WorldWideScience

Sample records for face free-air cosub

  1. The photosynthetic and stomatal response of Medicago sativa cv. saranac to free-air CO{sub 2} enrichment (F.A.C.E.) and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Bridson, N.P.

    1996-08-01

    Plots of Medicago sativa cv. saranac were grown in the field at ambient (355 {mu}mol CO{sub 2} mol{sup -1} air) or elevated (600{mu}mol CO{sub 2} mol{sup -1} air) CO{sub 2} concentrations. High (200kg yr{sup -1}) or low (20kg yr{sup -1}) nitrogen levels were applied to two isogeneic lines, one able and one unable to use nitrogen fixing bacteria. Plants were in the second year of field growth. Exposure to elevated CO{sub 2} was via a Free-Air CO{sub 2} Enrichment System (FACE). Elevated CO{sub 2} increased diurnal assimilation by between 12% and 92%. Analysis of A/C{sub i} responses showed that effective nitrogen fertilisation was more important to rubisCO and RuBP activity than elevated CO{sub 2}. No acclimation was consistently observed. Leaves lower down the canopy were found to have lower Vc{sub max} and J{sub max} values, though age may be the cause of the latter effect. FACE conditions have only a small effect on these responses. There was some evidence found for the down-regulation of photosynthesis in the late afternoon. The FACE conditions had no affect on stomatal density but did increase epidermal cell density.

  2. Elevated CO{sub 2} in a prototype free-air CO{sub 2} enrichment facility affects photosynthetic nitrogen relations in a maturing pine forest

    Energy Technology Data Exchange (ETDEWEB)

    Ellsworth, D.S.; LaRoche, J.; Hendrey, G.R.

    1998-03-01

    A maturing loblolly pine (Pinus taeda L.) forest was exposed to elevated CO{sub 2} in the natural environment in a perturbation study conducted over three seasons using the free-air CO{sub 2} enrichment (FACE) technique. At the time measurements were begun in this study, the pine canopy was comprised entirely of foliage which had developed under elevated CO{sub 2} conditions (atmospheric CO{sub 2} {approx} 550 {micro}mol/mol{sup {minus}1}). Measurements of leaf photosynthetic responses to CO{sub 2} were taken to examine the effects of elevated CO{sub 2} on photosynthetic N nutrition in a pine canopy under elevated CO{sub 2}. Photosynthetic CO{sub 2} response curves (A-c{sub i} curves) were similar in FACE trees under elevated CO{sub 2} compared with counterpart trees in ambient plots for the first foliage cohort produced in the second season of CO{sub 2} exposure, with changes in curve form detected in the foliage cohorts subsequently produced under elevated CO{sub 2}. Differences in the functional relationship between carboxylation rate and N{sub a} suggest that for a given N{sub a} allocated among successive cohorts of foliage in the upper canopy, V{sub c max} was 17% lower in FACE versus Ambient trees. The authors also found that foliar Rubisco content per unit total protein derived from Western blot analysis was lower in late-season foliage in FACE foliage compared with ambient-grown foliage. The results illustrate a potentially important mode of physiological adjustment to growth conditions that may operate in forest canopies. Findings suggest that mature loblolly pine trees growing in the field may have the capacity for shifts in intrinsic nitrogen utilization for photosynthesis under elevated CO{sub 2} that are not dependent on changes in leaf N. Findings suggest a need for continued examination of internal feedbacks at the whole-tree and ecosystem level in forests that may influence long-term photosynthetic responses to elevated CO{sub 2}.

  3. Stem respiration of Populus species in the third year of free-air CO{sub 2} enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Bielen, B.; Geulemans, R. [Univ. of Antwerp, Dept. of Biology, Research Group of Plant and Vegetation Ecology, Wilrijk (Belgium); Scarascia-Mugnozza, G. [Univ. degli Studi della Tuscia, Dept. of Forest Environment and Resources, Viterbo (Italy)

    2003-04-01

    Carbon cycling in ecosystems, and especially in forests, is intensively studied to predict the effects of global climate change, and the role which forests may play in 'changing climate change'. One of the questions is whether the carbon balance of forests will be affected by increasing atmospheric CO{sub 2} concentrations. Regarding this question, effects of elevated [CO{sub 2}] on woody-tissue respiration have frequently been neglected. Stem respiration of three Populus species (P. alba L. (Clone 2AS-11), P. nigra L. (Clone Jean Pourtet), and P. x euramericana (Clone I-214)) was measured in a managed, high-density forest plantation exposed to free-air CO{sub 2} enrichment (POPFACE). During the period of measurements, in May of the third year, stem respiration rates were not affected by the FACE treatment. Moreover, FACE did not influence the relationships between respiration rate and both stem temperature and relative growth rate. The results were supported by the reported absence of a FACE-effect on growth and stem wood density. (au)

  4. ELEVATED CO{sub 2} IN A PROTOTYPE FREE-AIR CO{sub 2} ENRICHMENT FACILITY AFFECTS PHOTOSYNTHETIC NITROGEN RELATIONS IN A MATURING PINE FOREST

    Energy Technology Data Exchange (ETDEWEB)

    ELLSWORTH,D.S.; LA ROCHE,J.; HENDREY,G.R.

    1998-03-01

    A maturing loblolly pine (Pinus taeda L.) forest was exposed to elevated CO{sub 2} in the natural environment in a perturbation study conducted over three seasons using the free-air CO{sub 2} enrichment (FACE) technique. At the time measurements were begun in this study, the pine canopy was comprised entirely of foliage which had developed under elevated CO{sub 2} conditions (atmospheric [CO{sub 2}] {approx} 550 {micro}mol mol{sup {minus}1}). Measurements of leaf photosynthetic responses to CO{sub 2} were taken to examine the effects of elevated CO{sub 2} on photosynthetic N nutrition in a pine canopy under elevated CO{sub 2}. Photosynthetic CO{sub 2} response curves (A-c{sub i} curves) were similar in FACE trees under elevated CO{sub 2} compared with counterpart trees in ambient plots for the first foliage cohort produced in the second season of CO{sub 2} exposure, with changes in curve form detected in the foliage cohorts subsequently produced under elevated CO{sub 2}. Differences in the functional relationship between carboxylation rate and N{sub a} suggest that for a given N{sub a} allocated among successive cohorts of foliage in the upper canopy, V{sub c max} was 17% lower in FACE versus Ambient trees. The authors also found that foliar Rubisco content per unit total protein derived from Western blot analysis was lower in late-season foliage in FACE foliage compared with ambient-grown foliage. The results illustrate a potentially important mode of physiological adjustment to growth conditions that may operate in forest canopies. Their findings suggest that mature loblolly pine trees growing in the field may have the capacity for shifts in intrinsic nitrogen utilization for photosynthesis under elevated CO{sub 2} that are not dependent on changes in leaf N. While carboxylation efficiency per unit N apparently decreased under elevated CO{sub 2}, photosynthetic rates in trees at elevated CO{sub 2} concentrations {approx} 550 pmol mol{sub {minus}1} are still

  5. Soil Carbon Storage and N{sub 2}O Emissions from Wheat Agroecosystems as Affected by Free-Air CO{sub 2} Enrichment (FACE) and Nitrogen Treatments. Annual Progress Report - Year 1: August 1, 1996 to July 31, 1997 [Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Leavitt, S.W.; Matthias, A.; Thompson, T.L.

    1999-02-17

    Rising atmospheric CO{sub 2} concentrations have prompted concern about response of plants and crops to future elevated CO{sub 2} levels, and particularly the extent to which ecosystems will sequester carbon and thus impact the rate of rise of CO{sub 2} concentrations. Free-air CO{sub 2} enrichment (FACE) experimentation was used with wheat agroecosystems for two growing seasons to assess effects of CO{sub 2} and soil nitrogen. Over 20 researchers on this experiment variously examined plant production and grow yield, phenology, length of growing season, water-use efficiency, ecosystem productivity, below ground processes (root and microbial activity, carbon and nitrogen cycling), etc.

  6. Soil Carbon Storage and N(sub 2)O Emissions from Wheat Agroecosystems as Affected by Free-Air CO(sub 2) Enrichment (FACE) and Nitrogen Treatments. Annual Progress Report - Year 1: August 1, 1996 to July 31, 1997[Final Report]; FINAL

    International Nuclear Information System (INIS)

    Leavitt, S.W.; Matthias, A.; Thompson, T.L.

    1999-01-01

    Rising atmospheric CO(sub 2) concentrations have prompted concern about response of plants and crops to future elevated CO(sub 2) levels, and particularly the extent to which ecosystems will sequester carbon and thus impact the rate of rise of CO(sub 2) concentrations. Free-air CO(sub 2) enrichment (FACE) experimentation was used with wheat agroecosystems for two growing seasons to assess effects of CO(sub 2) and soil nitrogen. Over 20 researchers on this experiment variously examined plant production and grow yield, phenology, length of growing season, water-use efficiency, ecosystem productivity, below ground processes (root and microbial activity, carbon and nitrogen cycling), etc

  7. FACE: Free-Air CO[sub 2] Enrichment for plant research in the field

    Energy Technology Data Exchange (ETDEWEB)

    Hendrey, G.R. (ed.)

    1992-08-01

    Research programs concerning the effects of Carbon Dioxide(CO)[sub 2] on cotton plants are described. Biological responses studied include foliage response to CO[sub 2] fluctuations; yield of cotton exposed to CO[sub 2] enrichment; responses of photosynthesis and stomatal conductance to elevated CO[sub 2] in field-grown cotton; cotton leaf and boll temperatures; root response to CO[sub 2] enrichment; and evaluations of cotton response to CO[sub 2] enrichment with canopy reflectance observations.

  8. FACE: Free-Air CO{sub 2} Enrichment for plant research in the field

    Energy Technology Data Exchange (ETDEWEB)

    Hendrey, G.R. [ed.

    1992-08-01

    Research programs concerning the effects of Carbon Dioxide(CO){sub 2} on cotton plants are described. Biological responses studied include foliage response to CO{sub 2} fluctuations; yield of cotton exposed to CO{sub 2} enrichment; responses of photosynthesis and stomatal conductance to elevated CO{sub 2} in field-grown cotton; cotton leaf and boll temperatures; root response to CO{sub 2} enrichment; and evaluations of cotton response to CO{sub 2} enrichment with canopy reflectance observations.

  9. Sea ice contribution to the air-sea CO{sub 2} exchange in the Arctic and Southern Oceans

    Energy Technology Data Exchange (ETDEWEB)

    Rysgaard, Soeren (Greenland Climate Research Centre, Greenland Inst. of Natural Resources, Nuuk, Greenland (Denmark); Centre for Earth Observation Science, CHR Faculty of Environment Earth and Resources, Univ. of Manitoba, Winnipeg (Canada)), e-mail: rysgaard@natur.gl; Bendtsen, Joergen (Greenland Climate Research Centre, Greenland Inst. of Natural Resources, Nuuk, Greenland (Denmark); Centre for Ice and Climate, Niels Bohr Inst., Univ. of Copenhagen, Copenhagen O (Denmark)); Delille, Bruno (Unit' e d' Oceanographie Chimique, Interfacultary Centre for Marine Research, Universite de Liege, Liege (Belgium)); Dieckmann, Gerhard S. (Alfred Wegener Inst. for Polar and Marine Research, Bremerhaven (Germany)); Glud, Ronnie N. (Greenland Climate Research Centre, Greenland Inst. of Natural Resources, Nuuk, Greenland (Denmark); Scottish Association of Marine Sciences, Scotland UK, Southern Danish Univ. and NordCee, Odense M (Denmark)); Kennedy, Hilary; Papadimitriou, Stathys (School of Ocean Sciences, Bangor Univ., Menai Bridge, Anglesey, Wales (United Kingdom)); Mortensen, John (Greenland Climate Research Centre, Greenland Inst. of Natural Resources, Nuuk, Greenland (Denmark)); Thomas, David N. (School of Ocean Sciences, Bangor Univ., Menai Bridge, Anglesey, Wales (United Kingdom); Finnish Environment Inst. (SYKE), Marine Research Centre, Helsinki (Finland)); Tison, Jean-Louis (Glaciology Unit, Dept. of Earth and Environmental Sciences, Universite Libre de Bruxelles, Bruxelles, (Belgium))

    2011-11-15

    Although salt rejection from sea ice is a key process in deep-water formation in ice-covered seas, the concurrent rejection of CO{sub 2} and the subsequent effect on air-sea CO{sub 2} exchange have received little attention. We review the mechanisms by which sea ice directly and indirectly controls the air-sea CO{sub 2} exchange and use recent measurements of inorganic carbon compounds in bulk sea ice to estimate that oceanic CO{sub 2} uptake during the seasonal cycle of sea-ice growth and decay in ice-covered oceanic regions equals almost half of the net atmospheric CO{sub 2} uptake in ice-free polar seas. This sea-ice driven CO{sub 2} uptake has not been considered so far in estimates of global oceanic CO{sub 2} uptake. Net CO{sub 2} uptake in sea-ice-covered oceans can be driven by; (1) rejection during sea-ice formation and sinking of CO{sub 2}-rich brine into intermediate and abyssal oceanic water masses, (2) blocking of air-sea CO{sub 2} exchange during winter, and (3) release of CO{sub 2}-depleted melt water with excess total alkalinity during sea-ice decay and (4) biological CO{sub 2} drawdown during primary production in sea ice and surface oceanic waters

  10. Final Technical Report: Science and technology reviews of FACE[Free Air Carbon Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Strain, Boyd R.

    1998-03-23

    The purpose of this grant was to bring together the principals of all known facilities that had been developed, principals who had submitted proposals to develop FACE facilities, and principals who want to develop proposals for facilities. In addition, critical program personnel from potential funding agencies and a few high level science administrators were invited to observe the proceedings and to visit a working FACE facility. The objectives of this study are to conduct a three-day international meeting on scientific aspects of research with the new and developing free air carbon enrichment (FACE) technology. Immediately following the science meeting, conduct a two-day international meeting on experimental protocols to be applied in FACE research. To conduct a four day international meeting on the assessment of the responses of forest ecosystems to elevated atmospheric carbon dioxide. The three meetings supported by this grant were all highly successful meetings and resulted in the formation of an organized and identified working group with the acronym InterFACE (International Free-Air Carbon Dioxide Enrichment) working group.

  11. Investigation of the effects of elevated atmospheric CO{sub 2} on a whet crop of the Free-Air Carbondioxide Enrichment (FACE) Experiment, Maricopa, USA. Final report; Untersuchung der Auswirkungen erhoehter atmosphaerischer CO{sub 2}-Konzentrationen auf Weizenbestaende des Free-Air Carbondioxid Enrichment (FACE)-Experimentes Maricopa (USA). Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kartschall, T; Grossman, S; Michaelis, P; Wechsung, F [Potsdam-Institut fuer Klimafolgenforschung e.V., Potsdam (Germany). Abt. Globaler Wandel und Natuerliche Systeme; Graefe, J; Waloszczyk, K [Professor-Hellriegel-Institut e.V., Bernburg (Germany); Wechsung, G [US Water-Conservation Lab., Phoenix, AZ (United States); Blum, E; Blum, M

    1998-02-01

    A version of the demeter model was developed which describes both the quantitative and qualitative effects of elevated atmospheric CO{sub 2} on a wheat crop under conditions of limited water and/or nitrogen supply. In the model`s photosynthesis and energy balance modules, first versions of components were developed which it should be possible to apply in further ecosystem models (starting with the cereals models of the demeter family). Experimental data from the Maricopa FACE wheat experiments 1992-1996, in which scientists from PIK were involved, were used for the development and testing of the model. Model solutions obtained were applied for the first time of central European climatic and site conditions as part of a regional yield study for the Federal State of Brandenburg. (orig.)

  12. A CO{sub 2} air conditioning system to fight against greenhouse effect; Une climatisation a CO{sub 2} pour lutter contre l'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-10-05

    Automotive air-conditioning systems, with the induced additional fuel consumption and with the type of refrigerants used, contribute to the global warming. Several car fitters, like Delphi, have developed prototypes of CO{sub 2} air conditioners. CO{sub 2} is a greenhouse gas but is less harmful for the environment than other classical refrigerants. The use of CO{sub 2} needs a complete re-design of air-conditioning systems which have to stand pressures of 130 bars and temperatures of 165 deg. C. Short paper. (J.S.)

  13. AIRS retrieved CO{sub 2} and its association with climatic parameters over India during 2004–2011

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, K. Ravi; Revadekar, J.V.; Tiwari, Yogesh K., E-mail: yktiwari@gmail.com

    2014-04-01

    Atmospheric Infrared Sounder (AIRS) retrieved mid-tropospheric Carbon Dioxide (CO{sub 2}) have been used to study the variability and its association with the climatic parameters over India during 2004 to 2011. The study also aims in understanding transport of CO{sub 2} from surface to mid-troposphere over India. The annual cycle of mid-tropospheric CO{sub 2} shows gradual increase in concentration from January till the month of May at the rate ∼ 0.6 ppm/month. It decreases continuously in summer monsoon (JJAS) at the same rate during which strong westerlies persists over the region. A slight increase is seen during winter monsoon (DJF). Being a greenhouse gas, annual cycle of CO{sub 2} show good resemblance with annual cycle of surface air temperature with correlation coefficient (CC) of + 0.8. Annual cycle of vertical velocity indicate inverse pattern compared to annual cycle of CO{sub 2}. High values of mid-tropospheric CO{sub 2} correspond to upward wind, while low values of mid-tropospheric CO{sub 2} correspond to downward wind. In addition to vertical motion, zonal winds are also contributing towards the transport of CO{sub 2} from surface to mid-troposphere. Vegetation as it absorbs CO{sub 2} at surface level, show inverse annual cycle to that of annual cycle of CO{sub 2} (CC-0.64). Seasonal variation of rainfall-CO{sub 2} shows similarities with seasonal variation of NDVI-CO{sub 2}. However, the use of long period data sets for CO{sub 2} at the surface and at the mid-troposphere will be an advantage to confirm these results. - Highlights: • Association of AIRS CO{sub 2} with climate parameters over India • CO{sub 2} show positive correlation with surface temperature • Vertical/horizontal winds contribute towards CO{sub 2} transport • Vegetation and monsoonal rainfall show inverse relationship with CO{sub 2}.

  14. High CO/sub 2/ partial pressure effects on dark and light CO/sub 2/ fixation and metabolism in Vicia faba leaves

    Energy Technology Data Exchange (ETDEWEB)

    Coudret, A.; Ferron, F.; Laffray, D.

    1985-01-01

    Stomatal opening on Vicia faba can be induced by high CO/sub 2/ partial pressures (10.2%) in dark as well as in light. Stomatal aperture was measured in both cases with a hydrogen porometer. The distribution of /sup 14/C among early products of photosynthesis was studied. Comparisons are made with carboxylations occurring when stomata were open in the dark with CO/sub 2/-free air and in light with 0.034% CO/sub 2/. Results showed that in high CO/sub 2/ partial pressure in light, less radioactivity was incorporated in Calvin cycle intermediates and more in sucrose. ..beta.. carboxylations and photorespiration seemed to be inhibited. In the dark in both CO/sub 2/ conditions, /sup 14/C incorporation was found in malate and aspartate but also in serine and glycerate in high CO/sub 2/ conditions. In light these changes in metabolic pathways may be related with the deleterious effects recorded on leaves after long-term expositions to high partial pressure of CO/sub 2/.

  15. Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments.

    Science.gov (United States)

    Norby, Richard J; De Kauwe, Martin G; Domingues, Tomas F; Duursma, Remko A; Ellsworth, David S; Goll, Daniel S; Lapola, David M; Luus, Kristina A; MacKenzie, A Rob; Medlyn, Belinda E; Pavlick, Ryan; Rammig, Anja; Smith, Benjamin; Thomas, Rick; Thonicke, Kirsten; Walker, Anthony P; Yang, Xiaojuan; Zaehle, Sönke

    2016-01-01

    The first generation of forest free-air CO2 enrichment (FACE) experiments has successfully provided deeper understanding about how forests respond to an increasing CO2 concentration in the atmosphere. Located in aggrading stands in the temperate zone, they have provided a strong foundation for testing critical assumptions in terrestrial biosphere models that are being used to project future interactions between forest productivity and the atmosphere, despite the limited inference space of these experiments with regards to the range of global ecosystems. Now, a new generation of FACE experiments in mature forests in different biomes and over a wide range of climate space and biodiversity will significantly expand the inference space. These new experiments are: EucFACE in a mature Eucalyptus stand on highly weathered soil in subtropical Australia; AmazonFACE in a highly diverse, primary rainforest in Brazil; BIFoR-FACE in a 150-yr-old deciduous woodland stand in central England; and SwedFACE proposed in a hemiboreal, Pinus sylvestris stand in Sweden. We now have a unique opportunity to initiate a model-data interaction as an integral part of experimental design and to address a set of cross-site science questions on topics including responses of mature forests; interactions with temperature, water stress, and phosphorus limitation; and the influence of biodiversity. © UT-Battelle, LLC New Phytologist © 2015 New Phytologist Trust.

  16. High Precision Stable Isotope Measurements of Caribic Aircraft CO{sub 2} Samples: Global Distribution and Exchange with the Biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Assonov, S. S. [Max Planck Institute for Chemistry, Mainz (Germany); Joint Research Centre, Institute for Reference Materials and Measurements (JRC-IRMM), European Commission, Geel (Belgium); Brenninkmeijer, C. A.M.; Schuck, T. J. [Max Planck Institute for Chemistry, Mainz (Germany); Taylor, P. [Joint Research Centre, Institute for Reference Materials and Measurements (JRC-IRMM), European Commission, Geel (Belgium)

    2013-07-15

    In 2007-2009 JRC-IRMM, in collaboration with the project CARIBIC (Civil Aircraft for Regular Investigation of the atmosphere Based on an Instrument Container, www.caribicatmospheric. com), conducted systematic measurements aimed to study the global distribution of CO{sub 2} isotopic composition. A large data set for the upper troposphere-lowermost stratosphere and free troposphere was obtained. For the first time it is demonstrated how CO{sub 2} isotope signals reflect global scale variability in air mass origin. Tight correlations observed arise either from stratosphere/troposphere mixing or from mixing of background air and air masses affected by CO{sub 2} sources and sinks, over long distances and throughout the seasons. The high quality {delta}{sup 18}O(CO{sub 2}) data prove to be a useful tracer reflecting long range CO{sub 2} transport and also CO{sub 2} exchange with land biosphere and soils. The data provide a benchmark for future comparisons and are available for modelling studies. (author)

  17. Community metabolism and air-sea CO[sub 2] fluxes in a coral reef ecosystem (Moorea, French Polynesia)

    Energy Technology Data Exchange (ETDEWEB)

    Gattuso, J P; Pichon, M; Delesalle, B; Frankignoulle, M [Observatory of European Oceanology (Monaco)

    1993-06-01

    Community metabolism (primary production, respiration and calcification) and air-sea CO[sub 2] fluxes of the 'Tiahura barrier reef' (Moorea, French Polynesia) were investigated in November and December 1991. Gross production and respiration were respectively 640.2 to 753 and 590.4 to 641.5 mmol (O[sub 2] or CO[sub 2]) m[sup 2] d[sup -1] (7.7 to 9.0 and 7.1 to 7.7 g C m)[sup 2] d[sup -1] and the reef displayed a slightly negative excess (net) production. The contribution of planktonic primary production to reef metabolism was negligible (0.15% of total gross production). Net calcification was positive both during the day and at night; its daily value was 243 mmol CaCO[sub 3] m[sup 2] d[sup -1] (24.3 g CaCO)[sub 3] m[sup -2] d[sup -1]. Reef metabolism decreased seawater total CO[sub 2] by 433.3 mmol m[sup 2] d[sup -1]. The air-sea CO[sub 2] fluxes were close to zero in the ocean but displayed a strong daily pattern at the reef front and the back reef. Fluxes were positive (CO[sub 2] evasion) at night, decreased as irradiance increased and were negative during the day (CO[sub 2] invasion). Integration of the fluxes measured during a 24 h experiment at the back reef showed that the reef was a source of CO[sub 2] to the atmosphere (1.5 mmol m[sup 2] d[sup -1]).

  18. Seasonal variation of CO{sub 2} flux between air and temperate forest

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Susumo; Murayama, Shohei; Kondo, Hiroaki [National Inst. for Resources and Environment, Ibaraki (Japan)

    1995-12-31

    Carbon dioxide, which is a very important greenhouse gas, contributes approximately 55 % to the problem of global warming. The knowledge to the sources and sinks of carbon on a global basis is very poor. IPCC (1994) suggested that unknown 1.5-2.0 GtC/year may be sunk in terrestrial ecosystem, in particular, in the Northern Hemisphere. As can be seen from a recent estimation of the carbon fluxes in the terrestrial biosphere, there is a high degree of uncertainty in the magnitude. The clear evidence for it has not been shown yet by IPCC (1994). However, based on the gradient of CO{sub 2}, as a function of latitude, main CO{sub 2} sink can be thought to be in the terrestrial biosphere, in the middle to high latitude of the Northern Hemisphere. As can be seen from a recent estimation of the carbon fluxes in the terrestrial biosphere, there is a high degree of uncertainty in the magnitude. From this view, more investigation of the role of the temperate forest on the CO{sub 2} balance is inevitable. In this presentation, the seasonal variation of CO{sub 2} flux between air and biosphere in temperate deciduous forest in Japan is intended to be elucidated. (author)

  19. Seasonal variation of CO{sub 2} flux between air and temperate forest

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Susumo; Murayama, Shohei; Kondo, Hiroaki [National Inst. for Resources and Environment, Ibaraki (Japan)

    1996-12-31

    Carbon dioxide, which is a very important greenhouse gas, contributes approximately 55 % to the problem of global warming. The knowledge to the sources and sinks of carbon on a global basis is very poor. IPCC (1994) suggested that unknown 1.5-2.0 GtC/year may be sunk in terrestrial ecosystem, in particular, in the Northern Hemisphere. As can be seen from a recent estimation of the carbon fluxes in the terrestrial biosphere, there is a high degree of uncertainty in the magnitude. The clear evidence for it has not been shown yet by IPCC (1994). However, based on the gradient of CO{sub 2}, as a function of latitude, main CO{sub 2} sink can be thought to be in the terrestrial biosphere, in the middle to high latitude of the Northern Hemisphere. As can be seen from a recent estimation of the carbon fluxes in the terrestrial biosphere, there is a high degree of uncertainty in the magnitude. From this view, more investigation of the role of the temperate forest on the CO{sub 2} balance is inevitable. In this presentation, the seasonal variation of CO{sub 2} flux between air and biosphere in temperate deciduous forest in Japan is intended to be elucidated. (author)

  20. CO{sub 2} emissions due to the air transportation in Brazil; Emissoes de CO{sub 2} devido ao transporte aereo no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, Andre Felipe; Schaeffer, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Planejamento Energetico]. E-mail: afsimoes@antares.com.br; roberto@ppe.ufrj.br

    2002-07-01

    This work intends to to insert and understand the participation of the brazilian air transportation in the ambit of the global climate changes. Firstly an introduction is presented for positioning the Brazil, in the proposed subject; an approach of the tenuous relationship between the air transportation sector and atmospheric environment medium; the energy consumption associated to the growing demand; and the inventory of the CO{sub 2} emissions (Calculated by using the top-down methodology) due to the Brazilian air transportation activities. The work is globally discussed and analysed.

  1. Application of free-air CO2 enrichment (FACE) technology to a forest canopy: A simulation study

    International Nuclear Information System (INIS)

    Lipfert, F.W.; Hendrey, G.R.; Lewin, K.L.; Alexander, Y.

    1992-03-01

    Forest ecosystems constitute an important part of the planet's land cover. Understanding their exchanges of carbon with the atmosphere is crucial in projecting future net atmospheric CO 2 increases. It is also important that experimental studies of these processes be performed under conditions which are as realistic as possible, particularly with respect to photosynthesis and evapotranspiration. New technology and experimental protocols now exist which can facilitate studying an undisturbed forest canopy under long-term enriched CO 2 conditions. The International Geosphere Biosphere Program of the International Council of Scientific Unions has established a subprogram on Global Change and Terrestrial Ecosystems (GCTE). This program is driven by two major concerns: to be able to predict the effects of global change on the structure and function of ecosystems, and to predict how these changes will control both atmospheric CO 2 and climate, through various feedback pathways. Brookhaven National Laboratory (BNL) has developed a system for exposing field-grown plants to controlled elevated concentrations of atmospheric gases, without use of confining chambers that alter important atmospheric exchange processes. This system, called FACE for Free Air CO 2 Enrichment. This paper focuses on the fluid mechanics of free-air fumigation and uses a numerical simulation model based on superposed gaussian plumes to project how the present ground-based system could be used to fumigate an elevated forest canopy

  2. Performance evaluation of a stack cooling system using CO{sub 2} air conditioner in fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Chul; Won, Jong Phil [Thermal Management Research Center, Korea Automotive Technology Institute, Chungnam 330-912 (Korea); Park, Yong Sun; Lim, Tae Won [Corporate Research and Development Division, Hyundai-Kia Motors, Gyeonggi 449-912 (Korea); Kim, Min Soo [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744 (Korea)

    2009-01-15

    A relation between the heat release from a fuel cell stack and an air conditioning system's performance was investigated. The air conditioning system installed in a fuel cell vehicle can be used for stack cooling when additional stack heat release is required over a fixed radiator capacity during high vehicle power generation. This study investigated the performance of a stack cooling system using CO{sub 2} air conditioner at various operating conditions. Also, the heat releasing effectiveness and mutual interference were analyzed and compared with those for the conventional radiator cooling system with/without cabin cooling. When the radiator coolant inlet temperature and flow rate were 65 C and 80 L/min, respectively, for the outdoor air inlet speed of 5 m/s, the heat release of the stack cooling system with the aid of CO{sub 2} air conditioner increased up to 36% more than that of the conventional radiator cooling system with cabin cooling. Furthermore, this increased by 7% versus the case without cabin cooling. (author)

  3. Comparison of CO/sub 2/ measurements by two laboratories on air from bubbles in polar ice

    Energy Technology Data Exchange (ETDEWEB)

    Barnola, J.M.; Raynaud, D.; Neftel, A.; Oeschger, H.

    1983-06-02

    The CO/sub 2/ content of air enclosed in bubbles in polar ice has been reported by two laboratories (in Grenoble and Bern) to be representative of the atmospheric CO/sub 2/ concentration at the time the ice was formed. Such ice core studies indicate lower concentrations in ice formed at the end of the ice age, around 18,000 yr BP, and several explanations have been proposed for such a change. Both laboratories are currently measuring various ice cores in order to determine the pre-AD 1850 CO/sub 2/ level in the atmosphere, which relates to the partitioning of anthropogenic CO/sub 2/ among the atmospheric, biospheric and oceanic reservoirs. The two laboratories use different ice cores and different analytical procedures and, therefore, there is a need to know to what extent the measurements are quantitatively comparable. The results are presented of a comparison between the two laboratories based on measurements from the same ice core sections, which indicate that the measurements can be compared with great confidence. The results suggest that the mean CO/sub 2/ level recorded by Antartic ice for the period 800-2500 yr BP is about 260 p.p.m.v.

  4. Free-air CO2 enrichment (FACE) enhances biomass production in a short-rotation poplar plantation

    International Nuclear Information System (INIS)

    Calfapietra, C.; De Angelis, P.; Scarascia-Mungozza, G.; Gielen, B.; Ceulemans, R.; Galema, A. N. J.; Lukac, M.; Moscatelli, M. C.

    2003-01-01

    The possible contribution of short rotation cultures (SRC) to carbon sequestration in both current and elevated carbon dioxide concentrations was investigated using the free-air carbon dioxide enrichment (FACE) technique. Three poplar species were grown in an SRC plantation for three growing seasons. Above-ground and below-ground biomass increased by 15 to 27 per cent and by 22 to 38 per cent, respectively; light-efficiency also increased as a result. Depletion of inorganic nitrogen from the soil increased after three growing seasons at elevated carbon dioxide levels, but carbon dioxide showed no effect on stem wood density. Stem wood density also differed significantly from species to species. These results confirmed inter-specific differences in biomass production in poplar, and demonstrated that elevated carbon dioxide enhanced biomass productivity and light-use efficiency of a poplar short rotation cultivation ecosystem without changing biomass allocation. The reduction in soil nitrogen raises the possibility of reduced long-term biomass productivity. 60 refs., 4 tabs., 4 figs

  5. Climate warrior : David Keith and his team are engineering the world to manage global climate change : scrubbing CO{sub 2} out of the air we breathe

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, S.

    2009-01-15

    A team of scientists from the University of Calgary's Institute for Sustainable Energy, Environment and Economy have developed an innovative way to capture atmospheric carbon. The process involves reducing carbon dioxide (CO{sub 2}) using a simple machine that can capture the trace amount of CO{sub 2} present in ambient air anywhere in the world. The research offers a way to capture CO{sub 2} emissions from transportation sources such as vehicles and airplanes, which represent about 50 per cent of global annual greenhouse gas emissions. This article described how the custom-built prototype air capture tower, called a contractor, works. It measures 6 metres tall by 1.2 metres wide and runs on a gasoline-powered generator. The energy efficient and cost effective air capture technology complements other approaches for reducing emissions from the transportation sector, such as biofuels and electric vehicles. The air capture tower can capture the CO{sub 2} that is present in ambient air and store it wherever it is cheapest. The custom-built tower can capture the equivalent of 20 tonnes per year of CO{sub 2} on a single square meter of scrubbing material. The team devised a way to use a chemical process from the pulp and paper industry to cut the energy cost of air capture in half. The simple, reliable and scalable technology offers an opportunity to build a commercial-scale plant. 1 ref., 6 figs.

  6. CO{sub 2} audit 1990/2005. Emissions from energy generation and transport; CO{sub 2}-Bilanz 1990/2005. Energie- und verkehrsbedingte Emissionen

    Energy Technology Data Exchange (ETDEWEB)

    Lueth, B.; Hoffmann-Kallen, A. (comps.)

    2007-04-15

    There were two studies investigating changes in energy related CO{sub 2} emissions (including CO{sub 2} equivalents) for Hannover (Federal Republic of Germany) within the period 1990 to 2005. CO{sub 2} emissions result from the combustion of fossil fuels. These have been divided into emissions due to energy consumption (electricity and heating) and the transport sector. The first study, 'Emissions caused by energy consumption (electricity and heating)' depicts the development of energy and CO{sub 2} audits for the years 1990 to 2005. Heating energy demand for 2005 was 8% lower than for 1990 due to increased energy efficiency. Furthermore, CO{sub 2} emissions were in effect reduced by 19% due to increases in the use of district heating and natural gas as alternatives to heating oil and coal. Although electricity consumption rose by 17% an increase of only 1% in CO{sub 2} emissions was registered due to improved energy efficiency through the deployment of combined heat and power plants for electricity generation. The second study, 'CO{sub 2} emissions from the transport sector' examined data for motorised traffic, local public transport, rail and air travel. Although traffic volume for these areas of transport increased during the period 1990 to 2005, effectively energy consumption for the total distance travelled decreased. Road traffic increased by 9% in Hannover over the period but fuel savings from more efficient vehicle engines resulted in an overall reduction of 6% in CO{sub 2} emissions. Despite an increase in carrying capacity of 31% (measured in seat-kilometres), CO{sub 2} emissions could be reduced by 22%. A similar trend was identified in the German rail traffic sector (local- and long-distance). Despite an overall increase in traveller kilometres across Germany, when relating this to the population of Hannover a local reduction in CO{sub 2} emissions of 17% was recorded. Air travel has doubled in Germany over the last 15 years. Thus

  7. Development of new generations filling equipment that enables filling of CO{sub 2} in the car and cooling system industries; Udvikling af nye generationer fyldestationer, der muliggoer paefyldning af CO{sub 2} i automibil- og koeleindustrien

    Energy Technology Data Exchange (ETDEWEB)

    Phillipsen, K. [AGRAMKOW Fluid Systems A/S (Denmark)

    2005-07-01

    Climatic change is among the biggest global environmental challenges, if not the biggest, that mankind is facing. Therefore, it is necessary to make an effort to reduce the impact of greenhouse gases and at the same time look for alternatives to known and used refrigerants. Substitution of greenhouse gases within car, air condition and cooling industry is in progress, but at very different levels with very different time frames. The car industry and the commercial cooling systems will undergo conversion in the first phase. Subsequently the conversion will take place in the air condition and heat pump markets. AGRAMKOW has extensive experiences from previous conversions of production plants to new refrigerants. The complexity behind the development of a filling station to CO{sub 2} is extremely difficult due to the fact that CO{sub 2} differs significantly from known and used means. (BA)

  8. Children's exposure to indoor air in urban nurseries-part I: CO{sub 2} and comfort assessment

    Energy Technology Data Exchange (ETDEWEB)

    Branco, P.T.B.S.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V., E-mail: sofia.sousa@fe.up.pt

    2015-07-15

    Indoor air quality (IAQ) in nurseries is an emerging case-study. Thus, this study, as the Part I of the larger study “Children's exposure to indoor air in urban nurseries”, aimed to: i) evaluate nurseries’ indoor concentrations of carbon dioxide (CO{sub 2}), a global IAQ indicator, in class and lunch rooms; ii) assess indoor comfort parameters–temperature (T) and relative humidity (RH); and iii) analyse them according to guidelines and references for IAQ, comfort and children's health. Indoor continuous measurements were performed. Non-compliances with guidelines were found in comfort parameters, which could cause discomfort situations and also microbial proliferation. Exceedances in CO{sub 2} concentrations were also found and they were caused by poor ventilation and high classroom occupation. More efficient ventilation and control of comfort parameters, as well as to reduce occupation by reviewing Portuguese legislation on that matter, would certainly improve IAQ and comfort in nurseries and consequently safeguard children's health. - Highlights: • High occupation and poor ventilation were main determinants of IAQ in nurseries. • T and RH indoor values found in nurseries are likely to cause thermal discomfort. • Building characteristics and an inadequate ventilation determined T and RH values. • High CO{sub 2} concentrations found could indicate accumulation of other air pollutants.

  9. Constructive solution to the CO/sub 2/ problem

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, C

    1979-03-01

    CO/sub 2/ effects on climate receive increasing attention at the scientific, public, and political level. Three proposals for dealing with the CO/SUB/2 problem are briefly examined and their cost very roughly assessed. The first one, originally proposed by W. Nordhaus, uses an economical constraint, taxation, to scare the energy consumer out of fossil fuels into energy sources which do not release CO/SUB/2: nuclear, solar or even biomass. Taxes are so adjusted that a predetermined CO/SUB/2 level in the atmosphere will never be reached. The intermediate path is however left free for an eventual optimization, i.e. minimization of economic costs. In the second, originally proposed by Dyson, 10/SUP/1/SUP/2 sycamore trees should be planted, hoping they will in time mop up CO/SUB/2 from the atmosphere and store it in form of standing crop and humus. Apart from a certain number of problems arising from such a large scale plantation - after all active humanity is made of only about 10/SUP/9 people - the system appears up to a point selfdefeating because the resulting decrease in albedo will increase temperature, at least at the beginning, and only after many years the CO/SUB/2 sequestered will compensate for that. In the third, originally proposed by the author, a fuel cycle is suggested in analogy to the fuel cycle of nuclear reactors. CO/SUB/2 is then separated from stack gases, together with SO/SUB/2 and other noxious components, and then stored in geological structures, e.g. exhausted oil and gas fields, or in the deep ocean making use of thermohaline currents to diffuse it in depth. The same result can be obtained by separating air and burning fuels with oxygen. The costs for CO/SUB/2 control are relatively high in all three cases, but are certainly inside the capacity of the energy system to digest them.

  10. Influence of O{sub 2} on the dielectric properties of CO{sub 2} at the elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Mingzhe; Sun, Hao; Yang, Fei, E-mail: yfei2007@mail.xjtu.edu.cn; Wu, Yi, E-mail: wuyic51@mail.xjtu.edu.cn; Chen, Zhexin; Wang, Xiaohua; Wu, Mingliang [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an Shaanxi 710049 (China)

    2014-11-15

    SF{sub 6} gas is widely used in the high voltage circuit breakers but considering its high global warming potential other substitutes are being sought. Among them CO{sub 2} was investigated and even has been used in some practical products. However, at room temperature, the dielectric properties of CO{sub 2} are relatively lower than SF{sub 6} and air. The goal of this work is to investigate a CO{sub 2}-based gas to improve the performance of the pure CO{sub 2}. In this paper, the dielectric properties of hot CO{sub 2}/O{sub 2} mixtures related to the dielectric recovery phase of the circuit breaker were investigated in the temperature range from 300 K to 4000 K and in the pressure range from 0.01 MPa to 1.0 MPa. The species compositions of hot CO{sub 2}/O{sub 2} were obtained based on Gibbs free energy minimization under the assumptions of local thermodynamic equilibrium and local chemical equilibrium. The reduced critical electric field strength of CO{sub 2}/O{sub 2} was determined by balancing electron generation and loss. These were calculated using the electron energy distribution function by solving the Boltzmann transport equation. The validity of the calculation method and the cross sections data was confirmed by comparing the measurements and calculations of the electron swarm data in previous work. The results indicate that in pure CO{sub 2} the critical electric field strength is higher only in higher temperature range. By adding the O{sub 2} into the CO{sub 2}, the critical electric field strength at lower temperature is effectively enhanced. CO{sub 2}/O{sub 2} mixtures have a much better dielectric strength than both the pure CO{sub 2} and air and thus have the potential to improve the CO{sub 2}-based gas circuit breakers. Similar conclusions can also be found in others’ work, which further confirm the validity of these results.

  11. Strength of smoke-free air laws and indoor air quality.

    Science.gov (United States)

    Lee, Kiyoung; Hahn, Ellen J; Robertson, Heather E; Lee, Seongjik; Vogel, Suzann L; Travers, Mark J

    2009-04-01

    Smoke-free air laws have been implemented in many Kentucky communities to protect the public from the harmful effects of secondhand smoke exposure. The impact of different strengths of smoke-free air laws on indoor air quality was assessed. Indoor air quality in hospitality venues was assessed in seven communities before and after comprehensive smoke-free air laws and in two communities only after partial smoke-free air laws. One community was measured three times: before any smoke-free air law, after the initial partial law, and after the law was strengthened to cover all workplaces and public places with few exemptions. Real-time measurements of particulate matters with 2.5 mum aerodynamic diameter or smaller (PM(2.5)) were obtained. When comprehensive smoke-free air laws were implemented, indoor PM(2.5) concentrations decreased significantly from 161 to 20 microg/m3. In one community that implemented a comprehensive smoke-free law after initially passing a partial law, indoor PM(2.5) concentrations were 304 microg/m3 before the law, 338 microg/m3 after the partial law, and 9 microg/m3 after the comprehensive law. The study clearly demonstrated that partial smoke-free air laws do not improve indoor air quality. A significant linear trend indicated that PM(2.5) levels in the establishments decreased with fewer numbers of burning cigarettes. Only comprehensive smoke-free air laws are effective in reducing indoor air pollution from secondhand tobacco smoke.

  12. History of CO/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Degens, E T

    1979-01-01

    Upon arrival on earth, the reduced carbon pool split into a series of compartments: core, mantle, crust, hydrosphere, atmosphere, and biosphere. This distribution pattern is caused by the ability of carbon to adjust structurally to a wide range of pressure and temperature, and to form simple and complex molecules with oxygen, hydrogen and nitrogen. Transformation also involved oxidation of carbon to CO/sub 2/ which is mediated at depth by minerals, such as magnetite, and by water vapor above critical temperature. Guided by mineral-organic interactions, simple carbon compounds evolved in near surface environments towards physiologically interesting biochemicals. Life, as an autocatalytic system, is considered an outgrowth of such a development. This article discusses environmental parameters that control the CO/sub 2/ system, past and present. Mantle and crustal evolution is the dynamo recharging the CO/sub 2/ in sea and air; the present rate of CO/sub 2/ release from the magma is 0.05 x 10/sup 15/ g C per year. Due to the enormous buffer capacity of the chemical system ocean, such rates are too small to seriously effect the level of CO/sub 2/ in our atmosphere. In the light of geological field data and stable isotope work, it is concluded that the CO/sub 2/ content in the atmosphere has remained fairly uniform since early Precambrian time; CO/sub 2/ should thus have had little impact on paleoclimate. In contrast, the massive discharge of man-made CO/sub 2/ into our atmosphere may have serious consequences for climate, environment and society in the years to come.

  13. Rising atmospheric CO{sub 2} and crops: Research methodology and direct effects

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, H. [National Soil Dynamics Laboratory, Auburn, AL (United States); Acock, B. [Systems Research Laboratory, Beltsville, MD (United States)

    1993-12-31

    Carbon dioxide is the food of trees and grass. Our relentless pursuit of a better life has taken us down a traffic jammed road, past smoking factories and forests. This pursuit is forcing a rise in the atmospheric CO{sub 2} level, and no one know when and if flood stage will be reached. Some thinkers have suggested that this increase of CO{sub 2} in the atmosphere will cause warming. No matter whether this prediction is realized or not, more CO{sub 2} will directly affect plants. Data from controlled observations have usually, but not always, shown benefits. Our choices of scientific equipment for gathering CO{sub 2} response data are critical since we must see what is happening through the eye of the instrument. The signals derived from our sensors will ultimately determine the truth of our conclusions, conclusion which will profoundly influence our policy decisions. Experimental gear is selected on the basis of scale of interest and problem to be addressed. Our imaginations and our budgets interact to set bounds on our objectives and approaches. Techniques run the gamut from cellular microprobes through whole-plant controlled environment chambers to field-scale exposure systems. Trade-offs exist among the various CO{sub 2} exposure techniques, and many factors impinge on the choice of a method. All exposure chambers are derivatives of three primary types--batch, plug flow, and continuous stirred tank reactor. Systems for the generation of controlled test atmospheres of CO{sub 2} vary in two basic ways--size and degree of control. Among the newest is free-air CO{sub 2} enrichment which allows tens of square meters of cropland to be studied.

  14. Sequential dark-photo fermentation and autotrophic microalgal growth for high-yield and CO{sub 2}-free biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yung-Chung [Department of Chemical Engineering, National Cheng Kung University, Tainan 701 (China); Chen, Chun-Yen [Department of Chemical Engineering, National Cheng Kung University, Tainan 701 (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China); Lee, Chi-Mei [Department of Environmental Engineering, National Chung Hsing University, Taichung (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan 701 (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China); Center for Biosciences and Biotechnology, National Cheng Kung University, Tainan (China)

    2010-10-15

    Dark fermentation, photo fermentation, and autotrophic microalgae cultivation were integrated to establish a high-yield and CO{sub 2}-free biohydrogen production system by using different feedstock. Among the four carbon sources examined, sucrose was the most effective for the sequential dark (with Clostridium butyricum CGS5) and photo (with Rhodopseudomonas palutris WP3-5) fermentation process. The sequential dark-photo fermentation was stably operated for nearly 80 days, giving a maximum H{sub 2} yield of 11.61 mol H{sub 2}/mol sucrose and a H{sub 2} production rate of 673.93 ml/h/l. The biogas produced from the sequential dark-photo fermentation (containing ca. 40.0% CO{sub 2}) was directly fed into a microalga culture (Chlorella vulgaris C-C) cultivated at 30 C under 60 {mu}mol/m{sup 2}/s illumination. The CO{sub 2} produced from the fermentation processes was completely consumed during the autotrophic growth of C. vulgaris C-C, resulting in a microalgal biomass concentration of 1999 mg/l composed mainly of 48.0% protein, 23.0% carbohydrate and 12.3% lipid. (author)

  15. Spatial Location in Brief, Free-Viewing Face Encoding Modulates Contextual Face Recognition

    Directory of Open Access Journals (Sweden)

    Fatima M. Felisberti

    2013-08-01

    Full Text Available The effect of the spatial location of faces in the visual field during brief, free-viewing encoding in subsequent face recognition is not known. This study addressed this question by tagging three groups of faces with cheating, cooperating or neutral behaviours and presenting them for encoding in two visual hemifields (upper vs. lower or left vs. right. Participants then had to indicate if a centrally presented face had been seen before or not. Head and eye movements were free in all phases. Findings showed that the overall recognition of cooperators was significantly better than cheaters, and it was better for faces encoded in the upper hemifield than in the lower hemifield, both in terms of a higher d' and faster reaction time (RT. The d' for any given behaviour in the left and right hemifields was similar. The RT in the left hemifield did not vary with tagged behaviour, whereas the RT in the right hemifield was longer for cheaters than for cooperators. The results showed that memory biases in contextual face recognition were modulated by the spatial location of briefly encoded faces and are discussed in terms of scanning reading habits, top-left bias in lighting preference and peripersonal space.

  16. Support of the launching of motor car air conditioning systems with the coolant CO{sub 2} (R744). Test bench measurements and practical trials; Unterstuetzung der Markteinfuehrung von Pkw-Klimaanlagen mit dem Kaeltemittel CO{sub 2} (R744). Pruefstandsmessungen und Praxistest

    Energy Technology Data Exchange (ETDEWEB)

    Lemke, Nicholas; Mildenberger, Julia [Technische Univ. Braunschweig (Germany); Graz, Martin [Obrist Engineering GmbH, Lustenau (Austria)

    2011-10-15

    In the research project two passenger car air-conditioning systems were analyzed with regard to cooling capacity and efficiency. The results were compared with one another. The first system was a standard air-conditioning unit using R134a as a refrigerant. As a second system a CO{sub 2} (R744) prototype HVAC unit was used. Both units were investigated on one hand installed in a car on a dynamometer by Obrist Engineering GmbH and on the other hand installed in a calorimetric test rig by Technische Universitaet Braunschweig, Institut fuer Thermodynamik. While the tests in the calorimetric test rig showed comparable efficiencies and cooling capacities for both setups, consumption advantages were determined for the R744- air-conditioning unit installed in the vehicle by the company Obrist. With CO{sub 2} (R744) as a refrigerant for mobile air-conditioning systems an environmental friendly solution is available. (orig.)

  17. Biotic Processes Regulating the Carbon Balance of Desert Ecosystems - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Robert S [UNR; Smith, Stanley D [UNLV; Evans, Dave [WSU; Ogle, Kiona [ASU; Fenstermaker, Lynn [DRI

    2012-12-13

    Our results from the 10-year elevated atmospheric CO{sub 2} concentration study at the Nevada Desert FACE (Free-air CO{sub 2} Enrichment) Facility (NDFF) indicate that the Mojave Desert is a dynamic ecosystem with the capacity to respond quickly to environmental changes. The Mojave Desert ecosystem is accumulating carbon (C), and over the 10-year experiment, C accumulation was significantly greater under elevated [CO{sub 2}] than under ambient, despite great fluctuations in C inputs from year to year and even apparent reversals in which [CO{sub 2}] treatment had greater C accumulations.

  18. Effects of long-term (10 years) exposure to elevated CO2 and O3 on trembling Aspen carbon and nitrogen metabolism at the aspen FACE (Free-Air Carbon Dioxide Enrichment) study site

    Science.gov (United States)

    Rakesh Minocha; Stephanie Long; Subhash Minocha; Paula Marquardt; Neil Nelson; Mark. Kubiske

    2010-01-01

    This study was conducted at the Aspen Free-Air Carbon Dioxide Enrichment (FACE) experimental site, Rhinelander, WI, (USA). Since 1998, 12 experimental rings planted in 1997 underwent four different treatments: control; elevated CO2 (560 ppm); elevated O3 (1.5X ambient) and elevated CO2 (560 ppm) + O...

  19. Determination of the dissociation constant of molten Li/sub 2/CO/sub 3//Na/sub 2/CO/sub 3//K/sub 2/CO/sub 3/ using a stabilized zirconia oxide-ion indicator

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Yasuhiko; Tsuru, Kiyoshi; Oishi, Jun; Miyazaki, Yoshinori; Kodama, Teruo

    1985-09-01

    An Li/sub 2/CO/sub 3//Na/sub 2/CO/sub 3//K/sub 2/CO/sub 3/ eutectic melt has been selected as an example of a molten-carbonate system and the suitability of a stabilized zirconia-air electrode as an oxide-ion concentration indicator for this melt has been confirmed. With this indicator, the dissociation constant of the reaction CO/sub 3//sup 2 -/(l)=CO/sub 2/(g)+O/sup 2 -/(l) in this melt has been determined to be Ksub(d)=P sub(CO/sub 2/) (O/sup 2 -/)=4.03 x 10/sup -3/ Pa at 873 K. Reproducible measurements were obtained throughout the experiment and this method might find further application in the study of reactions related to the oxide ion in carbonate melts. (orig.).

  20. Energy implications of CO{sub 2} stabilization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffert, M.I.; Caldeira, K.; Jain, A.K. [and others

    1997-12-01

    Analysis of carbon emissions paths stabilizing atmospheric CO{sub 2} in the 350--750 ppmv range reveals that implementing the UN Climate Convention will become increasingly difficult as the stabilization target decreases because of increasing dependence on carbon-free energy sources. Even the central Intergovernmental Panel on Climate Change scenario (IS92a) requires carbon-free primary power by 2050 equal to the humankind`s present fossil-fuel-based primary power consumption {approximately}10 TW (1 TW = 10{sup 12} W). The authors describe and critique the assumptions on which this projection is based, and extend the analysis to scenarios in which atmospheric CO{sub 2} stabilizes. For continued economic growth with CO{sub 2} stabilization, new, cost-effective, carbon-free technologies that can provide primary power of order 10 TW will be needed in the coming decades, and certainly by mid-century, in addition to improved economic productivity of primary energy.

  1. CO/sub 2/, carbon cycle and climate interactions. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Grassl, H; Maier-Reimer, E; Degens, E T; Kempe, S; Spitzy, A

    1984-05-01

    To assess the reaction of the climate system on increased CO/sub 2/ in the air either numerical atmospheric models have been used, or one has tried to filter a CO/sub 2/-induced climate trend (such as increasing temperature) from existing meteorological records. Even though a serious effect of increased CO/sub 2/ on climate has become highly probable, it has neither been empirically proven so far (diagnosis of observations) nor is the effect theoretically undisputed (prognosis by climate models).

  2. Assessment of coal combustion in O{sub 2}+CO{sub 2} by equilibrium calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ligang [Natural Resources Canada, CANMET Energy Technology Centre, 1 Haanel Drive, Nepean, ON (Canada); Furimsky, Edward [IMAF Group, 184 Marlborough Avenue, Ottawa, ON (Canada)

    2003-04-15

    The facility for analysis of chemical thermodynamics (F*A*C*T) method based on the Gibbs energy minimization principle was used for the environmental assessment of coal combustion in O{sub 2}+CO{sub 2} mixture compared with that in air. For the former case, the calculations predict higher emissions of CO and lower emissions of NO{sub x}. For both combustion media, SO{sub x} emissions are governed by O{sub 2} concentration, whereas distribution of trace metals was unaffected when O{sub 2} concentration in the O{sub 2}+CO{sub 2} mixture approached that in air. The effect of O{sub 2}+CO{sub 2} mixture on the distribution of chlorine- and alkali-containing compounds in the vapor phase was minor compared with that in air. In spite of the large excess of CO{sub 2} in combustion medium, sulfation was the predominant reaction occurring in ash.

  3. Carbon captured from the air

    Energy Technology Data Exchange (ETDEWEB)

    Keith, D. [Calgary Univ., AB (Canada)

    2008-10-15

    This article presented an innovative way to achieve the efficient capture of atmospheric carbon. A team of scientists from the University of Calgary's Institute for Sustainable Energy, Environment and Economy have shown that it is possible to reduce carbon dioxide (CO{sub 2}) using a simple machine that can capture the trace amount of CO{sub 2} present in ambient air at any place on the planet. The thermodynamics of capturing the small concentrations of CO{sub 2} from the air is only slightly more difficult than capturing much larger concentrations of CO{sub 2} from power plants. The research is significant because it offers a way to capture CO{sub 2} emissions from transportation sources such as vehicles and airplanes, which represent more than half of the greenhouse gases emitted on Earth. The energy efficient and cost effective air capture technology could complement other approaches for reducing emissions from the transportation sector, such as biofuels and electric vehicles. Air capture differs from carbon capture and storage (CCS) technology used at coal-fired power plants where CO{sub 2} is captured and pipelined for permanent storage underground. Air capture can capture the CO{sub 2} that is present in ambient air and store it wherever it is cheapest. The team at the University of Calgary showed that CO{sub 2} could be captured directly from the air with less than 100 kWhrs of electricity per tonne of CO{sub 2}. A custom-built tower was able to capture the equivalent of 20 tonnes per year of CO{sub 2} on a single square meter of scrubbing material. The team devised a way to use a chemical process from the pulp and paper industry to cut the energy cost of air capture in half. Although the technology is only in its early stage, it appears that CO{sub 2} could be captured from the air with an energy demand comparable to that needed for CO{sub 2} capture from conventional power plants, but costs will be higher. The simple, reliable and scalable technology

  4. Free-air CO2 enrichment (FACE) enhances biomass production in a short-rotation poplar plantation

    NARCIS (Netherlands)

    Calfapietra, C.; Gielen, B.; Galema, A.N.J.; Lukac, M.; Angelis, de P.; Moscatelli, M.C.; Ceulemans, R.; Scarascia-Mugnozza, G.

    2003-01-01

    This paper investigates the possible contribution of Short Rotation Cultures (SRC) to carbon sequestration in both current and elevated atmospheric CO2 concentrations ([CO2]). A dense poplar plantation (1 x 1 m) was exposed to a [CO2] of 550 ppm in Central Italy using the free-air CO2 enrichment

  5. Effects of elevated concentrations of atmospheric CO{sub 2} and tropospheric O{sub 3} on leaf litter production and chemistry in trembling aspen and paper birch communities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.; King, J.S. [Michigan Technological Univ., Houghton, MI (United States). School of Forest Resources and Environmental Science; Giardina, C.P. [United States Dept. of Agriculture Forest Service, Houghton, MI (United States)

    2005-12-01

    This study examined the effects of elevated carbon dioxide (CO{sub 2}) and elevated ozone (O{sub 3}) on the quantity and timing of nutrient release to plants and on soil carbon formation rates, and how they are influenced by the combined change in litter quality and quantity. The changes in leaf litter in response to environmental changes was characterized in order to understand the influence of global change on forests. Free-air CO{sub 2} enrichment (FACE) technology was used to examine leaf litter production and biochemical input to soil in response to elevated CO{sub 2} and O{sub 3} treatments. The study involved collecting litter from aspen and birch-aspen communities that had been exposed to FACE and O{sub 3} treatments for 6 years. The hypothesis of growth differentiation balance was used as the basis to develop other hypotheses regarding litter chemistry responses to elevated levels of carbon dioxide and ozone. It was assumed that environmental factors that increase the net balance of plant carbon sources relative to growth sinks will increase the allocation of photosynthate to the production of carbon-based secondary compounds. Litter was analyzed for concentrations of carbon, nitrogen, soluble sugars, lipids, lignin, cellulose, hemicellulose and carbon-based defensive compounds such as soluble phenolics and condensed tannins. The study showed that high levels of ozone greatly increased litter concentrations of soluble sugars, soluble phenolics and condensed tannins, but there were no major effects of elevated carbon dioxide or elevated ozone on the concentrations of individual carbon structural carbon hydrates such as cellulose, hemicellulose and lignin. It was concluded that in the future, the inputs of nitrogen, soluble sugars, condensed tannins, soluble phenolics, cellulose and lignin to forest soils can change as a result of small changes in litter chemistry resulting from elevated CO{sub 2}, tropospheric O{sub 3}, and changes in litter biomass

  6. Experimental study of CO/sub 2/-laser-induced air breakdown over long distances

    Energy Technology Data Exchange (ETDEWEB)

    Caressa, J.; Autric, M.; Dufresne, D.; Bournot, P.

    1979-11-01

    Results of an experimental study on air breakdown produced by radiation from a high-power CO/sub 2/ laser are presented. From these measurements, the breakdown threshold over a flux range (1.5 x 10/sup 8/

  7. Capture of atmospheric CO{sub 2} into (BiO){sub 2}CO{sub 3}/graphene or graphene oxide nanocomposites with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wendong [Department of Scientific Research Management, Chongqing Normal University, Chongqing, 401331 (China); Dong, Fan, E-mail: dfctbu@126.com [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067 (China); Zhang, Wei, E-mail: andyzhangwei@163.com [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China)

    2015-12-15

    Graphical abstract: Self-assembly of (BiO){sub 2}CO{sub 3} nanoflakes on graphene and graphene oxide nanosheets were realized by a one-pot efficient capture of atmospheric CO{sub 2} at room temperature. - Highlights: • A facile one-step method was developed for graphene-based composites. • The synthesis was conducted by utilization of atmospheric CO{sub 2}. • (BiO){sub 2}CO{sub 3}-graphene and (BiO){sub 2}CO{sub 3}-graphene oxide composites were synthesized. • The nanocomposites exhibited enhanced photocatalytic activity. - Abstract: Self-assembly of (BiO){sub 2}CO{sub 3} nanoflakes on graphene (Ge) and graphene oxide (GO) nanosheets, as an effective strategy to improve the photocatalytic performance of two-dimensional (2D) nanostructured materials, were realized by a one-pot efficient capture of atmospheric CO{sub 2} at room temperature. The as-synthesized samples were characterized by XRD, SEM, TEM, XPS, UV–vis DRS, Time-resolved ns-level PL and BET-BJH measurement. The photocatalytic activity of the obtained samples was evaluated by the removal of NO at the indoor air level under simulated solar-light irradiation. Compared with pure (BiO){sub 2}CO{sub 3}, (BiO){sub 2}CO{sub 3}/Ge and (BiO){sub 2}CO{sub 3}/GO nanocomposites exhibited enhanced photocatalytic activity due to their large surface areas and pore volume, and efficient charge separation and transfer. The present work could provide a simple method to construct 2D nanocomposites by efficient utilization of CO{sub 2} in green synthetic strategy.

  8. Combination syringe provides air-free blood samples

    Science.gov (United States)

    Pool, S. L.

    1970-01-01

    Standard syringe and spinal needle are combined in unique manner to secure air-free blood samples. Combination syringe obtains air free samples because air bubbles become insignificant when samples greater than 1 cc are drawn.

  9. Advances in understanding ozone impact on forest trees: Messages from novel phytotron and free-air fumigation studies

    Energy Technology Data Exchange (ETDEWEB)

    Matyssek, R., E-mail: matyssek@wzw.tum.d [Ecophysiology of Plants, Technische Universitaet Muenchen, Am Hochanger 13, D-85354 Freising-Weihenstephan (Germany); Karnosky, D.F. [Michigan Technological University, School of Forest Resources and Environmental Sciences, Houghton, MI 49931-129 (United States); Wieser, G. [Federal Research and Trainings Centre for Forests, Natural Hazards and Landscape, Dept. of Alpine Timberline Ecophysiology, Rennweg 1, A-6020 Innsbruck (Austria); Percy, K. [K.E. Percy Air Quality Effects Consulting Ltd., 207-230 Wilson Drive, Fort McMurray, Alberta T9H 0A4 (Canada); Oksanen, E. [Faculty of Biosciences, University of Joensuu, P.O. Box 111, FIN 80101 Joensuu (Finland); Grams, T.E.E. [Ecophysiology of Plants, Technische Universitaet Muenchen, Am Hochanger 13, D-85354 Freising-Weihenstephan (Germany); Kubiske, M. [Institute for Applied Ecosystem Studies, US Forest Service, Northern Research Station, 5985 Hwy K, Rhinelander, WI 54501 (United States); Hanke, D. [Department of Plant Sciences, University of Cambridge, CB2 3EA (United Kingdom); Pretzsch, H. [Forest Yield Science, Technische Universitaet Muenchen, Am Hochanger 13, D-85354 Freising-Weihenstephan (Germany)

    2010-06-15

    Recent evidence from novel phytotron and free-air ozone (O{sub 3}) fumigation experiments in Europe and America on forest tree species is highlighted in relation to previous chamber studies. Differences in O{sub 3} sensitivity between pioneer and climax species are examined and viewed for trees growing at the harsh alpine timberline ecotone. As O{sub 3} apparently counteracts positive effects of elevated CO{sub 2} and mitigates productivity increases, response is governed by genotype, competitors, and ontogeny rather than species per se. Complexity in O{sub 3} responsiveness increased under the influence of pathogens and herbivores. The new evidence does not conflict in principle with previous findings that, however, pointed to a low ecological significance. This new knowledge on trees' O{sub 3} responsiveness beyond the juvenile stage in plantations and forests nevertheless implies limited predictability due to complexity in biotic and abiotic interactions. Unravelling underlying mechanisms is mandatory for assessing O{sub 3} risks as an important component of climate change scenarios. - Novel phytotron and free-air O{sub 3} exposure studies on forest trees communicate sensitivity to be governed by genotype, ontogeny and biotic agents rather than species per se.

  10. A free-air system for long-term stable carbon isotope labeling of adult forest trees

    Science.gov (United States)

    Stable carbon (C) isotopes, in particular employed in labeling experiments, are an ideal tool to broaden our understanding of C dynamics in trees and forest ecosystems. Here, we present a free-air exposure system, named isoFACE, designed for long-term stable C isotope labeling in...

  11. The photosynthetic acclimation response of Lolium perenne to four years growth in a free-air CO{sub 2} enrichment (FACE) facility

    Energy Technology Data Exchange (ETDEWEB)

    Creasey, R. [Univ. of Essex (United Kingdom)

    1996-11-01

    In this study, the photosynthetic responses of field grown Lolium perenne to ambient (354 {mu}mol mol{sup -1}) and elevated (600 {mu}mol mol{sup -1}) C{sub a} were measured. The experiment utilized the FACE facility at Eschikon, Switzerland; here the L. Perenne swards had been grown at two nitrogen treatments, with six cuts per year, for 4 years. The study revealed a significant decrease in Rubisco activity (Vcmax) in the low nitrogen FACE plots; this is consistent with the theories of source-sink imbalance resulting in feedback inhibition and down-regulation. Such negative acclimation was not wholly supported by diurnal investigations which revealed an average stimulation of 53.38% and 52.78% in the low and high nitrogen, respectively. However, light response curves and AI investigations also suggested down-regulation, especially in the low nitrogen. SI is expected to decrease in response to elevated C{sub a}, if any change is seen. This was indeed observed in the high nitrogen plots but for the low nitrogen a significant increase was found. Conclusions drawn from this project center around the implications of negative acclimation to future crop productivity. For instance, inter-specific differences in response to elevated C{sub a} may result in ecosystem changes and new management techniques may be necessary. However, real predictions cannot be made from leaf level studies alone as these may not represent the overall changes at the whole plant level.

  12. Chemical-looping combustion as a new CO{sub 2} management technology

    Energy Technology Data Exchange (ETDEWEB)

    Mattisson, Tobias; Lyngfelt, Anders [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy and Environment; Zafar, Qamar; Johansson, Marcus [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical and Biological Engineering

    2006-05-15

    Chemical-looping combustion (CLC) is a combustion technology with inherent separation of the greenhouse gas CO{sub 2}. The technique involves the use of a metal oxide as an oxygen carrier which transfers oxygen from combustion air to the fuel, and hence a direct contact between air and fuel is avoided. Two inter-connected fluidized beds, a fuel reactor and an air reactor, are used in the process. In the fuel reactor, the metal oxide is reduced by the reaction with the fuel and in the air reactor; the reduced metal oxide is oxidized with air. The outlet gas from the fuel reactor consists of CO{sub 2} and H{sub 2}O, and almost pure stream of CO{sub 2} is obtained when water is condensed. Considerable research has been conducted on CLC in the last decade with respect to oxygen carrier development, reactor design, system efficiencies and prototype testing. The technique has been demonstrated successfully with both natural gas and syngas as fuel in continuous prototype reactors based on interconnected fluidized beds within the size range 0.3-50 kW, using different types of oxygen carriers based on the metals Ni, Co, Fe, Cu and Mn. From these tests it can be established that almost complete conversion of the fuel can be obtained and 100% CO{sub 2} capture is possible at a low cost. Further, work is going on to adapt the technique for use with solid fuels and for hydrogen production. This paper presents an overview of the research performed on CLC and highlights the current status of the technology.

  13. Skating rinks: a contribution to the discussion on using CO{sub 2} as a refrigerant; CO{sub 2} als Kaeltetraeger - ein Diskussionsbeitrag

    Energy Technology Data Exchange (ETDEWEB)

    Buehrer, B. W.

    2003-07-01

    This article examines the situation with regard to the use of carbon dioxide as a refrigerant for ice rinks instead of more risky and costly direct-evaporation ammonia installations. Tighter regulations on the operation of such ammonia-based installations and the advantages of CO{sub 2}-based systems are discussed. Although not poisonous, CO{sub 2} can present dangers if leaks occur as it is heavier than air and can lead to suffocation. Also, the energy consumption of CO{sub 2} refrigeration plants is compared with that of ammonia and glycol-based systems. The role played by other factors such as thermal insulation, good dehumidification systems and infra-red radiation shields are discussed. An installation in Zug, Switzerland, is briefly described that features cold-generation with ammonia and secondary distribution systems using CO{sub 2} and glycol for the main hall and the curling rinks respectively.

  14. Compact interior heat exchangers for CO{sub 2} mobile heat pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Hafner, Armin

    2003-07-01

    The natural refrigerant carbon dioxide (CO{sub 2}) offers new possibilities for design of flexible, efficient and environmentally safe mobile heat pumping systems. As high-efficient car engines with less waste heat are developed, extra heating of the passenger compartment is needed in the cold season. A reversible transcritical CO{sub 2} system with gliding temperature heat rejection can give high air delivery temperature which results in rapid heating of the passenger compartment and rapid defogging or defrosting of windows. When operated in cooling mode, the efficiency of transcritical CO{sub 2} systems is higher compared to common (HFC) air conditioning systems, at most dominant operating conditions. Several issues were identified for the design of compact interior heat exchangers for automotive reversible CO{sub 2} heat pumping systems. Among theses issues are: (1) Refrigerant flow distribution, (2) Heat exchanger fluid flow circuiting, (3) Air temperature uniformity downstream of the heat exchanger, (4) Minimization of temperature approach, (5) Windshield flash fogging due to retained water inside the heat exchanger, (6) Internal beat conduction in heating mode operation, and (7) Refrigerant side pressure drop In order to provide a basis for understanding these issues, the author developed a calculation model and set up a test facility and investigated different prototype heat exchangers experimentally.

  15. Pushing forward IGCC and CO{sub 2}-free power plant technology at Siemens

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, E.; Vortmeyer, N.; Zimmermann, G. [Siemens AG, Erlangen (Germany). Power Generation

    2004-07-01

    Siemens Power Generation has entered into several R & D projects within the European Commissions' 5th and 6th Framework Programs. One objective of those projects is to develop advanced modular IGCC concepts for in-refinery energy and hydrogen supply. Additional projects are dealing with pre- and post-combustion decarbonisation technologies, which should achieve high carbon dioxide capture at low costs. In parallel, the development of advanced combustion systems including enhanced fuel flexibility and application of low BTU gases in the highly efficient Siemens V94.3A gas turbine are in progress. In further step the technology for burning hydrogen enriched gases resulting from decarbonisation in CO{sub 2} free power plants will be provided. This report documents the current status of these activities. 9 refs., 12 figs.

  16. An experimental and mathematical modeling study comparing the reactivity and burnout of pulverized coal in air (O{sub 2}/N{sub 2}) and oxyfuel (O{sub 2}/CO{sub 2}) environments

    Energy Technology Data Exchange (ETDEWEB)

    Liza Elliott; Yinghui Liu; Bart Buhre; Jennifer Martin; Raj Gupta; Terry Wall [University of Newcastle, Callaghan, NSW (Australia). Cooperative Research Centre for Coal in Sustainable Development, Chemical Engineering

    2005-07-01

    Carbon dioxide in flue gas from conventional combustion processes is present as a dilute gas. CO{sub 2} capture is more easily achieved from a concentrated CO{sub 2} stream, which can be achieved by firing fuels with oxygen to obtain a sequestration ready gas stream, called oxy-fuel combustion. In this technology, the oxygen stream is usually diluted by recycled flue gas (RFG), so that the coal burns in an environment which is primarily O{sub 2}/CO{sub 2}. A size cut of a number of pulverised coals were devolatalised in N{sub 2} and CO{sub 2}. These sized coals were also combusted in a drop-tube furnace in an O{sub 2}/N{sub 2} environment simulating air combustion, and O{sub 2}/CO{sub 2} simulating oxyfuel combustion, with varying O{sub 2} levels from 3 to 30% v/v. Measurements of the extent of devolatilisation and coal burnout were completed. The detailed data provided for one coal indicated that the devolatilisation process in the O{sub 2}/CO{sub 2} environments is influenced by char gasification, and the char reaction rates are fitted better by a fractional order rate than first order in oxygen. Combustion rates in the oxyfuel environment were slightly higher. Estimates of the burnout for furnaces retrofitted from air to oxyfuel indicate that a better burnout can be expected. These trends were common for all coals. 14 refs., 4 figs., 5 tabs.

  17. Evidence from the Baltic Sea for an enhanced CO{sub 2} air-sea transfer velocity

    Energy Technology Data Exchange (ETDEWEB)

    Kuss, Joachim; Nagel, Klaus; Schneider, Bernd [Baltic Sea Research Institute, Warnemuende (Germany). Dept. of Marine Chemistry

    2004-04-01

    Surface water total CO{sub 2} concentrations (CT) and the CO{sub 2} partial pressure of the surface water and in the atmosphere were measured in the eastern Gotland Sea at approximately monthly intervals during five cruises in the winter of 1999/2000. Taking into account vertical/lateral exchange processes and the decomposition of organic matter, the monthly changes in CT were used to determine CO{sub 2} evasion fluxes. In addition, the CO{sub 2} fluxes were calculated on the basis of the CO{sub 2} partial pressure differences using local wind speed (u) records and different currently applied parametrizations of the gas exchange transfer velocity (k). The latter resulted in substantially lower monthly fluxes that indicated a considerable underestimation of k from the k(u) functions used. To achieve an optimal agreement between the flux calculations and the balance-derived CO{sub 2} fluxes, the coefficients of both a simple quadratic and cubic function k(u) were iterated using a least-squares fitting procedure. The resulting equations, which refer to short-term wind data and to the CO{sub 2} exchange at 20 deg C, were k= (0.45 {+-} 0.10)u{sup 2} and k(0.037 {+-} 0.008)u{sup 3} (k, cm/h; u, m/s) . These yielded higher k values than most of the previously proposed parametrizations. Unfortunately, our data did not allow us to decide whether the quadratic or cubic function is more appropriate to describe the gas exchange dynamics.

  18. CO{sub 2} exchange, environmental productivity indices, and productivity of Agaves and Cacti under current and elevated atmospheric CO{sub 2} concentrations. Terminal report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The research described in the proposal investigated net CO{sub 2} uptake and biomass accumulation for an extremely productive CAM plant, the prickly pear cactus Opuntia ficus-indica, under conditions of elevated CO{sub 2} concentrations for relatively long periods. The influences of soil water status, air temperature, and the photosynthetic photon flux (PPF) on net CO{sub 2} uptake over 24-h periods were evaluated to enable predictions to be made based on an Environmental Productivity Index (EPI). Specifically, EPI predicts the fraction of maximal daily net CO{sub 2} uptake based on prevailing environmental conditions. It is the product of indices for temperature, soil water, and intercepted PPF, each of which range from 0.00 when that index factor completely inhibits net CO{sub 2} uptake to 1.00 when no limitation occurs. For instance, the Water Index is 1.00 under wet conditions and decreases to 0.00 during prolonged drought. Although the major emphasis of the research was on net CO{sub 2} uptake and the resulting biomass production for O. ficus-indica, effects of elevated CO{sub 2} concentrations on root: shoot ratios and on the activities of the two carboxylating enzymes were also investigated. Moreover, experiments were also done on other CAM plants, including Agave deserti, Agave salmiana, and Hylocereus undatus, and Stenocereus queretaroensis.

  19. Flue gas CO{sub 2} capture by a green liquid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Michael C. Trachtenberg; Lihong Bao; Stefanie L. Goldman; David A. Smith; Xiaoqiu Wu [Carbozyme, Inc., Monmouth Junction, NJ (United States)

    2005-07-01

    We have designed, developed, modeled and tested several different membrane-based, facilitated transport carbonate / bicarbonate reactors (conjoint absorber-strippers) for the post-combustion extraction of CO{sub 2} from both air and flue gas. We have assessed separately the reactive chemistry, the reactor design and the process engineering. Facilitation is achieved by means of the most efficient CO{sub 2} conversion catalyst, the enzyme carbonic anhydrase. Experimental data mirror model predictions very closely. CO{sub 2} permeance value for 10% feed stream (balanced dry air) is 3.35E-8 mole/m{sup 2} s Pa, and the selectivity vs. N{sub 2} and vs. O{sub 2} were 250 and 150. The only moving elements in this design are the feed gas and the sweep gas streams. Gas separation is driven by partial pressure difference alone. As a consequence, this design is extremely energy efficient. 10 refs., 4 figs., 1 tab.

  20. Current Travertines Precipitation from CO{sub 2}-rich Groundwaters as an alert of CO{sub 2} Leakages from a Natural CO{sub 2} Storage at Ganuelas-Mazarron Tertiary Basin (Murcia, Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigo-Naharro, J.; Delgado, A.; Herrero, M. J.; Granados, A.; Perez del Villar, L.

    2013-02-01

    Carbon capture and storage technologies (CCS) represent the most suitable solutions related to the high anthropogenic CO{sub 2} emissions to the atmosphere. As a consequence, monitoring of the possible CO{sub 2} leakages from an artificial deep geological CO{sub 2} storage (DGS) is indispensable to guarantee its safety. Fast surficial travertine precipitation related to these CO{sub 2} leakages can be used as an alert for these escapes. Since few studies exist focusing on the long-term behaviour of an artificial CO{sub 2} DGS, natural CO{sub 2} storage affected by natural or artificial escapes must be studied as natural analogues for predicting the long-term behaviour of an artificial CO{sub 2} storage. In this context, a natural CO{sub 2} reservoir affected by artificial CO{sub 2} escapes has been studied in this work. This study has mainly focused on the current travertines precipitation associated with the upwelling CO{sub 2}-rich waters from several hydrogeological wells drilled in the Ganuelas-Mazarron Tertiary basin (SE Spain), and consists of a comprehensive characterisation of parent-waters and their associated carbonates, including elemental and isotopic geochemistry, mineralogy and petrography. Geochemical characterisation of groundwaters has led to recognise 4 hydrofacies from 3 different aquifers. These groundwaters have very high salinity and electrical conductivity; are slightly acid; present high dissolved inorganic carbon (DIC) and free CO{sub 2}; are oversaturated in both aragonite and calcite; and dissolve, mobilize and transport low quantities of heavy and/or toxic elements. Isotopic values indicate that: i) the origin of parent-waters is related to rainfalls from clouds originated in the Mediterranean Sea or continental areas; ii) the origin of C is mainly inorganic; and iii) sulphate anions come mainly from the dissolution of the Messinian gypsum from the Tertiary Basin sediments. Current travertines precipitation seems to be controlled by a

  1. Modeling and assessment of future IGCC plant concepts with CO{sub 2} capture; Simulation und Bewertung zukuenftiger IGCC-Kraftwerkskonzepte mit CO{sub 2}-Abtrennung

    Energy Technology Data Exchange (ETDEWEB)

    Kunze, Christian A.

    2012-07-13

    The thesis focuses on the assessment of efficiency potential of future IGCC plants with CO{sub 2} capture. Starting point is a comprehensive analysis (thermodynamic, economic and exergy) of a state of the art IGCC. Additionally, five future IGCC concepts are proposed and evaluated for their efficiency potential in the mid- and long-term. The concepts showed significantly higher efficiencies up to approximately 60% and enable an almost CO{sub 2}-free operation.

  2. CO{sub 2} separation

    Energy Technology Data Exchange (ETDEWEB)

    Hakuta, Toshikatu [National Inst. of Materials and Chemical Research, Ibaraki (Japan)

    1993-12-31

    The climate change induced by CO{sub 2} and other greenhouse gases is probably the most serious environmental threat that mankind has ever experienced. Nowadays fossil fuels occupy the majority of the world commercial energy supply. Most nations will be dependent on fossil fuels even in the first half of the next century. Around 30 % of CO{sub 2} in the world is emitted from thermal power plants. Recovering CO{sub 2} from energy conversion processes and storing it outside the atmosphere is a promising option for the mitigation of global warming. CO{sub 2} fixation and storage include CO{sub 2} disposal into oceans and underground, and utilization of CO{sub 2}. CO{sub 2} separation process will be used in any CO{sub 2} storage system, and is estimated to consume almost half the energy of the total system. Research and development of highly efficient CO{sub 2} separation process is most important from the viewpoint of practical application of CO{sub 2} fixation system.

  3. Thermodynamic analysis of transcritical CO{sub 2} booster refrigeration systems in supermarket

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Y.T., E-mail: yunting.ge@brunel.ac.u [Mechanical Engineering, School of Engineering and Design, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom); Tassou, S.A. [Mechanical Engineering, School of Engineering and Design, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom)

    2011-04-15

    Research highlights: {yields} The CO{sub 2} booster systems are widely applied in supermarket refrigeration. {yields} Control optimisation can improve the performance of the CO{sub 2} refrigeration systems. {yields} The effects of some important parameters on the system performance are examined. {yields} The optimal high-side pressure in the transcritical cycles is established and derived. -- Abstract: Due to less environmental impact, the CO{sub 2} booster refrigeration system has been widely applied in the modern supermarket as a substitute for the conventional R404A multiplex system. However, the performance efficiency of the CO{sub 2} system still requires further improvement in order to save energy; thus, one of the most efficient techniques would be to investigate and employ the optimal controls for refrigerant high side pressures at various operating states. In this paper, the possible parameters affecting system efficiency of the CO{sub 2} system in the transcritical cycle at a higher ambient air temperature are identified through thermodynamic analysis, but cannot be quantified mathematically because of the high non-linearity involved. Instead, sensitive analysis of the system by means of the thermodynamic model is used to examine the effects of parameters including high side refrigerant pressure, ambient air temperature, refrigerant intermediate pressure, and medium and low evaporating temperatures, superheating, effectiveness of suction line heat exchanger, and compressor efficiency on system performance. Consequently, the optimal high side pressure in the transcritical cycle is established and derived as a function of three important parameters consisting of ambient air temperature, the effectiveness of suction line heat exchanger and compressor efficiency. In addition, optimal operating parameters such as the intermediate pressure are also proposed to improve the system performance.

  4. Surgical face masks worn by patients with multidrug-resistant tuberculosis: impact on infectivity of air on a hospital ward.

    Science.gov (United States)

    Dharmadhikari, Ashwin S; Mphahlele, Matsie; Stoltz, Anton; Venter, Kobus; Mathebula, Rirhandzu; Masotla, Thabiso; Lubbe, Willem; Pagano, Marcello; First, Melvin; Jensen, Paul A; van der Walt, Martie; Nardell, Edward A

    2012-05-15

    Drug-resistant tuberculosis transmission in hospitals threatens staff and patient health. Surgical face masks used by patients with tuberculosis (TB) are believed to reduce transmission but have not been rigorously tested. We sought to quantify the efficacy of surgical face masks when worn by patients with multidrug-resistant TB (MDR-TB). Over 3 months, 17 patients with pulmonary MDR-TB occupied an MDR-TB ward in South Africa and wore face masks on alternate days. Ward air was exhausted to two identical chambers, each housing 90 pathogen-free guinea pigs that breathed ward air either when patients wore surgical face masks (intervention group) or when patients did not wear masks (control group). Efficacy was based on differences in guinea pig infections in each chamber. Sixty-nine of 90 control guinea pigs (76.6%; 95% confidence interval [CI], 68-85%) became infected, compared with 36 of 90 intervention guinea pigs (40%; 95% CI, 31-51%), representing a 56% (95% CI, 33-70.5%) decreased risk of TB transmission when patients used masks. Surgical face masks on patients with MDR-TB significantly reduced transmission and offer an adjunct measure for reducing TB transmission from infectious patients.

  5. Environmental policy. Resolution of the German Federal Government concerning the Air Pollution Abatement Programme of the Federal Republic of Germany based on the fourth report of the Interdepartmental Working Group on Carbon Dioxide Reduction (IMA `CO{sub 2} Reduction`); Umweltpolitik. Beschluss der Bundesregierung zum Klimaschutzprogramm der Bundesrepublik Deutschland auf der Basis des Vierten Berichts der Interministeriellen Arbeitsgruppe ``CO{sub 2}-Reduktion`` (IMA ``CO{sub 2}-Reduktion``)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    Air pollution abatement is a key issue in German environmental policy. This was stressed again in the 4th report of the Interdepartmental Working Group on Carbon Dioxide Reduction (IMA `CO{sub 2}-Reduktion`), in which the Federal Government confirmed its goal of a 25% reduction of carbon dioxide emissions by 2005 as referred to 1990. This report contains the government decision, the formulatio of the task assigned to the IMA, and the 4th report of the IMA. (orig./SR) [Deutsch] Klimavorsorge ist ein Schwerpunkt der deutschen Umweltpolitik. Dies hat das Bundeskabinett mit der Verabschiedung des 4. Berichts der Interministeriellen Arbeitsgruppe (IMA) ``CO{sub 2}-Reduktion`` nachdruecklich unterstrichen. Mit diesem Beschluss bekraeftigt die Bundesregierung erneut ihr Ziel, die CO{sub 2} Emissionen bis 2005 um 25 % gegenueber 1990 zu senken. Der vorliegende Bericht enthaelt den Beschluss, der Bundesregierung, den Auftrag der Bundesregierung an die Interministerielle Arbeitsgruppe (IMA) und den 4. Bericht der IMA ``CO{sub 2}-Reduktion``. (orig./SR)

  6. CO{sub 2} exchange environmental productivity indices, and productivity of agaves and cacti under current and elevated atmospheric CO{sub 2} concentrations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nobel, P.S.

    1994-12-31

    The research described in the proposal investigated net CO{sub 2} uptake and biomass accumulation for an extremely productive CAM plant, the prickly pear cactus Opuntia ficus-indica, under conditions of elevated CO{sub 2} concentrations for relatively long periods. The influences of soil water status, air temperature, and the photosynthetic photon flux (PPF) on net CO{sub 2} uptake over 24-h periods were evaluated to enable predictions to be made based on an Environmental Productivity Index (EPI). Specifically, EPI predicts the fraction of maximal daily net CO{sub 2} uptake based on prevailing environmental conditions. It is the product of indices for temperature, soil water, and intercepted PPF, each of which range from 0.00 when that index factor completely inhibits net CO{sub 2} uptake to 1.00 when no limitation occurs. For instance, the Water Index is 1.00 under wet conditions and decreases to 0.00 during prolonged drought. Although the major emphasis of the research was on net C0{sub 2} uptake and the resulting biomass production for O. ficus-indica, effects of elevated CO{sub 2} concentrations on root: shoot ratios and on the activities of the two carboxylating enzymes were also investigated. Moreover, experiments were also done on other CAM plants, including Agave deserti, Agave salmiana, and Hylocereus undatus, and Stenocereus queretaroensis.

  7. Integrating Waste Heat from CO>2 Removal and Coal-Fired Flue Gas to Increase Plant Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Irvin, Nick [Southern Company Services, Inc., Birmingham, AL (United States); Kowalczyk, Joseph [Southern Company Services, Inc., Birmingham, AL (United States)

    2017-04-01

    In project DE-FE0007525, Southern Company Services demonstrated heat integration methods for the capture and sequestration of carbon dioxide produced from pulverized coal combustion. A waste heat recovery technology (termed High Efficiency System) from Mitsubishi Heavy Industries America was integrated into an existing 25-MW amine-based CO>2 capture process (Kansai Mitsubishi Carbon Dioxide Recovery Process®1) at Southern Company’s Plant Barry to evaluate improvements in the energy performance of the pulverized coal plant and CO>2 capture process. The heat integration system consists of two primary pieces of equipment: (1) the CO>2 Cooler which uses product CO>2 gas from the capture process to heat boiler condensate, and (2) the Flue Gas Cooler which uses air heater outlet flue gas to further heat boiler condensate. Both pieces of equipment were included in the pilot system. The pilot CO>2 Cooler used waste heat from the 25-MW CO>2 capture plant (but not always from product CO>2 gas, as intended). The pilot Flue Gas Cooler used heat from a slipstream of flue gas taken from downstream of Plant Barry’s air heater. The pilot also included a 0.25-MW electrostatic precipitator. The 25-MW High Efficiency System operated for approximately six weeks over a four month time period in conjunction with the 25-MW CO>2 capture facility at Plant Barry. Results from the program were used to evaluate the technical and economic feasibility of full-scale implementation of this technology. The test program quantified energy efficiency improvements to a host power plant that could be realized due to the High Efficiency System. Through the execution of this project, the team verified the integrated operation of the High Efficiency System and Kansai Mitsubishi Carbon Dioxide Recovery Process®. The ancillary benefits of the High Efficiency System were also quantified, including reduced water consumption

  8. SKF Freight Transports and CO{sub 2} emissions. A Study in Environmental Management Accounting

    Energy Technology Data Exchange (ETDEWEB)

    Lindblom, Helen; Stenqvist, Christian

    2007-11-15

    In this study of CO{sub 2} emissions accounting, freight transports of the SKF company are examined. The identification of emission sources, the handling of transport activity data, the application of proper calculation methodologies, organizational aspects and questions of liability are all integrated parts of the study. Emission calculations are carried out for two specific logistics systems managed by SKF Logistics Services; the Daily Transport System (DTS) and the Global Air Freight Program. The DTS, which is based on road freight transports, operates the European distribution of finished products. It is estimated to contribute with 9 700 tonnes CO{sub 2} during 2007. Since the system is optimized to a reasonable degree, the CO{sub 2} impact per tonne-km is relatively low. Over the same period the air freight's estimated emissions are 40 000 tonnes. Together these transport activities contributes to about ten percent of the SKF total CO{sub 2} equivalents based on the reporting of 2006. Adding the emissions from the remaining transport activities that SKF utilizes will make this share increase considerably, particularly if also inbound transports are accounted for. The potential for CO{sub 2} reductions is covered by two change-oriented case studies. It can be concluded that short-sea transportation seldom is an alternative to road transports. Intermodal transports combining road and rail can, depending on the circumstances, reduce the CO{sub 2} impact considerably compared to only using road transports. Reducing transportation work by optimizing a transport activity is seen as the best option for CO{sub 2} reductions. Efforts should be put into reducing the need for air freight transports, considering the high emission levels per tonne-km. Monitoring emissions for all transport activities that falls under SKF responsibility will reduce the risk of sub optimization. Introducing system changes in order to decrease CO{sub 2} emissions will have a range of

  9. Elevated CO{sub 2} and development of frost hardiness in Norway spruce (picea abies (L.) Karst.); Oekt CO{sub 2} og utvikling av frostherdighet i gran

    Energy Technology Data Exchange (ETDEWEB)

    Dalen, Lars Sandved

    1998-09-01

    This thesis discusses controlled laboratory experiments carried out to study the effects of CO{sub 2} pollution on Norwegian spruce. It was found that elevated CO{sub 2} increased height growth and biomass production. It slightly increased frost hardiness, but only at high nitrogen values. There was no evidence of adverse effects of elevated CO{sub 2} on the phenology of bud set and the development of frost hardiness. Although not statistically significant, there seemed to be a consistently higher concentration of soluble carbohydrates in one-season-old Norway spruce seedlings treated with elevated CO{sub 2}. This was not found in three-year-old seedlings grown in open top chambers, possibly indicating a down-regulation of photosynthesis or a transition from free to predetermined growth, and change in allocation of photosynthates with age. Treatment with high or low concentrations of CO{sub 2} and nitrogen fertilizer did not affect apoplastic chitinolytic activity during cold acclimation, nor were there any effects on antifreeze activity in these apoplastic extracts from cold acclimated needles. 149 refs., 21 figs., 8 tabs.

  10. Intracellular pH in human brain measured by P-31 MR spectroscopy during changes in arterial CO/sub 2/ tension

    International Nuclear Information System (INIS)

    Jensen, K.E.; Thomsen, C.; Henriksen, O.

    1987-01-01

    Six healthy volunteers were examined. A 1.5-T Siemens whole-body scanner was used. A three-turn solenoid surface coil was used. Sixty-four acquisitions with a repetition time of 6 seconds were recorded. The subjects hyperventilated and inhaled air with 5% and 7% CO/sub 2/. The breathing of air with 5% CO/sub 2/ resulted in an arterial blood tension of 40 mm Hg, and no changes in pH could be detected. Breathing of air with 7% CO/sub 2/ resulted in arterial tension of 55 mm Hg and gave a decrease of 0.1 pH unit. The spectra after 15 minutes of hyperventilation showed an increase of 0.1 pH unit

  11. Investigation of free air in peritoneal cavity

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sam Gyoun; Park, Bok Hwan; Lee, Dong Hoon; Oh, Jang Suk [Kyungpook National University School of Medicine, Taegu (Korea, Republic of)

    1972-12-15

    On the radiographic findings of simple abdomen, detection of free air in peritoneal cavity indicates a perforation of hollow viscus. In general, free air in abdomen indicate perforation of hollow viscus caused by various disease conditions, i.e. perforation of peptic ulcer, ulcerating malignancy, colon diverticulitis and rupture of pneumatosis cystoides intestinale etc., or by trauma, however it can be rarely noticeable in the cases of intraabdominal infection with overgrowth of gas forming organisms. Eighty eight cases of free air in peritoneal cavity were analysed during the period from July, 1970 to August, 1972 at Kyungpook National University Hospital. As shown in the following tables, various clinical findings were analysed; overview of cases, causating factors and location of rupture, and it's seasonal preponderance.

  12. Investigation of free air in peritoneal cavity

    International Nuclear Information System (INIS)

    Park, Sam Gyoun; Park, Bok Hwan; Lee, Dong Hoon; Oh, Jang Suk

    1972-01-01

    On the radiographic findings of simple abdomen, detection of free air in peritoneal cavity indicates a perforation of hollow viscus. In general, free air in abdomen indicate perforation of hollow viscus caused by various disease conditions, i.e. perforation of peptic ulcer, ulcerating malignancy, colon diverticulitis and rupture of pneumatosis cystoides intestinale etc., or by trauma, however it can be rarely noticeable in the cases of intraabdominal infection with overgrowth of gas forming organisms. Eighty eight cases of free air in peritoneal cavity were analysed during the period from July, 1970 to August, 1972 at Kyungpook National University Hospital. As shown in the following tables, various clinical findings were analysed; overview of cases, causating factors and location of rupture, and it's seasonal preponderance

  13. Measurement of carbon dioxide fluxes in a free-air carbon dioxide enrichment experiment using the closed flux chamber technique

    DEFF Research Database (Denmark)

    Selsted, Merete Bang; Ambus, Per; Michelsen, Anders

    2011-01-01

    Carbon dioxide (CO2) fluxes, composing net ecosystem exchange (NEE), ecosystem respiration (ER), and soil respiration (SR) were measured in a temperate heathland exposed to elevated CO2 by the FACE (free-air carbon enrichment) technique, raising the atmospheric CO2 concentration from c. 380 μmol...

  14. CO{sub 2} sequestration technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ketzer, Marcelo [Brazilian Carbon Storage Research Center (Brazil)

    2008-07-15

    In this presentation the importance of the capture and sequestration of CO{sub 2} is outlined for the reduction of gas discharges of greenhouse effect; then the principles of CO{sub 2} storage in geologic formations are reviewed; afterwards, the analogs for the CO{sub 2} storage are commented, such as the storage of the acid gas, the natural gas storage and the natural CO{sub 2} deposits. Also it is spoken on the CO{sub 2} storage in coal, in water-bearing saline deposits and in oil fields, and finally the subject of the safety and monitoring of the CO{sub 2} storage is reviewed. [Spanish] En esta presentacion se expone la importancia de la captura y secuestro de CO{sub 2} para la reduccion de emisiones de gases de efecto invernadero; luego se tratan los principios de almacenamiento de CO{sub 2} en formaciones geologicas; despues se comentan los analogos para el almacenamiento de CO{sub 2} como el almacenamiento del gas acido, el almacenamiento de gas natural y los yacimientos naturales de CO{sub 2}. Tambien se habla sobre el almacenamiento de CO{sub 2} en carbon, acuiferos salinos y yacimientos petroliferos y por ultimo se toca el tema de la seguridad y monitoreo del almacenamiento de CO{sub 2}.

  15. Developing a zero-CO{sub 2}-emission coal combustion process for power generation; Entwicklung eines CO{sub 2}-emissionsfreien Kohleverbrennungsprozesses zur Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Kneer, R.; Abel, D.; Niehuis, R.; Meier, H.R.; Modigell, M.; Peters, N. [RWTH Aachen (Germany)

    2005-07-01

    Besides measures for efficiency improvements by means of increased steam parameters, research on oxyfuel cycles in the main strategy for reduction of CO{sub 2}-emissions from fossil coal-fired power plants. The largest publicity founded German oxyfuel project is the so-called OXYCOAL-AC project, where 6 institutes from RWTH Aachen University and 5 industrial partners collaborate in the development of a CO{sub 2}-free coal combustion power plant cycle. This will be achieved by sing pure oxygen and recirculated CO{sub 2} for the combustion process. The oxygen is provided by a high temperature ceramic membrane module, which separates oxygen from an air feed flow. The challenges of this project and the related research topics are presented by discussing the main components of the OXYCOAL-AC cycle. While this description of the cycle is based on a 400 MW reference power plant, its realisation at the existing test facility at RWTH Aachen University will also be explained. Finally, an outlook on future activities is presented. (orig.)

  16. What are gender-based challenges facing Free Primary Education ...

    African Journals Online (AJOL)

    Rural teachers' views: What are gender-based challenges facing. Free Primary Education in Lesotho .... resulted in high levels of poverty amongst women, particularly in rural areas. Women ...... Lesotho demographics profile 2010. Available at ...

  17. CALIOPE airborne CO{sub 2} DIAL (CACDI) system design

    Energy Technology Data Exchange (ETDEWEB)

    Mietz, D.; Archuleta, B.; Archuleta, J. [and others

    1997-09-01

    Los Alamos National Laboratory is currently developing an airborne CO{sub 2} Differential Absorption Lidar (DIAL) system based on second generation technology demonstrated last summer at NTS. The CALIOPE Airborne CO{sub 2} DIAL (CACDI) system requirements have been compiled based on the mission objectives and SONDIAL model trade studies. Subsystem designs have been developed based on flow down from these system requirements, as well as experience gained from second generation ground tests and N-ABLE (Non-proliferation AirBorne Lidar Experiments) airborne experiments. This paper presents the CACDI mission objectives, system requirements, the current subsystem design, and provides an overview of the airborne experimental plan.

  18. Study of CO{sub 2} capture processes in power plants; Etude de procedes de captage du CO{sub 2} dans les centrales thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Amann, J.M

    2007-12-15

    The aim of the present study is to assess and compare various processes aiming at recover CO{sub 2} from power plants fed with natural gas (NGCC) and pulverized coal (PC). These processes are post-combustion CO{sub 2} capture using chemical solvents, natural gas reforming for pre-combustion capture by methanol and oxy-fuel combustion with cryogenic recovery of CO{sub 2}. These processes were evaluated using the process software Aspen PlusTM to give some clues for choosing the best option for each type of power plant. With regard to post-combustion, an aqueous solution based on a mixture of amines (N-methyldiethanolamine (MDEA) and triethylene tetramine (TETA)) was developed. Measurements of absorption were carried out between 298 and 333 K in a Lewis cell. CO{sub 2} partial pressure at equilibrium, characteristic of the CO{sub 2} solubility in the solvent, was determined up to 393 K. The solvent performances were compared with respect to more conventional solvents such as MDEA and monoethanolamine (MEA). For oxy-fuel combustion, a recovery process, based on a cryogenic separation of the components of the flue gas, was developed and applied to power plants. The study showed that O{sub 2} purity acts on the CO{sub 2} concentration in the flue gas and thus on the performances of the recovery process. The last option is natural gas reforming with CO{sub 2} pre-combustion capture. Several configurations were assessed: air reforming and oxygen reforming, reforming pressure and dilution of the synthesis gas. The comparison of these various concepts suggests that, in the short and medium term, chemical absorption is the most interesting process for NGCC power plants. For CP power plants, oxy-combustion can be a very interesting option, as well as post-combustion capture by chemical solvents. (author)

  19. Alstom's development of advanced CFB based technologies for CO{sub 2} mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Nsakala ya Nsakala; David G. Turek; Gregory N. Liljedahl; Herbert E. Andrus; John H. Chiu; Jean-Xavier Morin [Alstom Power Inc., Windsor, CT (United States)

    2005-07-01

    ALSTOM Power Inc. (ALSTOM) is actively working to develop advanced circulating fluidized bed (CFB) based technologies for the purpose of CO{sub 2} mitigation. Two of the more promising ideas currently being investigated at ALSTOM are the oxygen-fired CFB and chemical looping technologies. The oxygen-fired CFB is a near-term CO{sub 2} capture technology, which uses pure oxygen tempered with recirculated flue gas to combust the fuel. The oxygen for combustion may be supplied by a cryogenic air separation unit, or in the future by more efficient processes such as oxygen transport membrane. This produces a flue gas stream comprising mostly CO{sub 2} and water vapor. Simple condensation of most of the water vapor leaves a CO{sub 2}-rich product stream which can be simply compressed for sequestration or purified for use in enhanced oil recovery or enhanced coal bed methane. Chemical looping is a longer-term development path towards CO{sub 2} mitigation. In ALSTOM's processes, a regenerable solid carrier extracts oxygen from air and transports it for combustion or gasification of the fuel. The chemical looping combustion process produces a high CO{sub 2} flue gas stream (similar to the O{sub 2} fired CFB flue gas stream) and steam for a Rankine cycle. The chemical looping gasification process captures CO{sub 2} in a separate chemical loop and produces hydrogen-rich synthesis gas for use in IGCCs, fuel cells, or for other industrial uses. This paper discusses ALSTOM's latest test work in these areas and the technical, economic and environmental implications of these advanced CFB-based systems. These advanced power generation units can be built from proven fluid bed design features and systems. 6 refs., 15 figs., 6 tabs.

  20. Stratospheric mean ages and transport rates from observations of CO{sub 2} and N{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Boering, K A; Wofsy, S C; Daube, B C; Schneider, H R [Harvard Univ., Cambridge, MA (United States). Div. of Engineering and Applied Sciences; Loewenstein, M; Podolske, J R [NASA Ames Research Center, Moffett Field, CA (United States); Conway, T J [National Oceanic and Atmospheric Administration, Boulder, CO (United States)

    1998-12-31

    Measurements of CO{sub 2} and N{sub 2}O concentrations are reported and analyzed to investigate stratospheric transport rates. Temporal variations in tropospheric CO{sub 2} are observed to propagate into the stratosphere, showing that tropospheric air enters the lower tropical stratosphere continuously, ascends, and is transported rapidly (in less than 1 month) to both hemispheres. The mean age of stratospheric air determined from CO{sub 2} data is approximately 5 years in the mid-stratosphere. It is shown that the mean age is mathematically equivalent to a conserved tracer analogous to exhaust from stratospheric aircraft. Comparison of the mean age from models and observations indicates that current model simulations likely underestimate pollutant concentrations from proposed stratospheric aircraft by 25-100%. (author) 36 refs.

  1. Stratospheric mean ages and transport rates from observations of CO{sub 2} and N{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Boering, K.A.; Wofsy, S.C.; Daube, B.C.; Schneider, H.R. [Harvard Univ., Cambridge, MA (United States). Div. of Engineering and Applied Sciences; Loewenstein, M.; Podolske, J.R. [NASA Ames Research Center, Moffett Field, CA (United States); Conway, T.J. [National Oceanic and Atmospheric Administration, Boulder, CO (United States)

    1997-12-31

    Measurements of CO{sub 2} and N{sub 2}O concentrations are reported and analyzed to investigate stratospheric transport rates. Temporal variations in tropospheric CO{sub 2} are observed to propagate into the stratosphere, showing that tropospheric air enters the lower tropical stratosphere continuously, ascends, and is transported rapidly (in less than 1 month) to both hemispheres. The mean age of stratospheric air determined from CO{sub 2} data is approximately 5 years in the mid-stratosphere. It is shown that the mean age is mathematically equivalent to a conserved tracer analogous to exhaust from stratospheric aircraft. Comparison of the mean age from models and observations indicates that current model simulations likely underestimate pollutant concentrations from proposed stratospheric aircraft by 25-100%. (author) 36 refs.

  2. Response of Tundra Ecosystems to Elevated Atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, Walter C.

    1990-09-05

    OAK B188 Response of Tundra Ecosystems to Elevated Atmospheric CO{sub 2}. Atmospheric CO{sub 2} is expected to double by the end of the next century. Global mean increases in surface air temperature of 1.5-4.5 C are anticipated with larger increases towards the poles predicted. Changes in CO{sub 2} levels and temperature could have major impacts on ecosystem functioning, including primary productivity, species composition, plant-animal interactions, and carbon storage. Until recently, there has been little direct information on the impact of changes in CO{sub 2} and temperature on native ecosystems. The study described here was undertaken to evaluate the effects of a 50 and 100% increase in atmospheric CO{sub 2}, and a 100% increase in atmospheric CO{sub 2} coupled with a 4 C summer air temperature rise on the structure and function of an arctic tussock tundra ecosystem. The arctic contains large stores of carbon as soil organic matter, much frozen in permafrost and currently not reactive or available for oxidation and release into the atmosphere. About 10-27% of the world's terrestrial carbon occurs in arctic and boreal regions, and carbon is accumulating in these regions at the rate of 0.19 GT y{sup -1}. Mean temperature increases of 11 C and summer temperature increases of 4 C have been suggested. Mean July temperatures on the arctic coastal plain and arctic foothills regions are 4-12 C, and mean annual temperatures are -7 to -13 C (Haugen, 1982). The projected temperature increases represent a substantial elevation above current temperatures which will have major impacts on physical processes such as permafrost development and development of the active layer, and on biological and ecosystem processes such as primary productivity, carbon storage, and species composition. Extreme nutrient and temperature limitation of this ecosystem raised questions of the responsiveness of arctic systems to elevated CO{sub 2}. Complex ecosystem interactions with the effects

  3. Total free radical species and oxidation equivalent in polluted air.

    Science.gov (United States)

    Wang, Guoying; Jia, Shiming; Niu, Xiuli; Tian, Haoqi; Liu, Yanrong; Chen, Xuefu; Li, Lan; Zhang, Yuanhang; Shi, Gaofeng

    2017-12-31

    Free radicals are the most important chemical intermediate or agent of the atmosphere and influenced by thousands of reactants. The free radicals determine the oxidizing power of the polluted air. Various gases present in smog or haze are oxidants and induce organ and cellular damage via generation of free radical species. At present, however, the high variability of total free radicals in polluted air has prevented the detection of possible trends or distributions in the concentration of those species. The total free radicals are a kind of contaminants with colorless, tasteless characteristics, and almost imperceptible by human body. Here we present total free radical detection and distribution characteristics, and analyze the effects of total free radicals in polluted air on human health. We find that the total free radical values can be described by not only a linear dependence on ozone at higher temperature period, but also a linear delay dependence on particulate matter at lower temperature period throughout the measurement period. The total free radical species distribution is decrease from west to east in Lanzhou, which closely related to the distribution of the air pollutants. The total free radical oxidation capacity in polluted air roughly matches the effects of tobacco smoke produced by the incomplete combustion of a controlled amount of tobacco in a smoke chamber. A relatively unsophisticated chromatographic fingerprint similarity is used for indicating preliminarily the effect of total free radicals in polluted air on human health. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Sequestering CO{sub 2} by Mineralization into Useful Nesquehonite-Based Products

    Energy Technology Data Exchange (ETDEWEB)

    Glasser, Fredrik Paul, E-mail: f.p.glasser@abdn.ac.uk; Jauffret, Guillaume; Morrison, Jennie [Department of Chemistry, University of Aberdeen, Aberdeen (United Kingdom); Galvez-Martos, Jose-Luis; Patterson, Naomi; Imbabi, Mohammed Salah-Eldin [School of Engineering, University of Aberdeen, Aberdeen (United Kingdom)

    2016-02-11

    The precipitation of magnesium hydroxy-carbonate hydrates has been suggested as a route to sequester CO{sub 2} into solids. We report the development of self-cementing compositions based on nesquehonite, MgCO{sub 3}⋅3H{sub 2}O, that are made from CO{sub 2}-containing gas streams, the CO{sub 2} being separated from other gases by its high solubility in alkaline water, while magnesium is typically provided by waste desalination brines. Precipitation conditions are adjusted to optimize the formation of nesquehonite and the crystalline solid can readily be washed free of chloride. Products can be prepared to achieve self-cementation following two routes: (i) thermal activation of the nesquehonite then rehydration of the precursor or (ii) direct curing of a slurry of nesquehonite. The products thus obtained contain ~30 wt% CO{sub 2} and could form the basis for a new generation of lightweight, thermally insulating boards, blocks, and panels, with sufficient strength for general construction.

  5. Investigation of the impacts of elevated atmospheric CO{sub 2}-concentrations during the Free-Air Carbon Dioxide Enrichment-Experiment. Development of universal solutions; Untersuchung der Auswirkungen erhoehter atmosphaerischer CO{sub 2}-Konzentrationen innerhalb des Free-Air Carbon Dioxide Enrichment-Experimentes. Ableitung allgemeiner Modelloesungen

    Energy Technology Data Exchange (ETDEWEB)

    Kartschall, T.; Michaelis, P. [Potsdam-Institut fuer Klimafolgenforschung e.V., Potsdam (Germany). Abt. Globaler Wandel und Natuerliche Systeme; Graefe, J.; Waloszczyk, K. [Professor-Hellriegel-Institut e.V., Bernburg (Germany); Grossman-Clarke, S.

    1999-06-01

    An improved version of the wheat model demeter including modules for important and commonly usable ecosystem compartments (i) light interception in homogenous and rowed canopies (ii) energy and gas exchange including photosynthesis (iii) water, temperature, carbon and nitrogen dynamics in mineral soils was developed. Due to the generic properties of the detailed model solutions qualitative and quantitative explanations about direct and indirect impacts of elevated atmospheric CO{sub 2} concentrations on Graminaceae (C{sub 3}-Type) under limited water and nitrogen supply are possible. These solutions have been tested under a wide range of geographic (33 bis 52 N), soil and climatic conditions. The model was validated on a wide spectrum of temporal (time steps ranging from one minute up to one day, simulation periods ranging from several hours to several years) and spatial scales (Submodel photosynthesis of leaf level, the entire model on canopy level, regional yield studies for the entire State of Brandenburg). (orig.) [German] Es wurde eine verbesserte Version des Modells demeter mit modularem Aufbau fuer wichtige und allgemein anwendbare Oekosystemteile (i) Lichtverteilung in homogenen geschlossenen bzw. gereihten Bestaenden; (ii) Energie- und Gasaustausch einschliesslich Photosynthese; (iii) Dynamik von Wasser, Temperatur, Kohlenstoff- und Stickstoffumsatz in Mineralboeden; entwickelt. Durch den generischen Charakter der detaillierten Modelloesungen sind qualitative und quantitative Aussagen zu direkten und indirekten Auswirkungen erhoehter atmosphaerischer CO{sub 2}-Konzentrationen auf Graminaceae des C{sub 3}-Typs bei Wasser- und Stickstofflimitierung unter breiteren geographischen (33 bis 52 N), Boden- und klimatischen Bedingungen moeglich. Das Modell wurde auf einem breiten Spektrum zeitlicher (Taktzeiten von einer Minute bis zu einem Tag, Simulationszeiten von mehreren Stunden bis zu mehreren Jahren) und raeumlicher Skalen (Teilmodell Photosynthese auf

  6. Estimating CO{sub 2} Emission Reduction of Non-capture CO{sub 2} Utilization (NCCU) Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hyun; Lee, Dong Woog; Gyu, Jang Se; Kwak, No-Sang; Lee, In Young; Jang, Kyung Ryoung; Shim, Jae-Goo [KEPCO Research Institute, Daejon (Korea, Republic of); Choi, Jong Shin [Korea East-West Power Co., LTD(ETP), Ulsan (Korea, Republic of)

    2015-10-15

    Estimating potential of CO{sub 2} emission reduction of non-capture CO{sub 2} utilization (NCCU) technology was evaluated. NCCU is sodium bicarbonate production technology through the carbonation reaction of CO{sub 2} contained in the flue gas. For the estimating the CO{sub 2} emission reduction, process simulation using process simulator (PRO/II) based on a chemical plant which could handle CO{sub 2} of 100 tons per day was performed, Also for the estimation of the indirect CO{sub 2} reduction, the solvay process which is a conventional technology for the production of sodium carbonate/sodium bicarbonate, was studied. The results of the analysis showed that in case of the solvay process, overall CO{sub 2} emission was estimated as 48,862 ton per year based on the energy consumption for the production of NaHCO{sub 3} (7.4 GJ/tNaHCO{sub 3}). While for the NCCU technology, the direct CO{sub 2} reduction through the CO{sub 2} carbonation was estimated as 36,500 ton per year and the indirect CO{sub 2} reduction through the lower energy consumption was 46,885 ton per year which lead to 83,385 ton per year in total. From these results, it could be concluded that sodium bicarbonate production technology through the carbonation reaction of CO{sub 2} contained in the flue was energy efficient and could be one of the promising technology for the low CO{sub 2} emission technology.

  7. Development of novel CO{sub 2}-stable oxygen permeable dual phase membranes for CO{sub 2} capture in an oxy-fuel process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Huixia

    2012-07-19

    The combustion of fossil fuels in power stations with pure oxygen following the oxy-fuel process allows the Sequestration of CO{sub 2}. The pure oxygen needed can be separated from air by oxygen transporting ceramics like single phase perovskites. However, most of the so far developed single phase perovskites have stability problems in a CO{sub 2} containing atmosphere. Dual phase membranes are micro-scale mixtures of an electron conducting phase and an oxygen ion conducting phase and their compositions can be tailored according to practical requirements, which are considered to be promising substitutes for the single phase perovskite materials. In my thesis the issues of phase stability for perovskite-type material with the common composition Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 3-{delta}} (BSCF) as weil as the development of a series of novel CO{sub 2}-stable dual phase membranes were studied. In Chapter 2, the phase stability and permeation behavior of a dead-end BSCF tube membrane in high-purity oxygen at temperatures below 750 C, were elucidated using powder X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDXS), high-angle annular dark-field (HAADF) and scanning transmission electron microscopy (STEM). lt was found that parts of the cubic perovskite BSCF transformed into a hexagonal perovskite Ba{sub 0.5{+-}x}Sr{sub 0.5{+-}x}CoO{sub 3-{delta}} (x {approx} 0.1) and a trigonal mixed oxide Ba{sub 1-x}Sr{sub x}CO{sub 2-y}Fe{sub y}O{sub 5{+-}{delta}} (x {approx} 0.15, y {approx} 0.25) in high-purity oxygen at 750 C. On the other hand, it was found that the partial degradation of cubic BSCF perovskite at 750 C was more pronounced under the strongly oxidizing conditions on the oxygen supply (feed) side than on the oxygen release (permeate) side of the membrane. The structural instability of BSCF is attributed to an oxidation of cobalt from Co{sup 2+} to Co{sup 3+} and Co{sup 4+}, which exhibits an ionic radius that is too small to be tolerated by

  8. Optimized CO{sub 2} miscible hydrocarbon fracturing fluids

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.S.; Funkhouser, G.P.; Fyten, G.; Attaway, D.; Watkins, H. [Halliburton Energy Services, Calgary, AB (Canada); Lestz, R.S. [Chevron Canada Resources, Calgary, AB (Canada); Loree, D. [FracEx Inc. (Canada)

    2006-07-01

    Carbon dioxide (CO{sub 2}) miscible hydrocarbon fracturing fluids address issues of fluid retention in low-permeability gas reservoirs, including undersaturated and underpressured reservoirs. An optimized surfactant gel technology using carbon dioxide (CO{sub 2}) hydrocarbon fracturing fluids applicable to all gas-well stimulation applications was discussed in this paper. The crosslinked surfactant gel technology improved proppant transport, leakoff control, and generation of effective fracture half-length. Tests indicated that application of the surfactant cooled the fracture face, which had the effect of extending break times and increasing viscosity during pumping periods. Rapid recovery of the fracturing fluid eliminated the need for swabbing in some cases, and the fluid system was not adversely affected by shear. However, rheological test equipment capable of mixing liquid CO{sub 2} and viscosified hydrocarbons at downhole temperatures is required to determine rheology and required chemical concentrations. It was recommended that to achieve an effective methane-drive cleanup mechanism, treatments should be designed so that the gellant system can be effective with up to 50 per cent CO{sub 2} dissolved in oil. It was concluded that it should be possible to apply the technology to low permeability gas reservoirs. Viscosity curves and friction data were presented. Issues concerning the selection of tubulars and flowback procedures were also discussed. It was suggested that the cost of the hydrocarbon fracturing fluid can be recovered by the sale of recovered load fluid. 6 refs., 4 figs.

  9. Free-face-Assisted Rock Breaking Method Based on the Multi-stage Tunnel Boring Machine (TBM) Cutterhead

    Science.gov (United States)

    Geng, Qi; Wei, Zhengying; Meng, Hao; Macias, Francisco Javier; Bruland, Amund

    2016-11-01

    In order to improve the rock breaking efficiency of hard rock tunnel boring, many innovative rock breaking methods have been proposed (e.g., the water jet cutting, the high-power laser cutting, the impact-rotary drilling, and the undercutting method). However, most of the methods are not applicable to TBMs due to some structural reasons. Aiming on this problem, a free-face-assisted rock breaking method based on the multi-stage TBM cutterhead has been proposed. Series of proof-of-concept tests includes (1) the static compression test with vertical free face and (2) the rotary cutting tests in different free surface conditions were designed and carried out. The results show that the rock breaking force and efficiency can be significantly reduced and improved, respectively, with the assistance of the free face, due to the failure of the rock close to the free face is tensile-dominated failure. The influencing distance of the free face in the radial direction is at least 330 mm which covers about 5 disk cutters. Finally, the general structure of a small two-stage cutterhead (4 m in diameter) was tentatively designed in order to provide a possible approach to apply the free-face effect to TBMs.

  10. Impaired Air Conditioning within the Nasal Cavity in Flat-Faced Homo.

    Directory of Open Access Journals (Sweden)

    Takeshi Nishimura

    2016-03-01

    Full Text Available We are flat-faced hominins with an external nose that protrudes from the face. This feature was derived in the genus Homo, along with facial flattening and reorientation to form a high nasal cavity. The nasal passage conditions the inhaled air in terms of temperature and humidity to match the conditions required in the lung, and its anatomical variation is believed to be evolutionarily sensitive to the ambient atmospheric conditions of a given habitat. In this study, we used computational fluid dynamics (CFD with three-dimensional topology models of the nasal passage under the same simulation conditions, to investigate air-conditioning performance in humans, chimpanzees, and macaques. The CFD simulation showed a horizontal straight flow of inhaled air in chimpanzees and macaques, contrasting with the upward and curved flow in humans. The inhaled air is conditioned poorly in humans compared with nonhuman primates. Virtual modifications to the human external nose topology, in which the nasal vestibule and valve are modified to resemble those of chimpanzees, change the airflow to be horizontal, but have little influence on the air-conditioning performance in humans. These findings suggest that morphological variation of the nasal passage topology was only weakly sensitive to the ambient atmosphere conditions; rather, the high nasal cavity in humans was formed simply by evolutionary facial reorganization in the divergence of Homo from the other hominin lineages, impairing the air-conditioning performance. Even though the inhaled air is not adjusted well within the nasal cavity in humans, it can be fully conditioned subsequently in the pharyngeal cavity, which is lengthened in the flat-faced Homo. Thus, the air-conditioning faculty in the nasal passages was probably impaired in early Homo members, although they have survived successfully under the fluctuating climate of the Plio-Pleistocene, and then they moved "Out of Africa" to explore the more

  11. CO{sub 2} separation from exhaust gas; CO{sub 2} separasjon fra eksosgass

    Energy Technology Data Exchange (ETDEWEB)

    Magelssen, Paul Fr. [Saga Petroleum A/S, Forus (Norway)

    1998-07-01

    When Saga wanted to reduce the CO{sub 2} emissions from Snorre B, cleaning of CO{sub 2} from exhaust gas was one of several options considered. CO{sub 2} cleaning using membrane/amine technology is under development. Saga required that the technology should be qualified and that the yield of the Snorre B project should not be reduced. This presentation discusses qualification of combined membrane/amine technology, environmental issues, economic issues and implementation on the Snorre B platform. Flue gas from the gas turbine is passed to a CO{sub 2} absorption and desorption stage from which the CO{sub 2} is passed on for compression and disposal while the cleaned flue is let out. The membrane is situated between the flue gas and the absorbent liquid. The pores are large enough for the CO{sub 2} to pass through quickly and small enough to prevent the liquid from penetrating into the pores. The packing factor is high, 500 - 1000 m2/m3, there is no formation of froth, ducts or entrainment of the liquid. New technology implies 65 - 70% size reduction of the main equipment and 39 - 40% reduction of the energy consumption. Research on amines brings out new chemicals which imply 80% reduction in the consumption of chemicals and the quantity of special waste produced. If a CO{sub 2} cleaning plant is installed on a LM 2500, the CO{sub 2} emissions can be reduced by 97,200 ton/year given the right operational conditions. Although it was decided in 1998 not to install the module with the CO{sub 2} pilot cleaning plant, Snorre B is still a good environmental project having CO{sub 2} emission within the values set by Miljoesok.

  12. HARNESSING THE CHEMISTRY OF CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Louie, Janis

    2012-11-30

    Our research presents several strategies for addressing the challenges of activating CO2. In addition, our cycloaddition chemistry addresses several fundamental issues pertaining to catalysis as it applies to energy conservation. Topics addressed include: DEVELOPMENT OF A CYCLOADDITION CATALYST; INCREASING THE UTILITY OF THE NI CYCLOADDITION CATALYST; UNDERSTANDING THE MECHANISM OF NI-CATALYZED CYCLOADDITION; and METAL-FREE CO{sub 2} ACTIVATION.

  13. Inter-annual and seasonal variations in transport to a measuring site in western Siberia, and their impact on the observed atmospheric CO{sub 2} mixing ratio

    Energy Technology Data Exchange (ETDEWEB)

    Eneroth, Kristina

    2002-05-01

    Inter-annual and seasonal variations in atmospheric transport to a CO{sub 2} measuring site in western Siberia were studied using three-dimensional trajectories. We identified large differences in transport between summer and winter, but also some differences between the years. Cluster analysis was applied to the trajectory data to determine to what degree different atmospheric flow patterns influence the variability of the atmospheric CO{sub 2} mixing ratio. The observed CO{sub 2} mixing ratio was also compared to observed CO{sub 2} surface fluxes to study the impact of local sources and sinks. It was found that during July the correlation between atmospheric transport from distant source regions and CO{sub 2} mixing ratios was poor. Furthermore the correlation was also weak between the CO{sub 2} mixing ratio and the local eddy flux measurements. We conclude that the short-term variability in atmospheric CO{sub 2} during summer probably is dominated by larger scale (tens up to one hundred kilometers) CO{sub 2} surface fluxes and local meteorology. The weaker biogenic CO{sub 2} fluxes during winter, resulted in CO{sub 2} mixing ratios more clearly influenced by long-range transport Of CO{sub 2}. However, the highest atmospheric CO{sub 2} concentrations were not observed in connection with westerly winds representing transport of polluted air from Europe, but during periods with stagnant flow conditions. It was conjected that these high CO{sub 2} mixing ratios were due to respired CO{sub 2} trapped and accumulated in the lower parts of the planetary boundary layer. The mean duration for the identified flow patterns was in the order of two days, with a maximum duration of a week. This means that to have a chance to detect variations in CO{sub 2} mixing ratio due to air mass changes the sampling frequency (e.g. flask samples and flight measurements) must be at least every other day. Our results show that the atmospheric transport varies with season, year and altitude

  14. Oxyfuel combustion for below zero CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Boeg Toftegaard, M; Hansen, Kim G; Fisker, D [DONG Energy Power, Hvidovre (Denmark); Brix, J; Brun Hansen, B; Putluru, S S.R.; Jensen, Peter Arendt; Glarborg, Peter; Degn Jensen, A [Technical Univ. of Denmark. CHEC Research Centre, Kgs. Lyngby (Denmark); Montgomery, M [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark)

    2011-07-01

    The reduction of CO{sub 2} emissions is of highest concern in relation to limiting the anthropogenic impacts on the environment. Primary focus has gathered on the large point sources of CO{sub 2} emissions constituted by large heat and power stations and other heavy, energy-consuming industry. Solutions are sought which will enable a significant reduction of the anthropogenic CO{sub 2} emissions during the transformation period from the use of fossil fuels to renewable sources of energy. Carbon capture and storage (CCS) has the potential to significantly reduce CO{sub 2} emissions from power stations while allowing for the continuous utilisation of the existing energy producing system in the transformation period. Oxyfuel combustion is one of the possible CCS technologies which show promising perspectives for implementation in industrial scale within a relatively short period of time. Oxyfuel combustion deviates from conventional combustion in air by using a mixture of pure oxygen and recirculated flue gas as the combustion medium thereby creating a flue gas highly concentrated in CO{sub 2} making the capture process economically more feasible compared to technologies with capture from more dilute CO{sub 2} streams. This project has investigated a number of the fundamental and practical issues of the oxyfuel combustion process by experimental, theoretical, and modelling investigations in order to improve the knowledge of the technology. The subjects investigated cover: general combustion characteristics of coal and biomass (straw) and mixtures thereof, formation and emission of pollutants, ash characteristics, flue gas cleaning for SO{sub 2} by wet scrubbing with limestone and for NO{sub x} by selective catalytic reduction (SCR), corrosion of boiler heat transfer surfaces, operation and control of large suspension-fired boilers, and the perspectives for the implementation of oxyfuel combustion s a CO{sub 2} sequestration solution in the Danish power production

  15. An innovation for Switzerland - the CO{sub 2} heat-pump; Eine Innovation fuer die Schweiz - die CO{sub 2}-Waermepumpe

    Energy Technology Data Exchange (ETDEWEB)

    Christ, H.-P.

    2006-07-01

    This article describes one of the first heat-pump installations in Switzerland that uses carbon dioxide as its working fluid. The installation, operated in contracting-modus by the Zurich electricity utility EWZ, provides the heating energy required to supply the training centre of a Zurich football club. The heat sources used in the system are mentioned, which include ambient air and 23 geothermal probes. The various uses of the heat are discussed, which include the heating of changing rooms, offices and restaurant and hot-water for the showers. The functioning of the CO{sub 2} heat-pump is described and its advantages are discussed. These include the use of a cheap, natural refrigerant, high temperature-lifts and high energy-efficiency. The possible application areas of such CO{sub 2} heat-pumps is discussed.

  16. Magnetic properties improvement of melt spun Co{sub 86.5}Hf{sub 11.5}B{sub 2} nanocomposites by refractory elements substitution

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H.W. [Department of Applied Physics, Tunghai University, Taichung 407, Taiwan (China); Lin, Y.H.; Shih, C.W.; Liao, M.C.; Lee, Y.I. [Department of Physics, National Chung Cheng University, Chia-Yi 621, Taiwan (China); Chang, W.C., E-mail: phywcc@ccu.edu.tw [Department of Physics, National Chung Cheng University, Chia-Yi 621, Taiwan (China); Yang, C.C. [Department of Physics, Chung-Yuan Christian University, Chungli 320, Taiwan (China); Shaw, C.C. [Superrite Electronics Co. Ltd., Taipei 111, Taiwan (China)

    2016-03-01

    Magnetic properties of melt spun Co{sub 86.5}Hf{sub 10.5}MB{sub 2} ribbons with refractory elements substitution (M=Cr, Nb, Ti, Zr) have been studied. For ternary Co{sub 86.5}Hf{sub 11.5}B{sub 2} ribbon, permanent magnetic properties of B{sub r}=0.71 T, {sub i}H{sub c}=192 kA/m, and (BH){sub max}=34.4 kJ/m{sup 3} are obtained, and they are significantly improved to B{sub r}=0.73–0.76 T, {sub i}H{sub c}=136–216 kA/m and (BH){sub max}=38.4–52.8 kJ/m{sup 3} with M substitution. Summarized with the results of x-ray diffraction refinement, thermal magnetic analysis, and transmission electron microscopy, the Co{sub 86.5}Hf{sub 10.5}MB{sub 2} nanocomposites following the optimal crystallization treatment mainly consist of orthorhombic 7:1 and face-center-cubic Co phases. Fine microstructure with average grain size in the range of 12.5−19.6 nm promotes exchange coupling effect between magnetic grains, thus improving permanent magnetic properties. The magnetic field dependence of coercivity reveals that coercivity of the studied Co{sub 86.5}Hf{sub 10.5}MB{sub 2} nonocomposites is mainly governed by the reverse domain nucleation mechanism. - Highlights: • M substitution refines the grain size. • M substitution strengthens the exchange coupling effect between grains. • M substitution improves hard magnetic properties of Co{sub 86.5}Hf{sub 10.5}MB{sub 2} ribbons. • The coercivity is mainly governed by the reverse domain nucleation mechanism. • Co{sub 86.5}Hf{sub 10.5}MB{sub 2} ribbons are relevant candidate for RE free permanent magnets.

  17. Does an elevated CO>2 concentration decrease dark respiration in trees? Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Long, Stephen [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2003-12-31

    Averaged across many previous investigations, doubling the CO>2 concentration ([CO>2]) has frequently been reported to cause an instantaneous reduction of leaf dark respiration measured as CO>2 efflux. No known mechanism accounts for this effect. While four recent studies have shown that the measurement of respiratory CO>2 efflux is prone to experimental artifacts that could account for the reported response, papers published since the start of the current research continue to report an instantaneous depression of respiratory CO>2 efflux by elevation of [CO>2]. Here, these artifacts are avoided by use of a high-resolution dual channel oxygen analyzer within an open gas exchange system to measure respiratory 02 uptake in normal air. Leaf 02 uptake was determined in response to instantaneous elevation of [CO>2] in nine contrasting species and to long-term elevation in seven species from four of the DOE-sponsored long-term elevated [CO>2] field experiments. Over one thousand separate measurements of respiration failed to reveal any decrease in respiratory 02 uptake with an instantaneous increase in [CO>2]. Respiration was found insensitive not only to doubling [CO>2], but also to a five-fold increase and to decrease to zero.

  18. Duke FACE -- Forest-Atmosphere Carbon Transfer and Storage (FACTS I)

    Energy Technology Data Exchange (ETDEWEB)

    Oren, Ram [Duke Univ., Durham, NC (United States)

    2016-02-08

    The Duke FACE experiment increases atmospheric [CO>2] to a height of 25 m in four 30-m diameter plots, each containing ~100 canopy trees and many sub-canopy individuals. The experiment was initiated in 1994 with CO>2 fumigation of the prototype plot, and reached full CO>2-fumigation capacity in 1996 when three additional FACE plots came on line. All elevated plots enriched the atmospheric CO>2 concentration by 200 ppmv relative to paired, ambient-CO2 plots. Formalizing the analysis of CO>2 x N interactions, in March of 2005 each of the six FACE plots established in 1996 was trenched in half, and one half plot fertilized with nitrogen (N) at a rate of 11 g m-2 yr-1, following the approach established in 1998 in the prototype and its reference plot. The δ 13C of the fumigated plots’ atmosphere was -42.6‰, and while the 15N of the fertilizer did not affect the δ 15N of tissues directly it greatly reduced the effect of a 15N tracer study on tissue δ 15N. The CO>2 enrichment was completed in early November, 2010. Prior to termination of fumigation, 1-8 branches from 4-5 Pinus taeda individuals in each half plot were harvested, as well as most Juniperus occidentalis and broadleaved individuals <2 cm in diameter (1.4 m aboveground), including vine and herbaceous individuals. Following the termination, all individuals <8 cm in diameter, followed by all remaining individuals were harvested in half of each plot (a quarter in each CO>2 X N treatment). In all, 189 m3 of dry material and 826 m3 of wet material, or a total of 1014 m3 of material is stored in various suited settings. The project quantified the effect of CO>2 X N on carbon uptake, allocation to various pools, accumulation of carbon in these pools, the release of carbon to the atmosphere, and factors

  19. Economics of the Nuclear Energy Considered CO{sub 2} Emission

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Jin; Kim, Yong Min [Catholic University of Daegu, Gyeongsan (Korea, Republic of)

    2011-05-15

    The energy consumption in Korea has greatly increased along with its rapid economic growth and industrialization since the 1970s. Total energy consumption increased at an average annual growth rate. Due to the lack of domestic energy resources, however, the overseas dependence rate of energy consumption has continuously increased. Also Climate change, resulting from increases in greenhouse gas emissions (GHG), is considered one of the biggest environmental dangers facing the world today. The objective and approach of this study are to compare the different types of scenarios in terms of the power plant type and CO{sub 2} emission from each power plant. We estimated cost of electricity generation using fuel cost, O and M cost(Operation and Maintenance Cost) and CO{sub 2} emission

  20. Sources of CO{sub 2} efflux from soil and review of partitioning methods

    Energy Technology Data Exchange (ETDEWEB)

    Kuzyakov, Y. [University of Hohenheim, Stuttgart (Germany). Institute of Soil Science and Land Evaluation

    2006-03-15

    Five main biogenic sources of CO{sub 2} efflux from soils have been distinguished and described according to their turnover rates and the mean residence time of carbon. They are root respiration, rhizomicrobial respiration, decomposition of plant residues, the priming effect induced by root exudation or by addition of plant residues, and basal respiration by microbial decomposition of soil organic matter (SOM). These sources can be grouped in several combinations to summarize CO{sub 2} efflux from the soil including: root-derived CO{sub 2}, plant-derived CO{sub 2}, SOM-derived CO{sub 2}, rhizosphere respiration, heterotrophic microbial respiration (respiration by heterotrophs), and respiration by autotrophs. These distinctions are important because without separation of SOM-derived CO{sub 2} from plant-derived CO{sub 2}, measurements of total soil respiration have very limited value for evaluation of the soil as a source or sink of atmospheric CO{sub 2} and for interpreting the sources of CO{sub 2} and the fate of carbon within soils and ecosystems. Additionally, the processes linked to the five sources of CO{sub 2} efflux from soil have various responses to environmental variables and consequently to global warming. This review describes the basic principles and assumptions of the following methods which allow SOM-derived and root-derived CO{sub 2} efflux to be separated under laboratory and field conditions: root exclusion techniques, shading and clipping, tree girdling, regression, component integration, excised roots and in situ root respiration; continuous and pulse labeling, {sup 13}C natural abundance and FACE, and radiocarbon dating and bomb-{sup 14}C. A short sections cover the separation of the respiration of autotrophs and that of heterotrophs, i.e. the separation of actual root respiration from microbial respiration, as well as methods allowing the amount of CO{sub 2} evolved by decomposition of plant residues and by priming effects to be estimated. All

  1. Carbonic anhydrase levels and internal lacunar CO/sub 2/ concentrations in aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, C.I.

    1979-01-01

    Carbonic anhydrase levels were examined in a variety of aquatic macrophytes from different habitats. In general, carbonic anhydrase levels increased across the habitat gradient such that activities were low in submersed aquatic macrophytes and high in emergent macrophytes with floating-leaved and free-floating plants exhibiting intermediate activities. Internal lacunar CO/sub 2/ concentrations were analyzed in relation to carbonic anhydrase activities. There was no correlation between these two parameters. Internal CO/sub 2/ concentrations ranged from low to high in submersed macrophytes, but were low in floating-leaved and emergent macrophytes. The observed internal CO/sub 2/ concentrations are discussed in relation to the individual morphologies of the plants and the environments in which they occurred.

  2. Surface modification of the titanium implant using TEA CO{sub 2} laser pulses in controllable gas atmospheres - Comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Ciganovic, J.; Stasic, J.; Gakovic, B.; Momcilovic, M.; Milovanovic, D. [VINCA Institute of Nuclear Sciences, University of Belgrade, P.O. BOX 522, 11001 Belgrade (Serbia); Bokorov, M. [Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovica 3, 21000 Novi Sad (Serbia); Trtica, M., E-mail: etrtica@vinca.rs [VINCA Institute of Nuclear Sciences, University of Belgrade, P.O. BOX 522, 11001 Belgrade (Serbia)

    2012-01-15

    Interaction of a TEA CO{sub 2} laser, operating at 10.6 {mu}m wavelength and pulse duration of 100 ns (FWHM), with a titanium implant in various gas atmospheres was studied. The Ti implant surface modification was typically studied at the moderate laser beam energy density/fluence of 28 J/cm{sup 2} in the surrounding of air, N{sub 2}, O{sub 2} or He. The energy absorbed from the TEA CO{sub 2} laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following titanium implant surface changes and phenomena were observed, depending on the gas used: (i) creation of cone-like surface structures in the atmospheres of air, N{sub 2} and O{sub 2}, and dominant micro-holes/pores in He ambient; (ii) hydrodynamic features, most prominent in air; (iii) formation of titanium nitride and titanium oxide layers, and (iv) occurrence of plasma in front of the implant. It can be concluded from this study that the reported laser fluence and gas ambiences can effectively be applied for enhancing the titanium implant roughness and creation of titanium oxides and nitrides on the strictly localized surface area. The appearance of plasma in front of the implants indicates relatively high temperatures created above the surface. This offers a sterilizing effect, facilitating contaminant-free conditions.

  3. CO{sub 2} uptake by the Kalanchoe plant; CO{sub 2}-opname bij Kalanchoe

    Energy Technology Data Exchange (ETDEWEB)

    Verberkt, H.

    1994-01-01

    The results of a study on the assimilation of the Kalanchoe plant are presented. The aim of the study is to determine the optimal time period of a natural day (24 hours) to supply carbon dioxide to a Kalanchoe plant. A Kalanchoe plant originally is a so-called CAM (Crassulacean Acid Metabolism) plant: CO{sub 2} uptake at night and chemical conversion of CO{sub 2} into malic acid. By day the fixed CO{sub 2} is used for photosynthesis. It appears that a Kalanchoe plant also takes up CO{sub 2} by day, which is directly used for photosynthesis. For Dutch horticulture conditions (20C, sufficient moisture) extra CO{sub 2} supply by day in the spring results in an increase of both the fresh weight and the dry weight compared to no extra CO{sub 2} supply. 10 figs., 3 tabs., 19 refs., 4 appendices

  4. Ocean CO{sub 2} disposal

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, Yuji; Hakuta, Toshikatsu [National Inst. of Materials and Chemical Research, AIST, MITI, Higashi, Tsukuba, Ibaraki (Japan)

    1993-12-31

    Most countries in the world will continue to depend on fossil fuels for their main energy at least for half a country, even in the confrontation with the threat of global warming. This indicates that the development of CO{sub 2} removal technologies such as recovering CO{sub 2} from flue gases and sequestering it of in the deep oceans or subterranean sites is necessary, at least until non-fossil fuel dependent society is developed. Ocean CO{sub 2} disposal is one of the promising options for the sequestration of CO{sub 2} recovered from flue gases. Oceans have sufficient capacity to absorb all the CO{sub 2} emitted in the world. It is very significant to research and develop the technologies for ocean CO{sub 2} disposal.

  5. Investigation of small-scale optical inhomogeneities in an electroionization CO/sub 2/-laser

    Energy Technology Data Exchange (ETDEWEB)

    Borovkov, V V; Kornilov, V G; Lazhintsev, B V; Nor-arevian, V A; Sukhanov, L V

    1987-08-01

    A technique for the interferometer investigation of optical inhomogeneities in an electroionization CO/sub 2/-laser in the free-oscillation regime is developed which involves active-medium sounding that is coaxial with the laser resonator. Experimental results are presented on small-scale optical inhomogeneities for a pulsed electroionization laser pumped by a nonself-sustained discharge in a CO/sub 2/:N/sub 2/:He = 1:3:6 mixture at a total pressure of 1 atm. 11 references.

  6. Effects of elevated CO{sub 2} on Chesapeake Bay wetlands. [Progress report, 1988--1989

    Energy Technology Data Exchange (ETDEWEB)

    Drake, B.G.; Arp, W.J.; Balduman, L.

    1990-12-31

    Research during 1988--89 focused on several new aspects of the response of the salt marsh ecosystem to elevated CO{sub 2}. In previous years we gave highest priority to studies of the effect of CO{sub 2} on biomass production into above and below-ground tissues, nitrogen content, light response of photosynthesis of single leaves, leaf water potential and carbon dioxide and water vapor exchange between the plant canopy and the ambient air. Result from the work in 87 and 88 had shown that the C3 plant, Scirpus olneyi, responded vigorously to elevated CO{sub 2} but the two C4 species, Spartina patens and Distichlis spicata did not. The responses of photosynthesis were also reflected in the canopy and ecosystem processes. Thus our emphasis shifted from determining the growth responses to exploring photosynthesis in greater detail. The main questions were: does acclimation to high CO{sub 2} involve reduction of some aspect of photosynthesis either at the single leaf level or in canopy structure? How much more carbon will be accumulated in a high CO{sub 2} than under present CO{sub 2} concentration? Our results give us partial answers to these questions but since the long term aspect of CO{sub 2} stimulation remains the most important one, it is unlikely that we can do more than add some pieces of data to a continuing debate in the ecological community regarding the eventual effect of CO{sub 2} on ecosystems.

  7. Localized Retinal Nerve Fiber Layer Defects in Red-free Photographs Versus En Face Structural Optical Coherence Tomography Images.

    Science.gov (United States)

    Jung, Jae Hoon; Park, Ji-Hye; Yoo, Chungkwon; Kim, Yong Yeon

    2018-03-01

    The purpose of this article is to compare the locations of localized retinal nerve fiber layer (RNFL) defects in red-free fundus photographs and optical coherence tomography (OCT) en face images. We performed a retrospective, comparative study on 46 eyes from 46 glaucoma patients with localized RNFL defects observed in red-free fundus photographs. En face structural images were obtained in the superficial and whole retinal layers using OCT and were overlaid on the corresponding red-free fundus photographs. The proximal/distal angular locations and angular width of each RNFL defect in red-free photos (red-free defects) and in en face structural images (en face defects) were compared. In the superficial retinal layer, there were no significant differences between red-free and en face defects on the proximal/distal angular location and angular width. In the whole retinal layer, the degree of the distal angular location of the en face defects was significantly larger than that of the red-free defects (71.85±18.26 vs. 70.87±17.90 degrees, P=0.003). The correlations of clinical variables with the differences in angular parameters between red-free and en face defects were not significant in the superficial retinal layer. The average RNFL thickness was negatively correlated with the difference in the distal angular location in the whole retinal layer (Pearson correlation coefficient=-0.401, P=0.006). Localized RNFL defects detected in OCT en face structural images of the superficial retinal layer showed high topographic correlation with defects detected in red-free photographs. OCT en face structural images in the superficial layer may be an alternative to red-free fundus photography for the identification of localized RNFL defects in glaucomatous eyes.

  8. Possibility of high CO{sub 2} fixation rate by coral reef ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    K. Yamada; Y. Suzuki; B.E. Casareto; H. Komiyama [Shinshu University, Tokida (Japan). Dept. of Fine Materials Engineering

    2003-07-01

    Previous net rates of CO{sub 2} fixation by coral reef ecosystems have been said to be nearly zero due to a balance between CO{sub 2} fixed by organic carbon production and CO{sub 2} released by both organic carbon decomposition and inorganic carbon formation. But this study, conducted in Bora Bay, Miyako Island, Japan showed net rates of about 7 gC m{sup -2} d{sup -1} inside a coral reef and on a coral reef. It was found by experiment that the photosynthetic rate of coral increased with the increase of the flow rate of seawater. The authors tried to calculate net primary production (= net rates of CO{sub 2} fixation) outside a coral reef with flow rate. A flow rate on the coral reef of the open seaside is much higher than that in a lagoon. As an example, the CO{sub 2} fixation rates at the flow rates of 6 and 30 cm/s are compared. When it is assumed that the length of the whole coral reef facing the ocean is 50,000 km and its width is 100 m, and the flow rate is 30cm/s, the CO{sub 2} fixation rate is calculated to be 6.3 x 10{sup 6} t-C/y (3.5g-C/m{sup 2}d). This value is 2.2 times higher than that at the flow rate of 6 cm/s. This fixation rate is only by the coral itself. It means that the CO{sub 2} fixation rate by coral reef ecosystems can be much higher and the magnitude for worldwide ecosystems can be in the order of 10{sup 6}-10{sup 7} t-C/y. 14 refs., 5 tabs.

  9. Mercury speciation in air-coal and oxy-coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Duan, Yufeng; Mao, Yongqiu [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    To study the effect of air-coal and oxy-coal combustion on mercury emission, Xuzhou bituminous coal was burnt in a 6 kWth fluidized bed at 800 and 850 C in four atmospheres: air, 21%O{sub 2}/79%CO{sub 2}, 30%O{sub 2}/70%CO{sub 2}, 40%O{sub 2}/60%CO{sub 2} analysed with an online flue gas analyzer. Ontario Hydro method (OHM) was employed to measure mercury speciation in flue gas. The result indicated that more elemental mercury and oxidized mercury are released when burned in O{sub 2}/CO{sub 2} atmosphere than in air at 800 C, while the situation is just opposite, when coal was burnt at 850 C, less Hg{sup 0} and Hg{sup 2+} in O{sub 2}/CO{sub 2} atmosphere than in air. The concentration of Hg{sup 0} rises as temperature increases both in the conditions of the air combustion and oxy-coal combustion, but the concentration of Hg{sup 2+} increases with the increase of temperature only in the condition of air combustion and decreases in the oxy-coal combustion. With the increase of the oxygen concentration which is in the range of 21-40%, the concentrations of Hg{sup 0} and Hg{sup 2+} decrease first and then increase. When excess air coefficient increases, the oxygen content is higher and the vaporization rate of Hg{sup 0} and Hg{sup 2+} decrease.

  10. Immediate impact of smoke-free laws on indoor air quality.

    Science.gov (United States)

    Lee, Kiyoung; Hahn, Ellen J; Riker, Carol; Head, Sara; Seithers, Peggy

    2007-09-01

    Smoke-free laws significantly impact indoor air quality. However, the temporal effects of these laws on indoor air pollution have not been determined. This paper assesses the temporal impact of one smoke-free law on indoor air quality. This quasi-experimental study compared the indoor air quality of nine hospitality venues and one bingo hall in Georgetown, Kentucky, before and after implementation of a 100% smoke-free workplace law. We made real-time measurements of particulate matter with 2.5 microm aerodynamic diameter or smaller (PM2.5). Among the nine Georgetown hospitality venues, the average indoor PM2.5 concentration was 84 microg/m3 before the law took effect. The average indoor PM2.5 concentrations in nine compliant venues significantly decreased to 18 microg/m3 one week after the law took effect. Three venues having 82 microg/m3 before the law had significantly lower levels from the first day the law was implemented, and the low level was maintained. Compliance with the law is critical to achieving clean indoor air. Indoor air pollution in the bingo hall was not reduced until the establishment decided to comply with the law. The smoke-free law showed immediate impact on indoor air quality.

  11. Magnetic properties of iron-based catalysts activated by various CO{sub 2} concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jung Tae; Kim, Chul Sung [Kookmin University, Seoul (Korea, Republic of); Chun, Dong Hyun; Park, Ji Chan [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2014-12-15

    Fresh catalyst samples of 100Fe/5.26Cu/4.76K/18.2SiO{sub 2} in part per weight were synthesized by using a combination of a co-precipitation technique and spray-drying method and were activated in situ by using syngas (H{sub 2}/CO/xCO{sub 2}) with different amounts of CO{sub 2} (x = 0.0, 0.5, 1.0, and 2.0). All activated catalyst samples showed similar XRD patterns, a combination of ferrihydrite, magnetite, χ-carbide, and ε'-carbide, regardless of the CO{sub 2} contents. From the Moessbauer spectra, we also observed a combination of ferrihydrite, magnetite, χ-carbide, and ε'-carbide in all activated catalyst samples. The main compound of the activated catalyst sample activated by using CO{sub 2}-free syngas (H{sub 2}/CO) was magnetic χ-carbide, and the main compound changed from χ-carbide to ferrihydrite with increasing CO{sub 2} concentration, confirmed by both, Moessbauer spectra and XRD pattern.

  12. Development of suitable photobioreactors for CO{sub 2} sequestration addressing global warming using green algae and cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, K.; Dasgupta, C.N.; Nayak, B.; Lindblad, P.; Das, D. [Indian Institute of Technology, Kharagpur (India)

    2011-04-15

    CO{sub 2} sequestration by cyanobacteria and green algae are receiving increased attention in alleviating the impact of increasing CO{sub 2} in the atmosphere. They, in addition to CO{sub 2} capture, can produce renewable energy carriers such as carbon free energy hydrogen, bioethanol, biodiesel and other valuable biomolecules. Biological fixation of CO{sub 2} are greatly affected by the characteristics of the microbial strains, their tolerance to temperature and the CO{sub 2} present in the flue gas including SOx, NOx. However, there are additional factors like the availability of light, pH, O{sub 2}, removal, suitable design of the photobioreactor, culture density and the proper agitation of the reactor that will affect significantly the CO{sub 2} sequestration process. Present paper deals with the photobioreactors of different geometry available for biomass production. It also focuses on the hybrid types of reactors (integrating two reactors) which can be used for overcoming the bottlenecks of a single photobioreactor.

  13. Effects of high CO{sub 2} seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations

    Energy Technology Data Exchange (ETDEWEB)

    Kurihara, Haruko [Institute for East China Sea Research, Nagasaki University, 1551-7 Tairamachi, Nagasaki 851-2213 (Japan)], E-mail: harukoku@e-mail.jp; Ishimatsu, Atsushi [Institute for East China Sea Research, Nagasaki University, 1551-7 Tairamachi, Nagasaki 851-2213 (Japan)

    2008-06-15

    We studied the effects of exposure to seawater equilibrated with CO{sub 2}-enriched air (CO{sub 2} 2380 ppm) from eggs to maturity and over two subsequent generations on the copepod Acartia tsuensis. Compared to the control (CO{sub 2} 380 ppm), high CO{sub 2} exposure through all life stages of the 1st generation copepods did not significantly affect survival, body size or developmental speed. Egg production and hatching rates were also not significantly different between the initial generation of females exposed to high CO{sub 2} and the 1st and 2nd generation females developed from eggs to maturity in high CO{sub 2}. Thus, the copepods appear more tolerant to increased CO{sub 2} than other marine organisms previously investigated for CO{sub 2} tolerance (i.e., sea urchins and bivalves). However, the crucial importance of copepods in marine ecosystems requires thorough evaluation of the overall impacts of marine environmental changes predicted to occur with increased CO{sub 2} concentrations, i.e., increased temperature, enhanced UV irradiation, and changes in the community structure and nutritional value of phytoplankton.

  14. Process for analyzing CO{sub 2} in seawater

    Science.gov (United States)

    Atwater, J.E.; Akse, J.R.; DeHart, J.

    1997-07-01

    The process of this invention comprises providing a membrane for separating CO{sub 2} into a first CO{sub 2} sample phase and a second CO{sub 2} analyte phase. CO{sub 2} is then transported through the membrane thereby separating the CO{sub 2} with the membrane into a first CO{sub 2} sample phase and a second CO{sub 2} analyte liquid phase including an ionized, conductive, dissociated CO{sub 2} species. Next, the concentration of the ionized, conductive, dissociated CO{sub 2} species in the second CO{sub 2} analyte liquid phase is chemically amplified using a water-soluble chemical reagent which reversibly reacts with undissociated CO{sub 2} to produce conductivity changes therein corresponding to fluctuations in the partial pressure of CO{sub 2} in the first CO{sub 2} sample phase. Finally, the chemically amplified, ionized, conductive, dissociated CO{sub 2} species is introduced to a conductivity measuring instrument. Conductivity changes in the chemically amplified, ionized, conductive, dissociated CO{sub 2} species are detected using the conductivity measuring instrument. 43 figs.

  15. Process for analyzing CO.sub.2 in seawater

    Science.gov (United States)

    Atwater, James E.; Akse, James R.; DeHart, Jeffrey

    1997-01-01

    The process of this invention comprises providing a membrane for separating CO.sub.2 into a first CO.sub.2 sample phase and a second CO.sub.2 analyte phase. CO.sub.2 is then transported through the membrane thereby separating the CO.sub.2 with the membrane into a first CO.sub.2 sample phase and a second CO.sub.2 analyte liquid phase including an ionized, conductive, dissociated CO.sub.2 species. Next, the concentration of the ionized, conductive, dissociated CO.sub.2 species in the second CO.sub.2 analyte liquid phase is chemically amplified using a water-soluble chemical reagent which reversibly reacts with undissociated CO.sub.2 to produce conductivity changes therein corresponding to fluctuations in the partial pressure of CO.sub.2 in the first CO.sub.2 sample phase. Finally, the chemically amplified, ionized, conductive, dissociated CO.sub.2 species is introduced to a conductivity measuring instrument. Conductivity changes in the chemically amplified, ionized, conductive, dissociated CO.sub.2 species are detected using the conductivity measuring instrument.

  16. INEXPENSIVE CO{sub 2} THICKENING AGENTS FOR IMPROVED MOBILITY CONTROL OF CO{sub 2} FLOODS

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Enick; Eric J. Beckman; Andrew Hamilton

    2004-10-01

    The objective of this research was the design, synthesis and evaluation of inexpensive, nonfluorous carbon dioxide thickening agents. We followed the same strategy employed in the design of fluorinated CO{sub 2} polymeric thickeners. First, a highly CO{sub 2}-philic, hydrocarbon-based monomer was to be identified. Polymers or oligomers of this monomer were then synthesized. The second step was to be completed only when a CO{sub 2}-soluble polymer that was soluble in CO{sub 2} at pressures comparable to the MMP was identified. In the second step, viscosity-enhancing associating groups were to be incorporated into the polymer to make it a viable thickener that exhibited high CO{sub 2} solubility at EOR MMP conditions. This final report documents the CO{sub 2} solubility of a series of commercial and novel polymers composed of carbon, hydrogen, oxygen and, in some cases, nitrogen.

  17. Final Technical Report: Response of Mediterranean-Type Ecosystems to Elevated Atmospheric CO2 and Associated Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, Walter C

    2002-08-15

    This research incorporated an integrated hierarchical approach in space, time, and levels of biological/ecological organization to help understand and predict ecosystem response to elevated CO{sub 2} and concomitant environmental change. The research utilized a number of different approaches, and collaboration of both PER and non-PER investigators to arrive at a comprehensive, integrative understanding. Central to the work were the CO{sub 2}-controlled, ambient Lit, Temperature controlled (CO{sub 2}LT) null-balance chambers originally developed in the arctic tundra, which were re-engineered for the chaparral with treatment CO{sub 2} concentrations of from 250 to 750 ppm CO{sub 2} in 100 ppm increments, replicated twice to allow for a regression analysis. Each chamber was 2 meters on a side and 2 meters tall, which were installed over an individual shrub reprouting after a fire. This manipulation allowed study of the response of native chaparral to varying levels of CO{sub 2}, while regenerating from an experimental burn. Results from these highly-controlled manipulations were compared against Free Air CO{sub 2} Enrichment (FACE) manipulations, in an area adjacent to the CO{sub 2}LT null balance greenhouses. These relatively short-term results (5-7 years) were compared to long-term results from Mediterranean-type ecosystems (MTEs) surrounding natural CO{sub 2} springs in northern Italy, near Laiatico, Italy. The springs lack the controlled experimental rigor of our CO{sub 2}LT and FACE manipulation, but provide invaluable validation of our long-term predictions.

  18. Stem respiration of Populus species in the third year of free-air CO2 enrichment.

    Science.gov (United States)

    Gielen, Birgit; Scarascia-Mugnozza, Giuseppe; Ceulemans, Reinhart

    2003-04-01

    Carbon cycling in ecosystems, and especially in forests, is intensively studied to predict the effects of global climate change, and the role which forests may play in 'changing climate change'. One of the questions is whether the carbon balance of forests will be affected by increasing atmospheric CO2 concentrations. Regarding this question, effects of elevated [CO2] on woody-tissue respiration have frequently been neglected. Stem respiration of three Populus species (P. alba L. (Clone 2AS-11), P. nigra L. (Clone Jean Pourtet), and P. x euramericana (Clone I-214)) was measured in a managed, high-density forest plantation exposed to free-air CO2 enrichment (POPFACE). During the period of measurements, in May of the third year, stem respiration rates were not affected by the FACE treatment. Moreover, FACE did not influence the relationships between respiration rate and both stem temperature and relative growth rate. The results were supported by the reported absence of a FACE-effect on growth and stem wood density.

  19. CO{sub 2} Capture by Sub-ambient Membrane Operation

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, S.; Hasse, D.; Sanders, E.; Chaubey, T.

    2012-11-30

    ) on membrane performance was tested in the laboratory with membrane minipermeators. NO permeance is intermediate between CO{sub 2} and N{sub 2}; while both SO{sub 2} and NO{sub 2} are more permeable than CO{sub 2} at cold condition. This implies that SO{sub 2} and NO{sub 2} will be efficiently removed with CO{sub 2} into the membrane permeate in the proposed cold membrane process. Calculations were performed by Air Liquide Engineering (ALE) to estimate capture costs based on the proposed sub-ambient temperature membrane process for 90% CO{sub 2} capture from an air- fired coal power plant delivering 550 MW net electricity. Membrane performance in the process simulation was defined by the final parametric test results. This analysis involved refining the process simulation model, obtaining relevant capital cost estimates and using these to estimate a 20-year levelized cost of electricity (LCOE). A sensitivity analysis shows CO{sub 2} capture specific energy requirements of 216-242 kwh/T CO{sub 2} captured. The LCOE estimating methodology followed DOE/NETL study 2010/1397. This analysis indicates increases in LCOE between 48% and 53%. For most equipment, the budgetary capital cost estimates are expected to be valid within ± 20%. The most significant capital costs are due to the (i) feed compression and associated gas pretreatment and (ii) membrane system. For both items, there is a realistic chance for cost reductions in the immediate future (0-5 years) as well as long term reductions. The process continues to hold promise with anticipated cost reductions in compression and membrane operations. In particular, membrane costs could be reduced significantly by increased production volume (economy of scale) as well as optimization of bundle size and configuration for this application. PFD definition for a potential field test has been completed through (i) simulation work at DRTC, (ii) discussions with compressor manufacturers and (iii) a field visit to t e NCCC

  20. Environmental potential of the use of CO{sub 2} from alcoholic fermentation processes. The CO{sub 2}-AFP strategy

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Moreno, Carlos, E-mail: carlos.amoreno@uclm.es [Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia, Universidad de Castilla-La Mancha, Paseo de los Estudiantes, 02071 Albacete (Spain); García-Yuste, Santiago, E-mail: santiago.gyuste@uclm.es [Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Campus Universitario, 13071 Ciudad Real (Spain)

    2016-10-15

    A novel Carbon Dioxide Utilization (CDU) approach from a relatively minor CO{sub 2} emission source, i.e., alcoholic fermentation processes (AFP), is presented. The CO{sub 2} produced as a by-product from the AFP is estimated by examining the EtOH consumed per year reported by the World Health Organization in 2014. It is proposed that the extremely pure CO{sub 2} from the AFP is captured in NaOH solutions to produce one of the Top 10 commodities in the chemical industry, Na{sub 2}CO{sub 3}, as a good example of an atomic economy process. The novel CDU strategy could yield over 30.6 Mt of Na{sub 2}CO{sub 3} in oversaturated aqueous solution on using ca. 12.7 Mt of captured CO{sub 2} and this process would consume less energy than the synthetic methodology (Solvay ammonia soda process) and would not produce low-value by-products. The quantity of Na{sub 2}CO{sub 3} obtained by this strategy could represent ca. 50% of the world Na{sub 2}CO{sub 3} production in one year. In terms of the green economy, the viability of the strategy is discussed according to the recommendations of the CO{sub 2}Chem network, and an estimation of the CO{sub 2}negative emission achieved suggests a capture of around 280.0 Mt of CO{sub 2} from now to 2020 or ca. 1.9 Gt from now to 2050. Finally, the results obtained for this new CDU proposal are discussed by considering different scenarios; the CO{sub 2} production in a typical winemaking corporation, the CO{sub 2} released in the most relevant wine-producing countries, and the use of CO{sub 2} from AFP as an alternative for the top Na{sub 2}CO{sub 3}-producing countries. - Highlights: • A new CDU strategy to mitigate the CO{sub 2} in the atmosphere is assessed. • An environmental action towards negligible emission sources such as AFP. • The waste CO{sub 2} from AFP could be converted into Na{sub 2}CO{sub 3}. • Capture 12.7 Mt yr{sup –1} of CO{sub 2} to generate ca. 1.9 Gt of CO{sub 2}negative emissions by 2050.

  1. Free-Air Gravity Map of Taiwan and Its Applications

    Directory of Open Access Journals (Sweden)

    Horng-Yuan Yen

    1990-01-01

    Full Text Available An island-wide gravity in Taiwan was conducted by the Institute of Earth Sciences, Academia Sinica, between 1980 and 1987. The 603 stations at which the gravity values were determined included 308 points in the 500 m or higher mountain range where few readings were available previously. The average spacing of the stations in the present survey is about 7 km apart. A new Free-air gravity anomaly map has been constructed based on these values. The map is dominated by a NNE-SSW gravity high trend with a maximum value of 300 mgal, that follows closely the Central Range, a folded and faulted mountain belt with many peaks 3000 m or higher. The magnitude of the Free-air anomaly in the Taiwan area is quite large compared to that elsewhere in the world. The good correlation between the Free-air anomaly and elevation suggests that the Taiwan area is not in isostatic equilibrium. An average surface rock density of 2.57 g cm-3 is estimated from the Free-air gravity data by using the least-squares method. This value can be used for both terrain and Bouguer corrections. The undulation of the geoid and the deflections of the vertical in the Taiwan area are also calculated by using the Free-air anomaly data. The geoid undulation is not rugged over the Taiwan area. The maximum difference is about 5 m. And the deflection of the vertical seems mainly to be affected by both land and submarine topographies.

  2. Late-glacial atmospheric CO{sub 2} reconstructions from western Norway using fossil leaves

    Energy Technology Data Exchange (ETDEWEB)

    Birks, H H; Birks, H J.B. [Sheffield Univ. (United Kingdom). Dept. of Animal and Plant Sciences; Beerling, D J; Woodward, F I [Bergen Univ. (Norway). Botanical Inst.

    1996-12-31

    Analyses of air bubbles trapped in Antarctic ice-cores have shown that atmospheric CO{sub 2} concentrations are 180-200 ppmv during glacial periods, and ca. 280 ppmv during interglacials, including the Holocene. The change from glacial to Holocene concentrations occurred steadily over ca. 5000 years, slightly lagging the temperature increase inferred from {delta}{sup 18}. Antarctic ice cores lack fine time resolution over the late-glacial/early Holocene period 12-9000 {sup 14}C yr BP, that includes the Younger Dryas cold oscillation. The stomatal density on leaves is inversely proportional to the concentration of atmospheric CO{sub 2}. A late glacial sequence at Kraakenes, western Norway, contains well-preserved Salix herbacea (dwarf willow) leaves, dated from 11700-9600 {sup 14}C yr BP. If the stomatal density is measured on the fossil leaves, a calibration derived from the relationship of stomatal density of modern material of the same species to known CO{sub 2} concentrations can be used to reconstruct CO{sub 2} concentrations of the past. Because of the decadal time-resolution available at Kraakenes through the late-glacial and early Holocene, a detailed record of CO{sub 2} concentrations can be reconstructed over this period, that will complement the ice core record. (author)

  3. Late-glacial atmospheric CO{sub 2} reconstructions from western Norway using fossil leaves

    Energy Technology Data Exchange (ETDEWEB)

    Birks, H.H.; Birks, H.J.B. [Sheffield Univ. (United Kingdom). Dept. of Animal and Plant Sciences; Beerling, D.J.; Woodward, F.I. [Bergen Univ. (Norway). Botanical Inst.

    1995-12-31

    Analyses of air bubbles trapped in Antarctic ice-cores have shown that atmospheric CO{sub 2} concentrations are 180-200 ppmv during glacial periods, and ca. 280 ppmv during interglacials, including the Holocene. The change from glacial to Holocene concentrations occurred steadily over ca. 5000 years, slightly lagging the temperature increase inferred from {delta}{sup 18}. Antarctic ice cores lack fine time resolution over the late-glacial/early Holocene period 12-9000 {sup 14}C yr BP, that includes the Younger Dryas cold oscillation. The stomatal density on leaves is inversely proportional to the concentration of atmospheric CO{sub 2}. A late glacial sequence at Kraakenes, western Norway, contains well-preserved Salix herbacea (dwarf willow) leaves, dated from 11700-9600 {sup 14}C yr BP. If the stomatal density is measured on the fossil leaves, a calibration derived from the relationship of stomatal density of modern material of the same species to known CO{sub 2} concentrations can be used to reconstruct CO{sub 2} concentrations of the past. Because of the decadal time-resolution available at Kraakenes through the late-glacial and early Holocene, a detailed record of CO{sub 2} concentrations can be reconstructed over this period, that will complement the ice core record. (author)

  4. Evasion of CO{sub 2} injected into the ocean in the content of CO{sub 2} stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Kheshgi, H.S. [ExxonMobil Research and Engineering Co., Annandale, NJ (United States)

    2004-08-01

    The eventual evasion of injected CO{sub 2} to the atmosphere is one consideration when assessing deep-sea disposal of CO{sub 2} as a potential response option to climate change concerns. Evasion estimated using an ocean carbon cycle model is compared to long-term trajectories for future CO{sub 2} emissions, including illustrative cases leading to stabilization of CO{sub 2} concentration at various levels. Modeled residence time for CO{sub 2} injected into the deep ocean exceeds the 100-year time-scale usually considered in scenarios for future emissions, and the potential impacts of climate change. Illustrative cases leading monotonically to constant CO{sub 2} concentration have been highlighted by the Intergovernmental Panel on Climate Change to give guidance on possible timing of emission reductions that may be required to stabilize greenhouse gas concentrations at various levels. For stabilization cases considered, significant modeled evasion does not occur until long after CO{sub 2} emissions have reached a maximum and begun to decline. Illustrative cases can also lead to a maximum in CO{sub 2} concentration followed by a decline to slowly decreasing concentrations. In such cases, future injection of emissions into the deep ocean leads to lower maximum CO{sub 2} concentration, with less effect on concentration later on in time. (author)

  5. Evasion of CO{sub 2} injected into the ocean in the context of CO{sub 2} stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Kheshgi, Haroon S

    2004-08-01

    The eventual evasion of injected CO{sub 2} to the atmosphere is one consideration when assessing deep-sea disposal of CO{sub 2} as a potential response option to climate change concerns. Evasion estimated using an ocean carbon cycle model is compared to long-term trajectories for future CO{sub 2} emissions, including illustrative cases leading to stabilization of CO{sub 2} concentration at various levels. Modeled residence time for CO{sub 2} injected into the deep ocean exceeds the 100-year time-scale usually considered in scenarios for future emissions, and the potential impacts of climate change. Illustrative cases leading monotonically to constant CO{sub 2} concentration have been highlighted by the Intergovernmental Panel on Climate Change to give guidance on possible timing of emission reductions that may be required to stabilize greenhouse gas concentrations at various levels. For stabilization cases considered, significant modeled evasion does not occur until long after CO{sub 2} emissions have reached a maximum and begun to decline. Illustrative cases can also lead to a maximum in CO{sub 2} concentration followed by a decline to slowly decreasing concentrations. In such cases, future injection of emissions into the deep ocean leads to lower maximum CO{sub 2} concentration, with less effect on concentration later on in time.

  6. Accelerated Carbonation of Steel Slags Using CO{sub 2} Diluted Sources: CO{sub 2} Uptakes and Energy Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Baciocchi, Renato, E-mail: baciocchi@ing.uniroma2.it; Costa, Giulia [Department of Civil Engineering and Computer Science Engineering, University of Rome “Tor Vergata”, Rome (Italy); Polettini, Alessandra; Pomi, Raffaella; Stramazzo, Alessio [Department of Civil and Environmental Engineering, University of Rome “La Sapienza”, Rome (Italy); Zingaretti, Daniela [Department of Civil Engineering and Computer Science Engineering, University of Rome “Tor Vergata”, Rome (Italy)

    2016-01-18

    This work presents the results of carbonation experiments performed on Basic Oxygen Furnace (BOF) steel slag samples employing gas mixtures containing 40 and 10% CO{sub 2} vol. simulating the gaseous effluents of gasification and combustion processes respectively, as well as 100% CO{sub 2} for comparison purposes. Two routes were tested, the slurry-phase (L/S = 5 l/kg, T = 100°C and Ptot = 10 bar) and the thin-film (L/S = 0.3–0.4 l kg, T = 50°C and Ptot = 7–10 bar) routes. For each one, the CO{sub 2} uptake achieved as a function of the reaction time was analyzed and on this basis, the energy requirements associated with each carbonation route and gas mixture composition were estimated considering to store the CO{sub 2} emissions of a medium size natural gas fired power plant (20 MW). For the slurry-phase route, maximum CO{sub 2} uptakes ranged from around 8% at 10% CO{sub 2}, to 21.1% (BOF-a) and 29.2% (BOF-b) at 40% CO{sub 2} and 32.5% (BOF-a) and 40.3% (BOF-b) at 100% CO{sub 2}. For the thin-film route, maximum uptakes of 13% (BOF-c) and 19.5% (BOF-d) at 40% CO{sub 2}, and 17.8% (BOF-c) and 20.2% (BOF-d) at 100% were attained. The energy requirements of the two analyzed process routes appeared to depend chiefly on the CO{sub 2} uptake of the slag. For both process route, the minimum overall energy requirements were found for the tests with 40% CO{sub 2} flows (i.e., 1400−1600 MJ/t{sub CO{sub 2}} for the slurry-phase and 2220 – 2550 MJ/t{sub CO{sub 2}} for the thin-film route).

  7. Performance test of PSA-type O{sub 2} separator for efficient O{sub 2} supply to room ventilation system combined with CO{sub 2} adsorption module

    Energy Technology Data Exchange (ETDEWEB)

    Han, Gi Bo; Jang, Jung Hee; Choi, Changsik [Institute for Advanced Engineering, Yongin (Korea, Republic of); Lee, Tae Jin [School of Chemical Engineering Yeungnam University, Gyeongsan (Korea, Republic of)

    2016-04-15

    High purity O{sub 2} concentrated by the PSA-type O{sub 2} separator was applied to a room ventilation system combined with CO{sub 2} adsorption module to remove the indoor CO{sub 2} for the indoor air quality. And then the room was occupied by several persons to breathe for the O{sub 2} consumption and CO{sub 2} generation. As a result, the indoor air quality was improved by the ventilation system combined with the O{sub 2} supply and the CO{sub 2} adsorption module. It was due to the fact that the CO{sub 2} concentration was not steeply increased, but also even decreased and then the increasing rate of the O{sub 2} concentration with the O{sub 2} supply was simultaneously increased by the CO{sub 2} removal despite the CO{sub 2} generation and O{sub 2} consumption with the four persons' breathing. As a representative result, in the case of supplying the high purity O{sub 2} of 30 L/min under using the CO{sub 2} adsorption module, the best performance with the highest increasing rate of O{sub 2} concentration and the lowest increasing rate of CO{sub 2} concentration was obtained among the various cases, and then the increasing rates of CO{sub 2} radiation and O{sub 2} concentration were -2.3 ppm/min and 33.3%/min, respectively.

  8. Potential and economics of CO{sub 2} sequestration; Sequestration du CO{sub 2}: faisabilite et cout

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Baptiste, Ph.; Ciais, Ph.; Orr, J. [CEA Saclay, 91 - Gif sur Yvette (France). Direction des Sciences de la Matiere; Ducroux, R. [Centre d' Initiative et de Recherche sur l' Energie et l' Environnement, CIRENE, 91 - Palaiseau (France)

    2001-07-01

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO{sub 2}. Some techniques could be used to reduced CO{sub 2} emission and stabilize atmospheric CO{sub 2} concentration, including i) energy savings and energy efficiency, ii) switch to lower carbon content fuels (natural gas) and use energy sources with zero CO{sub 2} emissions such as renewable or nuclear energy, iii) capture and store CO{sub 2} from fossil fuels combustion, and enhance the natural sinks for CO{sub 2} (forests, soils, ocean...). The purpose of this report is to provide an overview of the technology and cost for capture and storage of CO{sub 2} and to review the various options for CO{sub 2} sequestration by enhancing natural carbon sinks. Some of the factors which will influence application, including environmental impact, cost and efficiency, are discussed. Capturing CO{sub 2} and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology, however, substantial R and D is needed to improve available technology and to lower the cost. Applicable to large CO{sub 2} emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to about 30% of the global anthropic CO{sub 2} emission, it represents a valuable tool in the baffle against global warming. About 50% of the anthropic CO{sub 2} is being naturally absorbed by the biosphere and the ocean. The 'natural assistance' provided by these two large carbon reservoirs to the mitigation of climate change is substantial. The existing natural sinks could be enhanced by deliberate action. Given the known and likely environmental consequences, which could be very damaging indeed, enhancing ocean sinks does not appears as a satisfactory option. In contrast, the promotion of land sinks through demonstrated carbon

  9. Industrial Analogues on CO{sub 2} Storage; Analogos Industriales del Almacenamiento de CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, R; Campos, R; Perez del Villar, L; Suarez, I; Zapatero, M A

    2008-08-06

    This volume tries to introduce the study of industrial analogues of CO{sub 2} storage, those industrial activities that, because of some specific conditions, are considered similar to CO{sub 2} geological storage activities. The goal is to obtain useful conclusions for application in the incipient exploration of this type of storages. Therefore, strategic storages of natural gas have been studied, with a special emphasis in the project developed in the surroundings of Yela (Guadalajara). Other activities are also described, as some projects that include CO{sub 2} injection to increase the recovery of oil and/or gas in nearly depleted reservoirs, and also a case of CO{sub 2} storage in a saline aquifer (Salipriina). Finally, Rewopol Project methodology is summarized, as an experimental case of CO{sub 2} storage on coal, coupled with coal bed methane production. Summing up, the main goal of this work is to determine the most adequate technologies that have to be developed in a successful CO{sub 2} storage, exploration and exploitation project. (Author) 28 refs.

  10. Evasion of CO{sub 2} injected into the ocean in the context of CO{sub 2} stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Haroon S. Kheshgi [ExxonMobil Research and Engineering Company, Annandale, NJ (United States)

    2003-07-01

    The eventual evasion of injected CO{sub 2} to the atmosphere is one consideration when assessing deep sea disposal of CO{sub 2} as a potential response option to climate change concerns. Evasion estimated using an ocean carbon cycle model is compared to long-term trajectories for future CO{sub 2} emissions, including illustrative cases leading to stabilization of CO{sub 2} concentration at various levels. Modeled residence time for CO{sub 2} injected into the deep ocean exceeds the 100-year time scale usually considered in scenarios for future emissions, and the potential impacts of climate change. Illustrative cases leading monotonically to constant CO{sub 2} concentration have been highlighted by the Intergovernmental Panel on Climate Change to give guidance on possible timing of emission reductions that may be required to stabilize greenhouse gas concentrations at various levels. For stabilization cases considered, significant modeled evasion does not occur until long after CO{sub 2} emissions have reached a maximum and begun to decline. Illustrative cases can also lead to a maximum in CO{sub 2} concentration followed by a decline to slowly decreasing concentrations. In such cases, future injection of emissions into the deep ocean leads to lower maximum CO{sub 2} concentration, with less effect on concentration later on in time. 20 refs., 4 figs.

  11. The Abundance of Atmospheric CO{sub 2} in Ocean Exoplanets: a Novel CO{sub 2} Deposition Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Levi, A.; Sasselov, D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Podolak, M., E-mail: amitlevi.planetphys@gmail.com [Dept. of Geosciences, Tel Aviv University, Tel Aviv, 69978 (Israel)

    2017-03-20

    We consider super-Earth sized planets which have a water mass fraction large enough to form an external mantle composed of high-pressure water-ice polymorphs and also lack a substantial H/He atmosphere. We consider such planets in their habitable zone, so that their outermost condensed mantle is a global, deep, liquid ocean. For these ocean planets, we investigate potential internal reservoirs of CO{sub 2}, the amount of CO{sub 2} dissolved in the ocean for the various saturation conditions encountered, and the ocean-atmosphere exchange flux of CO{sub 2}. We find that, in a steady state, the abundance of CO{sub 2} in the atmosphere has two possible states. When wind-driven circulation is the dominant CO{sub 2} exchange mechanism, an atmosphere of tens of bars of CO{sub 2} results, where the exact value depends on the subtropical ocean surface temperature and the deep ocean temperature. When sea-ice formation, acting on these planets as a CO{sub 2} deposition mechanism, is the dominant exchange mechanism, an atmosphere of a few bars of CO{sub 2} is established. The exact value depends on the subpolar surface temperature. Our results suggest the possibility of a negative feedback mechanism, unique to water planets, where a reduction in the subpolar temperature drives more CO{sub 2} into the atmosphere to increase the greenhouse effect.

  12. Carbonation of alkaline paper mill waste to reduce CO{sub 2} greenhouse gas emissions into the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lopez, R. [Laboratoire de Geophysique Interne et Tectonophysique, CNRS-OSUG-UJF, Universite Joseph Fourier Grenoble I, Maison des Geosciences, BP 53, 38041 Grenoble Cedex (France); Department of Geology, University of Huelva, Campus ' El Carmen' , 21071 Huelva (Spain)], E-mail: rafael.perez@dgeo.uhu.es; Montes-Hernandez, G. [Laboratoire de Geophysique Interne et Tectonophysique, CNRS-OSUG-UJF, Universite Joseph Fourier Grenoble I, Maison des Geosciences, BP 53, 38041 Grenoble Cedex (France); Nieto, J.M. [Department of Geology, University of Huelva, Campus ' El Carmen' , 21071 Huelva (Spain); Renard, F. [Laboratoire de Geodynamique des Chaines Alpines, CNRS-OSUG-UJF, Universite Joseph Fourier Grenoble I, Maison des Geosciences, BP 53, 38041 Grenoble Cedex (France); Physics of Geological Processes, University of Oslo (Norway); Charlet, L. [Laboratoire de Geophysique Interne et Tectonophysique, CNRS-OSUG-UJF, Universite Joseph Fourier Grenoble I, Maison des Geosciences, BP 53, 38041 Grenoble Cedex (France)

    2008-08-15

    The global warming of Earth's near-surface, air and oceans in recent decades is a direct consequence of anthropogenic emission of greenhouse gases into the atmosphere such as CO{sub 2}, CH{sub 4}, N{sub 2}O and CFCs. The CO{sub 2} emissions contribute approximately 60% to this climate change. This study investigates experimentally the aqueous carbonation mechanisms of an alkaline paper mill waste containing about 55 wt% portlandite (Ca(OH){sub 2}) as a possible mineralogical CO{sub 2} sequestration process. The overall carbonation reaction includes the following steps: (1) Ca release from portlandite dissolution, (2) CO{sub 2} dissolution in water and (3) CaCO{sub 3} precipitation. This CO{sub 2} sequestration mechanism was supported by geochemical modelling of final solutions using PHREEQC software, and observations by scanning electron microscope and X-ray diffraction of final reaction products. According to the experimental protocol, the system proposed would favour the total capture of approx. 218 kg of CO{sub 2} into stable calcite/ton of paper waste, independently of initial CO{sub 2} pressure. The final product from the carbonation process is a calcite (ca. 100 wt%)-water dispersion. Indeed, the total captured CO{sub 2} mineralized as calcite could be stored in degraded soils or even used for diverse industrial applications. This result demonstrates the possibility of using the alkaline liquid-solid waste for CO{sub 2} mitigation and reduction of greenhouse effect gases into the atmosphere.

  13. Methanogenesis from acetate by Methanosarcina barkeri: Catalysis of acetate formation from methyl iodide, CO/sub 2/, and H/sub 2/ by the enzyme system involved

    Energy Technology Data Exchange (ETDEWEB)

    Laufer, K; Eikmanns, B; Frimmer, U; Thauer, R K

    1987-04-01

    Cell suspensions of Methanosarcina barkeri grown on acetate catalyze the formation of methane and CO/sub 2/ from acetate as well as an isotopic exchange between the carboxyl group of acetate and CO/sub 2/. Here we report that these cells also mediate the synthesis of acetate from methyl iodide, CO/sub 2/, and reducing equivalents (H/sub 2/ or CO), the methyl group of acetate being derived from methyl iodide and the carboxyl group from CO/sub 2/. Methyl chloride and methyltosylate but not methanol can substitute for methyl iodide in this reaction. Acetate formation from methyl iodide, CO/sub 2/, and reducing equivalents is coupled with the phosphorylation of ADP. Evidence is presented that methyl iodide is incorporated into the methyl group of acetate via a methyl corrinoid intermediate (deduced from inhibition experiments with propyl iodide) and that CO/sub 2/ is assimilated into the carboxyl group via a C/sub 1/ intermediate which does not exchange with free formate or free CO. The effects of protonophores, of the proton-translocating ATPase inhibitor N,N'-dicyclohexylcarbodiimide, and of arsenate on acetate formation are interpreted to indicate that the reduction of CO/sub 2/ to the oxidation level of the carboxyl group of acetate requires the presence of an electrochemical proton potential and that acetyl-CoA or acetyl-phosphate rather than free acetate is the immediate product of the condensation reaction. These results are dicsussed with respect to the mechanism of methanogenesis from acetate.

  14. Survey of projected growth and problems facing air transportation, 1975 - 1985

    Science.gov (United States)

    Williams, L. J.; Wilson, A.

    1975-01-01

    Results are presented of a survey conducted to determine the current opinion of people working in air transportation demand forecasting on the future of air transportation over the next ten years. In particular, the survey included questions on future demand growth, load factor, fuel prices, introduction date for the next new aircraft, the priorities of problems facing air transportation, and the probability of a substantial change in air transportation regulation. The survey participants included: airlines, manufacturers, universities, government agencies, and other organizations (financial institutions, private research companies, etc.). The results are shown for the average responses within the organization represented as well as the overall averages.

  15. Co-benefits from CO{sub 2}-emission reduction measurements in Shanxi, China - a first assessment

    Energy Technology Data Exchange (ETDEWEB)

    Aunan, Kristin; Fang, Jinghua; Li, Guanghai; Seip, Hans Martin; Vennemo, Haakon

    2000-05-01

    The largest local and regional air pollution problems are usually found in countries without emission reduction obligations in the Kyoto protocol. Thus, in many Chinese cities the concentrations of SO{sub 2} and particulates in the air by far exceed the WHO air quality guidelines. This report analyses a set of CO{sub 2}-reducing abatement options related to coal consumption in Shanxi, China. The costs and potential for abatement are investigated for different economic sectors and the entailed emission reductions are estimated in terms of CO{sub 2}, SO{sub 2} and particles. The present population-weighted exposure level for particles and SO{sub 2} is estimated and the reduced population exposure resulting from the abatement measures is assessed. Exposure-response functions from Chinese and international epidemiology are used to indicate the health effects of applying the measures. An economic evaluation of the reduced health effect is made by applying unit prices of health impacts based on the damage cost approach. The present agricultural crop loss due to enhanced levels of surface ozone are estimated. It is found that the CO{sub 2}-reducing abatement options in Shanxi are profitable in a socioeconomic sense. But there is a certain lack of synergy between the options with respect to their effectiveness in meeting local, regional and global environmental concerns.

  16. Effects of increased atmospheric CO{sub 2} concentrations on transpiration of a wheat field in consideration of water and nitrogen limitation; Die Wirkung von erhoehten atmosphaerischen CO{sub 2}-Konzentrationen auf die Transpiration eines Weizenbestandes unter Beruecksichtigung von Wasser- und Stickstofflimitierung

    Energy Technology Data Exchange (ETDEWEB)

    Grossman-Clarke, S

    2000-09-01

    Primary responses of C{sub 3}-plants to elevated atmospheric CO{sub 2} concentrations are an increase in the net assimilation rate, leading to greater biomass, and an associated decrease in the transpiration rate per unit leaf area due to CO{sub 2}-induced stomatal closure. The question has therefore arisen: does canopy transpiration increase because of the greater biomass, or decrease because of the stomatal closure? The direct impact of an elevated atmospheric CO{sub 2} concentration of 550 {mu}mol mol{sup -1} on the seasonal course of canopy transpiration of a spring wheat crop was investigated by means of the simulation model DEMETER for production under unlimited water and nutrient supply, production under limited water but unlimited nutrient supply and the production under unlimited water but limited nitrogen supply. Independent data of the free-air carbon dioxide enrichment wheat experiments in Arizona, USA (1993-96) were used to test if the model is able to make reasonable predictions of water use and productivity of the spring wheat crop using only parameters derived from the literature. A model integrating leaf photosynthesis, stomatal conductance and energy fluxes between the plant and the atmosphere was scaled to a canopy level in order to be used in the wheat crop growth model. Temporal changes of the model parameters were considered by describing them as dependent on the changing leaf nitrogen content. Comparison of the simulation and experimental results showed that the applicability of the model approach was limited after anthesis by asynchronous changes in mesophyll and stomatal conductance. Therefore a new model approach was developed describing the interaction between assimilation rate and stomatal conductance during grain filling. The simulation results revealed only small differences in the cumulative sum of canopy transpiration and soil evaporation between elevated CO{sub 2} and control conditions. For potential growth conditions the model

  17. Developing a passive trap for diffusive atmospheric {sup 14}CO{sub 2} sampling

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Jennifer C.; Xu, Xiaomei [Department of Earth System Science, University of California, Irvine, Irvine, CA (United States); Fahrni, Simon M. [Department of Earth System Science, University of California, Irvine, Irvine, CA (United States); Institute of Particle Physics, ETH, Zurich (Switzerland); Lupascu, Massimo [Department of Earth System Science, University of California, Irvine, Irvine, CA (United States); Department of Geography, National University of Singapore (Singapore); Czimczik, Claudia I. [Department of Earth System Science, University of California, Irvine, Irvine, CA (United States)

    2015-10-15

    {sup 14}C-CO{sub 2} measurement is an unique tool to quantify source-based emissions of CO{sub 2} for both the urban and natural environments. Acquiring a sample that temporally integrates the atmospheric {sup 14}C-CO{sub 2} signature that allows for precise {sup 14}C analysis is often necessary, but can require complex sampling devices, which can be difficult to deploy and maintain, especially for multiple locations. Here we describe our progress in developing a diffusive atmospheric CO{sub 2} molecular sieve trap, which requires no power to operate. We present results from various cleaning procedures, and rigorously tested for blank and memory effects. Traps were tested in the environment along-side conventional sampling flasks for accuracy. Results show that blank and memory effects can be minimized with thorough cleaning and by avoiding overheating, and that diffusively collected air samples agree well with traditionally canister-sampled air.

  18. CO{sub 2} storage in saline aquifers; Stockage du CO{sub 2} dans les aquiferes salins

    Energy Technology Data Exchange (ETDEWEB)

    Bentham, M.; Kirby, G. [British Geological Survey (BGS), Kingsley Dunham Centre, Keyworth, Nottingham (United Kingdom)

    2005-06-01

    Saline aquifers represent a promising way for CO{sub 2} sequestration. Storage capacities of saline aquifers are very important around the world. The Sleipner site in the North Sea is currently the single case world-wide of CO{sub 2} storage in a saline aquifer. A general review is given on the specific risks for CO{sub 2} storage in saline aquifer. The regional distribution of CO{sub 2} storage potential is presented. Finally, the knowledge gaps and the future research in this field are defined. (authors)

  19. Agreement Between Face-to-Face and Free Software Video Analysis for Assessing Hamstring Flexibility in Adolescents.

    Science.gov (United States)

    Moral-Muñoz, José A; Esteban-Moreno, Bernabé; Arroyo-Morales, Manuel; Cobo, Manuel J; Herrera-Viedma, Enrique

    2015-09-01

    The objective of this study was to determine the level of agreement between face-to-face hamstring flexibility measurements and free software video analysis in adolescents. Reduced hamstring flexibility is common in adolescents (75% of boys and 35% of girls aged 10). The length of the hamstring muscle has an important role in both the effectiveness and the efficiency of basic human movements, and reduced hamstring flexibility is related to various musculoskeletal conditions. There are various approaches to measuring hamstring flexibility with high reliability; the most commonly used approaches in the scientific literature are the sit-and-reach test, hip joint angle (HJA), and active knee extension. The assessment of hamstring flexibility using video analysis could help with adolescent flexibility follow-up. Fifty-four adolescents from a local school participated in a descriptive study of repeated measures using a crossover design. Active knee extension and HJA were measured with an inclinometer and were simultaneously recorded with a video camera. Each video was downloaded to a computer and subsequently analyzed using Kinovea 0.8.15, a free software application for movement analysis. All outcome measures showed reliability estimates with α > 0.90. The lowest reliability was obtained for HJA (α = 0.91). The preliminary findings support the use of a free software tool for assessing hamstring flexibility, offering health professionals a useful tool for adolescent flexibility follow-up.

  20. IS FREE REALLY FREE PALACE ACQUIRE AS AN EFFECTIVE FORCE RENEWAL SOURCE FOR AIR FORCE PUBLIC AFFAIRS

    Science.gov (United States)

    2016-02-29

    student loans. Acceptance of SLRP results in a service commitment of one year for each $10,000, with time running concurrently. In addition, PALACE...trainee requires decreases with the amount of time he/she spends in the program, considering the three other methods of force renewal produce qualified...AU/ACSC/2016 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY IS FREE REALLY FREE ? PALACE ACQUIRE AS AN EFFECTIVE FORCE RENEWAL SOURCE FOR AIR

  1. The role of vegetation dynamics in the control of atmospheric CO{sub 2} content

    Energy Technology Data Exchange (ETDEWEB)

    Sitch, Stephen

    2000-04-01

    This thesis contains a description of the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM) and its application to infer the role of vegetation dynamics on atmospheric CO{sub 2} content at different time-scales. The model combines vegetation dynamics and biogeochemistry in a modular framework. Individual modules describe ecosystems processes, including vegetation resource competition and production, tissue turnover, growth, fire and mortality, soil and litter biogeochemistry, including the effects of CO{sub 2} on these processes. The model simulates realistic post-disturbance succession in different environments. Seasonal exchange of H{sub 2}O and CO{sub 2} between the terrestrial biosphere and the atmosphere is modelled in reasonable agreement with observation. Global estimates of carbon stocks in soil, litter and vegetation are within their acceptable ranges and the model captures the present-day patterns in vegetation. Fire return intervals are simulated correctly in most regions. Results emphasise the important role of the terrestrial biosphere in both the seasonal cycle and in the inter-annual variability in the growth rate of atmospheric CO{sub 2}. LPJ successfully reproduced both the amplitude and phase of the seasonal cycle of atmospheric CO{sub 2} content as measured at a global network of monitoring stations. The model predicted a small net terrestrial biosphere uptake of CO{sub 2} during the 1980s with a strong CO{sub 2} fertilisation effect, which enhances plant production, reduced by the effects of climate and land use change. Historical land use change and CO{sub 2} fertilisation have been the dominant, albeit opposing factors governing the response of the terrestrial biosphere with respect to carbon storage during the 20th century. LPJ is run using one future climate and atmospheric CO{sub 2} scenario until 2200. Enhanced production due to the CO{sub 2} fertilisation effect eventually reaches an asymptote, and consequently the ability of

  2. Design of CO{sub 2} absorption plant for recovery of CO{sub 2} from flue gases of gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Mofarahi, Masoud [Chemical Engineering Department, Persian Gulf University, Boushehr (Iran); Khojasteh, Yaser; Khaledi, Hiwa; Farahnak, Arsalan [Delta Consultant Engineering Group, Tehran (Iran)

    2008-08-15

    The ongoing human-induced emission of carbon dioxide (CO{sub 2}) threatens to change the earth's climate. A major factor in global warming is CO{sub 2} emission from thermal power plants, which burn fossil fuels. One possible way of decreasing CO{sub 2} emissions is to apply CO{sub 2} removal, which involves recovering of CO{sub 2} from energy conversion processes. This study is focused on recovery of CO{sub 2} from gas turbine exhaust of Sarkhun gas refinery power station. The purpose of this study is to recover the CO{sub 2} with minimum energy requirement. Many of CO{sub 2} recovery processes from flue gases have been studied. Among all CO{sub 2} recovery processes which were studied, absorption process was selected as the optimum one, due to low CO{sub 2} concentration in flue gas. The design parameters considered in this regard, are: selection of suitable solvent, solvent concentration, solvent circulation rate, reboiler and condenser duty and number of stages in absorber and stripper columns. In the design of this unit, amine solvent such as, diethanolamine (DEA), diglycolamine (DGA), methyldiethanolamine (MDEA), and monoethanolamine (MEA) were considered and the effect of main parameters on the absorption and stripping columns is presented. Some results with simultaneous changing of the design variables have been obtained. The results show that DGA is the best solvent with minimum energy requirement for recovery of CO{sub 2} from flue gases at atmospheric pressure. (author)

  3. Methodology of CO{sub 2} emission evaluation in the life cycle of office building facades

    Energy Technology Data Exchange (ETDEWEB)

    Taborianski, Vanessa Montoro; Prado, Racine T.A., E-mail: racine.prado@poli.usp.br

    2012-02-15

    The construction industry is one of the greatest sources of pollution because of the high level of energy consumption during its life cycle. In addition to using energy while constructing a building, several systems also use power while the building is operating, especially the air-conditioning system. Energy consumption for this system is related, among other issues, to external air temperature and the required internal temperature of the building. The facades are elements which present the highest level of ambient heat transfer from the outside to the inside of tall buildings. Thus, the type of facade has an influence on energy consumption during the building life cycle and, consequently, contributes to buildings' CO{sub 2} emissions, because these emissions are directly connected to energy consumption. Therefore, the aim is to help develop a methodology for evaluating CO{sub 2} emissions generated during the life cycle of office building facades. The results, based on the parameters used in this study, show that facades using structural glazing and uncolored glass emit the most CO{sub 2} throughout their life cycle, followed by brick facades covered with compound aluminum panels or ACM (Aluminum Composite Material), facades using structural glazing and reflective glass and brick facades with plaster coating. On the other hand, the typology of facade that emits less CO{sub 2} is brickwork and mortar because its thermal barrier is better than structural glazing facade and materials used to produce this facade are better than brickwork and ACM. Finally, an uncertainty analysis was conducted to verify the accuracy of the results attained. - Highlights: Black-Right-Pointing-Pointer We develop a methodology for evaluating CO{sub 2} emissions generated during the life cycle of office building facades. Black-Right-Pointing-Pointer This methodology is based in LCA. Black-Right-Pointing-Pointer We use an uncertainty analysis to verify the accuracy of the results

  4. Interaction of plasma-facing materials with air and steam

    International Nuclear Information System (INIS)

    Druyts, F.; Fays, J.; Wu, C.H.

    2002-01-01

    In the design of ITER-FEAT, several candidate materials are foreseen for plasma-facing components of the divertor (tungsten, carbon fibre-reinforced composites (CFC), molybdenum) and the first wall (beryllium). In the view of accidental scenarios such as a loss of coolant accident or a loss of vacuum accident the reaction between these materials and steam or air remains a safety concern. To provide kinetic data, describing the chemical reactivity of plasma-facing materials in air and steam, we used coupled thermogravimetry/quadrupole mass spectrometry. In this paper we present the results of a screening investigation that compares the oxidation rates of tungsten, molybdenum, CFC and beryllium in the temperature range 300-700 deg. C. From the thermogravimetry and mass spectrometry results we obtained the reaction rates as a function of temperature. For the metals tungsten, molybdenum and beryllium, a transition is observed between protective oxidation at lower temperatures and non-protective oxidation at higher temperatures. This transition temperature lies in the range 500-550 deg. C for tungsten and molybdenum, which is lower than for beryllium. At above temperatures 550 deg. C, the oxides formed on molybdenum and tungsten volatilise. This increases the oxidation rate dramatically and can lead to mobilisation of activation products in a fusion reactor. We also performed experiments on both undoped CFC and CFC doped with 8-10% silicon. The influence of silicon doping on the chemical reactivity of CFC's in air is discussed

  5. Determination of the air attenuation and electronic loss for the free air concentric cylinders ionization chamber

    International Nuclear Information System (INIS)

    Oliveira, Hebert Pinto Silveira de

    2010-01-01

    Along the latest years, the LNMRI has been proceeding a continuous research work with a concentric cylinders type free air ionizing chamber (VICTOREEN, model 481), aiming to establish it as a new national standard, and, as a consequence, replace the worldwide accepted secondary standard, calibrated by PTB. Taking into account that the absolute determination of kerma in air with a free air ionizing chamber implies the acquirement of a number of correction factors. The main objective of the present work comprises the determination of the two factors, specifically, electronic loss (k e ) and air attenuation (k a ). The correction factors were obtained through mammography qualities reference spectrum, using Monte Carlo simulation method. The Penelope code was used in the simulation procedures. Simulations took place in two stages, the acquirement of specters related to the qualities of interest (mammography) with the x ray tube (Pantak, model HF160 e Panalytical, model XRF window), and the free-air ionization chamber. The data were compared to those related to the BIPM chamber, to electronic loss were not detected. The comparison between air attenuation factors was obtained data bellow 0.13%. (author)

  6. Structures for capturing CO.sub.2, methods of making the structures, and methods of capturing CO.sub.2

    Science.gov (United States)

    Jones, Christopher W; Hicks, Jason C; Fauth, Daniel J; McMahan, Gray

    2012-10-30

    Briefly described, embodiments of this disclosure, among others, include carbon dioxide (CO.sub.2) sorption structures, methods of making CO.sub.2 sorption structures, and methods of using CO.sub.2 sorption structures.

  7. Comparative CO{sub 2} flux measurements by eddy covariance technique using open- and closed-path gas analysers over the equatorial Pacific Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Fumiyoshi (Graduate School of Natural Science and Technology, Okayama Univ., Okayama (Japan); Atmosphere and Ocean Research Inst., Univ. of Tokyo, Tokyo (Japan)), Email: fkondo@aori.u-tokyo.ac.jp; Tsukamoto, Osamu (Graduate School of Natural Science and Technology, Okayama Univ., Okayama (Japan))

    2012-04-15

    Direct comparison of airsea CO{sub 2} fluxes by open-path eddy covariance (OPEC) and closed-path eddy covariance (CPEC) techniques was carried out over the equatorial Pacific Ocean. Previous studies over oceans have shown that the CO{sub 2} flux by OPEC was larger than the bulk CO{sub 2} flux using the gas transfer velocity estimated by the mass balance technique, while the CO{sub 2} flux by CPEC agreed with the bulk CO{sub 2} flux. We investigated a traditional conflict between the CO{sub 2} flux by the eddy covariance technique and the bulk CO{sub 2} flux, and whether the CO{sub 2} fluctuation attenuated using the closed-path analyser can be measured with sufficient time responses to resolve small CO{sub 2} flux over oceans. Our results showed that the closed-path analyser using a short sampling tube and a high volume air pump can be used to measure the small CO{sub 2} fluctuation over the ocean. Further, the underestimated CO{sub 2} flux by CPEC due to the attenuated fluctuation can be corrected by the bandpass covariance method; its contribution was almost identical to that of H{sub 2}O flux. The CO{sub 2} flux by CPEC agreed with the total CO{sub 2} flux by OPEC with density correction; however, both of them are one order of magnitude larger than the bulk CO{sub 2} flux

  8. CO{sub 2} solubility in brines of sedimentary basins. Application to CO{sub 2} sequestration (greenhouse gas); Solubilite de CO{sub 2} dans les saumures des bassins sedimentaires. Application au stockage de CO{sub 2} (gaz a effet de serre)

    Energy Technology Data Exchange (ETDEWEB)

    Portier, S.

    2005-04-01

    Large scale combustion of fossil energy leads today to a production of 20 billions tons of CO{sub 2} annually. This increases continuously the CO{sub 2} concentration in the atmosphere, responsible of the observed climatic increase of the temperature since one century. One of the most acceptable solutions consists in the so called CO{sub 2} sequestration in natural geological formations. The control of the process and the prediction of the final quantity of CO{sub 2} trapped in the deep saline aquifers depend on the knowledge of the solubility of acid gas in natural brines in the in situ temperature and pressure conditions. The possible dissolution of acid gases in aqueous phases brings a new complexity, owing to the fact that they behave like electrolytes in aqueous mediums A thermodynamic model for CO{sub 2} solubility is presented. The vapour phase is described by a cubic state equation. The aqueous phase is described by apparent constants of CO{sub 2} dissolution and dissociation, adjusted on literature data. This model is validated by measurements of the British Geological Survey (CO{sub 2} sequestration at Sleipner oil field, North Sea). The results of this study made it possible to calculate the impact of a CO{sub 2} injection on the solubility of calcite by acidification of formation water. The consequences in terms of CO{sub 2} storage capacity of deep saline aquifers are estimated. (author)

  9. System and method for making metallic iron with reduced CO.sub.2 emissions

    Science.gov (United States)

    Kiesel, Richard F; Englund, David J; Schlichting, Mark; Meehan, John; Crouch, Jeremiah; Wilson, Logan

    2014-10-14

    A method and system for making metallic iron nodules with reduced CO.sub.2 emissions is disclosed. The method includes: assembling a linear hearth furnace having entry and exit portions, at least a conversion zone and a fusion zone, and a moving hearth adapted to move reducible iron bearing material through the furnace on contiguous hearth sections; assembling a shrouded return substantially free of air ingress extending adjacent at least the conversion and fusion zones of the furnace through which hearth sections can move from adjacent the exit portion to adjacent the entry portion of the furnace; transferring the hearth sections from the furnace to the shrouded return adjacent the exit portion; reducing reducible material in the linear hearth furnace to metallic iron nodules; and transporting gases from at least the fusion zone to the shrouded return to heat the hearth sections while in the shrouded return.

  10. The CO{sub 2} hydrate slurry; Le coulis de glace

    Energy Technology Data Exchange (ETDEWEB)

    Sari, O.; Hu, J.; Eicher, S.; Brun, F. [Institute of Thermal Engineering, University of Applied Sciences of Western Switzerland, Yverdon-les-Bains (Switzerland); Sari, O.; Hu, J. [Clean Cooling Solutions, spin off of University of Applied Sciences of Western Switzerland, Yverdon-les-Bains (Switzerland); Homsy, P. [Nestec Ltd, Vevey (Switzerland); Logel, J.-C. [Axima Refrigeration, Bischheim (France)

    2007-12-15

    A new, very promising refrigerant was developed, which could be used in industrial processes as well as air conditioners: the CO{sub 2} hydrate slurry. Replacing hydrochlorofluorocarbon HCFC refrigerants has a high priority, due to the strong negative environmental impact of these fluids. New refrigerants have to be environment friendly, non-inflammable, cheap and made of natural materials. CO{sub 2} hydrate slurries and/or a mixture of ice slurry and CO{sub 2} hydrate slurry meet these requirements. The University of Applied Sciences of Western Switzerland in Yverdon, together with industrial partners, investigated the properties of such slurries. The slurries were created using the Coldeco process: the refrigerating fluid is directly injected into the liquid brine. The evaporation of the refrigerating fluid cools the liquid down to its freezing point and homogeneously distributed small crystals appear in the liquid. A test rig was built to measure the physical and chemical properties of the slurries obtained in this way. CO{sub 2} hydrate slurries have a higher energy storage capacitance (500 kJ/kg) than ice slurries (333 kJ/kg). The production of CO{sub 2} hydrate slurries in large quantities in a continuous process was demonstrated. The solid particle concentration was 10%, the pressure amounted to 30 bar and the temperature 2 to 4 {sup o}C. Such slurries can be pumped and circulated in pipe networks. Stainless steel is the appropriate material for such networks. However, the main advantage of the new refrigerant will be, according to the authors, a reduced energy consumption compared to traditional refrigerating cycles: the difference between the temperature required by the user and the refrigerant temperature is reduced, thanks to the use of the latent heat in the new process.

  11. CO{sub 2} emission calculations and trends

    Energy Technology Data Exchange (ETDEWEB)

    Boden, T.A.; Marland, G. [Oak Ridge National Lab., TN (United States); Andres, R.J. [Alaska Univ., Fairbanks, AK (United States). Inst. of Northern Engineering

    1995-12-31

    Evidence that the atmospheric CO{sub 2} concentration has risen during the past several decades is irrefutable. Most of the observed increase in atmospheric CO{sub 2} is believed to result from CO{sub 2} releases from fossil-fuel burning. The United Nations (UN) Framework Convention on Climate Change (FCCC), signed in Rio de Janeiro in June 1992, reflects global concern over the increasing CO{sub 2} concentration and its potential impact on climate. One of the convention`s stated objectives was the ``stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. `` Specifically, the FCCC asked all 154 signing countries to conduct an inventory of their current greenhouse gas emissions, and it set nonbinding targets for some countries to control emissions by stabilizing them at 1990 levels by the year 2000. Given the importance of CO{sub 2} as a greenhouse gas, the relationship between CO{sub 2} emissions and increases in atmospheric CO{sub 2} levels, and the potential impacts of a greenhouse gas-induced climate change; it is important that comprehensive CO{sub 2} emissions records be compiled, maintained, updated, and documented.

  12. CO{sub 2} Emission Calculations and Trends

    Science.gov (United States)

    Boden, T. A.; Marland, G.; Andres, R. J.

    1995-06-01

    Evidence that the atmospheric CO{sub 2}concentration has risen during the past several decades is irrefutable. Most of the observed increase in atmospheric CO{sub 2} is believed to result from CO{sub 2} releases from fossil-fuel burning. The United Nations (UN) Framework Convention on Climate Change (FCCC), signed in Rio de Janeiro in June 1992, reflects global concern over the increasing CO{sub 2} concentration and its potential impact on climate. One of the convention`s stated objectives was the stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. Specifically, the FCCC asked all 154 signing countries to conduct an inventory of their current greenhouse gas emissions, and it set nonbinding targets for some countries to control emissions by stabilizing them at 1990 levels by the year 2000. Given the importance of CO{sub 2} as a greenhouse gas, the relationship between CO{sub 2} emissions and increases in atmospheric CO{sub 2} levels, and the potential impacts of a greenhouse gas-induced climate change; it is important that comprehensive CO{sub 2} emissions records be compiled, maintained, updated, and documented.

  13. The ignition delay, laminar flame speed and adiabatic temperature characteristics of n-pentane, n-hexane and n-heptane under O{sub 2}/CO{sub 2} atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ran [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion; Wuhan Textile Univ. (China). School of Environment and Urban Construction; Liu, Hao; Zhong, Xiaojiao; Wang, Zijian; Jin, Ziqin; Qiu, Jianrong [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion; Chen, Yingming [Wuhan Textile Univ. (China). School of Environment and Urban Construction

    2013-07-01

    Oxy-fuel (O{sub 2}/CO{sub 2}) combustion is one of the several promising new technologies which can realize the integrated control of CO{sub 2}, SO{sub 2}, NO{sub X} and other pollutants. However, when fuels are burned in the high CO{sub 2} concentration environment, the combustion characteristics can be very different from conventional air-fired combustion. Such changes imply that the high CO{sub 2} concentration atmosphere has impacts on the combustion processes. In this paper, the ignition time, laminar flame speed and adiabatic temperature property of C{sub 5} {proportional_to} C{sub 7} n-alkane fuels were studied under both ordinary air atmosphere and O{sub 2}/CO{sub 2} atmospheres over a wide range of CO{sub 2} concentration in the combustion systems. A new unified detailed chemical kinetic model was validated and used to simulate the three liquid hydrocarbon fuel's flame characteristics. Based on the verified model, the influences of various parameters (atmosphere, excess oxygen ratio, O{sub 2} concentration, CO{sub 2} concentration, and alkane type) on the C{sub 5} {proportional_to} C{sub 7} n-alkane's flame characteristics were systematically investigated. It can be concluded that high CO{sub 2} concentration atmosphere has negative effect on n-pentane, n-hexane and n-heptane flame's ignition, laminar flame speed and adiabatic temperature. Besides, this work confirms that high CO{sub 2} concentration atmosphere's chemical effects play a pronounced role on the flame characteristics, especially for the ignition time property.

  14. Utopia Switzerland (2) - A Country Without CO{sub 2} Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Streit, Marco [Aare-Tessin Ltd for Electricity, Bahnhofquai 12, 4601 Olten (Switzerland)

    2008-07-01

    Global warming and climate change are major themes in the today's energy policy discussion. Awarding Al Gore and the IPCC with the Nobel price in 2007 shows the importance of the climate change for the whole world. That we are running into climatic problems is already known since several decades and possibilities to solve the CO{sub 2} emissions were proposed and discussed since years, but a reduction in the CO{sub 2} emissions is not detectable. This might be due to the fact, that the major part of CO{sub 2} production (traffic and heating) is not consequently touched. It seems to be easier to discuss about renewable energies in the electricity market than in other areas. And the consequences of discussing stepping out of nuclear all over the world, has enforced the problem. Although the renaissance of nuclear has started and the known positive impact to the climate from this energy source, it is not forced to be the solution for the biggest problem of the near future. There are only a few countries worldwide which produce electricity without or with only small amounts of CO{sub 2} emissions like Norway or Switzerland. Those countries could be demonstration countries to show the possibilities for reducing and avoiding CO{sub 2} emissions. Would it be possible to replace all fossil energy sources during a reasonable period of time by using nuclear energy and hydrogen as an energy storage system? Is this scenario technical feasible and of economic interest for a small, developed country like Switzerland? If yes, Switzerland might be a good candidate to establish the first CO{sub 2}-free industrial developed state in the world. Looking much more ahead this study will discuss a simple but might be effective scenario for Switzerland. The study is based on a paper presented at IYNC 2006 and will update the used data as well as going in more details. (authors)

  15. Limitations to soybean photosynthesis at elevated carbon dioxide in free-air enrichment and open top chamber systems.

    Science.gov (United States)

    Bunce, James A

    2014-09-01

    It has been suggested that the stimulation of soybean photosynthesis by elevated CO2 was less in free-air carbon dioxide enrichment (FACE) systems than in open top chambers (OTC), which might explain smaller yield increases at elevated CO2 in FACE systems. However, this has not been tested using the same cultivars grown in the same location. I tested whether soybean photosynthesis at high light and elevated CO2 (ambient+180 μmol mol(-1)) was limited by electron transport (J) in FACE systems but by ribulose-bisphosphate carboxylation capacity (VCmax) in OTC. FACE systems with daytime and continuous CO2 enrichment were also compared. The results indicated that in both cultivars examined, midday photosynthesis at high light was always limited by VCmax, both in the FACE and in the OTC systems. Daytime only CO2 enrichment did not affect photosynthetic parameters or limitations, but did result in significantly smaller yields in both cultivars than continuous elevation. Photosynthesis measured at low photosynthetic photon flux density (PPFD) was not higher at elevated than at ambient CO2, because of an acclimation to elevated CO2 which was only evident at low measurement PPFDs. Published by Elsevier Ireland Ltd.

  16. Magnetic-field-assisted synthesis of Co{sub 3}O{sub 4} nanoneedles with superior electrochemical capacitance

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Tao; Xie, Yan; Zhang, Guoxiong; He, Zhenni; Lu, Yisheng; Guo, Haibo [Shanghai University, Department of Electronic Information Materials, School of Materials Science and Engineering (China); Lin, Chuan [GE Global Research, China Technology Center (China); Chen, Yigang, E-mail: yigangchen@shu.edu.cn [Shanghai University, Department of Electronic Information Materials, School of Materials Science and Engineering (China)

    2015-12-15

    Nanostructured Co{sub 3}O{sub 4} films have been deposited on nickel foam in a magnetic-field-assisted hydrothermal process followed by annealing in air. The magnetic field strength is varied to study its relationship with nanostructures, morphology, and electrochemical properties of the Co{sub 3}O{sub 4} electrodes. The Co{sub 3}O{sub 4} films synthesized in the weak magnetic fields consist of dispersed nanoneedles, which are different from clustered nanoneedles when the magnetic field is absent. Moreover, the magnetic fields (of several millitesla) induced substantial changes in the nanostructures and electrochemical properties of the Co{sub 3}O{sub 4} films. A possible formation mechanism of Co{sub 3}O{sub 4} nanoneedles is proposed by comparing the morphologies and nanostructures of the films synthesized with and without the magnetic fields. Among these electrodes, the optimal one has a high specific capacitance (970.8 F g{sup −1} at 0.5 A g{sup −1}), good power capability (847.5 F g{sup −1} at 6.0 A g{sup −1}), and an excellent retention ratio (93.7 % over 1000 cycles). All these impressive results demonstrate that magnetic fields may be an economic and effective tool in hydrothermal synthesis of Co{sub 3}O{sub 4} electrodes for high-performance supercapacitors.

  17. Mesoporous carbon composite for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Chih-Chau; Jin, Zhong; Lu, Wei; Sun, Zhengzong; Alemany, Lawrence; Tour, James M. [Rice University, Houston, TX (United States); Lomeda, Jay R.; Flatt, Austen K. [Nalco Company, Naperville, IL (United States)

    2012-07-01

    Herein we report a carbon based technology that can be used to rapidly adsorb and release CO{sub 2}. CO{sub 2} uptake by the synthesized composites was determined using a gravimetric method at room temperature and atmospheric pressure. 39% polyethylenimine-mesocarbon (PEI-CMK-3) composite had {approx} 12 wt% CO{sub 2} uptake capacity and a 37% polyvinylamine meso-carbon (PVA-CMK-3) composite had {approx} 13 wt% CO{sub 2} uptake capacity. The sorbents were easily regenerated at 75 deg C and exhibit excellent stability over multiple regeneration cycles. CO{sub 2} uptake was equivalent when using 10% CO{sub 2} in 90% CH{sub 4}, C{sub 2}H{sub 6} and C{sub 3}H{sub 9} mixture, underscoring the efficacy for CO{sub 2} separation from natural gas. (author)

  18. Dry storage systems with free convection air cooling

    International Nuclear Information System (INIS)

    Kioes, S.R.

    1980-01-01

    Several design principles to remove heat from the spent fuel by free air convection are illustrated and described. The key safety considerations were felt to be: loss of coolant is impossible as the passive system uses air as a coolant; overheating is precluded because as the temperatures of the containers rises the coolant flow rate increases; mass of the storage building provides a large heat sink and therefore a rapid temperature rise is impossible; and lack of any active external support requirements makes the cooling process less likely to equipment or operator failures. An example of this type of storage already exists. The German HTGR is operated with spherical graphite fuel elements which are stored in canister and in storage cells. The concept is a double cooling system with free convection inside the cells and heat exchange via two side walls of the cell to the ambient air in the cooling ducts. Technical description of the TN 1300 cask is also presented

  19. CO{sub 2}-GeoNet. A European network of excellence on geological storage of CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, H.M. [GeoForschungsZentrum GFZ, Potzdam (Germany); May, F.; Gerling, P.; Kosinowski, M.; Krueger, M.; Faber, E.; Poggenburg, J.; Teschner, M. [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany)

    2007-09-13

    The Network of Excellence ''CO{sub 2}GeoNet'' contains a critical mass of European research institutions in the field of underground carbon dioxide (CO{sub 2}) storage. World projections of energy use show that fossil fuel dependency will continue to 2030 and beyond; but sustainability will need CO{sub 2} emissions to be reduced by 60% by 2050. This will be difficult and will require various strategies. The associated rise in global CO{sub 2} emissions, without abatement, will be at an average rate of 1.8% per annum (from the current value of 25 Gt p.a., to 38 Gt by 2030); a rise of over 50%. Urgent action is needed to cope with policy's objectives. Europe's CO{sub 2} emissions will rise by an average of 0.6% p.a. up to 2020, from a 2000 level of 3.1 Gt to 3.5 Gt by 2020. The rocks under the North Sea have a theoretical capacity for storing over 800 Gt of CO{sub 2}. Capturing CO{sub 2} from industrial point sources and storing it underground seems to be a very attractive route to making cuts in CO{sub 2} emissions. CO{sub 2} capture and storage allows diverse fuel inputs and outputs, enhances security of supply and is well aligned with hydrogen production from fossil fuels. Through a number of projects supported by the European Commission (e.g. Joule 2, Research Framework Programmes 4 and 5) Europe has led the World on R and D in this area, with rapid growth during the last decade. National programmes are also emerging. This success has a downside, by creating fragmentation through diversification. North America despite its rejection of the Kyoto protocol (except Canada), has recently embraced CO{sub 2} capture and geological storage and is allocating huge resources (over $4bn) over the next 10 years. Europe, as a result, risks losing its head start. We therefore must work more effectively and restructure our efforts. The main aim of CO{sub 2}GeoNet will be to integrate, strengthen, and build upon the momentum of previous and existing

  20. Method of preparation of a CO.sub.2 removal sorbent with high chemical stability during multiple cycles

    Science.gov (United States)

    Siriwardane, Ranjani V.; Rosencwaig, Shira

    2015-07-14

    Method for the production of a clay-alkali-amine CO.sub.2 sorbent prepared by integrating a clay substrate, basic alkali salt, and amine liquid. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay substrate and basic alkali salt may be combined in a solid-solid heterogeneous mixture and followed by introduction of the amine liquid. Alternatively, an alkaline solution may be blended with the amine solution prior to contacting the clay substrate. The clay-alkali-amine CO.sub.2 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a CO.sub.2 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air. Results are presented illustrating the performance of the clay-alkali-amine CO.sub.2 sorbent compared to a clay-amine sorbent lacking the alkali inclusion.

  1. Pneumatosis cystoides intestinalis associated with massive free air mimicking perforated diffuse peritonitis

    OpenAIRE

    Sakurai, Yoichi; Hikichi, Masahiro; Isogaki, Jun; Furuta, Shinpei; Sunagawa, Risaburo; Inaba, Kazuki; Komori, Yoshiyuki; Uyama, Ichiro

    2008-01-01

    While pneumatosis cystoides intestinalis (PCI) is a rare disease entity associated with a wide variety of gastrointestinal and non-gastrointestinal disorders, PCI associated with massive intra- and retroperitoneal free air is extremely uncommon, and is difficult to diagnose differentially from perforated peritonitis. We present two cases of PCI associated with massive peritoneal free air and/or retroperitoneal air that mimicked perforated peritonitis. These cases highlight the clinical import...

  2. Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative defence in Fagus sylvatica under experimental free-air ozone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Herbinger, K. [Institut fuer Pflanzenwissenschaften, Universitaet Graz, Schubertstrasse 51, A-8010 Graz (Austria)]. E-mail: karin.herbinger@uni-graz.at; Then, Ch. [Bundesamt und Forschungszentrum fuer Wald, Abteilung Forstpflanzenphysiologie, Rennweg 1, A-6020 Innsbruck (Austria)]|[Lehrstuhl fuer Oekophysiologie der Pflanzen, Technische Universitaet Muenchen, Life Sciences Center Weihenstephan, Am Hochanger 13, D-85354 Freising (Germany); Loew, M.; Koch, N. [Lehrstuhl fuer Oekophysiologie der Pflanzen, Technische Universitaet Muenchen, Life Sciences Center Weihenstephan, Am Hochanger 13, D-85354 Freising (Germany); Haberer, K.; Alexous, M. [Institut fuer Forstbotanik und Baumphysiologie, Universitaet Freiburg, Georges-Koehler-Allee 053/054, D-79085 Freiburg (Germany); Remele, K. [Institut fuer Pflanzenwissenschaften, Universitaet Graz, Schubertstrasse 51, A-8010 Graz (Austria); Heerdt, C. [Lehrstuhl fuer Bioklimatologie und Immissionsforschung, Technische Universitaet Muenchen, Am Hochanger 13, D-85354 Freising (Germany); Grill, D. [Institut fuer Pflanzenwissenschaften, Universitaet Graz, Schubertstrasse 51, A-8010 Graz (Austria); Rennenberg, H. [Institut fuer Forstbotanik und Baumphysiologie, Universitaet Freiburg, Georges-Koehler-Allee 053/054, D-79085 Freiburg (Germany); Haeberle, K.-H.; Matyssek, R. [Lehrstuhl fuer Oekophysiologie der Pflanzen, Technische Universitaet Muenchen, Life Sciences Center Weihenstephan, Am Hochanger 13, D-85354 Freising (Germany); Tausz, M. [Institut fuer Pflanzenwissenschaften, Universitaet Graz, Schubertstrasse 51, A-8010 Graz (Austria)]|[[School of Forest and Ecosystem Science, University of Melbourne, Water Street, Creswick, Vic. 3363 (Australia); Wieser, G. [Bundesamt und Forschungszentrum fuer Wald, Abteilung Forstpflanzenphysiologie, Rennweg 1, A-6020 Innsbruck (Austria)

    2005-10-15

    We characterized leaf gas exchange and antioxidative defence of two-year-old seedlings and 60-year-old trees of Fagus sylvatica exposed to ambient (1xO{sub 3}) or two-fold ambient (2xO{sub 3}) O{sub 3} concentrations (maximum of 150 ppb) in a free-air canopy exposure system throughout the growing season. Decline in photosynthesis from sun-exposed to shaded conditions was more pronounced in adult than juvenile trees. Seedling leaves and leaves in the sun-exposed canopy had higher stomatal conductance and higher internal CO{sub 2} concentrations relative to leaves of adult trees and leaves in shaded conditions. There was a weak overall depression of photosynthesis in the 2xO{sub 3} variants across age classes and canopy positions. Pigment and tocopherol concentrations of leaves were significantly affected by canopy position and tree age, whereas differences between 1xO{sub 3} and 2xO{sub 3} regimes were not observed. Glutathione concentrations were significantly increased under 2xO{sub 3} across both age classes and canopy levels. Seedlings differed from adult trees in relevant physiological and biochemical traits in ozone response. The water-soluble antioxidative systems responded most sensitively to 2xO{sub 3} without regard of tree age or canopy position. - Ozone effects on leaf gas exchange and antioxidative systems of beech across tree age and canopy level were investigated in a free air exposure system.

  3. CO{sub 2} capture from oil refinery process heaters through oxyfuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    M.B. Wilkinson; J.C. Boden; T. Gilmartin; C. Ward; D.A. Cross; R.J. Allam; N.W.Ivens [BP, Sunbury-on-Thames (United Kingdom)

    2003-07-01

    BP has a programme to develop technologies that could reduce greenhouse gas emissions, by the capture and storage of CO{sub 2} from existing industrial boilers and process heaters. One generic technology under development is oxyfuel combustion, with flue gas recycle. Previous studies, by three of the authors, have concluded that refinery steam boilers could be successfully converted to oxyfuel firing. Fired heaters, however, differ from boilers in several respects and so it was decided to study the feasibility of converting process heaters. Three heaters, located on BP s Grangemouth refinery, were chosen as examples, as they are typical of large numbers of heaters worldwide. In establishing the parameters of the study, it was decided that the heat fluxes to the process tubes should not be increased, compared to conventional air firing. For two of the heaters this was achieved by proposing a slightly higher recycle rate than for the boiler conversion studied earlier - the heater duty would be retained with no changes to the tubes. For the third heater, where the process duty uses only the radiant section, the CO{sub 2} capture cost and the firing rate could be reduced by lowering the recycle rate. Some air in leakage to these heaters was considered inevitable, despite measures to control it, and therefore plant to remove residual inerts from the CO{sub 2} product was designed. Cryogenic oxygen production was selected for two heaters, but for the smallest heater vacuum swing adsorption was more economic. 3 refs., 2 figs., 2 tabs.

  4. CO{sub 2} and energy France and world indicators 2007; CO{sub 2} et energie France et Monde reperes edition 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    In the framework of a sustainable development, the carbon dioxide is a very controlled greenhouse effect gases to limit the climatic change. This paper presents and explains the greenhouse effect, the consequences of the climatic change, the other greenhouse effect gases as the CO{sub 2}, the CO{sub 2} emissions from the energy production, the emission factors of CO{sub 2}, the sectorial emissions of CO{sub 2}, the Kyoto protocol and the european market of the CO{sub 2} quotas. (A.L.B.)

  5. Adsorption equilibrium and thermodynamics of CO{sub 2} and CH{sub 4} on carbon molecular sieves

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xue [College of Resource and Environmental Science, Chongqing University, Chongqing, 400044 (China); State key laboratory of coal and disaster and control, Chongqing University, Chongqing University, Chongqing, 400044 (China); Wang, Li’ao, E-mail: wangliao@cqu.edu.cn [College of Resource and Environmental Science, Chongqing University, Chongqing, 400044 (China); State key laboratory of coal and disaster and control, Chongqing University, Chongqing University, Chongqing, 400044 (China); Ma, Xu; Zeng, Yunmin [College of Resource and Environmental Science, Chongqing University, Chongqing, 400044 (China); State key laboratory of coal and disaster and control, Chongqing University, Chongqing University, Chongqing, 400044 (China)

    2017-02-28

    Highlights: • Impacts of pore structure on adsorption capacity of CO{sub 2} and CH{sub 4} on CMS were studied. • Thermodynamic properties of CO{sub 2} and CH{sub 4} at zero surface coverage were analyzed. • Variation of entropy change and Gibbs free energy with surface loading was explored. - Abstract: Carbon molecular sieves (CMS) are widely used in the separation of dioxide carbon and methane. In this research, three commercial CMS were utilized to analyze the pore structure and chemical properties. The adsorption isotherms of CO{sub 2} and CH{sub 4} were studied at 298 K, 308 K and 318 K over the pressure range of 0–1 MPa by an Intelligent Gravimetric analysis (IGA-100B, UK). Langmuir model was adopted to fit the experimental data. The working capacity and selectivity were employed to evaluate the adsorbents. The adsorption thermodynamics were discussed. The adsorbed amounts of both CO{sub 2} and CH{sub 4} are found to be highly related with the BET specific surface area and the volume of micropores, and also are interrelated with the total pore volume and micropore surface area. The standard enthalpy change (ΔH{sup Θ}), standard Gibbs free energy (ΔG{sup Θ}) and standard entropy change (ΔS{sup Θ}) at zero surface loading are negative, manifesting the adsorption process is exothermic and spontaneous, and the system tends to be ordered. With the increasing surface coverage, the absolute values of Gibbs free energy (ΔG) decrease whereas the absolute values of enthalpy change (ΔH) and entropy change(ΔS) increase. This indicates that as the adsorbed amount increases, the degree of the spontaneity reduces, the intermolecular forces among the adsorbate molecules increase, the orderliness of the system improves and the adsorbed amount approaches the maximum adsorbed capacity.

  6. Reduction of CO/sub 2/ emissions through fuel economy standards for diesel cars in pakistan

    International Nuclear Information System (INIS)

    Memon, L.A.; Mehlia, T.M.I.; Hassan, M.H.

    2007-01-01

    In Pakistan, like many developing countries, the increasing prosperity and population growth are resulting in accelerated growth in vehicle population and vehicle kilometers traveled. This causes air pollution due to huge CO/sub 2/ emissions. Automobile fuel economy standards have proven to be one of the most effective tools to control oil demand thereby reducing the GHG (Green House Gas) emissions like CO/sub 2/, This study presents the investigation to apply fuel economy standards in Pakistan, in order to predict the potential reduction in CO/sub 2/ emissions and saving in fuel demand. The study is focused on only diesel cars and the data of diesel car owners for previous fifteen years is obtained from the related sources in Pakistan. A growth trend of diesel car owners was analyzed and the number of diesel car owners in future was predicted by applying database computer software. Calculations were made to study the effect of fuel economy standards in terms of saving in fuel demand and the reduction in CO/sub 2/ emissions. The results reveal the potential application of fuel economy standards and it was found that a cumulative amount of fuel 39266775 liters can be saved and CO/sub 2/ emissions can be reduced by 106021 tons at the end of 2011-2012, if fuel economy standards are implemented in 2008-2009. (author)

  7. Advances in FACE and manipulation techniques

    DEFF Research Database (Denmark)

    Beier, Claus; Larsen, Klaus S.; Mikkelsen, Teis Nørgaard

    Experimental techniques to expose plants and ecosystems to elevated CO2 have been around for decades, starting out with branch cuvettes, chambers and green houses and in the 90ies leading to the development of the FACE (Free Air Carbon Enrichment) technique, which has been and still is widely used....... The FACE technique is used under field conditions and has been developed over the years to be applied for many types of ecosystems from low stature shrub, grass and arable lands to high stature forest trees. These experiments have provided extensive knowledge and data on CO2 effects on individual plants...

  8. Investigating the effect of steam, CO{sub 2}, and surfactant on the recovery of heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Tian, S.; He, S. [China Univ. of Petroleum, Beijing (China). MOE Key Laboratory of Petroleum Engineering; Qu, L. [Shengli Oil Field Co. (China)]|[SINOPEC, Shengli (China)

    2008-10-15

    This paper presented the results of a laboratory study and numerical simulation in which the mechanisms of steam injection with carbon dioxide (CO{sub 2}) and surfactant were investigated. The incremental recoveries of 4 different scenarios were compared and analyzed in terms of phase behaviour. The study also investigated the effect of CO{sub 2} dissolution in oil and water; variation of properties of CO{sub 2}-oil phase equilibrium and CO{sub 2}-water phase equilibrium; variation of viscosity; and, oil volume and interfacial tension (IFT) during the recovery process. The expansion of a steam and CO{sub 2} front was also examined. A field application case of a horizontal well in a heavy oil reservoir in Shengli Oilfield in China was used to determine the actual dynamic performance of the horizontal well and to optimize the injection parameters of the CO{sub 2} and surfactant. The study revealed that oil recovery with the simultaneous injection of steam, CO{sub 2} and surfactant was higher than that of steam injection, steam with CO{sub 2} and steam with surfactant. The improved flow performance in super heavy oil reservoirs could be attributed to CO{sub 2} dissolution in oil which can swell the oil and reduce oil viscosity significantly. The proportion of CO{sub 2} in the free gas phase, oil phase and water phase varies with changes in reservoir pressure and temperature. CO{sub 2} decreases the temperature of the steam slightly, while the surfactant decreases the interfacial tension and helps to improve oil recovery. The study showed that the amount of injected CO{sub 2} and steam has a large effect on heavy oil recovery. Although oil production was found to increase with an increase in injected amounts, the ratio of oil to injected fluids must be considered to achieve optimum recovery. High steam quality and temperature can also improve super heavy oil recovery. The oil recovery was less influenced by the effect of the surfactant than by the effect of CO{sub 2

  9. Application of in-situ stress measurement on bursts disasters of rock and CO{sub 2} in coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Lian-Jie Wang; Dong-Sheng Sun; Li-Rong Zhang; Guan-Wu Zhou [Ministry of Land and Resources, Beijing (China)

    2009-01-15

    For the purpose of reduction and prevention of rock burst disasters and CO{sub 2}, measurements were made of in-situ stress and mechanical parameters of rock in Yingcheng mine. Geological structure and gas measurements were studied and the stress field was simulated and distribution of stress field was obtained in this area. On the basis of the study, the danger areas of rockbursts and CO{sub 2} were predicted. Preventive measures were suggested to decrease gas pressure and in-situ stress in front of the working face with advance boreholes relieving blasting. 12 refs., 5 figs., 1 tab.

  10. NETL CO>2 Storage prospeCtive Resource Estimation Excel aNalysis (CO>2-SCREEN) User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    Sanguinito, Sean M. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Goodman, Angela [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Levine, Jonathan [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2017-04-03

    This user’s manual guides the use of the National Energy Technology Laboratory’s (NETL) CO>2 Storage prospeCtive Resource Estimation Excel aNalysis (CO>2-SCREEN) tool, which was developed to aid users screening saline formations for prospective CO>2 storage resources. CO>2- SCREEN applies U.S. Department of Energy (DOE) methods and equations for estimating prospective CO>2 storage resources for saline formations. CO2-SCREEN was developed to be substantive and user-friendly. It also provides a consistent method for calculating prospective CO>2 storage resources that allows for consistent comparison of results between different research efforts, such as the Regional Carbon Sequestration Partnerships (RCSP). CO>2-SCREEN consists of an Excel spreadsheet containing geologic inputs and outputs, linked to a GoldSim Player model that calculates prospective CO>2 storage resources via Monte Carlo simulation.

  11. Environmental impact of atmospheric fugitive emissions from amine based post combustion CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Attalla, M.I.; Azzi, M.; Jackson, P.; Angove, D. [CSIRO, Newcastle, NSW (Australia). Energy Technology Div

    2009-07-01

    Amine solvent-based chemical absorption of CO{sub 2} is the most mature technology for post combustion capture (PCC) and will likely to be the first to reach commercial scale application. As such, potentially millions of tonnes of solvent will be used per year. In order to ensure the viability of PCC, the potential environmental impacts of fugitive emissions on terrestrial, aquatic and atmospheric environments must be investigated. This study used controlled laboratory/ pilot scale experiments to determine the major chemical components emitted under different operating conditions. As well, the atmospheric photo-oxidation products of amines were studied in a smog chamber under ambient conditions. The environmental concerns associated with these emissions include entrainment of the amine/ammonia with the treated flue gas and their associated atmospheric chemical reaction pathways; formation of ammonia and other amine degradation products can be entrained with the flue gas to the atmosphere; nitrosamines may form as a result of the reaction between an amine and nitrogen oxide; and the mounting evidence of the presence of amines in particulate phase. The chemical compositions of potential fugitive emissions in the flue gases from the CO{sub 2} capture system were estimated. The CSIRO smog chamber was then used to assess the potential environmental impact of selected relevant compounds in terms of their reactivities to produce secondary products. These secondary products were then characterized to determine their potential health risk factors. An air quality model was used to evaluate the potential impact of using amine solutions for CO{sub 2} capture and to determine the trade-off between CO{sub 2} capture and local and regional air quality.

  12. Free-beam soliton self-compression in air

    Science.gov (United States)

    Voronin, A. A.; Mitrofanov, A. V.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Pugžlys, A.; Panchenko, V. Ya; Shumakova, V.; Ališauskas, S.; Baltuška, A.; Zheltikov, A. M.

    2018-02-01

    We identify a physical scenario whereby soliton transients generated in freely propagating laser beams within the regions of anomalous dispersion in air can be compressed as a part of their free-beam spatiotemporal evolution to yield few-cycle mid- and long-wavelength-infrared field waveforms, whose peak power is substantially higher than the peak power of the input pulses. We show that this free-beam soliton self-compression scenario does not require ionization or laser-induced filamentation, enabling high-throughput self-compression of mid- and long-wavelength-infrared laser pulses within a broad range of peak powers from tens of gigawatts up to the terawatt level. We also demonstrate that this method of pulse compression can be extended to long-range propagation, providing self-compression of high-peak-power laser pulses in atmospheric air within propagation ranges as long as hundreds of meters, suggesting new ways towards longer-range standoff detection and remote sensing.

  13. CO{sub 2} regulation. The case of Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Tinggaard Svendsen, G. [Faculty of Business Administration, Dept. of Economics (Denmark)

    1996-12-31

    For economic, political, and administrative reasons, a mixed design of permit market, bubble and tax is preferable for CO{sub 2} regulation in Denmark. A CO{sub 2} market should be introduced for the private manufacturing sector in Denmark and an administratively set CO{sub 2} bubble should be introduced for the public electricity sector. Permits are then to be devaluated in year 2005 by 20%. A CO{sub 2} tax should be correctly set at a US dollar 50 level in year 2005 for households, transportation sector and private firms not participating in the CO{sub 2} market. (au) 49 p.

  14. Correlations among atmospheric CO[sub 2], CH[sub 4] and CO in the Arctic, March 1989

    Energy Technology Data Exchange (ETDEWEB)

    Conway, T.J.; Steele, L.P.; Novelli, P.C. (NOAA Climate Monitoring and Diagnostics Lab., Boulder, CO (United States))

    1993-12-01

    During six aircraft flights conducted as part of the third Arctic Gas and Aerosol Sampling Program (AGASP III, March 1989), 189 air samples were collected throughout the Arctic troposphere and lower stratosphere for analysis of CO[sub 2], CH[sub 4] and CO. The mixing ratios of the three gases varied significantly both horizontally and vertically. Elevated concentrations were found in layers with high anthropogenic aerosol concentrations (Arctic Haze). The mixing ratios of CO[sub 2], CH[sub 4] and CO were highly correlated on all flights. A linear regression of CH[sub 4] vs CO[sub 2] for pooled data from all flights yielded a correlation coefficient (r[sup 2]) of 0.88 and a slope of 13.5 ppb CH[sub 4]/ppm CO[sub 2] (n 186). For CO vs CO[sub 2] a pooled linear regression gave r[sup 2] 0.91 and a slope of 15.8 ppb CO/ppm CO[sub 2] (n 182). Carbon dioxide CH[sub 4] and CO also exhibited mean vertical gradients with slopes of 0.37, -4.4 and -4.2 ppb km[sup -1], respectively. Since the carbon dioxide variations observed in the Arctic atmosphere during winter are due primarily to variations in the emissions and transport of anthropogenic CO[sub 2] from Europe and Asia, the strong correlations that we have found suggest that a similar interpretation applies to CH[sub 4] and CO. Using reliable estimates of CO[sub 2] emissions for the source regions and the measured CH[sub 4]/CO[sub 2] and CO/CO[sub 2] ratios, we estimate a regional European CH[sub 4] source of 47[+-] 6 Tg CH[sub 4] yr[sup -1] that may be associated with fossil fuel combustion. A similar calculation for CO results in an estimated regional CO source of 82[+-]2 Tg CO yr[sup -1]. 31 refs., 7 figs., 4 tabs.

  15. Electrochemical fabrication, microstructure and magnetic properties of Sm{sub 2}Co{sub 17}/Fe{sub 7}Co{sub 3} dual phase nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Chunxiang, E-mail: hutcui@hebut.edu.cn [Key Lab. for New Type of Functional Materials in Hebei Province, Hebei University of Technology, No.8, Road No.1, Dingzigu, Hongqiao District, Tianjin 300130 (China); Chen, Fenghua [Tianjin Sanhuan Lucky New Materials Inc., Tianjin Economical-Technological Development Area (TEDA), Tianjin 300457 (China); Yang, Wei; Li, Hongfang; Liu, Qiaozhi; Sun, Jibing [Key Lab. for New Type of Functional Materials in Hebei Province, Hebei University of Technology, No.8, Road No.1, Dingzigu, Hongqiao District, Tianjin 300130 (China)

    2015-06-15

    By utilizing alternate electrochemical reaction, atomic migration and deposition of Fe, Co, Sm and other chemical substances in the electrochemical solution, a large number of Sm{sub 2}Co{sub 17}/Fe{sub 7}Co{sub 3} dual phase nanowire arrays were carried out in the anodic aluminum oxide (AAO) template with highly uniform and orderly. The Sm{sub 2}Co{sub 17}/Fe{sub 7}Co{sub 3} dual phase nanowire arrays with diameter of 50 nm and length of 12 μm have the smooth surface and uniform diameter. The morphology and microstructure of annealed Sm{sub 2}Co{sub 17}/Fe{sub 7}Co{sub 3} dual phase nanowires were observed and analyzed using SEM, TEM and HRTEM. Compared with single-phase nanowires, dual phase magnetic nanowires have higher coercivity and saturation magnetization. In this composite system, both the hard and the soft phases have a high Curie temperature, therefore, we believe that the Sm{sub 2}Co{sub 17}/Fe{sub 7}Co{sub 3} dual phase nanowire arrays is a new type of high-temperature magnetic composites. - Highlights: • Sm{sub 2}Co{sub 17}/Fe{sub 7}Co{sub 3} dual phase nanowires were prepared by electrochemical method. • The interface pinning is the main factor to improve anisotropy field of the nanowires. • The dual phase magnetic nanowires have higher coercivity and saturation magnetization.

  16. Improved solar-driven photocatalytic performance of Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} prepared in-situ

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Junbo, E-mail: junbozhong@163.com [Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Li, Jianzhang, E-mail: lschmanuscript@163.com [Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Huang, Shengtian; Cheng, Chaozhu; Yuan, Wei [Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Li, Minjiao [Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Sichuan Provincial Academician (Expert) Workstation, Sichuan University of Science and Engineering, Zigong 643000 (China); Ding, Jie [Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China)

    2016-05-15

    Highlights: • Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} photocatalysts were prepared in-situ. • The photo-induced charge separation rate has been greatly increased. • The photocatalytic activity has been greatly promoted. - Abstract: Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} composites have been fabricated in-situ via a facile parallel flaw co-precipitation method. The specific surface area, structure, morphology, and the separation rate of photo-induced charge pairs of the photocatalysts were characterized by Brunauer–Emmett–Teller (BET) method, X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy(DRS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and surface photovoltage (SPV) spectroscopy, respectively. XRD patterns and DRS demonstrated that Ag{sub 2}CO{sub 3} has no effect on the crystal phase and bandgap of (BiO){sub 2}CO{sub 3}. The existence of Ag{sub 2}CO{sub 3} in the composites enhances the separation rate of photo-induced charge pairs of the photocatalysts. The photocatalytic performance of Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} was evaluated by the decolorization of methyl orange (MO) aqueous solution under simulated solar irradiation. It was found that the simulated solar-induced photocatalytic activity of Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} copmposites was significantly improved, which was mainly attributed to the enhanced surface area and the separation rate of photo-induced charge pairs.

  17. Study on CO{sub 2} Recovery System Design in Supercritical CO{sub 2} Cycle for SFR Application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Seok; Jung, Hwa-Young; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    As a part of Sodium-cooled Fast Reactor (SFR) development in Korea, the supercritical CO{sub 2} (S-CO{sub 2}) Brayton cycle is considered as an alternative power conversion system to eliminate sodium-water reaction (SWR) when the current conventional steam Rankine cycle is utilized with SFR. The parasitic loss caused by the leakage flow should be minimized since this greatly influences the cycle efficiency. Thus, a simple model for estimating the critical flow in a turbo-machinery seal was developed to predict the leakage flow rate and calculate the required total mass of working fluid in a S-CO{sub 2} power system to minimize the parasitic loss. In this work, study on CO{sub 2} recovery system design was conducted by finding the suitable recovery point with the developed simple CO{sub 2} critical flow model and sensitivity analysis was performed on the power system performance with respect to multiple CO{sub 2} recovery process options. The study of a CO{sub 2} recovery system design was conducted to minimize the thermal efficiency losses caused by CO{sub 2} inventory recovery system. For the first step, the configuration of a seal was selected. A labyrinth seal has suitable features for the S-CO{sub 2} power cycle application. Then, thermal efficiency losses with different CO{sub 2} leak rate and recovery point were evaluated. To calculate the leak rate in turbo-machinery by using the developed CO{sub 2} critical flow model, the conditions of storage tank is set to be closer to the recovery point. After modifying the critical flow model appropriately, total mass flow rate of leakage flow was calculated. Finally, the CO{sub 2} recovery system design work was performed to minimize the loss of thermal efficiency. The suggested system is not only simple and intuitive but also has relatively very low additional work loss from the compressor than other considered systems. When each leak rate is set to the conventional leakage rate of 1 kg/s per seal, the minimum and

  18. Spatial and temporal variability of land CO{sub 2} fluxes estimated with remote sensing and analysis data over western Eurasia

    Energy Technology Data Exchange (ETDEWEB)

    Lafont, S.; Dedieu, G. [CESBIO (CNRS/CNES/UPS), Toulouse (France); Kergoat, L. [LET (CNRS/UPS), Toulouse (France); Chevillard, A. [CEA Saclay, Gif-sur-Yvette (France). Laboratoire des Sciences du Climat et de l' Environnement; Karstens, U. [MPI-MET, Hamburg (Germany); Kolle, O. [Max-Planck Inst. for Biogeochemistry, Jena (Germany)

    2002-11-01

    The Eurosiberian Carbonflux project was designed to address the feasibility of inferring the regional carbon balance over Europe and Siberia from a hierarchy of models and atmospheric CO{sub 2} measurements over the continent. Such atmospheric CO{sub 2} concentrations result from the combination of connective boundary layer dynamics, synoptic events, large-scale transport of CO{sub 2}, and regional surface fluxes and depend on the variability of these processes in time and space. In this paper we investigate the spatial and temporal variability of the land surface CO{sub 2} fluxes derived from the TURC model. This productivity model is driven by satellite NDVI and forced by ECMWF or REMO meteorology. We first present an analysis of recent CO{sub 2} flux measurements over temperate and boreal forests, which are used to update the TURC model. A strong linear relationship has been found between maximum hourly CO{sub 2} fluxes and the mean annual air temperature, showing that boreal biomes have a lower photosynthetic capacity than temperate ones. Then, model input consistency and simulated CO{sub 2} flux accuracy are evaluated against local measurements from two sites in Russia. Finally, the spatial and temporal patterns of the daily CO{sub 2} fluxes over Eurasia are analysed. We show that, during the growing season (spring and summer), the daily CO{sub 2} fluxes display characteristic spatial patterns of positive and negative fluxes at the synoptic scale. These patterns are found to correspond to cloudy areas (areas with low incoming radiation) and to follow the motion of cloud cover areas over the whole domain. As a consequence, we argue that co-variations of surface CO{sub 2} fluxes and atmospheric transport at the synoptic scale may impact CO{sub 2} concentrations over continents and need to be investigated.

  19. CO{sub 2} geothermal heat probe - Phase 2; CO{sub 2}-Erdwaermesonde - Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Grueniger, A.; Wellig, B.

    2009-12-15

    In this project the fluid dynamics and thermodynamics inside a CO{sub 2} geothermal heat probe have been investigated. The functionality of such a probe, which works like a thermosyphon, was analyzed by means of a simulation model in MATLAB. The model couples the behaviour inside the heat probe with the heat conduction in the earth. A parameter study revealed that the self-circulation character of such a probe leads to flattening of the vertical earth temperature profile near the probe and, hence, leads to more uniform heat removal along the probe. The circulation of CO{sub 2} even goes on when the heat pump is off. This might be advantageous for the regeneration phase. The heat transfer resistance of the evaporating CO{sub 2} film flowing down the probe wall is very small compared to the conduction resistance of the earth. Therefore, no difference has been found between the performances of a conventional heat pipe and a configuration where the liquid phase injection is distributed on different height stages along the probe. It is estimated that the seasonal performance factor of heat pumps can be improved by 15-25% with a CO{sub 2} geothermal heat probe. The main advantage is that the heat transfer to the evaporator of the heat pump (condensation of CO{sub 2} / evaporation of refrigerant) is much more efficient than in a conventional brine probe without phase change. Furthermore, no circulation pump is needed. (authors)

  20. International trade and CO{sub 2} emissions; International handel og CO{sub 2}-udledning

    Energy Technology Data Exchange (ETDEWEB)

    Munksgaard, J.; Pade, L.L. [AKF, Copenhagen (Denmark); Lenzen, M. [Univ. of Sydney (Australia)

    2005-04-01

    International trade has an impact on national CO{sub 2} emissions and consequently on the ability to fulfil national CO{sub 2} reduction targets. Through goods and services traded in a globally interdependent world, the consumption in each country is linked to greenhouse gas emissions in other countries. It has been argued that in order to achieve equitable reduction targets, international trade has to be taken into account when assessing nations' responsibility for abating climate change. Especially for open economies such as Denmark, greenhouse gases embodied in international traded commodities can have a considerable influence on the national greenhouse gas responsibility. Founded in the concepts of 'producer CO{sub 2} responsibility', 'consumer CO{sub 2} responsibility' and 'CO{sub 2} trade balance' the aim of the present study has been to develop the single-region input-output model as used in a previous study into a multi-region input-output model in order to get a more realistic description of the production technologies actually used in the countries of imports. The study concludes that trade is the key to define CO{sub 2} responsibility on macroeconomics level and that imports should be founded in a multi-region model approach. The study also points at the need to consider the impact from foreign trade when negotiating national reduction targets and base line scenarios within the context of international climate agreements. (BA)

  1. Support for and reported compliance among smokers with smoke-free policies in air-conditioned hospitality venues in Malaysia and Thailand: findings from the International Tobacco Control Southeast Asia Survey.

    Science.gov (United States)

    Yong, Hua-Hie; Foong, Kin; Borland, Ron; Omar, Maizurah; Hamann, Stephen; Sirirassamee, Buppha; Fong, Geoffrey T; Fotuhi, Omid; Hyland, Andrew

    2010-01-01

    This study examined support for and reported compliance with smoke-free policy in air-conditioned restaurants and other similar places among adult smokers in Malaysia and Thailand. Baseline data (early 2005) from the International Tobacco Control Southeast Asia Survey (ITC-SEA), conducted face-to-face in Malaysia and Thailand (n = 4005), were used. Among those attending venues, reported total smoking bans in indoor air-conditioned places such as restaurants, coffee shops, and karaoke lounges were 40% and 57% in Malaysia and Thailand, respectively. Support for a total ban in air-conditioned venues was high and similar for both countries (82% Malaysian and 90% Thai smokers who believed there was a total ban), but self-reported compliance with bans in such venues was significantly higher in Thailand than in Malaysia (95% vs 51%, P air-conditioned venues was associated with a greater support for a ban in such venues in both countries.

  2. A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO>2 detection techniques and transport models

    Energy Technology Data Exchange (ETDEWEB)

    Spangler, Lee H. [Montana State Univ., Bozeman, MT (United States). Dept. of Chemistry and Biochemistry; Dobeck, Laura M. [Montana State Univ., Bozeman, MT (United States). Dept. of Chemistry and Biochemistry; Repasky, Kevin S. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Nehrir, Amin R. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Humphries, Seth D. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Barr, Jamie L. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Keith, Charlie J. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Shaw, Joseph A. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Rouse, Joshua H. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Cunningham, Alfred B. [Montana State Univ., Bozeman, MT (United States). Dept. of Civil Engineering; Benson, Sally M. [Stanford Univ., CA (United States). Global Climate and Energy Project; Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Lewicki, Jennifer L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Wells, Arthur W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Diehl, J. Rodney [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Strazisar, Brian R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Fessenden, Julianna E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Div. of Earth and Environmental Sciences; Rahn, Thom A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Div. of Earth and Environmental Sciences; Amonette, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Barr, Jon L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pickles, William L. [Univ. of California, Santa Cruz, CA (United States). Earth and Planetary Sciences; Jacobson, James D. [Univ. of California, Santa Cruz, CA (United States). Earth and Planetary Sciences; Silver, Eli A. [Univ. of California, Santa Cruz, CA (United States). Earth and Planetary Sciences; Male, Erin J. [Univ. of California, Santa Cruz, CA (United States). Earth and Planetary Sciences; Rauch, Henry W. [Univ. of West Virginia, Morgantown, WV (United States). Dept. of Geology and Geography; Gullickson, Kadie S. [Montana State Univ., Bozeman, MT (United States). Dept. of Chemistry and Biochemistry; Trautz, Robert [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Kharaka, Yousif [U.S. Geological Survey, Menlo Park, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Wielopolski, Lucien [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2010-03-01

    A controlled field pilot has been developed in Bozeman, Montana, USA, to study near surface CO>2 transport and detection technologies. A slotted horizontal well divided into six zones was installed in the shallow subsurface. The scale and CO>2 release rates were chosen to be relevant to developing monitoring strategies for geological carbon storage. The field site was characterized before injection, and CO>2 transport and concentrations in saturated soil and the vadose zone were modeled. Controlled releases of CO>2 from the horizontal well were performed in the summers of 2007 and 2008, and collaborators from six national labs, three universities, and the U. S. Geological Survey investigated movement of CO>2 through the soil, water, plants, and air with a wide range of near surface detection techniques. An overview of these results will be presented.

  3. CO{sub 2}. Separation, storage, use. Holistic assessment in the range of energy sector and industry; CO{sub 2}. Abtrennung, Speicherung, Nutzung. Ganzheitliche Bewertung im Bereich von Energiewirtschaft und Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Fischedick, Manfred [Wuppertal Institut fuer Klima, Umwelt, Energie GmbH, Wuppertal (Germany); Goerner, Klaus [Duisburg-Essen Univ., Essen (Germany). Lehrstuhl fuer Umweltverfahrenstechnik und Anlagentechnik; Thomeczek, Margit (ed.) [EnergieAgentur.NRW, Gelsenkirchen (Germany)

    2015-07-01

    The technology for CO{sub 2} capture and storage (CCS) and CO{sub 2} usage (CCR) is illuminated in this reference book comprehensively and from different perspectives. Experts from research and industry present the CCS and CCR technology based on the scientific and technical foundations and describe the state-of-the-art. They compare energy balances for different techniques and discuss legal, economic and socio-political aspects. In scenario analyzes they demonstrate the future contribution of the technologies and present the views of the different stakeholder groups. The authors claim to inform value-free. They disclose the criteria for the assessment of individual perspectives. An important work on a current and controversial discussed technology. [German] Die Technologie der CO{sub 2}-Abtrennung und -Speicherung (CCS) sowie die CO{sub 2}-Nutzung (CCR) wird in diesem Fachbuches umfassend und aus unterschiedlicher Perspektive beleuchtet. Experten aus Forschung und Industrie stellen die CCS- und CCR-Technologie auf Basis der naturwissenschaftlichen und technischen Grundlagen vor und legen den Stand der Technik dar. Sie vergleichen Energiebilanzen fuer verschiedene Techniken und diskutieren rechtliche, wirtschaftliche und gesellschaftspolitische Aspekte. In Szenarioanalysen zeigen sie den zukuenftigen Beitrag der Technologien auf und stellen die Sichtweisen der verschiedenen Stakeholder-Gruppen vor. Die Autoren haben den Anspruch, wertfrei zu informieren. Dabei legen sie die Kriterien fuer die Bewertung der einzelnen Sichtweisen offen. Ein wichtiges Werk zu einer aktuellen und kontrovers diskutierten Technologie.

  4. Triazine containing N-rich microporous organic polymers for CO{sub 2} capture and unprecedented CO{sub 2}/N{sub 2} selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Bhunia, Subhajit; Bhanja, Piyali; Das, Sabuj Kanti [Department of Material Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Sen, Tapas [Nanobiomaterials Research Group, Centre for Materials Science, School of Physical Sciences and Computing, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Bhaumik, Asim, E-mail: msab@iacs.res.in [Department of Material Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2017-03-15

    Targeted synthesis of microporous adsorbents for CO{sub 2} capture and storage is very challenging in the context of remediation from green house gases. Herein we report two novel N-rich microporous networks SB-TRZ-CRZ and SB-TRZ-TPA by extensive incorporation of triazine containing tripodal moiety in the porous polymer framework. These materials showed excellent CO{sub 2} storage capacities: SB-TRZ-CRZ displayed the CO{sub 2} uptake capacity of 25.5 wt% upto 1 bar at 273 K and SB-TRZ-TPA gave that of 16 wt% under identical conditions. The substantial dipole quadruple interaction between network (polar triazine) and CO{sub 2} boosts the selectivity for CO{sub 2}/N{sub 2}. SB-TRZ-CRZ has this CO{sub 2}/N{sub 2} selectivity ratio of 377, whereas for SB-TRZ-TPA it was 97. Compared to other porous polymers, these materials are very cost effective, scalable and very promising material for clean energy application and environmental issues. - Graphical abstract: We report two novel N-rich microporous polymeric materials by doping of triazine containing tripodal dopant in the organic framework. These materials showed excellent CO{sub 2} storage capacities as high as 25.5 wt% under 1 bar pressure with exceptional CO{sub 2}/N{sub 2} selectivity of 377. - Highlights: • Triazine containing trimodal moiety incorporated in polycarbazolic and poly triphenylamine networks. • N-rich crosslinked polymers with high BET surface area and 1.5–1.7 nm size large micropores. • CO{sub 2} uptake capacity of 25.5 wt% upto 1 bar at 273 K. • These crosslinked porous polymers showed exceptional CO{sub 2}/N{sub 2} selectivity.

  5. Facile synthesis and electrochemical performance of Co{sub 2}SnO{sub 4}/Co{sub 3}O{sub 4} nanocomposite for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    An, Bonan [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), Guangzhou 510006 (China); Ru, Qiang, E-mail: ruqiang@scnu.edu.cn [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), Guangzhou 510006 (China); Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Hu, Shejun; Song, Xiong; Li, Juan [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), Guangzhou 510006 (China)

    2014-12-15

    Graphical abstract: TEM of Co{sub 2}SnO{sub 4}/Co{sub 3}O{sub 4} composite and the discharge curves of pure Co{sub 3}O{sub 4}, pure Co{sub 2}SnO{sub 4} and Co{sub 2}SnO{sub 4}/Co{sub 3}O{sub 4} composite. - Highlights: • Novel Co{sub 2}SnO{sub 4}/Co{sub 3}O{sub 4} composite has been prepared by simple co-precipitation method. • Small spherical nanocrystals adhering to the surface of large polyhedral particles. • Formation mechanism is relate to solubility of Sn(OH){sub 6}{sup 2−} in high concentration OH{sup −} . • The composite shows better electrochemical performance than Co{sub 2}SnO{sub 4} and Co{sub 3}O{sub 4} - Abstract: A novel dispersed structure Co{sub 2}SnO{sub 4}/Co{sub 3}O{sub 4} composite has been successfully synthesized by a conventional co-precipitation method with certain amount of NaOH concentration. The obtained composite exhibits dispersed structure with small spherical nanocrystals adhering to the surface of large polyhedral particles, which has been studied as an anode material in lithium-ion battery. Galvanostatic charge–discharge and cyclic voltammetry has been conducted to measure the electrochemical properties of the material. The results show that Co{sub 2}SnO{sub 4}/Co{sub 3}O{sub 4} composite demonstrates good reversible capacity of 702.5 mA h g{sup −1} after 50 cycles at a current density of 100 mA h g{sup −1}, much better than that of pure Co{sub 3}O{sub 4} (375.1 mA h g{sup −1}) and pure Co{sub 2}SnO{sub 4} (194.1 mA h g{sup −1}). This material also presents improved rate performance with capacity retention of 71.1% when the current ranges from 100 mA g{sup −1} to 1000 mA g{sup −1}. The excellent electrochemical performance of the as-prepared dispersed structure Co{sub 2}SnO{sub 4}/Co{sub 3}O{sub 4} composite could be attributed to the good dispersibility of nanoparticles which can effectively alleviate the volume expansion and improve the conductivity, thus enhance the cycling stability.

  6. The effects of reduced CO{sub 2} emissions on employment; Sysselsettingsvirkninger av redusert CO{sub 2}-utslipp

    Energy Technology Data Exchange (ETDEWEB)

    Mathiesen, L

    1995-06-01

    This report discusses how reducing the CO{sub 2} emission might affect employment, adaptation and job mobility between trades. It confirms and expands the results of many previous studies. The socio-economic costs involved in regulation of greenhouse gas emissions appear to be low and perhaps negative, and very unevenly distributed on the sectors which must be regulated if the emission goals are to be achieved. The author`s analyses show that in addition to affecting the transport sectors, regulations have an especially strong impact on trades within the processing industries such as refining of crude oil, production of ferro alloys, fertilizers, cement and primary aluminium. For the Norwegian CO{sub 2} emissions in 2000 not to exceed the 1989 level, the activities within crude oil refining and ferro alloys production must be halved and the activities within the three other industries must go down by 10-15%. This ranking is very stable under changes in common external conditions provided all the sectors face the same tax per unit emitted. The trades most strongly influenced by regulations are mostly found in places with few alternative job possibilities, which results in frictional unemployment. Some of the unemployed may get lost forever so that the unemployment becomes permanent. However, less than 1% of the total manpower of Norway work in the five sectors and so the loss of work places will be 0.2%, or 4000. 35 refs., 9 figs., 6 tabs.

  7. Swedish biomass strategies to reduce CO{sub 2} emission and oil use in an EU context

    Energy Technology Data Exchange (ETDEWEB)

    Joelsson, Jonas [Ecotechnology and Environmental Science, Mid Sweden University, SE-831 25 Oestersund (Sweden); Gustavsson, Leif [Linnaeus University, SE-351 95 Vaexjoe (Sweden)

    2012-07-15

    Swedish energy strategies for transportation, space heating and pulp industries were evaluated with a focus on bioenergy use. The aims were to 1) study trade-offs between reductions in CO{sub 2} emission and oil use and between Swedish reductions and EU reductions, 2) compare the potential contributions of individual reduction measures, 3) quantify the total CO{sub 2} emission and oil use reduction potentials. Swedish energy efficiency measures reduced EU CO{sub 2} emission by 45-59 Mt CO{sub 2}/a, at current biomass use and constant oil use. Doubling Swedish bioenergy use yielded an additional 40 Mt CO{sub 2}/a reduction. Oil use could be reduced, but 36-81 kt of reductions in CO{sub 2} emission would be lost per PJ of oil use reduction. Swedish fossil fuel use within the studied sectors could be nearly eliminated. The expansion of district heating and cogeneration of heat with a high electricity yield were important measures. Plug-in hybrid electric cars reduced CO{sub 2} emission compared with conventional cars, and the difference was larger with increasing oil scarcity. The introduction of black liquor gasification in pulp mills also gave large CO{sub 2} emission reduction. Motor fuel from biomass was found to be a feasible option when coal is the marginal fuel for fossil motor fuel production. -- Highlights: Black-Right-Pointing-Pointer Bioenergy is compared to optimized fossil fuel use under different oil availability constraints. Black-Right-Pointing-Pointer Swedish strategies are evaluated with respect to CO{sub 2} emission and oil use reduction within Sweden and the EU. Black-Right-Pointing-Pointer Efficiency measures give the largest reductions but increased bioenergy use is also important. Black-Right-Pointing-Pointer District heating expansion, high electricity yield CHP, increased vehicle efficiency and PHEVs are important options. Black-Right-Pointing-Pointer The studied sectors in Sweden could become nearly fossil-fuel free and yield an energy

  8. Stability results of a free air ionization chamber in standard mammography beams

    International Nuclear Information System (INIS)

    Silva, Natalia F.; Xavier, Marcos; Vivolo, Vitor; Caldas, Linda V.E.

    2015-01-01

    Free air ionization chambers are absolute dosimeters, because they can measure basic physical quantities directly without the need of their calibration in a standard radiation beam. They are used for measuring exposure and air kerma in X and gamma radiation beams. The Calibration Laboratory (LCI) of IPEN has a free air ionization chamber of the cylindrical type for low energies. The characterization of this ionization chamber was already performed and reported in a previous study. After a modification in the support of the micrometers used for the movement of the internal cylinder devices, the tests were redone. The objective of this work was to present the new alignment protocol of the free air ionization chamber in low energies of X-ray beams of standard mammography qualities, assuring the positioning reproducibility, and new results of stability tests performed with the application of this protocol will be presented. (author)

  9. Experimental investigation of CO{sub 2} condensation process using cryogen

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheonkyu; Yoo, Junghyun; Lee, Jisung; Park, Hana; Jeong, Sangkwon [Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

    2014-01-29

    Carbon dioxide (CO{sub 2}) is one of the dominant gas molecules that causes greenhouse effect, i.e. global warming. Numerous studies have been carried out to regulate the emission of CO{sub 2} to reduce greenhouse gas. The liquid CO{sub 2} is a convenient form of transportation compared to high-pressurized gaseous CO{sub 2}. Therefore, the direct liquefaction mechanism of CO{sub 2} at low temperature draws technical attention recently. In particular, cold thermal energy of Liquefied Natural Gas (LNG) could be a candidate to condense gaseous CO{sub 2}, especially in the LNG powered ship. In this paper, the detailed direct condensation process of CO{sub 2} using LN{sub 2} with intermittent solidification is investigated. Pressurized CO{sub 2} at 600 kPa is directly liquefied in a vessel by liquid nitrogen which is supplied into the coiled tube heat exchanger inside the CO{sub 2} vessel. The heat exchanger temperature is controlled from 130 K to 205 K to regulate the solidification and sublimation of CO{sub 2} by duty control with cryogenic solenoid valve. The characteristics of CO{sub 2} condensation process with cryogen are analyzed from the measurement results. The results show that the solidification causes the significant degradation of CO{sub 2} condensation heat transfer. Finally, the condensation rate with and without solidification is compared.

  10. Energy economics. CO{sub 2} emissions in China

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yiming [Beijing Institute of Technology (China). Center for Energy and Environmental Policy Research; Liu, Lancui [Ministry of Environmental Protection of the People' s Republic of China, Beijing (China). Center for Climate and Environmental Policy; Wu, Gang; Zou, Lele [Chinese Academy of Sciences, Beijing (China). Inst. of Policy and Management

    2011-07-01

    ''Energy Economics: CO{sub 2} Emissions in China'' presents a collection of the researches on China's CO{sub 2} emissions as studied by the Center for Energy and Environmental Policy Research (CEEP). Based on the analysis of factors related to global climate change and CO{sub 2} emissions, it discusses China's CO{sub 2} emissions originating from various sectors, diverse impact factors, as well as proposed policies for reducing carbon emissions. Featuring empirical research and policy analysis on focused and critical issues involving different stages of CO{sub 2} emissions in China, the book provides scientific supports for researchers and policy makers in dealing with global climate change. (orig.)

  11. Comparison of regional and ecosystem CO{sub 2} fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Gryning, S. E. (Wind Energy Department, Risoe National Laboratory for Sustainable Energy, Technical Univ. of Denmark, Roskilde (Denmark)); Soegaard, H. (Institute of Geography and Geology, University of Copenhagen, Copenhagen (Denmark)); Batchvarova, E. (National Institute of Meteorology and Hydrology, Bulgarian Academy of Sciences, Sofia (Bulgaria))

    2009-07-01

    A budget method to derive the regional surface flux of CO{sub 2} from the evolution of the boundary layer is presented and applied. The necessary input for the method can be deduced from a combination of vertical profile measurements of CO{sub 2} concentrations by i.e. an airplane, successive radio-soundings and standard measurements of the CO{sub 2} concentration near the ground. The method was used to derive the regional flux of CO{sub 2} over an agricultural site at Zealand in Denmark during an experiment on 12-13 June 2006. The regional fluxes of CO{sub 2} represent a combination of agricultural and forest surface conditions. It was found that the regional flux of CO{sub 2} in broad terms follows the behavior of the flux of CO{sub 2} at the agricultural (grassland) and the deciduous forest station. The regional flux is comparable not only in size but also in the diurnal (daytime) cycle of CO{sub 2} fluxes at the two stations. (orig.)

  12. CO[sub 2] exchange and growth of the Crassulacean acid metabolism plant opuntia ficus-indica under elevated CO[sub 2] in open-top chambers

    Energy Technology Data Exchange (ETDEWEB)

    Cui, M.; Miller, P.M.; Nobel, P.S. (Univ. of California, Los Angeles, CA (United States))

    1993-10-01

    CO[sub 2] uptake, water vapor conductance, and biomass production of Opuntia ficus-indica, a Crassulacean acid metabolism species, were studied at CO[sub 2] concentrations of 370, 520, and 720 [mu]L L[sup [minus]1] in open-top chambers during a 23-week period. Nine weeks after planting, daily net CO[sub 2] uptake for basal cladodes at 520 and 720 [mu]L L[sup [minus]1] of CO[sub 2] was 76 and 98% higher, respectively, than at 370 [mu]L L[sup [minus]1]. Eight weeks after daughter cladodes emerged, their daily net CO[sub 2] uptake was 35 and 49% higher at 520 and 720 [mu]L L[sup [minus]1] of CO[sub 2], respectively, than at 370 L L[sup [minus]1]. Daily water-use efficiency was 88% higher under elevated CO[sub 2] for basal cladodes and 57% higher for daughter cladodes. The daily net CO[sub 2] uptake capacity for basal cladodes increased for 4 weeks after planting and then remained fairly constant, whereas for daughter cladodes, it increased with cladode age, became maximal at 8 to 14 weeks, and then declined. The percentage enhancement in daily net CO[sub 2] uptake caused by elevated CO[sub 2] was greatest initially for basal cladodes and at 8 to 14 weeks for daughter cladodes. The chlorophyll content per unit fresh weight of chlorenchyma for daughter cladodes at 8 weeks was 19 and 62% lower in 520 and 720 [mu]L L[sup [minus]1] of CO[sub 2], respectively, compared with 370 [mu]L L[sup [minus]1]. Despite the reduced chlorophyll content, plant biomass production during 23 weeks in 520 and 720 [mu]L L[sup [minus]1] of CO[sub 2] was 21 and 55% higher, respectively, than at 370 [mu]L L[sup [minus]1]. The root dry weight nearly tripled as the CO[sub 2] concentration was doubled, causing the root/shoot ratio to increase with CO[sub 2] concentration. During the 23-week period, elevated CO[sub 2] significantly increased CO[sub 2] uptake and biomass production of O. 35 refs., 4 figs., 1 tab.

  13. Influences of elevated CO[sub 2] on CO[sub 2] uptake and biomass production for the CAM plant Opuntia ficus-indica in open-top chambers

    Energy Technology Data Exchange (ETDEWEB)

    Cui, M.; Miller, P.M.; Nobel, P.S. (Univ. of California, Los Angeles (United States))

    1993-06-01

    CO[sub 2] uptake, water vapor conductance, and biomass production of the CAM plant Opuntia ficus-indica were studied at the current and two elevated CO[sub 2] concentrations (plus 150 and plus 350 [mu]L L[sup [minus]1]) in open-top chambers over a 23-week period. Nine weeks after planting, daily net CO[sub 2] uptake for basal cladodes in the medium and the high CO[sub 2] treatments was 49% and 84% higher, respectively, than at the current CO[sub 2] concentration. Nine weeks after the first-daughter cladodes emerged, their daily net CO[sub 2] uptake was 35% and 49% higher, respectively, in the medium and the high CO[sub 2] treatments than at the current CO[sub 2] concentration. Despite significantly lower chlorophyll contents (19% and 62%, respectively) in the first-daughter cladodes, biomass production over 23 weeks in the medium and the high CO[sub 2] treatments was 22% and 50% higher, respectively, than for plants at the current CO[sub 2].

  14. Role of mesoscale eddies in the global ocean uptake of anthropogenic CO{sub 2}; Role des tourbillons de meso-echelle oceaniques dans la distribution et les flux air-mer de CO{sub 2} anthropique a l'echelle globale

    Energy Technology Data Exchange (ETDEWEB)

    Zouhair, Lachkar

    2007-02-15

    Mesoscale eddies play a fundamental role in ocean dynamics particularly in the Southern Ocean. Global-scale tracer simulations are typically made at coarse resolution without explicitly modeling eddies. Here we ask what role do eddies play in ocean uptake, storage, and meridional transport of anthropogenic CO{sub 2}, CFC-11 and bomb {delta}{sup 14}C. We made global anthropogenic transient tracer simulations in coarse-resolution, ORCA2, and eddy-permitting, ORCA05 and ORCA025, versions of the ocean modelling system NEMO. We focus on the Southern Ocean where tracer air-sea fluxes are largest. Eddies have little effect on bomb {delta}{sup 14}C uptake and storage. Yet for CFC-11 and anthropogenic CO{sub 2}, increased eddy activity reduces southern extra-tropical uptake by 28% and 25% respectively, thereby providing better agreement with observations. It is shown that the discrepancies in the equilibration times between the three tracers determine their respective sensitivities to the model horizontal resolution. Applying Gent and McWilliams (1990) (GM) parameterization of eddies in the non-eddying version of the model does improve results, but not enough. An in-depth investigation of the mechanisms by which eddies affect the uptake of the transient tracers shows that including mesoscale eddies leads to an overall reduction in the Antarctic Intermediate Water (AAIW) ventilation, and modifies substantially the spatial distribution of their source regions. This investigation reveals also that the GM parameterization still overestimates the ventilation and the subduction of AAIW in the Indian Ocean where the simulated mixed layer is particularly deep during the winter. This work suggests that most current coarse-resolution models may overestimate the ventilation of AAIW in the Indian sector of the Southern Ocean. This study shows also that the use of the GM parameterization may be of limited utility where mixed layer is relatively deep and confirms the general need for a

  15. Global Ocean Surface Water Partial Pressure of CO>2 Database: Measurements Performed During 1968-2007 (Version 2007)

    Energy Technology Data Exchange (ETDEWEB)

    Kozyr, Alex [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Carbon Dioxide Information Analysis Center

    2008-09-30

    More than 4.1 million measurements of surface water partial pressure of CO>2 obtained over the global oceans during 1968-2007 are listed in the Lamont-Doherty Earth Observatory (LDEO) database, which includes open ocean and coastal water measurements. The data assembled include only those measured by equilibrator-CO2 analyzer systems and have been quality-controlled based on the stability of the system performance, the reliability of calibrations for CO>2 analysis, and the internal consistency of data. To allow re-examination of the data in the future, a number of measured parameters relevant to pCO2 measurements are listed. The overall uncertainty for the pCO2 values listed is estimated to be ± 2.5 µatm on the average. For simplicity and for ease of reference, this version is referred to as 2007, meaning that data collected through 31 December 2007 has been included. It is our intention to update this database annually. There are 37 new cruise/ship files in this update. In addition, some editing has been performed on existing files so this should be considered a V2007 file. Also we have added a column reporting the partial pressure of CO>2 in seawater in units of Pascals. The data presented in this database include the analyses of partial pressure of CO>2 (pCO2), sea surface temperature (SST), sea surface salinity (SSS), pressure of the equilibration, and barometric pressure in the outside air from the ship’s observation system. The global pCO2 data set is available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center (CDIAC). The NDP consists of the oceanographic data files and this printed documentation, which describes the procedures and methods used to obtain the data.

  16. Kinetics of methane decomposition to CO{sub x}-free hydrogen and carbon nanofiber over Ni-Cu/MgO catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Borghei, Maryam; Karimzadeh, Ramin [Chemical Engineering Department, Tarbiat Modares University, Tehran (Iran); Rashidi, Alimorad; Izadi, Nosrat [Research Center of Nanotechnology, Research Institute of Petroleum Industry, Tehran (Iran)

    2010-09-15

    Kinetic modeling of methane decomposition to CO{sub x}-free hydrogen and carbon nanofiber has been carried out in the temperature range 550-650 C over Ni-Cu/MgO catalyst from CH{sub 4}-H{sub 2} mixtures at atmospheric pressure. Assuming the different mechanisms of the reaction, several kinetic models were derived based on Langmuir-Hinshelwood type. The optimum value of kinetic parameters has been obtained by Genetic Algorithm and statistical analysis has been used for the model discrimination. The suggested kinetic model relates to the mechanism when the dissociative adsorption of methane molecule is the rate-determining stage and the estimated activation energy is 50.4 kJ/mol in agreement with the literature. The catalyst deactivation was found to be dependent on the time, reaction temperature, and partial pressures of methane and hydrogen. Inspection of the behavior of the catalyst activity in relation to time, led to a model of second order for catalyst deactivation. (author)

  17. Pneumatosis cystoides intestinalis associated with massive free air mimicking perforated diffuse peritonitis.

    Science.gov (United States)

    Sakurai, Yoichi; Hikichi, Masahiro; Isogaki, Jun; Furuta, Shinpei; Sunagawa, Risaburo; Inaba, Kazuki; Komori, Yoshiyuki; Uyama, Ichiro

    2008-11-21

    While pneumatosis cystoides intestinalis (PCI) is a rare disease entity associated with a wide variety of gastrointestinal and non-gastrointestinal disorders, PCI associated with massive intra- and retroperitoneal free air is extremely uncommon, and is difficult to diagnose differentially from perforated peritonitis. We present two cases of PCI associated with massive peritoneal free air and/or retroperitoneal air that mimicked perforated peritonitis. These cases highlight the clinical importance of PCI that mimics perforated peritonitis, which requires emergency surgery. Preoperative imaging modalities and diagnostic laparoscopy are useful to make an accurate diagnosis.

  18. CO{sub 2} emissions - sequestration, costs; Emisja CO{sub 2} - sekwestracja, koszty

    Energy Technology Data Exchange (ETDEWEB)

    Rakowski, J. [Inst. of Power Industry, Warsaw (Poland). Thermal Process Department

    2004-07-01

    The paper discusses and compares costs of technologies for limiting emissions of carbon dioxide in both before and after combustion in power generation - natural gas combined cycle; coal power unit with pulverised fuel boiler at both supercritical conditions and ultra supercritical conditions; and integrated gasification combined cycle. It then discusses in some detail the concept of an IGCC unit adapted to the removal of CO{sub 2} with the simultaneous production of hydrogen, and the use of an oxygen plant with CO{sub 2} recycling. 17 refs., 2 figs., 10 tabs.

  19. CO{sub 2}-balance in the athmosphere and CO{sub 2}-utilisation : an engineering approach

    Energy Technology Data Exchange (ETDEWEB)

    Turunen, H.

    2012-07-01

    The subject of the thesis was to analyze by an engineering approach the global CO{sub 2} balance and CO{sub 2} utilisation. The aim was to apply methods and knowledge used in engineering sciences to describe the global CO{sub 2} balance and the role of CO{sub 2} in anthropogenic utilisation applications. Moreover barriers restricting commercialisation of new applications are discussed. These subjects were studied by literature reviews and calculations based on thermodynamics models. Engineering methods have shown to be applicable to describe the global balance of CO{sub 2} and to define by a numerical way the Earth's system carrying capacity. Direct and indirect actions, which mitigate the overload situation, were derived from the results. To screen out the attractive CO{sub 2} properties in utilisation applications a mapping analysis was carried out. Properties, which enhance mass and heat transfer, are one of the most meaningful characteristics from the chemical engineering point of view. Attractive properties are often achieved at the supercritical state. Engineering thermodynamic methods were used in fluid phase determination of the case studies. Even simple methods are sufficient to advice experimental research work. The thermodynamic knowledge is the basement in creation of industrial scale chemical processes. If detailed information on system properties is needed, a model development due to the special requirements of high pressure systems and CO{sub 2} features is required. This knowledge covers property information from all the components involved in chemical reactions. In addition to engineering knowledge successful technology transfer requires positive social structure as well. Finally, if the humankind is willing to mimic Nature and use light of the Sun as an energy source in engineering systems, development of thermodynamic methods is required also in this area. Especially the work terms, originally defined in classical mechanical thermodynamics

  20. CO.sub.2 removal sorbent composition with high chemical stability during multiple cycles

    Science.gov (United States)

    Siriwardane, Ranjani V.; Rosencwaig, Shira

    2015-09-22

    Disclosed herein is a clay-alkali-amine CO.sub.2 sorbent composition prepared by integrating a clay substrate, basic alkali salt, and amine liquid. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay-alkali-amine C02 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a C02 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air.

  1. The Influence of deep-sea bed CO>2 sequestration on small metazoan (meiofaunal) community structure and function

    Energy Technology Data Exchange (ETDEWEB)

    Carman, Kevin R. [Louisiana State Univ., Baton Rouge, LA (United States); Fleeger, John W. [Louisiana State Univ., Baton Rouge, LA (United States); Thistle, David [Florida State Univ., Tallahassee, FL (United States)

    2013-02-17

    reduction in pH to about 7.0 after 30 days were as great as an extreme pH reduction (5.4), suggesting that moderate CO>2CO>2CO>2CO>2CO>2CO>2CO>2free-ion concentration of Cd but did increase the free-ion concentration of Cu. Antagonistic toxicities were observed between CO>2free-ion. This interaction could be due to a competition for H+ and metals for binding sites.

  2. Directed technical change and the adoption of CO{sub 2} abatement technology. The case of CO{sub 2} capture and storage

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Vincent M.; Reilly, John [Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2008-11-15

    This paper studies the cost-effectiveness of combining traditional environmental policy, such as CO{sub 2}-trading schemes, and technology policy that has aims of reducing the cost and speeding the adoption of CO{sub 2} abatement technology. For this purpose, we develop a dynamic general equilibrium model that captures empirical links between CO{sub 2} emissions associated with energy use, directed technical change and the economy. We specify CO{sub 2} capture and storage (CCS) as a discrete CO{sub 2} abatement technology. We find that combining CO{sub 2}-trading schemes with an adoption subsidy is the most effective instrument to induce adoption of the CCS technology. Such a subsidy directly improves the competitiveness of the CCS technology by compensating for its markup over the cost of conventional electricity. Yet, introducing R and D subsidies throughout the entire economy leads to faster adoption of the CCS technology as well and in addition can be cost-effective in achieving the abatement target. (author)

  3. Inter and intra-specific variation in photosynthetic acclimation response to long term exposure of elevated carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, M. [Univ. of Essex, Colchester (United Kingdom)]|[Writtle Coll. (United Kingdom)

    1996-08-01

    The response of intra and interspecific variation in photosynthetic acclimation to growth at elevated atmospheric CO{sub 2} concentration (600{micro}mol mol-l) in six important grassland species was investigated. Plants were grown in a background sward of Lolium perenne and measurements were made after four years of growth at elevated C{sub a}. Elevated CO{sub 2} was maintained using a FACE (Free-Air Carbon Enrichment) system. Significant intra and interspecific variation in acclimation response was demonstrated. The response of adaxial and abaxial stomatal conductance to elevated CO{sub 2} was also investigated. The stomatal conductance of both the adaxial and abaxial leaf surfaces was found to be reduced by elevated C{sub a}. Significant asymmetric responses in stomatal conductance was demonstrated in D. glomerata and T. pratense. Analysis of stomatal indices and densities indicated that the observed reductions in stomatal conductance were probably the result of changes in stomatal aperture.

  4. What does CO{sub 2} geological storage really mean?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    It is now accepted that human activities are disturbing the carbon cycle of the planet. CO{sub 2}, a greenhouse gas, has accumulated in the atmosphere where it contributes to climate change. Amongst the spectrum of short term measures that need to be urgently implemented to mitigate climate change, CO{sub 2} capture and storage can play a decisive role as it could contribute 33% of the CO{sub 2} reduction needed by 2050. This document aims to explain this solution by answering the following questions: where and how much CO{sub 2} can we store underground, How can we transport and inject large quantities of CO{sub 2}, What happens to the CO{sub 2} once in the storage reservoir? Could CO{sub 2} leak from the reservoir and if so, what might be the consequences? How can we monitor the storage site at depth and at the surface? What safety criteria need to be imposed and respected? (A.L.B.)

  5. {sup 14}CO{sub 2} processing using an improved and robust molecular sieve cartridge

    Energy Technology Data Exchange (ETDEWEB)

    Wotte, Anja, E-mail: Anja.Wotte@uni-koeln.de [Institute of Geology and Mineralogy, University of Cologne, Cologne (Germany); Wordell-Dietrich, Patrick [Thünen Institute of Climate-Smart Agriculture, Braunschweig (Germany); Wacker, Lukas [Ion Beam Physics, ETH Zurich, Zurich (Switzerland); Don, Axel [Thünen Institute of Climate-Smart Agriculture, Braunschweig (Germany); Rethemeyer, Janet [Institute of Geology and Mineralogy, University of Cologne, Cologne (Germany)

    2017-06-01

    Radiocarbon ({sup 14}C) analysis on CO{sub 2} can provide valuable information on the carbon cycle as different carbon pools differ in their {sup 14}C signature. While fresh, biogenic carbon shows atmospheric {sup 14}C concentrations, fossil carbon is {sup 14}C free. As shown in previous studies, CO{sub 2} can be collected for {sup 14}C analysis using molecular sieve cartridges (MSC). These devices have previously been made of plastic and glass, which can easily be damaged during transport. We thus constructed a robust MSC suitable for field application under tough conditions or in remote areas, which is entirely made of stainless steel. The new MSC should also be tight over several months to allow long sampling campaigns and transport times, which was proven by a one year storage test. The reliability of the {sup 14}CO{sub 2} results obtained with the MSC was evaluated by detailed tests of different procedures to clean the molecular sieve (zeolite type 13X) and for the adsorption and desorption of CO{sub 2} from the zeolite using a vacuum rig. We show that the {sup 14}CO{sub 2} results are not affected by any contamination of modern or fossil origin, cross contamination from previous samples, and by carbon isotopic fractionation. In addition, we evaluated the direct CO{sub 2} transfer from the MSC into the automatic graphitization equipment AGE with the subsequent {sup 14}C AMS analysis as graphite. This semi-automatic approach can be fully automated in the future, which would allow a high sample throughput. We obtained very promising, low blank values between 0.0018 and 0.0028 F{sup 14}C (equivalent to 50,800 and 47,200 yrs BP), which are within the analytical background and lower than results obtained in previous studies.

  6. Nitrogen oxides produced during CO/sub 2/ enrichment. II. Effects on different tomato and lettuce cultivars

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, L.M.

    1985-01-01

    Eight cultivars of Lycopersicon esculentum (tomato) and six cultivars of Lactuca sativa (lettuce) were subjected to CO/sub 2/-enriched air (1000 ..mu..l l/sup -1/) containing 0.7 or 0.9 ..mu..l l/sup -1/ nitrogen oxides (NO/sub x/). CO/sub 2/ enrichment without NO/sub x/ significantly increased the dry weight of all tomato (35-81%) and lettuce cultivars (25-101%). In six of the eight tomato cultivars the dry weight was reduced by the addition of NO/sub x/. The mean relative growth rate (RGR) decreased by 4-19% depending on the cultivar. This meant that the benefit of CO/sub 2/ enrichment was almost completely eliminated in most of the cultivars. Marginal leaf necrosis appeared in some of the cultivars, while in others no visible injury developed. None of the lettuce cultivars was significantly affected by the addition of NO/sub x/. 16 references, 4 tables.

  7. The sequestration of CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Le Thiez, P

    2004-07-01

    The reduction of greenhouse gas emissions, especially CO{sub 2}, represents a major technological and societal challenge in the fight against climate change. Among the measures likely to reduce anthropic CO{sub 2} emissions, capture and geological storage holds out promise for the future. (author)

  8. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

    2012-03-31

    degradation in Polaris membrane performance during two months of continuous operation in a simulated flue gas environment containing up to 1,000 ppm SO{sub 2}. A successful slipstream field test at the APS Cholla power plant was conducted with commercialsize Polaris modules during this project. This field test is the first demonstration of stable performance by commercial-sized membrane modules treating actual coal-fired power plant flue gas. Process design studies show that selective recycle of CO{sub 2} using a countercurrent membrane module with air as a sweep stream can double the concentration of CO{sub 2} in coal flue gas with little energy input. This pre-concentration of CO{sub 2} by the sweep membrane reduces the minimum energy of CO{sub 2} separation in the capture unit by up to 40% for coal flue gas. Variations of this design may be even more promising for CO{sub 2} capture from NGCC flue gas, in which the CO{sub 2} concentration can be increased from 4% to 20% by selective sweep recycle. EPRI and WP conducted a systems and cost analysis of a base case MTR membrane CO{sub 2} capture system retrofitted to the AEP Conesville Unit 5 boiler. Some of the key findings from this study and a sensitivity analysis performed by MTR include: The MTR membrane process can capture 90% of the CO{sub 2} in coal flue gas and produce high-purity CO{sub 2} (>99%) ready for sequestration. CO{sub 2} recycle to the boiler appears feasible with minimal impact on boiler performance; however, further study by a boiler OEM is recommended. For a membrane process built today using a combination of slight feed compression, permeate vacuum, and current compression equipment costs, the membrane capture process can be competitive with the base case MEA process at 90% CO{sub 2} capture from a coal-fired power plant. The incremental LCOE for the base case membrane process is about equal to that of a base case MEA process, within the uncertainty in the analysis. With advanced membranes (5,000 gpu for

  9. Impact of CO>2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO>2 Leakage

    Energy Technology Data Exchange (ETDEWEB)

    Gulliver, Djuna M. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Gregory, Kelvin B. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Civil and Environmental Engineering; Lowry, Gregory V. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Civil and Environmental Engineering

    2016-06-20

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO>2) emissions to the atmosphere. During this process, CO>2 is injected as super critical carbon dioxide (SC-CO2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO>2 in subsurface geologic formations could unintentionally lead to CO>2 leakage into overlying freshwater aquifers. Introduction of CO>2 into these subsurface environments will greatly increase the CO>2 concentration and will create CO>2 concentration gradients that drive changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO>2 gradients will impact these communities. The overarching goal of this project is to understand how CO>2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO>2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO>2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO>2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO>2 injection/leakage plume where CO>2 concentrations are highest. At CO>2 exposures expected downgradient from the CO>2 plume, selected microorganisms

  10. Impact of CO>2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO>2 Leakage

    Energy Technology Data Exchange (ETDEWEB)

    Gulliver, Djuna [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Gregory, Kelvin B. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Lowry, Gregorgy V. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-06-20

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO>2) emissions to the atmosphere. During this process, CO>2 is injected as super critical carbon dioxide (SC-CO2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO>2 in subsurface geologic formations could unintentionally lead to CO>2 leakage into overlying freshwater aquifers. Introduction of CO>2 into these subsurface environments will greatly increase the CO>22 concentration and will create CO>2 concentration gradients that drive changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO>2 gradients will impact these communities. The overarching goal of this project is to understand how CO>2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO>2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO>2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO>2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO>2 injection/leakage plume where CO>2 concentrations are highest. At CO>2 exposures expected downgradient from the CO>2 plume, selected microorganisms

  11. Enhanced energy efficiency by means of low temperature differences. Subcritical CO{sub 2} cascade in Globus Handelshof Saarbruecken-Guedingen; Hohe Energieeffizienz durch kleine Temperaturdifferenzen. Unterkritische CO{sub 2}-Kaskade im Globus Handelshof Saarbruecken-Guedingen

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Wolfgang [Wolfgang Schmid Pressebuero fuer Technische Gebaeudeausruestung, Muenchen (Germany)

    2011-06-15

    Green coldness is on the advance for the most German grocery chains. Especially, in the course of the R22 exit, more and more shopping centers opt for natural refrigerants or for a cascade solution with CO{sub 2} for the deep freezing and R404a for a normal refrigeration and air conditioning. Elektro-Kaeltebau Moersch GmbH (Saarburg, Federal Republic of Germany) is one of the green refrigeration system builders from the first hour in the implementation of energy-efficient and climate friendly refrigeration plants in the food sector. One of the current projects is the incorporation of a CO{sub 2}/R404A cascade during the operation in the Globus Handelshof in Saarbruecken-Guedingen (Federal Republic of Germany).

  12. Environmental impacts of ocean disposal of CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Adams, E.; Herzog, H.; Auerbach, D. [and others

    1995-11-01

    One option to reduce atmospheric CO{sub 2} levels is to capture and sequester power plant CO{sub 2} Commercial CO{sub 2} capture technology, though expensive, exists today. However, the ability to dispose of large quantities of CO{sub 2} is highly uncertain. The deep ocean is one of only a few possible CO{sub 2} disposal options (others are depleted oil and gas wells or deep, confined aquifers) and is a prime candidate because the deep ocean is vast and highly unsaturated in CO{sub 2}. The term disposal is really a misnomer because the atmosphere and ocean eventually equilibrate on a timescale of 1000 years regardless of where the CO{sub 2} is originally discharged. However, peak atmospheric CO{sub 2} concentrations expected to occur in the next few centuries could be significantly reduced by ocean disposal. The magnitude of this reduction will depend upon the quantity of CO{sub 2} injected in the ocean, as well as the depth and location of injection. Ocean disposal of CO{sub 2} will only make sense if the environmental impacts to the ocean are significantly less than the avoided impacts of atmospheric release. Our project has been examining these ocean impacts through a multi-disciplinary effort designed to summarize the current state of knowledge. The end-product will be a report issued during the summer of 1996 consisting of two volumes an executive summary (Vol I) and a series of six, individually authored topical reports (Vol II). A workshop with invited participants from the U.S. and abroad will review the draft findings in January, 1996.

  13. Enhancement of farmland greenhouse gas emissions from leakage of stored CO{sub 2}: Simulation of leaked CO{sub 2} from CCS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xueyan [Chinese Academy of Meteorological Sciences, Beijing 100-081 (China); Ma, Xin, E-mail: max@ami.ac.cn [Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing (China); Laboratory of Agricultural Environment and Climate Change, Ministry of Agriculture, Beijing 100-081 (China); Wu, Yang [Engineering Consulting Centre, China Meteorological Administration, Beijing 100-081 (China); Li, Yue [Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing (China); Laboratory of Agricultural Environment and Climate Change, Ministry of Agriculture, Beijing 100-081 (China)

    2015-06-15

    The effects of leaked CO{sub 2} on plant and soil constitute a key objective of carbon capture and storage (CCS) safety. The effects of leaked CO{sub 2} on trace soil gas (e.g., methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) emissions in farmlands are not well-understood. This study simulated the effects of elevated soil CO{sub 2} on CH{sub 4} and N{sub 2}O through pot experiments. The results revealed that significant increases of CH{sub 4} and N{sub 2}O emissions were induced by the simulated CO{sub 2} leakages; the emission rates of CH{sub 4} and N{sub 2}O were substantial, reaching about 222 and 48 times than that of the control, respectively. The absolute global warming potentials (GWPs) of the additional CH{sub 4} and N{sub 2}O are considerable, but the cumulative GWPs of the additional CH{sub 4} and N{sub 2}O only accounted for 0.03% and 0.06%, respectively, of the cumulative amount of leaked CO{sub 2} under high leakage conditions. The results demonstrate that leakage from CCS projects may lead to additional greenhouse gas emissions from soil; however, in general, the amount of additional CH{sub 4} and N{sub 2}O emissions is negligible when compared with the amount of leaked CO{sub 2}. - Highlights: • Relationship between CO{sub 2} leakage and CH{sub 4} and N{sub 2}O emissions was examined. • Geologically stored CO{sub 2} leaking into surface soil enhances CH{sub 4} and N{sub 2}O emissions. • GWP of additional CH{sub 4} and N{sub 2}O is negligible compared with amount of leaked CO{sub 2}. • Significant increase of CH{sub 4} and N{sub 2}O emissions from soil could indicate CCS leakage.

  14. Thermodynamic Optimization of Supercritical CO{sub 2} Brayton Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Rhim, Dong-Ryul; Park, Sung-Ho; Kim, Su-Hyun; Yeom, Choong-Sub [Institute for Advanced Engineering, Yongin (Korea, Republic of)

    2015-05-15

    The supercritical CO{sub 2} Brayton cycle has been studied for nuclear applications, mainly for one of the alternative power conversion systems of the sodium cooled fast reactor, since 1960's. Although the supercritical CO{sub 2} Brayton cycle has not been expected to show higher efficiency at lower turbine inlet temperature over the conventional steam Rankine cycle, the higher density of supercritical CO{sub 2} like a liquid in the supercritical region could reduce turbo-machinery sizes, and the potential problem of sodium-water reaction with the sodium cooled fast reactor might be solved with the use of CO{sub 2} instead of water. The supercritical CO{sub 2} recompression Brayton cycle was proposed for the better thermodynamic efficiency than for the simple supercritical CO{sub 2} Brayton cycle. Thus this paper presents the efficiencies of the supercritical CO{sub 2} recompression Brayton cycle along with several decision variables for the thermodynamic optimization of the supercritical CO{sub 2} recompression Brayton cycle. The analytic results in this study show that the system efficiency reaches its maximum value at a compressor outlet pressure of 200 bars and a recycle fraction of 30 %, and the lower minimum temperature approach at the two heat exchangers shows higher system efficiency as expected.

  15. Confined release of CO{sub 2} into the ocean

    Energy Technology Data Exchange (ETDEWEB)

    Adams, E.E.; Zhang, X.Y.; Herzog, H.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)] [and others

    1993-12-31

    To help reduce global warming, it has been proposed to sequester some CO{sub 2} in the deep ocean. However, current pipe technology is limited to about 600-650 m{sup 4}, so deeper transport requires other means. Recently, it was suggested that CO{sub 2} could be released at depths of 200 - 400 m as a concentrated seawater solution. The dense solution would form a negatively buoyant gravity current and sink to greater depth. In the following we expand our previous calculations showing that an unconfined release of CO{sub 2} will not create sufficient concentration or negative buoyancy. However, release of either compressed gaseous or liquid CO{sub 2} into an appropriately designed confinement vessel could produce sufficient concentration to transport the current to deeper water. Furthermore, such a scheme may facilitate formation of CO{sub 2} hydrate particles that are heavier than seawater, causing further sinking. A recently completed Research Needs assessment study which we conducted for DOE concludes that shallow water disposal of CO{sub 2} may be the most promising CO{sub 2} disposal option.

  16. Free-air CO2 enrichment (FACE) reduces the inhibitory effect of soil nitrate on N2 fixation of Pisum sativum.

    Science.gov (United States)

    Butterly, Clayton R; Armstrong, Roger; Chen, Deli; Tang, Caixian

    2016-01-01

    Additional carbohydrate supply resulting from enhanced photosynthesis under predicted future elevated CO2 is likely to increase symbiotic nitrogen (N) fixation in legumes. This study examined the interactive effects of atmospheric CO2 and nitrate (NO3(-)) concentration on the growth, nodulation and N fixation of field pea (Pisum sativum) in a semi-arid cropping system. Field pea was grown for 15 weeks in a Vertosol containing 5, 25, 50 or 90 mg NO3(-)-N kg(-1) under either ambient CO2 (aCO2; 390 ppm) or elevated CO2 (eCO2; 550 ppm) using free-air CO2 enrichment (SoilFACE). Under aCO2, field pea biomass was significantly lower at 5 mg NO3(-)-N kg(-1) than at 90 mg NO3(-)-N kg(-1) soil. However, increasing the soil N level significantly reduced nodulation of lateral roots but not the primary root, and nodules were significantly smaller, with 85% less nodule mass in the 90 NO3(-)-N kg(-1) than in the 5 mg NO3(-)-N kg(-1) treatment, highlighting the inhibitory effects of NO3(-). Field pea grown under eCO2 had greater biomass (approx. 30%) than those grown under aCO2, and was not affected by N level. Overall, the inhibitory effects of NO3(-) on nodulation and nodule mass appeared to be reduced under eCO2 compared with aCO2, although the effects of CO2 on root growth were not significant. Elevated CO2 alleviated the inhibitory effect of soil NO3(-) on nodulation and N2 fixation and is likely to lead to greater total N content of field pea growing under future elevated CO2 environments. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Identification and capacity quantification of CO{sub 2} storage sites

    Energy Technology Data Exchange (ETDEWEB)

    Bachu, Stefan [Energy Resources Conservation Board (Canada)

    2008-07-15

    In this presentation the subject of scales of evaluation of the sites of CO{sub 2} storage is commented. Also the criteria to identify river basins and sites appropriated for the CO{sub 2} storage are analyzed and finally the matter of the estimation of the capacities of CO{sub 2} storage is analyzed. [Spanish] En esta presentacion se comenta sobre las escalas de evaluacion de los sitios de almacenamiento de CO{sub 2}. Tambien se analizan los criterios para identificar cuencas y lugares adecuados para el almacenamiento de CO{sub 2} y por ultimo se habla sobre la estimacion de las capacidades de almacenamiento de CO{sub 2}.

  18. Determination of the air attenuation correction factor for a free air ionization chamber

    International Nuclear Information System (INIS)

    Silva, Natalia F.; Cintra, Felipe B.; Castro, Maysa C. de; Caldas, Linda V.E.

    2016-01-01

    The objective of this work is to present the experimental and simulation results for the air attenuation correction factor for a free air ionization chamber with concentric cylinders of Victoreen, model 481-5. This correction factor was obtained for the standard mammography qualities established in the Instrument Calibration Laboratory (LCI) of IPEN. The values were compared with the results from the German primary standard laboratory Physikalisch- Technische Bundesanstalt (PTB), and maximum differences of 0.40% in relation to the experimental value and 0.31% in relation to the simulated value were obtained. (author)

  19. Enthalpies of formation of selected Co{sub 2}YZ Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ming, E-mail: myin1@hawk.iit.edu; Chen, Song; Nash, Philip

    2013-11-15

    Highlights: •Enthalpies of formation of selected Co{sub 2}YZ were measured by drop calorimeters. •Enthalpy decreases as the Z element approaches the top right corner of the periodic table. •For the Y element, enthalpy increases on increasing the number of d electrons. •Result of L2{sub 1} structured compounds agrees with first principles data. •Lattice parameters and related phase relationships were consistent with literature data. -- Abstract: Standard enthalpies of formation at 298 K of selected ternary Co{sub 2}-based Heusler compounds Co{sub 2}YZ (Y = Fe, Hf, Mn, Ti, V, Zr; Z = Al, Ga, In, Si, Ge, Sn) were measured by high temperature direct synthesis calorimetry. The measured enthalpies of formation (in kJ/mole of atoms) of the L2{sub 1} compounds are: Co{sub 2}FeGa (−25.8 ± 2.6); Co{sub 2}FeSi (−38.4 ± 2.2); Co{sub 2}FeGe (−11.6 ± 2.1); Co{sub 2}MnGa (−30.1 ± 2.3); Co{sub 2}MnSi (−42.4 ± 1.2); Co{sub 2}MnGe (−31.6 ± 3.0); Co{sub 2}MnSn (−15.6 ± 2.8); Co{sub 2}TiAl (−55.0 ± 3.7); Co{sub 2}TiGa (−54.2 ± 2.6); Co{sub 2}TiSi (−61.4 ± 1.7); Co{sub 2}TiGe (−59.3 ± 3.8); Co{sub 2}TiSn (−38.4 ± 2.0); Co{sub 2}VGa (−28.4 ± 1.1) and for the B2 compounds: Co{sub 2}FeAl (−22.5 ± 2.5), Co{sub 2}MnAl (−27.6 ± 2.7). Values are compared with those from first principles calculation when available and the extended semi-empirical model of Miedema. Trends in enthalpy of formation with element atomic number are discussed. Lattice parameters of the compounds with L2{sub 1} structure are determined by X-ray diffraction analysis.

  20. Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.; Huo, H.; Johnson, L.; He, D.

    2006-12-20

    potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do

  1. New transcritical CO{sub 2} compressor series; Neue transkritische CO{sub 2}-Verdichterbaureihe

    Energy Technology Data Exchange (ETDEWEB)

    Froeschle, Manuel [GEA Bock GmbH, Frickenhausen (Germany)

    2011-10-15

    The use of natural refrigerants that is recently discussed, is not a new development, but has grown in importance in the last few years. Particularly in the supermarket- and heat pump area, a growing demand in CO{sub 2}-systems for subcritical and transcritical applications could be observed. An extension of the CO{sub 2} components in this area is therefore absolutely necessary. For this reason a completely new transcritical compressor series for maximum pressures of up to 150 bar and extended capacity stages was developed especially. (orig.)

  2. {sup 15}N methodologies for quantifying the response of N{sub 2}-fixing associations to elevated [CO{sub 2}]: A review

    Energy Technology Data Exchange (ETDEWEB)

    Chalk, Phillip M., E-mail: chalkphillip@gmail.com; Lam, Shu K., E-mail: shukee.lam@unimelb.edu.au; Chen, Deli, E-mail: delichen@unimelb.edu.au

    2016-11-15

    Methodologies based on {sup 15}N enrichment (E) and {sup 15}N natural abundance (NA) have been used to obtain quantitative estimates of the response of biological N{sub 2} fixation (BNF) of legumes (woody, grain and forage) and actinorhizal plants grown in artificial media or in soil exposed to elevated atmospheric concentrations of carbon dioxide e[CO{sub 2}] for extended periods of time, in growth rooms, greenhouses, open top chambers or free-air CO{sub 2} enrichment (FACE) facilities. {sup 15}N{sub 2} has also been used to quantify the response of endophytic and free-living diazotrophs to e[CO{sub 2}]. The primary criterion of response was the proportional dependence of the N{sub 2}-fixing system on the atmosphere as a source of N. i.e. the symbiotic dependence (P{sub atm}). The unique feature of {sup 15}N-based methods is their ability to provide time-integrated and yield-independent estimates of P{sub atm}. In studies conducted in artificial media or in soil using the E methodology there was either no response or a positive response of P{sub atm} to e[CO{sub 2}]. The interpretation of results obtained in artificial media or with {sup 15}N{sub 2} is straight forward, not being subject to the assumptions on which the E and NA soil-cultured methods are based. A variety of methods have been used to estimate isotopic fractionation attendant on the NA technique, the so-called ‘B value’, which attaches a degree of uncertainty to the results obtained. Using the NA technique, a suite of responses of P{sub atm} to e[CO{sub 2}] has been published, from positive to neutral to sometimes negative effects. Several factors which interact with the response of N{sub 2}-fixing species to e[CO{sub 2}] were identified.

  3. Challenges facing air management for fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Davis, P.B. [Department of Energy (United States); Sutton, R. [Argonne National Lab. (United States); Wagner, F.W. [Energetics Incorporated (United States)

    2000-07-01

    The U.S. Department of Energy (DOE) and the U.S. automotive industry are working cooperatively under the auspices of the Partnership for a New Generation of Vehicles (PNGV) to develop a six-passenger automobile that can achieve up to 80 mpg. while meeting customer needs and all safety and emission requirements. These partners are continuing to invest heavily in the research and development of polymer electrolyte membrane (PEM) fuel cells as a clean and efficient energy conversion system for the PNGV. A critical challenge facing fuel cell systems for the PNGV is the development of efficient, compact, cost-effective air management systems. The U.S. Department of Energy has been exploring several compressor/expander options for pressurized fuel cell systems, including scroll, toroidal intersecting vane, turbine, twin screw, and piston technologies. Each of these technologies has strengths and weaknesses regarding efficiency, pressure ratio over turndown, size and weight, and cost. This paper will present data from the U.S. Department of Energy's research and development efforts on air management systems and will discusses recent program developments resulting from an independent peer review evaluation. (author)

  4. Study on Gas Field Optimization Distribution with Parameters Adjustment of the Air Duct Outlet for Mechanized Heading Face in Coal Mine

    Science.gov (United States)

    Gong, Xiao-Yan; Zhang, Xin-Yi; Wu, Yue; Xia, Zhi-Xin; Li, Ying

    2017-12-01

    At present, as the increasingly drilling dimensions with cross-section expansion and distance prolong in coal mine, the situation of gas accumulation in mechanized heading face becomes severe. In this paper, optimization research of gas distribution was carried out by adjusting parameters of the air duct outlet, including angle, caliber and the front and rear distance of air duct outlet. Mechanized heading face of Ningtiaota coal mine was taken as the research object, simulated and analyzed the problems of original gas field, the reasonable parameters range of the air duct outlet was determined according to the allowable range of wind speed and the effect of gas dilution, the adjustment range of each parameter of the air duct outlet is preliminarily determined. Base on this, the distribution of gas field under different parameters adjustment of air duct outlet was simulated. The specific parameters under the different distance between the air duct outlet and the mechanized heading face were obtained, and a new method of optimizing the gas distribution by adjusting parameters of the air duct outlet was provided.

  5. Experiences of PEMEX in CO{sub 2} re-injection; Experiencias de Pemex en reinyeccion de CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Bujanos, Jose Luis [PEMEX (Mexico)

    2008-07-15

    Mexico enters the processes of secondary oil recovery the years 50s, by means of water injection. The CO{sub 2} injection is one of the techniques that better results produce in the oil recovery. In this presentation the strategic goals that have been determined within PEMEX Exploracion y Produccion (PEP) are mentioned, and which are the projects of CO{sub 2} injection for oil recovery already existing in Mexico. [Spanish] Mexico entra a los procesos de recuperacion secundaria de petroleo en los anos 50s, mediante inyeccion de agua. La inyeccion de CO{sub 2} es una de las tecnicas que mejores resultados produce en la recuperacion de petroleo. En esta presentacion se mencionan las metas estrategicas que se han fijado dentro de Pemex Exploracion y Produccion (PEP) y cuales son los proyectos de inyeccion de CO{sub 2} para recuperacion de petroleo, existentes actualmente en Mexico.

  6. Size effect on the adsorption and dissociation of CO{sub 2} on Co nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haiyan; Cao, Dapeng; Fisher, Adrian [International Research Center for Soft Matter, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Johnston, Roy L. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Cheng, Daojian, E-mail: chengdj@mail.buct.edu.cn [International Research Center for Soft Matter, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China)

    2017-02-28

    Highlights: • Co{sub 13}, Co{sub 38} and Co{sub 55} nanoclusters were predicted as the high-symmetry structures. • CO{sub 2} dissociation on the size-selected Co{sub 13}, Co{sub 38} and Co{sub 55} nanoclusters was studied. • Co{sub 55} nanocluster possesses the highest activity relevant to CO{sub 2} dissociation. • A non-monotonous behavior of the dissociation barrier of CO{sub 2} with the size was found. - Abstract: Spin-polarized density functional theory calculations were carried out to study the adsorption and dissociation properties of CO{sub 2} on size-selected Co{sub 13}, Co{sub 38} and Co{sub 55} nanoclusters. Based on genetic algorithm method, Co{sub 13}, Co{sub 38} and Co{sub 55} nanoclusters were predicted as the most stable high-symmetry structures among these Co{sub n} (n = 2–58) nanoclusters from the Gupta potential. For the adsorption of CO{sub 2}, CO and O on size-selected Co{sub 13}, Co{sub 38} and Co{sub 55} nanoclusters, the lowest adsorption strength is found for all the different adsorbates on Co{sub 55} nanocluster. For the dissociation of CO{sub 2} on these size-selected Co nanoclusters, the largest Co{sub 55} nanocluster possesses the greatest catalytic activity for the dissociation of CO{sub 2}, with the smallest reaction barrier of 0.38 eV. Our results reveal a non-monotonous behavior of the catalytic activities of Co nanoclusters on size, which is of fundamental interest for the design of new Co catalysts for the conversion of CO{sub 2}.

  7. Advanced Oxyfuel power plant process with CO{sub 2} separation for power generation from brown coal and competitionable for future; Innovativer Oxyfuel-Kraftwerksprozess mit CO{sub 2}-Abscheidung fuer eine auch in Zukunft wettbewerbsfaehige Stromerzeugung aus Braunkohle

    Energy Technology Data Exchange (ETDEWEB)

    Gilli, P.G.; Hellfritsch, S. [Technische Universitaet Dresden (Germany); Jentsch, N. [Vattenfall Europe Generation, Cottbus (Germany)

    2004-07-01

    The Oxyfuel process for lignite combustion with CO{sub 2} separation is illustrated by the example of a industrial-scale power plant process. Consequent optimisation of the process with integrated waste air utilisation and further efficiency-increasing measures will make the power plant as efficient as modern conventional lignite-fuelled power stations. (orig.)

  8. Scattering study at free air ionization chamber diaphragm

    International Nuclear Information System (INIS)

    Santos, Alexandre Lo Bianco dos

    2011-01-01

    The maim of this work consisted in the assessment of the correction factor for air kerma, due to scattered radiation in the diaphragm of the free-air ionization chamber model 481. LNMRl measurements were made to acquire x-ray spectra corresponding to the Qualities RQR-M, described in IEC 61627 standards (2005). These spectra were used as input data in the MC simulations. The operational range of energy spectra provide up to 35 keV. This energy range is typically used in diagnostic radiology, although there is not primary standard for air kerma. The determination of this factor is a fundamental process in the primary standardization of the air kerma. These factors were obtained by computer simulation using the Penelope code. The results are k RQR-M1 =0,9946, k RQR -M2 =0,9932, k RQR-M3 =0,9978 and k RQR-M4 =0,9885; with uncertainties of 0,007 and coverage factor equal to 2. lt can be concluded that, with respect to the diaphragm, the chamber can be used in the primary standard of air kerma. (author)

  9. Li-promoted sodium zirconate as a CO{sub 2} absorbent at high temperatures; Zirconato de sodio promovido con Li como absorbente de CO{sub 2} a alta temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Guzman Velderrain, V.; Barraza Jimenez, D.; Lardizabal Gutierrez, D.; Delgado Vigil, D.; Salinas Gutierrez, J.; Lopez Ortiz, A.; Collins-Martinez, V. [Centro de Investigacion en Materiales Avanzados S. C., Chihuahua, Chihuahua (Mexico)]. E-mail: virginia.collins@cimav.edu.mx

    2009-09-15

    In processes to produce hydrogen from fossil fuels, CO{sub 2} capture at high temperatures has played a crucial role in their conversion into energy-efficient processes. One example is steam reformer methane improved with absorption (SER), where CO{sub 2} capture at high temperatures (600 degrees Celsius) provides an energy savings of {approx_equal} 23% over conventional reformer processes (SMR). An important part of this concept is solid CO{sub 2} absorption, which must have adequate absorption capacity and rapid absorption/regeneration kinetics. Recently, synthetic CO{sub 2} absorbents have been developed that consist of mixed Li oxides. Previous studies conducted in our laboratory report that the absorption/regeneration properties of sodium zirconate (Na{sub 2}ZrO{sub 3}) are higher than Li-oxides. The objective of the present work is to increase the absorption capacity of Na{sub 2}ZrO{sub 3} at high temperatures without significantly affecting the kinetics of its absorption and regeneration, with Li promotion. The Na{sub 2}ZrO{sub 3} was synthesized by reaction in a solid state and impregnated with LiNO{sub 3} at different Li/Na ratios: 0, 0.03, 0.05, 0.1 and 0.25 (NZ, NZL3, NZL5, NZL10, NZL25). The characterization consisted of XRD and SEM. The evaluation as an absorbent was performed with TGA at 600 degrees Celsius in 80% CO{sub 2} (absorption) and 800 degrees Celsius in air (regeneration). While XRD shows only the Na{sub 2}ZrO{sub 3} structure in all the samples, the promoted samples present a signal shift with respect to Na{sub 2}ZrO{sub 3}, which is attributed to the substitution of Na atoms with Li. The TGA results indicate that the addition of Li to the Na{sub 2}ZrO{sub 3} structure does not significantly modify the absorption or regeneration kinetics. As the Li contents in the Na{sub 2}ZrO{sub 3} increase, the amount of CO{sub 2} capture increases up to a limit between 10 and 25% mol of Li. This is due to the displaced sodium presumably tending to form

  10. CO{sub 2} control technologies: ALSTOM Power approach

    Energy Technology Data Exchange (ETDEWEB)

    Stamatelopoulos, G.N.; Marion, J.L.; Nsakala, N.; Griffin, T.; Bill, A. [ALSTOM Power Boiler GmbH, Stuttgart (Germany)

    2002-07-01

    ALSTOM Power is one of the largest providers of power generation equipment, turnkey power plants and services in the world. The Company is aware of the present scientific concerns regarding greenhouse gas emissions and the role of fossil fuels used in power generation. ALSTOM Power R&D laboratories run various programs aiming to find options that reduce greenhouse gas emissions through: Increasing the efficiency of power generation equipment by implementing the most modern technologies. Application of technologies to remove and sequester carbon dioxide created in power plants in an environmentally and economically favorable manner. In this paper an overview of ALSTOM's on-going CO{sub 2} mitigation development activities will be presented. First, energy efficiency improvements for both new and existing fossil fuel power plants are reviewed for both coal and natural gas fuels. Second, the development of novel power generation processes, including those involving combustion in O{sub 2}/CO{sub 2} atmospheres using pure or enriched oxygen for the purpose of CO{sub 2} capture is discussed. And finally, novel chemical-looping CO{sub 2} capture process technologies are introduced. The major challenge in CO{sub 2} capture techniques is the efficient separation and capture of CO{sub 2}. Conclusions are drawn herein regarding the technical feasibility, the resultant efficiency penalties, and the CO{sub 2} mitigation costs for the various options under study and development within ALSTOM Power. 7 refs., 8 figs.

  11. Impact of U.S. Smoke-free Air Laws on Restaurant and Bar Employment, 1990-2015.

    Science.gov (United States)

    Shafer, Paul

    2017-12-23

    Secondhand smoke exposure is responsible for an estimated 50,000 deaths per year among nonsmokers in the U.S. Smoke-free air laws reduce secondhand smoke exposure but often encounter opposition over concerns about their economic impact. Expansion of these laws has stagnated and efforts to weaken existing laws may exacerbate existing disparities in exposure. Studies at the state and local levels have found that smoke-free air laws do not generally have an adverse effect, but there are no recent estimates of the impact of these laws nationally. Employment and sales are two measures commonly used to estimate the economic impact of smoke-free air laws. Sales data are gathered by state and local taxing authorities but not uniformly across jurisdictions. Dynamic panel models are used to estimate a population-weighted national average treatment effect of smoke-free air laws on restaurant and bar employment using data from the Quarterly Census of Employment and Wages for 1990 to 2015. A one-percentage point increase in population covered by a restaurant smoke-free air law is associated with a small increase (approximately 0.01%) in restaurant employment (b=0.0001, Plaw was not associated with bar employment. Smoke-free air laws are a powerful tool for protecting hospitality workers and patrons from the dangers of secondhand smoke. Using data over more than two decades, these results suggest that smoke-free air laws in the U.S. do not generally have any meaningful effect on restaurant and bar employment. Smoke-free air laws are associated with reductions in negative health outcomes and decreased smoking prevalence. Despite this clear public health argument and strong public support, passage of new laws has stagnated and exemptions are being used to weaken existing laws. The ability to make both a health and business case in support of existing laws may also bolster the case for expansion. This study provides an updated look at the economic impact of smoke-free air laws

  12. 30 CFR 75.524 - Electric face equipment; electric equipment used in return air outby the last open crosscut...

    Science.gov (United States)

    2010-07-01

    ... used in return air outby the last open crosscut; maximum level of alternating or direct electric... other in return air outby the last open crosscut, shall not exceed one ampere as determined from the... Electrical Equipment-General § 75.524 Electric face equipment; electric equipment used in return air outby...

  13. Seismic characterization of CO{sub 2} in coals

    Energy Technology Data Exchange (ETDEWEB)

    McCrank, J.; Lawton, D.C. [Calgary Univ., AB (Canada). Dept. of Geoscience, Consortium for Research in Elastic Wave Exploration Seismology

    2008-07-01

    The Mynheer coal seam was targeted for an enhanced coalbed methane (CBM) experiment. During initial testing of the reservoir permeability, 180 tonnes of carbon dioxide (CO{sub 2}) was injected into the seam. The objective of the study was to characterize the coal zones and to determine if the small volume of CO{sub 2} in the thinly bedded and seismically tuned reservoir can be detected in the 3D surface seismic data. The multi-well pilot project took place in the Pembina Field of west-central Alberta. The Ardley coals were tested for CO{sub 2} injection, enhanced CBM production, and CO{sub 2} sequestration. The seismic survey captured the condition of the reservoir after formation permeability tests. It was concluded that the anomalies seen in the seismic data can be attributed to changes in the physical properties of the coal due to CO{sub 2} adsorption. 2 refs., 5 figs.

  14. Bio-oil steam reforming, partial oxidation or oxidative steam reforming coupled with bio-oil dry reforming to eliminate CO{sub 2} emission

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xun [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Lu, Gongxuan [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2010-07-15

    Biomass is carbon-neutral and utilization of biomass as hydrogen resource shows no impact on atmospheric CO{sub 2} level. Nevertheless, a significant amount of CO{sub 2} is always produced in biomass gasification processes. If the CO{sub 2} produced can further react with biomass, then the biomass gasification coupled with CO{sub 2} reforming of biomass will result in a net decrease of CO{sub 2} level in atmosphere and produce the chemical raw material, syngas. To achieve this concept, a ''Y'' type reactor is developed and applied in bio-oil steam reforming, partial oxidation, or oxidative steam reforming coupled with CO{sub 2} reforming of bio-oil to eliminate the emission of CO{sub 2}. The experimental results show that the reaction systems can efficiently suppress the emission of CO{sub 2} from various reforming processes. The different coupled reaction systems generate the syngas with different molar ratio of CO/H{sub 2}. In addition, coke deposition is encountered in the different reforming processes. Both catalysts and experimental parameters significantly affect the coke deposition. Ni/La{sub 2}O{sub 3} catalyst shows much higher resistivity toward coke deposition than Ni/Al{sub 2}O{sub 3} catalyst, while employing high reaction temperature is vital for elimination of coke deposition. Although the different coupled reaction systems show different characteristic in terms of product distribution and coke deposition, which all can serve as methods for storage of the carbon from fossil fuels or air. (author)

  15. Experimental analysis of CO{sub 2} emissions from agricultural soils subjected to five different tillage systems in Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Buragienė, Sidona [Institute of Agricultural Engineering and Safety, Aleksandras Stulginskis University, Studentu str. 15A, LT-53361 Akademija, Kaunas distr. (Lithuania); Šarauskis, Egidijus, E-mail: egidijus.sarauskis@asu.lt [Institute of Agricultural Engineering and Safety, Aleksandras Stulginskis University, Studentu str. 15A, LT-53361 Akademija, Kaunas distr. (Lithuania); Romaneckas, Kęstutis, E-mail: kestas.romaneckas@asu.lt [Institute of Agroecosystems and Soil Science, Aleksandras Stulginskis University, Studentu str. 11, Akademija LT-53361, Kaunas dist. (Lithuania); Sasnauskienė, Jurgita, E-mail: jurgita.sasnauskiene@asu.lt [Institute of Environment and Ecology, Aleksandras Stulginskis University, Studentu str. 11, Akademija LT-53361, Kaunas dist. (Lithuania); Masilionytė, Laura, E-mail: laura.masilionyte@gmail.com [Joniskelis Experimental Station, Lithuanian Research Centre for Agriculture and Forestry, Joniskelis, LT-39301 Pasvalys distr. (Lithuania); Kriaučiūnienė, Zita, E-mail: zita.kriauciuniene@asu.lt [Experimental Station, Aleksandras Stulginskis University, Rapsu str. 7, LT-53363 Noreikiskes, Kaunas distr. (Lithuania)

    2015-05-01

    Intensive agricultural production strongly influences the global processes that determine climate change. Thus, tillage can play a very important role in climate change. The intensity of soil carbon dioxide (CO{sub 2}) emissions, which contribute to the greenhouse effect, can vary depending on the following factors: the tillage system used, meteorological conditions (which vary in different regions of the world), soil properties, plant residue characteristics and other factors. The main purpose of this research was to analyse and assess the effects of autumn tillage systems with different intensities on CO{sub 2} emissions from soils during different seasons and under the climatic conditions of Central Lithuania. The research was conducted at the Experimental Station of Aleksandras Stulginskis University from 2009 to2012; and in 2014. The soils at the experimental site were classified as Eutric Endogleyic Planosol (Drainic). The investigations were conducted using five tillage systems with different intensities, typical of the Baltic Region. Deep conventional ploughing was performed at a depth of 230–250 mm, shallow ploughing was conducted at a depth of 120–150 mm, deep loosening was conducted at depths of 250–270 mm, and shallow loosening was conducted at depths of 120–150 mm. The fifth system was a no-tillage system. Overall, autumn tillage resulted in greater CO{sub 2} emissions from the soil over both short- and long-term periods under the climatic conditions of Central Lithuania, regardless of the tillage system applied. The highest soil CO{sub 2} emissions were observed for the conventional deep ploughing tillage system, and the lowest emissions were observed for the no-tillage system. The meteorological conditions greatly influenced the CO{sub 2} emissions from the soil during the spring. Soil CO{sub 2} emissions were enhanced as precipitation and the air and soil temperatures increased. Long-term investigations regarding the dynamics of CO{sub 2

  16. Electronic and magnetic properties of the Co{sub 2}MnAl/Au interface: Relevance of the Heusler alloy termination

    Energy Technology Data Exchange (ETDEWEB)

    Makinistian, L., E-mail: lmakinistian@santafe-conicet.gov.ar [Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, 3000 Santa Fe (Argentina); Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina); Albanesi, E.A. [Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, 3000 Santa Fe (Argentina); Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina)

    2015-07-01

    We present ab initio calculations of electronic and magnetic properties of the ferromagnetic metal/normal metal (F/N) interface of the Heusler alloy Co{sub 2}MnAl and gold. Two structural models are implemented: one with the ferromagnet slab terminated in a pure cobalt plane (“Co{sub 2}-t”), and the other with it terminated with a plane of MnAl (“MnAl-t”). The relaxed optimum distance between the slabs is determined for the two models before densities of states, magnetic moments, and the electric potential are resolved and analyzed layer by layer through the interface. Complementary, calculations for the free surfaces of gold and the Heusler alloy (for both models, Co{sub 2}-t and MnAl-t) are performed for a better interpretation of the physics of the interface. We predict important differences between the two models, suggesting that both terminations are to be expected to display sensibly different spin injection performances. - Highlights: • Ab initio electronic and magnetic properties of the interface Co{sub 2}MnAl/Au. • Two terminations were studied: Co{sub 2} and MnAl terminated. • The termination of the Heusler alloy sensibly determines the interface properties. • The Co{sub 2} terminated interface displays a higher spin polarization.

  17. Detection Test for Leakage of CO{sub 2} into Sodium Loop

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Hee; Wi, Myung-Hwan; Min, Jae Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    This report is about the facility for the detection test for leakage of CO{sub 2} into sodium loop. The facility for the detection test for leakage of CO{sub 2} into sodium loop was introduced. The test will be carried out. Our experimental results are going to be expected to be used for approach methods to detect CO{sub 2} leaking into sodium in heat exchangers. A sodium-and-carbon dioxide (Na-CO{sub 2}) heat exchanger is one of the key components for the supercritical CO{sub 2} Brayton cycle power conversion system of sodium-cooled fast reactors (SFRs). A printed circuit heat exchanger (PCHE) is considered for the Na-CO{sub 2} heat exchanger, which is known to have potential for reducing the volume occupied by the exchangers compared to traditional shell-and-tube heat exchangers. Among various issues about the Na- CO{sub 2} exchanger, detection of CO{sub 2} leaking into sodium in the heat exchanger is most important thing for its safe operation. It is known that reaction products from sodium and CO{sub 2} such as sodium carbonate (Na{sub 2}CO{sub 3}) and amorphous carbon are hardly soluble in sodium, which cause plug sodium channels. Detection technique for Na{sub 2}CO{sub 3} in sodium loop has not been developed yet. Therefore, detection of CO{sub 2} and CO from reaction of sodium and CO{sub 2} are proper to detect CO{sub 2} leakage into sodium loop.

  18. CO{sub 2} capture and utilization for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Vilhelmsen, P.J.; Well, W. van; Nielsen, Charles [DONG Energy Generation, Fredericia (Denmark); Harrar, W.; Reffstrup, J. [DONG Energy Exploration and Production, Hoersholm (Denmark)

    2007-05-15

    CO{sub 2} is an international theme and the cap-and-trade systems under implementation will lead to significant alterations in the energy market and in the energy system altogether. A possible technical step to reduce atmospheric emissions is CO{sub 2} capture and the utilisation of the CO{sub 2} for Enhanced Oil Recovery (EOR). CO{sub 2} capture is to some extent a know technology but has not yet been optimised and commercialised for power plant utilisation. Correspondingly CO{sub 2} utilisation for EOR is a known method in other areas of the world where the reservoir conditions are different from those of the North Sea. For several years Elsam and Energi E2, part of DONG Energy, have worked on reducing CO{sub 2} emissions through increased efficiency at the coal-fired power plants, and this work has now been extended to also include capture and utilisation of CO{sub 2}. DONG E and P within DONG Energy has started work on the utilisation of CO{sub 2} for EOR at the company's fields in the North Sea. Based on DONG Energy's interest in working through the whole value chain from power plants to EOR utilisation in the North Sea, this paper describes our experience with CO{sub 2} capture at the trial plant CASTOR at Esbjerg power plant and the actual work of investigating and preparing the pilot test of CO{sub 2} for EOR in the North Sea. The paper also illustrates the perspectives of retrofitting the existing fleet of super critical coal-fired power plants close to the North Sea with CO{sub 2} capture and the utilisation of the CO{sub 2} for EOR in the North Sea. DONG Energy's perspective is that CO{sub 2} for EOR can contribute to materialising the vision that the central power plant can be developed into an energy refinery. The development work presented will be carried out in cooperation with leading international players and Danish universities and knowledge centres Technical University of Denmark (DTU), The Danish Geotechnical Institute (GEO) and Geological

  19. Low energy, low cost, efficient CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Michael C. Trachtenberg; Lihong Bao; David A. Smith; Remy Dumortier [Carbozyme, Inc., Monmouth Junction, NJ (United States)

    2006-07-01

    This paper discusses the development and some characteristics of a new, enzyme-based, contained liquid membrane contactor to capture CO{sub 2}. The enzyme carbonic anhydrase catalyzes the removal of CO{sub 2} while the membrane contactor increases the surface area to allow the reduction of the size of the system. The modular system design is easily scaled to any required size reducing the investment costs. The system captures CO{sub 2} at a low energy and low cost promising to be a cost effective technology for CO{sub 2} capture. 5 refs., 7 figs.

  20. Canopy position affects photosynthetic adjustments to long-term elevated CO{sub 2} concentration (FACE) in aging needles in a mature Pinus taeda forest

    Energy Technology Data Exchange (ETDEWEB)

    Crous, K. Y.; Ellsworth, D. S. [University of Michigan, School of Natural Resources and Environment, Ann Arbor, MI (United States)

    2004-09-01

    Results of an assessment of the long-term effects of exposure to elevated carbon dioxide in free-air enrichment (FACE) on two age classes of pine needles in the upper and lower canopy of a pine forest in North Carolina are discussed. The observations were made during the second through sixth year of exposure. A significant response was observed in 60 per cent of all age classes and canopy locations. Evidence of concurrent down-regulation of Rubisco and electron transport capacity in upper canopy sunlit leaves was noted beyond the sixth year. No such effect was seen in the lower canopy. Carboxylation capacity and electron transport capacity in the upper canopy was down-regulated by 17-20 per cent in one year-old needles, but this was significant across sampling years only for electron transport capacity. It is suggested that a reduction in photosynthetic capacity in aging conifer needles at the canopy top may have significant consequences for canopy carbon balance and global carbon sinks because a major proportion of the annual carbon balance of these conifers is contributed by one-year old sunlit needles. 45 refs., 3 tabs., 4 figs.

  1. Techno-economic study of CO{sub 2} capture from an existing coal-fired power plant: MEA scrubbing vs. O{sub 2}/CO{sub 2} recycle combustion

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D; Croiset, E; Douglas, P L [Waterloo Univ., Dept. of Chemical Engineering, Waterloo, ON (Canada); Douglas, M A [Natural Resources Canada, CANMET Energy Technology Centre, Nepean, ON (Canada)

    2003-11-01

    The existing fleet of modern pulverised coal fired power plants represents an opportunity to achieve significant reductions in greenhouse gas emissions in the coming years providing that efficient and economical CO{sub 2} capture technologies are available for retrofit. One option is to separate CO{sub 2} from the products of combustion using conventional approaches such as amine scrubbing. An emerging alternative, commonly known as O{sub 2}/CO{sub 2} recycle combustion, involves burning the coal with oxygen in an atmosphere of recycled flue gas. Both approaches can be retrofitted to existing units, however they consume significant amounts of energy to capture, purify and compress the CO{sub 2} for subsequent sequestration. This paper presents a techno-economic comparison of the performance of the two approaches. The comparison was developed using the commercial process simulation packages, Hysys and Aspen Plus. The results show that both processes are expensive options to capture CO{sub 2} from coal power plants, however O{sub 2}/CO{sub 2} appears to be a more attractive retrofit than MEA scrubbing. The CO{sub 2} capture cost for the MEA case is USD 53/ton of CO{sub 2} avoided, which translates into 3.3 cent/kW h. For the O{sub 2}/CO{sub 2} case the CO{sub 2} capture cost is lower at USD 35/ton of CO{sub 2} avoided, which translates into 2.4 cent/kW h. These capture costs represent an approximate increase of 20-30% in current electricity prices. (Author)

  2. Thoughts about automotive industry in 2050 with respect to the objective of division by 4 of CO{sub 2} emissions; Reflexions sur l'automobile de 2050 face a l'objectif de division du CO{sub 2} par le facteur 4

    Energy Technology Data Exchange (ETDEWEB)

    Douaud, A.

    2005-07-01

    The long-term strategy of the automotive industry is to minimize its CO{sub 2} emissions and to progressively abandon petroleum. Today, the diesel technology is the most efficient in terms of CO{sub 2} emissions and the hybrid technology will be the medium-term challenge with the development of biofuels and synthetic fuels from biomass. According to the author, there is no certitude that the hydrogen fuel cell will be tomorrows' automobile engine and the nuclear option would be necessary to produce huge quantities of hydrogen without CO{sub 2} emissions. The alternate strategies with interesting potentialities remain the electric-powered vehicle supplied with batteries or supplied with methanol fuel cells, methanol being obtained by biomass transformation. (J.S.)

  3. Design of the free-air ionization chamber, FAC-IR-150, for X-ray dosimetry

    Science.gov (United States)

    Mohammadi, Seyed Mostafa; Tavakoli-Anbaran, Hossein

    2018-03-01

    The primary standard for X-ray dosimetry is based on the free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) designed the free-air ionization chamber, FAC-IR-150, for low and medium energy X-ray dosimetry. The purpose of this work is the study of the free-air ionization chamber characteristics and the design of the FAC-IR-150. The FAC-IR-150 dosimeter has two parallel plates, a high voltage plate and a collector plate. A guard electrode surrounds the collector and is separated by an air gap. A group of guard strips is used between up and down electrodes to produce a uniform electric field in all the ion chamber volume. This design involves introducing the correction factors and determining the exact dimensions of the ionization chamber by using Monte Carlo simulation.

  4. The relationship between economic growth, energy consumption, and CO{sub 2} emissions: Empirical evidence from China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaojian, E-mail: 1987wangshaojian@163.com [School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275 (China); Li, Qiuying [Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Fang, Chuanglin, E-mail: fangcl@igsnrr.ac.cn [Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Zhou, Chunshan [School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275 (China)

    2016-01-15

    Following several decades of rapid economic growth, China has become the largest energy consumer and the greatest emitter of CO{sub 2} in the world. Given the complex development situation faced by contemporary China, Chinese policymakers now confront the dual challenge of reducing energy use while continuing to foster economic growth. This study posits that a better understanding of the relationship between economic growth, energy consumption, and CO{sub 2} emissions is necessary, in order for the Chinese government to develop the energy saving and emission reduction strategies for addressing the impacts of climate change. This paper investigates the cointegrating, temporally dynamic, and casual relationships that exist between economic growth, energy consumption, and CO{sub 2} emissions in China, using data for the period 1990–2012. The study develops a comprehensive conceptual framework in order to perform this analysis. The results of cointegration tests suggest the existence of long-run cointegrating relationship among the variables, albeit with short dynamic adjustment mechanisms, indicating that the proportion of disequilibrium errors that can be adjusted in the next period will account for only a fraction of the changes. Further, impulse response analysis (which describes the reaction of any variable as a function of time in response to external shocks) found that the impact of a shock in CO{sub 2} emissions on economic growth or energy consumption was only marginally significant. Finally, Granger casual relationships were found to exist between economic growth, energy consumption, and CO{sub 2} emissions; specifically, a bi-directional causal relationship between economic growth and energy consumption was identified, and a unidirectional causal relationship was found to exist from energy consumption to CO{sub 2} emissions. The findings have significant implications for both academics and practitioners, warning of the need to develop and implement long

  5. Design of aircraft cabin testbed for stress free air travel experiment

    NARCIS (Netherlands)

    Tan, C.F.; Chen, W.; Rauterberg, G.W.M.

    2009-01-01

    The paper presents an aircraft cabin testbed that is designed and built for the stress free air travel experiment. The project is funded by European Union in the aim of improving air travel comfort during long haul flight. The testbed is used to test and validate the adaptive system that is capable

  6. Role of mesoscale eddies in the global ocean uptake of anthropogenic CO{sub 2}; Role des tourbillons de meso-echelle oceaniques dans la distribution et les flux air-mer de CO{sub 2} anthropique a l'echelle globale

    Energy Technology Data Exchange (ETDEWEB)

    Zouhair, Lachkar

    2007-02-15

    Mesoscale eddies play a fundamental role in ocean dynamics particularly in the Southern Ocean. Global-scale tracer simulations are typically made at coarse resolution without explicitly modeling eddies. Here we ask what role do eddies play in ocean uptake, storage, and meridional transport of anthropogenic CO{sub 2}, CFC-11 and bomb {delta}{sup 14}C. We made global anthropogenic transient tracer simulations in coarse-resolution, ORCA2, and eddy-permitting, ORCA05 and ORCA025, versions of the ocean modelling system NEMO. We focus on the Southern Ocean where tracer air-sea fluxes are largest. Eddies have little effect on bomb {delta}{sup 14}C uptake and storage. Yet for CFC-11 and anthropogenic CO{sub 2}, increased eddy activity reduces southern extra-tropical uptake by 28% and 25% respectively, thereby providing better agreement with observations. It is shown that the discrepancies in the equilibration times between the three tracers determine their respective sensitivities to the model horizontal resolution. Applying Gent and McWilliams (1990) (GM) parameterization of eddies in the non-eddying version of the model does improve results, but not enough. An in-depth investigation of the mechanisms by which eddies affect the uptake of the transient tracers shows that including mesoscale eddies leads to an overall reduction in the Antarctic Intermediate Water (AAIW) ventilation, and modifies substantially the spatial distribution of their source regions. This investigation reveals also that the GM parameterization still overestimates the ventilation and the subduction of AAIW in the Indian Ocean where the simulated mixed layer is particularly deep during the winter. This work suggests that most current coarse-resolution models may overestimate the ventilation of AAIW in the Indian sector of the Southern Ocean. This study shows also that the use of the GM parameterization may be of limited utility where mixed layer is relatively deep and confirms the general need for a

  7. An independent assessment of CO{sub 2} capture research needs

    Energy Technology Data Exchange (ETDEWEB)

    St. John, B. [INTECH, Inc., Gaithersburg, MD (United States)

    1993-12-31

    The United States generates on the order of five billion metric tons of CO{sub 2} annually. Of this, approximately 1.8 billion metric tons is from electric utilities. Other industrial sources of CO{sub 2}, such as cement plants, coke ovens, ammonia plants, oil refineries, etc. are small relative to the emissions from power plants. The majority of the emissions from U.S. electric utilities are from coal-fired power plants. Thus, any large scale program to control CO{sub 2} emissions needs to include abatement of CO{sub 2} from power plants. Currently, there are very few proven options to mitigate CO{sub 2} emissions: (1) Improve thermal efficiency, thereby decreasing the amount of CO{sub 2} generated per unit of output. (2) Improve the efficiency of end use. (3) Convert to lower carbon fuels or non-fossil energy sources. (4) Plant trees to offset CO{sub 2} emitted. (5) Produce a concentrated CO{sub 2} stream for utilization or disposal. The first four options are well known and are being actively pursued at the present time. This paper examines the last option from the perspective that the gap between what is needed and what is available defines the research and development opportunities.

  8. Vaginal Cuff Dehiscence Presenting with Free Air 60 Days after Robotic-Assisted Hysterectomy

    Directory of Open Access Journals (Sweden)

    D. Munger

    2017-01-01

    Full Text Available Introduction. The vast majority of patients presenting with pneumoperitoneum have visceral organ perforation and require urgent diagnostic laparoscopy. Nonsurgical causes are relatively rare and may be attributed to multiple etiologies. Case Presentation. Here we describe the case of a 38-year-old Caucasian female who presented to the emergency department with three days of cramping, epigastric abdominal pain. Her physical exam was notable for tenderness to palpation in the epigastric area and abdominal and chest X-rays showed free air under the diaphragm. Free air around the porta hepatis was verified on CT scan. Approximately 90% of pneumoperitoneum cases are due to perforation of visceral organs and therefore require operative management. An urgent exploratory laparoscopy revealed no clear source of free air, but postoperatively the patient developed a large volume of watery discharge from her vagina. Subsequent workup revealed a 1 cm vaginal cuff dehiscence which was later repaired with no postoperative complications. Conclusion. Although the majority of patients with pneumoperitoneum require urgent exploratory laparoscopy, a careful diagnostic workup may reveal sources of free air that are not related to hollow viscous perforation. Vaginal cuff dehiscence represents a rare yet nonurgent source of pneumoperitoneum. This differential should be considered in light of the possible intra- and postoperative complications of surgery.

  9. Economic effects on taxing CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Haaparanta, P [Helsinki School of Economics (Finland); Jerkkola, J; Pohjola, J [The Research Inst. of the Finnish Economy, Helsinki (Finland)

    1997-12-31

    The CO{sub 2} emissions can be reduced by using economic instruments, like carbon tax. This project included two specific questions related to CO{sub 2} taxation. First one was the economic effects of increasing CO{sub 2} tax and decreasing other taxes. Second was the economic adjustment costs of reducing net emissions instead of gross emissions. A computable general equilibrium (CGE) model was used in this analysis. The study was taken place in Helsinki School of Economics

  10. Economic effects on taxing CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Haaparanta, P. [Helsinki School of Economics (Finland); Jerkkola, J.; Pohjola, J. [The Research Inst. of the Finnish Economy, Helsinki (Finland)

    1996-12-31

    The CO{sub 2} emissions can be reduced by using economic instruments, like carbon tax. This project included two specific questions related to CO{sub 2} taxation. First one was the economic effects of increasing CO{sub 2} tax and decreasing other taxes. Second was the economic adjustment costs of reducing net emissions instead of gross emissions. A computable general equilibrium (CGE) model was used in this analysis. The study was taken place in Helsinki School of Economics

  11. Photocatalytic conversion of CO{sub 2} into value-added and renewable fuels

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Lan [State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002 (China); College of Chemistry, New Campus, Fuzhou University, Fuzhou 350108 (China); Xu, Yi-Jun, E-mail: yjxu@fzu.edu.cn [State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002 (China); College of Chemistry, New Campus, Fuzhou University, Fuzhou 350108 (China)

    2015-07-01

    Graphical abstract: Artificial photosynthesis that uses solar light energy to convert CO{sub 2} to form value-added and renewable fuels is considered to be a promising avenue to solve the problems relating to CO{sub 2}. However, the state-of-the-art photocatalytic efficiency of CO{sub 2} reduction is far from being optimal as a viable economical process. The present review is mainly focused on the progress made in exploring more efficient photocatalysts for CO{sub 2} photoreduction and the undergoing mechanisms, which is anticipated to contribute to further advancement in CO{sub 2} photoreduction with on-going efforts. - Highlights: • Brief introduction about the basic principle of artificial photosynthesis of CO{sub 2}. • Progress made in exploring more efficient photocatalysts for CO{sub 2} reduction. • Efforts devoted to excavate the in-depth mechanism of CO{sub 2} photoreduction. • Perspectives on future research directions and open issues in CO{sub 2} photoreduction. - Abstract: The increasing energy crisis and the worsening global climate caused by the excessive utilization of fossil fuel have boosted tremendous research activities about CO{sub 2} capture, storage and utilization. Artificial photosynthesis that uses solar light energy to convert CO{sub 2} to form value-added and renewable fuels such as methane or methanol has been consistently drawing increasing attention. It is like killing two birds with one stone since it can not only reduce the greenhouse effects caused by CO{sub 2} emission but also produce value added chemicals for alternative energy supplying. This review provides a brief introduction about the basic principles of artificial photosynthesis of CO{sub 2} and the progress made in exploring more efficient photocatalysts from the viewpoint of light harvesting and photogenerated charge carriers boosting. Moreover, the undergoing mechanisms of CO{sub 2} photoreduction are discussed with selected examples, in terms of adsorption of

  12. Ecosystem-atmosphere exchange of carbon in a heathland under future climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bang Selsted, M

    2010-07-15

    Global change is a reality. Atmospheric CO{sub 2} levels are rising as well as mean global temperature and precipitation patterns are changing. These three environmental factors have separately and in combination effect on ecosystem processes. Terrestrial ecosystems hold large amounts of carbon, why understanding plant and soil responses to such changes are necessary, as ecosystems potentially can ameliorate or accelerate global change. To predict the feedback of ecosystems to the atmospheric CO{sub 2} concentrations experiments imitating global change effects are therefore an important tool. This work on ecosystem-atmosphere exchange of carbon in a heathland under future climatic conditions, shows that extended summer drought in combination with elevated temperature will ensure permanent dryer soil conditions, which decreases carbon turnover, while elevated atmospheric CO{sub 2} concentrations will increase carbon turnover. In the full future climate scenario, carbon turnover is over all expected to increase and the heathland to become a source of atmospheric CO{sub 2}. The methodology of static chamber CO{sub 2} flux measurements and applying the technology in a FACE (free air CO{sub 2} enrichment) facility is a challenge. Fluxes of CO{sub 2} from soil to atmosphere depend on a physical equilibrium between those two medias, why it is important to keep the CO{sub 2} gradient between soil and atmosphere unchanged during measurement. Uptake to plants via photosynthesis depends on a physiological process, which depends strongly on the atmospheric CO{sub 2} concentration. Photosynthesis and respiration run in parallel during measurements of net ecosystem exchange, and these measurements should therefore be performed with care to both the atmospheric CO{sub 2} concentration and the CO{sub 2} soil-atmosphere gradient. (author)

  13. Structural and electrochemical characterization of calcium cobaltites (Ca{sub 3}Co{sub 4}O{sub 9}) obtained by the modified Pechini Method; Caracterizacao estrutural e eletroquimica de cobaltita de calcio (Ca{sub 3}Co{sub 4}O{sub 9}) obtida pelo Metodo Pechini modificado

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.M.; Aquino, F. de M.; Macedo, D. A. de, E-mail: rinaldo_mendesa@hotmail.com [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil)

    2016-07-01

    This work deals with the synthesis and characterization of calcium cobaltite (Ca{sub 3}Co{sub 4}O{sub 9}, C349), a p-type semiconductor with high Seebeck coefficient (S), high electrical conductivity and low thermal conductivity that has emerged as thermoelectric material. The synthesis method used to obtain the compound C349 uses commercial gelatin as complexing and polymerizing agent. The obtained material was characterized by X-ray diffraction with Rietveld refinement of the diffraction data. The results indicated that the modified Pechini method using gelatin allows to obtain powders of calcium cobaltite (with monoclinic structure) associated with a small content (2% by volume) of Co{sub 3}O{sub 4} with cubic structure. Impedance spectroscopy measurements in air indicated that the composite C349/Co{sub 3}O{sub 4} is a promising material for use as solid oxide fuel cell cathode.(author)

  14. A flow injection analyser conductometric coupled system for the field analysis of free dissolved CO{sub 2} and total dissolved inorganic carbon in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Martinotti, Valter; Balordi, Marcella; Ciceri, Giovanni [RSE SpA - Environment and Sustainable Development Department, Milan (Italy)

    2012-05-15

    A flow injection analyser coupled with a gas diffusion membrane and a conductometric microdetector was adapted for the field analysis of natural concentrations of free dissolved CO{sub 2} and dissolved inorganic carbon in natural waters and used in a number of field campaigns for marine water monitoring. The dissolved gaseous CO{sub 2} presents naturally, or that generated by acidification of the sample, is separated by diffusion using a hydrophobic semipermeable gas porous membrane, and the permeating gas is incorporated into a stream of deionised water and measured by means of an electrical conductometric microdetector. In order to make the system suitable and easy to use for in-field measurements aboard oceanographic ships, the single components of the analyser were compacted into a robust and easy to use system. The calibration of the system is carried out by using standard solutions of potassium bicarbonate at two concentration ranges. Calibration and sample measurements are carried out inside a temperature-constant chamber at 25 C and in an inert atmosphere (N{sub 2}). The detection and quantification limits of the method, evaluated as 3 and 10 times the standard deviation of a series of measurements of the matrix solution were 2.9 and 9.6 {mu}mol/kg of CO{sub 2}, respectively. Data quality for dissolved inorganic carbon was checked with replicate measurements of a certified reference material (A. Dickson, Scripps Institution of Oceanography, University of California, San Diego), both accuracy and repeatability were -3.3% and 10%, respectively. Optimization, performance qualification of the system and its application in various natural water samples are reported and discussed. In the future, the calibration step will be operated automatically in order to improve the analytical performance and the applicability will be increased in the course of experimental surveys carried out both in marine and freshwater ecosystems. Considering the present stage of

  15. Geochemical Study of Natural CO{sub 2} Emissions in the French Massif Central: How to Predict Origin, Processes and Evolution of CO{sub 2} Leakage; Etude geochimique des emissions naturelles de CO{sub 2} du Massif Central: origine et processus de migration du gaz

    Energy Technology Data Exchange (ETDEWEB)

    Battani, A.; Deville, E.; Faure, J.L.; Jeandel, E.; Noirez, S.; Tocque, E.; Benoit, Y.; Schmitz, J.; Parlouar, D. [Institut francais du petrole, IFP, 92 - Rueil-Malmaison (France); Sarda, P. [Paris-11 Univ., 91 - Orsay (France); Gal, F.; Le Pierres, K.; Brach, M.; Braibant, G.; Beny, C. [Bureau de Recherches Geologiques et Minieres (BRGM), 45 - Orleans (France); Pokryszka, Z.; Charmoille, A.; Bentivegna, G. [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique ALATA, 60 - Verneuil-en-Halatte (France); Pironon, J.; De Donato, P.; Garnier, C.; Cailteau, C.; Barres, O.; Radilla, G.; Bauer, A. [Institut National Polytechnique de Lorraine (INPL), 54 - Vandoeuvre-les-Nancy (France)

    2010-07-15

    This study presents an overview of some results obtained within the French ANR (National Agency of Research) supported Geocarbone-Monitoring research program. The measurements were performed in Sainte-Marguerite, located in the French Massif Central. This site represents a natural laboratory for CO{sub 2}/fluid/rock interactions studies, as well as CO{sub 2} migration mechanisms towards the surface. The CO{sub 2} leaking character of the studied area also allows to test and validate measurements methods and verifications for the future CO{sub 2} geological storage sites. During these surveys, we analyzed soil CO{sub 2} fluxes and concentrations. We sampled and analyzed soil gases, and gas from carbo-gaseous bubbling springs. A one-month continuous monitoring was also tested, to record the concentration of CO{sub 2} both in atmosphere and in the soil at a single point. We also developed a new methodology to collect soil gas samples for noble gas abundances and isotopic analyses, as well as carbon isotopic ratios. Our geochemical results, combined with structural geology, show that the leaking CO{sub 2} has a very deep origin, partially mantle derived. The gas rises rapidly along normal and strike-slip active faults. CO{sub 2} soil concentrations (also showing a mantle derived component) and CO{sub 2} fluxes are spatially variable, and reach high values. The recorded atmospheric CO{sub 2} is not very high, despite the important CO{sub 2} degassing throughout the whole area. (authors)

  16. Free-air ionization intensity in the lower atmosphere due to cosmic-ray

    International Nuclear Information System (INIS)

    Urabe, Itsumasa; Katsurayama, Kousuke

    1979-01-01

    Being able to be determined by subtracting the gamma-ray ionization intensity from that obtained with ionization chamber, cosmic-ray ionization intensity in free air was estimated by using with 15l air-filled ionization chamber and 3''diameter spherical NaI(Tl) scintillation spectrometer. Optimum applied voltage to 15l air-filled ionization chamber was determined in accordance with Scott and Greening's formula to obtain the ionization intensity caused by gamma-rays and cosmic-rays. Pulse-height distribution of cosmic-rays created in 3''diameter spherical NaI(Tl) scintillation spectrometer was investigated for the precise determination of gamma-ray ionization intensity. Field measurements were carried out by using with these two instruments at about 1.5 meter above the ground in the several locations around Research Reactor Institute of Kyoto University. Cosmic-ray ionization intensity in free air was estimated from the results obtained with air-filled ionization chamber and was 3.33 +- 0.15 μR/hr equivalent in natural environment near Research Reactor Institute of Kyoto University. (author)

  17. Photochemical reduction of CO{sub 2} to fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, D. [National Renewable Energy Lab., Golden, CO (United States); Eisenberg, R. [Univ. of Rochester, NY (United States); Fujita, E. [Brookhaven National Lab., Upton, NY (United States)

    1996-09-01

    Photochemical reduction of CO{sub 2} represents a potentially useful approach to developing a sustainable source of carbon-based chemicals, fuels, and materials. In this report the present status of photochemical CO{sub 2} reduction is assessed, areas that need to be better understood for advancement are identified, and approaches to overcoming barriers are suggested. Because of the interdisciplinary nature of this field, assessments of three closely interrelated areas are given including integrated photochemical systems for catalytic CO{sub 2} reduction, thermal catalytic CO{sub 2} reactions, and electrochemical CO{sub 2} reduction. The report concludes with a summary and assessment of potential impacts of this area on chemical and energy technologies.

  18. Detecting CO/sub 2/-induced climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Wigley, T M.L.; Jones, P D

    1981-07-16

    Although it is widely believed that increasing atmospheric CO/sub 2/ levels will cause noticeable global warming, the effects are not yet detectable, possibly because of the 'noise' of natural climatic variability. An examination of the spatial and seasonal distribution of signal-to-noise ratio shows that the highest values occur in summer and annual mean surface temperatures averaged over the Northern Hemisphere or over mid-latitudes. The spatial and seasonal characteristics of the early twentieth century warming were similar to those expected from increasing CO/sub 2/ based on an equilibrium response model. This similarity may hinder the early detection of CO/sub 2/ effects on climate.

  19. Reduction of emissions and geological storage of CO{sub 2}. Innovation an industrial stakes; Reduction des emissions et stockage geologique du CO{sub 2}. Innovation et enjeux industriels

    Energy Technology Data Exchange (ETDEWEB)

    Mandil, C.; Podkanski, J.; Socolow, R.; Dron, D.; Reiner, D.; Horrocks, P.; Fernandez Ruiz, P.; Dechamps, P.; Stromberg, L.; Wright, I.; Gazeau, J.C.; Wiederkehr, P.; Morcheoine, A.; Vesseron, P.; Feron, P.; Feraud, A.; Torp, N.T.; Christensen, N.P.; Le Thiez, P.; Czernichowski, I.; Hartman, J.; Roulet, C.; Roberts, J.; Zakkour, P.; Von Goerne, G.; Armand, R.; Allinson, G.; Segalen, L.; Gires, J.M.; Metz, B.; Brillet, B

    2005-07-01

    An international symposium on the reduction of emissions and geological storage of CO{sub 2} was held in Paris from 15 to 16 September 2005. The event, jointly organized by IFP, ADEME and BRGM, brought together over 400 people from more than 25 countries. It was an opportunity to review the international stakes related to global warming and also to debate ways of reducing CO{sub 2} emissions, taking examples from the energy and transport sectors. The last day was dedicated to technological advances in the capture and geological storage of CO{sub 2} and their regulatory and economic implications. This document gathers the available transparencies and talks presented during the colloquium: Opening address by F. Loos, French Minister-delegate for Industry; Session I - Greenhouse gas emissions: the international stakes. Outlook for global CO{sub 2} emissions. The global and regional scenarios: Alternative scenarios for energy use and CO{sub 2} emissions until 2050 by C. Mandil and J. Podkanski (IEA), The stabilization of CO{sub 2} emissions in the coming 50 years by R. Socolow (Princeton University). Evolution of the international context: the stakes and 'factor 4' issues: Costs of climate impacts and ways towards 'factor 4' by D. Dron (ENS Mines de Paris), CO{sub 2} emissions reduction policy: the situation in the United States by D. Reiner (MIT/Cambridge University), Post-Kyoto scenarios by P. Horrocks (European Commission), Possibilities for R and D in CO{sub 2} capture and storage in the future FP7 program by P. Fernandez Ruiz and P. Dechamps (European Commission). Session II - CO{sub 2} emission reductions in the energy and transport sectors. Reducing CO{sub 2} emissions during the production and conversion of fossil energies (fixed installations): Combined cycles using hydrogen by G. Haupt (Siemens), CO{sub 2} emission reductions in the oil and gas industry by I. Wright (BP). Reducing CO{sub 2} emissions in the transport sector: Sustainable

  20. Energy-efficient and low CO{sub 2} office building

    Energy Technology Data Exchange (ETDEWEB)

    Airaksinen, M., Email: miimu.airaksinen@vtt.fi

    2012-06-15

    Current office buildings are becoming more and more energy efficient. In particular the importance of heating is decreasing, but the share of electricity use is increasing. When the CO{sub 2} equivalent emissions are considered, the emissions from embodied energy make up an important share of the total, indicating that the building materials have a high importance which is often ignored when only the energy efficiency of running the building is considered. This paper studies a new office building in design phase. The results showed that the reduction of energy use reduces both the primary energy use and CO{sub 2} eq. emissions. Especially the reduction of electricity use has a high importance for both primary energy use and CO{sub 2} emissions when fossil fuels are used. The lowest CO{sub 2} eq. emissions were achieved when bio-based, renewable energies or nuclear power was used to supply energy for the office building. Evidently then the share of CO{sub 2} eq. emissions from the embodied energy of building materials and products became the dominant source of CO{sub 2} eq. emissions. (orig.)

  1. CO{sub 2} INFRARED PHONON MODES IN INTERSTELLAR ICE MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Ilsa R. [Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, VA 22904 (United States); Fayolle, Edith C.; Öberg, Karin I., E-mail: irc5zb@virginia.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-11-20

    CO{sub 2} ice is an important reservoir of carbon and oxygen in star- and planet-forming regions. Together with water and CO, CO{sub 2} sets the physical and chemical characteristics of interstellar icy grain mantles, including desorption and diffusion energies for other ice constituents. A detailed understanding of CO{sub 2} ice spectroscopy is a prerequisite to characterize CO{sub 2} interactions with other volatiles both in interstellar ices and in laboratory experiments of interstellar ice analogs. We report laboratory spectra of the CO{sub 2} longitudinal optical (LO) phonon mode in pure CO{sub 2} ice and in CO{sub 2} ice mixtures with H{sub 2}O, CO, and O{sub 2} components. We show that the LO phonon mode position is sensitive to the mixing ratio of various ice components of astronomical interest. In the era of the James Webb Space Telescope , this characteristic could be used to constrain interstellar ice compositions and morphologies. More immediately, LO phonon mode spectroscopy provides a sensitive probe of ice mixing in the laboratory and should thus enable diffusion measurements with higher precision than has been previously possible.

  2. Novel Co{sub 3}O{sub 4} porous polyhedrons derived from metal–organic framework toward high performance for electrochemical energy devices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Youcun, E-mail: chenyc@aqtc.edu.cn [Anqing Normal College, School of Chemistry and Chemical Engineering, Anqing 246011 (China); Hu, Lin [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-07-15

    Co{sub 3}O{sub 4} polyhedrons with porous structure have been synthesized simply by annealing Prussian blue analogue (PBA) Co{sub 3}[Co(CN){sub 6}]{sub 2} polyhedrons at 400 °C in air. The product was characterized by a series of techniques, such as X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM), High-resolution TEM (HRTEM), X-ray Photoelectron Spectroscopy (XPS), and Brunauer–Emmett–Teller (BET) gas adsorption. Interestingly, when evaluated as an anode material for lithium-ion batteries (LIBs), the Co{sub 3}O{sub 4} porous polyhedrons manifested high reversible capacity (about 1200 mAh g{sup −1} at 50 mA g{sup −1}) and excellent cycling performance. Moreover, they also exhibited a high specific capacitance of 110 Fg{sup −1} when used as an electrode in the supercapacitor. It is suggested that the special morphology and porous nanostructure lead to the promising electrochemical properties. - Graphical abstract: Novel and complicated mesoporous architectures of Co{sub 3}O{sub 4} have been fabricated by thermal decomposition of Prussian Blue Analog (PBA) Co{sub 3}[Co(CN){sub 6}]{sub 2} polyhedrons which obtained at the room temperature. When Co{sub 3}O{sub 4} product was evaluated for Li-ion batteries (LIBs), they exhibited high reversible capacity of 1000 mAh g{sup −1} with excellent cycle life because of the hollow/porous structure. Display Omitted.

  3. Optimization of L1{sub 0} FePt/Fe{sub 45}Co{sub 55} thin films for rare earth free permanent magnet applications

    Energy Technology Data Exchange (ETDEWEB)

    Giannopoulos, G., E-mail: g.giannopoulos@inn.demokritos.gr; Psycharis, V.; Niarchos, D. [INN, NCSR Demokritos, Athens 15310 (Greece); Reichel, L. [IFW Dresden, P.O. Box 270116, 01171 Dresden (Germany); TU Dresden, Institute for Materials Science, 01062 Dresden (Germany); Markou, A.; Panagiotopoulos, I. [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece); Damm, C.; Fähler, S. [IFW Dresden, P.O. Box 270116, 01171 Dresden (Germany); Khan, Imran; Hong, Jisang [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2015-06-14

    The magnetic properties of magnetron sputtered bilayers consisting of Fe{sub 45}Co{sub 55} ultrathin layers on top of L1{sub 0} FePt films epitaxially grown on MgO substrates are studied in view of their possible application as rare earth free permanent magnets. It is found that FePt layers induce a tetragonal distortion to the Fe-Co layers which leads to increased anisotropy. This allows to take advantage of the Fe-Co high magnetic moment with less significant loss of the coercivity compared to a typical hard/soft exchange spring system. A maximum energy product approaching 50 MGOe is obtained for a FePt(7 ML)/FeCo/(5 ML) sample. The results are in accordance with first-principles computational methods, which predict that even higher energy products are possible for micromagnetically optimized microstructures.

  4. Scale-Free Networks and Commercial Air Carrier Transportation in the United States

    Science.gov (United States)

    Conway, Sheila R.

    2004-01-01

    Network science, or the art of describing system structure, may be useful for the analysis and control of large, complex systems. For example, networks exhibiting scale-free structure have been found to be particularly well suited to deal with environmental uncertainty and large demand growth. The National Airspace System may be, at least in part, a scalable network. In fact, the hub-and-spoke structure of the commercial segment of the NAS is an often-cited example of an existing scale-free network After reviewing the nature and attributes of scale-free networks, this assertion is put to the test: is commercial air carrier transportation in the United States well explained by this model? If so, are the positive attributes of these networks, e.g. those of efficiency, flexibility and robustness, fully realized, or could we effect substantial improvement? This paper first outlines attributes of various network types, then looks more closely at the common carrier air transportation network from perspectives of the traveler, the airlines, and Air Traffic Control (ATC). Network models are applied within each paradigm, including discussion of implied strengths and weaknesses of each model. Finally, known limitations of scalable networks are discussed. With an eye towards NAS operations, utilizing the strengths and avoiding the weaknesses of scale-free networks are addressed.

  5. Comparison of crop yield sensitivity to ozone between open-top chamber and free-air experiments.

    Science.gov (United States)

    Feng, Zhaozhong; Uddling, Johan; Tang, Haoye; Zhu, Jianguo; Kobayashi, Kazuhiko

    2018-02-02

    Assessments of the impacts of ozone (O 3 ) on regional and global food production are currently based on results from experiments using open-top chambers (OTCs). However, there are concerns that these impact estimates might be biased due to the environmental artifacts imposed by this enclosure system. In this study, we collated O 3 exposure and yield data for three major crop species-wheat, rice, and soybean-for which O 3 experiments have been conducted with OTCs as well as the ecologically more realistic free-air O 3 elevation (O 3 -FACE) exposure system; both within the same cultivation region and country. For all three crops, we found that the sensitivity of crop yield to the O 3 metric AOT40 (accumulated hourly O 3 exposure above a cut-off threshold concentration of 40 ppb) significantly differed between OTC and O 3 -FACE experiments. In wheat and rice, O 3 sensitivity was higher in O 3 -FACE than OTC experiments, while the opposite was the case for soybean. In all three crops, these differences could be linked to factors influencing stomatal conductance (manipulation of water inputs, passive chamber warming, and cultivar differences in gas exchange). Our study thus highlights the importance of accounting for factors that control stomatal O 3 flux when applying experimental data to assess O 3 impacts on crops at large spatial scales. © 2018 John Wiley & Sons Ltd.

  6. Decontamination of Metal Ions in Soil by Supercritical CO{sub 2} Extraction with Catecholamine Ligand

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jihye; Kim, Hakwon; Park, Kwangheon [Kyunghee University, Yongin (Korea, Republic of)

    2015-10-15

    The role of fuel cladding and reactor vessels is to help prevent the leakage of radioactive materials, including the fission products. However, if these shielding materials are damaged by a severe disaster such as the Fukushima Accident, radioactive materials could leak outside of a power plant site. Indeed, after the Fukushima Accident, radioactive materials have been detected in air and water samples. The air and water pollution lead to soil pollution, which is particularly difficult to decontaminate, as soil pollution has several types that vary according to the characteristics of a pollutant or its area. The existing decontamination methods generate a secondary waste owing to use of chemical toxicity solvents. It is also disadvantageous due to the additional cost of handling them. Therefore, new effective decontamination methods that reduce the use of toxicity solvents are necessary. For example, using supercritical CO{sub 2} has been studied as a new decontamination method. This study examines the method of decontaminating metallic ions inside of the soil using supercritical CO{sub 2} and a catecholamine compound. This study examined the effects of extracting metallic ions inside the soil using supercritical CO{sub 2} and catecholamine as the ligand. Based on these results, it is evident that when only the extraction agent was used, there was no extraction effect and that only when the ligand, co-ligand, and additive were used together was there an extraction effect. Following this, the optimal extraction-agent ratio was confirmed using varying amounts of extraction agents. The most effective extraction ratio of ligand to co-ligand was 1:2 in E-9 when 0.3 ml of H{sub 2}O were added.

  7. A multiple stage approach to mitigate the risks of telecommunication equipment under free air cooling conditions

    International Nuclear Information System (INIS)

    Dai Jun; Das, Diganta; Pecht, Michael

    2012-01-01

    Highlights: ► Analyze the challenges posed by free air cooling (FAC). ► Present a multi-stage process to mitigate the risks of FAC. ► Propose a prognostics-based method to mitigate risks in data centers in operation. ► Present a case study to show the prognostics-based method implementation. - Abstract: The telecommunication industry is concerned about the energy costs of its operating infrastructure and the associated greenhouse gas emissions. At present, more than half of the total energy consumption of data centers is devoted to the power and cooling infrastructure that supports electronic equipment. One method of reducing energy consumption is an approach called “free air cooling,” where ambient air is used to cool the equipment directly, thereby reducing the energy consumed in cooling and conditioning the air. For example, Intel demonstrated free air cooling in a 10-megawatt (MW) data center, showing a reduction in energy use and savings of US$2.87 million annually. However, the impacts of this approach on the performance and reliability of telecommunication equipment need to be identified. The implementation of free air cooling changes the operating environment, including temperature and humidity, which may have a significant impact on the performance and reliability of telecom equipment. This paper discusses the challenges posed by free air cooling and presents a multi-stage process for evaluating and mitigating the potential risks arising from this new operating environment.

  8. Soil and water warming accelerates phenology and down-regulation of leaf photosynthesis of rice plants grown under free-air CO2 enrichment (FACE).

    Science.gov (United States)

    Adachi, Minaco; Hasegawa, Toshihiro; Fukayama, Hiroshi; Tokida, Takeshi; Sakai, Hidemitsu; Matsunami, Toshinori; Nakamura, Hirofumi; Sameshima, Ryoji; Okada, Masumi

    2014-02-01

    To enable prediction of future rice production in a changing climate, we need to understand the interactive effects of temperature and elevated [CO2] (E[CO2]). We therefore examined if the effect of E[CO2] on the light-saturated leaf photosynthetic rate (Asat) was affected by soil and water temperature (NT, normal; ET, elevated) under open-field conditions at the rice free-air CO2 enrichment (FACE) facility in Shizukuishi, Japan, in 2007 and 2008. Season-long E[CO2] (+200 µmol mol(-1)) increased Asat by 26%, when averaged over two years, temperature regimes and growth stages. The effect of ET (+2°C) on Asat was not significant at active tillering and heading, but became negative and significant at mid-grain filling; Asat in E[CO2]-ET was higher than in ambient [CO2] (A[CO2])-NT by only 4%. Photosynthetic down-regulation at E[CO2] also became apparent at mid-grain filling; Asat compared at the same [CO2] in the leaf cuvette was significantly lower in plants grown in E[CO2] than in those grown in A[CO2]. The additive effects of E[CO2] and ET decreased Asat by 23% compared with that of A[CO2]-NT plants. Although total crop nitrogen (N) uptake was increased by ET, N allocation to the leaves and to Rubisco was reduced under ET and E[CO2] at mid-grain filling, which resulted in a significant decrease (32%) in the maximum rate of ribulose-1,5-bisphosphate carboxylation on a leaf area basis. Because the change in N allocation was associated with the accelerated phenology in E[CO2]-ET plants, we conclude that soil and water warming accelerates photosynthetic down-regulation at E[CO2].

  9. Rural Teachers' Views: What Are Gender-Based Challenges Facing Free Primary Education in Lesotho?

    Science.gov (United States)

    Morojele, Pholoho

    2013-01-01

    This paper gives prominence to rural teachers' accounts of gender-based challenges facing Free Primary Education in Lesotho. It draws on feminist interpretations of social constructionism to discuss factors within the Basotho communities that affect gender equality in the schools. The inductive analysis offered makes use of the data generated from…

  10. Coral reefs - sources or sinks of atmospheric CO[sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Ware, J R; Smith, S V; Reakakudla, M L [Hawaii University, Honolulu, HI (USA). Dept. of Oceanography

    1992-09-01

    Because the precipitation of calcium carbonate results in the sequestering of carbon, it frequently has been thought that coral reefs function as sinks of global atmospheric CO[sub 2]. However, the precipitation of calcium carbonate is accompanied by a shift of pH that results in the release of CO[sub 2]. This release of CO[sub 2] is less in buffered sea water than fresh water systems; nevertheless, coral reefs are sources, not sinks, of atmospheric carbon. Using estimated rates of coral reef carbonate production, we compute that coral reefs release 0.02 to 0.08 Gt C as CO[sub 2] annually. This is approximately 0.4% to 1.4% of the current anthropogenic CO[sub 2] production due to fossil fuel combustion.

  11. Abatement of CO{sub 2} emissions: IFP's solutions; Reduction des emissions de CO{sub 2}: les solutions IFP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    In a context of increasing energy consumption and world economic growth, the fight against greenhouse gases has become a major technological challenge for the coming years. The capture and sequestration of CO{sub 2} in the underground is a promising solution in terms of environmental impact, especially in places and sectors characterized by a strong concentration of CO{sub 2} emissions (power generation plants, big industries). However, such a solution requires important R and D efforts to reduce the costs and warrant the long-term reliability of the storage. The French institute of petroleum (IFP) will play an important role in the implementation of the geological sequestration. This press kit comprises 7 documents: a press release from November 4, 2003; a press conference with a series of slides presenting the stakes, solutions and actions proposed by the IFP in collaboration with several foreign partners (CO{sub 2} capture, storage in depleted hydrocarbon deposits, saline aquifers or abandoned coal seams, storage potential, reduction of costs); a summary of the stakes and solutions for CO{sub 2} sequestration in deep underground; a similar document presented at the Panorama 2003 colloquium; the CO{sub 2} constraint in France and in Europe (international consensus on climatic change, Kyoto protocol, European directive about tradable carbon permits, voluntary commitment of companies in the fight against greenhouse effects (AERES)); the European project Castor (CO{sub 2} from capture to storage); and the IFP brochure 'innovating for a sustainable development in the energy domain'. (J.S.)

  12. Climate change scenarios in Mexico from models results under the assumption of a doubling in the atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, V.M.; Villanueva, E.E.; Garduno, R.; Adem, J. [Centro de Ciencias de la Atmosfera, Mexico (Mexico)

    1995-12-31

    General circulation models (GCMs) and energy balance models (EBMs) are the best way to simulate the complex large-scale dynamic and thermodynamic processes in the atmosphere. These models have been used to estimate the global warming due to an increase of atmospheric CO{sub 2}. In Japan Ohta with coworkers has developed a physical model based on the conservation of thermal energy applied to pounded shallow water, to compute the change in the water temperature, using the atmospheric warming and the precipitation due to the increase in the atmospheric CO{sub 2} computed by the GISS-GCM. In this work, a method similar to the Ohta`s one is used for computing the change in ground temperature, soil moisture, evaporation, runoff and dryness index in eleven hydrological zones, using in this case the surface air temperature and precipitation due to CO{sub 2} doubling, computed by the GFDLR30-GCM and the version of the Adem thermodynamic climate model (CTM-EBM), which contains the three feedbacks (cryosphere, clouds and water vapor), and does not include water vapor in the CO{sub 2} atmospheric spectral band (12-19{mu})

  13. Climate change scenarios in Mexico from models results under the assumption of a doubling in the atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, V M; Villanueva, E E; Garduno, R; Adem, J [Centro de Ciencias de la Atmosfera, Mexico (Mexico)

    1996-12-31

    General circulation models (GCMs) and energy balance models (EBMs) are the best way to simulate the complex large-scale dynamic and thermodynamic processes in the atmosphere. These models have been used to estimate the global warming due to an increase of atmospheric CO{sub 2}. In Japan Ohta with coworkers has developed a physical model based on the conservation of thermal energy applied to pounded shallow water, to compute the change in the water temperature, using the atmospheric warming and the precipitation due to the increase in the atmospheric CO{sub 2} computed by the GISS-GCM. In this work, a method similar to the Ohta`s one is used for computing the change in ground temperature, soil moisture, evaporation, runoff and dryness index in eleven hydrological zones, using in this case the surface air temperature and precipitation due to CO{sub 2} doubling, computed by the GFDLR30-GCM and the version of the Adem thermodynamic climate model (CTM-EBM), which contains the three feedbacks (cryosphere, clouds and water vapor), and does not include water vapor in the CO{sub 2} atmospheric spectral band (12-19{mu})

  14. Open-air sprays for capturing and controlling airborne float coal dust on longwall faces

    Science.gov (United States)

    Beck, T.W.; Seaman, C.E.; Shahan, M.R.; Mischler, S.E.

    2018-01-01

    Float dust deposits in coal mine return airways pose a risk in the event of a methane ignition. Controlling airborne dust prior to deposition in the return would make current rock dusting practices more effective and reduce the risk of coal-dust-fueled explosions. The goal of this U.S. National Institute for Occupational Safety and Health study is to determine the potential of open-air water sprays to reduce concentrations of airborne float coal dust, smaller than 75 µm in diameter, in longwall face airstreams. This study evaluated unconfined water sprays in a featureless tunnel ventilated at a typical longwall face velocity of 3.6 m/s (700 fpm). Experiments were conducted for two nozzle orientations and two water pressures for hollow cone, full cone, flat fan, air atomizing and hydraulic atomizing spray nozzles. Gravimetric samples show that airborne float dust removal efficiencies averaged 19.6 percent for all sprays under all conditions. The results indicate that the preferred spray nozzle should be operated at high fluid pressures to produce smaller droplets and move more air. These findings agree with past respirable dust control research, providing guidance on spray selection and spray array design in ongoing efforts to control airborne float dust over the entire longwall ventilated opening. PMID:29348700

  15. Open-air sprays for capturing and controlling airborne float coal dust on longwall faces.

    Science.gov (United States)

    Beck, T W; Seaman, C E; Shahan, M R; Mischler, S E

    2018-01-01

    Float dust deposits in coal mine return airways pose a risk in the event of a methane ignition. Controlling airborne dust prior to deposition in the return would make current rock dusting practices more effective and reduce the risk of coal-dust-fueled explosions. The goal of this U.S. National Institute for Occupational Safety and Health study is to determine the potential of open-air water sprays to reduce concentrations of airborne float coal dust, smaller than 75 µm in diameter, in longwall face airstreams. This study evaluated unconfined water sprays in a featureless tunnel ventilated at a typical longwall face velocity of 3.6 m/s (700 fpm). Experiments were conducted for two nozzle orientations and two water pressures for hollow cone, full cone, flat fan, air atomizing and hydraulic atomizing spray nozzles. Gravimetric samples show that airborne float dust removal efficiencies averaged 19.6 percent for all sprays under all conditions. The results indicate that the preferred spray nozzle should be operated at high fluid pressures to produce smaller droplets and move more air. These findings agree with past respirable dust control research, providing guidance on spray selection and spray array design in ongoing efforts to control airborne float dust over the entire longwall ventilated opening.

  16. Radiocarbon method in environmental monitoring of CO{sub 2} emission

    Energy Technology Data Exchange (ETDEWEB)

    Rakowski, Andrzej Z., E-mail: arakowski@leibniz.uni-kiel.de [Leibniz Laboratory for Radiometric Dating and Isotope Research, University of Kiel, Max Eyth Str. 11-13, 24118 Kiel (Germany); Radiocarbon Laboratory, Institute of Physics, Silesian University of Technology, ul. Boleslawa Krzywoustego 2, 44-100 Gliwice (Poland); Nadeau, Marie-Josee [Leibniz Laboratory for Radiometric Dating and Isotope Research, University of Kiel, Max Eyth Str. 11-13, 24118 Kiel (Germany); Nakamura, Toshio [Center for Chronological Research, Nagoya University, Furocho, Chikusa-ku, 64-8602 Nagoya (Japan); Pazdur, Anna; Pawelczyk, Slawomira; Piotrowska, Natalia [Radiocarbon Laboratory, Institute of Physics, Silesian University of Technology, ul. Boleslawa Krzywoustego 2, 44-100 Gliwice (Poland)

    2013-01-15

    New results of carbon isotopic composition from tree rings have been analyzed. {Delta}{sup 14}C and {delta}{sup 13}C data, representing the isotopic composition of carbon in 'clean air', were obtained from annual rings of a pine tree (Pinus sylvestris) taken in the Niepolomice area, 25 km east Krakow, Poland. All samples were processed to extract {alpha}-cellulose, and the radiocarbon concentration in each annual ring was measured using AMS at University of Nagoya. Stable isotopic composition of carbon was determined using isotope ratio mass spectrometry. The dataset covers the growth period between 1960 and 2003. The average difference between radiocarbon concentrations in Niepolomice and the North Hemisphere zone 1 (NH zone 1) for the period between 1960 and 1999 is 3.5 {+-} 1.6 Per-Mille-Sign . These data are compared with previously presented results from the city of Krakow, where a local decrease in {sup 14}C concentration was observed due to local CO{sub 2} emission from fossil fuel use. The differences in observed {sup 14}C concentrations were used to estimate a magnitude of the local Suess effect in Krakow. Based on mass balance equations for CO{sub 2}{sup 14}C concentrations, it was possible to calculate the CO{sub 2} concentration associated with fossil fuel emission (C{sub foss}) into the atmosphere. The highest values of C{sub foss} were recorded in the years 1986 (11.9 {+-} 1.4 ppm V) and 1983 (8.1 {+-} 1.3 ppm V), while the lowest value of 0.6 {+-} 1.8 ppm V was recorded in 2001.

  17. Effect of atmospheric CO{sub 2} on surface segregation and phase formation in La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3−δ} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang [Division of Materials Science and Engineering, Boston University, Brookline, MA 02446 (United States); Luo, Heng [Department of Mechanical Engineering, Boston University, Boston, MA 02215 (United States); Cetin, Deniz [Division of Materials Science and Engineering, Boston University, Brookline, MA 02446 (United States); Lin, Xi [Division of Materials Science and Engineering, Boston University, Brookline, MA 02446 (United States); Department of Mechanical Engineering, Boston University, Boston, MA 02215 (United States); Ludwig, Karl [Division of Materials Science and Engineering, Boston University, Brookline, MA 02446 (United States); Department of Physics, Boston University, Boston, MA 02215 (United States); Pal, Uday; Gopalan, Srikanth [Division of Materials Science and Engineering, Boston University, Brookline, MA 02446 (United States); Department of Mechanical Engineering, Boston University, Boston, MA 02215 (United States); Basu, Soumendra, E-mail: basu@bu.edu [Division of Materials Science and Engineering, Boston University, Brookline, MA 02446 (United States); Department of Mechanical Engineering, Boston University, Boston, MA 02215 (United States)

    2014-12-30

    Highlights: • LSCF exhibits Sr surface segregation on high-temperature annealing. • The presence of atmospheric CO{sub 2} enhances the kinetics of Sr surface segregation. • At high-CO{sub 2} partial pressures, there is a significant coverage of the surface by Sr-rich phases. • The increase in kinetics is attributed to increased thermodynamic driving force for SrCO{sub 3} formation. - Abstract: The effects of atmospheric CO{sub 2} on surface segregation and phase formation in La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3−δ} (LSCF-6428) were investigated. (0 0 1)-oriented LSCF-6428 thin films were deposited on lattice matched (1 1 0)-oriented NdGaO{sub 3} (NGO) substrates by pulsed laser deposition (PLD). Using the synchrotron technique of total reflection X-ray fluorescence (TXRF), it was found that the kinetics of Sr surface segregation was enhanced when annealing at 800 °C in a high-CO{sub 2} partial pressure, as compared to a similar anneal in a CO{sub 2}-free atmosphere, with the oxygen partial pressure being constant in both cases. Hard X-ray photoelectron spectroscopy (HAXPES) measurements showed that the contribution of the surface carbonate to surface oxide phases increased significantly for the sample annealed in the high-CO{sub 2} atmosphere. Atomic force microscopy (AFM) studies showed enhanced surface phase formation during the high-CO{sub 2} partial pressure anneal. Density functional theory (DFT) calculations provide a thermodynamic basis for the enhanced kinetics of surface segregation in the presence of atmospheric CO{sub 2}.

  18. Geochemical alteration of wellbore cement by CO>2 or CO>2+H 2 S reaction during long-term carbon storage: Original Research Article: Geochemical alteration of wellbore cement by CO>2

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong [Pacific Northwest National Laboratory, Richland WA USA; Rod, Kenton A. [Pacific Northwest National Laboratory, Richland WA USA; Jung, Hun Bok [New Jersey City University, Jersey City NJ USA; Brown, Christopher F. [Pacific Northwest National Laboratory, Richland WA USA

    2016-03-22

    Cement samples were reacted with CO>2-saturated groundwater, with or without added H2S (1 wt.%), at 50°C and 10 MPa for up to 13 months (CO>2 only) or for up to 3.5 months (CO>2 + H2S) under static conditions. After the reaction, X-ray computed tomography images revealed that calcium carbonate precipitation (CaCO3) occurred extensively within the fractures in the cement matrix, but only partially along fractures at the cement-basalt interface. Exposure of a fractured cement sample to CO2-saturated groundwater (50°C and 10 MPa) over a period of 13 months demonstrated progressive healing of cement fractures by CaCO3(s) precipitation. After reaction with CO>2 + H2S-saturated groundwater, CaCO3 (s) precipitation also occurred more extensively within the cement fracture than along the cement-basalt caprock interfaces. X-ray diffraction analysis showed that major cement carbonation products of the CO>2 + H2S-saturated groundwater were calcite, aragonite, and vaterite, all consistent with cement carbonation by CO>2-saturated groundwater. While pyrite is thermodynamically favored to form, due to the low H2S concentration it was not identified by XRD in this study. The cement alteration rate into neat Portland cement columns by CO>2-saturated groundwater was similar at ~0.02 mm/d, regardless of the cement-curing pressure and temperature (P-T) conditions, or the presence of H2S in the brine. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO>2- or CO>2 + H2S-saturated groundwater, whereas fractures along the cement-caprock interface are likely to remain open and vulnerable to the leakage of CO>2.

  19. CO/sub 2/ carbon cycle and climate interactions

    Energy Technology Data Exchange (ETDEWEB)

    Grassl, H; Maier-Reimer, E; Degens, E T; Kempe, S; Spitzy, A

    1984-03-01

    Past and expected emissions of anthropogenic CO/sub 2/ stimulate carbon cycle and climate research. Prognoses of future CO/sub 2/ levels depend on energy scenarios and on the reaction of the biosphere and hydrosphere to elevated atmospheric CO/sub 2/ concentrations. The reaction of the reservoirs vegetation, freshwater and oceans to disturbances of the carbon cycle is reviewed. For the oceans first results of a simple carbon cycle model implanted in a three-dimensional general circulation model are presented. This model allows experiments not possible with previous box models.

  20. Effects of free-air CO2 enrichment on adventitious root development of rice under low and normal soil nitrogen levels

    Directory of Open Access Journals (Sweden)

    Chengming Sun

    2014-08-01

    Full Text Available Free air CO2 enrichment (FACE and nitrogen (N have marked effects on rice root growth, and numerical simulation can explain these effects. To further define the effects of FACE on root growth of rice, an experiment was performed, using the hybrid indica cultivar Xianyou 63. The effects of increasing atmospheric CO2 concentration [CO2], 200 μmol mol− 1 higher than ambient, on the growth of rice adventitious roots were evaluated, with two levels of N: low (LN, 125 kg ha− 1 and normal (NN, 250 kg ha− 1. The results showed a significant increase in both adventitious root number (ARN and adventitious root length (ARL under FACE treatment. The application of nitrogen also increased ARN and ARL, but these increases were smaller than that under FACE treatment. On the basis of the FACE experiment, numerical models for rice adventitious root number and length were constructed with time as the driving factor. The models illustrated the dynamic development of rice adventitious root number and length after transplanting, regulated either by atmospheric [CO2] or by N application. The simulation result was supported by statistical tests comparing experimental data from different years, and the model yields realistic predictions of root growth. These results suggest that the models have strong predictive potential under conditions of atmospheric [CO2] rises in the future.

  1. Capture and geological storage of CO{sub 2}. Innovation, industrial stakes and realizations; Captage et stockage geologique du CO{sub 2}. Innovation, enjeux industriels et realisations

    Energy Technology Data Exchange (ETDEWEB)

    Lavergne, R.; Podkanski, J.; Rohner, H.; Otter, N.; Swift, J.; Dance, T.; Vesseron, Ph.; Reich, J.P.; Reynen, B.; Wright, L.; Marliave, L. de; Stromberg, L.; Aimard, N.; Wendel, H.; Erdol, E.; Dino, R.; Renzenbrink, W.; Birat, J.P.; Czernichowski-Lauriol, I.; Christensen, N.P.; Le Thiez, P.; Paelinck, Ph.; David, M.; Pappalardo, M.; Moisan, F.; Marston, Ph.; Law, M.; Zakkour, P.; Singer, St.; Philippe, Th.; Philippe, Th

    2007-07-01

    The awareness of the international community and the convergence of scientific data about the global warming confirm the urgency of implementing greenhouse gases abatement technologies at the world scale. The growth of world energy demand will not allow to rapidly get rid of the use of fossil fuels which are the main sources of greenhouse gases. Therefore, the capture and disposal of CO{sub 2} is a promising way to conciliate the use of fossil fuels and the abatement of pollutants responsible for the global warming. The economical and industrial stakes of this technique are enormous. In front of the success of a first international colloquium on this topic held in Paris in 2005, the IFP, the BRGM and the Ademe have jointly organized a second colloquium in October 2007, in particular to present the first experience feedbacks of several pilot experiments all over the world. This document gathers the transparencies of 27 presentations given at this colloquium and dealing with: the 4. IPCC report on the stakes of CO{sub 2} capture and storage; the factor 4: how to organize the French economy transition from now to 2050; the technology perspectives, scenarios and strategies up to 2050; the European technological platform on 'zero-emission thermal plants'; the CO{sub 2} capture and storage road-map in the USA; research, development and implementation of CO{sub 2} capture and storage in Australia; the Canadian experience; ten years of CO{sub 2} capture and storage in Norway; the In Salah operations (Algeria); CO{sub 2} capture and storage: from vision to realisation; the oxi-combustion and storage pilot unit of Lacq (France); the Altmark gas field (Germany): analysis of CO{sub 2} capture and storage potentialities in the framework of a gas assisted recovery project; oil assisted recovery and CO{sub 2} related storage activities in Brazil: the Buracica and Miranga fields experience; carbon capture and storage, an option for coal power generation; steel

  2. Capture and geological storage of CO{sub 2}. Innovation, industrial stakes and realizations; Captage et stockage geologique du CO{sub 2}. Innovation, enjeux industriels et realisations

    Energy Technology Data Exchange (ETDEWEB)

    Lavergne, R; Podkanski, J; Rohner, H; Otter, N; Swift, J; Dance, T; Vesseron, Ph; Reich, J P; Reynen, B; Wright, L; Marliave, L de; Stromberg, L; Aimard, N; Wendel, H; Erdol, E; Dino, R; Renzenbrink, W; Birat, J P; Czernichowski-Lauriol, I; Christensen, N P; Le Thiez, P; Paelinck, Ph; David, M; Pappalardo, M; Moisan, F; Marston, Ph; Law, M; Zakkour, P; Singer, St; Philippe, Th; Philippe, Th

    2007-07-01

    The awareness of the international community and the convergence of scientific data about the global warming confirm the urgency of implementing greenhouse gases abatement technologies at the world scale. The growth of world energy demand will not allow to rapidly get rid of the use of fossil fuels which are the main sources of greenhouse gases. Therefore, the capture and disposal of CO{sub 2} is a promising way to conciliate the use of fossil fuels and the abatement of pollutants responsible for the global warming. The economical and industrial stakes of this technique are enormous. In front of the success of a first international colloquium on this topic held in Paris in 2005, the IFP, the BRGM and the Ademe have jointly organized a second colloquium in October 2007, in particular to present the first experience feedbacks of several pilot experiments all over the world. This document gathers the transparencies of 27 presentations given at this colloquium and dealing with: the 4. IPCC report on the stakes of CO{sub 2} capture and storage; the factor 4: how to organize the French economy transition from now to 2050; the technology perspectives, scenarios and strategies up to 2050; the European technological platform on 'zero-emission thermal plants'; the CO{sub 2} capture and storage road-map in the USA; research, development and implementation of CO{sub 2} capture and storage in Australia; the Canadian experience; ten years of CO{sub 2} capture and storage in Norway; the In Salah operations (Algeria); CO{sub 2} capture and storage: from vision to realisation; the oxi-combustion and storage pilot unit of Lacq (France); the Altmark gas field (Germany): analysis of CO{sub 2} capture and storage potentialities in the framework of a gas assisted recovery project; oil assisted recovery and CO{sub 2} related storage activities in Brazil: the Buracica and Miranga fields experience; carbon capture and storage, an option for coal power generation; steel-making industries

  3. 1-deg x 1-deg Terrestrial Mean Free-Air Anomalies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1x1 degree Terrestrial Mean Free-Air Gravity Anomaly and Geoid Undulations Data Base was compiled and developed by the Ohio State University. This data base was...

  4. 30-min x 30-min Terrestrial Mean Free-Air Anomalies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 30-min x 30-min Terrestrial Mean Free-Air Gravity Anomaly and Geoid Undulations Data Base was compiled and developed by the Ohio State University. This data base...

  5. Surgical Face Masks Worn by Patients with Multidrug-Resistant Tuberculosis

    Science.gov (United States)

    Mphahlele, Matsie; Stoltz, Anton; Venter, Kobus; Mathebula, Rirhandzu; Masotla, Thabiso; Lubbe, Willem; Pagano, Marcello; First, Melvin; Jensen, Paul A.; van der Walt, Martie; Nardell, Edward A.

    2012-01-01

    Rationale: Drug-resistant tuberculosis transmission in hospitals threatens staff and patient health. Surgical face masks used by patients with tuberculosis (TB) are believed to reduce transmission but have not been rigorously tested. Objectives: We sought to quantify the efficacy of surgical face masks when worn by patients with multidrug-resistant TB (MDR-TB). Methods: Over 3 months, 17 patients with pulmonary MDR-TB occupied an MDR-TB ward in South Africa and wore face masks on alternate days. Ward air was exhausted to two identical chambers, each housing 90 pathogen-free guinea pigs that breathed ward air either when patients wore surgical face masks (intervention group) or when patients did not wear masks (control group). Efficacy was based on differences in guinea pig infections in each chamber. Measurements and Main Results: Sixty-nine of 90 control guinea pigs (76.6%; 95% confidence interval [CI], 68–85%) became infected, compared with 36 of 90 intervention guinea pigs (40%; 95% CI, 31–51%), representing a 56% (95% CI, 33–70.5%) decreased risk of TB transmission when patients used masks. Conclusions: Surgical face masks on patients with MDR-TB significantly reduced transmission and offer an adjunct measure for reducing TB transmission from infectious patients. PMID:22323300

  6. Calcium oxide doped sorbents for CO{sub 2} uptake in the presence of SO{sub 2} at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H.; Smirniotis, P.G. [University of Cincinnati, Cincinnati, OH (United States)

    2009-06-15

    There is an urgent need to understand sorbent tolerance for capturing carbon dioxide (CO{sub 2}) in the presence of sulfur dioxide (SO{sub 2}). Sulfur oxide is emitted together with CO{sub 2} from various combustion systems and can cause severe air pollution. In this study, the behavior of different dopants on the performance of calcium oxide (CaO) sorbent for capturing CO{sub 2} in the presence of SO{sub 2} was investigated. Three main sets of experiments were carried out to study carbonation and sulfation both separately and simultaneously using a thermogravimetric analyzer (TGA). The results show that SO{sub 2} reduced the capability of the sorbents for capturing CO{sub 2} because of the competition between carbonation and sulfation reactions. Formation of calcium carbonate (CaCO{sub 3}) and calcium sulfate (CaSO{sub 4}) took place upon carbonation and sulfation, respectively. Our TGA and X-ray photoelectron spectroscopy (XPS) results indicate that the carbonation is totally reversible, while this is not the case with the sulfation. The permanent residual weight gained by the sorbents during the course of sulfation is attributed to the irreversible formation of sulfate species, which is confirmed by both the TGA and XPS results. The Ce promoted CaO sorbent exhibits the best performance for CO{sub 2} capture and is the most SO{sub 2} tolerant sorbent. On the other hand, the Mn doped dopant has the strongest affinity for SO{sub 2}.

  7. Microwave-assisted nitric acid treatment of sepiolite and functionalization with polyethylenimine applied to CO{sub 2} capture and CO{sub 2}/N{sub 2} separation

    Energy Technology Data Exchange (ETDEWEB)

    Vilarrasa-García, E., E-mail: enrique@gpsa.ufc.br [Department of Chemical Engineering, Universidade Federal do Ceará, Campus do Pici, bl. 709, 60455-760 Fortaleza (Brazil); Cecilia, J.A., E-mail: jacecilia@uma.es [Department of Inorganic Chemistry, Cristallography and Mineralogy, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga (Spain); Bastos-Neto, M., E-mail: mbn@ufc.br [Department of Chemical Engineering, Universidade Federal do Ceará, Campus do Pici, bl. 709, 60455-760 Fortaleza (Brazil); Cavalcante, C.L., E-mail: celio@gpsa.ufc.br [Department of Chemical Engineering, Universidade Federal do Ceará, Campus do Pici, bl. 709, 60455-760 Fortaleza (Brazil); Azevedo, D.C.S., E-mail: diana@gpsa.ufc.br [Department of Chemical Engineering, Universidade Federal do Ceará, Campus do Pici, bl. 709, 60455-760 Fortaleza (Brazil); Rodríguez-Castellón, E., E-mail: castellon@uma.es [Department of Inorganic Chemistry, Cristallography and Mineralogy, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga (Spain)

    2017-07-15

    Highlights: • Textural properties of sepiolite can be enhanced by microwave assisted acid treatment. • CO{sub 2} uptake of sepiolite improved significantly after amine modification. • The highest CO{sub 2}/N{sub 2} selectivity is 440 mol CO{sub 2}/mol N{sub 2} at 338 K and low pressures. - Abstract: Sepiolite was treated in HNO{sub 3} solutions with the assistance of microwave radiation. This treatment caused the progressive depletion of Mg{sup 2+}, the gradual degradation of the sepiolite structure and the formation of an amorphous silica phase, which contributes to a noticeable increase of the surface area. The use of microwaves during acid treatment, after few minutes, led to materials with similar S{sub BET} to those obtained after 48 h with conventional heating methods. The influence of mineralogical impurities, crystallinity and chemical composition in the reactivity of sepiolite to this treatment was also studied. The obtained materials were impregnated with polyethylenimine and assessed for CO{sub 2} capture and CO{sub 2}/N{sub 2} selectivity at different temperatures. Experimental equilibrium data were fitted to Langmuir and Sips models. The adsorption data revealed that sepiolite can be an interesting adsorbent for CO{sub 2} capture, achieving a capacity of 1.70 mmol g{sup −1} at 338 K and 1 bar, providing a high CO{sub 2}/N{sub 2} selectivity (440 mol CO{sub 2}/mol N{sub 2}).

  8. Favourable Formations for CO{sub 2} Storage in the Almazan Basin; Formaciones Favorables para el Almacenamiento de CO{sub 2} en la Cuenca de Almazan

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Rivas, C.; Lomba Falcon, L.

    2008-04-10

    Geological storage of carbon dioxide is one of the technological options that have been considered nowadays for global climate change mitigation. Underground CO{sub 2} storage requires the selection and identification of deep geological formations which must meet criteria for health and environmental safety in the middle-term of one thousand years. Deep permeable formations, depleted oil and gas fields, unminable coal seams and saline rocks are possible geological formations for CO{sub 2} storage. Some areas in our country have been selected to search potential CO{sub 2} reservoirs. Among these areas, sedimentary basins are highlighted because of their thick stratigraphic sequences and the availability of extensive geological data which are coming from fossil fuel exploration. In this report, the identification and selection of favourable geological formations in the Almazan basin is presented. A 3D simplified subsurface basin geological model that was based on a Geographic Information System is included as well. The report also includes suitable CO{sub 2} injection areas in the surface for the selected geological formations. Finally, a preliminary CO{sub 2} storage capacity estimation of a potential structural trap has been calculated, considering only physical CO{sub 2} trapping. This work has been undertaken in the framework of the Geological CO{sub 2} Storage Project which is within the Singular Strategic Project of the Ministry of Education and Science Generation, Capture and Storage advanced technologies of CO{sub 2}. (Author) 84 refs.

  9. Numerical analysis of capillary entrapment for effective CO{sub 2} aquifer storage

    Energy Technology Data Exchange (ETDEWEB)

    Uelker, B.; Pusch, G. [Technische Univ. Clausthal (Germany). Inst. fuer Erdoel- und Erdgastechnik; May, F. [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany)

    2007-09-13

    The success of underground CO{sub 2} sequestration projects relies on the ability of keeping CO{sub 2} immobilized. The risk of CO{sub 2} leakage into the atmosphere through faults, cap rock formations or wellbore must be evaluated for the long term safety of storage. In case of CO{sub 2} sequestration in a saline aquifer capillary trapping of CO{sub 2} is one of the essential mechanisms controlling the upward and lateral migration of CO{sub 2} plumes after the injection phase. Therefore, assessment of CO{sub 2} immobilization requires accurate modelling of multi phase flow performance. A generic reservoir model was created to examine the impact of the relative permeabilities and capillary forces on capillary trapping. This study reveals how the mechanism of capillary trapping is affected by varying the CO{sub 2} injection rate, hysteresis between drainage and imbibition processes and residual phase saturations. The leakage risk of injected CO{sub 2} in vertical and horizontal wells was also compared to identify the effective injection geometry. Vertical injection across the entire storage formation interval leads to extensive contact with cap rock and leakage through it. Horizontal wells located in the lower part of the formation both increase the aquifer utilization and eliminate contact with cap rock immediately. Thus horizontal wells can be an alternative to inject more CO{sub 2} and minimize leakage. (orig.)

  10. In-situ synthesis of Co{sub 3}O{sub 4}/graphite nanocomposite for high-performance supercapacitor electrode applications

    Energy Technology Data Exchange (ETDEWEB)

    M, Gopalakrishnan, E-mail: gopalkphy@gmail.com [Department of Physics, Vivekanandha College of Arts and Science for Women, Tiruchengode, Namakkal, 637205, Tamilnadu (India); G, Srikesh [Department of Chemistry, Material Electrochemistry Lab, Karunya University, Coimbatore 641114, Tamilnadu (India); A, Mohan [Department of Physics, Thin Film Laboratory, Karunya University, Coimbatore 641114, Tamilnadu (India); V, Arivazhagan [Department of Physics and Technology, University of Bergen, Bergen (Norway)

    2017-05-01

    Highlights: • High surface area, which governs the specific capacitance. • High chemical and thermal stability. • Co{sub 3}O{sub 4}/graphite nanocomposite electrode shows lower resistance. - Abstract: In this work, a low cost and pollution free in-situ synthesis of phase pure Co{sub 3}O{sub 4} nanoparticles and Co{sub 3}O{sub 4}/graphite nanocomposite have been successfully developed via co-precipitation method followed by the thermal treatment process. The prepared samples were characterized by powder X-ray diffraction, scanning electron microscope, high resolution transmission electron microscope, Fourier Transform Infrared Spectroscopy and electrochemical measurements. Electrochemical measurements such as cyclic voltammetry, galvanostatic charge–discharge, electrochemical impedance spectroscopy were carried out in 6 M KOH aqueous electrolytic solution. The results show the excellent maximum specific capacitive behavior of 239.5 F g{sup −1} for pure and 395.04 F g{sup −1} for Co{sub 3}O{sub 4}/graphite nanocomposite at a current density of 0.5 A g{sup −1}. This composite exhibits a good cyclic stability, with a small loss of 2.68% of maximum capacitance over a consecutive 1000 cycles. The investigation indicates that the prepared electrode material could be a potential and promising candidate for electrochemical supercapacitors.

  11. Experimental investigation of thermal comfort and air quality in an automobile cabin during the cooling period

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, M.; Akyol, S.M. [Uludag University, Department of Mechanical Engineering, Faculty of Engineering and Architecture, Bursa (Turkey)

    2012-08-15

    The air quality and thermal comfort strongly influenced by the heat and mass transfer take place together in an automobile cabin. In this study, it is aimed to investigate and assess the effects of air intake settings (recirculation and fresh air) on the thermal comfort, air quality satisfaction and energy usage during the cooling period of an automobile cabin. For this purpose, measurements (temperature, air velocity, CO{sub 2}) were performed at various locations inside the cabin. Furthermore, whole body and local responses of the human subjects were noted while skin temperatures were measured. A mathematical model was arranged in order to estimate CO{sub 2} concentration and energy usage inside the vehicle cabin and verified with experimental data. It is shown that CO{sub 2} level inside of the cabin can be greater than the threshold value recommended for the driving safety if two and more occupants exist in the car. It is also shown that an advanced climate control system may satisfy the requirements for the air quality and thermal comfort as well as to reduce the energy usage for the cooling of a vehicle cabin. (orig.)

  12. Practical guidebook about the market of CO{sub 2} emission quotas; Guide pratique du marche des quotas d'emission de CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Since January 1, 2005, the European directive about the trading of CO{sub 2} emission quotas foresees the allocation of CO{sub 2} emission quotas to the industrial sectors that generate huge amounts of greenhouse gases (energy generation, cement, glass, steel-making, mineral and paper industries). A system of trading of CO{sub 2} quotas has been implemented and allows the companies to exchange, sale or purchase quotas in order to be conformable with the volume of CO{sub 2} they have been authorized to release in the atmosphere. This guidebook is a vade mecum of the management of emission quotas. It explains the actions of the international community in favor of the fight against greenhouse emissions, the 3 flexibility mechanisms, the French environmental policy, the European system of fight against climatic change, the CO{sub 2} quotas system and its practical implementation. (J.S.)

  13. Influence of air-powder polishing on bond strength and surface-free energy of universal adhesive systems.

    Science.gov (United States)

    Tamura, Yukie; Takamizawa, Toshiki; Shimamura, Yutaka; Akiba, Shunsuke; Yabuki, Chiaki; Imai, Arisa; Tsujimoto, Akimasa; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2017-11-29

    The influences of air-powder polishing with glycine or sodium bicarbonate powders on shear bond strengths (SBS) and surface-free energies of universal adhesives were examined. Scotchbond Universal Adhesive (SU, 3M ESPE), G-Premio Bond (GP, GC), Adhese Universal (AU, Ivoclar Vivadent), and All-Bond Universal (AB, Bisco) were used in this study. Bovine dentin surfaces were air polished with glycine or sodium bicarbonate powders prior to the bonding procedure, and resin pastes were bonded to the dentin surface using universal adhesives. SBSs were determined after 24-h storage in distilled water at 37°C. Surface-free energy was then determined by measuring contact angles using three test liquids on dentin surfaces. Significantly lower SBSs were observed for dentin that was air-powder polished and surface-free energies were concomitantly lowered. This study indicated that air-powder polishing influences SBSs and surface-free energies. However, glycine powder produced smaller changes in these surface parameters than sodium bicarbonate.

  14. A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan

    2012-09-30

    The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

  15. Acute physiological impacts of CO{sub 2} ocean sequestration on marine animals

    Energy Technology Data Exchange (ETDEWEB)

    Ishimatsu, A.; Hayashi, M.; Lee, K.S.; Murata, K.; Kumagai, E. [Nagasaki Univ., Nagasaki (Japan). Marine Research Inst.; Kikkawa, T. [Marine Ecology Research Inst., Chiba (Japan). Central Laboratory; Kita, J. [Research Inst. of Innovative Technology for the Earth, Kyoto (Japan)

    2005-07-01

    The biological impacts of ocean carbon dioxide (CO{sub 2}) sequestration must be carefully considered before it is implemented as a mitigation strategy. This paper presented details of a study investigating the effects of high CO{sub 2} concentrations on marine fish, lobster, and octopus. The influence of water temperature on the physiological effects of CO{sub 2} was also discussed. In the first part of the study, eggs and larvae of red seabream were exposed to both CO{sub 2} and HCI-acidified seawater at identical pH levels. Seabream in the CO{sub 2} group showed a much higher mortality rate than fish in the HCI group. Other tests showed that Japanese Flounder died after complete recovery of pH in seawater equilibrated with 5 per cent CO{sub 2}. Cardiac output was rapidly depressed in Yellowtail fish without significant changes in blood oxygen concentrations. Lower temperatures resulted in higher mortality and delayed pH recovery during hypercapnia in all fish. Western rock lobsters were the most tolerant to CO{sub 2} among all species tested. The recovery of hemolymph pH was complete at exposure to CO{sub 2} concentrations of 1 per cent. Changes in hemolymph bicarbonate concentrations indicated that acid-based regulatory mechanisms differed between fish and lobsters. Mortality rates for octopus were significant at CO{sub 2} concentrations of 1 per cent. The results of all tests showed that aquatic animals are more susceptible to increases in ambient CO{sub 2} levels than terrestrial animals. It was concluded that even slight elevations in CO{sub 2} concentration levels adversely affected physiological functioning in the tested species. It was concluded that CO{sub 2} sequestration in deeper, colder waters will have a more pronounced effect on aquatic animals due to the interactions between CO{sub 2} and lower temperatures, as well as the fact that most deep-sea fish are less tolerant to environmental perturbations. 3 refs., 1 tab., 3 figs.

  16. Operational behaviour of CO{sub 2} booster systems; Betriebsverhalten von CO{sub 2}-Booster-Systemen

    Energy Technology Data Exchange (ETDEWEB)

    Javerschek, Oliver; Hieble, Tobias [BITZER Kuehlmaschinenbau GmbH, Sindelfingen (Germany)

    2011-07-01

    The operating characteristics of booster systems and the resulting operating conditions of CO{sub 2} booster systems in supermarket refrigeration are explained and discussed. Criteria and challenges of different operating and load conditions are gone into. Simulated and measured operating states of a small-scale booster system are compared and evaluated. [German] In der vorliegenden Veroeffentlichung werden unterschiedliche Betriebsverhalten und die daraus resultierenden Betriebsbedingungen von CO{sub 2}-Booster-Systemen in der Supermarktkaelte erlaeutert und diskutiert. Dabei werden wesentliche Kriterien und Herausforderungen bei den unterschiedlichen Betriebs- und Lastbedingungen besprochen. Ausserdem werden simulierte und gemessene Betriebszustaende einer kleinen Booster-Kaelteanlage vergleichend betrachtet und bewertet.

  17. CO{sub 2} emissions resulting from the energy use; Les emissions de CO{sub 2} dues a l'utilisation de l'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This document brings statistical data on the carbon dioxide emissions resulting from the energy use only. Tables and charts present data for the CO{sub 2} emissions in France, in the world (2001-2002), in the OECD (2000-2002), the CO{sub 2} emissions from electric power plants and refineries in France (1996-1999) and archives of statistics on CO{sub 2} emissions. (A.L.B.)

  18. Observations on the impurities in free air. [In French

    Energy Technology Data Exchange (ETDEWEB)

    Garrigue, H

    1953-01-01

    Results of analysis of atmospheric radioactivity and pollution from measurements on free air and on atmospheric precipitation (snow) at heights from ground level to the summit of the Puy de Dome (1450 m) during January-February 1953. The radioactivity was probably of distant origin (from nuclear fission explosions); the dust and soot of local origin.

  19. Evaluation of the alkalinity in sea water by means of gran calculation. A procedure for titration in order to quantify the acidification of the seas by CO{sub 2} absorption; Bestimmung der Alkalinitaet in Meerwasser durch Granberechnung. Ein Titrationsverfahren zur Quantifizierung der Versauerung der Meere durch CO{sub 2}-Aufnahme

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Juergen [SI Analytics GmbH, Mainz (Germany)

    2012-04-15

    In the last 200 years, the content of carbon dioxide in the air has risen from about 280 ppm to more than 380 ppm. Here, the increase of the concentration of CO{sub 2} is discussed as a reason for 'global warming'. While in the atmosphere about 800 billion tons of carbon dioxide (calculated as carbon) are located, 38,000 billion tons of carbon dioxide are dissolved in seawater, ie 50 times of the amount of CO{sub 2} in the atmosphere. The increase in the amount of CO{sub 2} in the atmosphere also results in an almost 50-fold increase in the total dissolved carbon dioxide in the sea. This results in a lowering of the pH value, and in an influencing of the equilibrium of aragonite and calcite. Many sea creatures are hampered in their growth.

  20. Does growth under elevated CO{sub 2} moderate photoacclimation in rice?

    Energy Technology Data Exchange (ETDEWEB)

    Hubbart, S.; Murchie, E.H.; Lake, J.A. [Univ. of Nottingham. School of Bioscience, Sutton Bonington (United Kingdom); Bird, S. [Univ. of York. Centre for Novel Agricultural Products, Dept. of Biology, York (United Kingdom)

    2013-06-01

    Acclimation of plant photosynthesis to light irradiance (photoacclimation) involves adjustments in levels of pigments and proteins and larger scale changes in leaf morphology. To investigate the impact of rising atmospheric CO{sub 2} on crop physiology, we hypothesize that elevated CO{sub 2} interacts with photoacclimation in rice (Oryza sativa). Rice was grown under high light (HL: 700 {mu}mol m{sup -2} s{sup -1}), low light (LL: 200 {mu}mol m{sup -2} s{sup -1}), ambient CO{sub 2} (400 {mu}l l{sup -1}) and elevated CO{sub 2} (1000 {mu}l l{sup -1}). Leaf six was measured throughout. Obscuring meristem tissue during development did not alter leaf thickness indicating that mature leaves are responsible for sensing light during photoacclimation. Elevated CO{sub 2} raised growth chamber photosynthesis and increased tiller formation at both light levels, while it increased leaf length under LL but not under HL. Elevated CO{sub 2} always resulted in increased leaf growth rate and tiller production. Changes in leaf thickness, leaf area, Rubisco content, stem and leaf starch, sucrose and fructose content were all dominated by irradiance and unaffected by CO{sub 2}. However, stomata responded differently; they were significantly smaller in LL grown plants compared to HL but this effect was significantly suppressed under elevated CO{sub 2}. Stomatal density was lower under LL, but this required elevated CO{sub 2} and the magnitude was adaxial or abaxial surface-dependent. We conclude that photoacclimation in rice involves a systemic signal. Furthermore, extra carbohydrate produced under elevated CO{sub 2} is utilized in enhancing leaf and tiller growth and does not enhance or inhibit any feature of photoacclimation with the exception of stomatal morphology. (Author)

  1. Doubling the CO{sub 2} concentration enhanced the activity of carbohydrate-metabolism enzymes, source carbohydrate production, photoassimilate transport, and sink strength for Opuntia ficus-indica

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ning; Nobel, P.S. [Univ. of California, Los Angeles, CA (United States)

    1996-03-01

    After exposure to a doubled CO{sub 2} concentration of 750 {mu}mol mol{sup -1} air for about 3 months, glucose and starch in the chlorenchyma of basal cladodes of Opuntia ficus-indica increased 175 and 57%, respectively, compared with the current CO{sub 2} concentration of 370 {mu}mol mol{sup -1}, but sucrose content was virtually unaffected. Doubling the CO{sub 2} concentration increased the noncturnal malate production in basal cladodes by 75%, inorganic phosphate (Pi) by 32% soluble starch synthase activity by 30%, and sucrose-Pi synthase activity by 146%, but did not affect the activity of hexokinase. Doubling CO{sub 2} accelerated phloem transport of sucrose out of the basal cladodes, resulting in a 73% higher dry weight for the daughter cladodes. Doubling CO{sub 2} increased the glucose content in 14-d-old daughter cladodes by 167%, increased nocturnal malate production by 22%, decreased total amino acid content by 61%, and increased soluble starch synthase activity by 30% and sucrose synthase activity by 62%. No downward acclimation of photosynthesis during long-term exposure to elevated CO{sub 2} concentrations occurs for O. ficus-indica, consistent with its higher source capacity and sink strength than under current CO{sub 2}. These changes apparently do not result in Pi limitation of photosynthesis or suppression of genes governing photosynthesis for this perennial Crassulacean acid metabolism species, as occur for some annual crops.

  2. Photoreduction of CO{sub 2} using metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Etsuko [Brookhaven National Laboratory, Upton, NY (United States)

    1996-09-01

    Photochemical reduction of CO{sub 2} to fuels and chemicals is a challenging task. Work in the area of photochemical CO{sub 2} reduction from the early 1980s to the present is summarized to provide a perspective on the achievements and problems involved in the process.

  3. Photoreduction of CO{sub 2} using metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Etsuko

    1996-04-01

    Photochemical reduction of CO{sub 2} to fuels and chemicals is a challenging task. Work in the area of photochemical CO{sub 2} reduction from the early 1980s to the present is summarized to provide a perspective on the achievements and problems involved in the process.

  4. CO{sub 2} injection as pH regulator in refrigeration circuits; Inyeccion de CO{sub 2} como regulador de pH en circuitos de refrigeracion

    Energy Technology Data Exchange (ETDEWEB)

    Belinchon, J.

    2009-07-01

    Water from rivers is not usually suitable for use in cooling circuits of industrial installations, normally because of its high fouling ability. this requires a treatment before use based on the use of fouling inhibitors, biocides and pH regulators. The most commonly used pH regulator is sulfuric acid, a very hazardous chemical product that also generates secondary saline contamination due to the sulfates. Since 2008, Iberdrola Generation, in collaboration with Air Liquid, has been carrying out a pilot project in Cofrentes Nuclear Power Plant focusing on the use of CO{sub 2} as an acidifier of the main condenser cooling system. (Author)

  5. Influences of soil volume and an elevated CO[sub 2] level on growth and CO[sub 2] exchange for the crassulacean acid metabolism plant Opuntia ficus-indica

    Energy Technology Data Exchange (ETDEWEB)

    Nobel, P.S.; Cui, M.; Miller, P.M.; Luo, Y. (UCLA-DOE Lab., Univ. of California, Los Angeles, CA (United States))

    1994-01-01

    Effects of the current (38 Pa) and an elevated (74 Pa) CO[sub 2] partial pressure on root and shoot areas, biomass accumulation and daily net CO[sub 2] exchange were determined for opuntia ficus-indica (L.) Miller, a highly productive Crassulacean acid metabolism species cultivated worldwide. Plants were grown in environmentally controlled rooms for 18 weeks in pots of three soil volumes (2600, 6500 and 26000 cm[sup 3]), the smallest of which was intended to restrict root growth. For plants in the medium-sized soil volume, basal cladodes tended to be thicker and areas of main and lateral roots tended to be greater as the CO[sub 2] level was doubled. Daughter cladodes tended to be initiated sooner at the current compared with the elevated CO[sub 2] level but total areas were similar by 10 weeks. At 10 weeks, daily net CO[sub 2] uptake for the three soil volumes averaged 24% higher for plants growing under elevated compared with current CO-2 levels, but at 18 weeks only 3% enhancement in uptake occurred. Dry weight gain was enhanced 24% by elevated CO[sub 2] during the first 10 weeks but only 8% over 18 weeks. Increasing the soil volume 10-fold led to a greater stimulation of daily net CO[sub 2] uptake and biomass production than did doubling the CO[sub 2] level. At 18 weeks, root biomass doubled and shoot biomass nearly doubled as the soil volume was increased 10-fold; the effects of soil volume tended to be greater for elevated CO[sub 2]. The amount of cladode nitrogen per unit dry weight decreased as the CO[sub 2] level was raised and increased as soil volume increased, the latter suggesting that the effects of soil volume could be due to nitrogen limitations. (au) (30 refs.)

  6. CO>2 Capture by Cold Membrane Operation with Actual Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Chaubey, Trapti [American Air Liquide Inc., Houston, TX (United States); Kulkarni, Sudhir [American Air Liquide Inc., Houston, TX (United States); Hasse, David [American Air Liquide Inc., Houston, TX (United States); Augustine, Alex [American Air Liquide Inc., Houston, TX (United States)

    2017-07-28

    The main objective of the project was to develop a post-combustion CO>2 capture process based on the hybrid cold temperature membrane operation. The CO>2 in the flue gas from coal fired power plant is pre-concentrated to >60% CO>2 in the first stage membrane operation followed by further liquefaction of permeate stream to achieve >99% CO>2 purity. The aim of the project was based on DOE program goal of 90% CO>2 capture with >95% CO>2 purity from Pulverized Coal (PC) fired power plants with $40/tonne of carbon capture cost by 2025. The project moves the technology from TRL 4 to TRL 5. The project involved optimization of Air Liquide commercial 12” PI-1 bundle to improve the bundle productivity by >30% compared to the previous baseline (DE-FE0004278) using computational fluid dynamics (CFD) modeling and bundle testing with synthetic flue gas at 0.1 MWe bench scale skid located at Delaware Research and Technology Center (DRTC). In parallel, the next generation polyimide based novel PI-2 membrane was developed with 10 times CO>2 permeance compared to the commercial PI-1 membrane. The novel PI-2 membrane was scaled from mini-permeator to 1” permeator and 1” bundle for testing. Bundle development was conducted with a Development Spin Unit (DSU) installed at MEDAL. Air Liquide’s cold membrane technology was demonstrated with real coal fired flue gas at the National Carbon Capture Center (NCCC) with a 0.3 MWe field-test unit (FTU). The FTU was designed to incorporate testing of two PI-1 commercial membrane bundles (12” or 6” diameter) in parallel or series. A slip stream was sent to the next generation PI-2 membrane for testing with real flue gas. The system exceeded performance targets with stable PI-1 membrane operation for over 500 hours of single bundle, steady state testing. The 12” PI-1 bundle exceeded the productivity target by achieving ~600 Nm3/hr, where the target was set at ~455

  7. Underground CO{sub 2} Storage: Approach for Favourable Formations in Ebro Basin; AGP de CO{sub 2}: Seleccion de Formaciones Favorables en la Cuenca del Ebro

    Energy Technology Data Exchange (ETDEWEB)

    Campos, R.; Perucha, A.; Recreo, F.

    2008-04-10

    The study of the possibilities of conducting Deep Geological CO{sub 2} Storage inside Spanish territory is being performed through the Strategic Singular Project PS-120000-2005-2 of the National Program of Energy from the Education and Science Ministry, and called CO{sub 2} generation, sequestration and storage advanced technologies, sub project N3 CO{sub 2} Geological Storage This report studies the possibilities the Ebro basin offers for definitive CO{sub 2} storage as one of the Spanish selected areas from previous studies. The study and reinterpretation of the information obtained from the hydrocarbon exploration accomplished in the area has lead to the selection of a series of geological formations. These formations have been chosen attending certain characteristics such as their disposition, extension, depth and porosity. The study has also been conducted considering the characteristics of the geological formations above the CO{sub 2} storage formations so as to guarantee the sealing of the storage. The study includes the approximate estimation of the storage capacity for each of the formations in Megatons of CO{sub 2}, which can be useful in future decision making. Deep geological storage is one of the more relevant international initiatives in order to eliminate or reduce the anthropogenic CO{sub 2} emissions to the atmosphere. (Author) 68 refs.

  8. Developments and innovation in carbon dioxide (CO{sub 2}) capture and storage technology. Volume 2: Carbon dioxide (CO{sub 2}) storage and utilisation

    Energy Technology Data Exchange (ETDEWEB)

    Mercedes Maroto-Valer, M. (ed.)

    2010-07-01

    This volume initially reviews geological sequestration of CO{sub 2}, from saline aquifer sequestration to oil and gas reservoir and coal bed storage, including coverage of reservoir sealing, and monitoring and modelling techniques used to verify geological sequestration of CO{sub 2}. Terrestrial and ocean sequestration are also reviewed, along with the environmental impact and performance assessments for these routes. The final section reviews advanced concepts for CO{sub 2} storage and utilization, such as industrial utilization, biofixation, mineral carbonation and photocatalytic reduction.

  9. Research of heat transfer of staggered horizontal bundles of finned tubes at free air convection

    Science.gov (United States)

    Novozhilova, A. V.; Maryna, Z. G.; Samorodov, A. V.; Lvov, E. A.

    2017-11-01

    The study of free-convective processes is important because of the cooling problem in many machines and systems, where other ways of cooling are impossible or impractical. Natural convective processes are common in the steam turbine air condensers of electric power plants located within the city limits, in dry cooling towers of circulating water systems, in condensers cooled by air and water, in radiators cooling oil of power electric transformers, in emergency cooling systems of nuclear reactors, in solar power, as well as in air-cooling of power semiconductor energy converters. All this makes actual the synthesis of the results of theoretical and experimental research of free convection for heat exchangers with finned tube bundles. The results of the study of free-convection heat transfer for two-, three- and four-row staggered horizontal bundles of industrial bimetallic finned tubes with finning factor of 16.8 and equilateral tubes arrangement are presented. Cross and diagonal steps in the bundles are the same: 58; 61; 64; 70; 76; 86; 100 mm, which corresponds to the relative steps: 1.042; 1.096; 1.152; 1.258; 1.366; 1.545; 1.797. These steps are standardized for air coolers. An equation for calculating the free-convection heat transfer, taking into account the influence of geometrical parameters in the range of Rayleigh number from 30,000 to 350,000 with an average deviation of ± 4.8%, has been obtained. The relationship presented in the article allows designing a wide range of air coolers for various applications, working in the free convection modes.

  10. ANALYSIS OF FREE ROUTE AIRSPACE AND PERFORMANCE BASED NAVIGATION IMPLEMENTATION IN THE EUROPEAN AIR NAVIGATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Svetlana Pavlova

    2014-12-01

    Full Text Available European Air Traffic Management system requires continuous improvements as air traffic is increasingday by day. For this purpose it was developed by international organizations Free Route Airspace and PerformanceBased Navigation concepts that allow to offer a required level of safety, capacity, environmental performance alongwith cost-effectiveness. The aim of the article is to provide detailed analysis of Free Route Airspace and PerformanceBased Navigation implementation status within European region including Ukrainian air navigation system.

  11. Foamed Cement Interactions with CO>2

    Energy Technology Data Exchange (ETDEWEB)

    Verba, Circe [National Energy Technology Lab. (NETL), Albany, OR (United States); Montross, Scott [National Energy Technology Lab. (NETL), Albany, OR (United States); Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); Spaulding, Richard [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Dalton, Laura [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); Crandall, Dustin [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Moore, Johnathan [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Glosser, Deborah [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Huerta, Nik [National Energy Technology Lab. (NETL), Albany, OR (United States); Kutchko, Barb [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2017-02-02

    Geologic carbon storage (GCS) is a potentially viable strategy to reduce greenhouse emissions. Understanding the risks to engineered and geologic structures associated with GCS is an important first step towards developing practices for safe and effective storage. The widespread utilization of foamed cement in wells may mean that carbon dioxide (CO>2)/brine/foamed cement reactions may occur within these GCS sites. Characterizing the difference in alteration rates as well as the physical and mechanical impact of CO>2/brine/foamed cement is an important preliminary step to ensuring offshore and onshore GCS is a prudent anthropogenic CO>2 mitigation choice.

  12. Retrospective of CO{sub 2} emissions of the Mexican industrial sector; Retrospectiva de emisiones de CO{sub 2} del sector industrial mexicano

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Domingo; Martinez, Manuel [Universidad Nacional Autonoma de Mexico (UNAM), Mexico, D.F. (Mexico)

    2006-11-15

    The carbon dioxide emissions of the Mexican Industrial Sector throughout the period of 1965-2003 are analyzed, in terms of 16 branches of the industrial economic activity, as it is marked by the proposed disintegration of the Sistema de Cuentas Nacionales of the Intituto Nacional de Estadistica, Geografia e Informatica (INEGI) and the National Balance of Energy 2003 (BNE-2003). The CO{sub 2} emissions by the energy use have a behavior very similar to the one of the consumption of the final energy, which reflects that non significant changes in the composition of used fuels have existed. During this period the CO{sub 2} emissions increased 230%. The industrial branches that have shown significant changes in the CO{sub 2} emission are Construction, Bottled Water, Rubber, Cement, Beer and Malta and Chemistry. In order to evaluate the effects of the Activity, Structure, Power Intensity, fuel Mixture of final use and fuel Mixture used in electricity generation the decomposition model of CO{sub 2} is used based on the Laspeyres index. The calculated effects show that the main increase of total carbon dioxide of the SIM is referred to the Activity with an average rate of annual growth (TMCA) of 4.32%; whereas the effect that mitigates more the CO{sub 2} emission is the one described by the power Intensity and is equivalent to a TMCA of -0.85%. [Spanish] Se analizan las emisiones de bioxido de carbono del Sector Industrial Mexicano a lo largo del periodo de 1965-2003, en termino de 16 ramas de actividad economica industrial como lo marca la desagregacion propuesta por el Sistema de Cuentas Nacionales del Instituto Nacional de Estadistica, Geografia e Informatica (INEGI) y el Balance Nacional de Energia 2003 (BNE-2003). Las emisiones de CO{sub 2} por el uso de energia tienen un comportamiento muy similar al de consumo de energia final, lo que refleja que no han existido cambios significativos en la composicion de los combustibles empleados. Durante este periodo las

  13. Enhanced CO{sub 2} capture on graphene via N, S dual-doping

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jieyuan; Hou, Meiling [College of Architecture and Environment, Sichuan University (China); Chen, Yanqiu [Institute of New Energy and Low Carbon Technology, Sichuan University (China); Cen, Wanglai [Institute of New Energy and Low Carbon Technology, Sichuan University (China); National Engineering Research Center for Flue Gas Desulfurization (China); Chu, Yinghao, E-mail: chuyinghao@scu.edu.cn [College of Architecture and Environment, Sichuan University (China); National Engineering Research Center for Flue Gas Desulfurization (China); Yin, Shi, E-mail: yinshi_scu@foxmail.com [College of Architecture and Environment, Sichuan University (China)

    2017-03-31

    Highlights: • Sluggish conjugated π bonds of graphene should be weakened to promote adsorption activity. • A charge delivery channel along S → N → CO{sub 2} path should be prior responsible for the enhancement of CO{sub 2} capture on graphene. • Applicative temperature range of graphene-based adsorbents for CO{sub 2} capture is extend to about 100 °C via N, S dual-doping. - Abstract: N, S doped graphene-based materials have been recently recognized as promising adsorbents for CO{sub 2} capture, but understanding of the adsorption mechanism at the atomic level is still limited. Herein, the local structures and promotion mechanism of CO{sub 2} capture by N, S doped graphene were investigated by combining density functional theory and ab initio thermodynamics. A single vacancy defected graphene involving N, S dual-doping was found to be a superior adsorbent for CO{sub 2} capture under mild conditions (<100 °C, 1 atm). The enhanced CO{sub 2} adsorption performance should be ascribed to a charge delivery channel along the S → N → CO{sub 2} path, leading to extra charge transfer from graphene to CO{sub 2}. It is worth mentioning that the extra charge transfer was stimulated by the unique sp{sup 2} hybridization of pyridine N and further enhanced by S in N, S dual-doped graphene. A possible mechanism has been proposed to explain the high adsorption performance of CO{sub 2} by N, S dual-doped graphene, which offers insights for the design of new graphene-based adsorbents.

  14. Free radicals of an aromatic nature in air samples from iron foundries

    Energy Technology Data Exchange (ETDEWEB)

    Westerberg, L M

    1982-01-01

    Free radicals of relatively long life were identified as spin adducts of phenyl-N-tert-butylnitrone. Pyrolysis studies showed the radicals were oxy-radicals. The hyperfine splitting constants of spin adducts of radicals from the pyrolysis in air of benzo(a)pyrene, coal tar pitch, and moulding sand containing hard coal dust were the same as those of the radicals found in foundry air. Since these radicals can bind to DNA, they must be considered when estimating the hazardous effects of polluted air.

  15. Development of pure Mg open-cell foams as structured CO{sub 2} captor

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, I.A., E-mail: iafiguera@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Cd. Universitaria, C.P. 04510 México, D.F. (Mexico); Suarez, M.A.; Velasco-Castro, M.; Pfeiffer, H.; Alcántar-Vázquez, B.; González, G. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Cd. Universitaria, C.P. 04510 México, D.F. (Mexico); Alfonso, I. [Instituto de Investigaciones en Materiales, Unidad Morelia, Universidad Nacional Autónoma de México, Campus Morelia UNAM, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, C.P. 58190 Morelia, Michoacán (Mexico); Lara-Rodríguez, G.A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Cd. Universitaria, C.P. 04510 México, D.F. (Mexico)

    2015-12-10

    Highlights: • The CO{sub 2} capture capacity of the open-cell Mg foams was studied at low temperatures. • Open-cell Mg foams with pore size of 350 μm were used for the CO{sub 2} capture study. • The highest amount of CO{sub 2} captured was obtained at 60 °C and 80% of relative humidity. • A CO{sub 2} capture capacity of 0.87 mmol/g was obtained for the open-cell Mg foams. • The oxidized open-cell Mg foams can be used as CO{sub 2} captors. - Abstract: The CO{sub 2} capture capacity of the superficial oxide layer formed in pure open-cell Mg foams was studied at low temperatures (40–60 °C) varying the relative humidity from 40 to 80%. Mg foam samples with pore size of 350 μm and surface area of 5.4 m{sup 2}/g were used for these analyses. Optical microscopy and X-ray diffraction techniques were used to characterize the cell structure and the superficial oxide formed in the cell-foams, respectively. The final products formed after the CO{sub 2}–H{sub 2}O capture experiments were identified by scanning electron microscopy and attenuated total reflexion-Fourier transform infrared spectroscopy (ATR-FTIR). The MgCO{sub 3} and other products, formed after CO{sub 2} + H{sub 2}O capture process, were thermally decomposed, to quantify the amount of CO{sub 2} captured by the superficial MgO layer using standard thermogravimetric analysis. The results showed that the highest amount of CO{sub 2} captured was obtained at 60 °C and 80% of relative humidity, with a CO{sub 2} capture capacity of 0.87 mmol/g, which is comparable with others CO{sub 2} MgO-based captors. The considerable CO{sub 2} capture capacity at low temperatures supports the potential of the pure open-cell Mg foams to be used as structured CO{sub 2} captors.

  16. Method for measuring energy-input inhomogeneities in electroionization CO/sub 2/-lasers

    Energy Technology Data Exchange (ETDEWEB)

    Borovkov, V V; Kornilov, V G; Sukhanov, L V; Chelpanov, V I

    1987-08-01

    A Michelson interferometer at a wavelength of 0.63 micron was used to measure optical inhomogeneities due to variations of the polarizability of the molecular components in CO/sub 2/-laser mixtures under vibrational excitation in a nonself-sustained electric discharge. It is suggested that the observed effect can be used for the noninertial and noncontact diagnostics of energy-input distribution over the cross section of the active medium of an electroionization CO/sub 2/-laser. Results are presented for N/sub 2/-He, CO/sub 2/-He, CO/sub 2/-N/sub 2/-He, and CO/sub 2/-He mixtures. 10 references.

  17. Solubility of {beta}-carotene in ethanol- and triolein-modified CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Araus, Karina A. [Departamento de Ingenieria Quimica y Bioprocesos, Pontificia Universidad Catolica de Chile, Avda. Vicuna Mackenna 4860, Macul, Santiago (Chile); Canales, Roberto I. [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Valle, Jose M. del [Departamento de Ingenieria Quimica y Bioprocesos, Pontificia Universidad Catolica de Chile, Avda. Vicuna Mackenna 4860, Macul, Santiago (Chile); Fuente, Juan C. de la, E-mail: juan.delafuente@usm.cl [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Centro Regional de Estudios en Alimentos Saludables, Blanco 1623, Valparaiso (Chile)

    2011-12-15

    Highlights: > We measure solubility of {beta}-carotene in pure CO{sub 2}, and with ethanol and triolein as co-solvents. > We model the solubility of {beta}-carotene in pure CO{sub 2}, and with co-solvents. > The co-solvent effect of triolein over solubility of {beta}-carotene in CO{sub 2} was higher than ethanol. - Abstract: Modification of an experimental device and methodology improved speed and reproducibility of measurement of solubility of {beta}-carotene in pure and modified SuperCritical (SC) CO{sub 2} at (313 to 333) K. Solubilities of {beta}-carotene in pure CO{sub 2} at (17 to 34) MPa ranged (0.17 to 1.06) {mu}mol/mol and agreed with values reported in literature. The solubility of {beta}-carotene in CO{sub 2} modified with (1.2 to 1.6) % mol ethanol increased by a factor of 1.7 to 3.0 as compared to its solubility in pure CO{sub 2} under equivalent conditions. The concentration of triolein in equilibrated ternary (CO{sub 2} + {beta}-carotene + triolein) mixtures having excess triolein reached values (0.01 to 0.39) mmol/mol corresponding to its solubility in pure SC CO{sub 2} under equivalent conditions. Under these conditions, the solubility of {beta}-carotene in triolein-modified CO{sub 2} increased by a factor of up to 4.0 in relation with its solubility in pure CO{sub 2} at comparable system temperature and pressure, reaching an uppermost value of 3.3 {mu}mol/mol at 333 K and 32 MPa. Unlike in the case of ethanol, where enhancements in solubility where relatively independent on system conditions, solubility enhancements using triolein as co-solvent increased markedly with system pressure, being larger than using (1.2 to 1.6) % mol ethanol at about (24 to 28) MPa, depending on system temperature. The increase in the solubility {beta}-carotene in SC CO{sub 2} as a result of using ethanol or triolein as co-solvent apparently does not depend on the increase in density associated with the dissolution of the co-solvent in CO{sub 2}. Enhancements may be due

  18. /sup 14/CO/sub 2/-fixation by the endosymbiotic Platymonas convolutae within the turbellarian Convoluta roscoffensis

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, B P [Koeln Univ. (F.R. Germany). Botanisches Inst.

    1975-01-01

    Photosynthetic assimilation of /sup 14/CO/sub 2/ by the symbiotic green alga Platymonas convolutae Parke et Manton in the marine flatworm Convoluta roscoffensis Graff has been investigated and compared with that in free-living P. subcordiformis and P. tetrathele. All Platymonas species investigated rapidly incorporate /sup 14/CO/sub 2/ into a complex variety of soluble and insoluble assimilates. The rate of dark fixation is considerably lower in P. convolutae. Typical /sup 14/C-assimilate patterns are rather uniform in all Platymonas species, but the time courses of /sup 14/C-labelling of several compounds are very different. The percentage of /sup 14/C-aspartate and /sup 14/C-malate is significantly higher in P. convolutae after short-term-photosynthesis, whereas /sup 14/C-labelled phosphate esters predominate in the free-living Platymonas species. A comparison of the kinetics of /sup 14/C-labelling and of the distribution of /sup 14/C-activity between soluble and insoluble fractions suggests that glucose and fructose, not mannitol, as well as several amimo acids (especially alanine) move from the algal partner to the tissue of the animal host. The significance of these findings is discussed.

  19. The millennial atmospheric lifetime of anthropogenic CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Archer, D. [University of Chicago, IL (United States). Department of the Geophysical Sciences; Brovkin, V. [Potsdam Institute for Climate Impact Research (Germany)

    2008-10-15

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO{sub 2} release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ocean carbon cycle, which we review here. The largest fraction of the CO{sub 2} recovery will take place on time scales of centuries, as CO{sub 2} invades the ocean, but a significant fraction of the fossil fuel CO{sub 2}, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO{sub 2} in the atmosphere.

  20. Facile synthesis of ultrafine Co{sub 3}O{sub 4} nanocrystals embedded carbon matrices with specific skeletal structures as efficient non-enzymatic glucose sensors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mian; Han, Ce; Zhang, Yufan; Bo, Xiangjie, E-mail: baoxj133@nenu.edu.cn; Guo, Liping, E-mail: guolp078@nenu.edu.cn

    2015-02-25

    Highlights: • Novel hyperfine Co{sub 3}O{sub 4} nanocrystals decorated porous carbon matrixes. • Facile synthesis without use of any harmful dispersing reagents or surfactants. • High dispersion degree of Co{sub 3}O{sub 4} nanocrystals and excellent e{sup −} transport rates. • A large current sensitivity of 955.9 μA cm{sup −2} mM{sup −1} toward glucose. • Excellent anti-interference and stability for glucose detection. - Abstract: A facile, effective, and environmentally friendly method has been adopted for the first time to prepare tiny Co{sub 3}O{sub 4} nanocrystals embedded carbon matrices without using surfactants, harmful organic reagents or extreme conditions. Structural characterizations reveal that the size-controlled Co{sub 3}O{sub 4} nanocrystals are uniformly dispersed on carbon matrices. Electrochemical measurements reveal that Co{sub 3}O{sub 4}-ordered mesoporous carbon (OMC) can more efficiently catalyze glucose oxidation and acquire better detection parameters compared with those for the Co{sub 3}O{sub 4}-macroporous carbon, Co{sub 3}O{sub 4}-reduced graphene oxide, and free Co{sub 3}O{sub 4} nanoparticles (NPs) (such as: the large sensitivity (2597.5 μA cm{sup −2} mM{sup −1} between 0 and 0.8 mM and 955.9 μA cm{sup −2} mM{sup −1} between 0.9 and 7.0 mM), fast response time, wide linear range, good stability, and surpassingly selective capability to electroactive molecules or Cl{sup −}). Such excellent performances are attributed to the synergistic effect of the following three factors: (1) the high catalytic sites provided by the uniformly dispersed and size-controlled Co{sub 3}O{sub 4} nanocrystals embedded on OMC; (2) the excellent reactant transport efficiency caused by the abundant mesoporous structures of OMC matrix: (3) the improved electron transport in high electron transfer rate (confinement of the Co{sub 3}O{sub 4} NPs in nanoscale spaces ensured intimate contact between Co{sub 3}O{sub 4} nanocrystals and the

  1. Integrated Energy System with Beneficial Carbon Dioxide (CO{sub 2}) Use

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaolei; Rink, Nancy

    2011-04-30

    To address the public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO{sub 2}) emissions, the U.S. Department of Energy National Energy Technology Laboratory (DOE-NETL) is actively funding a CO{sub 2} management program to develop technologies capable of reducing the CO{sub 2} emissions from fossil fuel power plants and other industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE-NETL launched an alternative CO{sub 2} mitigation program focusing on beneficial CO{sub 2} reuse and supporting the development of technologies that mitigate emissions by converting CO{sub 2} to solid mineral form that can be utilized for enhanced oil recovery, in the manufacturing of concrete or as a benign landfill, in the production of valuable chemicals and/or fuels. This project was selected as a CO{sub 2} reuse activity which would conduct research and development (R&D) at the pilot scale via a cost-shared Cooperative Agreement number DE-FE0001099 with DOE-NETL and would utilize funds setaside by the American Recovery and Reinvestment Act (ARRA) of 2009 for Industrial Carbon Capture and Sequestration R&D,

  2. Study and characterization of the hexa ferrite Ba{sub 2}Co{sub 2}Fe{sub 12}O{sub 22} (Co{sub 2}-Y); Sintese e caracterizacao da hexaferrita Ba{sub 2}Co{sub 2}Fe{sub 12}O{sub 22} (Co{sub 2}-Y)

    Energy Technology Data Exchange (ETDEWEB)

    Pires Junior, G.F.M.; Rodrigues, H.O. [Universidade Federal do Ceara (DETI/UFC), Fortaleza, CE (Brazil). Dept. de Teleinformatica; Sales, J.C [Universidade Estadual Vale do Acarau (UVA), Fortaleza, CE (Brazil). Dept. de Engenharia; Sancho, E.O. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia de Materiais; Sombra, A.S.B. [Universidade Federal do Ceara (LOCEM/UFC), Fortaleza, CE (Brazil). Dept. de Fisica. Lab. de Telecomunicacoes e Ciencias e Engenharia de Materiais

    2009-07-01

    The objective of this work is to synthesize and to characterize the Hexaferrita Ba2Co{sub 2}Fe{sub 12}O{sub 22} (Co{sub 2}Y). The Y-type Hexaferrita (Co{sub 2}Y) was prepared by the ceramic conventional method. The mixed powder by 1 h was calcined at 1050 deg C for 3 h. After of the calcination the powders were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) using a diffractometer DMAXB of the Rigaku (Japan), CuK{sub {alpha}} radiation ({lambda}=1.5405 angstrom) in a tax of 0.5 deg /min and linear band (20 deg at 80 deg) in 2{theta}. The characterization more detailed by XRD was made using the DBWS9807a program that uses the method of Rietveld for refinement of crystalline structures and confirmed the isolated attainment of the phase (Co{sub 2}Y) with hexagonal crystalline structure (a = b = 5,8560 angstrom and c = 43,4977 angstrom; {alpha} = {beta} = 90 deg and {gamma} = 120 deg) with density and volume of the unit cell calculated of 5.45 g/cm{sup 3} and 1292,3 angstrom respectively. (author)

  3. Use of Chlorella vulgaris for CO{sub 2} mitigation in a photobioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Keffer, J.E.; Kleinheinz, G.T.

    2002-07-01

    One of the most understudied methods for CO{sub 2} mitigation is the use of biological processes in engineered systems such as photobioreactors. This research project describes the effectiveness of Chlorella vulgaris, used in a photobioreactor with a very short gas residence time, in sequestering CO{sub 2} from an elevated CO{sub 2} airstream. We evaluated a flow-through photobioreactor's operational parameters, as well as the growth characteristics of the C. vulgaris inoculum when exposed to an airstream with over 1850 ppm CO{sub 2}. When using dry weight, chlorophyll, and direct microscopic measurements, it was apparent that the photobioreactor's algal inoculum responded well to the elevated CO{sub 2} levels and there was no build-up of CO{sub 2} or carbonic acid in the photobioreactor. The photobioreactor, with a gas residence time of approximately 2 s, was able to remove up to 74% of the CO{sub 2} in the airstream to ambient levels. This corresponded to a 63.9-g/m(3)/h bulk removal for the experimental photobioreactor. Consequently, this photobioreactor shows that biological processes may have some promise for treating point source emissions of CO{sub 2} and deserve further study.

  4. Integrated basic treatment of activated carbon for enhanced CO{sub 2} selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Adelodun, Adedeji Adebukola; Jo, Young-Min, E-mail: ymjo@khu.ac.kr

    2013-12-01

    We attempted the use of three chemical agents viz nitric acid (HN), calcium nitrate (CaN) and calcium ethanoate (CaEt) to achieve enhanced CO{sub 2} selective adsorption by activated carbon (AC). In dry phase treatment, microporous coconut shell-based carbon (CS) exhibits higher CO{sub 2} capacity than coal-based. However, upon wet-phase pre-treatment, modified CS samples showed lesser CO{sub 2} adsorption efficiency. Surface characterization with X-ray photoelectron spectroscopy confirms the presence of calcium and amine species on the samples with integrated treatment (A-CaN). These samples recorded the highest low-level CO{sub 2} capture despite calcinated CaEt-doped samples (C-CaEt) showing the highest value for pure and high level CO{sub 2} adsorption capacities. The slope and linearity values of isobaric desorption were used to estimate the proportion of CO{sub 2} chemisorbed and heterogeneity of the adsorbents’ surfaces respectively. Consequently, integrated basic impregnation provides the most efficient adsorbents for selective adsorption of both indoor and outdoor CO{sub 2} levels.

  5. Tailings and mineral carbonation : the potential for atmospheric CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Rollo, H.A. [Lorax Environmental Services Ltd., Vancouver, BC (Canada); Jamieson, H.E. [Queen' s Univ., Kingston, ON (Canada). Dept. of Geological Sciences and Geological Engineering; Lee, C.A. [Dillon Consulting Ltd., Cambridge, ON (Canada)

    2009-02-15

    Carbon dioxide (CO{sub 2}) sequestration includes geological storage, ocean storage, organic storage, and mineral storage (mineral carbonation). This presentation discussed tailings and mineral carbonation and the potential for atmospheric CO{sub 2} sequestration. In particular, it outlined CO{sub 2} sequestration and presented a history of investigations. The Ekati Diamond Mine was discussed with particular reference to its location, geology, and processing. Other topics that were presented included mineralogy; water chemistry; modeling results; and estimates of annual CO{sub 2} sequestration. Conclusions and implications were also presented. It was concluded that ore processing at mines with ultramafic host rocks have the potential to partially offset CO{sub 2} emissions. In addition, it was found that existing tailings at ultramafic deposits may be viable source materials for CO{sub 2} sequestration by mineral carbonation. tabs., figs.

  6. Flow Vaporization of CO{sub 2} in Microchannel Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Jostein

    2002-07-01

    Carbon dioxide is receiving renewed interest as an efficient and environmentally safe refrigerant in a number of applications, including mobile air conditioning and heat pump systems, and hot water heat pumps. Compact heat exchangers for CO{sub 2} systems are designed with small-diameter tubing. The purpose of this study is therefore to provide a better basis for understanding and predicting heat transfer and pressure drop during flow vaporization of CO{sub 2} in microchannels. The ''unusual'' properties of carbon dioxide give heat transfer and two-phase flow characteristics that are very different from those of conventional refrigerants. Examples of these differences are the much higher pressure, the resulting high vapour density, a very low surface tension, and a low liquid viscosity. High pressure and low surface tension has a major effect on nucleate boiling characteristics, and earlier test data have shown a clear dominance of nucleate boiling even at very high mass flux. Heat transfer tests were conducted in a rig using a flat, extruded aluminium microchannel tube of 540 mm length with 25 channels of 0.81 mm diameter. The horizontal test tube was heated by a water jacket in order to get representative boundary conditions for air-to-refrigerant heat transfer (''fluid heating''). Constant heat flux conditions do not simulate these boundary conditions well, and may give unrealistic behaviour especially in relation to dryout and post-dryout heat transfer. Systematic tests at constant heat flux with single-phase CO{sub 2} flow on the inside generated data that were used in the derivation of a model for water-side beat transfer coefficient. A regression based on these data gave a calibrated equation for water-side heat transfer on the form NuNu(Re,Pr). This equation was then used in later experiments to subtract water-side thermal resistance from the measured overall resistance (1/UA), thereby finding the internal heat

  7. Soil gas ({sup 222}Rn, CO{sub 2}, {sup 4}He) behaviour over a natural CO{sub 2} accumulation, Montmiral area (Drome, France): geographical, geological and temporal relationships

    Energy Technology Data Exchange (ETDEWEB)

    Gal, Frederick, E-mail: f.gal@brgm.f [BRGM, Metrology Monitoring Analysis Department, 3 Avenue Claude-Guillemin, B.P. 36009, 45060 Orleans cedex 2 (France); Joublin, Franck, E-mail: f.joublin@brgm.f [BRGM, Regional Geological Survey, 6 ter, Rue Pierre et Marie Curie, 59260 Lezennes (France); Haas, Hubert, E-mail: h.haas@brgm.f [BRGM, Metrology Monitoring Analysis Department, 3 Avenue Claude-Guillemin, B.P. 36009, 45060 Orleans cedex 2 (France); Jean-prost, Veronique, E-mail: v.jean-prost@brgm.f [BRGM, Metrology Monitoring Analysis Department, 3 Avenue Claude-Guillemin, B.P. 36009, 45060 Orleans cedex 2 (France); Ruffier, Veronique, E-mail: v.ruffier@brgm.f [BRGM, Metrology Monitoring Analysis Department, 3 Avenue Claude-Guillemin, B.P. 36009, 45060 Orleans cedex 2 (France)

    2011-02-15

    The south east basin of France shelters deep CO{sub 2} reservoirs often studied with the aim of better constraining geological CO{sub 2} storage operations. Here we present new soil gas data, completing an existing dataset (CO{sub 2}, {sup 222}Rn, {sup 4}He), together with mineralogical and physical characterisations of soil columns, in an attempt to better understand the spatial distribution of gas concentrations in the soils and to rule on the sealed character of the CO{sub 2} reservoir at present time. Anomalous gas concentrations were found but did not appear to be clearly related to geological structures that may drain deep gases up to the surface, implying a dominant influence of near surface processes as indicated by carbon isotope ratios. Coarse grained, quartz-rich soils favoured the existence of high CO{sub 2} concentrations. Fine grained clayey soils preferentially favoured the existence of {sup 222}Rn but not CO{sub 2}. Soil formations did not act as barriers preventing gas migrations in soils, either due to water content or due to mineralogical composition. No abundant leakage from the Montmiral reservoir can be highlighted by the measurements, even near the exploitation well. As good correlation between CO{sub 2} and {sup 222}Rn concentrations still exist, it is suggested that {sup 222}Rn migration is also CO{sub 2} dependent in non-leaking areas - diffusion dominated systems.

  8. Nonequilibrium radiation behind a strong shock wave in CO{sub 2}-N{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Rond, C. [Universite de Provence - IUSTI, 5 rue Enrico Fermi, Marseille 13013 (France)], E-mail: rond@coria.fr; Boubert, P.; Felio, J.-M.; Chikhaoui, A. [Universite de Provence - IUSTI, 5 rue Enrico Fermi, Marseille 13013 (France)

    2007-11-09

    This work presents experiments reproducing plasma re-entry for one trajectory point of a Martian mission. The typical facility to investigate such hypersonic flow is shock tube; here we used the free-piston shock tube TCM2. Measurements of radiative flux behind the shock wave are realized thanks to time-resolved emission spectroscopy which is calibrated in intensity. As CN violet system is the main radiator in near UV-visible range, we have focused our study on its spectrum. Moreover a physical model, based on a multi-temperature kinetic code and a radiative code, for calculation of non equilibrium radiation behind a shock wave is developed for CO{sub 2}-N{sub 2}-Ar mixtures. Comparisons between experiments and calculations show that standard kinetic models (Park, McKenzie) are inefficient to reproduce our experimental results. Therefore we propose new rate coefficients in particular for the dissociation of CO{sub 2}, showing the way towards a better description of the chemistry of the mixture.

  9. Subsurface Water as Natural CO{sub 2} Sink

    Energy Technology Data Exchange (ETDEWEB)

    Gillon, M. [Centre National de la Recherche Scientifique (UMR CNRS 8148-IDES), Interaction et Dynamique des Environnements de Surface, Universite Paris 11 and Centre National de la Recherche Scientifique (UMR UAPV-INRA EMMAH), Environnement Mediterraneen et Modelisation des Agro-Hydrosystemes, Universite d' Avignon et des Pays de Vaucluse, Avignon, (France); Barbecot, F.; Gibert, E.; Massault, M. [Centre National de La Recherche Scientifique (UMR CNRS 8148-IDES), Interaction et Dynamique des Environnements de Surface, Universite Paris 11 (France)

    2013-07-15

    In aquifer recharge areas, groundwater mineralization acts as an important sink for CO{sub 2} (assessed at 100 Mt{sub co2}/a on a European scale). An isotopic study of C fluxes in the unsaturated zone of a sand carbonate aquifer shows that the physical and geochemical processes controlling CO{sub 2} abstraction induce changes in the isotopic composition of both dissolved and matrix carbonates. An integrated record of these fluxes toward the aquifers is evidenced through isotopic investigation of the recharge areas. It is evidenced that the unsaturated zone represents an archive of pristine conditions, and would help to quantify downward C fluxes and environmental changes related to this CO{sub 2} abstraction process. (author)

  10. MCFC power plant with CO{sub 2} separation

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Noboru [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan)

    1996-12-31

    Fuel cell power plant has been developed for many years with expectation of high system efficiency. In the meantime the gas turbine combined cycle has shown its considerable progress in improving system efficiency. Fuel cell power plant will no longer be attractive unless it exceeds the gas turbine combined cycle at least in the system efficiency. It is said CO{sub 2} separation could improve the efficiency of fuel cell power plant. IHI has developed the CO{sub 2} separator for fuel cell power plant. This study describes that the CO{sub 2} separator can increase the efficiency of the molten carbonate fuel cell (MCFC) power plant by 5% and the expected efficiency reaches 63 % in HHV basis.

  11. CO{sub 2} emission costs and Gas/Coal competition for power production; Prezzi delle emissioni di CO{sub 2} e competivita' gas/carbone per la produzione termoelettrica

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Federico [La Sapienza Univ., Roma (Italy). Dipartimento di Ingegneria Nucleare e Conversioni dell' Energia

    2005-05-01

    This paper demonstrates how a CO{sub 2} emission reduction programme can change the competition between the two power production technologies which will probably dominate the future of the Italian power industry: the coal fired USC steam power plant and the natural gas fired CCGT power plant. An economic value of the CO{sub 2} emission is calculated, in order to make the short-run-marginal-cost (or the long-run-marginal-cost). equal for both technologies, under a CO{sub 2} emission trading scheme and following a single-plant specific CO{sub 2} emission homogenizing approach. [Italian] Si dimostra come un programma teso alla riduzione delle emissioni di CO{sub 2} possa mutare la competivita' tra le due tecnologie per la produzione termoelettrica che saranno dominanti nel prossimo futuro in Italia: le centrali a carbone USC e le centrali CCGT a gas naturale. Si calcola il prezzo delle emissioni di CO{sub 2} per valutare il costo marginale di breve periodo (o il costo marginale di lungo periodo) per entrambe le tecnologie, avvalendosi di un programma di emission trading e utilizzando un approccio di omogeneizzazione delle emissioni di CO{sub 2} specifiche di ogni impianto.

  12. Protection of G2 and G3 against CO{sub 2}; La protection contre le CO{sub 2} des ensembles G.2 et G.3

    Energy Technology Data Exchange (ETDEWEB)

    Chassany, J Ph; Rodier, J [Commissariat a l' Energie Atomique, Service de Protection contre les Radiations, Marcoule (France). Centre d' Etudes Nucleaires

    1961-07-01

    The presence of 60.000 m{sup 3} of CO{sub 2} at 15 kg/cm{sup 2} pressure has made necessary to set up a detection and protection system on a scale equal to that used for ionising radiations. Instruments to check CO and CO{sub 2} in the atmosphere carry out measurements continuously, alarm systems give warning if the CO{sub 2} content increases, and the working areas may be surveyed by a whole series of portable instruments. The order for evacuation is given by sirens, and respiratory units are placed at strategic points along the exit paths. (author) [French] La presence de 60000 m{sup 3} de CO{sub 2} a 15 kg/cm{sup 2} de pression a exige la mise en place d'un dispositif de detection et de protection aussi important que celui realise pour les radiations ionisantes. Des appareils de controle d'ambiance pour le CO et le CO{sub 2} effectuent des mesures en permanence, des appareils d'alarme donnent l'alerte en cas d'augmentation de la teneur en CO{sub 2} et tout une serie d'appareils portatifs permettant la surveillance des chantiers. L'evacuation est demandee par sirene et des appareils respiratoires autonomes jalonnent les trajets vers les sorties. (auteur)

  13. Fabrication, modification and application of (BiO){sub 2}CO{sub 3}-based photocatalysts: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Zilin; Sun, Yanjuan [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067 (China); Zhang, Yuxin [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Dong, Fan, E-mail: dfctbu@126.com [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067 (China)

    2016-03-01

    Graphical abstract: - Highlights: • The (BiO){sub 2}CO{sub 3} with Aurivillius structure y is an emergent material. • Synthesis of (BiO){sub 2}CO{sub 3} micro/nano structures was reviewed. • The mechanisms of (BiO){sub 2}CO{sub 3} based nanocomposites were discussed. • Doping (BiO){sub 2}CO{sub 3} with nonmetals for enhanced activity was highlighted. • Multi-functional applications of (BiO){sub 2}CO{sub 3} based derivatives was demonstrated. - Abstract: (BiO){sub 2}CO{sub 3} (BOC), a fascinating material, belongs to the Aurivillius-related oxide family with an intergrowth texture in which Bi{sub 2}O{sub 2}{sup 2+} layers and CO{sub 3}{sup 2−} layers are orthogonal to each other. BOC is a suitable candidate for various fields, such as healthcare, photocatalysis, humidity sensor, nonlinear optical application and supercapacitors. Recently, the photocatalysis properties of (BiO){sub 2}CO{sub 3} have been gained increased attention. BOC has a wide band gap (3.1–3.5 eV), which constrains its visible light absorption and utilization. In order to enhance the visible light driven photocatalytic performance of BOC, many modification strategies have been developed. According to the discrepancies of different coupling mechanisms, six primary systems of BOC-based nanocomposites can be classified and summarized: namely, metal/BOC heterojunction, single metal oxides (metal sulfides)/BOC heterostructure, bismuth-based metallic acid salts (Bi{sub x}MO{sub y})/BOC, bismuth oxyhalides (BiOX)/BOC, metal-free semiconductor/BOC and the BOC-based complex heterojunction. Doping BOC with nonmetals (C, N and oxygen vacancy) is unique strategy and warrants a separate categorization. In this review, we first give a detailed description of the strategies to fabricate various BOC micro/nano structures. Next, the mechanisms of photocatalytic activity enhancement are elaborated in three parts, including BOC-based nanocomposites, nonmetal doping and formation of oxygen vacancy. The

  14. Computational fluid dynamics modeling and analysis of Pd-based membrane module for CO{sub 2} capture from H{sub 2}/CO{sub 2} binary gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong-Yoon; Park, Myung-June [Ajou University, Suwon (Korea, Republic of); Hwang, Kyung-Ran; Park, Jong-Soo [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-07-15

    A Pd-based membrane module for the capture of CO{sub 2} from a H{sub 2}/CO{sub 2} binary gas mixture was considered, and computational fluid dynamics modeling was used to predict the module performance. Detailed models of momentum and mass balances, including local flux as a function of local linear velocity, satisfactorily described CO{sub 2} fraction in a retentate tube when compared to the experimental data under various feed flow rates. By using the model, several cases having different geometries, including the location and diameter of feed tube and the number and location of the feed and retentate tubes, were considered. Among tested geometries, the case of two feed tubes with each offset by an angle, θ, of 45° from the center line, and a feed tube diameter of 2.45mm showed the increase of the feed flow rate up to 11.80% compared to the reference case while a CO{sub 2} fraction of 90% in the retentate, which was the criterion for effective CO{sub 2} capture in the present study, was guaranteed. This would result in a plausible reduction in capital expenditures for the CO{sub 2} capture process.

  15. Co[sub 2] exchange, environmental productivity indices, and productivity of opuntia ficus-indica under current and elevated CO[sub 2] concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Nobel, P.S.

    1992-01-01

    This project involved placing mature cladodes (flattened stem segments) of Opuntia ficus-indica in growth chambers containing 360 or 720 ppM CO[sub 2]. After nine weeks, the new daughter cladodes initiated on the planted cladodes averaged 7% higher in biomass but 8% less is area, leading to a specific stem mass for this Crassulacean acid metabolism (CAM) species that was 16% higher under the elevated CO[sub 2] condition. This is similar to be less dramatic than the increase in specific leaf mass for C[sub 3] and C[sub 4] plants under elevated CO[sub 2], which generally ranges from 28% to 40%. Another contrast with C[sub 3] and C[sub 4] Plants was the reliance of the new organs of the CAM plant on biomass translocated from existing organs instead of derived directly from current photosynthate. In this regard, 18% less dry weight was translocated from basal cladodes into daughter cladodes of Q. ficus-indica at 720 ppM CO[sub 2] compared with 360 ppM.

  16. Monitoring of CO{sub 2}-emissions in refineries - Analysis of existing systems; Erfassung von CO{sub 2}-Emissionen in Raffinerien - Analyse vorliegender Systeme

    Energy Technology Data Exchange (ETDEWEB)

    Trautwein, W.P.

    2003-09-01

    This report describes six different methods of monitoring and reporting of CO{sub 2}-emissions of refineries and compares these with regard to their suitability for emissions trading. As a result of this study two systems appear to be most suited: 1. ''Study on the monitoring and measurement of greenhouse gas emissions at the plant level in the context of the Kyoto mechanisms'', Center of Clean Air Policy, USA 2. ''The greenhouse gas protocol - a corporate accounting and reporting standard'', World Business Council for Sustainable Development, Switzerland. Essentially the result of this DGMK-Research Report is in agreement with a draft guideline of the EU for emissions trading, which, however, is much more detailed and comprehensive. (orig.)

  17. Analysis of mineral trapping for CO{sub 2} disposal in deep aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Apps, John A.; Pruess, Karsten

    2001-07-20

    CO{sub 2} disposal into deep aquifers has been suggested as a potential means whereby atmospheric emissions of greenhouse gases may be reduced. However, our knowledge of the geohydrology, geochemistry, geophysics, and geomechanics of CO{sub 2} disposal must be refined if this technology is to be implemented safely, efficiently, and predictably. As a prelude to a fully coupled treatment of physical and chemical effects of CO{sub 2} injection, we have analyzed the impact of CO{sub 2} immobilization through carbonate precipitation. A survey of all major classes of rock-forming minerals, whose alteration would lead to carbonate precipitation, indicated that very few minerals are present in sufficient quantities in aquifer host rocks to permit significant sequestration of CO{sub 2}. We performed batch reaction modeling of the geochemical evolution of three different aquifer mineralogies in the presence of CO{sub 2} at high pressure. Our modeling considered (1) redox processes that could be important in deep subsurface environments, (2) the presence of organic matter, (3) the kinetics of chemical interactions between the host rock minerals and the aqueous phase, and (4) CO{sub 2} solubility dependence on pressure, temperature and salinity of the system. The geochemical evolution under both natural background and CO{sub 2} injection conditions was evaluated. In addition, changes in porosity were monitored during the simulations. Results indicate that CO{sub 2} sequestration by matrix minerals varies considerably with rock type. Under favorable conditions the amount of CO{sub 2} that may be sequestered by precipitation of secondary carbonates is comparable with and can be larger than the effect of CO{sub 2} dissolution in pore waters. The precipitation of ankerite and siderite is sensitive to the rate of reduction of ferric mineral precursors such as glauconite, which in turn is dependent on the reactivity of associated organic material. The accumulation of carbonates in

  18. CO{sub 2} CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; J.Tim Cullinane; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas

    2005-01-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Thermodynamic modeling predicts that the heat of desorption of CO{sub 2} from 5m K+/2.5 PZ from 85 kJ/mole at 40 C to 30 kJ/mole at 120 C. Mass transfer modeling of this solvent suggests that carbonate and general salt concentration play a major role in catalyzing the rate of reaction of CO{sub 2} with piperazine. Stripper modeling suggests that with the multipressure stripper, the energy consumption with a generic solvent decreases by 15% as the heat of desorption is decreased from 23.8 to 18.5 kcal/gmol. A second pilot plant campaign with 5m K+/2.5 PZ was successfully completed.

  19. Novel CO{sub 2} capture. Final CRADA Report.

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, S. W.; Energy Systems

    2009-11-30

    The goal of this work was to use electrochemically driven pH control to develop a second generation, enzyme-based contained liquid membrane (CLM) permeator to extract CO{sub 2} from a variety of coal-based flue gas streams more efficiently than does the CLM current design, while achieving performance coincident with DOE targets of less than 45% Cost of electricity (COE) in 2007 and less than 20% COE in 2012. Central to this goal the CLM would be alkaline (>pH 8) at the feed gas side and acid (CO{sub 2} capture and release using Argonne's resin-wafer electrode ionization (RW-EDI) system integrated with Carbozyme's carbonic anhydrase (CA) enzyme. Argonne developed RW-EDI for pH controlled desalination of process streams (e.g. Patents 7,452,920 & 7,306,934). In the current work, Argonne captured CO{sub 2} as HCO{sub 3}{sup -} and released it as CO{sub 2}. The goal is to both capture CO{sub 2} from a simulated flue gas stream and release it within the DOE targets for increase in COE. Initial performance results indicate that the 2012 COE targets are achievable with the developed technology. The design is subject to patent-hold. This task was funded in an exploratory phase, so no process optimization was attempted. Argonne believes that with optimization this performance could be significantly improved.

  20. Sorption of atmospheric gases by bulk lithium metal

    Energy Technology Data Exchange (ETDEWEB)

    Hart, C.A. [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Skinner, C.H., E-mail: cskinner@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Capece, A.M. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Koel, B.E. [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2016-01-15

    Lithium conditioning of plasma facing components has enhanced the performance of several fusion devices. Elemental lithium will react with air during maintenance activities and with residual gases (H{sub 2}O, CO, CO{sub 2}) in the vacuum vessel during operations. We have used a mass balance (microgram sensitivity) to measure the mass gain of lithium samples during exposure of a ∼1 cm{sup 2} surface to ambient and dry synthetic air. For ambient air, we found an initial mass gain of several mg/h declining to less than 1 mg/h after an hour and decreasing by an order of magnitude after 24 h. A 9 mg sample achieved a final mass gain corresponding to complete conversion to Li{sub 2}CO{sub 3} after 5 days. Exposure to dry air resulted in a 30 times lower initial rate of mass gain. The results have implications for the chemical state of lithium plasma facing surfaces and for safe handling of lithium coated components. - Highlights: • Li in tokamaks will react with air during maintenance and exposure to residual gases in the vacuum vessel. • The mass gain of Li samples upon exposure to ambient air indicates conversion to Li{sub 2}CO{sub 3.} • Exposure to dry air resulted in a 30 times lower rate of mass gain. • A rule of thumb for lithium passivation at 26 °C and 45% relative humidity is proposed.

  1. Penn West Energy Trust CO{sub 2} EOR storage monitoring project

    Energy Technology Data Exchange (ETDEWEB)

    Chalaturnyk, R. [Alberta Univ., Edmonton, AB (Canada)

    2007-07-01

    This presentation described Penn West Energy Trust's carbon dioxide (CO{sub 2}) enhanced oil recovery (EOR) storage monitoring project. The project formed part of a royalty credit program that offered a royalty reduction to energy companies as part of a plan to encourage the development of a CO{sub 2} storage industry in Alberta. The multi-agency project is expected to provide a better understanding of the fate of CO{sub 2} injected into petroleum reservoirs and the role that CO{sub 2} storage will play in reducing greenhouse gas (GHG) emissions. The project is located in a reservoir that had previously been waterflooded. High purity CO{sub 2} is injected through 2 directional wells. Data acquired from the field is used to provide information on baseline geology and hydrogeology, as well as to provide details of baseline leakages. Rock properties are investigated in order identify issues affecting rock strength. Geophysical monitoring is conducted to interpret baseline seismic profile datasets as well as to integrate active and passive survey analyses with geochemical characterization studies and reservoir models. The project is currently in the stage of developing a simulation model based on a comprehensive understanding of CO{sub 2} injection mechanisms. The model will be used to predict CO{sub 2} storage capacity and movement. refs., tabs., figs.

  2. What determines the periportal free air, and ligamentum teres and falciform ligament signs on CT: Can these specific air distributions be valuable predictors of gastroduodenal perforation?

    International Nuclear Information System (INIS)

    Choi, A Lam; Jang, Kyung Mi; Kim, Min-Jeong; Koh, Sung Hye; Lee, Yul; Min, Kwangseon; Choi, Dongil

    2011-01-01

    Purpose: The purpose of this retrospective study was to determine what gives rise to the periportal free air, and ligamentum teres and falciform ligament signs on CT in patients with gastrointestinal (GI) tract perforation, and whether these specific air distributions can play a clinically meaningful role in the diagnosis of gastroduodenal perforation. Material and methods: Ninety-three patients who underwent a diagnostic CT scan before laparotomy for a GI tract perforation were included. The readers assessed the presence of specific air distributions on CT (periportal free air, and ligamentum teres and falciform ligament signs). The readers also assessed the presence of strong predictors of gastroduodenal perforation (focal defects in the stomach and duodenal bulb wall, concentrated extraluminal air bubbles in close proximity to the stomach and duodenal bulb, and wall thickening at the stomach and duodenal bulb). The specific air distributions were assessed according to perforation sites, and the elapsed time and amount of free air, and then compared with the strong predictors of gastroduodenal perforation by using statistical analysis. Results: All specific air distributions were more frequently present in patients with gastroduodenal perforation than lower GI tract perforation, but only the falciform ligament sign was statistically significant (p < 0.05). The presence of all three specific air distributions was demonstrated in only 13 (20.6%) of 63 patients with gastroduodenal perforation. Regardless of the perforation sites, the falciform ligament sign was present significantly more frequently with an increase in the amount of free air on multiple logistic regression analysis (adjusted odds ratio, 1.29; p < 0.001). The sensitivity, specificity, accuracy, and positive predictive and negative predictive values of each strong predictor for the diagnosis of gastroduodenal perforation were higher than those of specific air distributions. The focal wall thickening

  3. Northern California CO>2 Reduction Project

    Energy Technology Data Exchange (ETDEWEB)

    Hymes, Edward [C6 Resources LLC, Houston, TX (United States)

    2010-06-16

    C6 Resources LLC, a wholly owned subsidiary of Shell Oil Company, worked with the US Department of Energy (DOE) under a Cooperative Agreement to develop the Northern California CO>2 Reduction Project. The objective of the Project is to demonstrate the viability of using Carbon Capture and Sequestration (CCS) to reduce existing greenhouse gas emissions from industrial sources on a large-scale. The Project will capture more than 700,000 metric tonnes of CO>2 per year, which is currently being vented to the atmosphere from the Shell Martinez Refinery in Contra Costa County. The CO>2 will be compressed and dehydrated at the refinery and then transported via pipeline to a sequestration site in a rural area in neighboring Solano County. The CO>2 will be sequestered into a deep saline formation (more than two miles underground) and will be monitored to assure secure, long-term containment. The pipeline will be designed to carry as much as 1,400,000 metric tonnes of CO>2 per year, so additional capacity will be available to accommodate CO>2 captured from other industrial sources. The Project is expected to begin operation in 2015. The Project has two distinct phases. The overall objective of Phase 1 was to develop a fully definitive design basis for the Project. The Cooperative Agreement with the DOE provided cost sharing for Phase 1 and the opportunity to apply for additional DOE cost sharing for Phase 2, comprising the design, construction and operation of the Project. Phase 1 has been completed. DOE co-funding is provided by the American Recovery and Reinvestment Act (ARRA) of 2009. As prescribed by ARRA, the Project will stimulate the local economy by creating manufacturing, transportation, construction, operations, and management jobs while addressing the need to reduce greenhouse gas emissions at an accelerated pace. The Project, which will also assist in meeting the CO>2 reduction requirements set

  4. Energy consumption and CO{sub 2} emissions in Iran, 2025

    Energy Technology Data Exchange (ETDEWEB)

    Mirzaei, Maryam [Department of Banking and Finance, Multimedia University (Malaysia); Bekri, Mahmoud [Economic and Statistic Institute, Karlsruhe Institute of Technology (Germany)

    2017-04-15

    Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO{sub 2} emissions. A system dynamic model was developed in this study to model the energy consumption and CO{sub 2} emission trends for Iran over 2000–2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO{sub 2} emissions in 2025 will reach 985 million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO{sub 2} emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO{sub 2} emission outlines. - Highlights: • Creation of an energy consumption model using system dynamics. • The effect of different policies on energy consumption and emission reductions. • An ascending trend for the environmental costs caused by CO{sub 2} emissions is observed. • An urgent need for energy saving and emission reductions in Iran.

  5. The integrated CO{sub 2} pilot in the SW of France (oxycombustion and geological storage) : a potential answer to CO{sub 2} mitigation in bitumen production

    Energy Technology Data Exchange (ETDEWEB)

    Aimard, N.; Prebende, C. [Total, Pau (France); Cieutat, D.; Sanchez-Molinero, I.; Tsiava, R. [Air Liquide, Jouy-en-Josas (France)

    2008-10-15

    Carbon capture and storage technologies are promising options in the reduction of greenhouse gas emissions in extra heavy oil production fields. The research centre at Total launched an integrated carbon capture and storage project at Lacq in the southwest of France. It involves the conversion of a steam boiler into an oxy-fuel combustion unit. The pilot plant is expected to emit up to 120,000 tons of carbon dioxide (CO{sub 2}) over a 2-year period. The CO{sub 2} rich flue gas will be cleaned up and compressed and the resulting CO{sub 2} will be conveyed via pipeline to a depleted gas field, where it will be injected into a deep carbonate reservoir. This paper demonstrated that oxycombustion could have some advantages compared to post-combustion for CO{sub 2} capture in terms of energy efficiency for steam generation. It discussed a pilot plant whose objectives were to demonstrate the technical feasibility and reliability of an integrated scheme for steam production including CO{sub 2} capture, transportation, injection and storage, at a reduced scale, typically one tenth of future larger scale facilities. This paper also described how to develop and apply geological storage qualification methodologies, monitoring and verification techniques in a real operational situation to prepare future larger scale long term storage projects. It also presented the characteristics of one of the world's first industrial oxy-combustion units, the 30MWth oxy-gas boiler. It was concluded that the Lacq CO{sub 2} pilot project is a unique challenging project as it integrates both industrial CO{sub 2} capture facilities within an existing gas treatment complex with CO{sub 2} compression, transportation, injection and storage into an onshore gas depleted reservoir. 5 refs., 3 tabs., 9 figs.

  6. Sorption-enhanced steam reforming of ethanol: thermodynamic comparison of CO{sub 2} sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.J.; Santos, J.C.; Cunha, A.F.; Rodrigues, A.E. [University of Porto, Faculty of Engineering, Department of Chemical Engineering, Associated Laboratory LSRE/LCM, Laboratory of Separation and Reaction Engineering, Porto (Portugal); Diaz Alvarado, F.; Gracia, F. [Universidad de Chile, Facultad de Ingenieria, Departamento de Ingenieria Quimica y Biotecnologia, Laboratorio de Catalisis, Santiago (Chile)

    2012-05-15

    A thermodynamic analysis is performed with a Gibbs free energy minimization method to compare the conventional steam reforming of ethanol (SRE) process and sorption-enhanced SRE (SE-SRE) with three different sorbents, namely, CaO, Li{sub 2}ZrO{sub 3}, and hydrotalcite-like compounds (HTlc). As a result, the use of a CO{sub 2} adsorbent can enhance the hydrogen yield and provide a lower CO content in the product gas at the same time. The best performance of SE-SRE is found to be at 500 C with an HTlc sorbent. Nearly 6 moles hydrogen per mole ethanol can be produced, when the CO content in the vent stream is less than 10 ppm, so that the hydrogen produced via SE-SRE with HTlc sorbents can be directly used for fuel cells. Higher pressures do not favor the overall SE-SRE process due to lower yielding of hydrogen, although CO{sub 2} adsorption is enhanced. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. The synthesis of porous Co{sub 3}O{sub 4} micro cuboid structures by solvothermal approach and investigation of its gas sensing properties and catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Saba, E-mail: saba_hrb@yahoo.com [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, 150001 (China); Jing, Xiaoyan [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, 150001 (China); Institute of Advanced Marine Materials, Harbin Engineering University, 150001 (China); Wang, Jun, E-mail: zhqw1888@sohu.com [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, 150001 (China); Li, Songnan; Liu, Jingyuan [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, 150001 (China); Zhang, Milin [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, 150001 (China); Institute of Advanced Marine Materials, Harbin Engineering University, 150001 (China)

    2013-11-15

    Graphical abstract: - Highlights: • Micro cuboid Co{sub 3}O{sub 4} particle prepared by solvothermal method. • Study of morphology of synthesized cuboids before and after calcinations. • Investigation of formation mechanism of porous Co{sub 3}O{sub 4} from cuboid CoCO{sub 3}. • Investigation of gas sensing properties of porous Co{sub 3}O{sub 4}. • Study of catalytic activity of product. - Abstract: The cobalt carbonate cuboids are prepared by adopting a simple solvothermal approach by using diethylene glycol and water in specific ratio as solvent. The prepared cobalt carbonate is subjected to different instrumentation to investigate its morphology and other properties. It is clear from the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) that the product is distinct cuboid in shape with a size of approximately 3 μm from each face of the cube. Each particle of cuboid cobalt carbonate seems to comprise of layer by layer assembly of unit cells that consequently leads to a cuboid geometry. The cuboid cobalt carbonate was calcined at 700 °C in a furnace under argon atmosphere that decompose cobalt carbonate into porous Co{sub 3}O{sub 4} with the loosely packed arrangement of nano architectures. The gas sensing properties and catalytic activity of porous cuboids Co{sub 3}O{sub 4} are also investigated.

  8. The effect of elevated CO{sub 2} concentration on photosynthesis of Sphagnum fuscum

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J; Silvola, J [Joensuu Univ. (Finland). Dept. of Biology

    1997-12-31

    The objectives of the research were to measure photosynthesis of Sphagnum fuscum in long term exposure to four CO{sub 2} levels at semi-natural conditions, to find out if there is an acclimation of net photosynthesis into prevailing CO{sub 2} concentrations and to measure the moisture dependent net photosynthesis at various CO{sub 2} concentrations of samples grown at different CO{sub 2} concentrations

  9. The effect of elevated CO{sub 2} concentration on photosynthesis of Sphagnum fuscum

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J.; Silvola, J. [Joensuu Univ. (Finland). Dept. of Biology

    1996-12-31

    The objectives of the research were to measure photosynthesis of Sphagnum fuscum in long term exposure to four CO{sub 2} levels at semi-natural conditions, to find out if there is an acclimation of net photosynthesis into prevailing CO{sub 2} concentrations and to measure the moisture dependent net photosynthesis at various CO{sub 2} concentrations of samples grown at different CO{sub 2} concentrations

  10. Climate change and air quality - measures with co-benefits in China

    Energy Technology Data Exchange (ETDEWEB)

    Kristin Aunan; Jinghua Fang; Tao Hu; Hans Martin Seip; Haakon Vennemo [Center for International Climate and Environmental Research-Oslo (CICERO) (Norway)

    2006-08-15

    Several studies carried out in China over the past 5-10 years, including the authors own work, have found that many measures aimed primarily at reducing local air pollution decrease GHG emissions as a co-benefit. Conversely, a range of CO{sub 2} mitigation policies entail reductions in air pollution as a co-benefit. This implies that the real costs of climate policies in China may be lower than anticipated by the government. This article describes the links between climate change and air quality issues as well as the health and environmental benefits accruing from alterative measures and policies for CO{sub 2} mitigation in China where coal is expected to remain a main energy source for many years to come. The tremendous potential to cut GHG emissions while simultaneously reducing air pollution should make cooperation on climate control strategies more attractive to China and other countries in a similar position. 43 refs., 3 figs., 1 tab.

  11. CO{sub 2} neutral steam production for the production of bioethanol; CO{sub 2}-neutrale Dampferzeugung fuer die Bioethanolproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Christof; Bruegging, Elmar; Baumkoetter, Daniel [Fachhochschule Muenster (Germany)

    2011-10-15

    Conventional plants for the production of bioethanol use fossil fuels such as heating oil or lignite for the supply of process energy. The authors of the contribution under consideration report on a tightly connection of an agricultural company with a biogas plant with a distillery by means an energy center consisting of two cogeneration plants and a steam generator. With this, a CO{sub 2} neutral fuel is produced from a CO{sub 2} neutral vapor.

  12. Long-lived CO/sub 2/ lasers with distributed heterogeneous catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Browne, P G; Smith, A L.S.

    1974-12-11

    In a sealed CO/sub 2/-N/sub 2/-He system with a clean discharge tube the degree of dissociation of the CO/sub 2/ is greater than 80 percent (with no hydrogen present), and laser action cannot be obtained. If Pt is distributed along the discharge tube walls as a discontinuous film it catalyses back-reactions reforming CO/sub 2/. The degree of dissociation is then less than 40 percent, and efficient laser action at 10.6 ..mu.. is obtained. Using such distributed heterogeneous catalysis, a CO/sub 2/-N/sub 2/-He-Xe laser has operated for more than 3000 h. In this system, both H/sub 2/ and D/sub 2/ are undesirable additives because they decrease the excitation rate of the upper laser level. (auth)

  13. Method to reduce CO.sub.2 to CO using plasmon-enhanced photocatalysis

    Science.gov (United States)

    Huber, George W.; Upadhye, Aniruddha A.; Kim, Hyung Ju; Ro, Insoo; Tejedor-Anderson, M. Isabel

    2017-08-22

    Described is a method of reducing CO.sub.2 to CO using visible radiation and plasmonic photocatalysts. The method includes contacting CO.sub.2 with a catalyst, in the presence of H.sub.2, wherein the catalyst has plasmonic photocatalytic reductive activity when exposed to radiation having a wavelength between 380 nm and 780 nm. The catalyst, CO.sub.2, and H.sub.2 are exposed to non-coherent radiation having a wavelength between 380 nm and 780 nm such that the catalyst undergoes surface plasmon resonance. The surface plasmon resonance increases the rate of CO.sub.2 reduction to CO as compared to the rate of CO.sub.2 reduction to CO without surface plasmon resonance in the catalyst.

  14. Sex-specific responses of Populus yunnanensis exposed to elevated CO{sub 2} and salinity

    Energy Technology Data Exchange (ETDEWEB)

    Ling Li; Yuanbin Zhang; Chunyang Li [Chinese Academy of Sciences. Chengdu Institute of Biology, Chengdu (Switzerland); Jianxun Luo, Sichuan Academy of Forestry, Chengdu (Switzerland)); Korpelainen, H. [Univ. of Helsinki. Dept. of Agricultural Sciences, Helsinki (Finland)

    2013-04-15

    Populus yunnanensis Dode., a native dioecious woody plant in southwestern China, was employed as a model species to study sex-specific morphological, physiological and biochemical responses to elevated CO{sub 2} and salinity. To investigate the effects of elevated CO{sub 2}, salinity and their combination, the cuttings were exposed to two CO{sub 2} regimes (ambient CO{sub 2} and double ambient CO{sub 2}) and two salt treatments in growth chambers. Males exhibited greater downregulation of net photosynthesis rate (A{sub net}) and carboxylation efficiency (CE) than females at elevated CO{sub 2}, whereas these sexual differences were lessened under salt stress. On the other hand, salinity induced a higher decrease in Anet and CE, more growth inhibition and leaf Cl{sup -} accumulation and more damage to cell organelles in females than in males, whereas the sexual differences in photosynthesis and growth were lessened at elevated CO{sub 2}. Moreover, elevated CO{sub 2} exacerbated membrane lipid peroxidation and organelle damage in females but not in males under salt stress. Our results indicated that: (1) females are more sensitive and suffer from greater negative effects than do males under salt stress, and elevated CO{sub 2} lessens the sexual differences in photosynthesis and growth under salt stress; (2) elevated CO{sub 2} tends to aggravate the negative effects of salinity in females; and (3) sex-specific reactions under the combination of elevated CO{sub 2} and salinity are distinct from single-stress responses. Therefore, these results provide evidence for different adaptive responses between plants of different sexes exposed to elevated CO{sub 2} and salinity. (Author)

  15. Isotope effect in the photochemical decomposition of CO{sub 2} (ice) by Lyman-{alpha} radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Chunqing; Yates, John T. Jr. [Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2013-04-21

    The photochemical decomposition of CO{sub 2}(ice) at 75 K by Lyman-{alpha} radiation (10.2 eV) has been studied using transmission infrared spectroscopy. An isotope effect in the decomposition of the CO{sub 2} molecule in the ice has been discovered, favoring {sup 12}CO{sub 2} photodecomposition over {sup 13}CO{sub 2} by about 10%. The effect is caused by electronic energy transfer from the excited CO{sub 2} molecule to the ice matrix, which favors quenching of the heavier electronically-excited {sup 13}CO{sub 2} molecule over {sup 12}CO{sub 2}. The effect is similar to the Menzel-Gomer-Redhead isotope effect in desorption from adsorbed molecules on surfaces when electronically excited. An enhancement of the rate of formation of lattice-trapped CO and CO{sub 3} species is observed for the photolysis of the {sup 12}CO{sub 2} molecule compared to the {sup 13}CO{sub 2} molecule in the ice. Only 0.5% of the primary photoexcitation results in O-CO bond dissociation to produce trapped-CO and trapped-CO{sub 3} product molecules and the majority of the electronically-excited CO{sub 2} molecules return to the ground state. Here either vibrational relaxation occurs (majority process) or desorption of CO{sub 2} occurs (minority process) from highly vibrationally-excited CO{sub 2} molecules in the ice. The observation of the {sup 12}C/{sup 13}C isotope effect in the Lyman-{alpha} induced photodecomposition of CO{sub 2} (ice) suggests that over astronomical time scales the isotope enrichment effect may distort historical information derived from isotope ratios in space wherever photochemistry can occur.

  16. The CO{sub 2} capture performance of a high-intensity vortex spray scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Javed, K.H.; Mahmud, T.; Purba, E. [University of Leeds, Leeds (United Kingdom)

    2010-08-15

    The present study focuses on the enhancement of CO{sub 2} capture efficiency using a high-intensity vortex spray scrubber by imparting swirl to the gas flow, which has the ability to augment the rates of heat and mass transfer. Experimental investigations into the reactive absorption of CO{sub 2} from a mixture of air-CO{sub 2} into an aqueous solution of NaOH in a laboratory-scale counter-current spray scrubber have been carried out. The mass transfer characteristics, in terms of the overall gas phase mass transfer coefficient (K{sub g}a) were investigated for both the swirling and the non-swirling (axial) gas flows through the scrubber in order to quantify the effect of swirl. The effects of the gas/liquid flow rates, flow arrangements, scrubber height and spray nozzle type on the CO{sub 2} capture performance were examined. For both the axial and the swirling flows, the K{sub g}a increases initially with increasing gas flow rate up to a certain limit, beyond which it becomes essentially constant, whereas the K{sub g}a increases continuously with the liquid flow rate within the measured range. The counter-current gas-droplets flow provides higher mass transfer rates compared with those in co-current flow. The K{sub g}a deceases with the increase in the tower height. The spray nozzle producing finer droplets provides enhanced mass transfer rates. It is found that imparting swirl in the gas flow enhances the K(g)a up to around 49% compared with that in axial flows.

  17. Developing strategies for the regeneration of polyethylenimine based CO{sub 2} adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Trevor C. Drage; Karl M. Smith; Ana Arenillas; Colin E. Snape [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2007-07-01

    Adsorption is considered to be one of the more promising technologies for capturing CO{sub 2} from flue gases. The efficient adsorption of CO{sub 2} at low partial pressures, associated with post-combustion capture, require chemical type adsorbents containing basic amine functional groups. It has been demonstrated that amine polymers, for example polyethylenimine (PEI), immobilised on various porous substrates, silica, zeolites and fly ash, are effective adsorbents for CO{sub 2}. When considering the use of adsorption for large scale CO{sub 2} capture, the ease of regeneration and the lifetime of the adsorbents are critical factors in determining their efficiency, cost and therefore feasibility for use. In this paper two approaches, thermal swing adsorption (TSA) cycles over a range of temperatures and time in an atmosphere of CO{sub 2} and thermally assisted pressure swing desorption, are explored for the regeneration of the PEI based adsorbents. The reactions occurring during the TSA regeneration of PEI based adsorbents in an atmosphere of CO{sub 2}, especially the formation of a thermostable complex between PEI and CO{sub 2} above 130{sup o}C are described. Identification of the complex by FTIR, XPS and 13C NMR and its attempted regeneration will be described. Overall, the results from this research have implications for the selection of regeneration strategies of all amine based CO{sub 2} adsorbents. 5 refs., 1 figs., 1 tab.

  18. Experimental hydrate formation and gas production scenarios based on CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, J.C.; Howard, J.J. [ConocoPhillips, Bartlesville, OK (United States). Reservoir Laboratories; Baldwin, B.A. [Green Country Petrophysics LLC, Dewey, OK (United States); Ersland, G.; Husebo, J.; Graue, A. [Bergen Univ., Bergen (Norway). Dept. of Physics and Technology

    2008-07-01

    Gas hydrate production strategies have focused on depressurization or thermal stimulation of the reservoir, which in turn leads to hydrate dissociation. In order to evaluate potential production scenarios, the recovery efficiency of the natural gas from hydrate must be known along with the corresponding amounts of produced water. This study focused on the exchange of carbon dioxide (CO{sub 2}) with the natural gas hydrate and the subsequent release of free methane (CH{sub 4}). Laboratory experiments that investigated the rates and mechanisms of hydrate formation in coarse-grained porous media have shown the significance of initial water saturation and salinity on forming methane hydrates. Many of the experiments were performed in a sample holder fitted with an MRI instrument for monitoring hydrate formation. Hydrate-saturated samples were subjected to different procedures to release methane. The rates and efficiency of the exchange process were reproducible over a series of initial conditions. The exchange process was rapid and efficient in that no free water was observed in the core with MRI measurements. Injection of CO{sub 2} into the whole-core hydrate-saturated pore system resulted in methane production at the outlet end. Permeability measurements on these hydrate saturated cores during hydrate formation decreased to low values, but enough for gas transport. The lower permeability values remained constant during the methane-carbon dioxide exchange process in the hydrate structure. 12 refs., 9 figs.

  19. Study of the Li{sub 2}CO{sub 3} as thermal neutrons detector; Estudio del Li{sub 2}CO{sub 3} como detector de neutrones termicos

    Energy Technology Data Exchange (ETDEWEB)

    Herrera A, E.; Urena N, F.; Delfin L, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)] e-mail: eha@nuclear.inin.mx

    2003-07-01

    The use every day but it frequents of the thermal neutrons in the treatment of tumours, using the neutron capture therapy technique in boron, there is generated the necessity to develop a dosimetric system that allows to evaluate in a reliable way the fluence and consequently the dose of neutrons that it is given in the tumours of the patients. One of the techniques but employees to determine the neutron fluence sub cadmic and epi cadmic in an indirect way, it is the activation of thin sheets of gold undress and covered with cadmium respectively that when being exposed to a neutron beam to the nuclear reaction {sup 197}Au (n, {gamma} ) {sup 198} Au, emitting gamma radiation with an energy of 0.4118 MeV, being this, a disadvantage to be used as dosemeter. On the other hand, when exposing the lithium carbonate to a thermal neutron beam, free radicals of CO{sub 3} that are quantified by the electron paramagnetic resonance technique are generated. This work analyzes those basic parameters that determine if those made up of Li{sub 2}CO{sub 3} complete with the requirements to be used as detectors and/or dosemeters of thermal neutrons. (Author)

  20. Sensitivity of terrestrial ecosystems to elevated atmospheric CO{sub 2}: Comparisons of model simulation studies to CO{sub 2} effect

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Y. [Marine Biological Lab., Woods Hole, MA (United States)

    1995-06-01

    In the context of a project to compare terrestrial ecosystem models, the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP), we have analyzed how three biogeochemistry models link plant growth to doubled atmospheric CO{sub 2}. A common set of input data was used to drive three biogeochemistry models, BIOME-BGC, CENTURY and TEM. For the continental United States the simulation results show that with doubled CO{sub 2}, NPP increased by 8.7%, 5.0% and 10.8% for TEM, CENTURY and BIOME-BGC, respectively. At the biome level the range of NPP estimates varied considerably among models. TEM-simulated enhancement of NPP ranged from 2% to 28%; CENTURY, from 2% to 9%; and BIOME-BGC, from 4% to 27%. A transect analysis across several biomes along a latitude at 41.5 N shows that the TEM-simulated CO{sub 2} enhancement of NPP ranged from 0% to 22%; CENTURY, from 1% to 10% and BIOME-BGC, from 1% to 63%. In this study, we have investigated the underlying mechanisms of the three models to reveal how increased CO{sub 2} affects photosynthesis rate, water using efficiency and nutrient cycles. The relative importance of these mechanisms in each of the three biogeochemistry models will be discussed.

  1. Workshop on capture and sequestration of CO{sub 2} (CCS); Taller sobre captura y secuestro de CO{sub 2} (CCS)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-15

    In this workshop diverse communications related to the capture and sequestration of CO{sub 2} are presented. This workshop was realized in the Technological Museum of the Comision Federal de Electricidad (CFE), in Mexico City on the ninth and tenth of July, 2008, and it had the objective of reflecting the necessity of considering in Mexico the application of the capture and sequestration technologies of CO{sub 2} (CCS), as well as to put in touch the technicians and managers of the Mexican institutions with the world-wide leaders in these technologies and with the managers of companies that are successfully applying CCS technologies. [Spanish] En este taller se presentan diversas ponencias relacionadas con la captura y secuestro de CO{sub 2}. Este taller se realizo en el Museo Tecnologico de la Comision Federal de Electricidad (CFE), en la Ciudad de Mexico, los dias 9 y 10 de julio de 2008 y tuvo como objetivo reflexionar sobre la necesidad de considerar en Mexico, la aplicacion de las tecnologias de captura y secuestro de CO{sub 2} (CCS), asi como poner en contacto a los tecnicos y directivos de las instituciones mexicanas con los lideres mundiales en estas tecnologias y con los directivos de empresas que estan aplicando con exito tecnologias de CCS.

  2. Aminopropyl-functionalized mesoporous silicas as CO{sub 2} adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Knowles, Gregory P.; Graham, Jeremy V.; Delaney, Seamus W.; Chaffee, Alan L. [School of Chemistry, PO Box 23, Monash University, Vic 3800 (Australia)

    2005-10-15

    A range of mesoporous silica substrates were functionalized with 3-aminopropyltrimethoxysilane to form hybrid products suitable for carbon dioxide adsorption. A 'cylindrical pore' model was employed to characterize the extent of surface modification per unit substrate surface area and to permit its comparison on a common basis. The extent of surface functionalisation varied with substrate morphology. Combined DTA/TGA was used to characterise CO{sub 2} adsorption. Substantial reversible CO{sub 2} adsorption capacities were observed under anhydrous conditions (at 20 {sup o}C). In the presence of water, CO{sub 2} capacity was enhanced, but the rate of desorption was diminished. (author)

  3. Effects of CO/sub 2/ and membranes on sporulation in axenic cultures of flax rust. [Melampsora lini

    Energy Technology Data Exchange (ETDEWEB)

    Boasson, R.; Shaw, M.

    1985-01-01

    Uredospore production by axenically grown flax rust (Melampsora lini (Ehrenb.) Lev.) was measured as carotenoids (extinction units at 458 nm) per milligram protein. Sporulation was not affected by raising (flushing with 1-5% (v/v) CO/sub 2/ in air) or lowering (KOH well in culture flasks) the level of CO/sub 2/ in the air space above the cultures. Significant (two- to four-fold) increases in sporulation occurred beneath impermeable membranes of parafilm or Saran wrap placed on the surface of young (3 weeks from seeding) mycelial mats for 2 weeks. The stimulatory effect was confined strictly to those areas of the mycelial mats in contact with the membranes. Both Parafilm and Saran wrap were easily and cleanly peeled away from the mycelial mats. Permeable Unipore and HVHP membranes, to which the fungus adhered strongly, did not stimulate sporulation. The fungus did not adhere to Unipore or HVHP membranes treated with silicone or paraffin oil; membranes thus treated stimulated sporulation. The stimulatory effect of membranes on sporulation appears to depend on the nature of the contact between the membrane surface and the mycelium and to be unrelated to the effect of the membranes on the diffusion of gases or other volatile substances. 11 references, 2 figures, 4 tables.

  4. Natural CO{sub 2} migrations in the South-Eastern Basin of France: implications for the CO{sub 2} storage in sedimentary formations; Contribution a la connaissance des migrations de CO{sub 2} naturel dans le Bassin du Sud-Est de la France: enseignements pour le stockage geologique du CO{sub 2} dans les reservoirs sedimentaires

    Energy Technology Data Exchange (ETDEWEB)

    Rubert, Y.

    2009-03-15

    Study of natural CO{sub 2} analogues brings key informations on the factors governing the long term stability/instability of future anthropogenic CO{sub 2} storages. The main objective of this work, through the study of cores from V.Mo.2 well crosscutting the Montmiral natural reservoir (Valence Basin, France), is to trace the deep CO{sub 2} migrations in fractures. Petrographic, geochemical and micro-thermometric studies of the V.Mo.2 cores were thus performed in order: 1) to describe the reservoir filling conditions and 2) to detect possible CO{sub 2}-leakage through the sediments overlying the reservoir. Fluid inclusions from the Paleozoic crystalline basement record the progressive unmixing of a hot homogeneous aquo-carbonic fluid. The Montmiral reservoir was therefore probably fed by a CO{sub 2}-enriched gas component at the Late Cretaceous-Paleogene. The study of the sedimentary column in V.Mo.2 well, demonstrates that the CO{sub 2} did not migrate towards the surface through the thick marly unit (Domerian-Middle Oxfordian). These marls have acted as an impermeable barrier that prevented the upward migration of fluids. Two main stages of fluid circulation have been recognized: 1) an ante- Callovian one related to the Tethysian extension 2) a tertiary stage during which the upper units underwent a karstification, with CO{sub 2} leakage related but which remained confined into the deeper parts of the Valence Basin. Since the Paleogene, the Montmiral reservoir has apparently remained stable, despite the Pyrenean and alpine orogeneses. This is mainly due to the efficient seal formed by the thick marly levels and also to the local structuration in faulted blocks which apparently acted as efficient lateral barriers. (author)

  5. Distinction between upper and lower gastrointestinal perforation: Usefulness of the periportal free air sign on computed tomography

    International Nuclear Information System (INIS)

    Cho, Hyun Sun; Yoon, Seong Eon; Park, Seong Hoon; Kim, Hyewon; Lee, Young-Hwan; Yoon, Kwon-Ha

    2009-01-01

    Purpose: To evaluate the usefulness of the periportal free air (PPFA) sign on computed tomography (CT) to distinguish upper from lower gastrointestinal (GI) tract perforation. Materials and methods: During a 30-month period, we retrospectively analyzed abdominal CT images of 53 consecutive patients with surgically proven GI tract perforation. We divided the patients into two groups, i.e. upper and lower GI tract perforation groups. According to the distribution of free air, we divided the peritoneal cavity into supramesocolic compartment and inframesocolic compartment. We observed the presence or absence of free air in each compartment in each group. When there was free air in the periportal area, it was defined as periportal free air (PPFA) and the sign was positive. To evaluate the usefulness of the PPFA sign, we compared the PPFA sign with the falciform ligament sign and the ligamentum teres sign, both of which are well-known CT signs of pneumoperitoneum. Statistical analyses were performed with univariate and multivariate analyses using SPSS version 11.5 for significant findings among the CT signs. Results: Free air was seen in supramesocolic compartment in 29 of 30 (97%) patients in the upper GI perforation group and in 17 of 23 (74%) in the lower GI perforation group. Free air in inframesocolic compartment did not show significant difference in either group (p = .16). The PPFA sign was seen in 28 of 30 (93%) patients with upper GI tract perforation, but in only 8 of 23 (35%) patients with lower GI tract perforation (p < .0001). The falciform ligament sign was seen in 24 of 30 (80%) patients with upper GI tract perforation and in 10 of 23 (43%) patients with lower GI tract perforation (p = .020). The ligamentum teres sign was seen in 16 of 30 (53%) patients with upper GI tract perforation and in 2 of 23 (8%) patients with lower GI tract perforation (p = .008). Multivariate logistic regression analysis showed that the PPFA sign was the only variable, which

  6. Distinction between upper and lower gastrointestinal perforation: Usefulness of the periportal free air sign on computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyun Sun; Yoon, Seong Eon; Park, Seong Hoon; Kim, Hyewon; Lee, Young-Hwan [Department of Radiology, Wonkwang University School of Medicine, 344-2 Sinyong-dong, Iksan, Jeonbuk 570-711 (Korea, Republic of); Yoon, Kwon-Ha [Department of Radiology, Wonkwang University School of Medicine, 344-2 Sinyong-dong, Iksan, Jeonbuk 570-711 (Korea, Republic of)], E-mail: khy1646@wonkwang.ac.kr

    2009-01-15

    Purpose: To evaluate the usefulness of the periportal free air (PPFA) sign on computed tomography (CT) to distinguish upper from lower gastrointestinal (GI) tract perforation. Materials and methods: During a 30-month period, we retrospectively analyzed abdominal CT images of 53 consecutive patients with surgically proven GI tract perforation. We divided the patients into two groups, i.e. upper and lower GI tract perforation groups. According to the distribution of free air, we divided the peritoneal cavity into supramesocolic compartment and inframesocolic compartment. We observed the presence or absence of free air in each compartment in each group. When there was free air in the periportal area, it was defined as periportal free air (PPFA) and the sign was positive. To evaluate the usefulness of the PPFA sign, we compared the PPFA sign with the falciform ligament sign and the ligamentum teres sign, both of which are well-known CT signs of pneumoperitoneum. Statistical analyses were performed with univariate and multivariate analyses using SPSS version 11.5 for significant findings among the CT signs. Results: Free air was seen in supramesocolic compartment in 29 of 30 (97%) patients in the upper GI perforation group and in 17 of 23 (74%) in the lower GI perforation group. Free air in inframesocolic compartment did not show significant difference in either group (p = .16). The PPFA sign was seen in 28 of 30 (93%) patients with upper GI tract perforation, but in only 8 of 23 (35%) patients with lower GI tract perforation (p < .0001). The falciform ligament sign was seen in 24 of 30 (80%) patients with upper GI tract perforation and in 10 of 23 (43%) patients with lower GI tract perforation (p = .020). The ligamentum teres sign was seen in 16 of 30 (53%) patients with upper GI tract perforation and in 2 of 23 (8%) patients with lower GI tract perforation (p = .008). Multivariate logistic regression analysis showed that the PPFA sign was the only variable, which

  7. Reduction of CO{sub 2} emission and oil dependency with biomass-based polygeneration

    Energy Technology Data Exchange (ETDEWEB)

    Joelsson, Jonas M; Gustavsson, Leif [Ecotechnology and Environmental Science, Department of Engineering and Sustainable Development, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2010-07-15

    We compare different options for the use of lignocellulosic biomass to reduce CO{sub 2} emission and oil use, focusing on polygeneration of biomass-based motor fuels and electricity, and discuss methodological issues related to such comparisons. The use of biomass can significantly reduce CO{sub 2} emission and oil use, but there is a trade-off between the reductions in CO{sub 2} emission and oil use. Bioelectricity from stand-alone plants replacing coal-based electricity reduced CO{sub 2} emission by 99 kg per GJ biomass input but gave no oil use reduction. Stand-alone produced methanol replacing diesel reduced the CO{sub 2} emission with 38 kg and the oil use with 0.67 GJ per GJ biomass, indicating that a potential CO{sub 2} emission reduction of 90 kg is lost per GJ oil reduced. CO{sub 2} emission and oil use reduction for alternatives co-producing fuel and electricity fall between the stand-alone alternatives. Plug-in hybrid-electric vehicles using bioelectricity reduced CO{sub 2} emission by 75-88 kg and oil use by 0.99-1.2 GJ, per GJ biomass input. Biomass can also reduce CO{sub 2} emission and/or oil use more efficiently if fossil-fuel-fired boilers or electric heating is replaced by district heating from biomass-based combined heat and power generation. This is also true if electricity or motor fuel is produced from black liquor gasification in pulp mills or if wood is used instead of concrete in building construction. Biomass gasification is an important technology to achieve large reductions, irrespective of whether CO{sub 2} emission or oil use reduction is prioritised. (author)

  8. Area 2. Use Of Engineered Nanoparticle-Stabilized CO>2 Foams To Improve Volumetric Sweep Of CO>2 EOR Processes

    Energy Technology Data Exchange (ETDEWEB)

    DiCarlo, David [Univ. of Texas, Austin, TX (United States); Huh, Chun [Univ. of Texas, Austin, TX (United States); Johnston, Keith P. [Univ. of Texas, Austin, TX (United States)

    2015-01-31

    The goal of this project was to develop a new CO>2 injection enhanced oil recovery (CO>2-EOR) process using engineered nanoparticles with optimized surface coatings that has better volumetric sweep efficiency and a wider application range than conventional CO>2-EOR processes. The main objectives of this project were to (1) identify the characteristics of the optimal nanoparticles that generate extremely stable CO>2 foams in situ in reservoir regions without oil; (2) develop a novel method of mobility control using “self-guiding” foams with smart nanoparticles; and (3) extend the applicability of the new method to reservoirs having a wide range of salinity, temperatures, and heterogeneity. Concurrent with our experimental effort to understand the foam generation and transport processes and foam-induced mobility reduction, we also developed mathematical models to explain the underlying processes and mechanisms that govern the fate of nanoparticle-stabilized CO>2 foams in porous media and applied these models to (1) simulate the results of foam generation and transport experiments conducted in beadpack and sandstone core systems, (2) analyze CO>2 injection data received from a field operator, and (3) aid with the design of a foam injection pilot test. Our simulator is applicable to near-injection well field-scale foam injection problems and accounts for the effects due to layered heterogeneity in permeability field, foam stabilizing agents effects, oil presence, and shear-thinning on the generation and transport of nanoparticle-stabilized C/W foams. This report presents the details of our experimental and numerical modeling work and outlines the highlights of our findings.

  9. Violet Grove CO{sub 2} injection project : monitoring with timelapse VSP surveys

    Energy Technology Data Exchange (ETDEWEB)

    Coueslan, M.; Lawton, D. [Calgary Univ., Calgary, AB (Canada); Jones, M. [Schlumberger Canada Ltd., Calgary, AB (Canada)

    2006-07-01

    Several oil and gas fields in western Canada have been depleted through primary production and secondary recovery methods. Injecting carbon dioxide (CO{sub 2}) into a reservoir can enhance oil recovery (EOR) and has the potential benefit of CO{sub 2} sequestration, which reduces greenhouse gas emissions into the atmosphere. It has been estimated that western Canada has a practical CO{sub 2} storage capacity of about 3.3 Gt in its oil and gas reservoirs. In order to claim a reduction in CO{sub 2} emissions, however, the injected CO{sub 2} must be monitored to prove that it is being trapped in these reservoirs. For that reason, the Violet Grove site, near Drayton Valley, Alberta was chosen as a pilot site to study CO{sub 2} injection into a reservoir for enhanced recovery and carbon sequestration purposes. The reservoir is located in the Cardium Formation in the Pembina Field. It was expected that the CO{sub 2} would flow preferentially in the reservoir's dominant fracture orientation, which is northeast-southwest. Simultaneously acquired time-lapse multicomponent surface and borehole seismic surveys were used to monitor changes in the reservoir. Prior to CO{sub 2} injection, a baseline survey was acquired in March 2005. A second survey was acquired 8 months after CO{sub 2} injection. The borehole seismic data displayed higher bandwidth and increased resolution compared to the surface seismic data. The PS-wave borehole seismic data in particular showed much better results. Together, these seismic surveys provide lateral coverage of the area as well as high resolution images near the observation well. Preliminary results from the time-lapse analysis show an increase of 30 to 60 per cent in the reservoir reflectivity amplitudes in the 8 months between the baseline and monitor surveys, suggesting that the CO{sub 2} flood has progressed southwest of the injector, most likely along the dominant fracture trend. 7 refs., 5 figs.

  10. Elevated CO{sub 2} levels and herbivore damage alter host plant preferences

    Energy Technology Data Exchange (ETDEWEB)

    Agrell, J. [Lund Univ., Dept. of Animal Ecology, Lund (Sweden); Anderson, Peter, Swedish Univ. of Agricultural Sciences, Dept. of Crop Sciences, Alnarp (SE)); Oleszek, W.; Stochmal, Anna [Inst. of Soil Science and Plant Cultivation, Dept. of Biochemistry, Pulawy (Poland); Agrell, Cecilia [Lund Univ., Dept. of Chemical Ecology and Ecotoxicology, Lund (Sweden)

    2006-01-01

    Interactions between the moth Spodoptera littoralis and two of its host plants, alfalfa (Medicago sativa) and cotton (Gossypium hirsutum) were examined, using plants grown under ambient (350 ppm) and elevated (700 ppm) CO{sub 2} conditions. To determine strength and effects of herbivore-induced responses assays were performed with both undamaged (control) and herbivore damaged plants. CO{sub 2} and damage effects on larval host plant preferences were determined through dual-choice bioassays. In addition, larvae were reared from hatching to pupation on experimental foliage to examine effects on larval growth and development. When undamaged plants were used S. littoralis larvae in consumed more cotton than alfalfa, and CO{sub 2} enrichment caused a reduction in the preference for cotton. With damaged plants larvae consumed equal amounts of the two plant species (ambient CO{sub 2} conditions), but CO{sub 2} enrichment strongly shifted preferences towards cotton, which was then consumed three times more than alfalfa. Complementary assays showed that elevated CO{sub 2} levels had no effect on the herbivore-induced responses of cotton, whereas those of alfalfa were significantly increased. Larval growth was highest for larvae fed undamaged cotton irrespectively of CO{sub 2} level, and lowest for larvae on damaged alfalfa from the high CO{sub 2} treatment. Development time increased on damaged cotton irrespectively of CO{sub 2} treatment, and on damaged alfalfa in the elevated CO{sub 2} treatment. (au) These results demonstrate that elevated CO2 levels can cause insect herbivores to alter host plant preferences, and that effects on herbivore-induced responses may be a key mechanism behind these processes. Furthermore, since the insects were shown to avoid foliage that reduced their physiological performance, our data suggest that behavioural host plant shifts result in partial escape from negative consequences of feeding on high CO2 foliage. Thus, CO2 enrichment can alter

  11. Effect of the both texture and electrical properties of activated carbon on the CO{sub 2} adsorption capacity

    Energy Technology Data Exchange (ETDEWEB)

    Djeridi, W. [Research Laboratory: Engineering Process and Industrial Systems, National school of Engineers of Gabes, University of Gabes, St Omar Ibn Elkhattab, 6029 Gabes (Tunisia); Chimistry laboratory of Provence, University Aix-Marseille I, II, III- CNRS, UMR 6264, Centre de Saint Jerome, 13397 Marseille (France); Ouederni, A. [Research Laboratory: Engineering Process and Industrial Systems, National school of Engineers of Gabes, University of Gabes, St Omar Ibn Elkhattab, 6029 Gabes (Tunisia); Mansour, N.Ben [National Nanotechnology Research Centre, KACST, Riyadh (Saudi Arabia); Llewellyn, P.L. [Chimistry laboratory of Provence, University Aix-Marseille I, II, III- CNRS, UMR 6264, Centre de Saint Jerome, 13397 Marseille (France); Alyamani, A. [National Nanotechnology Research Centre, KACST, Riyadh (Saudi Arabia); El Mir, L., E-mail: djeridiwahid@yahoo.fr [Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Gabes University, Faculty of Sciences in Gabes, Gabes (Tunisia); Al Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Sciences, Department of Physics, 11623 Riyadh (Saudi Arabia)

    2016-01-15

    Highlights: • A series of activated carbon pellet without binder was prepared by chemical activation. • Carbon dioxide storage isotherm at 30 °C and up to 25 bars was measured for the microporous carbon. • Adsorption enthalpies have been correlated with the carbon dioxide uptake. • Pyrolysis temperature effect on the electrical conductivity of the samples. • Impact of the both texture and electrical properties on CO{sub 2} adsorption capacity have been deducted - Abstract: A series of activated carbon pellets (ACP) based on olive stones were studied for CO{sub 2} storage application. The surface area, pore volume, and pore diameter were evaluated from the analysis of N{sub 2} adsorption isotherm data. The characterization of carbon materials was performed by scanning electron microscopy (SEM), the powder X-ray diffraction (PXRD) and transmission electron microscopy (TEM). The adsorption enthalpies were obtained by microcalorimetry. The effect of pyrolysis temperature on textural, electrical conductivity and gas adsorption capacities of the ACP were investigated by adsorbing CO{sub 2} at 303 K in the pressure range of 0–2.3 MPa. In fact the electrical conductivity is strongly affected by the microporosity of the samples and the size of the micropore. It increases when the pore size decreases which affect the CO{sub 2} adsorption. Also with increases temperature the free electrons concentration on the surface increases which affect the interaction of the adsorbed gas molecules.

  12. Carbonate hydrates of the heavy alkali metals: preparation and structure of Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O und Cs{sub 2}CO{sub 3} . 3 H{sub 2}O; Carbonat-Hydrate der schweren Alkalimetalle: Darstellung und Struktur von Rb{sub 2}CO{sub 3} . 1,5 H{sub 2}O und Cs{sub 2}CO{sub 3} . 3 H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Cirpus, V.; Wittrock, J.; Adam, A. [Koeln Univ. (Germany). Inst. fuer Anorganische Chemie

    2001-03-01

    Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O and Cs{sub 2}CO{sub 3} . 3 H{sub 2}O were prepared from aqueous solution and by means of the reaction of dialkylcarbonates with RbOH and CsOH resp. in hydrous alcoholes. Based on four-circle diffractometer data, the crystal structures were determined (Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O: C2/c (no. 15), Z = 8, a = 1237.7(2) pm, b = 1385.94(7) pm, c = 747.7(4) pm, {beta} = 120.133(8) , V{sub EZ} = 1109.3(6) . 10{sup 6} pm{sup 3}; Cs{sub 2}CO{sub 3} . 3 H{sub 2}O: P2/c (no. 13), Z = 2, a = 654.5(2) pm, b = 679.06(6) pm, c = 886.4(2) pm, {beta} = 90.708(14) , V{sub EZ} = 393.9(2) . 10{sup 6} pm{sup 3}). Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O is isostructural with K{sub 2}CO{sub 3} . 1.5 H{sub 2}O. In case of Cs{sub 2}CO{sub 3} . 3 H{sub 2}O no comparable structure is known. Both structures show {sub {infinity}}{sup 1}[(CO{sub 3}{sup 2-})(H{sub 2}O)]-chains, being connected via additional H{sub 2}O forming columns (Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O) and layers (Cs{sub 2}CO{sub 3} . 3 H{sub 2}O), respectively. (orig.)

  13. Restaurant employment before and after the New York City Smoke-Free Air Act.

    Science.gov (United States)

    Hyland, A; Cummings, K M

    1999-01-01

    The purpose of this study was to observe trends in the number of restaurants and restaurant employees two years before and two years after the New York City Smoke-Free Air Act took effect in April, 1995. Between April 1993 and April 1997, New York City added 19,347 new restaurant jobs (18% increase) while the rest of the state outside the immediate metropolitan area added 7,423 new jobs (5% increase). The rate of growth in the number of restaurants was comparable among New York City, neighboring counties, and the rest of the state. The data suggest that the New York City Smoke-Free Air Act did not result in job losses for the city's restaurant industry.

  14. Pathway of /sup 14/Co/sub 2/ fixation in marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, G V; Karekar, M D [Shivaji Univ., Kolhapur (India). Dept. of Botany

    1973-08-01

    Marine plants have a different metabolic environment which is likely to affect pathways of CO/sub 2/ fixation. It has been observed that in marine alga, Ulva lactuca, during short term light fixation of /sup 14/CO/sub 2/, besides PGA, an appreciable amount of activity was located in aspartate. This curious observation can now be explained on the basis of Hatch, Slack and Kortschak pathway of CO/sub 2/ fixation. In order to trace pathways of /sup 14/CO/sub 2/ in marine algae, a wide variety of algal specimens were exposed to NaH/sup 14/CO/sub 3/ in light and the products were analyzed. The algae selected were Ulva lactuca, Sargassum ilicifolium, Sphacelaria sp., Padina tetrastromatica, Chaetomorpha media and Enteromorpha tubulosa. It has been found that the pathways of CO/sub 2/ in the above marine algae differ from the conventional pattern recorded in Chlorella. The early labelling of aspartate and its subsequent utilization indicates that HSK pathway is operative in the marine algae. Malate synthesis is inhibited due to the effect of saline environment on the activity of malic dehydrogenase. Appreciable label in PGA is suggestive of the fact that Calvin and Bassham pathway as well as the HSK route are simultaneously operating. (auth)

  15. Synthesis of zeolites 'type A' for adsorption of CO{sub 2}; Sintese de zeolitas 'tipo A' para adsorcao de CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, L.O.; Madeira, A.C.; Merlini, A.; Melo, C.R.; Mendes, E.; Santos, M.G.S.; Angioletto, E., E-mail: elidio@unesc.net [Universidade do Extremo Sul Catarinense (IPARQUE/UNESC), Criciuma, SC (Brazil). Parque Cientifico e Tecnologico

    2012-07-01

    The separation of gases is a very expensive step in the chemical industry and unquestionable relevance. In this work it was found the effectiveness of using zeolites of type A in the separation of CO{sub 2} in a gas mixture containing 25% CO{sub 2}, 4% O{sub 2} and 71% N{sub 2} concentrations similar to exhaust gases from combustion processes. To this end, was synthesized using zeolites type A commercial kaolin and mounted to an adsorption column to test the efficiency of zeolites in the adsorption of CO{sub 2}. The synthesized zeolites showed surface area of 66.22m{sup 2}/g. The CO{sub 2} concentration was determined by gas chromatography with TCD detector. Adjusting the data to the Langmuir model, there was obtained the kinetics of adsorption. From these, we found the ability of zeolite to adsorb CO{sub 2} used in the column of 0.461285mg/g. The results of adsorption proved promising and showed maximum adsorption of 78.4% at a time of 10 seconds. (author)

  16. Overview of direct air free cooling and thermal energy storage potential energy savings in data centres

    International Nuclear Information System (INIS)

    Oró, Eduard; Depoorter, Victor; Pflugradt, Noah; Salom, Jaume

    2015-01-01

    In the last years the total energy demand of data centres has experienced a dramatic increase which is expected to continue. This is why data centres industry and researchers are working on implementing energy efficiency measures and integrating renewable energy to overcome energy dependence and to reduce operational costs and CO 2 emissions. The cooling system of these unique infrastructures can account for 40% of the total energy consumption. To reduce the energy consumption, free cooling strategies are used more and more, but so far there has been little research about the potential of thermal energy storage (TES) solutions to match energy demand and energy availability. Hence, this work intends to provide an overview of the potential of the integration of direct air free cooling strategy and TES systems into data centres located at different European locations. For each location, the benefit of using direct air free cooling is evaluated energetically and economically for a data centre of 1250 kW. The use of direct air free cooling is shown to be feasible. This does not apply the TES systems by itself. But when using TES in combination with an off-peak electricity tariff the operational cooling cost can be drastically reduced. - Highlights: • The total annual hours for direct air free cooling in data centres are calculated. • The potential of TES integration in data centres is evaluated. • The implementation of TES to store the ambient air cold is not recommended. • TES is feasible if combined with redundant chillers and off-peak electricity price. • The cooling electricity cost is being reduced up to 51%, depending on the location

  17. CO{sub 2}-mitigation measures through reduction of fossil fuel burning in power utilities. Which road to go?

    Energy Technology Data Exchange (ETDEWEB)

    Kaupp, A. [Energetica International Inc., Suva (Fiji)

    1996-12-31

    Five conditions, at minimum, should be examined in the comparative analysis of CO{sub 2}-mitigation options for the power sector. Under the continuing constraint of scarce financial resources for any private or public investment in the power sector, the following combination of requirements characterise a successful CO{sub 2}-mitigation project: (1) Financial attractiveness for private or public investors. (2) Low, or even negative, long range marginal costs per ton of `CO{sub 2} saved`. (3) High impact on CO{sub 2}-mitigation, which indicates a large market potential for the measure. (4) The number of individual investments required to achieve the impact is relatively small. In other words, logistical difficulties in project implementation are minimised. (5) The projects are `socially fair` and have minimal negative impact on any segment of the society. This paper deals with options to reduce carbonaceous fuel burning in the power sector. Part I explains how projects should be selected and classified. Part II describes the technical options. Since reduction of carbonaceous fuel burning may be achieved through Demand Side Management (DSM) and Supply Side Management (SSM) both are treated. Within the context of this paper SSM does not mean to expand power supply as demand grows. It means to economically generate and distribute power as efficiently as possible. In too many instances DSM has degenerated into efficient lighting programs and utility managed incentives and rebate programs. To what extent this is a desirable situation for utilities in Developing Countries that face totally different problems as their counterparts in highly industrialised countries remains to be seen. Which road to go is the topic of this paper.

  18. Analysis of mineral trapping for CO(sub 2) disposal in deep aquifers; TOPICAL

    International Nuclear Information System (INIS)

    Xu, Tianfu; Apps, John A.; Pruess, Karsten

    2001-01-01

    CO(sub 2) disposal into deep aquifers has been suggested as a potential means whereby atmospheric emissions of greenhouse gases may be reduced. However, our knowledge of the geohydrology, geochemistry, geophysics, and geomechanics of CO(sub 2) disposal must be refined if this technology is to be implemented safely, efficiently, and predictably. As a prelude to a fully coupled treatment of physical and chemical effects of CO(sub 2) injection, we have analyzed the impact of CO(sub 2) immobilization through carbonate precipitation. A survey of all major classes of rock-forming minerals, whose alteration would lead to carbonate precipitation, indicated that very few minerals are present in sufficient quantities in aquifer host rocks to permit significant sequestration of CO(sub 2). We performed batch reaction modeling of the geochemical evolution of three different aquifer mineralogies in the presence of CO(sub 2) at high pressure. Our modeling considered (1) redox processes that could be important in deep subsurface environments, (2) the presence of organic matter, (3) the kinetics of chemical interactions between the host rock minerals and the aqueous phase, and (4) CO(sub 2) solubility dependence on pressure, temperature and salinity of the system. The geochemical evolution under both natural background and CO(sub 2) injection conditions was evaluated. In addition, changes in porosity were monitored during the simulations. Results indicate that CO(sub 2) sequestration by matrix minerals varies considerably with rock type. Under favorable conditions the amount of CO(sub 2) that may be sequestered by precipitation of secondary carbonates is comparable with and can be larger than the effect of CO(sub 2) dissolution in pore waters. The precipitation of ankerite and siderite is sensitive to the rate of reduction of ferric mineral precursors such as glauconite, which in turn is dependent on the reactivity of associated organic material. The accumulation of carbonates in

  19. Technical study of the CO{sub 2} capture process with monoethanolamine for a thermoelectric plant; Estudio tecnico del proceso de captura de CO{sub 2} con monoetanolamina para una planta termoelectrica

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Diaz, Abigail; Franco Nava, Jose Manuel; Peralta Martinez, Maria Vita; Gonzalez Santalo, Jose Miguel [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Franco Lopez, Rogelio; Carreon Silva, Ramon [Comision Federal de Electricidad (Mexico)

    2010-07-01

    Within the frame of the Special Program of Climatic Change (PECC) emitted by the Federal Government, the study of the process of CO{sub 2} capture is carried out post-combustion for application in generating power stations, as a possible alternative to reduce the CO{sub 2} emissions in Mexico. The simulation of the process of CO{sub 2} capture of gases generated by a thermoelectric power plant of 350 MW was carried out, that would use coal as fuel, in the processes simulator ASPEN HYSYS. For this process two columns are required: one of absorption, in which the gases and the solvent enter, that in this case were a solution of monoethanolamine (MEA) at 30%. MEA reacts with the CO{sub 2} contained in gases, retaining it, so that the remaining gases that are emitted to the atmosphere contain no longer MEA and the captured CO{sub 2} passes to the second column where these two components are separated, using thermal energy to regenerate the MEA releasing the CO{sub 2}. The released CO{sub 2} leaves though the upper part of the column and the MEA recovered that is reused in the absorption column, through the bottom. The CO{sub 2} concentration in gases of the combustion is of 14.54% by volume. The simulation was realized defining a capture efficiency of 90%, which threw a thermal power consumption to regenerate MEA of 4.75 GJt/ton CO{sub 2} that would be provided by the thermoelectric power station. Considering a capacity of 280 ton/h (by train) of the gas to be treated the height of the desertion and absorption columns was determined, as well as the MEA solution flow. [Spanish] Dentro del marco del Programa Especial de Cambio Climatico (PECC) emitido por el Gobierno Federal, se lleva a cabo el estudio del proceso de captura de CO{sub 2} poscombustion para aplicacion en centrales generadoras, como una posible alternativa para reducir las emisiones de CO{sub 2} en Mexico. Se llevo a cabo la simulacion del proceso de captura de CO{sub 2} de los gases generados por una

  20. Instrument for continuous supervision of the radioactivity of CO{sub 2} coolant in piles - DCCA -CO{sub 2} (1960); Dispositif de controle continu de la radioactivite du CO{sub 2} de refroidissement des piles - DCCA - CO{sub 2} (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Fitoussi, L. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    This paper describes an apparatus for continuous measurement of CO{sub 2} activity, which can be used on piles cooled by circulation of gas. The first part is devoted mainly to describing the apparatus used and the character of the radioactivity and thermodynamic measurements carried out, and giving the general characteristics of the gas circuit required if the instrument is to be suitably gas-tight. In the second part theoretical calculations are given, particularly on the determination of the ionisation current in an ionisation chamber with circulating gas. Several parameters enter into this determination, such as the mean path of {beta} particles in the ionisation chamber, the linear number of ion pairs formed in the gas by these {beta} particles as a function of their energy, the temperature and pressure of the gas in the ionisation chamber. This part also evaluates the sensitivity areas of the apparatus for measuring the concentrations of radioactive gases such as argon-41 and fission gases from uranium-235 in the CO{sub 2} coolant. In the last part are described the results of measurements performed with such an apparatus on the pile EL2, the special investigations carried out on the CO{sub 2} coolant of this pile, and the information gained during normal operation and during accidents. The DCCA - CO{sub 2} which has just been put in operation at G2 is briefly presented. In the conclusion the possibilities offered by this apparatus are underlined. (author) [French] Ce rapport a pour but de presenter le Dispositif de Controle continu de l'Activite du CO{sub 2} pouvant etre utilise aupres des piles refroidies par une circulation de gaz. La premiere partie du rapport consiste essentiellement a decrire l'ensemble de l'appareillage mis en oeuvre, a preciser la nature des mesures de radioactivite et de thermodynamique effectuees et a citer les caracteristiques generales du circuit de gaz pour avoir un dispositif presentant une etancheite efficace

  1. Instrument for continuous supervision of the radioactivity of CO{sub 2} coolant in piles - DCCA -CO{sub 2} (1960); Dispositif de controle continu de la radioactivite du CO{sub 2} de refroidissement des piles - DCCA - CO{sub 2} (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Fitoussi, L [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    This paper describes an apparatus for continuous measurement of CO{sub 2} activity, which can be used on piles cooled by circulation of gas. The first part is devoted mainly to describing the apparatus used and the character of the radioactivity and thermodynamic measurements carried out, and giving the general characteristics of the gas circuit required if the instrument is to be suitably gas-tight. In the second part theoretical calculations are given, particularly on the determination of the ionisation current in an ionisation chamber with circulating gas. Several parameters enter into this determination, such as the mean path of {beta} particles in the ionisation chamber, the linear number of ion pairs formed in the gas by these {beta} particles as a function of their energy, the temperature and pressure of the gas in the ionisation chamber. This part also evaluates the sensitivity areas of the apparatus for measuring the concentrations of radioactive gases such as argon-41 and fission gases from uranium-235 in the CO{sub 2} coolant. In the last part are described the results of measurements performed with such an apparatus on the pile EL2, the special investigations carried out on the CO{sub 2} coolant of this pile, and the information gained during normal operation and during accidents. The DCCA - CO{sub 2} which has just been put in operation at G2 is briefly presented. In the conclusion the possibilities offered by this apparatus are underlined. (author) [French] Ce rapport a pour but de presenter le Dispositif de Controle continu de l'Activite du CO{sub 2} pouvant etre utilise aupres des piles refroidies par une circulation de gaz. La premiere partie du rapport consiste essentiellement a decrire l'ensemble de l'appareillage mis en oeuvre, a preciser la nature des mesures de radioactivite et de thermodynamique effectuees et a citer les caracteristiques generales du circuit de gaz pour avoir un dispositif presentant une etancheite efficace. Dans la seconde

  2. A macromodel for squeeze-film air damping in the free-molecule regime

    KAUST Repository

    Hong, Gang; Ye, Wenjing

    2010-01-01

    A three-dimensional Monte Carlo(MC) simulation approach is developed for the accurate prediction of the squeeze-film air damping on microresonators in the free-molecule gas regime. Based on the MC simulations and the analytical traveling

  3. Heat recovery from sorbent-based CO.sub.2 capture

    Science.gov (United States)

    Jamal, Aqil; Gupta, Raghubir P

    2015-03-10

    The present invention provides a method of increasing the efficiency of exothermic CO.sub.2 capture processes. The method relates to withdrawing heat generated during the exothermic capture of CO.sub.2 with various sorbents via heat exchange with a working fluid. The working fluid is provided at a temperature and pressure such that it is in the liquid state, and has a vaporization temperature in a range such that the heat arising from the reaction of the CO.sub.2 and the sorbent causes a phase change from liquid to vapor state in whole or in part and transfers heat from to the working fluid. The resulting heated working fluid may subsequently be used to generate power.

  4. CO{sub 2} emission from coal-based electricity generation in Germany; CO{sub 2}-Emissionen aus der Kohleverstromung in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, Hauke; Harthan, Ralph O.

    2014-03-10

    In 2013 the coal based electricity generation has increased, mainly because emission trade can actually not produce an adequate tax effect. From 10 coal-fired power plants in Germany nine use brown coal only one uses hard coal. Productivity analyses show that brown coal-fired plants have higher productivities than gas or hard coal fired power plants, but the CO{sub 2} emissions are significantly higher in case of brown coal. The oldest (older than 40 years) and least efficient brown coal fired power plants are operated in Nordrhein-Westfalen. Germany has committed itself to reduce CO{sub 2} emissions until 2020 by 40% compared to 1990. If this has to be generated by emission trading the prices would have to increase to more than 40 Euro/ton CO{sub 2} long before 2020. Otherwise administrative regulations would be necessary to reach the environmental goal.

  5. Investigation of scleral buckling by CO{sub 2} laser

    Energy Technology Data Exchange (ETDEWEB)

    Maswadi, S

    2001-05-01

    This thesis investigates the effect of using the infrared wavelength CO{sub 2} laser (10.6{mu}m) as a localised heat source for inducing scleral buckling on eyes. Retinal detachment disease is a major cause of blindness and the scleral buckling is an important technique used in treatment. A radio-frequency excited 10.6{lambda}m laser source is used to heat collagen in the sclera above its shrinkage temperature so as to produce a localised indentation and deformation in the human eye (in vitro). Basic measurements of the onset shrinkage temperatures of porcine and human sclera are taken. Optical properties of sclera tissue at 10.6{mu}m are also determined to provide information about the interaction of the CO{sub 2} laser with the sclera. It is found that CO{sub 2} laser radiation is highly absorbed by the scleral water. Optical diffraction technique is investigated to quantify in-plane deformation in the sclera tissue as result of heating by producing grating on porcine and human sclera using the ArF laser (193nm). Photothermal deflection technique is also used to investigate scleral ablation by using the TEA and Ultrapulse CO{sub 2} laser. This technique provides a useful guide to the regime where ablation rather than heat shrinkage of collagen in the sclera will dominate using the Ultrapulse CO{sub 2} laser. A quantitative assessment of buckling using the technique of projection moire interferometry is described which allows a non-contact measurement to be made of the out-of-plane displacement by laser radiation. In-plane surface strain (shrinkage) has also been demonstrated using in-situ optical microscopy of the laser treated eye. The moire method is suitable to obtain information on buckling in real time and to obtain a three-dimensional view of the eye surface as laser treatment proceeds. A theoretical heat flow model is described for predicting the temperature profile produced in the sclera using the Ultrapulse CO{sub 2} laser. For appropriate exposure

  6. CO{sub 2} adsorption in amine-grafted zeolite 13X

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Diôgo P. [GPSA, Universidade Federal do Ceará (Brazil); Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, Campus Ipanguaçu, Rio Grande do Norte (Brazil); Silva, Francisco W.M. da; Moura, Pedro A.S. de; Sousa, Allyson G.S.; Vieira, Rodrigo S. [GPSA, Universidade Federal do Ceará (Brazil); Rodriguez-Castellon, Enrique [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain); Azevedo, Diana C.S., E-mail: diana@gpsa.ufc.br [GPSA, Universidade Federal do Ceará (Brazil)

    2014-09-30

    Highlights: • CO{sub 2} adsorption mechanism in amine-grafted zeolite 13X was investigated. • The loaded amine tends to fill zeolite micropores and most of it is unaccessible to react with CO{sub 2}. • Part of loaded MEA binds covalently to the zeolitic structure and will not detach from the surface even at low pressures. • Chemisorption is likely to lead to CO{sub 2} higher uptakes upon a rise in temperature for solids with the highest amine load. - Abstract: The adsorption of CO{sub 2} on Zeolite 13X functionalized with amino groups was studied. Adsorbent functionalization was carried out by grafting with different loads of monoethanolamine (MEA). The adsorbents were characterized by N{sub 2} adsorption/desorption isotherms at 77 K, x-ray diffraction, TGA, in situ FTIR, XPS and adsorption microcalorimetry. CO{sub 2} isotherms were studied in a gravimetric device up to 10 bar at 298 and 348 K. It was found that increasing loads of amine to the adsorbent tend to reduce micropore volume of the resulting adsorbents by pore blocking with MEA. There is experimental evidence that part of the loaded MEA is effectively covalently bonded to the zeolitic structure, whereas there is also physisorbed excess MEA which will eventually be desorbed by raising the temperature beyond MEA boiling point. Heats of adsorption at nearly zero coverage indicate that some of the adsorbed CO{sub 2} reacts with available amino groups, which agrees with the finding that the adsorption capacity increases with increasing temperature for the modified zeolite with the highest MEA load.

  7. Subtask – CO>2 storage and enhanced bakken recovery research program

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, James [Univ. of North Dakota, Grand Forks, ND (United States); Hawthorne, Steven [Univ. of North Dakota, Grand Forks, ND (United States); Smith, Steven [Univ. of North Dakota, Grand Forks, ND (United States); Braunberger, Jason [Univ. of North Dakota, Grand Forks, ND (United States); Liu, Guoxiang [Univ. of North Dakota, Grand Forks, ND (United States); Klenner, Robert [Univ. of North Dakota, Grand Forks, ND (United States); Botnen, Lisa [Univ. of North Dakota, Grand Forks, ND (United States); Steadman, Edward [Univ. of North Dakota, Grand Forks, ND (United States); Harju, John [Univ. of North Dakota, Grand Forks, ND (United States); Doll, Thomas [Univ. of North Dakota, Grand Forks, ND (United States)

    2014-05-31

    Small improvements in productivity could increase technically recoverable oil in the Bakken Petroleum System by billions of barrels. The use of CO>2 for enhanced oil recovery (EOR) in tight oil reservoirs is a relatively new concept. The large-scale injection of CO>2 into the Bakken would also result in the geological storage of significant amounts of CO>2. The Energy & Environmental Research Center (EERC) has conducted laboratory and modeling activities to examine the potential for CO>2 storage and EOR in the Bakken. Specific activities included the characterization and subsequent modeling of North Dakota study areas as well as dynamic predictive simulations of possible CO>2 injection schemes to predict the potential CO>2 storage and EOR in those areas. Laboratory studies to evaluate the ability of CO>2 to remove hydrocarbons from Bakken rocks and determine minimum miscibility pressures for Bakken oil samples were conducted. Data from a CO>2 injection test conducted in the Elm Coulee area of Montana in 2009 were evaluated with an eye toward the possible application of knowledge gained to future injection tests in other areas. A first-order estimation of potential CO>2 storage capacity in the Bakken Formation in North Dakota was also conducted. Key findings of the program are as follows. The results of the research activities suggest that CO>2 may be effective in enhancing the productivity of oil from the Bakken and that the Bakken may hold the ability to geologically store between 120 Mt and 3.2 Gt of CO>2. However, there are no clear-cut answers regarding the most effective approach for using CO>2 to improve oil productivity or the storage capacity of the Bakken. The results underscore the notion that an unconventional resource will likely require unconventional methods of both assessment and implementation when it comes to the injection of CO

  8. Bioethanol: the new source for growing CO{sub 2} demand?; Bioetanol: a nova fonte para a demanda crescente por CO{sub 2}?

    Energy Technology Data Exchange (ETDEWEB)

    Martynowicz, Emile T.M.J. [Norit Haffmans, Venlo (Netherlands); Mekss, Varidots Dainis Thorvalds [Norit do Brasil Ltda., Sao Paulo, SP (Brazil)

    2009-11-01

    In recent years, while customers demand a more sustainable greener CO{sub 2} source, the worldwide demand for food-grade CO{sub 2} is steadily increasing. In Brazil, a large bio-ethanol producer, the CO{sub 2} from the bio-ethanol production is an alternative. The research focused on the activated carbon filter in a CO{sub 2} recovery plant in respect to its removal efficiency for sulfurous compounds, such as H{sub 2}S and COS. Five different types of activated carbons were investigated both in pilot scale tests as well as in full scale tests. The different adsorption behavior in respect to COS for the activated carbon was attributed to the variance in mineral trace element composition of the activated carbon. Finally, an activated carbon was selected, that could remove H{sub 2}S, DMS and COS concentrations in the low ppm range to levels of less than 20 ppbw, in even more than 50 thermal adsorption/desorption cycles. This activated carbon was tested in a full scale plant and proved to be very suitable for the process conditions encountered in a bioethanol plant. (author)

  9. Saturation, energy consumption, CO{sub 2} emission and energy efficiency from urban and rural households appliances in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Rosas-Flores, Jorge Alberto; Rosas-Flores, Dionicio [Division de Estudios de Posgrado, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria Coyoacan 04510, Mexico, DF (Mexico); Posgrado de Arquitectura, Facultad de Arquitectura, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria Coyoacan 04510, Mexico, DF (Mexico); Galvez, David Morillon [Posgrado de Arquitectura, Facultad de Arquitectura, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria Coyoacan 04510, Mexico, DF (Mexico); Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Ciudad, Universitaria, Coyoacan 04510, Mexico, DF (Mexico)

    2011-01-15

    Energy usage and energy efficiency are of increasing concern in Mexico, electricity generation principally depends upon fossil fuels. On one hand, the stocks of these fuels have been confirmed to be critically limited. On the other hand, in process of electricity generation by means of these fuels, a number of poisonous by-products adversely affect the conservation of natural eco-system. This paper focuses on estimation of energy consumption, energy savings, reduction of emissions of CO{sub 2} for use of urban and rural household appliances in Mexico between 1996 and 2021. The analysis concentrates on six major energy end uses in the residential sector: refrigerators, air conditioners, washing machines, TV set, iron and heater. It is estimated that by 2021 there will be a cumulative saving of 22,605 GWh, as a result of the implementation of government programs on energy efficiency that represents a cumulative reduction of CO{sub 2} emissions of 15,087 Tg CO{sub 2}. It means that Mexico can reduce in 5650 MW the generation capacity of national electricity system, which is to avoid burning 40.35 MM barrels of oil. The findings can be useful to policy makers as well as household appliances users. (author)

  10. Developing a Comprehensive Risk Assessment Framework for Geological Storage CO>2

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Ian [Univ. of Texas, Austin, TX (United States)

    2014-08-31

    The operational risks for CCS projects include: risks of capturing, compressing, transporting and injecting CO₂; risks of well blowouts; risk that CO>2 will leak into shallow aquifers and contaminate potable water; and risk that sequestered CO>2 will leak into the atmosphere. This report examines these risks by using information on the risks associated with analogue activities such as CO>2 based enhanced oil recovery (CO>2-EOR), natural gas storage and acid gas disposal. We have developed a new analysis of pipeline risk based on Bayesian statistical analysis. Bayesian theory probabilities may describe states of partial knowledge, even perhaps those related to non-repeatable events. The Bayesian approach enables both utilizing existing data and at the same time having the capability to adsorb new information thus to lower uncertainty in our understanding of complex systems. Incident rates for both natural gas and CO>2 pipelines have been widely used in papers and reports on risk of CO>2 pipelines as proxies for the individual risk created by such pipelines. Published risk studies of CO>2 pipelines suggest that the individual risk associated with CO2 pipelines is between 10-3 and 10-4, which reflects risk levels approaching those of mountain climbing, which many would find unacceptably high. This report concludes, based on a careful analysis of natural gas pipeline failures, suggests that the individual risk of CO>2 pipelines is likely in the range of 10-6 to 10-7, a risk range considered in the acceptable to negligible range in most countries. If, as is commonly thought, pipelines represent the highest risk component of CCS outside of the capture plant, then this conclusion suggests that most (if not all) previous quantitative- risk assessments of components of CCS may be orders of magnitude to high. The potential lethality of unexpected CO>2 releases

  11. CeNi{sub 3}-type rare earth compounds: crystal structure of R{sub 3}Co{sub 7}Al{sub 2} (R=Y, Gd–Tm) and magnetic properties of {Gd–Er}{sub 3}Co{sub 7}Al{sub 2}, {Tb, Dy}{sub 3}Ni{sub 8}Si and Dy{sub 3}Co{sub 7.68}Si{sub 1.32}

    Energy Technology Data Exchange (ETDEWEB)

    Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-1, Moscow 119991 (Russian Federation); Yapaskurt, V.O. [Department of Petrology, Geological Faculty Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Nirmala, R. [Indian Institute of Technology Madras, Chennai 600 036 (India); Quezado, S.; Malik, S.K. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59082-970 (Brazil)

    2017-03-15

    The crystal structure of new CeNi{sub 3}-type {Y, Gd–Tm}{sub 3}Co{sub 7}Al{sub 2} (P63/mmc. N 194, hP24) compounds has been established using powder X-ray diffraction studies. The magnetism of Tb{sub 3}Ni{sub 8}Si and Dy{sub 3}Ni{sub 8}Si is dominated by rare earth sublattice and the magnetic properties of R{sub 3}Co{sub 7}Al{sub 2} (R =Gd–Er) and Dy{sub 3}Co{sub 7.68}Si{sub 1.32} are determined by both rare earth and cobalt sublattices. Magnetization data indicate ferromagnetic ordering of {Tb, Dy}{sub 3}Ni{sub 8}Si at 32 K and 21 K, respectively. Gd{sub 3}Co{sub 7}Al{sub 2} and Tb{sub 3}Co{sub 7}Al{sub 2} exhibit ferromagnetic ordering at 309 K and 209 K, respectively, whereas Dy{sub 3}Co{sub 7}Al{sub 2}, Ho{sub 3}Co{sub 7}Al{sub 2}, Er{sub 3}Co{sub 7}Al{sub 2} and Dy{sub 3}Co{sub 7.68}Si{sub 1.32} show a field dependent ferromagnetic-like ordering at 166 K, 124 K, 84 K and 226 K, respectively followed by a low temperature transition at 34 K for Dy{sub 3}Co{sub 7}Al{sub 2}, 18 K for Ho{sub 3}Co{sub 7}Al{sub 2}, 56 K for Er{sub 3}Co{sub 7}Al{sub 2}, 155 K and 42 K for Dy{sub 3}Co{sub 7.68}Si{sub 1.32}. Among these compounds, Dy{sub 3}Ni{sub 8}Si shows largest magnetocaloric effect (isothermal magnetic entropy change) of −11.6 J/kg·K at 18 K in field change of 50 kOe, whereas Tb{sub 3}Co{sub 7}Al{sub 2}, Dy{sub 3}Co{sub 7}Al{sub 2} and Dy{sub 3}Co{sub 7.68}Si{sub 1.32} exhibit best permanent magnet properties in the temperature range of 2–5 K with remanent magnetization of 11.95 μ{sub B}/fu, 12.86 μ{sub B}/fu and 14.4 μ{sub B}/fu, respectively and coercive field of 3.0 kOe, 1.9 kOe and 4.4 kOe, respectively. - Highlights: • {Y, Gd–Tm}{sub 3}Co{sub 7}Al{sub 2} compounds crystallize in the CeNi{sub 3}-type structure. • {Gd-Er}{sub 3}Co{sub 7}Al{sub 2} show ferrimagnetic ordering at 309 K, 209 K, 166 K, 124 K and 84 K. • Dy{sub 3}Co{sub 7.68}Si{sub 1.32} exhibits magnetic transitions at 226 K, 155 K and 42 K. • {Tb-Er}{sub 3}Co{sub 7}Al{sub 2

  12. Large-scale column experiment: study of CO{sub 2}, pore water rock reactions and model test case; Experimentation de longue duree sur grandes colonnes, dans le contexte du stockage geologique de CO{sub 2}: etude des interactions eau-roche et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, K.; Turner, G.; Pearce, J.M.; Noy, D.J.; Birchall, D.; Rochelle, C.A. [British Geological Survey, Kingsley Dunham Centre, Keyworth (United Kingdom)

    2005-07-01

    During underground carbon dioxide (CO{sub 2}) storage operations in deep reservoirs, the CO{sub 2} can be trapped in three ways; - as 'free' CO{sub 2}, most likely as a supercritical phase (physical trapping); - dissolved in formation water (hydrodynamic trapping); - precipitated in carbonate phases such as calcite (mineral trapping). This study focuses on the reactions between CO{sub 2}, pore-water and host rock. The aim of this work was to provide a well-constrained long-term laboratory experiment reacting known quantities of minerals with CO{sub 2}-rich fluids, in order to try and represent situations where CO{sub 2} is being injected into lithologies deep underground. The experimental results can then be used as a test case with which to help validate predictive geochemical computer models. These will help improve our ability to predict the long-term fate of carbon dioxide (CO{sub 2}) stored underground. The experiment, though complex in terms of equipment, ran for approximately 7.5 months. The reacted material was then examined for mineralogical changes and the collected fluids analysed to provide data on the fate of the dissolved species. Changes were readily observable on the carbonates present in the starting material, which matches well with the observed trends in the fluid chemistry. However, although changes in silica concentrations were seen in the fluid chemistry no evidence for pitting or etching was noted in the silica bearing phases. Modelling of the experimental systems was performed using the BGS coupled code, PRECIP. As a general conclusion, the model predictions tend to over estimate the degree of reaction compared with the results from the experiment. In particular, some mineral phases (e.g. dawsonite) that are predicted to form in large quantities by the model are not seen at all in the experimental system. The differences between the model predictions and the experimental observations highlight the need for thermodynamic and kinetic

  13. Novel CO>2 Foam Concepts and Injection Schemes for Improving CO>2 Sweep Efficiency in Sandstone and Carbonate Hydrocarbon Formations

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Quoc [Univ. of Texas, Austin, TX (United States). Department of Petroleum & Geosystems Engineering; Hirasaki, George [Rice Univ., Houston, TX (United States). Department of Chemical Engineering; Johnston, Keith [Univ. of Texas, Austin, TX (United States). Department of Chemical Engineering

    2015-02-05

    We explored cationic, nonionic and zwitterionic surfactants to identify candidates that have the potential to satisfy all the key requirements for CO>2 foams in EOR. We have examined the formation, texture, rheology and stability of CO>2 foams as a function of the surfactant structure and formulation variables including temperature, pressure, water/CO2 ratio, surfactant concentration, salinity and concentration of oil. Furthermore, the partitioning of surfactants between oil and water as well as CO>2 and water was examined in conjunction with adsorption measurements on limestone by the Hirasaki lab to develop strategies to optimize the transport of surfactants in reservoirs.

  14. Web-Based vs. Face-to-Face MBA Classes: A Comparative Assessment Study

    Science.gov (United States)

    Brownstein, Barry; Brownstein, Deborah; Gerlowski, Daniel A.

    2008-01-01

    The challenges of online learning include ensuring that the learning outcomes are at least as robust as in the face-to-face sections of the same course. At the University of Baltimore, both online sections and face-to-face sections of core MBA courses are offered. Once admitted to the MBA, students are free to enroll in any combination of…

  15. Investigation into interaction of CO/sub 2/ molecules with zeolites by infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ignat' eva, L A; Levshin, L V; Chukin, G D; Efimenko, L V; Kozlova, T I [Moskovskij Gosudarstvennyj Univ. (USSR). Kafedra Optiki

    1975-07-01

    Interaction of CO/sub 2/ molecules with zeolites, particularly with SrNaJ was studied by infrared-spectroscopy. To obtain infrared-spectra the zeolites were pressed into tablets and were calcinated at 500 deg. In the spectra the bands of chemisorbed CO/sub 2/ absorption were found in the range 1300 - 1600 cm/sup -1/. The CO/sub 2/ molecule was found to be strongly deformed due to chemisorption. In terms of electronic structure of the zeolite crystalline skeleton several types of CO/sub 2/ molecules interaction with different active zeolites were found. The position of the high-frequency band of CO/sub 2/ absorption in zeolites spectra was found to be a linear function of electrostatic field of the cations.

  16. Tradable CO{sub 2} permits in Danish and European energy policy

    Energy Technology Data Exchange (ETDEWEB)

    Varming, S.; Vesterdal, M. [ELSAMPROJEKT A/S (Denmark); Boerre Eriksen, P. [Eltra I/S (Denmark); Grohnheit, P.E.; Nielsen, L. [RISOe (Denmark); Tinggaard Svendsen, G. [Handelshoejskolen i Aarhus (Denmark)

    2000-08-01

    This report presents the results of the project 'Tradable CO{sub 2} permits in Danish and European energy policy'. The project was financed by a grant from the Danish Energy Research Programme 1998 (Grant 1753/98-0002). The project was conducted in co-operation between Elsamprojekt A/S (project manager), Risoe National Laboratory, Aarhus School of Business and I/S Eltra. The three major objectives of the project were: To identify and analyse the economical and political issues that are relevant with regard to the construction of a tradable CO{sub 2} permit market as well as proposing a suitable design for a tradable CO{sub 2} permit market for the energy sector in the EU. Experience from the tradable S{sub O}2 permit market in the US is taken into consideration as well. To present an overview of price estimates of CO{sub 2} and greenhouse gas permits in different models as well as discussing the assumptions leading to the different outcomes. Furthermore, the special role of backstop technologies in relation to permit prices is analysed. To analyse the connection between CO{sub 2} permit prices and technology choice in the energy sector in the medium and longer term (i.e., 2010 and 2020) with a special emphasis on combined heat and power and renewables. In addition, the short-term effects on CO{sub 2} emissions and electricity trade of introducing tradable CO{sub 2} permit with limited coverage (i.e. a national system) as well as complete coverage (i.e. including all the countries) in the Nordic electricity system are analysed. (au)

  17. Tradable CO{sub 2} permits in Danish and European energy policy

    Energy Technology Data Exchange (ETDEWEB)

    Varming, S; Vesterdal, M [ELSAMPROJEKT A/S (Denmark); Boerre Eriksen, P [Eltra I/S (Denmark); Grohnheit, P E; Nielsen, L [RISOe (Denmark); Tinggaard Svendsen, G [Handelshoejskolen i Aarhus (Denmark)

    2000-08-01

    This report presents the results of the project 'Tradable CO{sub 2} permits in Danish and European energy policy'. The project was financed by a grant from the Danish Energy Research Programme 1998 (Grant 1753/98-0002). The project was conducted in co-operation between Elsamprojekt A/S (project manager), Risoe National Laboratory, Aarhus School of Business and I/S Eltra. The three major objectives of the project were: To identify and analyse the economical and political issues that are relevant with regard to the construction of a tradable CO{sub 2} permit market as well as proposing a suitable design for a tradable CO{sub 2} permit market for the energy sector in the EU. Experience from the tradable S{sub O}2 permit market in the US is taken into consideration as well. To present an overview of price estimates of CO{sub 2} and greenhouse gas permits in different models as well as discussing the assumptions leading to the different outcomes. Furthermore, the special role of backstop technologies in relation to permit prices is analysed. To analyse the connection between CO{sub 2} permit prices and technology choice in the energy sector in the medium and longer term (i.e., 2010 and 2020) with a special emphasis on combined heat and power and renewables. In addition, the short-term effects on CO{sub 2} emissions and electricity trade of introducing tradable CO{sub 2} permit with limited coverage (i.e. a national system) as well as complete coverage (i.e. including all the countries) in the Nordic electricity system are analysed. (au)

  18. Effect of oscillation mode on the free-molecule squeeze-film air damping

    KAUST Repository

    Gang Hong,; Wenjing Ye,

    2010-01-01

    A 3D Monte Carlo (MC) simulation approach is developed and employed to study the effect of the oscillation mode on the squeeze-film air damping in the free-molecule regime. By tracking individual gas molecule's motion and its interaction

  19. Simulation of CO>2 Storage

    Energy Technology Data Exchange (ETDEWEB)

    McNabb, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Myers, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    This report is a compilation of Lawrence Livermore National Laboratory’s (LLNL) accomplishments on CO>2 storage simulation and modeling research, performed for the US-­China Clean Energy Research Center (CERC). Within the CERC project management structure, this work is referred to as Subtask 6.4.a Simulation and Modeling. The task falls under CERC’s Advanced Coal Technology Consortium (ACTC) Research Theme 6—CO2 Sequestration Capacity and Near-­Term Opportunities. The goals of the task were to develop new CO>2 sequestration simulation approaches and tools, then apply them to CO>2 storage projects in the U.S. and China. Work on this task paused when funding was redirected to CERC’s other efforts. Two sections of this report provide valuable snapshot of LLNL’s progress when funding was curtailed: 1) Section 5.2.2 is a 14-­page presentation written January 8, 2013; and 2) Section 5.1.3 is a progress report from the first quarter of Fiscal year 2013.

  20. Methanol resistant ruthenium electrocatalysts for oxygen reduction synthesized by pyrolysis of Ru{sub 3}(CO){sub 12} in different atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Altamirano-Gutierrez, A.; Jimenez-Sandoval, O.; Uribe-Godinez, J.; Borja-Arco, E. [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional (Cinvestav), Unidad Queretaro, Apartado Postal 1-798, Queretaro, Qro. 76001 (Mexico); Castellanos, R.H. [Universidad del Papaloapan, Campus Tuxtepec, Circuito Central No. 200, Col. Parque Industrial, Tuxtepec, Oax. 68301 (Mexico); Olivares-Ramirez, J.M. [Universidad Tecnologica de San Juan del Rio, Av. La Palma No. 125, Col. Vista Hermosa, San Juan del Rio, Qro. 76800 (Mexico)

    2009-10-15

    Novel ruthenium electrocatalysts for the oxygen reduction reaction (ORR) were prepared by pyrolysis of Ru{sub 3}(CO){sub 12} in three atmospheres: neutral (N{sub 2}), partially oxidative (air) and partially reductive (70:30 N{sub 2}/H{sub 2}), at temperatures in the 80-700 C range. The materials were characterized by FT-IR spectroscopy, X-ray diffraction and scanning electron microscopy. A thermogravimetric analysis of the Ru{sub 3}(CO){sub 12} precursor in the three atmospheres was also performed. The electrocatalytic properties of the materials were evaluated by rotating disk electrode measurements in 0.5 mol L{sup -1} H{sub 2}SO{sub 4}. The kinetic parameters, such as the Tafel slope, exchange current density and charge transfer coefficient, are reported. The catalysts prepared in N{sub 2} and N{sub 2}/H{sub 2}, in general, show a higher performance than those synthesized in air. In the two nitrogen containing atmospheres, a pyrolysis temperature of 360 C seems to lead to better electrocatalytic properties for the ORR. The new electrocatalysts are also tolerant to methanol concentrations as high as 2.0 mol L{sup -1}. (author)

  1. The CO{sub 2} system in rivers of the Australian Victorian Alps: CO{sub 2} evasion in relation to system metabolism and rock weathering on multi-annual time scales

    Energy Technology Data Exchange (ETDEWEB)

    Hagedorn, Benjamin, E-mail: khagedor@hawaii.edu [School of Geosciences, Monash University, Melbourne Vic. 3800 (Australia); Cartwright, Ian [School of Geosciences, Monash University, Melbourne Vic. 3800 (Australia)

    2010-06-15

    The patterns of dissolved inorganic C (DIC) and aqueous CO{sub 2} in rivers and estuaries sampled during summer and winter in the Australian Victorian Alps were examined. Together with historical (1978-1990) geochemical data, this study provides, for the first time, a multi-annual coverage of the linkage between CO{sub 2} release via wetland evasion and CO{sub 2} consumption via combined carbonate and aluminosilicate weathering. {delta}{sup 13}C values imply that carbonate weathering contributes {approx}36% of the DIC in the rivers although carbonates comprise less than 5% of the study area. Baseflow/interflow flushing of respired C3 plant detritus accounts for {approx}50% and atmospheric precipitation accounts for {approx}14% of the DIC. The influence of in river respiration and photosynthesis on the DIC concentrations is negligible. River waters are supersaturated with CO{sub 2} and evade {approx}27.7 x 10{sup 6} mol/km{sup 2}/a to {approx}70.9 x 10{sup 6} mol/km{sup 2}/a CO{sub 2} to the atmosphere with the highest values in the low runoff rivers. This is slightly higher than the global average reflecting higher gas transfer velocities due to high wind speeds. Evaded CO{sub 2} is not balanced by CO{sub 2} consumption via combined carbonate and aluminosilicate weathering which implies that chemical weathering does not significantly neutralize respiration derived H{sub 2}CO{sub 3}. The results of this study have implications for global assessments of chemical weathering yields in river systems draining passive margin terrains as high respiration derived DIC concentrations are not directly connected to high carbonate and aluminosilicate weathering rates.

  2. Do international flights promote FDI? : the role of face-to-face communication

    OpenAIRE

    Tanaka, Kiyoyasu

    2016-01-01

    Air transportation facilitates face-to-face interactions across borders for the spatial expansion of manufacturing production. I investigate the impact of international flights on FDI entry by Japanese firms. I find that FDI entry significantly increases with the weekly frequency of flights from Japan, and the positive impact increases with a proxy for an intensity of face-to-face communication between the parent firm and foreign affiliate. The results are robust to estimation methods, additi...

  3. PCM-air heat exchangers for free-cooling applications in buildings: Experimental results of two real-scale prototypes

    International Nuclear Information System (INIS)

    Lazaro, Ana; Dolado, Pablo; Marin, Jose M.; Zalba, Belen

    2009-01-01

    Latent heat storage using phase change materials (PCM) can be used for free-cooling. In this application low air temperature is used to solidify the PCM during the night and then during the next day, the inside air of a building can be cooled down by exchanging heat with PCM. Short times for charging and discharging the PCM are required. PCM have in general low thermal conductivity, therefore the heat exchanger design is very important to fulfil free-cooling requirements. This paper presents an experimental setup for testing PCM-air real-scale heat exchangers and the results for two real-scale prototypes. Results show that a heat exchanger using a PCM with lower thermal conductivity and lower total stored energy, but adequately designed, has higher cooling power and can be applied for free-cooling

  4. CO{sub 2} capture by adsorption with nitrogen enriched carbons

    Energy Technology Data Exchange (ETDEWEB)

    M.G. Plaza; C. Pevida; A. Arenillas; F. Rubiera; J.J. Pis [Instituto Nacional del Carbon (CSIC), Oviedo (Spain)

    2007-09-15

    The success of CO{sub 2} capture with solid sorbents is dependent on the development of a low cost sorbent with high CO{sub 2} selectivity and adsorption capacity. Immobilised amines are expected to offer the benefits of liquid amines in the typical absorption process, with the added advantages that solids are easy to handle and that they do not give rise to corrosion problems. In this work, different alkylamines were evaluated as a potential source of basic sites for CO{sub 2} capture, and a commercial activated carbon was used as a preliminary support in order to study the effect of the impregnation. The amine coating increased the basicity and nitrogen content of the carbon. However, it drastically reduced the microporous volume of the activated carbon, which is chiefly responsible for CO{sub 2} physisorption, thus decreasing the capacity of raw carbon at room temperature. 33 refs., 7 figs., 3 tabs.

  5. CO{sub 2} in underground openings and mine rescue training

    Energy Technology Data Exchange (ETDEWEB)

    Weyer, J. [Freiburg Univ. of Mining and Technology (Germany). Inst. of Mining Engineering and Special Civil Engineering

    2010-07-01

    Mine rescue training procedures related to dangerous gases in mines were discussed. Methods of detecting carbon dioxide (CO{sub 2}) in abandoned opening and old adits were presented. High concentrations of CO{sub 2} combine with hemoglobin and lead to a lack of oxygen supply to the inner organs. Nitric acid forms in the alveoli and can lead to injuries or death after a period of 4 to 12 hours. Exposure to very high concentrations of CO{sub 2} can cause people to immediately lose consciousness. CO{sub 2} concentrations in the blood can change pH blood values. Members of mine rescue teams should be equipped with breathing equipment and be between 18 and 40 years old. Training rescue operations should be conducted 4 times per year. While larger mines have their own rescue teams, smaller mines must ensure that guest rescue teams are familiar with their mines. Various mine training activities were reviewed. 5 refs.

  6. Novel Inorganic/Polymer Composite Membranes for CO>2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Ho, W.S. Winston [The Ohio State Univ., Columbus, OH (United States). Depts. of Chemical and Biomolecular Engineering, Chemistry, and Materials Science and Engineering; Dutta, Prabir K. [The Ohio State Univ., Columbus, OH (United States). Depts. of Chemical and Biomolecular Engineering, Chemistry, and Materials Science and Engineering; Schmit, Steve J. [Gradient Technology, Elk River, MN (United States)

    2016-10-01

    The objective of this project is to develop a cost-effective design and manufacturing process for new membrane modules that capture CO>2 from flue gas in coal-fired power plants. The membrane consisted of a thin selective layer including inorganic (zeolite) embedded in a polymer structure so that it can be made in a continuous manufacturing process. The membrane was incorporated in spiral-wound modules for the field test with actual flue gas at the National Carbon Capture Center (NCCC) in Wilsonville, AL and bench scale tests with simulated flue gas at the Ohio State University (OSU). Using the modules for post-combustion CO>2 capture is expected to achieve the DOE target of $40/tonne CO>2 captured (in 2007 dollar) for 2025. Membranes with the amine-containing polymer cover layer on zeolite-Y (ZY) nanoparticles deposited on the polyethersulfone (PES) substrate were successfully synthesized. The membranes showed a high CO>2 permeance of about 1100 GPU (gas permeation unit, 1 GPU = 10-6 cm3 (STP)/(cm2 • s • cm Hg), 3000 GPU = 10-6 mol/(m2 • s • Pa)) with a high CO>2/N2 selectivity of > 200 at the typical flue gas conditions at 57°C (about 17% water vapor in feed gas) and > 1400 GPU CO>2 permeance with > 500 CO>2/N2 selectivity at 102°C (~ 80% water vapor). The synthesis of ZY nanoparticles was successfully scaled up, and the pilot-scale membranes were also successfully fabricated using the continuous membrane machine at OSU. The transport performance of the pilot-scale membranes agreed reasonably well with the lab-scale membranes. The results from both the lab-scale and scale-up membranes were used for the techno-economic analysis. The scale-up membranes were fabricated into prototype spiral-wound membrane modules for continuous testing with simulated or real flue gas. For real flue gas testing, we worked with NCCC, in

  7. Chemical and Molecular Descriptors for the Reactivity of Amines with CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Anita S.; Kitchin, John R.

    2012-10-24

    Amine-based solvents are likely to play an important role in CO{sub 2} capture applications in the future, and the identification of amines with superior performance will facilitate their use in CO{sub 2} capture. While some improvements in performance will be achieved through process modifications, modifying the CO{sub 2} capture performance of an amine also implies in part an ability to modify the reactions between the amine and CO{sub 2} through development of new functionalized amines. We present a computational study of trends in the reactions between CO{sub 2} and functionalized amines with a focus on identifying molecular descriptors that determine trends in reactivity. We examine the formation of bicarbonate and carbamate species on three classes of functionalized amines: alkylamines, alkanolamines, and fluorinated alkylamines including primary, secondary and tertiary amines in each class. These functional groups span electron-withdrawing to donating behavior, hydrogen-bonding, extent of functionalization, and proximity effects of the functional groups. Electron withdrawing groups tend to destabilize CO{sub 2} reaction products, whereas electron-donating groups tend to stabilize CO{sub 2} reaction products. Hydrogen bonding stabilizes CO{sub 2} reaction products. Electronic structure descriptors based on electronegativity were found to describe trends in the bicarbonate formation energy. A chemical correlation was observed between the carbamate formation energy and the carbamic acid formation energy. The local softness on the reacting N in the amine was found to partially explain trends carbamic acid formation energy.

  8. Sensitive method for continuous air monitoring for /sup 14/C and /sup 3/H. Empfindliches verfahren zur koninuierlichen C-14 und H-3 luftueberwachung

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, J.; Weiss, W.

    1976-07-01

    In the monitoring of air for /sup 14/C and /sup 3/H the necessary sensitivity cannot be achieved by direct measurement, but only through continuous sampling and scintillation spectroscopy. The two radionuclides are separated from each other at the time of sampling. In addition, by a catalytic reaction over CuO at 600/sup 0/C, a differentiation is achieved between tritiated atmospheric water vapor (HTO), /sup 14/CO/sub 2/ and other isotopically labeled substances contained in the air. Tritium is obtained in the form of water and /sup 14/C as Na/sub 2//sup 14/CO/sub 3/. Radioactivity is measured in a scintillation spectrometer. For tritium this method has a detection limit of 0.8 pCi/m/sup 3/ or air, and for C/sup 14/ 0.6 pCi/m/sup 3/ of air. These values correspond to 15 to 30% of the mean background concentration for HTO and /sup 14/CO/sub 2/ observed up to the present.

  9. Oxyfuel technologies for CO{sub 2} capture : a techno-economic overview

    Energy Technology Data Exchange (ETDEWEB)

    Simmonds, M. [BP Exploration, Sunbury on Thames (United Kingdom); Miracca, I. [Snamprogetti SPA, San Donato Milanese (Italy); Gerdes, K. [ChevronTexaco, Richmond, CA (United States)

    2005-07-01

    This paper reviewed various oxyfuel combustion technologies developed by the CO{sub 2} Capture Project (CCP), a joint partnership of 8 major energy companies. Over the last 3 years, the CCP has conducted several studies focusing on oxyfuel combustion in order to assess the potential application of oxyfuel combustion technologies for heat and power production systems. Studies on oxyfuel firing using cryogenically supplied oxygen and flue gas recycle as a means of moderating combustion temperature have been proven, and are now being used as a baseline case for the retrofitting of process heaters and boilers. The cost of CO{sub 2} capture using cryogenically supplied oxygen is expected to range between $35 to $45 per tonne. Studies examining the application of pure oxygen firing to gas turbines have suggested that significant development is needed by turbine manufacturers to incorporate the use of new materials capable of operating at the high temperatures needed to avoid unacceptable reductions in energy efficiency. A new generation of oxygen production techniques using ceramic membrane technologies may significantly reduce the unit cost of oxygen production, which will in turn have an impact on the cost of CO{sub 2} capture. An additional CCP study suggested that significant markets for exported power are needed to ensure the commercialization of ion transport membranes in the retrofitting of existing heaters and boilers. The most significant research and development effort in oxyfuel technologies to date has centred on the development of a chemical looping combustion (CLC) concept. The CLC technology is based on using mixed metal oxide pellets as a carrier for transferring oxygen from combustion air to the fuel. The technology uses 2 fluidized bed reactors for a continuous circulation of solids. Key risks associated with the technology centre on the production of mixed metal oxide materials which are capable of withstanding repeated oxidation and reduction cycles

  10. Formation, stability and structural characterization of ternary MgUO{sub 2}(CO{sub 3}){sub 3}{sup 2-} and Mg{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun-Yeop; Yun, Jong-Il [KAIST, Daejeon (Korea, Republic of). Dept. of Nuclear and Quantum Engineering; Vespa, Marika; Gaona, Xavier; Dardenne, Kathy; Rothe, Joerg; Rabung, Thomas; Altmaier, Marcus [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Nuclear Waste Disposal

    2017-06-01

    The formation of ternary Mg-UO{sub 2}-CO{sub 3} complexes under weakly alkaline pH conditions was investigated by time-resolved laser fluorescence spectroscopy (TRLFS) and extended X-ray absorption fine structure (EXAFS) and compared to Ca-UO{sub 2}-CO{sub 3} complexes. The presence of two different Mg-UO{sub 2}-C{sub 3} complexes was identified by means of two distinct fluorescence lifetimes of 17±2 ns and 51±2 ns derived from the multi-exponential decay of the fluorescence signal. Slope analysis in terms of fluorescence intensity coupled with fluorescence intensity factor as a function of log [Mg(II)] was conducted for the identification of the Mg-UO{sub 2}-CO{sub 3} complexes forming. For the first time, the formation of both MgUO{sub 2}(CO{sub 3}){sub 3}{sup 2-} and Mg{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) species was confirmed and the corresponding equilibrium constants were determined as log β {sub 113}=25.8±0.3 and β {sub 213}=27.1±0.6, respectively. Complementarily, fundamental structural information for both Ca-UO{sub 2}-CO{sub 3} and Mg-UO{sub 2}-CO{sub 3} complexes was gained by extended EXAFS revealing very similar structures between these two species, except for the clearly shorter U-Mg distance (3.83 Aa) compared with U-Ca distance (4.15 Aa). These results confirmed the inner-sphere character of the Ca/Mg-UO{sub 2}-CO{sub 3} complexes. The formation constants determined for MgUO{sub 2}(CO{sub 3}){sub 3}{sup 2-} and Mg{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) species indicate that ternary Mg-UO{sub 2}-CO{sub 3} complexes contribute to the relevant uranium species in carbonate saturated solutions under neutral to weakly alkaline pH conditions in the presence of Mg(II) ions, which will induce notable influences on the U(VI) chemical species under seawater conditions.

  11. Applying the Theory of Planned Behavior to Explore the Relation between Smoke-Free Air Laws and Quitting Intentions

    Science.gov (United States)

    Macy, Jonathan T.; Middlestadt, Susan E.; Seo, Dong-Chul; Kolbe, Lloyd J.; Jay, Stephen J.

    2012-01-01

    Smoke-free air policies have been shown to reduce smoking, but the mechanism of behavior change is not well understood. The authors used structural equation modeling to conduct a theory of planned behavior analysis with data from 395 smokers living in seven Texas cities, three with a comprehensive smoke-free air law and four without a…

  12. Elevated temperature and CO{sub 2} concentration effects on xylem anatomy of Scots pine

    Energy Technology Data Exchange (ETDEWEB)

    Kilpelainen, A.; Gerendiain, A.Z.; Luostarinen, K.; Peltola, H.; Kellomaki, S. [Joensuu Univ., Joensuu (Finland). Faculty of Forestry

    2007-09-15

    The effects of carbon dioxide (CO{sub 2}) concentrations and elevated temperatures on the xylem anatomy of 20-year old Scots pine trees were investigated. The experiment was conducted in 16 chambers containing 4 trees each with a factorial combination of both ambient and elevated CO{sub 2} concentrations and 2 different temperature regimes. CO{sub 2} concentrations were doubled with a corresponding increase of between 2 and 6 degrees C according to each season over a period of 6 years. The study showed that elevated CO{sub 2} concentrations increased the ring width in 4 of the 6 analyzed treatment years. Earlywood width increased during the first 2 years of the experiment, while latewood width increased during the third year of the study. The study also showed that the tracheid walls in both the latewood and earlywood samples were thicker when either temperature levels or CO{sub 2} levels were increased. It was noted that combined CO{sub 2} and temperature elevations resulted in thinner tracheid walls. However, latewood tracheid lumen diameters were larger in all CO{sub 2} and temperature treatments than trees grown in ambient conditions. It was concluded that xylem anatomy was impacted more by increases in temperature than by elevated CO{sub 2} concentrations. 48 refs., 2 tabs., 6 figs.

  13. Free-air ionization chamber, FAC-IR-300, designed for medium energy X-ray dosimetry

    International Nuclear Information System (INIS)

    Mohammadi, S.M.; Tavakoli-Anbaran, H.; Zeinali, H.Z.

    2017-01-01

    The primary standard for X-ray photons is based on parallel-plate free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) is tried to design and build the free-air ionization chamber, FAC-IR-300, for low and medium energy X-ray dosimetry. The main aim of the present work is to investigate specification of the FAC-IR-300 ionization chamber and design it. FAC-IR-300 dosimeter is composed of two parallel plates, a high voltage (HV) plate and a collector plate, along with a guard electrode that surrounds the collector plate. The guard plate and the collector were separated by an air gap. For obtaining uniformity in the electric field distribution, a group of guard strips was used around the ionization chamber. These characterizations involve determining the exact dimensions of the ionization chamber by using Monte Carlo simulation and introducing correction factors.

  14. Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area. Annual report, September 1, 1996--August 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Schechter, D.S.

    1998-07-01

    The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the second year of the five-year project for each of the four areas. In the first area, the author has completed the reservoir characterization, which includes matrix description and detection (from core-log integration) and fracture characterization. This information is found in Section 1. In the second area, the author has completed extensive inhibition experiments that strongly indicate that the weakly water-wet behavior of the reservoir rock may be responsible for poor waterflood response observed in many Spraberry fields. In the third area, the author has made significant progress in analytical and numerical simulation of performance in Spraberry reservoirs as seen in Section 3. In the fourth area, the author has completed several suites of CO{sub 2} gravity drainage in Spraberry and Berea whole cores at reservoir conditions and reported in Section 4. The results of these experiments have been useful in developing a model for free-fall gravity drainage and have validated the premise that CO{sub 2} will recover oil from tight, unconfined Spraberry matrix. The final three years of this project involves implementation of the CO{sub 2} pilot. Up to twelve new wells are planned in the pilot area; water injection wells to contain the CO{sub 2}, three production wells to monitor performance of CO{sub 2}, CO{sub 2} injection wells including one horizontal injection well and logging observation wells to monitor CO{sub 2} flood fronts. Results of drilling

  15. Study on CO{sub 2} absorption enhancement by adding active carbon particles into MEA solution

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Juan; Sun, Rui; Ma, Lian; Sun, Shaozeng [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

    2013-07-01

    The chemical absorption of CO{sub 2} is generally recognized as the most efficient post-combustion technology of CO{sub 2} separation at present. A study on CO{sub 2} absorption enhancement by adding small particles of active carbon into MEA solution is investigated within a self-designed glass stirring tank. Experiments of different particle loadings and different particle sizes have been conducted. When active carbon particle concentration is fewer, compared to the absorption rate of CO{sub 2} gas absorbed by MEA aqueous solution, the role of active carbon adsorption CO{sub 2} gas is negligible. The enhancement efficiency of CO{sub 2} absorption could be improved by 10% to the upmost in this liquid-particle system.

  16. Production of hydrogen using the combination of water-gas shift and carbonatation reaction of a CO{sub 2} absorbent; Produccion de hidrogeno mediante la combinacion de las reacciones de desplazamiento de agua y carbonatacion de un absorbente de CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo-Bretado, M. A.; Ponce-Pena, P. [Facultad de Ciencias Quimicas, UJED, Durango, Durango (Mexico)]. E-mail: miguel.escobedo@ujed.mx; Delgado-Vigil, M. D.; Salinas-Gutierrez, J. M.; Lopez Ortiz, A.; Collins-Martinez, V.H. [Centro de Investigacion en Materiales Avanzados, S.C., Chihuahua, Chihuahua (Mexico)

    2009-09-15

    The production of hydrogen by the water-gas shift (WGS) normally requires multiple catalytic reactions followed by the separation of CO{sub 2} to obtain highly pure H{sub 2}. Nevertheless, using the combination of the WGS reaction and the solid-gas reaction between CO{sub 2} and an absorbent, the production of H{sub 2} and the separation of CO{sub 2} can be accomplished in a single step AEWGS (Absorption Enhanced Water Gas Shift). This combination of reactions was studied at the laboratory scale using a quartz fixed-bed reactor. The absorbents tested were calcined dolomite (CaO*MgO) and sodium zirconate (Na{sub 2}ZrO{sub 3}) in catalyst/absorbent mixtures (cat/abs) with weight ratios of 1/1, 1/2 and 2/1, using a high-temperature catalyst from the WGS reaction, synthesized in the laboratory (Fe-Cr). All the tests used 3cm{sup 3} of cat/abs, composed of 5% CO, 15% H{sub 2}O, 10.5% He and 69.5% N{sub 2}, with a spatial velocity (SV) of 1500h-1, 600 degrees Celsius and atmospheric pressure. The catalyst presented 100% conversion of CO to CO{sub 2}, maintaining its surface area after the reaction (12 m{sup 2}/g). The results with a dry base using the cat/abs mixture of 1/2 and CaO*MgO generated 95% H{sub 2} with 5% CO-free CO{sub 2}, while with Na{sub 2}ZrO{sub 3}, the maximum concentration of H{sub 2} was 70%, with 29% CO{sub 2} and 1% of CO without reacting. The results using only CaO*MgO (as a bifunctional material) presented a maximum H{sub 2} concentration of 96% and a minimum of 4% CO{sub 2}, as well as 7% CO without reaction, which was attributed to kinetic effects. [Spanish] La produccion de hidrogeno mediante la reaccion de desplazamiento de agua WGS (Water Gas Shift), normalmente requiere de multiples reacciones cataliticas seguidas por la separacion de CO{sub 2} para obtener H{sub 2} de alta pureza. Sin embargo mediante la combinacion de la reaccion WGS con la reaccion solido-gas entre el CO{sub 2} y un absorbente provee la oportunidad de producir H2 y

  17. Cost Implications of Uncertainty in CO{sub 2} Storage Resource Estimates: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Steven T., E-mail: sanderson@usgs.gov [National Center, U.S. Geological Survey (United States)

    2017-04-15

    Carbon capture from stationary sources and geologic storage of carbon dioxide (CO{sub 2}) is an important option to include in strategies to mitigate greenhouse gas emissions. However, the potential costs of commercial-scale CO{sub 2} storage are not well constrained, stemming from the inherent uncertainty in storage resource estimates coupled with a lack of detailed estimates of the infrastructure needed to access those resources. Storage resource estimates are highly dependent on storage efficiency values or storage coefficients, which are calculated based on ranges of uncertain geological and physical reservoir parameters. If dynamic factors (such as variability in storage efficiencies, pressure interference, and acceptable injection rates over time), reservoir pressure limitations, boundaries on migration of CO{sub 2}, consideration of closed or semi-closed saline reservoir systems, and other possible constraints on the technically accessible CO{sub 2} storage resource (TASR) are accounted for, it is likely that only a fraction of the TASR could be available without incurring significant additional costs. Although storage resource estimates typically assume that any issues with pressure buildup due to CO{sub 2} injection will be mitigated by reservoir pressure management, estimates of the costs of CO{sub 2} storage generally do not include the costs of active pressure management. Production of saline waters (brines) could be essential to increasing the dynamic storage capacity of most reservoirs, but including the costs of this critical method of reservoir pressure management could increase current estimates of the costs of CO{sub 2} storage by two times, or more. Even without considering the implications for reservoir pressure management, geologic uncertainty can significantly impact CO{sub 2} storage capacities and costs, and contribute to uncertainty in carbon capture and storage (CCS) systems. Given the current state of available information and the

  18. Optimizing and Quantifying CO>2 Storage Resource in Saline Formations and Hydrocarbon Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bosshart, Nicholas W. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Ayash, Scott C. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Azzolina, Nicholas A. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Peck, Wesley D. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Gorecki, Charles D. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Ge, Jun [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Jiang, Tao [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Burton-Kelly, Matthew E. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Anderson, Parker W. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Dotzenrod, Neil W. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Gorz, Andrew J. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center

    2017-06-30

    In an effort to reduce carbon dioxide (CO>2) emissions from large stationary sources, carbon capture and storage (CCS) is being investigated as one approach. This work assesses CO>2 storage resource estimation methods for deep saline formations (DSFs) and hydrocarbon reservoirs undergoing CO>2 enhanced oil recovery (EOR). Project activities were conducted using geologic modeling and simulation to investigate CO>2 storage efficiency. CO>2 storage rates and efficiencies in DSFs classified by interpreted depositional environment were evaluated at the regional scale over a 100-year time frame. A focus was placed on developing results applicable to future widespread commercial-scale CO>2 storage operations in which an array of injection wells may be used to optimize storage in saline formations. The results of this work suggest future investigations of prospective storage resource in closed or semiclosed formations need not have a detailed understanding of the depositional environment of the reservoir to generate meaningful estimates. However, the results of this work also illustrate the relative importance of depositional environment, formation depth, structural geometry, and boundary conditions on the rate of CO>2 storage in these types of systems. CO>2 EOR occupies an important place in the realm of geologic storage of CO>2, as it is likely to be the primary means of geologic CO>2 storage during the early stages of commercial implementation, given the lack of a national policy and the viability of the current business case. This work estimates CO>2 storage efficiency factors using a unique industry database of CO>2 EOR sites and 18 different reservoir simulation models capturing fluvial clastic and shallow shelf carbonate depositional environments for reservoir depths of 1219 and 2438 meters (4000 and 8000 feet) and 7.6-, 20-, and 64-meter (25-, 66

  19. Forecasting of CO{sub 2} emissions from fuel combustion using trend analysis

    Energy Technology Data Exchange (ETDEWEB)

    Koene, Aylin Cigdem [Mugla University, Faculty of Economics and Administrative Sciences, Department of Economics, 48000 Mugla (Turkey); Bueke, Tayfun [Mugla University, Faculty of Arts and Sciences, Department of Physics, 48000 Mugla (Turkey)

    2010-12-15

    The accelerating use of fossil fuels since the Industrial Revolution and the rapid destruction of forests causes a significant increase in greenhouse gases. The increasing threat of global warming and climate change has been the major, worldwide, ongoing concern especially in the last two decades. The impacts of global warming on the world economy have been assessed intensively by researchers since the 1990s. Worldwide organizations have been attempting to reduce the adverse impacts of global warming through intergovernmental and binding agreements. Carbon dioxide (CO{sub 2}) is one of the most foremost greenhouse gases in the atmosphere. The energy sector is dominated by the direct combustion of fuels, a process leading to large emissions of CO{sub 2}. CO{sub 2} from energy represents about 60% of the anthropogenic greenhouse gas emissions of global emissions. This percentage varies greatly by country, due to diverse national energy structures. The top-25 emitting countries accounted 82.27% of the world CO{sub 2} emissions in 2007. In the same year China was the largest emitter and generated 20.96% of the world total. Trend analysis is based on the idea that what has happened in the past gives traders an idea of what will happen in the future. In this study, trend analysis approach has been employed for modelling to forecast of energy-related CO{sub 2} emissions. To this aim first, trends in CO{sub 2} emissions for the top-25 countries and the world total CO{sub 2} emissions during 1971-2007 are identified. On developing the regression analyses, the regression analyses with R{sup 2} values less than 0.94 showing insignificant influence in statistical tests have been discarded. Statistically significant trends are indicated in eleven countries namely, India, South Korea, Islamic Republic of Iran, Mexico, Australia, Indonesia, Saudi Arabia, Brazil, South Africa, Taiwan, Turkey and the world total. The results obtained from the analyses showed that the models for

  20. Clearing the air: improving smoke-free policy compliance at the national oncology hospital in Armenia.

    Science.gov (United States)

    Movsisyan, Narine K; Petrosyan, Varduhi; Harutyunyan, Arusyak; Petrosyan, Diana; Stillman, Frances

    2014-12-13

    Smoke-free policies shown to reduce population exposure to secondhand smoke (SHS) are the norm in hospitals in many countries around the world. Armenia, a transition economy in the South Caucasus, has one of the highest male smoking rates in the European region. Although smoking in healthcare facilities has been banned since 2005, compliance with this ban has been poor due to lack of implementation and enforcement mechanisms and social acceptability of smoking. The study aimed to develop and test a model intervention to address the lack of compliance with the de jure smoking ban. The national oncology hospital was chosen as the intervention site. This study used employee surveys and objective measurements of respirable particles (PM2.5) and air nicotine as markers of indoor air pollution before and after the intervention. The intervention developed in partnership with the hospital staff included an awareness campaign on SHS hazards, creation of no-smoking environment and building institutional capacity through training of nursing personnel on basics of tobacco control. The survey analysis included paired t-test and McNemar's test. The log-transformed air nicotine and PM2.5 data were analyzed using paired t-test. The survey showed significant improvement in the perceived quality of indoor air, reduced worksite exposure to SHS and increased employees' awareness of the smoke-free policy. The number of employees reporting compliance with the hospital smoke-free policy increased from 36.0% to 71.9% (p Armenia that have failed to implement the adopted smoke-free policies.

  1. Chemistry of fluids from a natural analogue for a geological CO{sub 2} storage site (Montmiral, France): Lessons for CO{sub 2}-water-rock interaction assessment and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Pauwels, Helene [BRGM - Water Division, 3, av Claude Guillemin, 45060 Orleans Cedex (France)], E-mail: h.pauwels@brgm.fr; Gaus, Irina; Le Nindre, Yves Michel [BRGM - Water Division, 3, av Claude Guillemin, 45060 Orleans Cedex (France); Pearce, Jonathan [British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG125GG (United Kingdom); Czernichowski-Lauriol, Isabelle [BRGM - Water Division, 3, av Claude Guillemin, 45060 Orleans Cedex (France)

    2007-12-15

    Chemical and isotope studies of natural CO{sub 2} accumulations aid in assessing the chemical effects of CO{sub 2} on rock and thus provide a potential for understanding the long-term geochemical processes involved in CO{sub 2} geological storage. Several natural CO{sub 2} accumulations were discovered during gas and oil exploration in France's carbogaseous peri-Alpine province (south-eastern France) in the 1960s. One of these, the Montmiral accumulation at a depth of more than 2400 m, is currently being exploited. The chemical composition of the water collected at the wellhead has changed in time and the final salinity exceeds 75 g/L. These changes in time can be explained by assuming that the fraction of the reservoir brine in the recovered brine-CO{sub 2}-H{sub 2}O mixture varies, resulting in variable proportions of H{sub 2}O and brine in the sampled water. The proportions can be estimated in selected samples due to the availability of gas and water flowrate data. These data enabled the reconstruction of the chemical and isotope composition of the brine. The proportions of H{sub 2}O and brine can also be estimated from isotope ({delta}{sup 2}H, {delta}{sup 18}O) composition of collected water and {delta}{sup 18}O of the sulfates or CO{sub 2}. The reconstituted brine has a salinity of more than 85 g/L and, according to its Br{sup -} content and isotope ({delta}{sup 2}H, {delta}{sup 18}O, {delta}{sup 34}S) composition, originates from an evaporated Triassic seawater that underwent dilution by meteoric water. The reconstitution of the brine's chemical composition enabled an evaluation of the CO{sub 2}-water-rock interactions based on: (1) mineral saturation indices; and (2) comparison with initial evaporated Triassic seawater. Dissolution of K- and SO{sub 4}-containing minerals such as K-feldspar and anhydrite, and precipitation of Ca and Mg containing minerals that are able to trap CO{sub 2} (carbonates) are highlighted. The changes in concentration of

  2. Cryogenic-SEM investigation of CO{sub 2} hydrate morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Camps, A.P.; Milodowski, A.; Rochelle, C.; Williams, J.F.; Jackson, P. D. [British Geological Survey, Keyworth, Nottinghamshire (United Kingdom); Camps, A.P; Lovell, M.; Williams, J.F. [Leicester Univ., Leicester (United Kingdom). Dept. of Geology

    2008-07-01

    Gas hydrates occur naturally around the world in the shallow-marine geosphere, and are seen as a drilling hazard in the petroleum industry due to their role in the carbon cycle, and their possible contribution in past and present climate change. Hydrates are ice-like structures composed of cages of water molecules containing one or more guest molecules, such as methane and carbon dioxide (CO{sub 2}). CO{sub 2} hydrates also occur naturally on earth and are being investigated for their potential to store large volumes of CO{sub 2} to reduce atmospheric emissions of greenhouse gases as a climate change mitigation strategy. However, the mineralogy and formation processes of hydrates are relatively poorly understood. Different imaging techniques have been utilized to study gas hydrates, such as nuclear magnetic resonance, magnetic resonance imaging, and x-ray computed tomography. Scanning Electron Microscopy (SEM) at cryogenic temperatures is another technique to study hydrates, and has been used successfully for investigation of methane and CO{sub 2} hydrates. This paper presented a study that investigated CO{sub 2} hydrates formed in laboratories, using a cryogenic-SEM. The paper presented the study methods and observations, including euhedral crystalline carbon dioxide hydrate; acicular carbon dioxide hydrate; granoblastic carbon dioxide hydrate; and gas rich carbon dioxide hydrate. It was concluded that the investigation produced various different hydrate morphologies resulting from different formation conditions. Morphologies ranged from well-defined euhedral crystals to acicular needles, and more complex, intricate forms. 22 refs., 6 figs., 1 appendix.

  3. Regulating forest rotation to increase CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Gong, P.; Kristroem, B.

    1999-06-01

    Previous studies have shown that the optimal forest rotation age increases considerably if the benefits of CO{sub 2} sequestration are included in rotation decisions. While these studies provide some guidelines for managing public forests, private forest owners may not choose the socially optimal rotation age. This paper discusses a regulation measure to increase CO{sub 2} sequestration in privately owned forests. The regulation problem is treated as a sequential game, where the regulator chooses a subsidy scheme and forest owners respond by changing rotation ages. A private forest owner receives a subsidy at the time of harvesting if he/she changes the rotation age towards the socially optimal one. The subsidy is proportional to the associated change in timber yield. The forest owner`s objective is to maximize the net present value of after-tax timber production profits and subsidies. The regulator`s decision problem is to find the subsidy rate that maximizes the net benefits of implementing the policy (the net of increased CO{sub 2} sequestration benefits, subsidy costs, and changes in forestry taxation income). Empirical results for Swedish examples show that the optimal subsidy rate is sensitive to the marginal benefit of CO{sub 2} sequestration, the social discount rate, and site quality. The optimal subsidy rate is found to be significantly lower than the marginal benefit of CO{sub 2} sequestration. With the proposed subsidy scheme, private forest owners will choose rotation ages longer than the Faustmann rotation, but significantly shorter than the socially optimal rotation age 21 refs, 6 tabs. Arbetsrapport 272

  4. Surface Ocean CO>2 Atlas (SOCAT) gridded data products

    Digital Repository Service at National Institute of Oceanography (India)

    Sabine, C.L.; Hankin, S.; Koyuk, H.; Bakker, D.C.E.; Pfeil, B.; Olsen, A; Metzl, N.; Kozyr, A; Fassbender, A; Manke, A; Malczyk, J.; Akl, J.; Alin, S.R.; Bellerby, R.G.J.; Borges, A; Boutin, J.; Brown, P.J.; Cai, W.-J.; Chavez, F.P.; Chen, A.; Cosca, C.; Feely, R.A.; Gonzalez-Davila, M.; Goyet, C.; Hardman-Mountford, N.; Heinze, C.; Hoppema, M.; Hunt, C.W.; Hydes, D.; Ishii, M.; Johannessen, T.; Key, R.M.; Kortzinger, A.; Landschutzer, P.; Lauvset, S.K.; Lefevre, N.; Lenton, A.; Lourantou, A.; Merlivat, L.; Midorikawa, T.; Mintrop, L.; Miyazaki, C.; Murata, A.; Nakadate, A.; Nakano, Y.; Nakaoka, S.; Nojiri, Y.; Omar, A.M.; Padin, X.A.; Park, G.-H.; Paterson, K.; Perez, F.F.; Pierrot, D.; Poisson, A.; Rios, A.F.; Salisbury, J.; Santana-Casiano, J.M.; Sarma, V.V.S.S.; et al.

    As a response to public demand for a well-documented, quality controlled, publically available, global surface ocean carbon dioxide (CO>2) data set, the international marine carbon science community developed the Surface Ocean CO>2...

  5. Geomechanical Simulation of CO>2 Leakage and Cap Rock Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, Runar [Univ. of Missouri, Rolla, MO (United States); Bai, Baojun [Univ. of Missouri, Rolla, MO (United States); Eckert, Andreas [Univ. of Missouri, Rolla, MO (United States)

    2012-09-30

    CO>2 sequestration into porous and permeable brine filled aquifers is seen as one of the most likely near-term solutions for reducing greenhouse gases. Safely storing injected CO>2, which is less dense than water, requires trapping the CO>2 under an impermeable rock which would act as a seal. One of the concerns with CO>2 sequestration is the generation of new fractures or reactivation of existing fractures and faults caused by CO>2 injection into the sealing formation. Mitigation strategies must be developed to remediate potentially leaking faults or fractures. This project evaluated potential storage scenarios in the state of Missouri and developed coupled reservoir and geomechanic simulations to identify storage potential and leakage risks. Further, several injectable materials used to seal discontinuities were evaluated under subsurface conditions. The four sealant materials investigated were paraffin wax, silica based gel, polymer based gel, and micro-cement, which all significantly reduced the fracture permeability. However, the micro-cement was the most effective sealing agent and the only sealant able to withstand the large differential pressure caused by CO>2 or brine injection and create a strong seal to prevent further fracturing.

  6. Magnetic hardening of Fe{sub 50}Co{sub 50} by rotary swaging

    Energy Technology Data Exchange (ETDEWEB)

    Gröb, T., E-mail: t.groeb@phm.tu-darmstadt.de [Division Physical Metallurgy, Alarich-Weiß-Str. 2, 64287 Darmstadt (Germany); Wießner, L. [Institute for Production Engineering and Forming Machines, Otto-Berndt-Str. 2, 64287 Darmstadt (Germany); Bruder, E. [Division Physical Metallurgy, Alarich-Weiß-Str. 2, 64287 Darmstadt (Germany); Faske, T.; Donner, W. [Divison Structure Research, Alarich-Weiß-Str. 2, 64287 Darmstadt (Germany); Groche, P. [Institute for Production Engineering and Forming Machines, Otto-Berndt-Str. 2, 64287 Darmstadt (Germany); Müller, C. [Division Physical Metallurgy, Alarich-Weiß-Str. 2, 64287 Darmstadt (Germany)

    2017-04-15

    Fe{sub 50}Co{sub 50} was subjected to incremental forming by rotary swaging with the aim of tailoring the coercivity by changing the microstructure. The challenging part of a deformation of Fe{sub 50}Co{sub 50} is an ordering phase present at room temperature, leading to low formability. To increase the formability of the alloy the presence of the ordering phase was supressed by two different concepts. The first concept consists of a heat treatment above the phase transition followed by rapid cooling and deformation at room temperature. The second concept was rotary swaging at temperatures above the phase transition temperature. A comparison in terms of resulting microstructure and magnetic properties shows that both concepts have a potential for tailoring the coercivity of Fe{sub 50}Co{sub 50}. - Highlights: • Magnetic hardening of Fe{sub 50}Co{sub 50} was achieved by rotary swaging with two different concepts. • The influences of the microstructural changes during the rotary swaging process have been linked to magnetic hardening. • Increase in coercivity for Fe{sub 50}Co{sub 50} by rotary swaging at elevated temperature is limited by the dynamic restoration. • Coercivity of Fe{sub 50}Co{sub 50} can be tailored by the induced plastic strain.

  7. Energy development and CO>2 emissions in China

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Xiaolin [Carnegie-Mellon Univ., Pittsburgh, PA (United States)

    1993-03-01

    The objective of this research is to provide a better understanding of future Chinese energy development and CO>2 emissions from burning fossil fuels. This study examines the current Chinese energy system, estimates CO>2 emissions from burning fossil fuels and projects future energy use and resulting CO>2 emissions up to the year of 2050. Based on the results of the study, development strategies are proposed and policy implications are explored. This study first develops a Base scenario projection of the Chinese energy development based upon a sectoral analysis. The Base scenario represents a likely situation of future development, but many alternatives are possible. To explore this range of alternatives, a systematic uncertainty analysis is performed. The Base scenario also represents an extrapolation of current policies and social and economic trends. As such, it is not necessarily the economically optimal future course for Chinese energy development. To explore this issue, an optimization analysis is performed. For further understanding of developing Chinese energy system and reducing CO>2 emissions, a Chinese energy system model with 84 supply and demand technologies has been constructed in MARKAL, a computer LP optimization program for energy systems. Using this model, various technological options and economic aspects of energy development and CO>2 emissions reduction in China during the 1985-2020 period are examined.

  8. Economic and game-theoretical analysis of CO{sub 2} emission abatement

    Energy Technology Data Exchange (ETDEWEB)

    Tahvonen, O [Helsinki School of Economics, Helsinki (Finland)

    1997-12-31

    Current decisions on greenhouse gas emissions may have effects on human well being for centuries. This project has aimed to extend the economic models designed for analyzing this particular issue. A closely related topic follows from the fact that emitting CO{sub 2} can be interpreted as a utilization of a free access resource, i.e., when countries gain from utilizing cheap fossil fuels (relative to noncarbon energy sources), the possible loss any country suffers from climate change is only a negligible fraction of the total loss of all countries. Thus, from a global point of view, the incentives for an individual country to abate emissions is low. Economic understanding of these problems calls for dynamic game-theoretical models

  9. Economic and game-theoretical analysis of CO{sub 2} emission abatement

    Energy Technology Data Exchange (ETDEWEB)

    Tahvonen, O. [Helsinki School of Economics, Helsinki (Finland)

    1996-12-31

    Current decisions on greenhouse gas emissions may have effects on human well being for centuries. This project has aimed to extend the economic models designed for analyzing this particular issue. A closely related topic follows from the fact that emitting CO{sub 2} can be interpreted as a utilization of a free access resource, i.e., when countries gain from utilizing cheap fossil fuels (relative to noncarbon energy sources), the possible loss any country suffers from climate change is only a negligible fraction of the total loss of all countries. Thus, from a global point of view, the incentives for an individual country to abate emissions is low. Economic understanding of these problems calls for dynamic game-theoretical models

  10. Sustainable urban transportation: impact of CO{sub 2} mitigation strategies on local pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sudhakar Yedla; Jyoti K Parikh [Indira Ghandi Institute of Development Research, Mumbai (India); Ram M Shrestha [Asian Institute of Technology, Pathumthani (Thailand). School of Environment Resource and Development

    2003-07-01

    This paper assesses CO{sub 2} mitigation strategies in Delhi and Mumbai against the dynamics of local pollutants. After testing against techno-economic feasibility, compressed natural gas (CNG) technology, four-stroke two-wheelers and battery-operated vehicles (BOV) were selected as candidate options for Mumbai and Delhi. Multiple constrained optimization for finding out the optimal mix of vehicles to meet the travel demand under the business-as-usual scenario for the period of 1998-2020 revealed the dominance of CNG vehicles. CO{sub 2} mitigation targets of 5, 10, 15, 20, 25% resulted in reduced stock of diesel and petrol vehicles, with the reduction spanning over different points of the above time period. In the case of Mumbai, battery-operated three-wheelers dominated the vehicular mix, with the share of CNG vehicles remaining at a standard level. CO{sub 2} reduction targets did not influence the CNG option significantly. CO{sub 2} mitigation influenced the dynamics of local pollutants considerably in both Delhi and Mumbai. In Delhi, TSP and SO{sub x} reduction levels against the CO{sub 2} mitigation target were found to be significant. In Mumbai, the percentage reduction in local pollution (TSP in particular) was higher than the target CO{sub 2} reduction. Local pollutants other than TSP and SO{sub x} showed an increasing trend against the CO{sub 2} mitigation strategies in Delhi. In the case of Mumbai, all non-target pollutants showed a falling trend against the CO{sub 2} mitigation strategies, though insignificantly for pollutants other than TSP and SO{sub x}. (author)

  11. Liquid CO>2/Coal Slurry for Feeding Low Rank Coal to Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Marasigan, Jose [Electric Power Research Institute, Inc., Palo Alto, CA (United States); Goldstein, Harvey [Electric Power Research Institute, Inc., Palo Alto, CA (United States); Dooher, John [Electric Power Research Institute, Inc., Palo Alto, CA (United States)

    2013-09-30

    This study investigates the practicality of using a liquid CO>2/coal slurry preparation and feed system for the E-Gas™ gasifier in an integrated gasification combined cycle (IGCC) electric power generation plant configuration. Liquid CO>2 has several property differences from water that make it attractive for the coal slurries used in coal gasification-based power plants. First, the viscosity of liquid CO>2 is much lower than water. This means it should take less energy to pump liquid CO>2 through a pipe compared to water. This also means that a higher solids concentration can be fed to the gasifier, which should decrease the heat requirement needed to vaporize the slurry. Second, the heat of vaporization of liquid CO>2 is about 80% lower than water. This means that less heat from the gasification reactions is needed to vaporize the slurry. This should result in less oxygen needed to achieve a given gasifier temperature. And third, the surface tension of liquid CO>2 is about 2 orders of magnitude lower than water, which should result in finer atomization of the liquid CO>2 slurry, faster reaction times between the oxygen and coal particles, and better carbon conversion at the same gasifier temperature. EPRI and others have recognized the potential that liquid CO>2 has in improving the performance of an IGCC plant and have previously conducted systemslevel analyses to evaluate this concept. These past studies have shown that a significant increase in IGCC performance can be achieved with liquid CO>2 over water with certain gasifiers. Although these previous analyses had produced some positive results, they were still based on various assumptions for liquid CO>2/coal slurry properties.

  12. Effects of O{sub 2} and SO{sub 2} on the Capture Capacity of a Primary-Amine Based Polymeric CO{sub 2} Sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Hallenbeck, Alexander P; Kitchin, John R

    2013-08-01

    Post combustion CO{sub 2} capture is most commonly carried out using an amine solution that results in a high parasitic energy cost in the stripper unit due to the need to heat the water which comprises a majority of the amine solution. It is also well known that amine solvents suffer from stability issues due to amine leaching and poisoning by flue gas impurities. Solid sorbents provide an alternative to solvent systems that would potentially reduce the energy penalty of carbon capture. However, the cost of using a particular sorbent is greatly affected by the usable lifetime of the sorbent. This work investigated the stability of a primary amine-functionalized ion exchange resin in the presence of O{sub 2} and SO{sub 2}, both of which are constituents of flue gas that have been shown to cause degradation of various amines in solvent processes. The CO{sub 2} capture capacity was measured over multiple capture cycles under continuous exposure to two simulated flue gas streams, one containing 12 vol% CO{sub 2}, 4% O{sub 2}, 84% N{sub 2}, and the other containing 12.5 vol% CO{sub 2}, 4% O{sub 2}, 431 ppm SO{sub 2}, balance N{sub 2} using a custom-built packed bed reactor. The resin maintained its CO{sub 2} capture capacity of 1.31 mol/kg over 17 capture cycles in the presence of O{sub 2} without SO{sub 2}. However, the CO{sub 2} capture capacity of the resin decreased rapidly under exposure to SO{sub 2} by an amount of 1.3 mol/kg over 9 capture cycles. Elemental analysis revealed the resin adsorbed 1.0 mol/kg of SO{sub 2}. Thermal regeneration was determined to not be possible. The poisoned resin was, however, partially regenerated with exposure to 1.5M NaOH for 3 days resulting in a 43% removal of sulfur, determined through elemental analysis, and a 35% recovery of CO{sub 2} capture capacity. Evidence was also found for amine loss upon prolonged (7 days) continuous exposure to high temperatures (120 C) in air. It is concluded that desulfurization of the flue gas

  13. Recovery Act: Web-based CO{sub 2} Subsurface Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Paolini, Christopher; Castillo, Jose

    2012-11-30

    The Web-based CO{sub 2} Subsurface Modeling project focused primarily on extending an existing text-only, command-line driven, isothermal and isobaric, geochemical reaction-transport simulation code, developed and donated by Sienna Geodynamics, into an easier-to-use Web-based application for simulating long-term storage of CO{sub 2} in geologic reservoirs. The Web-based interface developed through this project, publically accessible via URL http://symc.sdsu.edu/, enables rapid prototyping of CO{sub 2} injection scenarios and allows students without advanced knowledge of geochemistry to setup a typical sequestration scenario, invoke a simulation, analyze results, and then vary one or more problem parameters and quickly re-run a simulation to answer what-if questions. symc.sdsu.edu has 2x12 core AMD Opteron™ 6174 2.20GHz processors and 16GB RAM. The Web-based application was used to develop a new computational science course at San Diego State University, COMP 670: Numerical Simulation of CO{sub 2} Sequestration, which was taught during the fall semester of 2012. The purpose of the class was to introduce graduate students to Carbon Capture, Use and Storage (CCUS) through numerical modeling and simulation, and to teach students how to interpret simulation results to make predictions about long-term CO{sub 2} storage capacity in deep brine reservoirs. In addition to the training and education component of the project, significant software development efforts took place. Two computational science doctoral and one geological science masters student, under the direction of the PIs, extended the original code developed by Sienna Geodynamics, named Sym.8. New capabilities were added to Sym.8 to simulate non-isothermal and non-isobaric flows of charged aqueous solutes in porous media, in addition to incorporating HPC support into the code for execution on many-core XSEDE clusters. A successful outcome of this project was the funding and training of three new computational

  14. Capture and geological sequestration of CO{sub 2}: fighting against global warming; Capture et stockage geologique du CO{sub 2}: lutter contre le rechauffement planetaire

    Energy Technology Data Exchange (ETDEWEB)

    Czernichowski-Lauriol, I

    2006-07-01

    In order to take up the global warming challenge, a set of emergency measures is to be implemented: energy saving, clean transportation systems, development of renewable energy sources.. CO{sub 2} sequestration of massive industrial emission sources inside deep geologic formations is another promising solution, which can contribute to the division by two of the world CO{sub 2} emissions between today and 2050. The CO{sub 2} capture and sequestration industry is developing. Research projects and pilot facilities are on the increase over the world. Their aim is to warrant the efficiency and security of this technology over the centuries to come. (J.S.)

  15. Measurements of 222Rn, 220Rn, and CO>2 Emissions in Natural CO>2 Fields in Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Kaszuba, John [Univ. of Wyoming, Laramie, WY (United States); Sims, Kenneth [Univ. of Wyoming, Laramie, WY (United States)

    2014-09-30

    An integrated field-laboratory program evaluated the use of radon and CO>2 flux measurements to constrain source and timescale of CO>2 fluxes in environments proximate to CO>2 storage reservoirs. By understanding the type and depth of the gas source, the integrity of a CO>2 storage reservoir can be assessed and monitored. The concept is based on correlations of radon and CO>2 fluxes observed in volcanic systems. This fundamental research is designed to advance the science of Monitoring, Verification, and Accounting (MVA) and to address the Carbon Storage Program goal of developing and validating technologies to ensure 99 percent storage performance. Graduate and undergraduate students conducted the research under the guidance of the Principal Investigators; in doing so they were provided with training opportunities in skills required for implementing and deploying CCS technologies. Although a final method or “tool” was not developed, significant progress was made. The field program identified issues with measuring radon in environments rich in CO>2. Laboratory experiments determined a correction factor to apply to radon measurements made in CO>2-bearing environments. The field program also identified issues with radon and CO>2-flux measurements in soil gases at a natural CO>2 analog. A systematic survey of radon and CO>2 flux in soil gases at the LaBarge CO>2 Field in Southwest Wyoming indicates that measurements of 222Rn (radon), 220Rn (thoron), and CO>2 flux may not be a robust method for monitoring the integrity of a CO>2 storage reservoir. The field program was also not able to correlate radon and CO>2 flux in the CO>2-charged springs of the Thermopolis hydrothermal system. However, this part of the program helped to motivate the aforementioned laboratory experiments that determined

  16. Measuring Indoor Air Quality and Engaging California Indian Stakeholders at the Win-River Resort and Casino: Collaborative Smoke-Free Policy Development

    Directory of Open Access Journals (Sweden)

    Neil E. Klepeis

    2016-01-01

    Full Text Available Most casinos owned by sovereign American Indian nations allow smoking, even in U.S. states such as California where state laws restrict workplace smoking. Collaborations between casinos and public health workers are needed to promote smoke-free policies that protect workers and patrons from secondhand tobacco smoke (SHS exposure and risks. Over seven years, a coalition of public health professionals provided technical assistance to the Redding Rancheria tribe in Redding, California in establishing a smoke-free policy at the Win-River Resort and Casino. The coalition provided information to the casino general manager that included site-specific measurement of employee and visitor PM2.5 personal exposure, area concentrations of airborne nicotine and PM2.5, visitor urinary cotinine, and patron and staff opinions (surveys, focus groups, and a Town Hall meeting. The manager communicated results to tribal membership, including evidence of high SHS exposures and support for a smoke-free policy. Subsequently, in concert with hotel expansion, the Redding Rancheria Tribal Council voted to accept a 100% restriction of smoking inside the casino, whereupon PM2.5 exposure in main smoking areas dropped by 98%. A 70% partial-smoke-free policy was instituted ~1 year later in the face of revenue loss. The success of the collaboration in promoting a smoke-free policy, and the key element of air quality feedback, which appeared to be a central driver, may provide a model for similar efforts.

  17. Measuring Indoor Air Quality and Engaging California Indian Stakeholders at the Win-River Resort and Casino: Collaborative Smoke-Free Policy Development.

    Science.gov (United States)

    Klepeis, Neil E; Dhaliwal, Narinder; Hayward, Gary; Acevedo-Bolton, Viviana; Ott, Wayne R; Read, Nathan; Layton, Steve; Jiang, Ruoting; Cheng, Kai-Chung; Hildemann, Lynn M; Repace, James L; Taylor, Stephanie; Ong, Seow-Ling; Buchting, Francisco O; Lee, Juliet P; Moore, Roland S

    2016-01-20

    Most casinos owned by sovereign American Indian nations allow smoking, even in U.S. states such as California where state laws restrict workplace smoking. Collaborations between casinos and public health workers are needed to promote smoke-free policies that protect workers and patrons from secondhand tobacco smoke (SHS) exposure and risks. Over seven years, a coalition of public health professionals provided technical assistance to the Redding Rancheria tribe in Redding, California in establishing a smoke-free policy at the Win-River Resort and Casino. The coalition provided information to the casino general manager that included site-specific measurement of employee and visitor PM2.5 personal exposure, area concentrations of airborne nicotine and PM2.5, visitor urinary cotinine, and patron and staff opinions (surveys, focus groups, and a Town Hall meeting). The manager communicated results to tribal membership, including evidence of high SHS exposures and support for a smoke-free policy. Subsequently, in concert with hotel expansion, the Redding Rancheria Tribal Council voted to accept a 100% restriction of smoking inside the casino, whereupon PM2.5 exposure in main smoking areas dropped by 98%. A 70% partial-smoke-free policy was instituted ~1 year later in the face of revenue loss. The success of the collaboration in promoting a smoke-free policy, and the key element of air quality feedback, which appeared to be a central driver, may provide a model for similar efforts.

  18. Ammonia-treated porous carbon derived from ZIF-8 for enhanced CO{sub 2} adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiancheng [School of Energy Science and Engineering, Central South University, Changsha 410083, Hunan (China); Li, Liqing, E-mail: liqingli@hotmail.com [School of Energy Science and Engineering, Central South University, Changsha 410083, Hunan (China); Wang, Shaobin [Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth 6845, WA (Australia); Lu, Mingming [Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221 (United States); Li, Hailong; Ma, Weiwu [School of Energy Science and Engineering, Central South University, Changsha 410083, Hunan (China); Keener, Tim C. [Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221 (United States)

    2016-04-30

    Graphical abstract: The role of nitrogen species in increasing CO{sub 2} adsorption capacity has been explained with the mechanisms of base–acid interaction, as well as hydrogen bonds interaction. - Highlights: • A porous carbon (ZC) was prepared at 900 °C using ZIF-8 as a solid template for CO{sub 2} adsorption. • The ZC was further treated by ammonia functionalization to improve CO{sub 2} uptake. • The detailed interaction mechanism between N-containing groups and CO{sub 2} molecules is elucidated. - Abstract: A porous carbon (ZC) was prepared at 900 °C using zeolitic imidazolate framework-8 (ZIF-8) as a solid template for CO{sub 2} adsorption. The ZC was further treated by ammonia functionalization to improve CO{sub 2} uptake. The textural and surface characteristics of ZC samples were determined by X-ray diffraction (XRD), N{sub 2} adsorption, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). It was revealed that ammonia treatment at 600 °C considerably enhanced the specific surface area and N-content of ZC. However, the pyrrolic-N group was decreased, yet the pyridinic-N group was increased with an increased temperature. The pyrrolic-N significantly enhanced CO{sub 2} adsorption. The ammonia treatment, on the one hand, increases the alkalinity of ZC sample and the base–acid interaction between N-containing functional groups with CO{sub 2}. On the other hand, the ammonia treatment increased pyrrolic-N group (NH) into carbon surface facilitating the hydrogen-bonding interactions between proton of pyrrolic-N and CO{sub 2} molecules.

  19. Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies

    Science.gov (United States)

    Zaehle, Sönke; Medlyn, Belinda E; De Kauwe, Martin G; Walker, Anthony P; Dietze, Michael C; Hickler, Thomas; Luo, Yiqi; Wang, Ying-Ping; El-Masri, Bassil; Thornton, Peter; Jain, Atul; Wang, Shusen; Warlind, David; Weng, Ensheng; Parton, William; Iversen, Colleen M; Gallet-Budynek, Anne; McCarthy, Heather; Finzi, Adrien; Hanson, Paul J; Prentice, I Colin; Oren, Ram; Norby, Richard J

    2014-01-01

    We analysed the responses of 11 ecosystem models to elevated atmospheric [CO2] (eCO2) at two temperate forest ecosystems (Duke and Oak Ridge National Laboratory (ORNL) Free-Air CO2 Enrichment (FACE) experiments) to test alternative representations of carbon (C)–nitrogen (N) cycle processes. We decomposed the model responses into component processes affecting the response to eCO2 and confronted these with observations from the FACE experiments. Most of the models reproduced the observed initial enhancement of net primary production (NPP) at both sites, but none was able to simulate both the sustained 10-yr enhancement at Duke and the declining response at ORNL: models generally showed signs of progressive N limitation as a result of lower than observed plant N uptake. Nonetheless, many models showed qualitative agreement with observed component processes. The results suggest that improved representation of above-ground–below-ground interactions and better constraints on plant stoichiometry are important for a predictive understanding of eCO2 effects. Improved accuracy of soil organic matter inventories is pivotal to reduce uncertainty in the observed C–N budgets. The two FACE experiments are insufficient to fully constrain terrestrial responses to eCO2, given the complexity of factors leading to the observed diverging trends, and the consequential inability of the models to explain these trends. Nevertheless, the ecosystem models were able to capture important features of the experiments, lending some support to their projections. PMID:24467623

  20. Climate and domestic projects CO{sub 2}: why and how?; Climat et projets domestiques CO{sub 2}: pourquoi et comment?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    In order to fight against the climatic change, the France decided to divide by four the greenhouse gases for 2050. With the emission trading, the industrialists and the energy producers progress in this way. But nothing is existing for the emission sectors as the transport, the agriculture, the building and for the greenhouse gases except the CO{sub 2}. The domestic projects CO{sub 2} approach aims to stimulate the realization of projects reducing the greenhouse gases emissions in these sectors, with a remuneration of these reductions. (A.L.B.)

  1. Effects of CO[sub 2] concentration on photosynthesis, transpiration and production of greenhouse fruit vegetable crops

    Energy Technology Data Exchange (ETDEWEB)

    Nederhoff, E.M.

    1994-10-25

    The effect of the CO[sub 2] concentration of the greenhouse air (C) in the range 200 to 1100 [mu]mol mol[sup -1] was investigated in tomato (Lycopersicon esculentum Mill.), cucumber (Cucumis sativus L.), sweet pepper (Capsicum annuum L.) and eggplant (Solanum melongena L.), grown in greenhouses. The effect of C on canopy net photosynthetic CO[sub 2] assimilation rate (or photosynthesis, P) was expressed by a set of regression equations, relating P to PAR, C and LAI. A rule of thumb ('CO[sub 2]-rule') was derived, approximating the relative increase of P caused by additional CO[sub 2] at a certain C. This CO[sub 2]-rule is: X = (1000/C)[sup 2] * 1.5 (X in % per 100 [mu]mol[sup -1], and C in [mu]mol mol[sup -1]). Two models for canopy photosynthesis were examined by comparing them with the experimental photosynthesis data. No 'midday depression' in P was observed. The effects of C on leaf conductance (g) and on rate of crop transpiration (E) were investigated. An increase of 100 I[mu]mol mol[sup -1] ' in C reduced g by about 3-4% in sweet pepper, tomato and cucumber and by about 11% in eggplant. The effect of C on E was analyzed by combining the regression equation for g with the Penman-Monteith equation for E. C had only a relatively small effect on E, owing to thermal and hydrological feedback effects. The decoupling of g and E was quantified. No time-dependent variation or 'midday depression' in E was observed, and no significant effect of C on average leaf temperature was established. In five experiments, the effect of C on growth and production and on specific features were analyzed; fruit production (dry weight) was most affected by C in sweet pepper; fresh weight fruit production per unit CO[sub 2] was highest in cucumber; fruit quality was not influenced by C. High C promoted the 'short leaves syndrome' in tomato and 'leaf tip chlorosis' in eggplant, probably related to calcium and boron translocation

  2. Free atmospheric CO2 enrichment (FACE) increased respiration and humification in the mineral soil of a poplar plantation

    NARCIS (Netherlands)

    Hoosbeek, M.R.; Vos, J.M.; Meinders, M.B.J.; Velthorst, E.J.; Scarascia-Mugnozza, G.

    2007-01-01

    Free atmospheric CO2 enrichment (FACE) studies conducted at the whole-tree and ecosystem scale indicate that there is a marked increase in primary production, mainly allocated into below-ground biomass. The enhanced carbon transfer to the root system may result in enhanced rhizodeposition and

  3. Experimental study of chemical-mechanical coupling during percolation of reactive fluid through rocks under stress, in the context of the CO{sub 2} geological sequestration; Etude experimentale du couplage chimie-mecanique lors de la percolation d'un fluide reactif dans des roches sous contrainte, dans le contexte de la sequestration geologique du CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Le Guen, Y

    2006-10-15

    CO{sub 2} injection into geological repositories will induce chemical and mechanical instabilities. The study of these instabilities is based on experimental deformation of natural rock samples under stress, in the presence of fluids containing, or not, dissolved CO{sub 2}. Triaxial cells used for the experiments permitted an independent control and measurement of stress, temperature, fluid pressure and composition. Vertical strains were measured during several months, with a resolution of 1.10{sup -12} s{sup -1} on the strain rate. Simultaneously, fluids were analysed in order to quantify fluid-rock interactions. For limestone samples, percolation of CO{sub 2}-rich fluids increases strain rate by a factor 1.7 up to 5; on the other hand, sandstone deformation remained almost the same. Increase in strain rate with limestone samples was explained by injected water acidification by the CO{sub 2} which increases rock solubility and reaction kinetics. On the opposite, small effect of CO{sub 2} on quartz explains the absence of deformation. X-ray observations confirmed the importance of rock composition and structure on the porosity evolution. Numerical simulations of rock elastic properties showed increasing shear stress into the sample. Measured deformation showed an evolution of reservoir rocks mechanical properties. It was interpreted as the consequence of pressure solution mechanisms both at grains contacts and on grain free surfaces. (author)

  4. Case history of a successful CO{sub 2} miscible gas WAG injection project

    Energy Technology Data Exchange (ETDEWEB)

    Harpole, Ken

    1998-07-01

    A successful fieldwide CO{sub 2} miscible gas injection project has been underway at the East Vacuum Grayburg San Andres Unit (EVGSAU) in eastern New Mexico, USA since 1985. This presentation follows the evolution of CO{sub 2} miscible gas WAG injection operations at EVGSAU and discusses some of the significant changes in reservoir strategy management which have been implemented over the past 13 years. These changes parallel the evolution in the industry's understanding of and experience with CO{sub 2} miscible gs injection processes. The operating problems and reservoir management challenges encountered at East Vacuum - injection performance, sweep efficiency, effective management of WAG operations, rapidly changing requirements for handling produced gas, and maintaining efficient utilization of injected CO{sub 2} - reflect the kinds of challenges typically encountered in managing a large CO{sub 2} injection project. 1 fig., 1 tab.

  5. Corrections to air kerma rate measurements of 125I brachytherapy sources to free space conditions

    International Nuclear Information System (INIS)

    Shipley, D.R.; Duane, S.

    1994-05-01

    Air kerma rate measurements have been made between 40 cm and 100 cm from one of a set of 125 I reference sources within the facilities of Amersham International plc. Monte Carlo techniques have been used to calculate the air kerma rate components over the same range of distances from this source. After comparing the calculated data with measurements, the compliance of the data with the inverse square law was investigated, and corrections were derived to obtain the air kerma rate at 1 m in free space from each source. Simulations of the experimental setup with an isotropic monoenergetic point source close to the effective energy of 125 I were found to reproduce the air kerma rate measurements reasonably accurately, and indicated that the contribution due to scattered photons was significant. The overall correction (which is defined as the product of individual corrections for chamber size effect, air attenuation and radiation scatter) required to the inverse square law to obtain the air kerma rate at 1 m in free space was found to be 0.981, 0.984 and 0.980, respectively, for air kerma rate measurements at 40 cm, 60 cm and 100 cm from the 125 I reference source. The total uncertainty in these corrections was estimated to be 0.88% at the 1σ level. (author)

  6. NASA Langley and NLR Research of Distributed Air/Ground Traffic Management

    Science.gov (United States)

    Ballin, Mark G.; Hoekstra, Jacco M.; Wing, David J.; Lohr, Gary W.

    2002-01-01

    Distributed Air/Ground Traffic Management (DAG-TM) is a concept of future air traffic operations that proposes to distribute information, decision-making authority, and responsibility among flight crews, the air traffic service provider, and aeronautical operational control organizations. This paper provides an overview and status of DAG-TM research at NASA Langley Research Center and the National Aerospace Laboratory of The Netherlands. Specific objectives of the research are to evaluate the technical and operational feasibility of the autonomous airborne component of DAG-TM, which is founded on the operational paradigm of free flight. The paper includes an overview of research approaches, the airborne technologies under development, and a summary of experimental investigations and findings to date. Although research is not yet complete, these findings indicate that free flight is feasible and will significantly enhance system capacity and safety. While free flight cannot alone resolve the complex issues faced by those modernizing the global airspace, it should be considered an essential part of a comprehensive air traffic management modernization activity.

  7. Development of bench marking services for energy efficiency and CO{sub 2} emissions in forest industry; Metsaeteollisuuden energiatehokkuutta ja CO{sub 2}-paeaestoejae koskevien benchmarking-palvelujen kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Saarentaus, A. [Poeyry Forest Industry Consulting Oy, Vantaa (Finland)

    2006-12-19

    The goal of the project is to develop energy-efficiency and CO{sub 2} missions related benchmarking services for pulp and paper and mechanical wood working industry. The services make it possible to 1) position individual production plants based on their energy-efficiency and CO{sub 2} missions, 2) offer process phase level information on energy-efficient and low mission process technology, 3) analyse changes in the competitive position both at production plant as well as country level due to changes in CO{sub 2}-allocation and energy procurement. (orig.)

  8. Influence of the Mineral Composition and the Groundwater pH on the Diffusion of {sup 99}TcO{sub 4}{sup -} and H{sup 14}CO{sub 3}{sup -} Anions through Borecore Samples of Boda Claystone

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, K. [Inst. of Isotopes, Budapest, P.O.B. 77, H-1525 (Hungary)]. e-mail : lazar@iki.kfki.hu; Megyeri, J.; Mathe, Z. [Mecsekerc Co., Esztergar L. 19, Pec s, H-7633 (Hungary)

    2007-06-15

    Diffusion rates of TcO{sub 4}{sup -} and H{sup 14}CO{sub 3}{sup -} anions are compared in break-through experiments performed on bore core samples with different mineral compositions. Measurements were carried out using synthetic ground water of different pH (8 and 12). Significant increase of the apparent diffusivities was observed in samples containing smectite constituent for both anions in experiments performed at pH = 8. Rock capacity factors were also different in dependence of the composition in experiments with H{sup 14}CO{sub 3}{sup -} at pH = 8. The presence of smectite is assumed to result in formation of microcracks, providing additional free volume for diffusion. In the diffusion of H{sup 14}CO{sub 3}{sup -} the isotope exchange between the carbonate forms, CO{sub 3}{sup 2-} solution . CO{sub 3}{sup 2-} rock, plays probably also a role in the migration process.

  9. Final report of a scalable, automated, semipermanent seismic array (SASSA) method for detecting CO>2 extent during geologic CO>2 injection

    Energy Technology Data Exchange (ETDEWEB)

    Burnison, Shaughn [University of North Dakota Energy & Environmental Research Center, Grand Forks, ND (United States); Livers-Douglas, Amanda [University of North Dakota Energy & Environmental Research Center, Grand Forks, ND (United States); Barajas-Olalde, Cesar [University of North Dakota Energy & Environmental Research Center, Grand Forks, ND (United States); Jin, Lu [University of North Dakota Energy & Environmental Research Center, Grand Forks, ND (United States); Vettleson, Heidi [University of North Dakota Energy & Environmental Research Center, Grand Forks, ND (United States); Hamiling, John [University of North Dakota Energy & Environmental Research Center, Grand Forks, ND (United States); Gorecki, Charles [University of North Dakota Energy & Environmental Research Center, Grand Forks, ND (United States)

    2017-12-15

    The scalable, automated, semipermanent seismic array (SASSA) project led and managed by the Energy & Environmental Research Center (EERC) was designed as a 3-year proof-of-concept study to evaluate and demonstrate an innovative application of the seismic method. The concept was to use a sparse surface array of 96 nodal seismic sensors paired with a single, remotely operated active seismic source at a fixed location to monitor for CO>2 saturation changes in a subsurface reservoir by processing the data for time-lapse changes at individual, strategically chosen reservoir reflection points. The combination of autonomous equipment and modern processing algorithms was used to apply the seismic method in a manner different from the normal paradigm of collecting a spatially dense data set to produce an image. It was used instead to monitor individual, strategically chosen reservoir reflection points for detectable signal character changes that could be attributed to the passing of a CO>2 saturation front or, possibly, changes in reservoir pressure. Data collection occurred over the course of 1 year at an oil field undergoing CO>2 injection for enhanced oil recovery (EOR) and focused on four overlapping “five-spot” EOR injector–producer patterns. Selection, procurement, configuration, installation, and testing of project equipment and collection of five baseline data sets were completed in advance of CO>2 injection within the study area. Weekly remote data collection produced 41 incremental time-lapse records for each of the 96 nodes. Validation was provided by two methods: 1) a conventional 2-D seismic line acquired through the center of the study area before injection started and again after the project ended and processed in a time-lapse manner and 2) by CO>2 saturation maps created from reservoir simulations based on injection and production history matching. Interpreted results were encouraging but mixed, with

  10. Response of Sphagnum mosses to increased CO{sub 2} concentration and nitrogen deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J.

    1998-12-31

    The main objective of this work was to study the effects of different CO{sub 2} concentration and N deposition rates on Sphagna adapted to grow along a nutrient availability gradient (i.e. ombrotrophy-mesotrophy-eutrophy). The study investigated: (i) the effects of various longterm CO{sub 2} concentrations on the rate of net photosynthesis in Sphagna, (ii) the effects of the CO{sub 2} and N treatments on the moss density, shoot dry masses, length increment and dry mass production in Sphagna, (iii) the concentrations of the major nutrients in Sphagna after prolonged exposure to the CO{sub 2} and N treatments, and (iv) species dependent differences in potential NH{sub 4}{sup +} and NO{sub 3}{sup -} uptake rates. The internal nutrient concentration of the capitulum and the production of biomass were effected less by the elevated CO{sub 2} concentrations because the availability of N was a controlling factor. In addition responses to the N treatments were related to ecological differences between the Sphagna species. Species with a high tolerance of N availability were able to acclimatise to the increased N deposition rates. The data suggests a high nutrient status is less significant than the adaptation of the Sphagna to their ecological niche (e.g. low tolerance of meso-eutrophic S. warnstorfii to high N deposition rate). At the highest N deposition rate the ombrotrophic S. fuscum had the highest increase in tissue N concentration among the Sphagna studied. S. fuscum almost died at the highest N deposition rate because of the damaging effects of N to the plant`s metabolism. Ombrotrophic hummock species such as S. fuscum, were also found to have the highest potential N uptake rate (on density of dry mass basis) compared to lawn species. The rate of net photosynthesis was initially increased with elevated CO{sub 2} concentrations, but photosynthesis was down regulated with prolonged exposure to CO{sub 2}. The water use efficiency in Sphagna appeared not to be coupled

  11. Air pollution and its impact on human health in mega cities

    International Nuclear Information System (INIS)

    Ali, I.

    1999-01-01

    One of the major problems faced by the over crowded mega-cities of the world in general and that in third world is the alarming levels of air pollution causing damage to the health of its inhabitants. In Cairo estimated lives lost annually due to air pollution varies between 4000 to 16000 while Delhi has been rated as the most polluted city in the world. Karachi now a mega-city typically represents pollution status of the third world. Major cause of pollution is more than 0.62 millions vehicles on the roads. The pollution due to industries is localized and mainly affects the health of the workers. Measurement carried out for the selected areas along the roads carrying high density traffic show a very high pollution level (CO, 3 to 10 ppm; CO/sub 2/,170 to 350 ppm; HC 0.274 to 0.360 vol. %; particulate matter 67.0 to 565.5 ug/m/sup 3/. A parallel hospital survey to correlate air borne disease with air pollution indicates that over 16600 to 22977 patients suffered from air borne diseases while 6377 from bacterial infection. Analysis showed that 70% of the patients suffering from airborne disease come from the surveyed areas with high level pollution. Cancer is shifting from old age to middle age group indicating deteriorating air environment. Ratio of male to female patients is 2:1, which is indicative of hazardous ambient air quality outside to which men are exposed more than women. The paper discusses in depth the air pollution and its impact on human health in mega cities with Karachi as a case study. (author)

  12. Hybrid Encapsulated Ionic Liquids for Post-Combustion Carbon Dioxide (CO>2) Capture

    Energy Technology Data Exchange (ETDEWEB)

    Brennecke, Joan F [Univ. of Texas, Austin, TX (United States); Degnan, Jr, Thomas Francis [Univ. of Notre Dame, IN (United States); McCready, Mark J. [Univ. of Notre Dame, IN (United States); Stadtherr, Mark A. [Univ. of Texas, Austin, TX (United States); Stolaroff, Joshua K [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ye, Congwang [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-03

    Ionic liquids (ILs) and Phase Change Ionic Liquids (PCILs) are excellent materials for selective removal of carbon dioxide from dilute post-combustion streams. However, they are typically characterized as having high viscosities, which impairs their effectiveness due to mass transfer limitations, caused by the high viscosities. In this project, we are examining the benefits of encapsulating ILs and PCILs in thin polymeric shells to produce particles of approximately 100 to 600 µm in diameter that can be used in a fluidized bed absorber. The particles are produced by microencapsulation of the ILs and PCILs in CO>2-permeable polymer shells. Here we report on the encapsulation of the IL and PCIL materials, thermodynamic testing of the encapsulated materials, mass transfer measurements in both a fluidized bed and a packed bed, determination of the effect of impurities (SO2, NOx and water) on the free and encapsulated IL and PCIL, recyclability of the CO>2 uptake, selection and synthesis of kg quantities of the IL and PCIL, identification of scale-up methods for encapsulation and production of a kg quantity of the PCIL, construction and shakedown of the laboratory scale unit to test the encapsulated particles for CO>2 capture ability and efficiency, use of our mass transfer model to predict mass transfer and identify optimal properties of the encapsulated particles, and initial testing of the encapsulated particles in the laboratory scale unit. We also show our attempts at developing shell materials that are resistant to water permeation. Overall, we have shown that the selected IL and PCIL can be successfully encapsulated in polymer shells and the methods scaled up to production levels. The IL/PCIL and encapsulated IL/PCIL react irreversibly with SO2 and NOx so the CO>2 capture unit would need to be placed after the flue gas desulfurization and NOx reduction units. However

  13. AIRSF: a new entertainment adaptive framework for stress free air tTravels

    NARCIS (Netherlands)

    Liu, H.; Hu, J.; Rauterberg, G.W.M.; Inakage, M.; Cheok, A.D.

    2008-01-01

    In this paper, we present a new entertainment adaptive framework AIRSF for stress free air travels. Based on the passenger’s current and target comfort states, user entertainment preference, and context of use, the system uses a Markov decision process to recommend context-aware and personalized

  14. Midday depression of CO/sub 2/ assimilation in leaves of Arbutus unedo L. : diurnal changes in photosynthetic capacity related to changes in temperature and humidity

    Energy Technology Data Exchange (ETDEWEB)

    Raschke, K.; Resemann, A.

    1986-01-01

    Parts of the attached leaves of the sclerophyllous shrub Arbutus unedo were subjected to simulated mediterranean days. Gas exchange was recorded in order to recognize the causes of the midday depression in CO/sub 2/ assimilation. Depressions could be induced in part of a leaf: they were local responses. The CO/sub 2/-saturation curves of photosynthesis, determined during the morning and afternoon maxima of CO/sub 2/ assimilation and during the minimum at midday, established that depressions in CO/sub 2/ assimilation were in one-half of the investigated cases totally caused by reversible reductions in the photosynthetic capacity of the leaves, and in other half almost totally caused by such reductions. There was no correlation between the water loss with the degree of reduction of the photosynthetic capacity. However, depressions occurred if an apparent threshold in the water-vapor pressure difference between leaf and air was exceeded. In another set of experiments, leaves were subjected to variations in temperature and humidity independent of the time of the day, under otherwise constant conditions. Photosynthetic capacity and stomatal conductance proved to be almost insensitive to changes in temperature (in a range extending from 20 to 37/sup 0/C) as long as the water vapor-pressure difference was held constant. If it was not, the rate of photosynthesis began to decline with increasing temperature after a threshold water-vapor pressure difference was exceeded. The position of the resulting apparent temperature optimum of photosynthesis depended on the humidity of the air. The authors suggest that the ability of A. unedo to respond to a dry atmosphere with a reversible reduction of its photosynthetic capacity (by a still unknown mechanism) is the result of a co-evolution with the development of a strong stomatal sensitivity to changes in humidity. 26 references, 14 figures.

  15. CO{sub 2} as an Oxidant for High-Temperature Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kawi, Sibudjing, E-mail: chekawis@nus.edu.sg; Kathiraser, Yasotha [Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore (Singapore)

    2015-03-18

    This paper presents a review on the developments in catalyst technology for the reactions utilizing CO{sub 2} for high-temperature applications. These include dehydrogenation of alkanes to olefins, the dehydrogenation of ethylbenzene to styrene, and finally CO{sub 2} reforming of hydrocarbon feedstock (i.e., methane) and alcohols. Aspects on the various reaction pathways are also highlighted. The literature on the role of promoters and catalyst development is critically evaluated. Most of the reactions discussed in this review are exploited in industries and related to on-going processes, thus providing extensive data from literature. However, some reactions, such as CO{sub 2} reforming of ethanol and glycerol, which have not reached industrial scale, are also reviewed owing to their great potential in terms of sustainability, which is essential as energy for the future. This review further illustrates the building-up of knowledge that shows the role of support and catalysts for each reaction and the underlying linkage between certain catalysts, which can be adapted for the multiple CO{sub 2}-related reactions.

  16. The soil microbiome at the Gi-FACE experiment responds to a moisture gradient but not to CO2 enrichment.

    Science.gov (United States)

    de Menezes, Alexandre B; Müller, Christoph; Clipson, Nicholas; Doyle, Evelyn

    2016-09-01

    The soil bacterial community at the Giessen free-air CO2 enrichment (Gi-FACE) experiment was analysed by tag sequencing of the 16S rRNA gene. No substantial effects of CO2 levels on bacterial community composition were detected. However, the soil moisture gradient at Gi-FACE had a significant effect on bacterial community composition. Different groups within the Acidobacteria and Verrucomicrobia phyla were affected differently by soil moisture content. These results suggest that modest increases in atmospheric CO2 may cause only minor changes in soil bacterial community composition and indicate that the functional responses of the soil community to CO2 enrichment previously reported at Gi-FACE are due to factors other than changes in bacterial community composition. The effects of the moisture gradient revealed new information about the relationships between poorly known Acidobacteria and Verrucomicrobia and soil moisture content. This study contrasts with the relatively small number of other temperate grassland free-air CO2 enrichment microbiome studies in the use of moderate CO2 enrichment and the resulting minor changes in the soil microbiome. Thus, it will facilitate the development of further climate change mitigation studies. In addition, the moisture gradient found at Gi-FACE contributes new knowledge in soil microbial ecology, particularly regarding the abundance and moisture relationships of the soil Verrucomicrobia.

  17. Potential for geological sequestration of CO{sub 2} in Switzerland - Final report; Studie zur Abschaetzung des Potenzials fuer CO{sub 2}-Sequestrierung in der Schweiz - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, L. W.; Chevalier, G. [Institut fuer Geologie, Universitaet Bern, Bern (Switzerland); Leu, W. [Geoform AG, Geologische Beratungen und Studien, Villeneuve (former Minusio) (Switzerland)

    2010-08-15

    One approach to dispose of the greenhouse gas CO{sub 2} is to inject it into deep, porous geological formations, where is remains safely trapped over periods of many millennia. This report evaluates the potential for this option within Switzerland, based on a literature review. Only geological criteria for CO{sub 2} sequestration are taken into account, following international best-practice principles for reservoir safety. Simultaneous consideration of nine geological attributes (including faulting and natural seismicity) allows the sequestration potential to be mapped at a resolution of a few km{sup 2}, using a scale between 0 (negligible potential) and 1 (high potential). It is concluded that the crystalline rocks of the Alps and the sediments underlying the valleys of Valais, Ticino and Grisons are unsuitable for CO{sub 2} sequestration. However, the sedimentary rocks below the Central Plateau (and to lesser extent below the Jura Chain), locally show moderate to very good potential. At least four formations of porous sandstones and limestones (saline aquifers) underlie large areas of the Plateau within the technically favoured depth interval of 800-2500 m. Approximately 5000 km{sup 2} of the Plateau (mostly in the sector Fribourg-Olten-Lucerne) exhibits sequestration potentials above 0.6, offering a theoretical (unproven) storage capacity for approximately 2680 million tonnes of CO{sub 2}. From a purely geological point of view these results are promising. Although the high potentials do not guarantee the feasibility of CO{sub 2} sequestration, they serve as guides to areas that warrant detailed investigation. If this CO{sub 2} storage option is pursued in Switzerland, then more detailed geological investigations and a pilot study would be necessary to prove its feasibility. The assessed risks, leakage-monitoring procedures and non-geological criteria (proximity to CO{sub 2} point-sources, economics, conflicts of use of the subsurface, etc.) would have to be

  18. Environmental impacts of ocean disposal of CO{sub 2}. Final report volume 2, September 1994--August 1996

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, H.J.; Adams, E.E. [eds.

    1996-12-01

    One option to reduce atmospheric CO{sub 2} levels is to capture and sequester power plant CO{sub 2}. Commercial CO{sub 2} capture technology, though expensive, exists today. However, the ability to dispose of large quantities of CO{sub 2} is highly uncertain. The deep ocean is one of only a few possible CO{sub 2} disposal options (others are depleted oil and gas wells or deep, confined aquifers) and is a prime candidate because the deep ocean is vast and highly unsaturated in CO{sub 2}. Technically, the term `disposal` is really a misnomer because the atmosphere and ocean eventually equilibrate on a time scale of 1000 years regardless of where the CO{sub 2} is originally discharged. However, peak atmospheric CO{sub 2} concentrations expected to occur in the next few centuries could be significantly reduced by ocean disposal. The magnitude of this reduction will depend upon the quantity of CO{sub 2} injected in the ocean, as well as the depth and location of injection. Ocean disposal of CO{sub 2} will only make sense if the environmental impacts to the ocean are significantly less than the avoided impacts of atmospheric release. In this project, we examined these ocean impacts through a multi-disciplinary effort designed to summarize the current state of knowledge. In the process, we have developed a comprehensive method to assess the impacts of pH changes on passive marine organisms. This final report addresses the following six topics: CO{sub 2} loadings and scenarios, impacts of CO{sub 2} transport, near-field perturbations, far-field perturbations, environmental impacts of CO{sub 2} release, and policy and legal implications of CO{sub 2} release.

  19. A conversion of CO{sub 2}-ECBM related lab observations to reservoir requirements

    Energy Technology Data Exchange (ETDEWEB)

    Gensterblum, Y.; Merkel, A.; Busch, A. [RWTH Aachen Univ. (Germany). Inst. of Geology and Geochemistry of Petroleum and Coal; Krooss, B.M. [Shell Global Solutions International, Rijswijk (Netherlands)

    2013-08-01

    To predict a CBM production profile either during primary or secondary production, aspects like coal permeability and porosity, density, ash and moisture content, initial gas-in-place (GIP) (from canister desorption tests), gas sorption capacity from laboratory isotherms (to obtain gas saturations and desorption pressure), gas diffusivities, coal volumetrics (thickness and areal extent) need to be understood as a minimum requirement. When dealing with CO{sub 2}-ECBM selective adsorption, counter diffusion in the coal matrix, or coal shrinkage and swelling (from CH{sub 4} desorption and CO{sub 2} adsorption, respectively) and the influence of moisture need to be investigated in addition to the parameters above. During CO{sub 2}-ECBM processes, the areal distribution of the CO{sub 2} injected is accomplished by flow through the cleat network. When CO{sub 2} is entering the coal matrix by a combined sorption/diffusion process it will adsorb to the coal inner surface and at the same time replace part of the CH{sub 4}. This replacement occurs either by a reduction in the CH{sub 4} partial pressure or by a higher selective sorption of CO{sub 2} over CH{sub 4}. Because of a concentration gradient between CH{sub 4} in the matrix compared to the cleat system, CH{sub 4} diffuses from the coal matrix into the cleat system where, by pressure drawdown towards a production well, it can be produced. In this context this presentation summarizes gas (CO{sub 2}, CH{sub 4}) and water sorption on coal and specifically addresses the following topics: - CH{sub 4} saturation development in CBM reservoir with depth (thermodynamic considerations); - CO{sub 2}-ECBM 'sweet spot' identification; - CH{sub 4} and CO{sub 2} sorption capacity as a function depth and rank; - CO{sub 2} and CH{sub 4} sorption on natural coals and its dependence on coal specific parameters like coal rank, maceral composition or ash content (Busch and Gensterblum, 2011); - Water sorption on coal, its

  20. An Overview of CO{sub 2} capture technologies. What are the challenges ahead?

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Stanley (IEA Greenhouse Gas R& amp; D Programme)

    2008-07-15

    In this paper it is described what the program of R&D of the International Energy Agency consists of, for the reduction of greenhouse effect gasses. Some of the factors that have impelled the policy of the development of technologies for the CO{sub 2} capture are synthesized. Also an overview is given of the 3 main technologies for the capture and storage of CO{sub 2} that are the capture post-combustion, the capture oxy-combustion and the capture pre-combustion; finally several aspects related to the capture and sequestration of CO{sub 2} are mentioned. [Spanish] En esta ponencia se describe en que consiste el programa de I&D para la reduccion de gases de efecto invernadero de la Agencia Internacional de Energia. Se sintetizan algunos de los factores que han impulsado a la politica del desarrollo de tecnologias para la captura de CO{sub 2}. Tambien se da un panorama de las 3 principales tecnologias para la captura y almacenamiento de CO{sub 2} que son la captura post-combustion, la captura oxi-combustion y la captura pre-combustion; finalmente se mencionan varios aspectos relacionados con la captura y secuestro de CO{sub 2}.

  1. Co{sub 2} exchange, environmental productivity indices, and productivity of opuntia ficus-indica under current and elevated CO{sub 2} concentrations. Carbon Dioxide Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Nobel, P.S.

    1992-12-31

    This project involved placing mature cladodes (flattened stem segments) of Opuntia ficus-indica in growth chambers containing 360 or 720 ppM CO{sub 2}. After nine weeks, the new daughter cladodes initiated on the planted cladodes averaged 7% higher in biomass but 8% less is area, leading to a specific stem mass for this Crassulacean acid metabolism (CAM) species that was 16% higher under the elevated CO{sub 2} condition. This is similar to be less dramatic than the increase in specific leaf mass for C{sub 3} and C{sub 4} plants under elevated CO{sub 2}, which generally ranges from 28% to 40%. Another contrast with C{sub 3} and C{sub 4} Plants was the reliance of the new organs of the CAM plant on biomass translocated from existing organs instead of derived directly from current photosynthate. In this regard, 18% less dry weight was translocated from basal cladodes into daughter cladodes of Q. ficus-indica at 720 ppM CO{sub 2} compared with 360 ppM.

  2. Elevated CO[sub 2] alters deployment of roots in small growth containers

    Energy Technology Data Exchange (ETDEWEB)

    Berntson, G M; McConnaughay, K D.M.; Bazzaz, F A [Harvard University, Cambridge, MA (United States). Dept. of Organismic and Evolutionary Biology

    1993-07-01

    Previously the authors examined how limited rooting space and nutrient supply influenced plant growth under elevated atmospheric CO[sub 2] concentrations. To gain insight into how elevated CO[sub 2] atmospheres affect how plants utilize available belowground space, when rooting space and nutrient supply are limited, they measured the deployment of roots within pots through time. Contrary to aboveground responses, patterns of belowground deployment were most strongly influenced by elevated CO[sub 2] in pots of different volume and shape. Further, elevated CO[sub 2] conditions interacted differently with limited belowground space for the two species studied, Abutilon theophrasti, a C[sub 3] dicot with a deep taproot, and Setaria faberii, a C4 monocot with a shallow fibrous root system. For Setaria, elevated CO[sub 2] increased the size of the largest region of low root density at the pot surface in larger rooting volumes independent of nutrient content, thereby decreasing their efficiency of deployment. For Abutilon, plants responded to elevated CO[sub 2] concentrations by equalizing the pattern of deployment in all the pots. Nutrient concentration, and not pot size or shape, greatly influenced the density of root growth. Root densities for Abutilon and Setaria were similar to those observed in field conditions, for annual dicots and monocots respectively, suggesting that studies using pots may successfully mimic natural conditions.

  3. Worldwide CO{sub 2} emissions 2014. Shimmer of hope to turnaround reinforce - but no all-clear signal; Weltweite CO{sub 2}-Emissionen 2014. Hoffnungsschimmer auf Trendwende verstaerken sich - aber noch keine Entwarnung

    Energy Technology Data Exchange (ETDEWEB)

    Ziesing, Hans-Joachim

    2015-09-15

    In 2014, global CO{sub 2} emissions increase according to initial calculations by 0.5%. Apart from the two crisis years 2008/2009 was the weakest increase since the beginning of the century. As a result, CO{sub 2} emissions reached about 32.6 billion tonnes a new climax. A turnaround this is not yet, but the CO{sub 2} emissions in many countries, particularly in industrialized countries declined. Thus, the CO{sub 2} emissions have declined in the Annex I countries overall by 1.8%. For this particular contributed the development in the EU, in almost without exception, all Member States have experienced an emission reduction. Of the major countries, this also applies to the Ukraine, Japan, Russia and Australia. In contrast, there was an increase in the US, although this turned out very moderate with an increase of just under 1%. If the global CO{sub 2} emissions have increased despite the decline in the group of Annex I countries again, this is primarily a result of the increase in developing countries. Here, CO{sub 2} emissions were by around the year 2014 415 million tons or 2.4% higher than 2013. Since 2008, China occupied top position ahead of the US in 2014 was not expanded because for many years here was the increase for the first time below 1%. By contrast, CO{sub 2} emissions increased significantly in India by approx. 8% and in Brazil as in the Middle East by about 4%. [German] Im Jahr 2014 stiegen die weltweiten CO{sub 2}-Emissionen nach ersten Berechnungen um 0,5 %. Abgesehen von den beiden Krisenjahren 2008/2009 war dies der schwaechste Anstieg seit Beginn des Jahrhunderts. Im Ergebnis erreichten die CO{sub 2}-Emissionen mit etwa 32,6 Mrd. t einen neuen Hoehepunkt. Eine Trendwende ist dies noch nicht, doch sind die CO{sub 2}-Emissionen in zahlreichen Laendern, insbesondere in Industriestaaten, gesunken. So sind die CO{sub 2}-Emissionen in den Annex I-Laendern gesamthaft um 1,8 % zurueckgegangen. Dazu trug insbesondere die Entwicklung in der EU bei, in der

  4. Lithium cyanide supported by O- and N-donors

    Energy Technology Data Exchange (ETDEWEB)

    Budanow, Alexandra; Franz, Klaus-Dieter; Vitze, Hannes; Fink, Lothar; Alig, Edith; Bolte, Michael; Wagner, Matthias; Lerner, Hans-Wolfram [Institut fuer Anorganische Chemie, Goethe-Universitaet Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt (Germany)

    2017-02-15

    A series of adducts of LiCN, namely [Li(Me{sub 2}CO{sub 3})CN], [Li(Et{sub 2}CO{sub 3})CN], and [Li(NMP)CN] (NMP = N-methyl-2-pyrrolidone) were prepared by treatment of solvent-free LiCN with the appropriate donor. The starting material for these approaches, donor-free LiCN, was quantitatively prepared from Me{sub 3}SiCN and Li[Me] in diethyl ether at 0 C. Alternatively, [Li(NMP)CN] was synthesized by metathesis reaction of LiCl with NaCN in the presence of stoichiometric amounts of NMP. Although [Li(Me{sub 2}CO{sub 3})CN] and [Li(Et{sub 2}CO{sub 3})CN] are water-sensitive compounds and decompose at the exposure to air, [Li(NMP)CN] is stable in air, even at elevated temperatures. The thermal stability of [Li(NMP)CN] was proven by differential thermal analysis (DTA). [Li(NMP)CN] shows thermal stability up to temperatures of about 132 C. To evaluate the cyanation ability the reactions of 1-bromooctane and 3-bromocyclohexene with unsupported LiCN, [Li(NMP)CN], and a mixture of NaCN/LiCl/NMP were investigated. We found that [Li(NMP)CN] as well as LiCl/NaCN/NMP are efficient cyanation reagents comparable to the expensive and air-sensitive, donor-free LiCN. A product of the chloride-cyanide-bromide exchange could be isolated and structurally characterized by X-ray diffraction. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Morphing morphing faces

    NARCIS (Netherlands)

    Lier, R.J. van

    2009-01-01

    We have made cyclic morphing animations using two different faces. The morphing animations gradually evolved from one face to the other, and vice versa. When free viewing, the perceived changes were not very large, but the changes could easily be observed. Observers were asked to fixate on a dot

  6. FIRST INFRARED BAND STRENGTHS FOR AMORPHOUS CO{sub 2}, AN OVERLOOKED COMPONENT OF INTERSTELLAR ICES

    Energy Technology Data Exchange (ETDEWEB)

    Gerakines, Perry A.; Hudson, Reggie L., E-mail: Reggie.Hudson@NASA.gov [Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-08-01

    Solid carbon dioxide (CO{sub 2}) has long been recognized as a component of both interstellar and solar system ices, but a recent literature search has revealed significant qualitative and quantitative discrepancies in the laboratory spectra on which the abundances of extraterrestrial CO{sub 2} are based. Here we report new infrared (IR) spectra of amorphous CO{sub 2}-ice along with band intensities (band strengths) of four mid-IR absorptions, the first such results in the literature. A possible thickness dependence for amorphous-CO{sub 2} IR band shapes and positions also is investigated, and the three discordant reports of amorphous CO{sub 2} spectra in the literature are addressed. Applications of our results are discussed with an emphasis on laboratory investigations and results from astronomical observations. A careful comparison with earlier work shows that the IR spectra calculated from several databases for CO{sub 2} ices, all ices being made near 10 K, are not for amorphous CO{sub 2}, but rather for crystalline CO{sub 2} or crystalline-amorphous mixtures.

  7. An under-aisle air distribution system facilitating humidification of commercial aircraft cabins

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tengfei; Yin, Shi; Wang, Shugang [School of Civil and Hydraulic Engineering, Dalian University of Technology (DUT), 2 Linggong Road, Dalian 116024 (China)

    2010-04-15

    Air environment in aircraft cabins has long been criticized especially for the dryness of the air within. Low moisture content in cabins is known to be responsible for headache, tiredness and many other non-specific symptoms. In addition, current widely used air distribution systems on airplanes dilute internally generated pollutants by promoting air mixing and thus impose risks of infectious airborne disease transmission. To boost air humidity level while simultaneously restricting air mixing, this investigation uses a validated computational fluid dynamics (CFD) program to design a new under-aisle air distribution system for wide-body aircraft cabins. The new system supplies fully outside, dry air at low momentum through a narrow channel passage along both side cabin walls to middle height of the cabin just beneath the stowage bins, while simultaneously humidified air is supplied through both perforated under aisles. By comparing with the current mixing air distribution system in terms of distribution of relative humidity, CO{sub 2} concentration, velocity, temperature and draught risk, the new system is found being able to improve the relative humidity from the existent 10% to the new level of 20% and lessen the inhaled CO{sub 2} concentration by 30%, without causing moisture condensation on cabin interior and inducing draught risks for passengers. The water consumption rate in air humidification is only around 0.05 kg/h per person, which should be affordable by airliners. (author)

  8. An intelligent system for monitoring and diagnosis of the CO{sub 2} capture process

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Q.; Chan, C.W.; Tontiwachwuthikul, P. [University of Regina, Regina, SK (Canada). Faculty of Engineering

    2011-07-15

    Amine-based carbon dioxide capture has been widely considered as a feasible ideal technology for reducing large-scale CO{sub 2} emissions and mitigating global warming. The operation of amine-based CO{sub 2} capture is a complicated task, which involves monitoring over 100 process parameters and careful manipulation of numerous valves and pumps. The current research in the field of CO{sub 2} capture has emphasized the need for improving CO{sub 2} capture efficiency and enhancing plant performance. In the present study, artificial intelligence techniques were applied for developing a knowledge-based expert system that aims at effectively monitoring and controlling the CO{sub 2} capture process and thereby enhancing CO{sub 2} capture efficiency. In developing the system, the inferential modeling technique (IMT) was applied to analyze the domain knowledge and problem-solving techniques, and a knowledge base was developed on DeltaV Simulate. The expert system helps to enhance CO{sub 2} capture system performance and efficiency by reducing the time required for diagnosis and problem solving if abnormal conditions occur. The expert system can be used as a decision-support tool that helps inexperienced operators control the plant: it can be used also for training novice operators.

  9. CO{sub 2} capture using some fly ash-derived carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    A. Arenillas; K.M. Smith; T.C. Drage; C.E. Snape [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2005-12-01

    Adsorption is considered to be one of the more promising technologies for capturing CO{sub 2} from flue gases. For post-combustion capture, the success of such an approach is however dependent on the development of an adsorbent that can operate competitively at relatively high temperatures. In this work, low cost carbon materials derived from fly ash, are presented as effective CO{sub 2} sorbents through impregnation these with organic bases, for example, polyethylenimine aided by polyethylene glycol. The results show that for samples derived from a fly ash carbon concentrate, the CO{sub 2} adsorption capacities were relatively high (up to 4.5 wt%) especially at high temperatures (75{sup o}C), where commercial active carbons relying on physi-sorption have low capacities. The addition of PEG improves the adsorption capacity and reduces the time taken for the sample to reach the equilibrium. No CO{sub 2} seems to remain after desorption, suggesting that the process is fully reversible. 24 refs., 6 figs., 2 tabs.

  10. CO{sub 2} capture using zeolite 13X prepared from bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chao [Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan Province 464000 (China); Park, Dong-Wha [Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Ahn, Wha-Seung, E-mail: whasahn@inha.ac.kr [Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751 (Korea, Republic of)

    2014-02-15

    Zeolite 13X was prepared using bentonite as the raw material by alkaline fusion followed by a hydrothermal treatment without adding any extra silica or alumina sources. The prepared zeolite 13X was characterized by X-ray powder diffraction, N{sub 2}-adsorption–desorption measurements, and scanning electron microscopy. The CO{sub 2} capture performance of the prepared zeolite 13X was examined under both static and flow conditions. The prepared zeolite 13X showed a high BET surface area of 688 m{sup 2}/g with a high micropore volume (0.30 cm{sup 3}/g), and exhibited high CO{sub 2} capture capacity (211 mg/g) and selectivity to N{sub 2} (CO{sub 2}/N{sub 2} = 37) at 25 °C and 1 bar. In addition, the material showed fast adsorption kinetics, and stable CO{sub 2} adsorption–desorption recycling performance at both 25 and 200 °C.

  11. Thermo physical and flow properties of CO{sub 2} hydrate slurry - Scientific paper

    Energy Technology Data Exchange (ETDEWEB)

    Sari, O.; Hu, J.; Eicher, S.; Egolf, P. W. [Institute of Thermal Engineering, University of Applied Sciences of Western Switzerland, Yverdon-les-Bains (Switzerland); Homsy, P. [Nestec, Vevey (Switzerland)

    2008-07-01

    The apparent viscosity and flow regime of CO{sub 2} hydrate slurry were investigated with a XL7-100 on-line resonant viscometer. Possible reasons for the viscosity changes before and after the nucleation of hydrates are discussed. In addition, super saturation of the CO{sub 2} solution under certain pressure and temperature conditions as well as its density and apparent viscosity were examined. The hydrate's solid fraction and the dissociation enthalpy were evaluated by an on-line Micro DSC system. Real-time coupled multi-electrode array sensor (CMAS) probes were applied to measure the maximal localized corrosion rate of three different materials subjected to CO{sub 2} hydrate slurry and saturated CO{sub 2} solution in the temperature range of 1 to 18 {sup o}C and pressure range of 25 to 30 bar. The density of CO{sub 2} hydrate slurry was also experimentally investigated and the relation between the density and the solid fraction has been established. (author)

  12. Synthesis and characterization of ceramic-supported and metal-supported membrane layers for the separation of CO{sub 2} in fossil-fuel power plants; Herstellung und Charakterisierung von keramik- und metallgestuetzten Membranschichten fuer die CO{sub 2}-Abtrennung in fossilen Kraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Hauler, Felix

    2010-07-01

    The separation of CO{sub 2} in fossil fuel power plants has become a very important issue due to the contribution of this greenhouse gas to global warming. Thin microporous membranes are promising candidates for separating CO{sub 2} from gas flow before being exhausted into the atmosphere. The membrane demands are good permeation and separation properties and high stability under operation conditions. Novel sol-gel derived materials composed of TiO{sub 2}/ZrO{sub 2} and stabilized SiO{sub 2} seem to be promising due to their good chemical stability and microporous character, especially for the separation of H{sub 2} and CO{sub 2}. Metallic substrates should be preferred as membrane support because they exhibit practical advantages combining good mechanical stability and the benefit of facilitated joining. The present thesis deals with the development of sol-gel derived microporous membrane layers on ceramic and metallic supports for the separation of CO{sub 2}. In this context, the optimized preparation of high-quality membranes with TiO{sub 2}/ZrO{sub 2} and Ni, Co, Zr, Ti doped SiO{sub 2} top layers is presented. These multilayered membranes consist of a graded pore structure to provide a smooth transition of the pore size from the support to the functional layer. Due to the good surface properties, the ceramic substrates only need one interlayer, whereas the rough metallic substrates exhibiting larger pores require a total of three interlayers to obtain an enhanced surface quality. On both types of supports, crack-free functional layers with a thickness below 100 nm were deposited by dip-coating. The unsupported and supported sol-gel materials used for the top layers were investigated in terms of structural properties by thermal analysis, sorption measurements, X-ray diffraction and electron microscopy. Gas permeation tests with He, H{sub 2}, CO{sub 2} und N{sub 2} were carried out to determine the membrane performance with regard to permeation rates and

  13. Flow Distribution Measurement Feasibility in Supercritical CO>2

    Energy Technology Data Exchange (ETDEWEB)

    Lance, Blake [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    Supercritical CO>2 (sCO2) is a fluid of interest for advanced power cycles that can reach thermal to electric energy conversion efficiencies of 50% or higher. Of particular interest for fossil-fired natural gas is the Allam cycle that captures nearly all CO>2 emissions and exports it as a fluid stream where it may be of value. The combustion process conditions are unlike any before realized with 90-95% CO>2 concentration, temperatures around 1000°C, and pressures near 300 bar. This work outlines the experimental feasibility of flow measurements to acquire the first known data in pure sCO2 at similar but reduced temperature and pressure conditions.

  14. Strategic research on CO{sub 2} emission reduction for China. Application of MARKAL to China energy system

    Energy Technology Data Exchange (ETDEWEB)

    Yongping, Wang [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1995-09-01

    MARKAL was applied to the energy system for analyzing the CO{sub 2} emission reduction in China over the time period from 1990 to 2050. First the Chinese Reference Energy System (CRES) was established based on the framework of MARKAL model. The following conclusions can be drawn from this study. When shifting from scenario LH (low useful energy demand and high import fuel prices) to HL (high demand and low prices), another 33 EJ of primary energy will be consumed and another 2.31 billion tons of CO{sub 2} will be emitted in 2050. Detailed analyses on the disaggregation of CO{sub 2} emissions by Kaya Formula show. The energy intensity (primary energy/GDP) decreases much faster in scenario HL, but the higher growth rate of GDP per capita is the overwhelming factor that results in higher CO{sub 2} emission per capita in the baseline case of scenario HL in comparison with LH. When the carbon taxes are imposed on CO{sub 2} emissions, the residential sector will make the biggest contribution to CO{sub 2} emission abatement from a long-term point of view. However, it`s difficult to stabilize CO{sub 2} emission per capita before 2030 in both scenarios even with heavy carbon taxes. When nuclear moratorium occurs, more 560 million tons of CO{sub 2} will be emitted to the atmosphere in 2050 under the same CO{sub 2} tax regime. From the analysis of value flow, CO{sub 2} emission reduction depends largely on new or advanced technologies particularly in the field of electricity generation. The competent technologies switch to those CO{sub 2} less-emitting technologies when surcharging CO{sub 2} emissions. Nuclear power shows significant potential in saving fossil energy resources and reducing CO{sub 2} emissions. (J.P.N.).

  15. Ethanol from sugar cane bagasse. Contribution to atmospheric CO[sub 2] decrease. El etanol de bagazo como combustible. Contribucion a la reduccion del CO[sub 2] atmosferico

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, G.J. (Estacion Experimental Agroindustrial Obispo Colombres. Tucuman (Argentina))

    1993-03-01

    The current problem related to the increasing concentration of atmospheric CO[sub 2] produced by the industrial use of fossil fuels is reviewed. An analysis of the contribution that the use of ethanol from sugar cane bagasse might have on CO[sub 2] decrease is described. (Author)

  16. Effects of CO(sub 2) and nitrogen fertilization on soils planted with ponderosa pine; FINAL

    International Nuclear Information System (INIS)

    Johnson, D.W.

    1996-01-01

    The effects of elevated CO(sub 2) (ambient, 525, and 700(micro)l l(sup -1))and N fertilization (0, 10, and 20 g N m(sup 2) yr(sup -1)) on soil pCO(sub 2), CO(sub 2) efflux, soil solution chemistry, and soil C and nutrients in an open-top chamber study with Pinus ponderosa are described. Soil pCO(sub 2) and CO(sub 2) efflux were significantly greater with elevated CO(sub 2), at first (second growing season) in the 525(micro)l l(sup -1) and later (fourth and fifth growing seasons) in the 700(micro)l l(sup -1) CO(sub 2) treatments. Soil solution HCO(sub 3)(sup -) concentrations were temporarily elevated in the 525(micro)l l(sup -1) CO(sub 2) treatment during the second growing season, consistent with the elevated pCO(sub 2). Nitrogen fertilization had no consistent effect on soil pCO(sub 2) or CO(sub 2) efflux, but did have the expected negative effect on exchangeable Ca(sup 2+), K(sup+), and Mg(sup 2+), presumed to be caused by increased nitrate leaching. Elevated CO(sub 2) had no consistent effects on exchangeable Ca(sup 2+), K(sup+), and Mg(sup 2+), but did cause temporary reductions in soil NO(sup 3(sup -)) (second growing season). Statistically significant negative effects of elevated CO(sub 2) on soil extractable P were noted in the third and sixth growing seasons. However, these patterns in extractable P reflected pre-treatment differences, which, while not statistically significant, followed the same pattern. Statistically significant effects of elevated CO(sub 2) on total C and N in soils were noted in the third and sixth growing seasons, but these effects were inconsistent among N treatments and years. The clearest effect of elevated CO(sub 2) was in the case of C/N ratio in year 6, where there was a consistent, positive effect. The increases in C/N ratio with elevated CO(sub 2) in year six were largely a result of reductions in soil N rather than increases in soil C. Future papers will assess whether this apparent reduction in soil N could have been

  17. Evaluation of Dry Sorbent Injection Technology for Pre-Combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Carl [URS Group, Inc., Austin, TX (United States); Steen, William [URS Group, Inc., Austin, TX (United States); Triana, Eugenio [URS Group, Inc., Austin, TX (United States); Machalek, Thomas [URS Group, Inc., Austin, TX (United States); Davila, Jenny [URS Group, Inc., Austin, TX (United States); Schmit, Claire [URS Group, Inc., Austin, TX (United States); Wang, Andrew [URS Group, Inc., Austin, TX (United States); Temple, Brian [URS Group, Inc., Austin, TX (United States); Lu, Yongqi [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Lu, Hong [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Zhang, Luzheng [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Ruhter, David [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Rostam-Abadi, Massoud [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Sayyah, Maryam [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Ito, Brandon [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Suslick, Kenneth [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States)

    2013-09-30

    culminated in a technoeconomic assessment in which two different approaches were taken; one approach was intended to be technically conservative while the second required several key engineering challenges to be met in order to succeed. The project team is confident that, with the proper support, those challenges could be met. The second approach relies on a slipstream of H{sub 2} from the shifted syngas and O{sub 2} from an air separation unit (ASU) to be combusted in the presence of the sorbent for regeneration; termed a regenerating boiler. The approach also makes use of the heat of adsorption to generate >400 MW of turbine quality steam; total plant gross energy output as high as 1 GW was estimated for an IGCC with an initial gross energy output of 737 MW, without any additional coal usage. The regenerating boiler concept could benefit further from additional heat integration, but the results of this effort show a COE of $97.50 per MWh for a rational combination of operating parameters and sorbent lifetime as well as conservative estimates for steam turbines, gas turbine, and ASU. If the COE of CO{sub 2} transmission, storage and monitoring ($5.60 / MWh) is added to the base case for an IGCC ($81.30 / MWh for Case 5 from the DOE Bituminous Coal Report), the cost of CO{sub 2} capture for the regenerating boiler was only $10.60 / MWh; other regenerating boiler cases are as low $6.90 / MWh. The project met all agreed upon milestones and was completed within budget, more than 25% cost share provided by the project team. Results from the program showed that the SEWGS process has great promise, and with further study and evaluation could become a component of a comprehensive carbon capture program. SEWGS requires a paradigm shift in the traditional approach to carbon capture because the regenerating boiler concept is not a ‘back-end’ solution to CO{sub 2} mitigation. Rather, it is an integral part of the plant operations and is responsible for generating more electricity

  18. Amelioration of chilling effects by CO/sub 2/ enrichment. [Echinochloa crus-galli; Eleusine indica

    Energy Technology Data Exchange (ETDEWEB)

    Potvin, C.

    1985-01-01

    To analyze the effect of CO/sub 2/ enrichment on the chilling-sensitivity of C/sub 4/ plants from contrasting habitats, plants of Echinochloa crus-galli from Quebec, North Carolina and Mississippi and Eleusine indica from Mississippi were grown for 4 weeks under three thermoperiods (28/22, 24/18 and 21/15/sup 0/C) and two atmospheric CO/sub 2/ concentrations (350 and 675 ..mu..l l/sup -1/). They were then submitted to 1 night chilling at 7/sup 0/C. Photosynthetic carbon uptake, stomatal conductances, and internal CO/sub 2/ concentration were measured using an infra-red gas analyzer in an open system before and after the chilling and during the recovery. Chilling induces a decrease in photosynthesis and conductance and, at 350 ..mu..l l/sup -1/, in internal CO/sub 2/. The decrease in photosynthesis is less important for high CO/sub 2/ grown plants at 28/22/sup 0/C. Chilling generates chlorotic bands on leaf blades but less chlorosis is observed in enriched CO/sub 2/. 17 references, 3 figures, 3 tables.

  19. Coal char combustion under a CO{sub 2}-rich atmosphere: Implications for pulverized coal injection in a blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Borrego, A.G.; Casal, M.D. [Instituto Nacional del Carbon, CSIC. P.O. Box 73, 33080 Oviedo (Spain); Osorio, E.; Vilela, A.C.F. [Laboratorio de Siderurgia, DEMET/PPGEM - Universidade Federal do Rio Grande do Sul. P.O. Box 15021, 91501-970 Porto Alegre (Brazil)

    2008-11-15

    Pulverized coal injection (PCI) is employed in blast furnace tuyeres attempting to maximize the injection rate without increasing the amount of unburned char inside the stack of the blast furnace. When coal is injected with air through the injection lance, the resolidified char will burn in an atmosphere with a progressively lower oxygen content and higher CO{sub 2} concentration. In this study an experimental approach was followed to separate the combustion process into two distinct devolatilization and combustion steps. Initially coal was injected into a drop tube furnace (DTF) operating at 1300 C in an atmosphere with a low oxygen concentration to ensure the combustion of volatiles and prevent the formation of soot. Then the char was refired into the DTF at the same temperature under two different atmospheres O{sub 2}/N{sub 2} (typical combustion) and O{sub 2}/CO{sub 2} (oxy-combustion) with the same oxygen concentration. Coal injection was also performed under a higher oxygen concentration in atmospheres typical for both combustion and oxy-combustion. The fuels tested comprised a petroleum coke and coals currently used for PCI injection ranging from high volatile to low volatile bituminous rank. Thermogravimetric analyses and microscopy techniques were used to establish the reactivity and appearance of the chars. Overall similar burnouts were achieved with N{sub 2} and CO{sub 2} for similar oxygen concentrations and therefore no loss in burnout should be expected as a result of enrichment in CO{sub 2} in the blast furnace gas. The advantage of increasing the amount of oxygen in a reacting atmosphere during burnout was found to be greater, the higher the rank of the coal. (author)

  20. Subtask 2.18 - Advancing CO>2 Capture Technology: Partnership for CO>2 Capture (PCO2C) Phase III

    Energy Technology Data Exchange (ETDEWEB)

    Kay, John; Azenkeng, Alexander; Fiala, Nathan; Jensen, Melanie; Laumb, Jason; Leroux, Kerryanne; McCollor, Donald; Stanislowski, Joshua; Tolbert, Scott; Curran, Tyler

    2016-03-31

    Industries and utilities continue to investigate ways to decrease their carbon footprint. Carbon capture and storage (CCS) can enable existing power generation facilities to meet the current national CO>2 reduction goals. The Partnership for CO2 Capture Phase III focused on several important research areas in an effort to find ways to decrease the cost of capture across both precombustion and postcombustion platforms. Two flue gas pretreatment technologies for postcombustion capture, an SO2 reduction scrubbing technology from Cansolv Technologies Inc. and the Tri-Mer filtration technology that combines particulate, NOx, and SO2 control, were evaluated on the Energy & Environmental Research Center’s (EERC’s) pilot-scale test system. Pretreating the flue gas should enable more efficient, and therefore less expensive, CO>2 capture. Both technologies were found to be effective in pretreating flue gas prior to CO>2 capture. Two new postcombustion capture solvents were tested, one from the Korea Carbon Capture and Sequestration R&D Center (KCRC) and one from CO>2 Solutions Incorporated. Both of these solvents showed the ability to capture CO>2 while requiring less regeneration energy, which would reduce the cost of capture. Hydrogen separation membranes from Commonwealth Scientific and Industrial Research Organisation were evaluated through precombustion testing. They are composed of vanadium alloy, which is less expensive than the palladium alloys that are typically used. Their performance was comparable to that of other membranes that have been tested at the EERC. Aspen Plus® software was used to model the KCRC and CO>2 Solutions solvents and found that they would result in significantly improved overall plant performance. The modeling effort also showed that the parasitic steam load at partial capture of 45% is less than half that of 90% overall capture, indicating savings that

  1. Seeing the Talker's Face Improves Free Recall of Speech for Young Adults With Normal Hearing but Not Older Adults With Hearing Loss.

    Science.gov (United States)

    Rudner, Mary; Mishra, Sushmit; Stenfelt, Stefan; Lunner, Thomas; Rönnberg, Jerker

    2016-06-01

    Seeing the talker's face improves speech understanding in noise, possibly releasing resources for cognitive processing. We investigated whether it improves free recall of spoken two-digit numbers. Twenty younger adults with normal hearing and 24 older adults with hearing loss listened to and subsequently recalled lists of 13 two-digit numbers, with alternating male and female talkers. Lists were presented in quiet as well as in stationary and speech-like noise at a signal-to-noise ratio giving approximately 90% intelligibility. Amplification compensated for loss of audibility. Seeing the talker's face improved free recall performance for the younger but not the older group. Poorer performance in background noise was contingent on individual differences in working memory capacity. The effect of seeing the talker's face did not differ in quiet and noise. We have argued that the absence of an effect of seeing the talker's face for older adults with hearing loss may be due to modulation of audiovisual integration mechanisms caused by an interaction between task demands and participant characteristics. In particular, we suggest that executive task demands and interindividual executive skills may play a key role in determining the benefit of seeing the talker's face during a speech-based cognitive task.

  2. Effect of free-air nuclei on fully developed individual bubble cavitation

    International Nuclear Information System (INIS)

    Danel, F.; Lecoffre, Y.

    1976-01-01

    Fully developed individual-bubble cavitation was studied. Nuclei population and pressure distribution at the boundary of a cavitating converging-diverging test section were measured. It was shown that some cavitation tests can only yield valid results if the free air content of the water is known. During the initial stages of bubble growth the wall pressure in the cavitation region is lower than the vapor pressure. Wall pressure rises later. For a given cavitation number and flow velocity, the pressure distribution depends on the number of expanding bubbles on the hydrofoil. Minimum pressure coefficient depends only on the cavitation number, the flow velocity and the number of expanding bubbles present. Bubbles generate pressure pulses at the wall; combined effect of all such pulses is to shift the wall pressure away from the value that would be obtained at the same cavitation number if no cavitation was present. The greater the number of expanding bubbles, the more the wall pressure tends to approach the vapor pressure. An important result of the work is to pin-point free air contents of water tunnel which lead to correct scaling of cavitation flows [fr

  3. Automobile technology in a CO{sub 2}-constrained world

    Energy Technology Data Exchange (ETDEWEB)

    Kypreos, S; Barreto Gomez, L; Dietrich, Ph [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Schafer, A; Jacoby, H D [MIT, Cambridge (United States)

    1999-08-01

    This study identifies the environmental conditions under which less CO{sub 2}-emitting and more expensive automobile technology might enter the North American transportation sector. For that purpose, different exogenous CO{sub 2}-reduction targets are imposed and the resulting market shares of hypothetical future automobile technologies calculated. The criteria for the selection of different types of automobiles/fuels is the minimisation of discounted, cumulative transport sector costs over the scenario time horizon. (author) 1 tab., 6 refs.

  4. Highly active Ni/Y-doped ZrO{sub 2} catalysts for CO{sub 2} methanation

    Energy Technology Data Exchange (ETDEWEB)

    Takano, H., E-mail: takano_hi@hitachizosen.co.jp [Hitachi Zosen Corporation, Kashiwa, 277-8515 (Japan); Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628 (Japan); Kirihata, Y.; Izumiya, K.; Kumagai, N. [Hitachi Zosen Corporation, Kashiwa, 277-8515 (Japan); Habazaki, H., E-mail: habazaki@eng.hokudai.ac.jp [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628 (Japan); Division of Applied Chemistry & Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628 (Japan); Hashimoto, K. [Tohoku Institute of Technology, Sendai, 277-8515 (Japan)

    2016-12-01

    Highlights: • The Ni/Y-doped ZrO{sub 2} catalysts show highly catalytic activity for CO{sub 2} methanation. • Bidentate carbonate is a major adsorption spice on the Ni/Y-doped ZrO{sub 2} catalysts. • The oxide support of t-ZrO{sub 2} and/or c-ZrO{sub 2} with oxygen vacancies plays a key role. - Abstract: The catalytic methanation of CO{sub 2} was carried out on Ni catalysts supported on Y-doped ZrO{sub 2} with various Y{sup 3+} concentrations and Ni/(Zr + Y) molar ratio = 1. The catalysts were characterized by X-ray diffraction, scanning transmission electron microscopy, specific surface area, temperature-programmed desorption of CO{sub 2}, and temperature-programmed reaction. In addition, operando diffuse-reflectance infrared Fourier-transform spectroscopy (DRIFT) was used to identify the adsorbed reaction intermediate. Catalysts supported on Y-doped ZrO{sub 2} show higher catalytic activity than the catalyst on Y-free ZrO{sub 2} with a monoclinic ZrO{sub 2} phase. The catalytic activity is also dependent upon the Y{sup 3+} concentration, and the highest activity was obtained for the catalyst with a Y/(Zr + Y) molar ratio of 0.333, which consists mainly of fcc Ni and cubic ZrO{sub 2} phase. Y{sup 3+} doping into ZrO{sub 2} introduces oxygen vacancies, which play an important role in enhancing the catalytic activity. The operando DRIFT study reveals that a CO adsorption intermediate is absent, and bidentate carbonate is an important intermediate for CH{sub 4} formation.

  5. [Regulation of alternative CO[sub 2] fixation pathways in procaryotic and eucaryotic photosynthetic organisms

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The major goal of this project is to determine how microorganisms regulate the assimilation of CO[sup 2] via pathways alternative to the usual Calvin reductive pentose phosphate scheme. In particular, we are interest in the molecular basis for switches in CO[sub 2] metabolic paths. Several earlier studies had indicated that purple nonsulfur photosynthetic bacteria assimilate significant amounts of CO[sub 2] via alternative non-Calvin routes. We have deleted the gene that encodes. RubisCo (ribulose bisphosphate carboxylase/oxygenase) in both the Rhodobacter sphaeroids and Rhodospirillum rubrum. The R. sphaeroides RubisCO deletion strain (strain 16) could not grow under photoheterotrophic conditions with malate as electron donor and CO[sub 2] as the electron acceptor; however the R. rub RubisCO deletion strain (strain I-19) could. Over the past year we have sought to physiologically characterize strain 16PHC. We found that, 16PHC exhibited rates of whole-cell CO[sub 2] fixation which were significantly higher than strain 16. Strain 16PHC could not grow photolithoautotrophically in a CO[sub 2] atmosphere; however, CO[sub 2] fixation catalyzed by photoheterotrophically grown 16PHC was repressed by the addition of DMSO. Likewise, we found that cells initially grown in the presence of DMSO could induce the CO[sub 2] fixation system when DMSO was removed. Thus, these results suggested that both PHC and I-19 could be used to study alternative CO[sub 2] fixation reactions and their significance in R. sphaexoides and R. rubrum.

  6. Effects of increased CO{sub 2} levels on monsoons

    Energy Technology Data Exchange (ETDEWEB)

    Cherchi, Annalisa; Masina, Simona; Navarra, Antonio [Centro Euro-Mediterraneo per i Cambiamenti Climatici and Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Alessandri, Andrea [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy)

    2011-07-15

    Increased atmospheric carbon dioxide concentration provided warmer atmospheric temperature and higher atmospheric water vapor content, but not necessarily more precipitation. A set of experiments performed with a state-of-the-art coupled general circulation model forced with increased atmospheric CO{sub 2} concentration (2, 4 and 16 times the present-day mean value) were analyzed and compared with a control experiment to evaluate the effect of increased CO{sub 2} levels on monsoons. Generally, the monsoon precipitation responses to CO{sub 2} forcing are largest if extreme concentrations of carbon dioxide are used, but they are not necessarily proportional to the forcing applied. In fact, despite a common response in terms of an atmospheric water vapor increase to the atmospheric warming, two out of the six monsoons studied simulate less or equal summer mean precipitation in the 16 x CO{sub 2} experiment compared to the intermediate sensitivity experiments. The precipitation differences between CO{sub 2} sensitivity experiments and CTRL have been investigated specifying the contribution of thermodynamic and purely dynamic processes. As a general rule, the differences depending on the atmospheric moisture content changes (thermodynamic component) are large and positive, and they tend to be damped by the dynamic component associated with the changes in the vertical velocity. However, differences are observed among monsoons in terms of the role played by other terms (like moisture advection and evaporation) in shaping the precipitation changes in warmer climates. The precipitation increase, even if weak, occurs despite a weakening of the mean circulation in the monsoon regions (''precipitation-wind paradox''). In particular, the tropical east-west Walker circulation is reduced, as found from velocity potential analysis. The meridional component of the monsoon circulation is changed as well, with larger (smaller) meridional (vertical) scales. (orig.)

  7. Effects of long-term elevated atmospheric CO{sub 2} concentrations on Pinus ponderosa

    Energy Technology Data Exchange (ETDEWEB)

    Surano, K.A.; Kercher, J.R. [eds.

    1993-10-01

    This report details the results from an experiment of the effects of long-term elevated atmospheric CO{sub 2} concentrations on ponderosa pine (Pinus ponderosa Laws.) saplings and seedlings. The study began in 1983 as a pilot study designed to explore the feasibility of using open-top chambers for continuous multi-year exposures on sapling-sized trees and to examine possible CO{sub 2} responses so that future research could be adequately designed. however, following the first year of exposure, preliminary results from the study indicated that measurements of CO{sub 2} responses should be intensified. Open-top chambers proved suitable for use in multiyear exposures of mature trees. With respect to the preliminary examination of CO{sub 2} responses, many interesting observations were made. The nature of the preliminary results suggests that future long-term field CO{sub 2} exposures on perennial species may be critical to the understanding and preparation for future environments. Other research reported here attempted to adapt an existing western coniferous forest growth and succession model for use in elevated CO{sub 2} scenarios using differential species responses, and assessed the usefulness of the model in that regard. Seven papers have been processed separately for inclusion in the appropriate data bases.

  8. System analysis of CO{sub 2} sequestration from biomass cogeneration plants (Bio-CHP-CCS). Technology, economic efficiency, sustainability; Systemanalyse der CO{sub 2}-Sequestrierung aus Biomasse-Heizkraftwerken (Bio-KWK-CCS). Technik, Wirtschaftlichkeit, Nachhaltigkeit

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Claus

    2014-10-15

    In the present work a system analysis is carried out to determine the extent to which a combination of the three areas of energetic biomass use, combined heat and power (CHP) and CO{sub 2} sequestration (CCS - Carbon Capture and Storage) is fundamentally possible and meaningful. The term ''CO{sub 2} sequestration'' refers to the process chain from CO{sub 2} capture, CO{sub 2} transport and CO{sub 2} storage. While the use of biomass in combined heat and power plants is a common practice, CO{sub 2} sequestration (based on fossil fuels) is at the research and development stage. A combination of CCS with biomass has so far been little studied, a combination with combined heat and power plants has not been investigated at all. The two technologies for the energetic use of biomass and cogeneration represent fixed variables in the energy system of the future in the planning of the German federal government. According to the lead scenario of the Federal Ministry of the Environment, electricity generation from biomass is to be almost doubled from 2008 to 2020. At the same time, the heat generated in cogeneration is to be trebled [cf. Nitsch and Wenzel, 2009, p. 10]. At the same time, the CCS technology is to be used in half of all German coal-fired power plants until 2030 [cf. Krassuki et al., 2009, p. 17]. The combination of biomass and CCS also represents an option which is conceivable for the German federal policy [cf. Bundestag, 2008b, p. 4]. In addition, the CCS technology will provide very good export opportunities for the German economy in the future [cf. Federal Government, 2010, p. 20]. The combination of biomass combined heat and power plants with CCS offers the interesting opportunity to actively remove CO{sub 2} from the atmosphere as a future climate protection instrument by means of CO{sub 2} neutrality. Therefore, in the energy concept of the German federal government called for a storage project for industrial or biogenic CO{sub 2

  9. CO{sub 2} flooding performance prediction for Alberta oil pools

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J.C. [Adams Pearson Associates Inc., Calgary, AB (Canada); Bachu, S. [Alberta Energy and Utilities Board, Calgary, AB (Canada)

    2002-06-01

    An advanced technical screening program was used to successfully screen and rank a very large number of Alberta oil pools for enhanced oil recovery using carbon dioxide (CO{sub 2}) flooding. This paper is a continuation paper describing the results of using the Microsoft Excel program with VBA to estimate production forecasts for several candidate pools in Alberta. A total of 6 ranking parameters were used, including API gravity of oil, residual oil saturation, ratio between reservoir pressure and minimum miscibility pressure, reservoir temperature, net pay thickness and porosity. The screening program provides a technical ranking of approximately 8,000 Alberta pools. After compilation of the Alberta oil pools, it was determined that most of the deep carbonate oil pools are excellent candidates for CO{sub 2} miscible flooding. Other Devonian carbonate pools are also ranked as having high potential for the process. An environmental benefit of CO{sub 2} miscible flooding process is that carbon sequestration has the potential to reduce anthropogenic carbon dioxide emissions from reaching the atmosphere. Ongoing studies are currently addressing CO{sub 2} capture and transportation, making EOR technology viable for maintaining light oil production in western Canada. 11 refs., 2 tabs., 2 figs.

  10. Overview on CO{sub 2} Valorization: Challenge of Molten Carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Chery, Déborah; Lair, Virginie; Cassir, Michel, E-mail: michel.cassir@chimie-paristech.fr [Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, PSL Research University, Paris (France)

    2015-10-02

    The capture and utilization of CO{sub 2} is becoming progressively one of the significant challenges in the field of energetic resources. Whatever the energetic device, it is impossible to avoid completely the production of greenhouse gas, even parting from renewable energies. Transforming CO{sub 2} into a valuable fuel, such as alcohols, CO, or even C, could constitute a conceptual revolution in the energetic bouquet offering a huge application domain. Although several routes have been tested for this purpose, on which a general panorama will be given here, molten carbonates are attracting a renewed interest aiming at dissolving and reducing carbon dioxide in such melts. Because of their unique properties, molten carbonates are already used as electrolytes in molten carbonate fuel cells; they can also provoke a breakthrough in a new economy considering CO{sub 2} as an energetic source rather than a waste. Molten carbonates’ science and technology is becoming a strategic field of research for energy and environmental issues. Our aim in this review is to put in evidence the benefits of molten carbonates to valorize CO{sub 2} and to show that it is one of the most interesting routes for such application.

  11. Rational bioenergy utilisation in energy systems and impacts on CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Wahlund, Bertil

    2003-04-01

    The increased use of biomass in energy systems is an important strategy to reduce CO{sub 2} emissions. The purpose of this thesis has been to analyse the opportunities for Sweden to further reduce CO{sub 2} emissions in the energy system, by rationally utilising woody biomass energy. The characteristics of current commercially operating biofuel-based CHP plants in Sweden are surveyed and systematically presented. A consistent and transparent comprehensive reference base for system comparisons is given. Furthermore, the fuel effectiveness and contribution to CO{sub 2} reduction is calculated. The governmental subsidies of the CHP plants investment, expressed as cost of specific CO{sub 2} reduction, appears to be low. The competitiveness of biomass-fuelled energy production in relation to fossil-based production with carbon capture is analysed, showing that the biomass-fuelled systems provide a competitive option, in terms of cost of electricity and efficiencies. The remaining Swedish woody biofuel potential of at least 100 PJ/yr is principally available in regions with a biomass surplus. Transportation is therefore required to enable its utilisation in national and international markets. Refining the biofuel feedstock to pellets, or even further refining to motor fuels (DME, methanol or ethanol) or power, could facilitate this transport. Different options for fuel refining are studied and compared. The entire fuel chain, from fuel feedstock to end users, is considered and CO{sub 2} emissions are quantified. Substituting fuel pellets for coal appears to be the most cost effective alternative and shows the largest CO{sub 2} reduction per energy unit biofuel. Motor fuels appear more costly and give about half the CO{sub 2} reduction. Transportation of the upgraded biofuel pellets is highly feasible from CO{sub 2} emissions point of view and does not constitute a hindrance for further utilisation, i.e. the pellets can be transported over long distances efficiently with

  12. CO{sub 2} emissions abatement and geologic sequestration - industrial innovations and stakes - status of researches in progress; Reduction des emissions et stockage geologique du CO{sub 2} - innovation et enjeux industriels - le point des recherches en cours

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This colloquium was jointly organized by the French institute of petroleum (IFP), the French agency of environmental and energy mastery (Ademe) and the geological and mining research office (BRGM). This press kit makes a status of the advances made in CO{sub 2} emissions abatement and geological sequestration: technological advances of CO{sub 2} capture and sequestration, geological reservoir dimensioning with respect to the problem scale, duration of such an interim solution, CO{sub 2} emissions abatement potentialities of geological sequestration, regulatory, economical and financial implications, international stakes of greenhouse gas emissions. This press kit comprises a press release about the IFP-Ademe-BRGM colloquium, a slide presentation about CO{sub 2} abatement and sequestration, and four papers: a joint IFP-Ademe-BRGM press conference, IFP's answers to CO{sub 2} emissions abatement, Ademe's actions in CO{sub 2} abatement and sequestration, and BRGM's experience in CO{sub 2} sequestration and climatic change expertise. (J.S.)

  13. To learn to live with CO[sub 2]. Mit CO[sub 2] leben lernen

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, K.P. (Eduard-Pestel-Institut fuer Systemforschung, Hannover (Germany))

    1993-03-01

    Based on the assumption that the energy demand in developing and threshold countries will increase the CO[sub 2] reduction strategies of industrialized nations cannot be successful or would - if rigorously pursued - produce world-wide economy disaster. Thus the author pleads for a strategy of adaptation to climate changes which are not to stop any more. (KW)

  14. Spray process for the recovery of CO.sub.2 from a gas stream and a related apparatus

    Science.gov (United States)

    Soloveichik, Grigorii Lev; Perry, Robert James; Wood, Benjamin Rue; Genovese, Sarah Elizabeth

    2014-02-11

    A method for recovering carbon dioxide (CO.sub.2) from a gas stream is disclosed. The method includes the step of reacting CO.sub.2 in the gas stream with fine droplets of a liquid absorbent, so as to form a solid material in which the CO.sub.2 is bound. The solid material is then transported to a desorption site, where it is heated, to release substantially pure CO.sub.2 gas. The CO.sub.2 gas can then be collected and used or transported in any desired way. A related apparatus for recovering carbon dioxide (CO.sub.2) from a gas stream is also described herein.

  15. Electric heat pump for motor vehicles with R744 (CO{sub 2}) as refrigerant; Elektrisch betriebene Waermepumpe fuer Fahrzeuge mit dem Kaeltemittel R744 (CO{sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Huenemoerder, W.; Kakehashi, N. [DENSO Automotive Deutschland GmbH, Eching (Germany)

    2003-07-01

    R744 (carbon dioxide) is suited for low ambient temperatures. A motor car air conditioner on this basis was developed for engines with low heat emissions. The passenger compartment is heated and cooled by a single system comprising a semihermetic electric compressor and three air-filled heat transfer units, i.e. an evaporator and a gas cooler for heating inside the car and a heat exchanger on the outside which can serve as evaporator or gas cooler as desired. The system can be operated in four modes: Heating without dehumidification, heating and dehumidification, cooling, thawing of the external heat exchanger. In contrast to conventional systems, the heating and cooling mode are not independent of each other, so a special control concept was developed which enables automatic operation of the four above modes of operation. The system is used in the Toyota FCHV fuel cell car. (orig.) [German] Das Kaeltemittel CO{sub 2} (R744) kann auch bei niederen Umgebungstemperaturen fuer Waermepumpenanwendungen eingesetzt werden. Eine CO{sub 2}-Klimaanlage mit Waermepumpe wurde fuer die Klimatisierung (Heizen, Kuehlen und Entfeuchten) des Fahrzeuginnenraumes entwickelt. Diese Anlage ist fuer Elektro- und Breenstoffzellenfahrzeuge geeignet, bei denen keine Motorabwaerme zu Heizzwecken zur Verfuegung steht. Heizen und Kuehlen des Innenraumes erfolgt durch ein einziges System unter Verwendung derselben Komponenten. Die Anlage besteht aus einem halbhermetischen elektrischen Verdichter und drei luftbeaufschlagten Waermeuebertragern - ein Verdampfer und ein Gaskuehler (zum Heizen) im Innenraum und ein Waermeuebertrager aussen, der - je nach Betriebsart - als Verdampfer oder Gaskuehler betrieben wird. Die Anlage kann in vier Betriebsarten betrieben werden: Heizen ohne Entfeuchtung, Heizen mit Entfeuchtung, Kuehlen, Abtauen des aeusseren Waermeuebertragers. In konventionellen Systemen koennen Heiz- und Kuehlsystem unabhaengig voneinander geregelt werden. Bei dem hier vorgestellten

  16. Supersonic Post-Combustion Inertial CO>2 Extraction System Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Balepin, Vladimir [Alliant Techsystems Operations LLC, Ronkonkoma, NY (United States)

    2017-04-05

    This report summarizes the effort carried out under NETL contract DE- FE0013122 from 1 October 2013 to 31 March 2017. As described in this document, technical challenges realized during the performance of this project resulted in completion of only the first two of three planned budget periods. Despite this outcome, substantial progress was made toward understanding and maturing the CO>2 capture technology under consideration and considerable future promise remains for applications requiring lower CO>2 capture and/or lower CO>2.

  17. Assessing reservoir performance risk in CO{sub 2} storage projects

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, A.R. [URS Corp., San Francisco, CA (United States); Rigg, A. [CRC for Greenhouse Gas Technologies, Canberra (Australia)

    2005-07-01

    One of the main issues for researchers involved with geological storage of carbon dioxide (CO{sub 2}) has been the development of a proper methodology to assess and compare alternative CO{sub 2} injection projects on the basis of risk. Consideration needs to be given to technical aspects, such as the risk of leakage and the effectiveness of the intended reservoir, as well as less tangible aspects such as the value and safety of geological storage of CO{sub 2}, and potential impacts on the community and environment. The Geological Disposal of Carbon Dioxide (GEODISC), was a research program of the Australian Petroleum Cooperative Research Centre which identified 56 potential environmentally sustainable sites for CO{sub 2} injection (ESSCIs) within Australia. Several studies were carried out, involving detailed evaluation of the suitability of 4 selected sites, including Dongara, Petrel, Gippsland and Carnarvon. The GEODISC program included a risk assessment research module which required a complete and quantified risk assessment of CO{sub 2} injection as a storage option. Primary goals were to assess the risk of leakage, to assess the effectiveness of the intended reservoir, and to assess negative consequences to facilitate comparison of alternative sites. This paper discussed the background and risk assessment model. Key performance indicators (KPIs) were also developed to address the purpose of risk assessment. It was concluded that the RISQUE method is an appropriate approach and that potential injection projects can be measured against six KPIs including containment; effectiveness; self-funding potential; wider community benefits; community safety and community amenity. 6 refs., 3 tabs., 3 figs.

  18. N-doped polypyrrole-based porous carbons for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Sevilla, Marta; Valle-Vigon, Patricia; Fuertes, Antonio B. [Instituto Nacional del Carbon (CSIC), P.O. Box 73, 33080 Oviedo (Spain)

    2011-07-22

    Highly porous N-doped carbons have been successfully prepared by using KOH as activating agent and polypyrrole (PPy) as carbon precursor. These materials were investigated as sorbents for CO{sub 2} capture. The activation process was carried out under severe (KOH/PPy = 4) or mild (KOH/PPy = 2) activation conditions at different temperatures in the 600-800 C range. Mildly activated carbons have two important characteristics: i) they contain a large number of nitrogen functional groups (up to 10.1 wt% N) identified as pyridonic-N with a small proportion of pyridinic-N groups, and ii) they exhibit, in relation to the carbons prepared with KOH/PPy = 4, narrower micropore sizes. The combination of both of these properties explains the large CO{sub 2} adsorption capacities of mildly activated carbon. In particular, a very high CO{sub 2} adsorption uptake of 6.2 mmol.g{sup -1} (0 C) was achieved for porous carbons prepared with KOH/PPy = 2 and 600 C (1700 m{sup 2}.g{sup -1}, pore size {approx} 1 nm and 10.1 wt% N. Furthermore, we observed that these porous carbons exhibit high CO{sub 2} adsorption rates, a good selectivity for CO{sub 2}-N{sub 2} separation and it can be easily regenerated. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Subtask1.10 – CO>2 storage and enhanced bakken recovery research program

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, James [Univ. of North Dakota, Grand Forks, ND (United States)

    2014-05-31

    Small improvements in productivity could increase technically recoverable oil in the Bakken Petroleum System by billions of barrels. The use of CO>2 for enhanced oil recovery (EOR) in tight oil reservoirs is a relatively new concept. The large-scale injection of CO>2 into the Bakken would also result in the geological storage of significant amounts of CO>2. The Energy & Environmental Research Center (EERC) has conducted laboratory and modeling activities to examine the potential for CO>2 storage and EOR in the Bakken. Specific activities included the characterization and subsequent modeling of North Dakota study areas as well as dynamic predictive simulations of possible CO>2 injection schemes to predict the potential CO>2 storage and EOR in those areas. Laboratory studies to evaluate the ability of CO>2 to remove hydrocarbons from Bakken rocks and determine minimum miscibility pressures for Bakken oil samples were conducted. Data from a CO>2 injection test conducted in the Elm Coulee area of Montana in 2009 were evaluated with an eye toward the possible application of knowledge gained to future injection tests in other areas. A first-order estimation of potential CO>2 storage capacity in the Bakken Formation in North Dakota was also conducted. Key findings of the program are as follows. The results of the research activities suggest that CO>2 may be effective in enhancing the productivity of oil from the Bakken and that the Bakken may hold the ability to geologically store between 120 Mt and 3.2 Gt of CO>2. However, there are no clear-cut answers regarding the most effective approach for using CO>2 to improve oil productivity or the storage capacity of the Bakken. The results underscore the notion that an unconventional resource will likely require unconventional methods of both assessment and implementation when it comes to the injection of CO

  20. Design of Stratified Functional Nanoporous Materials for CO>2 Capture and Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J. Karl [Univ. of Pittsburgh, PA (United States); Ye, Jingyun [Univ. of Pittsburgh, PA (United States)

    2017-10-03

    The objective of this project is to develop novel nanoporous materials for CO>2 capture and conversion. The motivation of this work is that capture of CO>2 from flue gas or the atmosphere coupled with catalytic hydrogenation of CO>2 into valuable chemicals and fuels can reduce the net amount of CO>2 in the atmosphere while providing liquid transportation fuels and other commodity chemicals. One approach to increasing the economic viability of carbon capture and conversion is to design a single material that can be used for both the capture and catalytic conversion of CO>2, because such a material could increase efficiency through process intensification. We have used density functional theory (DFT) methods to design catalytic moieties that can be incorporated into various metal organic framework (MOF) materials. We chose to work with MOFs because they are highly tailorable, can be functionalized, and have been shown to selectively adsorb CO>2 over N2, which is a requirement for CO>2 capture from flue gas. Moreover, the incorporation of molecular catalytic moieties into MOF, through covalent bonding, produces a heterogeneous catalytic material having activities and selectivities close to those of homogeneous catalysts, but without the draw-backs associated with homogeneous catalysis.