WorldWideScience

Sample records for fabry-perot confocal resonator

  1. Fabry-Perot confocal resonator optical associative memory

    Science.gov (United States)

    Burns, Thomas J.; Rogers, Steven K.; Vogel, George A.

    1993-03-01

    A unique optical associative memory architecture is presented that combines the optical processing environment of a Fabry-Perot confocal resonator with the dynamic storage and recall properties of volume holograms. The confocal resonator reduces the size and complexity of previous associative memory architectures by folding a large number of discrete optical components into an integrated, compact optical processing environment. Experimental results demonstrate the system is capable of recalling a complete object from memory when presented with partial information about the object. A Fourier optics model of the system's operation shows it implements a spatially continuous version of a discrete, binary Hopfield neural network associative memory.

  2. An Archetype Semi-Ring Fabry-Perot (SRFP) Resonator

    Science.gov (United States)

    Taghavi-Larigani, Shervin; VanZyl, Jakob

    2009-01-01

    We introduce and demonstrate the generation of a novel resonator, termed Semi-Ring Fabry-Perot (SRFP), that exhibits unique features, such as, its use of one plane mirror, allowing the SRFP to be easily fabricated as a symmetrical device. In addition to its unique features, it exhibits advantages of ring and Fabry-Perot resonators: 1) compared to a ring resonator that only allows a transmitted intensity, the Semi-Ring Fabry-Perot (SRFP) supports standing waves, allowing both a reflected and transmitted intensity; 2) the reflected light spectrum of the SRFP resonator is much narrower than similar Fabry-Perot, implying higher finesse.

  3. On-chip optical filter comprising Fabri-Perot resonator structure and spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seunghoon; Horie, Yu; Faraon, Andrei; Arbabi, Amir

    2018-04-10

    An on-chip optical filter having Fabri-Perot resonators and a spectrometer may include a first sub-wavelength grating (SWG) reflecting layer and a second SWG reflecting layer facing each other. A plurality of Fabri-Perot resonators are formed by the first SWG reflecting layer and the second SWG reflecting layer facing each other. Each of the Fabri-Perot resonators may transmit light corresponding to a resonance wavelength of the Fabri-Perot resonator. The resonance wavelengths of the Fabri-Perot resonators may be determined according to duty cycles of grating patterns.

  4. Transversely coupled Fabry-Perot resonators with Bragg grating reflectors.

    Science.gov (United States)

    Saber, Md Ghulam; Wang, Yun; El-Fiky, Eslam; Patel, David; Shahriar, Kh Arif; Alam, Md Samiul; Jacques, Maxime; Xing, Zhenping; Xu, Luhua; Abadía, Nicolás; Plant, David V

    2018-01-01

    We design and demonstrate Fabry-Perot resonators with transverse coupling using Bragg gratings as reflectors on the silicon-on-insulator (SOI) platform. The effects of tailoring the cavity length and the coupling coefficient of the directional coupler on the spectral characteristics of the device are studied. The fabricated resonators achieved an extinction ratio (ER) of 37.28 dB and a Q-factor of 3356 with an effective cavity length of 110 μm, and an ER of 8.69 dB and a Q-factor of 23642 with a 943 μm effective cavity length. The resonator structure presented here has the highest reported ER on SOI and provides additional degrees of freedom compared to an all-pass ring resonator to tune the spectral characteristics.

  5. Folded Fabry-Perot quasi-optical ring resonator diplexer Theory and experiment

    Science.gov (United States)

    Pickett, H. M.; Chiou, A. E. T.

    1983-01-01

    Performance of folded Fabry-Perot quasi-optical ring resonator diplexers with different geometries of reflecting surfaces is investigated both theoretically and experimentally. Design of optimum surface geometry for minimum diffraction, together with the figure of merit indicating improvement in performance, are given.

  6. Conductance oscillation in graphene-nanoribbon-based electronic Fabry-Perot resonators

    International Nuclear Information System (INIS)

    Zhang Yong; Han Mei; Shen Linjiang

    2010-01-01

    By using the tight-binding approximation and the Green's function method, the quantum conductance of the Fabry-Perot-like electronic resonators composed of zigzag and metallic armchair edge graphene nanoribbons (GNRs) was studied numerically. Obtained results show that due to Fabry-Perot-like electronic interference, the conductance of the GNR resonators oscillates periodically with the Fermi energy. The effects of disorders and coupling between the electrodes and the GNR on conductance oscillations were explored. It is found that the conductance oscillations appear at the strong coupling and become resonant peaks as the coupling is very weak. It is also found that the strong disorders in the GNR can smear the conductance oscillation periods. In other words, the weak coupling and the strong disorders all can blur the conductance oscillations, making them unclearly distinguished.

  7. Experimental study of neutron-optical potential with absorption using Fabry-Perot magnetic resonator

    International Nuclear Information System (INIS)

    Hino, M.; Tasaki, S.; Ebisawa, T.; Kawai, T.; Achiwa, N.; Yamazaki, D.

    1999-01-01

    Complete text of publication follows. Recently spin precession angles of neutrons tunneling and non-tunneling through [Permalloy45(PA)-germanium(Ge)]-PA Fabry-Perot magnetic resonator have been observed [1]. The spin precession angle is well reproduced by the theoretical phase difference of up and down spin neutron wave function based on one-dimensional Schroedinger equation using optical potential model [2]. Spin precession angle and transmission probability of neutron through PA-(Ge/Gd)-PA Fabry-Perot magnetic resonator are presented, where the gap(Ge/Gd) layer consists of germanium and gadolinium atoms, and the optical potential model for magnetic multilayer system with absorption is discussed. (author) [1] M. Hino, et al., Physica B 241-243, 1083 (1998).; [2] S. Yamada, et al., Annu. Rep. Res. Reactor Inst. Kyoto Univ. 11, 8 (1978)

  8. Lineshape Engineering in an All-Pass Ring Resonator with Backreflection Coupled to a Symmetrical Fabry-Perot Resonator

    KAUST Repository

    Melnikov, Vasily

    2012-11-10

    We derive transfer functions for an all-pass ring resonator with internal backreflection coupled to a symmetrical Fabry-Perot resonator and demonstrate electromagnetically induced transparency-like and Fano-like lineshapes tunable by backreflection in the ring resonator.

  9. Lineshape Engineering in an All-Pass Ring Resonator with Backreflection Coupled to a Symmetrical Fabry-Perot Resonator

    KAUST Repository

    Melnikov, Vasily; Roqan, Iman S.

    2012-01-01

    We derive transfer functions for an all-pass ring resonator with internal backreflection coupled to a symmetrical Fabry-Perot resonator and demonstrate electromagnetically induced transparency-like and Fano-like lineshapes tunable by backreflection in the ring resonator.

  10. Faraday-Active Fabry-Perot Resonator: Transmission, Reflection, and Emissivity

    Science.gov (United States)

    Liptuga, Anatoliy; Morozhenko, Vasyl; Pipa, Viktor; Venger, Evgen; Kostiuk, Theodor

    2011-01-01

    The propagation of light within a semiconductor Faraday-active Fabry-Perot resonator (FAFR) is investigated theoretically and experimentally. It is shown that an external magnetic field radically changes the angular and spectral characteristics of transmission, reflection and emissivity of the resonator not only for polarized, but also for unpolarized light. Suppression of interference patterns and phase inversion of the interference extrema were observed in both monochromatic and polychromatic light. The investigations were carried out for the plane-parallel plates of n-InAs in the spectral range of free charge carrier absorption. The results can be used to create new controllable optical and spectroscopic devices for investigation of Faraday-active material properties and for control of parameters of plane-parallel layers and structures.

  11. Luminosity optimization schemes in Compton experiments based on Fabry-Perot optical resonators

    Directory of Open Access Journals (Sweden)

    Alessandro Variola

    2011-03-01

    Full Text Available The luminosity of Compton x-ray and γ sources depends on the average current in electron bunches, the energy of the laser pulses, and the geometry of the particle bunch to laser pulse collisions. To obtain high power photon pulses, these can be stacked in a passive optical resonator (Fabry-Perot cavity especially when a high average flux is required. But, in this case, owing to the presence of the optical cavity mirrors, the electron bunches have to collide at an angle with the laser pulses with a consequent luminosity decrease. In this article a crab-crossing scheme is proposed for Compton sources, based on a laser amplified in a Fabry-Perot resonator, to eliminate the luminosity losses given by the crossing angle, taking into account that in laser-electron collisions only the electron bunches can be tilted at the collision point. We report the analytical study on the crab-crossing scheme for Compton gamma sources. The analytical expression for the total yield of photons generated in Compton sources with the crab-crossing scheme of collision is derived. The optimal collision angle of the bunch was found to be equal to half of the collision angle. At this crabbing angle, the maximal yield of scattered off laser photons is attained thanks to the maximization, in the collision process, of the time spent by the laser pulse in the electron bunch. Estimations for some Compton source projects are presented. Furthermore, some schemes of the optical cavities configuration are analyzed and the luminosity calculated. As illustrated, the four-mirror two- or three-dimensional scheme is the most appropriate for Compton sources.

  12. High-energy localized eigenstates in a Fabry-Perot graphene resonator in a magnetic field

    Science.gov (United States)

    Zalipaev, V. V.

    2012-06-01

    A semiclassical analysis of the high-energy eigenstates of Dirac fermions inside a graphene monolayer nanoribbon resonator of Fabry-Perot type in a magnetic field with zigzag boundary conditions is discussed. A semiclassical asymptotic method of construction of Maslov spectral series of energy spectrum and eigenfunctions, localized in an asymptotically small neighborhood of a periodic orbit, is developed for the graphene Dirac system. The isolated periodic orbit is confined between two flat boundaries. The analysis involves constructing a localized asymptotic solution to the Dirac system (electron-hole Gaussian beam). Then, the stability of a continuous family of periodic orbits (POs) confined between reflecting boundaries of the resonator is studied. The asymptotics of the eigenfunctions are constructed as a superposition of two Gaussian beams propagating in opposite directions between two reflecting points of the periodic orbit. The asymptotics of the energy spectrum are obtained by means of the generalized Bohr-Sommerfeld quantization condition only for stable POs. It provides two parts of semiclassical Maslov spectral series with positive and negative energies, for electrons and holes, correspondingly, with two different Hamiltonian dynamics and families of classical trajectories. The presence of electrostatic potential is vital as it makes a family of periodic orbit stable. For one subclass of lens-shaped periodic orbits, for a piecewise linear potential, localized eigenstates were computed numerically by the finite element method using COMSOL, and proved to be in very good agreement with the ones computed semiclassically.

  13. Amplification of the Signal Intensity of Fluorescence-Based Fiber-Optic Biosensors Using a Fabry-Perot Resonator Structure

    Directory of Open Access Journals (Sweden)

    Meng-Chang Hsieh

    2015-02-01

    Full Text Available Fluorescent biosensors have been widely used in biomedical applications. To amplify the intensity of fluorescence signals, this study developed a novel structure for an evanescent wave fiber-optic biosensor by using a Fabry-Perot resonator structure. An excitation light was coupled into the optical fiber through a laser-drilled hole on the proximal end of the resonator. After entering the resonator, the excitation light was reflected back and forth inside the resonator, thereby amplifying the intensity of the light in the fiber. Subsequently, the light was used to excite the fluorescent molecules in the reactive region of the sensor. The experimental results showed that the biosensor signal was amplified eight-fold when the resonator reflector was formed using a 92% reflective coating. Furthermore, in a simulation, the biosensor signal could be amplified 20-fold by using a 99% reflector.

  14. Room-Temperature Pressure-Induced Optically-Actuated Fabry-Perot Nanomechanical Resonator with Multilayer Graphene Diaphragm in Air

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2017-11-01

    Full Text Available We demonstrated a miniature and in situ ~13-layer graphene nanomechanical resonator by utilizing a simple optical fiber Fabry-Perot (F-P interferometric excitation and detection scheme. The graphene film was transferred onto the endface of a ferrule with a 125-μm inner diameter. In contrast to the pre-tension induced in membrane that increased quality (Q factor to ~18.5 from ~3.23 at room temperature and normal pressure, the limited effects of air damping on resonance behaviors at 10−2 and 105 Pa were demonstrated by characterizing graphene F-P resonators with open and micro-air-gap cavities. Then in terms of optomechanical behaviors of the resonator with an air micro-cavity configuration using a polished ferrule substrate, measured resonance frequencies were increased to the range of 509–542 kHz from several kHz with a maximum Q factor of 16.6 despite the lower Knudsen number ranging from 0.0002 to 0.0006 in damping air over a relative pressure range of 0–199 kPa. However, there was the little dependence of Q on resonance frequency. Note that compared with the inferior F-P cavity length response to applied pressures due to interfacial air leakage, the developed F-P resonator exhibited a consistent fitted pressure sensitivity of 1.18 × 105 kHz3/kPa with a good linearity error of 5.16% in the tested range. These measurements shed light on the pre-stress-dominated pressure-sensitive mechanisms behind air damping in in situ F-P resonant sensors using graphene or other 2D nanomaterials.

  15. Ultra-Precise Measurement of Distance by Fabry-Perot Resonator

    Czech Academy of Sciences Publication Activity Database

    Číp, Ondřej; Petrů, František; Lazar, Josef; Buchta, Zdeněk

    T118, - (2005), s. 45-47 ISSN 0031-8949 R&D Projects: GA ČR(CZ) GP102/02/P122 Keywords : length measurements * laser interferometer * optical resonator Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.661, year: 2004

  16. Use of a Fabry-Perot resonator at millimeter wave frequencies in the determination of thin-film resistivities

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, S. J.

    1979-08-01

    A novel contact-free method of measuring resistivity of thin semiconducting films on highly conductive substrates is described. The material structure studied is commonly encountered in thin-film solar cell development. The microwave technique that involves using a semiconfocal Fabry-Perot cavity at a wavelength of 3 mm is discussed in detail. The sample consists o a thin film of CdS on a brass substrate and is mounted on the flat reflector of the cavity. Using field perturbation methods, an expression is derived that relates the film resistivity to the cavity quality factor Q. The cavity quality factor is an easily measured parameter and, by comparing measurements of Q with and without the sample mounted, an accurate measure of the resistivity is obtained. Accuracy of measurements and necessary sample constraints are discussed in detail. Three samples of CdS were measured on brass substrates spanning an order of magnitude in resistivity difference. The results of the method described agree with those of another method that involves current voltage measurement after application of a metallic contact. Unlike the latter method, however, the new technique provides a nondestructive way of measuring the resistivity of semiconductor films on conducting substrates and is amenable to automation.

  17. Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings.

    Science.gov (United States)

    Barmenkov, Yuri O; Zalvidea, Dobryna; Torres-Peiró, Salvador; Cruz, Jose L; Andrés, Miguel V

    2006-07-10

    In this paper, we describe the properties of Fabry-Perot fiber cavity formed by two fiber Bragg gratings in terms of the grating effective length. We show that the grating effective length is determined by the group delay of the grating, which depends on its diffraction efficiency and physical length. We present a simple analytical formula for calculation of the effective length of the uniform fiber Bragg grating and the frequency separation between consecutive resonances of a Fabry-Perot cavity. Experimental results on the cavity transmission spectra for different values of the gratings' reflectivity support the presented theory.

  18. Extrinsic Fabry-Perot ultrasonic detector

    Science.gov (United States)

    Kidwell, J. J.; Berthold, John W., III

    1996-10-01

    We characterized the performance of a commercial fiber optic extrinsic Fabry-Perot interferometer for use as an ultrasonic sensor, and compared the performance with a standard lead zirconate titanate (PZT) detector. The interferometer was unstabilized. The results showed that the fiber sensor was about 12 times less sensitive than the PZT detector. Ultrasonic frequency response near 100 kHz was demonstrated. We describe the design of the fiber sensor, the details of the tests performed, and potential applications.

  19. Fabry-Perot enhanced Faraday rotation in graphene.

    Science.gov (United States)

    Ubrig, Nicolas; Crassee, Iris; Levallois, Julien; Nedoliuk, Ievgeniia O; Fromm, Felix; Kaiser, Michl; Seyller, Thomas; Kuzmenko, Alexey B

    2013-10-21

    We demonstrate that giant Faraday rotation in graphene in the terahertz range due to the cyclotron resonance is further increased by constructive Fabry-Perot interference in the supporting substrate. Simultaneously, an enhanced total transmission is achieved, making this effect doubly advantageous for graphene-based magneto-optical applications. As an example, we present far-infrared spectra of epitaxial multilayer graphene grown on the C-face of 6H-SiC, where the interference fringes are spectrally resolved and a Faraday rotation up to 0.15 radians (9°) is attained. Further, we discuss and compare other ways to increase the Faraday rotation using the principle of an optical cavity.

  20. A tunable Fabry-Perot filter (λ/18) based on all-dielectric metamaterials

    Science.gov (United States)

    Ao, Tianhong; Xu, Xiangdong; Gu, Yu; Jiang, Yadong; Li, Xinrong; Lian, Yuxiang; Wang, Fu

    2018-05-01

    A tunable Fabry-Perot filter composed of two separated all-dielectric metamaterials is proposed and numerically investigated. Different from metallic metamaterials reflectors, the all-dielectric metamaterials are constructed by high-permittivity TiO2 cylinder arrays and exhibit high reflection in a broadband of 2.49-3.08 THz. The high reflection is attributed to the first and second Mie resonances, by which the all-dielectric metamaterials can serve as reflectors in the Fabry-Perot filter. Both the results from phase analysis method and CST simulations reveal that the resonant frequency of the as-proposed filter appears at 2.78 THz, responding to a cavity with λ/18 wavelength thickness. Particularly, the resonant frequency can be adjusted by changing the cavity thickness. This work provides a feasible approach to design low-loss terahertz filters with a thin air cavity.

  1. Feedback stabilized tandem Fabry-Perot interferometer

    International Nuclear Information System (INIS)

    Fukushima, Hiroyuki; Ito, Mikio; Shirasu, Hiroshi.

    1986-01-01

    A new system for measuring the isotopic ratio of uranium, in which two plane-type Fabry-Perot interferometers (tandem FP) are connected in series. The parallelism between the two FPs is achieved automatically by a feedback control mechanism based on laser interference fringe monitoring. The structure of the tandem FP, feedback control system, automatic parallelism adjustment mechanism and wavelength synchronization mechanism are described in detail. For experiments, a hollow cathode discharge tube of a pulse discharge type is employed. Measurements are made to determine the effects of pulse width on the 238 U peak height of 502.7 nm line, recorder traces of 235 U and 238 U lines, half width for 238 U component of the 502.7 nm line, SN ratio, reproducibility of the 235 U/ 238 U peak height ratio and 235 U/ 238 U intensity ratio. Considerations are made on the spectral line width, contrast, transmission factor, and stability of automatic parallelism control and wavelength synchronization. Results obtained indicates that a single-type interferometer would serve adequately for measuring the 235 U/ 238 U ratio if the automatic parallelism control developed here is used. The ultimate object of the tandem system is to make measurement of 236 U. Satisfactory results have not obtained as yet, but most likely the present system would make it possible if a light source of a higher intensity and advanced photometric techniques are developed. (Nogami, K.)

  2. Fabry-Perot measurements of barium temperature in fluorescent lamps

    International Nuclear Information System (INIS)

    Hadrath, S; Garner, R

    2010-01-01

    A scanning Fabry-Perot interferometer (FPI) is used to determine the temperature of barium atoms that are liberated from the electrodes of fluorescent lamps during their steady-state operation. Barium, a constituent of the work function lowering emitter material that is placed on the tungsten coil that forms the electrode, is liberated primarily by evaporation from the hot (∼1300 K) thermionic electrode. However, there may be situations or modes of operation in which barium is, in addition, sputtered, a condition which may lead to increased end-darkening, shortened life and increased mercury consumption in the lamp. Using the FPI diagnostic, the occurrence of sputtering is inferred when barium temperatures are much greater than the electrode temperature. The FPI diagnostic senses resonance radiation (λ = 553 nm) emitted by barium atoms excited in the low pressure discharge environment, and infers temperature from the Doppler broadened linewidth. The diagnostic has proven to be successful in a number of situations. Measurements have been made on rare gas discharges and on Hg-argon discharges for different discharge currents, gas pressures and auxiliary coil currents. Measurements are phase resolved for ac-driven discharges.

  3. TAURUS - a wide field imaging Fabry-Perot spectrometer

    International Nuclear Information System (INIS)

    Atherton, P.D.; Taylor, K.

    1983-01-01

    TAURUS, an imaging Fabry-Perot system developed by the Royal Greenwich Observatory and Imperial College London, is described. The imaging process is explained and the technique is compared with grating spectrographs. It is argued that TAURUS is superior for obtaining field information from extended emission line sources. (Auth.)

  4. Construction of an optical semiconductor amplifier starting from a Fabry-Perot semiconductor laser

    International Nuclear Information System (INIS)

    Garcia, E.; Soto, H.; Marquez, H.; Valles V, N.

    2000-01-01

    A methodology to convert a semiconductor laser Fabry-Perot (SL-FP) in a semiconductor optical amplifier (SOA) is presented. In order to suppress the cavity resonant an optical thin film coating was deposited on the facets of the SL-FP. The experiment was carried out putting on service a new monitoring technique that consist in the observation of the laser power spectrum during the antireflection coatings deposition. This allows to determine the moment were the facets reflectivity is minimum. The SOA obtained was characterized for different polarization currents. (Author)

  5. Fiber Fabry-Perot interferometer with controllable temperature sensitivity.

    Science.gov (United States)

    Zhang, Xinpu; Peng, Wei; Zhang, Yang

    2015-12-01

    We proposed a fiber taper based on the Fabry-Perot (FP) interferometer structure with controllable temperature sensitivity. The FP interferometer is formed by inserting a segment of tapered fiber tip into the capillary and subsequently splicing the other end of the capillary to a single-mode fiber (SMF), the tapered fiber endface, and the spliced face form the FP cavity. Through controlling the inserted tapered fiber length, a series of FP interferometers were made. Because the inserted taper tip has the degree of freedom along the fiber axial, when the FP interferometer is subjected to temperature variation, the thermal expansion of the fiber taper tip will resist the FP cavity length change caused by the evolution of capillary length, and we can control the temperature sensitivity by adjusting the inserted taper length. In this structure, the equivalent thermal expansion coefficient of the FP interferometer can be defined; it was used to evaluate the temperature sensitivity of the FP interferometer, which provides an effective method to eliminate the temperature effect and to enhance other measurement accuracy. We fabricated the FP interferometers and calibrated their temperature characters by measuring the wavelength shift of the resonance dips in the reflection spectrum. In a temperature range of 50°C to 150°C, the corresponding temperature sensitivities can be controlled between 0 and 1.97 pm/°C when the inserted taper is between 75 and 160 μm. Because of its controllable temperature sensitivity, ease of fabrication, and low cost, this FP interferometer can meet different temperature sensitivity requirements in various application areas, especially in the fields which need temperature insensitivity.

  6. A Fabry-Perot Interferometry Based MRI-Compatible Miniature Uniaxial Force Sensor for Percutaneous Needle Placement

    OpenAIRE

    Shang, Weijian; Su, Hao; Li, Gang; Furlong, Cosme; Fischer, Gregory S.

    2013-01-01

    Robot-assisted surgical procedures, taking advantage of the high soft tissue contrast and real-time imaging of magnetic resonance imaging (MRI), are developing rapidly. However, it is crucial to maintain tactile force feedback in MRI-guided needle-based procedures. This paper presents a Fabry-Perot interference (FPI) based system of an MRI-compatible fiber optic sensor which has been integrated into a piezoelectrically actuated robot for prostate cancer biopsy and brachytherapy in 3T MRI scan...

  7. Levitated optomechanics with a fiber Fabry-Perot interferometer

    Science.gov (United States)

    Pontin, A.; Mourounas, L. S.; Geraci, A. A.; Barker, P. F.

    2018-02-01

    In recent years, quantum phenomena have been experimentally demonstrated on variety of optomechanical systems ranging from micro-oscillators to photonic crystals. Since single photon couplings are quite small, most experimental approaches rely on the realization of high finesse Fabry-Perot cavities in order to enhance the effective coupling. Here we show that by exploiting a, long path, low finesse fiber Fabry-Perot interferometer ground state cooling can be achieved. We model a 100 m long cavity with a finesse of 10 and analyze the impact of additional noise sources arising from the fiber. As a mechanical oscillator we consider a levitated microdisk but the same approach could be applied to other optomechanical systems.

  8. A highly directive graphene antenna embedded inside a Fabry-Perot cavity in terahertz regime

    Science.gov (United States)

    Roshanaei, Majid; Karami, Hamidreza; Dehkhoda, Parisa; Esfahani, Hamid; Dabir, Fatemeh

    2018-05-01

    In this paper, a highly directive nano-thickness graphene-based antenna is introduced in the terahertz frequency band. The antenna is a graphene patch dipole which is placed between two Bragg mirrors called Fabry-Perot cavity. Tunability of the graphene's conductivity makes it possible to excite the desired resonances of the cavity. Here, first, a single resonant antenna is introduced at 5 THz with an enhanced gain from 2.11 dBi to 12.8 dBi with a beamwidth of 22.7°. Then, a triple resonant antenna at 4.7, 5 and 5.3 THz is presented with respective gains of 7.97, 11.9 and 8.52 dBi. Finally, the effect of dimensions and number of the dielectric layers of the cavity are studied in order to further increase in directivity.

  9. A Fabry-Perot interferometer system for high-speed velocity measurement

    NARCIS (Netherlands)

    Cheng, L.K.; Bruinsma, A.J.A.; Prinse, W.C.; Smorenburg, C.

    1997-01-01

    The Fabry-Perot Velocity Interferometer System (F-PVIS) is designed and built for measuring the Doppler shift of light by recording positional changes in the interferometric pattern behind the Fabry-Perot interferometer. The velocity of a surface can be deduced from the Doppler shift which is caused

  10. Optical cascaded Fabry-Perot interferometer hydrogen sensor based on vernier effect

    Science.gov (United States)

    Li, Yina; Zhao, Chunliu; Xu, Ben; Wang, Dongning; Yang, Minghong

    2018-05-01

    An optical cascaded Fabry-Perot interferometer hydrogen sensor based on vernier effect has been proposed and achieved. The proposed sensor, which total length is ∼594 μm, is composed of a segment of large mode area fiber (LMAF) and a segment of hollow-core fiber (HCF). The proposed sensor is coated with the Pt-loaded WO3/SiO2 powder which will result in the increase of local temperature of the sensor head when exposed to hydrogen atmosphere. Thus the hydrogen sensor can be achieved by monitoring the change of resonant envelope wavelength. The hydrogen sensitivity is -1.04 nm/% within the range of 0 % -2.4 % which is greatly improved because of the vernier effect. The response time is ∼80 s. Due to its compact configuration, the proposed sensor provides a feasible and miniature structure to achieve detection of hydrogen.

  11. Construction of an optical semiconductor amplifier starting from a Fabry-Perot semiconductor laser; Construccion de un amplificador optico de semiconductor a partir de un laser de semiconductor Fabry-Perot

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, E.; Soto, H.; Marquez, H.; Valles V, N. [Departamento de Electronica y Telecomunicaciones, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada. Km. 107, Carretera Tijuana-Ensenada, 22860 Ensenada, Baja California (Mexico)

    2000-07-01

    A methodology to convert a semiconductor laser Fabry-Perot (SL-FP) in a semiconductor optical amplifier (SOA) is presented. In order to suppress the cavity resonant an optical thin film coating was deposited on the facets of the SL-FP. The experiment was carried out putting on service a new monitoring technique that consist in the observation of the laser power spectrum during the antireflection coatings deposition. This allows to determine the moment were the facets reflectivity is minimum. The SOA obtained was characterized for different polarization currents. (Author)

  12. A fully computerized multi-pass Fabry-Perot interferometer for Rayleigh-Brillouin scattering experiments

    International Nuclear Information System (INIS)

    Bohidar, H.; Berland, T.; Boger, F.; Joessang, T.; Feder, J.

    1987-01-01

    The development of a Multipass Fabry-Perot interforometer assembly for use in Rayleigh-Brillouin scattering experiments is reported. The optical alignment and the scattered signal data acquisition have been completely computerized. Digital scanning and alignment strategies of the Fabry-Perot resonator have been incorporated, which makes this instrument quite unique in this respect. The high contrast (∼10 10 ) and finesse (∼50) offered by this instrument makes it possible to detect Brillouin peaks from samples that have a small Brillouin scattering cross-section. As part of this system a compatible and precision sample chamber has been constructed, which has been designed to operate in the pressure and temperature ranges of 1-1000B and 20-150 o C, respectively. The cell has been constructed to be small and compact, but it still has a large heat capacity (∼250J/K) which ensures easy and stable temperature control of the liquid sample volume which has a size of 40 mm 3 . The achievable temperature stability is +-1mK and +-2mK for operating temperatures below and above 100 o C, respectively. The pressure stability is in the range of +-0.05B of the set pressure for pressures below 100B and it is +-0.05% for higher pressures up to 1000B. Both pressure and temperature are remotely monitored and controlled by a ND/100 computer. Special care has been taken in designing the optics of the pressure cell to ensure that both the primary and secondary reflections from the entrance window, as well as the main beam, go out of the scattering region in order to achieve higher signal-to-noise ratio in actual experiments

  13. Fabry-Perot Diaphragm Fiber Optic Sensor (DFOS for Acoustic Detection

    Directory of Open Access Journals (Sweden)

    Yan SUN

    2007-10-01

    Full Text Available A diaphragm fiber optic sensor (DFOS solely based on Fabry-Perot multiple beam interference has been designed and fabricated with micro-electric mechanical system (MEMS technology. The silicon diaphragm with an embossed center was designed with an interference gap width kept accurately. The DFOS was verified to be a truly and purely Fabry-Perot device via a critical test. Parallel testing with a Piezoelectric (PZT sensor showed that the DFOS had high sensitivity. The Fabry-Perot DFOS also demonstrated excellent performance in on-line monitoring of Partial Discharge (PD in power transformers.

  14. Dual-wavelength erbium-doped fiber laser with asymmetric fiber Bragg grating Fabry-Perot cavity

    Science.gov (United States)

    Chen, Cong; Xu, Zhi-wei; Wang, Meng; Chen, Hai-yan

    2014-11-01

    A novel dual-wavelength fiber laser with asymmetric fiber Bragg grating (FBG) Fabry-Perot (FP) cavity is proposed and experimentally demonstrated. A couple of uniform FBGs are used as the cavity mirrors, and the third FBG is used as intracavity wavelength selector by changing its operation temperature. Experimental results show that by adjusting the operation temperature of the intracavity wavelength selector, a tunable dual-wavelength laser emission can be achieved. The results demonstrate the new concept of dual-wavelength lasing with asymmetric FBG FP resonator and its technical feasibility.

  15. Fabry-Perot observations of Comet Halley H2O(+)

    International Nuclear Information System (INIS)

    Scherb, F.; Roesler, F.L.D.; Harlander, J.; Magee-sauer, K.

    1990-01-01

    Fabry-Perot scanning spectrometer observations of Comet Halley's H 2 O(+) emissions have yielded 6158.64 and 6158.85 A spin doublet data at distances in the range of 0 to 2 million km from the comet heat in the antisunward direction. Cometary plasma outflow velocities were ascertained on the basis of the emissions' Doppler shifts, yielding results that were mostly but not exclusively consistent with the plasma's constant antisunward acceleration; the acceleration varied from night to night of observations over a 30-300 cm/sec range. The unusual plasma kinematics of December 14-15, 1985, and January 10, 1986, may be associated with the tail-disconnection activity observed by others. 30 refs

  16. Micromachined fiber optic Fabry-Perot underwater acoustic probe

    Science.gov (United States)

    Wang, Fuyin; Shao, Zhengzheng; Hu, Zhengliang; Luo, Hong; Xie, Jiehui; Hu, Yongming

    2014-08-01

    One of the most important branches in the development trend of the traditional fiber optic physical sensor is the miniaturization of sensor structure. Miniature fiber optic sensor can realize point measurement, and then to develop sensor networks to achieve quasi-distributed or distributed sensing as well as line measurement to area monitoring, which will greatly extend the application area of fiber optic sensors. The development of MEMS technology brings a light path to address the problems brought by the procedure of sensor miniaturization. Sensors manufactured by MEMS technology possess the advantages of small volume, light weight, easy fabricated and low cost. In this paper, a fiber optic extrinsic Fabry-Perot interferometric underwater acoustic probe utilizing micromachined diaphragm collaborated with fiber optic technology and MEMS technology has been designed and implemented to actualize underwater acoustic sensing. Diaphragm with central embossment, where the embossment is used to anti-hydrostatic pressure which would largely deflect the diaphragm that induce interferometric fringe fading, has been made by double-sided etching of silicon on insulator. By bonding the acoustic-sensitive diaphragm as well as a cleaved fiber end in ferrule with an outer sleeve, an extrinsic Fabry-Perot interferometer has been constructed. The sensor has been interrogated by quadrature-point control method and tested in field-stable acoustic standing wave tube. Results have been shown that the recovered signal detected by the sensor coincided well with the corresponding transmitted signal and the sensitivity response was flat in frequency range from 10 Hz to 2kHz with the value about -154.6 dB re. 1/μPa. It has been manifest that the designed sensor could be used as an underwater acoustic probe.

  17. Calibration of Fabry-Perot interferometers for electron cyclotron emission measurements on the Tore Supra tokamak

    International Nuclear Information System (INIS)

    Javon, C.; Talvard, M.

    1990-01-01

    The electron temperature is routinely measured on TORE SUPRA using Fabry-Perot cavities. These have been calibrated using a technique involving coherent addition and Fourier analysis of a chopped black-body source. Comparison with conventional techniques is reported

  18. Fabry-Perot observations of [FeX] in the Cygnus Loop and IC443

    International Nuclear Information System (INIS)

    Ballet, J.; Rothenflug, R.; Soutoul, A.; Caplan, J.

    1988-01-01

    The authors present the first results of an observational program of SNRs in the coronal lines of [FeX] and [FeXIV] using Fabry--Perot spectrophotometer. These support previously published brightnesses

  19. Neutral wind measurements by Fabry-Perot interferometry in Antarctica

    International Nuclear Information System (INIS)

    Stewart, K.D.; Dudeney, J.R.; Rodger, A.S.; Smith, R.W.; Rees, D.

    1986-01-01

    A large-aperture (150 mm), spatially scanned Fabry-Perot Interferometer (FPI) has been deployed at Halley (75.5 o S, 26.8 o W; L=4.2), Antarctica. Thermospheric neutral wind measurements were made by finding the Doppler shift of the OI( 3 P 2 - 1 D 2 ) 630.0 nm emission. This has allowed the first comparison to be made between southern hemisphere ground-based thermospheric wind measurements and the predictions of a three-dimensional, time-dependent thermospheric global circulation model. Geomagnetic and geographic latitude are well separated at Halley, so we may expect a distinct contrast to the dynamic behaviour observed in the more frequently studied northern polar thermosphere. Although the initial results from the experiment are in general agreement with the model, some consistent and significant differences between the observed wind field and that predicted are evident in the morning sector. These may be related to uncertainties in mapping magnetospheric boundaries to ionospheric heights in the southern hemisphere. The intensity of the 630 nm emission has been examined with respect to the maximum plasma frequency of the Es layer using data from the Advanced Ionospheric Sounder at Halley

  20. Study on the structure of bridge surface of the micro Fabry-Perot cavity tunable filter

    International Nuclear Information System (INIS)

    Meng Qinghua; Luo Huan; Bao Shiwei; Zhou Yifan; Chen Sihai

    2011-01-01

    Micro Fabry-Perot cavity tunable filters are widely applied in the area of Pushbroom Hyperspectral imaging, DWDM optical communication system and self-adaptive optics. With small volume, lower consumption and cost, the Micro Fabry-Perot cavity tunable filter can realize superior response speed, large spectral range, high definition and high reliability. By deposition metal membrane on silicon chip by MEMS technology, the micro Fabry-Perot cavity has been achieved, which is actuated by electrostatic force and can realize the function of an optical filter. In this paper, the micro-bridge structure of the micro Fabry-Perot cavity tunable filter has been studied. Finite element analysis software COMSOL Multiphysics has been adopted to design the structure of the micro-bridge of the micro filter. In order to simulate the working mechanism of the micro Fabry-Perot cavity and study the electrical and mechanical characteristics of the micro tunable filter,the static and dynamic characteriastics are analyzed, such as stress, displacement, transient response, etc. The corresponding parameters of the structure are considered as well by optimizition the filter's sustain structure.

  1. Use of PZT's for adaptive control of Fabry-Perot etalon plate figure

    Science.gov (United States)

    Skinner, WIlbert; Niciejewski, R.

    2005-01-01

    A Fabry Perot etalon, consisting of two spaced and reflective glass flats, provides the mechanism by which high resolution spectroscopy may be performed over narrow spectral regions. Space based applications include direct measurements of Doppler shifts of airglow absorption and emission features and the Doppler broadening of spectral lines. The technique requires a high degree of parallelism between the two flats to be maintained through harsh launch conditions. Monitoring and adjusting the plate figure by illuminating the Fabry Perot interferometer with a suitable monochromatic source may be performed on orbit to actively control of the parallelism of the flats. This report describes the use of such a technique in a laboratory environment applied to a piezo-electric stack attached to the center of a Fabry Perot etalon.

  2. A Fabry-Perot interferometer for hard X-rays

    International Nuclear Information System (INIS)

    Caticha, A.; Caticha-Ellis, S.

    1990-01-01

    Reflection and transmission coefficients are calculated of a sequence of N thin parallel crystals diffracting close to normal incidence and separated by thin non-diffracting gaps. From the study of the particular case N=2 a new Fabry-Perot interferometer (FPI) is proposed for hard X-rays (wavelengths of the order of Angstroms). It is found that the FPI plates do not need to be carved from a single perfect crystal block but may be grown or cleaved by other methods. This interesting possibility is suggested by two facts. First, it is known that for incidence close to normal various features of dynamical diffraction are much less sensitive to crystal defects and crystal orientation. Second, the existence of a mismatch between the lattices of the two FPI plates may affect but does not qualitatively alter the performance of the FPI. It is shown that the optimal thickness of the plates is of the order of a few microns or less. The plates may be built from a wide variety of materials. The transmission of X-rays is studied as a function of the energy and direction of the incident photons for various values of the plate thickness, of the gap, of the lattice mismatch, and also for different materials in the gap. The transmission profile exhibits a peak which is spectrally very sharp (about 10 -3 eV for low order reflections and even less for higher ones) and which can be easily tuned by changing either the lattice mismatch or the temperature. FPI plates built of materials with low absorption such as graphite seem to be particularly convenient. Several possible applications are suggested. (author)

  3. All-fiber, long-active-length Fabry-Perot strain sensor.

    Science.gov (United States)

    Pevec, Simon; Donlagic, Denis

    2011-08-01

    This paper presents a high-sensitivity, all-silica, all-fiber Fabry-Perot strain-sensor. The proposed sensor provides a long active length, arbitrary length of Fabry-Perot cavity, and low intrinsic temperature sensitivity. The sensor was micro-machined from purposely-developed sensor-forming fiber that is etched and directly spliced to the lead-in fiber. This manufacturing process has good potential for cost-effective, high-volume production. Its measurement range of over 3000 µε, and strain-resolution better than 1 µε were demonstrated by the application of a commercial, multimode fiber-based signal processor.

  4. Extrinsic fiber-optic Fabry-Perot interferometer sensor for refractive index measurement of optical glass

    International Nuclear Information System (INIS)

    Chen Jihuan; Zhao Jiarong; Huang Xuguang; Huang Zhenjian

    2010-01-01

    A simple fiber-optic sensor based on Fabry-Perot interference for refractive index measurement of optical glass is investigated both theoretically and experimentally. A broadband light source is coupled into an extrinsic fiber Fabry-Perot cavity formed by the surfaces of a sensing fiber end and the measured sample. The interference signals from the cavity are reflected back into the same fiber. The refractive index of the sample can be obtained by measuring the contrast of the interference fringes. The experimental data meet with the theoretical values very well. The proposed technique is a new method for glass refractive index measurement with a simple, solid, and compact structure.

  5. A Green Fabry-Perot Cavity for Jefferson Lab Hall A Compton Polarimetry

    International Nuclear Information System (INIS)

    Rakhman, Abdurahim; Souder, Paul; Nanda, Sirish

    2009-01-01

    A green laser (CW, 532 nm) based Fabry-Perot cavity for high precision Compton Polarimetry is under development in Hall A of the Jefferson Laboratory. In this paper, we present the principle and the preliminary studies for our test cavity.

  6. Characterization of a Fabry--Perot interferometer and a dc arc plasma jet for spectrochemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ford, C.S.

    1979-01-01

    A system involving the use of a Fabry--Perot interferometer in combination with a dc arc plasma jet has been constructed and characterized for spectrochemical analysis. Parameters such as flow rate ratio, observation region, electrode composition and orifice size have been considered. Improvements such as noise reduction and dry aerosol introduction of samples were suggested.

  7. Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement

    Science.gov (United States)

    Liu, Ye; Wang, D. N.; Chen, W. P.

    2016-12-01

    Optical Fabry-Perot interferometer sensors based on inner air-cavity is featured with compact size, good robustness and high strain sensitivity, especially when an ultra-thin air-cavity is adopted. The typical shape of Fabry-Perot inner air-cavity with reflection mode of operation is elliptic, with minor axis along with and major axis perpendicular to the fiber length. The first reflection surface is diverging whereas the second one is converging. To increase the visibility of the output interference pattern, the length of major axis should be large for a given cavity length. However, the largest value of the major axis is limited by the optical fiber diameter. If the major axis length reaches the fiber diameter, the robustness of the Fabry-Perot cavity device would be decreased. Here we demonstrate an ultra-thin crescent shaped Fabry-Perot cavity for strain sensing with ultra-high sensitivity and low temperature cross-sensitivity. The crescent-shape cavity consists of two converging reflection surfaces, which provide the advantages of enhanced strain sensitivity when compared with elliptic or D-shaped FP cavity. The device is fabricated by fusion splicing an etched multimode fiber with a single mode fiber, and hence is simple in structure and economic in cost.

  8. Transfer functions of double- and multiple-cavity Fabry-Perot filters driven by Lorentzian sources.

    Science.gov (United States)

    Marti, J; Capmany, J

    1996-12-20

    We derive expressions for the transfer functions of double- and multiple-cavity Fabry-Perot filters driven by laser sources with Lorentzian spectrum. These are of interest because of their applications in sensing and channel filtering in optical frequency-division multiplexing networks.

  9. Large-area Fabry-Perot modulator based on electro-optic polymers

    DEFF Research Database (Denmark)

    Benter, Nils; Bertram, Ralph Peter; Soergel, Elisabeth

    2006-01-01

    We present a large-area electro-optic Fabry-Perot modulator utilizing a photoaddressable bis-azo polymer placed between two dielectric mirrors with an open aperture of 2 cm. A modulation efficientcy of 1% at an effective modulation voltage of 20 V for a wavelength of 1.55 mymeter is demonstrated...

  10. Characterization of a Fabry--Perot interferometer and a dc arc plasma jet for spectrochemical analysis

    International Nuclear Information System (INIS)

    Ford, C.S.

    1979-01-01

    A system involving the use of a Fabry--Perot interferometer in combination with a dc arc plasma jet has been constructed and characterized for spectrochemical analysis. Parameters such as flow rate ratio, observation region, electrode composition and orifice size have been considered. Improvements such as noise reduction and dry aerosol introduction of samples were suggested

  11. GHGSat-D: Greenhouse gas plume imaging and quantification from space using a Fabry-Perot imaging spectrometer

    Science.gov (United States)

    McKeever, J.; Durak, B. O. A.; Gains, D.; Jervis, D.; Varon, D. J.; Germain, S.; Sloan, J. J.

    2017-12-01

    GHGSat, Inc. has launched the first satellite designed to detect and quantify greenhouse gas emissions from individual industrial sites. Our demonstration satellite GHGSat-D or "CLAIRE" was launched in June 2016. It weighs less than 15 kg and its primary instrument is a miniaturized Fabry-Perot imaging spectrometer with spectral resolution on the order of 0.1 nm. The spectral bandpass is 1635-1670 nm, giving the instrument access to absorption bands of both CO2 and CH4. Our system is based on targeted observations rather than global coverage, and our spatial imaging resolution is a key differentiator. Specifically, with a ground sampling distance of effect of the Fabry-Perot resonator and the scrolling scene gives a different spectral sampling of each surface location in every image. While our data processing toolchain does not produce a conventional hyperspectral dataset, it does yield a spectral decomposition of the spatially resolved signal that is compared to a model that includes atmospheric radiative transfer and the instrument's pixel-dependent spectral responsivity. Our presentation will describe the instrument design, concept of operations and retrievals approach. We will also present images and results from GHGSat-D at different processing levels, including high-resolution column density retrievals. An observation of the degassing flux of methane from the outlet of a recently impounded hydroelectric reservoir will be shown as an example. Finally we discuss some performance limitations of GHGSat-D and our plans to overcome them as we update the instrument design for the next satellites.

  12. Stable CW Single Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    Science.gov (United States)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by tWo methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback'. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.

  13. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information

    Directory of Open Access Journals (Sweden)

    Mohammad H. Bitarafan

    2017-07-01

    Full Text Available For applications in sensing and cavity-based quantum computing and metrology, open-access Fabry-Perot cavities—with an air or vacuum gap between a pair of high reflectance mirrors—offer important advantages compared to other types of microcavities. For example, they are inherently tunable using MEMS-based actuation strategies, and they enable atomic emitters or target analytes to be located at high field regions of the optical mode. Integration of curved-mirror Fabry-Perot cavities on chips containing electronic, optoelectronic, and optomechanical elements is a topic of emerging importance. Micro-fabrication techniques can be used to create mirrors with small radius-of-curvature, which is a prerequisite for cavities to support stable, small-volume modes. We review recent progress towards chip-based implementation of such cavities, and highlight their potential to address applications in sensing and cavity quantum electrodynamics.

  14. Understanding the concept of resolving power in the Fabry-Perot interferometer using a digital simulation

    International Nuclear Information System (INIS)

    Juvells, I; Carnicer, A; Ferre-Borrull, J; MartIn-Badosa, E; Montes-Usategui, M

    2006-01-01

    The resolution concept in connection with the Fabry-Perot interferometer is difficult to understand for undergraduate students enrolled in physical optics courses. The resolution criterion proposed in textbooks for distinguishing equal intensity maxima and the deduction of the resolving power equation is formal and non-intuitive. In this paper, we study the practical meaning of the resolution criterion and resolution power using a computer simulation of a Fabry-Perot interferometer. The light source in the program has two monochromatic components, the wavelength difference being tunable by the user. The student can also adjust other physical parameters so as to obtain different simulation results. By analysing the images and graphics of the simulation, the resolving power concept becomes intuitive and understandable

  15. Temperature-independent refractometer based on fiber-optic Fabry-Perot interferometer

    Science.gov (United States)

    Li, Jiacheng; Qiao, Xueguang; Wang, Ruohui; Rong, Qiangzhou; Bao, Weijia; Shao, Zhihua; Yang, Tingting

    2016-04-01

    A miniature fiber-optic refractometer based on Fabry-Perot interferometer (FPI) has been proposed and experimentally demonstrated. The sensing head consists of a short section of photonics crystal fiber (PCF) spliced to a single mode fiber (SMF), in which the end-face of the PCF is etched to remove holey structure with hydrofluoric (HF) acid. A Fabry-Perot interference spectrum is achieved based on the reflections from the fusion splicing interface and the end-face of the core of PCF. The interference fringe is sensitive to the external refractive index (RI) with an intensity-referenced sensitivity of 358.27 dB/RIU ranging from 1.33 to 1.38. The sensor has also been implemented for the concentration measurement of λ-phage DNA solution. In addition, the dip intensity is insensitive to the ambient temperature variation, making it a good candidate for temperature-independent bio-sensing area.

  16. High-Temperature Sensor Based on Fabry-Perot Interferometer in Microfiber Tip

    Directory of Open Access Journals (Sweden)

    Zhenshi Chen

    2018-01-01

    Full Text Available A miniaturized tip Fabry-Perot interferometer (tip-FPI is proposed for high-temperature sensing. It is simply fabricated for the first time by splicing a short length of microfiber (MF to the cleaved end of a standard single mode fiber (SMF with precise control of the relative cross section position. Such a MF acts as a Fabry-Perot (FP cavity and serves as a tip sensor. A change in temperature modifies the length and refractive index of the FP cavity, and then a corresponding change in the reflected interference spectrum can be observed. High temperatures of up to 1000 °C are measured in the experiments, and a high sensitivity of 13.6 pm/°C is achieved. This compact sensor, with tip diameter and length both of tens of microns, is suitable for localized detection, especially in harsh environments.

  17. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information.

    Science.gov (United States)

    Bitarafan, Mohammad H; DeCorby, Ray G

    2017-07-31

    For applications in sensing and cavity-based quantum computing and metrology, open-access Fabry-Perot cavities-with an air or vacuum gap between a pair of high reflectance mirrors-offer important advantages compared to other types of microcavities. For example, they are inherently tunable using MEMS-based actuation strategies, and they enable atomic emitters or target analytes to be located at high field regions of the optical mode. Integration of curved-mirror Fabry-Perot cavities on chips containing electronic, optoelectronic, and optomechanical elements is a topic of emerging importance. Micro-fabrication techniques can be used to create mirrors with small radius-of-curvature, which is a prerequisite for cavities to support stable, small-volume modes. We review recent progress towards chip-based implementation of such cavities, and highlight their potential to address applications in sensing and cavity quantum electrodynamics.

  18. Quantum transport in bilayer graphene. Fabry-Perot interferences and proximity-induced superconductivity

    International Nuclear Information System (INIS)

    Du, Renjun

    2015-01-01

    Bilayer graphene (BLG) p-n junctions made of hBN-BLG-hBN (hexagonal boron nitride) heterostructures enable ballistic transport over long distances. We investigate Fabry-Perot interferences, and detect that the bilayer-like anti-Klein tunneling transits into single-layer-like Klein tunneling when tuning the Fermi level towards the band edges. Furthermore, the proximity-induced superconductivity has been studied in these devices with Al leads.

  19. Fabry-Perot Interferometer Performance as Temperature Sensor for Use in Electrical Power System Applications

    Directory of Open Access Journals (Sweden)

    Sanjoy Mandal

    2007-09-01

    Full Text Available Transfer function model of the loss less Fabry-Perot cavity (FPI, developed in Z-domain is presented in this paper. Frequency response analysis of the model was carried out in MATLAB environment to explain the behavior of the interferometer and its potential as temperature sensor was studied. Analysis reveals a highly sensitive temperature sensor that can be used in electrical engineering power system applications.

  20. Pemodelan Tapis Fabry-perot pada Serat Optik dengan Menggunakan Fiber Bragg Grating

    OpenAIRE

    Pramuliawati, Septi; ', Saktioto; ', Defrianto

    2015-01-01

    Fabry-perot filter was successfully developed by a uniform Fiber Bragg Grating in fiber optic. A characterization of Bragg Grating was analyzed by using computational model with second-order of Transfer Matrix Method based on Coupled Mode Theory. The reflectivity, length of grating, and bandwidth were parametrics to determine the performance of single Bragg Grating. The transmission spectrum showed the longer grating is designed, the larger the reflectivity was produced, so that the transmiss...

  1. Influence of laser frequency noise on scanning Fabry-Perot interferometer based laser Doppler velocimetry

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian

    2014-01-01

    n this work, we study the performance of a scanning Fabry-Perot interferometer based laser Doppler velocimeter (sFPILDV) and compare two candidate 1.5 um single-frequency laser sources for the system – a fiber laser (FL) and a semiconductor laser (SL). We describe a straightforward calibration...... procedure for the sFPI-LDV and investigate the effect of different degrees of laser frequency noise between the FL and the SL on the velocimeter’s performance...

  2. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing of Greenhouse Gases

    Science.gov (United States)

    Georgieva, Elena M.; Heaps,William S.; Wilson, Emily L.

    2007-01-01

    A new type of remote sensing radiometer based upon the Fabry-Perot interferometric technique has been developed at NASA's Goddard Space Flight Center and tested from both ground and aircraft platform. The sensor uses direct or reflected sunlight and has channels for measuring column concentration of carbon dioxide at 1570 nm, oxygen lines sensitive to pressure and temperature at 762 and 768 nm, and water vapor (940 nm). A solid Fabry-Perot etalon is used as a tunable narrow bandpass filter to restrict the measurement to the gas of interest's absorption bands. By adjusting the temperature of the etalon, which changes the index of refraction of its material, the transmission fringes can be brought into nearly exact correspondence with absorption lines of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosphere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The technique is applicable to different chemical species. We have performed simulations and instrument design studies for CH4, "Cot isotope, and CO detection. Index Terms- Absorbing media, Atmospheric measurements, Fabry-Perot interferometers, Optical interferometry, Remote sensing.

  3. Designing, Probing, and Stabilizing Exotic Fabry-Perot Cavities for Studying Strongly Correlated Light

    Science.gov (United States)

    Ryou, Albert

    Synthetic materials made of engineered quasiparticles are a powerful platform for studying manybody physics and strongly correlated systems due to their bottom-up approach to Hamiltonian modeling. Photonic quasiparticles called polaritons are particularly appealing since they inherit fast dynamics from light and strong interaction from matter. This thesis describes the experimental demonstration of cavity Rydberg polaritons, which are composite particles arising from the hybridization of an optical cavity with Rydberg EIT, as well as the tools for probing and stabilizing the cavity. We first describe the design, construction, and testing of a four-mirror Fabry-Perot cavity, whose small waist size on the order of 10 microns is comparable to the Rydberg blockade radius. By achieving strong coupling between the cavity photon and an atomic ensemble undergoing electromagnetically induced transparency (EIT), we observe the emergence of the dark-state polariton and characterize its single-body properties as well as the single-quantum nonlinearity. We then describe the implementation of a holographic spatial light modulator for exciting different transverse modes of the cavity, an essential tool for studying polariton-polariton scattering. For compensating optical aberrations, we employ a digital micromirror device (DMD), combining beam shaping with adaptive optics to produce diffraction-limited light. We quantitatively measure the purity of the DMD-produced Hermite-Gauss modes and confirm up to 99.2% efficiency. One application of the technique is to create Laguerre-Gauss modes, which have been used to probe synthetic Landau levels for photons in a twisted, nonplanar cavity. Finally, we describe the implementation of an FPGA-based FIR filter for stabilizing the cavity. We digitally cancel the acoustical resonances of the feedback-controlled mechanical system, thereby demonstrating an order-of-magnitude enhancement in the feedback bandwidth from 200 Hz to more than 2 k

  4. Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    Science.gov (United States)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by two methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback. We coupled a nominal 935 run-wavelength Fabry-Perot laser diode to an ultra narrow band (18 pm) FBG. When tuned by varying its temperature, the laser wavelength is pulled toward the centerline of the Bragg grating, and the spectrum of the laser output is seen to fall into three discrete stability regimes as measured by the side-mode suppression ratio.

  5. Application of the CCD Fabry-Perot Annular Summing Technique to Thermospheric O(1)D.

    Science.gov (United States)

    Coakley, Monica Marie

    1995-01-01

    This work will detail the verification of the advantages of the Fabry-Perot charge coupled device (CCD) annular summing technique, the development of the technique for analysis of daysky spectra, and the implications of the resulting spectra for neutral temperature and wind measurements in the daysky thermosphere. The daysky spectral feature of interest is the bright (1 kilo-Rayleigh) thermospheric (OI) emission at 6300 A which had been observed in the nightsky in order to determine winds and temperatures in the vicinity of the altitude of 250 km. In the daysky, the emission line sits on top of a bright Rayleigh scattered continuum background which significantly complicates the observation. With a triple etalon Fabry-Perot spectrometer, the continuum background can be reduced while maintaining high throughput and high resolution. The inclusion of a CCD camera results in significant savings in integration time over the two more standard scanning photomultiplier systems that have made the same wind and temperature measurements in the past. A comparable CCD system can experience an order of magnitude savings in integration time over a PMT system. Laboratory and field tests which address the advantages and limitations of both the Fabry-Perot CCD annular summing technique and the daysky CCD imaging are included in Chap. 2 and Chap. 3. With a sufficiently large throughput associated with the spectrometer and a CCD detector, rapid observations (~4 minute integrations) can be made. Extraction of the line width and line center from the daysky near-continuum background is complicated compared to the nightsky case, but possible. Methods of fitting the line are included in Chap. 4. The daysky O ^1D temperatures are consistent with a lower average emission height than predicted by models. The data and models are discussed in Chap. 5. Although some discrepancies exist between resulting temperatures and models, the observations indicate the potential for other direct measurements

  6. An MRI-Guided Telesurgery System Using a Fabry-Perot Interferometry Force Sensor and a Pneumatic Haptic Device.

    Science.gov (United States)

    Su, Hao; Shang, Weijian; Li, Gang; Patel, Niravkumar; Fischer, Gregory S

    2017-08-01

    This paper presents a surgical master-slave teleoperation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. The slave robot consists of a piezoelectrically actuated 6-degree-of-freedom (DOF) robot for needle placement with an integrated fiber optic force sensor (1-DOF axial force measurement) using the Fabry-Perot interferometry (FPI) sensing principle; it is configured to operate inside the bore of the MRI scanner during imaging. By leveraging the advantages of pneumatic and piezoelectric actuation in force and position control respectively, we have designed a pneumatically actuated master robot (haptic device) with strain gauge based force sensing that is configured to operate the slave from within the scanner room during imaging. The slave robot follows the insertion motion of the haptic device while the haptic device displays the needle insertion force as measured by the FPI sensor. Image interference evaluation demonstrates that the telesurgery system presents a signal to noise ratio reduction of less than 17% and less than 1% geometric distortion during simultaneous robot motion and imaging. Teleoperated needle insertion and rotation experiments were performed to reach 10 targets in a soft tissue-mimicking phantom with 0.70 ± 0.35 mm Cartesian space error.

  7. Displacement-noise-free gravitational-wave detection with a single Fabry-Perot cavity: A toy model

    International Nuclear Information System (INIS)

    Tarabrin, Sergey P.; Vyatchanin, Sergey P.

    2008-01-01

    We propose a detuned Fabry-Perot cavity, pumped through both the mirrors, as a toy model of the gravitational-wave (GW) detector partially free from displacement noise of the test masses. It is demonstrated that the noise of cavity mirrors can be eliminated, but the one of lasers and detectors cannot. The isolation of the GW signal from displacement noise of the mirrors is achieved in a proper linear combination of the cavity output signals. The construction of such a linear combination is possible due to the difference between the reflected and transmitted output signals of detuned cavity. We demonstrate that in low-frequency region the obtained displacement-noise-free response signal is much stronger than the f gw 3 -limited sensitivity of displacement-noise-free interferometers recently proposed by S. Kawamura and Y. Chen. However, the loss of the resonant gain in the noise cancelation procedure results is the sensitivity limitation of our toy model by displacement noise of lasers and detectors

  8. A high-transmission liquid-crystal Fabry-Perot infrared filter for electrically tunable spectral imaging detection

    Science.gov (United States)

    Liu, Zhonglun; Xin, Zhaowei; Long, Huabao; Wei, Dong; Dai, Wanwan; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng

    2018-02-01

    Previous studies have presented the usefulness of typical liquid-crystal Fabry-Perot (LC-FP) infrared filters for spectral imaging detection. Yet, their infrared transmission performances still remain to improve or even rise. In this paper, we propose a new type of electrically tunable LC-FP infrared filter to solve the problem above. The key component of the device is a FP resonant cavity composed of two parallel plane mirrors, in which the zinc selenide (ZnSe) materials with a very high transmittance in the mid-long-wavelength infrared regions are used as the electrode substrates and a layer of nano-aluminum (Al) film, which is directly contacted with liquid-crystal materials, is chosen to make high reflective mirrors as well as the electrodes. Particularly, it should be noted that the directional layer made up of ployimide (PI) used previously is removed. The experiment results indicate that the filter can reduce the absorption of infrared wave remarkably, and thus highlight a road to effectively improve the infrared transmittance ability.

  9. A Fabry-Perot Interferometry Based MRI-Compatible Miniature Uniaxial Force Sensor for Percutaneous Needle Placement

    Science.gov (United States)

    Shang, Weijian; Su, Hao; Li, Gang; Furlong, Cosme; Fischer, Gregory S.

    2014-01-01

    Robot-assisted surgical procedures, taking advantage of the high soft tissue contrast and real-time imaging of magnetic resonance imaging (MRI), are developing rapidly. However, it is crucial to maintain tactile force feedback in MRI-guided needle-based procedures. This paper presents a Fabry-Perot interference (FPI) based system of an MRI-compatible fiber optic sensor which has been integrated into a piezoelectrically actuated robot for prostate cancer biopsy and brachytherapy in 3T MRI scanner. The opto-electronic sensing system design was minimized to fit inside an MRI-compatible robot controller enclosure. A flexure mechanism was designed that integrates the FPI sensor fiber for measuring needle insertion force, and finite element analysis was performed for optimizing the correct force-deformation relationship. The compact, low-cost FPI sensing system was integrated into the robot and calibration was conducted. The root mean square (RMS) error of the calibration among the range of 0–10 Newton was 0.318 Newton comparing to the theoretical model which has been proven sufficient for robot control and teleoperation. PMID:25126153

  10. Application of Fabry-Perot velocimeter to high-speed experiments

    International Nuclear Information System (INIS)

    Chaw, H.H.; McMillan, C.F.; Osher, J.E.

    1988-01-01

    The Fabry-Perot (F-P) velocimeter is a useful instrument for measuring the velocity of objects at speeds ranging from fractions of a kilometer per second to a few tens of kilometers per second and up. Because of its immunity to electromagnetic interference and its velocity resolution, it has become the prime diagnostic tool in our electric-gun facility. Examples of its application to high speed experiments are discussed, including: electric-gun flyer studies, spallation of materials under high-speed impact, momentum-transfer studies, pressure pulse created by high-velocity impact, and detonation-wave studies in high-explosive experiments

  11. Fiber Fabry-Perot sensors for detection of partial discharges in power transformers.

    Science.gov (United States)

    Yu, Bing; Kim, Dae Woong; Deng, Jiangdong; Xiao, Hai; Wang, Anbo

    2003-06-01

    A diaphragm-based interferometric fiberoptic sensor that uses a low-coherence light source was designed and tested for on-line detection of the acoustic waves generated by partial discharges inside high-voltage power transformers. The sensor uses a fused-silica diaphragm and a single-mode optical fiber encapsulated in a fused-silica glass tube to form an extrinsic Fabry-Perot interferometer, which is interrogated by low-coherence light. Test results indicate that these fiber optic acoustic sensors are capable of faithfully detecting acoustic signals propagating inside transformer oil with high sensitivity and wide bandwidth.

  12. The low frequency facility Fabry-Perot cavity used as a speed-meter

    Energy Technology Data Exchange (ETDEWEB)

    Di Virgilio, A.; Braccini, S.; Ballardin, G.; Bradaschia, C.; Cella, G.; Cuoco, E.; Dattilo, V.; Fazzi, M.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Giazotto, A.; Gennai, A.; Holloway, L.H.; La Penna, P.; Lomtadze, T.; Losurdo, G.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Porzio, A.; Puppo, P.; Raffaelli, F.; Rapagnani, P.; Ricci, F.; Ricciardi, I.; Solimeno, S.; Stanga, R.; Vetrano, F.; Zhou, Z

    2003-09-15

    Fabry-Perot cavities have many different applications as scientific instruments. In the gravitational waves research field they are extensively used to frequency stabilize lasers and to measure very small distance variations. In the present Letter a method to evaluate from the transmitted power only the relative speed and position of the mirrors of a cavity, having finesse F>40, is described. A displacement spectral sensitivity of the order of about 3x10{sup -10} m/Hz{sup -1/2} at 10 Hz is obtained with the cavity of the low frequency facility.

  13. All-optical logic gates and wavelength conversion via the injection locking of a Fabry-Perot semiconductor laser

    Science.gov (United States)

    Harvey, E.; Pochet, M.; Schmidt, J.; Locke, T.; Naderi, N.; Usechak, N. G.

    2013-03-01

    This work investigates the implementation of all-optical logic gates based on optical injection locking (OIL). All-optical inverting, NOR, and NAND gates are experimentally demonstrated using two distributed feedback (DFB) lasers, a multi-mode Fabry-Perot laser diode, and an optical band-pass filter. The DFB lasers are externally modulated to represent logic inputs into the cavity of the multi-mode Fabry-Perot slave laser. The input DFB (master) lasers' wavelengths are aligned with the longitudinal modes of the Fabry-Perot slave laser and their optical power is used to modulate the injection conditions in the Fabry-Perot slave laser. The optical band-pass filter is used to select a Fabry- Perot mode that is either suppressed or transmitted given the logic state of the injecting master laser signals. When the input signal(s) is (are) in the on state, injection locking, and thus the suppression of the non-injected Fabry-Perot modes, is induced, yielding a dynamic system that can be used to implement photonic logic functions. Additionally, all-optical photonic processing is achieved using the cavity-mode shift produced in the injected slave laser under external optical injection. The inverting logic case can also be used as a wavelength converter — a key component in advanced wavelength-division multiplexing networks. As a result of this experimental investigation, a more comprehensive understanding of the locking parameters involved in injecting multiple lasers into a multi-mode cavity and the logic transition time is achieved. The performance of optical logic computations and wavelength conversion has the potential for ultrafast operation, limited primarily by the photon decay rate in the slave laser.

  14. Storage of laser pulses in a Fabry-Perot optical cavity for high flux x-ray

    International Nuclear Information System (INIS)

    Takezawa, K.; Honda, Y.; Sasao, N.; Araki, S.; Higashi, Y.; Taniguchi, T.; Urakawa, J.; Nomura, M.; Sakai, H.

    2004-01-01

    We have a plan to produce a high flux x-ray for medical use by using a Fabry-Perot optical cavity in which the lower pulses from a mode-locked laser are stored and enhanced. In this plan, the X-ray is produced from the Compton scattering of electrons in a storage ring with the laser light in the optical cavity. In order to increase X-ray flux, high power laser light is necessary. We show the enhancement of the laser power from the model locked laser with a Fabry-Perot optical cavity. (author)

  15. Hypersonic force measurements using internal balance based on optical micromachined Fabry-Perot interferometry

    Science.gov (United States)

    Qiu, Huacheng; Min, Fu; Zhong, Shaolong; Song, Xin; Yang, Yanguang

    2018-03-01

    Force measurements using wind tunnel balance are necessary for determining a variety of aerodynamic performance parameters, while the harsh environment in hypersonic flows requires that the measurement instrument should be reliable and robust, in against strong electromagnetic interference, high vacuum, or metal (oxide) dusts. In this paper, we demonstrated a three-component internal balance for hypersonic aerodynamic force measurements, using novel optical micromachined Fabry-Perot interferometric (FPI) strain gauges as sensing elements. The FPI gauges were fabricated using Micro-Opto-Electro-Mechanical Systems (MOEMS) surface and bulk fabrication techniques. High-reflectivity coatings are used to form a high-finesse Fabry-Perot cavity, which benefits a high resolution. Antireflective and passivation coatings are used to reduce unwanted interferences. The FPI strain gauge based balance has been calibrated and evaluated in a Mach 5 hypersonic flow. The results are compared with the traditional technique using the foil resistive strain gauge balance, indicating that the proposed balance based on the MOEMS FPI strain gauge is reliable and robust and is potentially suitable for the hypersonic wind tunnel harsh environment.

  16. Ag-protein plasmonic architectures for surface plasmon-coupled emission enhancements and Fabry-Perot mode-coupled directional fluorescence emission

    Science.gov (United States)

    Badiya, Pradeep Kumar; Patnaik, Sai Gourang; Srinivasan, Venkatesh; Reddy, Narendra; Manohar, Chelli Sai; Vedarajan, Raman; Mastumi, Noriyoshi; Belliraj, Siva Kumar; Ramamurthy, Sai Sathish

    2017-10-01

    We report the use of silver decorated plant proteins as spacer material for augmented surface plasmon-coupled emission (120-fold enhancement) and plasmon-enhanced Raman scattering. We extracted several proteins from different plant sources [Triticum aestivum (TA), Aegle marmelos (AM), Ricinus communis (RC), Jatropha curcas (JC) and Simarouba glauca (SG)] followed by evaluation of their optical properties and simulations to rationalize observed surface plasmon resonance. Since the properties exhibited by protein thin films is currently gaining research interest, we have also carried out simulation studies with Ag-protein biocomposites as spacer materials in metal-dielectric-metal planar microcavity architecture for guided emission of Fabry-Perot mode-coupled fluorescence.

  17. Effect of small variations in the refractive index of the ambient medium on the spectrum of a bent fibre-optic Fabry - Perot interferometer

    International Nuclear Information System (INIS)

    Kulchin, Yurii N; Vitrik, O B; Gurbatov, S O

    2011-01-01

    The phase of light propagating through a bent optical fibre is shown to depend on the refractive index of the medium surrounding the fibre cladding when there is resonance coupling between the guided core mode and cladding modes. This shifts the spectral maxima in the bent fibre-optic Fabry - Perot interferometer. The highest phase and spectral sensitivities achieved with this interferometer configuration are 0.71 and 0.077, respectively, and enable changes in the refractive index of the ambient medium down to 5×10 -6 to be detected. This makes the proposed approach potentially attractive for producing highly stable, precision refractive index sensors capable of solving a wide range of liquid refractometry problems.

  18. Effect of small variations in the refractive index of the ambient medium on the spectrum of a bent fibre-optic Fabry - Perot interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Kulchin, Yurii N; Vitrik, O B; Gurbatov, S O [Institute for Automation and Control Processes, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok (Russian Federation)

    2011-09-30

    The phase of light propagating through a bent optical fibre is shown to depend on the refractive index of the medium surrounding the fibre cladding when there is resonance coupling between the guided core mode and cladding modes. This shifts the spectral maxima in the bent fibre-optic Fabry - Perot interferometer. The highest phase and spectral sensitivities achieved with this interferometer configuration are 0.71 and 0.077, respectively, and enable changes in the refractive index of the ambient medium down to 5 Multiplication-Sign 10{sup -6} to be detected. This makes the proposed approach potentially attractive for producing highly stable, precision refractive index sensors capable of solving a wide range of liquid refractometry problems.

  19. A THz plasmonics perfect absorber and Fabry-Perot cavity mechanism (Conference Presentation)

    Science.gov (United States)

    Zhou, Jiangfeng; Bhattarai, Khagendra; Silva, Sinhara; Jeon, Jiyeon; Kim, Junoh; Lee, Sang Jun; Ku, Zahyun

    2016-10-01

    The plasmonic metamaterial perfect absorber (MPA) is a recently developed branch of metamaterial which exhibits nearly unity absorption within certain frequency range.[1-6] The optically thin MPA possesses characteristic features of angular-independence, high Q-factor and strong field localization that have inspired a wide range of applications including electromagnetic wave absorption,[3, 7, 8] spatial[6] and spectral[5] modulation of light,[9] selective thermal emission,[9] thermal detecting[10] and refractive index sensing for gas[11] and liquid[12, 13] targets. In this work, we demonstrate a MPA working at terahertz (THz) regime and characterize it using an ultrafast THz time-domain spectroscopy (THz-TDS). Our study reveal an ultra-thin Fabry-Perot cavity mechanism compared to the impedance matching mechanism widely adopted in previous study [1-6]. Our results also shows higher-order resonances when the cavities length increases. These higher order modes exhibits much larger Q-factor that can benefit potential sensing and imaging applications. [1] C. M. Watts, X. L. Liu, and W. J. Padilla, "Metamaterial Electromagnetic Wave Absorbers," Advanced Materials, vol. 24, pp. 98-120, Jun 19 2012. [2] M. Hedayati, F. Faupel, and M. Elbahri, "Review of Plasmonic Nanocomposite Metamaterial Absorber," Materials, vol. 7, pp. 1221-1248, 2014. [3] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, vol. 100, p. 207402, May 23 2008. [4] H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, et al., "Optically Modulated Multiband Terahertz Perfect Absorber," Advanced Optical Materials, vol. 2, pp. 1221-1226, 2014. [5] D. Shrekenhamer, J. Montoya, S. Krishna, and W. J. Padilla, "Four-Color Metamaterial Absorber THz Spatial Light Modulator," Advanced Optical Materials, vol. 1, pp. 905-909, 2013. [6] S. Savo, D. Shrekenhamer, and W. J. Padilla, "Liquid Crystal Metamaterial Absorber Spatial

  20. The comparison of environmental effects on michelson and fabry-perot interferometers utilized for the displacement measurement.

    Science.gov (United States)

    Wang, Yung-Cheng; Shyu, Lih-Horng; Chang, Chung-Ping

    2010-01-01

    The optical structure of general commercial interferometers, e.g., the Michelson interferometers, is based on a non-common optical path. Such interferometers suffer from environmental effects because of the different phase changes induced in different optical paths and consequently the measurement precision will be significantly influenced by tiny variations of the environmental conditions. Fabry-Perot interferometers, which feature common optical paths, are insensitive to environmental disturbances. That would be advantageous for precision displacement measurements under ordinary environmental conditions. To verify and analyze this influence, displacement measurements with the two types of interferometers, i.e., a self-fabricated Fabry-Perot interferometer and a commercial Michelson interferometer, have been performed and compared under various environmental disturbance scenarios. Under several test conditions, the self-fabricated Fabry-Perot interferometer was obviously less sensitive to environmental disturbances than a commercial Michelson interferometer. Experimental results have shown that induced errors from environmental disturbances in a Fabry-Perot interferometer are one fifth of those in a Michelson interferometer. This has proved that an interferometer with the common optical path structure will be much more independent of environmental disturbances than those with a non-common optical path structure. It would be beneficial for the solution of interferometers utilized for precision displacement measurements in ordinary measurement environments.

  1. Readout of micromechanical cantilever sensor arrays by Fabry-Perot interferometry

    International Nuclear Information System (INIS)

    Wehrmeister, Jana; Fuss, Achim; Saurenbach, Frank; Berger, Ruediger; Helm, Mark

    2007-01-01

    The increasing use of micromechanical cantilevers in sensing applications causes a need for reliable readout techniques of micromechanical cantilever sensor (MCS) bending. Current optical beam deflection techniques suffer from drawbacks such as artifacts due to changes in the refraction index upon exchange of media. Here, an adaptation of the Fabry-Perot interferometer is presented that allows simultaneous determination of MCS bending and changes in the refraction index of media. Calibration of the instrument with liquids of known refraction index provides an avenue to direct measurement of bending with nanometer precision. Versatile construction of flow cells in combination with alignment features for substrate chips allows simultaneous measurement of two MCS situated either on the same, or on two different support chips. The performance of the instrument is demonstrate in several sensing applications, including adsorption experiments of alkanethioles on MCS gold surfaces, and measurement of humidity changes in air

  2. Enhanced Bulk-Edge Coulomb Coupling in Fractional Fabry-Perot Interferometers.

    Science.gov (United States)

    von Keyserlingk, C W; Simon, S H; Rosenow, Bernd

    2015-09-18

    Recent experiments use Fabry-Perot (FP) interferometry to claim that the ν=5/2 quantum Hall state exhibits non-Abelian topological order. We note that the experiments appear inconsistent with a model neglecting bulk-edge Coulomb coupling and Majorana tunneling, so we reexamine the theory of FP devices. Even a moderate Coulomb coupling may strongly affect some fractional plateaus, but very weakly affect others, allowing us to model the data over a wide range of plateaus. While experiments are consistent with the ν=5/2 state harboring Moore-Read topological order, they may have measured Coulomb effects rather than an "even-odd effect" due to non-Abelian braiding.

  3. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis

    Science.gov (United States)

    Tosi, Daniele

    2015-01-01

    The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding. PMID:26528975

  4. Fabry-Perot Interferometry in the Integer and Fractional Quantum Hall Regimes

    Science.gov (United States)

    McClure, Douglas; Chang, Willy; Kou, Angela; Marcus, Charles; Pfeiffer, Loren; West, Ken

    2011-03-01

    We present measurements of electronic Fabry-Perot interferometers in the integer and fractional quantum Hall regimes. Two classes of resistance oscillations may be seen as a function of magnetic field and gate voltage, as we have previously reported. In small interferometers in the integer regime, oscillations of the type associated with Coulomb interaction are ubiquitous, while those consistent with single-particle Aharonov-Bohm interference are seen to co-exist in some configurations. The amplitude scaling of both types with temperature and device size is consistent with a theoretical model. Oscillations are further observed in the fractional quantum Hall regime. Here the dependence of the period on the filling factors in the constrictions and bulk of the interferometer can shed light on the effective charge of the interfering quasiparticles, but care is needed to distinguish these oscillations from those associated with integer quantum Hall states. We acknowledge funding from Microsoft Project Q and IBM.

  5. A new detection method used to calibrate Fabry-Perot interferometers in the infrared range

    International Nuclear Information System (INIS)

    Talvard, M.; Javon, C.; Garcin, M.; Thouvenin, D.

    1993-06-01

    Fabry-Perot interferometers are routinely used in the Tore Supra Tokamak in order to measure the time evolution of the electron temperature of the confined plasmas. Calibration of such interferometers requires the detection of very low DC levels (0.1 nV) with signal-to-noise ratios less than 10 -5 , which is generally not compatible with standard detection methods. A new correlation method to achieve this absolute calibration is proposed. It is based on a proper noise auto-correlation technique combined with an optimized signal filtering involving Fourier analysis. The advantages of the method are detailed and experimentally compared to standard averaging techniques, such as coherent addition and synchronous detection. The method can be used in a more general context every time very small amplitude signals are to be measured

  6. Fabry-Perot interferometry using an image-intensified rotating-mirror streak camera

    International Nuclear Information System (INIS)

    Seitz, W.L.; Stacy, H.L.

    1983-01-01

    A Fabry-Perot velocity interferometer system is described that uses a modified rotating mirror streak camera to recrod the dynamic fringe positions. A Los Alamos Model 72B rotating-mirror streak camera, equipped with a beryllium mirror, was modified to include a high aperture (f/2.5) relay lens and a 40-mm image-intensifier tube such that the image normally formed at the film plane of the streak camera is projected onto the intensifier tube. Fringe records for thin (0.13 mm) flyers driven by a small bridgewire detonator obtained with a Model C1155-01 Hamamatsu and Model 790 Imacon electronic streak cameras are compared with those obtained with the image-intensified rotating-mirror streak camera (I 2 RMC). Resolution comparisons indicate that the I 2 RMC gives better time resolution than either the Hamamatsu or the Imacon for total writing times of a few microseconds or longer

  7. Performance of a 1200 m long suspended Fabry-Perot cavity

    CERN Document Server

    Freise, A; Gossler, S; Grote, H; Heinzel, G; Lück, H B; Robertson, D I; Strain, K A; Ward, H; Willke, B; Hough, J; Danzmann, K

    2002-01-01

    Using one arm of the Michelson interferometer and the power recycling mirror of the interferometric gravitational wave detector GEO 600, we created a Fabry-Perot cavity with a length of 1200 m. The main purpose of this experiment was to gather first experience with the main optics, its suspensions and the corresponding control systems. The residual displacement of a main mirror is about 150 nm rms. By stabilizing the length of the 1200 m long cavity to the pre-stabilized laser beam, we achieved an error point frequency noise of 100 mu Hz Hz sup - sup 1 sup / sup 2 at 100 Hz Fourier frequency. In addition we demonstrated the reliable performance of all included subsystems by several 10-hour-periods of continuous stable operation. Thus the full frequency stabilization scheme for GEO 600 was successfully tested.

  8. Multimode fiber tip Fabry-Perot cavity for highly sensitive pressure measurement.

    Science.gov (United States)

    Chen, W P; Wang, D N; Xu, Ben; Zhao, C L; Chen, H F

    2017-03-23

    We demonstrate an optical Fabry-Perot interferometer fiber tip sensor based on an etched end of multimode fiber filled with ultraviolet adhesive. The fiber device is miniature (with diameter of less than 60 μm), robust and low cost, in a convenient reflection mode of operation, and has a very high gas pressure sensitivity of -40.94 nm/MPa, a large temperature sensitivity of 213 pm/°C within the range from 55 to 85 °C, and a relatively low temperature cross-sensitivity of 5.2 kPa/°C. This device has a high potential in monitoring environment of high pressure.

  9. The PVLAS experiment: measuring vacuum magnetic birefringence and dichroism with a birefringent Fabry-Perot cavity

    Energy Technology Data Exchange (ETDEWEB)

    Della Valle, Federico; Milotti, Edoardo [INFN, Trieste (Italy); Universita di Trieste, Dipt. di Fisica, Trieste (Italy); Ejlli, Aldo; Messineo, Giuseppe; Zavattini, Guido [INFN, Ferrara (Italy); Universita di Ferrara, Dipt. di Fisica e Scienze della Terra, Ferrara (Italy); Gastaldi, Ugo [INFN, Ferrara (Italy); Pengo, Ruggero; Ruoso, Giuseppe [INFN, Lab. Nazionale di Legnaro, Legnaro (Italy)

    2016-01-15

    Vacuum magnetic birefringence was predicted long time ago and is still lacking a direct experimental confirmation. Several experimental efforts are striving to reach this goal, and the sequence of results promises a success in the next few years. This measurement generally is accompanied by the search for hypothetical light particles that couple to two photons. The PVLAS experiment employs a sensitive polarimeter based on a high finesse Fabry-Perot cavity. In this paper we report on the latest experimental results of this experiment. The data are analysed taking into account the intrinsic birefringence of the dielectric mirrors of the cavity. Besides a new limit on the vacuum magnetic birefringence, the measurements also allow the model-independent exclusion of new regions in the parameter space of axion-like and milli-charged particles. In particular, these last limits hold also for all types of neutrinos, resulting in a laboratory limit on their charge. (orig.)

  10. Simultaneous wavelength and orbital angular momentum demultiplexing using tunable MEMS-based Fabry-Perot filter

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir; Porfirev, Alexey P.; Gurbatov, Stanislav O.

    2017-01-01

    In this paper, we experimentally demonstrate simultaneous wavelength and orbital angular momentum (OAM) multiplexing/demultiplexing of 10 Gbit/s data streams using a new on-chip micro-component-tunable MEMS-based Fabry-Perot filter integrated with a spiral phase plate. In the experiment, two......, maximum power penalties at the HD-FEC BER threshold relative to the 0.8 nm wavelength spacing read 0.83, 0.84 and 1.15 dB when multiplexing a Gaussian beam and OAM beams of 1st, 2nd and 3rd orders respectively. The novelty and impact of the proposed filter design is in providing practical, integrable...

  11. Effects of the time delays in a non linear pendular Fabry-Perot

    International Nuclear Information System (INIS)

    Tourrenc, P.; Deruelle, N.

    1985-01-01

    We study a one arm pendular Fabry-Perot interferometer with specifications corresponding to the two arms interferometers designed to detect gravitational radiation. We consider the non linearities originating from the radiation force and the effects of time delays due to the finite length of the arm. We derive the exact and the associated ''predictivised'' equations for the motion of the suspended mirror. We show that effects of time delays increase considerably the stability of the device when the optical relaxation time is of the order of the period of the pendulum, a case of relevance when light is recycled. However the thermal noise does not seem to be much modified when calculated within a simple approximation scheme

  12. A Novel, Poly-Etalon, Fabry-Perot for Planetary Research

    Science.gov (United States)

    Kerr, Robert B.; Doe, Richard; Noto, John

    1997-01-01

    In an effort to develop a mechanically robust, high throughput and solid state spectrometer several liquid crystal Fabry-Perot etalons were constructed. The etalons were tested for spectral response, radiation resistance and optical transmission. The first year of this project was spent developing and understanding the properties of the liquid crystal etalons; in the second year an intensified all-sky imaging system was developed around a pair of LC etalons. The imaging system, developed jointly with SRI International represents a unique brassboard to demonstrate the use of LC etalons as tunable filters. The first set of etalons constructed in year one of this project were tested for spectral response and throughput while etalon surrogates were exposed to proton radiation simulating the exposure of an object in Low Earth Orbit (LEO). The 2" diameter etalons had a measure finesse of approximately 10 and were tunable over five orders. Liquid crystals exposed to proton irradiation showed no signs of damage. In year two two larger diameter (3") etalons were constructed with gaps of 3 and 5 microns. This pair of etalons is for use in a high resolution, all-sky spectral imager. The WATUMI imager system follows the heritage of all sky, narrow band, intensified imagers however it includes two LC Fabry-Perot etalons to provide tunability and the ability to switch wavelengths rapidly, an import consideration in auroral airglow imaging. This work also resulted in two publications and one poster presentation. The instrument will be uniquely capable, with superior throughput and speed, to measure optical airglow of multiple emission lines in harsh conditions.

  13. Microwave radiometric aircraft observations of the Fabry-Perot interference fringes of an ice-water system

    Science.gov (United States)

    Harrington, R. F.; Swift, C. T.; Fedors, J. C.

    1980-01-01

    Airborne stepped-frequency microwave radiometer (SFMR) observations of the Fabry-Perot interference fringes of ice-water systems are discussed. The microwave emissivity at normal incidence of a smooth layered dielectric medium over a semi-infinite dielectric medium is examined for the case of ice over water as a function of ice thickness and attenuation coefficient, and the presence of quarter-wavelength oscillations in emissivity as the ice thickness and frequency are varied is pointed out. Experimental observations of pronounced quarter-wavelength oscillations in radiometric brightness temperature due to the Fabry-Perot interference fringes over smooth sea ice and lake ice varying in roughness as the radiometer frequencies were scanned are then presented.

  14. Optical power equalization for upstream traffic with injection-locked Fabry-Perot lasers in TDM-PON

    Science.gov (United States)

    Huang, Ting-Tsan; Sheu, Lih-Gen; Chi, Sien

    2010-10-01

    An optical power equalization of upstream traffic in time-division-multiplexed passive optical network (TDM-PON) based on injection-locked Fabry-Perot lasers has been experimentally investigated. The upstream transmitters with stable spectrum are achieved by using an external injection light source in the optical line terminal (OLT). The different upstream powers can be equalized by injection locking a Fabry-Perot laser diode (FP-LD) biased below threshold current in OLT. The dynamic upstream power range from - 8.5 to - 19.5 db m is reduced to a 1.6 dB maximal power variation, when the uplink signal is directly modulated at 1.25 Gb/s.

  15. Passive harmonic mode locking by mode selection in Fabry-Perot diode lasers with patterned effective index.

    Science.gov (United States)

    Bitauld, David; Osborne, Simon; O'Brien, Stephen

    2010-07-01

    We demonstrate passive harmonic mode locking of a quantum-well laser diode designed to support a discrete comb of Fabry-Perot modes. Spectral filtering of the mode spectrum was achieved using a nonperiodic patterning of the cavity effective index. By selecting six modes spaced at twice the fundamental mode spacing, near-transform-limited pulsed output with 2 ps pulse duration was obtained at a repetition rate of 100 GHz.

  16. Response of a New Low-Coherence Fabry-Perot Sensor to Hematocrit Levels in Human Blood

    Directory of Open Access Journals (Sweden)

    Małgorzata Jędrzejewska-Szczerska

    2014-04-01

    Full Text Available In this paper, a low-coherence Fabry-Perot sensor with a spectrally measured signal processing response to the refractive index of liquids is presented. Optical fiber sensors are potentially capable of continuous measuring hematocrit levels in blood. Low-coherence Fabry-Perot interferometric sensors offer a robust solution, where information about the measurand is encoded in the full spectrum of light reflected from the sensing interferometer. The first step in the research on such sensor is the assessment of its performance under favorable conditions, i.e., using blood samples from healthy volunteers tested in vitro. Such an experiment was conducted using a sensor comprising a superluminescent diode source, an optical spectrum analyzer working as the detection setup and a sensing Fabry-Perot interferometer providing high interference contrast. The response of this sensor was recorded for several samples and compared with the reference laboratory method. The coefficient of determination (R2 for a linear relationship between the results given by both methods was 0.978 and the difference between these results was less than 1%. The presented results suggest that further research into the performance of the sensor is merited.

  17. Ultrafast Fabry-Perot fiber-optic pressure sensors for multimedia blast event measurements.

    Science.gov (United States)

    Zou, Xiaotian; Wu, Nan; Tian, Ye; Zhang, Yang; Fitek, John; Maffeo, Michael; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

    2013-02-20

    A shock wave (SW) is characterized as a large pressure fluctuation that typically lasts only a few milliseconds. On the battlefield, SWs pose a serious threat to soldiers who are exposed to explosions, which may lead to blast-induced traumatic brain injuries. SWs can also be used beneficially and have been applied to a variety of medical treatments due to their unique interaction with tissues and cells. Consequently, it is important to have sensors that can quantify SW dynamics in order to better understand the physical interaction between body tissue and the incident acoustic wave. In this paper, the ultrafast fiber-optic sensor based on the Fabry-Perot interferometric principle was designed and four such sensors were fabricated to quantify a blast event within different media, simultaneously. The compact design of the fiber-optic sensor allows for a high degree of spatial resolution when capturing the wavefront of the traveling SW. Several blast event experiments were conducted within different media (e.g., air, rubber membrane, and water) to evaluate the sensor's performance. This research revealed valuable knowledge for further study of SW behavior and SW-related applications.

  18. Development of a Fabry-Perot cavity for the Compton polarimetry

    International Nuclear Information System (INIS)

    Jorda, Jean-Paul

    1997-01-01

    A quick, precise and non-destructive longitudinal polarisation measurement should be a great advantage for the HAPPEX experiment at CEBAF (Jefferson Lab, USA). To achieve this, it could be possible to use a Fabry-Perot cavity to get a high photon flux at the electron-photon interaction point of a Compton polarimeter. This thesis is a first study for the design of such a system. We have shown that a 'monolithic' cavity, i.e. with mirrors mounted on fixed stage, is a good solution. My contribution for these studies is the development of a code to compute the optimum geometry of a cavity. Another of my contribution concerns the test of a cavity based on commercial mirrors with a gain > 160, using the Pound-Drever method to lock the laser frequency. My studies concern optical matching between the laser beam and the cavity, the choice of the frequency of modulation for the feed-back system and the characterization of the intracavity power. This work is a first step of the studies which will lead to the integration of a cavity based system on the CEBAF beam line. (author) [fr

  19. Microbubble-based fiber-optic Fabry-Perot pressure sensor for high-temperature application.

    Science.gov (United States)

    Li, Zhe; Jia, Pinggang; Fang, Guocheng; Liang, Hao; Liang, Ting; Liu, Wenyi; Xiong, Jijun

    2018-03-10

    Using arc discharge technology, we fabricated a fiber-optic Fabry-Perot (FP) pressure sensor with a very low temperature coefficient based on a microbubble that can be applied in a high-temperature environment. The thin-walled microbubble can be fabricated by heating the gas-pressurized hollow silica tube (HST) using a commercial fusion splicer. Then, the well-cut single-mode fiber (SMF) was inserted into the microbubble, and they were fused together. Thus, the FP cavity can be formed between the end of the SMF and the inner surface of the microbubble. The diameter of the microbubble can be up to 360 μm with the thickness of the wall being approximately 0.5 μm. Experimental results show that such a sensor has a linear sensitivity of approximately -6.382  nm/MPa, -5.912  nm/MPa at 20°C, and 600°C within the pressure range of 1 MPa. Due to the thermal expansion coefficient of the SMF being slightly larger than that of silica, we can fuse the SMF and the HST with different lengths; thus, the sensor has a very low temperature coefficient of approximately 0.17 pm/°C.

  20. Tapered optical fiber tip probes based on focused ion beam-milled Fabry-Perot microcavities

    Science.gov (United States)

    André, Ricardo M.; Warren-Smith, Stephen C.; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Zibaii, M. I.; Latifi, H.; Marques, Manuel B.; Bartelt, Hartmut; Frazão, Orlando

    2016-09-01

    Focused ion beam technology is combined with dynamic chemical etching to create microcavities in tapered optical fiber tips, resulting in fiber probes for temperature and refractive index sensing. Dynamic chemical etching uses hydrofluoric acid and a syringe pump to etch standard optical fibers into cone structures called tapered fiber tips where the length, shape, and cone angle can be precisely controlled. On these tips, focused ion beam is used to mill several different types of Fabry-Perot microcavities. Two main cavity types are initially compared and then combined to form a third, complex cavity structure. In the first case, a gap is milled on the tapered fiber tip which allows the external medium to penetrate the light guiding region and thus presents sensitivity to external refractive index changes. In the second, two slots that function as mirrors are milled on the tip creating a silica cavity that is only sensitive to temperature changes. Finally, both cavities are combined on a single tapered fiber tip, resulting in a multi-cavity structure capable of discriminating between temperature and refractive index variations. This dual characterization is performed with the aid of a fast Fourier transform method to separate the contributions of each cavity and thus of temperature and refractive index. Ultimately, a tapered optical fiber tip probe with sub-standard dimensions containing a multi-cavity structure is projected, fabricated, characterized and applied as a sensing element for simultaneous temperature and refractive index discrimination.

  1. MEMS fiber-optic Fabry-Perot pressure sensor for high temperature application

    Science.gov (United States)

    Fang, G. C.; Jia, P. G.; Cao, Q.; Xiong, J. J.

    2016-10-01

    We design and demonstrate a fiber-optic Fabry-Perot pressure sensor (FOFPPS) for high-temperature sensing by employing micro-electro-mechanical system (MEMS) technology. The FOFPPS is fabricated by anodically bonding the silicon wafer and the Pyrex glass together and fixing the facet of the optical fiber in parallel with the silicon surface by glass frit and organic adhesive. The silicon wafer can be reduced through dry etching technology to construct the sensitive diaphragm. The length of the cavity changes with the deformation of the diaphragm due to the loaded pressure, which leads to a wavelength shift of the interference spectrum. The pressure can be gauged by measuring the wavelength shift. The pressure experimental results show that the sensor has linear pressure sensitivities ranging from 0 kPa to 600 kPa at temperature range between 20°C to 300°C. The pressure sensitivity at 300°C is approximately 27.63 pm/kPa. The pressure sensitivities gradually decrease with increasing the temperature. The sensor also has a linear thermal drift when temperature changes from 20°C - 300°C.

  2. The Gain Estimation of a Fabry-Perot Cavity (FPC Antenna with a Finite Dimension

    Directory of Open Access Journals (Sweden)

    Taek-Sun Kwon

    2017-10-01

    Full Text Available In this paper, we have presented an equation for estimating the gain of a Fabry-Perot cavity (FPC antenna with a finite dimension. When an FPC antenna has an infinite dimension and its height is half of a wavelength, the maximum gain of that FPC antenna can be obtained theoretically. If the FPC antenna does not have a dimension sufficient for multiple reflections between a partially reflective surface (PRS and the ground, its gain must be less than that of an FPC antenna that has an infinite dimension. In addition, the gain of an FPC antenna increases as the dimension of a PRS increases and becomes saturated from a specific dimension. The specific dimension where the gain starts to saturate also gets larger as the reflection magnitude of the PRS becomes closer to one. Thus, it would be convenient to have a gain equation when considering the dimension of an FPC antenna in order to estimate the exact gain of the FPC antenna with a specific dimension. A gain versus the dimension of the FPC antenna for various reflection magnitudes of PRS has been simulated, and the modified gain equation is produced through the curve fitting of the full-wave simulation results. The resulting empirical gain equation of an FPC antenna whose PRS dimension is larger than 1.5λ0 has been obtained.

  3. Nonlinear estimation of ring-down time for a Fabry-Perot optical cavity.

    Science.gov (United States)

    Kallapur, Abhijit G; Boyson, Toby K; Petersen, Ian R; Harb, Charles C

    2011-03-28

    This paper discusses the application of a discrete-time extended Kalman filter (EKF) to the problem of estimating the decay time constant for a Fabry-Perot optical cavity for cavity ring-down spectroscopy (CRDS). The data for the estimation process is obtained from a CRDS experimental setup in terms of the light intensity at the output of the cavity. The cavity is held in lock with the input laser frequency by controlling the distance between the mirrors within the cavity by means of a proportional-integral (PI) controller. The cavity is purged with nitrogen and placed under vacuum before chopping the incident light at 25 KHz and recording the light intensity at its output. In spite of beginning the EKF estimation process with uncertainties in the initial value for the decay time constant, its estimates converge well within a small neighborhood of the expected value for the decay time constant of the cavity within a few ring-down cycles. Also, the EKF estimation results for the decay time constant are compared to those obtained using the Levenberg-Marquardt estimation scheme.

  4. Performance Evaluation of Fabry-Perot Temperature Sensors in Nuclear Power Plant Measurements

    International Nuclear Information System (INIS)

    Liu Hanying; Miller, Don W.; Talnagi, Joseph W.

    2003-01-01

    The Fiso Fabry-Perot fiber-optic temperature sensor was selected for performance evaluation and for potential application in nuclear power plants because of its unique interferometric sensing mechanism and data-processing technique, and its commercial availability. It employs a Fizeau interferometer and a charge-coupled device array to locate the position of the maximum interference fringe intensity, which is directly related to the environmental temperature. Consequently, the basic sensing mechanism is independent of the absolute transmitted light intensity, which is the most likely parameter to be affected by external harsh environments such as nuclear irradiation, high pressure/temperature, and cyclical vibration.This paper reports research on the performance of two Fiso Fabry-Perot temperature sensors in environmental conditions expected in nuclear power plants during both normal and abnormal (i.e., accident) conditions. The environmental conditions simulated in this paper include gamma-only ( 60 Co) irradiation, pressure/temperature environmental transient, and mixed neutron/gamma field, respectively.The first sensor exhibited no failure or degradation in performance during and following gamma-only irradiation in which a total dose of 15 kGy was delivered at a dose rate of 2.5 kGy/h. Following gamma irradiation, this sensor was then tested for 10.75 days in a thermohydraulic environment prescribed by the Institute of Electrical and Electronics Engineers IEEE323-1983. Intermittent behavior was observed throughout the latter portions of this test, and degradation in performance occurred after the test. Visual evaluation after opening the sensor head indicated that the internal welding methodology was the primary contributor to the observed behavior during this test. Further consultation with the vendor shows that the robustness and reliability of Fiso sensors can be substantially improved by modifying the internal welding methods.The second Fiso temperature

  5. Investigation of mode partition noise in Fabry-Perot laser diode

    Science.gov (United States)

    Guo, Qingyi; Deng, Lanxin; Mu, Jianwei; Li, Xun; Huang, Wei-Ping

    2014-09-01

    Passive optical network (PON) is considered as the most appealing access network architecture in terms of cost-effectiveness, bandwidth management flexibility, scalability and durability. And to further reduce the cost per subscriber, a Fabry-Perot (FP) laser diode is preferred as the transmitter at the optical network units (ONUs) because of its lower cost compared to distributed feedback (DFB) laser diode. However, the mode partition noise (MPN) associated with the multi-longitudinal-mode FP laser diode becomes the limiting factor in the network. This paper studies the MPN characteristics of the FP laser diode using the time-domain simulation of noise-driven multi-mode laser rate equation. The probability density functions are calculated for each longitudinal mode. The paper focuses on the investigation of the k-factor, which is a simple yet important measure of the noise power, but is usually taken as a fitted or assumed value in the penalty calculations. In this paper, the sources of the k-factor are studied with simulation, including the intrinsic source of the laser Langevin noise, and the extrinsic source of the bit pattern. The photon waveforms are shown under four simulation conditions for regular or random bit pattern, and with or without Langevin noise. The k-factors contributed by those sources are studied with a variety of bias current and modulation current. Simulation results are illustrated in figures, and show that the contribution of Langevin noise to the k-factor is larger than that of the random bit pattern, and is more dominant at lower bias current or higher modulation current.

  6. High time resolution measurements of the thermosphere from Fabry-Perot Interferometer measurements of atomic oxygen

    Directory of Open Access Journals (Sweden)

    E. A. K. Ford

    2007-06-01

    Full Text Available Recent advances in the performance of CCD detectors have enabled a high time resolution study of the high latitude upper thermosphere with Fabry-Perot Interferometers (FPIs to be performed. 10-s integration times were used during a campaign in April 2004 on an FPI located in northern Sweden in the auroral oval. The FPI is used to study the thermosphere by measuring the oxygen red line emission at 630.0 nm, which emits at an altitude of approximately 240 km. Previous time resolutions have been 4 min at best, due to the cycle of look directions normally observed. By using 10 s rather than 40 s integration times, and by limiting the number of full cycles in a night, high resolution measurements down to 15 s were achievable. This has allowed the maximum variability of the thermospheric winds and temperatures, and 630.0 nm emission intensities, at approximately 240 km, to be determined as a few minutes. This is a significantly greater variability than the often assumed value of 1 h or more. A Lomb-Scargle analysis of this data has shown evidence of gravity wave activity with waves with short periods. Gravity waves are an important feature of mesosphere-lower thermosphere (MLT dynamics, observed using many techniques and providing an important mechanism for energy transfer between atmospheric regions. At high latitudes gravity waves may be generated in-situ by localised auroral activity. Short period waves were detected in all four clear nights when this experiment was performed, in 630.0 nm intensities and thermospheric winds and temperatures. Waves with many periodicities were observed, from periods of several hours, down to 14 min. These waves were seen in all parameters over several nights, implying that this variability is a typical property of the thermosphere.

  7. Micro-Mechanical Voltage Tunable Fabry-Perot Filters Formed in (111) Silicon. Degree awarded by Colorado Univ., Boulder, CO

    Science.gov (United States)

    Patterson, James D.

    1997-01-01

    The MEMS (Micro-Electro-Mechanical-Systems) technology is quickly evolving as a viable means to combine micro-mechanical and micro-optical elements on the same chip. One MEMS technology that has recently gained attention by the research community is the micro-mechanical Fabry-Perot optical filter. A MEMS based Fabry-Perot consists of a vertically integrated structure composed of two mirrors separated by an air gap. Wavelength tuning is achieved by applying a bias between the two mirrors resulting in an attractive electrostatic force which pulls the mirrors closer. In this work, we present a new micro-mechanical Fabry-Perot structure which is simple to fabricate and is integratable with low cost silicon photodetectors and transistors. The structure consists of a movable gold coated oxide cantilever for the top mirror and a stationary Au/Ni plated silicon bottom mirror. The fabrication process is single mask level, self aligned, and requires only one grown or deposited layer. Undercutting of the oxide cantilever is carried out by a combination of RIE and anisotropic KOH etching of the (111) silicon substrate. Metallization of the mirrors is provided by thermal evaporation and electroplating. The optical and electrical characteristics of the fabricated devices were studied and show promissing results. A wavelength shift of 120nm with 53V applied bias was demonstrated by one device geometry using 6.27 micrometer air gap. The finesse of the structure was 2.4. Modulation bandwidths ranging from 91KHz to greater than 920KHz were also observed. Theoretical calculations show that if mirror reflectivity, smoothness, and parallelism are improved, a finesse of 30 is attainable. The predictions also suggest that a reduction of the air gap to 1 micrometer results in an increased wavelength tuning range of 175 nm with a CMOS compatible 4.75V.

  8. Development of Silicon-substrate Based Fabry-Perot Etalons for far-IR Astrophysics

    Science.gov (United States)

    Stacey, Gordon

    We propose to design, construct and test silicon-substrate-based (SSB) mirrors necessary for high performance Fabry-Perot interferometers (FPIs) to be used in the 25-40 um mid-IR band. These mirrors will be fabricated from silicon wafers that are anti-reflection coated (ARC) by micromachining an artificial dielectric meta-material on one side, and depositing optimized gold-metalized patterns on the other. Two mirrors with the metalized surfaces facing one-another form the Fabry-Perot cavity, also known as the FPI etalon. The exterior surfaces of the silicon mirrors are anti-reflection coated for both good transmission in the science band, and to prevent unwanted parasitic FPI cavities from forming between the four surfaces (one anti-reflection coated, one metalized for each mirror) of the FPI etalon. The mirrors will be tested within a Miniature Cryogenic Scanning Fabry-Perot (MCSF) that we have designed through support of a previous NASA grant (NNX09AB95G). This design is based on our long experience in constructing and using scanning FPI in the mid-IR to submm range, and fits within test-beds we have on hand that are suitable for both warm and cold tests. The key technologies are the ARC and tuned mirrors that are enabled by silicon nano-machining techniques. The creation of these SSB mirrors promises greatly improved performance over previous versions of mid-IR to submm-band FPIs that are based on mirrors made from free-standing metal mesh stretched over support rings. Performance is improved both structurally and in terms of sensitivity, and is measured as the product of the cavity finesse times transmission. Our electromagnetic modeling suggests that SSB mirrors will improve this product by a factor of 2 over the best free standing mesh etalons available. This translates into a factor of sqrt(2) improvement in sensitivity per etalon, or a full factor of 2 when used in a tandem (dual etalon) FPI spectrometer. The SSB improvements are due to both the stiff (~ 0

  9. Nanoporous Zeolite Thin Film-Based Fiber Intrinsic Fabry-Perot Interferometric Sensor for Detection of Dissolved Organics in Water

    Directory of Open Access Journals (Sweden)

    Hai Xiao

    2006-08-01

    Full Text Available A fiber optic intrinsic Fabry-Perot interferometric (IFPI chemical sensor wasdeveloped by fine-polishing a thin layer of polycrystalline nanoporous MFI zeolitesynthesized on the cleaved endface of a single mode fiber. The sensor operated bymonitoring the optical thickness changes of the zeolite thin film caused by the adsorption oforganic molecules into the zeolite channels. The optical thickness of the zeolite thin filmwas measured by white light interferometry. Using methanol, 2-propanol, and toluene as themodel chemicals, it was demonstrated that the zeolite IPFI sensor could detect dissolvedorganics in water with high sensitivity.

  10. Picometre displacement measurements using a differential Fabry-Perot optical interferometer and an x-ray interferometer

    Science.gov (United States)

    Çelik, Mehmet; Hamid, Ramiz; Kuetgens, Ulrich; Yacoot, Andrew

    2012-08-01

    X-ray interferometry is emerging as an important tool for dimensional nanometrology both for sub-nanometre measurement and displacement. It has been used to verify the performance of the next generation of displacement measuring optical interferometers within the European Metrology Research Programme project NANOTRACE. Within this project a more detailed set of comparison measurements between the x-ray interferometer and a dual channel Fabry-Perot optical interferometer (DFPI) have been made to demonstrate the capabilities of both instruments for picometre displacement metrology. The results show good agreement between the two instruments, although some minor differences of less than 5 pm have been observed.

  11. General Method for Calculating the Response and Noise Spectra of Active Fabry-Perot Semiconductor Waveguides With External Optical Injection

    DEFF Research Database (Denmark)

    Blaaberg, Søren; Mørk, Jesper

    2009-01-01

    We present a theoretical method for calculating small-signal modulation responses and noise spectra of active Fabry-Perot semiconductor waveguides with external light injection. Small-signal responses due to either a modulation of the pump current or due to an optical amplitude or phase modulatio...... amplifiers and an injection-locked laser. We also demonstrate the applicability of the method to analyze slow and fast light effects in semiconductor waveguides. Finite reflectivities of the facets are found to influence the phase changes of the injected microwave-modulated light....

  12. Fabry-Perot interferometer fiber tip sensor based on a glass microsphere glued at the etched end of multimode fiber

    Science.gov (United States)

    Chen, Weiping P.; Wang, Dongning N.; Xu, Ben; Wang, Zhaokun K.; Zhao, Chun-Liu

    2017-05-01

    We demonstrate an optical Fabry-Perot interferometer fiber tip sensor based on a glass microsphere glued at the etched end of a multimode fiber. The fiber device is miniature and robust, with a convenient reflection mode of operation, a high temperature sensitivity of 202.6 pm/°C within the range from 5°C to 90°C, a good refractive index sensitivity of ˜119 nm/RIU within the range from 1.331 to 1.38, and a gas pressure sensitivity of 0.19 dB/MPa.

  13. Fabry-Perot interferometer measurements of neutral winds and F2 layer variations at the magnetic equator

    Directory of Open Access Journals (Sweden)

    P. Vila

    1998-06-01

    Full Text Available This letter presents some night-time observations of neutral wind variations at F2 layer levels near the dip equator, measured by the Fabry-Perot interferometer set up in 1994 at Korhogo (Ivory Coast, geographic latitude 9.25°N, longitude 355°E, dip latitude –2.5°. Our instrument uses the 630 nm (O1D line to determine radial Doppler velocities of the oxygen atoms between 200 and 400 km altitude. First results for November 1994 to March 1995 reveal persistent eastward flows, and frequent intervals of southward winds of larger than 50 ms–1 velocity. Compared with the simultaneous ionospheric patterns deduced from the three West African equatorial ionosondes at Korhogo, Ouagadougou (Burkina-Faso, dip latitude +1.5° and Dakar (Sénégal, dip latitude +5°, they illustrate various impacts of the thermospheric winds on F2 layer density: (1 on the mesoscale evolution (a few 103 km and a few 100 minutes scales and (2 on local fluctuations (hundreds of km and tens of minutes characteristic times. We report on these fluctuations and discuss the opportunity to improve the time-resolution of the Fabry-Perot interferometer at Korhogo.Key words. Ionosphere (Equatorial ionosphere; Ionosphere-atmosphere interaction · Meteorology and Atmospheric Dynamics (General circulation

  14. Optical filter based on Fabry-Perot structure using a suspension of goethite nanoparticles as electro-optic material

    Science.gov (United States)

    Abbas, Samir; Dupont, Laurent; Dozov, Ivan; Davidson, Patrick; Chanéac, Corinne

    2018-02-01

    We have investigated the feasibility of optical tunable filters based on a Fabry-Perot etalon that uses a suspension of goethite (α-FeOOH) nanorods as electro-optic material for application in optical telecommunications in the near IR range. These synthetic nanoparticles have a high optical anisotropy that give rise to a very strong Kerr effect in their colloidal suspensions. Currently, these particles are dispersed in aqueous solvent, with pH2 to ensure the colloidal electrostatic stability. However, the high conductivity of these suspensions requires using high-frequency electric fields (f > 1 MHz), which brings about a high power consumption of the driver. To decrease the field frequency, we have changed the solvent to ethylene glycol which has a lower electrical conductivity than the aqueous solvent. We have built a Fabry-Perot cell, filled with this colloidal suspension in the isotropic phase, and showed that a phase shift of 14 nm can be obtained in a field of 3V/μm. Therefore, the device can operate as a tunable filter. A key advantage of this filter is that it is, by principle, completely insensitive to the polarization of the input light. However, several technological issues still need to be solved, such as ionic contamination of the suspension from the blocking layers, and dielectrophoretic and thermal effects.

  15. Statistical analysis of thermospheric gravity waves from Fabry-Perot Interferometer measurements of atomic oxygen

    Directory of Open Access Journals (Sweden)

    E. A. K. Ford

    2008-02-01

    Full Text Available Data from the Fabry-Perot Interferometers at KEOPS (Sweden, Sodankylä (Finland, and Svalbard (Norway, have been analysed for gravity wave activity on all the clear nights from 2000 to 2006. A total of 249 nights were available from KEOPS, 133 from Sodankylä and 185 from the Svalbard FPI. A Lomb-Scargle analysis was performed on each of these nights to identify the periods of any wave activity during the night. Comparisons between many nights of data allow the general characteristics of the waves that are present in the high latitude upper thermosphere to be determined. Comparisons were made between the different parameters: the atomic oxygen intensities, the thermospheric winds and temperatures, and for each parameter the distribution of frequencies of the waves was determined. No dependence on the number of waves on geomagnetic activity levels, or position in the solar cycle, was found. All the FPIs have had different detectors at various times, producing different time resolutions of the data, so comparisons between the different years, and between data from different sites, showed how the time resolution determines which waves are observed. In addition to the cutoff due to the Nyquist frequency, poor resolution observations significantly reduce the number of short-period waves (<1 h period that may be detected with confidence. The length of the dataset, which is usually determined by the length of the night, was the main factor influencing the number of long period waves (>5 h detected. Comparisons between the number of gravity waves detected at KEOPS and Sodankylä over all the seasons showed a similar proportion of waves to the number of nights used for both sites, as expected since the two sites are at similar latitudes and therefore locations with respect to the auroral oval, confirming this as a likely source region. Svalbard showed fewer waves with short periods than KEOPS data for a season when both had the same time resolution data

  16. Optimal Design of an Hourglass in-Fiber Air Fabry-Perot Microcavity—Towards Spectral Characteristics and Strain Sensing Technology

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2017-06-01

    Full Text Available An hourglass in-fiber air microcavity Fabry-Perot interferometer is proposed in this paper, and its second reflecting surface of in-fiber microcavity is designed to be a concave reflector with the best curvature radius in order to improve the spectral characteristics. Experimental results proved that the extinction ratio of Fabry-Perot interferometer with cavity length of 60 μm and concave reflector radius of 60 μm is higher than for a rectangular Fabry-Perot interferometer with cavity length of 60 μm (14 dB: 11 dB. Theory and numerical simulation results show that the strain sensitivity of sensor can be improved by reducing the microcavity wall thickness and microcavity diameter, and when the in-fiber microcavity length is 40 μm, the microcavity wall thickness is 10 μm, the microcavity diameter is 20 μm, and the curvature radius of reflective surface II is 50 μm, the interference fringe contrast of is greater than 0.97, an Axial-pull sensitivity of 20.46 nm/N and resolution of 1 mN can be achieved in the range of 0–1 N axial tension. The results show that the performance of hourglass in-fiber microcavity interferometer is far superior to that of the traditional Fabry-Perot interferometer.

  17. Theoretical and experimental study of low-finesse extrinsic Fabry-Perot interferometric fiber optic sensors

    Science.gov (United States)

    Han, Ming

    In this dissertation, detailed and systematic theoretical and experimental study of low-finesse extrinsic Fabry-Perot interferometric (EFPI) fiber optic sensors together with their signal processing methods for white-light systems are presented. The work aims to provide a better understanding of the operational principle of EFPI fiber optic sensors, and is useful and important in the design, optimization, fabrication and application of single mode fiber(SMF) EFPI (SMF-EFPI) and multimode fiber (MMF) EFPI (MMF-EFPI) sensor systems. The cases for SMF-EFPI and MMF-EFPI sensors are separately considered. In the analysis of SMF-EFPI sensors, the light transmitted in the fiber is approximated by a Gaussian beam and the obtained spectral transfer function of the sensors includes an extra phase shift due to the light coupling in the fiber end-face. This extra phase shift has not been addressed by previous researchers and is of great importance for high accuracy and high resolution signal processing of white-light SMF-EFPI systems. Fringe visibility degradation due to gap-length increase and sensor imperfections is studied. The results indicate that the fringe visibility of a SMF-EFPI sensor is relatively insensitive to the gap-length change and sensor imperfections. Based on the spectral fringe pattern predicated by the theory of SMF-EFPI sensors, a novel curve fitting signal processing method (Type 1 curve-fitting method) is presented for white-light SMF-EFPI sensor systems. Other spectral domain signal processing methods including the wavelength-tracking, the Type 2-3 curve fitting, Fourier transform, and two-point interrogation methods are reviewed and systematically analyzed. Experiments were carried out to compare the performances of these signal processing methods. The results have shown that the Type 1 curve fitting method achieves high accuracy, high resolution, large dynamic range, and the capability of absolute measurement at the same time, while others either

  18. A preliminary study of thermosphere and mesosphere wind observed by Fabry-Perot over Kelan, China

    Science.gov (United States)

    Yu, Tao; Huang, Cong; Zhao, Guangxin; Mao, Tian; Wang, Yungang; Zeng, Zhongcao; Wang, Jingsong; Xia, Chunliang

    2014-06-01

    A Fabry-Perot interferometer (FPI) system was deployed in Kelan (38.7°N, 111.6°E), center China in November 2011, which observes the airglows at wavelengths of 892.0 nm, 557.7 nm, and 630.0 nm from OH and OI emissions in the upper atmosphere, to derive the wind and temperature at heights around 87 km, 97 km, and 250 km, respectively. From late 2011 through 2013 a series of more than 4500 measurements at each height are validated according to manufacture data quality criteria. By using these data, the morphology of wind in the mesosphere and thermosphere is investigated in this study. Preliminary results are as follows: (1) As for the diurnal variation, meridional and zonal winds at heights of 87 km and 97 km, which are derived through 892.0 nm and 557.7 nm airglows, usually range from -50 m/s to 30 m/s and -50 m/s to 50 m/s, respectively, with typical random errors of about 6-10 m/s at 87 km and 2-3 m/s at 97 km. Meridional winds usually are northward at dusk, southward at middle night, and back to northward at dawn; and zonal winds usually are eastward at dusk, westward at middle night, and back to eastward at dawn. The monthly mean winds are in good agreement with those of HWM93 results. Meridional and zonal winds at a height of 250 km, which are derived through 630.0 nm nightglow, range from -110 m/s to 80 m/s with typical random errors of about 8-10 m/s. Meridional winds usually are northward at dusk, southward at middle night, and back to northward at dawn; and zonal winds usually are eastward at dusk, zero at middle night, and westward at dawn; and they are also well consistent with HWM93 results. (2) As for the seasonal variation, meridional winds at the heights of 87 km and 97 km have a visible annual variation at 12-17 LT and with a little semiannual variation at all other hours, but the zonal winds at the heights of 87 km and 97 km have a semiannual variation all night. The seasonal dependence of the winds, both meridional and zonal winds, at the height

  19. MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing.

    Science.gov (United States)

    Pang, Cheng; Bae, Hyungdae; Gupta, Ashwani; Bryden, Kenneth; Yu, Miao

    2013-09-23

    We present a micro-electro-mechanical systems (MEMS) based Fabry-Perot (FP) sensor along with an optical system-on-a-chip (SOC) interrogator for simultaneous pressure and temperature sensing. The sensor employs a simple structure with an air-backed silicon membrane cross-axially bonded to a 45° polished optical fiber. This structure renders two cascaded FP cavities, enabling simultaneous pressure and temperature sensing in close proximity along the optical axis. The optical SOC consists of a broadband source, a MEMS FP tunable filter, a photodetector, and the supporting circuitry, serving as a miniature spectrometer for retrieving the two FP cavity lengths. Within the measured pressure and temperature ranges, experimental results demonstrate that the sensor exhibits a good linear response to external pressure and temperature changes.

  20. UW Imaging of Seismic-Physical-Models in Air Using Fiber-Optic Fabry-Perot Interferometer.

    Science.gov (United States)

    Rong, Qiangzhou; Hao, Yongxin; Zhou, Ruixiang; Yin, Xunli; Shao, Zhihua; Liang, Lei; Qiao, Xueguang

    2017-02-17

    A fiber-optic Fabry-Perot interferometer (FPI) has been proposed and demonstrated for the ultrasound wave (UW) imaging of seismic-physical models. The sensor probe comprises a single mode fiber (SMF) that is inserted into a ceramic tube terminated by an ultra-thin gold film. The probe performs with an excellent UW sensitivity thanks to the nanolayer gold film, and thus is capable of detecting a weak UW in air medium. Furthermore, the compact sensor is a symmetrical structure so that it presents a good directionality in the UW detection. The spectral band-side filter technique is used for UW interrogation. After scanning the models using the sensing probe in air, the two-dimensional (2D) images of four physical models are reconstructed.

  1. Mirror Birefringence in a Fabry-Perot Cavity and the Detection of Vacuum Birefringence in a Magnetic Field

    Science.gov (United States)

    Chui, T. C. P.; Shao, M.; Redding, D.; Gursel, Y.; Boden, A.

    1995-01-01

    We discuss the effect of mirror birefringence in two optical schemes designed to detect the quantum-electrodynamics (QED) predictions of vacuum birefringence under the influence of a strong magnetic field, B. Both schemes make use of a high finesse Fabry-Perot cavity (F-P) to increase the average path length of the light in the magnetic field. The first scheme, which we called the frequency scheme, is based on measurement of the beat frequency of two orthogonal polarized laser beams in the cavity. We show that mirror birefringence contributes to the detection uncertainties in first order, resulting in a high susceptibility to small thermal disturbances. We estimate that an unreasonably high thermal stability of 10-9 K is required to resolve the effect to 0.1%. In the second scheme, which we called the polarization rotation scheme, laser polarized at 45 relative to the B field is injected into the cavity.

  2. Parallelised photoacoustic signal acquisition using a Fabry-Perot sensor and a camera-based interrogation scheme

    Science.gov (United States)

    Saeb Gilani, T.; Villringer, C.; Zhang, E.; Gundlach, H.; Buchmann, J.; Schrader, S.; Laufer, J.

    2018-02-01

    Tomographic photoacoustic (PA) images acquired using a Fabry-Perot (FP) based scanner offer high resolution and image fidelity but can result in long acquisition times due to the need for raster scanning. To reduce the acquisition times, a parallelised camera-based PA signal detection scheme is developed. The scheme is based on using a sCMOScamera and FPI sensors with high homogeneity of optical thickness. PA signals were acquired using the camera-based setup and the signal to noise ratio (SNR) was measured. A comparison of the SNR of PA signal detected using 1) a photodiode in a conventional raster scanning detection scheme and 2) a sCMOS camera in parallelised detection scheme is made. The results show that the parallelised interrogation scheme has the potential to provide high speed PA imaging.

  3. Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Perot interferometer

    Science.gov (United States)

    Beard, P. C.; Mills, T. N.

    1996-02-01

    Theoretical and experimental aspects of an extrinsic optical-fiber ultrasound sensor are described. The sensor is based on a thin transparent polymer film acting as a low-finesse Fabry-Perot cavity that is mounted at the end of a multimode optical fiber. Performance was found to be comparable with that of a piezoelectric polyvinylidene difluoride-membrane (PVDF) hydrophone with a sensitivity of 61 mV/MPa, an acoustic noise floor of 2.3 KPa over a 25-MHz bandwidth, and a frequency response to 25 MHz. The wideband-sensitive response and design flexibility of the concept suggests that it may find application as an alternative to piezoelectric devices for the detection and measurement of ultrasound.

  4. Non-destructive residual pressure self-measurement method for the sensing chip of optical Fabry-Perot pressure sensor.

    Science.gov (United States)

    Wang, Xue; Wang, Shuang; Jiang, Junfeng; Liu, Kun; Zhang, Xuezhi; Xiao, Mengnan; Xiao, Hai; Liu, Tiegen

    2017-12-11

    We introduce a simple residual pressure self-measurement method for the Fabry-Perot (F-P) cavity of optical MEMS pressure sensor. No extra installation is required and the structure of the sensor is unchanged. In the method, the relationship between residual pressure and external pressure under the same diaphragm deflection condition at different temperatures is analyzed by using the deflection formula of the circular plate with clamped edges and the ideal gas law. Based on this, the residual pressure under the flat condition can be obtained by pressure scanning process and calculation process. We carried out the experiment to compare the residual pressures of two batches MEMS sensors fabricated by two kinds of bonding process. The measurement result indicates that our approach is reliable enough for the measurement.

  5. Impact of mode partition noise in free-running gain-switched Fabry-Perot laser for 2-dimensional OCDMA.

    Science.gov (United States)

    Wang, Xu; Chan, Kam

    2004-07-26

    Free-running gain-switched Fabry-Perot laser diode is an appropriate incoherent broadband optical source for incoherent 2-dimensional optical code division multiple access. However, the mode partition noise (MPN) in the laser seriously degrades performance. We derived a bit error rate (BER) expression in the presence of MPN using the power spectra of the laser. The theory agreed with the experimental results. There was a power penalty and BER floor due to the MPN in the laser. Therefore, this scheme should be operated with a sufficiently large number of modes. At least 9 modes should be used for error-free transmission at 1 Gbit/s for the laser we investigated in this work.

  6. A new method for multi-channel Fabry-Perot spectroscopy of light pulses in the nanosecond regime

    International Nuclear Information System (INIS)

    Behn, R.

    1975-01-01

    The demand for powerful multichannel spectrometers raised, e.g., in laser scattering plasma diagnostics, gave rise to the question if it would not be possible to avoid the light losses occuring in the use of multichannel Fabry-Perot spectrometers. These losses can be avoided with the technique presented here. The reflected light is collected and fed back to the interferometer at a different angle. It can thus be recovered for registration in another spectral channel. This method is particularly suitable for the investigation of short light pulses. A spectrum can thus be scanned step by step with full utilization of the transit time of the light pulse. In addition to light recovery, there is another advantage in that only one detector is used for multichannel analysis, thus eliminating calibration problems. In the annex to the report, emission spectres of different dye laser versions are presented and explained. (orig./GG) [de

  7. Simultaneous measure of a spectral line profile and the apparatus function of a Fabry-Perot spectrometer when continuous background is present

    International Nuclear Information System (INIS)

    Moreno, J.M.; Quintanilla, M.; Mar, S.

    1978-01-01

    A deconvolution method of registered profile on a Fabry-Perot spectrometer is developed, when the actual profile of the source is a Voigt pattern together with a continuous background. The reliability and accuracy of the method is tested with theoreticaly simulated profiles. The method is applied both to measure the real line profiles and to find the Fabry-Perot parameters, as a test of its validity on studies of experimental profiles. Both measure types -source profile and apparatus function- are made simultaneously by means of analysis of the variations of registered profile, at 6438.5A Cd line and 6328A He-Ne laser line, varying the optical path between interferometer mirrors. (author) [es

  8. Development of a six channel Fabry-Perot interferometer for continuous measurement of electron temperature of Tokamak plasma. Application to current diffusion study

    International Nuclear Information System (INIS)

    Talvard, M.

    1984-10-01

    It is shown how the properties of the electron cyclotron emission of a tokamak plasma can be used to measure the electron temperature. The design of a six channel Fabry-Perot interferometer is then described. This interferometer allows the measurement of the time evolution of the electron temperature profile of the plasma in the TFR tokamak. Using this technique interesting results have been obtained concerning the current penetration during the start up phase of a tokamak discharge [fr

  9. Passive amplification of a fiber laser in a Fabry-Perot cavity: application to gamma-ray production by Compton backscattering

    International Nuclear Information System (INIS)

    Labaye, F.

    2012-01-01

    One of the critical points of the International Linear Collider (ILC) is the polarized positrons source. Without going through further explanation on the physical process of polarized positrons production, we point out that they are produced when circularly polarized gamma rays interact with mater. Thus, the critical point is the circularly polarized gamma-ray source. A technical solution for this source is the Compton backscattering and in the end, this thesis takes place in the framework for the design of a high average power laser systems enslaved to Fabry-Perot cavities for polarized gamma-ray production by Compton backscattering. In the first part, we present this thesis context, the Compton backscattering principle and the choice for an optical architecture based on a fiber laser and a Fabry-Perot cavity. We finish by enumerating several possible applications for Compton backscattering which shows that the work presented here might benefits from technology transfer through others research fields. In the second part, we present the different fiber laser architecture studied as well as the results obtained. In the third part, we remind the operating principle of a Fabry-Perot cavity and present the one used for our experiment as well as its specificities. In the fourth part, we address the Compton backscattering experiment which enables us to present the joint utilization of a fiber laser and a Fabry-Perot cavity in a particles accelerator to generate gamma rays for the first time to our knowledge. This experiment took place in the Accelerator Test Facility (ATF). The experimental apparatus as well as the results obtained are thus presented. In the end, we summarize the results presented in this manuscript and propose different evolution possibilities for the system in a general conclusion. (author)

  10. Watt-level widely tunable single-mode emission by injection-locking of a multimode Fabry-Perot quantum cascade laser

    Science.gov (United States)

    Chevalier, Paul; Piccardo, Marco; Anand, Sajant; Mejia, Enrique A.; Wang, Yongrui; Mansuripur, Tobias S.; Xie, Feng; Lascola, Kevin; Belyanin, Alexey; Capasso, Federico

    2018-02-01

    Free-running Fabry-Perot lasers normally operate in a single-mode regime until the pumping current is increased beyond the single-mode instability threshold, above which they evolve into a multimode state. As a result of this instability, the single-mode operation of these lasers is typically constrained to few percents of their output power range, this being an undesired limitation in spectroscopy applications. In order to expand the span of single-mode operation, we use an optical injection seed generated by an external-cavity single-mode laser source to force the Fabry-Perot quantum cascade laser into a single-mode state in the high current range, where it would otherwise operate in a multimode regime. Utilizing this approach, we achieve single-mode emission at room temperature with a tuning range of 36 cm-1 and stable continuous-wave output power exceeding 1 W at 4.5 μm. Far-field measurements show that a single transverse mode is emitted up to the highest optical power, indicating that the beam properties of the seeded Fabry-Perot laser remain unchanged as compared to free-running operation.

  11. An efficient hexagonal switched beam antenna structure based on Fabry-Perot cavity leaky-wave antenna

    Science.gov (United States)

    Aymen El Cafsi, Mohamed; Nedil, Mourad; Osman, Lotfi; Gharsallah, Ali

    2015-11-01

    A novel design of switched beam antenna (SBA) system based on Fabry-Perot cavity leaky-wave antenna (FPC LWA) is designed and fabricated for base station operating in the unlicensed ISM central frequency band at 5.8 GHz of the wireless local area network (WLAN) standard. The proposed SBA is designed with hexagonal shape of FPC LWA Arrays in order to get 360° of coverage. The single element of FPC LWA array is composed of a patch antenna and covered by a Partially Reflective Surface (PRS), which is composed of a Metal Strip Grating and printed on a high permittivity Superstrate. First, the Transmission Line Model of FPC LWA is introduced to analyse and calculate the far-field components in E- and H planes by using the Transverse Equivalent Network. This approach is then compared with other full wave's commercial software such as Ansoft HFSS and CST Microwave Studio. Second, a parametric study is performed to evaluate the effect of the angle formed by the two successive FPC LWA on the radiation efficiency of the activate sector. To examine the performance of the proposed SBA, experimental prototype was fabricated and measured. As a result, multiple orthogonal beams (six beams) of 10 dBi of gain with low Side Lobes Level and 360° of coverage are produced. This SBA structure is suitable for WLAN communication systems.

  12. Cost-effective optical fiber pressure sensor based on intrinsic Fabry-Perot interferometric micro-cavities

    Science.gov (United States)

    Domingues, M. Fátima; Rodriguez, Camilo A.; Martins, Joana; Tavares, Cátia; Marques, Carlos; Alberto, Nélia; André, Paulo; Antunes, Paulo

    2018-05-01

    In this work, a cost-effective procedure to manufacture optical fiber pressure sensors is presented. This has a high relevance for integration in robotic exoskeletons or for gait plantar pressure monitoring within the physical rehabilitation scenarios, among other applications. The sensing elements are based on Fabry-Perot interferometric (FPI) micro-cavities, created from the recycling of optical fibers previously destroyed by the catastrophic fuse effect. To produce the pressure sensors, the fiber containing the FPI micro-cavities was embedded in an epoxy resin cylinder used as pressure transducer and responsible to transfer the pressure applied on its surface to the optical fiber containing the FPI micro-cavity. Before the embedding process, some FPI sensors were also characterized to strain variations. After that, the effect of the encapsulation of the FPI structure into the resin was assessed, from which a slight decrease on the FPI interferogram fringes visibility was verified, indicating a small increase in the micro-cavity length. Up on the sensors characterization, a linear dependence of the wavelength shift with the induced pressure was obtained, which leads to a maximum sensitivity of 59.39 ± 1.7 pm/kPa. Moreover, direct dependence of the pressure sensitivity with the micro-cavity volume and length was found.

  13. Self-generation of optical frequency comb in single section quantum dot Fabry-Perot lasers: a theoretical study.

    Science.gov (United States)

    Bardella, Paolo; Columbo, Lorenzo Luigi; Gioannini, Mariangela

    2017-10-16

    Optical Frequency Comb (OFC) generated by semiconductor lasers are currently widely used in the extremely timely field of high capacity optical interconnects and high precision spectroscopy. In the last decade, several experimental evidences of spontaneous OFC generation have been reported in single section Quantum Dot (QD) lasers. Here we provide a physical understanding of these self-organization phenomena by simulating the multi-mode dynamics of a single section Fabry-Perot (FP) QD laser using a Time-Domain Traveling-Wave (TDTW) model that properly accounts for coherent radiation-matter interaction in the semiconductor active medium and includes the carrier grating generated by the optical standing wave pattern in the laser cavity. We show that the latter is the fundamental physical effect at the origin of the multi-mode spectrum appearing just above threshold. A self-mode-locking regime associated with the emission of OFC is achieved for higher bias currents and ascribed to nonlinear phase sensitive effects as Four Wave Mixing (FWM). Our results explain in detail the behaviour observed experimentally by different research groups and in different QD and Quantum Dash (QDash) devices.

  14. High-accuracy vibration sensor based on a Fabry-Perot interferometer with active phase-tracking technology.

    Science.gov (United States)

    Xia, Wei; Li, Chuncheng; Hao, Hui; Wang, Yiping; Ni, Xiaoqi; Guo, Dongmei; Wang, Ming

    2018-02-01

    A novel position-sensitive Fabry-Perot interferometer was constructed with direct phase modulation by a built-in electro-optic modulator. Pure sinusoidal phase modulation of the light was produced, and the first harmonic of the interference signal was extracted to dynamically maintain the interferometer phase to the most sensitive point of the interferogram. Therefore, the minute vibration of the object was coded on the variation of the interference signal and could be directly retrieved by the output voltage of a photodetector. The operating principle and the signal processing method for active feedback control of the interference phase have been demonstrated in detail. The developed vibration sensor was calibrated through a high-precision piezo-electric transducer and tested by a nano-positioning stage under a vibration magnitude of 60 nm and a frequency of 300 Hz. The active phase-tracking method of the system provides high immunity against environmental disturbances. Experimental results show that the proposed interferometer can effectively reconstruct tiny vibration waveforms with subnanometer resolution, paving the way for high-accuracy vibration sensing, especially for micro-electro-mechanical systems/nano-electro-mechanical systems and ultrasonic devices.

  15. Auroral zone thermospheric dynamics using Fabry-Perot interferometric measurements of the O1 15867 K emission

    International Nuclear Information System (INIS)

    Sica, R.J.

    1985-01-01

    Forty-four nights of thermospheric neutral wind and temperature measurements were obtained from College, Alaska (65 0 invariant latitude) during solar maximum using a ground-based Fabry-Perot interferometer. When averaged by increasing geomagnetic activity, the wind exhibits two main features. First, the general flow pattern poleward and westward in the evening, changing to southward and eastward in the morning, persists with increasing activity. The flow velocity increases and the change in direction occurs earlier in magnetic local time as the geomagnetic activity increases. Second, as the activity increases, the meridional wind pattern shifts equatorward with the auroral oval. Consequently, the low geomagnetic activity average wind pattern in the north is similar to the moderate activity average pattern in the south. The average thermospheric temperature is governed by the geomagnetic activity and by the previous day's 10.7 cm solar flux. The increase in temperature with solar flux is about the same as with auroral activity (approx. = 225 0 K). The dynamical behavior on individual nights highlights the importance of local auroral substorms, which can cause large deviations from both global models and the observed averages. Coupling between the E and F regions is inferred by comparing the bulk motion of the optical aurora and the observed wind. Westward-drifting auroral forms accompany the westward evening zonal wind

  16. Intra-Tissue Pressure Measurement in Ex Vivo Liver Undergoing Laser Ablation with Fiber-Optic Fabry-Perot Probe

    Directory of Open Access Journals (Sweden)

    Daniele Tosi

    2016-04-01

    Full Text Available We report the first-ever intra-tissue pressure measurement performed during 1064 nm laser ablation (LA of an ex vivo porcine liver. Pressure detection has been performed with a biocompatible, all-glass, temperature-insensitive Extrinsic Fabry-Perot Interferometry (EFPI miniature probe; the proposed methodology mimics in-vivo treatment. Four experiments have been performed, positioning the probe at different positions from the laser applicator tip (from 0.5 mm to 5 mm. Pressure levels increase during ablation time, and decrease with distance from applicator tip: the recorded peak parenchymal pressure levels range from 1.9 kPa to 71.6 kPa. Different pressure evolutions have been recorded, as pressure rises earlier in proximity of the tip. The present study is the first investigation of parenchymal pressure detection in liver undergoing LA: the successful detection of intra-tissue pressure may be a key asset for improving LA, as pressure levels have been correlated to scattered recurrences of tumors by different studies.

  17. Measurement of Microvibration by Using Dual-Cavity Fiber Fabry-Perot Interferometer for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Dae-Hyun Kim

    2014-01-01

    Full Text Available Extensive researches have recently been performed to study structural integrity using structural vibration data measured by in-structure sensors. A fiber optic sensor is one of candidates for the in-structure sensors because it is low in cost, light in weight, small in size, resistant to EM interference, long in service life, and so forth. Especially, an interferometric fiber optic sensor is very useful to measure vibrations with high resolution and accuracy. In this paper, a dual-cavity fiber Fabry-Perot interferometer was proposed with a phase-compensating algorithm for measuring micro-vibration. The interferometer has structurally two arbitrary cavities; therefore the initial phase difference between two sinusoidal signals induced from the interferometer was also arbitrary. In order to do signal processing including an arc-tangent method, a random value of the initial phase difference is automatically adjusted to the exact 90 degrees in the phase-compensating algorithm part. For the verification of the performance of the interferometer, a simple vibration-test was performed to measure micro-vibration caused by piezoelectric transducer (PZT. As an experimental result, the interferometer attached on the PZT successfully measured the 50 Hz-vibration of which the absolute displacement oscillated between −424 nm and +424 nm.

  18. Fabry-Perot magnonic ballistic coherent transport across ultrathin ferromagnetic lamellar bcc Ni nanostructures between Fe leads

    Science.gov (United States)

    Khater, A.; Saim, L.; Tigrine, R.; Ghader, D.

    2018-06-01

    We propose thermodynamically stable systems of ultrathin lamellar bcc Ni nanostructures between bcc Fe leads, sbnd Fe[Ni(n)]Fesbnd , based on the available literature for bcc Ni overlayers on Fe(001) surfaces, and establish the necessary criteria for their structural and ferromagnetic order, for thicknesses n ≤ 6 bcc Ni monatomic layers. The system is globally ferromagnetic. A theoretical model is presented to investigate and understand the ballistic coherent scattering of Fe spin-waves, incident from the leads, at the ferromagnetic bcc Ni nanostructure. The Nisbnd Ni and Nisbnd Fe exchange are computed using the Ising effective field theory (EFT), and the magnetic ground state of the system is constructed in the Heisenberg representation. We compute the spin-wave eigenmodes localized on the bcc Ni nanostructure, using the phase field matching theory (PFMT), illustrating the effects of symmetry breaking on the confinement of localized spin excitations. The reflection and transmission scattering properties of spin-waves incident from the Fe leads, across the embedded Ni nanostructures are investigated within the framework of the same PFMT methodology. A highly refined Fabry-Perot magnonic ballistic coherent transmission spectra is observed for these sbnd Fe[Ni(n)]Fesbnd systems.

  19. Fiber Fabry-Perot Force Sensor with Small Volume and High Performance for Assessing Fretting Damage of Steam Generator Tubes.

    Science.gov (United States)

    Huang, Peijian; Wang, Ning; Li, Junying; Zhu, Yong; Zhang, Jie

    2017-12-13

    Measuring the radial collision force between the steam generator tube (SGT) and the tube support plate (TSP) is essential to assess the fretting damage of the SGT. In order to measure the radial collision force, a novel miniaturized force sensor based on fiber Fabry-Perot (F-P) was designed, and the principle and characteristics of the sensor were analyzed in detail. Then, the F-P force sensor was successfully fabricated and calibrated, and the overall dimensions of the encapsulated fiber F-P sensor were 17 mm × 5 mm × 3 mm (L × W × H). The sensor works well in humid, high pressure (10 MPa), high temperature (350 °C), and vibration (40 kHz) environments. Finally, the F-P force sensors were installed in a 1:1 steam generator test loop, and the radial collision force signals between the SGT and the TSP were obtained. The experiments indicated that the F-P sensor with small volume and high performance could help in assessing the fretting damage of the steam generator tubes.

  20. Wavelength-tunable thulium-doped fiber laser by employing a self-made Fabry-Perot filter

    Science.gov (United States)

    Wang, Y. P.; Ju, Y. L.; Wu, C. T.; Liu, W.; Yang, C.

    2017-06-01

    In this demonstration, we proposed a novel wavelength-tunable thulium-doped fiber laser (TDFL) with a self-made Fabry-Perot (F-P) filter. When the F-P filter was not inserted, the maximum output power of 11.1 W was achieved when the pump power was 70.2 W. The corresponding optical-to-optical conversion efficiency was 15.8% and the slope efficiency was 22.1%. When the F-P filter was inserted, the output wavelength could be tuned from 1952.9 to 1934.9 nm with the change of cavity length of F-P filter which was fixed on a piezoelectric ceramic transducer (PZT) controlled by the voltage applied to it. The full width at half maximum (FWHM) was no more than 0.19 nm. Furthermore, the wavelength fluctuations of the tunable fiber laser were kept within  ±0.2 nm.

  1. Cascaded-cavity Fabry-Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation

    Science.gov (United States)

    Tian, Jiajun; Jiao, Yuzhu; Ji, Shaobo; Dong, Xiaolong; Yao, Yong

    2018-04-01

    We propose and demonstrate a fiber sensor for simultaneous temperature and strain measurements. The proposed sensor is implemented by a cascaded-cavity Fabry-Perot (FP) fiber interferometer. The two cascaded FP cavities comprise a micro-air-cavity in a hollow-core tube fiber and a micro-silica-cavity in a standard single-mode fiber. To separate the interference spectrum of each FP cavity, the total spectrum is filtered in the frequency domain through band-pass filters, whose central frequencies were predesigned based on the relationship between the spatial frequency and free spectral range of each FP cavity. The different cross-sectional areas and thermal-optic coefficients of the two FP cavities confer different sensitivities to temperature and strain. Both parameters were measured simultaneously by tracking the wavelength shifts in the filtered interference spectra of the FP cavities. Moreover, the temperature-strain cross-sensitivity was compensated by solving a sensitivity-coefficient matrix equation for the two cavities, using the calibrated temperatures and strains. Other advantages of the proposed sensor are simple fabrication and an all-fiber structure. Owing to these properties, the proposed sensor is potentially applicable to real sensing applications.

  2. Surface stress sensor based on MEMS Fabry-Perot interferometer with high wavelength selectivity for label-free biosensing

    Science.gov (United States)

    Takahashi, Toshiaki; Hizawa, Takeshi; Misawa, Nobuo; Taki, Miki; Sawada, Kazuaki; Takahashi, Kazuhiro

    2018-05-01

    We have developed a surface stress sensor based on a microelectromechanical Fabry-Perot interferometer with high wavelength selectivity by using Au half-mirrors, for highly sensitive label-free biosensing. When the target molecule is adsorbed by the antigen-antibody reaction onto a movable membrane with a thin Au film, which acts as an upper mirror of the optical interferometer, the amount of deflection of the movable membrane deflected by the change in surface stress can be detected with high sensitivity. To improve the signal at the small membrane deflection region of this biosensor resulting in detection of low concentration molecules, by integrating 50 nm-thick Au half-mirrors, the wavelength selectivity of the optical interferometer has been successfully improved 6.6 times. Furthermore, the peak shift in the reflection spectrum due to the adsorption of bovine serum albumin (BSA) antigen with a concentration of 10 ng ml-l by the antigen-antibody reaction was spectroscopically measured on the fabricated optical interferometer, and the deflection amount of the movable membrane after 10 min treatment was 2.4 times larger than that of nonspecific adsorption with the avidin molecules. This result indicated that the proposed sensor can be used for selective detection of low-concentration target antigen molecules.

  3. Study of luminescence and optical resonances in Sb{sub 2}O{sub 3} micro- and nanotriangles

    Energy Technology Data Exchange (ETDEWEB)

    Cebriano, Teresa; Mendez, Bianchi, E-mail: bianchi@fis.ucm.es; Piqueras, Javier [Universidad Complutense de Madrid, Departamento de Fisica de Materiales, Facultad de Ciencias Fisicas (Spain)

    2012-10-15

    Luminescence of micro- and nanotriangles of cubic antimony oxide, Sb{sub 2}O{sub 3} has been investigated by cathodoluminescence (CL) in scanning electron microscope and by photoluminescence (PL) in a laser confocal microscope. The triangles were grown by a thermal evaporation-deposition process with pure antimony powders as precursor, and present a self assembled arrangement covering extended areas of the samples. CL spectra of the triangles show bands at 2-2.5 and 3.1 eV, the latter is not observed in the Sb{sub 2}O{sub 3} initial powder. PL excited by 325 nm laser shows a band at 2.4 eV with a shoulder at 2.75 eV, as well as resonance modes suggesting optical cavity behavior of the triangles. The separation between resonant peaks from different triangles has been correlated with the triangle side length and possible optical paths were obtained according to the Fabry-Perot relationship. These results along with the optical images suggest that not only Fabry-Perot cavity modes, but also whispering gallery modes may occur inside the micro- and nanotriangle structures.

  4. A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission.

    Science.gov (United States)

    Lin, Gong-Ru; Chi, Yu-Chieh; Liao, Yu-Sheng; Kuo, Hao-Chung; Liao, Zhi-Wang; Wang, Hai-Lin; Lin, Gong-Cheng

    2012-06-18

    By spectrally slicing a single longitudinal-mode from a master weak-resonant-cavity Fabry-Perot laser diode with transient wavelength scanning and tracking functions, the broadened self-injection-locking of a slave weak-resonant-cavity Fabry-Perot laser diode is demonstrated to achieve bi-directional transmission in a 200-GHz array-waveguide-grating channelized dense-wavelength-division-multiplexing passive optical network system. Both the down- and up-stream slave weak-resonant-cavity Fabry-Perot laser diodes are non-return-to-zero modulated below threshold and coherently injection-locked to deliver the pulsed carrier for 25-km bi-directional 2.5 Gbits/s return-to-zero transmission. The master weak-resonant-cavity Fabry-Perot laser diode is gain-switched at near threshold condition and delivers an optical coherent pulse-train with its mode linewidth broadened from 0.2 to 0.8 nm by transient wavelength scanning, which facilitates the broadband injection-locking of the slave weak-resonant-cavity Fabry-Perot laser diodes with a threshold current reducing by 10 mA. Such a transient wavelength scanning induced spectral broadening greatly releases the limitation on wavelength injection-locking range required for the slave weak-resonant-cavity Fabry-Perot laser diode. The theoretical modeling and numerical simulation on the wavelength scanning and tracking effects of the master and slave weak-resonant-cavity Fabry-Perot laser diodes are performed. The receiving power sensitivity for back-to-back transmission at bit-error-rate transmission is less than 2 dB for all 16 channels.

  5. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar.

    Science.gov (United States)

    Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan

    2014-09-08

    Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.

  6. Photonic filtering of microwave signals in the frequency range of 0.01-20 GHz using a Fabry-Perot filter

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo-Rodriguez, G; Zaldivar-Huerta, I E [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE). Sta. Maria Tonantzintla, Pue. Mexico (Mexico); GarcIa-Juarez, A [Depto. de Investigacion en Fisica, Universidad de Sonora (UNISON) Hermosillo, Son. Mexico (Mexico); Rodriguez-Asomoza, J [Depto. de Ingenieria Electronica, Universidad de las Americas-Puebla (UDLA). San Andres Cholula, Pue. Mexico (Mexico); Larger, L; Courjal, N [Laboratoire d' Optique P. M. Duffieux, UMR 6603 CNRS, Institut des Microtechiques de Franche-Comte, FRW 0067, UFR Sciences et Techniques, Universite de Franche-Comte (UFC), Besancon cedex (France)

    2011-01-01

    We demonstrate experimentally the efficiency of tuning of a photonic filter in the frequency range of 0.01 to 20 GHz. The presented work combines the use of a multimode optical source associated with a dispersive optical fiber to obtain the filtering effect. Tunability effect is achieved by the use of a Fabry-Perot filter that allows altering the spectral characteristics of the optical source. Experimental results are validated by means of numerical simulations. The scheme here proposed has a potential application in the field of optical telecommunications.

  7. Time-domain multiplexed high resolution fiber optics strain sensor system based on temporal response of fiber Fabry-Perot interferometers.

    Science.gov (United States)

    Chen, Jiageng; Liu, Qingwen; He, Zuyuan

    2017-09-04

    We developed a multiplexed strain sensor system with high resolution using fiber Fabry-Perot interferometers (FFPI) as sensing elements. The temporal responses of the FFPIs excited by rectangular laser pulses are used to obtain the strain applied on each FFPI. The FFPIs are connected by cascaded couplers and delay fiber rolls for the time-domain multiplexing. A compact optoelectronic system performing closed-loop cyclic interrogation is employed to improve the sensing resolution and the frequency response. In the demonstration experiment, 3-channel strain sensing with resolutions better than 0.1 nε and frequency response higher than 100 Hz is realized.

  8. Polar cap mesosphere wind observations: comparisons of simultaneous measurements with a Fabry-Perot interferometer and a field-widened Michelson interferometer.

    Science.gov (United States)

    Fisher, G M; Killeen, T L; Wu, Q; Reeves, J M; Hays, P B; Gault, W A; Brown, S; Shepherd, G G

    2000-08-20

    Polar cap mesospheric winds observed with a Fabry-Perot interferometer with a circle-to-line interferometer optical (FPI/CLIO) system have been compared with measurements from a field-widened Michelson interferometer optimized for E-region winds (ERWIN). Both instruments observed the Meinel OH emission emanating from the mesopause region (approximately 86 km) at Resolute Bay, Canada (74.9 degrees N, 94.9 degrees W). This is the first time, to our knowledge, that winds measured simultaneously from a ground-based Fabry-Perot interferometer and a ground-based Michelson interferometer have been compared at the same location. The FPI/CLIO and ERWIN instruments both have a capability for high temporal resolution (less than 10 min for a full scan in the four cardinal directions and the zenith). Statistical comparisons of hourly mean winds for both instruments by scatterplots show excellent agreement, indicating that the two optical techniques provide equivalent observations of mesopause winds. Small deviations in the measured wind can be ascribed to the different zenith angles used by the two instruments. The combined measurements illustrate the dominance of the 12-h wave in the mesopause winds at Resolute Bay, with additional evidence for strong gravity wave activity with much shorter periods (tens of minutes). Future operations of the two instruments will focus on observation of complementary emissions, providing a unique passive optical capability for the determination of neutral winds in the geomagnetic polar cap at various altitudes near the mesopause.

  9. Initial daytime and nighttime SOFDI observations of thermospheric winds from Fabry-Perot Doppler shift measurements of the 630-nm OI line-shape profile

    Directory of Open Access Journals (Sweden)

    A. J. Gerrard

    2011-09-01

    Full Text Available In this paper we present both night and day thermospheric wind observations made with the Second-generation, Optimized, Fabry-Perot Doppler Imager (SOFDI, a novel triple-etalon Fabry-Perot interferometer (FPI designed to make 24-h measurements of thermospheric winds from OI 630-nm emission. These results were obtained from the northeastern United States and from under the magnetic equator at Huancayo, Peru and demonstrate the current instrument capability for measurements of Doppler shifts for either night or day. We found the uncertainties in the measurements agree with expected values based upon forward modeling calculations; nighttime wind components having an uncertainty of ~20-m s−1 at 30-min resolution and daytime wind components having an uncertainty of ~70-m s−1 at 20-min resolution. The nighttime uncertainties are typically larger than those seen with traditional single-etalon FPIs, which occur at the cost of being able to achieve daytime measurements. The thermospheric wind measurements from Huancayo replicate recently reported CHAMP zonal winds and are in disagreement with current empirical wind climatologies. In addition, we discuss the incorporation of how multiple point heads in the SOFDI instrument will allow for unique studies of gravity wave activity in future measurements.

  10. Equatorial thermospheric winds: New results using data from a network of three Fabry-Perot interferometers located in central Peru

    Science.gov (United States)

    Meriwether, J. W.; Dominquez, L. N.; Milla, M. A.; Chau, J. L.; Makela, J. J.; Fisher, D.

    2013-12-01

    A new observing strategy aimed at improving our understanding of the properties of the equatorial thermosphere wind field, such as the vorticity and divergence, has been developed to generate maps of the thermospheric wind field. Estimates of the neutral wind are obtained from measurements of the Doppler shift of the thermospheric 630.0-nm emission obtained from a sequence of eight evenly spaced azimuthal directions for each of the three Fabry-Perot interferometer (FPI) observatories located in central Peru (Jicamarca, Nazca, and Arequipa). Measurements towards the zenith and a frequency-stabilized laser reference are also included in each sequence, which takes ~25 minutes to complete. Six of the off-zenith observing directions from the Nazca FPI observatory are used to make common volume (CV) measurements, where two of the FPIs observe the same thermospheric volume with a centroid height of ~250 km at orthogonal angles. These CV positions are located ~225 km north and south of the Nazca FPI observatory. The data obtained during a coordinated observation of the two FPIs observing the same CV location are used to compute estimates of the zonal (u) and meridional (v) wind components. The set of Doppler shifts measured by the three FPIs during a single sequence is used to produce a map of the neutral wind field for that period of time. The construction of this map is based upon the use of a first-order polynomial expansion of the neutral wind field relative to the site coordinates of each FPI location. This expansion includes the first-order gradients of u and v with respect to the zonal (x) and meridional (y) directions. Computation of the best fit in a linear least squares sense of the model expansion parameters to the Doppler shift data for all three sites determines the values of these gradient parameters. Results obtained for mid-winter 2013 show the anti-cyclonic circulation expected near the terminator generated by the day-to-night pressure gradient. Sequences

  11. Active cancellation of residual amplitude modulation in a frequency-modulation based Fabry-Perot interferometer.

    Science.gov (United States)

    Yu, Yinan; Wang, Yicheng; Pratt, Jon R

    2016-03-01

    Residual amplitude modulation (RAM) is one of the most common noise sources known to degrade the sensitivity of frequency modulation spectroscopy. RAM can arise as a result of the temperature dependent birefringence of the modulator crystal, which causes the orientation of the crystal's optical axis to shift with respect to the polarization of the incident light with temperature. In the fiber-based optical interferometer used on the National Institute of Standards and Technology calculable capacitor, RAM degrades the measured laser frequency stability and correlates with the environmental temperature fluctuations. We have demonstrated a simple approach that cancels out excessive RAM due to polarization mismatch between the light and the optical axis of the crystal. The approach allows us to measure the frequency noise of a heterodyne beat between two lasers individually locked to different resonant modes of a cavity with an accuracy better than 0.5 ppm, which meets the requirement to further determine the longitudinal mode number of the cavity length. Also, this approach has substantially mitigated the temperature dependency of the measurements of the cavity length and consequently the capacitance.

  12. Ground-based Fabry-Perot interferometry of the terrestrial nightglow with a bare charge-coupled device; Remote field site deployment

    International Nuclear Information System (INIS)

    Niciejewski, R.; Killeen, T.L.; Turnbull, M.

    1994-01-01

    The application of Fabry-Perot interferometers (FPIs) to the study of upper atmosphere thermodynamics has largely been restricted by the very low light levels in the terrestrial airglow as well as the limited range in wavelength of photomultiplier tube (PMT) technology. During the past decade, the development of the scientific grade charge-coupled device (CCD) has progressed to the stage in which the detector has become the logical replacement for the PMT. Small fast microcomputers have made it possible to ''upgrade'' the remote field sites which bare CCDs and not only retain the previous capabilities of the existing FPIs but expand the data coverage in both temporal and wavelength domains. The problems encountered and the solutions applied to the deployment of a bare CCD, with data acquisition and image reduction techniques, are discussed. Sample geophysical data determined from the FPI fringe profiles are shown for stations at Peach Mountain, Michigan, and Watson Lake, Yukon Territory

  13. Simple locking of infrared and ultraviolet diode lasers to a visible laser using a LabVIEW proportional-integral-derivative controller on a Fabry-Perot signal.

    Science.gov (United States)

    Kwolek, J M; Wells, J E; Goodman, D S; Smith, W W

    2016-05-01

    Simultaneous laser locking of infrared (IR) and ultraviolet lasers to a visible stabilized reference laser is demonstrated via a Fabry-Perot (FP) cavity. LabVIEW is used to analyze the input, and an internal proportional-integral-derivative algorithm converts the FP signal to an analog locking feedback signal. The locking program stabilized both lasers to a long term stability of better than 9 MHz, with a custom-built IR laser undergoing significant improvement in frequency stabilization. The results of this study demonstrate the viability of a simple, computer-controlled, non-temperature-stabilized FP locking scheme for our applications, laser cooling of Ca(+) ions, and its use in other applications with similar modest frequency stabilization requirements.

  14. Combined incoherent scatter radar and Fabry-Perot interferometer measurements of frictional heating effects over Millstone Hill during March 7-10, 1989

    International Nuclear Information System (INIS)

    Hagan, M.E.; Sipler, D.P.

    1991-01-01

    The authors introduce a methodology to calculate the effects of frictional heating associated with geomagnetic activity using simultaneous incoherent scatter radar and Fabry-Perot interferometer measurements. Vector measurements of ion drift from radar backscatter and neutral wind from optical shifts in the atomic oxygen red line over Millstone Hill, Massachusetts (43 degree N) for the nights of March 7-10, 1989 are presented and are characterized by the magnetic storm activity which prevailed. They combine these measurements to calculate differences in the ion and neutral velocity fields which approach 350 m/s during the most geomagnetically active period that they monitored near 01 UT on March 9. This velocity difference results in a 110 degree K heating of the ion gas at that time

  15. Analysis and design of tunable wideband microwave photonics phase shifter based on Fabry-Perot cavity and Bragg mirrors in silicon-on-insulator waveguide.

    Science.gov (United States)

    Qu, Pengfei; Zhou, Jingran; Chen, Weiyou; Li, Fumin; Li, Haibin; Liu, Caixia; Ruan, Shengping; Dong, Wei

    2010-04-20

    We designed a microwave (MW) photonics phase shifter, consisting of a Fabry-Perot filter, a phase modulation region (PMR), and distributed Bragg reflectors, in a silicon-on-insulator rib waveguide. The thermo-optics effect was employed to tune the PMR. It was theoretically demonstrated that the linear MW phase shift of 0-2pi could be achieved by a refractive index variation of 0-9.68x10(-3) in an ultrawideband (about 38?GHz-1.9?THz), and the corresponding tuning resolution was about 6.92 degrees / degrees C. The device had a very compact size. It could be easily integrated in silicon optoelectronic chips and expected to be widely used in the high-frequency MW photonics field.

  16. Precision measurements of gas refractivity by means of a Fabry-Perot interferometer illustrated by the monitoring of radiator refractivity in the DELPHI RICH detectors

    CERN Document Server

    Filippas-Tassos, A; Fokitis, E; Maltezos, S; Patrinos, K

    2002-01-01

    With an updated, flexible, highly efficient and easily installed system we obtained accurate refractivity (n-1) values. This system is a refractometer based on a Fabry-Perot interferometer and was used to monitor the refractivity of DELPHI RICH Cherenkov radiators near the VUV region. By using a Pt-Ne spectral lamp and improved alignment and temperature control, the refractivities of C//5F//1//2 and C//4F//1 //0 have been monitored since 1996. With this light source, selected to have large coherence lengths, we can extract the refractivity at several wavelengths from one data set only. The estimated errors of the refractivity measurements are less than 1.2%, and depend on wavelength and the type of gas used. The various parameters affecting the accuracy of the refractometer are also discussed. Finally, results from special sample refractivity measurements of the liquid radiator (C//6F//1//4) in its gas phase, are presented.

  17. Performance of a Distributed Simultaneous Strain and Temperature Sensor Based on a Fabry-Perot Laser Diode and a Dual-Stage FBG Optical Demultiplexer

    Directory of Open Access Journals (Sweden)

    Shinwon Kang

    2013-11-01

    Full Text Available A simultaneous strain and temperature measurement method using a Fabry-Perot laser diode (FP-LD and a dual-stage fiber Bragg grating (FBG optical demultiplexer was applied to a distributed sensor system based on Brillouin optical time domain reflectometry (BOTDR. By using a Kalman filter, we improved the performance of the FP-LD based OTDR, and decreased the noise using the dual-stage FBG optical demultiplexer. Applying the two developed components to the BOTDR system and using a temperature compensating algorithm, we successfully demonstrated the simultaneous measurement of strain and temperature distributions under various experimental conditions. The observed errors in the temperature and strain measured using the developed sensing system were 0.6 °C and 50 με, and the spatial resolution was 1 m, respectively.

  18. Performance of a distributed simultaneous strain and temperature sensor based on a Fabry-Perot laser diode and a dual-stage FBG optical demultiplexer.

    Science.gov (United States)

    Kim, Suhwan; Kwon, Hyungwoo; Yang, Injae; Lee, Seungho; Kim, Jeehyun; Kang, Shinwon

    2013-11-12

    A simultaneous strain and temperature measurement method using a Fabry-Perot laser diode (FP-LD) and a dual-stage fiber Bragg grating (FBG) optical demultiplexer was applied to a distributed sensor system based on Brillouin optical time domain reflectometry (BOTDR). By using a Kalman filter, we improved the performance of the FP-LD based OTDR, and decreased the noise using the dual-stage FBG optical demultiplexer. Applying the two developed components to the BOTDR system and using a temperature compensating algorithm, we successfully demonstrated the simultaneous measurement of strain and temperature distributions under various experimental conditions. The observed errors in the temperature and strain measured using the developed sensing system were 0.6 °C and 50 με, and the spatial resolution was 1 m, respectively.

  19. Electron density and temperature study of plasmas using a millimeter-wave Fabry-Perot interferometer; Etude de la densite electronique et de la temperature de plasmas a l'aide d'un interferometre Fabry-Perot en ondes millimetriques

    Energy Technology Data Exchange (ETDEWEB)

    Bize, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The contents of this article, which have been used as a basis for a State doctorate thesis, deal with research into focussing systems of the Fabry-Perot, millimetre wave type. With the help of this equipment, measurements have been made of the electronic density using interferometry in the range from 10{sup 9} to 10{sup 14} electrons/cm{sup 3}, and of the electron temperature by Thomson diffusion, of plasmas formed by laser ionisation and by high frequency. (author) [French] Le contenu de cet article, qui a fait l'objet d'une these d'Etat, se rapporte a l'etude des systemes focalisant de type Fabry-Perot en ondes millimetriques. A l'aide de ces dispositifs, on mesure la densite electronique par interferometrie dans la gamme de densites de 10{sup 9} a 10{sup 14} e/cm{sup 3} et la temperature electronique par diffusion Thomson de plasmas crees par ionisation laser et par haute frequence. (auteur)

  20. Electron density and temperature study of plasmas using a millimeter-wave Fabry-Perot interferometer; Etude de la densite electronique et de la temperature de plasmas a l'aide d'un interferometre Fabry-Perot en ondes millimetriques

    Energy Technology Data Exchange (ETDEWEB)

    Bize, D. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The contents of this article, which have been used as a basis for a State doctorate thesis, deal with research into focussing systems of the Fabry-Perot, millimetre wave type. With the help of this equipment, measurements have been made of the electronic density using interferometry in the range from 10{sup 9} to 10{sup 14} electrons/cm{sup 3}, and of the electron temperature by Thomson diffusion, of plasmas formed by laser ionisation and by high frequency. (author) [French] Le contenu de cet article, qui a fait l'objet d'une these d'Etat, se rapporte a l'etude des systemes focalisant de type Fabry-Perot en ondes millimetriques. A l'aide de ces dispositifs, on mesure la densite electronique par interferometrie dans la gamme de densites de 10{sup 9} a 10{sup 14} e/cm{sup 3} et la temperature electronique par diffusion Thomson de plasmas crees par ionisation laser et par haute frequence. (auteur)

  1. Research and investigation of a communication chain on optical fiber with a Fabry-Perot power diode for the automotive industry

    Science.gov (United States)

    Bacis, Irina Bristena; Vasile, Alexandru; Ionescu, Ciprian; Marghescu, Cristina

    2016-12-01

    The purpose of this paper is to analyze different power devices - emitters of optical flow, from the point of view of optical coupling, emitted optical powers, optical fiber losses and receiver. The research and characterization of the transmission through a power optical system is done using a computer system specialized for the automotive industry. This system/platform can deliver current pulses that are controlled by a computer through a software (it is possible to set different parameters such as pulse repetition frequency, duty cycle, and current intensity). For the experiments a power Fabry Perot 1035 laser diode operating in pulse with μφ 1055 nm, Ith = 40 mA, and Iop =750 mA was used with a single-mode SFM 128 optical fiber and an EM type optical coupler connected through alignment. Two types of measurements were conducted to demonstrate the usefulness of the experimental structure. In the first case the amplitude of the voltage pulses was measured at the output of an optical detector with receiving diode in a built-in amplifier with a 50 kΩ load resistance. In the second stage measurements were conducted to determine the optical power injected in the optical fiber and received at the reception cell of a power meter. Another parameter of optical coupling that can be measured using the experimental structure is irradiation. This parameter is very important to determine the optimum cutting angle of the fiber for continuity welding.

  2. Mid-latitude thermospheric wind changes during the St. Patrick's Day storm of 2015 observed by two Fabry-Perot interferometers in China

    Science.gov (United States)

    Huang, Cong; Xu, Ji-Yao; Zhang, Xiao-Xin; Liu, Dan-Dan; Yuan, Wei; Jiang, Guo-Ying

    2018-04-01

    In this work, we utilize thermospheric wind observations by the Fabry-Perot interferometers (FPI) from the Kelan (KL) station (38.7°N, 111.6°E, Magnetic Latitude: 28.9°N) and the Xinglong (XL) station (40.2°N, 117.4°E, Magnetic Latitude: 30.5°N) in central China during the St. Patrick's Day storm (from Mar. 17 to Mar. 19) of 2015 to analyze thermospheric wind disturbances and compare observations with the Horizontal Wind Model 2007 (HWM07). The results reveal that the wind measurements at KL show very similar trends to those at XL. Large enhancements are seen in both the westward and equatorward winds after the severe geomagnetic storm occurred. The westward wind speed increased to a peak value of 75 m/s and the equatorward wind enhanced to a peak value of over 100 m/s. There also exist obvious poleward disturbances in the meridional winds during Mar. 17 to Mar. 19. According to the comparison with HWM07, there exist evident wind speed and temporal differences between FPI-winds and the model outputs in this severe geomagnetic storm. The discrepancies between the observations and HWM07 imply that the empirical model should be used carefully in wind disturbance forecast during large geomagnetic storms and more investigations between measurements and numerical models are necessary in future studies.

  3. Strain and high-temperature discrimination using a Type II fiber Bragg grating and a miniature fiber Fabry-Perot interferometer.

    Science.gov (United States)

    Jiang, Yajun; Yang, Dexing; Yuan, Yuan; Xu, Jian; Li, Dong; Zhao, Jianlin

    2016-08-10

    A novel method for simultaneous measurement of strain and high temperature using a Type II fiber Bragg grating (FBG) and a miniature fiber Fabry-Perot interferometer (MFFPI) is proposed. The MFFPI is produced by fusion splicing a short section of quartz capillary tube with two single-mode fibers, and then it is exposed by a focused femtosecond laser and a phase mask to inscribe a Type II FBG nearby. The reflection spectrum of this sensor is the superposition of the reflection spectrum of the FBG and the interference fringe of the MFFPI. This sensor shows perfect high-temperature and strain responses. Because of the different responses to the uniform variations of strain and temperature, by measuring the reflection peak of FBG and one of the interference dips of the MFFPI, strain and temperature can be simultaneously determined. The resolutions of this particular sensor in measuring strain and temperature are estimated to be ±8.4  μϵ and ±3.3°C, respectively, in the range from 0 to 1122 μϵ and from 23°C to 600°C.

  4. Amplitude calibration of 2D mechanical resonators by nonlinear optical transduction

    NARCIS (Netherlands)

    Dolleman, R.J.; Davidovikj, D.; van der Zant, H.S.J.; Steeneken, P.G.

    2017-01-01

    Contactless characterization of mechanical resonances using Fabry-Perot interferometry is a powerful tool to study the mechanical and dynamical properties of atomically thin membranes. However, amplitude calibration is often not performed or only possible by making assumptions on the device

  5. A line-of-sight electron cyclotron emission receiver for electron cyclotron resonance heating feedback control of tearing modes

    DEFF Research Database (Denmark)

    Oosterbeek, J.W.; Bürger, A.; Westerhof, E.

    2008-01-01

    An electron cyclotron emission (ECE) receiver inside the electron cyclotron resonance heating (ECRH) transmission line has been brought into operation. The ECE is extracted by placing a quartz plate acting as a Fabry-Perot interferometer under an angle inside the electron cyclotron wave (ECW) bea...

  6. Interferometric filters for spectral discrimination in high-spectral-resolution lidar: performance comparisons between Fabry-Perot interferometer and field-widened Michelson interferometer.

    Science.gov (United States)

    Cheng, Zhongtao; Liu, Dong; Yang, Yongying; Yang, Liming; Huang, Hanlu

    2013-11-10

    Thanks to wavelength flexibility, interferometric filters such as Fabry-Perot interferometers (FPIs) and field-widened Michelson interferometers (FWMIs) have shown great convenience for spectrally separating the molecule and aerosol scattering components in the high-spectral-resolution lidar (HSRL) return signal. In this paper, performance comparisons between the FPI and FWMI as a spectroscopic discrimination filter in HSRL are performed. We first present a theoretical method for spectral transmission analysis and quantitative evaluation on the spectral discrimination. Then the process in determining the parameters of the FPI and FWMI for the performance comparisons is described. The influences from the incident field of view (FOV), the cumulative wavefront error induced by practical imperfections, and the frequency locking error on the spectral discrimination performance of the two filters are discussed in detail. Quantitative analyses demonstrate that FPI can produce higher transmittance while the remarkable spectral discrimination is one of the most appealing advantages of FWMI. As a result of the field-widened design, the FWMI still performs well even under the illumination with large FOV while the FPI is only qualified for a small incident angle. The cumulative wavefront error attaches a great effect on the spectral discrimination performance of the interferometric filters. We suggest if a cumulative wavefront error is less than 0.05 waves RMS, it is beneficial to employ the FWMI; otherwise, FPI may be more proper. Although the FWMI shows much more sensitivity to the frequency locking error, it can outperform the FPI given a locking error less than 0.1 GHz is achieved. In summary, the FWMI is very competent in HSRL applications if these practical engineering and control problems can be solved, theoretically. Some other estimations neglected in this paper can also be carried out through the analytical method illustrated herein.

  7. Study of a high finesse four mirrors Fabry Perot cavity for X-rays and Gamma rays production by laser-electron Compton scattering

    International Nuclear Information System (INIS)

    Fedala, Y.

    2008-10-01

    The main goal of this thesis is the study and design of a high finesse Fabry Perot cavity to amplify a laser beam in order to achieve power gains ranging from 10 4 to 10 5 . This cavity is dedicated to the production of intense and monochromatic X-ray for medical applications (medical RADIOTHOMX ring) and gamma rays for a Compton based polarized positron source by Compton scattering of a high power laser beam and electron beam. To increase the brightness of the Compton interaction at the collision points, it is essential to have not only a high power laser beam but also very small laser beam radii at the interaction points. To achieve such performances, 2 scenarios are possible: a concentric 2 mirrors cavity which is mechanically unstable or a 4 mirrors cavity more complex but more stable. We tested numerically mechanical stability and stability of Eigen modes polarization of various planar and non-planar geometries of 4 mirrors cavities. Experimentally, we have developed a four mirrors tetrahedral 'bow-tie' cavity; radii of the order of 20 microns were made. The Eigen modes of such a cavity, in both planar and non planar geometries, were measured and compared with the numerical results. A good agreement was observed. In a second time, the impact of Compton interaction on the transverse dynamics, in the case of the polarized positrons source, and the longitudinal dynamic, in the case of the medical ring of the electron beam was studied. Compton scattering causes energy loss and induces an additional dispersion of energy in electron beam. For the polarized positrons source, 10 collision points are planned. The transport line has been determined and the modelling of the Compton interaction effect with a simple matrix calculation was made. For the medical ring, Compton scattering causes bunch lengthening and the increase of energy dispersion which are to influence the produced X-ray flux. A study of the longitudinal dynamics of the electron beam in the ring was

  8. The Feasibility of Tropospheric and Total Ozone Determination Using a Fabry-perot Interferometer as a Satellite-based Nadir-viewing Atmospheric Sensor. Ph.D. Thesis

    Science.gov (United States)

    Larar, Allen Maurice

    1993-01-01

    Monitoring of the global distribution of tropospheric ozone (O3) is desirable for enhanced scientific understanding as well as to potentially lessen the ill-health impacts associated with exposure to elevated concentrations in the lower atmosphere. Such a capability can be achieved using a satellite-based device making high spectral resolution measurements with high signal-to-noise ratios; this would enable observation in the pressure-broadened wings of strong O3 lines while minimizing the impact of undesirable signal contributions associated with, for example, the terrestrial surface, interfering species, and clouds. The Fabry-Perot Interferometer (FPI) provides high spectral resolution and high throughput capabilities that are essential for this measurement task. Through proper selection of channel spectral regions, the FPI optimized for tropospheric O3 measurements can simultaneously observe a stratospheric component and thus the total O3 column abundance. Decreasing stratospheric O3 concentrations may lead to an increase in biologically harmful solar ultraviolet radiation reaching the earth's surface, which is detrimental to health. In this research, a conceptual instrument design to achieve the desired measurement has been formulated. This involves a double-etalon fixed-gap series configuration FPI along with an ultra-narrow bandpass filter to achieve single-order operation with an overall spectral resolution of approximately .068 cm(exp -1). A spectral region of about 1 cm(exp -1) wide centered at 1054.73 cm(exp -1) within the strong 9.6 micron ozone infrared band is sampled with 24 spectral channels. Other design characteristics include operation from a nadir-viewing satellite configuration utilizing a 9 inch (diameter) telescope and achieving horizontal spatial resolution with a 50 km nadir footprint. A retrieval technique has been implemented and is demonstrated for a tropical atmosphere possessing enhanced tropospheric ozone amounts. An error analysis

  9. Multi-event study of high-latitude thermospheric wind variations at substorm onset with a Fabry-Perot interferometer at Tromsoe, Norway

    Science.gov (United States)

    Xu, H.; Shiokawa, K.; Oyama, S. I.; Otsuka, Y.

    2017-12-01

    We studied the high-latitude thermospheric wind variations near the onset time of isolated substorms. Substorm-related energy input from the magnetosphere to the polar ionosphere modifies the high-latitude ionosphere and thermosphere. For the first time, this study showed the characteristics of high-latitude thermospheric wind variations at the substorm onset. We also investigated the possibility of these wind variations as a potential trigger of substorm onset by modifying the ionospheric current system (Kan, 1993). A Fabry-Perot interferometer (FPI) at Tromsoe, Norway provided wind measurements estimated from Doppler shift of both red-line (630.0 nm for the F region) and green-line (557.7 nm for the E region) emissions of aurora and airglow. We used seven-year data sets obtained from 2009 to 2015 with a time resolution of 13 min. We first identified the onset times of local isolated substorms using ground-based magnetometer data obtained at the Tromsoe and Bear Island stations, which belongs to the IMAGE magnetometer chain. We obtained 4 red-line events and 5 green-line events taken place at different local times. For all these events, the peak locations of westward ionospheric currents identified by the ground-based magnetometer chain were located at the poleward side of Tromsoe. Then, we calculated two weighted averages of wind velocities for 30 min around the onset time and 30 min after the onset time of substorms. We evaluated differences between these two weighted averages to estimate the strength of wind changes. The observed wind changes at these substorm onsets were less than 49 m/s (26 m/s) for red-line (green-line) events, which are much smaller than the typical plasma convection speed. This indicates that the plasma motion caused by substorm-induced thermospheric winds through ion-neutral collisions is a minor effect as the driver of high-latitude plasma convection, as well as the triggering of substorm onset. We discuss possible causes of these

  10. Compact vibration isolation and suspension for Australian International Gravitational Observatory: Performance in a 72 m Fabry Perot cavity

    Science.gov (United States)

    Barriga, P.; Dumas, J. C.; Woolley, A. A.; Zhao, C.; Blair, D. G.

    2009-11-01

    This paper describes the first demonstration of vibration isolation and suspension systems, which have been developed with view to application in the proposed Australian International Gravitational Observatory. In order to achieve optimal performance at low frequencies new components and techniques have been combined to create a compact advanced vibration isolator structure. The design includes two stages of horizontal preisolation and one stage of vertical preisolation with resonant frequencies ˜100 mHz. The nested structure facilitates a compact design and enables horizontal preisolation stages to be configured to create a superspring configuration, where active feedback can enable performance close to the limit set by seismic tilt coupling. The preisolation stages are combined with multistage three-dimensional (3D) pendulums. Two isolators suspending mirror test masses have been developed to form a 72 m optical cavity with finesse ˜700 in order to test their performance. The suitability of the isolators for use in suspended optical cavities is demonstrated through their ease of locking, long term stability, and low residual motion. An accompanying paper presents the local control system and shows how simple upgrades can substantially improve residual motion performance.

  11. Materials and corrosion characterization using the confocal resonator

    Energy Technology Data Exchange (ETDEWEB)

    Tigges, C.P.; Sorensen, N.R.; Hietala, V.M.; Plut, T.A. [and others

    1997-05-01

    Improved characterization and process control is important to many Sandia and DOE programs related to manufacturing. Many processes/structures are currently under-characterized including thin film growth, corrosion and semiconductor structures, such as implant profiles. A sensitive tool is required that is able to provide lateral and vertical imaging of the electromagnetic properties of a sample. The confocal resonator is able to characterize the surface and near-surface impedance of materials. This device may be applied to a broad range of applications including in situ evaluation of thin film processes, physical defect detection/characterization, the characterization of semiconductor devices and corrosion studies. In all of these cases, the technology should work as a real-time process diagnostic or as a feedback mechanism regarding the quality of a manufacturing process. This report summarizes the development and exploration of several diagnostic applications.

  12. Simulation with Python on transverse modes of the symmetric confocal resonator

    Science.gov (United States)

    Wang, Qing Hua; Qi, Jing; Ji, Yun Jing; Song, Yang; Li, Zhenhua

    2017-08-01

    Python is a popular open-source programming language that can be used to simulate various optical phenomena. We have developed a suite of programs to help teach the course of laser principle. The complicated transverse modes of the symmetric confocal resonator can be visualized in personal computers, which is significant to help the students understand the pattern distribution of laser resonator.

  13. Combination of highly nonlinear fiber, an optical bandpass filter, and a Fabry-Perot filter to improve the signal-to-noise ratio of a supercontinuum continuous-wave optical source.

    Science.gov (United States)

    Nan, Yinbo; Huo, Li; Lou, Caiyun

    2005-05-20

    We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions.

  14. Stimulation of confocal unstable resonators using thin gain sheet

    International Nuclear Information System (INIS)

    Du Yanyi

    2000-01-01

    Mode calculation in unstable resonators with flowing saturable gain using the fast Fourier transform (FFT) algorithm and thin gain sheet just nearly inside the big mirror. This method is in resonators of small disturbance (ψ 0max = π/2), middle magnification (m 0 ∼= 1%)

  15. Composite modulation of Fano resonance in plasmonic microstructures by electric-field and microcavity

    International Nuclear Information System (INIS)

    Zhang, Fan; Wu, Chenyun; Yang, Hong; Hu, Xiaoyong; Gong, Qihuang

    2014-01-01

    Composite modulation of Fano resonance by using electric-field and microcavity simultaneously is realized in a plasmonic microstructure, which consists of a gold nanowire grating inserted into a Fabry-Perot microcavity composited of a liquid crystal layer sandwiched between two indium tin oxide layers. The Fano resonance wavelength varies with the applied voltage and the microcavity resonance. A large shift of 48 nm in the Fano resonance wavelength is achieved when the applied voltage is 20 V. This may provide a new way for the study of multi-functional integrated photonic circuits and chips based on plasmonic microstructures

  16. Composite modulation of Fano resonance in plasmonic microstructures by electric-field and microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; Wu, Chenyun; Yang, Hong [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong, E-mail: xiaoyonghu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-11-03

    Composite modulation of Fano resonance by using electric-field and microcavity simultaneously is realized in a plasmonic microstructure, which consists of a gold nanowire grating inserted into a Fabry-Perot microcavity composited of a liquid crystal layer sandwiched between two indium tin oxide layers. The Fano resonance wavelength varies with the applied voltage and the microcavity resonance. A large shift of 48 nm in the Fano resonance wavelength is achieved when the applied voltage is 20 V. This may provide a new way for the study of multi-functional integrated photonic circuits and chips based on plasmonic microstructures.

  17. Confocal microscopy and spectroscopy of nanocrystals on a high-Q microsphere resonator

    International Nuclear Information System (INIS)

    Goetzinger, S; Menezes, L de S; Benson, O; Talapin, D V; Gaponik, N; Weller, H; Rogach, A L; Sandoghdar, V

    2004-01-01

    We report on experiments where we used a home-made confocal microscope to excite single nanocrystals on a high-Q microsphere resonator. In that way spectra of an individual quantum emitter could be recorded. The Q factor of the microspheres coated with nanocrystals was still up to 10 9 . We also demonstrate the use of a prism coupler as a well-defined output port to collect the fluorescence of an ensemble of nanocrystals coupled to whispering-gallery modes

  18. Control of slow-to-fast light and single-to-double optomechanically induced transparency in a compound resonator system: A theoretical approach

    Science.gov (United States)

    Ziauddin; Rahman, Mujeeb ur; Ahmad, Iftikhar; Qamar, Sajid

    2017-10-01

    The transmission characteristics of probe light field is investigated theoretically in a compound system of two coupled resonators. The proposed system consisted of two high-Q Fabry-Perot resonators in which one of the resonators is optomechanical. Optomechanically induced transparency (OMIT), having relatively large window, is noticed via strong coupling between the two resonators. We investigate tunable switching from single to double OMIT by increasing amplitude of the pump field. We notice that, control of slow and fast light can be obtained via the coupling strength between the two resonators.

  19. Analysis of transverse field distributions in Porro prism resonators

    CSIR Research Space (South Africa)

    Litvin, IA

    2007-01-01

    Full Text Available in 1962 by Gould et al1 as a means to overcome misalignment problems in optical resonators employing Fabry-Perot cavities, by replacing the end face mirrors with crossed roof prisms. Lasers based on this principle have been developed over the years2... Optronics for the use of their laser and for making experimental data available to us. We would also like to thank Dr Dieter Preussler and Mr Daniel Esser for useful discussions. REFERENCES 1. G. Gould, S. Jacobs, P. Rabinowitz and T. Shultz...

  20. Five-beam Fabry-Perot velocimeter

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Goosman, D.G.; Collins, L.F.

    1996-03-04

    Velocimetry is useful in diagnosing many properties of high-explosive (HE) systems. The shock pressure of the detonation wave in HE is often measured by noting the velocity of an interface between the HE and a known material. Properties of the equation of state (EOS) of an explosive can be measured in a cylinder event using a combination of velocimetry and other diagnostics. Point-initiated explosions driving large plates give additional information regarding HE EOS. Hemispherical booster shots give quantitative data pertaining to booster performance. Velocimetry is used routinely to measure the performance of detonators. Velocimetry will be a particularly effective tool in cylinder shots, flat plate, and booster shots to determine the effects of aging on the EOS of explosive components in stockpile devices.

  1. Electrically tunable Fabry-Péerot resonator based on microstructured Si containing liquid crystal

    KAUST Repository

    Tolmachev, Vladimir A.; Melnikov, Vasily; Baldycheva, Anna V.; Berwick, Kevin; Perova, Tatiana S.

    2012-01-01

    We have built Fabry-Perot resonators based on microstructured silicon and a liquid crystal. The devices exhibit tuning of the resonance peaks over a wide range, with relative spectral shifts of up to Delta lambda/lambda = 10%. In order to achieve this substantial spectral shift, cavity peaks of high order were used. Under applied voltages of up to 15 V, a variation in the refractive index of the nematic liquid crystal E7 from Delta n(LC) = 0.12 to Delta n(LC) = 0.17 was observed. These results may have practical applications in the near-, mid and far-infrared range.

  2. Preliminary identification of unicellular algal genus by using combined confocal resonance Raman spectroscopy with PCA and DPLS analysis

    Science.gov (United States)

    He, Shixuan; Xie, Wanyi; Zhang, Ping; Fang, Shaoxi; Li, Zhe; Tang, Peng; Gao, Xia; Guo, Jinsong; Tlili, Chaker; Wang, Deqiang

    2018-02-01

    The analysis of algae and dominant alga plays important roles in ecological and environmental fields since it can be used to forecast water bloom and control its potential deleterious effects. Herein, we combine in vivo confocal resonance Raman spectroscopy with multivariate analysis methods to preliminary identify the three algal genera in water blooms at unicellular scale. Statistical analysis of characteristic Raman peaks demonstrates that certain shifts and different normalized intensities, resulting from composition of different carotenoids, exist in Raman spectra of three algal cells. Principal component analysis (PCA) scores and corresponding loading weights show some differences from Raman spectral characteristics which are caused by vibrations of carotenoids in unicellular algae. Then, discriminant partial least squares (DPLS) classification method is used to verify the effectiveness of algal identification with confocal resonance Raman spectroscopy. Our results show that confocal resonance Raman spectroscopy combined with PCA and DPLS could handle the preliminary identification of dominant alga for forecasting and controlling of water blooms.

  3. Acoustic transmission resonance and suppression through double-layer subwavelength hole arrays

    International Nuclear Information System (INIS)

    Liu Zhifeng; Jin Guojun

    2010-01-01

    We present a theoretical study of acoustic waves passing through double-layer subwavelength hole arrays. The acoustic transmission resonance and suppression are observed. There are three mechanisms responsible for the transmission resonance: the excitation of geometrically induced acoustic surface waves, the Fabry-Perot resonance in a hole cavity (I-FP resonance) and the Fabry-Perot resonance between two plates (II-FP resonance). We can differentiate these mechanisms via the dispersion relation of acoustic modes supported by the double-layer structure. It is confirmed that the coupling between two single-layer perforated plates, associated with longitudinal interval and lateral displacement, plays a crucial role in modulating the transmission properties. The strong coupling between two plates can induce the splitting of the transmission peak, while the decoupling between plates leads to the appearance of transmission suppression. By analyzing the criterion derived for transmission suppression, we conclude that it is the destructive interference between the diffracted waves and the direct transmission waves assisted by the I-FP resonance of the first plate that leads to the decoupling between plates and then the transmission suppression.

  4. Musical instrument pickup based on a laser locked to an optical fiber resonator.

    Science.gov (United States)

    Avino, Saverio; Barnes, Jack A; Gagliardi, Gianluca; Gu, Xijia; Gutstein, David; Mester, James R; Nicholaou, Costa; Loock, Hans-Peter

    2011-12-05

    A low-noise transducer based on a fiber Fabry-Perot (FFP) cavity was used as a pickup for an acoustic guitar. A distributed feedback (DFB) laser was locked to a 25 MHz-wide resonance of the FFP cavity using the Pound-Drever-Hall method. The correction signal was used as the audio output and was preamplified and sampled at up to 96 kHz. The pickup system is largely immune against optical noise sources, exhibits a flat frequency response from the infrasound region to about 25 kHz, and has a distortion-free audio output range of about 50 dB.

  5. Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material

    Science.gov (United States)

    Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,

    2013-09-03

    A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.

  6. Tunable Fano Resonance in Asymmetric MIM Waveguide Structure.

    Science.gov (United States)

    Zhao, Xuefeng; Zhang, Zhidong; Yan, Shubin

    2017-06-25

    A plasmonic waveguide coupled system that uses a metal-insulator-metal (MIM) waveguide with two silver baffles and a coupled ring cavity is proposed in this study. The transmission properties of the plasmonic system were investigated using the finite element method. The simulation results show a Fano profile in the transmission spectrum, which was caused by the interaction of the broadband resonance of the Fabry-Perot (F-P) cavity and the narrow band resonance of the ring cavity. The Fabry-Perot (F-P) cavity in this case was formed by two silver baffles dividing the MIM waveguide. The maximum sensitivity of 718 nm/RIU and the maximum figure of merit of 4354 were achieved. Furthermore, the effects of the structural parameters of the F-P cavity and the ring cavity on the transmission properties of the plasmonic system were analyzed. The results can provide a guide for designing highly sensitive on-chip sensors based on surface plasmon polaritons.

  7. Real time detection of antibody-antigen interaction using a laser scanning confocal imaging-surface plasmon resonance system

    International Nuclear Information System (INIS)

    Zhang Hong-Yan; Yang Li-Quan; Ning Ting-Yin; Liu Wei-Min; Sun Jia-Yu; Wang Peng-Fei; Meng Lan; Nie Jia-Cai

    2012-01-01

    A laser scanning confocal imaging-surface plasmon resonance (LSCI-SPR) instrument integrated with a wavelength-dependent surface plasmon resonance (SPR) sensor and a laser scanning confocal microscopy (LSCM) is built to detect the bonding process of human IgG and fluorescent-labeled affinity purified antibodies in real time. The shifts of resonant wavelength at different reaction time stages are obtained by SPR, corresponding well with the changes of the fluorescence intensity collected by using LSCM. The instrument shows the merits of the combination and complementation of the SPR and LSCM, with such advantages as quantificational analysis, high spatial resolution and real time monitor, which are of great importance for practical applications in biosensor and life science. (general)

  8. Numerical simulation of a improving virtual confocal unstable resonator with circular mirrors of spherical surfaces

    International Nuclear Information System (INIS)

    Wang Taichun; Fu Hanqing; Du Xiangwan

    1999-01-01

    Based on the analysis of advantages and disadvantages of the unstable resonator with a phase-unifying output coupler, the improving unstable resonator are designed. The numerical simulation results indicate that the improving unstable resonator overcomes disadvantages of that resonator and its far-field intensity focusing is better than the conventional resonator

  9. Resonantly Enhanced Axion-Photon Regeneration

    CERN Document Server

    Sikivie, P; Van Bibber, K; Bibber, Karl van

    2007-01-01

    We point out that photon regeneration-experiments that search for the axion, or axion-like particles, may be resonantly enhanced by employing matched Fabry-Perot optical cavities encompassing both the axion production and conversion magnetic field regions. Compared to a simple photon regeneration experiment, which uses the laser in a single-pass geometry, this technique can result in a gain in rate of order ${\\cal F}^2$, where ${\\cal F}$ is the finesse of the cavities. This gain could feasibly be $10^{(10-12)}$, corresponding to an improvement in sensitivity in the axion-photon coupling, $g_{a\\gamma\\gamma}$ , of order ${\\cal F}^{1/2} \\sim 10^{(2.5-3)}$, permitting a practical purely laboratory search to probe axion-photon couplings not previously excluded by stellar evolution limits, or solar axion searches.

  10. Acoustic resonances in two-dimensional radial sonic crystal shells

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, Daniel; Sanchez-Dehesa, Jose, E-mail: jsdehesa@upvnet.upv.e [Wave Phenomena Group, Departamento de Ingenieria Electronica, Universidad Politecnica de Valencia, C/Camino de Vera s.n., E-46022 Valencia (Spain)

    2010-07-15

    Radial sonic crystals (RSC) are fluidlike structures infinitely periodic along the radial direction that verify the Bloch theorem and are possible only if certain specially designed acoustic metamaterials with mass density anisotropy can be engineered (see Torrent and Sanchez-Dehesa 2009 Phys. Rev. Lett. 103 064301). A comprehensive analysis of two-dimensional (2D) RSC shells is reported here. A given shell is in fact a circular slab with a central cavity. These finite crystal structures contain Fabry-Perot-like resonances and modes strongly localized at the central cavity. Semi-analytical expressions are developed to obtain the quality factors of the different resonances, their symmetry features and their excitation properties. The results reported here are completely general and can be extended to equivalent 3D spherical shells and to their photonic counterparts.

  11. Fiber optic refractive index sensor using optofluidic anti-resonant reflecting guidance

    Science.gov (United States)

    Gao, Ran; Lu, Danfeng; Cheng, Jin; Qi, Zhi-mei

    2017-10-01

    An optofluidic anti-resonant reflecting guidance has been proposed and experimental demonstrated for the measurement of liquid refractive index. Two micro-channels were fabricated for the delivery of the liquid sample in the hollow core photonic crystal fiber by using femtosecond laser micromachining, serving as an inlet and outlet. The refractive index can be detected by using the resonant condition of the Fabry-Perot resonator, which is interrogated through the wavelength shift and of the lossy dip in the transmission spectrum. The experimental results show that the sensitivity of up to 1328 nm/RIU is achieved for the refractive index in the range from 1.345 to 1.363 RIU, respectively. The proposed sensor appears to have potential applications of precise measurement in chemistry, medicine, and biology.

  12. Magnetostatic wave tunable resonators

    Science.gov (United States)

    Castera, J.-P.; Hartemann, P.

    1983-06-01

    Theoretical principles and techniques for the implementation of magnetostatic surface wave and volume wave resonators in high frequency oscillators are discussed. Magnetostatic waves are magnetic waves that propagate in materials exposed to a polarized magnetic field. The propagation speed ranges from 3-300 km/sec for wavelengths between 1 micron and 10 mm, in the presence of lags from 10-1000 nsec/ cm. Tunable resonators in the 1-20 GHz frequency range have been manufactured with YIG using liquid phase epitaxy for deposition on gadolinium and gallium substrates. Distributed-mirror Fabry-Perot cavity resonators are described and performance tests results are reported, including losses of 8 dB, a quality coefficient under voltage of 450, and frequency rejection outside of resonance better than 10 dB. However, saturation occurs at low power levels at frequencies lower than 4.2 GHz, a feature overcome with forward volume magnetostatic wave generators, which have a quality factor of 500, an insertion loss of 22 dB, and rejection around 15 dB.

  13. Tuning Infrared Plasmon Resonance of Black Phosphorene Nanoribbon with a Dielectric Interface.

    Science.gov (United States)

    Debu, Desalegn T; Bauman, Stephen J; French, David; Churchill, Hugh O H; Herzog, Joseph B

    2018-02-19

    We report on the tunable edge-plasmon-enhanced absorption of phosphorene nanoribbons supported on a dielectric substrate. Monolayer anisotropic black phosphorous (phosphorene) nanoribbons are explored for light trapping and absorption enhancement on different dielectric substrates. We show that these phosphorene ribbons support infrared surface plasmons with high spatial confinement. The peak position and bandwidth of the calculated phosphorene absorption spectra are tunable with low loss over a wide wavelength range via the surrounding dielectric environment of the periodic nanoribbons. Simulation results show strong edge plasmon modes and enhanced absorption as well as a red-shift of the peak resonance wavelength. The periodic Fabry-Perot grating model was used to analytically evaluate the absorption resonance arising from the edge of the ribbons for comparison with the simulation. The results show promise for the promotion of phosphorene plasmons for both fundamental studies and potential applications in the infrared spectral range.

  14. Resonant transmission and mode modulation of acoustic waves in H-shaped metallic gratings

    International Nuclear Information System (INIS)

    Deng, Yu-Qiang; Fan, Ren-Hao; Zhang, Kun; Peng, Ru-Wen; Qi, Dong-Xiang

    2015-01-01

    In this work, we demonstrate that resonant full transmission of acoustic waves exists in subwavelength H-shaped metallic gratings, and transmission peaks can be efficiently tuned by adjusting the grating geometry. We investigate this phenomenon through both numerical simulations and theoretical calculations based on rigorous-coupled wave analysis. The transmission peaks are originated from Fabry-Perot resonances together with the couplings between the diffractive wave on the surface and the multiple guided modes in the slits. Moreover, the transmission modes can be efficiently tuned by adjusting the cavity geometry, without changing the grating thickness. The mechanism is analyzed based on an equivalent circuit model and verified by both the theoretical calculations and the numerical simulations. This research has potential application in acoustic-device miniaturization over a wide range of wavelengths

  15. High field electron paramagnetic resonance spectroscopy under ultrahigh vacuum conditions—A multipurpose machine to study paramagnetic species on well defined single crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rocker, J.; Cornu, D.; Kieseritzky, E.; Hänsel-Ziegler, W.; Freund, H.-J. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Seiler, A. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Laboratorium für Applikationen der Synchrotronstrahlung, KIT Campus Süd, Kaiserstr. 12, 76131 Karlsruhe (Germany); Bondarchuk, O. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); CIC energiGUNE, Parque Tecnologico, C/Albert Einstein 48, CP 01510 Minano (Alava) (Spain); Risse, T., E-mail: risse@chemie.fu-berlin.de [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin (Germany)

    2014-08-01

    A new ultrahigh vacuum (UHV) electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz to investigate paramagnetic centers on single crystal surfaces is described. It is particularly designed to study paramagnetic centers on well-defined model catalysts using epitaxial thin oxide films grown on metal single crystals. The EPR setup is based on a commercial Bruker E600 spectrometer, which is adapted to ultrahigh vacuum conditions using a home made Fabry Perot resonator. The key idea of the resonator is to use the planar metal single crystal required to grow the single crystalline oxide films as one of the mirrors of the resonator. EPR spectroscopy is solely sensitive to paramagnetic species, which are typically minority species in such a system. Hence, additional experimental characterization tools are required to allow for a comprehensive investigation of the surface. The apparatus includes a preparation chamber hosting equipment, which is required to prepare supported model catalysts. In addition, surface characterization tools such as low energy electron diffraction (LEED)/Auger spectroscopy, temperature programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS) are available to characterize the surfaces. A second chamber used to perform EPR spectroscopy at 94 GHz has a room temperature scanning tunneling microscope attached to it, which allows for real space structural characterization. The heart of the UHV adaptation of the EPR experiment is the sealing of the Fabry-Perot resonator against atmosphere. To this end it is possible to use a thin sapphire window glued to the backside of the coupling orifice of the Fabry Perot resonator. With the help of a variety of stabilization measures reducing vibrations as well as thermal drift it is possible to accumulate data for a time span, which is for low temperature measurements only limited by the amount of liquid helium. Test measurements show that the system can detect paramagnetic

  16. Fabry-Perot MEMS Accelerometers for Advanced Seismic Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chisum, Brad [Lumedyne Technologies Incorporated, San Diego, CA (United States)

    2015-05-31

    This report summarizes the technical achievements that occurred over the duration of the project. On November 14th, 2014, Lumedyne Technologies Incorporated was acquired. As a result of the acquisition, the work toward seismic imaging applications was suspended indefinitely. This report captures the progress achieved up to that time.

  17. Diamond-based Fabry-Perot microcavities for quantum networks

    NARCIS (Netherlands)

    Bogdanovic, S.

    2017-01-01

    A quantumnetwork would allow the distribution of a quantum state over many spatially separated quantum nodes which individually possess the ability to generate, process and store quantum information. Connecting these nodes through quantum communication channels would enable sending quantum

  18. Development of a signal-extraction scheme for resonant sideband extraction

    International Nuclear Information System (INIS)

    Kokeyama, K; Kawazoe, F; Sugamoto, A; Somiya, K; Sato, S; Kawamura, S

    2008-01-01

    As a future plan, an advanced gravitational-wave detector will employ an optical configuration of resonant sideband extraction (RSE), achieved with an additional mirror at the signal-detection port of the power-recycled Fabry-Perot Michelson interferometer. To control the complex coupled cavity system, one of the most important design issues is how to extract the longitudinal control signals of the cavities. We have developed a new signal-extraction scheme which provides an appropriate sensing matrix. The new method uses two sets of sidebands: one of the sideband components satisfies the critical coupling condition for the RSE interferometer and reaches the signal-extraction port, and the other sideband is completely reflected by the Michelson interferometer. They provide a diagonalized sensing matrix and enable the RSE control to be robust

  19. Tumor-specific antivascular effect of TZT-1027 (Soblidotin) elucidated by magnetic resonance imaging and confocal laser scanning microscopy

    International Nuclear Information System (INIS)

    Natsume, Tsugitaka; Watanabe, Junichi; Kobayashi, Motohiro; Ogawa, Kenji; Yasumura, Kazuhiko

    2007-01-01

    TZT-1027 (soblidotin), an antimicrotubule agent, has previously been evaluated in terms of its antivascular effects. In this study, Evans blue perfusion, magnetic resonance imaging (MRI), and confocal laser scanning microscopy (CLSM) were utilized to further elucidate the antivascular effect of TZT-1027 in female nude mice and rats bearing human breast tumor MX-1, as well as in female Sprague-Dawley rats that developed breast tumors induced by dimethylbenz(a)anthracene (DMBA). Therapeutic doses of TZT-1027 caused nearly complete regression of implanted MX-1 tumors in nude mice and rats as well as DMBA-induced tumors in rats. The perfusion in MX-1 tumor implanted in nude mice was drastically reduced within 30 min after TZT-1027 administration and was completely inhibited after 6 h or more, although not reduced in normal tissue of kidney. The study using MRI demonstrated that rich blood flow within tumors was remarkably reduced 1-3 h after TZT-1027 administration both in nude rats bearing MX-1 tumors and in rats with DMBA-induced tumors. Furthermore, the study with CLSM in nude mice bearing MX-1 tumors revealed a disruption of tumor microvessels at 1 h and a destruction of tumor microvessel network at 3 h after TZT-1027 administration. In contrast, these types of vascular disorders were not observed in heart and kidney. These results suggest that TZT-1027 specifically damages tumor vasculatures, leading to extensive tumor necrosis within tolerable dose range, and confirms earlier observations that TZT-1027 exerts a considerable antivascular effect in addition to an excellent cytotoxic effect. (author)

  20. All-optical clock recovery of NRZ-DPSK signals using optical resonator-type filters

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Seoane, Jorge; Ji, Hua

    2009-01-01

    It is shown how introducing a limited rise time to the driving signal enables all-optical clock recovery of NRZ-DPSK signals generated using a phase modulator. A Fabry-Perot filter is used to generate the optical clock.......It is shown how introducing a limited rise time to the driving signal enables all-optical clock recovery of NRZ-DPSK signals generated using a phase modulator. A Fabry-Perot filter is used to generate the optical clock....

  1. Resonator quantum electrodynamics on a microtrap chip

    International Nuclear Information System (INIS)

    Steinmetz, Tilo

    2008-01-01

    In the present dissertation experiments on resonator quantum electrodynamics on a microtrap chip are described. Thereby for the first time single atoms catched in a chip trap could be detected. For this in the framework of this thesis a novel optical microresonator was developed, which can because of its miniaturization be combined with the microtrap technique introduced in our working group for the manipulation of ultracold atoms. For this resonator glass-fiber ends are used as mirror substrates, between which a standing light wave is formed. With such a fiber Fabry-Perot resonator we obtain a finess of up to ∼37,000. Because of the small mode volumina in spite of moderate resonator quality the coherent interaction between an atom and a photon can be made so large that the regime of the strong atom-resonator coupling is reached. For the one-atom-one-photon coupling rate and the one-atom-one-photon cooperativity thereby record values of g 0 =2π.300 MHz respectively C 0 =210 are reached. Just so for the first time the strong coupling regime between a Bose-Einstein condensate (BEC) and the field of a high-quality resonator could be reached. The BEC was thereby by means of the magnetic microtrap potentials deterministically brought to a position within the resonator and totally transformed in a well defined antinode of an additionally optical standing-wave trap. The spectrum of the coupled atom-resonator system was measured for different atomic numbers and atom-resonator detunings, whereby a collective vacuum Rabi splitting of more than 20 GHz could be reached. [de

  2. Conversion between EIT and Fano spectra in a microring-Bragg grating coupled-resonator system

    Science.gov (United States)

    Zhang, Zecen; Ng, Geok Ing; Hu, Ting; Qiu, Haodong; Guo, Xin; Wang, Wanjun; Rouifed, Mohamed Saïd; Liu, Chongyang; Wang, Hong

    2017-08-01

    A conversion between the electromagnetically induced transparency (EIT) transmission and Fano transmission is theoretically and experimentally demonstrated in an all-pass microring-Bragg grating (APMR-BG) coupled-resonator system. In this work, the coupling between the two resonators (the microring resonator and the Fabry-Perot resonator formed by two Bragg gratings) gives rise to the EIT and Fano transmissions. The resonant status strongly depends on the round-trip attenuation of the microring and the coupling strength. By tuning the coupling strength, the EIT and Fano transmissions can be controlled and converted. The device performance has been theoretically calculated and analyzed with a specially developed numerical model based on the transfer matrix method. The APMR-BG coupled-resonator systems with different gap widths were designed, fabricated, and characterized on a silicon-on-insulator (SOI) platform. The conversion of resonance was experimentally observed and verified. In addition, this on-chip system has the advantage of a small footprint, and the fabrication process is compatible with the planar waveguide fabrication process.

  3. Resonator quantum electrodynamics on a microtrap chip; Resonator-Quantenelektrodynamik auf einem Mikrofallenchip

    Energy Technology Data Exchange (ETDEWEB)

    Steinmetz, Tilo

    2008-04-29

    In the present dissertation experiments on resonator quantum electrodynamics on a microtrap chip are described. Thereby for the first time single atoms catched in a chip trap could be detected. For this in the framework of this thesis a novel optical microresonator was developed, which can because of its miniaturization be combined with the microtrap technique introduced in our working group for the manipulation of ultracold atoms. For this resonator glass-fiber ends are used as mirror substrates, between which a standing light wave is formed. With such a fiber Fabry-Perot resonator we obtain a finess of up to {approx}37,000. Because of the small mode volumina in spite of moderate resonator quality the coherent interaction between an atom and a photon can be made so large that the regime of the strong atom-resonator coupling is reached. For the one-atom-one-photon coupling rate and the one-atom-one-photon cooperativity thereby record values of g{sub 0}=2{pi}.300 MHz respectively C{sub 0}=210 are reached. Just so for the first time the strong coupling regime between a Bose-Einstein condensate (BEC) and the field of a high-quality resonator could be reached. The BEC was thereby by means of the magnetic microtrap potentials deterministically brought to a position within the resonator and totally transformed in a well defined antinode of an additionally optical standing-wave trap. The spectrum of the coupled atom-resonator system was measured for different atomic numbers and atom-resonator detunings, whereby a collective vacuum Rabi splitting of more than 20 GHz could be reached. [German] In der vorliegenden Dissertation werden Experimente zur Resonator-Quantenelektrodynamik auf einem Mikrofallenchip beschrieben. Dabei konnte u. a. erstmals einzelne, in einer Chipfalle gefangene Atome detektiert werden. Hier fuer wurde im Rahmen dieser Arbeit ein neuartiger optischer Mikroresonator entwickelt, der sich dank seiner Miniaturisierung mit der in unserer Arbeitsgruppe

  4. Confocal Microscopy

    Science.gov (United States)

    Liu, Jian; Tan, Jiubin

    2016-12-01

    The confocal microscope is appropriate for imaging cells or the measurement of industrial artefacts. However, junior researchers and instrument users sometimes misuse imaging concepts and metrological characteristics, such as position resolution in industrial metrology and scale resolution in bio-imaging. And, metrological characteristics or influence factors in 3D measurement such as height assessment error caused by 3D coupling effect are so far not yet identified. In this book, the authors outline their practices by the working experiences on standardization and system design. This book assumes little previous knowledge of optics, but rich experience in engineering of industrial measurements, in particular with profile metrology or areal surface topography will be very helpful to understand the theoretical concerns and value of the technological advances. It should be useful for graduate students or researchers as extended reading material, as well as microscope users alongside their handbook.

  5. Ultrasensitive and selective gold film-based detection of mercury (II) in tap water using a laser scanning confocal imaging-surface plasmon resonance system in real time.

    Science.gov (United States)

    Zhang, Hongyan; Yang, Liquan; Zhou, Bingjiang; Liu, Weimin; Ge, Jiechao; Wu, Jiasheng; Wang, Ying; Wang, Pengfei

    2013-09-15

    An ultrasensitive and selective detection of mercury (II) was investigated using a laser scanning confocal imaging-surface plasmon resonance system (LSCI-SPR). The detection limit was as low as 0.01ng/ml for Hg(2+) ions in ultrapure and tap water based on a T-rich, single-stranded DNA (ssDNA)-modified gold film, which can be individually manipulated using specific T-Hg(2+)-T complex formation. The quenching intensity of the fluorescence images for rhodamine-labeled ssDNA fitted well with the changes in SPR. The changes varied with the Hg(2+) ion concentration, which is unaffected by the presence of other metal ions. The coefficients obtained for ultrapure and tap water were 0.99902 and 0.99512, respectively, for the linear part over a range of 0.01-100ng/ml. The results show that the double-effect sensor has potential for practical applications with ultra sensitivity and selectivity, especially in online or real-time monitoring of Hg(2+) ions pollution in tap water with the further improvement of portable LSCI-SPR instrument. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Michelson interferometer with diffractively-coupled arm resonators in second-order Littrow configuration.

    Science.gov (United States)

    Britzger, Michael; Wimmer, Maximilian H; Khalaidovski, Alexander; Friedrich, Daniel; Kroker, Stefanie; Brückner, Frank; Kley, Ernst-Bernhard; Tünnermann, Andreas; Danzmann, Karsten; Schnabel, Roman

    2012-11-05

    Michelson-type laser-interferometric gravitational-wave (GW) observatories employ very high light powers as well as transmissively-coupled Fabry-Perot arm resonators in order to realize high measurement sensitivities. Due to the absorption in the transmissive optics, high powers lead to thermal lensing and hence to thermal distortions of the laser beam profile, which sets a limit on the maximal light power employable in GW observatories. Here, we propose and realize a Michelson-type laser interferometer with arm resonators whose coupling components are all-reflective second-order Littrow gratings. In principle such gratings allow high finesse values of the resonators but avoid bulk transmission of the laser light and thus the corresponding thermal beam distortion. The gratings used have three diffraction orders, which leads to the creation of a second signal port. We theoretically analyze the signal response of the proposed topology and show that it is equivalent to a conventional Michelson-type interferometer. In our proof-of-principle experiment we generated phase-modulation signals inside the arm resonators and detected them simultaneously at the two signal ports. The sum signal was shown to be equivalent to a single-output-port Michelson interferometer with transmissively-coupled arm cavities, taking into account optical loss. The proposed and demonstrated topology is a possible approach for future all-reflective GW observatory designs.

  7. Flat acoustic lens by acoustic grating with curled slits

    KAUST Repository

    Peng, Pai; Xiao, Bingmu; Wu, Ying

    2014-01-01

    and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  8. Fluorescence (Multiwave) Confocal Microscopy.

    Science.gov (United States)

    Welzel, J; Kästle, Raphaela; Sattler, Elke C

    2016-10-01

    In addition to reflectance confocal microscopy, multiwave confocal microscopes with different laser wavelengths in combination with exogenous fluorophores allow fluorescence mode confocal microscopy in vivo and ex vivo. Fluorescence mode confocal microscopy improves the contrast between the epithelium and the surrounding soft tissue and allows the depiction of certain structures, like epithelial tumors, nerves, and glands. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Preliminary Observations of Ionospheric Response to an Auroral Driver from the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) Sounding Rocket Campaign

    Science.gov (United States)

    Fernandes, P. A.; Lynch, K. A.; Hysell, D. L.; Powell, S.; Miceli, R.; Hampton, D. L.; Ahrns, J.; Lessard, M.; Cohen, I. J.; Moen, J. I.; Bekkeng, T.

    2012-12-01

    The nightside sounding rocket MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) launched from Poker Flat, AK, on February 19, 2012, and reached an apogee of 325km. MICA was launched into several discrete, localized arcs in the wake of a westward traveling surge. The MICA instrumentation included both in situ and ground based instruments, and was designed to measure the response of the ionosphere to an auroral driver. More specifically, the science goal was to measure response of the ionosphere to a feedback instability in the ionospheric Alfvén resonator. The MICA payload included in situ particle, electric and magnetic field, and GPS instruments. The ground-based array consisted of a multitude of imagers, coherent and incoherent scatter radars, and a Fabry-Perot interferometer. We present observational characteristics of the response of the ionospheric plasma to the auroral drivers inferred from inverting camera data. We compare the measured precipitating electron population to inversions of camera images, which use a transport model to infer a 2D map of the precipitation. Comparisons show that as the payload passes through what appears to be an Alfvénic auroral arc, the in situ electron instrument shows dispersions indicative of Alfvénic activity. We then introduce measurements of the thermal ion distribution, to examine how the auroral arcs drive a response in the ionosphere. The thermal ion data show that the payload potential strengthens as the payload passes through the arc. When including electron density, temperature, and electric field data, we observe times in which the ionospheric environment changes as the precipitation changes, and times during which there is no measured response by the ionosphere. Future work will compare how the ion bulk flow as measured by the thermal ion instrument compares to the ExB drift as measured by the electric field instrument and to the neutral wind measurements from the Fabry-Perot interferometer

  10. Topical Meeting on Photonic Switching Held in Incline Village, Nevada on 18-20 March 1987. Technical Digest Series. Volume 13.

    Science.gov (United States)

    1988-03-31

    A 20 mil thick transparent non- magnetic single crystal garnet substrate such as gadolinium gallium garnet (Gd mGamO 1 ) is dipped into a mel+ and a 25...facets that causes Fabry -Perot resonances in the gain spectrum. The amplitude of this variation is determined by the product of the amplifier chip...fiers with large Fabry -Perot resonances will be of much use in photonic switching systems. .r Fortanately, coating technology is advancing rapidly and

  11. Integrated Photonics Research Topical Meeting (1993)

    Science.gov (United States)

    1994-06-01

    phase epitaxy on (11 1)-oriented gadolinium -gallium-garnet substrates and were subjected to annealing procedures to ensure near-planar magnetization ...was measured using the Fabry -Perot resonance technique. The propagation losses in the waveguides with and without electrodes were approximately 2.8 and...expected sub-Angstrom range. The high frequency variations present throughout the entire signal are due to Fabry -Perot resonances from the end facets

  12. Resonator-Based Silicon Electro-Optic Modulator with Low Power Consumption

    Science.gov (United States)

    Xin, Maoqing; Danner, Aaron J.; Eng Png, Ching; Thor Lim, Soon

    2009-04-01

    This paper demonstrates, via simulation, an electro-optic modulator based on a subwavelength Fabry-Perot resonator cavity with low power consumption of 86 µW/µm. This is, to the best of our knowledge, the lowest power reported for silicon photonic bandgap modulators. The device is modulated at a doped p-i-n junction overlapping the cavity in a silicon waveguide perforated with etched holes, with the doping area optimized for minimum power consumption. The surface area of the entire device is only 2.1 µm2, which compares favorably to other silicon-based modulators. A modulation speed of at least 300 MHz is detected from the electrical simulator after sidewall doping is introduced which is suitable for sensing or fiber to the home (FTTH) technologies, where speed can be traded for low cost and power consumption. The device does not rely on ultra-high Q, and could serve as a sensor, modulator, or passive filter with built-in calibration.

  13. Waveguide resonance mode response of stacked structures of metallic sub-wavelength slit arrays

    Science.gov (United States)

    Tokuda, Yasunori; Takano, Keisuke; Sakaguchi, Koichiro; Kato, Kosaku; Nakajima, Makoto; Akiyama, Koichi

    2018-05-01

    Detailed measurements of the optical properties of two-tier systems composed of metallic plates perforated with periodic sub-wavelength slit patterns were carried out using terahertz time-domain spectroscopy. We demonstrate that the transmission properties observed experimentally for various configurations can be reproduced successfully by simulations based on the finite-differential time-domain method. Fabry-Perot-like waveguide resonance mode behaviors specific to this quasi-dielectric system were then investigated. For structures with no lateral displacement between the slit-array plates, mode disappearance phenomena, which are caused by destructive interference between the odd-order mode and the blue- or red-shifted even-order modes, were observed experimentally. The uncommon behavior of the even-order modes was examined precisely to explain the slit-width dependence. For structures with half-pitched displacement between the plates, extraordinarily strong transmission was observed experimentally, even when the optical paths were shut off. This result was interpreted in terms of the propagation of surface plasmon polaritons through very thin and labyrinthine spacings that inevitably exist between the metallic plates. Furthermore, the optical mode disappearance phenomena are revealed to be characterized by anticrossing of the two mixing modes formed by even- and odd-order modes. These experimental observations that are supported theoretically are indispensable to the practical use of this type of artificial dielectric and are expected to encourage interest in optical mode behaviors that are not typically observed in conventional dielectric systems.

  14. Development of Phase Detection Schemes Based on Surface Plasmon Resonance Using Interferometry

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif

    2014-08-01

    Full Text Available Surface plasmon resonance (SPR is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors.

  15. Optimized-geometry ARROW waveguides using TiO{sub 2} as anti-resonant layer

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Daniel O.; Albertin, Katia F.; Alayo, Marco I. [PSI, University of Sao Paulo (Brazil)

    2010-04-15

    The simulation, fabrication and characterization of ARROW waveguides using dielectric films deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD) and Sputtering techniques, are presented in this work. Amorphous titanium oxide (TiO{sub 2}) films were used as first cladding layer and silicon oxynitride (SiO{sub x}N{sub y}) films, as core layer. Furthermore, homemade routines based in two computational methods were used, for numerical simulations: Transfer Matrix Method (TMM) for the determination of the optimum thickness values of the Fabry-Perot layers, and the Finite Difference Method (FDM) for 2D design and determination of the maximum width that allows single-mode operation. The utilization of thermally grown silicon oxide as second anti-resonant layer, along with improvements in the Reactive Ion Etching conditions for the definition of sidewalls of the optical waveguides were responsible for diminishing optical attenuations. Optimization of the waveguide rib height was done both through FDM simulations and experimentally. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Feasibility study of an optical resonator for applications in neutral-beam injection systems for the next generation of nuclear fusion reactors

    International Nuclear Information System (INIS)

    Fiorucci, Donatella

    2015-01-01

    This work is part of a larger project called SIPHORE (Single gap Photo-neutralizer energy Recovery injector), which aims to enhance the overall efficiency of one of the mechanisms through which the plasma is heated, in a nuclear fusion reactor, i.e. the Neutral Beam Injection (NBI) system. An important component of a NBI system is the neutralizer of high energetic ion beams. SIPHORE proposes to substitute the gas cell neutralizer, used in the current NBI systems, with a photo-neutralizer exploiting the photo-detachment process within Fabry Perot cavities. This mechanism should allow a relevant NBI global efficiency of η≥ 60%, significantly higher than the one currently possible (η≤25% for ITER). The present work concerns the feasibility study of an optical cavity with suitable properties for applications in NBI systems. Within this context, the issue of the determination of an appropriated optical cavity design has been firstly considered and the theoretical and experimental analysis of a particular optical resonator has been carried on. The problems associated with the high levels of intracavity optical power (∼3 MW) required for an adequate photo-neutralization rate have then been faced. In this respect, we addressed both the problem of the thermal effects on the cavity mirrors due to their absorption of intra-cavity optical power (∼1 W) and the one associated to the necessity of a high powerful input laser beam (∼1 kW) to feed the optical resonator. (author)

  17. Application of a fiber Fabry-Perot interferometer sensor for receiving SH-EMAT signals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Hyuk; Kim, Dae Hyun; Park, Ik Keun [Seoul National University of Technology, Seoul (Korea, Republic of)

    2014-04-15

    Shear horizontal (SH) waves propagate as a type of plate wave in a thin sheet. The dispersion characteristics of SH waves can be used for signal analysis. Therefore, SH-waves are useful for monitoring the structural health of a thin-sheet-structure. An electromagnetic acoustic transducer (EMAT), which is a non-contact ultrasonic transducer, can generate SH-waves easily by varying the shape and array of magnets and coils. Therefore, an EMAT can be applied to an automated ultrasonic testing system for structural health monitoring. When used as a sensor, however, the EMAT has a weakness in that electromagnetic interference (EMI) noise can occur easily in the automated system because of motors and electric devices. Alternatively, a fiber optic sensor works well in the same environment with EMI noise because it uses a light signal instead of an electric signal. In this paper, a fiber Fabry-Prot interferometer (FFPI) was proposed as a sensor to receive the SH-waves generated by an EMAT. A simple test was performed to verify the performance of the FFPI sensor. It is thus shown that the FFPI can receive SH-wave signals clearly.

  18. Fabry-Perot-like interference security image structures: From passive to active

    International Nuclear Information System (INIS)

    Baloukas, B.; Trottier-Lapointe, W.; Martinu, L.

    2014-01-01

    Counterfeiting of products and important documents is at an all-time high and is costing the world economy hundreds of billions of dollars yearly as well as posing significant safety and health hazards through the production of uncertified goods, e.g., pharmaceutical products. To limit these effects, interference-based optical security devices offering an angular color shift are still widely in use. Unfortunately, commercial iridescent materials are now readily available and represent a potential source of counterfeiting. In this short review, we first describe the basic principles behind passive interference security image structures (ISIS) and the qualities which have resulted in their integration into most important documents. Various features which have been added to ISIS in order to make them harder to duplicate yet simpler to authenticate are also presented (metamerism, magnetic materials, diffraction, etc.). We then address the implementation of active materials, mainly electrochromic WO 3 as a means of generating two-level authentication devices. Finally, we discuss some general considerations to keep in mind when developing features for security applications. - Highlights: • We review Fabry–Perot-like metal-dielectric filters used in optical security. • We discuss/demonstrate recent additions: metamerism, magnetism and diffraction. • We demonstrate a feature based on the use of thin metallic mirrors. • We cover recent developments in the use of active materials. • We demonstrate an electrochromic feature with two levels of authentication

  19. Fabry-Perot-like interference security image structures: From passive to active

    Energy Technology Data Exchange (ETDEWEB)

    Baloukas, B., E-mail: bill.baloukas@polymtl.ca; Trottier-Lapointe, W.; Martinu, L., E-mail: ludvik.martinu@polymtl.ca

    2014-05-30

    Counterfeiting of products and important documents is at an all-time high and is costing the world economy hundreds of billions of dollars yearly as well as posing significant safety and health hazards through the production of uncertified goods, e.g., pharmaceutical products. To limit these effects, interference-based optical security devices offering an angular color shift are still widely in use. Unfortunately, commercial iridescent materials are now readily available and represent a potential source of counterfeiting. In this short review, we first describe the basic principles behind passive interference security image structures (ISIS) and the qualities which have resulted in their integration into most important documents. Various features which have been added to ISIS in order to make them harder to duplicate yet simpler to authenticate are also presented (metamerism, magnetic materials, diffraction, etc.). We then address the implementation of active materials, mainly electrochromic WO{sub 3} as a means of generating two-level authentication devices. Finally, we discuss some general considerations to keep in mind when developing features for security applications. - Highlights: • We review Fabry–Perot-like metal-dielectric filters used in optical security. • We discuss/demonstrate recent additions: metamerism, magnetism and diffraction. • We demonstrate a feature based on the use of thin metallic mirrors. • We cover recent developments in the use of active materials. • We demonstrate an electrochromic feature with two levels of authentication.

  20. Rugged Low Temperature Actuators for Tunable Fabry Perot Optical Filters, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Why are rugged, low temperature actuator materials important? By themselves, they are useless; however, when fabricated into thin films and integrated into optical...

  1. Musical instrument recordings made with a fiber Fabry-Perot cavity: photonic guitar pickup.

    Science.gov (United States)

    Ballard, Nicholas; Paz-Soldan, Daniel; Kung, Peter; Loock, Hans-Peter

    2010-04-10

    A 1 cm long, low-finesse fiber-optic cavity was used as a transducer for the vibrations of the soundboard of an acoustic guitar and of a violin. The reflected light is detected and then amplified and recorded using conventional audio instrumentation. The fiber-optic pickup is found to have a high response range in both amplitude (up to 100 microm displacement) and audio frequency (DC to 20 kHz) and good linearity up to a displacement of 225 microm. The audio noise is found to arise from the fiber-optic cables and, to a lesser extent, from the laser and laser driver.

  2. Transmission-enabled fiber Fabry-Perot cavity based on a deeply etched slotted micromirror.

    Science.gov (United States)

    Othman, Muhammad A; Sabry, Yasser M; Sadek, Mohamed; Nassar, Ismail M; Khalil, Diaa A

    2018-06-01

    In this work, we report the analysis, fabrication, and characterization of an optical cavity built using a Bragg-coated fiber (BCF) mirror and a metal-coated microelectromechanical systems (MEMS) slotted micromirror, where the latter allows transmission output from the cavity. Theoretical modeling, using Fourier optics analysis for the cavity response based on tracing the propagation of light back and forth between the mirrors, is presented. Detailed simulation analysis is carried out for the spectral response of the cavity under different design conditions. MEMS chips of the slotted micromirror are fabricated using deep reactive ion etching of a silicon-on-insulator substrate with different device-etching depths of 150 μm and 80 μm with aluminum and gold metal coating, respectively. The cavity is characterized as an optical filter using a BCF with reflectivity that is larger than 95% in a 300 nm range across the E-band and the L-band. Versatile filter characteristics were obtained for different values of the MEMS micromirror slit width and cavity length. A free spectral range (FSR) of about 33 nm and a quality factor of about 196 were obtained for a 5.5 μm width aluminum slit, while an FSR of about 148 nm and a quality factor of about 148 were obtained for a 1.5 μm width gold slit. The presented structure opens the door for wide spectral response transmission-type MEMS filters.

  3. Transfer function of analog fiber-optic systems driven by Fabry-Perot lasers: comment

    Science.gov (United States)

    Gyula, Veszely

    2006-10-01

    A bad notation makes difficult the understanding of the paper of Capmany et al. [J. Opt. Soc. Am. B22, 2099 (2005)]. The reason is that the real time function and the complex time function run into one another.

  4. Highly directive Fabry-Perot leaky-wave nanoantennas based on optical partially reflective surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lorente-Crespo, M.; Mateo-Segura, C., E-mail: C.Mateo-Segura@hw.ac.uk [Institute of Sensors, Signals and Systems, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom)

    2015-05-04

    Nanoantennas enhance the conversion between highly localized electromagnetic fields and far-field radiation. Here, we investigate the response of a nano-patch partially reflective surface backed with a silver mirror to an optical source embedded at the centre of the structure. Using full wave simulations, we demonstrate a two orders of magnitude increased directivity compared to the isotropic radiator, 50% power confinement to a 13.8° width beam and a ±16 nm bandwidth. Our antenna does not rely on plasmonic phenomena thus reducing non-radiative losses and conserving source coherence.

  5. Virtual pinhole confocal microscope

    Energy Technology Data Exchange (ETDEWEB)

    George, J.S.; Rector, D.M.; Ranken, D.M. [Los Alamos National Lab., NM (United States). Biophysics Group; Peterson, B. [SciLearn Inc. (United States); Kesteron, J. [VayTech Inc. (United States)

    1999-06-01

    Scanned confocal microscopes enhance imaging capabilities, providing improved contrast and image resolution in 3-D, but existing systems have significant technical shortcomings and are expensive. Researchers at Los Alamos National Laboratory have developed a novel approach--virtual pinhole confocal microscopy--that uses state of the art illumination, detection, and data processing technologies to produce an imager with a number of advantages: reduced cost, faster imaging, improved efficiency and sensitivity, improved reliability and much greater flexibility. Work at Los Alamos demonstrated proof of principle; prototype hardware and software have been used to demonstrate technical feasibility of several implementation strategies. The system uses high performance illumination, patterned in time and space. The authors have built functional confocal imagers using video display technologies (LCD or DLP) and novel scanner based on a micro-lens array. They have developed a prototype system for high performance data acquisition and processing, designed to support realtime confocal imaging. They have developed algorithms to reconstruct confocal images from a time series of spatially sub-sampled images; software development remains an area of active development. These advances allow the collection of high quality confocal images (in fluorescence, reflectance and transmission modes) with equipment that can inexpensively retrofit to existing microscopes. Planned future extensions to these technologies will significantly enhance capabilities for microscopic imaging in a variety of applications, including confocal endoscopy, and confocal spectral imaging.

  6. A new microcavity design for single molecule detection

    International Nuclear Information System (INIS)

    Steiner, M.; Schleifenbaum, F.; Stupperich, C.; Failla, A.V.; Hartschuh, A.; Meixner, A.J.

    2006-01-01

    We present a new microcavity design which allows for efficient detection of single molecules by measuring the molecular fluorescence emission coupled into a resonant cavity mode. The Fabry-Perot-type microresonator consists of two silver mirrors separated by a thin polymer film doped with dye molecules in ultralow concenctration. By slightly tilting one of the mirrors different cavity lengths can be selected within the same sample. Locally, on a μm scale, the microcavity still acts as a planar Fabry-Perot resonator. Using scanning confocal fluorescence microscopy, single emitters on resonance with a single mode of the microresonator can be spatially addressed. Our microcavity is demonstrated to be well-suited for investigating the coupling mechanism between single quantum emitters and single modes of the electromagnetic field. The microcavity layout could be integrated in a lab-on-a-microchip design for ultrasensitive microfluidic analytics and can be considered as an important improvement for single photon sources based on single molecules operating at room temperature

  7. A new way of controlling NesCOPOs (nested cavity doubly resonant OPO) for faster and more efficient high resolution spectrum measurement

    Science.gov (United States)

    Georges des Aulnois, Johann; Szymanski, Benjamin; Grimieau, Axel; Sillard, Léo.

    2018-02-01

    Optical Parametric Oscillator (OPO) is a well-known solution when wide tunability in the mid-infrared is needed. A specific design called NesCOPO (Nested Cavity doubly resonant OPO) is currently integrated in the X-FLR8 portable gas analyzer from Blue Industry and Science. Thanks to its low threshold this OPO can be pumped by a micro-chip nanosecond YAG (4 kHz repetition rate and a 30 GHz bandwidth). To achieve very high resolution spectra (10 pm of resolution or better), the emitted wavelength has to be finely controlled. Commercial Wavemeter do not meet price and compactness required in the context of an affordable and portable gas analyzer. To overcome this issue, Blue first integrated an active wavelength controller using multiple tunable Fabry-Perot (FP) interferometers. The required resolution was achieved at a 10 Hz measurement rate. We now present an enhanced Wavemeter architecture, based on fixed FP etalons, that is 100 times faster and 2 times smaller. We avoid having FP `blind zones' thanks to one source characteristic: the knowledge of the FSR (Free Spectral Range) of the OPO source and thus, the fact that only discrete wavelengths can be emitted. First results are displayed showing faster measurement for spectroscopic application, and potential future improvement of the device are discussed.

  8. Confocal Raman microscopy

    CERN Document Server

    Dieing, Thomas; Hollricher, Olaf

    2018-01-01

    This second edition provides a cutting-edge overview of physical, technical and scientific aspects related to the widely used analytical method of confocal Raman microscopy. The book includes expanded background information and adds insights into how confocal Raman microscopy, especially 3D Raman imaging, can be integrated with other methods to produce a variety of correlative microscopy combinations. The benefits are then demonstrated and supported by numerous examples from the fields of materials science, 2D materials, the life sciences, pharmaceutical research and development, as well as the geosciences.

  9. Confocal scanning microscopy

    DEFF Research Database (Denmark)

    Bariani, Paolo

    This report is based on a metrological investigation on confocal microscopy technique carried out by Uffe Rolf Arlø Theilade and Paolo Bariani. The purpose of the experimental activity was twofold a metrological instrument characterization and application to assessment of rough PP injection moulded...... replicated topography. Confocal microscopy is seen to be a promising technique in metrology of microstructures. Some limitations with respect to surface metrology were found during the experiments. The experiments were carried out using a Zeiss LSM 5 Pascal microscope owned by the Danish Polymer Centre...

  10. QUANTITATIVE CONFOCAL LASER SCANNING MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Merete Krog Raarup

    2011-05-01

    Full Text Available This paper discusses recent advances in confocal laser scanning microscopy (CLSM for imaging of 3D structure as well as quantitative characterization of biomolecular interactions and diffusion behaviour by means of one- and two-photon excitation. The use of CLSM for improved stereological length estimation in thick (up to 0.5 mm tissue is proposed. The techniques of FRET (Fluorescence Resonance Energy Transfer, FLIM (Fluorescence Lifetime Imaging Microscopy, FCS (Fluorescence Correlation Spectroscopy and FRAP (Fluorescence Recovery After Photobleaching are introduced and their applicability for quantitative imaging of biomolecular (co-localization and trafficking in live cells described. The advantage of two-photon versus one-photon excitation in relation to these techniques is discussed.

  11. Confocal laser endomicroscopy

    DEFF Research Database (Denmark)

    Karstensen, John Gásdal; Săftoiu, Adrian; Brynskov, Jørn

    2016-01-01

    BACKGROUND AND STUDY AIMS: Confocal laser endomicroscopy (CLE) has been shown to predict relapse in ulcerative colitis in remission, but little is currently known about its role in Crohn's disease. The aim of this study was to identify reproducible CLE features in patients with Crohn's disease...

  12. Three-color confocal Förster (or fluorescence) resonance energy transfer microscopy: Quantitative analysis of protein interactions in the nucleation of actin filaments in live cells.

    Science.gov (United States)

    Wallrabe, Horst; Sun, Yuansheng; Fang, Xiaolan; Periasamy, Ammasi; Bloom, George S

    2015-06-01

    Experiments using live cell 3-color Förster (or fluorescence) resonance energy transfer (FRET) microscopy and corresponding in vitro biochemical reconstitution of the same proteins were conducted to evaluate actin filament nucleation. A novel application of 3-color FRET data is demonstrated, extending the analysis beyond the customary energy-transfer efficiency (E%) calculations. MDCK cells were transfected for coexpression of Teal-N-WASP/Venus-IQGAP1/mRFP1-Rac1, Teal-N-WASP/Venus-IQGAP1/mRFP1-Cdc42, CFP-Rac1/Venus-IQGAP1/mCherry-actin, or CFP-Cdc42/Venus-IQGAP1/mCherry-actin, and with single-label equivalents for spectral bleedthrough correction. Using confirmed E% as an entry point, fluorescence levels and related ratios were correlated at discrete accumulating levels at cell peripheries. Rising ratios of CFP-Rac1:Venus-IQGAP1 were correlated with lower overall actin fluorescence, whereas the CFP-Cdc42:Venus-IQGAP1 ratio correlated with increased actin fluorescence at low ratios, but was neutral at higher ratios. The new FRET analyses also indicated that rising levels of mRFP1-Cdc42 or mRFP1-Rac1, respectively, promoted or suppressed the association of Teal-N-WASP with Venus-IQGAP1. These 3-color FRET assays further support our in vitro results about the role of IQGAP1, Rac1, and Cdc42 in actin nucleation, and the differential impact of Rac1 and Cdc42 on the association of N-WASP with IQGAP1. In addition, this study emphasizes the power of 3-color FRET as a systems biology strategy for simultaneous evaluation of multiple interacting proteins in individual live cells. © 2015 International Society for Advancement of Cytometry.

  13. Confocal Raman Microscopy

    CERN Document Server

    Dieing, Thomas; Toporski, Jan

    2011-01-01

    Confocal Raman Microscopy is a relatively new technique that allows chemical imaging without specific sample preparation. By integrating a sensitive Raman spectrometer within a state-of-the-art microscope, Raman microscopy with a spatial resolution down to 200nm laterally and 500nm vertically can be achieved using visible light excitation. Recent developments in detector and computer technology as well as optimized instrument design have reduced integration times of Raman spectra by orders of magnitude, so that complete images consisting of tens of thousands of Raman spectra can be acquired in seconds or minutes rather than hours, which used to be standard just one decade ago. The purpose of this book is to provide the reader a comprehensive overview of the rapidly developing field of Confocal Raman Microscopy and its applications.

  14. Molecular confocal laser endomicroscopy

    DEFF Research Database (Denmark)

    Karstensen, John Gásdal; Klausen, Pia Helene; Saftoiu, Adrian

    2014-01-01

    While flexible endoscopy is essential for macroscopic evaluation, confocal laser endomicroscopy (CLE) has recently emerged as an endoscopic method enabling visualization at a cellular level. Two systems are currently available, one based on miniprobes that can be inserted via a conventional...... during on-going endoscopy), a novel world of molecular evaluation opens up. The method of molecular CLE could potentially be used for estimating the expression of important receptors in carcinomas, subsequently resulting in immediate individualization of treatment regimens, but also for improving...

  15. Confocal Raman microspectroscopy

    International Nuclear Information System (INIS)

    Puppels, G.J.

    1991-01-01

    Raman spectroscopy is a technique that provides detailed structural information about molecules studied. In the field of molecular biophysics it has been extensively used for characterization of nucleic acids and proteins and for investigation of interactions between these molecules. It was felt that this technique would have great potential if it could be applied for in situ study of these molecules and their interactions, at the level of single living cell or a chromosome. To make this possible a highly sensitive confocal Raman microspectrometer (CRM) was developed. The instrument is described in detail in this thesis. It incorporates a number of recent technological developments. First, it employs a liquid nitrogen cooled CCD-camera. This type of detector, first used in astronomy, is the ultimate detector for Raman spectroscopy because it combines high quantum efficiency light detection with photon-noise limited operation. Second, an important factor in obtaining a high signal throughput of the spectrometer was the development of a new type of Raman notch filter. In the third place, the confocal detection principle was applied in the CRM. This limits the effective measuring volume to 3 . (author). 279 refs., 48 figs., 11 tabs

  16. Ultrasensitive and selective detection of mercury (II) in serum based on the gold film sensor using a laser scanning confocal imaging-surface plasmon resonance system in real time

    Science.gov (United States)

    Liu, Sha; Zhang, Hongyan; Liu, Weimin; Wang, Pengfei

    2015-10-01

    Hg2+ ions are one of the most toxic heavy metal ion pollutants, and are caustic and carcinogenic materials with high cellular toxicity. The Hg2+ ions can accumulate in the human body through the food chain and cause serious and permanent damage to the brain with both acute and chronic toxicity. According to the US Environment Protection Agency (EPA) guidelines, Hg2+ ions must be at concentrations below 1 ng/ml (10 nM) in drinking water. If the Hg2+ ions are higher than 2.5 ng/ml in serum, that will bring mercury poisoning. The traditional testing for Hg2+ ions includes atomic absorption, atomic fluorescence, and inductively coupled plasma mass spectrometry. These methods are usually coupled with gas chromatography, high-performance liquid chromatography, and capillary electrophoresis. However, these instrument-based techniques are rather complicated, time-consuming, costly, and unsuitable for online and portable use. An ultrasensitive and selective detection of mercury (II) in serum was investigated using a laser scanning confocal imaging-surface plasmon resonance system (LSCI-SPR). The detection limit was as low as 0.01 ng/ml for Hg2+ ions in fetal calf serum and that is lower than that was required Hg2+ ions must be at concentrations below 1 ng/ml by the US Environment Protection Agency (EPA) guidelines. This sensor was designed on a T-rich, single-stranded DNA (ssDNA)-modified gold film, which can be individually manipulated using specific T-Hg2+-T complex formation. The quenching intensity of the fluorescence images for rhodamine-labeled ssDNA fitted well with the changes in SPR. The changes varied with the Hg2+ ion concentration, which is unaffected by the presence of other metal ions. A good liner relation was got with the coefficients of 0.9116 in 30% fetal calf serums with the linear part over a range of 0.01 ng/ml to10 ng/ml.

  17. Fluorescence confocal microscopy for pathologists.

    Science.gov (United States)

    Ragazzi, Moira; Piana, Simonetta; Longo, Caterina; Castagnetti, Fabio; Foroni, Monica; Ferrari, Guglielmo; Gardini, Giorgio; Pellacani, Giovanni

    2014-03-01

    Confocal microscopy is a non-invasive method of optical imaging that may provide microscopic images of untreated tissue that correspond almost perfectly to hematoxylin- and eosin-stained slides. Nowadays, following two confocal imaging systems are available: (1) reflectance confocal microscopy, based on the natural differences in refractive indices of subcellular structures within the tissues; (2) fluorescence confocal microscopy, based on the use of fluorochromes, such as acridine orange, to increase the contrast epithelium-stroma. In clinical practice to date, confocal microscopy has been used with the goal of obviating the need for excision biopsies, thereby reducing the need for pathological examination. The aim of our study was to test fluorescence confocal microscopy on different types of surgical specimens, specifically breast, lymph node, thyroid, and colon. The confocal images were correlated to the corresponding histological sections in order to provide a morphologic parallel and to highlight current limitations and possible applications of this technology for surgical pathology practice. As a result, neoplastic tissues were easily distinguishable from normal structures and reactive processes such as fibrosis; the use of fluorescence enhanced contrast and image quality in confocal microscopy without compromising final histologic evaluation. Finally, the fluorescence confocal microscopy images of the adipose tissue were as accurate as those of conventional histology and were devoid of the frozen-section-related artefacts that can compromise intraoperative evaluation. Despite some limitations mainly related to black/white images, which require training in imaging interpretation, this study confirms that fluorescence confocal microscopy may represent an alternative to frozen sections in the assessment of margin status in selected settings or when the conservation of the specimen is crucial. This is the first study to employ fluorescent confocal microscopy on

  18. Improving the Optical Quality Factor of the WGM Resonator

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey; Iltchenko, Vladimir

    2008-01-01

    Resonators usually are characterized with two partially dependent values: finesse (F) and quality factor (Q). The finesse of an empty Fabry-Perot (FP) resonator is defined solely by the quality of its mirrors and is calculated as F=piR(exp 1/2)/(1-R). The maximum up-to-date value of reflectivity R approximately equal to 1 - 1.6 x 10(exp -6) is achieved with dielectric mirrors. An FP resonator made with the mirrors has finesse F=1.9 x 10(exp 6). Further practical increase of the finesse of FP resonators is problematic because of the absorption and the scattering of light in the mirror material through fundamental limit on the reflection losses given by the internal material losses and by thermodynamic density fluctuations on the order of parts in 109. The quality factor of a resonator depends on both its finesse and its geometrical size. A one-dimensional FP resonator has Q=2 F L/lambda, where L is the distance between the mirrors and lambda is the wavelength. It is easy to see that the quality factor of the resonator is unlimited because L is unlimited. F and Q are equally important. In some cases, finesse is technically more valuable than the quality factor. For instance, buildup of the optical power inside the resonator, as well as the Purcell factor, is proportional to finesse. Sometimes, however, the quality factor is more valuable. For example, inverse threshold power of intracavity hyperparametric oscillation is proportional to Q(exp 2) and efficiency of parametric frequency mixing is proportional to Q(exp 3). Therefore, it is important to know both the maximally achievable finesse and quality factor values of a resonator. Whispering gallery mode (WGM) resonators are capable of achieving larger finesse compared to FP resonators. For instance, fused silica resonators with finesse 2.3 x 10(exp 6) and 2.8 x 10(exp 6) have been demonstrated. Crystalline WGM resonators reveal even larger finesse values, F=6.3 x 10(exp 6), because of low attenuation of light in the

  19. A near-infrared confocal scanner

    International Nuclear Information System (INIS)

    Lee, Seungwoo; Yoo, Hongki

    2014-01-01

    In the semiconductor industry, manufacturing of three-dimensional (3D) packages or 3D integrated circuits is a high-performance technique that requires combining several functions in a small volume. Through-silicon vias, which are vertical electrical connections extending through a wafer, can be used to direct signals between stacked chips, thus increasing areal density by stacking and connecting multiple patterned chips. While defect detection is essential in the semiconductor manufacturing process, it is difficult to identify defects within a wafer or to monitor the bonding results between bonded surfaces because silicon and many other semiconductor materials are opaque to visible wavelengths. In this context, near-infrared (NIR) imaging is a promising non-destructive method to detect defects within silicon chips, to inspect bonding between chips and to monitor the chip alignment since NIR transmits through silicon. In addition, a confocal scanner provides high-contrast, optically-sectioned images of the specimen due to its ability to reject out-of-focus noise. In this study, we report an NIR confocal scanner that rapidly acquires high-resolution images with a large field of view through silicon. Two orthogonal line-scanning images can be acquired without rotating the system or the specimen by utilizing two orthogonally configured resonant scanning mirrors. This NIR confocal scanner can be efficiently used as an in-line inspection system when manufacturing semiconductor devices by rapidly detecting defects on and beneath the surface. (paper)

  20. Resonance

    DEFF Research Database (Denmark)

    Petersen, Nils Holger

    2014-01-01

    A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....

  1. FABRY-PEROT VERSUS SLIT SPECTROPOLARIMETRY OF PORES AND ACTIVE NETWORK: ANALYSIS OF IBIS AND HINODE DATA

    International Nuclear Information System (INIS)

    Judge, Philip G.; De Wijn, Alfred; Tritschler, Alexandra; Uitenbroek, Han; Reardon, Kevin; Cauzzi, Gianna

    2010-01-01

    We discuss spectropolarimetric measurements of photospheric (Fe I 630.25 nm) and chromospheric (Ca II 854.21 nm) spectral lines in and around small magnetic flux concentrations, including a pore. Our long-term goal is to diagnose properties of the magnetic field near the base of the corona. We compare ground-based two-dimensional spectropolarimetric measurem ents with (almost) simultaneous space-based slit spectropolarimetry. We address the question of noise and crosstalk in the measurements and attempt to determine the suitability of Ca II measurements with imaging spectropolarimeters for the determination of chromospheric magnetic fields. The ground-based observations were obtained 2008 May 20, with the Interferometric Bidimensional Spectrometer (IBIS) in spectropolarimetric mode operated at the Dunn Solar Telescope at Sunspot, NM. The space observations were obtained with the Spectro-Polarimeter of the Solar Optical Telescope aboard the Japanese Hinode satellite. The agreement between the near-simultaneous co-spatial IBIS and Hinode Stokes-V profiles at 630.25 nm is excellent, with V/I amplitudes compatible to within 1%. The IBIS QU measurements are affected by residual crosstalk from V, arising from calibration inaccuracies, not from any inherent limitation of imaging spectroscopy. We use a Principal Component Analysis to quantify the detected crosstalk. QU profiles with V crosstalk subtracted are in good agreement with the Hinode measurements, but are noisier owing to fewer collected photons. Chromospheric magnetic fields are notoriously difficult to constrain by polarization of Ca II lines alone. However, we demonstrate that high cadence, high angular resolution monochromatic images of fibrils in Ca II and Hα, seen clearly in IBIS observations, can be used to improve the magnetic field constraints, under conditions of high electrical conductivity. Such work is possible only with time series data sets from two-dimensional spectroscopic instruments such as IBIS, under conditions of good seeing.

  2. Micro Extrinsic Fiber-Optic Fabry-Perot Interferometric Sensor Based on Erbium- and Boron-Doped Fibers

    International Nuclear Information System (INIS)

    Yun-Jiang, Rao; Bing, Xu; Zeng-Ling, Ran; Yuan, Gong

    2010-01-01

    Micro extrinsic Fabry–Perot interferometers (MEFPIs), with cavity lengths of up to ∼ 9 μm and maximum fringe contrast of ∼ 19 dB, are fabricated by chemically etching Er- and B-doped optical fibers and then splicing the etched fiber to a single-mode fiber, for the first time to the best of our knowledge. The strain and temperature responses of the MEFPI sensors are investigated experimentally. Good linearity and high sensitivity are achieved. Such a type of MEFPI sensor is cost-effective and suitable for mass production, indicating its great potential for a wide range of applications. (fundamental areas of phenomenology(including applications))

  3. Monostatic coaxial 1.5 μm laser Doppler velocimeter using a scanning Fabry-Perot interferometer

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian

    2013-01-01

    on heterodyne detection, our sFPI-LDV has the advantages of having large remote sensing range not limited by laser coherence, high velocity dynamic range not limited by detector bandwidth and inherent sign discrimination of Doppler shift. The more optically efficient coaxial arrangement where transmitter...... achieves ~40 dB reduction in strength of unwanted reflections (i.e. leakage) while maintaining high optical efficiency. Experiments with a solid target demonstrate the performance of the sFPI-LDV system with high sensitivity down to pW level at present update rates up to 10 Hz....

  4. Where photons meet phonons

    NARCIS (Netherlands)

    Buters, F.M.

    2017-01-01

    We investigate how radiation pressure can be used to influence the mechanical motion of a micro-mirror suspended from springs. This trampoline resonator is part of an optical Fabry-Perot cavity. By tuning the laser frequency with respect to the optical resonance, we are able to optically cool the

  5. Resonances

    DEFF Research Database (Denmark)

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...

  6. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: SPECTROSCOPY

    Science.gov (United States)

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of emitted signals. The accuracy of these measurements demands that...

  7. Hybrid grating reflectors: Origin of ultrabroad stopband

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Taghizadeh, Alireza; Chung, Il-Sug

    2016-01-01

    Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well ...

  8. Effect of Surface Plasmon Coupling to Optical Cavity Modes on the Field Enhancement and Spectral Response of Dimer-Based sensors

    KAUST Repository

    Alrasheed, Salma; Di Fabrizio, Enzo M.

    2017-01-01

    with the resonant modes of a Fabry-Perot (FP) cavity. The strong coupling is demonstrated by the large anticrossing in the reflection spectra and a Rabi splitting of 76 meV. Up to 2-fold enhancement increase can be achieved compared to that without using the cavity

  9. Electron Interference in Ballistic Graphene Nanoconstrictions

    DEFF Research Database (Denmark)

    Baringhaus, Jens; Settnes, Mikkel; Aprojanz, Johannes

    2016-01-01

    We realize nanometer size constrictions in ballistic graphene nanoribbons grown on sidewalls of SiC mesa structures. The high quality of our devices allows the observation of a number of electronic quantum interference phenomena. The transmissions of Fabry-Perot-like resonances are probed...

  10. Dielectric micro-resonator-based opto-mechanical systems for sensing applications

    Science.gov (United States)

    Ali, Amir Roushdy

    angular speed detection photonic sensors. In previous applications, the WGM shifts induced by the external effects were monitored by identifying and tracking individual resonance dip in the optical transmission spectrum. The success of the WGM sensors is strongly dependent on the precise and speeds tracking of the shifts of the resonant wavelengths. In this dissertation, we demonstrate the application of WGM micro-resonators for high-speed transient sensing (wide-bandwidth). To facilitate the use of the sensors for high-speed transient applications, we tune the interrogation laser using a harmonic rather than a ramp waveform and calibrate the laser response at various input frequencies and amplitudes using a Fabry-Perot interferometer. WGM shifts are tracked using a fast cross-correlation algorithm on the transmission spectra. We demonstrate dynamic force measurements up to 10 kHz using this approach. We also present a simple lumped-heat capacity thermal model to predict the laser's tuning response.

  11. Whispering gallery mode resonators for frequency metrology applications

    Science.gov (United States)

    Baumgartel, Lukas

    This dissertation describes an investigation into the use of whispering gallery mode (WGM) resonators for applications towards frequency reference and metrology. Laser stabilization and the measurement of optical frequencies have enabled myriad technologies of both academic and commercial interest. A technology which seems to span both motivations is optical atomic clocks. These devices are virtually unimaginable without the ultra stable lasers plus frequency measurement and down-conversion afforded by Fabry Perot (FP) cavities and model-locked laser combs, respectively. However, WGM resonators can potentially perform both of these tasks while having the distinct advantages of compactness and simplicity. This work represents progress towards understanding and mitigating the performance limitations of WGM cavities for such applications. A system for laser frequency stabilization to a the cavity via the Pound-Drever-Hall (PDH) method is described. While the laser lock itself is found to perform at the level of several parts in 1015, a variety of fundamental and technical mechanisms destabilize the WGM frequency itself. Owing to the relatively large thermal expansion coefficients in optical crystals, environmental temperature drifts set the stability limit at time scales greater than the thermal relaxation time of the crystal. Uncompensated, these drifts pull WGM frequencies about 3 orders of magnitude more than they would in an FP cavity. Thus, two temperature compensation schemes are developed. An active scheme measures and stabilizes the mode volume temperature to the level of several nK, reducing the effective temperature coefficient of the resonator to 1.7x10-7 K-1; simulations suggest that the value could eventually be as low as 3.5x10-8 K-1, on par with the aforementioned FP cavities. A second, passive scheme is also described, which employs a heterogeneous resonator structure that capitalizes on the thermo-mechanical properties of one material and the optical

  12. Confocal imaging of butterfly tissue.

    Science.gov (United States)

    Brunetti, Craig R

    2014-01-01

    To understand the molecular events responsible for morphological change requires the ability to examine gene expression in a wide range of organisms in addition to model systems to determine how the differences in gene expression correlate with phenotypic differences. There are approximately 12,000 species of butterflies, most, with distinct patterns on their wings. The most important tool for studying gene expression in butterflies is confocal imaging of butterfly tissue by indirect immunofluorescence using either cross-reactive antibodies from closely related species such as Drosophila or developing butterfly-specific antibodies. In this report, we describe how indirect immunofluorescence protocols can be used to visualize protein expression patterns on the butterfly wing imaginal disc and butterfly embryo.

  13. Confocal Imaging of porous media

    Science.gov (United States)

    Shah, S.; Crawshaw, D.; Boek, D.

    2012-12-01

    Carbonate rocks, which hold approximately 50% of the world's oil and gas reserves, have a very complicated and heterogeneous structure in comparison with sandstone reservoir rock. We present advances with different techniques to image, reconstruct, and characterize statistically the micro-geometry of carbonate pores. The main goal here is to develop a technique to obtain two dimensional and three dimensional images using Confocal Laser Scanning Microscopy. CLSM is used in epi-fluorescent imaging mode, allowing for the very high optical resolution of features well below 1μm size. Images of pore structures were captured using CLSM imaging where spaces in the carbonate samples were impregnated with a fluorescent, dyed epoxy-resin, and scanned in the x-y plane by a laser probe. We discuss the sample preparation in detail for Confocal Imaging to obtain sub-micron resolution images of heterogeneous carbonate rocks. We also discuss the technical and practical aspects of this imaging technique, including its advantages and limitation. We present several examples of this application, including studying pore geometry in carbonates, characterizing sub-resolution porosity in two dimensional images. We then describe approaches to extract statistical information about porosity using image processing and spatial correlation function. We have managed to obtain very low depth information in z -axis (~ 50μm) to develop three dimensional images of carbonate rocks with the current capabilities and limitation of CLSM technique. Hence, we have planned a novel technique to obtain higher depth information to obtain high three dimensional images with sub-micron resolution possible in the lateral and axial planes.

  14. Confocal Raman Microscopy; applications in tissue engineering

    NARCIS (Netherlands)

    van Apeldoorn, Aart A.

    2005-01-01

    This dissertation describes the use of confocal Raman microscopy and spectroscopy in the field of tissue engineering. Moreover, it describes the combination of two already existing technologies, namely scanning electron microscopy and confocal Raman spectroscopy in one apparatus for the enhancement

  15. Submillimeter Confocal Imaging Active Module

    Science.gov (United States)

    Hong, John; Mehdi, Imran; Siegel, Peter; Chattopadhyay, Goutam; Cwik, Thomas; Rowell, Mark; Hacker, John

    2009-01-01

    The term submillimeter confocal imaging active module (SCIAM) denotes a proposed airborne coherent imaging radar system that would be suitable for use in reconnaissance, surveillance, and navigation. The development of the SCIAM would include utilization and extension of recent achievements in monolithic microwave integrated circuits capable of operating at frequencies up to and beyond a nominal radio frequency of 340 GHz. Because the SCIAM would be primarily down-looking (in contradistinction to primarily side-looking), it could be useful for imaging shorter objects located between taller ones (for example, objects on streets between buildings). The SCIAM would utilize a confocal geometry to obtain high cross-track resolution, and would be amenable to synthetic-aperture processing of its output to obtain high along-track resolution. The SCIAM (see figure) would include multiple (two in the initial version) antenna apertures, separated from each other by a cross-track baseline of suitable length (e.g., 1.6 m). These apertures would both transmit the illuminating radar pulses and receive the returns. A common reference oscillator would generate a signal at a controllable frequency of (340 GHz + (Delta)f)/N, where (Delta)f is an instantaneous swept frequency difference and N is an integer. The output of this oscillator would be fed to a frequency- multiplier-and-power-amplifier module to obtain a signal, at 340 GHz + (Delta)f, that would serve as both the carrier signal for generating the transmitted pulses and a local-oscillator (LO) signal for a receiver associated with each antenna aperture. Because duplexers in the form of circulators or transmit/receive (T/R) switches would be lossy and extremely difficult to implement, the antenna apertures would be designed according to a spatial-diplexing scheme, in which signals would be coupled in and out via separate, adjacent transmitting and receiving feed horns. This scheme would cause the transmitted and received beams

  16. Confocal Endomicroscopy of Colorectal Polyps

    Directory of Open Access Journals (Sweden)

    Vivian M. Ussui

    2012-01-01

    Full Text Available Confocal laser endomicroscopy (CLE is one of several novel methods that provide real-time, high-resolution imaging at a micron scale via endoscopes. CLE has the potential to be a disruptive technology in that it can change the current algorithms that depend on biopsy to perform surveillance of high-risk conditions. Furthermore, it allows on-table decision making that has the potential to guide therapy in real time and reduce the need for repeated procedures. CLE and related technologies are often termed “virtual biopsy” as they simulate the images seen in traditional histology. However, the imaging of living tissue allows more than just pragmatic convenience; it also allows imaging of living tissue such as active capillary circulation, cellular death, and vascular and endothelial translocation, thus extending beyond what is capable in traditional biopsy. Immediate potential applications of CLE are to guide biopsy sampling in Barrett's esophagus and inflammatory bowel disease surveillance, evaluation of colorectal polyps, and intraductal imaging of the pancreas and bile duct. Data on these applications is rapidly emerging, and more is needed to clearly demonstrate the optimal applications of CLE. In this paper, we will focus on the role of CLE as applied to colorectal polyps detected during colonoscopy.

  17. Confocal scanning microscope for nuclear photoemulsion

    International Nuclear Information System (INIS)

    Batusov, Yu.A.; Kovalev, Yu.S.; Soroko, L.M.

    2005-01-01

    The application of the confocal scanning microscope to the objects in the nuclear photoemulsion is described. An array of 27 microtomograms of single silver grain is shown. The cross sections of the same particle track of diameter 1 μm, detected by means of the confocal scanning microscope with open and annular apertures, are presented. It was shown that the confocal scanning microscope opens indeed new opportunities for the nuclear photoemulsion technique to get previously inaccessible information for physics of the short-living particles

  18. Diffractive elements performance in chromatic confocal microscopy

    International Nuclear Information System (INIS)

    Garzon, J; Duque, D; Alean, A; Toledo, M; Meneses, J; Gharbi, T

    2011-01-01

    The Confocal Laser Scanning Microscopy (CLSM) has been widely used in the semiconductor industry and biomedicine because of its depth discrimination capability. Subsequent to this technique has been developed in recent years Chromatic Confocal Microscopy. This method retains the same principle of confocal and offers the added advantage of removing the axial movement of the moving system. This advantage is usually accomplished with an optical element that generates a longitudinal chromatic aberration and a coding system that relates the axial position of each point of the sample with the wavelength that is focused on each. The present paper shows the performance of compact chromatic confocal microscope when some different diffractive elements are used for generation of longitudinal chromatic aberration. Diffractive elements, according to the process and manufacturing parameters, may have different diffraction efficiency and focus a specific wavelength in a specific focal position. The performance assessment is carried out with various light sources which exhibit an incoherent behaviour and a broad spectral width.

  19. Confocal Laser Endomicroscopy in Inflammatory Bowel Disease

    DEFF Research Database (Denmark)

    Rasmussen, Ditlev Nytoft; Karstensen, John Gásdal; Riis, Lene Buhl

    2015-01-01

    included. Next, eligible studies were analysed with respect to several parameters, such as technique and clinical aim and definitions of outcomes. RESULTS: Confocal laser endomicroscopy has been used for a wide range of purposes in inflammatory bowel disease, covering assessment of inflammatory severity...... of confocal laser endomicroscopy for inflammatory bowel disease. METHODS: Available literature was searched systematically for studies applying confocal laser endomicroscopy in Crohn's disease or ulcerative colitis. Relevant literature was reviewed and only studies reporting original clinical data were...... of histological features such as colonic crypts, epithelial gaps and epithelial leakiness to fluorescein. CONCLUSIONS: Confocal laser endomicroscopy remains an experimental but emerging tool for assessment of inflammatory bowel disease. It is the only method that enables in vivo functional assessment...

  20. Superconducting Nanowires as Nonlinear Inductive Elements for Qubits

    OpenAIRE

    Ku, Jaseung; Manucharyan, Vladimir; Bezryadin, Alexey

    2010-01-01

    We report microwave transmission measurements of superconducting Fabry-Perot resonators (SFPR), having a superconducting nanowire placed at a supercurrent antinode. As the plasma oscillation is excited, the supercurrent is forced to flow through the nanowire. The microwave transmission of the resonator-nanowire device shows a nonlinear resonance behavior, significantly dependent on the amplitude of the supercurrent oscillation. We show that such amplitude-dependent response is due to the nonl...

  1. Aorta Fluorescence Imaging by Using Confocal Microscopy

    OpenAIRE

    Wang, Chun-Yang; Tsai, Jui-che; Chuang, Ching-Cheng; Hsieh, Yao-Sheng; Sun, Chia-Wei

    2011-01-01

    The activated leukocyte attacked the vascular endothelium and the associated increase in VEcadherin number was observed in experiments. The confocal microscopic system with a prism-based wavelength filter was used for multiwavelength fluorescence measurement. Multiwavelength fluorescence imaging based on the VEcadherin within the aorta segment of a rat was achieved. The confocal microscopic system capable of fluorescence detection of cardiovascular tissue is a useful tool for measuring the bi...

  2. A new method for testing Newton's gravitational law

    International Nuclear Information System (INIS)

    Schurr, J.; Klein, N.; Meyer, H.; Piel, H.; Walesch, H.

    1991-01-01

    A new experimental method is reported for determining the gravitational force of a laboratory test mass on a Fabry-Perot microwave resonator. The resonator consists of two Fabry-Perot mirrors suspended as pendulums. Changes of 2·10 -11 m in the pendulum separation can be resolved as a shift of the resonance frequency of the resonator. This limit corresponds to an acceleration of 7·10 -11 m s -2 of one mirror with respect to the other. In a first experiment, the gravitational acceleration generated by a 125 kg test mass was measured as a function of distance in the range of 10 to 15 cm and tested Newton's gravitational law with an accuracy of 1%. No deviation is found. Furthermore, the gravitational constant G is determined with similar precision. (author) 5 refs., 2 figs

  3. Microsphere imaging with confocal microscopy and two photon microscopy

    International Nuclear Information System (INIS)

    Chun, Hyung Su; An, Kyung Won; Lee, Jai Hyung

    2002-01-01

    We have acquired images of polystyrene and fused-silica microsphere by using conventional optical microscopy, confocal microscopy and two-photon microscopy, and performed comparative analysis of these images. Different from conventional optical microscopy, confocal and two-photon microscopy had good optical sectioning capability. In addition, confocal microscopy and two-photon microscopy had better lateral resolution than conventional optical microscopy. These results are attributed to confocality and nonlinearity of confocal microscopy and two photon microscopy, respectively.

  4. Application of Confocal Laser Scanning Microscopy in Biology and Medicine

    OpenAIRE

    I. A. Volkov; N. V. Frigo; L. F. Znamenskaya; O. R. Katunina

    2014-01-01

    Fluorescence confocal laser scanning microscopy and reflectance confocal laser scanning microscopy are up-to-date highend study methods. Confocal microscopy is used in cell biology and medicine. By using confocal microscopy, it is possible to study bioplasts and localization of protein molecules and other compounds relative to cell or tissue structures, and to monitor dynamic cell processes. Confocal microscopes enable layer-by-layer scanning of test items to create demonstrable 3D models. As...

  5. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity

    NARCIS (Netherlands)

    de Luca, Giulia; Breedijk, Ronald; Hoebe, Ron; Stallinga, Sjoerd; Manders, Erik

    2017-01-01

    Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial

  6. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity

    NARCIS (Netherlands)

    De Luca, G.; Breedijk, R.; Hoebe, R.; Stallinga, S.; Manders, E.

    Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial

  7. Confocal filtering in cathodoluminescence microscopy of nanostructures

    Science.gov (United States)

    Narváez, Angela C.; Weppelman, I. Gerward C.; Moerland, Robert J.; Hoogenboom, Jacob P.; Kruit, Pieter

    2014-06-01

    Cathodoluminescence (CL) microscopy allows optical characterization of nanostructures at high spatial resolution. At the nanoscale, a main challenge of the technique is related to the background CL generated within the sample substrate. Here, we implement confocal detection of the CL signal to minimize the background contribution to the measurement. Nano-phosphors were used as point sources to evaluate the filtering capabilities of our confocal CL system, obtaining an axial intensity profile with 2.7 μm full width at half maximum for the central peak, in good correspondence with theoretical expectations. Considering the electron interaction volume, we found that the confocal filter becomes effective for electron energies above 20 keV, when using a 25 μm pinhole (0.86 Airy units). To illustrate our approach, we present confocal CL imaging of gold nanowires and triangular shaped plates deposited on an indium-tin oxide covered glass substrate, comparing the images with those obtained in standard unfiltered CL detection. The results show that confocal CL microscopy is a valuable tool for the investigation of nanostructures on highly cathodoluminescent substrates, widely used in biological and optical applications.

  8. Confocal filtering in cathodoluminescence microscopy of nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Narváez, Angela C., E-mail: a.c.narvaez@tudelft.nl, E-mail: j.p.hoogenboom@tudelft.nl; Weppelman, I. Gerward C.; Moerland, Robert J.; Hoogenboom, Jacob P., E-mail: a.c.narvaez@tudelft.nl, E-mail: j.p.hoogenboom@tudelft.nl; Kruit, Pieter [Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628CJ Delft (Netherlands)

    2014-06-23

    Cathodoluminescence (CL) microscopy allows optical characterization of nanostructures at high spatial resolution. At the nanoscale, a main challenge of the technique is related to the background CL generated within the sample substrate. Here, we implement confocal detection of the CL signal to minimize the background contribution to the measurement. Nano-phosphors were used as point sources to evaluate the filtering capabilities of our confocal CL system, obtaining an axial intensity profile with 2.7 μm full width at half maximum for the central peak, in good correspondence with theoretical expectations. Considering the electron interaction volume, we found that the confocal filter becomes effective for electron energies above 20 keV, when using a 25 μm pinhole (0.86 Airy units). To illustrate our approach, we present confocal CL imaging of gold nanowires and triangular shaped plates deposited on an indium-tin oxide covered glass substrate, comparing the images with those obtained in standard unfiltered CL detection. The results show that confocal CL microscopy is a valuable tool for the investigation of nanostructures on highly cathodoluminescent substrates, widely used in biological and optical applications.

  9. Confocal microlaparoscope for imaging the fallopian tube

    Science.gov (United States)

    Wu, Tzu-Yu; Rouse, Andrew R.; Chambers, Setsuko K.; Hatch, Kenneth D.; Gmitro, Arthur F.

    2014-11-01

    Recent evidence suggests that ovarian cancer can originate in the fallopian tube. Unlike many other cancers, poor access to the ovary and fallopian tubes has limited the ability to study the progression of this deadly disease and to diagnosis it during the early stage when it is most amenable to therapy. A rigid confocal microlaparoscope system designed to image the epithelial surface of the ovary in vivo was previously reported. A new confocal microlaparoscope with an articulating distal tip has been developed to enable in vivo access to human fallopian tubes. The new microlaparoscope is compatible with 5-mm trocars and includes a 2.2-mm-diameter articulating distal tip consisting of a bare fiber bundle and an automated dye delivery system for fluorescence confocal imaging. This small articulating device should enable the confocal microlaparoscope to image early stage ovarian cancer arising inside the fallopian tube. Ex vivo images of animal tissue and human fallopian tube using the new articulating device are presented along with in vivo imaging results using the rigid confocal microlaparoscope system.

  10. USSR and Eastern Europe Scientific Abstracts, Physics. Number 46.

    Science.gov (United States)

    1978-11-02

    magnetic field in the area of large fields, the harmonics are due to the resonances of the standing magnetic -plasma waves in the plate; in the area...parameters of cerium, gadolinium and lutetium orthovanadite. Polytherms of heat capacity, magnetization and magnetic susceptibility of these rare...of lasing in mixed ZnxCd^_xS single crystals, and it was found that the model of a simple " Fabry -Perot resonator ," i.e., an inverse layer on the

  11. Confocal scanning microscopy with multiple optical probes for high speed measurements and better imaging

    Science.gov (United States)

    Chun, Wanhee; Lee, SeungWoo; Gweon, Dae-Gab

    2008-02-01

    Confocal scanning microscopy (CSM) needs a scanning mechanism because only one point information of specimen can be obtained. Therefore the speed of the confocal scanning microscopy is limited by the speed of the scanning tool. To overcome this limitation from scanning tool we propose another scanning mechanism. We make three optical probes in the specimen under confocal condition of each point. Three optical probes are moved by beam scanning mechanism with shared resonant scanning mirror (RM) and galvanometer driven mirror (GM). As each optical probe scan allocated region of the specimen, information from three points is obtained simultaneously and image acquisition time is reduced. Therefore confocal scanning microscopy with multiple optical probes is expected to have three times faster speed of the image acquisition than conventional one. And as another use, multiple optical probes to which different light wavelength is applied can scan whole same region respectively. It helps to obtain better contrast image in case of specimens having different optical characteristics for specific light wavelength. In conclusion confocal scanning microscopy with multiple optical probes is useful technique for views of image acquisition speed and image quality.

  12. The confocal plane grating spectrometer at BESSY II

    International Nuclear Information System (INIS)

    Könnecke, R.; Follath, R.; Pontius, N.; Schlappa, J.; Eggenstein, F.; Zeschke, T.; Bischoff, P.; Schmidt, J.-S.; Noll, T.

    2013-01-01

    Highlights: ► At the electron storage ring BESSY II a confocal plane grating RIXS endstation with a spot size of 4 μm × 1 μm is presently being installed. ► A resolving power above 10,000 is expected for low energy excitations below 500 eV. ► The sample will be excited with a photon flux up to 10 15 photons/(s 300 mA 0.1%bandwidth). ► Sample environments for solid, gaseous and liquid samples will be provided. ► A fast detecting system is being set up for future pump-probe experiments. -- Abstract: At BESSY II a confocal plane grating spectrometer for resonant inelastic X-ray scattering (RIXS) is currently under commissioning. The new endstation operates with a source size of 4 × 1 μm 2 provided by its dedicated beamline. The RIXS-spectrometer covers an energy range from 50 eV to 1000 eV, providing a resolving power E/ΔE of 5000–15,000. The beamline allows full polarization control and gives a photon flux of up to 7 × 10 14 photons/s/0.1 A/0.1%bandwidth by offering a resolving power E/ΔE of 4000–12,000

  13. HARLIE 3-D Aerosol Backscatter and Wind Profile Measurements During Recent Field Experiments: Background Noise Reduction with a Fabry-Perot Etalon Filter in the HARLIE System

    Science.gov (United States)

    Lee, Sangwoo; Miller, David O.; Schwemmer, Geary; Wilkerson, Thomas D.; Andrus, Ionio; Egbert, Cameron; Anderson, Mark; Starr, David OC. (Technical Monitor)

    2002-01-01

    Background noise reduction of War signals is one of the most important factors in achieving better signal to noise ratio and precise atmospheric data from Mar measurements. Fahey Perot etalons have been used in several lidar systems as narrow band pass filters in the reduction of scattered sunlight. An slalom with spectral bandwidth, (Delta)v=0.23/cm, free spectral range, FSR=6.7/cm, and diameter, d=24mm was installed in a fiber coupled box which included a 500 pm bandwidth interference Filter. The slalom box couples the telescope and detector with 200 pm core fibers and 21 mm focal length collimators. The angular magnification is M=48. The etalon box was inserted into the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) system and tested during the HARGLO-2 intercomparison campaign conducted in November 2001 at Wallops Island, Virginia. This paper presents the preliminary test results of the slalom and a complete analysis will be presented at the conference.

  14. Confocal laser endomicroscopy in ulcerative colitis

    DEFF Research Database (Denmark)

    Karstensen, John Gásdal; Săftoiu, Adrian; Brynskov, Jørn

    2016-01-01

    BACKGROUND AND AIMS: Confocal laser endomicroscopy enables real-time in vivo microscopy during endoscopy and can predict relapse in patients with inflammatory bowel disease in remission. However, little is known about how endomicroscopic features change with time. The aim of this longitudinal study...... was to correlate colonic confocal laser endomicroscopy (CLE) in ulcerative colitis with histopathology and macroscopic appearance before and after intensification of medical treatment. METHODS: Twenty-two patients with ulcerative colitis in clinical relapse and 7 control subjects referred for colonoscopy were...

  15. Model wavefront sensor for adaptive confocal microscopy

    Science.gov (United States)

    Booth, Martin J.; Neil, Mark A. A.; Wilson, Tony

    2000-05-01

    A confocal microscope permits 3D imaging of volume objects by the inclusion of a pinhole in the detector path which eliminates out of focus light. This configuration is however very sensitive to aberrations induced by the specimen or the optical system and would therefore benefit from an adaptive optics approach. We present a wavefront sensor capable of measuring directly the Zernike components of an aberrated wavefront and show that it is particularly applicable to the confocal microscope since only those wavefronts originating in the focal region contribute to the measured aberration.

  16. Confocal microscopy imaging of the biofilm matrix

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Meyer, Rikke L

    2017-01-01

    The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens...... the concentration of solutes and the diffusive properties of the biofilm matrix....

  17. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: LASER POWER MEASUREMENTS

    Science.gov (United States)

    Laser power abstract The reliability of the confocal laser-scanning microscope (CLSM) to obtain intensity measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. The laser power test appears to be one ...

  18. Fluorescence confocal polarizing microscopy: Three-dimensional ...

    Indian Academy of Sciences (India)

    journal of. August 2003 physics pp. 373–384. Fluorescence confocal polarizing ... and focal conic domains in flat samples of lamellar LCs are practically indistinguishable. ... or less) LC layer confined between two transparent plates. ... in studies of electro-optic effects such as the Frederiks effect, defects, surface anchoring,.

  19. Selective Bioparticle Retention and Characterization in a Chip-Integrated Confocal Ultrasonic Cavity

    DEFF Research Database (Denmark)

    Svennebring, J.; Manneberg, O.; Skafte-Pedersen, Peder

    2009-01-01

    We demonstrate selective retention and positioning of cells or other bioparticles by ultrasonic manipulation in a microfluidic expansion chamber during microfluidic perfusion. The chamber is designed as a confocal ultrasonic resonator for maximum confinement of the ultrasonic force field at the c......We demonstrate selective retention and positioning of cells or other bioparticles by ultrasonic manipulation in a microfluidic expansion chamber during microfluidic perfusion. The chamber is designed as a confocal ultrasonic resonator for maximum confinement of the ultrasonic force field...... sample feeding, a set of several manipulation functions performed in series is demonstrated: sample bypass-injection-aggregation and retention-positioning. Finally, we demonstrate transillumination microscopy imaging Of Ultrasonically trapped COS-7 cell aggregates. Biotechnol. Bioeng. 2009;103: 323-328....

  20. Diffractive Optics for Gravitational Wave Detectors

    International Nuclear Information System (INIS)

    Bunkowski, A; Burmeister, O; Clausnitzer, T; Kley, E-B; Tuennermann, A; Danzmann, K; Schnabel, R

    2006-01-01

    All-reflective interferometry based on nano-structured diffraction gratings offers new possibilities for gravitational wave detection. We investigate an all-reflective Fabry-Perot interferometer concept in 2nd order Littrow mount. The input-output relations for such a resonator are derived treating the grating coupler by means of a scattering matrix formalism. A low loss dielectric reflection grating has been designed and manufactured to test the properties of such a grating cavity

  1. Teleoperation System with Hybrid Pneumatic-Piezoelectric Actuation for MRI-Guided Needle Insertion with Haptic Feedback

    OpenAIRE

    Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S.

    2013-01-01

    This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI ...

  2. Scanner component and head development for confocal microscopy using moving mirror technology

    Science.gov (United States)

    Loney, Gregory C.

    1993-12-01

    One of the challenges in designing a confocal microscope is choosing the scan system configuration. The selection is based largely on the microscope application and involves a few distinct schemes. One scheme, moving mirror using galvanometer and resonant scanners, has been shown to offer an excellent solution exhibited by the large number of commercial systems which utilize them. Perceived shortcomings, such as slow image acquisition, are being dispelled due to the advent of large angle, high frequency resonant scanners. These newer devices offer near video rate performance at good scan efficiency.

  3. Reflectance Confocal Microscopy in Lentigo Maligna.

    Science.gov (United States)

    Gamo, R; Pampín, A; Floristán, U

    2016-12-01

    Lentigo maligna is the most common type of facial melanoma. Diagnosis is complicated, however, as it shares clinical and dermoscopic characteristics with other cutaneous lesions of the face. Reflectance confocal microscopy is an imaging technique that permits the visualization of characteristic features of lentigo maligna. These include a disrupted honeycomb pattern and pagetoid cells with a tendency to show folliculotropism. These cells typically have a dendritic morphology, although they may also appear as round cells measuring over 20μm with atypical nuclei. Poorly defined dermal papillae and atypical cells may be seen at the dermal-epidermal junction and can form bridges resembling mitochondrial structures. Other characteristic findings include junctional swelling with atypical cells located around the follicles, resembling caput medusae. Reflectance confocal microscopy is a very useful tool for diagnosing lentigo maligna. Copyright © 2016 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Fungal keratitis - improving diagnostics by confocal microscopy

    DEFF Research Database (Denmark)

    Nielsen, Esben; Heegaard, S; Prause, J U

    2013-01-01

    Purpose: Introducing a simple image grading system to support the interpretation of in vivo confocal microscopy (IVCM) images in filamentous fungal keratitis. Setting: Clinical and confocal studies took place at the Department of Ophthalmology, Aarhus University Hospital, Denmark. Histopathological...... analysis was performed at the Eye Pathology Institute, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark. Methods: A recent series of consecutive patients with filamentous fungal keratitis is presented to demonstrate the results from in-house IVCM. Based upon our experience...... with IVCM and previously published images, we composed a grading system for interpreting IVCM images of filamentous fungal keratitis. Results: A recent case series of filamentous fungal keratitis from 2011 to 2012 was examined. There were 3 male and 3 female patients. Mean age was 44.5 years (range 12...

  5. Integrated Photoacoustic and Fluorescence Confocal Microscopy

    OpenAIRE

    Wang, Yu; Maslov, Konstantin; Kim, Chulhong; Hu, Song; Wang, Lihong V.

    2010-01-01

    We have developed a dual-modality imaging system by integrating optical-resolution photoacoustic microscopy and fluorescence confocal microscopy to provide optical absorption and fluorescence contrasts simultaneously. By sharing the same laser source and objective lens, intrinsically registered photoacoustic and fluorescence images are acquired in a single scan. The micrometer resolution allows imaging of both blood and lymphatic vessels down to the capillary level. Simultaneous photoacoustic...

  6. Clinical applications of corneal confocal microscopy

    Directory of Open Access Journals (Sweden)

    Mitra Tavakoli

    2008-06-01

    Full Text Available Mitra Tavakoli1, Parwez Hossain2, Rayaz A Malik11Division of Cardiovascular Medicine, University of Manchester and Manchester Royal Infirmary, Manchester, UK; 2University of Southampton, Southampton Eye Unit, Southampton General Hospital, Southampton, UKAbstract: Corneal confocal microscopy is a novel clinical technique for the study of corneal cellular structure. It provides images which are comparable to in-vitro histochemical techniques delineating corneal epithelium, Bowman’s layer, stroma, Descemet’s membrane and the corneal endothelium. Because, corneal confocal microscopy is a non invasive technique for in vivo imaging of the living cornea it has huge clinical potential to investigate numerous corneal diseases. Thus far it has been used in the detection and management of pathologic and infectious conditions, corneal dystrophies and ecstasies, monitoring contact lens induced corneal changes and for pre and post surgical evaluation (PRK, LASIK and LASEK, flap evaluations and Radial Keratotomy, and penetrating keratoplasty. Most recently it has been used as a surrogate for peripheral nerve damage in a variety of peripheral neuropathies and may have potential in acting as a surrogate marker for endothelial abnormalities.Keywords: corneal confocal microscopy, cornea, infective keratitis, corneal dystrophy, neuropathy

  7. High harmonic terahertz confocal gyrotron with nonuniform electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wenjie; Guan, Xiaotong; Yan, Yang [THz Research Center, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-01-15

    The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.

  8. Microscopia confocal en operados de queratoplastia perforante Confocal microscopy in patients operated from penetrating keratoplasty

    Directory of Open Access Journals (Sweden)

    Zulema Gómez Castillo

    2009-06-01

    Full Text Available La microscopia confocal es un examen exploratorio, práctico y poco invasivo que permite conocer las características microscópicas del tejido corneal después del trasplante, por lo que constituye una herramienta muy útil en el manejo de los pacientes operados de queratoplastia. El presente trabajo tiene como finalidad describir las características del tejido corneal en pacientes operados de este tipo de trasplante, mediante la microscopia confocal in vivo. MÉTODOS: Se realizó un estudio descriptivo, de corte transversal, en 40 ojos de 40 pacientes operados de queratoplastia perforante, en el Servicio de Córnea del Instituto Cubano de Oftalmología "Ramón Pando Ferrer", de marzo de 2006 a marzo de 2007. Se confeccionó una historia clínica oftalmológica y se les realizó a todos el examen de microscopia confocal en el injerto corneal con el microscopio confocal CONFOSCAN 4. RESULTADOS: La queratopatía bullosa pseudofáquica fue la afección más frecuente previa a la cirugía y estuvo presente en el 77,5 % de los pacientes. En el 72,5 % de los intervenidos se encontró una disminución del grosor corneal. El epitelio presentó alteraciones en el 62,5 % de los pacientes. Todos presentaron afectación de la forma y el tamaño celular endotelial. En el 82,5 % de los pacientes se observó ausencia de plexos nerviosos. CONCLUSIONES: La microscopia confocal como nueva ciencia en el campo de la oftalmología, favorece el seguimiento evolutivo de las queratoplastias perforantes y con esto no solo a prevenir la aparición de posibles complicaciones, sino además de garantizar el éxito de la cirugía y la función refractiva de la córnea.Confocal microscopy is a practical, exploratory and less invassive examination that allows finding out the microscopic characteristics of the corneal tissue after transplantation, so it is a very useful tool for the management of patients operated from keratoplasty. The present paper was aimed at describing

  9. Re-scan confocal microscopy: scanning twice for better resolution.

    Science.gov (United States)

    De Luca, Giulia M R; Breedijk, Ronald M P; Brandt, Rick A J; Zeelenberg, Christiaan H C; de Jong, Babette E; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A; Stallinga, Sjoerd; Manders, Erik M M

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required.

  10. A quasi-optical electron cyclotron maser for fusion reactor heating

    International Nuclear Information System (INIS)

    Morse, E.C.

    1990-01-01

    High power microwave and millimeter sources, such as the quasi-optical electron cyclotron maser (QOECM) are important in fusion research as well as in high-energy physics and in other applications. The interaction between the electromagnetic modes of a Fabry-Perot resonator and an electron beam gyrating through a magnetic field has been studied for both the cases of beams parallel and perpendicular to the resonator. The parallel case was theoretically first studied by Kurin for forward and backward wave interaction, and experimentally by Komlev and Kurin. Kreischer and Temkin reviewed the general case of the linear small signal interaction parallel and perpendicular to the resonator. Sprangle, et al discussed the perpendicular case in a self-consistent linear and nonlinear theoretical study using the Gaussian transverse profile of an open resonator with a single longitudinal mode. Experimental verification of the devices operation was first mentioned in work at the Naval Research Laboratory. Theoretical studies using a time-dependent analysis of a large number of longitudinal modes with similar transverse mode profiles have demonstrated that single longitudinal-mode operation can be achieved at equilibrium and that performance can be enhanced by prebunching the electron beam and tapering the magnetic field. The use of output coupling apertures in the mirrors has been studied theoretically in relation to the structure of the modes for both confocal and nonconfocal resonators by Permnoud; use of an open resonator with stepped mirrors has been studied in order to choose a particular longitudinal mode. Studies at the Naval Research Laboratory mirror used configurations that diffraction couple the energy from around the mirror edges, so that the transverse profile inside the resonator can be selective to the fundamental mode

  11. Fluorescence confocal endomicroscopy in biological imaging

    Science.gov (United States)

    Delaney, Peter; Thomas, Steven; Allen, John; McLaren, Wendy; Murr, Elise; Harris, Martin

    2007-02-01

    In vivo fluorescence microscopic imaging of biological systems in human disease states and animal models is possible with high optical resolution and mega pixel point-scanning performance using optimised off-the-shelf turn-key devices. There are however various trade-offs between tissue access and instrument performance when miniaturising in vivo microscopy systems. A miniature confocal scanning technology that was developed for clinical human endoscopy has been configured into a portable device for direct hand-held interrogation of living tissue in whole animal models (Optiscan FIVE-1 system). Scanning probes of 6.3mm diameter with a distal tip diameter of 5.0mm were constructed either in a 150mm length for accessible tissue, or a 300mm probe for laparoscopic interrogation of internal tissues in larger animal models. Both devices collect fluorescence confocal images (excitation 488 nm; emission >505 or >550 nm) comprised of 1024 x 1204 sampling points/image frame, with lateral resolution 0.7um; axial resolution 7um; FOV 475 x 475um. The operator can dynamically control imaging depth from the tissue surface to approx 250um in 4um steps via an internally integrated zaxis actuator. Further miniaturisation is achieved using an imaging contact probe based on scanning the proximal end of a high-density optical fibre bundle (~30,000 fibres) of small animal organs, albeit at lower resolution (30,000 sampling points/image). In rodent models, imaging was performed using various fluorescent staining protocols including fluorescently labelled receptor ligands, labelled antibodies, FITC-dextrans, vital dyes and labelled cells administered topically or intravenously. Abdominal organs of large animals were accessed laparoscopically and contrasted using i.v. fluorescein-sodium. Articular cartilage of sheep and pigs was fluorescently stained with calcein-AM or fluorescein. Surface and sub-surface cellular and sub-cellular details could be readily visualised in vivo at high

  12. Confocal fluorescence techniques in industrial application

    Science.gov (United States)

    Eggeling, Christian; Gall, Karsten; Palo, Kaupo; Kask, Peet; Brand, Leif

    2003-06-01

    The FCS+plus family of evaluation tools for confocal fluorescence spectroscopy, which was developed during recent years, offers a comprehensive view to a series of fluorescence properties. Originating in fluorescence correlation spectroscopy (FCS) and using similar experimental equipment, a system of signal processing methods such as fluorescence intensity distribution analysis (FIDA) was created to analyze in detail the fluctuation behavior of fluorescent particles within a small area of detection. Giving simultaneous access to molecular parameters like concentration, translational and rotational diffusion, molecular brightness, and multicolor coincidence, this portfolio was enhanced by more traditional techniques of fluorescence lifetime as well as time-resolved anisotropy determination. The cornerstones of the FCS+plus methodology will be shortly described. The inhibition of a phosphatase enzyme activity gives a comprehensive industrial application that demonstrates FCS+plus' versatility and its potential for pharmaceutical drug discovery.

  13. Evaluation and purchase of confocal microscopes: Numerous factors to consider

    Science.gov (United States)

    The purchase of a confocal microscope can be a complex and difficult decision for an individual scientist, group or evaluation committee. This is true even for scientists that have used confocal technology for many years. The task of reaching the optimal decision becomes almost i...

  14. Digital differential confocal microscopy based on spatial shift transformation.

    Science.gov (United States)

    Liu, J; Wang, Y; Liu, C; Wilson, T; Wang, H; Tan, J

    2014-11-01

    Differential confocal microscopy is a particularly powerful surface profilometry technique in industrial metrology due to its high axial sensitivity and insensitivity to noise. However, the practical implementation of the technique requires the accurate positioning of point detectors in three-dimensions. We describe a simple alternative based on spatial transformation of a through-focus series of images obtained from a homemade beam scanning confocal microscope. This digital differential confocal microscopy approach is described and compared with the traditional Differential confocal microscopy approach. The ease of use of the digital differential confocal microscopy system is illustrated by performing measurements on a 3D standard specimen. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  15. 4Pi-confocal microscopy of live cells

    Science.gov (United States)

    Bahlmann, Karsten; Jakobs, Stefan; Hell, Stefan W.

    2002-06-01

    By coherently adding the spherical wavefronts of two opposing lenses, two-photon excitation 4Pi-confocal fluorescence microscopy has achieved three-dimensional imaging with an axial resolution 3-7 times better than confocal microscopy. So far this improvement was possible only in glycerol-mounted, fixed cells. Here we report 4Pi-confocal microscopy of watery objects and its application to the imaging of live cells. Water immersion 4Pi-confocal microscopy of membrane stained live Escherichia coli bacteria attains a 4.3 fold better axial resolution as compared to the best water immersion confocal microscope. The resolution enhancement results into a vastly improved three-dimensional representation of the bacteria. The first images of live biological samples with an all-directional resolution in the 190-280 nm range are presented here, thus establishing a new resolution benchmark in live cell microscopy.

  16. Confocal Raman Microspectroscopy of Oral Streptococci

    Science.gov (United States)

    Beier, Brooke D.

    Raman spectroscopy has been used in a variety of applications throughout the field of biomedical optics. It has the ability to acquire chemically-specific information in a non-invasive manner, without the need for exogenous markers. This makes it useful in the identification of bacterial species, as well as in the study of tissues and other cells. In this work, a species identification model has been created in order to discriminate between the oral bacterial species Streptococcus sanguinis and Streptococcus mutans. These are two of the most prevalent species within the human mouth and their relative concentrations can be an indicator of a patient's oral health and risk of tooth decay. They are predominantly found within plaque on the tooth's surface. To study a simplified model for dental plaque, we have examined S. sanguinis and S. mutans grown in biofilm forms. Raman spectroscopy has been implemented here through a confocal microscope. The optical system has been equipped with computationally controlled stages to allow for automated scanning, including autofocusing to probe a consistent depth within a sample. A spectrum has been acquired from each position within a scan and sent for spectral preprocessing before being submitted for species identification. This preprocessing includes an algorithm that has been developed to remove fluorescence features from known contaminants within the confocal volume, to include signal from a fluorescent substrate. Species classification has been accomplished using a principal component score-fed logistic regression model constructed from a variety of biofilm samples that have been transferred and allowed to dry, as might occur with the study of plaque samples. This binary classification model has been validated on other samples with identical preparations. The model has also been transferred to determine the species of hydrated biofilms studied in situ. Artificially mixed biofilms have been examined to test the spatial

  17. A New Multichannel Spectral Imaging Laser Scanning Confocal Microscope

    Directory of Open Access Journals (Sweden)

    Yunhai Zhang

    2013-01-01

    Full Text Available We have developed a new multichannel spectral imaging laser scanning confocal microscope for effective detection of multiple fluorescent labeling in the research of biological tissues. In this paper, the design and key technologies of the system are introduced. Representative results on confocal imaging, 3-dimensional sectioning imaging, and spectral imaging are demonstrated. The results indicated that the system is applicable to multiple fluorescent labeling in biological experiments.

  18. Biological oscillations: Fluorescence monitoring by confocal microscopy

    Science.gov (United States)

    Chattoraj, Shyamtanu; Bhattacharyya, Kankan

    2016-09-01

    Fluctuations play a vital role in biological systems. Single molecule spectroscopy has recently revealed many new kinds of fluctuations in biological molecules. In this account, we focus on structural fluctuations of an antigen-antibody complex, conformational dynamics of a DNA quadruplex, effects of taxol on dynamics of microtubules, intermittent red-ox oscillations at different organelles in a live cell (mitochondria, lipid droplets, endoplasmic reticulum and cell membrane) and stochastic resonance in gene silencing. We show that there are major differences in these dynamics between a cancer cell and the corresponding non-cancer cell.

  19. Modeling of supermodes in coupled unstable resonators

    International Nuclear Information System (INIS)

    Townsend, S.S.

    1986-01-01

    A general formalism describing the supermodes of an array of N identical, circulantly coupled resonators is presented. The symmetry of the problem results in a reduction of the N coupled integral equations to N decoupled integral equations. Each independent integral equation defines a set of single-resonator modes derived for a hypothetical resonator whose geometry resembles a member of the real array with the exception that all coupling beams are replaced by feedback beams, each with a prescribed constant phase. A given array supermode consists of a single equivalent resonator mode appearing repetitively in each resonator with a prescribed relative phase between individual resonators. The specific array design chosen for example is that of N adjoint coupled confocal unstable resonators. The impact of coupling on the computer modeling of this system is discussed and computer results for the cases of two- and four-laser coupling are presented

  20. Dual filtered backprojection for micro-rotation confocal microscopy

    International Nuclear Information System (INIS)

    Laksameethanasan, Danai; Brandt, Sami S; Renaud, Olivier; Shorte, Spencer L

    2009-01-01

    Micro-rotation confocal microscopy is a novel optical imaging technique which employs dielectric fields to trap and rotate individual cells to facilitate 3D fluorescence imaging using a confocal microscope. In contrast to computed tomography (CT) where an image can be modelled as parallel projection of an object, the ideal confocal image is recorded as a central slice of the object corresponding to the focal plane. In CT, the projection images and the 3D object are related by the Fourier slice theorem which states that the Fourier transform of a CT image is equal to the central slice of the Fourier transform of the 3D object. In the micro-rotation application, we have a dual form of this setting, i.e. the Fourier transform of the confocal image equals the parallel projection of the Fourier transform of the 3D object. Based on the observed duality, we present here the dual of the classical filtered back projection (FBP) algorithm and apply it in micro-rotation confocal imaging. Our experiments on real data demonstrate that the proposed method is a fast and reliable algorithm for the micro-rotation application, as FBP is for CT application

  1. Fused oblique incidence reflectometry and confocal fluorescence microscopy

    Science.gov (United States)

    Risi, Matthew D.; Rouse, Andrew R.; Gmitro, Arthur F.

    2011-03-01

    Confocal microendoscopy provides real-time high resolution cellular level images via a minimally invasive procedure, but relies on exogenous fluorophores, has a relatively limited penetration depth (100 μm) and field of view (700 μm), and produces a high rate of detailed information to the user. A new catheter based multi-modal system has been designed that combines confocal imaging and oblique incidence reflectometry (OIR), which is a non-invasive method capable of rapidly extracting tissue absorption, μa, and reduced scattering, μ's, spectra from tissue. The system builds on previous developments of a custom slit-scan multi-spectral confocal microendoscope and is designed to rapidly switch between diffuse spectroscopy and confocal fluorescence imaging modes of operation. An experimental proof-of-principle catheter has been developed that consists of a fiber bundle for traditional confocal fluorescence imaging and a single OIR source fiber which is manually redirected at +/- 26 degrees. Diffusely scattered light from each orientation of the source fiber is collected via the fiber bundle, with a frame of data representing spectra collected at a range of distances from the OIR source point. Initial results with intralipid phantoms show good agreement to published data over the 550-650 nm spectral range. We successfully imaged and measured the optical properties of rodent cardiac muscle.

  2. Sub-Airy Confocal Adaptive Optics Scanning Ophthalmoscopy.

    Science.gov (United States)

    Sredar, Nripun; Fagbemi, Oladipo E; Dubra, Alfredo

    2018-04-01

    To demonstrate the viability of improving transverse image resolution in reflectance scanning adaptive optics ophthalmoscopy using sub-Airy disk confocal detection. The foveal cone mosaic was imaged in five human subjects free of known eye disease using two custom adaptive optics scanning light ophthalmoscopes (AOSLOs) in reflectance with 7.75 and 4.30 mm pupil diameters. Confocal pinholes of 0.5, 0.6, 0.8, and 1.0 Airy disk diameters (ADDs) were used in a retinal conjugate plane before the light detector. Average cone photoreceptor intensity profile width and power spectrum were calculated for the resulting images. Detected energy using a model eye was recorded for each pinhole size. The cone photoreceptor mosaic is better resolved with decreasing confocal pinhole size, with the high spatial frequency content of the images enhanced in both the large- and small-pupil AOSLOs. The average cone intensity profile width was reduced by ∼15% with the use of a 0.5 ADD pinhole when compared to a 1.0 ADD, with an accompanying reduction in signal greater than a factor of four. The use of sub-Airy disk confocal pinhole detection without increasing retinal light exposure results in a substantial improvement in image resolution at the cost of larger than predicted signal reduction. Improvement in transverse resolution using sub-Airy disk confocal detection is a practical and low-cost approach that is applicable to all point- and line-scanning ophthalmoscopes, including optical coherence tomographers.

  3. Nano-displacement measurement based on virtual pinhole confocal method

    International Nuclear Information System (INIS)

    Li, Long; Kuang, Cuifang; Xue, Yi; Liu, Xu

    2013-01-01

    A virtual pinhole confocal system based on charge-coupled device (CCD) detection and image processing techniques is built to measure axial displacement with 10 nm resolution, preeminent flexibility and excellent robustness when facing spot drifting. Axial displacement of the sample surface is determined by capturing the confocal laser spot using a CCD detector and quantifying the energy collected by programmable virtual pinholes. Experiments indicate an applicable measuring range of 1000 nm (Gaussian fitting r = 0.9902) with a highly linear range of 500 nm (linear fitting r = 0.9993). A concentric subtraction algorithm is introduced to further enhance resolution. Factors affecting measuring precision, sensitivity and signal-to-noise ratio are discussed using theoretical deductions and diffraction simulations. The virtual pinhole technique has promising applications in surface profiling and confocal imaging applications which require easily-customizable pinhole configurations. (paper)

  4. Spinning-disk confocal microscopy: present technology and future trends.

    Science.gov (United States)

    Oreopoulos, John; Berman, Richard; Browne, Mark

    2014-01-01

    Live-cell imaging requires not only high temporal resolution but also illumination powers low enough to minimize photodamage. Traditional single-point laser scanning confocal microscopy (LSCM) is generally limited by both the relatively slow speed at which it can acquire optical sections by serial raster scanning (a few Hz) and the higher potential for phototoxicity. These limitations have driven the development of rapid, parallel forms of confocal microscopy, the most popular of which is the spinning-disk confocal microscope (SDCM). Here, we briefly introduce the SDCM technique, discuss its strengths and weaknesses against LSCM, and update the reader on some recent developments in SDCM technology that improve its performance and expand its utility for life science research now and in the future. © 2014 Elsevier Inc. All rights reserved.

  5. A Simple Model for Nonlinear Confocal Ultrasonic Beams

    Science.gov (United States)

    Zhang, Dong; Zhou, Lin; Si, Li-Sheng; Gong, Xiu-Fen

    2007-01-01

    A confocally and coaxially arranged pair of focused transmitter and receiver represents one of the best geometries for medical ultrasonic imaging and non-invasive detection. We develop a simple theoretical model for describing the nonlinear propagation of a confocal ultrasonic beam in biological tissues. On the basis of the parabolic approximation and quasi-linear approximation, the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is solved by using the angular spectrum approach. Gaussian superposition technique is applied to simplify the solution, and an analytical solution for the second harmonics in the confocal ultrasonic beam is presented. Measurements are performed to examine the validity of the theoretical model. This model provides a preliminary model for acoustic nonlinear microscopy.

  6. Multiple infrared bands absorber based on multilayer gratings

    Science.gov (United States)

    Liu, Xiaoyi; Gao, Jinsong; Yang, Haigui; Wang, Xiaoyi; Guo, Chengli

    2018-03-01

    The present study offers an Ag/Si multilayer-grating microstructure based on an Si substrate. The microstructure exhibits designable narrowband absorption in multiple infrared wavebands, especially in mid- and long-wave infrared atmospheric windows. We investigate its resonance mode mechanism, and calculate the resonance wavelengths by the Fabry-Perot and metal-insulator-metal theories for comparison with the simulation results. Furthermore, we summarize the controlling rules of the absorption peak wavelength of the microstructure to provide a new method for generating a Si-based device with multiple working bands in infrared.

  7. Lineshape-asymmetry elimination in weak atomic transitions driven by an intense standing wave field

    Science.gov (United States)

    Antypas, Dionysios; Fabricant, Anne; Budker, Dmitry

    2018-05-01

    Owing to the ac-Stark effect, the lineshape of a weak optical transition in an atomic beam can become significantly distorted, when driven by an intense standing wave field. We use an Yb atomic beam to study the lineshape of the 6s2 1S0 -> 5d6s 3D1 transition, which is excited with light circulating in a Fabry-Perot resonator. We demonstrate two methods to avoid the distortion of the transition profile. Of these, one relies on the operation of the resonator in multiple longitudinal modes, and the other in multiple transverse modes.

  8. A Metamaterial-Inspired Approach to RF Energy Harvesting

    Science.gov (United States)

    Fowler, Clayton; Zhou, Jiangfeng

    2016-03-01

    We demonstrate an RF energy harvesting rectenna design based on a metamaterial perfect absorber (MPA). With the embedded Schottky diodes, the rectenna converts captured RF energy to DC currents. The Fabry-Perot cavity resonance of the MPA greatly improves the amount of energy captured and hence improves the rectification efficiency. Furthermore, the FP resonance exhibits a high Q-factor and significantly increases the voltage across the Schottky diodes. This leads to a factor of 16 improvement of RF-DC conversion efficiency at ambient intensity level.

  9. Confocal Raman microscopy for identification of bacterial species in biofilms

    Science.gov (United States)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2011-03-01

    Implemented through a confocal microscope, Raman spectroscopy has been used to distinguish between biofilm samples of two common oral bacteria species, Streptococcus sanguinis and mutans, which are associated with healthy and cariogenic plaque, respectively. Biofilms of these species are studied as a model of dental plaque. A prediction model has been calibrated and validated using pure biofilms. This model has been used to identify the species of transferred and dehydrated samples (much like a plaque scraping) as well as hydrated biofilms in situ. Preliminary results of confocal Raman mapping of species in an intact two-species biofilm will be shown.

  10. Confocal microscopy as an early relapse marker for acanthamoeba keratitis.

    Science.gov (United States)

    Daas, Loay; Viestenz, Arne; Schnabel, Philipp Albert; Fries, Fabian N; Hager, Tobias; SzentmÁry, Nora; Seitz, Berthold

    2018-01-01

    Acanthameoba keratitis is a serious ophthalmological condition with a potentially vision-threatening prognosis. Early diagnosis and recognition of relapse, and the detection of persistent Acanthamoeba cysts, are essential for informing the prognosis and managing the condition. We suggest the use of in vivo confocal microscopy not only to identify the early signs of relapse after keratoplasty in patients with Acanthamoeba keratitis, but also as an additional follow-up tool after antimicrobial crosslinking. This study shows that in vivo confocal microscopy is, in experienced hands, a quick and reliable diagnostic tool. Clin. Anat. 31:60-63, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Spectral confocal reflection microscopy using a white light source

    Science.gov (United States)

    Booth, M.; Juškaitis, R.; Wilson, T.

    2008-08-01

    We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.

  12. Microscopia confocal in vivo na cistinose: relato de caso

    Directory of Open Access Journals (Sweden)

    Victor Gustavo

    2004-01-01

    Full Text Available A cistinose é doença autossômica recessiva rara caracterizada pelo acúmulo do aminoácido cistina livre dentro dos lisossomos e geralmente é fatal na primeira década de vida na ausência de transplante renal. O presente estudo tem por objetivo relatar os achados da microscopia confocal in vivo em paciente adulto com cistinose infantil. O exame de microscopia confocal in vivo revelou que há diferenças quanto à intensidade de acometimento, tamanho e forma dos depósitos nas diversas camadas corneanas.

  13. An invertebrate embryologist's guide to routine processing of confocal images.

    Science.gov (United States)

    von Dassow, George

    2014-01-01

    It is almost impossible to use a confocal microscope without encountering the need to transform the raw data through image processing. Adherence to a set of straightforward guidelines will help ensure that image manipulations are both credible and repeatable. Meanwhile, attention to optimal data collection parameters will greatly simplify image processing, not only for convenience but for quality and credibility as well. Here I describe how to conduct routine confocal image processing tasks, including creating 3D animations or stereo images, false coloring or merging channels, background suppression, and compressing movie files for display.

  14. Optomechatronics Design and Control for Confocal Laser Scanning Microscopy

    NARCIS (Netherlands)

    Yoo, H.W.

    2015-01-01

    Confocal laser scanning microscopy (CLSM) is considered as one of the major advancements in microscopy in the last century and is widely accepted as a 3D fluorescence imaging tool for biological studies. For the emerging biological questions CLSM requires fast imaging to detect rapid biological

  15. Evaluation and purchase of confocal microscopes: numerous factors to consider.

    Science.gov (United States)

    Zucker, Robert M; Chua, Michael

    2010-10-01

    The purchase of a confocal microscope is a difficult decision. Many factors need to be considered, which include hardware, software, company, support, service, and price. These issues are discussed to help guide the purchasing process. © 2010 by John Wiley & Sons, Inc.

  16. Confocal microscopy patterns in nonmelanoma skin cancer and clinical applications.

    Science.gov (United States)

    González, S; Sánchez, V; González-Rodríguez, A; Parrado, C; Ullrich, M

    2014-06-01

    Reflectance confocal microscopy is currently the most promising noninvasive diagnostic tool for studying cutaneous structures between the stratum corneum and the superficial reticular dermis. This tool gives real-time images parallel to the skin surface; the microscopic resolution is similar to that of conventional histology. Numerous studies have identified the main confocal features of various inflammatory skin diseases and tumors, demonstrating the good correlation of these features with certain dermatoscopic patterns and histologic findings. Confocal patterns and diagnostic algorithms have been shown to have high sensitivity and specificity in melanoma and nonmelanoma skin cancer. Possible present and future applications of this noninvasive technology are wide ranging and reach beyond its use in noninvasive diagnosis. This tool can also be used, for example, to evaluate dynamic skin processes that occur after UV exposure or to assess tumor response to noninvasive treatments such as photodynamic therapy. We explain the characteristic confocal features found in the main nonmelanoma skin tumors and discuss possible applications for this novel diagnostic technique in routine dermatology practice. Copyright © 2012 Elsevier España, S.L. and AEDV. All rights reserved.

  17. Nonlinear Image Restoration in Confocal Microscopy : Stability under Noise

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.

    1995-01-01

    In this paper we study the noise stability of iterative algorithms developed for attenuation correction in Fluorescence Confocal Microscopy using FT methods. In each iteration the convolution of the previous estimate is computed. It turns out that the estimators are robust to noise perturbation.

  18. Confocal stereology: an efficient tool for measurement of microscopic structures

    Czech Academy of Sciences Publication Activity Database

    Kubínová, Lucie; Janáček, Jiří

    2015-01-01

    Roč. 360, č. 1 (2015), s. 13-28 ISSN 0302-766X R&D Projects: GA MŠk(CZ) LH13028 Institutional support: RVO:67985823 Keywords : 3-D images * confocal microscopy * geometrical characteristics * spatial probes * stereology Subject RIV: EA - Cell Biology Impact factor: 2.948, year: 2015

  19. Improvement in volume estimation from confocal sections after image deconvolution

    Czech Academy of Sciences Publication Activity Database

    Difato, Francesco; Mazzone, F.; Scaglione, S.; Fato, M.; Beltrame, F.; Kubínová, Lucie; Janáček, Jiří; Ramoino, P.; Vicidomini, G.; Diaspro, A.

    2004-01-01

    Roč. 64, č. 2 (2004), s. 151-155 ISSN 1059-910X Institutional research plan: CEZ:AV0Z5011922 Keywords : confocal microscopy * image deconvolution * point spread function Subject RIV: EA - Cell Biology Impact factor: 2.609, year: 2004

  20. Analysis of endoplasmic reticulum of tobacco cells using confocal microscopy

    Czech Academy of Sciences Publication Activity Database

    Radochová, Barbora; Janáček, Jiří; Schwarzerová, K.; Demjénová, E.; Tomori, Z.; Karen, Petr; Kubínová, Lucie

    2005-01-01

    Roč. 24, č. 11 (2005), s. 181-185 ISSN 1580-3139 R&D Projects: GA AV ČR(CZ) KJB6011309 Institutional research plan: CEZ:AV0Z50110509 Keywords : confocal microscopy * endoplasmic reticulum * image analysis Subject RIV: EA - Cell Biology

  1. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: SPECTROSCOPY AND FOUNDATIONS FOR QUANTITATION

    Science.gov (United States)

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The reliability of the CLSM to obtain specific measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. For man...

  2. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR CALIBRATION, QUANTITATION AND SPECTROSCOPY

    Science.gov (United States)

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of emitted signals. The accuracy of these measurements demands that...

  3. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR MEASUREMENTS, QUANTITATION AND SPECTROSCOPY

    Science.gov (United States)

    The confocal laser-scanning microscopy (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of the emitted signal. The accuracy of these measurements demands t...

  4. Measurement of chemical and geometrical surface changes in a wear track by a confocal height sensor and confocal Raman spectroscopy

    NARCIS (Netherlands)

    Winogrodzka, A.; Valefi, Mahdiar; de Rooij, Matthias B.; Schipper, Dirk J.

    2014-01-01

    Geometrical and chemical changes in the wear track can cause a drift in friction level. In this paper, chemical and geometrical surface changes in wear tracks are analyzed. For this, a setup with a confocal height sensor was developed to measure the local height changes on the wear track, combined

  5. Three-Dimensional Visualization of Interfacial Phenomena Using Confocal Microscopy

    Science.gov (United States)

    Shieh, Ian C.

    Surfactants play an integral role in numerous functions ranging from stabilizing the emulsion in a favorite salad dressing to organizing the cellular components that make life possible. We are interested in lung surfactant, which is a mixture of lipids and proteins essential for normal respiration because it modulates the surface tension of the air-liquid interface of the thin fluid lining in the lungs. Through this surface tension modulation, lung surfactant ensures effortless lung expansion and prevents lung collapse during exhalation, thereby effecting proper oxygenation of the bloodstream. The function of lung surfactant, as well as numerous interfacial lipid systems, is not solely dictated by the behavior of materials confined to the two-dimensional interface. Rather, the distributions of materials in the liquid subphase also greatly influence the performance of interfacial films of lung surfactant. Therefore, to better understand the behavior of lung surfactant and other interfacial lipid systems, we require a three-dimensional characterization technique. In this dissertation, we have developed a novel confocal microscopy methodology for investigating the interfacial phenomena of surfactants at the air-liquid interface of a Langmuir trough. Confocal microscopy provides the excellent combination of in situ, fast, three-dimensional visualization of multiple components of the lung surfactant system that other characterization techniques lack. We detail the solutions to the numerous challenges encountered when imaging a dynamic air-liquid interface with a high-resolution technique like confocal microscopy. We then use confocal microscopy to elucidate the distinct mechanisms by which a polyelectrolyte (chitosan) and nonadsorbing polymer (polyethylene glycol) restore the function of lung surfactant under inhibitory conditions mimicking the effects of lung trauma. Beyond this physiological model, we also investigate several one- and two-component interfacial films

  6. Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system

    Science.gov (United States)

    Kelner, Roy; Katz, Barak; Rosen, Joseph

    2015-01-01

    We propose a new type of confocal microscope using Fresnel incoherent correlation holography (FINCH). Presented here is a confocal configuration of FINCH using a phase pinhole and point illumination that is able to suppress out-of-focus information from the recorded hologram and hence combine the super-resolution capabilities of FINCH with the sectioning capabilities of confocal microscopy. PMID:26413560

  7. Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system

    OpenAIRE

    Kelner, Roy; Katz, Barak; Rosen, Joseph

    2014-01-01

    We propose a new type of confocal microscope using Fresnel incoherent correlation holography (FINCH). Presented here is a confocal configuration of FINCH using a phase pinhole and point illumination that is able to suppress out-of-focus information from the recorded hologram and hence combine the super-resolution capabilities of FINCH with the sectioning capabilities of confocal microscopy.

  8. Zeno dynamics in wave-packet diffraction spreading

    Energy Technology Data Exchange (ETDEWEB)

    Porras, Miguel A. [Departamento de Fisica Aplicada, Universidad Politecnica de Madrid, Rios Rosas 21, ES-28003 Madrid (Spain); Luis, Alfredo; Gonzalo, Isabel [Departamento de Optica, Facultad de Ciencias Fisicas, Universidad Complutense, ES-28040 Madrid (Spain); Sanz, Angel S. [Instituto de Fisica Fundamental-CSIC, Serrano 123, ES-28006 Madrid (Spain)

    2011-11-15

    We analyze a simple and feasible practical scheme displaying Zeno, anti-Zeno, and inverse-Zeno effects in the observation of wave-packet spreading caused by free evolution. The scheme is valid both in spatial diffraction of classical optical waves and in time diffraction of a quantum wave packet. In the optical realization, diffraction spreading is observed by placing slits between a light source and a light-power detector. We show that the occurrence of Zeno or anti-Zeno effects depends just on the frequency of observations between the source and detector. These effects are seen to be related to the diffraction mode theory in Fabry-Perot resonators.

  9. Optofluidic Microlasers based on Femtosecond Micromachining Technology

    Directory of Open Access Journals (Sweden)

    Simoni F.

    2017-08-01

    Full Text Available We present the different optofluidic lasers which have been realized using the Femtosecond Micromachining technique to fabricate the monolithic optofluidic structures in glass chips. We show how the great flexibility of this 3D technique allows getting different kind of optical cavities. The most recent devices fabricated by this technique as ring shaped and Fabry-Perot resonators show excellent emission performances.We also point out how the addition of the inkjet printing technique provides further opportunities in realizing optofluidic chips.

  10. Spontaneous dressed-state polarization in the strong driving regime of cavity QED.

    Science.gov (United States)

    Armen, Michael A; Miller, Anthony E; Mabuchi, Hideo

    2009-10-23

    We utilize high-bandwidth phase-quadrature homodyne measurement of the light transmitted through a Fabry-Perot cavity, driven strongly and on resonance, to detect excess phase noise induced by a single intracavity atom. We analyze the correlation properties and driving-strength dependence of the atom-induced phase noise to establish that it corresponds to the long-predicted phenomenon of spontaneous dressed-state polarization. Our experiment thus provides a demonstration of cavity quantum electrodynamics in the strong-driving regime in which one atom interacts strongly with a many-photon cavity field to produce novel quantum stochastic behavior.

  11. Ellipsoidal diffraction grating as output coupler for quasi-optical gyrotrons

    International Nuclear Information System (INIS)

    Hogge, J.P.; Cao, H.; Tran, T.M.; Tran, M.Q.; Paris, P.J.; Kasparek, W.

    1991-01-01

    The use of a diffraction grating arranged in the -1 Littrow mount as an output coupler for a quasi-optical Fabry-Perot resonator at microwave frequencies (100 GHz) was suggested in 1990. A planar grating with curvilinear grooves (in order to match the Littrow condition everywhere on the surface for a given Gaussian beam) gives a power coupling efficiency of 85% which is limited by the depolarization but gave approximately the same global efficiency because of distortion. We report low power tests on an improvement of the second scheme, based on curved grooves on an ellipsoidal surface, which gives a global efficiency of 94%. (author) 3 figs., 3 refs

  12. Application of UDWDM technology in FTTH networks

    Science.gov (United States)

    Lamperski, Jan; Stepczak, Piotr

    2015-12-01

    In the paper we presented results of investigation of an original ultra dense wavelength division technology based on optical comb generator and its implementation for FTTH networks. The optical comb generator used a ring configuration with an acousto-optic frequency shifter (AOFS) which ensured obtaining very stable optical carrier frequency distances. Properties of an optical comb generator module determined stability of the UDWDM transmitter. Key properties of a selective components based on all fiber Fabry-Perot resonant cavity were presented. Operation of direct and coherent detection DWDM systems were shown. New configurations of FTTH UDWDM architecture have been proposed.

  13. Electronically controllable spoof localized surface plasmons

    Science.gov (United States)

    Zhou, Yong Jin; Zhang, Chao; Yang, Liu; Xun Xiao, Qian

    2017-10-01

    Electronically controllable multipolar spoof localized surface plasmons (LSPs) are experimentally demonstrated in the microwave frequencies. It has been shown that half integer order LSPs modes exist on the corrugated ring loaded with a slit, which actually arise from the Fabry-Perot-like resonances. By mounting active components across the slit in the corrugated rings, electronic switchability and tunability of spoof LSPs modes have been accomplished. Both simulated and measured results demonstrate efficient dynamic control of the spoof LSPs. These elements may form the basis of highly integrated programmable plasmonic circuits in microwave and terahertz regimes.

  14. Backscattering from width variations in quasi-one-dimensional strips of topological insulators

    International Nuclear Information System (INIS)

    Takagaki, Y

    2012-01-01

    Conductance modulations in wide-narrow-wide electron waveguides constructed from a two-dimensional topological insulator are investigated numerically. The conductance exhibits the Fabry-Perot oscillation at the opening of the helical edge states in the narrow segment when the potential offset imposed in the segment is varied. The quantum multiple reflections between the two ends of the narrow segment manifested by the oscillation demonstrate that the topological states are not protected from the scattering caused by an abrupt change in the channel width. The bulk states do not affect the vulnerability against the geometry scattering but they give rise to resonant transmission in an unconventional fashion.

  15. Technology on the storage of laser power

    International Nuclear Information System (INIS)

    Urakawa, Junji

    2001-01-01

    I report the technology on the storage of laser power using Fabry-Perot Optical Cavity. This technology is applicable for the generation of high brightness X-ray with the combination of compact electron linac or small storage ring in which about 100 MeV electron beam with normalized emittance of 10 -5 m is controlled. The distance of two concave mirrors with high reflectivity is controlled within sub-nm is essential to keep the resonance condition for the storage of laser power. I also report the possibility on several kind of applications and the status of this technology. (author)

  16. Noise considerations in millimeter-wave spectrometers

    International Nuclear Information System (INIS)

    Zoellner, W.D.; Kolbe, W.F.; Leskovar, B.

    1978-12-01

    An improved version of a microwave spectrometer operating in the vicinity of 70 GHz is described. The spectrometer, which incorporates a Fabry-Perot resonator and superheterodyne detection for high sensitivity is designed for the detection of gaseous pollutants and other atmospheric constituents. The instrument is capable of detecting polar molecules with absorption coefficients as small as 2 x 10 -9 cm -1 . For sulphur dioxide diluted in air, this sensitivity corresponds to a detection limit of 1.2 ppm without preconcentration and with a time constant of 1 second. Measurements and analysis of the noise contributions limiting the sentivity are presented

  17. Demonstration of slot-waveguide structures on silicon nitride / silicon oxide platform.

    Science.gov (United States)

    Barrios, C A; Sánchez, B; Gylfason, K B; Griol, A; Sohlström, H; Holgado, M; Casquel, R

    2007-05-28

    We report on the first demonstration of guiding light in vertical slot-waveguides on silicon nitride/silicon oxide material system. Integrated ring resonators and Fabry-Perot cavities have been fabricated and characterized in order to determine optical features of the slot-waveguides. Group index behavior evidences guiding and confinement in the low-index slot region at O-band (1260-1370nm) telecommunication wavelengths. Propagation losses of <20 dB/cm have been measured for the transverse-electric mode of the slot-waveguides.

  18. Mode conversion in metal-insulator-metal waveguide with a shifted cavity

    Science.gov (United States)

    Wang, Yueke; Yan, Xin

    2018-01-01

    We propose a method, which is utilized to achieve the plasmonic mode conversion in metal-insulator-metal (MIM) waveguide, theoretically. Our proposed structure is composed of bus waveguides and a shifted cavity. The shifted cavity can choose out a plasmonic mode (a- or s-mode) when it is in Fabry-Perot (FP) resonance. The length of the shifted cavity L is carefully chosen, and our structure can achieve the mode conversion between a- and s-mode in the communication region. Besides, our proposed structure can also achieve plasmonic mode-division multiplexing. All the numerical simulations are carried on by the finite element method to verify our design.

  19. Si Substrate-Based Meta materials for Ultra broadband Perfect Absorption in Visible Regime

    International Nuclear Information System (INIS)

    Han, Q.; Jin, L.; Fu, Y.; Yu, W.; Yu, W.

    2014-01-01

    We report the broadband efficient light absorbing property of a structure of quadrangular frustum pyramid array in visible regime. The structure can absorb light efficiently with an average absorptivity of 0.98 over the whole visible waveband. In addition, it is found that this kind of super light absorbing can maintain an average of 0.9 for a wide incident angle range. The perfect absorbing property of the meta material-based nano ring array is attributed to the effect of the Fabry-Perot resonance. The structure is possible to be used as a type of Si photonics devices in future photonic circuits

  20. Photodetachment spectroscopy and microscopy; measurement of the photodetachment cross section of H- at 1064 nm by the observation of the asymptotic behaviour in the saturated regime

    International Nuclear Information System (INIS)

    Vandevraye, Mickael

    2013-01-01

    In this thesis, we initiate the demonstration, at a reduced scale, of the feasibility of the almost-complete laser photodetachment of negative hydrogen ion beams in a Fabry-Perot optical cavity for future neutral beam injectors for the heating of fusion power plants plasmas.We develop a new method to measure a photodetachment cross section, the knowledge of which at the exciting wavelength is needed to scale the Fabry-Perot cavity, based on the observation of the saturation in a pulsed lighting regime. The analytical calculus of the detachment signal growth produced while illuminating a negative ion beam with a Gaussian laser pulse bring out a mathematical constraint on the required flux to pass through the saturated regime. This constraint is the signature of the transition toward the saturation for all experiment carried out in Gaussian beam and for all linear light-matter interaction processes. With this method, we measure the photodetachment cross section of H - at 1064 nm - selected wavelength for future neutral beam injectors - in slight disagreement with theoretical predictions.To reduce the technological requirement on the Fabry-Perot cavity and the laser, we study Landau resonances which appear in the photodetachment spectrum. Locking the laser on one of these resonances would allow increasing the photodetachment probability at a given flux.We also present our phosphorus, selenium and tin electron affinity measurements carried out with the photodetachment microscope. The photodetachment microscopy experiment of phosphorus is the first one where the neutral atom is left in an excited term. (author) [fr

  1. Photodetachment spectroscopy and microscopy, measurement of the photodetachment cross section of H- at 1064 nm by the observation of the asymptotic behaviour in the saturated regime

    International Nuclear Information System (INIS)

    Vandevraye, M.

    2013-01-01

    In this thesis, we initiate the demonstration, at a reduced scale, of the feasibility of the almost-complete laser photodetachment of negative hydrogen ion beams in a Fabry-Perot optical cavity for future neutral beam injectors for the heating of fusion power plants plasmas. We develop a new method to measure a photodetachment cross section, the knowledge of which at the exciting wavelength is needed to scale the Fabry-Perot cavity, based on the observation of the saturation in a pulsed lighting regime. The analytical calculus of the detachment signal growth produced while illuminating a negative ion beam with a Gaussian laser pulse bring out a mathematical constraint on the required flux to pass through the saturated regime. This constraint is the signature of the transition toward the saturation for all experiment carried out in Gaussian beam and for all linear light-matter interaction processes. With this method, we measure the photodetachment cross section of H - at 1064 nm - selected wavelength for future neutral beam injectors - we get 5.0*10 -21 m 2 in slight disagreement with theoretical predictions. To reduce the technological requirement on the Fabry-Perot cavity and the laser, we study Landau resonances which appear in the photodetachment spectrum. Locking the laser on one of these resonances would allow increasing the photodetachment probability at a given flux. We also present our phosphorus, selenium and tin electron affinity measurements carried out with the photodetachment microscope. We get the following values: 6021.81(8) cm -1 for P, 16297.276(9) cm -1 for Se and 8969.447(13) cm -1 . The photodetachment microscopy experiment of phosphorus is the first one where the neutral atom is left in an excited term. (author)

  2. Surface-micromachined Bragg Reflectors Based on Multiple Airgap/SiO2 Layers for CMOS-compatible Fabry-perot Filters in the UV-visible Spectral Range

    NARCIS (Netherlands)

    Ghaderi, M.; Ayerden, N.P.; De Graaf, G.; Wolffenbuttel, R.F.

    2014-01-01

    In CMOS-compatible optical filter designs, SiO2 is often used as the low-index material, limiting the optical contrast (nHi/nLo) to about 2. Using the air as low-index material improves the optical contrast by about 50%, thus increasing the reflectivity and bandwidth at a given design complexity.

  3. Climatologies of nighttime upper thermospheric winds measured by ground-based Fabry-Perot interferometers during geomagnetically quiet conditions: 2. High-latitude circulation and interplanetary magnetic field dependence

    DEFF Research Database (Denmark)

    Emmert, J.T.; Hernandez, G.; Jarvis, M.J.

    2006-01-01

    We analyze upper thermospheric (similar to 250 km) nighttime horizontal neutral wind patterns, during geomagnetically quiet (Kp S), Halley (76 degrees S, 27 degrees W), Millstone Hill (43 degrees N, 72 degrees W), Sondre...

  4. How the confocal laser scanning microscope entered biological research.

    Science.gov (United States)

    Amos, W B; White, J G

    2003-09-01

    A history of the early development of the confocal laser scanning microscope in the MRC Laboratory of Molecular Biology in Cambridge is presented. The rapid uptake of this technology is explained by the wide use of fluorescence in the 80s. The key innovations were the scanning of the light beam over the specimen rather than vice-versa and a high magnification at the level of the detector, allowing the use of a macroscopic iris. These were followed by an achromatic all-reflective relay system, a non-confocal transmission detector and novel software for control and basic image processing. This design was commercialized successfully and has been produced and developed over 17 years, surviving challenges from alternative technologies, including solid-state scanning systems. Lessons are pointed out from the unusual nature of the original funding and research environment. Attention is drawn to the slow adoption of the instrument in diagnostic medicine, despite promising applications.

  5. EUS-Guided Needle-Based Confocal Laser Endomicroscopy

    DEFF Research Database (Denmark)

    Bhutani, Manoop S; Koduru, Pramoda; Joshi, Virendra

    2015-01-01

    Endoscopic ultrasound (EUS) has emerged as an excellent tool for imaging the gastrointestinal tract, as well as surrounding structures. EUS-guided fine-needle aspiration (EUS-FNA) has become the standard of care for the tissue sampling of a variety of masses and lymph nodes within and around...... the gut, providing further diagnostic and staging information. Confocal laser endomicroscopy (CLE) is a novel endoscopic method that enables imaging at a subcellular level of resolution during endoscopy, allowing up to 1000-fold magnification of tissue and providing an optical biopsy. A new procedure...... that has been developed in the past few years is needle-based confocal laser endomicroscopy (nCLE), which involves a mini-CLE probe that can be passed through a 1 9-gauge needle during EUS-FNA. This enables the real-time visualization of tissue at a microscopic level, with the potential to further improve...

  6. Assessment of nerve ultrastructure by fibre-optic confocal microscopy.

    Science.gov (United States)

    Cushway, T R; Lanzetta, M; Cox, G; Trickett, R; Owen, E R

    1996-01-01

    Fibre-optic technology combined with confocality produces a microscope capable of optical thin sectioning. In this original study, tibial nerves have been stained in a rat model with a vital dye, 4-(4-diethylaminostyryl)-N-methylpyridinium iodide, and analysed by fibre-optic confocal microscopy to produce detailed images of nerve ultrastructure. Schwann cells, nodes of Ranvier and longitudinal myelinated sheaths enclosing axons were clearly visible. Single axons appeared as brightly staining longitudinal structures. This allowed easy tracing of multiple signal axons within the nerve tissue. An accurate measurement of internodal lengths was easily accomplished. This technique is comparable to current histological techniques, but does not require biopsy, thin sectioning or tissue fixing. This study offers a standard for further in vivo microscopy, including the possibility of monitoring the progression of nerve regeneration following microsurgical neurorraphy.

  7. Inverted follicular keratosis: dermoscopic and reflectance confocal microscopic features.

    Science.gov (United States)

    Armengot-Carbo, M; Abrego, A; Gonzalez, T; Alarcon, I; Alos, L; Carrera, C; Malvehy, J; Puig, S

    2013-01-01

    Inverted follicular keratosis (IFK) is a rare benign tumor which usually appears as a firm papule on the face. The diagnosis is generally made by histopathology because the clinical appearance is difficult to differentiate from other lesions. Dermoscopic features of IFK have not been established to date. Herein we describe the dermoscopic findings of 4 cases of IFK. Radial peripheral hairpin vessels surrounded by a whitish halo arranged around a central white-yellowish amorphous area were observed in 3 cases, and glomerular vessels were present in the central area of one of them. The fourth case also presented a central white amorphous area but showed arborizing vessels. Reflectance confocal microscopy (available in 1 case) revealed a broadened honeycomb pattern, epidermal projections and hairpin and glomerular vessels. To our knowledge this is the first case series describing the dermoscopic features of inverted follicular keratosis and the first confocal microscopy description of this entity.

  8. Confocal Microscope Alignment of Nanocrystals for Coherent Diffraction Imaging

    International Nuclear Information System (INIS)

    Beitra, Loren; Watari, Moyu; Matsuura, Takashi; Shimamoto, Naonobu; Harder, Ross; Robinson, Ian

    2010-01-01

    We have installed and tested an Olympus LEXT confocal microscope at the 34-ID-C beamline of the Advanced Photon Source (APS). The beamline is for Coherent X-ray Diffraction (CXD) experiments in which a nanometre-sized crystal is aligned inside a focussed X-ray beam. The microscope was required for three-dimensional (3D) sample alignment to get around sphere-of-confusion issues when locating Bragg peaks in reciprocal space. In this way, and by use of strategic sample preparations, we have succeeded in measuring six Bragg peaks from a single 200 nm gold crystal and obtained six projections of its internal displacement field. This enables the clear identification of stacking-fault bands within the crystal. The confocal alignment method will allow a full determination of the strain tensor provided three or more Bragg reflections from the same crystal are found.

  9. Design considerations of a real-time clinical confocal microscope

    Science.gov (United States)

    Masters, Barry R.

    1991-06-01

    A real-time clinical confocal light microscope provides the ophthalmologist with a new tool for the observation of the cornea and the ocular lens. In addition, the ciliary body, the iris, and the sclera can be observed. The real-time light microscopic images have high contrast and resolution. The transverse resolution is about one half micron and the range resolution is one micron. The following observations were made with visible light: corneal epithelial cells, wing cells, basal cells, Bowman's membrane, nerve fibers, basal lamina, fibroblast nuclei, Descemet's membrane, endothelial cells. Observation of the in situ ocular lens showed lens capsule, lens epithelium, lens fibrils, the interior of lens fibrils. The applications of the confocal microscope include: eye banking, laser refractive surgery, observation of wound healing, observation of the iris, the sciera, the ciliary body, the ocular lens, and the intraocular lens. Digital image processing can produce three-dimensional reconstructions of the cornea and the ocular lens.

  10. Fiscal 2000 project for development of international standards for supporting novel industries. Standardization of fine ceramics test and evaluation method for communication equipment; 2000 nendo shinki sangyo shiengata kokusai hyojun kaihatsu jigyo. Tsushinkiki yo fain ceramics no shiken hyoka hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Research and development is carried out aiming at the international standardization of methods for evaluating electric properties such as dielectric constant, dielectric loss, and surface resistance for fine ceramics for use in the high-frequency and ultrahigh-frequency bands. In this fiscal year, in the effort to establish an accurate measurement method for millimeter wave complex specific inductive capacity, the Fabry-Perot resonator was improved, and found to be capable of measuring 60-110 GHz. Efforts were made to improve on the accuracy of the cavity resonator excited by coaxial cable, for which various types of resonators were fabricated. For the calibration of evaluation apparatuses such as the Fabry-Perot resonator, cavity resonator excited by coaxial cable, and dielectric resonator excited by non-radiative waveguide, sapphire single crystals and PTFE (polytetrafluoroethylene) were selected as reference materials for measuring complex dielectric constant, and their dimensions and specifications were determined. In the study of the evaluation of basic surface properties, surface irregularity of the silver electrode was accurately measured by use of a thin-film surface geometry measurement apparatus, and the presence of a strong correlation between the jig silver electrode surface coarseness and the microwave band effective conductivity. (NEDO)

  11. Multi-spectral confocal microendoscope for in-vivo imaging

    Science.gov (United States)

    Rouse, Andrew Robert

    The concept of in-vivo multi-spectral confocal microscopy is introduced. A slit-scanning multi-spectral confocal microendoscope (MCME) was built to demonstrate the technique. The MCME employs a flexible fiber-optic catheter coupled to a custom built slit-scan confocal microscope fitted with a custom built imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The design and performance of the miniature objective and focus assembly are discussed. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3mum lateral resolution and 30mum axial resolution. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible chromatic range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 7nm to 18nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersive power of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. Recent data from the grayscale imaging mode are presented. Preliminary multi-spectral results from phantoms, cell cultures, and excised human tissue are presented to demonstrate the potential of in-vivo multi-spectral imaging.

  12. Reflectance confocal microscopy features of thin versus thick melanomas.

    Science.gov (United States)

    Kardynal, Agnieszka; Olszewska, Małgorzata; de Carvalho, Nathalie; Walecka, Irena; Pellacani, Giovanni; Rudnicka, Lidia

    2018-01-24

    In vivo reflectance confocal microscopy (RCM) plays an increasingly important role in differential diagnosis of melanoma. The aim of the study was to assess typical confocal features of thin (≤1mm according to Breslow index) versus thick (>1mm) melanomas. 30 patients with histopathologically confirmed cutaneous melanoma were included in the study. Reflectance confocal microscopy was performed with Vivascope equipment prior to excision. Fifteen melanomas were thin (Breslow thickness ≤ 1mm) and 15 were thick melanomas (Breslow thickness >1mm). In the RCM examination, the following features were more frequently observed in thin compared to thick melanomas: edged papillae (26.7% vs 0%, p=0.032) and areas with honeycomb or cobblestone pattern (33.3% vs 6.7%, p=0.068). Both features are present in benign melanocytic lesions, so in melanoma are good prognostic factors. The group of thick melanomas compared to the group of thin melanomas in the RCM images presented with greater frequency of roundish cells (100% vs 40%, p=0.001), non-edged papillae (100% vs 60%, p=0.006), numerous pagetoid cells (73.3% vs 33.3%, p=0.028), numerous atypical cells at dermal-epidermal junction (53.3% vs 20%, p=0.058) and epidermal disarray (93.3% vs 66.7%, p=0.068). Non-invasive imaging methods helps in deepening of knowledge about the evolution and biology of melanoma. The most characteristic features for thin melanomas in confocal examination are: fragments of cobblestone or honeycomb pattern and edged papillae (as good prognostic factors). The features of thick melanomas in RCM examination are: roundish cells, non-edged papillae, numerous pagetoid cells at dermal-epidermal junction and epidermal disarray.

  13. Confocal endomicroscopy: Is it time to move on?

    Science.gov (United States)

    Robles-Medranda, Carlos

    2016-01-10

    Confocal laser endomicroscopy permits in-vivo microscopy evaluation during endoscopy procedures. It can be used in all the parts of the gastrointestinal tract and includes: Esophagus, stomach, small bowel, colon, biliary tract through and endoscopic retrograde cholangiopancreatography and pancreas through needles during endoscopic ultrasound procedures. Many researches demonstrated a high correlation of results between confocal laser endomicroscopy and histopathology in the diagnosis of gastrointestinal lesions; with accuracy in about 86% to 96%. Moreover, in spite that histopathology remains the gold-standard technique for final diagnosis of any diseases; a considerable number of misdiagnosis rate could be present due to many factors such as interpretation mistakes, biopsy site inaccuracy, or number of biopsies. Theoretically; with the diagnostic accuracy rates of confocal laser endomicroscopy could help in a daily practice to improve diagnosis and treatment management of the patients. However, it is still not routinely used in the clinical practice due to many factors such as cost of the procedure, lack of codification and reimbursement in some countries, absence of standard of care indications, availability, physician image-interpretation training, medico-legal problems, and the role of the pathologist. These limitations are relative, and solutions could be found based on new researches focused to solve these barriers.

  14. Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics.

    Science.gov (United States)

    Hayashi, Shinichi; Okada, Yasushi

    2015-05-01

    Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging. © 2015 Hayashi and Okada. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. The challenge of diagnosing seborrheic keratosis by reflectance confocal microscopy.

    Science.gov (United States)

    Guo, A; Chen, J; Yang, C; Ding, Y; Zeng, Q; Tan, L

    2018-05-24

    Seborrheic keratosis (SK) is one of the most common skin tumors seen by dermatologists. It should be differentiated with many diseases, especially skin tumors. Reflectance confocal microscopy (RCM) has been applied for evaluation of SK. There are a few studies that describe the RCM of SK. The aim of the study was to find the challenge of diagnosing seborrheic keratosis by reflectance confocal microscopy. A total of 390 patients with a clinical suspicious diagnosis of seborrheic keratosis were enrolled in this study, and lesions from each patient were imaged with RCM. Thirty-seven of these patients performed a biopsy in order to be given a histological diagnosis. We retrospectively analyzed the outcomes of RCM diagnosis and histological diagnosis, and then found the RCM characteristics of biopsy-proven lesions. According to RCM images, 258 of 390 (66.2%) patients were diagnosed with SK, 97 of 390 (24.9%) patients could not be diagnosed by the dermatologist according to RCM. Of all 37 biopsied lesions, 23 were SK, 6 were actinic keratosis, 2 were basal cell carcinoma, and 2 were squamous cell carcinoma. It is challenge to diagnose seborrheic keratosis by reflectance confocal microscopy. It may due to the variable clinical and RCM appearances of SK, and limited depth of RCM. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Parallel detection experiment of fluorescence confocal microscopy using DMD.

    Science.gov (United States)

    Wang, Qingqing; Zheng, Jihong; Wang, Kangni; Gui, Kun; Guo, Hanming; Zhuang, Songlin

    2016-05-01

    Parallel detection of fluorescence confocal microscopy (PDFCM) system based on Digital Micromirror Device (DMD) is reported in this paper in order to realize simultaneous multi-channel imaging and improve detection speed. DMD is added into PDFCM system, working to take replace of the single traditional pinhole in the confocal system, which divides the laser source into multiple excitation beams. The PDFCM imaging system based on DMD is experimentally set up. The multi-channel image of fluorescence signal of potato cells sample is detected by parallel lateral scanning in order to verify the feasibility of introducing the DMD into fluorescence confocal microscope. In addition, for the purpose of characterizing the microscope, the depth response curve is also acquired. The experimental result shows that in contrast to conventional microscopy, the DMD-based PDFCM system has higher axial resolution and faster detection speed, which may bring some potential benefits in the biology and medicine analysis. SCANNING 38:234-239, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  17. Quantification of Multilayer Samples by Confocal μXRF

    International Nuclear Information System (INIS)

    Perez, R. Daniel; Sanchez, H. J.; Rubio, M.; Perez, C. A.

    2009-01-01

    The confocal setup consists of x-ray lenses in the excitation as well as in the detection channel. In this configuration, a micro volume defined by the overlap of the foci of both x-ray lenses is analyzed. Scanning this micro volume through the sample, 1-3 dimensional studies can be performed. For intermediate thin homogeneous layers a scanning in the normal direction to the surface sample provides information of its thickness and elemental composition. For multilayer samples it also provides the order of each layer in the stratified structure. For the confocal setup, we used a glass monocapillary in the excitation channel and a monolithic half polycapillary in the detection channel. The experiment was carried out at the D09B beamline of the LNLS using white beam. In the present work, a new algorithm was applied to analyze in detail by confocal μXRF a sample of three paint layers on a glass substrate. Using the proposed algorithm, information about thickness and elemental densities was obtained for each layer of these samples.

  18. Ex vivo confocal microscopy: a new diagnostic technique for mucormycosis.

    Science.gov (United States)

    Leclercq, A; Cinotti, E; Labeille, B; Perrot, J L; Cambazard, F

    2016-05-01

    Skin-dedicated ex vivo confocal microscopy (EVCM) has so far mainly been employed to identify cutaneous tumours on freshly excised samples. We present two cases where EVCM has been used to diagnose cutaneous mucormycosis. The skin biopsies were evaluated by the skin-dedicated ex vivo confocal microscope VivaScope 2500(®) (MAVIG GmbH, Munich Germany) under both reflectance and fluorescence mode. Conventional direct optical examination on skin scraping and histological examination were later performed. Mucormycetes observed by EVCM presented as hyper-reflective elongated 20 μm in diameter structures with perpendicular ramifications. Fungi were found both under reflectance and fluorescence mode and were better visible with acridine orange under fluorescence EVCM. Conventional direct optical examination on skin scraping and histological examination found the same elongated and branching structures confirming the presence of Mucormycetes. Ex vivo confocal microscopy has both the advantages of being fast as the direct optical examination, and to be able to show the localisation of the fungi in the tissue like the histological examination. In our cases, EVCM allowed to rapidly confirm the clinical diagnosis of mucormycosis, which is essential for the treatment of this fungal infection. Further studies are needed to compare the performance of EVCM with the findings of conventional histological and mycological examinations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. 3D Image Analysis of Geomaterials using Confocal Microscopy

    Science.gov (United States)

    Mulukutla, G.; Proussevitch, A.; Sahagian, D.

    2009-05-01

    Confocal microscopy is one of the most significant advances in optical microscopy of the last century. It is widely used in biological sciences but its application to geomaterials lingers due to a number of technical problems. Potentially the technique can perform non-invasive testing on a laser illuminated sample that fluoresces using a unique optical sectioning capability that rejects out-of-focus light reaching the confocal aperture. Fluorescence in geomaterials is commonly induced using epoxy doped with a fluorochrome that is impregnated into the sample to enable discrimination of various features such as void space or material boundaries. However, for many geomaterials, this method cannot be used because they do not naturally fluoresce and because epoxy cannot be impregnated into inaccessible parts of the sample due to lack of permeability. As a result, the confocal images of most geomaterials that have not been pre-processed with extensive sample preparation techniques are of poor quality and lack the necessary image and edge contrast necessary to apply any commonly used segmentation techniques to conduct any quantitative study of its features such as vesicularity, internal structure, etc. In our present work, we are developing a methodology to conduct a quantitative 3D analysis of images of geomaterials collected using a confocal microscope with minimal amount of prior sample preparation and no addition of fluorescence. Two sample geomaterials, a volcanic melt sample and a crystal chip containing fluid inclusions are used to assess the feasibility of the method. A step-by-step process of image analysis includes application of image filtration to enhance the edges or material interfaces and is based on two segmentation techniques: geodesic active contours and region competition. Both techniques have been applied extensively to the analysis of medical MRI images to segment anatomical structures. Preliminary analysis suggests that there is distortion in the

  20. Imaging theory of nonlinear second harmonic and third harmonic generations in confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    TANG Zhilie; XING Da; LIU Songhao

    2004-01-01

    The imaging theory of nonlinear second harmonic generation (SHG) and third harmonic generation (THG) in confocal microscopy is presented in this paper. The nonlinear effect of SHG and THG on the imaging properties of confocal microscopy has been analyzed in detail by the imaging theory. It is proved that the imaging process of SHG and THG in confocal microscopy, which is different from conventional coherent imaging or incoherent imaging, can be divided into two different processes of coherent imaging. The three-dimensional point spread functions (3D-PSF) of SHG and THG confocal microscopy are derived based on the nonlinear principles of SHG and THG. The imaging properties of SHG and THG confocal microscopy are discussed in detail according to its 3D-PSF. It is shown that the resolution of SHG and THG confocal microscopy is higher than that of single-and two-photon confocal microscopy.

  1. Pulse reshaping in photonic crystal waveguides and microcavities with Kerr nonlinearity: Critical issues for all-optical switching

    International Nuclear Information System (INIS)

    Vujic, Dragan; John, Sajeev

    2005-01-01

    We delineate critical issues for 'controlling light with light' in photonic crystal (PC) waveguides coupled to Kerr-nonlinear microresonators. These arise from (a) fundamental trade-off between switching speed and switching intensity threshold inherent in high-quality Q-factor cavities and (b) the dynamical nonlinear oscillation of such cavities in response to incident light pulses. Using finite-difference time-domain simulations of electromagnetic pulse propagation, we consider both (i) a nonlinear Fabry-Perot microresonator (embedded within a PC waveguide) exhibiting a narrow transmission resonance and (ii) a nonlinear point defect (side-coupled to a PC waveguide) exhibiting a narrow reflection spectrum. We describe self-induced switching from transmission to reflection induced by pulse intensity tuning as well as control of pulse transmission induced by the secondary, continuous (cw) laser field propagating through the same PC waveguide. For the Fabry-Perot microresonator, a well-defined self-switching threshold is obtained. However, this is accompanied by considerable temporal and spectral distortion of the pulse caused by the oscillatory nonlinear response of the microresonator. When the quality factor of the microresonator is increased, the switching intensity threshold can be lowered but the pulse transit (switching) time and the pulse distortion are increased. For the side-coupled microresonator, a gradual (not sharp) self-switching behavior as a function of incident intensity is obtained. For both the Fabry-Perot and side-coupled nonlinear microresonators, control of pulse transmission can be achieved by means of a secondary cw laser field. The cw power required for switching with realistic Kerr nonlinearities is in excess of 1 W/μm 2 and may cause optical damage to the semiconducting PC backbone. Both instantaneous and noninstantaneous Kerr-response models are considered. Our results underscore the limitations and trade-offs inherent in the possible

  2. An all-optical fiber optic photoacoustic transducer

    Science.gov (United States)

    Thathachary, Supriya V.; Motameni, Cameron; Ashkenazi, Shai

    2018-02-01

    A highly sensitive fiber-optic Fabry-Perot photoacoustic transducer is proposed in this work. The transducer will consist of separate transmit and receive fibers. The receiver will be composed of a Fabry-Perot Ultrasound sensor with a selfwritten waveguide with all-optical ultrasound detection with high sensitivity. In previous work, we have shown an increase in resonator Q-factor from 1900 to 3200 for a simulated Fabry-Perot ultrasound detector of 45 μm thickness upon including a waveguide to limit lateral power losses. Subsequently, we demonstrated a prototype device with 30nm gold mirrors and a cavity composed of the photosensitive polymer Benzocyclobutene. This 80 µm thick device showed an improvement in its Q-factor from 2500 to 5200 after a selfaligned waveguide was written into the cavity using UV exposure. Current work uses a significantly faster fabrication technique using a combination of UV-cured epoxies for the cavity medium, and the waveguide within it. This reduces the fabrication time from several hours to a few minutes, and significantly lowers the cost of fabrication. We use a dip-coating technique to deposit the polymer layer. Future work will include the use of Dielectric Bragg mirrors in place of gold to achieve better reflectivity, thereby further improving the Q-factor of the device. The complete transducer presents an ideal solution for intravascular imaging in cases where tissue differentiation is desirable, an important feature in interventional procedures where arterial perforation is a risk. The final design proposed comprises the transducer within a guidewire to guide interventions for Chronic Total Occlusions, a disease state for which there are currently no invasive imaging options.

  3. In vivo confocal Raman spectroscopy of the human cornea.

    Science.gov (United States)

    Bauer, N J; Hendrikse, F; March, W F

    1999-07-01

    To investigate the feasibility of a confocal Raman spectroscopic technique for the noninvasive assessment of corneal hydration in vivo in two legally blind subjects. A laser beam (632.8 nm; 15 mJ) was maintained on the cornea by using a microscope objective lens (x25 magnification, NA = 0.5, f = 10 mm) both for focusing the incident light as well as collecting the Raman backscattered light, in a 180 degrees backscatter configuration. An optical fiber, acting as the confocal pinhole for elimination of light from out-of-focus places, was coupled to a spectrometer that dispersed the collected light onto a sensitive array detector for rapid spectral data acquisition over a range from 2,890 to 3,590/cm(-1). Raman spectra were recorded from the anterior 100-150 microm of the cornea over a period before and after topical application of a mild dehydrating solution. The ratio between the amplitudes of the signals at 3,400/cm(-1) (OH-vibrational mode of water) and 2,940/cm(-1) (CH-vibrational mode of proteins) was used as a measure for corneal hydration. High signal-to-noise ratio (SNR = 25) Raman spectra were obtained from the human corneas by using 15 mJ of laser light energy. Qualitative changes in the hydration of the anteriormost part of the corneas could be observed as a result of the dehydrating agent. With adequate improvements in system safety, confocal Raman spectroscopy could potentially be applied clinically as a noninvasive tool for the assessment of corneal hydration in vivo.

  4. In vitro confocal imaging of the rabbit cornea.

    Science.gov (United States)

    Masters, B R; Paddock, S

    1990-05-01

    We were able to observe in vitro the fine structure of the rabbit cornea using a laser scanning confocal microscope, especially in the regions between Descemet's membrane and the epithelial basal lamina. We observed submicrometre filaments throughout the stroma with high concentrations adjacent to Descemet's membrane, and found extensive interconnecting processes between stromal keratocytes. There are numerous regions containing nerve plexuses in the stroma. We found a deeply convoluted basal lamina adjacent to the epithelium, and observed regions containing junctions between endothelial cells in fluorescent images of rabbit corneas stained with the actin-specific compound fluorescein phalloidin.

  5. 3D confocal imaging in CUBIC-cleared mouse heart

    Energy Technology Data Exchange (ETDEWEB)

    Nehrhoff, I.; Bocancea, D.; Vaquero, J.; Vaquero, J.J.; Lorrio, M.T.; Ripoll, J.; Desco, M.; Gomez-Gaviro, M.V.

    2016-07-01

    Acquiring high resolution 3D images of the heart enables the ability to study heart diseases more in detail. Here, the CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) clearing protocol was adapted for thick mouse heart sections to increase the penetration depth of the confocal microscope lasers into the tissue. The adapted CUBIC clearing of the heart lets the antibody penetrate deeper into the tissue by a factor of five. The here shown protocol enables deep 3D highresolution image acquisition in the heart. This allows a much more accurate assessment of the cellular and structural changes that underlie heart diseases. (Author)

  6. 3D Volumetric Analysis of Fluid Inclusions Using Confocal Microscopy

    Science.gov (United States)

    Proussevitch, A.; Mulukutla, G.; Sahagian, D.; Bodnar, B.

    2009-05-01

    Fluid inclusions preserve valuable information regarding hydrothermal, metamorphic, and magmatic processes. The molar quantities of liquid and gaseous components in the inclusions can be estimated from their volumetric measurements at room temperatures combined with knowledge of the PVTX properties of the fluid and homogenization temperatures. Thus, accurate measurements of inclusion volumes and their two phase components are critical. One of the greatest advantages of the Laser Scanning Confocal Microscopy (LSCM) in application to fluid inclsion analsyis is that it is affordable for large numbers of samples, given the appropriate software analysis tools and methodology. Our present work is directed toward developing those tools and methods. For the last decade LSCM has been considered as a potential method for inclusion volume measurements. Nevertheless, the adequate and accurate measurement by LSCM has not yet been successful for fluid inclusions containing non-fluorescing fluids due to many technical challenges in image analysis despite the fact that the cost of collecting raw LSCM imagery has dramatically decreased in recent years. These problems mostly relate to image analysis methodology and software tools that are needed for pre-processing and image segmentation, which enable solid, liquid and gaseous components to be delineated. Other challenges involve image quality and contrast, which is controlled by fluorescence of the material (most aqueous fluid inclusions do not fluoresce at the appropriate laser wavelengths), material optical properties, and application of transmitted and/or reflected confocal illumination. In this work we have identified the key problems of image analysis and propose some potential solutions. For instance, we found that better contrast of pseudo-confocal transmitted light images could be overlayed with poor-contrast true-confocal reflected light images within the same stack of z-ordered slices. This approach allows one to narrow

  7. Confocal laser feedback tomography for skin cancer detection.

    Science.gov (United States)

    Mowla, Alireza; Du, Benjamin Wensheng; Taimre, Thomas; Bertling, Karl; Wilson, Stephen; Soyer, H Peter; Rakić, Aleksandar D

    2017-09-01

    Tomographic imaging of soft tissue such as skin has a potential role in cancer detection. The penetration of infrared wavelengths makes a confocal approach based on laser feedback interferometry feasible. We present a compact system using a semiconductor laser as both transmitter and receiver. Numerical and physical models based on the known optical properties of keratinocyte cancers were developed. We validated the technique on three phantoms containing macro-structural changes in optical properties. Experimental results were in agreement with numerical simulations and structural changes were evident which would permit discrimination of healthy tissue and tumour. Furthermore, cancer type discrimination was also able to be visualized using this imaging technique.

  8. 3D confocal imaging in CUBIC-cleared mouse heart

    International Nuclear Information System (INIS)

    Nehrhoff, I.; Bocancea, D.; Vaquero, J.; Vaquero, J.J.; Lorrio, M.T.; Ripoll, J.; Desco, M.; Gomez-Gaviro, M.V.

    2016-01-01

    Acquiring high resolution 3D images of the heart enables the ability to study heart diseases more in detail. Here, the CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) clearing protocol was adapted for thick mouse heart sections to increase the penetration depth of the confocal microscope lasers into the tissue. The adapted CUBIC clearing of the heart lets the antibody penetrate deeper into the tissue by a factor of five. The here shown protocol enables deep 3D highresolution image acquisition in the heart. This allows a much more accurate assessment of the cellular and structural changes that underlie heart diseases. (Author)

  9. Volume visualization of biological tissue specimens using confocal microscopy

    Czech Academy of Sciences Publication Activity Database

    Čapek, Martin; Janáček, Jiří; Kubínová, Lucie; Smrčka, P.; Hána, K.

    2006-01-01

    Roč. 36, č. 2 (2006), s. 240-244 ISSN 0301-5491. [Biomedical Engineering Conference of Young Biomedical Engineers and Researchers /2./. Kladno, 19.07.2006-21.07.2006] R&D Projects: GA MŠk(CZ) LC06063; GA AV ČR(CZ) IAA100110502; GA AV ČR(CZ) IAA500200510; GA ČR(CZ) GA304/05/0153 Institutional research plan: CEZ:AV0Z50110509 Keywords : 3D reconstruction * confocal microscopy Subject RIV: JC - Computer Hardware ; Software

  10. Multiphoton resonances

    International Nuclear Information System (INIS)

    Shore, B.W.

    1977-01-01

    The long-time average of level populations in a coherently-excited anharmonic sequence of energy levels (e.g., an anharmonic oscillator) exhibits sharp resonances as a function of laser frequency. For simple linearly-increasing anharmonicity, each resonance is a superposition of various multiphoton resonances (e.g., a superposition of 3, 5, 7, . . . photon resonances), each having its own characteristic width predictable from perturbation theory

  11. Smartphone confocal microscopy for imaging cellular structures in human skin in vivo.

    Science.gov (United States)

    Freeman, Esther E; Semeere, Aggrey; Osman, Hany; Peterson, Gary; Rajadhyaksha, Milind; González, Salvador; Martin, Jeffery N; Anderson, R Rox; Tearney, Guillermo J; Kang, Dongkyun

    2018-04-01

    We report development of a low-cost smartphone confocal microscope and its first demonstration of in vivo human skin imaging. The smartphone confocal microscope uses a slit aperture and diffraction grating to conduct two-dimensional confocal imaging without using any beam scanning devices. Lateral and axial resolutions of the smartphone confocal microscope were measured as 2 and 5 µm, respectively. In vivo confocal images of human skin revealed characteristic cellular structures, including spinous and basal keratinocytes and papillary dermis. Results suggest that the smartphone confocal microscope has a potential to examine cellular details in vivo and may help disease diagnosis in resource-poor settings, where conducting standard histopathologic analysis is challenging.

  12. Microscopia confocal en córneas de cien ojos sanos Confocal microscopy results of one hundred healthy eye corneas

    OpenAIRE

    Zulema Gómez Castillo; Keyly Fernández García; Alain Pérez Tejeda; Susana Márquez Villalón; Madelyn Jareño Ochoa; Judith Cuevas Ruiz

    2012-01-01

    Objetivo: Analizar las estructuras celulares por microscopia confocal, Confoscan 4, en córneas sanas en nuestro medio. Métodos: Se realizó un estudio prospectivo longitudinal a 100 ojos sanos de médicos que trabajan en nuestra institución, y pacientes que asistieron al servicio de córnea. Esta investigación fue desde mayo de 2007 a mayo 2008, en el Instituto Cubano de Oftalmología "Ramón Pando Ferrer", La Habana. En los médicos se examinaron ambos ojos y en los pacientes el ojo no afectado. S...

  13. Microscopia confocal de la córnea en facoemulsificación Confocal microscopy of the cornea on phacoemulsification

    Directory of Open Access Journals (Sweden)

    Juan Raúl Hernández Silva

    2011-12-01

    Full Text Available Objetivo: Determinar los cambios estructurales de la córnea en la cirugía de catarata por facoemulsificación sin complicaciones. Métodos: Se realizó un estudio prospectivo de pacientes operados de catarata por facoemulsificación coaxial por la técnica de pre chop sin complicaciones. A estos se les realizó microscopia confocal de la córnea con el CONFOSCAN 4 (Nidek Technologies con el objetivo de 40x y adaptador Z-Ring. Se realizó el estudio en el preoperatorio y en el posoperatorio (a las 24 horas, después de una semana, de un mes y a los tres meses. Resultados: Se demostraron cambios estructurales en la córnea como células epiteliales con núcleos hiperreflectivos alargadas en ocasiones y áreas de hiperreflectividad anómala a las 24 horas del posoperatorio. Persistieron queratocitos activados y la disminución de la hiperreflectividad de la matriz extracelular que desapareció al mes. Conclusiones: Aunque por biomicroscopia no se observen alteraciones corneales en el posoperatorio de la cirugía de catarata por facoemulsificación, sí se pueden demostrar por microscopia confocal de la córnea. Estas variaciones no influyen en la recuperación visual óptima de los pacientes.Objective: To determine the structural changes in the cornea in the cataract surgery using phacoemulsification without complications. Methods: A prospective study of patients operated on from cataract using the coaxial phacoemulsification (Pre Chop technique without complications was carried out. These patients also underwent confocal microscopy of the cornea with Confoscan4 (Nidek Technologies with 40x target and Z - Ring adapter. The study was performed in the preoperative period and postoperative period for 24 hours, one week, one month and three months after surgery. Results: Structural changes were observed in the cornea such as epithelial cells with hypereflectivity nucleus, occasionally elongated, , areas of anomalous hypereflectivity 24 hours after

  14. Confocal stereology and image analysis: methods for estimating geometrical characteristics of cells and tissues from three-dimensional confocal images

    Czech Academy of Sciences Publication Activity Database

    Kubínová, Lucie; Janáček, Jiří; Karen, Petr; Radochová, Barbora; Difato, Francesco; Krekule, Ivan

    2004-01-01

    Roč. 53, Suppl.1 (2004), s. S47-S55 ISSN 0862-8408 R&D Projects: GA ČR GA304/01/0257; GA ČR GA310/02/1470; GA AV ČR KJB6011309; GA AV ČR KJB5039302 Grant - others:SI - CZ(CZ) KONTAKT 001/2001 Institutional research plan: CEZ:AV0Z5011922 Keywords : confocal microscopy * image analysis * stereology Subject RIV: EA - Cell Biology Impact factor: 1.140, year: 2004

  15. Embryonic Heart Morphogenesis from Confocal Microscopy Imaging and Automatic Segmentation

    Directory of Open Access Journals (Sweden)

    Hongda Mao

    2013-01-01

    Full Text Available Embryonic heart morphogenesis (EHM is a complex and dynamic process where the heart transforms from a single tube into a four-chambered pump. This process is of great biological and clinical interest but is still poorly understood for two main reasons. On the one hand, the existing imaging modalities for investigating EHM suffered from either limited penetration depth or limited spatial resolution. On the other hand, current works typically adopted manual segmentation, which was tedious, subjective, and time consuming considering the complexity of developing heart geometry and the large size of images. In this paper, we propose to utilize confocal microscopy imaging with tissue optical immersion clearing technique to image the heart at different stages of development for EHM study. The imaging method is able to produce high spatial resolution images and achieve large penetration depth at the same time. Furthermore, we propose a novel convex active contour model for automatic image segmentation. The model has the ability to deal with intensity fall-off in depth which is characterized by confocal microscopy images. We acquired the images of embryonic quail hearts from day 6 to day 14 of incubation for EHM study. The experimental results were promising and provided us with an insight view of early heart growth pattern and also paved the road for data-driven heart growth modeling.

  16. CCDiode: an optimal detector for laser confocal microscopes

    Science.gov (United States)

    Pawley, James B.; Blouke, Morley M.; Janesick, James R.

    1996-04-01

    The laser confocal microscope (LCM) is now an established research tool in biology and materials science. In biological applications, it is usually employed to detect the location of fluorescent market molecules and, under these conditions, signal levels from bright areas are often digitizer. To maintain the desired +/- 3 e noise level at the relatively high data rate of 1 MHz, our new device utilizes 64 separate readout amplifier/digitizer systems, operating in sequence. The resulting detector is more compact, efficient and reliable than the PMT it replaces but as its sensitive area is smaller than that of a PMT, it will require auxiliary optics when used with any LCM having a large (mm) pinhole. As the signal light is parallel, a simple lens mounted axially and with the CCDiode at its focus would suffice. Future versions may use 3 X 3 or 5 X 5 arrays of sensors to `track' the confocal spot as it is deflected by inhomogeneities of the specimen, change its effective size or shape or detect system misalignment.

  17. Fluorescent ligands for studying neuropeptide receptors by confocal microscopy

    Directory of Open Access Journals (Sweden)

    A. Beaudet

    1998-11-01

    Full Text Available This paper reviews the use of confocal microscopy as it pertains to the identification of G-protein coupled receptors and the study of their dynamic properties in cell cultures and in mammalian brain following their tagging with specific fluorescent ligands. Principles that should guide the choice of suitable ligands and fluorophores are discussed. Examples are provided from the work carried out in the authors' laboratory using custom synthetized fluoresceinylated or BODIPY-tagged bioactive peptides. The results show that confocal microscopic detection of specifically bound fluorescent ligands permits high resolution appraisal of neuropeptide receptor distribution both in cell culture and in brain sections. Within the framework of time course experiments, it also allows for a dynamic assessment of the internalization and subsequent intracellular trafficking of bound fluorescent molecules. Thus, it was found that neurotensin, somatostatin and mu- and delta-selective opioid peptides are internalized in a receptor-dependent fashion and according to receptor-specific patterns into their target cells. In the case of neurotensin, this internalization process was found to be clathrin-mediated, to proceed through classical endosomal pathways and, in neurons, to result in a mobilization of newly formed endosomes from neural processes to nerve cell bodies and from the periphery of cell bodies towards the perinuclear zone. These mechanisms are likely to play an important role for ligand inactivation, receptor regulation and perhaps also transmembrane signaling.

  18. Light beam control by refractive index change in a modified purple membrane; Hen`i shimaku no kussetsuritsu henka wo riyoshita hikari bimu seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Takei, H.; Shimizu, N. [Hitachi Ltd., Tokyo (Japan)

    1996-04-01

    A purple membrane extracted from bacterial halobacterium salinarium is a membrane prepared by two-dimensionally crystallizing bacteriorhodopsin (bR) which is a photo-sensitive protein. When retinal chromophore in the bR absorbs photons, isomerization occurs, so that light cycle of bR comprising a light intermediate of different absorption spectrum occurs. Since this purple membrane has a high stability and a high repetition durability, a study of the application of the same to a rewritable holographic recording medium has been made in recent years. This paper describes an example in which the refractive index variation of a purple membrane the optical characteristics of which varies due to variation is applied to light beam control. The paper introduces a Fabry-Perot resonator as an optical element capable of carrying out light control by utilizing refractive index variation. The paper further describes the possibility of materialization of an optical logic comprising a combination of light-irradiation refractive index variation and a Fabry-Perot resonator and having nonlinear input/output characteristics such as the bistablity owing to the feedback effect in the resonator. 7 refs., 3 figs.

  19. The noise of ultrashort pulse mode-locked lasers beyond the slowly varying envelope approximation

    International Nuclear Information System (INIS)

    Takushima, Y; Haus, H A; Kaertner, F X

    2004-01-01

    The zero-point fluctuations in an L-C circuit of finite Q are revisited. The zero-point energy is shown to approach the value of hbarω 0 /2 only in the limit of an infinite Q. A Fabry-Perot resonator, on the other hand, has bounded zero-point energies of its modes that are equal to hbarω n /2 for each resonance. Based on the Fabry-Perot resonator with broadband noise, we analyse the noise of an ultrafast mode-locked laser when the slowly varying envelope approximation (SVEA) is not valid. This is achieved by reinterpreting the quantized form of the master equation of mode locking as an equation of motion for the electric field rather than for the creation operator of a photon. It is found that in this formulation quantum correlations exist that are not present in the SVEA. The correlations become evident in the spectrum of the zero-point fluctuations and therefore in the background noise of the laser. This behaviour can be detected by homodyne detection of the laser output. The linewidth of the frequency comb generated by the mode-locked laser is not affected by these correlations and is given by the Schawlow-Townes linewidth of an equivalent continuous wave taking the additional intracavity loss due to the mode locking process into account

  20. Live Imaging of Shoot Meristems on an Inverted Confocal Microscope Using an Objective Lens Inverter Attachment

    Science.gov (United States)

    Nimchuk, Zachary L.; Perdue, Tony D.

    2017-01-01

    Live imaging of above ground meristems can lead to new insights in plant development not possible from static imaging of fixed tissue. The use of an upright confocal microscope offers several technical and biological advantages for live imaging floral or shoot meristems. However, many departments and core facilities possess only inverted confocal microscopes and lack the funding for an additional upright confocal microscope. Here we show that imaging of living apical meristems can be performed on existing inverted confocal microscopes with the use of an affordable and detachable InverterScope accessory. PMID:28579995

  1. Live Imaging of Shoot Meristems on an Inverted Confocal Microscope Using an Objective Lens Inverter Attachment.

    Science.gov (United States)

    Nimchuk, Zachary L; Perdue, Tony D

    2017-01-01

    Live imaging of above ground meristems can lead to new insights in plant development not possible from static imaging of fixed tissue. The use of an upright confocal microscope offers several technical and biological advantages for live imaging floral or shoot meristems. However, many departments and core facilities possess only inverted confocal microscopes and lack the funding for an additional upright confocal microscope. Here we show that imaging of living apical meristems can be performed on existing inverted confocal microscopes with the use of an affordable and detachable InverterScope accessory.

  2. Efficiency of the confocal method of laser endomicroscopy in complex diagnoses of diseases of common bile duct

    International Nuclear Information System (INIS)

    Anaskin, S G; Korniletsky, I D; Panchenkov, D N; Chertyuk, V B; Sazonov, D V; Zabozlayev, F G; Danilevskaya, O V; Mokshina, N V

    2017-01-01

    One of the more frequent manifestations of diseases of the bile ducts are its’ strictures or stenoses that could be of either malignant or benign nature. Current methods of diagnosing this pathology include computer tomography (CT) scan, magnetic resonance cholangiopancreatography (MRCP), endoscopic ultrasound (EUS) and endoscopic retrograde cholangiopancreatography (ERCP). However, these methods are not always informative, which makes this a current and topical problem. A fundamentally new method that broadens the capabilities of ERCP when diagnosing diseases of the bile duct accompanied by the development of strictures or stenoses is probe-based confocal laser endomicroscopy (pCLE). The method is based on the principle of confocal fluorescence microscopy. The most elaborate complications arise with the presence of the pre-existing pancreatobiliary pathology: pseudotumoral chronic pancreatitis, acute cholangitis, etc. Early stage cholangiocarcinoma diagnosis can be difficult (and not always possible) even with the help of modern research methods. For the timely diagnostic it is advantageous to conduct pCLE and targeted biopsy of the zone with most manifested changes. In all instances, the first use of the pCLE method for diagnostic purposes allowed us to clarify and correctly verify the diagnosis. When concerning the diseases of the bile duct, the modern stage of pCLE development can be of critical importance when other methods are not effective. (paper)

  3. Using Photoshop with images created by a confocal system.

    Science.gov (United States)

    Sedgewick, Jerry

    2014-01-01

    Many pure colors and grayscales tones that result from confocal imaging are not reproducible to output devices, such as printing presses, laptop projectors, and laser jet printers. Part of the difficulty in predicting the colors and tones that will reproduce lies in both the computer display, and in the display of unreproducible colors chosen for fluorophores. The use of a grayscale display for confocal channels and a LUT display to show saturated (clipped) tonal values aids visualization in the former instance and image integrity in the latter. Computer monitors used for post-processing in order to conform the image to the output device can be placed in darkened rooms, and the gamma for the display can be set to create darker shadow regions, and to control the display of color. These conditions aid in visualization of images so that blacks are set to grayer values that are more amenable to faithful reproduction. Preferences can be set in Photoshop for consistent display of colors, along with other settings to optimize use of memory. The Info window is opened so that tonal information can be shown via readouts. Images that are saved as indexed color are converted to grayscale or RGB Color, 16-bit is converted to 8-bit when desired, and colorized images from confocal software is returned to grayscale and re-colorized according to presented methods so that reproducible colors are made. Images may also be sharpened and noise may be reduced, or more than one image layered to show colocalization according to specific methods. Images are then converted to CMYK (Cyan, Magenta, Yellow and Black) for consequent assignment of pigment percentages for printing presses. Changes to single images and multiple images from image stacks are automated for efficient and consistent image processing changes. Some additional changes are done to those images destined for 3D visualization to better separate regions of interest from background. Files are returned to image stacks, saved and

  4. Confocal Raman spectrocopy for the analysis of nail polish evidence.

    Science.gov (United States)

    López-López, Maria; Vaz, Joana; García-Ruiz, Carmen

    2015-06-01

    Nail polishes are cosmetic paints that may be susceptible of forensic analysis offering useful information to assist in a crime reconstruction. Although the nail polish appearance could allow a quick visual identification of the sample, this analysis is subjected to the perception and subjective interpretation of the forensic examiner. The chemical analysis of the nail polishes offers great deal of information not subjected to analyst interpretation. Confocal Raman spectroscopy is a well-suited technique for the analysis of paints due to its non-invasive and non-destructive nature and its ability to supply information about the organic and inorganic components of the sample. In this work, 77 regular and gel nail polishes were analyzed with confocal Raman spectroscopy using two laser wavelengths (532 and 780 nm). The sample behavior under the two laser wavelengths and the differences in the spectra taken at different points of the sample were studied for each nail polish. Additionally, the spectra obtained for all the nail polishes were visually compared. The results concluded that the longer laser wavelength prevents sample burning and fluorescence effects; the similarity among the spectra collected within the sample is not directly related with the presence of glitter particles; and 64% of the samples analyzed showed a characteristic spectrum. Additionally, the use of confocal Raman spectroscopy for the forensic analysis of nail polishes evidence in the form of flakes or smudges on different surfaces were studied. The results showed that both types of evidence can be analyzed by the technique. Also, two non-invasive sampling methods for the collection of the evidence from the nails of the suspect or the victim were proposed: (i) to use acetone-soaked cotton swabs to remove the nail varnishes and (ii) to scrape the nail polish from the nail with a blade. Both approaches, each exhibiting advantages and drawbacks in terms of transport and handling were appropriate

  5. Observation of Significant Quantum Efficiency Enhancement from a Polarized Photocathode with Distributed Bragg Reflector

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shukui [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Poelker, Matthew [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Stutzman, Marcy L. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Chen, Yiqiao [SVT Associates, Inc., Eden Prairie, MN (United States); Moy, Aaron [SVT Associates, Inc., Eden Prairie, MN (United States)

    2015-09-01

    Polarized photocathodes with higher Quantum efficiency (QE) would help to reduce the technological challenge associated with producing polarized beams at milliampere levels, because less laser light would be required, which simplifies photocathode cooling requirements. And for a given amount of available laser power, higher QE would extend the photogun operating lifetime. The distributed Bragg reflector (DBR) concept was proposed to enhance the QE of strained-superlattice photocathodes by increasing the absorption of the incident photons using a Fabry-Perot cavity formed between the front surface of the photocathode and the substrate that includes a DBR, without compromising electron polarization. Here we present recent results showing QE enhancement of a GaAs/GaAsP strained-superlattice photocathode made with a DBR structure. Typically, a GaAs/GaAsP strained-superlattice photocathode without DBR provides a QE of 1%, at a laser wavelength corresponding to peak polarization. In comparison, the GaAs/GaAsP strained-superlattice photocathodes with DBR exhibited an enhancement of over 2 when the incident laser wavelength was tuned to meet the resonant condition for the Fabry-Perot resonator.

  6. Integrated Confocal and Scanning Probe Microscopy for Biomedical Research

    Directory of Open Access Journals (Sweden)

    B.J. Haupt

    2006-01-01

    Full Text Available Atomic force microscopy (AFM continues to be developed, not only in design, but also in application. The new focus of using AFM is changing from pure material to biomedical studies. More frequently, it is being used in combination with other optical imaging methods, such as confocal laser scanning microscopy (CLSM and fluorescent imaging, to provide a more comprehensive understanding of biological systems. To date, AFM has been used increasingly as a precise micromanipulator, probing and altering the mechanobiological characteristics of living cells and tissues, in order to examine specific, receptor-ligand interactions, material properties, and cell behavior. In this review, we discuss the development of this new hybrid AFM, current research, and potential applications in diagnosis and the detection of disease.

  7. Confocal mapping of myelin figures with micro-Raman spectroscopy

    Science.gov (United States)

    Huang, Jung-Ren; Cheng, Yu-Che; Huang, Hung Ji; Chiang, Hai-Pang

    2018-01-01

    We employ confocal micro-Raman spectroscopy (CMRS) with submicron spatial resolution to study the myelin structures (cylindrical lamellae) composed of nested surfactant C12E3 or lipid DMPC bilayers. The CMRS mapping indicates that for a straight C12E3 myelin, the surfactant concentration increases with the myelin width and is higher in the center region than in the peripheral region. For a curved C12E3 myelin, the convex side has a higher surfactant concentration than the corresponding concave side. The spectrum of DMPC myelins undergoes a qualitative change as the temperature increases above 60 °C, suggesting that the surfactant molecules may be damaged. Our work demonstrates the utility of CMRS in bio-soft material research.

  8. Confocal imaging of protein distributions in porous silicon optical structures

    International Nuclear Information System (INIS)

    De Stefano, Luca; D'Auria, Sabato

    2007-01-01

    The performances of porous silicon optical biosensors depend strongly on the arrangement of the biological probes into their sponge-like structures: it is well known that in this case the sensing species do not fill the pores but instead cover their internal surface. In this paper, the direct imaging of labelled proteins into different porous silicon structures by using a confocal laser microscope is reported. The distribution of the biological matter in the nanostructured material follows a Gaussian behaviour which is typical of the diffusion process in the porous media but with substantial differences between a porous silicon monolayer and a multilayer such as a Bragg mirror. Even if semi-quantitative, the results can be very useful in the design of the porous silicon based biosensing devices

  9. Signal and noise modeling in confocal laser scanning fluorescence microscopy.

    Science.gov (United States)

    Herberich, Gerlind; Windoffer, Reinhard; Leube, Rudolf E; Aach, Til

    2012-01-01

    Fluorescence confocal laser scanning microscopy (CLSM) has revolutionized imaging of subcellular structures in biomedical research by enabling the acquisition of 3D time-series of fluorescently-tagged proteins in living cells, hence forming the basis for an automated quantification of their morphological and dynamic characteristics. Due to the inherently weak fluorescence, CLSM images exhibit a low SNR. We present a novel model for the transfer of signal and noise in CLSM that is both theoretically sound as well as corroborated by a rigorous analysis of the pixel intensity statistics via measurement of the 3D noise power spectra, signal-dependence and distribution. Our model provides a better fit to the data than previously proposed models. Further, it forms the basis for (i) the simulation of the CLSM imaging process indispensable for the quantitative evaluation of CLSM image analysis algorithms, (ii) the application of Poisson denoising algorithms and (iii) the reconstruction of the fluorescence signal.

  10. Ex vivo confocal microscopy: an emerging technique in dermatology

    Science.gov (United States)

    Perrot, Jean Luc; Labeille, Bruno; Cambazard, Frédéric; Rubegni, Pietro

    2018-01-01

    This review aims to give an overview of the current available applications of ex vivo confocal microscopy (EVCM) in dermatology. EVCM is a relatively new imaging technique that allows microscopic examination of freshly excised unfixed tissue. It enables a rapid examination of the skin sample directly in the surgery room and thus represents an alternative to the intraoperative micrographic control of the surgical margins of cutaneous tumors by standard microscopic examination on cryopreserved sections during Mohs surgery. Although this technique has mainly been developed for the margin’s control of basal cell carcinoma, many other skin tumors have been studied, including melanoma. Use of EVCM is continuing to evolve, and many possible applications are under investigation, such as the study of nails and hair diseases and the diagnosis of skin infections. PMID:29785327

  11. Transient gels in colloid-polymer mixtures studied with fluorescence confocal scanning laser microscopy

    NARCIS (Netherlands)

    Verhaegh, N.A.M.; Asnaghi, D.; Lekkerkerker, H.N.W.

    1999-01-01

    We study the structure and the time evolution of transient gels formed in colloid-polymer mixtures, by means of uorescence Confocal Scanning Laser Microscopy (CSLM). This technique is used in conjunction with novel colloidal silica particles containing a uorescent core. The confocal micrographs

  12. Configurations of the Re-scan Confocal Microscope (RCM) for biomedical applications

    NARCIS (Netherlands)

    de Luca, G. M. R.; Desclos, E.; Breedijk, R. M. P.; Dolz-Edo, L.; Smits, G. J.; Bielefeld, P.; Picavet, L.; Fitzsimons, C. P.; Hoebe, R.; Manders, E. M. M.

    2017-01-01

    The new high-sensitive and high-resolution technique, Re-scan Confocal Microscopy (RCM), is based on a standard confocal microscope extended with a re-scan detection unit. The re-scan unit includes a pair of re-scanning mirrors that project the emission light onto a camera in a scanning manner. The

  13. Configurations of the Re-scan Confocal Microscope (RCM) for biomedical applications

    NARCIS (Netherlands)

    De Luca, G.M.R.; Desclos, E.; Breedijk, R.M.P.; Dolz-Edo, L.; Smits, G.J.; Nahidiazar, L.; Bielefeld, P.; Picavet, L.; Fitzsimons, C.P.; Hoebe, R.; Manders, E.M.M.

    The new high-sensitive and high-resolution technique, Re-scan Confocal Microscopy (RCM), is based on a standard confocal microscope extended with a re-scan detection unit. The re-scan unit includes a pair of re-scanning mirrors that project the emission light onto a camera in a scanning manner. The

  14. Total Internal Reflection Fluorescence Microscopy Imaging-Guided Confocal Single-Molecule Fluorescence Spectroscopy

    OpenAIRE

    Zheng, Desheng; Kaldaras, Leonora; Lu, H. Peter

    2013-01-01

    We have developed an integrated spectroscopy system combining total internal reflection fluorescence microscopy imaging with confocal single-molecule fluorescence spectroscopy for two-dimensional interfaces. This spectroscopy approach is capable of both multiple molecules simultaneously sampling and in situ confocal fluorescence dynamics analyses of individual molecules of interest. We have demonstrated the calibration with fluorescent microspheres, and carried out single-molecule spectroscop...

  15. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy.

    Science.gov (United States)

    Siegel, Nisan; Brooker, Gary

    2014-09-22

    FINCH holographic fluorescence microscopy creates super-resolved images with enhanced depth of focus. Addition of a Nipkow disk real-time confocal image scanner is shown to reduce the FINCH depth of focus while improving transverse confocal resolution in a combined method called "CINCH".

  16. Synchrobetatron resonances

    International Nuclear Information System (INIS)

    1977-03-01

    At the 1975 Particle Accelerator Conference it was reported that a class of resonances were observed in SPEAR II that had not appeared before in SPEAR I. While the existence of sideband resonances of the main betatron oscillation frequencies has been previously observed and analyzed, the resonances observed in SPEAR do not appear to be of the same variety. Experiments were performed at SPEAR to identify the mechanism believed to be the most likely explanation. Some of the current experimental knowledge and theoretical views on the source of these resonances are presented

  17. Snake resonances

    International Nuclear Information System (INIS)

    Tepikian, S.

    1988-01-01

    Siberian Snakes provide a practical means of obtaining polarized proton beams in large accelerators. The effect of snakes can be understood by studying the dynamics of spin precession in an accelerator with snakes and a single spin resonance. This leads to a new class of energy independent spin depolarizing resonances, called snake resonances. In designing a large accelerator with snakes to preserve the spin polarization, there is an added constraint on the choice of the vertical betatron tune due to the snake resonances. 11 refs., 4 figs

  18. Microscopia confocal en córneas de cien ojos sanos Confocal microscopy results of one hundred healthy eye corneas

    Directory of Open Access Journals (Sweden)

    Zulema Gómez Castillo

    2012-06-01

    Full Text Available Objetivo: Analizar las estructuras celulares por microscopia confocal, Confoscan 4, en córneas sanas en nuestro medio. Métodos: Se realizó un estudio prospectivo longitudinal a 100 ojos sanos de médicos que trabajan en nuestra institución, y pacientes que asistieron al servicio de córnea. Esta investigación fue desde mayo de 2007 a mayo 2008, en el Instituto Cubano de Oftalmología "Ramón Pando Ferrer", La Habana. En los médicos se examinaron ambos ojos y en los pacientes el ojo no afectado. Se recopilaron un total de 50 casos sin afección corneal. Resultados: De los 100 ojos estudiados, 64 tenían paquimetrías por encima del valor medio. Estuvieron presentes los tres tipos de células epiteliales en casi la totalidad de los pacientes; así como los queratocitos en las diferentes profundidades del estroma corneal. La mayoría de los ojos tenían un conteo celular endotelial por encima de 2 500, cifra comprendida dentro de los valores normales. Se encontraron fibras nerviosas en cada una de sus capas. Conclusiones: La microscopia confocal se presenta como una nueva herramienta que permite observar en vivo la histología corneal y complementar las observaciones de la biomicroscopia convencional. Esto constituye un reto para el mejor entendimiento de la histopatología corneal. De esta manera podemos actuar de forma profiláctica y terapéutica, en el seguimiento y evolución de patologías corneales.Objective: This paper is aimed at analyzing the corneal cellular structures through Confoscan S4-aided confocal microscopy in apparently healthy corneas. Methods: A prospective longitudinal study of 100 healthy eyes from practicing doctors, and from patients who had attended the corneal service at “Ramón Pando Ferrer” Cuban Institute of Ophthalmology in Havana since May 2007 was conducted. Both eyes of participating doctors were examined whereas the non-affected eye was examined in the patients. A total of 50 cases with no corneal

  19. Estudio del endotelio corneal en el queratocono por microscopia confocal Study of the corneal endothelium confocal microscopy in keratoconus

    Directory of Open Access Journals (Sweden)

    María del Carmen Benítez Merino

    2011-12-01

    Full Text Available Objetivo: Describir los hallazgos morfométricos del endotelio corneal por microscopia confocal con CONFOSCAN S-4. Métodos: Estudio descriptivo transversal de 102 ojos con queratocono en el período de septiembre de 2008 a septiembre 2009. A estos pacientes se les realizó microscopia confocal con CosfoscanS-4 para el estudio del endotelio corneal atendiendo el grado de queratocono. Se analizó el comportamiento de la evolución del queratocono según edad y sexo. Las imágenes fueron analizadas y procesadas mediante un programa informático diseñado específicamente para esto. Resultados: Fueron semejantes las edades de los pacientes con queratocono grado I y II, (35,2 y 34,7 años, los grado III presentaron una edad promedio mayor (38,4 años, sin diferencias significativas (p= 0,279. El sexo femenino predominó en 80,4 % de los pacientes. El 100 % de los queratoconos grado III tuvieron endotelios patológicos. Los valores promedios de la densidad celular en los queratoconos grado III (2585,9 células/mm² resultó no significativo (p= 0,339. El polimegatismo en los queratoconos grado III para un 48,69 % fue significativo (p= 0,002. En el pleomorfismo resultó significativo las diferencias observadas entre los tres grados (p= 0,002. Conclusión: Predominó el queratocono grado II para las mujeres y el grado I para los hombres. Los hallazgos morfológicos se manifestaron en la forma y tamaño de las células endoteliales. En córneas con queratocono grado II y III confluyeron células de mediano y gran tamaño con pérdida de su hexagonalidad. La densidad celular se mantuvo dentro del rango de valores normales para cualquier grado de queratocono.Objective: To describe the morphometric findings of the corneal endothelium confocal microscopy with CONFOSCAN S-4 Methods: Descriptive cross-sectional study of 102 eyes with keratoconus performed from September 2008 to September 2009. The study patients had undergone confocal microscopy with

  20. The application of confocal technology based on polycapillary X-ray optics in surface topography

    International Nuclear Information System (INIS)

    Zhao, Guangcui; Sun, Tianxi; Liu, Zhiguo; Yuan, Hao; Li, Yude; Liu, Hehe; Zhao, Weigang; Zhang, Ruixia; Min, Qin; Peng, Song

    2013-01-01

    A confocal micro-X-ray fluorescence (MXRF) technology based on polycapillary X-ray optics was proposed for determining surface topography. This confocal topography method involves elemental sensitivity and can be used to classify the objects according to their elemental composition while obtaining their surface topography. To improve the spatial resolution of this confocal topography technology, the center of the confocal micro-volume was overlapped with the output focal spot of the polycapillary X-ray, focusing the lens in the excitation channel. The input focal spot of the X-ray lens parallel to the detection channel was used to determine the surface position of the sample. The corresponding surface adaptive algorithm was designed to obtain the surface topography. The surface topography of a ceramic chip was obtained. This confocal MXRF surface topography method could find application in the materials sciences

  1. Nonlinear resonances

    CERN Document Server

    Rajasekar, Shanmuganathan

    2016-01-01

    This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...

  2. Classifying distinct basal cell carcinoma subtype by means of dermatoscopy and reflectance confocal microscopy.

    Science.gov (United States)

    Longo, Caterina; Lallas, Aimilios; Kyrgidis, Athanassios; Rabinovitz, Harold; Moscarella, Elvira; Ciardo, Silvana; Zalaudek, Iris; Oliviero, Margaret; Losi, Amanda; Gonzalez, Salvador; Guitera, Pascale; Piana, Simonetta; Argenziano, Giuseppe; Pellacani, Giovanni

    2014-10-01

    The current guidelines for the management of basal cell carcinoma (BCC) suggest a different therapeutic approach according to histopathologic subtype. Although dermatoscopic and confocal criteria of BCC have been investigated, no specific studies were performed to evaluate the distinct reflectance confocal microscopy (RCM) aspects of BCC subtypes. To define the specific dermatoscopic and confocal criteria for delineating different BCC subtypes. Dermatoscopic and confocal images of histopathologically confirmed BCCs were retrospectively evaluated for the presence of predefined criteria. Frequencies of dermatoscopic and confocal parameters are provided. Univariate and adjusted odds ratios were calculated. Discriminant analyses were performed to define the independent confocal criteria for distinct BCC subtypes. Eighty-eight BCCs were included. Dermatoscopically, superficial BCCs (n=44) were primarily typified by the presence of fine telangiectasia, multiple erosions, leaf-like structures, and revealed cords connected to the epidermis and epidermal streaming upon RCM. Nodular BCCs (n=22) featured the classic dermatoscopic features and well outlined large basaloid islands upon RCM. Infiltrative BCCs (n=22) featured structureless, shiny red areas, fine telangiectasia, and arborizing vessels on dermatoscopy and dark silhouettes upon RCM. The retrospective design. Dermatoscopy and confocal microscopy can reliably classify different BCC subtypes. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  3. Research and application on imaging technology of line structure light based on confocal microscopy

    Science.gov (United States)

    Han, Wenfeng; Xiao, Zexin; Wang, Xiaofen

    2009-11-01

    In 2005, the theory of line structure light confocal microscopy was put forward firstly in China by Xingyu Gao and Zexin Xiao in the Institute of Opt-mechatronics of Guilin University of Electronic Technology. Though the lateral resolution of line confocal microscopy can only reach or approach the level of the traditional dot confocal microscopy. But compared with traditional dot confocal microscopy, it has two advantages: first, by substituting line scanning for dot scanning, plane imaging only performs one-dimensional scanning, with imaging velocity greatly improved and scanning mechanism simplified, second, transfer quantity of light is greatly improved by substituting detection hairline for detection pinhole, and low illumination CCD is used directly to collect images instead of photoelectric intensifier. In order to apply the line confocal microscopy to practical system, based on the further research on the theory of the line confocal microscopy, imaging technology of line structure light is put forward on condition of implementation of confocal microscopy. Its validity and reliability are also verified by experiments.

  4. Enhancement of fluorescence confocal scanning microscopy lateral resolution by use of structured illumination

    International Nuclear Information System (INIS)

    Kim, Taejoong; Gweon, DaeGab; Lee, Jun-Hee

    2009-01-01

    Confocal microscopy is an optical imaging technique used to reconstruct three-dimensional images without physical sectioning. As with other optical microscopes, the lateral resolution of the confocal microscope cannot surpass the diffraction limit. This paper presents a novel imaging system, structured illumination confocal scanning microscopy (SICSM), that uses structured illumination to improve the lateral resolution of the confocal microscope. The SICSM can easily be implemented by introducing a structured illumination generating optics to conventional line-scanning fluorescence confocal microscopy. In this paper, we report our analysis of the lateral and axial resolutions of the SICSM by use of mathematical imaging theory. Numerical simulation results show that the lateral resolution of the SICSM is 1.43-fold better than that of the confocal microscope. In the axial direction, however, the resolution of the SICSM is ∼15% poorer than that of the confocal microscope. This deterioration arises because of a decrease in the axial cut-off frequency caused by the process of generating structured illumination. We propose the use of imaging conditions under which a compromise between the axial and lateral resolutions is chosen. Finally, we show simulated images of diversely shaped test objects to demonstrate the lateral and axial resolution performance of the SICSM

  5. Intravital Confocal and Two-photon Imaging of Dual-color Cells and Extracellular Matrix Mimics

    Science.gov (United States)

    Bal, Ufuk; Andresen, Volker; Baggett, Brenda; Utzinger, Urs

    2013-01-01

    To optimize imaging of cells in three dimensional culture we studied confocal backscattering, Second Harmonic Generation (SHG) and autofluorescence as source of contrast in extracellular matrix (ECM) mimics and evaluated the attenuation as well as bleaching of endogenous cellular fluorescence signals. All common ECM mimics exhibit contrast observable with confocal reflectance microscopy. SHG imaging on collagen I based hydrogels provides high contrast and good optical penetration depth. Agarose is a useful embedding medium because it allows for large optical penetration and exhibits minimal autofluorescence while still providing good reflectance to detect voids in the embedding medium. We labeled breast cancer cells’ outline with DsRed2 and nucleus with eGFP. DsRed2 can be excited with confocal imaging at 568nm, and with two photon excitation (TPE) in the red and longer NIR. eGFP was excited at 488nm for confocal and in the NIR for TPE. While there is small difference in the bleaching rate for eGFP between confocal and TPE we observed significant difference for DsRed2 where bleaching is strongest during TPE in the red wavelengths and smallest during confocal imaging. After a few hundred microns depth in a collagen I hydrogel, TPE fluorescence becomes twice as strong compared to confocal imaging. PMID:23380006

  6. Conversion efficiency of implanted ions by confocal micro-luminescence mapping

    International Nuclear Information System (INIS)

    Deshko, Y.; Huang, Mengbing; Gorokhovsky, A.A.

    2013-01-01

    We report on the further development of the statistical approach to determine the conversion efficiency of implanted ions into emitting centers and present the measurement method based on the confocal micro-luminescence mapping. It involves the micro-luminescence mapping with a narrow-open confocal aperture, followed by the statistical analysis of the photoluminescence signal from an ensemble of emitting centers. The confocal mapping method has two important advantages compared to the recently discussed aperture-free method (J. Lumin. 131 (2011) 489): it is less sensitive to errors in the laser spot size and has a well defined useful area. The confocal mapping has been applied to the Xe center in diamond. The conversion efficiency has been found to be about 0.28, which is in good agreement with the results of the aperture-free method. - Highlights: ► Conversion efficiency of implanted ions into emitting centers – statistical approach. ► Micro-luminescence mapping with open and narrow confocal aperture – comparison. ► Advantages of the confocal micro-luminescence mapping. ► Confocal micro-luminescence mapping has been applied to the Xe center in diamond. ► The conversion efficiency has been found to be about 0.28.

  7. Application of function-oriented roughness parameters using confocal microscopy

    Directory of Open Access Journals (Sweden)

    K. Klauer

    2018-06-01

    Full Text Available Optical measuring instruments are widely used for the functional characterization of surface topography. However, due to the interaction of the surface with the incident light, effects occur that can influence the measured topography height values and the obtained surface texture parameters. Therefore, we describe a systematic investigation of the influences of optical surface topography measurement on the acquisition of function-oriented roughness parameters. The same evaluation areas of varying cylinder liners which represent a typical application of function-oriented roughness parameters were measured with a confocal microscope and a stylus instrument. Functional surface texture parameters as given in the standards ISO 13565–2, ISO 13565–3 and ISO 25178–2 were evaluated for both measurement methods and compared. The transmission of specific surface features was described and a correlation analysis for the surface topographies obtained with the different measurement methods and their resulting functional roughness parameters was carried out. Keywords: Functional surface characterization, Optical metrology, Topography measurement, Roughness

  8. Confocal laser scanning microscopy in study of bone calcification

    Science.gov (United States)

    Nishikawa, Tetsunari; Kokubu, Mayu; Kato, Hirohito; Imai, Koichi; Tanaka, Akio

    2012-12-01

    Bone regeneration in mandible and maxillae after extraction of teeth or tumor resection and the use of rough surface implants in bone induction must be investigated to elucidate the mechanism of calcification. The calcified tissues are subjected to chemical decalcification or physical grinding to observe their microscopic features with light microscopy and transmission electron microscopy where the microscopic tissue morphology is significantly altered. We investigated the usefulness of confocal laser scanning microscopy (CLSM) for this purpose. After staggering the time of administration of calcein and alizarin red to experimental rats and dogs, rat alveolar bone and dog femur grafted with coral as scaffold or dental implants were observed with CLSM. In rat alveolar bone, the calcification of newly-formed bone and net-like canaliculi was observed at the mesial bone from the roots progressed at the rate of 15 μm/day. In dog femur grafted with coral, newly-formed bones along the space of coral were observed in an orderly manner. In dog femur with dental implants, after 8 weeks, newly-formed bone proceeded along the rough surface of the implants. CLSM produced high-magnification images of newly-formed bone and thin sections were not needed.

  9. Application of Reflectance Confocal Microscopy in Dermatology Practice

    Directory of Open Access Journals (Sweden)

    Ayşe Esra Koku Aksu

    2015-03-01

    Full Text Available In vivo reflectance confocal microscopy (RCM is a non-invasive method, imaging cellular structures in living skin at a level close to the histological resolution. It is easier to diagnose melanocytic and non-melanocytic skin tumors especially in difficult cases when RCM features have been identified. Determination of the cellular features, presence of cellular and structural atypia with RCM allows the discrimination of benign and malignant lesions. Preoperative differential diagnosis of malignant lesions, determining preoperative lesion borders in complicated cases, identification of local recurrence after excision of malignant lesions, monitoring the treatment efficacy in patients using topical treatment and who can not be operated, are the main areas of RCM in tumoral lesions. Besides, RCM is helpful in the establishing the diagnosis of inflammatory disease like psoriasis, contact dermatitis, lichen planus and in evaluation of therapeutic efficacy, detecting of infestation like tinea, skabiyes, demodicosis and determining the level of bullae in bullous disease. Due to being noninvasive, RCM is preferred in cosmetology, in clinical research and practice for the evaluation of the effectiveness of cosmetic products and cosmetic procedures.

  10. Confocal fluorescence microscopy for minimal-invasive tumor diagnosis

    International Nuclear Information System (INIS)

    Zenzinger, M.; Bille, J.

    2000-01-01

    The goal of the project ''stereotactic laser-neurosurgery'' is the development of a system for careful and minimal-invasive resection of brain tumors with ultrashort laser pulses through a thin probe. A confocal laser-scanning-microscope is integrated in the probe. In this paper, the simulation of its optical properties by a laboratory setup and the expansion by the ability for fluorescence microscopy are reported. For a valuation of the imaging properties, the point-spread-function in three dimensions and the axial depth-transfer-function were measured and thus, among other things, the resolving power and the capacity for depth discrimination were analysed. The microscope will enable intra-operative detection of tumor cells by the method of immunofluorescence. As a first model of the application in the brain, cell cultures, that fluorescein-labelled antibodies were bound to specifically, were used in this work. Due to the fluorescence signal, it was possible to detect and identify clearly the areas that had been marked in this manner, proving the suitability of the setup for minimal-invasive tumor diagnosis. (orig.)

  11. A new method for depth profiling reconstruction in confocal microscopy

    Science.gov (United States)

    Esposito, Rosario; Scherillo, Giuseppe; Mensitieri, Giuseppe

    2018-05-01

    Confocal microscopy is commonly used to reconstruct depth profiles of chemical species in multicomponent systems and to image nuclear and cellular details in human tissues via image intensity measurements of optical sections. However, the performance of this technique is reduced by inherent effects related to wave diffraction phenomena, refractive index mismatch and finite beam spot size. All these effects distort the optical wave and cause an image to be captured of a small volume around the desired illuminated focal point within the specimen rather than an image of the focal point itself. The size of this small volume increases with depth, thus causing a further loss of resolution and distortion of the profile. Recently, we proposed a theoretical model that accounts for the above wave distortion and allows for a correct reconstruction of the depth profiles for homogeneous samples. In this paper, this theoretical approach has been adapted for describing the profiles measured from non-homogeneous distributions of emitters inside the investigated samples. The intensity image is built by summing the intensities collected from each of the emitters planes belonging to the illuminated volume, weighed by the emitters concentration. The true distribution of the emitters concentration is recovered by a new approach that implements this theoretical model in a numerical algorithm based on the Maximum Entropy Method. Comparisons with experimental data and numerical simulations show that this new approach is able to recover the real unknown concentration distribution from experimental profiles with an accuracy better than 3%.

  12. Mitochondrial behavior during oogenesis in zebrafish: a confocal microscopy analysis.

    Science.gov (United States)

    Zhang, Yong-Zhong; Ouyang, Ying-Chun; Hou, Yi; Schatten, Heide; Chen, Da-Yuan; Sun, Qing-Yuan

    2008-03-01

    The behavior of mitochondria during early oogenesis remains largely unknown in zebrafish. We used three mitochondrial probes (Mito Tracker Red CMXRos, Mito Tracker Green FM, and JC-1) to stain early zebrafish oocyte mitochondria, and confocal microscopy to analyze mitochondrial aggregation and distribution. By using fluorescence recovery after photobleaching (FRAP), we traced mitochondrial movement. The microtubule assembly inhibitor nocodazole and microfilament inhibitor cytochalasin B (CB) were used to analyze the role of microtubules and microfilaments on mitochondrial movement. By using the dual emission probe, JC-1, and oxidative phosphorylation uncoupler, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), we determined the distribution of active and inactive (low-active) mitochondria. Green/red fluorescence ratios of different sublocations in different oocyte groups stained by JC-1 were detected in merged (green and red) images. Our results showed that mitochondria exhibited a unique distribution pattern in early zebrafish oocytes. They tended to aggregate into large clusters in early stage I oocytes, but in a threadlike state in latter stage I oocytes. We detected a lower density mitochondrial area and a higher density mitochondrial area on opposite sides of the germinal vesicle. The green/red fluorescence ratios in different sublocations in normal oocytes were about 1:1. This implies that active mitochondria were distributed in all sublocations. FCCP treatment caused significant increases in the ratios. CB and nocodazole treatment caused an increase of the ratios in clusters and mitochondrial cloud, but not in dispersed areas. Mitochondria in different sublocations underwent fast dynamic movement. Inhibition or disruption of microtubules or microfilaments resulted in even faster mitochondrial free movement.

  13. Confocal laser scanning microscopy in study of bone calcification

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Tetsunari, E-mail: tetsu-n@cc.osaka-dent.ac.jp [Department of Oral Pathology, Osaka Dental University, Osaka (Japan); Kokubu, Mayu; Kato, Hirohito [Department of Oral Pathology, Osaka Dental University, Osaka (Japan); Imai, Koichi [Department of Biomaterials, Osaka Dental University, Osaka (Japan); Tanaka, Akio [Department of Oral Pathology, Osaka Dental University, Osaka (Japan)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer High-magnification images with depth selection, and thin sections were observed using CLSM. Black-Right-Pointing-Pointer The direction and velocity of calcification of the bone was observed by administration of 2 fluorescent dyes. Black-Right-Pointing-Pointer In dog femora grafted with coral blocks, newly-formed bone was observed in the coral block space with a rough surface. Black-Right-Pointing-Pointer Twelve weeks after dental implant was grafted in dog femora, the space between screws was filled with newly-formed bones. - Abstract: Bone regeneration in mandible and maxillae after extraction of teeth or tumor resection and the use of rough surface implants in bone induction must be investigated to elucidate the mechanism of calcification. The calcified tissues are subjected to chemical decalcification or physical grinding to observe their microscopic features with light microscopy and transmission electron microscopy where the microscopic tissue morphology is significantly altered. We investigated the usefulness of confocal laser scanning microscopy (CLSM) for this purpose. After staggering the time of administration of calcein and alizarin red to experimental rats and dogs, rat alveolar bone and dog femur grafted with coral as scaffold or dental implants were observed with CLSM. In rat alveolar bone, the calcification of newly-formed bone and net-like canaliculi was observed at the mesial bone from the roots progressed at the rate of 15 {mu}m/day. In dog femur grafted with coral, newly-formed bones along the space of coral were observed in an orderly manner. In dog femur with dental implants, after 8 weeks, newly-formed bone proceeded along the rough surface of the implants. CLSM produced high-magnification images of newly-formed bone and thin sections were not needed.

  14. Confocal laser scanning microscopy in study of bone calcification

    International Nuclear Information System (INIS)

    Nishikawa, Tetsunari; Kokubu, Mayu; Kato, Hirohito; Imai, Koichi; Tanaka, Akio

    2012-01-01

    Highlights: ► High-magnification images with depth selection, and thin sections were observed using CLSM. ► The direction and velocity of calcification of the bone was observed by administration of 2 fluorescent dyes. ► In dog femora grafted with coral blocks, newly-formed bone was observed in the coral block space with a rough surface. ► Twelve weeks after dental implant was grafted in dog femora, the space between screws was filled with newly-formed bones. - Abstract: Bone regeneration in mandible and maxillae after extraction of teeth or tumor resection and the use of rough surface implants in bone induction must be investigated to elucidate the mechanism of calcification. The calcified tissues are subjected to chemical decalcification or physical grinding to observe their microscopic features with light microscopy and transmission electron microscopy where the microscopic tissue morphology is significantly altered. We investigated the usefulness of confocal laser scanning microscopy (CLSM) for this purpose. After staggering the time of administration of calcein and alizarin red to experimental rats and dogs, rat alveolar bone and dog femur grafted with coral as scaffold or dental implants were observed with CLSM. In rat alveolar bone, the calcification of newly-formed bone and net-like canaliculi was observed at the mesial bone from the roots progressed at the rate of 15 μm/day. In dog femur grafted with coral, newly-formed bones along the space of coral were observed in an orderly manner. In dog femur with dental implants, after 8 weeks, newly-formed bone proceeded along the rough surface of the implants. CLSM produced high-magnification images of newly-formed bone and thin sections were not needed.

  15. Aqueous Colloid + Polymer Depletion System for Confocal Microscopy and Rheology

    Science.gov (United States)

    Park, Nayoung; Umanzor, Esmeralda J.; Conrad, Jacinta C.

    2018-05-01

    We developed a model depletion system with colloidal particles that were refractive index- and density-matched to 80 (w/w)% glycerol in water, and characterized the effect of interparticle interactions on the structure and dynamics of non-equilibrium phases. 2,2,2-trifluoroethyl methacrylate-co-tert-butyl methacrylate copolymer particles were synthesized following Kodger et al. (Sci. Rep. 5, 14635 (2015)). Particles were dispersed in glycerol/water solutions to generate colloidal suspensions with good control over electrostatic interactions and a moderately high background viscosity of 55 mPa-s. To probe the effects of charge screening and depletion attractions on the suspension phase behavior, we added NaCl and polyacrylamide (M_w = 186 kDa) at various concentrations to particle suspensions formulated at volume fractions of phi = 0.05 and 0.3 and imaged the suspensions using confocal microscopy. The particles were nearly hard spheres at a NaCl concentration of 20 mM, but aggregated when the concentration of NaCl was further increased. Changes in the particle structure and dynamics with increasing concentration of the depletant polyacrylamide followed the trends expected from earlier experiments on depletion-driven gelation. Additionally, we measured the viscosity and corrected first normal stress difference of suspensions formulated at phi = 0.4 with and without added polymer. The solvent viscosity was suitable for rheology measurements without the onset of instabilities such as secondary flows or edge fracture. These results validate this system as an alternative to one common model system, suspensions of poly(methyl methacrylate) particles and polystyrene depletants in organic solvents, for investigating phase behavior and flow properties in attractive colloidal suspensions.

  16. Confocal examination of subsurface cracking in ceramic materials.

    Science.gov (United States)

    Etman, Maged K

    2009-10-01

    The original ceramic surface finish and its microstructure may have an effect on crack propagation. The purpose of this study was to investigate the relation between crack propagation and ceramic microstructure following cyclic fatigue loading, and to qualitatively evaluate and quantitatively measure the surface and subsurface crack depths of three types of ceramic restorations with different microstructures using a Confocal Laser Scanning Microscope (CLSM) and Scanning Electron Microscope (SEM). Twenty (8 x 4 x 2 mm(3)) blocks of AllCeram (AC), experimental ceramic (EC, IPS e.max Press), and Sensation SL (SSL) were prepared, ten glazed and ten polished of each material. Sixty antagonist enamel specimens were made from the labial surfaces of permanent incisors. The ceramic abraders were attached to a wear machine, so that each enamel specimen presented at 45 degrees to the vertical movement of the abraders, and immersed in artificial saliva. Wear was induced for 80K cycles at 60 cycles/min with a load of 40 N and 2-mm horizontal deflection. The specimens were examined for cracks at baseline, 5K, 10K, 20K, 40K, and 80K cycles. Twenty- to 30-microm deep subsurface cracking appeared in SSL, with 8 to 10 microm in AC, and 7 microm close to the margin of the wear facets in glazed EC after 5K cycles. The EC showed no cracks with increasing wear cycles. Seventy-microm deep subsurface cracks were detected in SSL and 45 microm in AC after 80K cycles. Statistically, there was significant difference among the three materials (p 0.05) in crack depth within the same ceramic material with different surface finishes. The ceramic materials with different microstructures showed different patterns of subsurface cracking.

  17. A confocal scanning laser ophthalmoscope for retinal vessel oximetry

    Science.gov (United States)

    Lompado, Arthur

    Measurement of a person's blood oxygen saturation has long been recognized as a useful metric for the characterizing ailments ranging from chronic respiratory disorders to acute, potentially life threatening, traumas. The ubiquity of oxygen saturation monitors in the medical field, including portable pulse oximeters and laboratory based CO-oximeters, is a testament to the importance of this technique. The work presented here documents the design, fabrication and development of a unique type of oxygen saturation monitor, a confocal scanning retinal vessel oximeter, with the potential to expand the usefulness of the present devices. A large part of the knowledge base required to construct the instrument comes from the consideration of light scattering by red blood cells in a blood vessel. Therefore, a substantial portion of this work is devoted to the process of light scattering by whole human blood and its effects on the development of a more accurate oximeter. This light scattering effect has been both measured and modeled stochastically to determine its contribution to the measured oximeter signal. It is shown that, although well accepted in the published literature, the model only correlates marginally to the measurements due to inherent limitations imposed by the model assumptions. Nonetheless, enough material has been learned about the scattering to allow development of a mathematical model for the interaction of light with blood in a vessel, and this knowledge has been applied to the data reduction of the present oximeter. This data reduction technique has been tested in a controlled experiment employing a model eye with a blood filled mock retinal vessel. It will be shown that the presently developed technique exhibited strong correlation between the known blood oxygen saturation and that calculated by the new system.

  18. Visualizing Epithelial Expression in Vertical and Horizontal Planes With Dual Axes Confocal Endomicroscope Using Compact Distal Scanner.

    Science.gov (United States)

    Li, Gaoming; Li, Haijun; Duan, Xiyu; Zhou, Quan; Zhou, Juan; Oldham, Kenn R; Wang, Thomas D

    2017-07-01

    The epithelium is a thin layer of tissue that lines hollow organs, such as colon. Visualizing in vertical cross sections with sub-cellular resolution is essential to understanding early disease mechanisms that progress naturally in the plane perpendicular to the tissue surface. The dual axes confocal architecture collects optical sections in tissue by directing light at an angle incident to the surface using separate illumination and collection beams to reduce effects of scattering, enhance dynamic range, and increase imaging depth. This configuration allows for images to be collected in the vertical as well as horizontal planes. We designed a fast, compact monolithic scanner based on the principle of parametric resonance. The mirrors were fabricated using microelectromechanical systems (MEMS) technology and were coated with aluminum to maximize near-infrared reflectivity. We achieved large axial displacements [Formula: see text] and wide lateral deflections >20°. The MEMS chip has a 3.2×2.9 mm 2 form factor that allows for efficient packaging in the distal end of an endomicroscope. Imaging can be performed in either the vertical or horizontal planes with [Formula: see text] depth or 1 ×1 mm 2 area, respectively, at 5 frames/s. We systemically administered a Cy5.5-labeled peptide that is specific for EGFR, and collected near-infrared fluorescence images ex vivo from pre-malignant mouse colonic epithelium to reveal the spatial distribution of this molecular target. Here, we demonstrate a novel scanning mechanism in a dual axes confocal endomicroscope that collects optical sections of near-infrared fluorescence in either vertical or horizontal planes to visualize molecular expression in the epithelium.

  19. RELIABILITY OF CONFOCAL MICROSCOPY SPECTRAL IMAGING SYSTEMS: USE OF MULTISPECTRAL BEADS

    Science.gov (United States)

    Background: There is a need for a standardized, impartial calibration, and validation protocol on confocal spectral imaging (CSI) microscope systems. To achieve this goal, it is necessary to have testing tools to provide a reproducible way to evaluate instrument performance. ...

  20. A four-phase strategy for the implementation of reflectance confocal microscopy in dermatology

    NARCIS (Netherlands)

    Hoogedoorn, L.; Gerritsen, M.J.P.; Wolberink, E.A.W.; Peppelman, M.; Kerkhof, P.C.M. van de; Erp, P.E.J. van

    2016-01-01

    BACKGROUND: Reflectance confocal microscopy (RCM) is gradually implemented in dermatology. Strategies for further implementation and practical 'hands on' guidelines are lacking. OBJECTIVE: The primary outcome was to conduct a general strategy for further implementation of RCM. The secondary outcome

  1. Characterization of the main error sources of chromatic confocal probes for dimensional measurement

    International Nuclear Information System (INIS)

    Nouira, H; El-Hayek, N; Yuan, X; Anwer, N

    2014-01-01

    Chromatic confocal probes are increasingly used in high-precision dimensional metrology applications such as roughness, form, thickness and surface profile measurements; however, their measurement behaviour is not well understood and must be characterized at a nanometre level. This paper provides a calibration bench for the characterization of two chromatic confocal probes of 20 and 350 µm travel ranges. The metrology loop that includes the chromatic confocal probe is stable and enables measurement repeatability at the nanometer level. With the proposed system, the major error sources, such as the relative axial and radial motions of the probe with respect to the sample, the material, colour and roughness of the measured sample, the relative deviation/tilt of the probe and the scanning speed are identified. Experimental test results show that the chromatic confocal probes are sensitive to these errors and that their measurement behaviour is highly dependent on them. (paper)

  2. Visualization of carbon nanotubes dispersion in composite by using confocal laser scanning microscopy

    Czech Academy of Sciences Publication Activity Database

    Ilčíková, M.; Danko, M.; Doroshenko, M.; Best, A.; Mrlík, M.; Csomorová, K.; Šlouf, Miroslav; Chorvát Jr., D.; Koynov, K.; Mosnáček, J.

    2016-01-01

    Roč. 79, June (2016), s. 187-197 ISSN 0014-3057 Institutional support: RVO:61389013 Keywords : confocal laser scanning microscopy * composites * carbon nanotubes dispersion Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.531, year: 2016

  3. Ex Vivo (Fluorescence) Confocal Microscopy in Surgical Pathology: State of the Art.

    Science.gov (United States)

    Ragazzi, Moira; Longo, Caterina; Piana, Simonetta

    2016-05-01

    First developed in 1957, confocal microscopy is a powerful imaging tool that can be used to obtain near real-time reflected light images of untreated human tissue with nearly histologic resolution. Besides its research applications, in the last decades, confocal microscopy technology has been proposed as a useful device to improve clinical diagnosis, especially in ophthalmology, dermatology, and endomicroscopy settings, thanks to advances in instrument development. Compared with the wider use of the in vivo tissue assessment, ex vivo applications of confocal microscopy are not fully explored. A comprehensive review of the current literature was performed here, focusing on the reliable applications of ex vivo confocal microscopy in surgical pathology and on some potential evolutions of this new technique from pathologists' viewpoint.

  4. Dual-detection confocal fluorescence microscopy: fluorescence axial imaging without axial scanning.

    Science.gov (United States)

    Lee, Dong-Ryoung; Kim, Young-Duk; Gweon, Dae-Gab; Yoo, Hongki

    2013-07-29

    We propose a new method for high-speed, three-dimensional (3-D) fluorescence imaging, which we refer to as dual-detection confocal fluorescence microscopy (DDCFM). In contrast to conventional beam-scanning confocal fluorescence microscopy, where the focal spot must be scanned either optically or mechanically over a sample volume to reconstruct a 3-D image, DDCFM can obtain the depth of a fluorescent emitter without depth scanning. DDCFM comprises two photodetectors, each with a pinhole of different size, in the confocal detection system. Axial information on fluorescent emitters can be measured by the axial response curve through the ratio of intensity signals. DDCFM can rapidly acquire a 3-D fluorescent image from a single two-dimensional scan with less phototoxicity and photobleaching than confocal fluorescence microscopy because no mechanical depth scans are needed. We demonstrated the feasibility of the proposed method by phantom studies.

  5. Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas.

    Science.gov (United States)

    Sanai, Nader; Snyder, Laura A; Honea, Norissa J; Coons, Stephen W; Eschbacher, Jennifer M; Smith, Kris A; Spetzler, Robert F

    2011-10-01

    Greater extent of resection (EOR) for patients with low-grade glioma (LGG) corresponds with improved clinical outcome, yet remains a central challenge to the neurosurgical oncologist. Although 5-aminolevulinic acid (5-ALA)-induced tumor fluorescence is a strategy that can improve EOR in gliomas, only glioblastomas routinely fluoresce following 5-ALA administration. Intraoperative confocal microscopy adapts conventional confocal technology to a handheld probe that provides real-time fluorescent imaging at up to 1000× magnification. The authors report a combined approach in which intraoperative confocal microscopy is used to visualize 5-ALA tumor fluorescence in LGGs during the course of microsurgical resection. Following 5-ALA administration, patients with newly diagnosed LGG underwent microsurgical resection. Intraoperative confocal microscopy was conducted at the following points: 1) initial encounter with the tumor; 2) the midpoint of tumor resection; and 3) the presumed brain-tumor interface. Histopathological analysis of these sites correlated tumor infiltration with intraoperative cellular tumor fluorescence. Ten consecutive patients with WHO Grades I and II gliomas underwent microsurgical resection with 5-ALA and intraoperative confocal microscopy. Macroscopic tumor fluorescence was not evident in any patient. However, in each case, intraoperative confocal microscopy identified tumor fluorescence at a cellular level, a finding that corresponded to tumor infiltration on matched histological analyses. Intraoperative confocal microscopy can visualize cellular 5-ALA-induced tumor fluorescence within LGGs and at the brain-tumor interface. To assess the clinical value of 5-ALA for high-grade gliomas in conjunction with neuronavigation, and for LGGs in combination with intraoperative confocal microscopy and neuronavigation, a Phase IIIa randomized placebo-controlled trial (BALANCE) is underway at the authors' institution.

  6. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Behan, Gavin; Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Nellist, Peter D., E-mail: peter.nellist@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Cosgriff, Eireann C.; D' Alfonso, Adrian J.; Morgan, Andrew J.; Allen, Leslie J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Hashimoto, Ayako [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Takeguchi, Masaki [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Mitsuishi, Kazutaka [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Quantum Dot Research Center, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Shimojo, Masayuki [High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji, Fukaya 369-0293 (Japan)

    2011-06-15

    Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. -- Research Highlights: {yields} The confocal probe image in a scanning confocal electron microscopy image reveals information about the thickness and height of the crystalline layer. {yields} The form of the contrast in a three-dimensional bright-field scanning confocal electron microscopy image can be explained in terms of the confocal probe image. {yields} Despite the complicated form of the contrast in bright-field scanning confocal electron microscopy, we see that depth information is transferred on a 10 nm scale.

  7. Development of an add-on kit for scanning confocal microscopy (Conference Presentation)

    Science.gov (United States)

    Guo, Kaikai; Zheng, Guoan

    2017-03-01

    Scanning confocal microscopy is a standard choice for many fluorescence imaging applications in basic biomedical research. It is able to produce optically sectioned images and provide acquisition versatility to address many samples and application demands. However, scanning a focused point across the specimen limits the speed of image acquisition. As a result, scanning confocal microscope only works well with stationary samples. Researchers have performed parallel confocal scanning using digital-micromirror-device (DMD), which was used to project a scanning multi-point pattern across the sample. The DMD based parallel confocal systems increase the imaging speed while maintaining the optical sectioning ability. In this paper, we report the development of an add-on kit for high-speed and low-cost confocal microscopy. By adapting this add-on kit to an existing regular microscope, one can convert it into a confocal microscope without significant hardware modifications. Compared with current DMD-based implementations, the reported approach is able to recover multiple layers along the z axis simultaneously. It may find applications in wafer inspection and 3D metrology of semiconductor circuit. The dissemination of the proposed add-on kit under $1000 budget could also lead to new types of experimental designs for biological research labs, e.g., cytology analysis in cell culture experiments, genetic studies on multicellular organisms, pharmaceutical drug profiling, RNA interference studies, investigation of microbial communities in environmental systems, and etc.

  8. Process monitoring using optical ultrasonic wave detection

    International Nuclear Information System (INIS)

    Telschow, K.L.; Walter, J.B.; Garcia, G.V.; Kunerth, D.C.

    1989-01-01

    Optical ultrasonic wave detection techniques are being developed for process monitoring. An important limitation on optical techniques is that the material surface, in materials processing applications, is usually not a specular reflector and in many cases is totally diffusely reflecting. This severely degrades the light collected by the detection optics, greatly reducing the intensity and randomly scattering the phase of the reflected light. A confocal Fabry-Perot interferometer, which is sensitive to the Doppler frequency shift resulting from the surface motion and not to the phase of the collected light, is well suited to detecting ultrasonic waves in diffusely reflecting materials. This paper describes the application of this detector to the real-time monitoring of the sintering of ceramic materials. 8 refs., 5 figs

  9. Multiquark Resonances

    CERN Document Server

    Esposito, A.; Polosa, A.D.

    2016-01-01

    Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties has been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building. Data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.

  10. Neuroaesthetic Resonance

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis

    2013-01-01

    Neuroaesthetic Resonance emerged from a mature body of patient- centered gesture-control research investigating non-formal rehabilitation via ICT-enhanced-Art to question ‘Aesthetic Resonance’. Motivating participation, ludic engagement, and augmenting physical motion in non-formal (fun) treatment...... sessions are achieved via adaptive action-analyzed activities. These interactive virtual environments are designed to empower patients’ creative and/or playful expressions via digital feedback stimuli. Unconscious self- pushing of limits result from innate distractive mechanisms offered by the alternative...... the unencumbered motion-to-computer-generated activities - ‘Music Making’, ‘Painting’, ‘Robotic’ and ‘Video Game’ control. A focus of this position paper is to highlight how Aesthetic Resonance, in this context, relates to the growing body of research on Neuroaesthetics to evolve Neuroaesthetic Resonance....

  11. Baryon Resonances

    International Nuclear Information System (INIS)

    Oset, E.; Sarkar, S.; Sun Baoxi; Vicente Vacas, M.J.; Ramos, A.; Gonzalez, P.; Vijande, J.; Martinez Torres, A.; Khemchandani, K.

    2010-01-01

    In this talk I show recent results on how many excited baryon resonances appear as systems of one meson and one baryon, or two mesons and one baryon, with the mesons being either pseudoscalar or vectors. Connection with experiment is made including a discussion on old predictions and recent results for the photoproduction of the Λ(1405) resonance, as well as the prediction of one 1/2 + baryon state around 1920 MeV which might have been seen in the γp→K + Λ reaction.

  12. Clinical applications of in vivo fluorescence confocal laser scanning microscopy

    Science.gov (United States)

    Oh, Chilhwan; Park, Sangyong; Kim, Junhyung; Ha, Seunghan; Park, Gyuman; Lee, Gunwoo; Lee, Onseok; Chun, Byungseon; Gweon, Daegab

    2008-02-01

    Living skin for basic and clinical research can be evaluated by Confocal Laser Scanning Microscope (CLSM) non-invasively. CLSM imaging system can achieve skin image its native state either "in vivo" or "fresh biopsy (ex vivo)" without fixation, sectioning and staining that is necessary for routine histology. This study examines the potential fluorescent CLSM with a various exogenous fluorescent contrast agent, to provide with more resolution images in skin. In addition, in vivo fluorescent CLSM researchers will be extended a range of potential clinical application. The prototype of our CLSM system has been developed by Prof. Gweon's group. The operating parameters are composed of some units, such as illuminated wavelength 488 nm, argon illumination power up to 20mW on the skin, objective lens, 0.9NA oil immersion, axial resolution 1.0μm, field of view 200μm x 100μm (lateral resolution , 0.3μm). In human volunteer, fluorescein sodium was administrated topically and intradermally. Animal studies were done in GFP transgenic mouse, IRC mouse and pig skin. For imaging of animal skin, fluorescein sodium, acridine orange, and curcumine were used for fluorescein contrast agent. We also used the GFP transgenic mouse for fluorescein CLSM imaging. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. Curcumin is a yellow food dye that has similar fluorescent properties to fluorescein sodium. Acridin Orange can be highlight nuclei in viable keratinocyte. In vivo CLSM of transgenic GFP mouse enable on in vivo, high resolution view of GFP expressing skin tissue. GFP signals are brightest in corneocyte, kertinocyte, hair and eccrine gland. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. In

  13. Improved sampling and analysis of images in corneal confocal microscopy.

    Science.gov (United States)

    Schaldemose, E L; Fontain, F I; Karlsson, P; Nyengaard, J R

    2017-10-01

    Corneal confocal microscopy (CCM) is a noninvasive clinical method to analyse and quantify corneal nerve fibres in vivo. Although the CCM technique is in constant progress, there are methodological limitations in terms of sampling of images and objectivity of the nerve quantification. The aim of this study was to present a randomized sampling method of the CCM images and to develop an adjusted area-dependent image analysis. Furthermore, a manual nerve fibre analysis method was compared to a fully automated method. 23 idiopathic small-fibre neuropathy patients were investigated using CCM. Corneal nerve fibre length density (CNFL) and corneal nerve fibre branch density (CNBD) were determined in both a manual and automatic manner. Differences in CNFL and CNBD between (1) the randomized and the most common sampling method, (2) the adjusted and the unadjusted area and (3) the manual and automated quantification method were investigated. The CNFL values were significantly lower when using the randomized sampling method compared to the most common method (p = 0.01). There was not a statistical significant difference in the CNBD values between the randomized and the most common sampling method (p = 0.85). CNFL and CNBD values were increased when using the adjusted area compared to the standard area. Additionally, the study found a significant increase in the CNFL and CNBD values when using the manual method compared to the automatic method (p ≤ 0.001). The study demonstrated a significant difference in the CNFL values between the randomized and common sampling method indicating the importance of clear guidelines for the image sampling. The increase in CNFL and CNBD values when using the adjusted cornea area is not surprising. The observed increases in both CNFL and CNBD values when using the manual method of nerve quantification compared to the automatic method are consistent with earlier findings. This study underlines the importance of improving the analysis of the

  14. Confocal Microscopy of Jammed Matter: From Elasticity to Granular Thermodynamics

    Science.gov (United States)

    Jorjadze, Ivane

    Packings of particles are ubiquitous in nature and are of interest not only to the scientific community but also to the food, pharmaceutical, and oil industries. In this thesis we use confocal microscopy to investigate packing geometry and stress transmission in 3D jammed particulate systems. By introducing weak depletion attraction we probe the accessible phase-space and demonstrate that a microscopic approach to jammed matter gives validity to statistical mechanics framework, which is intriguing because our particles are not thermally activated. We show that the fluctuations of the local packing parameters can be successfully captured by the recently proposed 'granocentric' model, which generates packing statistics according to simple stochastic processes. This model enables us to calculate packing entropy and granular temperature, the so-called 'compactivity', therefore, providing a basis for a statistical mechanics of granular matter. At a jamming transition point at which there are formed just enough number of contacts to guarantee the mechanical stability, theoretical arguments suggest a singularity which gives rise to the surprising scaling behavior of the elastic moduli and the microstructure, as observed in numerical simulations. Since the contact network in 3D is typically hidden from view, experimental test of the scaling law between the coordination number and the applied pressure is lacking in the literature. Our data show corrections to the linear scaling of the pressure with density which takes into account the creation of contacts. Numerical studies of vibrational spectra, in turn, reveal sudden features such as excess of low frequency modes, dependence of mode localization and structure on the pressure. Chapter four describes the first calculation of vibrational density of states from the experimental 3D data and is in qualitative agreement with the analogous computer simulations. We study the configurational role of the pressure and demonstrate

  15. 996 RESONANCE November 2013

    Indian Academy of Sciences (India)

    IAS Admin

    996. RESONANCE. November 2013. Page 2. 997. RESONANCE. November 2013. Page 3. 998. RESONANCE. November 2013. Page 4. 999. RESONANCE. November 2013. Page 5. 1000. RESONANCE. November 2013. Page 6. 1001. RESONANCE. November 2013. Page 7. 1002. RESONANCE. November 2013 ...

  16. 817 RESONANCE September 2013

    Indian Academy of Sciences (India)

    IAS Admin

    817. RESONANCE ⎜ September 2013. Page 2. 818. RESONANCE ⎜ September 2013. Page 3. 819. RESONANCE ⎜ September 2013. Page 4. 820. RESONANCE ⎜ September 2013. Page 5. 821. RESONANCE ⎜ September 2013. Page 6. 822. RESONANCE ⎜ September 2013. Page 7. 823. RESONANCE ⎜ September ...

  17. 369 RESONANCE April 2016

    Indian Academy of Sciences (India)

    IAS Admin

    369. RESONANCE ⎜ April 2016. Page 2. 370. RESONANCE ⎜ April 2016. Page 3. 371. RESONANCE ⎜ April 2016. Page 4. 372. RESONANCE ⎜ April 2016. Page 5. 373. RESONANCE ⎜ April 2016. Page 6. 374. RESONANCE ⎜ April 2016. Page 7. 375. RESONANCE ⎜ April 2016.

  18. Synchrobetatron resonances

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    At the 1975 Particle Accelerator Conference it was reported that a class of resonances were observed in SPEAR II that had not appeared before in SPEAR I. These resonances occur when the betatron oscillation wave numbers ν/sub x/ or ν/sub y/ and the synchrotron wave number ν/sub s/ satisfy the relation (ν/sub x,y/ - mν/sub s/) = 5, with m an integer denoting the m/sup th/ satellite. The main difference between SPEAR II and SPEAR I is the value of ν/sub s/, which in SPEAR II is approximately 0.04, an order of magnitude larger than in SPEAR I. An ad hoc meeting was held at the 1975 Particle Accelerator Conference, where details of the SPEAR II results were presented and various possible mechanisms for producing these resonances were discussed. Later, experiments were performed at SPEAR to identify the mechanism believed to be the most likely explanation. Some of the current experimental knowledge and theoretical views on the source of these resonances are presented

  19. Autostereogram resonators

    Science.gov (United States)

    Leavey, Sean; Rae, Katherine; Murray, Adam; Courtial, Johannes

    2012-09-01

    Autostereograms, or "Magic Eye" pictures, are repeating patterns designed to give the illusion of depth. Here we discuss optical resonators that create light patterns which, when viewed from a suitable position by a monocular observer, are autostereograms of the three-dimensional shape of one of the mirror surfaces.

  20. Latest developments and opportunities for 3D analysis of biological samples by confocal μ-XRF

    International Nuclear Information System (INIS)

    Perez, Roberto D.; Sanchez, Hector J.; Perez, Carlos A.; Rubio, Marcelo

    2010-01-01

    X-ray fluorescence analysis performed with a primary radiation focused in the micrometer range is known as micro-X-ray fluorescence (μ-XRF). It is characterized by a penetration depth higher than other micro-analytical methods, reaching hundreds of micrometers in biological samples. This characteristic of the X-ray beam can be employed in 3D analysis. An innovative method to perform 3D analysis by μ-XRF is the so-called confocal setup. The confocal setup consists of X-ray lenses in the excitation as well as in the detection channel. In this configuration, a micro-volume defined by the overlap of the foci of both X-ray lenses is analyzed. Scanning this micro-volume through the sample can be used to perform a study in three dimensions. At present, X-ray lenses used in confocal μ-XRF experiments are mainly glass capillaries and polycapillaries. Glass capillaries are used in the excitation channel with sources of high photon flux like synchrotron radiation. Half polycapillaries or conical polycapillary concentrators are used almost exclusively in the detection channel. Spatial resolution of the confocal μ-XRF depends on the dimensions of the foci of both X-ray lenses. The overlap of these foci forms an ellipsoid which is the probing volume of the confocal setup. The axis length of the probing volume reported in confocal μ-XRF experiments are of order of few tens of micrometer. In our confocal setup, we used a commercial glass monocapillary in the excitation channel and a monolithic half polycapillary in the detection channel. The polycapillary was home-made by means of drawing of multibundles of glass capillaries in a heating furnace. The experiment was carried out at the beamline D09B-XRF of the Synchrotron Light National Laboratory (Laboratorio Nacional de Luz Sincrotron, LNLS) using white beam. A model for the theoretical description of X-ray fluorescence intensity registered by confocal μ-XRF was introduced by Malzer and Kanngieβer [2005. A model for the

  1. In situ protein expression in tumour spheres: development of an immunostaining protocol for confocal microscopy

    International Nuclear Information System (INIS)

    Weiswald, Louis-Bastien; Guinebretière, Jean-Marc; Richon, Sophie; Bellet, Dominique; Saubaméa, Bruno; Dangles-Marie, Virginie

    2010-01-01

    Multicellular tumour sphere models have been shown to closely mimic phenotype characteristics of in vivo solid tumours, or to allow in vitro propagation of cancer stem cells (CSCs). CSCs are usually characterized by the expression of specific membrane markers using flow cytometry (FC) after enzymatic dissociation. Consequently, the spatial location of positive cells within spheres is not documented. Confocal microscopy is the best technique for the imaging of thick biological specimens after multi-labelling but suffers from poor antibody penetration. Thus, we describe here a new protocol for in situ confocal imaging of protein expression in intact spheroids. Protein expression in whole spheroids (150 μm in diameter) from two human colon cancer cell lines, HT29 and CT320X6, has been investigated with confocal immunostaining, then compared with profiles obtained through paraffin immunohistochemistry (pIHC) and FC. Target antigens, relevant for colon cancer and with different expression patterns, have been studied. We first demonstrate that our procedure overcomes the well-known problem of antibody penetration in compact structures by performing immunostaining of EpCAM, a membrane protein expressed by all cells within our spheroids. EpCAM expression is detected in all cells, even the deepest ones. Likewise, antibody access is confirmed with CK20 and CD44 immunostaining. Confocal imaging shows that 100% of cells express β-catenin, mainly present in the plasma membrane with also cytoplasmic and nuclear staining, in agreement with FC and pIHC data. pIHC and confocal imaging show similar CA 19-9 cytoplasmic and membranar expression profile in a cell subpopulation. CA 19-9 + cell count confirms confocal imaging as a highly sensitive method (75%, 62% and 51%, for FC, confocal imaging and pIHC, respectively). Finally, confocal imaging reveals that the weak expression of CD133, a putative colon CSC marker, is restricted to the luminal cell surface of colorectal cancer acini

  2. Site-specific confocal fluorescence imaging of biological microstructures in a turbid medium

    International Nuclear Information System (INIS)

    Saloma, Caesar; Palmes-Saloma, Cynthia; Kondoh, Hisato

    1998-01-01

    Normally transparent biological structures in a turbid medium are imaged using a laser confocal microscope and multiwavelength site-specific fluorescence labelling. The spatial filtering capability of the detector pinhole in the confocal microscope limits the number of scattered fluorescent photons that reach the photodetector. Simultaneous application of different fluorescent markers on the same sample site minimizes photobleaching by reducing the excitation time for each marker. A high-contrast grey-level image is also produced by summing confocal images of the same site taken at different fluorescence wavelengths. Monte Carlo simulations are performed to obtain the quantitative behaviour of confocal fluorescence imaging in turbid media. Confocal images of the following samples were also obtained: (i) 15 μm diameter fluorescent spheres placed 1.16 mm deep beneath an aqueous suspension of 0.0823 μm diameter polystyrene latex spheres, and (ii) hindbrain of a whole-mount mouse embryo (age 10 days) that was stained to fluoresce at 515 nm and 580 nm peak wavelengths. Expression of RNA transcripts of a gene within the embryo hindbrain was detected by a fluorescence-based whole-mount in situ hybridization procedure that we recently tested. (author)

  3. Portable oral cancer detection using a miniature confocal imaging probe with a large field of view

    Science.gov (United States)

    Wang, Youmin; Raj, Milan; McGuff, H. Stan; Bhave, Gauri; Yang, Bin; Shen, Ting; Zhang, Xiaojing

    2012-06-01

    We demonstrate a MEMS micromirror enabled handheld confocal imaging probe for portable oral cancer detection, where a comparatively large field of view (FOV) was generated through the programmable Lissajous scanning pattern of the MEMS micromirror. Miniaturized handheld MEMS confocal imaging probe was developed, and further compared with the desktop confocal prototype under clinical setting. For the handheld confocal imaging system, optical design simulations using CODE VR® shows the lateral and axial resolution to be 0.98 µm and 4.2 µm, where experimental values were determined to be 3 µm and 5.8 µm, respectively, with a FOV of 280 µm×300 µm. Fast Lissajous imaging speed up to 2 fps was realized with improved Labview and Java based real-time imaging software. Properties such as 3D imaging through autofocusing and mosaic imaging for extended lateral view (6 mm × 8 mm) were examined for carcinoma real-time pathology. Neoplastic lesion tissues of giant cell fibroma and peripheral ossifying fibroma, the fibroma inside the paraffin box and ex vivo gross tissues were imaged by the bench-top and handheld imaging modalities, and further compared with commercial microscope imaging results. The MEMS scanner-based handheld confocal imaging probe shows great promise as a potential clinical tool for oral cancer diagnosis and treatment.

  4. Portable oral cancer detection using a miniature confocal imaging probe with a large field of view

    International Nuclear Information System (INIS)

    Wang, Youmin; Raj, Milan; Bhave, Gauri; Yang, Bin; Zhang, Xiaojing; McGuff, H. Stan; Shen, Ting

    2012-01-01

    We demonstrate a MEMS micromirror enabled handheld confocal imaging probe for portable oral cancer detection, where a comparatively large field of view (FOV) was generated through the programmable Lissajous scanning pattern of the MEMS micromirror. Miniaturized handheld MEMS confocal imaging probe was developed, and further compared with the desktop confocal prototype under clinical setting. For the handheld confocal imaging system, optical design simulations using CODE V R® shows the lateral and axial resolution to be 0.98 µm and 4.2 µm, where experimental values were determined to be 3 µm and 5.8 µm, respectively, with a FOV of 280 µm×300 µm. Fast Lissajous imaging speed up to 2 fps was realized with improved Labview and Java based real-time imaging software. Properties such as 3D imaging through autofocusing and mosaic imaging for extended lateral view (6 mm × 8 mm) were examined for carcinoma real-time pathology. Neoplastic lesion tissues of giant cell fibroma and peripheral ossifying fibroma, the fibroma inside the paraffin box and ex vivo gross tissues were imaged by the bench-top and handheld imaging modalities, and further compared with commercial microscope imaging results. The MEMS scanner-based handheld confocal imaging probe shows great promise as a potential clinical tool for oral cancer diagnosis and treatment. (paper)

  5. Association between dermoscopic and reflectance confocal microscopy features of cutaneous melanoma with BRAF mutational status.

    Science.gov (United States)

    Bombonato, C; Ribero, S; Pozzobon, F C; Puig-Butille, J A; Badenas, C; Carrera, C; Malvehy, J; Moscarella, E; Lallas, A; Piana, S; Puig, S; Argenziano, G; Longo, C

    2017-04-01

    Melanomas harbouring common genetic mutations might share certain morphological features detectable with dermoscopy and reflectance confocal microscopy. BRAF mutational status is crucial for the management of metastatic melanoma. To correlate the dermoscopic characteristics of primary cutaneous melanomas with BRAF mutational status. Furthermore, a subset of tumours has also been analysed for the presence of possible confocal features that might be linked with BRAF status. Retrospectively acquired dermoscopic and confocal images of patients with melanoma in tertiary referral academic centres: Skin Cancer Unit in Reggio Emilia and at the Melanoma Unit in Barcelona. Kruskal-Wallis test, logistic regressions, univariate and multivariate analyses have been performed to find dermoscopic and confocal features significantly correlated with BRAF mutational status. Dermoscopically, the presence of irregular peripheral streaks and ulceration were positive predictors of BRAF-mutated melanomas with a statistically significance value, while dotted vessels were more represented in wild-type melanomas. None of the evaluated reflectance confocal microscopy features were correlated with genetic profiling. Ulceration and irregular peripheral streaks represent dermoscopic feature indicative for BRAF-mutated melanoma, while dotted vessels are suggestive for wild-type melanoma. © 2016 European Academy of Dermatology and Venereology.

  6. Gastric Tissue Damage Analysis Generated by Ischemia: Bioimpedance, Confocal Endomicroscopy, and Light Microscopy

    Directory of Open Access Journals (Sweden)

    Nohra E. Beltran

    2013-01-01

    Full Text Available The gastric mucosa ischemic tissular damage plays an important role in critical care patients’ outcome, because it is the first damaged tissue by compensatory mechanism during shock. The aim of the study is to relate bioimpedance changes with tissular damage level generated by ischemia by means of confocal endomicroscopy and light microscopy. Bioimpedance of the gastric mucosa and confocal images were obtained from Wistar male rats during basal and ischemia conditions. They were anesthetized, and stain was applied (fluorescein and/or acriflavine. The impedance spectroscopy catheter was inserted and then confocal endomicroscopy probe. After basal measurements and biopsy, hepatic and gastric arteries clamping induced ischemia. Finally, pyloric antrum tissue was preserved in buffered formaldehyde (10% for histology processing using light microscopy. Confocal images were equalized, binarized, and boundary defined, and infiltrations were quantified. Impedance and infiltrations increased with ischemia showing significant changes between basal and ischemia conditions (. Light microscopy analysis allows detection of general alterations in cellular and tissular integrity, confirming gastric reactance and confocal images quantification increments obtained during ischemia.

  7. Superresolution upgrade for confocal spinning disk systems using image scanning microscopy (Conference Presentation)

    Science.gov (United States)

    Isbaner, Sebastian; Hähnel, Dirk; Gregor, Ingo; Enderlein, Jörg

    2017-02-01

    Confocal Spinning Disk Systems are widely used for 3D cell imaging because they offer the advantage of optical sectioning at high framerates and are easy to use. However, as in confocal microscopy, the imaging resolution is diffraction limited, which can be theoretically improved by a factor of 2 using the principle of Image Scanning Microscopy (ISM) [1]. ISM with a Confocal Spinning Disk setup (CSDISM) has been shown to improve contrast as well as lateral resolution (FWHM) from 201 +/- 20 nm to 130 +/- 10 nm at 488 nm excitation. A minimum total acquisition time of one second per ISM image makes this method highly suitable for 3D live cell imaging [2]. Here, we present a multicolor implementation of CSDISM for the popular Micro-Manager Open Source Microscopy platform. Since changes in the optical path are not necessary, this will allow any researcher to easily upgrade their standard Confocal Spinning Disk system at remarkable low cost ( 5000 USD) with an ISM superresolution option. [1]. Müller, C.B. and Enderlein, J. Image Scanning Microscopy. Physical Review Letters 104, (2010). [2]. Schulz, O. et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proceedings of the National Academy of Sciences of the United States of America 110, 21000-5 (2013).

  8. An interactive visualization tool for multi-channel confocal microscopy data in neurobiology research

    KAUST Repository

    Yong Wan,

    2009-11-01

    Confocal microscopy is widely used in neurobiology for studying the three-dimensional structure of the nervous system. Confocal image data are often multi-channel, with each channel resulting from a different fluorescent dye or fluorescent protein; one channel may have dense data, while another has sparse; and there are often structures at several spatial scales: subneuronal domains, neurons, and large groups of neurons (brain regions). Even qualitative analysis can therefore require visualization using techniques and parameters fine-tuned to a particular dataset. Despite the plethora of volume rendering techniques that have been available for many years, the techniques standardly used in neurobiological research are somewhat rudimentary, such as looking at image slices or maximal intensity projections. Thus there is a real demand from neurobiologists, and biologists in general, for a flexible visualization tool that allows interactive visualization of multi-channel confocal data, with rapid fine-tuning of parameters to reveal the three-dimensional relationships of structures of interest. Together with neurobiologists, we have designed such a tool, choosing visualization methods to suit the characteristics of confocal data and a typical biologist\\'s workflow. We use interactive volume rendering with intuitive settings for multidimensional transfer functions, multiple render modes and multi-views for multi-channel volume data, and embedding of polygon data into volume data for rendering and editing. As an example, we apply this tool to visualize confocal microscopy datasets of the developing zebrafish visual system.

  9. Lateral resolution testing of a novel developed confocal microscopic imaging system

    Science.gov (United States)

    Zhang, Xin; Zhang, Yunhai; Chang, Jian; Huang, Wei; Xue, Xiaojun; Xiao, Yun

    2015-10-01

    Laser scanning confocal microscope has been widely used in biology, medicine and material science owing to its advantages of high resolution and tomographic imaging. Based on a set of confirmatory experiments and system design, a novel confocal microscopic imaging system is developed. The system is composed of a conventional fluorescence microscope and a confocal scanning unit. In the scanning unit a laser beam coupling module provides four different wavelengths 405nm 488nm 561nm and 638nm which can excite a variety of dyes. The system works in spot-to-spot scanning mode with a two-dimensional galvanometer. A 50 microns pinhole is used to guarantee that stray light is blocked and only the fluorescence signal from the focal point can be received . The three-channel spectral splitter is used to perform fluorescence imaging at three different working wavelengths simultaneously. The rat kidney tissue slice is imaged using the developed confocal microscopic imaging system. Nucleues labeled by DAPI and kidney spherule curved pipe labeled by Alexa Fluor 488 can be imaged clearly and respectively, realizing the distinction between the different components of mouse kidney tissue. The three-dimensional tomographic imaging of mouse kidney tissue is reconstructed by several two-dimensional images obtained in different depths. At last the resolution of the confocal microscopic imaging system is tested quantitatively. The experimental result shows that the system can achieve lateral resolution priority to 230nm.

  10. Extended Field Laser Confocal Microscopy (EFLCM): Combining automated Gigapixel image capture with in silico virtual microscopy

    International Nuclear Information System (INIS)

    Flaberg, Emilie; Sabelström, Per; Strandh, Christer; Szekely, Laszlo

    2008-01-01

    Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture. Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale in silico image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM). We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates. The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes

  11. Confocal soft X-ray scanning transmission microscopy: setup, alignment procedure and limitations

    International Nuclear Information System (INIS)

    Späth, Andreas; Raabe, Jörg; Fink, Rainer H.

    2015-01-01

    A conventional STXM setup has been upgraded with a second micro zone plate and aligned to confocal geometry. Two confocal geometries (in-line and off-axis) have been evaluated and a discussion on prospects and limitations is presented. Zone-plate-based scanning transmission soft X-ray microspectroscopy (STXM) is a well established technique for high-contrast imaging of sufficiently transparent specimens (e.g. ultrathin biological tissues, polymer materials, archaeometric specimens or magnetic thin films) with spatial resolutions in the regime of 20 nm and high spectroscopic or chemical sensitivity. However, due to the relatively large depth of focus of zone plates, the resolution of STXM along the optical axis so far stays unambiguously behind for thicker X-ray transparent specimens. This challenge can be addressed by the implementation of a second zone plate in the detection pathway of the beam, resulting in a confocal arrangement. Within this paper a first proof-of-principle study for a confocal STXM (cSTXM) and an elaborate alignment procedure in transmission and fluorescence geometry are presented. Based on first confocal soft X-ray micrographs of well known specimens, the advantage and limitation of cSTXM as well as further development potentials for future applications are discussed

  12. Confocal soft X-ray scanning transmission microscopy: setup, alignment procedure and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Späth, Andreas [Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany); Raabe, Jörg [Paul Scherrer Institut, 5232 Villigen (Switzerland); Fink, Rainer H., E-mail: rainer.fink@fau.de [Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany); Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany)

    2015-01-01

    A conventional STXM setup has been upgraded with a second micro zone plate and aligned to confocal geometry. Two confocal geometries (in-line and off-axis) have been evaluated and a discussion on prospects and limitations is presented. Zone-plate-based scanning transmission soft X-ray microspectroscopy (STXM) is a well established technique for high-contrast imaging of sufficiently transparent specimens (e.g. ultrathin biological tissues, polymer materials, archaeometric specimens or magnetic thin films) with spatial resolutions in the regime of 20 nm and high spectroscopic or chemical sensitivity. However, due to the relatively large depth of focus of zone plates, the resolution of STXM along the optical axis so far stays unambiguously behind for thicker X-ray transparent specimens. This challenge can be addressed by the implementation of a second zone plate in the detection pathway of the beam, resulting in a confocal arrangement. Within this paper a first proof-of-principle study for a confocal STXM (cSTXM) and an elaborate alignment procedure in transmission and fluorescence geometry are presented. Based on first confocal soft X-ray micrographs of well known specimens, the advantage and limitation of cSTXM as well as further development potentials for future applications are discussed.

  13. Tunable Graphene Metasurface Reflectarray for Cloaking, Illusion, and Focusing

    Science.gov (United States)

    Biswas, Sudipta Romen; Gutiérrez, Cristian E.; Nemilentsau, Andrei; Lee, In-Ho; Oh, Sang-Hyun; Avouris, Phaedon; Low, Tony

    2018-03-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. We present a graphene-based metasurface that can be actively tuned between different regimes of operation, such as anomalous beam steering and focusing, cloaking, and illusion optics, by applying electrostatic gating without modifying the geometry of the metasurface. The metasurface is designed by placing graphene ribbons on a dielectric cavity resonator, where interplay between geometric plasmon resonances in the ribbons and Fabry-Perot resonances in the cavity is used to achieve a 2 π phase shift. As a proof of concept, we demonstrate that the wave front of the field reflected from a triangular bump covered by the metasurface can be tuned by applying electric bias so as to resemble that of a bare plane and of a spherical object. Moreover, reflective focusing and the change of the reflection direction for the above mentioned cases are also shown.

  14. Effect of Surface Plasmon Coupling to Optical Cavity Modes on the Field Enhancement and Spectral Response of Dimer-Based sensors

    KAUST Repository

    Alrasheed, Salma

    2017-09-05

    We present a theoretical approach to narrow the plasmon linewidth and enhance the near-field intensity at a plasmonic dimer gap (hot spot) through coupling the electric localized surface plasmon (LSP) resonance of a silver hemispherical dimer with the resonant modes of a Fabry-Perot (FP) cavity. The strong coupling is demonstrated by the large anticrossing in the reflection spectra and a Rabi splitting of 76 meV. Up to 2-fold enhancement increase can be achieved compared to that without using the cavity. Such high field enhancement has potential applications in optics, including sensors and high resolution imaging devices. In addition, the resonance splitting allows for greater flexibility in using the same array at different wavelengths. We then further propose a practical design to realize such a device and include dimers of different shapes and materials.

  15. Narrow linewidth operation of the RILIS titanium: Sapphire laser at ISOLDE/CERN

    CERN Document Server

    Rothe, S; Wendt, K D A; Fedosseev, V N; Kron, T; Marsh, B A

    2013-01-01

    A narrow linewidth operating mode for the Ti:sapphire laser of the CERN ISOLDE Resonance Ionization Laser Ion Source (RILIS) has been developed. This satisfies the laser requirements for the programme of in-source resonance ionization spectroscopy measurements and improves the selectivity for isomer separation using RILIS. A linewidth reduction from typically 10 GHz down to 1 GHz was achieved by the intra-cavity insertion of a second (thick) Fabry-Perot etalon. Reliable operation during a laser scan was achieved through motorized control of the tilt angle of each etalon. A scanning, stabilization and mode cleaning procedure was developed and implemented in LabVIEW. The narrow linewidth operation was confirmed in a high resolution spectroscopy study of francium isotopes by the Collinear Resonance Ionization Spectroscopy experiment. The resulting laser scans demonstrate the suitability of the laser, in terms of linewidth, spectral purity and stability for high resolution in-source spectroscopy and isomer select...

  16. Resonating Statements

    DEFF Research Database (Denmark)

    Hjelholt, Morten; Jensen, Tina Blegind

    2015-01-01

    IT projects are often complex arrangements of technological components, social actions, and organizational transformation that are difficult to manage in practice. This paper takes an analytical discourse perspective to explore the process of legitimizing IT projects. We introduce the concept...... of resonating statements to highlight how central actors navigate in various discourses over time. Particularly, the statements and actions of an IT project manager are portrayed to show how individuals can legitimize actions by connecting statements to historically produced discourses. The case study...... as part of a feedback loop to re-attach the localized IT project to the broader national discourse. The paper concludes with reflections on how to actively build on resonating statements as a strategic resource for legitimizing IT projects...

  17. Gravitoelectromagnetic resonances

    International Nuclear Information System (INIS)

    Tsagas, Christos G.

    2011-01-01

    The interaction between gravitational and electromagnetic radiation has a rather long research history. It is well known, in particular, that gravity-wave distortions can drive propagating electromagnetic signals. Since forced oscillations provide the natural stage for resonances to occur, gravitoelectromagnetic resonances have been investigated as a means of more efficient gravity-wave detection methods. In this report, we consider the coupling between the Weyl and the Maxwell fields on a Minkowski background, which also applies to astrophysical environments where gravity is weak, at the second perturbative level. We use covariant methods that describe gravitational waves via the transverse component of the shear, instead of pure-tensor metric perturbations. The aim is to calculate the properties of the electromagnetic signal, which emerges from the interaction of its linear counterpart with an incoming gravitational wave. Our analysis shows how the wavelength and the amplitude of the gravitationally driven electromagnetic wave vary with the initial conditions. More specifically, for certain initial data, the amplitude of the induced electromagnetic signal is found to diverge. Analogous, diverging, gravitoelectromagnetic resonances were also reported in cosmology. Given that, we extend our Minkowski space study to cosmology and discuss analogies and differences in the physics and in the phenomenology of the Weyl-Maxwell coupling between the aforementioned two physical environments.

  18. Magnetic resonance annual 1986

    International Nuclear Information System (INIS)

    Kressel, H.Y.

    1986-01-01

    This book contains papers written on magnetic resonance during 1986. Topics include: musculosketetal magnetic resonance imaging; imaging of the spine; magnetic resonance chemical shift imaging; magnetic resonance imaging in the central nervous system; comparison to computed tomography; high resolution magnetic resonance imaging using surface coils; magnetic resonance imaging of the chest; magnetic resonance imaging of the breast; magnetic resonance imaging of the liver; magnetic resonance spectroscopy of neoplasms; blood flow effects in magnetic resonance imaging; and current and potential applications of clinical sodium magnetic resonance imaging

  19. Application of the laser scanning confocal microscope in fluorescent film sensor research

    Science.gov (United States)

    Zhang, Hongyan; Liu, Wei-Min; Zhao, Wen-Wen; Dai, Qing; Wang, Peng-Fei

    2010-10-01

    Confocal microscopy offers several advantages over conventional optical microscopy; we show an experimental investigation laser scanning confocal microscope as a tool to be used in cubic boron nitride (cBN) film-based fluorescent sensor research. Cubic boron nitride cBN film sensors are modified with dansyl chloride and rhodamine B isothiocyanate respectively. Fluorescent modification quality on the cubic boron nitride film is clearly express and the sensor ability to Hg2+ cations and pH are investigated in detail. We evidence the rhodamine B isothiocyanate modified quality on cBN surface is much better than that of dansyl chloride. And laser scanning confocal microscope has potential application lighttight fundus film fluorescent sensor research.

  20. Confocal detection of Rayleigh scattering for residual stress measurement in chemically tempered glass

    Energy Technology Data Exchange (ETDEWEB)

    Hödemann, S., E-mail: siim.hodemann@ut.ee; Möls, P.; Kiisk, V.; Saar, R.; Kikas, J. [Institute of Physics, University of Tartu, Wilhelm Ostwald st., Tartu 50411 (Estonia); Murata, T. [Nippon Electric Glass Co., 7-1 Seiran 2-chome, Otsu-shi, Shiga 520-8639 (Japan)

    2015-12-28

    A new optical method is presented for evaluation of the stress profile in chemically tempered (chemically strengthened) glass based on confocal detection of scattered laser beam. Theoretically, a lateral resolution of 0.2 μm and a depth resolution of 0.6 μm could be achieved by using a confocal microscope with high-NA immersion objective. The stress profile in the 250 μm thick surface layer of chemically tempered lithium aluminosilicate glass was measured with a high spatial resolution to illustrate the capability of the method. The confocal method is validated using transmission photoelastic and Na{sup +} ion concentration profile measurement. Compositional influence on the stress-optic coefficient is calculated and discussed. Our method opens up new possibilities for three-dimensional scattered light tomography of mechanical imaging in birefringent materials.

  1. Emulation and design of terahertz reflection-mode confocal scanning microscopy based on virtual pinhole

    Science.gov (United States)

    Yang, Yong-fa; Li, Qi

    2014-12-01

    In the practical application of terahertz reflection-mode confocal scanning microscopy, the size of detector pinhole is an important factor that determines the performance of spatial resolution characteristic of the microscopic system. However, the use of physical pinhole brings some inconvenience to the experiment and the adjustment error has a great influence on the experiment result. Through reasonably selecting the parameter of matrix detector virtual pinhole (VPH), it can efficiently approximate the physical pinhole. By using this approach, the difficulty of experimental calibration is reduced significantly. In this article, an imaging scheme of terahertz reflection-mode confocal scanning microscopy that is based on the matrix detector VPH is put forward. The influence of detector pinhole size on the axial resolution of confocal scanning microscopy is emulated and analyzed. Then, the parameter of VPH is emulated when the best axial imaging performance is reached.

  2. Performance verification of focus variation and confocal microscopes measuring tilted ultra-fine surfaces

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Baruffi, Federico; Tosello, Guido

    2016-01-01

    The behaviour of two optical instruments, scilicet a laser scanning confocal microscope and a focus-variation microscope, was investigated considering measurements of tilted surfaces. The measured samples were twelve steel artefacts for mould surface finish reference, covering Sa roughness...... parameter in the range (101—103) nm. The 3D surface texture parameters considered were Sa, Sq and Sdq. The small working distance of the confocal microscope objectives influenced the measurement setup, preventing from selecting a high tilting angle. The investigation was carried out comparing measurements...... of flat surfaces (0° tilt) with measurements of 12.5° tilted surfaces. The confocal microscope results showed a high sensitivity to tilting due to the laser beam reflection on the metal surfaces. The focus variation microscope results were more robust with respect to the considered angular variation...

  3. Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source

    International Nuclear Information System (INIS)

    Woll, A.R.; Huang, R.; Mass, J.; Bisulca, C.; Bilderback, D.H.; Gruner, S.; Gao, N.

    2006-01-01

    A confocal X-ray fluorescence microscope was built at the Cornell High Energy Synchrotron Source (CHESS) to obtain compositional depth profiles of historic paintings. The microscope consists of a single-bounce, borosilicate monocapillary optic to focus the incident beam onto the painting and a commercial borosilicate polycapillary lens to collect the fluorescent X-rays. The resolution of the microscope was measured by scanning a variety of thin metal films through this confocal volume while monitoring the fluorescence signal. The capabilities of the technique were then probed using test paint microstructures with up to four distinct layers, each having a thickness in the range of 10-80 microns. Results from confocal XRF were compared with those from stand-alone XRF and visible light microscopy of the paint cross-sections. A large area, high-resolution scanner is currently being built to perform 3D scans on moderately sized paintings. (orig.)

  4. CINCH (confocal incoherent correlation holography) super resolution fluorescence microscopy based upon FINCH (Fresnel incoherent correlation holography).

    Science.gov (United States)

    Siegel, Nisan; Storrie, Brian; Bruce, Marc; Brooker, Gary

    2015-02-07

    FINCH holographic fluorescence microscopy creates high resolution super-resolved images with enhanced depth of focus. The simple addition of a real-time Nipkow disk confocal image scanner in a conjugate plane of this incoherent holographic system is shown to reduce the depth of focus, and the combination of both techniques provides a simple way to enhance the axial resolution of FINCH in a combined method called "CINCH". An important feature of the combined system allows for the simultaneous real-time image capture of widefield and holographic images or confocal and confocal holographic images for ready comparison of each method on the exact same field of view. Additional GPU based complex deconvolution processing of the images further enhances resolution.

  5. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging.

    Science.gov (United States)

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-05-05

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community.

  6. Speckle-illuminated fluorescence confocal microscopy, using a digital micro-mirror device

    International Nuclear Information System (INIS)

    Jiang, Shi-Hong; Walker, John G

    2009-01-01

    An implementation of a speckle-illuminated fluorescence confocal microscope using a digital micro-mirror device (DMD) is described. The DMD not only projects a sequence of imaged binary speckle patterns onto the specimen at a very high frame rate but also operates as a spatial light modulator to perform real-time optical data processing. Frame averaging is accomplished by CCD charge accumulation during a single exposure. The recorded time-averaged image is a confocal image plus an unwanted non-confocal image which can be removed by recording a separate image. Experimental results with image acquisition within a fraction of a second are shown. Images of a thin biological sample are also shown to demonstrate practical application of the technique

  7. A novel method for enhancing the lateral resolution and image SNR in confocal microscopy

    Science.gov (United States)

    Chen, Youhua; Zhu, Dazhao; Fang, Yue; Kuang, Cuifang; Liu, Xu

    2017-12-01

    There is always a tradeoff between the resolution and the signal-to-noise ratio (SNR) in confocal microscopy. In particular, the pinhole size is very important for maintaining a balance between them. In this paper, we propose a method for improving the lateral resolution and image SNR in confocal microscopy without making any changes to the hardware. By using the fluorescence emission difference (FED) approach, we divide the images acquired by different pinhole sizes into one image acquired by the central pinhole and several images acquired by ring-shaped pinholes. Then, they are added together with the deconvolution method. Simulation and experimental results for fluorescent particles and cells show that our method can achieve a far better resolution than a large pinhole and a higher SNR than a small pinhole. Moreover, our method can improve the performance of classic confocal laser scanning microscopy (CLSM) to a certain extent, especially CLSM with a continuously variable pinhole.

  8. 1004 RESONANCE November 2013

    Indian Academy of Sciences (India)

    IAS Admin

    1004. RESONANCE │ November 2013. Page 2. 1005. RESONANCE │ November 2013. Page 3. 1006. RESONANCE │ November 2013. Page 4. 1007. RESONANCE │ November 2013. Page 5. 1008. RESONANCE │ November 2013. Page 6. 1009. RESONANCE │ November 2013. Page 7. 1010. RESONANCE ...

  9. Even order snake resonances

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1993-01-01

    We found that the perturbed spin tune due to the imperfection resonance plays an important role in beam depolarization at snake resonances. We also found that even order snake resonances exist in the overlapping intrinsic and imperfection resonances. Due to the perturbed spin tune shift of imperfection resonances, each snake resonance splits into two

  10. Selective Killing of Breast Cancer Cells by Doxorubicin-Loaded Fluorescent Gold Nanoclusters: Confocal Microscopy and FRET.

    Science.gov (United States)

    Chattoraj, Shyamtanu; Amin, Asif; Jana, Batakrishna; Mohapatra, Saswat; Ghosh, Surajit; Bhattacharyya, Kankan

    2016-01-18

    Fluorescent gold nanoclusters (AuNCs) capped with lysozymes are used to deliver the anticancer drug doxorubicin to cancer and noncancer cells. Doxorubicin-loaded AuNCs cause the highly selective and efficient killing (90 %) of breast cancer cells (MCF7) (IC50 =155 nm). In contrast, the killing of the noncancer breast cells (MCF10A) by doxorubicin-loaded AuNCs is only 40 % (IC50 =4500 nm). By using a confocal microscope, the fluorescence spectrum and decay of the AuNCs were recorded inside the cell. The fluorescence maxima (at ≈490-515 nm) and lifetime (≈2 ns), of the AuNCs inside the cells correspond to Au10-13 . The intracellular release of doxorubicin from AuNCs is monitored by Förster resonance energy transfer (FRET) imaging. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer.

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, Arunachalam; Huang, Zhiwei

    2013-06-01

    Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023%; PC5, 0.00095%; PC8, 0.00022%, (p<0.05)], representing the primary tissue Raman features (e.g., 854, 937, 1095, 1253, 1311, 1445, and 1654 cm(-1)). Confocal Raman spectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.

  12. Localizing Proteins in Fixed Giardia lamblia and Live Cultured Mammalian Cells by Confocal Fluorescence Microscopy.

    Science.gov (United States)

    Nyindodo-Ogari, Lilian; Schwartzbach, Steven D; Skalli, Omar; Estraño, Carlos E

    2016-01-01

    Confocal fluorescence microscopy and electron microscopy (EM) are complementary methods for studying the intracellular localization of proteins. Confocal fluorescence microscopy provides a rapid and technically simple method to identify the organelle in which a protein localizes but only EM can identify the suborganellular compartment in which that protein is present. Confocal fluorescence microscopy, however, can provide information not obtainable by EM but required to understand the dynamics and interactions of specific proteins. In addition, confocal fluorescence microscopy of cells transfected with a construct encoding a protein of interest fused to a fluorescent protein tag allows live cell studies of the subcellular localization of that protein and the monitoring in real time of its trafficking. Immunostaining methods for confocal fluorescence microscopy are also faster and less involved than those for EM allowing rapid optimization of the antibody dilution needed and a determination of whether protein antigenicity is maintained under fixation conditions used for EM immunogold labeling. This chapter details a method to determine by confocal fluorescence microscopy the intracellular localization of a protein by transfecting the organism of interest, in this case Giardia lamblia, with the cDNA encoding the protein of interest and then processing these organisms for double label immunofluorescence staining after chemical fixation. Also presented is a method to identify the organelle targeting information in the presequence of a precursor protein, in this case the presequence of the precursor to the Euglena light harvesting chlorophyll a/b binding protein of photosystem II precursor (pLHCPII), using live cell imaging of mammalian COS7 cells transiently transfected with a plasmid encoding a pLHCPII presequence fluorescent protein fusion and stained with organelle-specific fluorescent dyes.

  13. Quantification of confocal fluorescence microscopy for the detection of cervical intraepithelial neoplasia.

    Science.gov (United States)

    Sheikhzadeh, Fahime; Ward, Rabab K; Carraro, Anita; Chen, Zhao Yang; van Niekerk, Dirk; Miller, Dianne; Ehlen, Tom; MacAulay, Calum E; Follen, Michele; Lane, Pierre M; Guillaud, Martial

    2015-10-24

    Cervical cancer remains a major health problem, especially in developing countries. Colposcopic examination is used to detect high-grade lesions in patients with a history of abnormal pap smears. New technologies are needed to improve the sensitivity and specificity of this technique. We propose to test the potential of fluorescence confocal microscopy to identify high-grade lesions. We examined the quantification of ex vivo confocal fluorescence microscopy to differentiate among normal cervical tissue, low-grade Cervical Intraepithelial Neoplasia (CIN), and high-grade CIN. We sought to (1) quantify nuclear morphology and tissue architecture features by analyzing images of cervical biopsies; and (2) determine the accuracy of high-grade CIN detection via confocal microscopy relative to the accuracy of detection by colposcopic impression. Forty-six biopsies obtained from colposcopically normal and abnormal cervical sites were evaluated. Confocal images were acquired at different depths from the epithelial surface and histological images were analyzed using in-house software. The features calculated from the confocal images compared well with those features obtained from the histological images and histopathological reviews of the specimens (obtained by a gynecologic pathologist). The correlations between two of these features (the nuclear-cytoplasmic ratio and the average of three nearest Delaunay-neighbors distance) and the grade of dysplasia were higher than that of colposcopic impression. The sensitivity of detecting high-grade dysplasia by analysing images collected at the surface of the epithelium, and at 15 and 30 μm below the epithelial surface were respectively 100, 100, and 92 %. Quantitative analysis of confocal fluorescence images showed its capacity for discriminating high-grade CIN lesions vs. low-grade CIN lesions and normal tissues, at different depth of imaging. This approach could be used to help clinicians identify high-grade CIN in clinical

  14. Adipocyte size and cellular expression of caveolar proteins analyzed by confocal microscopy

    DEFF Research Database (Denmark)

    Hulstrøm, Veronica; Prats Gavalda, Clara; Vinten, Jørgen

    2013-01-01

    Caveolae are abundant in adipocytes and are involved in the regulation of lipid accumulation, which is the main volume determinant of these cells. We have developed and applied a confocal microscopic technique for measuring individual cellular expression of the caveolar proteins cavin-1 and caveo......Caveolae are abundant in adipocytes and are involved in the regulation of lipid accumulation, which is the main volume determinant of these cells. We have developed and applied a confocal microscopic technique for measuring individual cellular expression of the caveolar proteins cavin-1...

  15. Improved signal model for confocal sensors accounting for object depending artifacts.

    Science.gov (United States)

    Mauch, Florian; Lyda, Wolfram; Gronle, Marc; Osten, Wolfgang

    2012-08-27

    The conventional signal model of confocal sensors is well established and has proven to be exceptionally robust especially when measuring rough surfaces. Its physical derivation however is explicitly based on plane surfaces or point like objects, respectively. Here we show experimental results of a confocal point sensor measurement of a surface standard. The results illustrate the rise of severe artifacts when measuring curved surfaces. On this basis, we present a systematic extension of the conventional signal model that is proven to be capable of qualitatively explaining these artifacts.

  16. A confocal optical microscope for detection of single impurities in a bulk crystal at cryogenic temperatures.

    Science.gov (United States)

    Karlsson, Jenny; Rippe, Lars; Kröll, Stefan

    2016-03-01

    A compact sample-scanning confocal optical microscope for detection of single impurities below the surface of a bulk crystal at cryogenic temperatures is described. The sample, lens, and scanners are mounted inside a helium bath cryostat and have a footprint of only 19 × 19 mm. Wide field imaging and confocal imaging using a Blu-ray lens immersed in liquid helium are demonstrated with excitation at 370 nm. A spatial resolution of 300 nm and a detection efficiency of 1.6% were achieved.

  17. Comparison between optical techniques and confocal microscopy for defect detection on thin wires

    International Nuclear Information System (INIS)

    Siegmann, Philip; Sanchez-Brea, Luis Miguel; Martinez-Anton, Juan Carlos; Bernabeu, Eusebio

    2004-01-01

    Conventional microscopy techniques, such as atomic force microscopy (AFM), scanning electron microscopy (SEM), and confocal microscopy (CM) are not suitable for on-line surface inspection of fine metallic wires. In the recent years, some optical techniques have been developed to be used for those tasks. However, they need a rigorous validation. In this work, we have used confocal microscopy to obtain the topography z(x,y) of wires with longitudinal defects, such as dielines. The topography has been used to predict the light scattered by the wire. These simulations have been compared with experimental results, showing a good agreement

  18. Numerical study of a confocal ultrasonic setup for creation of cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Lafond, Maxime, E-mail: maxime.lafond@inserm.fr; Chavrier, Françoise; Prieur, Fabrice [Inserm, U1032, LabTau, Lyon, F-69003 (France); Université de Lyon, Lyon, F-69003 (France); Université Lyon 1, Lyon, F-69003 (France); Mestas, Jean-Louis; Lafon, Cyril [Inserm, U1032, LabTau, Lyon, F-69003 (France); Université de Lyon, Lyon, F-69003 (France); Université Lyon 1, Lyon, F-69003 (France); Caviskills SAS, Vaulx-En-Velin, F-69120 (France)

    2015-10-28

    Acoustic cavitation is used for various therapeutic applications such as local enhancement of drug delivery, histotripsy or hyperthermia. One of the utmost important parameter for cavitation creation is the rarefaction pressure. The typical magnitude of the rarefaction pressure required to initiate cavitation from gas dissolved in tissue is beyond the range of the megapascal. Because nonlinear effects need to be taken into account, a numerical simulator based on the Westervelt equation was used to study the pressure waveform and the acoustic field generated by a setup for creation of cavitation consisting of two high intensity focused ultrasound transducers mounted confocally. At constant acoustic power, simulations with only one and both transducers from the confocal setup showed that the distortion of the pressure waveform due to the combined effects of nonlinearity and diffraction is less pronounced when both confocal transducers are used. Consequently, the confocal setup generates a greater peak negative pressure at focus which is more favorable for cavitation initiation. Comparison between the confocal setup and a single transducer with the same total emitting surface puts in evidence the role of the spatial separation of the two beams. Furthermore, it has been previously shown that the location of the peak negative pressure created by a single transducer shifts from focus towards the transducers in the presence of nonlinear effects. The simulator was used to study a configuration where the acoustical axes of transducers intersect on the peak negative pressure instead of the geometrical focus. For a representative confocal setup, namely moderate nonlinear effects, a 2% increase of the peak negative pressure and 8% decrease of the peak positive pressure resulted from this configuration. These differences tend to increase by increasing nonlinear effects. Although the optimal position of the transducers varies with the nonlinear regimen, the intersection point

  19. Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy

    International Nuclear Information System (INIS)

    Neauport, J.; Cormont, P.; Destribats, J.; Legros, P.; Ambard, C.

    2009-01-01

    We report an experimental investigation of fluorescence confocal microscopy as a tool to measure subsurface damage on grinded fused silica optics. Confocal fluorescence microscopy was performed with an excitation at the wavelength of 405 nm on fixed abrasive diamond grinded fused silica samples. We detail the measured fluorescence spectrums and compare them to those of oil based coolants and grinding slurries. We evidence that oil based coolant used in diamond grinding induces a fluorescence that marks the subsurface damages and eases its observation. Such residual traces might also be involved in the laser damage process. (authors)

  20. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV.

    Science.gov (United States)

    Kinoshita, Haruyuki; Kaneda, Shohei; Fujii, Teruo; Oshima, Marie

    2007-03-01

    This paper presents a micro-flow diagnostic technique, 'high-speed confocal micro-particle image velocimetry (PIV)', and its application to the internal flow measurement of a droplet passing through a microchannel. A confocal micro-PIV system has been successfully constructed wherein a high-speed confocal scanner is combined with the conventional micro-PIV technique. The confocal micro-PIV system enables us to obtain a sequence of sharp and high-contrast cross-sectional particle images at 2000 frames s(-1). This study investigates the confocal depth, which is a significant parameter to determine the out-of-plane measurement resolution in confocal micro-PIV. Using the present confocal micro-PIV system, we can measure velocity distributions of micro-flows in a 228 microm x 171 microm region with a confocal depth of 1.88 microm. We also propose a three-dimensional velocity measurement method based on the confocal micro-PIV and the equation of continuity. This method enables us to measure three velocity components in a three-dimensional domain of micro flows. The confocal micro-PIV system is applied to the internal flow measurement of a droplet. We have measured three-dimensional distributions of three-component velocities of a droplet traveling in a 100 microm (width) x 58 microm (depth) channel. A volumetric velocity distribution inside a droplet is obtained by the confocal micro-PIV and the three-dimensional flow structure inside the droplet is investigated. The measurement results suggest that a three-dimensional and complex circulating flow is formed inside the droplet.

  1. Two-dimensional 'photon fluid': effective photon-photon interaction and physical realizations

    International Nuclear Information System (INIS)

    Chiao, R Y; Hansson, T H; Leinaas, J M; Viefers, S

    2004-01-01

    We describe a recently developed effective theory for atom-mediated photon-photon interactions in a two-dimensional 'photon fluid' confined to a Fabry-Perot resonator. The photons in the lowest longitudinal cavity mode will appear as massive bosons interacting via a renormalized delta-function potential with a strength determined by physical parameters such as the density of atoms and the detuning of the photons relative to the resonance frequency of the atoms. We discuss novel quantum phenomena for photons, such as Bose-Einstein condensation and bound state formation, as well as possible experimental scenarios based on Rydberg atoms in a microwave cavity, or alkali atoms in an optical cavity

  2. Acoustic cloaking by a near-zero-index phononic crystal

    KAUST Repository

    Zheng, Li-Yang

    2014-04-21

    Zero-refractive-index materials may lead to promising applications in various fields. Here, we design and fabricate a near Zero-Refractive-Index (ZRI) material using a phononic crystal (PC) composed of a square array of densely packed square iron rods in air. The dispersion relation exhibits a nearly flat band across the Brillouin zone at the reduced frequency f  = 0.5443c/a, which is due to Fabry-Perot (FP) resonance. By using a retrieval method, we find that both the effective mass density and the reciprocal of the effective bulk modulus are close to zero at frequencies near the flat band. We also propose an equivalent tube network model to explain the mechanisms of the near ZRI effect. This FP-resonance-induced near ZRI material offers intriguing wave manipulation properties. We demonstrate both numerically and experimentally its ability to shield a scattering obstacle and guide acoustic waves through a bent structure.

  3. Optoacoustic measurements of water vapor absorption at selected CO laser wavelengths in the 5-micron region

    Science.gov (United States)

    Menzies, R. T.; Shumate, M. S.

    1976-01-01

    Measurements of water vapor absorption were taken with a resonant optoacoustical detector (cylindrical pyrex detector, two BaF2 windows fitted into end plates at slight tilt to suppress Fabry-Perot resonances), for lack of confidence in existing spectral tabular data for the 5-7 micron region, as line shapes in the wing regions of water vapor lines are difficult to characterize. The measurements are required for air pollution studies using a CO laser, to find the differential absorption at the wavelengths in question due to atmospheric constituents other than water vapor. The design and performance of the optoacoustical detector are presented. Effects of absorption by ambient NO are considered, and the fixed-frequency discretely tunable CO laser is found suitable for monitoring urban NO concentrations in a fairly dry climate, using the water vapor absorption data obtained in the study.

  4. Advanced materials for the optical delay line of frequency pulse modulator on the basis of semiconductor laser

    International Nuclear Information System (INIS)

    Abrarov, S.M.

    1999-01-01

    In the paper some materials which can be sued as an optical delay line of the pulse frequency modulator are considered. The structure and the principle are described as a modulator consisting of a laser diode with two Fabry Perot resonators and an optical wave guide providing a feedback loop. The optical wave guide fulfills the function of delay line and links the two resonators. The pulse sequence of the radiation of the semiconductor laser arises due to failure and recovery of optical generation. The pulse frequency modulation can be carried out by the action of electrical tension field on the electro optic martial of the wave guide. The selection of three electro-optic crystals for making of the optical wave guide of the considered modulator is justified. (author)

  5. Manipulation of extraordinary acoustic transmission by a tunable bull's eye structure

    International Nuclear Information System (INIS)

    Wang Ji-Wei; Cheng Ying; Liu Xiao-Jun

    2014-01-01

    Extraordinary acoustic transmission (EAT) has been investigated in a tunable bull's eye structure. We demonstrate that the transmission coefficient of acoustic waves can be modulated by a grating structure. When the grating is located at a distance of 0.5 mm from the base plate, the acoustic transmission shows an 8.77-fold enhancement compared to that by using a traditional bull's eye structure. When the distance increases to 1.5 mm, the transmission approaches zero, indicating a total reflection. Thus, we can make an efficient modulation of acoustic transmission from 0 to 877%. The EAT effects have been ascribed to the coupling of structure-induced resonance with the diffractive wave and the waveguide modes, as well as the Fabry-Perot resonances. As a potential application, the modulation of far-field collimation is illustrated in the proposed bull's eye structure. (rapid communication)

  6. Boundary-Layer Effects on Acoustic Transmission Through Narrow Slit Cavities.

    Science.gov (United States)

    Ward, G P; Lovelock, R K; Murray, A R J; Hibbins, A P; Sambles, J R; Smith, J D

    2015-07-24

    We explore the slit-width dependence of the resonant transmission of sound in air through both a slit array formed of aluminum slats and a single open-ended slit cavity in an aluminum plate. Our experimental results accord well with Lord Rayleigh's theory concerning how thin viscous and thermal boundary layers at a slit's walls affect the acoustic wave across the whole slit cavity. By measuring accurately the frequencies of the Fabry-Perot-like cavity resonances, we find a significant 5% reduction in the effective speed of sound through the slits when an individual viscous boundary layer occupies only 5% of the total slit width. Importantly, this effect is true for any airborne slit cavity, with the reduction being achieved despite the slit width being on a far larger scale than an individual boundary layer's thickness. This work demonstrates that the recent prevalent loss-free treatment of narrow slit cavities within acoustic metamaterials is unrealistic.

  7. Detection of UV-induced pigmentary and epidermal changes over time using in vivo reflectance confocal microscopy

    NARCIS (Netherlands)

    Middelkamp-Hup, Maritza A.; Park, H.-Y.; Lee, Jin; Gilchrest, Barbara A.; Gonzalez, Salvador

    2006-01-01

    In vivo reflectance confocal microscopy (RCM) provides high-resolution optical sections of the skin in its native state, without needing to fix or section the tissue. Melanin provides an excellent contrast for RCM, giving a bright signal in the confocal images. The pigmented guinea-pig is a common

  8. Identification of nodal tissue in the living heart using rapid scanning fiber-optics confocal microscopy and extracellular fluorophores.

    Science.gov (United States)

    Huang, Chao; Kaza, Aditya K; Hitchcock, Robert W; Sachse, Frank B

    2013-09-01

    Risks associated with pediatric reconstructive heart surgery include injury of the sinoatrial node (SAN) and atrioventricular node (AVN), requiring cardiac rhythm management using implantable pacemakers. These injuries are the result of difficulties in identifying nodal tissues intraoperatively. Here we describe an approach based on confocal microscopy and extracellular fluorophores to quantify tissue microstructure and identify nodal tissue. Using conventional 3-dimensional confocal microscopy we investigated the microstructural arrangement of SAN, AVN, and atrial working myocardium (AWM) in fixed rat heart. AWM exhibited a regular striated arrangement of the extracellular space. In contrast, SAN and AVN had an irregular, reticulated arrangement. AWM, SAN, and AVN tissues were beneath a thin surface layer of tissue that did not obstruct confocal microscopic imaging. Subsequently, we imaged tissues in living rat hearts with real-time fiber-optics confocal microscopy. Fiber-optics confocal microscopy images resembled images acquired with conventional confocal microscopy. We investigated spatial regularity of tissue microstructure from Fourier analysis and second-order image moments. Fourier analysis of fiber-optics confocal microscopy images showed that the spatial regularity of AWM was greater than that of nodal tissues (37.5 ± 5.0% versus 24.3 ± 3.9% for SAN and 23.8 ± 3.7% for AVN; Pfiber-optics confocal microscopy. Application of the approach in pediatric reconstructive heart surgery may reduce risks of injuring nodal tissues.

  9. Confocal fluorescence microscopy for rapid evaluation of invasive tumor cellularity of inflammatory breast carcinoma core needle biopsies.

    Science.gov (United States)

    Dobbs, Jessica; Krishnamurthy, Savitri; Kyrish, Matthew; Benveniste, Ana Paula; Yang, Wei; Richards-Kortum, Rebecca

    2015-01-01

    Tissue sampling is a problematic issue for inflammatory breast carcinoma, and immediate evaluation following core needle biopsy is needed to evaluate specimen adequacy. We sought to determine if confocal fluorescence microscopy provides sufficient resolution to evaluate specimen adequacy by comparing invasive tumor cellularity estimated from standard histologic images to invasive tumor cellularity estimated from confocal images of breast core needle biopsy specimens. Grayscale confocal fluorescence images of breast core needle biopsy specimens were acquired following proflavine application. A breast-dedicated pathologist evaluated invasive tumor cellularity in histologic images with hematoxylin and eosin staining and in grayscale and false-colored confocal images of cores. Agreement between cellularity estimates was quantified using a kappa coefficient. 23 cores from 23 patients with suspected inflammatory breast carcinoma were imaged. Confocal images were acquired in an average of less than 2 min per core. Invasive tumor cellularity estimated from histologic and grayscale confocal images showed moderate agreement by kappa coefficient: κ = 0.48 ± 0.09 (p confocal images require less than 2 min for acquisition and allow for evaluation of invasive tumor cellularity in breast core needle biopsy specimens with moderate agreement to histologic images. We show that confocal fluorescence microscopy can be performed immediately following specimen acquisition and could indicate the need for additional biopsies at the initial visit.

  10. Confocal microscopy studies of morphology and apoptosis: ovaries, limbs, embryos and insects

    Science.gov (United States)

    Confocal laser scanning microscopy (CLSM) is a technique that is capable of generating serial sections of whole-mount tissue and then reassembling the computer-stored images as a virtual 3-dimensional structure. In many ways CLSM offers an alternative to traditional sectioning ap...

  11. Three-dimensional imaging of porous media using confocal laser scanning microscopy.

    Science.gov (United States)

    Shah, S M; Crawshaw, J P; Boek, E S

    2017-02-01

    In the last decade, imaging techniques capable of reconstructing three-dimensional (3-D) pore-scale model have played a pivotal role in the study of fluid flow through complex porous media. In this study, we present advances in the application of confocal laser scanning microscopy (CLSM) to image, reconstruct and characterize complex porous geological materials with hydrocarbon reservoir and CO 2 storage potential. CLSM has a unique capability of producing 3-D thin optical sections of a material, with a wide field of view and submicron resolution in the lateral and axial planes. However, CLSM is limited in the depth (z-dimension) that can be imaged in porous materials. In this study, we introduce a 'grind and slice' technique to overcome this limitation. We discuss the practical and technical aspects of the confocal imaging technique with application to complex rock samples including Mt. Gambier and Ketton carbonates. We then describe the complete workflow of image processing to filtering and segmenting the raw 3-D confocal volumetric data into pores and grains. Finally, we use the resulting 3-D pore-scale binarized confocal data obtained to quantitatively determine petrophysical pore-scale properties such as total porosity, macro- and microporosity and single-phase permeability using lattice Boltzmann (LB) simulations, validated by experiments. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  12. Hybrid Rayleigh, Raman and TPE fluorescence spectral confocal microscopy of living cells

    NARCIS (Netherlands)

    Pully, V.V.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2010-01-01

    A hybrid fluorescence–Raman confocal microscopy platform is presented, which integrates low-wavenumber-resolution Raman imaging, Rayleigh scatter imaging and two-photon fluorescence (TPE) spectral imaging, fast ‘amplitude-only’ TPE-fluorescence imaging and high-spectral-resolution Raman imaging.

  13. Confocal microscope is able to detect calcium metabolic in neuronal infection by toxoplasma gondii

    International Nuclear Information System (INIS)

    Sensusiati, A D; Priya, T K S; Dachlan, Y P

    2017-01-01

    Calcium metabolism plays a very important role in neurons infected by Toxoplasma. Detection of change of calcium metabolism of neuron infected by Toxoplasma and Toxoplasma requires the calculation both quantitative and qualitative method. Confocal microscope has the ability to capture the wave of the fluorescent emission of the fluorescent dyes used in the measurement of cell calcium. The purpose of this study was to prove the difference in calcium changes between infected and uninfected neurons using confocal microscopy. Neuronal culture of human-skin-derived neural stem cell were divided into 6 groups, consisting 3 uninfected groups and 3 infected groups. Among the 3 groups were 2 hours, 24 hours and 48 hours. The neuron Toxoplasma gondii ratio was 1:5. Observation of intracellular calcium of neuron and tachyzoite, evidence of necrosis, apoptosis and the expression of Hsp 70 of neuron were examined by confocal microscope. The normality of the data was analysed by Kolmogorov-Smirnov Test, differentiation test was checked by t2 Test, and ANOVAs, for correlation test was done by Pearson Correlation Test. The calcium intensity of cytosolic neuron and T. gondii was significantly different from control groups (p<0.05). There was also significant correlation between calcium intensity with the evidence of necrosis and Hsp70 expression at 2 hours after infection. Apoptosis and necrosis were simultaneously shown with calcium contribution in this study. Confocal microscopy can be used to measure calcium changes in infected and uninfected neurons both in quantitatively and qualitatively. (paper)

  14. Development of a Josephson vortex two-state system based on a confocal annular Josephson junction

    DEFF Research Database (Denmark)

    Monaco, Roberto; Mygind, Jesper; Koshelets, Valery P.

    2018-01-01

    We report theoretical and experimental work on the development of a Josephson vortex two-state system based on a confocal annular Josephson tunnel junction (CAJTJ). The key ingredient of this geometrical configuration is a periodically variable width that generates a spatial vortex potential...

  15. Confocal microscopy of thick tissue sections: 3D visualizaiton of rat kidney glomeruli

    Science.gov (United States)

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  16. Confocal Microscopy of thick tissue sections: 3D Visualization of rat kidney glomeruli

    Science.gov (United States)

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  17. Insight into the Microbial Multicellular Lifestyle via Flow-Cell Technology and Confocal Microscopy

    DEFF Research Database (Denmark)

    Pamp, Sünje Johanna; Sternberg, Claus; Tolker-Nielsen, Tim

    2009-01-01

    , industry, and human health. Accordingly a number of biofilm model systems, molecular tools, microscopic techniques, and image analysis programs have been employed for the study of biofilms under controlled and reproducible conditions. Studies using confocal laser scanning microscopy (CLSM) of biofilms...

  18. Musculature of Notholca acuminata (Rotifera : Ploima : Brachionidae) revealed by confocal scanning laser microscopy

    DEFF Research Database (Denmark)

    Sørensen, M.V.; Funch, P.; Hooge, M.

    2003-01-01

    The body-wall and visceral musculature of Notholca acuminata was visualized using phalloidin-linked fluorescent dye under confocal laser scanning microscopy. The body-wall musculature includes dorsal, lateral, and ventral pairs of longitudinally oriented body retractor muscles, two pairs of head...

  19. In vivo Diagnosis of Basal Cell Carcinoma Subtype by Reflectance Confocal Microscopy

    NARCIS (Netherlands)

    Peppelman, M.; Wolberink, E.A.W.; Blokx, W.A.M.; Kerkhof, P.C.M. van de; Erp, P.E.J. van; Gerritsen, M.J.P.

    2013-01-01

    Background: Reflectance confocal microscopy (RCM) is a noninvasive imaging technique. Currently, RCM is mainly used for the diagnosis of melanoma and nonmelanoma skin cancer including basal cell carcinoma (BCC). Until now, it has not been possible to distinguish between subtypes of BCC using RCM.

  20. Diagnostic accuracy of confocal microscopy imaging vs. punch biopsy for diagnosing and subtyping basal cell carcinoma

    NARCIS (Netherlands)

    Kadouch, D. J.; Leeflang, M. M.; Elshot, Y. S.; Longo, C.; Ulrich, M.; van der Wal, A. C.; Wolkerstorfer, A.; Bekkenk, M. W.; de Rie, M. A.

    2017-01-01

    BackgroundIn vivo reflectance confocal microscopy (RCM) is a promising non-invasive skin imaging technique that could facilitate early diagnosis of basal cell carcinoma (BCC) instead of routine punch biopsies. However, the clinical value and utility of RCM vs. a punch biopsy in diagnosing and