treated as a collection of collisions between the nucleons of the projectile and those of the target nucleus. The primary projectile fragments contain only those nucleons that did not undergo a collision. The inclusive and coincidence cross sections result from the decay of the excited primary fragments. 15 refs., 5 figs

  20. Avoided cost estimation and post-reform funding allocation for California's energy efficiency programs

    International Nuclear Information System (INIS)

    Baskette, C.; Horii, B.; Price, S.; Kollman, E.

    2006-01-01

    This paper summarizes the first comprehensive estimation of California's electricity avoided costs since the state reformed its electricity market. It describes avoided cost estimates that vary by time and location, thus facilitating targeted design, funding, and marketing of demand-side management (DSM) and energy efficiency (EE) programs that could not have occurred under the previous methodology of system average cost estimation. The approach, data, and results reflect two important market structure changes: (a) wholesale spot and forward markets now supply electricity commodities to load serving entities; and (b) the evolution of an emissions market that internalizes and prices some of the externalities of electricity generation. The paper also introduces the multiplier effect of a price reduction due to DSM/EE implementation on electricity bills of all consumers. It affirms that area- and time-specific avoided cost estimates can improve the allocation of the state's public funding for DSM/EE programs, a finding that could benefit other parts of North America (e.g. Ontario and New York), which have undergone electricity deregulation. (author)

  1. A Crowd Avoidance Method Using Circular Avoidance Path for Robust Person Following

    Directory of Open Access Journals (Sweden)

    Kohei Morishita

    2017-01-01

    Full Text Available A life-support service robot must avoid both static and dynamic obstacles for working in a real environment. Here, a static obstacle means an obstacle that does not move, and a dynamic obstacle is the one that moves. Assuming the robot is following a target person, we discuss how the robot avoids a crowd through which the target person passes and arrives at the target position. The purpose of this paper is to propose a crowd avoidance method that makes a robot to be able to avoid both static and dynamic obstacles. The method uses the surface points of the obstacles to form an avoidance region, and the robot moves along the edge of the region. We conducted experiments assuming various situations such that the robot was blocked, there was a wide gap in the crowd, or a person in the crowd yielded for the robot to pass through. As an experimental result, it was confirmed the robot could avoid the crowd even when the obstacles were aligned in an “inverted wedge” shape.

  2. Collision dynamics and particle production in relativistic nucleus- nucleus collisions at CERN

    International Nuclear Information System (INIS)

    Harris, J.W.

    1990-03-01

    The possibility of forming a quark-gluon plasma is the primary motivation for studying nucleus-nucleus collisions at very high energies. Various ''signatures'' for the existence of a quark-gluon plasma in these collisions have been proposed. These include an enhancement in the production of strange particles, suppression of J/Ψ production, observation of direct photons from the plasma, event-by-event fluctuations in the rapidity distributions of produced particles, and various other observables. However, the system will evolve dynamically from a pure plasma or mixed phase through expansion, cooling, hadronization and freezeout into the final state particles. Therefore, to be able to determine that a new, transient state of matter has been formed it will be necessary to understand the space-time evolution of the collision process and the microscopic structure of hadronic interactions, at the level of quarks and gluons, at high temperatures and densities. In this talk I will review briefly the present state of our understanding of the dynamics of these collisions and, in addition, present a few recent results on particle production from the NA35 experiment at CERN. 21 refs., 5 figs

  3. Attachment avoidance, alexithymia, and gender: Examining their associations with distress disclosure tendencies and event-specific disclosure.

    Science.gov (United States)

    O'Loughlin, Julia I; Cox, Daniel W; Kahn, Jeffrey H; Wu, Amery D

    2018-01-01

    Distress disclosure has been linked with reduced psychological distress, increased wellbeing, and successful psychotherapeutic outcome. Because of the importance of distress disclosure, researchers have worked to develop and improve theoretical models of disclosure to facilitate counseling practices that reduce impediments to disclosure. Presently, we conducted a 2-part study to investigate distress disclosure's associations with attachment avoidance, gender, and alexithymia-3 constructs frequently linked with disclosure. In Part 1, we examined the extent to which attachment avoidance, alexithymia, and gender predicted general disclosure tendencies. In Part 2, we examined the extent to which attachment avoidance, alexithymia, and gender predicted event-specific disclosure. Participants were recruited from a crowdsourcing website (N = 178 in Part 1; N = 108 in Part 2). In Part 1, alexithymia partially mediated the association between attachment avoidance and disclosure tendencies, and the link between attachment avoidance and alexithymia was stronger for men than women. In Part 2, the association between distress intensity and event-specific disclosure was weaker for people with high levels of alexithymia. Implications for counseling theory and practice are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  4. Measurement of charged particle spectra in pp collisions and nuclear modification factor $R_\\mathrm{pPb}$ at $\\sqrt{s_{NN}}=5.02$TeV with the ATLAS detector at the LHC

    CERN Document Server

    The ATLAS collaboration

    2016-01-01

    This note presents an analysis of the inclusive charged particle spectra in pp collisions at $\\sqrt{s}=5.02$TeV that are measured with the ATLAS experiment at the LHC. The measurements are performed with pp data recorded in 2015 with an integrated luminosity of 25pb$^{-1}$. The ratio of spectra measured in the p+Pb collisions to the pp cross section scaled by the number of binary nucleon-nucleon collisions, $R_\\mathrm{pPb}$, is evaluated to facilitate a comparison of the particle production in the two colliding systems. The nuclear modification factor does not show any significant deviation from unity in the probed transverse momentum region.

  5. Anterior ethmoid anatomy facilitates dacryocystorhinostomy.

    Science.gov (United States)

    Blaylock, W K; Moore, C A; Linberg, J V

    1990-12-01

    The ethmoid air cell labyrinth lies adjacent to the medial orbital wall, extending even beyond the sutures of the ethmoid bone. Its anatomic relationship to the lacrimal sac fossa is important in lacrimal surgery. We evaluated computed tomographic scans of 190 orbits with normal ethmoid anatomy to define the anatomic relationship of anterior ethmoid air cells to the lacrimal sac fossa. In 93% of the orbits, the cells extended anterior to the posterior lacrimal crest, with 40% entering the frontal process of the maxilla. This anatomic relationship may be used to facilitate the osteotomy during dacryocystorhinostomy. During a 10-year period (310 cases), one of us routinely entered the anterior ethmoid air cells to initiate the osteotomy during dacryocystorhinostomy. This technique has helped to avoid lacerations of the nasal mucosa.

  6. Gyrokinetic linearized Landau collision operator

    DEFF Research Database (Denmark)

    Madsen, Jens

    2013-01-01

    , which is important in multiple ion-species plasmas. Second, the equilibrium operator describes drag and diffusion of the magnetic field aligned component of the vorticity associated with the E×B drift. Therefore, a correct description of collisional effects in turbulent plasmas requires the equilibrium......The full gyrokinetic electrostatic linearized Landau collision operator is calculated including the equilibrium operator, which represents the effect of collisions between gyrokinetic Maxwellian particles. First, the equilibrium operator describes energy exchange between different plasma species...... operator, even for like-particle collisions....

  7. CONFERENCE: Photon-photon collisions

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Despite being difficult to observe, photon-photon collisions have opened up a range of physics difficult, or even impossible, to access by other methods. The progress which has been made in this field was evident at the fifth international workshop on photon-photon collisions, held in Aachen from 13-16 April and attended by some 120 physicists

  8. Heavy ion collisions in AdS5

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.

    2011-01-01

    We study heavy ion collisions at strong 't Hooft coupling using AdS/CFT correspondence. Heavy ion collisions correspond to gravitational shock wave collisions in AdS 5 . We construct the metric in the forward light cone after the collision perturbatively through expansion of Einstein equations in graviton exchanges. We obtain an analytic expression for the metric including all-order graviton exchanges with one shock wave, while keeping the exchanges with another shock wave at the lowest order. We read off the corresponding energy-momentum tensor of the produced medium. Unfortunately this energy-momentum tensor does not correspond to ideal hydrodynamics, indicating that higher order graviton exchanges are needed to construct the full solution of the problem. We also show that shock waves must completely stop almost immediately after the collision in AdS 5 , which, on the field theory side, corresponds to complete nuclear stopping due to strong coupling effects, likely leading to Landau hydrodynamics. Finally, we perform trapped surface analysis of the shock wave collisions demonstrating that a bulk black hole, corresponding to ideal hydrodynamics on the boundary, has to be created in such collisions, thus constructing a proof of thermalization in heavy ion collisions at strong coupling.

  9. Positron-atom collisions

    International Nuclear Information System (INIS)

    Drachman, R.J.

    1984-01-01

    The past decade has seen the field of positron-atom collisions mature into an important sub-field of atomic physics. Increasingly intense positron sources are leading towards a situation in which electron and positron collision experiments will be on almost an equal footing, challenging theory to analyze their similarities and differences. The author reviews the advances made in theory, including dispersion theory, resonances, and inelastic processes. A survey of experimental progress and a brief discussion of astrophysical positronics is also included. (Auth.)

  10. Effect of des-Tyr1-[gamma]-endorphin and des-enkephalin-[gamma]-endorphin on active and passive avoidance behavior of rats; A dose-response relationship study

    NARCIS (Netherlands)

    Gaffori, O.; Wied, D. de

    1982-01-01

    The potency of two β-endorphin fragments, des-Tyr1-γ-endorphin (DTγE, βE-(2–17)) and des-enkephalin-γ-endorphin (DEγE, βE-(6–17)) was compared on extinction of pole-jumping avoidance behavior and on retention of a one-trial step-through passive avoidance procedure. Both peptides facilitated the

  11. Thermalization in nucleus-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, F.; Lynch, W.G.; Bowman, D.R.; De Souza, R.T.; Gelbke, C.K.; Kim, Y.D.; Phair, L.; Tsang, M.B.; Williams, C.; Xu, H.M.; Dinius, J. (Dept. of Physics and Astronomy, Michigan State Univ., East Lansing, MI (United States) National Superconducting Cyclotron Lab., Michigan State Univ., East Lansing, MI (United States))

    1992-05-28

    Impact parameter dependent excited state populations of intermediate mass fragments are investigated for {sup 36}Ar induced reactions on {sup 197}Au at E/A=35 MeV. Population inversions, indicative of non-thermal excitation mechanisms, are observed in peripheral collisions characterized by low associated charged particle multiplicities. These population inversions disappear for collisions with larger associated charged particle multiplicities, consistent with a more complete thermalization for more complex final states. Discrepancies, observed in central collisions, suggest that the limit of local thermal equilibrium has not yet been observed. (orig.).

  12. Atomic collisions involving pulsed positrons

    DEFF Research Database (Denmark)

    Merrison, J. P.; Bluhme, H.; Field, D.

    2000-01-01

    Conventional slow positron beams have been widely and profitably used to study atomic collisions and have been instrumental in understanding the dynamics of ionization. The next generation of positron atomic collision studies are possible with the use of charged particle traps. Not only can large...... instantaneous intensities be achieved with in-beam accumulation, but more importantly many orders of magnitude improvement in energy and spatial resolution can be achieved using positron cooling. Atomic collisions can be studied on a new energy scale with unprecedented precion and control. The use...

  13. Facilitators and constraints at each stage of the migration decision process.

    Science.gov (United States)

    Kley, Stefanie

    2017-10-01

    Behavioural models of migration emphasize the importance of migration decision-making for the explanation of subsequent behaviour. But empirical migration research regularly finds considerable gaps between those who intend to migrate and those who actually realize their intention. This paper applies the Theory of Planned Behaviour, enriched by the Rubicon model, to test specific hypotheses about distinct effects of facilitators and constraints on specific stages of migration decision-making and behaviour. The data come from a tailor-made panel survey based on random samples of people drawn from two German cities in 2006-07. The results show that in conventional models the effects of facilitators and constraints on migration decision-making are likely to be underestimated. Splitting the process of migration decision-making into a pre-decisional and a pre-actional phase helps to avoid bias in the estimated effects of facilitators and constraints on both migration decision-making and migration behaviour.

  14. Facilitation as a teaching strategy : experiences of facilitators

    Directory of Open Access Journals (Sweden)

    E Lekalakala-Mokgele

    2006-09-01

    Full Text Available Changes in nursing education involve the move from traditional teaching approaches that are teacher-centred to facilitation, a student centred approach. The studentcentred approach is based on a philosophy of teaching and learning that puts the learner on centre-stage. The aim of this study was to identify the challenges of facilitators of learning using facilitation as a teaching method and recommend strategies for their (facilitators development and support. A qualitative, explorative and contextual design was used. Four (4 universities in South Africa which utilize facilitation as a teaching/ learning process were identified and the facilitators were selected to be the sample of the study. The main question posed during in-depth group interviews was: How do you experience facilitation as a teaching/learning method?. Facilitators indicated different experiences and emotions when they first had to facilitate learning. All of them indicated that it was difficult to facilitate at the beginning as they were trained to lecture and that no format for facilitation was available. They experienced frustrations and anxieties as a result. The lack of knowledge of facilitation instilled fear in them. However they indicated that facilitation had many benefits for them and for the students. Amongst the ones mentioned were personal and professional growth. Challenges mentioned were the fear that they waste time and that they do not cover the content. It is therefore important that facilitation be included in the training of nurse educators.

  15. Collision of BEC dark matter structures and comparison with the collision of ideal gas structures

    International Nuclear Information System (INIS)

    Guzman, F. S.; Gonzalez, J. A.

    2010-01-01

    In this work we present an important feature of the Bose Einstein Condensate (BEC) dark matter model, that is, the head-on collision of BEC dark matter virialized structures. This model of dark matter is assumed to be ruled by the Schroedinger-Poisson system of equations, which is interpreted as the Gross-Pitaevskii equation with a gravitational potential sourced by the density of probability. It has been shown recently that during the collision of two structures a pattern formation in the density of probability appears. We explore the pattern formation for various initial dynamical conditions during the collision. In order to know whether or not the pattern formation is a particular property of the BEC dark matter, we compare with the collision of two structures of virialized ideal gas under similar dynamical initial conditions, which is a model more consistent with usual models of dark matter. In order to do so, we also solve Euler's equations using a smoothed particle hydrodynamics approach. We found that the collision of the ideal gas structures does not show interference patterns, which in turn implies that the pattern formation is a property of the BEC dark matter.

  16. A simple method to design non-collision relative orbits for close spacecraft formation flying

    Science.gov (United States)

    Jiang, Wei; Li, JunFeng; Jiang, FangHua; Bernelli-Zazzera, Franco

    2018-05-01

    A set of linearized relative motion equations of spacecraft flying on unperturbed elliptical orbits are specialized for particular cases, where the leader orbit is circular or equatorial. Based on these extended equations, we are able to analyze the relative motion regulation between a pair of spacecraft flying on arbitrary unperturbed orbits with the same semi-major axis in close formation. Given the initial orbital elements of the leader, this paper presents a simple way to design initial relative orbital elements of close spacecraft with the same semi-major axis, thus preventing collision under non-perturbed conditions. Considering the mean influence of J 2 perturbation, namely secular J 2 perturbation, we derive the mean derivatives of orbital element differences, and then expand them to first order. Thus the first order expansion of orbital element differences can be added to the relative motion equations for further analysis. For a pair of spacecraft that will never collide under non-perturbed situations, we present a simple method to determine whether a collision will occur when J 2 perturbation is considered. Examples are given to prove the validity of the extended relative motion equations and to illustrate how the methods presented can be used. The simple method for designing initial relative orbital elements proposed here could be helpful to the preliminary design of the relative orbital elements between spacecraft in a close formation, when collision avoidance is necessary.

  17. Language use and stereotyping: the role of approach and avoidance motivation goals.

    Science.gov (United States)

    Gil de Montes, Lorena; Ortiz, Garbiñe; Valencia, José F; Larrañaga, Maider; Agirrezabal, Arrate

    2012-11-01

    The use of more abstract language to describe expected behaviors as opposed to unexpected behaviors has traditionally been considered a way of stereotype maintenance. This tendency is known as linguistic expectancy bias. Two experiments examined the influence of approach and avoidance motivational orientations on the production of this linguistic expectancy bias. It was predicted that approach strategic orientation is likely to describe expectancy consistent behaviors at a higher level of linguistic abstraction than expectancy inconsistent behaviors. In contrast, avoidance strategic orientation is likely to describe both expectancy consistent behaviors and expectancy inconsistent behaviors at a lower level of linguistic abstraction, thus facilitating the disappearance of linguistic expectancy bias. Two experiments confirmed these expectations, using strategic orientation manipulations based either on communication goals or on motor action, and measuring linguistic abstraction either on forced-choice answer format or on free descriptions. Implications for the generalisation of linguistic expectancy bias are discussed.

  18. Disrupted avoidance learning in functional neurological disorder: Implications for harm avoidance theories

    Directory of Open Access Journals (Sweden)

    Laurel S. Morris

    Full Text Available Background: Functional neurological disorder (FND is an elusive disorder characterized by unexplained neurological symptoms alongside aberrant cognitive processing and negative affect, often associated with amygdala reactivity. Methods: We examined the effect of negative conditioning on cognitive function and amygdala reactivity in 25 FND patients and 20 healthy volunteers (HV. Participants were first conditioned to stimuli paired with negative affective or neutral (CS+/CS− information. During functional MRI, subjects then performed an instrumental associative learning task to avoid monetary losses in the context of the previously conditioned stimuli. We expected that FND patients would be better at learning to avoid losses when faced with negatively conditioned stimuli (increased harm avoidance. Multi-echo resting state fMRI was also collected from the same subjects and a robust denoising method was employed, important for removing motion and physiological artifacts. Results: FND subjects were more sensitive to the negative CS+ compared to HV, demonstrated by a reinforcement learning model. Contrary to expectation, FND patients were generally more impaired at learning to avoid losses under both contexts (CS+/CS−, persisting to choose the option that resulted in a negative outcome demonstrated by both behavioural and computational analyses. FND patients showed enhanced amygdala but reduced dorsolateral prefrontal cortex responses when they received negative feedback. Patients also had increased resting state functional connectivity between these two regions. Conclusions: FND patients had impaired instrumental avoidance learning, findings that parallel previous observations of impaired action-outcome binding. FND patients further show enhanced behavioural and neural sensitivity to negative information. However, this did not translate to improved avoidance learning. Put together, our findings do not support the theory of harm avoidance in FND

  19. Inelastic collisions of medium energy atomic elements. Qualitative model of energy losses during collisions

    International Nuclear Information System (INIS)

    Pustovit, A.N.

    2006-01-01

    A new approach to the theoretical description of energy losses of atomic particle of medium energy during their interaction with the substance is proposed. The corner-stone of this approach is the supposition that all of the collision processes have inelastic nature during particle movement through the substance, while the calculation of the atomic particles braking is based on the law of their dispersion and the laws of energy and momentum conservation at the inelastic collisions. It is shown that inelastic atomic collision there are three dispersion zones for the only potential interaction with different laws, which characterize energy losses. The application conditions of this approach are determined [ru

  20. Systematics of atom-atom collision strengths at high speeds

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Inokuti, M.

    1980-01-01

    The collision strengths for atom-atom collisions at high speeds are calculated in the first Born approximation. We studied four classes of collisions, distinguished depending upon whether each of the collision partners becomes excited or not. The results of numerical calculations of the collision strengths are presented for all neutral atoms with Z< or =18. The calculations are based on atomic form factors and incoherent scattering functions found in the literature. The relative contribution of each class of collision processes to the total collision cross section is examined in detail. In general, inelastic processes dominate for low-Z atoms, while elastic scattering is more important for large Z. Other systematics of the collision strengths are comprehensively discussed. The relevant experimental literature has been surveyed and the results of this work for the three collision systems H-He, He-He, and H-Ar are compared with the data for electron-loss processes. Finally, suggestions are made for future work in measurements of atom-atom and ion-atom collision cross sections

  1. Stimulus conflict triggers behavioral avoidance.

    Science.gov (United States)

    Dignath, David; Eder, Andreas B

    2015-12-01

    According to a recent extension of the conflict-monitoring theory, conflict between two competing response tendencies is registered as an aversive event and triggers a motivation to avoid the source of conflict. In the present study, we tested this assumption. Over five experiments, we examined whether conflict is associated with an avoidance motivation and whether stimulus conflict or response conflict triggers an avoidance tendency. Participants first performed a color Stroop task. In a subsequent motivation test, participants responded to Stroop stimuli with approach- and avoidance-related lever movements. These results showed that Stroop-conflict stimuli increased the frequency of avoidance responses in a free-choice motivation test, and also increased the speed of avoidance relative to approach responses in a forced-choice test. High and low proportions of response conflict in the Stroop task had no effect on avoidance in the motivation test. Avoidance of conflict was, however, obtained even with new conflict stimuli that had not been presented before in a Stroop task, and when the Stroop task was replaced with an unrelated filler task. Taken together, these results suggest that stimulus conflict is sufficient to trigger avoidance.

  2. Combining radar and direct observation to estimate pelican collision risk at a proposed wind farm on the Cape west coast, South Africa.

    Science.gov (United States)

    Jenkins, Andrew R; Reid, Tim; du Plessis, Johan; Colyn, Robin; Benn, Grant; Millikin, Rhonda

    2018-01-01

    Pre-construction assessments of bird collision risk at proposed wind farms are often confounded by insufficient or poor quality data describing avian flight paths through the development area. These limitations can compromise the practical value of wind farm impact studies. We used radar- and observer-based methods to quantify great white pelican flights in the vicinity of a planned wind farm on the Cape west coast, South Africa, and modelled turbine collision risk under various scenarios. Model outputs were combined with pre-existing demographic data to evaluate the possible influence of the wind farm on the pelican population, and to examine impact mitigation options. We recorded high volumes of great white pelican movement through the wind farm area, coincident with the breeding cycle of the nearby colony and associated with flights to feeding areas located about 50 km away. Pelicans were exposed to collision risk at a mean rate of 2.02 High Risk flights.h-1. Risk was confined to daylight hours, highest during the middle of the day and in conditions of strong north-westerly winds, and 82% of High Risk flights were focused on only five of the proposed 35 turbine placements. Predicted mean mortality rates (22 fatalities.yr-1, 95% Cl, 16-29, with average bird and blade speeds and 95% avoidance rates) were not sustainable, resulting in a negative population growth rate (λ = 0.991). Models suggested that removal of the five highest risk turbines from the project, or institution of a curtailment regimen that shuts down at least these turbines at peak traffic times, could theoretically reduce impacts to manageable levels. However, in spite of the large quantities of high quality data used in our analyses, our collision risk model remains compromised by untested assumptions about pelican avoidance rates and uncertainties about the existing dynamics of the pelican population, and our findings are probably not reliable enough to ensure sustainable development.

  3. Atomic cluster collisions

    Science.gov (United States)

    Korol, Andrey V.; Solov'yov, Andrey

    2013-01-01

    Atomic cluster collisions are a field of rapidly emerging research interest by both experimentalists and theorists. The international symposium on atomic cluster collisions (ISSAC) is the premier forum to present cutting-edge research in this field. It was established in 2003 and the most recent conference was held in Berlin, Germany in July of 2011. This Topical Issue presents original research results from some of the participants, who attended this conference. This issues specifically focuses on two research areas, namely Clusters and Fullerenes in External Fields and Nanoscale Insights in Radiation Biodamage.

  4. Treaties to avoid international double income taxation and their relation with investments involving Brazil

    OpenAIRE

    Jônatas de Pessoa Alburquerque Martins; Jackeline Lucas Souza

    2014-01-01

    To fight against fiscal evasion and facilitate the investment flow, the countries close agreements to go against double income taxation. This study aims to investigate the impact of the treaties to avoid double income taxation on the direct foreign investment relations of Brazil. The analysis included 162 countries and jurisdictions with which investments transactions were closed that originated or were received in Brazil, between 2005 and 2011. The panel data analysis technique was applied t...

  5. COLLISION STRENGTHS AND EFFECTIVE COLLISION STRENGTHS FOR TRANSITIONS WITHIN THE GROUND-STATE CONFIGURATION OF S III

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C. E.; Ramsbottom, C. A.; Scott, M. P., E-mail: c.hudson@qub.ac.uk, E-mail: c.ramsbottom@qub.ac.uk, E-mail: p.scott@qub.ac.uk [Department of Applied Maths and Theoretical Physics, The Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom)

    2012-05-01

    We have carried out a 29-state R-matrix calculation in order to calculate collision strengths and effective collision strengths for the electron impact excitation of S III. The recently developed parallel RMATRX II suite of codes have been used, which perform the calculation in intermediate coupling. Collision strengths have been generated over an electron energy range of 0-12 Ryd, and effective collision strength data have been calculated from these at electron temperatures in the range 1000-100,000 K. Results are here presented for the fine-structure transitions between the ground-state configurations of 3s {sup 2}3p {sup 23} P{sub 0,1,2}, {sup 1}D{sub 2}, and {sup 1} S{sub 0}, and the values given resolve a discrepancy between two previous R-matrix calculations.

  6. Galaxy Collisions Forging New Worlds from Cosmic Crashes

    CERN Document Server

    Struck, Curtis

    2011-01-01

    Galaxy collisions are the key process in building galaxies, triggering the formation of stars and the build-up of heavy elements that allow the formation of planets and solar systems. This book presents the revolutionary research advances achieved in the last decade and lucidly explains the underlying dynamical processes. Galaxy Collisions takes a comprehensive trip through the visually spectacular world of galaxy collisions; investigates the interactions of stars, gas clouds, and dark matter in galaxy collisions; uses analogies and metaphors to help comprehend the bizarre world of galaxies; presents recent research results to enhance the understanding of galaxy formation and evolution; includes discoveries of minor collisions within our own group of galaxies; shows how a galaxy collision might affect a solar system, or a planet like ours.

  7. Petri Net Approach of Collision Prevention Supervisor Design in Port Transport System

    Directory of Open Access Journals (Sweden)

    Danko Kezić

    2007-09-01

    Full Text Available Modern port terminals are equipped with various localtransport systems, which have the main task to transport cargobetween local storehouses and transport resources (ships,trains, trucks in the fastest and most efficient way, and at thelowest possible cost. These local transport systems consist offully automated transport units (AGV- automatic guided vehiclewhich are controlled by the computer system. The portcomputer system controls the fully automated transport units inthe way to avoid possible deadlocks and collisions betweenthem. However, beside the fully automated local transportunits, there are human operated transport units (fork-lifttrucks, cranes etc. which cross the path oftheAGVfrom timeto time. The collision of human operated transp011 unit andA GV is possible due to human inattention. To solve this problem,it is necesswy to design a supe1vismy control system thatcoordinates and controls both human driven transport unit andA G V In other words, the human-machine interactions need tobe supen·ised. The supen•ising system can be realized in the waythat the port terminal is divided into zones. Vehicle movementsare supen•ised by a video system which detects the moving ofparticular l'ehicles as a discrete event. Based on detected events,dangerous moving of certain vehicles is blocked by the supe1visi11gsystem. The paper considers the design of collision preventionsupen•isor by using discrete event dynamic themy. The portterminal is modeled by using ordi1za1y Petri nets. The design ofcollision prevention supe1visor is cmTied out by using the P-inl'ariantmethod. The verification of the supervisor is done bycomputer simulation.

  8. Nuclear energy release in hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.

    1998-01-01

    Energy release process in nuclear reactions induced by fast hadrons in hadron-nucleus collisions is discussed. Some portion of the internal nuclear energy is released when the locally damaged in a collision, and instable therefore, residual target nucleus transits itself into light nuclear fragments (nucleons, D, T) and a stable lighter final nucleus or some number of stable lighter nuclei. It is not excluded that in some of the collisions the induced intranuclear nuclear reactions may be energy overcompensating. Corresponding reconnaissance should be made - in analysing the nuclear reactions induced in hadron-nucleus collisions

  9. NOTE: Patient-specific planning for prevention of mechanical collisions during radiotherapy

    Science.gov (United States)

    Nioutsikou, Elena; Bedford, James L.; Webb, Steve

    2003-11-01

    A common unwanted difficulty in treatment planning, especially in non-coplanar radiotherapy set-ups, is the potential collision of the rotating gantry with the couch and/or the patient's body. A technique and computer program that detects these and signals avoidance of such beam directions is presented. The problem was approached using analytical geometry. The separate components within the treatment room have either been measured and modelled for an Elekta linear accelerator, or read out from a Pinnacle3 treatment planning system and are represented as an integer grid of points in three-dimensional (3D) space. The module is attached to the treatment planning system and can provide rejection or acceptance of unwanted beam directions in a plan. In contrast to previous work that has only used patient models, each individual patient's outlines are considered here in their actual treatment position inclusive of any immobilization device. The extremities of the patient superiorly and inferiorly to the scanned region are simulated by an expanded version of the RANDO phantom. In this way, 'potential' collisions can be detected in addition to the certain ones. Patient position is not a limiting factor for the accuracy of the collision detection anymore, as each set-up is always created around the isocentre. Maps of allowed and forbidden zones within the treatment suite have been created by running the code for all possible gantry and couch angles for three commonly arising cases: a head and neck plan utilizing a small stereotactic collimator, a prostate plan with multileaf collimators and an abdominal plan with the lead tray attached. In the last case, the 3D map permitted significantly fewer set-up combinations. Good agreement between prediction and experiment confirmed the capability of the program and introduces a promising add-on for treatment planning.

  10. Low velocity collisions of porous planetesimals in the early solar system

    Science.gov (United States)

    de Niem, D.; Kührt, E.; Hviid, S.; Davidsson, B.

    2018-02-01

    The ESA Rosetta mission has shown that Comet 67P/Churuymov-Gerasimenko is bi-lobed, has a high average porosity of around 70%, does not have internal cavities on size scales larger than 10 m, the lobes could have individual sets of onion shell-like layering, and the nucleus surface contains 100 m-scale cylindrical pits. It is currently debated whether these properties are consistent with high-velocity collisional evolution or if they necessarily are surviving signatures of low-velocity primordial accretion. We use an Eulerian hydrocode to study collisions between highly porous bodies of different sizes, material parameters and relative velocities with emphasis on 5-100 m/s to characterize the effects of collisions in terms of deformation, compaction, and heating. We find that accretion of 1 km cometesimals by 3 km nuclei at 13.5 m/s flattens and partially buries the cometesimal with ∼ 1% reduction of the bulk porosity. This structure locally becomes more dense but the global effect of compaction is minor, suggesting that low-velocity accretion does not lead to a 'bunch of grapes' structure with large internal cavities but a more homogeneous interior, consistent with Rosetta findings. The mild local compaction associated with accretion is potentially the origin of the observed nucleus layering. In 2D axially symmetric impacts hit-and-stick collisions of similarly-sized nuclei are possible at velocities up to 30 m/s where deformation becomes severe. The bulk porosity is reduced significantly, even at 30-50 m/s relative velocity. To avoid hit-and-run collisions the impact angle must be less than 35°-45° from the surface normal at 10 m/s, and even smaller at higher velocities. Impact heating is insignificant. We find that the small cross section of the 67P neck may require a ≤ 5 m/s impact, unless the cohesion exceeds 10 kPa. We conclude that bi-lobe nucleus formation is possible at velocities typically discussed in hierarchical growth scenarios. Impacts of a 7 m

  11. Collision-induced coherence

    International Nuclear Information System (INIS)

    Bloembergen, N.

    1985-01-01

    Collision-induced coherence is based on the elimination of phase correlations between coherent Feynman-type pathways which happen to interfere destructively in the absence of damping for certain nonlinear processes. One consequence is the appearance of the extra resonances in four-wave light mixing experiments, for which the intensity increases with increasing buffer gas pressure. These resonances may occur between a pair of initially unpopulated excited states, or between a pair of initially equally populated ground states. The pair of levels may be Zeeman substrates which became degenerate in zero magnetic field. The resulting collision-enhanced Hanle resonances can lead to very sharp variations in the four-wave light mixing signal as the external magnetic field passes through zero. The theoretical description in terms of a coherence grating between Zeeman substrates is equivalent to a description in terms of a spin polarization grating obtained by collision-enhanced transverse optical pumping. The axis of quantization in the former case is taken perpendicular to the direction of the light beams; in the latter case is taken parallel to this direction

  12. Coalescence collision of liquid drops I: Off-center collisions of equal-size drops

    Directory of Open Access Journals (Sweden)

    Alejandro Acevedo-Malavé

    2011-09-01

    Full Text Available The Smoothed Particle Hydrodynamics method (SPH is used here to model off-center collisions of equal-size liquid drops in a three-dimensional space. In this study the Weber number is calculated for several conditions of the droplets dynamics and the velocity vector fields formed inside the drops during the collision process are shown. For the permanent coalescence the evolution of the kinetic and internal energy is shown and also the approaching to equilibrium of the resulting drop. Depending of the Weber number three possible outcomes for the collision of droplets is obtained: permanent coalescence, flocculation and fragmentation. The fragmentation phenomena are modeled and the formation of small satellite drops can be seen. The ligament that is formed follows the “end pinching” mechanism and it is transformed into a flat structure.

  13. Ultra-relativistic Au+Au and d+Au collisions:

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    In this talk I will review PHOBOS data on charged particle multiplicities, obtained in Au+Au and d+Au collisions at RHIC. The general features of the Au+Au pseudorapidity distributions results will be discussed and compared to those of /line{p}p collisions. The total charged particle multiplicity, scaled by the number of participant pairs, is observed to be about 40% higher in Au+Au collisions than in /line{p}p and d+Au systems, but, surprisingly at the same level of e+e- collisions. Limiting fragmentation scaling is seen to be obeyed in Au+Au collisions.

  14. Myopic Regret Avoidance: Feedback Avoidance and Learning in Repeated Decision Making

    Science.gov (United States)

    Reb, Jochen; Connolly, Terry

    2009-01-01

    Decision makers can become trapped by "myopic regret avoidance" in which rejecting feedback to avoid short-term "outcome regret" (regret associated with counterfactual outcome comparisons) leads to reduced learning and greater long-term regret over continuing poor decisions. In a series of laboratory experiments involving repeated choices among…

  15. The Effect of Corporate Tax Avoidance on the Level of Corporate Cash Holdings: Evidence from Indonesian Public Listed Companies

    Directory of Open Access Journals (Sweden)

    Muhammad Irham Kurniawan

    2017-12-01

    Full Text Available This study aims to examine the effect of corporate tax avoidance to the corporate cash holdings. Recent tax avoidance research found that tax avoidance is able to facilitate managerial rent extraction in the form of transfer of resources owned by the company. This study attempts to test how the relationship of tax avoidance with the amount of cash held by the company. The sample consists of 46 non-financial, non-property, non-real estate and non-construction companies from 2009-2016, with a total 368 observations. The study uses two different cash holdings measures to test the robustness of the research results. This study cannot find evidence that tax avoidance have a significant relationship to the level of cash holdings in public companies in Indonesia. Both measurements of cash holdings gave the same conclusions to the results of the study. This study provides an insight that agency theory in the context of tax avoidance and corporate cash holdings in developing countries such as Indonesia needs to be explored further as the agency conflict in Indonesia as a developing country is more principal-principal conflicts.

  16. Aberrant approach-avoidance conflict resolution following repeated cocaine pre-exposure.

    Science.gov (United States)

    Nguyen, David; Schumacher, Anett; Erb, Suzanne; Ito, Rutsuko

    2015-10-01

    Addiction is characterized by persistence to seek drug reinforcement despite negative consequences. Drug-induced aberrations in approach and avoidance processing likely facilitate the sustenance of addiction pathology. Currently, the effects of repeated drug exposure on the resolution of conflicting approach and avoidance motivational signals have yet to be thoroughly investigated. The present study sought to investigate the effects of cocaine pre-exposure on conflict resolution using novel approach-avoidance paradigms. We used a novel mixed-valence conditioning paradigm to condition cocaine-pre-exposed rats to associate visuo-tactile cues with either the delivery of sucrose reward or shock punishment in the arms in which the cues were presented. Following training, exploration of an arm containing a superimposition of the cues was assessed as a measure of conflict resolution behavior. We also used a mixed-valence runway paradigm wherein cocaine-pre-exposed rats traversed an alleyway toward a goal compartment to receive a pairing of sucrose reward and shock punishment. Latency to enter the goal compartment across trials was taken as a measure of motivational conflict. Our results reveal that cocaine pre-exposure attenuated learning for the aversive cue association in our conditioning paradigm and enhanced preference for mixed-valence stimuli in both paradigms. Repeated cocaine pre-exposure allows appetitive approach motivations to gain greater influence over behavioral output in the context of motivational conflict, due to aberrant positive and negative incentive motivational processing.

  17. Present status of promotion of advanced safety vehicle in phase 2 (ASV2); Dai 2 ki senshin anzen jidosha (ASV) suishin keikaku ni okeru kenkyu jokyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    For active safety enhancement, drivers will be provided with information and warning that will help them drive with safety. Studies are under way about functions to facilitate drivers' perception and to lighten the burdens imposed on them. As for accident avoidance techniques, onboard systems will perform controls involving vehicle maneuver for safety enhancement. This includes the improvement of vehicle maneuvering performance, in addition to brake control and steering control, for lightening drivers' burdens and for complementing their operating skill. Danger avoidance is based on the concept that the related system is to work in case warnings alone are not enough to avoid a collision. Full automation will be implemented by two ways, the autonomous way aided by the existing infrastructures such as GPS (Global Positioning System) or the way in which infrastructures to be newly built will be utilized. Passive safety technologies aim at minimizing damage upon collision, and involve structural improvement, air bags, etc. Disaster aggravation prevention means to prevent disaster from spreading after collision. Communication is one of safety-related elements on which studies will continue. Under the Phase 2 ASV program, research and development will be conducted for putting passenger cars to practical use, and the same will be conducted, in the case of large vehicles and motorcycles, for the construction of their prototypes. (NEDO)

  18. Deconfinement and nuclear collisions

    International Nuclear Information System (INIS)

    Sarma, Nataraja

    1992-01-01

    Expensive experiments to detect a deconfined parton phase have been done and are being planned. In these experiments it is hoped that nuclear collisions at relativistic energies will exhibit signals of this new phase. So far all the results may be interpreted in terms of independent nucleon-nucleon interactions. These elementary collisions at very high energies are therefore worth examination since each such collision produces a highly excited entity which emits a large number of hadrons. In the hadronic phase this results in the GS multiplicity distribution. In the parton phase, parton branching results in the popular negative binomial distribution. Though neither the GS nor the NB distribution alone agrees with the data beyond 200 GeV, it is fitted exceedingly well by a weighted sum of the two distributions. Since the negative binomial distribution arises from the branching of partons, we interpret the increase with energy of the negative binomial component in the weighted sum as the onset of a deconfined phase. The rising cross section for the negative binomial component parallels very closely the inclusive cross section for hadron jets which is also considered a consequence of partons branching. The consequences of this picture to nuclear collisions is discussed. (author). 8 refs., 9 figs., 3 tabs

  19. Outer Dynamics of Ship Collisions

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup

    1996-01-01

    The purpose is to present analysis procedures for the motion of ships during ship-ship collisions and for ship collisions with offshore structures. The aim is to estimate that part of the lost kinetic energy which will have to be absorbed by rupture and plastic damage of the colliding structures....

  20. Laser-assisted electron-atom collisions

    International Nuclear Information System (INIS)

    Mason, N.J.

    1989-01-01

    New developments in our understanding of the electron-atom collision process have been made possible by combining the use of highly monochromatic electron beams and intense CO 2 lasers. This paper reviews such experiments and discusses possible future progress in what is a new field in atomic collision physics. (author)

  1. Elementary Statistical Models for Vector Collision-Sequence Interference Effects with Poisson-Distributed Collision Times

    International Nuclear Information System (INIS)

    Lewis, J.C.

    2011-01-01

    In a recent paper (Lewis, 2008) a class of models suitable for application to collision-sequence interference was introduced. In these models velocities are assumed to be completely randomized in each collision. The distribution of velocities was assumed to be Gaussian. The integrated induced dipole moment μk, for vector interference, or the scalar modulation μk, for scalar interference, was assumed to be a function of the impulse (integrated force) fk, or its magnitude fk, experienced by the molecule in a collision. For most of (Lewis, 2008) it was assumed that μk fk and μk fk, but it proved to be possible to extend the models, so that the magnitude of the induced dipole moment is equal to an arbitrary power or sum of powers of the intermolecular force. This allows estimates of the in filling of the interference dip by the dis proportionality of the induced dipole moment and force. One particular such model, using data from (Herman and Lewis, 2006), leads to the most realistic estimate for the in filling of the vector interference dip yet obtained. In (Lewis, 2008) the drastic assumption was made that collision times occurred at equal intervals. In the present paper that assumption is removed: the collision times are taken to form a Poisson process. This is much more realistic than the equal-intervals assumption. The interference dip is found to be a Lorentzian in this model

  2. Collisions damage assessment of ships and jack-up rigs

    DEFF Research Database (Denmark)

    Zhang, Shengming; Pedersen, P. Terndrup; Ocakli, Hasan

    2015-01-01

    Ship collision with offshore installations is one of the key concerns in design and assess of platforms performance and safety. This paper presents an analysis on collision energy and structural damage in ship and offshore platform collisions for various collision scenarios. The platform or rig...

  3. Interferometry of high energy nuclear collisions

    International Nuclear Information System (INIS)

    Padula, S.S.

    1990-01-01

    The interferometry is used for determining large space time dimensions of the Quark Gluon Plasma formed in high energy nuclear collisions or in high multiplicity fluctuations in p-barp collisions. (M.C.K.)

  4. Simulating immersed particle collisions: the Devil's in the details

    Science.gov (United States)

    Biegert, Edward; Vowinckel, Bernhard; Meiburg, Eckart

    2015-11-01

    Simulating densely-packed particle-laden flows with any degree of confidence requires accurate modeling of particle-particle collisions. To this end, we investigate a few collision models from the fluids and granular flow communities using sphere-wall collisions, which have been studied by a number of experimental groups. These collisions involve enough complexities--gravity, particle-wall lubrication forces, particle-wall contact stresses, particle-wake interactions--to challenge any collision model. Evaluating the successes and shortcomings of the collision models, we seek improvements in order to obtain more consistent results. We will highlight several implementation details that are crucial for obtaining accurate results.

  5. Macroscopic and microscopic description of HE-HI collisions; classical equations of motion calculations. [Rapidity, cross sections, central and noncentral collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bodmer, A. R.

    1978-01-01

    The study of high energy heavy ion reactions includes the three principle a priori approaches used for central collisions, namely, hydrodynamics, cascade--Boltzman equation, and the classical equations of motion. While no clearly justified central or near central collisions are found, the classical equations of motion are used to illustrate some general features of these reactions. It is expected that the hot nuclear matter produced in such collisions is a dense, viscous, and thermally conductive fluid with important nonequilibrium and nonclassical features, rapidity, distribution, noncentral collisions, potential dependent effects for a given two-body scattering, and c.m. cross sections for a central collision with given parameters are among the properties considered. 12 references. (JFP)

  6. On the collision protection of ships

    International Nuclear Information System (INIS)

    Jones, N.

    1976-01-01

    A brief survey of the literature extant on the collision protection of ships is presented herein. An examination of the characteristics of different energy-absorbing methods suggests that honeycomb structures provide an alternative to deck structures which are currently used to achieve the collision protection of ships. Various features of honeycomb panels are explored and a particular structural arrangement which utilizes both sides of a hull and incorporates honeycomb panels is proposed for the collision protection of a ship. (Auth.)

  7. Anti-Collision Function Design and Performances of the CNES Formation Flying Experiment on the PRISMA Mission

    Science.gov (United States)

    Cayeux, P.; Raballand, F.; Borde, J.; Berges, J.-C.; Meyssignac, B.

    2007-01-01

    Within the framework of a partnership agreement, EADS ASTRIUM has worked since June 2006 for the CNES formation flying experiment on the PRISMA mission. EADS ASTRIUM is responsible for the anti-collision function. This responsibility covers the design and the development of the function as a Matlab/Simulink library, as well as its functional validation and performance assessment. PRISMA is a technology in-orbit testbed mission from the Swedish National Space Board, mainly devoted to formation flying demonstration. PRISMA is made of two micro-satellites that will be launched in 2009 on a quasi-circular SSO at about 700 km of altitude. The CNES FFIORD experiment embedded on PRISMA aims at flight validating an FFRF sensor designed for formation control, and assessing its performances, in preparation to future formation flying missions such as Simbol X; FFIORD aims as well at validating various typical autonomous rendezvous and formation guidance and control algorithms. This paper presents the principles of the collision avoidance function developed by EADS ASTRIUM for FFIORD; three kinds of maneuvers were implemented and are presented in this paper with their performances.

  8. Phenomenological approaches of dissipative heavy ion collisions

    International Nuclear Information System (INIS)

    Ngo, C.

    1983-09-01

    These lectures describe the properties of dissipative heavy ion collisions observed in low bombarding energy heavy ion reactions. These dissipative collisions are of two different types: fusion and deep inelastic reactions. Their main experimental properties are described on selected examples. It is shown how it is possible to give a simple interpretation to the data. A large number of phenomenological models have been developped to understand dissipative heavy ion collisions. The most important are those describing the collision by classical mechanics and friction forces, the diffusion models, and transport theories which merge both preceding approaches. A special emphasis has been done on two phenomena observed in dissipative heavy ion collisions: charge equilibratium for which we can show the existence of quantum fluctuations, and fast fission which appears as an intermediate mechanism between deep inelastic reactions and compound nucleus formation [fr

  9. Active Collision Avoidance for Planetary Landers

    Data.gov (United States)

    National Aeronautics and Space Administration — Present day robotic missions to other planets require precise, a priori knowledge of the terrain to pre-determine a landing spot that is safe. Landing sites can be...

  10. Passive Collision Avoidance System for UAS

    Science.gov (United States)

    2008-09-01

    39 Figure 56: The angular velocity of the roll of the aircraft for Figure 55...deeply integrated with Windows via C++ and has open source PYTHON scripting capability www.python.org. IO Industries was hired to code special drivers...ImageJ is a Java based open source image processing program supported by the NIH. Figure 23: Streams5 screen capture Several custom models were

  11. Trajectory Optimization for Spacecraft Collision Avoidance

    Science.gov (United States)

    2013-09-01

    Parabolic e > 1 Hyperbolic The RAAN, Ω, measures the angle between the vernal equinox eastward to the line of nodes, n, shown in Figure 3 and...Methods. Indirect Methods focus on derivation of first-order necessary conditions using the Calculus of Variations . These conditions are then used to...either the final or initial states. They may be given as a set of equality or inequality constraints. A state vector that does not violate any

  12. Information Sharing Framework (ISF) for Facilitating Development of Fast Reactors and Fuel Cycles

    International Nuclear Information System (INIS)

    Kawakubo, Y.; Hoffheins, B.; Inoue, N.; Mongiello, R.; Baldwin, G.; Lee, N.Y.; Chung, Jinho; Kwon, Eun-ha

    2013-01-01

    Conclusion: • Requirements for ISF is currently under development by JAEA, SNL, KINAC and KAERI. • Requirements seek to help implement information sharing following PDCA cycle. • Requirements development is still underway, but expected to be finalized in near future. • Demonstration of ISF will be implemented as the next step. • ISF is expected to facilitate FR avoiding regional NP/NS concerns in a sustainable manner

  13. Galaxy collisions

    International Nuclear Information System (INIS)

    Combes, F.

    1987-01-01

    Galaxies are not isolated systems of stars and gas, ''independent universes'' as believed by astronomers about ten years ago, but galaxies are formed and evolve by interaction with their environment, and in particular with their nearest neighbors. Gravitational interactions produce enormous tides in the disk of spiral galaxies, generate spiral arms and trigger bursts of star formation. Around elliptical galaxies, the collision with a small companion produces a series of waves, or shells. A galaxy interaction leads, in most cases, to the coalescence of the two coliders; therefore all galaxies are not formed just after the Big-Bang, when matter recombines: second generation galaxies are still forming now by galaxy mergers, essentially elliptical galaxies, but also compact dwarfs. Collisions between galaxies could also trigger activity in nuclei for radiogalaxies and quasars [fr

  14. PILOT RESULTS ON FORWARD COLLISION WARNING SYSTEM EFFECTIVENESS IN OLDER DRIVERS.

    Science.gov (United States)

    Lester, Benjamin D; Sager, Lauren N; Dawson, Jeffrey; Hacker, Sarah D; Aksan, Nazan; Rizzo, Matthew; Kitazaki, Satoshi

    2015-06-01

    Advanced Driver Assistance Systems (ADAS) have largely been developed with a "one-size-fits-all" approach. This approach neglects the large inter-individual variability in perceptual and cognitive abilities that affect aging ADAS users. We investigated the effectiveness of a forward collision warning (FCW) with fixed response parameters in young and older drivers with differing levels of cognitive functioning. Drivers responded to a pedestrian stepping into the driver's path on a simulated urban road. Behavioral metrics included response times (RT) for pedal controls and two indices of risk penetration (e.g., maximum deceleration and minimum time-to-collision (TTC)). Older drivers showed significantly slower responses at several time points compared to younger drivers. The FCW facilitated response times (RTs) for older and younger drivers. However, older drivers still showed smaller safety gains compared to younger drivers at accelerator pedal release and initial brake application when the FCW was active. No significant differences in risk metrics were observed within the condition studied. The results demonstrate older drivers likely differ from younger drivers using a FCW with a fixed parameter set. Finally, we briefly discuss how future research should examine predictive relationships between domains of cognitive functioning and ADAS responses to develop parameter sets to fit the individual.

  15. Results from proton–lead collisions

    CERN Document Server

    Mischke, André

    2016-01-01

    This contribution summarises recent measurements in small collision systems at the Large Hadron Collider (LHC), presented at the 2016 edition of the Annual Large Hadron Collider Physics conference. Three main probes are discussed, namely light flavour (strangeness) production, az- imuthal angular correlations and jets, and open and hidden heavy-flavour production in proton- lead collisions.

  16. Avoidant decision making in social anxiety: the interaction of angry faces and emotional responses

    Science.gov (United States)

    Pittig, Andre; Pawlikowski, Mirko; Craske, Michelle G.; Alpers, Georg W.

    2014-01-01

    Recent research indicates that angry facial expressions are preferentially processed and may facilitate automatic avoidance response, especially in socially anxious individuals. However, few studies have examined whether this bias also expresses itself in more complex cognitive processes and behavior such as decision making. We recently introduced a variation of the Iowa Gambling Task which allowed us to document the influence of task-irrelevant emotional cues on rational decision making. The present study used a modified gambling task to investigate the impact of angry facial expressions on decision making in 38 individuals with a wide range of social anxiety. Participants were to find out which choices were (dis-) advantageous to maximize overall gain. To create a decision conflict between approach of reward and avoidance of fear-relevant angry faces, advantageous choices were associated with angry facial expressions, whereas disadvantageous choices were associated with happy facial expressions. Results indicated that higher social avoidance predicted less advantageous decisions in the beginning of the task, i.e., when contingencies were still uncertain. Interactions with specific skin conductance responses further clarified that this initial avoidance only occurred in combination with elevated responses before choosing an angry facial expressions. In addition, an interaction between high trait anxiety and elevated responses to early losses predicted faster learning of an advantageous strategy. These effects were independent of intelligence, general risky decision-making, self-reported state anxiety, and depression. Thus, socially avoidant individuals who respond emotionally to angry facial expressions are more likely to show avoidance of these faces under uncertainty. This novel laboratory paradigm may be an appropriate analog for central features of social anxiety. PMID:25324792

  17. Avoidant decision making in social anxiety: the interaction of angry faces and emotional responses.

    Science.gov (United States)

    Pittig, Andre; Pawlikowski, Mirko; Craske, Michelle G; Alpers, Georg W

    2014-01-01

    Recent research indicates that angry facial expressions are preferentially processed and may facilitate automatic avoidance response, especially in socially anxious individuals. However, few studies have examined whether this bias also expresses itself in more complex cognitive processes and behavior such as decision making. We recently introduced a variation of the Iowa Gambling Task which allowed us to document the influence of task-irrelevant emotional cues on rational decision making. The present study used a modified gambling task to investigate the impact of angry facial expressions on decision making in 38 individuals with a wide range of social anxiety. Participants were to find out which choices were (dis-) advantageous to maximize overall gain. To create a decision conflict between approach of reward and avoidance of fear-relevant angry faces, advantageous choices were associated with angry facial expressions, whereas disadvantageous choices were associated with happy facial expressions. Results indicated that higher social avoidance predicted less advantageous decisions in the beginning of the task, i.e., when contingencies were still uncertain. Interactions with specific skin conductance responses further clarified that this initial avoidance only occurred in combination with elevated responses before choosing an angry facial expressions. In addition, an interaction between high trait anxiety and elevated responses to early losses predicted faster learning of an advantageous strategy. These effects were independent of intelligence, general risky decision-making, self-reported state anxiety, and depression. Thus, socially avoidant individuals who respond emotionally to angry facial expressions are more likely to show avoidance of these faces under uncertainty. This novel laboratory paradigm may be an appropriate analog for central features of social anxiety.

  18. Avoidant decision making in social anxiety: The interaction of angry faces and emotional responses

    Directory of Open Access Journals (Sweden)

    Andre ePittig

    2014-09-01

    Full Text Available Recent research indicates that angry facial expressions are preferentially processed and may facilitate automatic avoidance response, especially in socially anxious individuals. However, few studies have examined whether this bias also expresses itself in more complex cognitive processes and behavior such as decision making. We recently introduced a variation of the Iowa Gambling Task which allowed us to document the influence of task-irrelevant emotional cues on rational decision making. The present study used a modified gambling task to investigate the impact of angry facial expressions on decision making in 38 individuals with a wide range of social anxiety. Participants were to find out which choices were (dis- advantageous to maximize overall gain. To create a decision conflict between approach of rewards and avoidance of fear-relevant angry faces, advantageous choices were associated with angry facial expressions, whereas disadvantageous choices were associated with happy facial expressions. Results indicated that higher social avoidance predicted less advantageous decisions in the beginning of the task, i.e., when contingencies were still uncertain. Interactions with specific skin conductance responses further clarified that this initial avoidance only occurred in combination with elevated responses before choosing an angry facial expressions. In addition, an interaction between high trait anxiety and elevated responses to early losses predicted faster learning of an advantageous strategy. These effects were independent of intelligence, general risky decision-making, self-reported state anxiety, and depression. Thus, socially avoidant individuals who respond emotionally to angry facial expressions are more likely to show avoidance of these faces under uncertainty. This novel laboratory paradigm may be an appropriate analog for central features of social anxiety.

  19. Single nucleon-nucleon collision model for subthreshold pion production in heavy ion collisions

    International Nuclear Information System (INIS)

    Bellini, V.; Di Toro, M.; Bonasera, A.

    1985-01-01

    We show that inclusive experimental data on subthreshold pion production in 12 C + 12 C and 16 O + 12 C collisions can be reproduced using a first chance Nucleon-Nucleon (NN) collision mechanism. Pauli blocking effects are extremely important while π-resorption can be safely neglected for these light systems. We apply our method at various beam energies. The possible importance of collective dynamical effects around the physical threshold is finally suggested

  20. Deformation relaxation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Yu, L.; Gan, Z.G.; Zhang, Z.Y.; Zhang, H.F.; Li, J.Q.

    2014-01-01

    In deeply inelastic heavy-ion collisions, the quadrupole deformations of both fragments are taken as stochastic independent dynamical variables governed by the Fokker–Planck equation (FPE) under the corresponding driving potential. The mean values, variances and covariance of the fragments are analytically expressed by solving the FPE in head on collisions. The characteristics and mechanism of the deformation are discussed. It is found that both the internal structures and interactions of the colliding partners are critical for the deformation relaxation in deeply inelastic collisions.

  1. Cigarette tax avoidance and evasion.

    Science.gov (United States)

    Stehr, Mark

    2005-03-01

    Variation in state cigarette taxes provides incentives for tax avoidance through smuggling, legal border crossing to low tax jurisdictions, or Internet purchasing. When taxes rise, tax paid sales of cigarettes will decline both because consumption will decrease and because tax avoidance will increase. The key innovation of this paper is to compare cigarette sales data to cigarette consumption data from the Behavioral Risk Factor Surveillance System (BRFSS). I show that after subtracting percent changes in consumption, residual percent changes in sales are associated with state cigarette tax changes implying the existence of tax avoidance. I estimate that the tax avoidance response to tax changes is at least twice the consumption response and that tax avoidance accounted for up to 9.6% of sales between 1985 and 2001. Because of the increase in tax avoidance, tax paid sales data understate the level of smoking and overstate the drop in smoking. I also find that the level of legal border crossing was very low relative to other forms of tax avoidance. If states have strong preferences for smoking control, they must pair high cigarette taxes with effective policies to curb smuggling and other forms of tax avoidance or employ alternative policies such as counter-advertising and smoking restrictions.

  2. The dynamics of milk droplet-droplet collisions

    Science.gov (United States)

    Finotello, Giulia; Kooiman, Roeland F.; Padding, Johan T.; Buist, Kay A.; Jongsma, Alfred; Innings, Fredrik; Kuipers, J. A. M.

    2018-01-01

    Spray drying is an important industrial process to produce powdered milk, in which concentrated milk is atomized into small droplets and dried with hot gas. The characteristics of the produced milk powder are largely affected by agglomeration, combination of dry and partially dry particles, which in turn depends on the outcome of a collision between droplets. The high total solids (TS) content and the presence of milk proteins cause a relatively high viscosity of the fed milk concentrates, which is expected to largely influence the collision outcomes of drops inside the spray. It is therefore of paramount importance to predict and control the outcomes of binary droplet collisions. Only a few studies report on droplet collisions of high viscous liquids and no work is available on droplet collisions of milk concentrates. The current study therefore aims to obtain insight into the effect of viscosity on the outcome of binary collisions between droplets of milk concentrates. To cover a wide range of viscosity values, three milk concentrates (20, 30 and 46% TS content) are investigated. An experimental set-up is used to generate two colliding droplet streams with consistent droplet size and spacing. A high-speed camera is used to record the trajectories of the droplets. The recordings are processed by Droplet Image Analysis in MATLAB to determine the relative velocities and the impact geometries for each individual collision. The collision outcomes are presented in a regime map dependent on the dimensionless impact parameter and Weber ( We) number. The Ohnesorge ( Oh) number is introduced to describe the effect of viscosity from one liquid to another and is maintained constant for each regime map by using a constant droplet diameter ( d ˜ 700 μ m). In this work, a phenomenological model is proposed to describe the boundaries demarcating the coalescence-separation regimes. The collision dynamics and outcome of milk concentrates are compared with aqueous glycerol

  3. Trki ptic v stekleno pročelje poslovne stavbe v Ljubljani (osrednja Slovenija jeseni 2012/ Bird collisions with glass façade of a commercial building in Ljubljana (central Slovenia in autumn 2012

    Directory of Open Access Journals (Sweden)

    Šumrada Tanja

    2015-11-01

    Full Text Available From 28 Sep to 7 Oct 2012, bird collisions with the glass façade of a commercial building in the centre of Ljubljana were monitored. The observations lasted 45-60 minutes in the morning (7.00-10.00 hrs, around midday (11.00-14.00 hrs and in the afternoon (15.00-18.00 hrs. Behaviour of all birds and scavengers, which could potentially be looking for bird carcasses in the vicinity of the building, was noted. In 27.25 hours of observation, 16 collisions (3 resulting in death, 13 cases with birds flying away seemingly unharmed and 19 near collisions, when birds avoided the building at the last moment before collision, were recorded. The total collision rate was 0.59 collisions per hour of observation. All birds that collided with the building, except Feral Pigeon Columba livia f. domestica, were passerines, among which tits Paridae predominated (62.5% of birds that collided with the building. The glass façade functioned as a mirror, reflecting tree crowns from across the street. Data show that most collisions occurred in the middle part of the building during the morning. Among potential scavengers, domestic cat Felis domesticus and Hooded Crow Corvus cornix were observed. The latter regularly flew around the building during the observation period, possibly looking for bird carcasses.

  4. Composite quantum collision models

    Science.gov (United States)

    Lorenzo, Salvatore; Ciccarello, Francesco; Palma, G. Massimo

    2017-09-01

    A collision model (CM) is a framework to describe open quantum dynamics. In its memoryless version, it models the reservoir R as consisting of a large collection of elementary ancillas: the dynamics of the open system S results from successive collisions of S with the ancillas of R . Here, we present a general formulation of memoryless composite CMs, where S is partitioned into the very open system under study S coupled to one or more auxiliary systems {Si} . Their composite dynamics occurs through internal S -{Si} collisions interspersed with external ones involving {Si} and the reservoir R . We show that important known instances of quantum non-Markovian dynamics of S —such as the emission of an atom into a reservoir featuring a Lorentzian, or multi-Lorentzian, spectral density or a qubit subject to random telegraph noise—can be mapped on to such memoryless composite CMs.

  5. Baryon distribution in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Wong, C.

    1984-01-01

    In order to determine whether a pure quark-gluon plasma with no net baryon density can be formed in the central rapidity region in relativistic heavy-ion collisions, we estimate the baryon distribution by using a Glauber-type multiple-collision model in which the nucleons of one nucleus degrade in energy as they make collisions with nucleons in the other nucleus. As a test of this model, we study first nucleon-nucleus collisions at 100 GeV/c and compare the theoretical results with the experimental data of Barton et al. The results are then generalized to study the baryon distribution in nucleus-nucleus collisions. It is found that in the head-on collision of two heavy nuclei (A> or approx. =100), the baryon rapidity distributions have broad peaks and extend well into the central rapidity region. The energy density of the baryon in the central rapidity region is about 5--6 % of the total energy density at a center-of-mass energy of 30 GeV per nucleon and decreases to about 2--3 % at a center-of-mass energy of 100 GeV per nucleon. The stopping power for a baryon in nuclear matter is extracted

  6. [Electron transfer, ionization and excitation in atomic collisions

    International Nuclear Information System (INIS)

    1991-01-01

    The research being carried out at Penn State by Winter and Alston addresses the fundamental atomic-collision processes of electron transfer, ionization, and excitation. Winter has focussed attention on intermediate and, more recently, higher collision energies -- proton energies of at least about 50 keV -- for which coupled-state approaches are appropriate. Alston has concentrated on perturbative approaches to symmetric ion-ion/atom collisions at high energies and to asymmetric collisions at intermediate to high energies

  7. Seventh international seminar on ion-atom collisions (ISIAC VII): summary

    International Nuclear Information System (INIS)

    1981-01-01

    The scientific program was structured into eight symposia representing seven important research areas. The subject matter was expanded to include ion-molecule collisions as one of the eight symposia. The symposia were: (1) collisions involving strong binding phenomena and nuclear effects; (2) low-energy, high charge state collisions; (3) Rydberg states; (4) an Open Session; (5) ion-molecule collisions; (6) laser applications to atomic and molecular collisions; (7) collision spectroscopy; and (8) polarization, alignment and correlation

  8. Transverse-energy distribution in proton-nucleus collisions at high energy

    International Nuclear Information System (INIS)

    Liu, F.H.

    2001-01-01

    Based on the model of nuclear-collision geometry, the independent N - N collision picture and participant contribution picture are used to describe the transverse-energy distribution in p-A collisions at high energy. In the independent N - N collision picture, the energy loss of leading proton in each p-N collision is considered. The calculated results are in agreement with the experimental data of p-Al, p-Cu, p-U collisions at 200 GeV/c. (author)

  9. Approach/avoidance in dreams.

    Science.gov (United States)

    Malcolm-Smith, Susan; Koopowitz, Sheri; Pantelis, Eleni; Solms, Mark

    2012-03-01

    The influential threat simulation theory (TST) asserts that dreaming yields adaptive advantage by providing a virtual environment in which threat-avoidance may be safely rehearsed. We have previously found the incidence of biologically threatening dreams to be around 20%, with successful threat avoidance occurring in approximately one-fifth of such dreams. TST asserts that threat avoidance is over-represented relative to other possible dream contents. To begin assessing this issue, we contrasted the incidence of 'avoidance' dreams with that of their opposite: 'approach' dreams. Because TST states that the threat-avoidance function is only fully activated in ecologically valid (biologically threatening) contexts, we also performed this contrast for populations living in both high- and low-threat environments. We find that 'approach' dreams are significantly more prevalent across both contexts. We suggest these results are more consistent with the view that dreaming is generated by reward-seeking systems than by fear-conditioning systems, although reward-seeking is clearly not the only factor determining the content of dreams. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Relativistic Collisions of Structured Atomic Particles

    CERN Document Server

    Voitkiv, Alexander

    2008-01-01

    The book reviews the progress achieved over the last decade in the study of collisions between an ion and an atom in which both the atomic particles carry electrons and can undergo transitions between their internal states -- including continua. It presents the detailed considerations of different theoretical approaches, that can be used to describe collisions of structured atomic particles for the very broad interval of impact energies ranging from 0.5--1 MeV/u till extreme relativistic energies where the collision velocity very closely approaches the speed of light.

  11. Vibronic excitation in atom molecule collisions

    International Nuclear Information System (INIS)

    Kleyn, A.W.

    1980-01-01

    The molecular beam machine used for the experiments is described. Three setups are discussed: one to measure total cross sections for negative ion formation in Na, K, Cs + O 2 collisions (3-6000 eV); another to measure differential cross sections for neutral scattering and positive ion formation in K, Cs + O 2 and K + Br 2 collisions (20 - 150 eV); and a third to measure energy-loss spectra for neutral K scattered at a certain angle after a collision with O 2 or Br 2 (20 - 150 eV). (Auth.)

  12. Models of high energy nuclear collisions

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1978-06-01

    The discussion covers nuclear collisions at relativistic energies including classes of high energy nucleus--nucleus collisions, and the kinetics of a central collision; and the asymptotic hadron spectrum including known and unknown hadrons, the relevance of the spectrum and the means of its study, thermodynamics of hadronic matter, examples of hadronic spectra, the temperature, composition of the initial fireball and its expansion, isoergic expansion with no pre-freezeout radiation, isentropic expansion of the fireball, the quasi-dynamical expansion, and finally antinuclei, hypernuclei, and the quark phase. 28 references

  13. Collision cross sections of N2 by H+ impact at keV energies within time-dependent density-functional theory

    Science.gov (United States)

    Yu, W.; Gao, C.-Z.; Zhang, Y.; Zhang, F. S.; Hutton, R.; Zou, Y.; Wei, B.

    2018-03-01

    We calculate electron capture and ionization cross sections of N2 impacted by the H+ projectile at keV energies. To this end, we employ the time-dependent density-functional theory coupled nonadiabatically to molecular dynamics. To avoid the explicit treatment of the complex density matrix in the calculation of cross sections, we propose an approximate method based on the assumption of constant ionization rate over the period of the projectile passing the absorbing boundary. Our results agree reasonably well with experimental data and semi-empirical results within the measurement uncertainties in the considered energy range. The discrepancies are mainly attributed to the inadequate description of exchange-correlation functional and the crude approximation for constant ionization rate. Although the present approach does not predict the experiments quantitatively for collision energies below 10 keV, it is still helpful to calculate total cross sections of ion-molecule collisions within a certain energy range.

  14. Healthcare avoidance: a critical review.

    Science.gov (United States)

    Byrne, Sharon K

    2008-01-01

    The purpose of this study is to provide a critical review and synthesis of theoretical and research literature documenting the impact of avoidance on healthcare behaviors, identify the factors that influence healthcare avoidance and delay in the adult population, and propose a direction for future research. The Theory of Reasoned Action, Theory of Planned Behavior, Theory of Care-Seeking Behavior, the Transtheoretical Model, and the Behavioral Model of Health Services Use/Utilization are utilized to elaborate on the context within which individual intention to engage in healthcare behaviors occurs. Research literature on the concept of healthcare avoidance obtained by using computerized searches of CINAHL, MEDLINE, PSYCH INFO, and HAPI databases, from 1995 to 2007, were reviewed. Studies were organized by professional disciplines. Healthcare avoidance is a common and highly variable experience. Multiple administrative, demographic, personal, and provider factors are related to healthcare avoidance, for example, distrust of providers and/or the science community, health beliefs, insurance status, or socioeconomic/income level. Although the concept is recognized by multiple disciplines, limited research studies address its impact on healthcare decision making. More systematic research is needed to determine correlates of healthcare avoidance. Such studies will help investigators identify patients at risk for avoidant behaviors and provide the basis for health-promoting interventions. Methodological challenges include identification of characteristics of individuals and environments that hinder healthcare behaviors, as well as, the complexity of measuring healthcare avoidance. Studies need to systematically explore the influence of avoidance behaviors on specific healthcare populations at risk.

  15. Heavy-ion peripheral collisions in the Fermi energy domain: fragmentation processes or dissipative collisions

    International Nuclear Information System (INIS)

    Borderie, B.; Rivet, M.F.; Tassan-Got, L.

    1990-01-01

    For several years a new field in nuclear physics has been opened by the opportunity to accelerate heavy ions through an energy domain including the Fermi energy of nucleons. This new domain has to be seen as a link between dissipative processes observed at low energies, dominated by mean field considerations, and high energy collisions for which nucleon-nucleon collisions play an important role. This paper reviews our present knowledge on peripheral collisions. A reminder of contiguous energy domains is done as well as their extension in the new field. Specific calculations are also presented. Finally a wide comparison between experiments and calculations is performed. A fast dissipative stage proves to be responsible for the dominant mechanisms involved, at least when the incident energy is lower than 50 MeV/nucleon

  16. Reverse logistics in plastics subsector: main facilitators and barriers

    Directory of Open Access Journals (Sweden)

    Claudia Cecilia Pena-Montoya

    2015-09-01

    Full Text Available Industrial solid waste (ISW is increasing in both quantity and complexity and it is a priority to establish strategies to manage it. Reverse Logistics (RL is a strategy that enables material recovery and reuse avoiding the damage that ISW may cause; also RL organizes solid waste management activities and supports other activities such as ISW trading. Most of the research linking ISW and RL in developed countries is related to the electronics subsector because of the negative effects on the environment; however, research oriented towards plastics subsector waste is lower. This is the case in Colombia where the plastics subsector is composed mainly by small and medium-sized enterprises (SMEs facing diverse constraints for their operation. Main facilitators and barriers that face SMEs in the Colombian plastics subsector to undertake RL programs were identified. An exploratory study was carried out in which business managers assessed the facilitators and barriers identified in the literature. The results showed that the availability of skilled people to perform RL activities is one of the most important internal facilitators and the lack of secondary markets for recovered materials is among the external barriers. The findings contribute to the body of knowledge in the field that is still maturing in Colombia.

  17. Relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Barz, H.W.; Kaempfer, B.; Schulz, H.

    1984-12-01

    An elementary introduction is given into the scenario of relativistic heavy ion collisions. It deals with relativistic kinematics and estimates of energy densities, extrapolations of the present knowledge of hadron-hadron and hadron-nuleus to nucleus-nucleus collisions, the properties of the quark-gluon plasma and the formation of the plasma and possible experimental signatures. Comments are made on a cosmic ray experiment which could be interpreted as a first indication of the quark-gluon phase of the matter. (author)

  18. Collision prediction software for radiotherapy treatments

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, Laura [Virginia Commonwealth University Medical Center, Richmond, Virginia 23298 (United States); Pearson, Erik A. [Techna Institute and the Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 2M9 (Canada); Pelizzari, Charles A., E-mail: c-pelizzari@uchicago.edu [Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-11-15

    Purpose: This work presents a method of collision predictions for external beam radiotherapy using surface imaging. The present methodology focuses on collision prediction during treatment simulation to evaluate the clearance of a patient’s treatment position and allow for its modification if necessary. Methods: A Kinect camera (Microsoft, Redmond, WA) is used to scan the patient and immobilization devices in the treatment position at the simulator. The surface is reconstructed using the SKANECT software (Occipital, Inc., San Francisco, CA). The treatment isocenter is marked using simulated orthogonal lasers projected on the surface scan. The point cloud of this surface is then shifted to isocenter and converted from Cartesian to cylindrical coordinates. A slab models the treatment couch. A cylinder with a radius equal to the normal distance from isocenter to the collimator plate, and a height defined by the collimator diameter is used to estimate collisions. Points within the cylinder clear through a full gantry rotation with the treatment couch at 0° , while points outside of it collide. The angles of collision are reported. This methodology was experimentally verified using a mannequin positioned in an alpha cradle with both arms up. A planning CT scan of the mannequin was performed, two isocenters were marked in PINNACLE, and this information was exported to AlignRT (VisionRT, London, UK)—a surface imaging system for patient positioning. This was used to ensure accurate positioning of the mannequin in the treatment room, when available. Collision calculations were performed for the two treatment isocenters and the results compared to the collisions detected the room. The accuracy of the Kinect-Skanect surface was evaluated by comparing it to the external surface of the planning CT scan. Results: Experimental verification results showed that the predicted angles of collision matched those recorded in the room within 0.5°, in most cases (largest deviation

  19. Internalized societal attitudes moderate the impact of weight stigma on avoidance of exercise.

    Science.gov (United States)

    Vartanian, Lenny R; Novak, Sarah A

    2011-04-01

    Experiences with weight stigma negatively impact both psychological outcomes (e.g., body dissatisfaction, depression) and behavioral outcomes (e.g., dieting, exercise). However, not everyone is equally affected by experiences with weight stigma. This study examined whether internalized societal attitudes about weight moderated the impact of weight stigma. Adult participants (n = 111) completed measures of experiences with weight stigma, as well as two indexes of internalized societal attitudes (the moderators): Internalized anti-fat attitudes and internalization of societal standards of attractiveness. Psychological outcomes included self-esteem, body dissatisfaction, drive for thinness, and bulimic symptoms; behavioral outcomes included avoidance of exercise and self-reported exercise behavior. Weight stigma was positively correlated with body dissatisfaction, drive for thinness, and bulimic symptoms, and was negatively correlated with state and trait self-esteem. Both indexes of internalized attitudes moderated the association between weight stigma and avoidance of exercise: Individuals high in anti-fat attitudes and high in internalization of societal standards of attractiveness were more motivated to avoid exercise if they also experienced a high degree of weight stigma; individuals low in anti-fat attitudes and low in internalization were relatively unaffected. Avoidance of exercise was negatively correlated with self-reported strenuous exercise. These findings suggest that weight stigma can negatively influence motivation to exercise, particularly among individuals who have internalized societal attitudes about weight. Reducing internalization might be a means of minimizing the negative impact of weight stigma and of facilitating healthy weight management efforts.

  20. Dielectron production in proton-proton collisions with ALICE

    CERN Document Server

    Koehler, Markus K

    Ultrarelativistic hadron collisions, such as delivered since a couple of years at the Large Hadron Collider (LHC), provide new insights into the properties of strongly interacting matter at high temperatures and densities, which is expected to have existed a few of a millionth seconds after the big bang. Electromagnetic probes, such as leptons and photons, are emitted during the entire collision. Since they do not undergo strong interactions, they reflect the entire evolution of the collision.\\\\ Pairs of leptons, so called dileptons, have the advantage compared to real photons, that they do not only carry momentum, but also have a non-zero invariant mass. The invariant mass spectrum of dileptons is a superposition of several components and allows to address different characteristics of the medium.\\\\ To understand dielectron production in heavy-ion collisions, reference measurements in proton-proton (pp) collisions are necessary. pp collisions reflect the vacuum contribution of the particles produced in heavy-...

  1. Collective effects in light–heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Schenke, Björn; Venugopalan, Raju

    2014-11-15

    We present results for the azimuthal anisotropy of charged hadron distributions in A+A, p+A, d+A, and {sup 3}He+A collisions within the IP-Glasma+MUSIC model. Obtained anisotropies are due to the fluid dynamic response of the system to the fluctuating initial geometry of the interaction region. While the elliptic and triangular anisotropies in peripheral Pb+Pb collisions at √(s)=2.76 TeV are well described by the model, the same quantities in √(s)=5.02 TeV p+Pb collisions underestimate the experimental data. This disagreement can be due to neglected initial state correlations or the lack of a detailed description of the fluctuating spatial structure of the proton, or both. We further present predictions for azimuthal anisotropies in p+Au, d+Au, and {sup 3}He+Au collisions at √(s)=200 GeV. For d+Au and {sup 3}He+Au collisions we expect the detailed substructure of the nucleon to become less important.

  2. Collective effects in light-heavy ion collisions

    Science.gov (United States)

    Schenke, Björn; Venugopalan, Raju

    2014-11-01

    We present results for the azimuthal anisotropy of charged hadron distributions in A+A, p+A, d+A, and 3He+A collisions within the IP-Glasma+MUSIC model. Obtained anisotropies are due to the fluid dynamic response of the system to the fluctuating initial geometry of the interaction region. While the elliptic and triangular anisotropies in peripheral Pb+Pb collisions at √{ s} = 2.76 TeV are well described by the model, the same quantities in √{ s} = 5.02 TeV p+Pb collisions underestimate the experimental data. This disagreement can be due to neglected initial state correlations or the lack of a detailed description of the fluctuating spatial structure of the proton, or both. We further present predictions for azimuthal anisotropies in p+Au, d+Au, and 3He+Au collisions at √{ s} = 200 GeV. For d+Au and 3He+Au collisions we expect the detailed substructure of the nucleon to become less important.

  3. Collective effects in light–heavy ion collisions

    International Nuclear Information System (INIS)

    Schenke, Björn; Venugopalan, Raju

    2014-01-01

    We present results for the azimuthal anisotropy of charged hadron distributions in A+A, p+A, d+A, and 3 He+A collisions within the IP-Glasma+MUSIC model. Obtained anisotropies are due to the fluid dynamic response of the system to the fluctuating initial geometry of the interaction region. While the elliptic and triangular anisotropies in peripheral Pb+Pb collisions at √(s)=2.76 TeV are well described by the model, the same quantities in √(s)=5.02 TeV p+Pb collisions underestimate the experimental data. This disagreement can be due to neglected initial state correlations or the lack of a detailed description of the fluctuating spatial structure of the proton, or both. We further present predictions for azimuthal anisotropies in p+Au, d+Au, and 3 He+Au collisions at √(s)=200 GeV. For d+Au and 3 He+Au collisions we expect the detailed substructure of the nucleon to become less important

  4. Fluctuations in high-energy particle collisions

    International Nuclear Information System (INIS)

    Gronqvist, Hanna

    2016-01-01

    We study fluctuations that are omnipresent in high-energy particle collisions. These fluctuations can be either of either classical or quantum origin and we will study both. Firstly, we consider the type of quantum fluctuations that arise in proton-proton collisions. These are computable perturbatively in quantum field theory and we will focus on a specific class of diagrams in this set-up. Secondly, we will consider the fluctuations that are present in collisions between nuclei that can be heavier than protons. These are the quantum laws of nature that describe the positions of nucleons within a nucleus, but also the hydrodynamic fluctuations of classical, thermal origin that affect the evolution of the medium produced in heavy-ion collisions. The fluctuations arising in proton-proton collisions can be computed analytically up to a certain order in perturbative quantum field theory. We will focus on one-loop diagrams of a fixed topology. Loop diagrams give rise to integrals that typically are hard to evaluate. We show how modern mathematical methods can be used to ease their computation. We will study the relations among unitarity cuts of a diagram, the discontinuity across the corresponding branch cut and the coproduct. We show how the original integral corresponding to a given diagram can be reconstructed from the information contained in the coproduct. We expect that these methods can be applied to solve more complicated topologies and help in the computation of new amplitudes in the future. Finally, we study the two types of fluctuations arising in heavy-ion collisions. These are related either to the initial state or the intermediate state of matter produced in such collisions. The initial state fluctuations are experimentally observed to give rise to non-Gaussianities in the final-state spectra. We show how these non-Gaussianities can be explained by the random position and interaction energy of 'sources' in the colliding nuclei. Furthermore, we

  5. Design of vehicle intelligent anti-collision warning system

    Science.gov (United States)

    Xu, Yangyang; Wang, Ying

    2018-05-01

    This paper mainly designs a low cost, high-accuracy, micro-miniaturization, and digital display and acousto-optic alarm features of the vehicle intelligent anti-collision warning system that based on MCU AT89C51. The vehicle intelligent anti-collision warning system includes forward anti-collision warning system, auto parking systems and reversing anti-collision radar system. It mainly develops on the basis of ultrasonic distance measurement, its performance is reliable, thus the driving safety is greatly improved and the parking security and efficiency enhance enormously.

  6. Heavy ion collisions at intermediate energy

    International Nuclear Information System (INIS)

    Bertsch, G.; Amsden, A.A.

    1978-01-01

    Two types of measurement are proposed for the analysis of heavy ion collisions in the range of energy of 20--200 MeV/A. First, measurement of the longitudinal component of the kinetic energy of the collision products characterizes the impact parameter of the collision. The distribution in this quantity allows the dissipation in the theoretical models to be determined. A second kind of measurement is that of the coefficients of a spherical harmonic expansion of the angular distribution of the products. Besides giving independent information on the impact parameter and reaction dynamics, measurement of these coefficients offers the possibility of measuring the stiffness of the equation of state of nuclear matter. These ideas are explored in the context of a hydrodynamic model for the collision. In the purely hydrodynamic model there is a large measurable asymmetry in the angular distribution, but the dependence on the equation of state is small

  7. Dielectron production in proton-proton collisions with ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Markus Konrad

    2015-10-01

    Ultrarelativistic hadron collisions, such as delivered since a couple of years at the Large Hadron Collider (LHC), provide new insights into the properties of strongly interacting matter at high temperatures and densities, which is expected to have existed a few of a millionth seconds after the big bang. Electromagnetic probes, such as leptons and photons, are emitted during the entire collision. Since they do not undergo strong interactions, they reflect the entire evolution of the collision. Pairs of leptons, so called dileptons, have the advantage compared to real photons, that they do not only carry momentum, but also have a non-zero invariant mass. The invariant mass spectrum of dileptons is a superposition of several components and allows to address different characteristics of the medium. To understand dielectron production in heavy-ion collisions, reference measurements in proton-proton (pp) collisions are necessary. pp collisions reflect the vacuum contribution of the particles produced in heavy-ion collisions. The analysis of pp collisions is an essential step towards the extraction of medium influences on the vector meson spectral functions and the thermal radiation in heavy-ion collisions. In this thesis, the production of electron-positron pairs (dielectrons) in pp collisions at a collision energy of 7 TeV in the ALICE central barrel is analysed. ALICE has unique particle identification capabilities at low momentum. Electrons and positrons are identified with a high purity and combined to pairs. The invariant mass distribution of dielectrons is corrected for detector effects and the selection criteria in the analysis with Monte Carlo simulations. The dielectron invariant mass spectrum of known hadronic sources is calculated based on the cross sections measured in other decay channels using the known decay kinematics. This so called hadronic cocktail represents the dielectron spectrum at the moment of kinematic freeze-out and can be compared to the

  8. The relationship between vacuum and atomic collisions in solids

    International Nuclear Information System (INIS)

    Carter, G.; Armour, D.G.

    1980-01-01

    Atomic collision events in solids are frequently stimulated by external irradiation with energetic heavy ions. This requires production, acceleration and manipulation of ion beams in vacuum system with ensuing problems arising in perturbations to ion beam quality from gas phase collisions. In addition the dynamic interaction between the gas phase and any surfaces at which atomic collisions are under investigation can lead to perturbation to the collision events by adsorbed contaminant. This review discusses both gas phase requirements for ion accelerators to minimize deleterious effects and outlines some of the processes which occur in atomic collisions due to the presence of adsorbed impurities. Finally it is shown how certain atomic collision processes involving elastic scattering may be employed to investigate surface adsorption and related effects. (author)

  9. Constituent quarks and charge particle production in heavy-ion collisions

    International Nuclear Information System (INIS)

    Mishra, Aditya Nath; Mazumder, Rakesh; Sahoo, Raghunath; Nandi, Basanta Kumar

    2012-01-01

    Relativistic heavy-ion collisions aims at producing a state of matter which is governed by partonic degree of freedom. The pseudorapidity density of particle multiplicity and transverse energy are the key observables which provide the properties of matter produced in heavy-ion collisions. Study of their dependence on centrality and collision energy is of paramount importance to understand the particle production mechanism. This may provide insight into the partonic phase that might be created in nuclear collisions. Here, in a constituent quarks framework, charged particle and transverse energy production in heavy-ion collisions are studied both as a function of centrality and collision energy, and hence the study gives a prediction for Pb + Pb collisions

  10. USA Space Debris Environment, Operations, and Research Updates

    Science.gov (United States)

    Liou, J.-C.

    2018-01-01

    Space Missions in 2017 Earth Satellite Population Collision Avoidance Maneuvers Post mission Disposal of U.S.A. Spacecraft Space Situational Awareness (SSA) and the Space Debris Sensor (SDS) A total of 86 space launches placed more than 400 spacecraft into Earth orbits during 2017, following the trend of increase over the past decade NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 - One maneuver was conducted to avoid the ISS NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 The 2014-15 NASA Engineering and Safety Center (NESC) study on the micrometeoroid and orbital debris (MMOD

  11. Instability of compensated beam-beam collisions

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.; Autin, B.; Chen, Pisin.

    1989-01-01

    The beam-beam disruption phenomena in linear colliders are increasingly seen as a source of serious problems for these machines. A plasma compensation scheme, in which the motion of the plasma electrons in the presence of the colliding beams provides neutralizing charge and current densities, has been proposed and studied. But natural alternative to this scheme is to consider the overlapping of nearly identical high energy e + and e/sup /minus// bunches, and the collision of two such pairs - in other words, collision of two opposing relativistic positronium plasmas. It should be noticed that while the luminosity for all collisions is increased by a factor of four in this scheme, the event rate for e + e/sup /minus// collisions is only increased by a factor of two. The other factor of two corresponds to the addition of e + e + and e/sup /minus//e/sup /minus// collisions to the interaction point. This beam compensation scheme, which has been examined through computer simulation by Balakin and Solyak in the Soviet Union, promises full neutralization of beam charges and currents. These numerical investigations have shown that plasma instabilities exist in this nominally neutral system. Although the implementation of this idea seems technically daunting, the potential benefits (beamstrahlung and disruption suppression, relaxation of final focus system constraints) are such that we should consider the physics of these collisions further. In the remainder of this paper, we theoretically analyze the issues of stability and bunch parameter tolerances in this scheme. 11 refs

  12. Thermal equilibrium in strongly damped collisions

    International Nuclear Information System (INIS)

    Samaddar, S.K.; De, J.N.; Krishan, K.

    1985-01-01

    Energy division between colliding nuclei in damped collisions is studied in the statistical nucleon exchange model. The reactions 56 Fe+ 165 Ho and 56 Fe+ 238 U at incident energy of 465 MeV are considered for this purpose. It is found that the excitation energy is approximately equally shared between the nuclei for the peripheral collisions and the systems slowly approach equilibrium for more central collisions. This is in conformity with the recent experimental observations. The calculated variances of the charge distributions are found to depend appreciably on the temperature and are in very good agreement with the experimental data

  13. Study of post-collision effect on autoionisation electron spectra in He+-He collision

    International Nuclear Information System (INIS)

    Ioannis, K.

    1981-11-01

    Energy spectra of electrons ejected by autoionisation of the helium atom have been measured at low collision energy (3-20 keV) in the He + -He collision system. Perturbations of the line shapes due to the Coulomb field of the spectator ion are studied. Our results are compared with the semi classical model of MORGENSTERN et al. Only for small (or great) emission angles relative phases as well as moduli of transition amplitudes towards the Msub(L)=0 sublevel of the 2p 2 1 D and 2s2p 1 P states are deduced. Near the 2s 2 1 S line, strong discrepancies with the model are observed (at thetasub(Lab)=11 0 ) which are attributed to a contribution of autoionisation in the quasimolecule. Angular distributions have also been measured which seem to be not perturbed by the Coulomb field. An unexplained oscillatory behaviour of the singly differential cross section, when plotted against the collision energy has also been observed [fr

  14. Running Safety of Trains under Vessel-Bridge Collision

    Directory of Open Access Journals (Sweden)

    Yongle Li

    2015-01-01

    Full Text Available To optimize the sensor placement of the health monitoring system, the dynamic behavior of the train-bridge system subjected to vessel-collision should be studied in detail firstly. This study thus focuses on the characteristics of a train-bridge system under vessel-bridge collision. The process of the vessel-bridge collision is simulated numerically with a reliable finite element model (FEM. The dynamic responses of a single car and a train crossing a cable-stayed bridge are calculated. It is shown that the collision causes significant increase of the train’s lateral acceleration, lateral wheelset force, wheel unloading rate, and derailment coefficient. The effect of the collision on the train’s vertical acceleration is much smaller. In addition, parametric studies with various train’s positions, ship tonnage, and train speed are performed. If the train is closer to the vessel-bridge collision position or the ship tonnage is larger, the train will be more dangerous. There is a relatively high probability of running danger at a low speed, resulting from longer stay of the train on the bridge. The train’s position, the ship tonnage, and the train speed must be considered when determining the most adverse conditions for the trains running on bridges under vessel-bridge collision.

  15. Children's Avoidance of Interrupting Others' Activities in Requesting Help: Cultural Aspects of Considerateness.

    Science.gov (United States)

    Ruvalcaba, Omar; Rogoff, Barbara; López, Angélica; Correa-Chávez, Maricela; Gutiérrez, Kris

    2015-01-01

    To be able to collaborate skillfully, people need to coordinate well with others, taking into account how their actions fit with those of their partners. This is a key aspect of an approach to learning called Learning by Observing and Pitching In, hypothesized to be common in many Indigenous-heritage communities of the Americas. This chapter considers cultural values that emphasize considerateness and awareness of how one's actions impact others such as the Mexican cultural value of respeto and cultural differences in children's efforts to avoid interrupting others' activity. US Mexican-heritage children showed more evidence of avoiding interrupting the ongoing activity of an adult when they requested help, compared with European American children from families with extensive schooling experience. Most of the Mexican-heritage children's requests for help that gave evidence of avoiding interruption were made nonverbally, which may facilitate unobtrusive requests. There were no significant differences among children from two US Mexican-heritage backgrounds varying in experience with Western schooling and likely experience with Indigenous-American practices, suggesting that the Mexican cultural value of respeto and associated considerateness is widespread even among US Mexican-heritage families with extensive experience with Western schooling and life in the United States. © 2015 Elsevier Inc. All rights reserved.

  16. A literature review of risk assessment of ship-FPSO collisions

    DEFF Research Database (Denmark)

    Wang, Ge; Pedersen, Preben Terndrup

    2007-01-01

    This paper reviews the state of the art of the research and analysis on the risks of collision with offshore installations. The focus is placed on: existing criteria, FPSO collision accident, design scenarios for FPSO collision, mechanics of collision incidents, and consequences. The content...

  17. Baryon production in proton-proton collisions

    International Nuclear Information System (INIS)

    Liu, F.M.; Werner, K.

    2002-01-01

    Motivated by the recent rapidity spectra of baryons and antibaryons in pp collisions at 158 GeV and the Ω-bar/Ω ratio discussion, we reviewed string formation mechanism and some string models. This investigation told us how color strings are formed in ultrarelativistic proton-proton collisions

  18. Electron detachment in ion-atom collisions

    International Nuclear Information System (INIS)

    Vreugd, C. de.

    1980-01-01

    The electron detachment process that occurs in negative ion-atom collisions is investigated. Differential cross sections were measured for the collisions of F - , Cl - , Br - , I - on He, Ne, Ar, Kr, Xe, Na and K. Electron energy distributions were obtained for some of the systems. (Auth.)

  19. Palatable food avoidance and acceptance learning with different stressors in female rats.

    Science.gov (United States)

    Liang, N-C; Smith, M E; Moran, T H

    2013-04-03

    Stress activates the hypothalamus-pituitary-adrenal (HPA) axis leading to the release of glucocorticoids (GC). Increased activity of the HPA axis and GC exposure has been suggested to facilitate the development of obesity and metabolic syndrome. Nonetheless, different stressors can produce distinct effects on food intake and may support different directions of food learning e.g. avoidance or acceptance. This study examined whether interoceptive (LiCl and exendin-4) and restraint stress (RS) support similar or distinct food learning. Female rats were exposed to different stressors after their consumption of a palatable food (butter icing). After four palatable food-stress pairings, distinct intakes of the butter icing were observed in rats treated with different stressors. Rats that received butter icing followed by intraperitoneal injections of LiCl (42.3mg/kg) and exendin-4 (10μg/kg) completely avoided the palatable food with subsequent presentations. In contrast, rats experiencing RS paired with the palatable food increased their consumption of butter icing across trials and did so to a greater degree than rats receiving saline injections. These data indicate that interoceptive and psychosocial stressors support conditioned food avoidance and acceptance, respectively. Examination of c-Fos immunoreactivity revealed distinct neural activation by interoceptive and psychosocial stressors that could provide the neural basis underlying opposite direction of food acceptance learning. Published by Elsevier Ltd.

  20. QCD in heavy ion collisions

    International Nuclear Information System (INIS)

    Iancu, Edmond

    2014-01-01

    These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry

  1. QCD in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Iancu, Edmond [IPhT, Saclay (France)

    2014-07-01

    These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry.

  2. Collisions of deformed nuclei and superheavy-element production

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Moeller, P.; Univ. of Aizu, Fukushima; P. Moller Scientific Computing and Graphics, Inc., Los Alamos, NM; Los Alamos National Lab., NM; Nix, J.R.; Sagawa, Hiroyuki, Sagawa

    1995-01-01

    A detailed understanding of complete fusion cross sections in heavy-ion collisions requires a consideration of the effects of the deformation of the projectile and target. The aim here is to show that deformation and orientation of the colliding nuclei have a very significant effect on the fusion-barrier height and on the compactness of the touching configuration. To facilitate discussions of fusion configurations of deformed nuclei, the authors develop a classification scheme and introduce a notation convention for these configurations. They discuss particular deformations and orientations that lead to compact touching configurations and to fusion-barrier heights that correspond to fairly low excitation energies of the compound systems. Such configurations should be the most favorable for producing superheavy elements. They analyze a few projectile-target combinations whose deformations allow favorable entrance-channel configurations and whose proton and neutron numbers lead to compound systems in a part of the superheavy region where a half-lives are calculated to be observable, that is, longer than 1 micros

  3. Searching for collisions between mobile robot and environment

    Directory of Open Access Journals (Sweden)

    Marián Hruboš

    2016-09-01

    Full Text Available This article is focused on the search for potential collision of a moving object (as a mobile robot is with the environment. Application of the proposed and presented method requires existence of the three-dimensional model of the environmental space. In this case, the models are generated automatically with the help of mobile measurement platform developed by authors and are available to other applications. Models of moving objects are loaded by the proposed application from external files. The method is based on data fusion, using data from a laser scanner, global positioning system, and inertial navigation system; however, it can also be used for data obtained by other ways. Its correctness was experimentally proved by several experimental tests. Output is in the form of calculated coordinates of the point in which a moving object would potentially collide with the environment if no avoiding action is taken. Such an object may represent an oversized load transferred by a truck, train, ship, the transport means itself or even a person.

  4. Observation of correlated excitations in bimolecular collisions

    Science.gov (United States)

    Gao, Zhi; Karman, Tijs; Vogels, Sjoerd N.; Besemer, Matthieu; van der Avoird, Ad; Groenenboom, Gerrit C.; van de Meerakker, Sebastiaan Y. T.

    2018-02-01

    Although collisions between atoms and molecules are largely understood, collisions between two molecules have proven much harder to study. In both experiment and theory, our ability to determine quantum-state-resolved bimolecular cross-sections lags behind their atom-molecule counterparts by decades. For many bimolecular systems, even rules of thumb—much less intuitive understanding—of scattering cross sections are lacking. Here, we report the measurement of state-to-state differential cross sections on the collision of state-selected and velocity-controlled nitric oxide (NO) radicals and oxygen (O2) molecules. Using velocity map imaging of the scattered NO radicals, the full product-pair correlations of rotational excitation that occurs in both collision partners from individual encounters are revealed. The correlated cross sections show surprisingly good agreement with quantum scattering calculations using ab initio NO-O2 potential energy surfaces. The observations show that the well-known energy-gap law that governs atom-molecule collisions does not generally apply to bimolecular excitation processes, and reveal a propensity rule for the vector correlation of product angular momenta.

  5. Classical trajectory methods in molecular collisions

    International Nuclear Information System (INIS)

    Porter, R.N.; Raff, L.M.

    1976-01-01

    The discussion of classical trajectory methods in molecular collisions includes classical dynamics, Hamiltonian mechanics, classical scattering cross sections and rate coefficients, statistical averaging, the selection of initial states, integration of equations of motion, analysis of final states, consecutive collisions, and the prognosis for classical molecular scattering calculations. 61 references

  6. Precritical increase of particle collision rates

    International Nuclear Information System (INIS)

    Muenchow, L.

    1990-01-01

    In quantum kinetics the collision integral follows from the imaginary part of the mass operator. Using this connection it is shown that the coupling of single particle motion to precritical density fluctuations causes a strong increase of the collision integral near the point of phase instability. 13 refs

  7. Measuring Patients’ Attachment Avoidance in Psychotherapy: Development of the Attachment Avoidance in Therapy Scale (AATS

    Directory of Open Access Journals (Sweden)

    András Láng

    2012-11-01

    Full Text Available A new scale measuring patient-therapist attachment avoidance was developed. Attachment Avoidance in Therapy Scale is a new measure based on the Bartholomew model of adult attachment (Bartholomew & Horowitz, 1991 and the Experience in Close Relationships Scale (Brennan, Clark, & Shaver, 1998 to measure patients’ attachment avoidance towards therapists. With 112 patient-therapist dyads participating in the study, validation of a preliminary scale – measuring both attachment anxiety and attachment avoidance in therapy – took place using therapists’ evaluations of patients’ relational behavior and patients’ self-reports about their attitude toward psychotherapy. Analysis of the data revealed six underlying scales. Results showed all six scales to be reliable. Validation of scales measuring attachment anxiety failed. The importance of Attachment Avoidance in Therapy Scale and its subscales is discussed.

  8. Shock wave collisions and thermalization in AdS5

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.

    2011-01-01

    We study heavy ion collisions at strong 't Hooft coupling using AdS/CFT correspondence. According to the AdS/CFT dictionary heavy ion collisions correspond to gravitational shock wave collisions in AdS 5 . We construct the metric in the forward light cone after the collision perturbatively through expansion of Einstein equations in graviton exchanges. We obtain an analytic expression for the metric including all-order graviton exchanges with one shock wave, while keeping the exchanges with another shock wave at the lowest order. We read off the corresponding energy-momentum tensor of the produced medium. Unfortunately this energy-momentum tensor does not correspond to ideal hydrodynamics, indicating that higher order graviton exchanges are needed to construct the full solution of the problem. We also show that shock waves must completely stop almost immediately after the collision in AdS 5 , which, on the field theory side, corresponds to complete nuclear stopping due to strong coupling effects, likely leading to Landau hydrodynamics. Finally, we perform trapped surface analysis of the shock wave collisions demonstrating that a bulk black hole, corresponding to ideal hydrodynamics on the boundary, has to be created in such collisions, thus constructing a proof of thermalization in heavy ion collisions at strong coupling. (author)

  9. Heavy flavour production at CMS in heavy ion collisions

    CERN Document Server

    Nguyen, Matthew

    2015-01-01

    We review recent results relating to beauty production in heavy-ion collisions, in both the closed and open heavy flavor sectors, from the CMS experiment at the LHC. The sequential suppression of the ° states in PbPb collisions is thought to be evidence of the dissociation of quarkonia bound states in deconfined matter. Data from pPb collisions demonstrate that while cold nuclear effects appear to be subdominant in minimum bias collisions, there exists a non-trivial dependence on collision multiplicity that remains to be understood. The suppression of high p T particles in heavy-ion collisions, relative to the expectation from pp collisions, is typically interpreted in terms of energy loss of hard scattered parton in the dense nuclear medium. The flavor dependence of the energy loss may be accessed via measurements of b hadrons and b-tagged jets. Measurement of B mesons, via non-prompt J = y , at relatively low p T indicate a smaller suppression factor than D meson or inclusive charged hadrons. Data on b jet...

  10. Stochastic theory of molecular collisions. II. Application to atom--vibrotor collisions

    International Nuclear Information System (INIS)

    Augustin, S.D.; Rabitz, H.

    1977-01-01

    In this work stochastic theory is applied to the treatment of atom--vibrotor collisions. This is an extension of a previous paper which described molecular collisions by a Pauli master equation or a Fokker--Planck equation. In this framework an energy conserving classical path model is explored, and methods for solving the equations numerically are discussed. The coefficients of the Fokker--Planck equation are shown to be expressible as simple functions of the interaction potential. Estimates of the computational labor are also discussed. Finally as a followup on the initial work, numerical solutions of the master equation for the collinear vibrational excitation problem of Secrest and Johnson are presented in an Appendix

  11. Alignment and orientation in ion/endash/atom collisions

    International Nuclear Information System (INIS)

    Kimura, M.; Lane, N.F.

    1987-01-01

    Recent progress in the theoretical study of alignment and orientation in atom-atom and ion-atom collisions at intermediate energies is reviewed. Recent systematic studies of the alignment and orientation of electronic charge cloud distributions of excited states resulting from such collisions clearly have provided more detailed information about the underlying collision dynamics. However, since accurate determination of these parameters is quite difficult, both theoretically and experimentally, a close collaboration between theory and experiment is necessary for a deeper understanding of the collision dynamics. A more complete approach, where the full density matrix is determined, is also discussed

  12. First results on d+Au collisions from PHOBOS

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Noell, A.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Teng, R.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zhang, J.

    2004-02-01

    We have measured transverse momentum distributions of charged hadrons produced in d+Au collisions at √SNN = 200 GeV, in the range 0.25 < pT < 6.0 GeV/c. With increasing collision centrality, the yield at high transverse momenta increases more rapidly than the overall particle density, leading to a strong modification of the spectral shape. This change in spectral shape is qualitatively different from observations in Au+Au collisions at the same energy. The results provide important information for discriminating between different models for the suppression of high-pT hadrons observed in Au+Au collisions.

  13. An investigation of collision propagation in energetic ion initiated cascades in copper

    International Nuclear Information System (INIS)

    Chakarov, I.R.; Webb, R.P.; Smith, R.; Beardmore, K.

    1995-01-01

    Using simple Binary Collision simulations of energetic ion initiated collision cascades, particles are considered to undergo a series of binary collisions with their surroundings. In Molecular Dynamics simulation it is difficult to even define what is meant by a collision as the interaction potentials are infinite in nature and consequently all particles are considered to interact with all other particles. By making a suitable definition of a collision for Molecular Dynamics we are able to compare the temporal behaviour of the number of collisions occurring during the propagation of a collision cascade between the two different calculation schemes. An investigation is made of the number of collisions as a function of time occurring in collision cascades. We compare these results to the time ordered version of MARLOWE. By making further definitions about what makes a many body collision, we further investigate the numbers of many body collisions occurring during a number of collision cascades. (orig.)

  14. Inclusive cross sections in AA collisions at high energies

    International Nuclear Information System (INIS)

    Braun, M.A.

    1988-01-01

    Inclusive cross sections in AA collisions at high energies are considered in the Glauber multiple scattering theory taking into account many-nucleon collisions. Correspondence is found between the AA amplitude and the effective action of the two-dimensional quantum field theory with exponential interaction. The tree and one-loop contributions are calculated in this formalism. The rules are derived, which relate the absorption part of the AA-collision amplitudes associated with various inclusive cross sections to the absorption parts of NN amplitudes. These rules generalize the well-known Agranowsky-Gribov-Kanchelli rules for hh and hA collisions. Formulas are written for single and double inclusive cross sections in AA collisions

  15. Modelling of the Internal Mechanics in Ship Collisions

    DEFF Research Database (Denmark)

    Paik, Jeom Kee; Pedersen, Preben Terndrup

    1996-01-01

    A method for analysis of the structural damage due to ship collisions is developed. The method is based on the idealized structural unit method (ISUM). Longitudinal/transverse webs which connect the outer and the inner hulls are modelled by rectangular plate units. The responses are determined...... on the stiffness and the strength is considered as well. In order to include the coupling effects between local and global failure of the structure, the usual non-linear finite-element technique is applied. In order to deal with the gap and contact conditions between the striking and the struck ships, gap......-skin plated structures in collision/grounding situations with the present solutions. As an illustrative example the procedure has been used for analyses of a side collision of a double-hull tanker. Several factors affecting ship collision response, namely the collision speed and the scantlings/ arrangements...

  16. Storage ring to investigate cold unidimensional atomic collisions

    International Nuclear Information System (INIS)

    Marcassa, L. G.; Caires, A. R. L.; Nascimento, V. A.; Dulieu, O.; Weiner, J.; Bagnato, V. S.

    2005-01-01

    In this paper we employ a circulating ring of trapped atoms, that we have named the atomotron, to study cold collisions. The atomotron is obtained from a conventional magneto-optical trap when the two pairs of normally retroreflecting Gaussian laser beams in the x-y plane are slightly offset. Circulating stable atomic orbits then form a racetrack geometry in this plane. The circulating atom flux behaves similarly to an atomic beam with an average tangential velocity much greater than the transverse components, and is therefore suitable for one-dimensional atomic collision studies. Using the atomotron, we have investigated the polarization dependence of ultracold photoassociation collisions between Rb atoms circulating in the racetrack. The ability to investigate collisions in ultracold circulating atomic rings reveals alignment and orientation properties that are averaged away in ordinary three-dimensional magneto-optical trap collision processes

  17. [Electron transfer, ionization, and excitation in atomic collisions

    International Nuclear Information System (INIS)

    1992-01-01

    Fundamental processes of electron transfer, ionization, and excitation in ion-atom and ion-ion collisions are studied. Attention is focussed on one- and two-electron systems and, more recently, quasi-one-electron systems whose electron-target-ion core can be accurately modeled by one-electron potentials. The basic computational approaches can then be taken with few, if any, approximations, and the underlying collisional mechanisms can be more clearly revealed. At intermediate collision energies (e.g., proton energies for p-He + collisions on the order of 100 kilo-electron volts), many electronic states are strongly coupled during the collision, a coupled-state approach, such as a coupled-Sturmian-pseudostate approach, is appropriate. At higher collision energies (million electron-volt energies) the coupling is weaker with, however, many more states being coupled together, so that high-order perturbation theory is essential

  18. Reliability analysis of wake-induced collision of flexible risers

    OpenAIRE

    Fu, Ping; Leira, Bernt Johan; Myrhaug, Dag

    2017-01-01

    Collision between risers is an important design and operational concern, especially in deep water since the probability of collision tends to increase as the riser length increases. Riser collision is due to the joint effects of many processes, i.e. environmental loads, hydrodynamic interference and surface floater motions and the most of them are stochastic processes. This paper provides an approach for estimating the failure probability of riser collision by considering these joint effects ...

  19. Cold collisions in dissipative optical lattices

    International Nuclear Information System (INIS)

    Piilo, J; Suominen, K-A

    2005-01-01

    The invention of laser cooling methods for neutral atoms allows optical and magnetic trapping of cold atomic clouds in the temperature regime below 1 mK. In the past, light-assisted cold collisions between laser cooled atoms have been widely studied in magneto-optical atom traps (MOTs). We describe here theoretical studies of dynamical interactions, specifically cold collisions, between atoms trapped in near-resonant, dissipative optical lattices. The extension of collision studies to the regime of optical lattices introduces several complicating factors. For the lattice studies, one has to account for the internal substates of atoms, position-dependent matter-light coupling, and position-dependent couplings between the atoms, in addition to the spontaneous decay of electronically excited atomic states. The developed one-dimensional quantum-mechanical model combines atomic cooling and collision dynamics in a single framework. The model is based on Monte Carlo wavefunction simulations and is applied when the lattice-creating lasers have frequencies both below (red-detuned lattice) and above (blue-detuned lattice) the atomic resonance frequency. It turns out that the radiative heating mechanism affects the dynamics of atomic cloud in a red-detuned lattice in a way that is not directly expected from the MOT studies. The optical lattice and position-dependent light-matter coupling introduces selectivity of collision partners. The atoms which are most mobile and energetic are strongly favoured to participate in collisions, and are more often ejected from the lattice, than the slow ones in the laser parameter region selected for study. Consequently, the atoms remaining in the lattice have a smaller average kinetic energy per atom than in the case of non-interacting atoms. For blue-detuned lattices, we study how optical shielding emerges as a natural part of the lattice and look for ways to optimize the effect. We find that the cooling and shielding dynamics do not mix

  20. Inhibition or facilitation? Modulation of corticospinal excitability during motor imagery.

    Science.gov (United States)

    Bruno, Valentina; Fossataro, Carlotta; Garbarini, Francesca

    2018-03-01

    Motor imagery (MI) is the mental simulation of an action without any overt movement. Functional evidences show that brain activity during MI and motor execution (ME) largely overlaps. However, the role of the primary motor cortex (M1) during MI is controversial. Effective connectivity techniques show a facilitation on M1 during ME and an inhibition during MI, depending on whether an action should be performed or suppressed. Conversely, Transcranial Magnetic Stimulation (TMS) studies report facilitatory effects during both ME and MI. The present TMS study shed light on MI mechanisms, by manipulating the instructions given to the participants. In both Experimental and Control groups, participants were asked to mentally simulate a finger-thumb opposition task, but only the Experimental group received the explicit instruction to avoid any unwanted fingers movements. The amplitude of motor evoked potentials (MEPs) to TMS during MI was compared between the two groups. If the M1 facilitation actually pertains to MI per se, we should have expected to find it, irrespective of the instructions. Contrariwise, we found opposite results, showing facilitatory effects (increased MEPs amplitude) in the Control group and inhibitory effects (decreased MEPs amplitude) in the Experimental group. Control experiments demonstrated that the inhibitory effect was specific for the M1 contralateral to the hand performing the MI task and that the given instructions did not compromise the subjects' MI abilities. The present findings suggest a crucial role of motor inhibition when a "pure" MI task is performed and the subjects are explicitly instructed to avoid overt movements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Theoretical interpretation of high-energy nuclear collisions

    International Nuclear Information System (INIS)

    Fai, G.

    1992-06-01

    Nuclear collisions are interpreted theoretically. The nuclear equation of state is studied in a wide energy range. Subnucleonic degrees of freedom are invoked at high energy densities and at short length-scales. Questions of dynamical collision simulations are investigated. Direct support is provided for experiment in the form of collaborative projects. The major objective of this nuclear theory program is a better understanding of the properties of strongly interacting matter on the nuclear energy scale, as manifested in high-energy heavy-ion collisions

  2. The collision probability modules of WIMS-E

    International Nuclear Information System (INIS)

    Roth, M.J.

    1985-04-01

    This report describes how flat source first flight collision probabilities are calculated and used in the WIMS-E modular program. It includes a description of the input to the modules W-FLU, W-THES, W-PIP, W-PERS and W-MERGE. Input to other collision probability modules are described in separate reports. WIMS-E is capable of calculating collision probabilities in a wide variety of geometries, some of them quite complicated. It can also use them for a variety of purposes. (author)

  3. A numerical 4D Collision Risk Model

    Science.gov (United States)

    Schmitt, Pal; Culloch, Ross; Lieber, Lilian; Kregting, Louise

    2017-04-01

    With the growing number of marine renewable energy (MRE) devices being installed across the world, some concern has been raised about the possibility of harming mobile, marine fauna by collision. Although physical contact between a MRE device and an organism has not been reported to date, these novel sub-sea structures pose a challenge for accurately estimating collision risks as part of environmental impact assessments. Even if the animal motion is simplified to linear translation, ignoring likely evasive behaviour, the mathematical problem of establishing an impact probability is not trivial. We present a numerical algorithm to obtain such probability distributions using transient, four-dimensional simulations of a novel marine renewable device concept, Deep Green, Minesto's power plant and hereafter referred to as the 'kite' that flies in a figure-of-eight configuration. Simulations were carried out altering several configurations including kite depth, kite speed and kite trajectory while keeping the speed of the moving object constant. Since the kite assembly is defined as two parts in the model, a tether (attached to the seabed) and the kite, collision risk of each part is reported independently. By comparing the number of collisions with the number of collision-free simulations, a probability of impact for each simulated position in the cross- section of the area is considered. Results suggest that close to the bottom, where the tether amplitude is small, the path is always blocked and the impact probability is 100% as expected. However, higher up in the water column, the collision probability is twice as high in the mid line, where the tether passes twice per period than at the extremes of its trajectory. The collision probability distribution is much more complex in the upper end of the water column, where the kite and tether can simultaneously collide with the object. Results demonstrate the viability of such models, which can also incorporate empirical

  4. Global Λ hyperon polarization in nuclear collisions

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; de La Barca Sánchez, M. Calderón; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; de Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.

    2017-08-01

    The extreme energy densities generated by ultra-relativistic collisions between heavy atomic nuclei produce a state of matter that behaves surprisingly like a fluid, with exceptionally high temperature and low viscosity. Non-central collisions have angular momenta of the order of 1,000ћ, and the resulting fluid may have a strong vortical structure that must be understood to describe the fluid properly. The vortical structure is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. However, no experimental indications of fluid vorticity in heavy ion collisions have yet been found. Since vorticity represents a local rotational structure of the fluid, spin-orbit coupling can lead to preferential orientation of particle spins along the direction of rotation. Here we present measurements of an alignment between the global angular momentum of a non-central collision and the spin of emitted particles (in this case the collision occurs between gold nuclei and produces Λ baryons), revealing that the fluid produced in heavy ion collisions is the most vortical system so far observed. (At high energies, this fluid is a quark-gluon plasma.) We find that Λ and hyperons show a positive polarization of the order of a few per cent, consistent with some hydrodynamic predictions. (A hyperon is a particle composed of three quarks, at least one of which is a strange quark; the remainder are up and down quarks, found in protons and neutrons.) A previous measurement that reported a null result, that is, zero polarization, at higher collision energies is seen to be consistent with the trend of our observations, though with larger statistical uncertainties. These data provide experimental access to the vortical structure of the nearly ideal liquid created in a heavy ion collision and should prove valuable in the development of hydrodynamic models that

  5. Reducing deaths in single vehicle collisions.

    NARCIS (Netherlands)

    Adminaite, D. Jost, G. Stipdonk, H. & Ward, H.

    2017-01-01

    A third of road deaths in the EU are caused by collisions that involve a single motorised vehicle where the driver, rider and/or passengers are killed but no other road users are involved. These single vehicle collisions (SVCs), and how to prevent them occurring, are the subject of this report.

  6. Predicting Collision Damage and Resulting Consequences

    DEFF Research Database (Denmark)

    Ravn, Erik Sonne; Friis-Hansen, Peter

    2004-01-01

    This paper presents an Artificial Neutral Network (ANN)that is trained to predict the structural damage in the shipside resulting from ship-ship collisions. The input to the ANN is the absorbed energy, the length of the involved ships, the draught of the struck ship, and the angle of collision. T...

  7. Outreach Materials for the Collision Repair Campaign

    Science.gov (United States)

    The Collision Repair Campaign offers outreach materials to help collision repair shops reduce toxic air exposure. Materials include a DVD, poster, training video, and materials in Spanish (materiales del outreach en español).

  8. On the Collision Nature of Two Coronal Mass Ejections: A Review

    Science.gov (United States)

    Shen, Fang; Wang, Yuming; Shen, Chenglong; Feng, Xueshang

    2017-08-01

    Observational and numerical studies have shown that the kinematic characteristics of two or more coronal mass ejections (CMEs) may change significantly after a CME collision. The collision of CMEs can have a different nature, i.e. inelastic, elastic, and superelastic processes, depending on their initial kinematic characteristics. In this article, we first review the existing definitions of collision types including Newton's classical definition, the energy definition, Poisson's definition, and Stronge's definition, of which the first two were used in the studies of CME-CME collisions. Then, we review the recent research progresses on the nature of CME-CME collisions with the focus on which CME kinematic properties affect the collision nature. It is shown that observational analysis and numerical simulations can both yield an inelastic, perfectly inelastic, merging-like collision, or a high possibility of a superelastic collision. Meanwhile, previous studies based on a 3D collision picture suggested that a low approaching speed of two CMEs is favorable for a superelastic nature. Since CMEs are an expanding magnetized plasma structure, the CME collision process is quite complex, and we discuss this complexity. Moreover, the models used in both observational and numerical studies contain many limitations. All of the previous studies on collisions have not shown the separation of two colliding CMEs after a collision. Therefore the collision between CMEs cannot be considered as an ideal process in the context of a classical Newtonian definition. In addition, many factors are not considered in either observational analysis or numerical studies, e.g. CME-driven shocks and magnetic reconnections. Owing to the complexity of the CME collision process, a more detailed and in-depth observational analysis and simulation work are needed to fully understand the CME collision process.

  9. Hadronic spectra from collisions of heavy nuclei

    International Nuclear Information System (INIS)

    Jacobs, P.

    1997-03-01

    Hadronic spectra from collisions of heavy ions at ultrarelativistic energies are discussed, concentrating on recent measurements at the SPS of central Pb+Pb collisions at 158 GeV/nucleon, which are compared to collisions of lighter ions and at lower beam energies. Baryon stopping is seen to be larger for heavier systems and lower energies. Total yields of pions and kaons scale with the number of participants in central collisions at the SPS; in particular, the K/π ratio is constant between central S+S and Pb+Pb at the SPS. Transverse mass spectra indicate significantly larger radial flow for the heavier systems. At midrapidity, an enhancement of - >/ + > and - >/ + > at low P T are best explained by final state Coulomb interaction with the residual charge of the fireball

  10. Collision Detection for Underwater ROV Manipulator Systems

    Directory of Open Access Journals (Sweden)

    Satja Sivčev

    2018-04-01

    Full Text Available Work-class ROVs equipped with robotic manipulators are extensively used for subsea intervention operations. Manipulators are teleoperated by human pilots relying on visual feedback from the worksite. Operating in a remote environment, with limited pilot perception and poor visibility, manipulator collisions which may cause significant damage are likely to happen. This paper presents a real-time collision detection algorithm for marine robotic manipulation. The proposed collision detection mechanism is developed, integrated into a commercial ROV manipulator control system, and successfully evaluated in simulations and experimental setup using a real industry standard underwater manipulator. The presented collision sensing solution has a potential to be a useful pilot assisting tool that can reduce the task load, operational time, and costs of subsea inspection, repair, and maintenance operations.

  11. Reconfigurable high-speed optical fibre networks: Optical wavelength conversion and switching using VCSELs to eliminate channel collisions

    Science.gov (United States)

    Boiyo, Duncan Kiboi; Chabata, T. V.; Kipnoo, E. K. Rotich; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.

    2017-01-01

    We experimentally provide an alternative solution to channel collisions through up-wavelength conversion and switching by using vertical cavity surface-emitting lasers (VCSELs). This has been achieved by utilizing purely optical wavelength conversion on VCSELs at the low attenuation, 1550 nm transmission window. The corresponding transmission and bit error-rate (BER) performance evaluation is also presented. In this paper, two 1550 nm VCSELs with 50-150 GHz channel spacing are modulated with a 10 Gb/s NRZ PRBS 27-1 data and their interferences investigated. A channel interference penalty range of 0.15-1.63 dB is incurred for 150-50 GHz channel spacing without transmission. To avoid channel collisions and to minimize high interference penalties, the transmitting VCSEL with data is injected into the side-mode of a slave VCSEL to obtain a new up converted wavelength. A 16 dB extinction ratio of the incoming wavelength is achieved when a 15 dBm transmitting beam is injected into the side-mode of a -4.5 dBm slave VCSEL. At 8.5 Gb/s, a 1.1 dB conversion and a 0.5 dB transmission penalties are realized when the converted wavelength is transmitted over a 24.7 km G.655 fibre. This work offers a low-cost, effective wavelength conversion and channel switching to reduce channel collision probability by reconfiguring channels at the node of networks.

  12. Sensor-based whole-arm obstacle avoidance utilizing ASIC technology

    International Nuclear Information System (INIS)

    Wintenberg, A.L.; Ericson, M.N.; Babcock, S.M.; Armstrong, G.A.; Britton, C.L. Jr.; Butler, P.L.; Hamel, W.R.; Newport, D.F.

    1993-01-01

    Operation of manipulator systems in poorly defined work environments often presents a significant hazard to both the robotic assembly and the environment. In applications relating to the Environmental Restoration and Waste Management (ER ampersand WM) Program, many of the environments are considered hazardous, both, in the structure and composition of the environment Use of a sensing system that provides information to the manipulator control unit regarding obstacles in close proximity will provide protection against collisions. In this paper, a hierarchical design and implementation of a whole-arm obstacle avoidance system is presented. The system is based on capacitive sensors configured as bracelets for proximity sensing. Each bracelet contains a number of sensor nodes and a processor for sensor node control and readout, and communications with a higher level host, common to all bracelets. The host controls the entire sensing network and communicates proximity information to the manipulator controller. The overall architecture of this system is discussed with detail on the individual system modules. Details of an application specific integrated circuit (ASIC) designed to implement the sensor node electronics are presented. Justifications for the general measurement methods and associated implementation are discussed. Additionally, the current state of development including measured dam is presented

  13. Low-noise Collision Operators for Particle-in-cell Simulations

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2005-01-01

    A new method to implement low-noise collision operators in particle-in-cell simulations is presented. The method is based on the fact that relevant collision operators can be included naturally in the Lagrangian formulation that exemplifies the particle-in-cell simulation method. Numerical simulations show that the momentum and energy conservation properties of the simulated plasma associated with the low-noise collision operator are improved as compared with standard collision algorithms based on random numbers

  14. Automatic entry point planning for robotic post-mortem CT-based needle placement.

    Science.gov (United States)

    Ebert, Lars C; Fürst, Martin; Ptacek, Wolfgang; Ruder, Thomas D; Gascho, Dominic; Schweitzer, Wolf; Thali, Michael J; Flach, Patricia M

    2016-09-01

    Post-mortem computed tomography guided placement of co-axial introducer needles allows for the extraction of tissue and liquid samples for histological and toxicological analyses. Automation of this process can increase the accuracy and speed of the needle placement, thereby making it more feasible for routine examinations. To speed up the planning process and increase safety, we developed an algorithm that calculates an optimal entry point and end-effector orientation for a given target point, while taking constraints such as accessibility or bone collisions into account. The algorithm identifies the best entry point for needle trajectories in three steps. First, the source CT data is prepared and bone as well as surface data are extracted and optimized. All vertices of the generated surface polygon are considered to be potential entry points. Second, all surface points are tested for validity within the defined hard constraints (reachability, bone collision as well as collision with other needles) and removed if invalid. All remaining vertices are reachable entry points and are rated with respect to needle insertion angle. Third, the vertex with the highest rating is selected as the final entry point, and the best end-effector rotation is calculated to avoid collisions with the body and already set needles. In most cases, the algorithm is sufficiently fast with approximately 5-6 s per entry point. This is the case if there is no collision between the end-effector and the body. If the end-effector has to be rotated to avoid collision, calculation times can increase up to 24 s due to the inefficient collision detection used here. In conclusion, the algorithm allows for fast and facilitated trajectory planning in forensic imaging.

  15. Central collisions in intermediate energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Wong, C.Y.

    1979-01-01

    The critical collisions in intermediate energy heavy-ion reactions are examined from both a microscopic and macroscopic viewpoint. In the microscopic description the proper tool is the extended TDHF approximation involving both the mean field and the particle collisions. To understand the underlying physics, the effect of the mean field and the effect of particle collisions are studied separately. It is found that th sudden increase in the density of the overlapping region can cause the volcano effect, leading to the complete disintegration of one of the nuclei. The self-consistent mean field also gives rise to the bunching instability when the two Fermi spheres of the colliding nucleons separate. The collision between nucleons, on the other hand, leads to irreversible dissipation, thermalization, and the possibility of a hydrodynamical description of the dynamics. Next is studied the dynamics of central collisions using the hydrodynamical description for many combinations of targets and projectiles at different energies. The formation of shock waves, sidesplash, and the complete disintegration of the whole nucleus are examined. Nuclear viscosity is found to affect the angular distribution of the reaction products and also the maximum compression ratio achieved during the collision. 28 references

  16. Wall-collision line broadening of molecular oxygen within nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Can T.; Lewander, Maerta; Andersson-Engels, Stefan; Svensson, Tomas; Svanberg, Sune [Department of Physics, Lund University, P. O. Box 118, SE-221 00 Lund (Sweden); Adolfsson, Erik [Ceramic Materials, SWEREA IVF, Box 104, SE-431 22 Moelndal (Sweden)

    2011-10-15

    Wall-collision broadening of near-infrared absorption lines of molecular oxygen confined in nanoporous zirconia is studied by employing high-resolution diode-laser spectroscopy. The broadening is studied for pores of different sizes under a range of pressures, providing new insights on how wall collisions and intermolecular collisions influence the total spectroscopic line profile. The pressure series show that wall-collision broadening is relatively more prominent under reduced pressures, enabling sensitive means to probe pore sizes of porous materials. In addition, we show that the total wall-collision-broadened profile strongly deviates from a Voigt profile and that wall-collision broadening exhibits an additive-like behavior to the pressure and Doppler broadening.

  17. How to deal with relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Hagedorn, R.

    1981-01-01

    A qualitative review is given of the theoretical problems and possibilities arising when one tries to understand what happens in relativistic heavy ion collisions. The striking similarity between these and pp collisions suggests the use of techniques similar to those used five to twelve years ago in pp collisions to disentangle collective motions from thermodynamics. A very heuristic and qualitative sketch of statistical bootstrap thermodynamics concludes an idealized picture in which a relativistic heavy ion collision appears as a superposition of moving 'fireballs' with equilibrium thermodynamics in the rest frames of these fireballs. The interesting problems arise where this theoretician's picture deviates from reality: non-equilibrium, more complicated motion (shock waves, turbulence, spin) and the collision history. Only if these problems have been solved or shown to be irrelevant can we safely identify signatures of unusual states of hadronic matter as, for example, a quark-gluon plasma or density isomers. (orig.)

  18. Influence of collision frequency on neoclassical polarization current

    International Nuclear Information System (INIS)

    Imada, K; Wilson, H R

    2009-01-01

    A kinetic theory for the evolution of magnetic islands is considered in a tokamak plasma, in both the low (ν i i >> εω) collision frequency limits (ν i is the ion collision frequency, ε is the inverse aspect ratio and ω is the island propagation frequency in the E x B rest frame). The calculation of the bootstrap current perturbation in the presence of a magnetic island is reviewed, and is confirmed to be independent of ω and the collision frequency regime. The neoclassical polarization current perturbation is calculated in the two collision frequency limits (within the banana regime). The result in the collisional limit is in agreement with a fluid theory. The effect of collisions in the 'dissipation layer' at the trapped/passing boundary is also considered, for ν i i /εω] 1/2 , where r is a weak logarithmic function of √ν i /εω.

  19. Effective-energy budget in multiparticle production in nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Aditya Nath; Sahoo, Raghunath [Indian Institute of Technology Indore, Discipline of Physics, School of Basic Sciences, Indore (India); Sarkisyan, Edward K.G. [CERN, Department of Physics, Geneva 23 (Switzerland); The University of Texas at Arlington, Department of Physics, Arlington, TX (United States); Sakharov, Alexander S. [CERN, Department of Physics, Geneva 23 (Switzerland); Kyungpook National University, Department of Physics, Daegu (Korea, Republic of)

    2014-11-15

    The dependencies of charged particle pseudorapidity density and transverse energy pseudorapidity density at midrapidity on the collision energy and on the number of nucleon participants, or centrality, measured in nucleus-nucleus collisions are studied in the energy range spanning a few GeV to a few TeV per nucleon. The approach in which the multiparticle production is driven by the dissipating effective energy of participants is introduced. This approach is based on the earlier proposed consideration, combining the constituent quark picture together with Landau relativistic hydrodynamics shown to interrelate the measurements from different types of collisions. Within this picture, the dependence on the number of participants in heavy-ion collisions are found to be well described in terms of the effective energy defined as a centrality-dependent fraction of the collision energy. For both variables under study, the effective-energy approach reveals a similarity in the energy dependence obtained for the most central collisions and centrality data in the entire available energy range. Predictions are made for the investigated dependencies for the forthcoming higher-energy measurements in heavy-ion collisions at the LHC. (orig.)

  20. Effective-energy budget in multiparticle production in nuclear collisions

    International Nuclear Information System (INIS)

    Mishra, Aditya Nath; Sahoo, Raghunath; Sarkisyan, Edward K.G.; Sakharov, Alexander S.

    2014-01-01

    The dependencies of charged particle pseudorapidity density and transverse energy pseudorapidity density at midrapidity on the collision energy and on the number of nucleon participants, or centrality, measured in nucleus-nucleus collisions are studied in the energy range spanning a few GeV to a few TeV per nucleon. The approach in which the multiparticle production is driven by the dissipating effective energy of participants is introduced. This approach is based on the earlier proposed consideration, combining the constituent quark picture together with Landau relativistic hydrodynamics shown to interrelate the measurements from different types of collisions. Within this picture, the dependence on the number of participants in heavy-ion collisions are found to be well described in terms of the effective energy defined as a centrality-dependent fraction of the collision energy. For both variables under study, the effective-energy approach reveals a similarity in the energy dependence obtained for the most central collisions and centrality data in the entire available energy range. Predictions are made for the investigated dependencies for the forthcoming higher-energy measurements in heavy-ion collisions at the LHC. (orig.)

  1. Dissipative heavy-ion collisions

    International Nuclear Information System (INIS)

    Feldmeier, H.T.

    1985-01-01

    This report is a compilation of lecture notes of a series of lectures held at Argonne National Laboratory in October and November 1984. The lectures are a discussion of dissipative phenomena as observed in collisions of atomic nuclei. The model is based on a system which has initially zero temperature and the initial energy is kinetic and binding energy. Collisions excite the nuclei, and outgoing fragments or the compound system deexcite before they are detected. Brownian motion is used to introduce the concept of dissipation. The master equation and the Fokker-Planck equation are derived. 73 refs., 59 figs

  2. LHC Report: LHC smashes collision records

    CERN Multimedia

    Sarah Charley

    2016-01-01

    The Large Hadron Collider is now producing more than a billion proton-proton collisions per second.   The LHC is colliding protons at a faster rate than ever before: approximately 1 billion times per second. Since April 2016, the LHC has delivered more than 30 inverse femtobarns (fb-1) to both ATLAS and CMS. This means that around 2.4 quadrillion (2.4 million billion) collisions have been seen by each of the experiments this year. The inverse femtobarn is the unit of measurement for integrated luminosity, indicating the cumulative number of potential collisions. This compares with the total of 33.2 fb-1 produced between 2010 and 2015. The unprecedented performance this year is the result of both the incremental increases in collision rate and the sheer amount of time the LHC has been up and running. This comes after a slow start-up in 2015, when scientists and engineers still needed to learn how to operate the machine at a much higher energy. “With more energy, the machine is much more sen...

  3. Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioural action

    Directory of Open Access Journals (Sweden)

    Martin eEgelhaaf

    2012-12-01

    Full Text Available Insects such as flies or bees, with their miniature brains, are able to control highly aerobatic flight manoeuvres and to solve spatial vision tasks, such as avoiding collisions with obstacles, landing on objects or even localizing a previously learnt inconspicuous goal on the basis of environmental cues. With regard to solving such spatial tasks, these insects still outperform man-made autonomous flying systems. To accomplish their extraordinary performance, flies and bees have been shown by their characteristic behavioural actions to actively shape the dynamics of the image flow on their eyes (optic flow. The neural processing of information about the spatial layout of the environment is greatly facilitated by segregating the rotational from the translational optic flow component through a saccadic flight and gaze strategy. This active vision strategy thus enables the nervous system to solve apparently complex spatial vision tasks in a particularly efficient and parsimonious way. The key idea of this review is that biological agents, such as flies or bees, acquire at least part of their strength as autonomous systems through active interactions with their environment and not by simply processing passively gained information about the world. These agent-environment interactions lead to adaptive behaviour in surroundings of a wide range of complexity. Animals with even tiny brains, such as insects, are capable of performing extraordinarily well in their behavioural contexts by making optimal use of the closed action–perception loop. Model simulations and robotic implementations show that the smart biological mechanisms of motion computation and visually-guided flight control might be helpful to find technical solutions, for example, when designing micro air vehicles carrying a miniaturized, low-weight on-board processor.

  4. The theory of relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    1993-07-01

    This program began in January 1993. Its primary goals are studies of highly excited matter and its production in nuclear collisions at very high energies. After a general orientation on the project, abstracts describing the contents of completed papers and providing some details of current projects are given. Principal topics of interest are the following: the dynamics of nuclear collisions at very high energies (RHIC and LHC), the dynamics of nuclear collisions at AGS energies, high-temperature QCD and the physics of the quark-gluon plasma, and the production of strangelets and other rare objects

  5. Helicase Dependent Isothermal Amplification of DNA and RNA using Self-Avoiding Molecular Recognition Systems

    Science.gov (United States)

    Yang, Zunyi; McLendon, Chris; Hutter, Daniel; Bradley, Kevin M.; Hoshika, Shuichi; Frye, Carole; Benner, Steven A.

    2015-01-01

    Assays that target DNA or RNA (xNA) are highly sensitive, as small amounts of xNA can be amplified by PCR. Unfortunately, PCR is inconvenient in low resource environments, requiring equipment and power that may not be available in these environments. However, isothermal procedures that avoid thermal cycling are often confounded by primer dimers, off-target priming, and other artifacts. Here, we show how a “self avoiding molecular recognition system” (SAMRS) eliminates these artifacts to give clean amplicons in a helicase-dependent isothermal amplification (SAMRS-HDA). We also show that incorporating SAMRS into the 3′-ends of primers facilitates the design and screening of primers for HDA assays. Finally, we show that SAMRS-HDA can be twofold multiplexed, something difficult to achieve with HDA using standard primers. This shows that SAMRS-HDA is a more versatile approach than standard HDA with a broader applicability for xNA-targeted diagnostics and research. PMID:25953623

  6. Charge exchange in ion-atom collisions

    International Nuclear Information System (INIS)

    Bransden, B.H.

    1990-01-01

    Charge exchange reactions in which electrons are transferred from one ion (or atom) to another during a collision have been studied both as interesting examples of rearrangement collisions and because of important applications in plasma physics. This article reviews the modern theory developed for use at non-relativistic energies, but excluding the thermal and very low energy region. (author)

  7. Charmonium production in proton-proton collisions and in collisions of lead nuclei at CERN and comparison with Brookhaven data

    International Nuclear Information System (INIS)

    Topilskaya, N. S.

    2013-01-01

    A review of experimental data on charmoniumproduction that were obtained in fixed-target experiments at the SPS synchrotron and in proton-proton collisions and in collisions of lead nuclei in beams of the Large Hadron Collider (LHC) at CERN (Switzerland) is presented. A comparison with data obtained at the Brookhaven National Laboratory (USA) from experiments at the Relativistic Heavy Ion Collider (RHIC) is performed. Measurement of the suppression of J/ψ-meson production as a possible signal of the production of quark-gluon plasmawas proposed back in 1986 by T. Matsui and H. Satz. An anomalous suppression of J/ψ-meson production was discovered by the NA50 Collaboration at SPS (CERN) in central collisions of lead nuclei at the c.m. collision energy of 158 GeV per nucleon. Data obtained at the c.m. energy of 200 GeV per nucleon in the PHENIX experiment at RHIC indicate that, depending on multiplicity, the suppression of J/ψ-meson production at this energy approximately corresponds to the suppression of J/ψ-meson production in collisions of lead nuclei at the SPS accelerator. Theoretical models that take into account the regeneration of J/ψ mesons describe better RHIC experimental data. The measurement of charmonium production in proton-proton collisions and in collisions of lead nuclei in LHC beams revealed the importance of taking into account the regeneration process. At the LHC energies, it is also necessary to take into account the contribution of B-meson decays. Future measurements of charmonium production at the LHC to a higher statistical precision and over an extended energy region would be of importance for obtaining deeper insight into the mechanism of charmonium production and for studying the properties of matter at high energy density and temperature

  8. ALICE: Simulated lead-lead collision

    CERN Multimedia

    2003-01-01

    This track is an example of simulated data modelled for the ALICE detector on the Large Hadron Collider (LHC) at CERN, which will begin taking data in 2008. ALICE will focus on the study of collisions between nuclei of lead, a heavy element that produces many different particles when collided. It is hoped that these collisions will produce a new state of matter known as the quark-gluon plasma, which existed billionths of a second after the Big Bang.

  9. Charge changing collision cross sections of atomic ions

    International Nuclear Information System (INIS)

    Bliman, S.; Dousson, S.; Geller, R.; Jacquot, B.; Van Houtte, D.

    1980-05-01

    A device has been built to measure charge changing cross sections of atomic ions. It consists of an E.C.R. ion source (Micromafios) that delivers oxygen ions up to charge + 8, argon ions up to charge + 13. The ion source potential may be varied from 1 up to 10 kVolts. A first magnet is used to charge analyze the extracted beam. For a given charge state, the ion beam is passed in a collision cell whose pressure may be varied. The ions undergoing collisions on the target are analyzed by a second magnet and collected. The single collision condition is checked. Different collisions are considered: 1- Charge exchange collisions of argon ions with charge 2<=Z<=12 on argon. Cross sections for capture of 1, 2 and 3 electrons are given. 2- Stripping of argon ions (1<=Z<=4) on argon atoms. 3- Charge exchange of oxygen ions (2<=Z<=8) colliding on deuterium. One and two electron capture cross sections are presented

  10. Non vertical vibronic transitions in atom molecule collisions

    International Nuclear Information System (INIS)

    Klomp, U.C.

    1982-01-01

    This thesis is mainly devoted to an experimental and theoretical study on vibronic transitions which occur in collisions between an alkali atom and several diatomic molecules. An experimental study on electron and ion production in repulsive Cs-CO and Cs-N 2 collisions, and in Cs-NO and Cs-O 2 non-repulsive collisions is presented. The experimental data are discussed in terms of some existing models. It is clear that a new consistent theory on vibronic transitions is needed to explain the experimental data. Such a theory is presented, and it is shown that some existing models are limiting cases of this theory. An experimental study on the relative probabilities for ion and electron production in collisions between a Na, K or Cs atom and an O 2 or NO molecule is also described. These experiments suggest that the incident velocity of the alkali atoms has a predominant influence on the relative probabilities for ion and electron production in these collisions. (Auth.)

  11. Extreme and First-Passage Time of Ship Collision Loads

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Thoft-Christensen, Palle

    1983-01-01

    The paper outlines a general theory from which the distribution function of the extreme peak collision load encountered during a certain intended lifetime can be cal culated assuming the arrival of ship collisions to be specified by a Poisson counting proces s.......The paper outlines a general theory from which the distribution function of the extreme peak collision load encountered during a certain intended lifetime can be cal culated assuming the arrival of ship collisions to be specified by a Poisson counting proces s....

  12. A Collision-Free G2 Continuous Path-Smoothing Algorithm Using Quadratic Polynomial Interpolation

    Directory of Open Access Journals (Sweden)

    Seong-Ryong Chang

    2014-12-01

    Full Text Available Most path-planning algorithms are used to obtain a collision-free path without considering continuity. On the other hand, a continuous path is needed for stable movement. In this paper, the searched path was converted into a G2 continuous path using the modified quadratic polynomial and membership function interpolation algorithm. It is simple, unique and provides a good geometric interpretation. In addition, a collision-checking and improvement algorithm is proposed. The collision-checking algorithm can check the collisions of a smoothed path. If collisions are detected, the collision improvement algorithm modifies the collision path to a collision-free path. The collision improvement algorithm uses a geometric method. This method uses the perpendicular line between a collision position and the collision piecewise linear path. The sub-waypoint is added, and the QPMI algorithm is applied again. As a result, the collision-smoothed path is converted into a collision-free smooth path without changing the continuity.

  13. Professor Daniel M Segal and studies of collision and `half-collision' complexes at Imperial College London and Oxford University

    Science.gov (United States)

    Burnett, Keith

    2018-03-01

    We discuss Danny Segal's key roles in the development of the spectroscopy of collision complexes at Imperial College and Oxford. We explain how his work lead to a number of new insights into collision dynamics in external fields.

  14. Semiholography for heavy ion collisions

    CERN Document Server

    Mukhopadhyay, Ayan

    2017-01-01

    The formation of QGP in heavy ion collisions gives us a great opportunity for learning about nonperturbative dynamics of QCD. Semiholography provides a new consistent framework to combine perturbative and non-perturbative effects in a coherent way and can be applied to obtain an effective description for heavy ion collisions. In particular, it allows us to include nonperturbative effects in existing glasma effective theory and QCD kinetic theory for the weakly coupled saturated degrees of freedom liberated by the collisions in the initial stages in a consistent manner. We argue why the full framework should be able to confront experiments with only a few phenomenological parameters and present feasibility tests for the necessary numerical computations. Furthermore, we discuss that semiholography leads to a new description of collective flow in the form of a generalised non-Newtonian fluid. We discuss some open questions which we hope to answer in the near future.

  15. Formation of heavy quarks in ultrarelativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Schneider, S.M.; Greiner, W.; Soff, G.

    1992-02-01

    We investigate the production of heavy quarks in continuum and bound states in nuclear collisions. Creation for free banti b and tanti t quark pairs and for bottomonium and toponium in the ground state are computed at RHIC, LHC and SSC energies. Central and peripheral heavy-ion collisions are discussed. For top quark creation we assumed a mass range of 90 GeV ≤ m t ≤ 250 GeV. The creation rate for top quarks on peripheral collisions is estimated to be by a factor 40 to 130 smaller compared with corresponding central collisions. For m t = 130 GeV we calculated a creation rate of about 4760 top quark pairs per day at the LHC (3.5 TeV/u) for Pb-Pb collisions. (orig.)

  16. Results obtained from the 'Bille en tete A' Experiment. Part 1. Collisions in homogeneous magnetic field. Part 2. Collisions in magnetic mirror bottle; Resultats experimentaux sur bille en tete 'A'. Partie I: Collisions en champ magnetique homogene. Partie II: Collisions en bouteille magnetique a miroir

    Energy Technology Data Exchange (ETDEWEB)

    Evrard, P; Jacquinot, J; Leloup, C; Poffe, J -P; Waelbroeck, F

    1966-07-01

    Collisions of plasma puffs, whose characteristics (density and velocity) were varied in a broad domain are studied in a homogeneous longitudinal magnetic field. It has been verified that the puffs meet head on. We show that collisions of dense (n{sub i} {>=} 4.10{sup 14} cm{sup -3}) and relatively slow (V{sub 0} {<=} 10{sup 7} cm. s) puffs are 'efficient', i.e. the initial kinetic energies of the puffs are converted into thermal energy of the ions in the resulting plasma. Faster and less dense puffs interact little: incomplete conversion of kinetic into thermal energy. The limit between efficient and inefficient collisions corresponds to that which is expected from the test particle model. The slowing down of our puffs is thus ensured mainly by particle-particle interactions. The use of electric probes and the examination of the evolution of the plasma produced by the collision show that this plasma does not exhibit any rapid radial-motion. In the magnetic bottle of Bille-en-tete A (mirror ratio 4000/2000- G), the collision of two low density puffs leads to the capture of one liter of plasma with a density n{sub i} {approx} 2,10{sup 13} cm{sup -3} and an ionic temperature T{sub i} {approx} 10{sup 6}. The e-folding time of the plasma diamagnetism reaches 50 to 150 {mu}s; no flute instabilities are detected. The T{sub i} evolution was measured by the Doppler broadening of the 4680 angstrom line of the He{sup +} (added to the injected D{sup +} in the proportion of 5 per cent and the relative evolution of n{sub i} by the intensity of the spectral continuum. T{sub i} decreases rapidly, reaches 5.10{sup 5} to 10{sup 5} deg. K respectively 15 and 120 {mu}s after the maximum of the collision diamagnetic signal. n{sub i} increases slowly, 25 per cent during the first 100 {mu}s after the collision. The presence of cold plasma beyond the mirrors of the bottles allows one to justify the energy losses (thermal conductivity) and the apparent stability of the plasma column

  17. The automotive anti-collision system based on Ultrasonic

    Directory of Open Access Journals (Sweden)

    Qi Qinqin

    2017-08-01

    Full Text Available In the existing system of automobile anti-collision,the radar is mainly used for ranging.However,it can't be widely used because of its high cost.In this paper,based on the existing system of automobile anti-collision,the ultrasonic sensor is used to measure the distance and establish relevant anti-collision model.The experimental results show that the alarming information is accurate within a certain range.

  18. Determinants of Aggressive Tax Avoidance

    OpenAIRE

    Herbert, Tanja

    2015-01-01

    This thesis consists of three essays examining determinants of aggressive tax avoidance. The first essay “Measuring the Aggressive Part of International Tax Avoidance”, co-authored with Prof. Dr. Michael Overesch, proposes a new measure that isolates the additional or even aggressive part in international tax avoidance and analyzes the determinants of aggressive tax avoidance of multinational enterprises. The second essay “Capital Injections and Aggressive Tax Planning - Can Banks Have It All...

  19. Dissipative binary collisions

    International Nuclear Information System (INIS)

    Aboufirassi, M; Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Kerambrun, A.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; Lopez, O.; Louvel, M.; Meslin, C.; Metivier, V.; Nakagawa, T.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Wieloch, A.; Yuasa-Nakagawa, K.

    1998-01-01

    The binary character of the heavy ion collisions at intermediate energies in the exit channel has been observed under 30 MeV/n in medium and heavy systems. Measurements in light systems at energies approaching ∼ 100 MeV/nucleon as well as in very heavy systems have allowed to extend considerably the investigations of this binary process. Thus, the study of the Pb + Au system showed that the complete charge events indicated two distinct sources: the quasi-projectile and the quasi-target. The characteristics of these two sources are rather well reproduced by a trajectory computation which takes into account the Coulomb and nuclear forces and the friction appearing from the projectile-target interaction. The Wilczynski diagram is used to probe the correlation between the kinetic energy quenching and the deflecting angle. In case of the system Pb + Au at 29 MeV/nucleon the diagram indicate dissipative binary collisions typical for low energies. This binary aspect was also detected in the systems Xe + Ag at 44 MeV/nucleon, 36 Ar + 27 Al and 64 Zn + nat Ti. Thus, it was possible to reconstruct the quasi-projectile and to study its mass and excitation energy evolution as a function of the impact parameter. The dissipative binary collisions represent for the systems and energies under considerations the main contribution to the cross section. This does not implies that there are not other processes; particularly, the more or less complete fusion is also observed but with a low cross section which decreases with the increase of bombardment energy. More exclusive measurements with the INDRA detector on quasi-symmetric systems as Ar + KCl and Xe + Sn seem to confirm the importance of the binary collisions. The two source reconstruction of the Xe + Sn data at 50 MeV/nucleon reproduces the same behaviour as that observed in the system Pb + Au at 29 MeV/nucleon

  20. Energy-Aware RFID Anti-Collision Protocol.

    Science.gov (United States)

    Arjona, Laura; Simon, Hugo Landaluce; Ruiz, Asier Perallos

    2018-06-11

    The growing interest in mobile devices is transforming wireless identification technologies. Mobile and battery-powered Radio Frequency Identification (RFID) readers, such as hand readers and smart phones, are are becoming increasingly attractive. These RFID readers require energy-efficient anti-collision protocols to minimize the tag collisions and to expand the reader's battery life. Furthermore, there is an increasing interest in RFID sensor networks with a growing number of RFID sensor tags. Thus, RFID application developers must be mindful of tag anti-collision protocols. Energy-efficient protocols involve a low reader energy consumption per tag. This work presents a thorough study of the reader energy consumption per tag and analyzes the main factor that affects this metric: the frame size update strategy. Using the conclusion of this analysis, the anti-collision protocol Energy-Aware Slotted Aloha (EASA) is presented to decrease the energy consumption per tag. The frame size update strategy of EASA is configured to minimize the energy consumption per tag. As a result, EASA presents an energy-aware frame. The performance of the proposed protocol is evaluated and compared with several state of the art Aloha-based anti-collision protocols based on the current RFID standard. Simulation results show that EASA, with an average of 15 mJ consumed per tag identified, achieves a 6% average improvement in the energy consumption per tag in relation to the strategies of the comparison.