WorldWideScience

Sample records for fabricated metal products

  1. Energy efficiency improvement target for SIC 34 - fabricated metal products

    Energy Technology Data Exchange (ETDEWEB)

    Byrer, T. G.; Billhardt, C. F.; Farkas, M. S.

    1977-03-15

    A March 15, 1977 revision of a February 15, 1977 document on the energy improvement target for the Fabricated Metal Products industry (SIC 34) is presented. A net energy savings in 1980 of 24% as compared with 1972 energy consumption in SIC 34 is considered a realistic goal. (ERA citation 04:045008)

  2. Y-12 product improvements expected to reduce metal production costs and decrease fabrication losses

    International Nuclear Information System (INIS)

    Parker, Elaine; Hassler, Morris

    2004-01-01

    Full text: The Y-12 National Security Complex supplies uranium metal and uranium oxide feed material that is then fabricated into fuel for research reactors around the world. Over the past two to three years, Y-12 has learned a great deal about its Low Enriched Uranium (LEU) product. The LEU is produced by taking U.S. surplus Highly Enriched Uranium (HEU) and blending it with depleted or natural uranium. The surplus HEU comes from dismantled U.S. weapons parts that have been declared as surplus. Those research reactors that use LEU from Y-12 are making important contributions to international nuclear non-proliferation by using LEU rather than HEU, and by helping to disposition former weapons material. We clearly understand that our customers want to keep fuel costs as low as possible. We at Y-12 are making every effort to improve efficiencies in producing the uranium through standardizing the chemical specifications as well as the product mass and dimensional qualities. This paper will discuss the new standard specification that we have proposed to existing LEU metal customers and fuel fabricators. It will also cover Y-12's progress on a new mold-design that will result in a more uniform, higher quality product that is less expensive to produce. This new product is expected to decrease overall fabrication losses by 5-10%, depending on the fabricator's process. The paper will include planned activities and the schedule associated with implementation of the new specification and product form. (author)

  3. Y-12 product improvements expected to reduce metal production costs and decrease fabrication losses

    International Nuclear Information System (INIS)

    Hassler, Morris E.

    2005-01-01

    The Y-12 National Security Complex (Y-12) supplies uranium metal and uranium oxide feed material for fabrication into fuel for research reactors around the world. Over the past few years, Y-12 has continued to improve its Low Enriched Uranium (LEU) product. The LEU is produced by taking U.S. surplus Highly Enriched Uranium (HEU) and blending it with depleted or natural uranium. The surplus HEU comes from dismantled U.S. weapons parts. Those research reactors that use LEU from Y-12 are making important contributions to international nuclear nonproliferation by using LEU rather than HEU, and helping to disposition former U.S. weapons material. It is clearly understood that the research reactor community must keep fuel costs as low as possible and Y-12 is making every effort to improve efficiencies in producing the uranium through standardizing the chemical specifications as well as the product mass and dimensional qualities. These production cost reductions allows for the U.S. to keep the LEU product price low even with the dramatic increase in the uranium enrichment and feed component market prices in the last few years. This paper will discuss a new standard specification that has been proposed to existing LEU metal customers and fuel fabricators. It will also cover Y-12's progress on a new mold-design that will result in a more uniform, higher quality product and eliminates two steps of the production process. This new product is expected to decrease fabrication losses by 5-10%, depending on the fabricator's process. The paper will include planned activities and the schedule associated with implementation of the new specification and product form. (author)

  4. Energy efficiency improvement target for SIC 34 - fabricated metal products. Revised target support document

    Energy Technology Data Exchange (ETDEWEB)

    Byrer, T. G.; Billhardt, C. F.; Farkas, M. S.

    1977-02-15

    In accordance with section 374 of the Energy Policy and Conservation Act (EPCA), Pub. L. 94-163, the Federal Energy Administration (FEA) proposed industrial energy efficiency improvement targets for the ten most energy-consumptive manufacturing industries in the U.S. Following public hearings and a review of the comments made, the final targets for Fabricated Metal Products (SIC 34) were established and are described. Using 1972 data on the energy consumed to produce specific metal products, it was concluded that a 24% reduction in energy consumption for SIC 34 is a viable goal for achievement by 1980. (ERA citation 04:045006)

  5. Microactuator production via high aspect ratio, high edge acuity metal fabrication technology

    Science.gov (United States)

    Guckel, H.; Christenson, T. R.

    1993-01-01

    LIGA is a procession sequence which uses x-ray lithography on photoresist layers of several hundred micrometers to produce very high edge acuity photopolymer molds. These plastic molds can be converted to metal molds via electroplating of many different metals and alloys. The end results are high edge acuity metal parts with large structural heights. The LIGA process as originally described by W. Ehrfeld can be extended by adding a surface micromachining phase to produce precision metal parts which can be assembled to form three-dimensional micromechanisms. This process, SLIGA, has been used to fabricate a dynamometer on a chip. The instrument has been fully implemented and will be applied to tribology issues, speed-torque characterization of planar magnetic micromotors and a new family of sensors.

  6. Fabrication of Metallic Hollow Nanoparticles

    Science.gov (United States)

    Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2016-01-01

    Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.

  7. Fabrication of integrated metallic MEMS devices

    DEFF Research Database (Denmark)

    Yalcinkaya, Arda Deniz; Ravnkilde, Jan Tue; Hansen, Ole

    2002-01-01

    A simple and complementary metal oxide semiconductor (CMOS) compatible fabrication technique for microelectromechanical (MEMS) devices is presented. The fabrication technology makes use of electroplated metal layers. Among the fabricated devices, high quality factor microresonators are characteri......A simple and complementary metal oxide semiconductor (CMOS) compatible fabrication technique for microelectromechanical (MEMS) devices is presented. The fabrication technology makes use of electroplated metal layers. Among the fabricated devices, high quality factor microresonators...

  8. Metallic Reactor Fuel Fabrication for SFR

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Kim, Jong-Hwan; Ko, Young-Mo; Woo, Yoon-Myung; Kim, Ki-Hwan; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The metal fuel for an SFR has such advantages such as simple fabrication procedures, good neutron economy, high thermal conductivity, excellent compatibility with a Na coolant, and inherent passive safety 1. U-Zr metal fuel for SFR is now being developed by KAERI as a national R and D program of Korea. The fabrication technology of metal fuel for SFR has been under development in Korea as a national nuclear R and D program since 2007. The fabrication process for SFR fuel is composed of (1) fuel slug casting, (2) loading and fabrication of the fuel rods, and (3) fabrication of the final fuel assemblies. Fuel slug casting is the dominant source of fuel losses and recycled streams in this fabrication process. Fabrication on the rod type metallic fuel was carried out for the purpose of establishing a practical fabrication method. Rod-type fuel slugs were fabricated by injection casting. Metallic fuel slugs fabricated showed a general appearance was smooth.

  9. Applications of ion plating in metals fabrication

    International Nuclear Information System (INIS)

    Bell, R.T.; Thompson, J.C.

    1974-01-01

    Use of ion plating at the Oak Ridge Y-12 Plant to solve problems encountered in metals fabrication and processing are discussed. Three typical areas are covered. The first is the use of strike coats on various substrates for subsequent electrodeposition. The second area in which ion plating is shown to contribute to a process is in cold welding or room temperature bonding of metals. The third application involves plating U to promote safe handling, fission-product retention, and corrosion protection in nuclear reactors

  10. The Danish fabricated metal industry:

    DEFF Research Database (Denmark)

    Hansen, Teis

    2010-01-01

    This paper aims to contribute to the knowledge on innovation processes in low- and medium-low-tech industries. Today, industries characterised as high-tech are perceived to be central to economic development, as the research intensity shields them from competition from low-wage countries....... This is less the case for low-tech industries, but their economic importance continues to be large, however. It is thus interesting to analyse how they manage to remain competitive. The analysis focuses on a case study of the fabricated metal industry by identifying the innovation strategies followed by firms...... located in a part of Jutland, where this industry has experienced growth. It is found that the ability to create tailor-made solutions is central to the competitiveness of these medium-low-tech firms. Knowledge is thus highly important, yet in different ways than for high-tech industries. This illustrates...

  11. Shock wave fabricated ceramic-metal nozzles

    NARCIS (Netherlands)

    Carton, E.P.; Stuivinga, M.E.C.; Keizers, H.L.J.; Verbeek, H.J.; Put, P.J. van der

    1999-01-01

    Shock compaction was used in the fabrication of high temperature ceramic-based materials. The materials' development was geared towards the fabrication of nozzles for rocket engines using solid propellants, for which the following metal-ceramic (cermet) materials were fabricated and tested: B4C-Ti

  12. Composite metal foil and ceramic fabric materials

    Science.gov (United States)

    Webb, Brent J.; Antoniak, Zen I.; Prater, John T.; DeSteese, John G.

    1992-01-01

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed.

  13. Ordered metal nanotube arrays fabricated by PVD.

    Science.gov (United States)

    Marquez, F; Morant, C; Campo, T; Sanz, J M; Elizalde, E

    2010-02-01

    In this work we report a simple method to fabricate ordered arrays of metal nanotubes. This method is based on the deposition of a metal by PVD onto an anodized aluminum oxide (AAO) template. The dimensions of the synthesized nanotubes depend both on the AAO template and on the deposited metal. In fact, it is observed that the aspect ratios of the nanotubes clearly depend significantly on the metal, ranging from 0.6 (Fe) to at least 3 (Zr).

  14. Alternative Fabrication of Recycling Fast Reactor Metal Fuel

    International Nuclear Information System (INIS)

    Kim, Ki-Hwan; Kim, Jong Hwan; Song, Hoon; Kim, Hyung-Tae; Lee, Chan-Bock

    2015-01-01

    Metal fuels such as U-Zr/U-Pu-Zr alloys have been considered as a nuclear fuel for a sodium-cooled fast reactor (SFR) related to the closed fuel cycle for managing minor actinides and reducing a high radioactivity levels since the 1980s. In order to develop innovative fabrication method of metal fuel for preventing the evaporation of volatile elements such as Am, modified casting under inert atmosphere has been applied for metal fuel slugs for SFR. Alternative fabrication method of fuel slugs has been introduced to develop an improved fabrication process of metal fuel for preventing the evaporation of volatile elements. In this study, metal fuel slugs for SFR have been fabricated by modified casting method, and characterized to evaluate the feasibility of the alternative fabrication method. In order to prevent evaporation of volatile elements such as Am and improve quality of fuel slugs, alternative fabrication methods of metal fuel slugs have been studied in KAERI. U-10Zr-5Mn fuel slug containing volatile surrogate element Mn was soundly cast by modified injection casting under modest pressure. Evaporation of Mn during alternative casting could not be detected by chemical analysis. Mn element was most recovered with prevention of evaporation by alternative casting. Modified injection casting has been selected as an alternative fabrication method in KAERI, considering evaporation prevention, and proven benefits of high productivity, high yield, and good remote control

  15. Metals production

    Science.gov (United States)

    Beck, Theodore S.

    1992-01-01

    Existing procedures for design of electrochemical plants can be used for design of lunar processes taking into consideration the differences in environmental conditions. These differences include: 1/6 Earth gravity, high vacuum, solar electrical and heat source, space radiation heat sink, long days and nights, and different availability and economics of materials, energy, and labor. Techniques have already been developed for operation of relatively small scale hydrogen-oxygen fuel cell systems used in the U.S. lunar landing program. Design and operation of lunar aqueous electrolytic process plants appears to be within the state-of-the-art. Finding or developing compatible materials for construction and designing of fused-magma metal winning cells will present a real engineering challenge.

  16. Fabrication of metallic microstructures by micromolding nanoparticles

    Science.gov (United States)

    Morales, Alfredo M.; Winter, Michael R.; Domeier, Linda A.; Allan, Shawn M.; Skala, Dawn M.

    2002-01-01

    A method is provided for fabricating metallic microstructures, i.e., microcomponents of micron or submicron dimensions. A molding composition is prepared containing an optional binder and nanometer size (1 to 1000 nm in diameter) metallic particles. A mold, such as a lithographically patterned mold, preferably a LIGA or a negative photoresist mold, is filled with the molding composition and compressed. The resulting microstructures are then removed from the mold and the resulting metallic microstructures so provided are then sintered.

  17. Improvements in the fabrication of metallic fuels

    International Nuclear Information System (INIS)

    Tracy, D.B.; Henslee, S.P.; Dodds, N.E.; Longua, K.J.

    1989-01-01

    Argonne National Laboratory (ANL) is currently developing a new liquid-metal-cooled breeder reactor known as the Integral Fast Reactor (IFR). The IFR represents the state of the art in metal-fueled reactor technology. Improvements in the fabrication of metal fuel, discussed in this paper, will support ANL-West's (ANL-W) fully remote fuel cycle facility, which is an integral part of the IFR concept

  18. Improvements in fabrication of metallic fuels

    International Nuclear Information System (INIS)

    Tracy, D.B.; Henslee, S.P.; Dodds, N.E.; Longua, K.J.

    1989-12-01

    Argonne National Laboratory is currently developing a new liquid- metal cooled breeder reactor known as the Integral Fast Reactor (IFR). IFR fuels represent the state-of-the-art in metal-fueled reactor technology. Improvements in the fabrication of metal fuel, to be discussed below, will support the fully remote fuel cycle facility that as an integral part of the IFR concept will be demonstrated at the EBR-II site. 3 refs

  19. Development of metallic fuel fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Ho; Lee, Chong Yak; Lee, Myung Ho and others

    1999-03-01

    With the vacuum melting and casting of the U-10wt%Zr alloy which is metallic fuel for liquid metal fast breeder reactor, we studied the microstructure of the alloy and the parameters of the melting and casting for the fuel rods. Internal defects of the U-10wt%Zr fuel by gravity casting, were inspected by non-destructive test. U-10wt%Zr alloy has been prepared for the thermal stability test in order to estimate the decomposition of the lamellar structure with relation to swelling under irradiation condition. (author)

  20. Directed light fabrication of refractory metals

    International Nuclear Information System (INIS)

    Lewis, G.K.; Thoma, D.J.; Nemec, R.B.; Milewski, J.O.

    1997-01-01

    Directed Light Fabrication (DLF) is a metal, rapid fabrication process that fuses metal powders to full density into a solid replica of a computer modeled component. It has been shown feasible for forming nearly any metal and also intermetallics to near net shape with a single process. DLF of refractory pure metals is feasible, bypassing the extensive series of conventional processing steps used for processing these high melting point materials. Tungsten, tantalum, and rhenium were processed and show a continuous resolidified microstructure. Porosity was a problem for the tantalum and rhenium powders produced by chemical reduction processes but not for the tungsten powder spherodized in a plasma arc. Chemical analysis of powder compared to the DLF deposit showed reductions in carbon, oxygen and hydrogen, indicating that process parameters may also be optimized for evolution of residual gases in the deposits

  1. Fabrication of micro metallic valve and pump

    Science.gov (United States)

    Yang, Ming; Kabasawa, Yasunari; Ito, Kuniyoshi

    2010-03-01

    Fabrication of micro devices by using micro metal forming was proposed by the authors. We developed a desktop servo-press machine with precise tooling system. Precise press forming processes including micro forging and micro joining has been carried out in a progressive die. In this study, micro metallic valve and pump were fabricated by using the precise press forming. The components are made of sheet metals, and assembled in to a unit in the progressive die. A micro check-valve with a diameter of 3mm and a length of 3.2mm was fabricated, and the property of flow resistance was evaluated. The results show that the check valve has high property of leakage proof. Since the valve is a unit parts with dimensions of several millimeters, it has advantage to be adapted to various pump design. Here, two kinds of micro pumps with the check-valves were fabricated. One is diaphragm pump actuated by vibration of the diaphragm, and another is tube-shaped pump actuated by resonation. The flow quantities of the pumps were evaluated and the results show that both of the pumps have high pumping performance.

  2. Metal matrix composite fabrication processes for high performance aerospace structures

    Science.gov (United States)

    Ponzi, C.

    A survey is conducted of extant methods of metal matrix composite (MMC) production in order to serve as a basis for prospective MMC users' selection of a matrix/reinforcement combination, cost-effective primary fabrication methods, and secondary fabrication techniques for the achievement of desired performance levels. Attention is given to the illustrative cases of structural fittings, control-surface connecting rods, hypersonic aircraft air inlet ramps, helicopter swash plates, and turbine rotor disks. Methods for technical and cost analysis modeling useful in process optimization are noted.

  3. Controlled Fabrication of Metallic Electrodes with Atomic Separation

    DEFF Research Database (Denmark)

    Morpurgo, A.; Robinson, D.; M. Marcus, C.

    1998-01-01

    We report a new technique for fabricating metallic electrodes on insulating substrates with separations on the 1 nm scale. The fabrication technique, which combines lithographic and electrochemical methods, provides atomic resolution without requiring sophisticated instrumentation. The process is...

  4. Engineered Metallic Nanostructures: Fabrication, Characterization, and Applications

    Science.gov (United States)

    Bohloul, Arash

    Metallic nanostructures have garnered a great deal of attention due to their fascinating optical properties, which differ from the bulk metal. They have been proven to exceed expectations in wide variety of applications including chemical and biological sensing. Nevertheless, high-throughput and low cost nanofabrication techniques are required to implant metallic nanostructures in widespread applications. With that vision, this thesis presents a versatile and reliable method for scalable fabrication of gold nanostructures. In this approach, a plasma-treated ordered array of polystyrene nanospheres acts as an initial mask. The key step in this process is the vapor-deposition of nickel as a sacrificial mask. Thereby, gold nanostructures are directly formed on the substrate through the nickel mask. This is an easy, powerful, and straightforward method that offers several degrees of freedom to precisely control the shape and size of nanostructures. We made a library of nanostructures including gold nanocrescents, double crescents, nanorings, and nanodisks with the ability to tune the size in the range of 150 to 650 nm. The fabricated nanostructures are highly packed and uniformly cover the centimeter scale substrate. The optical properties of metallic nanostructures were extensively studied by a combination of UV-Vis-NIR and Fourier transform infrared (FTIR) spectroscopies, and correlation between optical response and geometrical parameters were investigated. In the next part of this thesis, highly sensitive surface enhanced infrared absorption (SEIRA) analysis was demonstrated on gold nanocrescent arrays. Theoretical modeling was confirmed that these substrates provide highly dense and strong hot-spots over the substrate, which is required for surface enhanced spectroscopic studies. Gold nanocrescent arrays exhibit highly tunable plasmon resonance to cover desired molecular vibrational bands. These substrates experimentally illustrated 3 orders of magnitude

  5. Light metal production

    Science.gov (United States)

    Fan, Qinbai

    2016-04-19

    An electrochemical process for the production of light metals, particularly aluminum. Such a process involves contacting a light metal source material with an inorganic acid to form a solution containing the light metal ions in high concentration. The solution is fed to an electrochemical reactor assembly having an anode side containing an anode and a cathode side containing a cathode, with anode side and the cathode side separated by a bipolar membrane, with the solution being fed to the anode side. Light metal ions are electrochemically transferred through the bipolar membrane to the cathode side. The process further involves reducing the light metal ions to light metal powder. An associated processing system is also provided.

  6. Production of magnesium metal

    Science.gov (United States)

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  7. Applications for Gradient Metal Alloys Fabricated Using Additive Manufacturing

    Science.gov (United States)

    Hofmann, Douglas C.; Borgonia, John Paul C.; Dillon, Robert P.; Suh, Eric J.; Mulder, jerry L.; Gardner, Paul B.

    2013-01-01

    Recently, additive manufacturing (AM) techniques have been developed that may shift the paradigm of traditional metal production by allowing complex net-shaped hardware to be built up layer-by-layer, rather than being machined from a billet. The AM process is ubiquitous with polymers due to their low melting temperatures, fast curing, and controllable viscosity, and 3D printers are widely available as commercial or consumer products. 3D printing with metals is inherently more complicated than with polymers due to their higher melting temperatures and reactivity with air, particularly when heated or molten. The process generally requires a high-power laser or other focused heat source, like an electron beam, for precise melting and deposition. Several promising metal AM techniques have been developed, including laser deposition (also called laser engineered net shaping or LENS® and laser deposition technology (LDT)), direct metal laser sintering (DMLS), and electron beam free-form (EBF). These machines typically use powders or wire feedstock that are melted and deposited using a laser or electron beam. Complex net-shape parts have been widely demonstrated using these (and other) AM techniques and the process appears to be a promising alternative to machining in some cases. Rather than simply competing with traditional machining for cost and time savings, the true advantage of AM involves the fabrication of hardware that cannot be produced using other techniques. This could include parts with "blind" features (like foams or trusses), parts that are difficult to machine conventionally, or parts made from materials that do not exist in bulk forms. In this work, the inventors identify that several AM techniques can be used to develop metal parts that change composition from one location in the part to another, allowing for complete control over the mechanical or physical properties. This changes the paradigm for conventional metal fabrication, which relies on an

  8. Production of pure metals

    Science.gov (United States)

    Philipp, W. H.; Marsik, S. J.; May, C. E. (Inventor)

    1974-01-01

    A process for depositing elements by irradiating liquids is reported. Ultra pure elements are precipitated from aqueous solutions or suspensions of compounds. A solution of a salt of a metal to be prepared is irradiated, and the insoluble reaction product settles out. Some chemical compounds may also be prepared in this manner.

  9. Cotton fabrics with UV blocking properties through metal salts deposition

    International Nuclear Information System (INIS)

    Emam, Hossam E.; Bechtold, Thomas

    2015-01-01

    Graphical abstract: - Highlights: • Introducing metal salt based UV-blocking properties into cotton fabric. • A quite simple technique used to produce wash resistant UV-absorbers using different Cu-, Zn- and Ti-salts. • Good UPF was obtained after treatment with Cu and Ti salts, and ranged between 11.6 and 14. • The efficiency of the deposited metal oxides is compared on molar basis. - Abstract: Exposure to sunlight is important for human health as this increases the resistance to diverse pathogens, but the higher doses cause skin problems and diseases. Hence, wearing of sunlight protective fabrics displays a good solution for people working in open atmosphere. The current study offered quite simple and technically feasible ways to prepare good UV protection fabrics based on cotton. Metal salts including Zn, Cu and Ti were immobilized into cotton and oxidized cotton fabrics by using pad-dry-cure technique. Metal contents on fabrics were determined by AAS; the highest metal content was recorded for Cu-fabric and it was 360.6 mmol/kg after treatment of oxidized cotton with 0.5 M of copper nitrate. Ti contents on fabrics were ranged between 168.0 and 200.8 mmol/kg and it showed the lowest release as only 38.1–46.4% leached out fabrics after five laundry washings. Metal containing deposits were specified by scanning electron microscopy and energy dispersive X-ray spectroscopy. UV-transmission radiation over treated fabrics was measured and ultraviolet protection factor (UPF) was calculated. UPF was enhanced after treatment with Cu and Ti salts to be 11.6 and 14, respectively. After five washings, the amount of metal (Cu or Ti) retained indicates acceptable laundering durability.

  10. A Comparative Study of Natural Fiber and Glass Fiber Fabrics Properties with Metal or Oxide Coatings

    International Nuclear Information System (INIS)

    Lusis, Andrej; Pentjuss, Evalds; Bajars, Gunars; Sidorovicha, Uljana; Strazds, Guntis

    2015-01-01

    Rapidly growing global demand for technical textiles industries is stimulated to develop new materials based on hybrid materials (yarns, fabrics) made from natural and glass fibres. The influence of moisture on the electrical properties of metal and metal oxide coated bast (flax, hemp) fibre and glass fibre fabrics are studied by electrical impedance spectroscopy and thermogravimetry. The bast fibre and glass fiber fabrics are characterized with electrical sheet resistance. The method for description of electrical sheet resistance of the metal and metal oxide coated technical textile is discussed. The method can be used by designers to estimate the influence of moisture on technical data of new metal coated hybrid technical textile materials and products

  11. Flexible high-κ/Metal gate metal/insulator/metal capacitors on silicon (100) fabric

    KAUST Repository

    Rojas, Jhonathan Prieto

    2013-10-01

    Implementation of memory on bendable substrates is an important step toward a complete and fully developed notion of mechanically flexible computational systems. In this paper, we have demonstrated a simple fabrication flow to build metal-insulator-metal capacitors, key components of dynamic random access memory, on a mechanically flexible silicon (100) fabric. We rely on standard microfabrication processes to release a thin sheet of bendable silicon (area: 18 {\\ m cm}2 and thickness: 25 \\\\mu{\\ m m}) in an inexpensive and reliable way. On such platform, we fabricated and characterized the devices showing mechanical robustness (minimum bending radius of 10 mm at an applied strain of 83.33% and nominal strain of 0.125%) and consistent electrical behavior regardless of the applied mechanical stress. Furthermore, and for the first time, we performed a reliability study suggesting no significant difference in performance and showing an improvement in lifetime projections. © 1963-2012 IEEE.

  12. Fabrication of metallic channel-containing UO2 fuels

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Song, Kun Woo; Kim, Keon Sik; Jung, Youn Ho

    2004-01-01

    The uranium dioxide is widely used as a fuel material in the nuclear industry, owing to many advantages. But it has a disadvantage of having the lowest thermal conductivity of all kinds of nuclear fuels; metal, carbide, nitride. It is well known that the thermal conductivity of UO 2 fuel is enhanced by making, so called, the CERMET (ceramic-metal) composite which consists of both continuous body of highly thermal-conducting metal and UO 2 islands. The CERMET fuel fabrication technique needs metal phase of at least 30%, mostly more than 50%, of the volume of the pellet in order to keep the metal phase interconnected. This high volume fraction of metal requires such a high enrichment of U that the parasitic effect of metal should be compensated. Therefore, it is attractive to develop an innovative composite fuel that can form continuous metal phase with a small amount of metal. In this investigation, a feasibility study was made on how to make such an innovative fuel. Candidate metals (W, Mo, Cr) were selected, and fabrication process was conceptually designed from thermodynamic calculations. We have experimentally found that a metal phase envelops perfectly UO 2 grains, forming continuous channel throughout the pellet, and improving the thermal conductivity of pellet

  13. METAL PRODUCTION AND CASTING

    Science.gov (United States)

    Magel, T.T.

    1958-03-01

    This patent covers a method and apparatus for collecting the molten metal produced by high temperature metal salt reduction. It consists essentially of subjecting the reaction vessel to centrifugal force in order to force the liberatcd molten metal into a coherent molten mass, and allowing it to solidify there. The apparatus is particularly suitable for use with small quantities of rare metals.

  14. Research on plant of metal fuel fabrication using casting process

    International Nuclear Information System (INIS)

    Senda, Yasuhide; Mori, Yukihide

    2003-12-01

    This document presents the plant concept of metal fuel fabrication system (38tHM/y) using casting process in electrolytic recycle, which based on recent studies of its equipment design and quality control system. And we estimate the cost of its construction and operation, including costs of maintenance, consumed hardware and management of waste. The content of this work is as follows. (1) Designing of fuel fabrication equipment: We make material flow diagrams of the fuel fabrication plant and rough designs of the injection casting furnace, demolder and inspection equipment. (2) Designing of resolution system of liquid waste, which comes from analytical process facility. Increased analytical items, we rearrange analytical process facility, estimate its chemicals and amount of waste. (3) Arrangement of equipments: We made a arrangement diagram of the metal fuel fabrication equipments in cells. (4) Estimation of cost data: We estimated cost to construct the facility and to operate it. (author)

  15. Natural uranium metallic fuel elements: fabrication and operating experience

    International Nuclear Information System (INIS)

    Hammad, F.H.; Abou-Zahra, A.A.; Sharkawy, S.W.

    1980-01-01

    The main reactor types based on natural uranium metallic fuel element, particularly the early types, are reviewed in this report. The reactor types are: graphite moderated air cooled, graphite moderated gas cooled and heavy water moderated reactors. The design features, fabrication technology of these reactor fuel elements and the operating experience gained during reactor operation are described and discussed. The interrelation between operating experience, fuel design and fabrication was also discussed with emphasis on improving fuel performance. (author)

  16. Layerless fabrication with continuous liquid interface production.

    Science.gov (United States)

    Janusziewicz, Rima; Tumbleston, John R; Quintanilla, Adam L; Mecham, Sue J; DeSimone, Joseph M

    2016-10-18

    Despite the increasing popularity of 3D printing, also known as additive manufacturing (AM), the technique has not developed beyond the realm of rapid prototyping. This confinement of the field can be attributed to the inherent flaws of layer-by-layer printing and, in particular, anisotropic mechanical properties that depend on print direction, visible by the staircasing surface finish effect. Continuous liquid interface production (CLIP) is an alternative approach to AM that capitalizes on the fundamental principle of oxygen-inhibited photopolymerization to generate a continual liquid interface of uncured resin between the growing part and the exposure window. This interface eliminates the necessity of an iterative layer-by-layer process, allowing for continuous production. Herein we report the advantages of continuous production, specifically the fabrication of layerless parts. These advantages enable the fabrication of large overhangs without the use of supports, reduction of the staircasing effect without compromising fabrication time, and isotropic mechanical properties. Combined, these advantages result in multiple indicators of layerless and monolithic fabrication using CLIP technology.

  17. LCA of metal nanomaterial production

    DEFF Research Database (Denmark)

    Miseljic, Mirko; Diaz, Elsa Gabriela Alvarado; Olsen, Stig Irving

    The use of engineered nanomaterials (ENMs) in commercial product has reached a new stage, where consumers in their daily life are frequently encountered with products containing this new material class. Metal and metal-oxide nanomaterials are among the most commonly used ENMs in products. Potential......(OH)2 applied as additives in polypropylene (PP), and the production of PP with conventional additives that provide similar properties as the ENMs. Different scenarios of nanoproducts consisting of metal ENMs and PP were compared with current use of additives in PP products through a detailed cradle...

  18. Fabrication criteria applicable to Carem pods production

    International Nuclear Information System (INIS)

    Bianchi, D R; Azzinari, D; Gongora, P; Sabio Calvete, M; Ilarri, M; Perazzo, M; Duarte, J; Duarte, A; Rojas, J; Fleitas, G; Szieber, W C; Vizcaino, P

    2012-01-01

    In relation CAREM 25 project, PPFAE, CNEA, has been fabricated pods for fuel rods for that reactor. They were used the same fuel rods that to be irradiate and evaluate their behavior with that the same Uranium pellets. The scope of the agreement signed between the authorities of the CNEA and Institutt for Energiteknikk (IFE) in Norway, it contemplated irradiated fuel rods type CAREM fabricated from these fuel pods in the OECD Halden Reactor Project (HRP, venture led by IFE and integrate more than 16 countries). The work contemplates the production of two experimental item fuel pods. From the second item fuel pods will be used in the fuel rods. In this paper we analyze the sequences used; the results obtained and the general conditions for the development of the final process to be applied in the production phase for a reactor CAREM 25 (author)

  19. Fabrication and Microstructure of Metal-Metal Syntactic Foams

    National Research Council Canada - National Science Library

    Nadler, J

    1998-01-01

    .... The composite microstructure consists of thin-wall, hollow Fe-Cr stainless steel spheres cast in various metal matrices including aluminum alloys 6061, 7075, 413, magnesium alloy AZ31B, and unalloyed...

  20. PRODUCTION OF PLUTONIUM METAL

    Science.gov (United States)

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  1. Scanning probe lithography for fabrication of Ti metal nanodot arrays

    International Nuclear Information System (INIS)

    Jung, B.; Jo, W.; Gwon, M.J.; Lee, E.; Kim, D.-W.

    2010-01-01

    We report fabrication of Ti metal nanodot arrays by scanning probe microscopic indentation. A thin poly-methylmethacrylate (PMMA) layer was spin-coated on Si substrates with thickness of 70 nm. Nanometer-size pore arrays were formed by indenting the PMMA layer using a cantilever of a scanning probe microscope. Protuberances with irregular boundaries appeared during the indentation process. Control of approach and pulling-out speed during indentation was able to dispose of the protrusions. Ti metal films were deposited on the patterned PMMA layers by a radio-frequency sputtering method and subsequently lifted off to obtain metal nanodot arrays. The fabricated metal nanodot arrays have 200 nm of diameter and 500 nm of interdistance, which corresponds to a density of 4x10 8 /cm 2 . Scanning probe-based measurement of current-voltage (I-V) behaviors for a single Ti metal nanodot showed asymmetric characteristics. Applying external bias is likely to induce oxidation of Ti metal, since the conductance decreased and volume change of the dots was observed. I-V behaviors of Ti metal nanodots by conventional e-beam lithography were also characterized for comparison.

  2. 40 CFR Appendix A to Part 438 - Typical Products in Metal Products and Machinery Sectors

    Science.gov (United States)

    2010-07-01

    ... INDUSTRIAL EQUIPMENT Air & Gas Compressors Automatic Vending Machines Ball & Roller Bearings Blowers... Fields, & Services BUS & TRUCK Bus Terminal & Service Facilities Courier Services, Except by Air Freight... Work Bolts, Nuts, Screws, Rivets & Washers Crowns & Closures Cutlery Fabricated Metal Products...

  3. PRODUCTION OF HAFNIUM METAL

    Science.gov (United States)

    Elger, G.W.; Boubel, R.W.

    1963-01-01

    This patent deals with a process of producing pure Hf metal from oxygen- contaminated gaseous Hf chloride. The oxygen compounds in the chioride gas are halogenated by contacting the gas at elevated temperature with Cl/sub 2/ in the presence of C. The Hf chloride, still in gaseous form, is contacted with molten Mg whereby Hf metal is formed and condensed on the Mg. (AEC)

  4. Fabrication of particulate metal fuel for fast burner reactors

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Lee, Sun Yong; Kim, Jong Hwan; Woo, Yoon Myung; Ko, Young Mo; Kim, Ki Hwan; Park, Jong Man; Lee, Chan Bok

    2012-01-01

    U Zr metallic fuel for sodium cooled fast reactors is now being developed by KAERI as a national R and D program of Korea. In order to recycle transuranic elements (TRU) retained in spent nuclear fuel, remote fabrication capability in a shielded hot cell should be prepared. Moreover, generation of long lived radioactive wastes and loss of volatile species should be minimized during the recycled fuel fabrication step. Therefore, innovative fuel concepts should be developed to address the fabrication challenges pertaining to TRU while maintaining good performances of metallic fuel. Particulate fuel concepts have already been proposed and tested at several experimental fast reactor systems and vipac ceramic fuel of RIAR, Russia is one of the examples. However, much less work has been reported for particulate metallic fuel development. Spherical uranium alloy particles with various diameters can be easily produced by the centrifugal atomization technique developed by KAERI. Using the atomized uranium and uranium zirconium alloy particles, we fabricated various kinds of powder pack, powder compacts and sintered pellets. The microstructures and properties of the powder pack and pellets are presented

  5. Fabrication of metallic fuel for fast breeder reactor

    International Nuclear Information System (INIS)

    Saify, M.T.; Jha, S.K.; Abdulla, K.K.; Kumar, Arbind; Mittal, R.K.; Prasad, R.S.; Mahule, N.; Kumar, Arun; Prasad, G.J.

    2012-01-01

    Natural uranium oxide fuelled PHWRs comprises of first stage of Indian nuclear power programme. Liquid metal fast breeder reactors fuelled by Pu (from PHWR's) form the second stage. A shorter reactor doubling time is essential in order to accelerate the nuclear power growth in India. Metallic fuels are known to provide shorter doubling times, necessitating to be used as driver fuel for fast breeder reactors. One of the fabrication routes for metallic fuels having random grain orientation, is injection casting technique. The technique finds its basis in an elementary physical concept - the possibility of supporting a liquid column within a tube, by the application of a pressure difference across the liquid interface inside and outside the tube. At AFD, BARC a facility has been set-up for injection casting of uranium rods in quartz tube moulds, demoulding of cast rods, end-shearing of rods and an automated inspection system for inspection of fuel rods with respect to mass, length, diameter and diameter variation along the length and internal and external porosities/voids. All the above facilities have been set-up in glove boxes and have successfully been used for fabrication of uranium bearing fuel rods. The facility has been designed for fabrication and inspection of Pu-bearing metallic fuels also, if required

  6. Fabrication of Arrays of Metal and Metal Oxide Nanotubes by Shadow Evaporation

    NARCIS (Netherlands)

    Dickey, Michael D.; Weiss, Emily A.; Smythe, Elizabeth J.; Chiechi, Ryan C.; Capasso, Federico; Whitesides, George M.

    2008-01-01

    This paper describes a simple technique for fabricating uniform arrays of metal and metal oxide nanotubes with controlled heights and diameters. The technique involves depositing material onto an anodized aluminum oxide (AAO) membrane template using a collimated electron beam evaporation source. The

  7. Direct fabrication of rigid microstructures on a metallic roller using a dry film resist

    International Nuclear Information System (INIS)

    Jiang, Liang-Ting; Huang, Tzu-Chien; Chang, Chih-Yuan; Ciou, Jian-Ren; Yang, Sen-Yeu; Huang, Po-Hsun

    2008-01-01

    This paper presents a novel method to fabricate a metallic roller mold with microstructures on its surface using a dry film resist (DFR). The DFR is laminated uniformly onto the curvy surface of a copper roller. After that, the micro-scale photoresist on the surface of the roller can be patterned by non-planar lithography using a flexible film photomask, followed by ferric chloride wet etching to obtain the desired microstructures. This method overcomes the uniformity issue of photoresist coating on rollers, and solves the molds sliding problem during the embossing process because the microstructures are fabricated directly on the roller surface. Furthermore, the rigid metallic roller mold has excellent strength durability and temperature endurance, which can be used in roller hot embossing with a high embossing pressure. The fabricated microstructure roller mold is used as a mold in the hybrid extrusion roller embossing process and successfully fabricates uniform micro-scale prominent line arrays on PC films. This result proves that the roller fabricated by this method can be successfully used in roller embossing for microstructure mass production. The excellent flatness of dry film resist laminating is the key in this fabrication process. The flexible film photomask can be easily designed using CAD software; this roller fabrication method enhances the design flexibility and reduces the cost and time

  8. Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication

    International Nuclear Information System (INIS)

    Ko, Seung Hwan; Nam, Koo Hyun; Chung, Jaewon; Hotz, Nico; Grigoropoulos, Costas P

    2010-01-01

    Inkjet printing of functional materials is a key technology toward ultra-low-cost, large-area electronics. We demonstrate low-temperature 3D micro metal structure fabrication by direct inkjet printing of metal nanoparticles (NPs) as a versatile, direct 3D metal structuring approach representing an alternative to conventional vacuum deposition and photolithographic methods. Metal NP ink was inkjet-printed to exploit the large melting temperature drop of the nanomaterial and the ease of the NP ink formulation. Parametric studies on the basic conditions for stable 3D inkjet printing of NP ink were carried out. Furthermore, diverse 3D metal microstructures, including micro metal pillar arrays, helices, zigzag and micro bridges were demonstrated and electrical characterization was performed. Since the process requires low temperature, it carries substantial potential for fabrication of electronics on a plastic substrate

  9. The Metal-Zirconia Implant Fixed Hybrid Full-Arch Prosthesis: An Alternative Technique for Fabrication.

    Science.gov (United States)

    Stumpel, Lambert J; Haechler, Walter

    2018-03-01

    The metal-resin hybrid full-arch prosthesis has been a traditionally used type of restoration for full-arch implant fixed dentures. A newer development has centered around the use of monolithic zirconia or zirconia veneered with porcelain. Being a ceramic, zirconia has the potential for fracture. This article describes a technique that utilizes a metal substructure to support a chemically and mechanically resinbonded shell of zirconia. The workflow is discussed, ranging from in-office master cast fabrication to the CAD/ CAM production of the provisional and the definitive metal-zirconia prosthesis. The article also highlights the advantages and disadvantages of various materials used for hybrid prostheses.

  10. Fabrication and properties of gallium metallic photonic crystals

    International Nuclear Information System (INIS)

    Kozhevnikov, V.F.; Diwekar, M.; Kamaev, V.P.; Shi, J.; Vardeny, Z.V.

    2003-01-01

    Gallium metallic photonic crystals with 100% filling factor have been fabricated via infiltration of liquid gallium into opals of 300-nm silica spheres using a novel high pressure-high temperature technique. The electrical resistance of the Ga-opal crystals was measured at temperatures from 10 to 280 K. The data obtained show that Ga-opal crystals are metallic network with slightly smaller temperature coefficient of resistivity than that for bulk gallium. Optical reflectivity of bulk gallium, plain opal and several Ga-opal crystals were measured at photon energies from 0.3 to 6 eV. A pronounced photonic stop band in the visible spectral range was found in both the plain and Ga infiltrated opals. The reflectivity spectra also show increase in reflectivity below 0.6 eV; which we interpret as a significantly lower effective plasma frequency of the metallic mesh in the infiltrated opal compare to the plasma frequency in the pure metal

  11. Silica needle template fabrication of metal hollow microneedle arrays

    International Nuclear Information System (INIS)

    Zhu, M W; Li, H W; Chen, X L; Tang, Y F; Lu, M H; Chen, Y F

    2009-01-01

    Drug delivery through hollow microneedle (HMN) arrays has now been recognized as one of the most promising techniques because it minimizes the shortcomings of the traditional drug delivery methods and has many exciting advantages—pain free and tunable release rates, for example. However, this drug delivery method has been hindered greatly from mass clinical application because of the high fabrication cost of HMN arrays. Hence, we developed a simple and cost-effective procedure using silica needles as templates to massively fabricate HMN arrays by using popular materials and industrially applicable processes of micro- imprint, hot embossing, electroplating and polishing. Metal HMN arrays with high quality are prepared with great flexibility with tunable parameters of area, length of needle, size of hollow and array dimension. This efficient and cost-effective fabrication method can also be applied to other applications after minor alterations, such as preparation of optic, acoustic and solar harvesting materials and devices

  12. Silica needle template fabrication of metal hollow microneedle arrays

    Science.gov (United States)

    Zhu, M. W.; Li, H. W.; Chen, X. L.; Tang, Y. F.; Lu, M. H.; Chen, Y. F.

    2009-11-01

    Drug delivery through hollow microneedle (HMN) arrays has now been recognized as one of the most promising techniques because it minimizes the shortcomings of the traditional drug delivery methods and has many exciting advantages—pain free and tunable release rates, for example. However, this drug delivery method has been hindered greatly from mass clinical application because of the high fabrication cost of HMN arrays. Hence, we developed a simple and cost-effective procedure using silica needles as templates to massively fabricate HMN arrays by using popular materials and industrially applicable processes of micro- imprint, hot embossing, electroplating and polishing. Metal HMN arrays with high quality are prepared with great flexibility with tunable parameters of area, length of needle, size of hollow and array dimension. This efficient and cost-effective fabrication method can also be applied to other applications after minor alterations, such as preparation of optic, acoustic and solar harvesting materials and devices.

  13. PRODUCTION OF ACTINIDE METAL

    Science.gov (United States)

    Knighton, J.B.

    1963-11-01

    A process of reducing actinide oxide to the metal with magnesium-zinc alloy in a flux of 5 mole% of magnesium fluoride and 95 mole% of magnesium chloride plus lithium, sodium, potassium, calcium, strontium, or barium chloride is presented. The flux contains at least 14 mole% of magnesium cation at 600-- 900 deg C in air. The formed magnesium-zinc-actinide alloy is separated from the magnesium-oxide-containing flux. (AEC)

  14. Near-Earth asteroids: Metals occurrence, extraction, and fabrication

    Science.gov (United States)

    Westfall, Richard

    Near-earth asteroids occur in three principle types of orbits: Amor, Apollo, and Aten. Amor asteroids make relatively close (within 0.3 AU) approaches to the earth's orbit, but do not actually overlap it. Apollo asteroids spend most of their time outside the earth's orbital path, but at some point of close approach to the sun, they cross the orbit of the earth. Aten asteroids are those whose orbits remain inside the earth's path for the majority of their time, with semi-major axes less than 0.1 AU. Near-earth orbit asteroids include: stones, stony-irons, irons, carbonaceous, and super-carbonaceous. Metals within these asteroids include: iron, nickel, cobalt, the platinum group, aluminum, titanium, and others. Focus is on the extraction of ferrous and platinum group metals from the stony-iron asteroids, and the iron asteroids. Extraction of the metal fraction can be accomplished through the use of tunnel-boring-machines (TBM) in the case of the stony-irons. The metals within the story-iron asteroids occur as dispersed granules, which can be separated from the stony fraction through magnetic and gaseous digestion separation techniques. The metal asteroids are processes by drilling and gaseous digestion or by gaseous digestion alone. Manufacturing of structures, housings, framing networks, pressure vessels, mirrors, and other products is accomplished through the chemical vapor deposition (CVD) of metal coating on advanced composites and on the inside of contour-defining inflatables (CDI). Metal coatings on advanced composites provide: resistance to degradation in the hostile environments of space; superior optical properties; superior heat dissipation; service as wear coatings; and service as evidential coatings. Metal coatings on the inside of CDI produce metal load-bearing products. Fibers such as graphite, kevlar, glass, ceramic, metal, etc., can be incorporated in the metal coatings on the inside of CDI producing metal matrix products which exhibit high strength

  15. Metallic dielectric photonic crystals and methods of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2016-12-20

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  16. Metallic dielectric photonic crystals and methods of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2017-12-05

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  17. The fabrication of short metallic nanotubes by templated electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Chienwen, Huang; Hao Yaowu, E-mail: yhao@uta.ed [Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, TX 76051 (United States)

    2009-11-04

    Template-based electrochemical synthesis has widely been used to produce metal nanowires and nanorods. Commercially available filtration membranes, such as anodic aluminum oxide (AAO) and polycarbonate track etch membranes, have commonly been utilized as hard templates for this purpose. In this process, a thick metal film is usually sputtered or vacuum evaporated onto one side of the membrane to block the pores and serve as the working electrode for the subsequent electrodeposition. Here, we show that during the deposition of the metal electrode for AAO membranes, the electrode metal diffuses into the pores and is deposited on the pore walls which leads to preferential electrodeposition of metal on the walls and therefore forms metal tubes. This phenomenon has been utilized to fabricate short nanotubes by carefully controlling the electrodeposition conditions. The process is a straightforward method for any electroplatable materials to form nanoscale tubular structures. The effects of working electrodes and electrodeposition conditions on the formation of tubular structures are discussed in detail. A new mechanism based on this simple fact is proposed to explain the formation of Ni tubes by Ni-Cu co-deposition. Also, we demonstrate how to distinguish magnetic nanotubes from nanorods by a simple magnetic measurement.

  18. The fabrication of short metallic nanotubes by templated electrodeposition

    International Nuclear Information System (INIS)

    Huang Chienwen; Hao Yaowu

    2009-01-01

    Template-based electrochemical synthesis has widely been used to produce metal nanowires and nanorods. Commercially available filtration membranes, such as anodic aluminum oxide (AAO) and polycarbonate track etch membranes, have commonly been utilized as hard templates for this purpose. In this process, a thick metal film is usually sputtered or vacuum evaporated onto one side of the membrane to block the pores and serve as the working electrode for the subsequent electrodeposition. Here, we show that during the deposition of the metal electrode for AAO membranes, the electrode metal diffuses into the pores and is deposited on the pore walls which leads to preferential electrodeposition of metal on the walls and therefore forms metal tubes. This phenomenon has been utilized to fabricate short nanotubes by carefully controlling the electrodeposition conditions. The process is a straightforward method for any electroplatable materials to form nanoscale tubular structures. The effects of working electrodes and electrodeposition conditions on the formation of tubular structures are discussed in detail. A new mechanism based on this simple fact is proposed to explain the formation of Ni tubes by Ni-Cu co-deposition. Also, we demonstrate how to distinguish magnetic nanotubes from nanorods by a simple magnetic measurement.

  19. Fabrication of subwavelength metallic structures by using a metal direct imprinting process

    International Nuclear Information System (INIS)

    Hsieh, C W; Hsiung, H Y; Lu, Y T; Sung, C K; Wang, W H

    2007-01-01

    This work employs a metal direct imprinting process, which possesses the characteristics of simplicity, low-cost and high resolution, for the fabrication of subwavelength structures on a metallic thin film. Herein, the mould featuring periodic line structures is manufactured by using E-beam lithography and followed by a dry etching process; meanwhile, the thin film is fabricated by sputtering Al on a silicon substrate. AFM section analyses are employed to measure imprinting depths of the subwavelength metallic structures and it is found that the uniformity of the imprinting depths is affected by the designed patterns, the material property of thin film and mould deformation. The process temperature and the mould filling that influence the transferred quality are investigated. In addition, TEM is also utilized to examine defects in the subwavelength metallic structures. Finally, good quality subwavelength metallic structures are fabricated under a pressure of 300 MPa for 60 s at room temperature. In this study, we have demonstrated that subwavelength metallic structures with a minimum linewidth of less than 100 nm on the Al thin film are successfully constructed by the metal direct imprinting process

  20. Three-dimensional metallic opals fabricated by double templating

    International Nuclear Information System (INIS)

    Yan Qingfeng; Nukala, Pavan; Chiang, Yet-Ming; Wong, C.C.

    2009-01-01

    We report a simple and cost-effective double templating method for fabricating large-area three-dimensional metallic photonic crystals of controlled thickness. A self-assembled polystyrene opal was used as the first template to fabricate a silica inverse opal on a gold-coated glass substrate via sol-gel processing. Gold was subsequently infiltrated to the pores of the silica inverse opal using electrochemical deposition. A high-quality three-dimensional gold photonic crystal was obtained after removal of the secondary template (silica inverse opal). The effects of template sphere size and deposition current density on the gold growth rate, and the resulting morphology and growth mechanism of the gold opal, were investigated.

  1. International conference on design, fabrication and economy of metal structures

    CERN Document Server

    Farkas, József

    2013-01-01

    These are the proceedings of the International Conference on Design, Fabrication and Economy of Metal Structures held on 24-26 April 2013 in Miskolc, Hungary which contain 99 papers covering: Structural optimization Thin-walled structures Stability Fatigue Frames Fire Fabrication Welding technology Applications Steel-concrete composite Special problems The authors are from 23 different countries, ensuring that the themes covered are of worldwide interest and importance. The International Institute of Welding (IIW), the International Society of Structural and Multidisciplinary Optimization (ISSMO), the TÁMOP 4.2.1.B-10/2/KONV-2010-0001 project entitled “Increasing the quality of higher education through the development of research - development and innovation program at the University of Miskolc supported by the European Union, co-financed by the European Social Fund” and many other sponsors helped organizers to collect these valuable studies, the results of which will provoke discussion, and provide an i...

  2. Directed light fabrication of refractory metals and alloys

    International Nuclear Information System (INIS)

    Fonseca, J.C.; Lewis, G.K.; Dickerson, P.G.; Nemec, R.B.

    1999-01-01

    This report covers deposition of refractory pure metals and alloys using the Directed Light Fabrication (DLF) process and represents progress in depositing these materials through September 1998. In extending the DLF process technology to refractory metals for producing fully dense, structurally sound deposits, several problems have become evident. (1) Control of porosity in DLF-deposited refractory metal is difficult because of gases, apparently present in commercially purchased refractory metal powder starting materials. (2) The radiant heat from the molten pool during deposition melts the DLF powder feed nozzle. (3) The high reflectivity of molten refractory metals, at the Nd-YAG laser wavelength (1.06microm), produces damaging back reflections to the optical train and fiber optic delivery system that can terminate DLF processing. (4) The current limits on the maximum available laser power to prevent back reflection damage limit the parameter range available for densification of refractory metals. The work to date concentrated on niobium, W-25Re, and spherodized tungsten. Niobium samples, made from hydride-dehydride powder, had minimal gas porosity and the deposition parameters were optimized; however, test plates were not made at this time. W-25Re samples, containing sodium and potassium from a precipitation process, were made and porosity was a problem for all samples although minimized with some process parameters. Deposits made from potassium reduced tungsten that was plasma spherodized were made with minimized porosity. Results of this work indicate that further gas analysis of starting powders and de-gassing of starting powders and/or gas removal during deposition of refractory metals is required

  3. Directed light fabrication of refractory metals and alloys

    International Nuclear Information System (INIS)

    Fonseca, J.C.; Lewis, G.K.; Dickerson, P.G.; Nemec, R.B.

    1999-01-01

    This report covers work performed under Order No. FA0000020 AN Contract DE-AC12-76SN00052 for deposition of refractory pure metals and alloys using the Directed Light Fabrication (DLF) process and represents the progress in depositing these materials through September 1998. In extending the DLF process technology to refractory metals for producing fully dense, structurally sound deposits, several problems have become evident. 1. Control of porosity in DLF-deposited refractory metal is difficult because of gases, apparently present in commercially purchased refractory metal powder starting materials. 2. The radiant heat from the molten pool during deposition melts the DLF powder feed nozzle. 3. The high reflectivity of molten refractory metals, at the Nd-YAG laser wavelength (1.06microm), produces damaging back reflections to the optical train and fiber optic delivery system that can terminate DLF processing. 4. The current limits on the maximum available laser power to prevent back reflection damage limit the parameter range available for densification of refractory metals. The work to date concentrated on niobium, W-25Re, and spherodized tungsten. Niobium samples, made from hydride-dehydride powder, had minimal gas porosity and the deposition parameters were optimized; however, test plates were not made at this time. W-25Re samples, containing sodium and potassium from a precipitation process, were made and porosity was a problem for all samples although minimized with some process parameters. Deposits made from potassium reduced tungsten that was plasma spherodized were made with minimized porosity. Results of this work indicate that further gas analysis of starting powders and de-gassing of starting powders and/or gas removal during deposition of refractory metals is required

  4. Metal-nanoparticle single-electron transistors fabricated using electromigration

    DEFF Research Database (Denmark)

    Bolotin, K I; Kuemmeth, Ferdinand; Pasupathy, A N

    2004-01-01

    We have fabricated single-electron transistors from individual metal nanoparticles using a geometry that provides improved coupling between the particle and the gate electrode. This is accomplished by incorporating a nanoparticle into a gap created between two electrodes using electromigration, all...... on top of an oxidized aluminum gate. We achieve sufficient gate coupling to access more than ten charge states of individual gold nanoparticles (5–15 nm in diameter). The devices are sufficiently stable to permit spectroscopic studies of the electron-in-a-box level spectra within the nanoparticle as its...

  5. Fabrication of Metallic Quantum Dot Arrays For Nanoscale Nonlinear Optics

    Science.gov (United States)

    McMahon, M. D.; Hmelo, A. B.; Lopez Magruder, R., III; Weller Haglund, R. A., Jr.; Feldman, L. C.

    2003-03-01

    Ordered arrays of metal nanocrystals embedded in or sequestered on dielectric hosts have potential applications as elements of nonlinear or near-field optical circuits, as sensitizers for fluorescence emitters and photo detectors, and as anchor points for arrays of biological molecules. Metal nanocrystals are strongly confined electronic systems with size-, shape and spatial orientation-dependent optical responses. At the smallest scales (below about 15 nm diameter), their band structure is drastically altered by the small size of the system, and the reduced population of conduction-band electrons. Here we report on the fabrication of two-dimensional ordered metallic nanocrystal arrays, and one-dimensional nanocrystal-loaded waveguides for optical investigations. We have employed strategies for synthesizing metal nanocrystal composites that capitalize on the best features of focused ion beam (FIB) machining and pulsed laser deposition (PLD). The FIB generates arrays of specialized sites; PLD vapor deposition results in the directed self-assembly of Ag nanoparticles nucleated at the FIB generated sites on silicon substrates. We present results based on the SEM, AFM and optical characterization of prototype composites. This research has been supported by the U.S. Department of Energy under grant DE-FG02-01ER45916.

  6. Fabrication of novel cryomill for synthesis of high purity metallic nanoparticles

    Science.gov (United States)

    Kumar, Nirmal; Biswas, Krishanu

    2015-08-01

    The successful preparation of free standing metal nanoparticles with high purity in bulk quantity is the pre-requisite for any potential application. This is possible by using ball milling at cryogenic temperature. However, the most of ball mills available in the market do not allow preparing high purity metal nanoparticles by this route. In addition, it is not possible to carry out in situ measurements of process parameters as well as diagnostic of the process. In the present investigation, we present a detailed study on the fabrication of a cryomill, which is capable of avoiding contaminations in the product. It also provides in situ measurements and diagnostic of the low temperature milling process. Online monitoring of the milling temperature and observation of ball motion are the important aspects in the newly designed mill. The nanoparticles prepared using this fabricated mill have been found to be free standing and also free from contaminations.

  7. Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting.

    Science.gov (United States)

    Mun, Jiwon; Ju, Jaehyung; Thurman, James

    2016-05-14

    One of the typical methods to manufacture 3D lattice metals is the direct-metal additive manufacturing (AM) process such as Selective Laser Melting (SLM) and Electron Beam Melting (EBM). In spite of its potential processing capability, the direct AM method has several disadvantages such as high cost, poor surface finish of final products, limitation in material selection, high thermal stress, and anisotropic properties of parts. We propose a cost-effective method to manufacture 3D lattice metals. The objective of this study is to provide a detailed protocol on fabrication of 3D lattice metals having a complex shape and a thin wall thickness; e.g., octet truss made of Al and Cu alloys having a unit cell length of 5 mm and a cell wall thickness of 0.5 mm. An overall experimental procedure is divided into eight sections: (a) 3D printing of sacrificial patterns (b) melt-out of support materials (c) removal of residue of support materials (d) pattern assembly (e) investment (f) burn-out of sacrificial patterns (g) centrifugal casting (h) post-processing for final products. The suggested indirect AM technique provides the potential to manufacture ultra-lightweight lattice metals; e.g., lattice structures with Al alloys. It appears that the process parameters should be properly controlled depending on materials and lattice geometry, observing the final products of octet truss metals by the indirect AM technique.

  8. On-chip fabrication of alkali-metal vapor cells utilizing an alkali-metal source tablet

    International Nuclear Information System (INIS)

    Tsujimoto, K; Hirai, Y; Sugano, K; Tsuchiya, T; Tabata, O; Ban, K; Mizutani, N

    2013-01-01

    We describe a novel on-chip microfabrication technique for the alkali-metal vapor cell of an optically pumped atomic magnetometer (OPAM), utilizing an alkali-metal source tablet (AMST). The newly proposed AMST is a millimeter-sized piece of porous alumina whose considerable surface area holds deposited alkali-metal chloride (KCl) and barium azide (BaN 6 ), source materials that effectively produce alkali-metal vapor at less than 400 °C. Our experiments indicated that the most effective pore size of the AMST is between 60 and 170 µm. The thickness of an insulating glass spacer holding the AMST was designed to confine generated alkali metal to the interior of the vapor cell during its production, and an integrated silicon heater was designed to seal the device using a glass frit, melted at an optimum temperature range of 460–490 °C that was determined by finite element method thermal simulation. The proposed design and AMST were used to successfully fabricate a K cell that was then operated as an OPAM with a measured sensitivity of 50 pT. These results demonstrate that the proposed concept for on-chip microfabrication of alkali-metal vapor cells may lead to effective replacement of conventional glassworking approaches. (paper)

  9. Investigation of the fabrication parameters of thick film metal oxide-polymer pH electrodes

    International Nuclear Information System (INIS)

    Gac, Arnaud

    2002-01-01

    This thesis describes a study into the development of an optimum material and fabrication process for the production of thick film pH electrodes. These devices consist of low cost, miniature and rugged pH sensors formed by screen printing a metal oxide bearing paste onto a high temperature (∼850 deg C) fired metal back contact supported on a standard alumina substrate. The pH sensitive metal oxide layer must be fabricated at relatively low temperatures (<300 deg C) in order to maintain the pH sensitivity of the layer and hence requires the use of a suitably stable low temperature curing binder. Bespoke fabricated inks are derived from a Taguchi style factorial experimental plans in which, different binder types, curing temperatures, hydration level and percentage mixtures of different metal oxides and layer thicknesses were investigated. The pH responses of 18 printed electrodes per batch were assessed in buffer solutions with respect to a commercial reference electrode forming a complete potentiometric circuit. The evaluation criteria used in the study included the device-to-device variation in sensitivity of the pH sensors and their sensitivity variation as a function of time. The results indicated the importance of the choice of binder type in particular on the performance characteristics. Reproducible device-to-device variation in sensitivity was determined for the best inks found, whatever the ink fabrication batch. A reduction in the sensitivity variation with time has been determined using the mathematical models derived from an experimental plan. The lack of reproducibility of the sensitivity magnitude, regardless of the ink manufacturing batch, seems to be a recurrent problem with prototype inks. Experimental sub-Nernstian responses are discussed in the light of possible pH mechanisms. (author)

  10. PZT Films Fabricated by Metal Organic Decomposition Method

    Science.gov (United States)

    Sobolev, Vladimir; Ishchuk, Valeriy

    2014-03-01

    High quality lead zirconate titanate films have been fabricated on different substrates by metal organic decomposition method and their ferroelectric properties have been investigated. Main attention was paid to studies of the influence of the buffer layer with conditional composition Pb1.3(Zr0.5Ti0.5) O3 on the properties of Pb(Zr0.5Ti0.5) O3 films fabricated on the polycrystalline titanium and platinum substrates. It is found that in the films on the Pt substrate (with or without the buffer layer) the dependencies of the remanent polarization and the coercivity field on the number of switching cycles do not manifest fatigue up to 109 cycles. The remanent polarization dependencies for films on the Ti substrate with the buffer layer containing an excess of PbO demonstrate an fundamentally new feature that consists of a remanent polarization increase after 108 switching cycles. The increase of remanent polarization is about 50% when the number of cycles approaches 1010, while the increase of the coercivity field is small. A monotonic increase of dielectric losses has been observed in all cases.

  11. The Production of Uranium Metal by Metal Hydrides Incorporated

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, P. P.

    1943-01-01

    Metal Hydrides Incorporated was a pioneer in the production of uranium metal on a commercial scale and supplied it to all the laboratories interested in the original research, before other methods for its production were developed. Metal Hydrides Inc. supplied the major part of the metal for the construction of the first experimental pile which, on December 2, 1942, demonstrated the feasibility of the self-sustaining chain reaction and the release of atomic energy.

  12. Design and fabrication of metal-insulator-metal diode for high frequency applications

    Science.gov (United States)

    Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias

    2017-02-01

    Metal-insulator-metal (MIM) diodes play significant role in high speed electronics where high frequency rectification is needed. Quantum based tunneling mechanism helps MIM diodes to rectify at high frequency signals. Rectenna, antenna coupled MIM diodes are becoming popular due to their potential use as IR detectors and energy harvesters. Because of small active area, MIM diodes could easily be incorporated into integrated circuits (IC's). The objective of the work is to design and develop MIM diodes for high frequency rectification. In this work, thin insulating layer of ZnO was fabricated using Langmuir-Blodgett (LB) technique which facilitates ultrathin thin, uniform and pinhole free fabrication of insulating layer. The ZnO layer was synthesized from organic precursor of zinc acetate layer. The optimization in the LB technique of fabrication process led to fabricate MIM diodes with high non-linearity and sensitivity. Moreover, the top and bottom electrodes as well as active area of the diodes were patterned using UV-tunneling conduction mechanism. The highest sensitivity of the diode was measured around 37 (A/W), and the rectification ratio was found around 36 under low applied bias at +/-100 mV.

  13. Nanowire and microwire fabrication technique and product

    Energy Technology Data Exchange (ETDEWEB)

    Sumant, Anirudha V.; Zach, Michael; Marten, Alan David

    2018-02-27

    A continuous or semi-continuous process for fabricating nanowires or microwires makes use of the substantially planar template that may be moved through electrochemical solution to grow nanowires or microwires on exposed conductive edges on the surface of that template. The planar template allows fabrication of the template using standard equipment and techniques. Adhesive transfer may be used to remove the wires from the template and in one embodiment to draw a continuous wire from the template to be wound around the drum.

  14. Fabrication and electrical characterization of partially metallized vias fabricated by inkjet

    International Nuclear Information System (INIS)

    Khorramdel, B; Mäntysalo, M

    2016-01-01

    Through silicon vias (TSVs), acting as vertical interconnections, play an important role in micro-electro-mechanical systems (MEMS) 3D wafer level packaging. Today, taking advantage of nanoparticle inks, inkjet technologies as local filling methods could be used to plate the inside the vias with a conductive material, rather than using a current method, such as chemical vapor deposition or electrolytic growth. This could decrease the processing time, cost and waste material produced. In this work, we have fabricated and demonstrated electrical characterization of TSVs with a top diameter of 85 μm, and partially metallized on their inside walls using silver nanoparticle ink and drop-on-demand inkjet printing. Electrical measurement showed that the resistance of a single via with a void free coverage from top to bottom could be less than 4 Ω, which is still acceptable for MEMS applications. (paper)

  15. Fabrication and electrical characterization of partially metallized vias fabricated by inkjet

    Science.gov (United States)

    Khorramdel, B.; Mäntysalo, M.

    2016-04-01

    Through silicon vias (TSVs), acting as vertical interconnections, play an important role in micro-electro-mechanical systems (MEMS) 3D wafer level packaging. Today, taking advantage of nanoparticle inks, inkjet technologies as local filling methods could be used to plate the inside the vias with a conductive material, rather than using a current method, such as chemical vapor deposition or electrolytic growth. This could decrease the processing time, cost and waste material produced. In this work, we have fabricated and demonstrated electrical characterization of TSVs with a top diameter of 85 μm, and partially metallized on their inside walls using silver nanoparticle ink and drop-on-demand inkjet printing. Electrical measurement showed that the resistance of a single via with a void free coverage from top to bottom could be less than 4 Ω, which is still acceptable for MEMS applications.

  16. Fabrication of Metallic Fuel Slugs for Irradiation Experiments in Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Saify, M.T.; Jha, S.K.; Abdulla, K.K.; Kumar, Arun; Prasad, G.J.

    2013-01-01

    Advantages of Metallic fuels for future FBR: → High heavy metal atom density; → Higher thermal conductivity at room temperature that increases with temperature; → Metal fuels can be relatively easily fabricated with close dimensional tolerances; → They have excellent compatibility with liquid metal coolants

  17. Fabrication of metallic nanoparticles by spinodal dewetting of thin films: A high-throughput approach

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, William D.; Miller, James B. [U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA 15262 (United States); Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Yolcu, Cem [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Gellman, Andrew J., E-mail: gellman@cmu.edu [U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA 15262 (United States); Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 (United States)

    2012-11-01

    Metal nanoparticles on structured supports are used in a variety of technological applications including biosensing, energy harvesting, and electronics. In every case, the functions and properties of the metallic nanostructures depend on both their composition and structure (i.e. size, shape, and spatial distribution). Among the challenges to the development of metal nanoparticles for these applications is the characterization of relationships between their structure and their functional properties over multiple structural degrees of freedom spanning a large range of values. In this work, a method for creating a morphological gradient of metal nanoparticles on a substrate is described. The approach, suited for high-throughput fabrication and characterization, is based on spinodal dewetting of a metallic thin film from its substrate. Through control of initial film thickness, anneal temperature, and anneal time, spinodal dewetting results in supported nanoparticles with well-defined and controlled structure. The approach is demonstrated through its application to preparation of Pd nanoparticles on a silicon nitride substrate. The morphologies of the particles were characterized by scanning electron and atomic force microscopies. Free energy-based stability and topological analyses were used to confirm the dewetting mechanism. In addition, the stability theory provides a connection to the thermophysical properties of the resulting nanoparticle array. The dewetting approach is general to any metal/support system and provides an alternative, inexpensive, and robust means to rapidly create metal nanostructures with control of morphology. It shows promise for large scale production of metal nanoparticles structures, as well as understanding basic stability properties of thin metal films. - Highlights: Black-Right-Pointing-Pointer Pd dewetting from SiN occurs by a spinodal dewetting mechanism. Black-Right-Pointing-Pointer Dewetting occurs at temperatures well below the

  18. Fabrication of metallic nanoparticles by spinodal dewetting of thin films: A high-throughput approach

    International Nuclear Information System (INIS)

    Michalak, William D.; Miller, James B.; Yolcu, Cem; Gellman, Andrew J.

    2012-01-01

    Metal nanoparticles on structured supports are used in a variety of technological applications including biosensing, energy harvesting, and electronics. In every case, the functions and properties of the metallic nanostructures depend on both their composition and structure (i.e. size, shape, and spatial distribution). Among the challenges to the development of metal nanoparticles for these applications is the characterization of relationships between their structure and their functional properties over multiple structural degrees of freedom spanning a large range of values. In this work, a method for creating a morphological gradient of metal nanoparticles on a substrate is described. The approach, suited for high-throughput fabrication and characterization, is based on spinodal dewetting of a metallic thin film from its substrate. Through control of initial film thickness, anneal temperature, and anneal time, spinodal dewetting results in supported nanoparticles with well-defined and controlled structure. The approach is demonstrated through its application to preparation of Pd nanoparticles on a silicon nitride substrate. The morphologies of the particles were characterized by scanning electron and atomic force microscopies. Free energy-based stability and topological analyses were used to confirm the dewetting mechanism. In addition, the stability theory provides a connection to the thermophysical properties of the resulting nanoparticle array. The dewetting approach is general to any metal/support system and provides an alternative, inexpensive, and robust means to rapidly create metal nanostructures with control of morphology. It shows promise for large scale production of metal nanoparticles structures, as well as understanding basic stability properties of thin metal films. - Highlights: ► Pd dewetting from SiN occurs by a spinodal dewetting mechanism. ► Dewetting occurs at temperatures well below the melting point of Pd. ► Spinodal dewetting allows

  19. Production of metal particles and clusters

    Science.gov (United States)

    Mcmanus, S. P.

    1982-01-01

    The feasibility of producing novel metals or metal clusters in a low gravity environment was studied. The production of coordinately unsaturated metal carbonyls by thermolysis or photolysis of stable metal carbonyls has the potential to generate novel catalysts by this technique. Laser irradiation of available metal carbonyls was investigated. It is found that laser induced decomposition of metal carbonyls is feasible for producing a variety of coordinately unsaturated species. Formation of clustered species does occur but is hampered by weak metal-metal bonds.

  20. Measurement of Electromagnetic Shielding Effectiveness of Woven Fabrics Containing Metallic Yarns by Mobile Devices

    Directory of Open Access Journals (Sweden)

    Erhan Kenan ÇEVEN

    2016-10-01

    Full Text Available In this study, we introduce an alternative method to evaluate the electromagnetic shielding effectiveness (EMSE of woven fabrics containing metal wires. For experimental measurements, hybrid silk viscose yarns containing metal wires were first produced. Conductive test fabrics were then produced using the hybrid weft yarns and polyester warp yarns. The produced fabrics were separated in two parts and laminated together after rotating one fabric by 90 degrees to create a grid structure. The laminated fabrics were then folded by several times to create multiple layers such as 2,4,8,12,16. The EMSE of the multiple layered fabrics was measured over GSM signals received by a mobile device. For EMSE evaluation, the mobile device was placed between the laminated fabrics. The EMSE values of the fabrics were then calculated in accordance with the power variations of GSM signals.

  1. Fabrication of BN/Al(-Mg) metal matrix composite (MMC) by pressureless infiltration technique

    Energy Technology Data Exchange (ETDEWEB)

    Jung, W.G.; Kwon, H. [School of Advanced Materials Eng., Kookmin Univ., Seoul (Korea)

    2004-07-01

    BN/Al(-Mg) metal matrix composite (MMC) was fabricated by the pressureless infiltration technique. The phase characterizations of the composites were analyzed using the SEM, TEM, EDS and EPMA on reaction products after the electrochemical dissolution of the matrix. It is confirmed that aluminum nitride (AlN) was formed by the reaction of Mg{sub 3}N{sub 2} and Al alloy melt. Plate type AlN and polyhedral type Mg(-Al) boride were formed by the reaction between Mg{sub 3}N{sub 2}, BN and molten Al in the composite. The reaction mechanism in the fabrication of BN/Al(-Mg) MMC was derived from the phase analysis results and the thermodynamic investigation. (orig.)

  2. Recent developments in metal and alloy fabrication. Influence on the utilization

    International Nuclear Information System (INIS)

    1983-01-01

    The program of the colloquium includes three parts. In the first part are given developments of metals and alloys elaboration leading to a better productivity, a more precise chemical composition of alloys a greater homogeneity of micro and macrostructure and a decrease of inclusion contents. These improvement in quality are obtained by smelting, refining, ingot solidification and hot working (forging and rolling). The second part shows the consequences of fabrication processes on uses and analyses with more details these improvements by few examples: stainless steels for nuclear industry microalloyed steels, aluminum and titanium alloys. The third part treats chemical analysis to follow the evolution of alloy composition during fabrication and to modify eventually the composition of the melt. New analysis methods are necessary for their adjustment to the nature and the quantity of elements and obtain the required accuracy [fr

  3. Fabrication of arrays of metal and metal oxide nanotubes by shadow evaporation.

    Science.gov (United States)

    Dickey, Michael D; Weiss, Emily A; Smythe, Elizabeth J; Chiechi, Ryan C; Capasso, Federico; Whitesides, George M

    2008-04-01

    This paper describes a simple technique for fabricating uniform arrays of metal and metal oxide nanotubes with controlled heights and diameters. The technique involves depositing material onto an anodized aluminum oxide (AAO) membrane template using a collimated electron beam evaporation source. The evaporating material enters the porous openings of the AAO membrane and deposits onto the walls of the pores. The membrane is tilted with respect to the column of evaporating material, so the shadows cast by the openings of the pores onto the inside walls of the pores define the geometry of the tubes. Rotation of the membrane during evaporation ensures uniform deposition inside the pores. After evaporation, dissolution of the AAO in base easily removes the template to yield an array of nanotubes connected by a thin backing of the same metal or metal oxide. The diameter of the pores dictates the diameter of the tubes, and the incident angle of evaporation determines the height of the tubes. Tubes up to approximately 1.5 mum in height and 20-200 nm in diameter were fabricated. This method is adaptable to any material that can be vapor-deposited, including indium-tin oxide (ITO), a conductive, transparent material that is useful for many opto-electronic applications. An array of gold nanotubes produced by this technique served as a substrate for surface-enhanced Raman spectroscopy: the Raman signal (per molecule) from a monolayer of benzenethiolate was a factor of approximately 5 x 10(5) greater than that obtained using bulk liquid benzenethiol.

  4. Structural and electrical characteristics of high-k/metal gate metal oxide semiconductor capacitors fabricated on flexible, semi-transparent silicon (100) fabric

    KAUST Repository

    Rojas, Jhonathan Prieto

    2013-02-12

    In pursuit of flexible computers with high performance devices, we demonstrate a generic process to fabricate 10 000 metal-oxide-semiconductor capacitors (MOSCAPs) with semiconductor industry\\'s most advanced high-k/metal gate stacks on widely used, inexpensive bulk silicon (100) wafers and then using a combination of iso-/anisotropic etching to release the top portion of the silicon with the already fabricated devices as a mechanically flexible (bending curvature of 133 m−1), optically semi-transparent silicon fabric (1.5 cm × 3 cm × 25 μm). The electrical characteristics show 3.7 nm effective oxide thickness, −0.2 V flat band voltage, and no hysteresis from the fabricated MOSCAPs.

  5. Structural and electrical characteristics of high-k/metal gate metal oxide semiconductor capacitors fabricated on flexible, semi-transparent silicon (100) fabric

    KAUST Repository

    Rojas, Jhonathan Prieto; Hussain, Muhammad Mustafa; Sevilla, Galo T.

    2013-01-01

    In pursuit of flexible computers with high performance devices, we demonstrate a generic process to fabricate 10 000 metal-oxide-semiconductor capacitors (MOSCAPs) with semiconductor industry's most advanced high-k/metal gate stacks on widely used, inexpensive bulk silicon (100) wafers and then using a combination of iso-/anisotropic etching to release the top portion of the silicon with the already fabricated devices as a mechanically flexible (bending curvature of 133 m−1), optically semi-transparent silicon fabric (1.5 cm × 3 cm × 25 μm). The electrical characteristics show 3.7 nm effective oxide thickness, −0.2 V flat band voltage, and no hysteresis from the fabricated MOSCAPs.

  6. Direct Fabrication of Inkjet-Printed Dielectric Film for Metal-Insulator-Metal Capacitors

    Science.gov (United States)

    Cho, Cheng-Lin; Kao, Hsuan-ling; Wu, Yung-Hsien; Chang, Li-Chun; Cheng, Chun-Hu

    2018-01-01

    In this study, an inkjet-printed dielectric film that used a polymer-based SU-8 ink was fabricated for use in a metal-insulator-metal (MIM) capacitor. Thermal treatment of the inkjet-printed SU-8 polymer film affected its surface morphology, chemical structure, and surface wettability. A 20-min soft-bake at 60°C was applied to eliminate inkjet-printed bubbles and ripples. The ultraviolet-exposed SU-8 polymer film was crosslinked at temperatures between 120°C and 220°C and became disordered at 270°C, demonstrated using Fourier-transform infrared spectroscopy. A maximum SU-8 polymer film hard-bake temperature of 120°C was identified, and a printing process was subsequently employed because the appropriate water contact angle of the printed film was 79°. Under the appropriate inkjet printing conditions, the two-transmission-line method was used to extract the dielectric and electrical properties of the SU-8 polymer film, and the electrical behavior of the fabricated MIM capacitor was also characterized.

  7. Optimal fabrication processes for unidirectional metal-matrix composites: A computational simulation

    Science.gov (United States)

    Saravanos, D. A.; Murthy, P. L. N.; Morel, M.

    1990-01-01

    A method is proposed for optimizing the fabrication process of unidirectional metal matrix composites. The temperature and pressure histories are optimized such that the residual microstresses of the composite at the end of the fabrication process are minimized and the material integrity throughout the process is ensured. The response of the composite during the fabrication is simulated based on a nonlinear micromechanics theory. The optimal fabrication problem is formulated and solved with non-linear programming. Application cases regarding the optimization of the fabrication cool-down phases of unidirectional ultra-high modulus graphite/copper and silicon carbide/titanium composites are presented.

  8. Optimal fabrication processes for unidirectional metal-matrix composites - A computational simulation

    Science.gov (United States)

    Saravanos, D. A.; Murthy, P. L. N.; Morel, M.

    1990-01-01

    A method is proposed for optimizing the fabrication process of unidirectional metal matrix composites. The temperature and pressure histories are optimized such that the residual microstresses of the composite at the end of the fabrication process are minimized and the material integrity throughout the process is ensured. The response of the composite during the fabrication is simulated based on a nonlinear micromechanics theory. The optimal fabrication problem is formulated and solved with nonlinear programming. Application cases regarding the optimization of the fabrication cool-down phases of unidirectional ultra-high modulus graphite/copper and silicon carbide/titanium composites are presented.

  9. Fabrication and characterization of nickel nanowires deposited on metal substrate

    International Nuclear Information System (INIS)

    Rahman, I.Z.; Razeeb, K.M.; Rahman, M.A.; Kamruzzaman, Md.

    2003-01-01

    The present investigation is a part of ongoing systematic study of production and process development of nanometer scale arrays of magnetic wires on metal substrates. Nickel nanowires are grown in ordered anodic alumina templates using galvanostatic electrodeposition. In this paper we report on the growth of nanowires on the electrochemical cell parameters such as bath temperature, pH and time. Focused ion beam analysis revealed heterogeneous growth of nickel nanowires. X-ray diffraction spectrum showed that FCC nickel changed the preferred orientation from (2 2 0) at lower bath temperatures to (2 0 0) at higher bath temperatures. Magnetic measurement showed that coercive fields were higher for wires with smaller diameters. Magneto-impedance was measured as a function of applied magnetic field and wire diameter

  10. Super Lightweight, Metal Rubber Fabric for Extreme Space Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic has fabricated revolutionary nanostructured, yet macroscale, multifunctional Metal RubberTM films via layer-by-layer, molecular self-assembly, which...

  11. Forging of metallic nano-objects for the fabrication of submicron-size components

    International Nuclear Information System (INIS)

    Roesler, J; Mukherji, D; Schock, K; Kleindiek, S

    2007-01-01

    In recent years, nanoscale fabrication has developed considerably, but the fabrication of free-standing nanosize components is still a great challenge. The fabrication of metallic nanocomponents utilizing three basic steps is demonstrated here. First, metallic alloys are used as factories to produce a metallic raw stock of nano-objects/nanoparticles in large numbers. These objects are then isolated from the powder containing thousands of such objects inside a scanning electron microscope using manipulators, and placed on a micro-anvil or a die. Finally, the shape of the individual nano-object is changed by nanoforging using a microhammer. In this way free-standing, high-strength, metallic nano-objects may be shaped into components with dimensions in the 100 nm range. By assembling such nanocomponents, high-performance microsystems can be fabricated, which are truly in the micrometre scale (the size ratio of a system to its component is typically 10:1)

  12. Optimization benefits analysis in production process of fabrication components

    Science.gov (United States)

    Prasetyani, R.; Rafsanjani, A. Y.; Rimantho, D.

    2017-12-01

    The determination of an optimal number of product combinations is important. The main problem at part and service department in PT. United Tractors Pandu Engineering (shortened to PT.UTPE) Is the optimization of the combination of fabrication component products (known as Liner Plate) which influence to the profit that will be obtained by the company. Liner Plate is a fabrication component that serves as a protector of core structure for heavy duty attachment, such as HD Vessel, HD Bucket, HD Shovel, and HD Blade. The graph of liner plate sales from January to December 2016 has fluctuated and there is no direct conclusion about the optimization of production of such fabrication components. The optimal product combination can be achieved by calculating and plotting the amount of production output and input appropriately. The method that used in this study is linear programming methods with primal, dual, and sensitivity analysis using QM software for Windows to obtain optimal fabrication components. In the optimal combination of components, PT. UTPE provide the profit increase of Rp. 105,285,000.00 for a total of Rp. 3,046,525,000.00 per month and the production of a total combination of 71 units per unit variance per month.

  13. Problems of zirconium metal production in Czechoslovakia

    International Nuclear Information System (INIS)

    Vareka, J.; Vaclavik, E.

    1975-01-01

    The problems are summed up of the production and quality control of zirconium sponge. A survey is given of industrial applications of zirconium in form of pure metal or alloys in nuclear power production, ferrous and non-ferrous metallurgy, chemical engineering and electrical engineering. A survey is also presented of the manufacture of zirconium metal in advanced capitalist countries. (J.B.)

  14. Metal Production by Molten Salt Electrolysis

    DEFF Research Database (Denmark)

    Grjotheim, K.; Kvande, H.; Qingfeng, Li

    Chemistry and electrochemistry of molten salts are reviewed. Technological aspects of electrolytic production of aluminium, magnesium, and other metals are comprehensively surveyed.......Chemistry and electrochemistry of molten salts are reviewed. Technological aspects of electrolytic production of aluminium, magnesium, and other metals are comprehensively surveyed....

  15. THE BEHAVIOUR OF FABRICS USED FOR ANTIMIS PRODUCTION TO PILLING

    Directory of Open Access Journals (Sweden)

    CHIRILĂ Mihai Maxim

    2016-05-01

    Full Text Available The present study about the behaviour of plain textiles used for the production of antimis (Christian-orthodox liturgical item used in the liturgy to pilling explores the functional classification of different types of antimis as a textile product made out the following different types of fabrics: natural silk, flax, viscose, polyamide 6.6. Pilling is a phenomenon which consists of the formation of small balls made out of fibre congeries on the textile’s surface due to attrition and fatigue. For textiles used as liturgical items, the process of pilling formation includes the following stages: the emergence of the pilling surfaces (the formation of fuzzy, fibre tangle (appearance of small balls, and the detachment of small balls from the fabric’s surface. The analysis method of pilling for liturgical items made out the four types of fabrics mentioned above consists of stereoscopic microscopy techniques and electronic microscopy methods (SEM. The images of textiles samples (yarns and fabrics will be captured using a video microscope. Quantitative tests have been done to determine the metric number and the tex title of the above-mentioned fabrics. The increased resistance of silk to pilling compared to nylon, flax, and viscose can be attributed to the chemical properties of fibres and structural characteristics of silk fabric. The structural compactness of the same fiber mixture of natural silk fabric with bonded fabric will have a higher resistance coefficient to pilling compared to the other mentioned fabrics. Through this, the value of use and durability of the antimis will increase.

  16. Improvement of formability for fabricating thin continuously corrugated structures in sheet metal forming process

    International Nuclear Information System (INIS)

    Choi, Sung Woo; Park, Sang Hu; Park, Seong Hun; Ha, Man Yeong; Jeong, Ho Seung; Cho, Jong Rae

    2012-01-01

    A stamping process is widely used for fabricating various sheet metal parts for vehicles, airplanes, and electronic devices by the merit of low processing cost and high productivity. Recently, the use of thin sheets with a corrugated structure for sheet metal parts has rapidly increased for use in energy management devices, such as heat exchangers, separators in fuel cells, and many others. However, it is not easy to make thin corrugated structures directly using a single step stamping process due to their geometrical complexity and very thin thickness. To solve this problem, a multi step stamping (MSS) process that includes a heat treatment process to improve formability is proposed in this work: the sequential process is the initial stamping, heat treatment, and final shaping. By the proposed method, we achieved successful results in fabricating thin corrugated structures with an average thickness of 75μm and increased formability of about 31% compared to the single step stamping process. Such structures can be used in a plate-type heat exchanger requiring low weight and a compact shape

  17. The Use of Particulate Injection Moulding for Fabrication of Sports and Leisure Equipment from Titanium Metals

    Directory of Open Access Journals (Sweden)

    Paul D. Ewart

    2018-02-01

    Full Text Available Advanced materials such as metal alloys, carbon fibre composites and engineered polymers have improved athlete performances in all sporting applications. Advances in manufacturing has enabled increases in design complexity and the ability to rapidly prototype bespoke products using additive manufacturing also known as 3D printing. Another recent fabrication method widely used by medical, electronics and armaments manufacturers is particulate injection moulding. This process uses exact quantities of the required material, in powder form, minimising resource and energy requirements in comparison to conventional manufacturing techniques. The process utilises injection moulding techniques and tooling methods developed and used in the plastics industry. It can produce highly complex component geometries with excellent repeatability and reduced cost where volume manufacturing is required. This is especially important when considering materials such as titanium that are not only expensive in comparison to other metals but are difficult to process by regular machining and fabrication methods. This work presents a review of titanium use in the sporting sector with a focus on sporting devices and equipment. It also proposes that the sports engineering sector could increase performance and enable improvements in safety by switching to design methods appropriate to processing via the particulate injection moulding route.

  18. Antimicrobial and thermal properties of metal complexes of grafted fabrics with acrylic acid by gamma irradiation

    International Nuclear Information System (INIS)

    Hassan, M.S.; Attia, R.M.; Zohdy, M.H.; Khalil, E.M.

    2009-01-01

    Cotton, cotton/ ET blend and PET fabrics were treated against microbial effect by radiation -induced grafting of acrylic acid followed by metal complexation with some divalent transition metal ions like Co (l l), Ni(l l) and Cu(l l).The microbial resistance was evaluated by testing the mechanical properties of the treated fabrics after burring for one and two weeks in a moist soil reach with microorganisms. Also, the structural damage of the fabrics caused by biodegradation was examined by scanning electron microscope (SEM). Moreover, the effect of this treatment on the thermal decomposition behaviour was investigated by thermogravimetric analysis (TGA). On the basis of microbial studies, it was found that the metal complexation of the grafted fabrics with acrylic acid enhanced the microbial resistance of the fabrics and the microbial resistance could be arranged according to the complexed metal ions as follows: copper> nickel> cobalt. Also, the thermal stability of different fabrics could be arranged as follow: grafted fabrics complexes with Cu (l l) grafted fabrics complexes with Co (l l)

  19. Antimicrobial and Thermal Properties of Metal Complexes of Grafted Fabrics with Acrylic Acid by Gamma Irradiation

    International Nuclear Information System (INIS)

    Hassan, M.S.; Attia, R.M.; Zohdy, M.H.

    2008-01-01

    Cotton, cotton/PET blend and PET fabrics were treated against microbial effect by radiation - induced grafting of acrylic acid followed by metal complexation with some divalent transition metal ions Co (II), Ni (II) and Cu (II). The microbial resistance was evaluated by testing the mechanical properties of the treated fabrics after burring for one and two weeks in a moist soil reach with microorganisms. Also, the growth of microorganisms was examined by scanning electron microscope (SEM). Moreover, the effect of this treatment on the thermal decomposition behavior was investigated by thermogravimetric analysis (TGA). On the basis of microbial studies, it was found that the metal complexation of the grafted fabrics with acrylic acid enhanced the antimicrobial resistance of the fabrics and the antimicrobial resistance could be arranged according to the metal ions as follows: copper> nickel> cobalt. Also, the thermal stability of different fabrics could be arranged as follow: grafted fabrics complexed with Cu (II) > grafted fabrics complexed with Ni (II) > grafted fabrics complexed with Co (II)

  20. Antifungal activity of fabrics knitted by metalized Silver/Polyester composite yarn

    Science.gov (United States)

    Özkan, İ.; Duru Baykal, P.

    2017-10-01

    In this study, antifungal properties of fabric knitted from metalized silver/polyester composite yarn were investigated. Intermingling is an alternative technique for yarn blending process. Yarns having different features can be combined by feeding the same intermingling jet. This process is defined as commingling. In the study, intermingling process was used to produce metalized silver/polyester composite yarn. Commingled yarns were knitted to single jersey fabrics by IPM brand sample type circular knitting machine. Antifungal activity test was applied to samples against Aspergillus Niger according to AATCC 30 test procedure. It has been identified that the application provides antifungal activity to fabric.

  1. Imprinting of metal receptors into multilayer polyelectrolyte films: fabrication and applications in marine antifouling

    NARCIS (Netherlands)

    Puniredd, S.R.; Janczewski, D.; Go, D.P.; Zhu, X.; Guo, S.; Teo, S.L-M.; Lee, S.S.C.; Vancso, Gyula J.

    2015-01-01

    Polymeric films constructed using the layer-by-layer (LbL) fabrication process were employed as a platform for metal ion immobilization and applied as a marine antifouling coating. The novel Cu2+ ion imprinting process described is based on the use of metal ion templates and LbL multilayer covalent

  2. Bacterial contamination of fabric and metal-bead identity card lanyards: A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Thomas Pepper

    2014-11-01

    Full Text Available Summary: In healthcare, fabric or metal-bead lanyards are universally used for carrying identity cards. However there is little information on microbial contamination with potential pathogens that may readily re-contaminate disinfected hands. We examined 108 lanyards from hospital staff. Most grew skin flora but 7/108 (6% had potentially pathogenic bacteria: four grew methicillin-susceptible Staphylococcus aureus, and four grew probable fecal flora: 3 Clostridium perfringens and 1 Clostridium bifermentans (one lanyard grew both S. aureus and C. bifermentans. Unused (control lanyards had little or no such contamination. The median duration of lanyard wear was 12 months (interquartile range 3–36 months. 17/108 (16% of the lanyards had reportedly undergone decontamination including wiping with alcohol, chlorhexidine or chlorine dioxide; and washing with soap and water or by washing machine. Metal-bead lanyards had significantly lower median bacterial counts than those from fabric lanyards (1 vs. 4 CFU/cm2; Mann–Whitney U = 300.5; P < 0.001. 12/32 (38% of the metal-bead lanyards grew no bacteria, compared with 2/76 (3% of fabric lanyards. We recommend that an effective decontamination regimen be instituted by those who use fabric lanyards, or that fabric lanyards be discarded altogether in preference for metal-bead lanyards or clip-on identity cards. Keywords: Lanyard, Contamination, Identity card, Metal, Fabric

  3. Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips.

    Science.gov (United States)

    Aeschimann, L; Akiyama, T; Staufer, U; De Rooij, N F; Thiery, L; Eckert, R; Heinzelmann, H

    2003-03-01

    The fabrication of silicon cantilever-based scanning near-field optical microscope probes with fully aluminium-coated quartz tips was optimized to increase production yield. Different cantilever designs for dynamic- and contact-mode force feedback were implemented. Light transmission through the tips was investigated experimentally in terms of the metal coating and the tip cone-angle. We found that transmittance varies with the skin depth of the metal coating and is inverse to the cone angle, meaning that slender tips showed higher transmission. Near-field optical images of individual fluorescing molecules showed a resolution thermocouple showed no evidence of mechanical defect or orifice formation by thermal effects.

  4. Systems and Methods for Fabricating Structures Including Metallic Glass-Based Materials Using Low Pressure Casting

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Kennett, Andrew (Inventor)

    2018-01-01

    Systems and methods to fabricate objects including metallic glass-based materials using low-pressure casting techniques are described. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: introducing molten alloy into a mold cavity defined by a mold using a low enough pressure such that the molten alloy does not conform to features of the mold cavity that are smaller than 100 microns; and cooling the molten alloy such that it solidifies, the solid including a metallic glass-based material.

  5. Fabrication of large area homogeneous metallic nanostructures for optical sensing using colloidal lithography

    DEFF Research Database (Denmark)

    Eriksen, René Lynge; Pors, Anders; Dreier, Jes

    2010-01-01

    We propose a simple and reproducible method for fabricating large area metal films with inter-connected nanostructures using a combination of colloidal lithography, metal deposition and a template stripping technique. The method is generic in the sense that it is possible to produce a variety...... to fabricate metal films with inter-connected nanostructures consisting of either partial spherical shells or the inverted structures: spherical cavities. The substrates are characterized by optical reflectance and transmittance spectroscopy. We demonstrate, in the case of partial spherical shells...

  6. Superconducting materials fabrication process and products obtained. Procede de fabrication de materiaux supraconducteurs et produits ainsi obtenus

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, B; Odier, P

    1989-09-15

    A fabrication process of a fine superconducting powder easy to sinter is claimed. It consists in thermal treatment of an aerosol containing an organic and/or inorganic salt and/or a hydroxide of a rare earth, an alkaline earth metal and a transition metal in a ratio corresponding to the stoichiometry of the superconducting materials.

  7. Imprinting of metal receptors into multilayer polyelectrolyte films: fabrication and applications in marine antifouling

    OpenAIRE

    Puniredd, S.R.; Janczewski, D.; Go, D.P.; Zhu, X.; Guo, S.; Teo, S.L-M.; Lee, S.S.C.; Vancso, Gyula J.

    2015-01-01

    Polymeric films constructed using the layer-by-layer (LbL) fabrication process were employed as a platform for metal ion immobilization and applied as a marine antifouling coating. The novel Cu2+ ion imprinting process described is based on the use of metal ion templates and LbL multilayer covalent cross-linking. Custom synthesized, peptide mimicking polycations composed of histidine grafted poly(allylamine) (PAH) to bind metal ions, and methyl ester containing polyanions for convenient cross...

  8. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    Science.gov (United States)

    Makowiecki, Daniel M.; Ramsey, Philip B.; Juntz, Robert S.

    1995-01-01

    An improved method for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite's high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding.

  9. Development of uranium metal targets for 99Mo production

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Hofman, G.L.

    1993-10-01

    A substantial amount of high enriched uranium (HEU) is used for the production of medical-grade 99 Mo. Promising methods of producing irradiation targets are being developed and may lead to the reduction or elimination of this HEU use. To substitute low enriched uranium (LEU) for HEU in the production of 99 Mo, the target material may be changed to uranium metal foil. Methods of fabrication are being developed to simplify assembly and disassembly of the targets. Removal of the uranium foil after irradiation without dissolution of the cladding is a primary goal in order to reduce the amount of liquid radioactive waste material produced in the process. Proof-of-concept targets have been fabricated. Destructive testing indicates that acceptable contact between the uranium foil and the cladding can be achieved. Thermal annealing tests, which simulate the cladding/uranium diffusion conditions during irradiation, are underway. Plans are being made to irradiate test targets

  10. Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments.

    Science.gov (United States)

    Pattanayak, Deepak K; Fukuda, A; Matsushita, T; Takemoto, M; Fujibayashi, S; Sasaki, K; Nishida, N; Nakamura, T; Kokubo, T

    2011-03-01

    Selective laser melting (SLM) is a useful technique for preparing three-dimensional porous bodies with complicated internal structures directly from titanium (Ti) powders without any intermediate processing steps, with the products being expected to be useful as a bone substitute. In this study the necessary SLM processing conditions to obtain a dense product, such as the laser power, scanning speed, and hatching pattern, were investigated using a Ti powder of less than 45 μm particle size. The results show that a fully dense plate thinner than 1.8 mm was obtained when the laser power to scanning speed ratio was greater than 0.5 and the hatch spacing was less than the laser diameter, with a 30 μm thick powder layer. Porous Ti metals with structures analogous to human cancellous bone were fabricated and the compressive strength measured. The compressive strength was in the range 35-120 MPa when the porosity was in the range 75-55%. Porous Ti metals fabricated by SLM were heat-treated at 1300 °C for 1h in an argon gas atmosphere to smooth the surface. Such prepared specimens were subjected to NaOH, HCl, and heat treatment to provide bioactivity. Field emission scanning electron micrographs showed that fine networks of titanium oxide were formed over the whole surface of the porous body. These treated porous bodies formed bone-like apatite on their surfaces in a simulated body fluid within 3 days. In vivo studies showed that new bone penetrated into the pores and directly bonded to the walls within 12 weeks after implantation into the femur of Japanese white rabbits. The percentage bone affinity indices of the chemical- and heat-treated porous bodies were significantly higher than that of untreated implants. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Accuracy evaluation of metal copings fabricated by computer-aided milling and direct metal laser sintering systems.

    Science.gov (United States)

    Park, Jong-Kyoung; Lee, Wan-Sun; Kim, Hae-Young; Kim, Woong-Chul; Kim, Ji-Hwan

    2015-04-01

    To assess the marginal and internal gaps of the copings fabricated by computer-aided milling and direct metal laser sintering (DMLS) systems in comparison to casting method. Ten metal copings were fabricated by casting, computer-aided milling, and DMLS. Seven mesiodistal and labiolingual positions were then measured, and each of these were divided into the categories; marginal gap (MG), cervical gap (CG), axial wall at internal gap (AG), and incisal edge at internal gap (IG). Evaluation was performed by a silicone replica technique. A digital microscope was used for measurement of silicone layer. Statistical analyses included one-way and repeated measure ANOVA to test the difference between the fabrication methods and categories of measured points (α=.05), respectively. The mean gap differed significantly with fabrication methods (P<.001). Casting produced the narrowest gap in each of the four measured positions, whereas CG, AG, and IG proved narrower in computer-aided milling than in DMLS. Thus, with the exception of MG, all positions exhibited a significant difference between computer-aided milling and DMLS (P<.05). Although the gap was found to vary with fabrication methods, the marginal and internal gaps of the copings fabricated by computer-aided milling and DMLS fell within the range of clinical acceptance (<120 µm). However, the statistically significant difference to conventional casting indicates that the gaps in computer-aided milling and DMLS fabricated restorations still need to be further reduced.

  12. Production of Plutonium Metal from Aqueous Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Orth, D.A.

    2003-01-16

    The primary separation of plutonium from irradiated uranium by the Purex solvent extraction process at the Savannah River Plant produces a dilute plutonium solution containing residual fission products and uranium. A cation exchange process is used for concentration and further decontamination of the plutonium, as the first step in the final preparation of metal. This paper discusses the production of plutonium metal from the aqueous solutions.

  13. Recovery of noble metals from fission products

    International Nuclear Information System (INIS)

    Jenson, G.A.; Platt, A.M.; Mellinger, G.B.; Bjorklund, W.J.

    1982-11-01

    Scoping studies were started in 1979 to develop a cost-effective, waste-management-compatible process to extract noble metals from fission products. The process, involving the reaction with glassmelting chemicals, a metal oxide (PbO), and a reducing agent (charcoal), was demonstrated for recovering noble metals from simulated high-level waste oxides. The process has now been demonstrated on a laboratory scale (100 g) using irradiated fuels. Recoveries in the recovered lead averaged 80% for Pd, 60% for Rh, and 14% Ru. The resulting glass product was homogeneous in appearance, and the chemical durability was comparable to other waste oxides

  14. Product Conversion: The Link between Separations and Fuel Fabrication

    International Nuclear Information System (INIS)

    Felker, L.K.; Vedder, R.J.; Walker, E.A.; Collins, E.D.

    2008-01-01

    Several chemical processing flowsheets are under development for the separation and isolation of the actinide, lanthanide, and fission product streams in spent nuclear fuel. The conversion of these product streams to solid forms, typically oxides, is desired for waste disposition and recycle of product fractions back into transmutation fuels or targets. The modified direct denitration (MDD) process developed at Oak Ridge National Laboratory (ORNL) in the 1980's offers significant advantages for the conversion of the spent fuel products to powder form suitable for direct fabrication into recycle fuels. A glove-box-contained MDD system and a fume-hood-contained system have been assembled at ORNL for the purposes of testing the co-conversion of uranium and mixed-actinide products. The current activities are focused on the conversion of the first products from the processing of spent nuclear fuel in the Coupled End-to-End Demonstration currently being conducted at ORNL. (authors)

  15. Fabrication of a Ti porous microneedle array by metal injection molding for transdermal drug delivery.

    Science.gov (United States)

    Li, Jiyu; Liu, Bin; Zhou, Yingying; Chen, Zhipeng; Jiang, Lelun; Yuan, Wei; Liang, Liang

    2017-01-01

    Microneedle arrays (MA) have been extensively investigated in recent decades for transdermal drug delivery due to their pain-free delivery, minimal skin trauma, and reduced risk of infection. However, porous MA received relatively less attention due to their complex fabrication process and ease of fracturing. Here, we present a titanium porous microneedle array (TPMA) fabricated by modified metal injection molding (MIM) technology. The sintering process is simple and suitable for mass production. TPMA was sintered at a sintering temperature of 1250°C for 2 h. The porosity of TPMA was approximately 30.1% and its average pore diameter was about 1.3 μm. The elements distributed on the surface of TPMA were only Ti and O, which may guarantee the biocompatibility of TPMA. TPMA could easily penetrate the skin of a human forearm without fracture. TPMA could diffuse dry Rhodamine B stored in micropores into rabbit skin. The cumulative permeated flux of calcein across TPMA with punctured skin was 27 times greater than that across intact skin. Thus, TPMA can continually and efficiently deliver a liquid drug through open micropores in skin.

  16. Fabrication of a Ti porous microneedle array by metal injection molding for transdermal drug delivery.

    Directory of Open Access Journals (Sweden)

    Jiyu Li

    Full Text Available Microneedle arrays (MA have been extensively investigated in recent decades for transdermal drug delivery due to their pain-free delivery, minimal skin trauma, and reduced risk of infection. However, porous MA received relatively less attention due to their complex fabrication process and ease of fracturing. Here, we present a titanium porous microneedle array (TPMA fabricated by modified metal injection molding (MIM technology. The sintering process is simple and suitable for mass production. TPMA was sintered at a sintering temperature of 1250°C for 2 h. The porosity of TPMA was approximately 30.1% and its average pore diameter was about 1.3 μm. The elements distributed on the surface of TPMA were only Ti and O, which may guarantee the biocompatibility of TPMA. TPMA could easily penetrate the skin of a human forearm without fracture. TPMA could diffuse dry Rhodamine B stored in micropores into rabbit skin. The cumulative permeated flux of calcein across TPMA with punctured skin was 27 times greater than that across intact skin. Thus, TPMA can continually and efficiently deliver a liquid drug through open micropores in skin.

  17. Fabrication and testing history prototypes and production units

    Energy Technology Data Exchange (ETDEWEB)

    1954-09-01

    From April, 1951 to Aug, 1954, New York Shipbuilding Corp. carried out a subcontract with E.I. du Pont de Nemours & Company that was without parallel in the shipyard`s history. The work, designated the NYX Project for reasons of security, was vital to the operations of the Savannah River Plant, Aiken, S.C., which was then being designed and constructed by du Pont for the Atomic Energy Commission. It consisted of three broad parts: developmental and experimental work; fabrication and testing of a prototype unit; fabrication of production units. Five production units were ultimately built, one of them converted from the prototype. All were fabricated from stainless steel, and involved welding techniques, control of thermal distortion and tolerances never previously attempted on assemblies of comparable size. Du Pont`s technical experience and the background of New York Ship in heavy construction, particularly in the fabrication of naval gun turrets, were combined from the outset to resolve the difficult fabrication problems that occurred almost daily. Representatives of both companies worked together as a team in the shops and at supervisory levels to an unprecedented extent. The report is intended primarily to summarize New York Ship`s part in the project, but also includes some of du Pont`s activities since the work of the two organizations was so interrelated. Because of the scope of the program, it will not always be possible to provide detailed information, but rather to record what happened in general terms. Where the reader desires more specific data, he should refer to original plans and records, including various reports compiled during the course of the project.

  18. Mass production compatible fabrication techniques of single-crystalline silver metamaterials and plasmonics devices

    Science.gov (United States)

    Rodionov, Ilya A.; Baburin, Alexander S.; Zverev, Alexander V.; Philippov, Ivan A.; Gabidulin, Aidar R.; Dobronosova, Alina A.; Ryzhova, Elena V.; Vinogradov, Alexey P.; Ivanov, Anton I.; Maklakov, Sergey S.; Baryshev, Alexander V.; Trofimov, Igor V.; Merzlikin, Alexander M.; Orlikovsky, Nikolay A.; Rizhikov, Ilya A.

    2017-08-01

    During last 20 years, great results in metamaterials and plasmonic nanostructures fabrication were obtained. However, large ohmic losses in metals and mass production compatibility still represent the most serious challenge that obstruct progress in the fields of metamaterials and plasmonics. Many recent research are primarily focused on developing low-loss alternative materials, such as nitrides, II-VI semiconductor oxides, high-doped semiconductors, or two-dimensional materials. In this work, we demonstrate that our perfectly fabricated silver films can be an effective low-loss material system, as theoretically well-known. We present a fabrication technology of plasmonic and metamaterial nanodevices on transparent (quartz, mica) and non-transparent (silicon) substrates by means of e-beam lithography and ICP dry etch instead of a commonly-used focused ion beam (FIB) technology. We eliminate negative influence of litho-etch steps on silver films quality and fabricate square millimeter area devices with different topologies and perfect sub-100 nm dimensions reproducibility. Our silver non-damage fabrication scheme is tested on trial manufacture of spasers, plasmonic sensors and waveguides, metasurfaces, etc. These results can be used as a flexible device manufacture platform for a broad range of practical applications in optoelectronics, communications, photovoltaics and biotechnology.

  19. 16 CFR 303.24 - Pile fabrics and products composed thereof.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Pile fabrics and products composed thereof... CONGRESS RULES AND REGULATIONS UNDER THE TEXTILE FIBER PRODUCTS IDENTIFICATION ACT § 303.24 Pile fabrics and products composed thereof. The fiber content of pile fabrics or products composed thereof may be...

  20. 16 CFR 300.26 - Pile fabrics and products composed thereof.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Pile fabrics and products composed thereof... CONGRESS RULES AND REGULATIONS UNDER THE WOOL PRODUCTS LABELING ACT OF 1939 Labeling § 300.26 Pile fabrics and products composed thereof. The fiber content of pile fabrics or products made thereof may be...

  1. Thermal and mechanical properties of aluminized fabrics for use in ferrous metal handling operations.

    Science.gov (United States)

    Wren, J E; Scott, W D; Bates, C E

    1977-11-01

    Protective garments are normally worn in molten handling operations to provide some protection against molten metal splashes. These garments are also intended to provide protection against radiant heat, and they should be as heat resistant and comfortable as possible. Asbestos-based fabrics have been employed for many years, but recently some concern has been expressed over possible asbestos exposure. This program was undertaken to explore the ability of several types of fabrics to resist heat transfer during molten metal impact. A molten metal splash test, along with standard methods for determining tensile strength, flame resistance, and abrasion-flexing resistance were used to evaluate several classes of protective fabrics. The results indicate that there are materials available that offer equal or better mechanical properties and thermal protection compared to aluminized asbestos.

  2. Best practices in energy management: Experience with IAC assessments in the metals fabrication industry

    International Nuclear Information System (INIS)

    Clark, W.J.; Birkmire, L.K.

    1999-01-01

    The Industrial Technology and Energy Management (ITEM) division of the University City Science Center played a managerial role in founding and establishing the Energy Analysis and Diagnostic Center (EADC) program, now known as the Industrial Assessment Center (IAC) program. ITEM is responsible for the field management of 15 IACs in the western US. This DOE funded program utilizes teams of engineering faculty and students to conduct assessments of small to medium-size plants to identify cost savings by conserving energy, minimizing waste, and improving productivity. These assessments are provided at no direct cost to participating manufacturers, who are under no obligation to act on any recommendations. Centers managed by ITEM have conducted assessments in more than 700 plants in the metals fabrication industry (SIC 34). Recommendations made have the potential to reduce energy costs by about 10% on average. The average metals fabrication plant served achieved a 5.7% reduction in annual energy costs. These cost savings are accompanied by a reduction in energy usage of about 1.2 x 10 12 Btu/yr. Another benefit of the program is that it provides hands-on industrial experience and energy efficiency training for engineering students who will take these skills into industry. Since the program began more than 20 years ago, IACs have served less than 2% of the plants in this industry. To provide an effective means for plant managers to access and utilize the knowledge gained over the years ITEM has summarized recommendations that identify specific actions that plant management can take to save money

  3. Rapid selective metal patterning on polydimethylsiloxane (PDMS) fabricated by capillarity-assisted laser direct write

    KAUST Repository

    Lee, Ming-Tsang

    2011-08-12

    In this study we demonstrate a novel approach for the rapid fabricating micro scale metal (silver) patterning directly on a polydimethylsiloxane (PDMS) substrate. Silver nanoparticles were sintered on PDMS to form conductive metal films using laser direct write (LDW) technology. To achieve good metal film quality, a capillarity-assisted laser direct writing (CALDW) of nanoparticle suspensions on a low surface energy material (PDMS) was utilized. Experimental results showed controllable electrical conductivities and good film properties of the sintered silver patterns. This study reveals an advanced method of metal patterning on PDMS, and proposes a new research application of LDW in a nanoparticle colloidal environment. © 2011 IOP Publishing Ltd.

  4. Aromatic plant production on metal contaminated soils

    International Nuclear Information System (INIS)

    Zheljazkov, Valtcho D.; Craker, Lyle E.; Xing Baoshan; Nielsen, Niels E.; Wilcox, Andrew

    2008-01-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha -1 for Cd, 660 g ha -1 for Pb, 180 g ha -1 for Cu, 350 g ha -1 for Mn, and 205 g ha -1 for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 μm) particles, although there were larger particles (1-5 μm) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil

  5. Aromatic plant production on metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zheljazkov, Valtcho D. [Mississippi State, Department of Plant and Soil Sciences and North Mississippi Research and Extension Center, 5421 Highway 145 South, Verona, MS 38879 (United States)], E-mail: vj40@pss.msstate.edu; Craker, Lyle E.; Xing Baoshan [Department of Plant and Soil Sciences, 12 Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States); Nielsen, Niels E. [Plant Nutrition and Soil Fertility Lab, Department of Agricultural Sciences, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK1871, Copenhagen (Denmark); Wilcox, Andrew [Harper Adams University College, Newport, Shropshire, TF10 8NB (United Kingdom)

    2008-06-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha{sup -1} for Cd, 660 g ha{sup -1} for Pb, 180 g ha{sup -1} for Cu, 350 g ha{sup -1} for Mn, and 205 g ha{sup -1} for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 {mu}m) particles, although there were larger particles (1-5 {mu}m) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil.

  6. Fabrication of Metallic Microneedle by Electroplating and Sharpening of it by Electrochemical Etching

    Science.gov (United States)

    Huang, Chih-Hao; Tanaka, Takahiro; Takaoki, Yutaka; Izumi, Hayato; Takahashi, Tomokazu; Suzuki, Masato; Aoyagi, Seiji

    Aiming at the use in low-invasive medical treatments, this paper reports a fabrication of metallic microneedle, which has a three-dimensionally sharp tip. Compared to a silicon or polymer needle which we previously proposed, a metallic needle has toughness to evade breakage. Even if it is broken, it does not become small pieces thanks to its ductility, which increases the safety for a human body. A nickel needle was fabricated using electroplating, followed by sharpening it by electrochemical etching. A smooth tip surface is obtained due to electrochemical etching reactions. Sharpness and smoothness of the tip are effective for easy insertion in the viewpoint of large stress concentration and small friction, respectively. An experiment of inserting the fabricated needle into an artificial skin of silicone rubber was carried out. The resistance force during insertion was much reduced compared to that of commercial stainless needle (23 G: shank diameter 650 µm). Although a fabricated metallic needle was inserted and pulled-out for several times, it was not broken in any trial. By changing the angle between object surface and needle axis, the insertion experiments were carried out. Fabricated nickel needle was not broken for any angle, while silicon needle was broken in case the angle is small, i.e., the needle is much inclined from normal direction of the surface, which ensures the safety of metallic microneedle to human body in the viewpoint of breakage.

  7. Metal-bending brake facilitates lightweight, close-tolerance fabrication

    Science.gov (United States)

    Ercoline, A. L.; Wilton, K. B.

    1964-01-01

    A lightweight, metal bending brake ensures very accurate bends. Features of the brake that adapt it for making complex reverse bends to close tolerances are a pronounced relief or cutaway of the underside of the bodyplate combined with modification in the leaf design and its suspension.

  8. Fabrication of metallic nanowires with a scanning tunnelling microscope

    NARCIS (Netherlands)

    Kramer, N.; Kramer, N.; Birk, H.; Jorritsma, J.; Schönenberger, C.

    1995-01-01

    A procedure to pattern thin metal films on a nanometer scale with a scanning tunneling microscope (STM) operating in air is reported. A 30 nm film of hydrogenated amorphous silicon (a‐Si:H) is deposited on a 10 nm film of TaIr. Applying a negative voltage between the STM tip and the a‐Si:H film

  9. APPARATUS FOR THE PRODUCTION OF LITHIUM METAL

    Science.gov (United States)

    Baker, P.S.; Duncan, F.R.; Greene, H.B.

    1961-08-22

    Methods and apparatus for the production of high-purity lithium from lithium halides are described. The apparatus is provided for continuously contacting a molten lithium halide with molten barium, thereby forming lithium metal and a barium halide, establishing separate layers of these reaction products and unreacted barium and lithium halide, and continuously withdrawing lithium and barium halide from the reaction zone. (AEC)

  10. Potential assisted fabrication of metal-ceramic composite coatings

    International Nuclear Information System (INIS)

    Knote, A.; Schindler, U.; Krueger, H.G.; Kern, H.

    2003-01-01

    A possibility to produce uniform metal-ceramic composite coatings with a high content of ceramic particles up to 60 vol.% will be presented in this study. This method includes a combination of electrophoretic deposition and electrolytic deposition by several steps. A yttria-stabilized zirconia coating (Tosoh TZ-8Y) was first electrophoretically deposited on a ferritic steel plate and then sintered by 1100 C to an open porous layer. In the next step nickel was electrodeposited into the pores of the layer. By a final annealing step it was possible to improve the bonding of the composit coating on the substrate by diffusion of the metal components. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [de

  11. Fabrication and metallization of 3D electrospun nanofiberous architecture with gold and silver coating for applications related to electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keon Young [University of Pennsylvania, 3451 Walnut Street, Philadelphia, PA 19104 (United States); Ramaraj, B. [Research and Development Department, Central Institute of Plastics Engineering and Technology (CIPET), 630, Phase IV, GIDC, Vatva, Ahmedabad 382445 (India); Choi, Won Suk [Department of Chemistry, Hannam University, 461-6 Jeon min-dong, Yuseoung-gu, Daejeon 305-811 (Korea, Republic of); Yoon, Kuk Ro, E-mail: kryoon@hannam.ac.kr [Department of Chemistry, Hannam University, 461-6 Jeon min-dong, Yuseoung-gu, Daejeon 305-811 (Korea, Republic of)

    2013-11-01

    We have engineered a metallic architecture with high surface area and ultralow density for applications related to electrochemical supercapacitors. This is achieved first by design and fabrication of new annular collector template for electrospinning process, then the extrusion of polystyrene (PS) nanofiber through the fabricated annulus collector template followed by electroless plating of nanofiber assembly with gold and silver. The resultant three dimensional structures were characterized by optical microscopy (OM), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). The OM images suggest that the fabrication process causes the electrospun fibers to be hinged to one another, maximizing contact junctions enhancing mechanical stability. The coated structure has a superior surface area, is robust, and is freestanding – making it an attractive architectural design for an electrode. The SEM images show interlocking of nanofibers to one another, further indicating the potential application for this system as a high surface area, low density charge collector ideal for nanostructured growths. - Graphical abstract: A new annular collector template was designed and fabricated to create a 3D electrospun nanofiber assembly. This ultralight 3D architecture with high surface was electroless plated with silver and gold to assess its suitability for applications related to electrochemical supercapacitors. This structure is highly conductive leading us to believe that this product can be utilized as an alternate electrode charge collector. - Highlights: • A metallic architecture with high surface area and ultralow density was fabricated. • A new annular collector template for electrospinning was designed and fabricated. • Electrospun PS nanofibers with 3D structure were coated with silver and gold. • The coated structure is

  12. Fabrication and metallization of 3D electrospun nanofiberous architecture with gold and silver coating for applications related to electrochemical supercapacitors

    International Nuclear Information System (INIS)

    Park, Keon Young; Ramaraj, B.; Choi, Won Suk; Yoon, Kuk Ro

    2013-01-01

    We have engineered a metallic architecture with high surface area and ultralow density for applications related to electrochemical supercapacitors. This is achieved first by design and fabrication of new annular collector template for electrospinning process, then the extrusion of polystyrene (PS) nanofiber through the fabricated annulus collector template followed by electroless plating of nanofiber assembly with gold and silver. The resultant three dimensional structures were characterized by optical microscopy (OM), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). The OM images suggest that the fabrication process causes the electrospun fibers to be hinged to one another, maximizing contact junctions enhancing mechanical stability. The coated structure has a superior surface area, is robust, and is freestanding – making it an attractive architectural design for an electrode. The SEM images show interlocking of nanofibers to one another, further indicating the potential application for this system as a high surface area, low density charge collector ideal for nanostructured growths. - Graphical abstract: A new annular collector template was designed and fabricated to create a 3D electrospun nanofiber assembly. This ultralight 3D architecture with high surface was electroless plated with silver and gold to assess its suitability for applications related to electrochemical supercapacitors. This structure is highly conductive leading us to believe that this product can be utilized as an alternate electrode charge collector. - Highlights: • A metallic architecture with high surface area and ultralow density was fabricated. • A new annular collector template for electrospinning was designed and fabricated. • Electrospun PS nanofibers with 3D structure were coated with silver and gold. • The coated structure is

  13. Fabrication of metallic honeycomb panels for reusable TPS - structures

    International Nuclear Information System (INIS)

    Tabernig, B.; Thierfelder, W.; Alber, H.; Sudmeijer, K.

    2001-01-01

    The manufacturing technology with specific regard to high temperature brazing was developed to fabricate a honeycomb panel consisting of a thin-sectioned PM 2000 core material sandwiched on both sides with PM 1000 face sheets. For brazing the PM 1000 / PM 2000 panel the braze alloy PdNi was selected due to the best oxidation behavior while good mechanical properties and wetting behavior compared with other tested filler alloys. To examine the concept of a hybrid PM 1000/2000 panel as a stiffened skin panel a number of engineering test samples of sub-scale and two full-size panels were fabricated at Plansee AG and supplied to Fokker Space for testing under representative in-service conditions. Engineering tests showed that the test samples were rather insensitive to temperature gradients even at temperature differences between the face sheets of 550 o C. The engineering test samples exhibited no plastic deformation after testing at different heating rates ranging from 5 to 40 o C/s and at temperature profiles representative for two flights. The requirement for the designed application regarding impact properties at low as well as high speed were met. Impact at low speed with an energy of 8 J did not cause any cracks. Hail tests where ice bullets were fired with speeds to 208 m/s at different angles from 25 o to 90 o C against the test piece showed no damage at 25 o and caused slight indentation at 45 o and cracks at 90 o , which demonstrated a good performance for the fly through a hail cloud without any problems. In tests to determine the response of a full-size panel to a number of simulated thermo-mechanical flight load cycles the panel passed 50 cycles successfully without damage. (author)

  14. Recovery and use of fission product noble metals

    International Nuclear Information System (INIS)

    Jensen, G.A.; Rohmann, C.A.; Perrigo, L.D.

    1980-06-01

    Noble metals in fission products are of strategic value. Market prices for noble metals are rising more rapidly than recovery costs. A promising concept has been developed for recovery of noble metals from fission product waste. Although the assessment was made only for the three noble metal fission products (Rh, Pd, Ru), there are other fission products and actinides which have potential value

  15. Direct metal transfer printing on flexible substrate for fabricating optics functional devices

    Science.gov (United States)

    Jiang, Yingjie; Zhou, Xiaohong; Zhang, Feng; Shi, Zhenwu; Chen, Linsen; Peng, Changsi

    2015-11-01

    New functional materials and devices based on metal patterns can be widely used in many new and expanding industries,such as flat panel displays, alternative energy,sensors and so on. In this paper, we introduce a new transfer printing method for fabricating metal optics functional devices. This method can directly transfer a metal pattern from a polyethylene terephthalate (PET)supported UV or polydimethylsiloxane (PDMS) pattern to another PET substrate. Purely taking advantage of the anaerobic UV curing adhesive (a-UV) on PET substrate, metal film can be easily peeled off from micro/nano-structured surface. As a result, metal film on the protrusion can be selectively transferred onto the target substrate, to make it the metal functional surface. But which on the bottom can not be transferred. This method provides low cost fabrication of metal thin film devices by avoiding high cost lithography process. Compared with conventional approach, this method can get more smooth rough edges and has wider tolerance range for the original master mold. Future developments and potential applications of this metal transfer method will be addressed.

  16. Globally sustainable manganese metal production and use.

    Science.gov (United States)

    Hagelstein, Karen

    2009-09-01

    The "cradle to grave" concept of managing chemicals and wastes has been a descriptive analogy of proper environmental stewardship since the 1970s. The concept incorporates environmentally sustainable product choices-such as metal alloys utilized steel products which civilization is dependent upon. Manganese consumption is related to the increasing production of raw steel and upgrading ferroalloys. Nonferrous applications of manganese include production of dry-cell batteries, plant fertilizer components, animal feed and colorant for bricks. The manganese ore (high grade 35% manganese) production world wide is about 6 million ton/year and electrolytic manganese metal demand is about 0.7 million ton/year. The total manganese demand is consumed globally by industries including construction (23%), machinery (14%), and transportation (11%). Manganese is recycled within scrap of iron and steel, a small amount is recycled within aluminum used beverage cans. Recycling rate is 37% and efficiency is estimated as 53% [Roskill Metals and Minerals Reports, January 13, 2005. Manganese Report: rapid rise in output caused by Chinese crude steel production. Available from: http://www.roskill.com/reports/manganese.]. Environmentally sustainable management choices include identifying raw material chemistry, utilizing clean production processes, minimizing waste generation, recycling materials, controlling occupational exposures, and collecting representative environmental data. This paper will discuss two electrolytically produced manganese metals, the metal production differences, and environmental impacts cited to date. The two electrolytic manganese processes differ due to the addition of sulfur dioxide or selenium dioxide. Adverse environmental impacts due to use of selenium dioxide methodology include increased water consumption and order of magnitude greater solid waste generation per ton of metal processed. The use of high grade manganese ores in the electrolytic process also

  17. Surface Modification and Nanojunction Fabrication with Molecular Metal Wires

    Science.gov (United States)

    2012-12-21

    single - crystal X-ray diffraction studies of 2 and 3. Both the single - crystal structural data of 2 and 3 and the spectroscopic/voltammetric data...structure, magnetic properties, and single -molecule conductance of two new trinuclear metal string complexes, [Ni3(dzp)4(NCS)2] (2) and [ Co3 (dzp)4(NCS...modifying the crystallization conditions. The [s- Co3 (dpa)4(Cl)2] contains a symmetrical tricobalt framework with identical Co–Co bond lengths (2.34 Å

  18. Fabrication of a multi-walled metal pipe

    International Nuclear Information System (INIS)

    Shimamune, Koji; Toda, Saburo; Ishida, Ryuichi; Hatanaka, Tatsuo.

    1969-01-01

    In concentrically arranged metal pipes for simulated fuel elements in the form of a multi-walled pipe, their one end lengthens gradually in the axial direction from inner and outer pipes toward a central pipe for easy adjustment of deformation which occurs when the pipes are drawn. A plastic electrical insulator is disposed between adjacent pipes. Each end of the pipes is equipped with an annular flexible stopper which is allowed to travel in the axial direction so as to prevent the insulator from falling during drawing work. At the other end, all pipes are constricted and joined to each other to thereby form the desired multi-walled pipe. (Mikami, T.)

  19. Fabrication of ultrahigh density metal-cell-metal crossbar memory devices with only two cycles of lithography and dry-etch procedures

    KAUST Repository

    Zong, Baoyu; Goh, J. Y.; Guo, Zaibing; Luo, Ping; Wang, Chenchen; Qiu, Jinjun; Ho, Pin; Chen, Yunjie; Zhang, Mingsheng; Han, Guchang

    2013-01-01

    A novel approach to the fabrication of metal-cell-metal trilayer memory devices was demonstrated by using only two cycles of lithography and dry-etch procedures. The fabricated ultrahigh density crossbar devices can be scaled down to ≤70 nm in half

  20. Fabrication of metal matrix composites by powder metallurgy: A review

    Science.gov (United States)

    Manohar, Guttikonda; Dey, Abhijit; Pandey, K. M.; Maity, S. R.

    2018-04-01

    Now a day's metal matrix components are used in may industries and it finds the applications in many fields so, to make it as better performable materials. So, the need to increase the mechanical properties of the composites is there. As seen from previous studies major problem faced by the MMC's are wetting, interface bonding between reinforcement and matrix material while they are prepared by conventional methods like stir casting, squeeze casting and other techniques which uses liquid molten metals. So many researchers adopt PM to eliminate these defects and to increase the mechanical properties of the composites. Powder metallurgy is one of the better ways to prepare composites and Nano composites. And the major problem faced by the conventional methods are uniform distribution of the reinforcement particles in the matrix alloy, many researchers tried to homogeneously dispersion of reinforcements in matrix but they find it difficult through conventional methods, among all they find ultrasonic dispersion is efficient. This review article is mainly concentrated on importance of powder metallurgy in homogeneous distribution of reinforcement in matrix by ball milling or mechanical milling and how powder metallurgy improves the mechanical properties of the composites.

  1. Fabrication of a 40-inch diameter ceramic to metal seal for PLT

    International Nuclear Information System (INIS)

    Lewin, G.; Mullaney, D.

    1976-01-01

    The design and fabrication details for the ceramic to metal seal for PLT are presented. The method used for the successful casting and firing of the 90% Al 2 O 3 ceramic body and the subsequent grinding and brazing of the ceramic to 430 S.S. are discussed

  2. Large scale metal-free synthesis of graphene on sapphire and transfer-free device fabrication.

    Science.gov (United States)

    Song, Hyun Jae; Son, Minhyeok; Park, Chibeom; Lim, Hyunseob; Levendorf, Mark P; Tsen, Adam W; Park, Jiwoong; Choi, Hee Cheul

    2012-05-21

    Metal catalyst-free growth of large scale single layer graphene film on a sapphire substrate by a chemical vapor deposition (CVD) process at 950 °C is demonstrated. A top-gated graphene field effect transistor (FET) device is successfully fabricated without any transfer process. The detailed growth process is investigated by the atomic force microscopy (AFM) studies.

  3. Design and Characterization of a Fully Differential MEMS Accelerometer Fabricated Using MetalMUMPs Technology

    Directory of Open Access Journals (Sweden)

    Hongwei Qu

    2013-05-01

    Full Text Available This paper presents a fully differential single-axis accelerometer fabricated using the MetalMUMPs process. The unique structural configuration and common-centriod wiring of the metal electrodes enables a fully differential sensing scheme with robust metal sensing structures. CoventorWare is used in structural and electrical design and simulation of the fully differential accelerometer. The MUMPs foundry fabrication process of the sensor allows for high yield, good process consistency and provides 20 μm structural thickness of the sensing element, which makes the capacitive sensing eligible. In device characterization, surface profile of the fabricated device is measured using a Veeco surface profilometer; and mean and gradient residual stress in the nickel structure are calculated as approximately 94.7 MPa and −5.27 MPa/μm, respectively. Dynamic characterization of the sensor is performed using a vibration shaker with a high-end commercial calibrating accelerometer as reference. The sensitivity of the sensor is measured as 0.52 mV/g prior to off-chip amplification. Temperature dependence of the sensing capacitance is also characterized. A −0.021fF/°C is observed. The findings in the presented work will provide useful information for design of sensors and actuators such as accelerometers, gyroscopes and electrothermal actuators that are to be fabricated using MetalMUMPs technology.

  4. Design and characterization of a fully differential MEMS accelerometer fabricated using MetalMUMPs technology.

    Science.gov (United States)

    Qu, Peng; Qu, Hongwei

    2013-05-02

    This paper presents a fully differential single-axis accelerometer fabricated using the MetalMUMPs process. The unique structural configuration and common-centriod wiring of the metal electrodes enables a fully differential sensing scheme with robust metal sensing structures. CoventorWare is used in structural and electrical design and simulation of the fully differential accelerometer. The MUMPs foundry fabrication process of the sensor allows for high yield, good process consistency and provides 20 μm structural thickness of the sensing element, which makes the capacitive sensing eligible. In device characterization, surface profile of the fabricated device is measured using a Veeco surface profilometer; and mean and gradient residual stress in the nickel structure are calculated as approximately 94.7 MPa and -5.27 MPa/μm, respectively. Dynamic characterization of the sensor is performed using a vibration shaker with a high-end commercial calibrating accelerometer as reference. The sensitivity of the sensor is measured as 0.52 mV/g prior to off-chip amplification. Temperature dependence of the sensing capacitance is also characterized. A -0.021fF/°C is observed. The findings in the presented work will provide useful information for design of sensors and actuators such as accelerometers, gyroscopes and electrothermal actuators that are to be fabricated using MetalMUMPs technology.

  5. Fabrication of WCp/NiBSi metal matrix composite by electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hui, E-mail: penghui@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Liu, Chang [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Guo, Hongbo, E-mail: guo.hongbo@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Yuan, Yuan [Zhuzhou Seed Cemented Carbide Technology Co. Ltd, No. 1099 Xiangda Road, Zhuzhou, Hunan 412000 (China); Gong, Shengkai; Xu, Huibin [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China)

    2016-06-01

    A blend of NiBSi and WC powders was used as raw material for fabricating a metal matrix composite (MMC) by electron beam melting (EBM). Dense and crack-free microstructure was produced with evenly distributed WC reinforcements. Mechanical properties, including macro- and micro-hardness, flexural strength, impact toughness and compressive strength, were investigated.

  6. Fabrication of metal-matrix composites and adaptive composites using ultrasonic consolidation process

    International Nuclear Information System (INIS)

    Kong, C.Y.; Soar, R.C.

    2005-01-01

    Ultrasonic consolidation (UC) has been used to embed thermally sensitive and damage intolerant fibres within aluminium matrix structures using high frequency, low amplitude, mechanical vibrations. The UC process can induce plastic flow in the metal foils being bonded, to allow the embedding of fibres at typically 25% of the melting temperature of the base metal and at a fraction of the clamping force when compared to fusion processes. To date, the UC process has successfully embedded Sigma silicon carbide (SiC) fibres, shape memory alloy wires and optical fibres, which are presented in this paper. The eventual aim of this research is targeted at the fabrication of adaptive composite structures having the ability to measure external stimuli and respond by adapting their structure accordingly, through the action of embedded active and passive functional fibres within a freeform fabricated metal-matrix structure. This paper presents the fundamental studies of this research to identify embedding methods and working range for the fabrication of adaptive composite structures. The methods considered have produced embedded fibre specimens in which large amounts of plastic flow have been observed, within the matrix, as it is deformed around the fibres, resulting in fully consolidated specimens without damage to the fibres. The microscopic observation techniques and macroscopic functionality tests confirms that the UC process could be applied to the fabrication of metal-matrix composites and adaptive composites, where fusion techniques are not feasible and where a 'cold' process is necessary

  7. Mechanical anomaly impact on metal-oxide-semiconductor capacitors on flexible silicon fabric

    KAUST Repository

    Ghoneim, Mohamed T.; Kutbee, Arwa T.; Ghodsi Nasseri, Seyed Faizelldin; Bersuker, G.; Hussain, Muhammad Mustafa

    2014-01-01

    We report the impact of mechanical anomaly on high-κ/metal-oxide-semiconductor capacitors built on flexible silicon (100) fabric. The mechanical tests include studying the effect of bending radius up to 5 mm minimum bending radius with respect

  8. Fabrication of WCp/NiBSi metal matrix composite by electron beam melting

    International Nuclear Information System (INIS)

    Peng, Hui; Liu, Chang; Guo, Hongbo; Yuan, Yuan; Gong, Shengkai; Xu, Huibin

    2016-01-01

    A blend of NiBSi and WC powders was used as raw material for fabricating a metal matrix composite (MMC) by electron beam melting (EBM). Dense and crack-free microstructure was produced with evenly distributed WC reinforcements. Mechanical properties, including macro- and micro-hardness, flexural strength, impact toughness and compressive strength, were investigated.

  9. Criticality safety studies for plutonium–uranium metal fuel pin fabrication facility

    International Nuclear Information System (INIS)

    Stephen, Neethu Hanna; Reddy, C.P.

    2013-01-01

    Highlights: ► Criticality safety limits for PUMP-F facility is identified. ► The fissile mass which can be handled safely during alloy preparation is 10.5 kg. ► The number of fuel slugs which can be handled safely during injection casting is 53. ► The number of fuel slugs which can be handled safely after fuel fabrication is 71. - Abstract: This study focuses on the criticality safety during the fabrication of fast reactor metal fuel pins comprising of the fuel type U–15Pu, U–19Pu and U–19Pu–6Zr in the Plutonium–Uranium Metal fuel Pin fabrication Facility (PUMP-F). Maximum amount of fissile mass which can be handled safely during master alloy preparation, Injection casting and fuel slug preparation following fuel pin fabrication were identified and fixed based on this study. In the induction melting furnace, the fissile mass can be limited to 10.5 kg. During fuel slug preparation and fuel pin fabrication, fuel slugs and pins were arranged in hexagonal and square lattices to identify the most reactive configuration. The number of fuel slugs which can be handled safely after injection casting can be fixed to be 53, whereas after fuel fabrication it is 71

  10. Trial fabrication and preliminary characterization of electrical insulator for liquid metal system

    International Nuclear Information System (INIS)

    Nakamichi, Masaru; Kawamura, Hiroshi; Oyamada, Rokuro

    1995-03-01

    In the design of the liquid metal blanket, MHD pressure drop is one of critical issues. Ceramic coating on the surface of structural material is considered as an electrical insulator to reduce the MHD pressure drop. Ceramic coating such as Y 2 O 3 is a promising electrical insulator due to its high electrical resistivity and good compatibility with liquid lithium. This report describes the trial fabrication and preliminary characterization of electrical insulator for a design study of the liquid metal system. From the results of trial fabrication and preliminary characterization, it is concluded that densified atmospheric plasma spray Y 2 O 3 coating with 410SS undercoating between 316SS substrate and Y 2 O 3 coating is suitable for Y 2 O 3 coating fabrication. (author)

  11. Fabrication and modification of metal nanocluster composites using ion and laser beams

    International Nuclear Information System (INIS)

    Haglund, R.F. Jr.; Osborne, D.H. Jr.; Magruder, R.H. III; White, C.W.; Zuhr, R.A.; Townsend, P.D.; Hole, D.E.; Leuchtner, R.E.

    1994-12-01

    Metal nanocluster composites have attractive properties for applications in nonlinear optics. However, traditional fabrication techniques -- using melt-glass substrates -- are severely constrained by equilibrium thermodynamics and kinetics. This paper describes the fabrication of metal nanoclusters in both crystalline and glassy hosts by ion implantation and pulsed laser deposition. The size and size distribution of the metal nanoclusters can be modified by controlling substrate temperature during implantation, by subsequent thermal annealing, or by laser irradiation. The authors have characterized the optical response of the composites by absorption and third-order nonlinear-optical spectroscopies; electron and scanning-probe microscopies have been used to benchmark the physical characteristics of the composites. The outlook for controlling the structure and nonlinear optical response properties of these nanophase materials appears increasingly promising

  12. Fabrication and characterization of nanostructured metallic arrays with multi-shapes in monolayer and bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Shaoli, E-mail: slzhu@ntu.edu.s [Nanyang Technological University, School of Electronic and Electrical Engineering (Singapore); Fu Yongqi [University of Electronic Science and Technology of China, School of Physical Electronics (China)

    2010-06-15

    Fabrication and characterization of nanostructured metallic arrays with different shapes in monolayer and bilayer were presented in this article. Nano-rhombic, nano-hexagon, and nano-column metallic arrays with the tunable shapes and in-plane dimensions were fabricated by means of vertical reactive ion etching and nanosphere lithography. The nanosize range of nanoparticles is from 50 to 300 nm. Optical characterization of these arrays was performed experimentally by spectroscopy. Specifically, we compared spectra width at site of full width at half maximum (FWHM) of the measured extinction spectra in the visible range to that of the traditional hexagonal-arranged triangular nanoparticles. The results show that the combination of vertical reactive ion etching and nanosphere lithography approach yields as tunable masks and provides an easy way for a flexible nanofabrication. These metallic arrays have narrower FWHM of the spectra which makes them potential applications in biosensors, data storage, and bioreactors.

  13. Math on the Job. Metal Product Assembler.

    Science.gov (United States)

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This booklet is intended to help mainstreamed mentally retarded, emotionally disturbed, or learning disabled high school students acquire a basic understanding of the responsibilities and working conditions of metal product assemblers and to practice basic math skills necessary in the occupation. The first section provides a brief introduction to…

  14. Research on plant of metal fuel fabrication using casting process (2)

    International Nuclear Information System (INIS)

    Senda, Yasuhide; Yamada, Seiya

    2005-02-01

    In this research work for the metal fuel fabrication system (38 tHM/y), the studies of the concept of the main process equipments were performed based on the previous studies on the process design and the quality control system design. In this study the handling equipment of the products were also designed, according to these designs the handling periods were evaluated. Consequently the numbers of the equipments were assessed taking into account for the method of the blending the fuel composition. (1) Structural concept design of the major equipments, the fuel handling machine and the gravimetries in the main fabrication process. The structural concept were designed for the fuel composition blending equipment, the fuel pin assembling equipment, the sodium bonding equipment, the handling equipment for fuel slug palettes, the handling equipment for fuel pins and the gravimetries. (2) Re-assessment of the numbers of the equipments taking account of the handling periods. Based on the results of item (1) the periods were evaluated for the fuel slug and pin handling. Processing time of demolder is short, then the number of it is increased to two. Three vehicles are also added to transfer the slugs and a heel smoothly. (3) Design of the buffer storages. The buffer storages among the equipments were designed through the comparison of the process speed between the equipments taking into account for the handling periods. The required amount of the structural parts (for example cladding materials) was assessed for the buffer in the same manner and the amount of the buffer facilities were optimized. (author)

  15. Fabrication of ruthenium metal nanosheets via topotactic metallization of exfoliated ruthenate nanosheets.

    Science.gov (United States)

    Fukuda, Katsutoshi; Sato, Jun; Saida, Takahiro; Sugimoto, Wataru; Ebina, Yasuo; Shibata, Tatsuo; Osada, Minoru; Sasaki, Takayoshi

    2013-03-04

    The metallization behavior of molecularly thin RuO2 nanosheets obtained from complete delamination of layered ruthenates was studied. Interestingly, the RuO2 nanosheets in a monolayer state topotactically transformed into a single layer of Ru atoms, i.e., ruthenium metal nanosheets, which can be regarded as a new family of nanosized metals.

  16. Fabrication of Complex Optical Components From Mold Design to Product

    CERN Document Server

    Riemer, Oltmann; Gläbe, Ralf

    2013-01-01

    High quality optical components for consumer products made of glass and plastic are mostly fabricated by replication. This highly developed production technology requires several consecutive, well-matched processing steps called a "process chain" covering all steps from mold design, advanced machining and coating of molds, up to the actual replication and final precision measurement of the quality of the optical components. Current market demands for leading edge optical applications require high precision and cost effective parts in large volumes. For meeting these demands it is necessary to develop high quality process chains and moreover, to crosslink all demands and interdependencies within these process chains. The Transregional Collaborative Research Center "Process chains for the replication of complex optical elements" at Bremen, Aachen and Stillwater worked extensively and thoroughly in this field from 2001 to 2012. This volume will present the latest scientific results for the complete process chain...

  17. Design of conveyor utilization monitoring system: a case study of powder coating line in sheet metal fabrication

    Science.gov (United States)

    Prasetyo, Hoedi; Sugiarto, Yohanes; Nur Rosyidi, Cucuk

    2018-03-01

    Conveyor is a very useful equipment to replace manpower in transporting the goods. It highly influences the productivity, production capacity utilization and eventually the production cost. This paper proposes a system to monitor the utilization of conveyor at a low cost through a case study at powder coating process line in a sheet metal fabrication. Preliminary observation was conducted to identify the problems. The monitoring system was then built and executed. The system consists of two sub systems. First is sub system for collecting and transmitting the required data and the second is sub system for displaying the data. The system utilizes sensors, wireless data transfer and windows-based application. The test results showed that the whole system works properly. By this system, the productivity and status of the conveyor can be monitored in real time. This research enriches the development of conveyor monitoring system especially for implementation in small and medium enterprises.

  18. Description of Latvian Metal Production and Processing Enterprises' Air Emissions

    OpenAIRE

    Pubule, J; Zahare, D; Blumberga, D

    2010-01-01

    The metal production and processing sector in Latvia has acquired a stable position in the national economy. Smelting of ferrous and nonferrous metals, production of metalware, galvanisation, etc. are developed in Latvia. The metal production and processing sector has an impact on air quality due to polluting substances which are released in the air from metal treatment processes. Therefore it is necessary to determine the total volume of emissions produced by the metal production and process...

  19. Processing and Electromagnetic Shielding Properties of Multifunctional Metal Composite Knitted Fabric used as Socks

    Directory of Open Access Journals (Sweden)

    Yu Zhicai

    2016-01-01

    Full Text Available In this research, a type of bamboo charcoal polyester (BC-PET/antibacterial nylon(AN/stainless steel wire (SSW metal composite yarn was prepared with a hollow spindle spinning machine, which using the SSW as the core material, the BC-PET and AN as the outer and inner wrapped yarns, respectively. The wrapping numbers was set at 8.0turns/cm for the produced metal composite yarns. Furthermore, a type of plated knitted fabric was designed and produced by using the automatic jacquard knitting machine. The plated knitted fabric presents the BC-PET/AN/SSW metal composite yarn on the knitted fabric face and the crisscross-section polyester (CSP on the knit back. The effect of lamination numbers and angles on the electromagnetic shielding effectiveness (EMSE were discussed in this study. EMSE measurement showed that the lamination angles will influence the EMSE, but not affect the air permeability. Finally, a novel EM shielding socks was designed with the produced plated knitted fabric. Finally, the performance of thermal resistance and evaporation resistance was also test usingThe sweating guarded hot plate apparatus.

  20. The marginal fit of selective laser melting-fabricated metal crowns: an in vitro study.

    Science.gov (United States)

    Xu, Dan; Xiang, Nan; Wei, Bin

    2014-12-01

    The selective laser melting technique is attracting interest in prosthetic dentistry. The marginal fit is a key criterion for fixed restorations. The purpose of the study was to evaluate the marginal fit of cast cobalt-chromium alloy crowns versus the fit of selective laser melting-fabricated crowns. The marginal gap widths of 36 single crowns (18 selective laser melting-fabricated cobalt-chromium metal crowns and 18 cobalt-chromium cast crowns) were determined with a silicone replica technique. Each crown specimen was cut into 4 sections, and the marginal gap width of each cross section was evaluated by stereomicroscopy (× 100). The Student t test was used to evaluate whether significant differences occurred in the marginal gap widths between the selective laser melting-fabricated and cast cobalt-chromium metal crowns (α=.05). The mean marginal gap width of the cast crowns (170.19 μm) was significantly wider than that of the selective laser melting-fabricated crowns (102.86 μm). Selective laser melting-fabricate cobalt-chromium dental crowns found improved marginal gap widths compared with traditional cast crowns. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. Concurrent material-fabrication optimization of metal-matrix laminates under thermo-mechanical loading

    Science.gov (United States)

    Saravanos, D. A.; Morel, M. R.; Chamis, C. C.

    1991-01-01

    A methodology is developed to tailor fabrication and material parameters of metal-matrix laminates for maximum loading capacity under thermomechanical loads. The stresses during the thermomechanical response are minimized subject to failure constrains and bounds on the laminate properties. The thermomechanical response of the laminate is simulated using nonlinear composite mechanics. Evaluations of the method on a graphite/copper symmetric cross-ply laminate were performed. The cross-ply laminate required different optimum fabrication procedures than a unidirectional composite. Also, the consideration of the thermomechanical cycle had a significant effect on the predicted optimal process.

  2. Scheme for the fabrication of ultrashort channel metal-oxide-semiconductor field-effect transistors

    International Nuclear Information System (INIS)

    Appenzeller, J.; Martel, R.; Solomon, P.; Chan, K.; Avouris, Ph.; Knoch, J.; Benedict, J.; Tanner, M.; Thomas, S.; Wang, K. L.

    2000-01-01

    We present a scheme for the fabrication of ultrashort channel length metal-oxide-semiconductor field-effect transistors (MOSFETs) involving nanolithography and molecular-beam epitaxy. The active channel is undoped and is defined by a combination of nanometer-scale patterning and anisotropic etching of an n ++ layer grown on a silicon on insulator wafer. The method is self-limiting and can produce MOSFET devices with channel lengths of less than 10 nm. Measurements on the first batch of n-MOSFET devices fabricated with this approach show very good output characteristics and good control of short-channel effects. (c) 2000 American Institute of Physics

  3. Fabrication of sub-micrometric metallic hollow-core structures by laser interference lithography

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Noemi; Tavera, Txaber [CEIT and Tecnun (University of Navarra) Manuel de Lardizabal 15, 20018 San Sebastian (Spain); Rodriguez, Ainara [CIC Microgune, Paseo Mikeletegi 48, 20009 San Sebastian (Spain); Ellman, Miguel; Ayerdi, Isabel; Olaizola, Santiago M. [CEIT and Tecnun (University of Navarra) Manuel de Lardizabal 15, 20018 San Sebastian (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Arrays of hollow-core sub-micrometric structures are fabricated. Black-Right-Pointing-Pointer Laser interference lithography is used for the pattering of the resist sacrificial layer. Black-Right-Pointing-Pointer The removal of the sacrificial layer gives rise to metallic channels with a maximum crosssectional area of 0.1 {mu}m{sup 2}. Black-Right-Pointing-Pointer These structures can be used in nanofluidics. - Abstract: This work presents the fabrication of hollow-core metallic structures with a complete laser interference lithography (LIL) process. A negative photoresist is used as sacrificial layer. It is exposed to the pattern resulting from the interference of two laser beams, which produces a structure of photoresist lines with a period of 600 nm. After development of the resist, platinum is deposited on the samples by DC sputtering and the resist is removed with acetone. The resulting metallic structures consist in a continuous platinum film that replicates the photoresist relief with a hollow core. The cross section of the channels is up to 0.1 {mu}m{sup 2}. The fabricated samples are characterized by FESEM and FIB. This last tool helps to provide a clear picture of the shape and size of the channels. Conveniently dimensioned, this array of metallic submicrometric channels can be used in microfluidic or IC cooling applications.

  4. Fabrication of sub-micrometric metallic hollow-core structures by laser interference lithography

    International Nuclear Information System (INIS)

    Pérez, Noemí; Tavera, Txaber; Rodríguez, Ainara; Ellman, Miguel; Ayerdi, Isabel; Olaizola, Santiago M.

    2012-01-01

    Highlights: ► Arrays of hollow-core sub-micrometric structures are fabricated. ► Laser interference lithography is used for the pattering of the resist sacrificial layer. ► The removal of the sacrificial layer gives rise to metallic channels with a maximum crosssectional area of 0.1 μm 2 . ► These structures can be used in nanofluidics. - Abstract: This work presents the fabrication of hollow-core metallic structures with a complete laser interference lithography (LIL) process. A negative photoresist is used as sacrificial layer. It is exposed to the pattern resulting from the interference of two laser beams, which produces a structure of photoresist lines with a period of 600 nm. After development of the resist, platinum is deposited on the samples by DC sputtering and the resist is removed with acetone. The resulting metallic structures consist in a continuous platinum film that replicates the photoresist relief with a hollow core. The cross section of the channels is up to 0.1 μm 2 . The fabricated samples are characterized by FESEM and FIB. This last tool helps to provide a clear picture of the shape and size of the channels. Conveniently dimensioned, this array of metallic submicrometric channels can be used in microfluidic or IC cooling applications.

  5. Process for production of a metal hydride

    Science.gov (United States)

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-12

    A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

  6. The flashcal process for the fabrication of fuel-metal oxides using the whiteshell roto-spray calciner

    International Nuclear Information System (INIS)

    Sridhar, T.S.

    1988-01-01

    A one-step, continuous, thermochemical calcination process, called the FLASHCAL (Flash Calcination) process has been developed for the production of single- and mixed-oxide powders of fuel metals (uranium, thorium and plutonium) from the respective nitrate solutions using the Whiteshell Roto-Spray Calciner (RSC). The metal-nitrate feed solution, either by itself or mixed with a suitable chemical reactant or additive, is converted to its oxide powder in the RSC at temperatures between 300 and 600 0 C. Rapid denitration takes place in the calciner, yielding the metal-oxide powders while simultaneously destroying any excess chemical additive and reaction by-products. In the production of precursor oxide powders suitable for fuel fabrication, the FLASHCAL process has advantages over batch calcination and other processes that involve precipitation and filtration steps because fewer processing and handling operations are needed. Results obtained with thorium nitrate and uranium nitrate-thorium nitrate mixtures indicate that some measure of control over the size distribution and morphology of the oxide product powders is possible in this process with the proper selection of chemical additive, as well as the operating parameters of the calciner

  7. Controlled fabrication of semiconductor-metal hybrid nano-heterostructures via site-selective metal photodeposition

    Science.gov (United States)

    Vela Becerra, Javier; Ruberu, T. Purnima A.

    2017-12-05

    A method of synthesizing colloidal semiconductor-metal hybrid heterostructures is disclosed. The method includes dissolving semiconductor nanorods in a solvent to form a nanorod solution, and adding a precursor solution to the nanorod solution. The precursor solution contains a metal. The method further includes illuminating the combined precursor and nanorod solutions with light of a specific wavelength. The illumination causes the deposition of the metal in the precursor solution onto the surface of the semiconductor nanorods.

  8. A novel fabrication method for surface integration of metal structures into polymers (SIMSIP)

    Science.gov (United States)

    Carrion-Gonzalez, Hector

    Recently developed flexible electronics applications require that the thin metal films embedded on elastomer substrates also be flexible. These electronic systems are radically different in terms of performance and functionality than conventional silicon-based devices. A key question is whether the metal deposited on flexible films can survive large strains without rupture. Cumbersome macro-fabrication methods have been developed for functional and bendable electronics (e.g., interconnects) encapsulated between layers of polymer films. However, future electronic applications may require electronic flexible devices to be in intimate contact with curved surfaces (e.g., retinal implants) and to be robust enough to withstand large and repeated mechanical deformations. In this research, a novel technique for surface integration of metal structures into polymers (SIMSIP) was developed. Surface embedding, as opposed to placing metal on polymers, provides better adherence while leaving the surface accessible for contacts. This was accomplished by first fabricating the micro-scale metal patterns on a quartz or Teflon mother substrate, and then embedding them to a flexible polyimide thin film. The technique was successfully used to embed micro-metal structures of gold (Au), silver (Ag), and copper (Cu) into polyimide films without affecting the functional properties of the either the metals or the polymers. Experimental results confirm the successful surface-embedding of metal structures as narrow as 0.6 microm wide for different geometries commonly used in circuit design. Although similar approaches exist in literature, the proposed methodology provides a simpler and more reliable way of producing flexible circuits/electronics that is also suitable for high volume manufacturing. In order to demonstrate the flexibility of metal interconnects fabricated using the SIMSIP technique, multiple Au electrodes (5 microm and 2.5 microm wide) were tested using the X-theta bending

  9. Mould insert fabrication of a single-mode fibre connector alignment structure optimized by justified partial metallization

    International Nuclear Information System (INIS)

    Wissmann, Markus; Barié, Nicole; Guttmann, Markus; Schneider, Marc; Kolew, Alexander; Besser, Heino; Pfleging, Wilhelm; Hofmann, Andreas; Van Erps, Jürgen; Beri, Stefano; Watté, Jan

    2015-01-01

    For mass production of multiscale-optical components, microstructured moulding tools are needed. Metal tools are used for hot embossing or injection moulding of microcomponents made of a thermoplastic polymer. Microstructures with extremely tight specifications, e.g. low side wall roughness and high aspect ratios are generally made by lithographic procedures such as x-ray lithography or deep proton writing. However, these processes are unsuitable for low-cost mass production. An alternative manufacturing method of moulding tools has been developed at the Karlsruhe Institute of Technology (KIT). This article describes a mould insert fabrication and a new replication process for self-centring fibre alignment structures for low loss field installable single-mode fibre connectors, developed and fabricated by the Vrije Universiteit Brussel (VUB) in collaboration with TE Connectivity. These components are to be used in fibre-to-the-home networks and support the deployment and maintenance of fibre optic links. The special feature of this particular fibre connector is a self-centring fibre alignment, achieved by means of a through hole with deflectable cantilevers acting as micro-springs. The particular challenge is the electroforming of through holes with a centre hole diameter smaller than 125 µm. The fibre connector structure is prototyped by deep proton writing in polymethylmethacrylate and used as a sacrificial part. Using joining, physical vapour deposition and electroforming technology, a negative copy of the prototyped connector is transferred into nickel to be used as a moulding tool. The benefits of this replication technique are a rapid and economical fabrication of moulding tools with high-precision microstructures and a long tool life. With these moulding tools low-cost mass production is possible. We present the manufacturing chain we have established. Each individual manufacturing step of the mould insert fabrication will be shown in this report. The

  10. Commercial production of metal hafnium and hafnium-based products

    International Nuclear Information System (INIS)

    Negodin, D.A.; Shtutsa, M.G.; Akhtonov, S.G.; Il'enko, E.V.; Kobyzev, A.M.

    2012-01-01

    Hafnium possesses a unique complex of physical and chemical properties which allow the application of products on its basis in various industries. Joint Stock Company 'Chepetsky Mechanical Plant' is the single enterprise which produces hafnium on the territory of Russia. The manufacture of metal hafnium with the total content of zirconium and hafnium, at least, 99,8 % of weights is developed at the present time at Joint Stock Company CHMZ. The weight of melted hafnium ingots is up to 1 ton. Manufacture of wide range of products from hafnium is implemented. The plates from a hafnium with thickness of 0.60 mm which are used for emergency control cartridges of VVER-440 reactors are the most critical product. It is shown that ingots and products obtained from metal hafnium correspond to the Russian and international standards for reactor materials in chemical composition, mechanical and corrosion properties.

  11. Fabrication of conductive metallized nanostructures from self-assembled amphiphilic triblock copolymer templates: Nanospheres, nanowires, nanorings

    International Nuclear Information System (INIS)

    Zhu Jintao; Jiang Wei

    2007-01-01

    Various metallized nanostructures (such as rings, wires with controllable lengths, spheres) have been successfully fabricated by coating metallic nanolayers onto soft nanotemplates through simple electroless methods. In particular, bimetallic nanostructures have been obtained by using simple methods. The multiple functional polymeric nanostructures were obtained through the self-assembly of polystyrene/poly(4-vinyl pyridine) triblock copolymer (P4VP-b-PS-b-P4VP) in selective media by changing the common solvent properties. By combining field emission scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) characterization, it was confirmed that polymer/metal and bimetallic (Au at Ag) core-shell nanostructures could be achieved by chemical metal deposition method

  12. Titanium Metal Powder Production by the Plasma Quench Process

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Cordes; A. Donaldson

    2000-09-01

    The goals of this project included the scale-up of the titanium hydride production process to a production rate of 50 kg/hr at a purity level of 99+%. This goal was to be achieved by incrementally increasing the production capability of a series of reactor systems. This methodic approach was designed to allow Idaho Titanium Technologies to systematically address the engineering issues associated with plasma system performance, and powder collection system design and performance. With quality powder available, actual fabrication with the titanium hydride was to be pursued. Finally, with a successful titanium production system in place, the production of titanium aluminide was to be pursued by the simultaneously injection of titanium and aluminum precursors into the reactor system. Some significant accomplishments of the project are: A unique and revolutionary torch/reactor capable of withstanding temperatures up to 5000 C with high thermal efficiency has been operated. The dissociation of titanium tetrachloride into titanium powder and HC1 has been demonstrated, and a one-megawatt reactor potentially capable of producing 100 pounds per hour has been built, but not yet operated at the powder level. The removal of residual subchlorides and adsorbed HC1 and the sintering of powder to form solid bodies have been demonstrated. The production system has been operated at production rates up to 40 pounds per hour. Subsequent to the end of the project, Idaho Titanium Technologies demonstrated that titanium hydride powder can indeed be sintered into solid titanium metal at 1500 C without sintering aids.

  13. Facile 3D Metal Electrode Fabrication for Energy Applications via Inkjet Printing and Shape Memory Polymer

    International Nuclear Information System (INIS)

    Roberts, R C; Wu, J; Li, D C; Hau, N Y; Chang, Y H; Feng, S P

    2014-01-01

    This paper reports on a simple 3D metal electrode fabrication technique via inkjet printing onto a thermally contracting shape memory polymer (SMP) substrate. Inkjet printing allows for the direct patterning of structures from metal nanoparticle bearing liquid inks. After deposition, these inks require thermal curing steps to render a stable conductive film. By printing onto a SMP substrate, the metal nanoparticle ink can be cured and substrate shrunk simultaneously to create 3D metal microstructures, forming a large surface area topology well suited for energy applications. Polystyrene SMP shrinkage was characterized in a laboratory oven from 150-240°C, resulting in a size reduction of 1.97-2.58. Silver nanoparticle ink was patterned into electrodes, shrunk, and the topology characterized using scanning electron microscopy. Zinc-Silver Oxide microbatteries were fabricated to demonstrate the 3D electrodes compared to planar references. Characterization was performed using 10M potassium hydroxide electrolyte solution doped with zinc oxide (57g/L). After a 300s oxidation at 3Vdc, the 3D electrode battery demonstrated a 125% increased capacity over the reference cell. Reference cells degraded with longer oxidations, but the 3D electrodes were fully oxidized for 4 hours, and exhibited a capacity of 5.5mA-hr/cm 2 with stable metal performance

  14. Characterization of complementary patterned metallic membranes produced simultaneously by a dual fabrication process

    Science.gov (United States)

    Hao, Qingzhen; Zeng, Yong; Wang, Xiande; Zhao, Yanhui; Wang, Bei; Chiang, I.-Kao; Werner, Douglas H.; Crespi, Vincent; Huang, Tony Jun

    2010-11-01

    An efficient technique is developed to fabricate optically thin metallic films with subwavelength patterns and their complements simultaneously. By comparing the spectra of the complementary films, we show that Babinet's principle nearly holds for these structures in the optical domain. Rigorous full-wave simulations are employed to verify the experimental observations. It is further demonstrated that a discrete-dipole approximation can qualitatively describe the spectral dependence of the metallic membranes on the geometry of the constituent particles as well as the illuminating polarization.

  15. The fabrication of metal silicide nanodot arrays using localized ion implantation

    International Nuclear Information System (INIS)

    Han, Jin; Kim, Tae-Gon; Min, Byung-Kwon; Lee, Sang Jo

    2010-01-01

    We propose a process for fabricating nanodot arrays with a pitch size of less than 25 nm. The process consists of localized ion implantation in a metal thin film on a Si wafer using a focused ion beam (FIB), followed by chemical etching. This process utilizes the etching resistivity changes of the ion beam irradiated region that result from metal silicide formation by ion implantation. To control the nanodot diameter, a threshold ion dose model is proposed using the Gaussian distribution of the ion beam intensities. The process is verified by fabricating nanodots with various diameters. The mechanism of etching resistivity is investigated via x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES).

  16. Fabricating Zr-Based Bulk Metallic Glass Microcomponent by Suction Casting Using Silicon Micromold

    Directory of Open Access Journals (Sweden)

    Zhijing Zhu

    2014-08-01

    Full Text Available A suction casting process for fabricating Zr55Cu30Al10Ni5 bulk metallic glass microcomponent using silicon micromold has been studied. A complicated BMG microgear with 50 μm in module has been cast successfully. Observed by scanning electron microscopy and laser scanning confocal microscopy, we find that the cast microgear duplicates the silicon micromold including the microstructure on the surface. The amorphous state of the microgear is confirmed by transmission election microscopy. The nanoindentation hardness and elasticity modulus of the microgear reach 6.5 GPa and 94.5 GPa. The simulation and experimental results prove that the suction casting process with the silicon micromold is a promising one-step method to fabricate bulk metallic glass microcomponents with high performance for applications in microelectromechanical system.

  17. Fabrication of dissimilar metal electrodes with nanometer interelectrode distance for molecular electronic device characterization

    International Nuclear Information System (INIS)

    Guillorn, Michael A.; Carr, Dustin W.; Tiberio, Richard C.; Greenbaum, Elias; Simpson, Michael L.

    2000-01-01

    We report a versatile process for the fabrication of dissimilar metal electrodes with a minimum interelectrode distance of less than 6 nm using electron beam lithography and liftoff pattern transfer. This technique provides a controllable and reproducible method for creating structures suited for the electrical characterization of asymmetric molecules for molecular electronics applications. Electrode structures employing pairs of Au electrodes and non-Au electrodes were fabricated in three different patterns. Parallel electrode structures 300 μm long with interelectrode distances as low as 10 nm, 75 nm wide electrode pairs with interelectrode distances less than 6 nm, and a multiterminal electrode structure with reproducible interelectrode distances of 8 nm were realized using this technique. The processing issues associated with the fabrication of these structures are discussed along with the intended application of these devices. (c) 2000 American Vacuum Society

  18. Communication methods and production techniques in fixed prosthesis fabrication: a UK based survey. Part 2: Production techniques

    Science.gov (United States)

    Berry, J.; Nesbit, M.; Saberi, S.; Petridis, H.

    2014-01-01

    Aim The aim of this study was to identify the communication methods and production techniques used by dentists and dental technicians for the fabrication of fixed prostheses within the UK from the dental technicians' perspective. This second paper reports on the production techniques utilised. Materials and methods Seven hundred and eighty-two online questionnaires were distributed to the Dental Laboratories Association membership and included a broad range of topics, such as demographics, impression disinfection and suitability, and various production techniques. Settings were managed in order to ensure anonymity of respondents. Statistical analysis was undertaken to test the influence of various demographic variables such as the source of information, the location, and the size of the dental laboratory. Results The number of completed responses totalled 248 (32% response rate). Ninety percent of the respondents were based in England and the majority of dental laboratories were categorised as small sized (working with up to 25 dentists). Concerns were raised regarding inadequate disinfection protocols between dentists and dental laboratories and the poor quality of master impressions. Full arch plastic trays were the most popular impression tray used by dentists in the fabrication of crowns (61%) and bridgework (68%). The majority (89%) of jaw registration records were considered inaccurate. Forty-four percent of dental laboratories preferred using semi-adjustable articulators. Axial and occlusal under-preparation of abutment teeth was reported as an issue in about 25% of cases. Base metal alloy was the most (52%) commonly used alloy material. Metal-ceramic crowns were the most popular choice for anterior (69%) and posterior (70%) cases. The various factors considered did not have any statistically significant effect on the answers provided. The only notable exception was the fact that more methods of communicating the size and shape of crowns were utilised for

  19. Fabrication and characterisation of embedded metal nanostructures by ion implantation with nanoporous anodic alumina masks

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Wei [NanoLAB, Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); School of Physics and Astronomy, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ (United Kingdom); Peng, Nianhua, E-mail: n.peng@surrey.ac.uk [Surrey Ion Beam Centre, Surrey University, Guildford GU2 7XH (United Kingdom); Jeynes, Christopher [Surrey Ion Beam Centre, Surrey University, Guildford GU2 7XH (United Kingdom); Ghatak, Jay [NanoLAB, Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Peng, Yong [NanoLAB, Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); School of Physical Science and Technology, Lanzhou University, 222 Tianshui Road, Lanzhou 730000 (China); Ross, Ian M. [Department of Electronic and Electric Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Bhatta, Umananda M.; Inkson, Beverley J.; Möbus, Günter [NanoLAB, Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2013-07-15

    Lateral ordered Co, Pt and Co/Pt nanostructures were fabricated in SiO{sub 2} and Si{sub 3}N{sub 4} substrates by high fluence metal ion implantation through periodic nanochannel membrane masks based on anodic aluminium oxides (AAO). The quality of nanopatterning transfer defined by various AAO masks in different substrates was examined by transmission electron microscopy (TEM) in both imaging and spectroscopy modes.

  20. Mechanical anomaly impact on metal-oxide-semiconductor capacitors on flexible silicon fabric

    KAUST Repository

    Ghoneim, Mohamed T.

    2014-06-09

    We report the impact of mechanical anomaly on high-κ/metal-oxide-semiconductor capacitors built on flexible silicon (100) fabric. The mechanical tests include studying the effect of bending radius up to 5 mm minimum bending radius with respect to breakdown voltage and leakage current of the devices. We also report the effect of continuous mechanical stress on the breakdown voltage over extended periods of times.

  1. National machine guarding program: Part 1. Machine safeguarding practices in small metal fabrication businesses

    OpenAIRE

    Parker, David L.; Yamin, Samuel C.; Brosseau, Lisa M.; Xi, Min; Gordon, Robert; Most, Ivan G.; Stanley, Rodney

    2015-01-01

    Background Metal fabrication workers experience high rates of traumatic occupational injuries. Machine operators in particular face high risks, often stemming from the absence or improper use of machine safeguarding or the failure to implement lockout procedures. Methods The National Machine Guarding Program (NMGP) was a translational research initiative implemented in conjunction with two workers' compensation insures. Insurance safety consultants trained in machine guarding used standardize...

  2. Analysis of mechanical fabrication experience with CEBAF's production SRF cavities

    International Nuclear Information System (INIS)

    Mammosser, J.; Kneisel, P.; Benesch, J.

    1993-06-01

    CEBAF has received a total of 360 five-cell niobium cavities, the largest group of industrially fabricated superconducting cavities so far. An extensive data base exists on the fabrication, surface treatment, assembly and cavity performance parameters. Analysis of the mechanical features of the cavities includes the following: the spread in fabrication tolerances of the cells derived from field profiles of the ''as fabricated'' cavities and the ''as fabricated'' external Q-values of the fundamental power coupler compared to dimensional deviations. A comparison is made of the pressure sensitivity of cavities made of materials from different manufacturers between 760 torr (4.2 K) and 23 torr (2 K)

  3. Flexible semi-transparent silicon (100) fabric with high-k/metal gate devices

    KAUST Repository

    Rojas, Jhonathan Prieto

    2013-01-07

    Can we build a flexible and transparent truly high performance computer? High-k/metal gate stack based metal-oxide-semiconductor capacitor devices are monolithically fabricated on industry\\'s most widely used low-cost bulk single-crystalline silicon (100) wafers and then released as continuous, mechanically flexible, optically semi-transparent and high thermal budget compatible silicon fabric with devices. This is the first ever demonstration with this set of materials which allows full degree of freedom to fabricate nanoelectronics devices using state-of-the-art CMOS compatible processes and then to utilize them in an unprecedented way for wide deployment over nearly any kind of shape and architecture surfaces. Electrical characterization shows uncompromising performance of post release devices. Mechanical characterization shows extra-ordinary flexibility (minimum bending radius of 1 cm) making this generic process attractive to extend the horizon of flexible electronics for truly high performance computers. Schematic and photograph of flexible high-k/metal gate MOSCAPs showing high flexibility and C-V plot showing uncompromised performance. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Stacking metal nano-patterns and fabrication of moth-eye structure

    Science.gov (United States)

    Taniguchi, Jun

    2018-01-01

    Nanoimprint lithography (NIL) can be used as a tool for three-dimensional nanoscale fabrication. In particular, complex metal pattern structures in polymer material are demanded as plasmonic effect devices and metamaterials. To fabricate of metallic color filter, we used silver ink and NIL techniques. Metallic color filter was composed of stacking of nanoscale silver disc patterns and polymer layers, thus, controlling of polymer layer thickness is necessary. To control of thickness of polymer layer, we used spin-coating of UV-curable polymer and NIL. As a result, ten stacking layers with 1000 nm layer thickness was obtained and red color was observed. Ultraviolet nanoimprint lithography (UV-NIL) is the most effective technique for mass fabrication of antireflection structure (ARS) films. For the use of ARS films in mobile phones and tablet PCs, which are touch-screen devices, it is important to protect the films from fingerprints and dust. In addition, as the nanoscale ARS that is touched by the hand is fragile, it is very important to obtain a high abrasion resistance. To solve these problems, a UV-curable epoxy resin has been developed that exhibits antifouling properties and high hardness. The high abrasion resistance ARS films are shown to withstand a load of 250 g/cm2 in the steel wool scratch test, and the reflectance is less than 0.4%.

  5. Production of Liquid Metal Spheres by Molding

    Directory of Open Access Journals (Sweden)

    Mohammed G. Mohammed

    2014-10-01

    Full Text Available This paper demonstrates a molding technique for producing spheres composed of eutectic gallium-indium (EGaIn with diameters ranging from hundreds of microns to a couple millimeters. The technique starts by spreading EGaIn across an elastomeric sheet featuring cylindrical reservoirs defined by replica molding. The metal flows into these features during spreading. The spontaneous formation of a thin oxide layer on the liquid metal keeps the metal flush inside these reservoirs. Subsequent exposure to acid removes the oxide and causes the metal to bead up into a sphere with a size dictated by the volume of the reservoirs. This technique allows for the production and patterning of droplets with a wide range of volumes, from tens of nanoliters up to a few microliters. EGaIn spheres can be embedded or encased subsequently in polymer matrices using this technique. These spheres may be useful as solder bumps, electrodes, thermal contacts or components in microfluidic devices (valves, switches, pumps. The ease of parallel-processing and the ability to control the location of the droplets during their formation distinguishes this technique.

  6. POLYMER COMPOSITE FILMS WITH SIZE-SELECTED METAL NANOPARTICLES FABRICATED BY CLUSTER BEAM TECHNIQUE

    DEFF Research Database (Denmark)

    Ceynowa, F. A.; Chirumamilla, Manohar; Popok, Vladimir

    2017-01-01

    Formation of polymer films with size-selected silver and copper nanoparticles (NPs) is studied. Polymers are prepared by spin coating while NPs are fabricated and deposited utilizing a magnetron sputtering cluster apparatus. The particle embedding into the films is provided by thermal annealing...... after the deposition. The degree of immersion can be controlled by the annealing temperature and time. Together with control of cluster coverage the described approach represents an efficient method for the synthesis of thin polymer composite layers with either partially or fully embedded metal NPs....... Combining electron beam lithography, cluster beam deposition and thermal annealing allows to form ordered arrays of metal NPs on polymer films. Plasticity and flexibility of polymer host and specific properties added by coinage metal NPs open a way for different applications of such composite materials...

  7. Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum

    Science.gov (United States)

    Ray, Siba P.; Liu, Xinghua

    2000-01-01

    An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

  8. Metal contact engineering and registration-free fabrication of complementary metal-oxide semiconductor integrated circuits using aligned carbon nanotubes.

    Science.gov (United States)

    Wang, Chuan; Ryu, Koungmin; Badmaev, Alexander; Zhang, Jialu; Zhou, Chongwu

    2011-02-22

    Complementary metal-oxide semiconductor (CMOS) operation is very desirable for logic circuit applications as it offers rail-to-rail swing, larger noise margin, and small static power consumption. However, it remains to be a challenging task for nanotube-based devices. Here in this paper, we report our progress on metal contact engineering for n-type nanotube transistors and CMOS integrated circuits using aligned carbon nanotubes. By using Pd as source/drain contacts for p-type transistors, small work function metal Gd as source/drain contacts for n-type transistors, and evaporated SiO(2) as a passivation layer, we have achieved n-type transistor, PN diode, and integrated CMOS inverter with an air-stable operation. Compared with other nanotube n-doping techniques, such as potassium doping, PEI doping, hydrazine doping, etc., using low work function metal contacts for n-type nanotube devices is not only air stable but also integrated circuit fabrication compatible. Moreover, our aligned nanotube platform for CMOS integrated circuits shows significant advantage over the previously reported individual nanotube platforms with respect to scalability and reproducibility and suggests a practical and realistic approach for nanotube-based CMOS integrated circuit applications.

  9. Fabrication of metallic surfaces with long-term superhydrophilic property using one-stop laser method

    International Nuclear Information System (INIS)

    Guan, Y.C.; Luo, F.F.; Lim, G.C.; Hong, M.H.; Zheng, H.Y.; Qi, Bojin

    2015-01-01

    Highlights: • One-stop laser method is presented to fabricate superhydrophilic surface on metals. • Wettability study shows the longest superhydrophilic duration as more than 1 month. • Water-soluble compounds, polar functional groups and dual-scale structures were formed. • Surface roughness shows an amplification effect of the wetting behavior. - Abstract: A simple method for fabricating stable superhydrophilic surface at metallic substrates is reported. This technique comprises irradiating the surface with multiple laser pulses. Surface wettability can be taylored through controlling laser parameters and processing conditions. The substrates were selected as aluminum alloy and stainless steel. Physical morphology and chemical composition of laser-textured surfaces were characterized by SEM, XPS, and 3D profiler measurements. Results showed that the longest wettability duration was achieved as more than 1 month for stainless steel and more than 200 h for Al alloy, respectively. The possible mechanism of hydrophilic behavior of laser-textured surfaces was discussed. The effect of surface topography on superhydrophilicity property was also evaluated. This study presents a promising method in fabricating long-term superhydrophilic surfaces, which is useful for improving adhesion or achieving water-assisted flow in industrial applications as well as developing cell-based technologies in biomedical applications

  10. Method and device for fabricating dispersion fuel comprising fission product collection spaces

    Science.gov (United States)

    Shaber, Eric L; Fielding, Randall S

    2015-05-05

    A method of fabricating a nuclear fuel comprising a fissile material, one or more hollow microballoons, a phenolic resin, and metal matrix. The fissile material, phenolic resin and the one or more hollow microballoons are combined. The combined fissile material, phenolic resin and the hollow microballoons are heated sufficiently to form at least some fissile material carbides creating a nuclear fuel particle. The resulting nuclear fuel particle comprises one or more fission product collection spaces. In a preferred embodiment, the fissile material, phenolic resin and the one or more hollow microballoons are combined by forming the fissile material into microspheres. The fissile material microspheres are then overcoated with the phenolic resin and microballoon. In another preferred embodiment, the fissile material, phenolic resin and the one or more hollow microballoons are combined by overcoating the microballoon with the fissile material, and phenolic resin.

  11. Fabrication and optimizing of metal nano silicate as toxic metal absorbent from sea water

    OpenAIRE

    Solgi, Leila

    2013-01-01

    Pure Water, is a crucial demand of creature life. Following industrial development, extra amount of toxic metals such as chromium enters the environmental cycle through the sewage, which is considered as a serious threat for organisms. One of the modern methods of filtration and removal of contaminants in water, is applying Nano-technology. According to specific property of silicate materials, in this article we try to survey increased power in composites and various absorption in several mor...

  12. Method of fabricating zirconium metal for use in composite type fuel cans

    International Nuclear Information System (INIS)

    Imahashi, Hiromichi; Inagaki, Masatoshi; Akabori, Kimihiko; Tada, Naofumi; Yasuda, Tetsuro.

    1985-01-01

    Purpose: To mass produce zirconium metal for fuel cans with less radiation hardening. Method: Zirconium sponges as raw material are inserted in a hearth mold and a procedure of melting the zirconium sponges portionwise by using a melting furnace having electron beams as a heat source while moving the hearth is repeated at least for once. Then, the rod-like ingot after melting is melted again in a vacuum or inert gas atmosphere into an ingot of a low oxygen density capable of fabrication. A composite fuel can billet is formed by using the thus obtained zirconium ingot and a zircalloy, and a predetermined composite type fuel can is manufactured by way of hot extrusion and pipe drawing fabrication. The raw material usable herein is zirconium sponge with an oxygen density of 400 ppm or higher and the content of impurity other than oxygen is between 1000 - 5000 ppm in total, or the molten material thereof. (Kamimura, M.)

  13. Fabrication of three-dimensional freestanding metal micropipes for microfluidics and microreaction technology

    International Nuclear Information System (INIS)

    Lang, P; Neiß, S; Woias, P

    2011-01-01

    In this paper, we describe a simple and novel fabrication process to produce three-dimensional freestanding metal micropipes. This process is based on conventional micromachining and electroless nickel plating inside a microfluidic channel of structured and stacked silicon substrates. The nickel micropipe resists an etching with KOH, which facilitates to fabricate freestanding, functional micropipes. The in-channel electroless plating achieves a continuous and homogeneous deposition of nickel and shows an accurate coating of small microstructures down to 20 µm. Furthermore, the deposited nickel layers possess a high tensile strength for bonding (>200–300 N mm −2 ), are chemically inert against fluorine gas and withstand pressures up to 6 bar. Thermal measurements have shown that released micropipes show better heat flux densities than embedded micropipes with 86% at a cooling flow rate of 16 ml h −1 . Hence, released micropipes feature accurate control of the temperature in the micropipe via a variance of the cooling fluid flow rate.

  14. Design, fabrication, and application of a directional thermal processing system for controlled devitrification of metallic glasses

    Science.gov (United States)

    Meyer, Megan Anne Lamb

    The potential of using metallic glass as a pathway to obtaining novel morphologies and metastable phases has been garnering attention since their discovery. Several rapid solidification techniques; such as gas atomization, melt spinning, laser melting, and splat quenching produce amorphous alloys. A directional thermal processing system (DTPS) was designed, fabricated and characterized for the use of zone processing or gradient-zone processing of materials. Melt-spun CuZr metallic glass alloy was subjected to the DTPS and the relaxation and crystallization responses of the metallic glass were characterized. A range of processing parameters were developed and analyzed that would allow for devitrification to occur. The relaxation and crystallization responses were compared with traditional heat treatment methods of metallic glasses. The new processing method accessed equilibrium and non-equilibrium phases of the alloy and the structures were found to be controllable and sensitive to processing conditions. Crystallized fraction, crystallization onset temperature, and structural relaxation were controlled through adjusting the processing conditions, such as the hot zone temperature and sample velocity. Reaction rates computed from isothermal (TTT) transformation data were not found to be reliable, suggesting that the reaction kinetics are not additive. This new processing method allows for future studying of the thermal history effects of metallic glasses.

  15. 75 FR 70689 - Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum-Greenwood Forge Division; Currently...

    Science.gov (United States)

    2010-11-18

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-70,376] Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum- Greenwood Forge Division; Currently Known As Contech Forgings, LLC..., applicable to workers of Kaiser Aluminum Fabricated Products, LLC, Kaiser Aluminum-Greenwood Forge Division...

  16. Development of advanced spent fuel management process. The fabrication and oxidation behavior of simulated metallized spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Seung Gy; Shin, Y.J.; You, G.S.; Joo, J.S.; Min, D.K.; Chun, Y.B.; Lee, E.P.; Seo, H.S.; Ahn, S.B

    1999-03-01

    The simulated metallized spent fuel ingots were fabricated and evaluated the oxidation rates and the activation energies under several temperature conditions to develop an advanced spent fuel management process. It was also checked the alloying characteristics of the some elements with metal uranium. (Author). 3 refs., 1 tab., 36 figs.

  17. Fabrication of Superhydrophobic Metallic Surface by Wire Electrical Discharge Machining for Seamless Roll-to-Roll Printing

    Directory of Open Access Journals (Sweden)

    Jin-Young So

    2018-04-01

    Full Text Available This paper presents a proposal of a direct one-step method to fabricate a multi-scale superhydrophobic metallic seamless roll mold. The mold was fabricated using the wire electrical discharge machining (WEDM technique for a roll-to-roll imprinting application to produce a large superhydrophobic surface. Taking advantage of the exfoliating characteristic of the metallic surface, nano-sized surface roughness was spontaneously formed while manufacturing the micro-sized structure: that is, a dual-scale hierarchical structure was easily produced in a simple one-step fabrication with a large area on the aluminum metal surface. This hierarchical structure showed superhydrophobicity without chemical coating. A roll-type seamless mold for the roll-to-roll process was fabricated through engraving the patterns on the cylindrical substrate, thereby enabling to make a continuous film with superhydrophobicity.

  18. A top-down approach for fabricating three-dimensional closed hollow nanostructures with permeable thin metal walls.

    Science.gov (United States)

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor

    2017-01-01

    We report on a top-down method for the controlled fabrication of three-dimensional (3D), closed, thin-shelled, hollow nanostructures (nanocages) on planar supports. The presented approach is based on conventional microelectronic fabrication processes and exploits the permeability of thin metal films to hollow-out polymer-filled metal nanocages through an oxygen-plasma process. The technique is used for fabricating arrays of cylindrical nanocages made of thin Al shells on silicon substrates. This hollow metal configuration features optical resonance as revealed by spectral reflectance measurements and numerical simulations. The fabricated nanocages were demonstrated as a refractometric sensor with a measured bulk sensitivity of 327 nm/refractive index unit (RIU). The pattern design flexibility and controllability offered by top-down nanofabrication techniques opens the door to the possibility of massive integration of these hollow 3D nano-objects on a chip for applications such as nanocontainers, nanoreactors, nanofluidics, nano-biosensors and photonic devices.

  19. Method for the production of fabricated hollow microspheroids

    Science.gov (United States)

    Wickramanayake, Shan; Luebke, David R.

    2015-06-09

    The method relates to the fabrication of a polymer microspheres comprised of an asymmetric layer surrounding a hollow interior. The fabricated hollow microsphere is generated from a nascent hollow microsphere comprised of an inner core of core fluid surrounded by a dope layer of polymer dope, where the thickness of the dope layer is at least 10% and less than 50% of the diameter of the inner core. The nascent hollow microsphere is exposed to a gaseous environment, generating a vitrified hollow microsphere, which is subsequently immersed in a coagulation bath. Solvent exchange produces a fabricated hollow microsphere comprised of a densified outer skin surrounding a macroporous inner layer, which surrounds a hollow interior. In an embodiment, the polymer is a polyimide or a polyamide-imide, and the non-solvent in the core fluid and the coagulation bath is water. The fabricated hollow microspheres are particularly suited as solvent supports for gas separation processes.

  20. [Research progress in CoCr metal-ceramic alloy fabricated by selective laser melting].

    Science.gov (United States)

    Yan, X; Lin, H

    2018-02-09

    Cobalt-chromium alloys have been applied to dental porcelain fused to metal (PFM) restorations over the past decades owing to their excellent corrosion resistance, good biocompatibility and low price. The production of CoCr metal-ceramic restorations has always been based on traditional lost-wax casting techniques. However, in recent years, selective laser melting (SLM) is becoming more and more highly valued by dental laboratories and dental practitioners due to its individuation, precision and efficiency. This paper mainly reviews the recent researches on the production process of copings, microstructure, mechanical property, metal-ceramic bond strength, fit of copings, corrosion resistance and biocompatibility of SLM CoCr metal-ceramic alloy.

  1. Isolation plan for the southern end of the 313 Metal Fabrication Building

    International Nuclear Information System (INIS)

    Smith, D.S.

    1997-02-01

    The 313 Metal Fabrication Building was originally constructed as part of the Manhattan Project and underwent major remodeling and expansion in 1954. The building is divided into two sections that were separated by a fire wall. The first characterization of the 313(S) Building was conducted in 1995 to identify radiological, chemical, and other hazardous substances that may be encountered during the isolation activities. The intent of the isolation plan is to identify all known issues and reasonable solutions to these issues. Some issues will be solved during the building isolation activity, and other issues will remain unsolved until the actual demolition activity occurs

  2. Fabrication of Three Dimensional Cu Metallic Photonic Crystal by Electroless Plating

    International Nuclear Information System (INIS)

    Wu, S-C; Hou, F-J; Jian, P-C Jang-; Tsai, M-S; Chen, M-C; Li, L-S; Huang, J-Y; Lin, S-Y

    2007-01-01

    A 3D copper (Cu) metallic photonic crystal (MPC) with 180nm line width was fabricated by electroless plating. The mold of 3D MPC for Cu replacement is poly-Si. It has been verified as an enhancing thermal photovoltaic effect while the mold was transferred into tungsten MPC by chemical vapor deposition method. The 5 layers structure of Cu MPC was clear observed with scanning electron microscopy. The photonic band-gap ranged from 1.5 to 13 μm was measured by Fourier transform infrared spectroscopy (FTIR) instrument

  3. Application of siliceous metal product for preliminary deoxidizing of metal in open-hearth furnaces

    International Nuclear Information System (INIS)

    Luk'yanenko, A.A.; Evdokimov, A.V.; Kornilov, V.N.; Il'in, V.I.; Kuleshov, Yu.V.

    1995-01-01

    Metal wastes of abrasive processes-concomitant product of synthetic corundum production containing approximately 10 % Si - were tested for preliminary deoxidizing of metal in furnace to reduce manganese loss in burning and to increase the steel deoxidizing. The technology of preliminary deoxidizing of metal by siliceous metal product was mastered in the course of low carbon steel melting (st3sp, st4sp). The results of the study has shown that the use of siliceous metal product permits reducing the consumption of manganese-containing ferroalloys. 1 tab

  4. Improvements made in the methods of purifying uranium compounds and in the production of uranium metal at the Bouchet plant; Ameliorations apportees aux procedes de purification des composes d'uranium et a la fabrication de l'uranium metal a l'usine du Bouchet

    Energy Technology Data Exchange (ETDEWEB)

    Decrop, J; Delange, M; Holder, J; Huet, H; Sauteron, J; Vertes, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    We intend to chart the development of the techniques used at the Bouchet plant since the First International Conference held in Geneva in 1955. During that Conference, the methods adopted at that time were described by B. GOLDSCHMIDT and P. VERTES. Generally speaking, the development since that time has been governed by the following factors: 1- Conversion to a mass-production scale: The metal output, which amounted to approximately 10 tons in 1952, practically doubled each year, reaching successive figures of 80 tons in 1955, 160 tons in 1956 and 300 tons in 1957. At this very moment the output capacity of the plant is approaching its maximum, set at 500 tons/year, which it will reach at the end of the year. Beyond this output figure, the work will be carried on by the second French uranium production plant, which is now being erected at Narbonne. 2- Gradual abandoning of ore treatment, resulting from the decentralization of the duties performed by the CEA; The Bouchet Plant had, as a matter of fact, the first French treatment facilities, operating on the basis of 10 to 20 tons of ore per day. This ore, first concentrated at the production site proper by means of physical or physico-chemical methods to at least a 2 per cent uranium content, was sufficiently valuable to warrant quite well the cost involved in shipping it. However, the increase in the production schedules led to the treatment of ores of lower and lower grades, and it became more profitable to proceed with the chemicalating of these low-grade ores at the site after more or less thorough grading and, if necessary, preconcentration. As a result, the Bouchet plant scarcely ever receives uranium ores; on the contrary, the mining companies send their chemical concentrates, uranous phosphate and then sodium uranate from the Gueugnon Works in Saone-et-Loire since 1955; magnesium uranate from the Ecarpiere Works in Vendee since the beginning of 1957 and, very soon, products from the works which are now being

  5. Catalytic production of metal carbonyls from metal oxides

    Science.gov (United States)

    Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.

    1984-01-01

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.

  6. Production of metal waste forms from spent fuel treatment

    International Nuclear Information System (INIS)

    Westphal, B.R.; Keiser, D.D.; Rigg, R.H.; Laug, D.V.

    1995-01-01

    Treatment of spent nuclear fuel at Argonne National Laboratory consists of a pyroprocessing scheme in which the development of suitable waste forms is being advanced. Of the two waste forms being proposed, metal and mineral, the production of the metal waste form utilizes induction melting to stabilize the waste product. Alloying of metallic nuclear materials by induction melting has long been an Argonne strength and thus, the transition to metallic waste processing seems compatible. A test program is being initiated to coalesce the production of the metal waste forms with current induction melting capabilities

  7. Fabrication and condensation characteristics of metallic superhydrophobic surface with hierarchical micro-nano structures

    Science.gov (United States)

    Chu, Fuqiang; Wu, Xiaomin

    2016-05-01

    Metallic superhydrophobic surfaces have various applications in aerospace, refrigeration and other engineering fields due to their excellent water repellent characteristics. This study considers a simple but widely applicable fabrication method using a two simultaneous chemical reactions method to prepare the acid-salt mixed solutions to process the metal surfaces with surface deposition and surface etching to construct hierarchical micro-nano structures on the surface and then modify the surface with low surface-energy materials. Al-based and Cu-based superhydrophobic surfaces were fabricated using this method. The Al-based superhydrophobic surface had a water contact angle of 164° with hierarchical micro-nano structures similar to the lotus leaves. The Cu-based surface had a water contact angle of 157° with moss-like hierarchical micro-nano structures. Droplet condensation experiments were also performed on these two superhydrophobic surfaces to investigate their condensation characteristics. The results show that the Al-based superhydrophobic surface has lower droplet density, higher droplet jumping probability, slower droplet growth rate and lower surface coverage due to the more structured hierarchical structures.

  8. Fabrication of Functionally Graded Ti and γ-TiAl by Laser Metal Deposition

    Science.gov (United States)

    Yan, Lei; Chen, Xueyang; Zhang, Yunlu; Newkirk, Joseph W.; Liou, Frank

    2017-12-01

    TiAl alloys have become a popular choice in the aerospace and automotive industries, owing to their high specific yield strength, specific modulus, and oxidation resistance over titanium alloys and Ni-based super alloys at elevated temperatures. Although laser metal deposition (LMD) techniques have been available for manufacturing metal alloys for a decade, limited research has been focused on joining intermetallic materials with dissimilar materials using LMD. Here, LMD was used to join titanium aluminide Ti-48Al-2Cr-2Nb and commercially pure titanium with an innovative transition path. The theorized transition was implemented by fabricating functionally graded material (FGM). Porosity- and crack-free deposits were successfully fabricated. Energy dispersive x-ray spectroscopy analysis revealed the final composition was very close to the design composition. X-ray diffraction showed the expected phases were formed. The Vickers hardness, ultimate tensile strength, and coefficient of thermal expansion were evaluated to characterize the FGM's mechanical and physical properties. The properties of the material were comparable to those of as-cast material as reported in the literature.

  9. Ultrafast Laser Engraving Method to Fabricate Gravure Plate for Printed Metal-Mesh Touch Panel

    Directory of Open Access Journals (Sweden)

    Weiyuan Chen

    2015-10-01

    Full Text Available In order to engrave gravure plate with fine lines structures, conventional art used lithography with dry/wet etching. Lithography with dry/wet etching method allows to engrave lines with smooth concave shape, but its disadvantages include difficulty in controlling aspect ratio, high and uniform in large size process, substrate material limitation due to etching solution availability, and process complexity. We developed ultra-fast laser technology to directly engrave a stainless plate, a gravure plate, to be used for fabricating 23 in. metal-mesh touch panel by gravure offset printing process. The technology employs high energy pulse to ablate materials from a substrate. Because the ultra-fast laser pulse duration is shorter than the energy dissipation time between material lattices, there is no heating issue during the ablation process. Therefore, no volcano-type protrusion on the engraved line edges occurs, leading to good printing quality. After laser engraving, we then reduce surface roughness of the gravure plate using electro-polishing process. Diamond like carbon (DLC coating layer is then added onto the surface to increase scratch resistance. We show that this procedure can fabricate gravure plate for gravure offset printing process with minimum printing linewidth 10.7 μm. A 23 in. metal-mesh pattern was printed using such gravure plate and fully functional touch panel was demonstrated in this work.

  10. National Machine Guarding Program: Part 1. Machine safeguarding practices in small metal fabrication businesses.

    Science.gov (United States)

    Parker, David L; Yamin, Samuel C; Brosseau, Lisa M; Xi, Min; Gordon, Robert; Most, Ivan G; Stanley, Rodney

    2015-11-01

    Metal fabrication workers experience high rates of traumatic occupational injuries. Machine operators in particular face high risks, often stemming from the absence or improper use of machine safeguarding or the failure to implement lockout procedures. The National Machine Guarding Program (NMGP) was a translational research initiative implemented in conjunction with two workers' compensation insures. Insurance safety consultants trained in machine guarding used standardized checklists to conduct a baseline inspection of machine-related hazards in 221 business. Safeguards at the point of operation were missing or inadequate on 33% of machines. Safeguards for other mechanical hazards were missing on 28% of machines. Older machines were both widely used and less likely than newer machines to be properly guarded. Lockout/tagout procedures were posted at only 9% of machine workstations. The NMGP demonstrates a need for improvement in many aspects of machine safety and lockout in small metal fabrication businesses. © 2015 The Authors. American Journal of Industrial Medicine published by Wiley Periodicals, Inc.

  11. National machine guarding program: Part 1. Machine safeguarding practices in small metal fabrication businesses

    Science.gov (United States)

    Yamin, Samuel C.; Brosseau, Lisa M.; Xi, Min; Gordon, Robert; Most, Ivan G.; Stanley, Rodney

    2015-01-01

    Background Metal fabrication workers experience high rates of traumatic occupational injuries. Machine operators in particular face high risks, often stemming from the absence or improper use of machine safeguarding or the failure to implement lockout procedures. Methods The National Machine Guarding Program (NMGP) was a translational research initiative implemented in conjunction with two workers' compensation insures. Insurance safety consultants trained in machine guarding used standardized checklists to conduct a baseline inspection of machine‐related hazards in 221 business. Results Safeguards at the point of operation were missing or inadequate on 33% of machines. Safeguards for other mechanical hazards were missing on 28% of machines. Older machines were both widely used and less likely than newer machines to be properly guarded. Lockout/tagout procedures were posted at only 9% of machine workstations. Conclusions The NMGP demonstrates a need for improvement in many aspects of machine safety and lockout in small metal fabrication businesses. Am. J. Ind. Med. 58:1174–1183, 2015. © 2015 The Authors. American Journal of Industrial Medicine published by Wiley Periodicals, Inc. PMID:26332060

  12. Role of configuration management in improving quality of metal products

    International Nuclear Information System (INIS)

    Ali, U.; Kalsoom, T.

    2007-01-01

    The Configuration Management (CM) is an imperative discipline which helps in producing quality metal products for the customers. CM implements a graded approach to Configuration Items whose failure poses human as well as product losses. Effective CM provides information to Project Management, Quality Control, and Quality Assurance in identifying schedules and processes related to metal component production. The CM is a supportive function, mostly working side by side with Quality Assurance and Quality Control in the development / production of metal parts. The CM provides tools and guidelines for managing a product while Quality Assurance verifies and validates the same outside the scope of Configuration Audits. Configuration Management raises productivity of metal product, makes-available design reuse, reduces service and support costs, enhances visibility and eliminates rework on metal products. The elements of CM i.e. Identification, Control, Status Accounting and Audits playa vital role to enhance the quality of metal products. Only established CM System can make it possible to swing initial development criteria to final user friendly metal products. The challenges of today in our metal industry are to design and develop state-of-the-art products, for which, CM ideas given in this paper, will help to achieve all the set goals. (author)

  13. One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Liu, Gui-qiang; Yu, Mei-dong; Liu, Zheng-qi; Liu, Xiao-shan; Huang, Shan; Pan, Ping-ping; Wang, Yan; Liu, Mu-lin; Gu, Gang

    2015-01-01

    One-process fabrication of highly active and reproducible surface-enhanced Raman scattering (SERS) substrates via ion beam deposition is reported. The fabricated metal–dielectric–metal (MDM) hierarchical nanostructure possesses rich nanogaps and a tunable resonant cavity. Raman scattering signals of analytes are dramatically strengthened due to the strong near-field coupling of localized surface plasmon resonances (LSPRs) and the strong interaction of LSPRs of metal NPs with surface plasmon polaritons (SPPs) on the underlying metal film by crossing over the dielectric spacer. The maximum Raman enhancement for the highest Raman peak at 1650 cm −1 is 13.5 times greater than that of a single metal nanoparticle (NP) array. Moreover, the SERS activity can be efficiently tailored by varying the size and number of voids between adjacent metal NPs and the thickness of the dielectric spacer. These findings may broaden the scope of SERS applications of MDM hierarchical nanostructures in biomedical and analytical chemistry. (paper)

  14. Clinical marginal and internal fit of metal ceramic crowns fabricated with a selective laser melting technology.

    Science.gov (United States)

    Huang, Zhuoli; Zhang, Lu; Zhu, Jingwei; Zhang, Xiuyin

    2015-06-01

    Selective laser melting (SLM) technology has been introduced to fabricate dental restorations. However, the fit of these restorations still needs further study. The purpose of this in vivo investigation was to compare the marginal and internal fit of SLM metal ceramic crowns with 2 lost-wax cast metal ceramic crowns and to evaluate the influence of tooth type on the marginal and internal fit of these crowns. A total of 330 metal ceramic crowns were evaluated. The metal copings were fabricated with SLM Co-Cr, cast Au-Pt, and cast Co-Cr alloy (n=110). The marginal and internal gaps of crowns were recorded by using a replica technique. The anterior and premolar replicas were sectioned 2 times, and molar replicas were sectioned 4 times. The marginal and internal gap width of each cross section was examined by stereomicroscope at ×30 magnification. Two-way analysis of variance was performed to identify the statistical difference among the groups. The marginal fit of the SLM Co-Cr group (75.6 ±32.6 μm) was not different from the cast Au-Pt group (76.8 ±32.1 μm) (P>.05) but was better than the cast Co-Cr group (91.0 ±36.3 μm) (P.05). The mean occlusal gap width of the SLM Co-Cr group (309.8 ±106.6 μm) was significantly higher than that of the cast Au-Pt group (254.6 ±109.6 μm) and the cast Co-Cr group (249.6 ±110.4 μm) (P.05). Also, no significant difference was found in the axial fit among the anterior group (138.3 ±52.5 μm), the premolar group (132.9 ±50.4 μm), and the molar group (134.4 ±52.5 μm) (P>.05). The anterior group (267.6 ±110.2 μm) did not differ from the premolar group (270.2 ±112.8 μm) and the molar group (268.6 ±110.5 μm) in occlusal fit (P>.05). The marginal fit of SLM Co-Cr metal ceramic crowns was similar to that of the cast Au-Pt metal ceramic crowns and was better than that of the cast Co-Cr metal ceramic crowns. The SLM Co-Cr metal ceramic crowns were not significantly different from the 2 cast metal ceramic crowns in axial

  15. Fabrication of an artificial nanosucker device with a large area nanotube array of metallic glass.

    Science.gov (United States)

    Chen, Wei-Ting; Manivannan, Karthikeyan; Yu, Chia-Chi; Chu, Jinn P; Chen, Jem-Kun

    2018-01-18

    The concurrent attachment and detachment movements of geckos on virtually any type of surface via their foot pads have inspired us to develop a thermal device with numerous arrangements of a multi-layer thin film together with electrodes that can help modify the temperature of the surface via application of a voltage. A sequential fabrication process was employed on a large-scale integration to generate well-defined contact hole arrays of photoresist for use as templates on the electrode-based device. The photoresist templates were then subjected to sputter deposition of the metallic glass Zr 55 Cu 30 Al 10 Ni 5 . Consequently, a metallic glass nanotube (MGNT) array having a nominal wall thickness of 100 nm was obtained after removal of the photoresist template. When a water droplet was placed on the MGNT array, close nanochambers of metallic glass were formed. By applying voltage, the surface was heated to increase the pressure inside the nanochambers; this generated an expanding force that raised the droplet; thus, the static water contact angle (SWCA) was increased. In contrast, a sucking force was generated during surface cooling, which decreased the SWCA. Our fabrication strategy exploits the MGNT array surface as nanosuckers, which can mimic the climbing aptitude of geckos as they attach to (>10 N m -2 ) and detach from (0.26 N m -2 ) surfaces at 0.5 and 3 V of applied voltage, respectively. Thus, the climbing aptitude of geckos can be mimicked by employing the processing strategy presented herein for the development of artificial foot pads.

  16. Nonvolatile memory characteristics in metal-oxide-semiconductors containing metal nanoparticles fabricated by using a unique laser irradiation method

    International Nuclear Information System (INIS)

    Yang, JungYup; Yoon, KapSoo; Kim, JuHyung; Choi, WonJun; Do, YoungHo; Kim, ChaeOk; Hong, JinPyo

    2006-01-01

    Metal-oxide-semiconductor (MOS) capacitors with metal nanoparticles (Co NP) were successfully fabricated by utilizing an external laser exposure technique for application of non-volatile memories. Images of high-resolution transmission electron microscopy reveal that the spherically shaped Co NP are clearly embedded in the gate oxide layer. Capacitance-voltage measurements exhibit typical charging and discharging effects with a large flat-band shift. The effects of the tunnel oxide thickness and the different tunnel materials are analyzed using capacitance-voltage and retention characteristics. In addition, the memory characteristics of the NP embedded in a high-permittivity material are investigated because the thickness of conventionally available SiO 2 gates is approaching the quantum tunneling limit as devices are scaled down. Finally, the suitability of NP memory devices for nonvolatile memory applications is also discussed. The present results suggest that our unique laser exposure technique holds promise for the NP formation as floating gate elements in nonvolatile NP memories and that the quality of the tunnel oxide is very important for enhancing the retention properties of nonvolatile memory.

  17. Superconductor-normal metal-superconductor process development for the fabrication of small Josephson junctions in ramp type configuration

    International Nuclear Information System (INIS)

    Poepel, R.; Hagedorn, D.; Weimann, T.; Buchholz, F.-I.; Niemeyer, J.

    2000-01-01

    At PTB, a fabrication process has been developed in SNS Nb/PdAu/Nb technology for the verification of small Josephson junctions (JJs) in the deep sub-micron range to enable the implementation of JJs as active elements in highly integrated superconducting circuits. Two steps of this technological development are described with regard to appropriately designed circuit layouts of JJ series arrays (JJAs), the first one in a conventional window type junction (WTJ) configuration and the second one in a ramp type junction (RTJ) configuration. Test circuits of JJAs containing up to 10 000 JJs have been fabricated and experimentally tested. In WTJ configuration, the circuits proved to be sensitive to external perturbing effects affecting the stability of circuit operation. In contrast to that, in RTJ configuration, the circuits realized showed correct function and a high grade of reliability of operation. To produce RTJ circuits, the technology parameters have been set to realize JJs with contact areas of A=0.25μmx1.3μm. At a thickness of the PdAu normal metal layer of d = 40 nm, the values achieved for the critical current density and for the product of critical current and normal state resistance are about j c = 200 k Acm -2 and about I c R N = 21 μV. (author)

  18. Process for improving metal production in steelmaking processes

    Science.gov (United States)

    Pal, Uday B.; Gazula, Gopala K. M.; Hasham, Ali

    1996-01-01

    A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements.

  19. Production of aluminum metal by electrolysis of aluminum sulfide

    Science.gov (United States)

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  20. Noble-metal nanoparticles produced with colloidal lithography: fabrication, optical properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Bocchio, Noelia Laura

    2008-08-15

    In this work, metal nanoparticles produced by nanosphere lithography were studied in terms of their optical properties (in connection to their plasmon resonances), their potential application in sensing platforms - for thin layer sensing and bio-recognition events -, and for a particular case (the nanocrescents), for enhanced spectroscopy studies. The general preparation procedures introduced early in 2005 by Shumaker-Parry et al. to produce metallic nanocrescents were extended to give rise to more complex (isolated) structures, and also, by combining colloidal monolayer fabrication and plasma etching techniques, to arrays of them. The fabrication methods presented in this work were extended not only to new shapes or arrangements of particles, but included also a targeted surface tailoring of the substrates and the structures, using different thiol and silane compounds as linkers for further attachment of, i.e. polyelectrolyte layers, which allow for a controlled tailoring of their nanoenvironment. The optical properties of the nanocrescents were studied with conventional transmission spectroscopy; a simple multipole model was adapted to explain their behaviour qualitatively. In terms of applications, the results on thin film sensing using these particles show that the crescents present an interesting mode-dependent sensitivity and spatial extension. Parallel to this, the penetrations depths were modeled with two simplified schemes, obtaining good agreement with theory. The multiple modes of the particles with their characteristic decay lengths and sensitivities represent a major improvement for particle-sensing platforms compared to previous single resonance systems. The nanocrescents were also used to alter the emission properties of fluorophores placed close to them. In this work, green emitting dyes were placed at controlled distances from the structures and excited using a pulsed laser emitting in the near infrared. The fluorescence signal obtained in this

  1. Fabrication of a multiplexed microfluidic system for scaled up production of cross-linked biocatalytic microspheres

    CSIR Research Space (South Africa)

    Mbanjwa, M

    2014-06-01

    Full Text Available the design and fabrication of a multiplexed microfluidic system for producing biocatalytic microspheres. The microfluidic system consists of an array of 10 parallel microfluidic circuits, for simultaneous operation to demonstrate increased production...

  2. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    Science.gov (United States)

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-01-01

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed. PMID:26473834

  3. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    Directory of Open Access Journals (Sweden)

    Krystian Miazek

    2015-10-01

    Full Text Available Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.

  4. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review.

    Science.gov (United States)

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-10-09

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.

  5. Thermodynamic evaluation of highly exothermic reactions for the fabrication of ceramic metal composites

    International Nuclear Information System (INIS)

    Rodrigues, J.A.; Pandolfelli, V.C.; Botta Filho, W.J.; Tomasi, R.; Stevens, R.; Brook, R.J.

    1990-01-01

    Highly exothermic reactions allow the synthesis or production of materials. Which present advantages regarding to energy saving, simplicity of process and higher purity of the products. Considering adiabatic conditions these reactions give off a large amount of heat which will raise the temperature of the system, allowing the production of highly refractory materials. This paper presents a thermodynamic forecast of reactants are Nb2O5, Al e Zr. The objective is to produce high toughness alumina matrix composites containing ZrO2 particles and Nb metal. (author)

  6. Stormwater Pollution Prevention Plan for the TA-03-38 Metals Fabrication Shop, Los Alamos National Laboratory, Revision 3, January 2018

    Energy Technology Data Exchange (ETDEWEB)

    Burgin, Jillian Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-01

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector AA-Fabricated Metal Products as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA-03-38 Metals Fabrication Shop at Los Alamos National Laboratory. Los Alamos National Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-03-38 Metals Fabrication Shop and associated areas. The current permit expires at midnight on June 4, 2020.

  7. Fabrication of a metal-free ceramic restoration utilizing the monobloc technique.

    Science.gov (United States)

    Pissis, P

    1995-01-01

    This article presents a new technique which utilizes a porcelain core/crown unit, fabricated in the laboratory as a single component. The monobloc technique was developed by the author to replace the traditional metal post and core which prevents the transmission of light through porcelain crowns, creating a dark color effect. Between 1989 and 1992, a number of cases were successfully treated with several variations of the monobloc technique. Approximately 50 cases were completed with vitro-ceramic and followed up. The learning objective of this article is to introduce this novel technique. The article discusses the development of the technique, its advantages, disadvantages, and the potential failures. The clinical procedure is illustrated with several case presentations.

  8. Fabrication of Metallic Glass Powder for Brazing Paste for High-Temperature Thermoelectric Modules

    Science.gov (United States)

    Seo, Seung-Ho; Kim, Suk Jun; Lee, Soonil; Seo, Won-Seon; Kim, Il-Ho; Choi, Soon-Mok

    2018-06-01

    Metallic glass (MG) offers the advantage of outstanding oxidation resistance, since it has disordered atomic-scale structure without grain boundaries. We fabricated Al-based MG ribbons (Al84.5Y10Ni5.5) by a melt spinning process. We evaluated the adhesion strength of interfaces between the Al-based MG and a Ni-coated Cu electrode formed under various conditions at high temperature. In addition, we attempted to optimize the process conditions for pulverizing MG ribbons to high-energy ball milling and planetary milling. We confirmed that the electrical resistivity of the Al-based MG ribbon was substantially reduced after annealing at high temperature (over 300°C) due to crystallization.

  9. Quantum confinement effect in cheese like silicon nano structure fabricated by metal induced etching

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Shailendra K., E-mail: phd1211512@iiti.ac.in; Sahu, Gayatri; Sagdeo, Pankaj R.; Kumar, Rajesh [Material Research Laboratory, Discipline of Physics & MSEG, Indian Institute of Technology Indore, Madhya Pradesh-452017 (India)

    2015-08-28

    Quantum confinement effect has been studied in cheese like silicon nano-structures (Ch-SiNS) fabricated by metal induced chemical etching using different etching times. Scanning electron microscopy is used for the morphological study of these Ch-SiNS. A visible photoluminescence (PL) emission is observed from the samples under UV excitation at room temperature due to quantum confinement effect. The average size of Silicon Nanostructures (SiNS) present in the samples has been estimated by bond polarizability model using Raman Spectroscopy from the red-shift observed from SiNSs as compared to its bulk counterpart. The sizes of SiNS present in the samples decreases as etching time increase from 45 to 75 mintunes.

  10. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    Science.gov (United States)

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  11. Electrophoretic Deposition for the Fabrication of High-Performance Metal-Ceramic Hybrid Cladding

    International Nuclear Information System (INIS)

    Park, Junghwan; Jung, Yangil; Park, Dongjun; Kim, Hyungil; Park, Jeongyong; Koo, Yanghyun

    2014-01-01

    Metal-ceramic hybrid cladding consisting of a Zr liner and SiC f /SiC composite is one of the candidate systems. To achieve a high-performance metal-ceramic hybrid cladding, it is important to synthesize the SiC f /SiC composites with high flexural strength. The most common interphases, such as pyrolytic carbon (PyC) and boron nitride (BN) coating, have been applied on the surface of SiC fibers by chemical vapor deposition (CVD) or chemical vapor infiltration (CVI). In addition, the SiC matrix phase for SiC f /SiC composites has been commonly formed by CVI and polymer infiltration and pyrolysis (PIP), which are very costly and complicated processes. For this reason, the fabrication process of SiC f /SiC composites that is low-cost and simple has been strongly needed. In this study, weak phase coating using a commercial colloidal carbon black suspension was performed on SiC fibers through electrophoretic deposition (EPD), and carbon-coated SiC f /SiC composites were fabricated by EPD. The mechanical properties at room temperature were evaluated to investigate the effect of the carbon interfacial layer on the mechanical properties of carbon-coated SiC f /SiC composites. In this study, it was concluded that the EPD method is effective for homogeneous carbon black coating on SiC fibers, and that the carbon coating layer on SiC fibers plays an important role in optimizing the interface between fibers and the matrix, and enhances the toughness of carbon-coated SiC f /SiC composites during fracture

  12. Electrophoretic Deposition for the Fabrication of High-Performance Metal-Ceramic Hybrid Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junghwan; Jung, Yangil; Park, Dongjun; Kim, Hyungil; Park, Jeongyong; Koo, Yanghyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Metal-ceramic hybrid cladding consisting of a Zr liner and SiC{sub f}/SiC composite is one of the candidate systems. To achieve a high-performance metal-ceramic hybrid cladding, it is important to synthesize the SiC{sub f}/SiC composites with high flexural strength. The most common interphases, such as pyrolytic carbon (PyC) and boron nitride (BN) coating, have been applied on the surface of SiC fibers by chemical vapor deposition (CVD) or chemical vapor infiltration (CVI). In addition, the SiC matrix phase for SiC{sub f}/SiC composites has been commonly formed by CVI and polymer infiltration and pyrolysis (PIP), which are very costly and complicated processes. For this reason, the fabrication process of SiC{sub f}/SiC composites that is low-cost and simple has been strongly needed. In this study, weak phase coating using a commercial colloidal carbon black suspension was performed on SiC fibers through electrophoretic deposition (EPD), and carbon-coated SiC{sub f}/SiC composites were fabricated by EPD. The mechanical properties at room temperature were evaluated to investigate the effect of the carbon interfacial layer on the mechanical properties of carbon-coated SiC{sub f}/SiC composites. In this study, it was concluded that the EPD method is effective for homogeneous carbon black coating on SiC fibers, and that the carbon coating layer on SiC fibers plays an important role in optimizing the interface between fibers and the matrix, and enhances the toughness of carbon-coated SiC{sub f}/SiC composites during fracture.

  13. Distance-dependent metal enhanced fluorescence by flowerlike silver nanostructures fabricated in liquid crystalline phase

    Science.gov (United States)

    Zhang, Ying; Yang, Chengliang; Zhang, Guiyang; Peng, Zenghui; Yao, Lishuang; Wang, Qidong; Cao, Zhaoliang; Mu, Quanquan; Xuan, Li

    2017-10-01

    Flowerlike silver nanostructure substrates were fabricated in liquid crystalline phase and the distance dependent property of metal enhanced fluorescence for such substrate was studied for the first time. The distance between silver nanostructures and fluorophore was controlled by the well-established layer-by-layer (LbL) technique constructing alternate layers of poly (allylamine hydrochloride) (PAH) and poly (sodium 4-styrenesulfonate) (PSS). The Rhodamine 6G (R6G) molecules were electrostatically attached to the outmost negative charged PSS layer. The fluorescence enhancement factor of flowerlike nanostructure substrate increased firstly and then decreased with the distance increasing. The best enhanced fluorescence intensity of 71 fold was obtained at a distance of 5.2 nm from the surface of flowerlike silver nanostructure. The distance for best enhancement effect is an instructive parameter for the applications of such substrates and could be used in the practical MEF applications with the flowerlike nanostructure substrates fabricated in such way which is simple, controllable and cost-effective.

  14. Fabrication process optimization for improved mechanical properties of Al 7075/SiCp metal matrix composites

    Directory of Open Access Journals (Sweden)

    Dipti Kanta Das

    2016-04-01

    Full Text Available Two sets of nine different silicon carbide particulate (SiCp reinforced Al 7075 Metal Matrix Composites (MMCs were fabricated using liquid metallurgy stir casting process. Mean particle size and weight percentage of the reinforcement were varied according to Taguchi L9 Design of Experiments (DOE. One set of the cast composites were then heat treated to T6 condition. Optical micrographs of the MMCs reveal consistent dispersion of reinforcements in the matrix phase. Mechanical properties were determined for both as-cast and heat treated MMCs for comparison of the experimental results. Linear regression models were developed for mechanical properties of the heat treated MMCs using list square method of regression analysis. The fabrication process parameters were then optimized using Taguchi based grey relational analysis for the multiple mechanical properties of the heat treated MMCs. The largest value of mean grey relational grade was obtained for the composite with mean particle size 6.18 µm and 25 weight % of reinforcement. The optimal combination of process parameters were then verified through confirmation experiments, which resulted 42% of improvement in the grey relational grade. Finally, the percentage of contribution of each process parameter on the multiple performance characteristics was calculated through Analysis of Variance (ANOVA.

  15. Uranium metal production by molten salt electrolysis

    International Nuclear Information System (INIS)

    Takasawa, Yutaka

    1999-01-01

    Atomic vapor laser isotope separation (AVLIS) is a promising uranium enrichment technology in the next generation. Electrolytic reduction of uranium oxides into uranium metal is proposed for the preparation of uranium metal as a feed material for AVLIS plant. Considering economical performance, continuos process concept and minimizing the amount of radioactive waste, an electrolytic process for producing uranium metal directly from uranium oxides will offer potential advantages over the existing commercial process. Studies of uranium metal by electrolysis in fluoride salts (BaF 2 -LiF-UF 4 (74-11-15 w/o) at 1150-1200degC, using both a laboratory scale apparatus and an engineering scale one, and continuous casting of uranium metal were carried out in order to decide the optimum operating conditions and the design of the industrial electrolytic cells. (author)

  16. Energy and materials flows in the fabrication of iron and steel semifinished products

    Energy Technology Data Exchange (ETDEWEB)

    Darby, J.B. Jr.; Arons, R.M.

    1979-08-01

    The flow of energy and materials in the fabrication of iron and steel semifinished products from molten metal is discussed. The focus is on techniques to reduce the amount of energy required to produce the typical products of integrated steel plants and iron and steel foundries. In integrated steel plants, if only 50% of the steel being cast were continuously cast, industry-wide energy consumption would be reduced by 6 to 15%. Further major energy savings could be achieved by increased use of by-product gases and regenerators in the various reheat operations. Finally, systems optimization studies to maintain the even flow of materials at full capacity should yield further improvements in energy efficiency. In foundry operations, alternate heating methods in forging operations and the use of no-bake molding and core materials should result in substantial energy savings. Studies of specific operations will suggest housekeeping changes to minimize wasted energy. These changes might include fixing heat leaks, reducing floor space requirements, improving temperature regulation, lowering working temperatures in some steel-forming operations, redesigning products, and minimizing scrap generation. There is also a need for new, energy conserving technologies. A good example would be the development of nondestructive testing to determine the existence, location, and size of defects in ingots at elevated temperatures. A second example is the need to reduce, through system studies, the large amount of scrap typical of foundry operations. Finally, computer control of steel mill operations (materials flow, furnace residence times, excessive heating or overheating, and full capacity utilization of all facilities at all times) deserves further study.

  17. Production and use of metals and oxygen for lunar propulsion

    Science.gov (United States)

    Hepp, Aloysius F.; Linne, Diane L.; Groth, Mary F.; Landis, Geoffrey A.; Colvin, James E.

    1991-01-01

    Production, power, and propulsion technologies for using oxygen and metals derived from lunar resources are discussed. The production process is described, and several of the more developed processes are discussed. Power requirements for chemical, thermal, and electrical production methods are compared. The discussion includes potential impact of ongoing power technology programs on lunar production requirements. The performance potential of several possible metal fuels including aluminum, silicon, iron, and titanium are compared. Space propulsion technology in the area of metal/oxygen rocket engines is discussed.

  18. Fabrication of metal matrix composite by semi-solid powder processing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yufeng [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Various metal matrix composites (MMCs) are widely used in the automotive, aerospace and electrical industries due to their capability and flexibility in improving the mechanical, thermal and electrical properties of a component. However, current manufacturing technologies may suffer from insufficient process stability and reliability and inadequate economic efficiency and may not be able to satisfy the increasing demands placed on MMCs. Semi-solid powder processing (SPP), a technology that combines traditional powder metallurgy and semi-solid forming methods, has potential to produce MMCs with low cost and high efficiency. In this work, the analytical study and experimental investigation of SPP on the fabrication of MMCs were explored. An analytical model was developed to understand the deformation mechanism of the powder compact in the semi-solid state. The densification behavior of the Al6061 and SiC powder mixtures was investigated with different liquid fractions and SiC volume fractions. The limits of SPP were analyzed in terms of reinforcement phase loading and its impact on the composite microstructure. To explore adoption of new materials, carbon nanotube (CNT) was investigated as a reinforcing material in aluminum matrix using SPP. The process was successfully modeled for the mono-phase powder (Al6061) compaction and the density and density distribution were predicted. The deformation mechanism at low and high liquid fractions was discussed. In addition, the compaction behavior of the ceramic-metal powder mixture was understood, and the SiC loading limit was identified by parametric study. For the fabrication of CNT reinforced Al6061 composite, the mechanical alloying of Al6061-CNT powders was first investigated. A mathematical model was developed to predict the CNT length change during the mechanical alloying process. The effects of mechanical alloying time and processing temperature during SPP were studied on the mechanical, microstructural and

  19. Fabrication of smooth patterned structures of refractory metals, semiconductors, and oxides via template stripping.

    Science.gov (United States)

    Park, Jong Hyuk; Nagpal, Prashant; McPeak, Kevin M; Lindquist, Nathan C; Oh, Sang-Hyun; Norris, David J

    2013-10-09

    The template-stripping method can yield smooth patterned films without surface contamination. However, the process is typically limited to coinage metals such as silver and gold because other materials cannot be readily stripped from silicon templates due to strong adhesion. Herein, we report a more general template-stripping method that is applicable to a larger variety of materials, including refractory metals, semiconductors, and oxides. To address the adhesion issue, we introduce a thin gold layer between the template and the deposited materials. After peeling off the combined film from the template, the gold layer can be selectively removed via wet etching to reveal a smooth patterned structure of the desired material. Further, we demonstrate template-stripped multilayer structures that have potential applications for photovoltaics and solar absorbers. An entire patterned device, which can include a transparent conductor, semiconductor absorber, and back contact, can be fabricated. Since our approach can also produce many copies of the patterned structure with high fidelity by reusing the template, a low-cost and high-throughput process in micro- and nanofabrication is provided that is useful for electronics, plasmonics, and nanophotonics.

  20. Injectable dextran hydrogels fabricated by metal-free click chemistry for cartilage tissue engineering.

    Science.gov (United States)

    Wang, Xiaoyu; Li, Zihan; Shi, Ting; Zhao, Peng; An, Kangkang; Lin, Chao; Liu, Hongwei

    2017-04-01

    Injectable dextran-based hydrogels were prepared for the first time by bioorthogonal click chemistry for cartilage tissue engineering. Click-crosslinked injectable hydrogels based on cyto-compatible dextran (Mw=10kDa) were successfully fabricated under physiological conditions by metal-free alkyne-azide cycloaddition (click) reaction between azadibenzocyclooctyne-modified dextran (Dex-ADIBO) and azide-modified dextran (Dex-N 3 ). Gelation time of these dextran hydrogels could be regulated in the range of approximately 1.1 to 10.2min, depending on the polymer concentrations (5% or 10%) and ADIBO substitution degree (DS, 5 or 10) of Dex-ADIBO. Rheological analysis indicated that the dextran hydrogels were elastic and had storage moduli from 2.1 to 6.0kPa with increasing DS of ADIBO from 5 to 10. The in vitro tests revealed that the dextran hydrogel crosslinked from Dex-ADIBO DS 10 and Dex-N 3 DS 10 at a polymer concentration of 10% could support high viability of individual rabbit chondrocytes and the chondrocyte spheroids encapsulated in the hydrogel over 21days. Individual chondrocytes and chondrocyte spheroids in the hydrogel could produce cartilage matrices such as collagen and glycosaminoglycans. However, the chondrocyte spheroids produced a higher content of matrices than individual chondrocytes. This study indicates that metal-free click chemistry is effective to produce injectable dextran hydrogels for cartilage tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Manufacturing processes in the textile industry. Expert Systems for fabrics production

    OpenAIRE

    Bullon, Juan; González Arrieta, Angélica; Hernández Encinas, Ascensión; Queiruga Dios, Araceli

    2017-01-01

    The textile industry is characterized by the economic activity whose objective is the production of fibres, yarns, fabrics, clothing and textile goods for home and decoration,as well as technical and industrial purposes. Within manufacturing, the Textile is one of the oldest and most complex sectors which includes a large number of sub-sectors covering the entire production cycle, from raw materials and intermediate products, to the production of final products. Textile industry activities pr...

  2. Fabrication and electrocatalytic application of functionalized nanoporous carbon material with different transition metal oxides

    International Nuclear Information System (INIS)

    Samiee, L.; Shoghi, F.; Vinu, A.

    2013-01-01

    Highlights: ► Fabrication of highly ordered functionalized nanoporous carbon material with different types of transition metal oxides. ► Novel electrocatalytic activity of functionalized nanoporous carbon material. ► Simultaneous effect of surface area and surface reactivity parameters on electrocatalytic activity. - Abstract: In the work presented here, an attempt is made to study the effect of functionalization with different transition metal oxides on the mesostructural properties as well as electrochemical behavior of Pt/nanoporous carbon supports. In this respect, the functionalized samples have been synthesized by using CMK-3 and metallocene as transition metal sources. The platinum catalysts (5 wt% Pt) obtained through a conventional wet impregnation method. All the materials have been characterized by XRD (low and high), N 2 adsorption–desorption isotherms, high-resolution transmission electron microscopy, high-resolution field emission scanning electron, EDX mapping images and cyclic voltammetry (CV) and rotating disk electrode (RDE) techniques. The results showed that the mesostructural order has been destroyed by functionalization of CMK-3 with CoO, whereas it is not that much affected in NiO and CuO functionalized samples. EDX image mapping exhibited the good and uniform dispersion of functionalizing elements (Ni, Cu, Fe and Co), Pt in the carbon supports. Moreover, XRD studies revealed the formation of smaller platinum crystallite sizes in NiO and CuO functionalized samples in relative to other functionalized supports. Electrochemical measurements were performed using CV and RDE method. Kinetic analysis revealed an activity increases in the following order: CMK-3-NiO-Pt > CMK-3-CuO-Pt > CMK-3-CoO-Pt > CMK-3-Fe 2 O 3 -Pt which is showing of simultaneous effect of surface area and surface reactivity parameters.

  3. Fabrication and electrocatalytic application of functionalized nanoporous carbon material with different transition metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Samiee, L., E-mail: Leila.Samiee83@gmail.com [Development and Optimization of Energy Technologies Research Division, Research Institute of Petroleum Industry (RIPI), West Boulevard, Near Azadi Sports Complex, Tehran (Iran, Islamic Republic of); Shoghi, F. [Development and Optimization of Energy Technologies Research Division, Research Institute of Petroleum Industry (RIPI), West Boulevard, Near Azadi Sports Complex, Tehran (Iran, Islamic Republic of); Vinu, A., E-mail: a.vinu@uq.edu.au [Australian Institute for Bioengineering and Nanotechnology(AIBN), University of Queensland, Corner College and Cooper Roads (Bld75), Brisbane, Qld 4072 (Australia)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Fabrication of highly ordered functionalized nanoporous carbon material with different types of transition metal oxides. Black-Right-Pointing-Pointer Novel electrocatalytic activity of functionalized nanoporous carbon material. Black-Right-Pointing-Pointer Simultaneous effect of surface area and surface reactivity parameters on electrocatalytic activity. - Abstract: In the work presented here, an attempt is made to study the effect of functionalization with different transition metal oxides on the mesostructural properties as well as electrochemical behavior of Pt/nanoporous carbon supports. In this respect, the functionalized samples have been synthesized by using CMK-3 and metallocene as transition metal sources. The platinum catalysts (5 wt% Pt) obtained through a conventional wet impregnation method. All the materials have been characterized by XRD (low and high), N{sub 2} adsorption-desorption isotherms, high-resolution transmission electron microscopy, high-resolution field emission scanning electron, EDX mapping images and cyclic voltammetry (CV) and rotating disk electrode (RDE) techniques. The results showed that the mesostructural order has been destroyed by functionalization of CMK-3 with CoO, whereas it is not that much affected in NiO and CuO functionalized samples. EDX image mapping exhibited the good and uniform dispersion of functionalizing elements (Ni, Cu, Fe and Co), Pt in the carbon supports. Moreover, XRD studies revealed the formation of smaller platinum crystallite sizes in NiO and CuO functionalized samples in relative to other functionalized supports. Electrochemical measurements were performed using CV and RDE method. Kinetic analysis revealed an activity increases in the following order: CMK-3-NiO-Pt > CMK-3-CuO-Pt > CMK-3-CoO-Pt > CMK-3-Fe{sub 2}O{sub 3}-Pt which is showing of simultaneous effect of surface area and surface reactivity parameters.

  4. Risk assessment of allergen metals in cosmetic products.

    Science.gov (United States)

    Sipahi, Hande; Charehsaz, Mohammad; Güngör, Zerrin; Erdem, Onur; Soykut, Buğra; Akay, Cemal; Aydin, Ahmet

    2015-01-01

    Cosmetics are one of the most common reasons for hospital referrals with allergic contact dermatitis. Because of the increased use of cosmetics within the population and an increase in allergy cases, monitoring of heavy metals, especially allergen metals, is crucial. The aim of this study was to investigate the concentration of allergen metals, nickel (Ni), cobalt (Co), and chromium (Cr), in the most commonly used cosmetic products including mascara, eyeliner, eye shadow, lipstick, and nail polish. In addition, for safety assessment of cosmetic products, margin of safety of the metals was evaluated. Forty-eight makeup products were purchased randomly from local markets and large cosmetic stores in Istanbul, Turkey, and an atomic absorption spectrometer was used for metal content determination. Risk assessment of the investigated cosmetic products was performed by calculating the systemic exposure dosage (SED) using Scientific Committee on Consumer Safety guideline. According to the results of this investigation in all the samples tested, at least two of the allergen metals, Ni and/or Co and/or Cr were detected. Moreover, 97% of the Ni-detected products, 96% of Cr- and 54% of Co-detected products, contained over 1 μg/g of this metals, which is the suggested ultimate target value for sensitive population and thereby can be considered as the possible allergen. On the basis of the results of this study, SED of the metals was negligible; however, contact dermatitis caused by cosmetics is most probably due to the allergen metal content of the products. In conclusion, to assess the safety of the finished products, postmarketing vigilance and routine monitoring of allergen metals are very important to protect public health.

  5. Design, fabrication, and characterization of metallic nanostructures for surface-enhanced Raman spectroscopy and plasmonic applications

    Science.gov (United States)

    Hao, Qingzhen

    Metal/dielectric nanostructures have the ability to sustain coherent electron oscillations known as surface plasmons. Due to their capability of localizing and guiding light in sub-wavelength metal nanostructures beyond diffraction limits, surface plasmon-based photonics, or “plasmonics” has opened new physical phenomena and lead to novel applications in metamaterials, optoelectronics, surface enhanced spectroscopy and biological sensing. This dissertation centers on design, fabrication, characterization of metallic nanostructures and their applications in surface-enhanced Raman spectroscopy (SERS) and actively tunable plasmonics. Metal-dielectric nanostructures are the building blocks for photonic metamaterials. One valuable design guideline for metamaterials is the Babinet’s principle, which governs the optical properties of complementary nanostructures. However, most complementary metamaterials are designed for the far infrared region or beyond, where the optical absorption of metal is small. We have developed a novel dual fabrication method, capable of simultaneously producing optically thin complementary structures. From experimental measurements and theoretical simulations, we showed that Babinet’s principle qualitatively holds in the visible region for the optically thin complements. The complementary structure is also a good platform to study subtle differences between nanoparticles and nanoholes in SERS (a surface sensitive technique, which can enhance the conventional Raman cross-section by 106˜108 fold, thus very useful for highly sensitive biochemical sensing). Through experimental measurement and theoretical analysis, we showed that the SERS enhancement spectrum (plot of SERS enhancement versus excitation wavelengths), dominated by local near-field, for nanoholes closely follows their far-field optical transmission spectrum. However, the enhancement spectrum for nanoparticles red-shifts significantly from their far-field optical extinction

  6. MATERIALS FOR PRODUCTION OF METAL MOLDS

    Directory of Open Access Journals (Sweden)

    A. Ju. Jakovlev

    2007-01-01

    Full Text Available The influence of alloying with manganese, chromium, nickel, copper and molybdenum on mechanical characteristics and thermocyclic endurance of grayed steel and possibility of its application for metal casting molds is investigated.

  7. Fundamentals of displacement production in irradiated metals

    International Nuclear Information System (INIS)

    Doran, D.G.

    1975-09-01

    Radioinduced displacement damage in metals is described. Discussions are included on the displacement event itself, calculation of displacement rates in general, the manner in which different types of radiation interact with metals to produce displacements, the similarities and differences in the types of damage produced, the current status of computer simulations of displacement cascades, experimental evidence regarding cascades, and aspects of correlating damage produced by different types of radiation

  8. Fabrication of ultrahigh density metal-cell-metal crossbar memory devices with only two cycles of lithography and dry-etch procedures

    KAUST Repository

    Zong, Baoyu

    2013-05-20

    A novel approach to the fabrication of metal-cell-metal trilayer memory devices was demonstrated by using only two cycles of lithography and dry-etch procedures. The fabricated ultrahigh density crossbar devices can be scaled down to ≤70 nm in half-pitch without alignment issues. Depending on the different dry-etch mechanisms in transferring high and low density nanopatterns, suitable dry-etch angles and methods are studied for the transfer of high density nanopatterns. Some novel process methods have also been developed to eliminate the sidewall and other conversion obstacles for obtaining high density of uniform metallic nanopatterns. With these methods, ultrahigh density trilayer crossbar devices (∼2 × 1010 bit cm-2-kilobit electronic memory), which are composed of built-in practical magnetoresistive nanocells, have been achieved. This scalable process that we have developed provides the relevant industries with a cheap means to commercially fabricate three-dimensional high density metal-cell-metal nanodevices. © 2013 IOP Publishing Ltd.

  9. Fabrication of nano-sized metal patterns on flexible polyethylene-terephthalate substrate using bi-layer nanoimprint lithography

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seon Yong; Jung, Ho Yong [Department of Materials Science and Engineering, Korea University, Seoul, 136-701 (Korea, Republic of); Jeong, Jun-Ho [Nano-Mechanical Systems Research Center, Korea Institute of Machinery and Materials, Yuseong-gu Daejeon, 305-343 (Korea, Republic of); Lee, Heon, E-mail: heonlee@korea.ac.k [Department of Materials Science and Engineering, Korea University, Seoul, 136-701 (Korea, Republic of)

    2009-05-29

    Polymer films are widely used as a substrate for displays and for solar cells since they are cheap, transparent and flexible, and their material properties are easy to design. Polyethylene-terephthalate (PET) is especially useful for various applications requiring transparency, flexibility and good thermal and chemical resistance. In this study, nano-sized metal patterns were fabricated on flexible PET film by using nanoimprint lithography (NIL). Water-soluble poly-vinyl alcohol (PVA) resin was used as a planarization and sacrificial layer for the lift-off process, as it does not damage the PET films and can easily be etched off by using oxygen plasma. NIL was used to fabricate the nano-sized patterns on the non-planar or flexible substrate. Finally, a nano-sized metal pattern was successfully formed by depositing the metal layer over the imprinted resist patterns and applying the lift-off process, which is economic and environmentally friendly, to the PET films.

  10. Ultrastable Photoelectrodes for Solar Water Splitting Based on Organic Metal Halide Perovskite Fabricated by Lift-Off Process.

    Science.gov (United States)

    Nam, SeongSik; Mai, Cuc Thi Kim; Oh, Ilwhan

    2018-05-02

    Herein, we report an integrated photoelectrolysis of water employing organic metal halide (OMH) perovskite material. As generic OMH perovskite material and device architecture are highly susceptible to degradation by aqueous electrolytes, we have developed a versatile mold-cast and lift-off process to fabricate and assemble multipurpose metal encapsulation onto perovskite devices. With the metal encapsulation effectively protecting the perovskite cell and also functioning as electrocatalyst, the high-performance perovskite photoelectrodes exhibit high photovoltage and photocurrent that are effectively inherited from the original solid-state solar cell. More importantly, thus-fabricated perovskite photoelectrode demonstrates record-long unprecedented stability even at highly oxidizing potential in strong alkaline electrolyte. We expect that this versatile lift-off process can be adapted in a wide variety of photoelectrochemical devices to protect the material surfaces from corroding electrolyte and facilitate various electrochemical reactions.

  11. Principles and practices of lean production applied in a metal structures production system

    OpenAIRE

    Carvalho, Rogério; Alves, Anabela Carvalho; Lopes, Isabel da Silva

    2011-01-01

    This paper presents a work undertaken in a metal structures production system in a company producing several assorted products for the civil construction. The work aim was to improve the production process, solving several productive problems encountered in the production system, such as: deliveries delays, long lead times, too many material handling, high stocks, errors and defects in metal structures assembly and production, and unnecessary motions. The identified problems were analyzed and...

  12. Fabrication and physical properties of glass-fiber-reinforced thermoplastics for non-metal-clasp dentures.

    Science.gov (United States)

    Nagakura, Manamu; Tanimoto, Yasuhiro; Nishiyama, Norihiro

    2017-11-01

    Recently, non-metal-clasp dentures (NMCDs) made from thermoplastic resins such as polyamide, polyester, polycarbonate, and polypropylene have been used as removable partial dentures (RPDs). However, the use of such RPDs can seriously affect various tissues because of their low rigidity. In this study, we fabricated high-rigidity glass-fiber-reinforced thermoplastics (GFRTPs) for use in RPDs, and examined their physical properties such as apparent density, dynamic hardness, and flexural properties. GFRTPs made from E-glass fibers and polypropylene were fabricated using an injection-molding. The effects of the fiber content on the GFRTP properties were examined using glass-fiber contents of 0, 5, 10, 20, 30, 40, and 50 mass%. Commercially available denture base materials and NMCD materials were used as controls. The experimental densities of GFRTPs with various fiber contents agreed with the theoretical densities. Dynamic micro-indentation tests confirmed that the fiber content does not affect the GFRTP surface properties such as dynamic hardness and elastic modulus, because most of the reinforcing glass fibers are embedded in the polypropylene. The flexural strength increased from 55.8 to 217.6 MPa with increasing glass-fiber content from 0 to 50 mass%. The flexural modulus increased from 1.75 to 7.42 GPa with increasing glass-fiber content from 0 to 50 mass%, that is, the flexural strength and modulus of GFRTP with a fiber content of 50 mass% were 3.9 and 4.2 times, respectively, those of unreinforced polypropylene. These results suggest that fiber reinforcement has beneficial effects, and GFRTPs can be used in NMCDs because their physical properties are better than those of controls. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2254-2260, 2017. © 2016 Wiley Periodicals, Inc.

  13. Synthesis, fabrication, and spectroscopy of nano-scale photonic noble metal materials

    Science.gov (United States)

    Egusa, Shunji

    Nanometer is an interesting scale for physicists, chemists, and materials scientists, in a sense that it lies between the macroscopic and the atomic scales. In this regime, materials exhibit distinct physical and chemical properties that are clearly different from those of atoms or macroscopic bulk. This thesis is concerned about both physics and chemistry of noble metal nano-structures. Novel chemical syntheses and physical fabrications of various noble metal nano-structures, and the development of spectroscopic techniques for nano-structures are presented. Scanning microscopy/spectroscopy techniques inherently perturbs the true optical responses of the nano-structures. However, by using scanning tunneling microscope (STM) tip as the nanometer-confined excitation source of surface plasmons in the samples, and subsequently collecting the signals in the Fourier space, it is shown that the tip-perturbed part of the signals can be deconvoluted. As a result, the collected signal in this approach is the pure response of the sample. Coherent light is employed to study the optical response of nano-structures, in order to avoid complication from tip-perturbation as discussed above. White-light super-continuum excites the nano-structure, the monolayer of Au nanoparticles self-assembled on silicon nitride membrane substrates. The coherent excitation reveals asymmetric surface plasmon resonance in the nano-structures. One of the most important issues in nano-scale science is to gain control over the shape, size, and assembly of nanoparticles. A novel method is developed to chemically synthesize ligand-passivated atomic noble metal clusters in solution phase. The method, named thermal decomposition method, enables facile yet robust synthesis of fluorescent atomic clusters. Thus synthesized atomic clusters are very stable, and show behaviors of quantum dots. A novel and versatile approach for creation of nanoparticle arrays is developed. This method is different from the

  14. A rapid process of Yba2Cu3O7-δ thin film fabrication using trifluoroacetate metal-organic deposition with polyethylene glycol additive

    DEFF Research Database (Denmark)

    Wu, Wei; Feng, Feng; Shi, Kai

    2013-01-01

    Trifluoroacetate metal-organic deposition (TFA-MOD) is a promising technique to fabricate YBa2Cu3O7-δ (YBCO) superconducting films. However, its slow pyrolysis process, which usually takes more than 10 h, constitutes a barrier for industrial production. In this study, polyethylene glycol (PEG......) was utilized to reduce the stress generation inside the coated films when the strong pyrolysis reactions happen. With the addition of 30 wt% PEG2000 to the precursor solution, a smooth film surface could be obtained through a rapid pyrolysis process of 15 min. After the optimizations of the crystallization...... and oxygenation processes, mass percentage and molecular weight of PEG additive, YBCO thin films with Jc of about 4.5 MA cm-2 (77 K, self-field) could be routinely fabricated using (20-30) wt% PEG(1000-2000) additive with a total treatment time of about 2 h including the 15 min pyrolysis process time. The effects...

  15. Dimensional accuracy of internal cooling channel made by selective laser melting (SLM And direct metal laser sintering (DMLS processes in fabrication of internally cooled cutting tools

    Directory of Open Access Journals (Sweden)

    Ghani S. A. C.

    2017-01-01

    Full Text Available Selective laser melting(SLM and direct metal laser sintering(DMLS are preferred additive manufacturing processes in producing complex physical products directly from CAD computer data, nowadays. The advancement of additive manufacturing promotes the design of internally cooled cutting tool for effectively used in removing generated heat in metal machining. Despite the utilisation of SLM and DMLS in a fabrication of internally cooled cutting tool, the level of accuracy of the parts produced remains uncertain. This paper aims at comparing the dimensional accuracy of SLM and DMLS in machining internally cooled cutting tool with a special focus on geometrical dimensions such as hole diameter. The surface roughness produced by the two processes are measured with contact perthometer. To achieve the objectives, geometrical dimensions of identical tool holders for internally cooled cutting tools fabricated by SLM and DMLS have been determined by using digital vernier calliper and various magnification of a portable microscope. In the current study, comparing internally cooled cutting tools made of SLM and DMLS showed that generally the higher degree of accuracy could be obtained with DMLS process. However, the observed differences in surface roughness between SLM and DMLS in this study were not significant. The most obvious finding to emerge from this study is that the additive manufacturing processes selected for fabricating the tool holders for internally cooled cutting tool in this research are capable of producing the desired internal channel shape of internally cooled cutting tool.

  16. Microbial and heavy metal contamination of pineapple products ...

    African Journals Online (AJOL)

    SAM

    Quantitative determination of heavy metals: zinc, iron, lead, copper, cadmium and aluminium ...... consumption of dairy products, fish/seafood and meat from Ismailia ... Contamination in Green Leafy Vegetables Grown in Bangalore Urban.

  17. A top-down approach for fabricating three-dimensional closed hollow nanostructures with permeable thin metal walls

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2017-06-01

    Full Text Available We report on a top-down method for the controlled fabrication of three-dimensional (3D, closed, thin-shelled, hollow nanostructures (nanocages on planar supports. The presented approach is based on conventional microelectronic fabrication processes and exploits the permeability of thin metal films to hollow-out polymer-filled metal nanocages through an oxygen-plasma process. The technique is used for fabricating arrays of cylindrical nanocages made of thin Al shells on silicon substrates. This hollow metal configuration features optical resonance as revealed by spectral reflectance measurements and numerical simulations. The fabricated nanocages were demonstrated as a refractometric sensor with a measured bulk sensitivity of 327 nm/refractive index unit (RIU. The pattern design flexibility and controllability offered by top-down nanofabrication techniques opens the door to the possibility of massive integration of these hollow 3D nano-objects on a chip for applications such as nanocontainers, nanoreactors, nanofluidics, nano-biosensors and photonic devices.

  18. Aerosol based direct-write micro-additive fabrication method for sub-mm 3D metal-dielectric structures

    Science.gov (United States)

    Rahman, Taibur; Renaud, Luke; Heo, Deuk; Renn, Michael; Panat, Rahul

    2015-10-01

    The fabrication of 3D metal-dielectric structures at sub-mm length scale is highly important in order to realize low-loss passives and GHz wavelength antennas with applications in wearable and Internet-of-Things (IoT) devices. The inherent 2D nature of lithographic processes severely limits the available manufacturing routes to fabricate 3D structures. Further, the lithographic processes are subtractive and require the use of environmentally harmful chemicals. In this letter, we demonstrate an additive manufacturing method to fabricate 3D metal-dielectric structures at sub-mm length scale. A UV curable dielectric is dispensed from an Aerosol Jet system at 10-100 µm length scale and instantaneously cured to build complex 3D shapes at a length scale  <1 mm. A metal nanoparticle ink is then dispensed over the 3D dielectric using a combination of jetting action and tilted dispense head, also using the Aerosol Jet technique and at a length scale 10-100 µm, followed by the nanoparticle sintering. Simulation studies are carried out to demonstrate the feasibility of using such structures as mm-wave antennas. The manufacturing method described in this letter opens up the possibility of fabricating an entirely new class of custom-shaped 3D structures at a sub-mm length scale with potential applications in 3D antennas and passives.

  19. Aerosol based direct-write micro-additive fabrication method for sub-mm 3D metal-dielectric structures

    International Nuclear Information System (INIS)

    Rahman, Taibur; Panat, Rahul; Renaud, Luke; Heo, Deuk; Renn, Michael

    2015-01-01

    The fabrication of 3D metal-dielectric structures at sub-mm length scale is highly important in order to realize low-loss passives and GHz wavelength antennas with applications in wearable and Internet-of-Things (IoT) devices. The inherent 2D nature of lithographic processes severely limits the available manufacturing routes to fabricate 3D structures. Further, the lithographic processes are subtractive and require the use of environmentally harmful chemicals. In this letter, we demonstrate an additive manufacturing method to fabricate 3D metal-dielectric structures at sub-mm length scale. A UV curable dielectric is dispensed from an Aerosol Jet system at 10–100 µm length scale and instantaneously cured to build complex 3D shapes at a length scale  <1 mm. A metal nanoparticle ink is then dispensed over the 3D dielectric using a combination of jetting action and tilted dispense head, also using the Aerosol Jet technique and at a length scale 10–100 µm, followed by the nanoparticle sintering. Simulation studies are carried out to demonstrate the feasibility of using such structures as mm-wave antennas. The manufacturing method described in this letter opens up the possibility of fabricating an entirely new class of custom-shaped 3D structures at a sub-mm length scale with potential applications in 3D antennas and passives. (technical note)

  20. Fabrication of metallic Cd multifarious prismatic microcrystals (CMPMCs) under NH{sub 3} gas ambient

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Waheed S. [Research Centre of Materials Science, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Cao, Chuanbao, E-mail: cbcao@bit.edu.cn [Research Centre of Materials Science, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Butt, Faheem K.; Ali, Zulfiqar [Research Centre of Materials Science, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Baig, Anisullah [Department of Engineering-Applied Sciences, University of California, Davis, CA 95616 (United States); Ain, Qurrat ul; Iqbal, M. Zubair [Department of Physics, School of Physics and Mathematics, University of Science and Technology Beijing, Beijing 100083 (China); Sadaf, Asma [Advance Photonics Center, Southeast University, Nanjing 210096 (China); Shah, Sajjad H. [Department of Physics, Beijing Institute of Technology, Beijing 100081 (China)

    2011-07-25

    Highlights: > Cd prismatic microcrystals are prepared by thermal reduction of CdO under NH{sub 3} gas. > Vapour-solid (VS) process based growth mechanism governs the formation of CMPMCs. > PL spectrum for CMPMCs exhibits UV band at 365 nm and visible emission at 404 nm. > This study shows the potential of CMPMCs for applications in optical devices. - Abstract: We report here highly dense and pure metallic cadmium (Cd) multifarious prismatic microcrystals (CMPMCs) fabricated by thermal decomposition of cadmium oxide (CdO) powder at 700 deg. C for 60 min under NH{sub 3} gas ambient inside horizontal tube furnace. CMPMCs were observed to be 1-1.5 {mu}m in size with interesting morphologies of various cross sections such as triangular, trapezoidal, pentagonal and hexagonal etc. having solid, hollow/semi-hollow appearances. The as-synthesized CMPMCS were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Room temperature photoluminescence (PL) spectrum for Cd metal microcrystals exhibited a prominent emission band at 365 along with a shoulder peak at 404 nm. The UV main emission band is ascribed to radiative recombination of the electrons in the s, p conduction band near the Fermi surface and holes in the d bands generated under xenon light excitation whereas shoulder peak may be owing to surface oxidation effects or induced defects. This study shows the potential of CMPMCs for applications in optical devices. Based on vapour-solid (VS) process, growth mechanism for the formation of CMPMCs is also proposed and discussed briefly.

  1. Fabrication of high precision metallic freeform mirrors with magnetorheological finishing (MRF)

    Science.gov (United States)

    Beier, Matthias; Scheiding, Sebastian; Gebhardt, Andreas; Loose, Roman; Risse, Stefan; Eberhardt, Ramona; Tünnermann, Andreas

    2013-09-01

    The fabrication of complex shaped metal mirrors for optical imaging is a classical application area of diamond machining techniques. Aspherical and freeform shaped optical components up to several 100 mm in diameter can be manufactured with high precision in an acceptable amount of time. However, applications are naturally limited to the infrared spectral region due to scatter losses for shorter wavelengths as a result of the remaining periodic diamond turning structure. Achieving diffraction limited performance in the visible spectrum demands for the application of additional polishing steps. Magnetorheological Finishing (MRF) is a powerful tool to improve figure and finish of complex shaped optics at the same time in a single processing step. The application of MRF as a figuring tool for precise metal mirrors is a nontrivial task since the technology was primarily developed for figuring and finishing a variety of other optical materials, such as glasses or glass ceramics. In the presented work, MRF is used as a figuring tool for diamond turned aluminum lightweight mirrors with electroless nickel plating. It is applied as a direct follow-up process after diamond machining of the mirrors. A high precision measurement setup, composed of an interferometer and an advanced Computer Generated Hologram with additional alignment features, allows for precise metrology of the freeform shaped optics in short measuring cycles. Shape deviations less than 150 nm PV / 20 nm rms are achieved reliably for freeform mirrors with apertures of more than 300 mm. Characterization of removable and induced spatial frequencies is carried out by investigating the Power Spectral Density.

  2. Mixing and settling in continuous metal production

    International Nuclear Information System (INIS)

    Richter, H.J.; Laaspere, J.T.; Fitzpatrick, J.M.

    1993-01-01

    Modern metallurgical processes produce metal from ore in a single converter operated in horizontal mode to permit staging of bath and oxygen potential by utilizing bottom-blowing of oxygen and fuel. The submerged injectors must create sufficient turbulence to provide excellent gas-liquid contact in order to maximize heat and mass transfer in the bath, but this turbulence must be selectively localized so as to provide adequate phase separation zones of metal and slag between the active turbulent zones. It is important to know the behavior of gas and liquids in the bubble plume, the nature and paths of liquids and entrainment into the plume, and separation phenomena including travel and behavior in the settling zones. Such knowledge is of fundamental value in designing reactors for continuous direct metal making. In this work the mixing caused by submerged injection of gas into a bath simulating a converter and subsequent phase separation of two immiscible liquids representing slag and metal respectively, are being studied experimentally and analytically. First results of experiments and of the numerical analysis are presented

  3. Metal-ceramic bond strength between a feldspathic porcelain and a Co-Cr alloy fabricated with Direct Metal Laser Sintering technique.

    Science.gov (United States)

    Dimitriadis, Konstantinos; Spyropoulos, Konstantinos; Papadopoulos, Triantafillos

    2018-02-01

    The aim of the present study was to record the metal-ceramic bond strength of a feldspathic dental porcelain and a Co-Cr alloy, using the Direct Metal Laser Sintering technique (DMLS) for the fabrication of metal substrates. Ten metal substrates were fabricated with powder of a dental Co-Cr alloy using DMLS technique (test group) in dimensions according to ISO 9693. Another ten substrates were fabricated with a casing dental Co-Cr alloy using classic casting technique (control group) for comparison. Another three substrates were fabricated using each technique to record the Modulus of Elasticity ( E ) of the used alloys. All substrates were examined to record external and internal porosity. Feldspathic porcelain was applied on the substrates. Specimens were tested using the three-point bending test. The failure mode was determined using optical and scanning electron microscopy. The statistical analysis was performed using t-test. Substrates prepared using DMLS technique did not show internal porosity as compared to those produced using the casting technique. The E of control and test group was 222 ± 5.13 GPa and 227 ± 3 GPa, respectively. The bond strength was 51.87 ± 7.50 MPa for test group and 54.60 ± 6.20 MPa for control group. No statistically significant differences between the two groups were recorded. The mode of failure was mainly cohesive for all specimens. Specimens produced by the DMLS technique cover the lowest acceptable metal-ceramic bond strength of 25 MPa specified in ISO 9693 and present satisfactory bond strength for clinical use.

  4. Photo-Curable Metal-Chelating Coatings Offer a Scalable Approach to Production of Antioxidant Active Packaging.

    Science.gov (United States)

    Lin, Zhuangsheng; Goddard, Julie

    2018-02-01

    Synthetic metal chelators (for example, ethylenediaminetetraacetic acid, EDTA) are widely used as additives to control trace transition metal induced oxidation in consumer products. To enable removal of synthetic chelators in response to increasing consumer demand for clean label products, metal-chelating active food packaging technologies have been developed with demonstrated antioxidant efficacy in simulated food systems. However, prior work in fabrication of metal-chelating materials leveraged batch chemical reactions to tether metal-chelating ligands, a process with limited industrial translatability for large-scale fabrication. To improve the industrial translatability, we have designed a 2-step laminated photo-grafting process to introduce metal chelating functionality onto common polymeric packaging materials. Iminodiacetic acid (IDA) functionalized materials were fabricated by photo-grafting poly(acrylic acid) onto polypropylene (PP) films, followed by a second photo-grafting process to graft-polymerize an IDA functionalized vinyl monomer (GMA-IDA). The photo-grafting was conducted under atmospheric conditions and was completed in 2 min. The resulting IDA functionalized metal-chelating material was able to chelate iron and copper, and showed antioxidant efficacy against ascorbic acid degradation, supporting its potential to be used synergistically with natural antioxidants for preservation of food and beverage products. The 2-step photo-grafting process improves the throughput of active packaging coatings, enabling potential roll-to-roll fabrication of metal-chelating active packaging materials for antioxidant food packaging applications. To address consumer and retail demands for "clean label" foods and beverages without a corresponding loss in product quality and shelf life, producers are seeking next generation technologies such as active packaging. In this work, we will report the synthesis of metal-chelating active packaging films, which enable removal

  5. Development and fabrication of seamless Aluminium finned clad tubes for metallic uranium fuel rods for research reactor

    International Nuclear Information System (INIS)

    Singh, A.K.; Hussain, M.M.; Jayachandran, N.K.; Abdulla, K.K.

    2012-01-01

    Natural uranium metal or its alloy is used as fuel in nuclear reactors. Usually fuel is clad with compatible material to prevent its direct contact with coolant which prevents spread of activity. One of the methods of producing fuel for nuclear reactor is by co-drawing finished uranium rods with aluminum clad tube to develop intimate contact for effective heat removal during reactor operation. Presently seam welded Aluminium tubes are used as clad for Research Reactor fuel. The paper will highlight entire fabrication process followed for the fabrication of seamless Aluminium finned tubes along with relevant characterisation results

  6. Topological superconductivity in metallic nanowires fabricated with a scanning tunneling microscope

    International Nuclear Information System (INIS)

    Rodrigo, J G; Crespo, V; Suderow, H; Vieira, S; Guinea, F

    2013-01-01

    We report on several low-temperature experiments supporting the presence of Majorana fermions in superconducting lead nanowires fabricated with a scanning tunneling microscope (STM). These nanowires are the connecting bridges between the STM tip and the sample resulting from indentation–retraction processes. We show here that by a controlled tuning of the nanowire region, in which superconductivity is confined by applied magnetic fields, the conductance curves obtained in these situations are indicative of topological superconductivity and Majorana fermions. The most prominent feature of this behavior is the emergence of a zero bias peak in the conductance curves, superimposed on a background characteristic of the conductance between a normal metal and a superconductor in the Andreev regime. The zero bias peak emerges in some nanowires when a magnetic field larger than the lead bulk critical field is applied. This field drives one of the electrodes into the normal state while the other, the tip, remains superconducting on its apex. Meanwhile a topological superconducting state appears in the connecting nanowire of nanometric size. (paper)

  7. Oxygen-to-metal ratio control during fabrication of mixed oxide fast breeder reactor fuel pellets

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Benecke, M.W.; Jentzen, W.R.; McCord, R.B.

    1979-05-01

    Oxygen-to-metal ratio (O/M) of mixed oxide fuel pellets can be controlled during fabrication by proper selection of binder (type and content) and sintering conditions. Sintering condition adjustments involved the passing of Ar--8% H 2 sintering gas across a cryostat ice bath controlled to temperatures ranging from -5 to -60 0 C to control as-sintered pellet O/M ratio. As-sintered fuel pellet O/M decreased with increasing Sterotex binder and PuO 2 concentrations, increasing sintering temperature, and decreasing sintering gas dew point. Approximate relationships between Sterotex binder level and O/M were established for PuO 2 --UO 2 and PuO 2 --ThO 2 fuels. O/M was relatively insensitive to Carbowax binder concentration. Several methods of increasing O/M using post-sintering pellet heat treatments were demonstrated, with the most reliable being a two-step process of first raising the O/M to 2.00 (stoichiometric) at 650 0 C in Ar--8% H 2 bubbled through H 2 O, followed by hydrogen reduction to specification O/M in oxygen-gettered Ar-8% H 2 at temperatures ranging from 1200 to 1690 0 C

  8. Bio-inspired silicon nanospikes fabricated by metal-assisted chemical etching for antibacterial surfaces

    Science.gov (United States)

    Hu, Huan; Siu, Vince S.; Gifford, Stacey M.; Kim, Sungcheol; Lu, Minhua; Meyer, Pablo; Stolovitzky, Gustavo A.

    2017-12-01

    The recently discovered bactericidal properties of nanostructures on wings of insects such as cicadas and dragonflies have inspired the development of similar nanostructured surfaces for antibacterial applications. Since most antibacterial applications require nanostructures covering a considerable amount of area, a practical fabrication method needs to be cost-effective and scalable. However, most reported nanofabrication methods require either expensive equipment or a high temperature process, limiting cost efficiency and scalability. Here, we report a simple, fast, low-cost, and scalable antibacterial surface nanofabrication methodology. Our method is based on metal-assisted chemical etching that only requires etching a single crystal silicon substrate in a mixture of silver nitrate and hydrofluoric acid for several minutes. We experimentally studied the effects of etching time on the morphology of the silicon nanospikes and the bactericidal properties of the resulting surface. We discovered that 6 minutes of etching results in a surface containing silicon nanospikes with optimal geometry. The bactericidal properties of the silicon nanospikes were supported by bacterial plating results, fluorescence images, and scanning electron microscopy images.

  9. Design, Fabrication, and Properties of High Damping Metal Matrix Composites—A Review

    Directory of Open Access Journals (Sweden)

    Qianfeng Fang

    2009-08-01

    Full Text Available Nowadays it is commonly considered that high damping materials which have both the good mechanical properties as structural materials and the high damping capacity for vibration damping are the most direct vibration damping solution. In metals and alloys however, exhibiting simultaneously high damping capacity and good mechanical properties has been noted to be normally incompatible because the microscopic mechanisms responsible for internal friction (namely damping capacity are dependent upon the parameters that control mechanical strength. To achieve a compromise, one of the most important methods is to develop two-phase composites, in which each phase plays a specific role: damping or mechanical strength. In this review, we have summarized the development of the design concept of high damping composite materials and the investigation of their fabrication and properties, including mechanical and damping properties, and suggested a new design concept of high damping composite materials where the hard ceramic additives exhibit high damping capacity at room temperature owing to the stress-induced reorientation of high density point defects in the ceramic phases and the high damping capacity of the composite comes mainly from the ceramic phases.

  10. Determination of Toxic Metals in Indian Smokeless Tobacco Products

    Directory of Open Access Journals (Sweden)

    Dhanashri Dhaware

    2009-01-01

    Full Text Available This study targets the lesser-known ingredients of smokeless tobacco products, i.e., the toxic metals, in Indian brands. The metals selected in the study included lead (Pb, cadmium (Cd, arsenic (As, copper (Cu, mercury (Hg, and selenium (Se. The differential pulse anodic stripping voltammetry (DPASV technique was used for estimating the metals Pb, Cd, and Cu; square wave voltammetry for As; and the cold vapor atomic absorption technique for Hg. The resulting levels of the metals were compared to the daily consumption of the smokeless tobacco products. It was observed that almost 30% of gutkha brand samples exceeded the permissible levels of metals Pb and Cu, when compared to the provisional tolerable intake limits determined by the FAO/WHO. The reliability of data was assured by analyzing standard reference materials.

  11. Sorption techniques for production of high purity refractory metals

    International Nuclear Information System (INIS)

    Shatalov, V.V.; Peganov, V.A.; Logvinenko, I.A.; Molchanova, T.V.

    2004-01-01

    A consideration is given to potentialities of sorption processes tot provide a high quality of refractory metal and their alloys when using hydrometallurgical methods for raw material processing. The efficiency of application of ion exchange technology is shown for complex solutions reprocessing for various types of polymetallic raw materials, among them uranium ores, enriched concentrates of refractory metal ores, intermediate products, waste solutions. Based on investigation results on the behaviour of elements in process solutions and the mechanism of their sorption and elution, the process of pure chemical compounds production are developed which provide thereafter manufacturing compact metals. The flowsheets developed are mastered on a commercial scale [ru

  12. Development of Low-Cost Method for Fabrication of Metal Neutron Guides

    Energy Technology Data Exchange (ETDEWEB)

    Engelhaupt, Darell [Dawn Research Inc., Madison, AL (United States); Khaykovich, Boris [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Romaine, Suzanne [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)

    2017-12-19

    Neutron scattering is one of the most useful methods of studying the structure and dynamics of matter. US DOE neutron scattering research facilities at Oak Ridge National Laboratory are among the World’s most advanced, providing researchers with unmatched capabilities for probing the structure and properties of materials, including engineering and biological systems. This task is to develop a lower cost process to optimize and produce the required neutron guides capable of efficiently delivering neutron beams for tens of meters between neutron moderators and instruments. Therefore, our effort is to improve the performance and lower the production cost of neutron guides. Our approach aims at improving guide quality while controlling their rising costs by adopting a novel electroforming replication approach to their fabrication. These guides will be especially advantageous when used near the neutron source since the radiation resistance of nickel is superior to glass. Additionally, we are depositing low-stress nickel from an extremely low impurity solution completely free of stress-reducing agents, which nominally contain and impart sulfur, carbon and other elements that potentially activate in the neutron environment. This is achieved by using a pulsed periodically reversed current methodology. The best guides quote waviness of 0.1 mrad. It is reasonable to prepare just one mandrel of about 0.5 m long, for production of tens of guide segments, saving both the cost and supply time of guides to neutron facilities. We estimate that we can fabricate a single mandrel for the current cost of an individual one-meter guide, but from this, we can produce tens of meters of guide very inexpensively without mandrel refurbishment. While a multilayer coating will add to the overall cost, we expect this will be less than that of commercially available guides today. Therefore, we will produce higher quality guides, which are less susceptible to radiation damage, at the lower cost

  13. Production of sintered porous metal fluoride pellets

    Science.gov (United States)

    Anderson, L.W.; Stephenson, M.J.

    1973-12-25

    Porous pellets characterized by a moderately reactive crust and a softer core of higher reactivity are produced by forming agglomerates containing a metal fluoride powder and a selected amount ofwater. The metal fluoride is selected to be sinterable and essentially non-reactive with gaseous fluorinating agents. The agglomerates are contacted with a gaseous fluorinating agent under controlled conditions whereby the heat generated by localized reaction of the agent and water is limited to values effccting bonding by localized sintering. Porous pellets composed of cryolite (Na/sub 3/AlF/sub 6/) can be used to selectively remove trace quantities of niobium pentafluoride from a feed gas consisting predominantly of uranium hexafluoride. (Official Gazette)

  14. Comparison of Jacket Production Processes Designed by Fabric Materials and Leather

    Directory of Open Access Journals (Sweden)

    Emine Utkun

    2011-02-01

    Full Text Available Leather and leather products industry has shown a significant improvement in export area, as a result of intensive shuttle trades and demand that comes from crumbling Eastern Bloc countries in 1990's. This development has caused capacity increasing and thus makes large investments in this sector. Leather garment industry differs from woven or fabrics industry at various points. Differantation seems in raw materials features such as size, thickness, biological, chemical or physical homogenity. Due to the natural structure, leather shows different attributes in different regions. This study examines the diversity of production processes of leather and fabric designed jacket.

  15. Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink.

    Science.gov (United States)

    Hong, Sukjoon; Yeo, Junyeob; Kim, Gunho; Kim, Dongkyu; Lee, Habeom; Kwon, Jinhyeong; Lee, Hyungman; Lee, Phillip; Ko, Seung Hwan

    2013-06-25

    We introduce a facile approach to fabricate a metallic grid transparent conductor on a flexible substrate using selective laser sintering of metal nanoparticle ink. The metallic grid transparent conductors with high transmittance (>85%) and low sheet resistance (30 Ω/sq) are readily produced on glass and polymer substrates at large scale without any vacuum or high-temperature environment. Being a maskless direct writing method, the shape and the parameters of the grid can be easily changed by CAD data. The resultant metallic grid also showed a superior stability in terms of adhesion and bending. This transparent conductor is further applied to the touch screen panel, and it is confirmed that the final device operates firmly under continuous mechanical stress.

  16. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    Science.gov (United States)

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.

    2002-01-01

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  17. Integration of Heat Treatment with Shot Peening of 17-4 Stainless Steel Fabricated by Direct Metal Laser Sintering

    Science.gov (United States)

    AlMangour, Bandar; Yang, Jenn-Ming

    2017-11-01

    Direct metal laser sintering (DMLS) is a promising powder-based additive manufacturing process for fabrication of near-net-shape parts. However, the typically poor fatigue performance of DMLS parts must be addressed for use in demanding industrial applications. Post-treatment can be applied to enhance the performance of such components. Earlier attempts at inducing grain refinement through severe plastic deformation of part surfaces using shot peening improved the physical and mechanical properties of metals without chemical alteration. However, heat treatment can modify the surface-hardening effects attained by shot peening. Hence, we examined the feasibility of applying shot peening combined with heat treatment to improve the performance of DMLS-fabricated 17-4 stainless steel parts through microstructural evolution studies and hardness measurements. Compared to a specimen treated only by shot peening, the sample exposed to additional heat treatment showed increased hardness due to aging of the dominant phase.

  18. Impact of heavy metals on the oil products biodegradation process.

    Science.gov (United States)

    Zukauskaite, Audrone; Jakubauskaite, Viktorija; Belous, Olga; Ambrazaitiene, Dalia; Stasiskiene, Zaneta

    2008-12-01

    Oil products continue to be used as a principal source of energy. Wide-scale production, transport, global use and disposal of petroleum have made them major contaminants in prevalence and quantity in the environment. In accidental spills, actions are taken to remove or remediate or recover the contaminants immediately, especially if they occur in environmentally sensitive areas, for example, in coastal zones. Traditional methods to cope with oil spills are confined to physical containment. Biological methods can have an advantage over the physical-chemical treatment regimes in removing spills in situ as they offer biodegradation of oil fractions by the micro-organisms. Recently, biological methods have been known to play a significant role in bioremediation of oil-polluted coastal areas. Such systems are likely to be of significance in the effective management of sensitive coastal ecosystems chronically subjected to oil spillage. For this reason the aim of this paper is to present an impact of Mn, Cu, Co and Mo quantities on oil biodegradation effectiveness in coastal soil and to determine the relationship between metal concentrations and degradation of two oil products (black oil and diesel fuel). Soil was collected in the Baltic Sea coastal zone oil products degradation area (Klaipeda, Lithuania). The experiment consisted of two parts: study on the influence of micro-elements on the oil product biodegradation process; and analysis of the influence of metal concentration on the number of HDMs. The analysis performed and results obtained address the following areas: impact of metal on a population of hydrocarbon degrading micro-organisms, impact of metals on residual concentrations of oil products, influence of metals on the growth of micro-organisms, inter-relation of metal concentrations with degradation rates. Statistical analysis was made using ;Statgraphics plus' software. The influence of metals on the growth of micro-organisms, the biodegradation process

  19. Nonconsumable electrode assembly and use thereof for the electrolytic production of metals and silicon

    Science.gov (United States)

    Byrne, Stephen C.; Ray, Siba P.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor attached to a ceramic electrode body by a metal bond on a portion of the body having a level of free metal or metal alloy sufficient to effect a metal bond.

  20. State-of-art of modern technologies for metals production

    Energy Technology Data Exchange (ETDEWEB)

    Holappa, L [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Metallurgy

    1996-12-31

    The future raw materials are becoming lower in metal content and more complex, multimetal concentrates will be utilized. This will give challenges for metallurgists to develop new, efficient and energy saving processes. The main impacts for current and future production technologies come from energy need and environmental issues of the production processes themselves as well as the inevitable energy production for the metal making. Metals production consumes huge amount of energy, roughly 10 pct of the global energy consumption is caused by metallurgists. That is the necessity but it also means energy saving is one of the metallurgical industry have been enormous when looking back to the history. Since the 1960`s the efforts of the industry together with the strict legislation in the industrialized countries have conducted to greatly decreased emissions and improved pollution control. Breakthrough of new processes like copper flash smelting has aided this positive progress

  1. State-of-art of modern technologies for metals production

    Energy Technology Data Exchange (ETDEWEB)

    Holappa, L. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Metallurgy

    1995-12-31

    The future raw materials are becoming lower in metal content and more complex, multimetal concentrates will be utilized. This will give challenges for metallurgists to develop new, efficient and energy saving processes. The main impacts for current and future production technologies come from energy need and environmental issues of the production processes themselves as well as the inevitable energy production for the metal making. Metals production consumes huge amount of energy, roughly 10 pct of the global energy consumption is caused by metallurgists. That is the necessity but it also means energy saving is one of the metallurgical industry have been enormous when looking back to the history. Since the 1960`s the efforts of the industry together with the strict legislation in the industrialized countries have conducted to greatly decreased emissions and improved pollution control. Breakthrough of new processes like copper flash smelting has aided this positive progress

  2. A Passive Pressure Sensor Fabricated by Post-Fire Metallization on Zirconia Ceramic for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Tao Luo

    2014-09-01

    Full Text Available A high-temperature pressure sensor realized by the post-fire metallization on zirconia ceramic is presented. The pressure signal can be read out wirelessly through the magnetic coupling between the reader antenna and the sensor due to that the sensor is equivalent to an inductive-capacitive (LC resonance circuit which has a pressure-sensitive resonance frequency. Considering the excellent mechanical properties in high-temperature environment, multilayered zirconia ceramic tapes were used to fabricate the pressure-sensitive structure. Owing to its low resistivity, sliver paste was chosen to form the electrical circuit via post-fire metallization, thereby enhancing the quality factor compared to sensors fabricated by cofiring with a high-melting-point metal such as platinum, tungsten or manganese. The design, fabrication, and experiments are demonstrated and discussed in detail. Experimental results showed that the sensor can operate at 600 °C with quite good coupling. Furthermore, the average sensitivity is as high as 790 kHz/bar within the measurement range between 0 and 1 Bar.

  3. Luminance enhancement in quantum dot light-emitting diodes fabricated with Field’s metal as the cathode

    Science.gov (United States)

    Basilio, Carlos; Oliva, Jorge; Lopez-Luke, Tzarara; Pu, Ying-Chih; Zhang, Jin Z.; Rodriguez, C. E.; de la Rosa, E.

    2017-03-01

    This work reports the fabrication and characterization of blue-green quantum dot light-emitting diodes (QD-LEDs) by using core/shell/shell Cd1-x Zn x Se/ZnSe/ZnS quantum dots. Poly [(9,9-bis(3‧-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) was introduced in order to enhance the electron injection and also acted as a protecting layer during the deposition of the cathode (a Field’s metal sheet) on the organic/inorganic active layers at low temperature (63 °C). This procedure permitted us to eliminate the process of thermal evaporation for the deposition of metallic cathodes, which is typically used in the fabrication of OLEDs. The performance of devices made with an aluminum cathode was compared with that of devices which employed Field’s metal (FM) as the cathode. We found that the luminance and efficiency of devices with FM was ~70% higher with respect to those that employed aluminum as the cathode and their consumption of current was similar up to 13 V. We also demonstrated that the simultaneous presence of 1,2-ethanedethiol (EDT) and PFN enhanced the luminance in our devices and improved the current injection in QD-LEDs. Hence, the architecture for QD-LEDs presented in this work could be useful for the fabrication of low-cost luminescent devices.

  4. A randomized, controlled intervention of machine guarding and related safety programs in small metal-fabrication businesses.

    Science.gov (United States)

    Parker, David L; Brosseau, Lisa M; Samant, Yogindra; Xi, Min; Pan, Wei; Haugan, David

    2009-01-01

    Metal fabrication employs an estimated 3.1 million workers in the United States. The absence of machine guarding and related programs such as lockout/tagout may result in serious injury or death. The purpose of this study was to improve machine-related safety in small metal-fabrication businesses. We used a randomized trial with two groups: management only and management-employee. We evaluated businesses for the adequacy of machine guarding (machine scorecard) and related safety programs (safety audit). We provided all businesses with a report outlining deficiencies and prioritizing their remediation. In addition, the management-employee group received four one-hour interactive training sessions from a peer educator. We evaluated 40 metal-fabrication businesses at baseline and 37 (93%) one year later. Of the three nonparticipants, two had gone out of business. More than 40% of devices required for adequate guarding were missing or inadequate, and 35% of required safety programs and practices were absent at baseline. Both measures improved significantly during the course of the intervention. No significant differences in changes occurred between the two intervention groups. Machine-guarding practices and programs improved by up to 13% and safety audit scores by up to 23%. Businesses that added safety committees or those that started with the lowest baseline measures showed the greatest improvements. Simple and easy-to-use assessment tools allowed businesses to significantly improve their safety practices, and safety committees facilitated this process.

  5. Marginal and internal fit of cobalt-chromium copings fabricated using the conventional and the direct metal laser sintering techniques: A comparative in vitro study.

    Science.gov (United States)

    Ullattuthodi, Sujana; Cherian, Kandathil Phillip; Anandkumar, R; Nambiar, M Sreedevi

    2017-01-01

    This in vitro study seeks to evaluate and compare the marginal and internal fit of cobalt-chromium copings fabricated using the conventional and direct metal laser sintering (DMLS) techniques. A master model of a prepared molar tooth was made using cobalt-chromium alloy. Silicone impression of the master model was made and thirty standardized working models were then produced; twenty working models for conventional lost-wax technique and ten working models for DMLS technique. A total of twenty metal copings were fabricated using two different production techniques: conventional lost-wax method and DMLS; ten samples in each group. The conventional and DMLS copings were cemented to the working models using glass ionomer cement. Marginal gap of the copings were measured at predetermined four points. The die with the cemented copings are standardized-sectioned with a heavy duty lathe. Then, each sectioned samples were analyzed for the internal gap between the die and the metal coping using a metallurgical microscope. Digital photographs were taken at ×50 magnification and analyzed using measurement software. Statistical analysis was done by unpaired t -test and analysis of variance (ANOVA). The results of this study reveal that no significant difference was present in the marginal gap of conventional and DMLS copings ( P > 0.05) by means of ANOVA. The mean values of internal gap of DMLS copings were significantly greater than that of conventional copings ( P < 0.05). Within the limitations of this in vitro study, it was concluded that the internal fit of conventional copings was superior to that of the DMLS copings. Marginal fit of the copings fabricated by two different techniques had no significant difference.

  6. Current developments of fuel fabrication technologies at the plutonium fuel production facility, PFPF

    International Nuclear Information System (INIS)

    Asakura, K.; Aono, S.; Yamaguchi, T.; Deguchi, M.

    2000-01-01

    The Japan Nuclear Cycle Development Institute, JNC, designed, constructed and has operated the Plutonium Fuel Production Facility, PFPF, at the JNC Tokai Works to supply MOX fuels to the proto-type Fast Breeder Reactor, FBR, 'MONJU' and the experimental FBR 'JOYO' with 5 tonMOX/year of fabrication capability. Reduction of personal radiation exposure to a large amount of plutonium is one of the most important subjects in the development of MOX fabrication facility on a large scale. As the solution of this issue, the PFPF has introduced automated and/or remote controlled equipment in conjunction with computer controlled operation scheme. The PFPF started its operation in 1988 with JOYO reload fuel fabrication and has demonstrated MOX fuel fabrication on a large scale through JOYO and MONJU fuel fabrication for this decade. Through these operations, it has become obvious that several numbers of equipment initially installed in the PFPF need improvements in their performance and maintenance for commercial utilization of plutonium in the future. Furthermore, fuel fabrication of low density MOX pellets adopted in the MONJU fuel required a complete inspection because of difficulties in pellet fabrication compared with high density pellet for JOYO. This paper describes new pressing equipment with a powder recovery system, and pellet finishing and inspection equipment which has multiple functions, such as grinding measurements of outer diameter and density, and inspection of appearance to improve efficiency in the pellet finishing and inspection steps. Another development of technology concerning an annular pellet and an innovative process for MOX fuel fabrication are also described in this paper. (author)

  7. Fabrication of Surface Protein-Imprinted Nanoparticles Using a Metal Chelating Monomer via Aqueous Precipitation Polymerization.

    Science.gov (United States)

    Li, Wei; Sun, Yan; Yang, Chongchong; Yan, Xianming; Guo, Hao; Fu, Guoqi

    2015-12-16

    Molecular imprinting is a promising way for constructing artificial protein recognition materials, but it has been challenged by difficulties such as restricted biomacromolecule transfer in the cross-linked polymer networks, and reduced template-monomer interactions that are due to the required aqueous media. Herein, we propose a strategy for imprinting of histidine (His)-exposed proteins by combining previous approaches such as surface imprinting over nanostructures, utilization of metal coordination interactions, and adoption of aqueous precipitation polymerization capable of forming reversible physical crosslinks. With lysozyme as a model template bearing His residues, imprinted polymer nanoshells were grafted over vinyl-modified nanoparticles by aqueous precipitation copolymerization of a Cu(2+) chelating monomer with a temperature-responsive monomer carried out at 37 °C, above the volume phase-transition temperature (VPTT) of the final copolymer. The imprinted nanoshells showed significant temperature sensitivity and the template removal could be facilitated by swelling of the imprinted layers at 4 °C, below the VPTT. The resultant core-shell imprinted nanoparticles exhibited strikingly high rebinding selectivity against a variety of nontemplate proteins. An imprinting factor up to 22.7 was achieved, which is among the best values reported for protein imprinting, and a rather high specific binding capacity of 67.3 mg/g was obtained. Moreover, this approach was successfully extended to preliminary imprinting of hemoglobin, another protein with accessible His. Therefore, it may be a versatile method for fabrication of high-performance surface-imprinted nanoparticles toward His-exposed proteins.

  8. A Metal Matrix CNTS Modified Electrode Fabricated Using Micromachining-Based Implantation Method for Improving Sensitivity and Stability

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2013-01-01

    Full Text Available The metal matrix carbon nanotubes modified electrode (MCME has been fabricated by a novel process involving preparation of carbon nanotubes (CNTs/polyimide (PI composite film, wet, etching, sputtering, electroplating, and wet-etch releasing. Pretreated CNTs are dispersed in PI by mechanical ball milling and then CNTs solution is spin-coated on the substrate. The CNTs/PI composite film is etched away a layer of PI to expose tips of CNTs using buffering solution. These exposed tips of CNTs are covered by metal particles in sputtering process as metal seed layer, followed by metal supporting film formed by electroplating. The MCME is obtained after releasing PI film from the metal supporting film. The MCME shows well morphology of uniform distributional protruding tips of CNTs and increased electron transfer efficiency with strong bonding connection between CNTs and metal matrix, which greatly improves sensitivity and stability of the MCME. The oxidation peak of the MCME in cyclic voltammeter (CV test is 1.7 times more than that of CNTs suspension spin-coated metal electrode (SCME. The decline of peak current of the MCME after fifty cycles is only 1.8% much less than 67% of the SCME. Better sensitivity and stability may be helpful for CNTs modified electrodes wide application for trace test of many special materials.

  9. Automobile sheet metal part production with incremental sheet forming

    Directory of Open Access Journals (Sweden)

    İsmail DURGUN

    2016-02-01

    Full Text Available Nowadays, effect of global warming is increasing drastically so it leads to increased interest on energy efficiency and sustainable production methods. As a result of adverse conditions, national and international project platforms, OEMs (Original Equipment Manufacturers, SMEs (Small and Mid-size Manufacturers perform many studies or improve existing methodologies in scope of advanced manufacturing techniques. In this study, advanced manufacturing and sustainable production method "Incremental Sheet Metal Forming (ISF" was used for sheet metal forming process. A vehicle fender was manufactured with or without die by using different toolpath strategies and die sets. At the end of the study, Results have been investigated under the influence of method and parameters used.Keywords: Template incremental sheet metal, Metal forming

  10. Fabrication of γ-Fe2O3 Nanoparticles by Solid-State Thermolysis of a Metal-Organic Framework, MIL-100(Fe, for Heavy Metal Ions Removal

    Directory of Open Access Journals (Sweden)

    Shengtao Hei

    2014-01-01

    Full Text Available Porous γ-Fe2O3 nanoparticles were prepared via a solid-state conversion process of a mesoporous iron(III carboxylate crystal, MIL-100(Fe. First, the MIL-100(Fe crystal that served as the template of the metal oxide was synthesized by a low-temperature (<100°C synthesis route. Subsequently, the porous γ-Fe2O3 nanoparticles were fabricated by facile thermolysis of the MIL-100(Fe powders via a two-step calcination treatment. The obtained γ-Fe2O3 was characterized by X-ray diffraction (XRD, N2 adsorption, X-ray photoelectron spectroscopy (XPS, and scanning electron microscopy (SEM techniques, and then used as an adsorbent for heavy metal ions removal in water treatment. This study illustrates that the metal-organic frameworks may be suitable precursors for the fabrication of metal oxides nanomaterials with large specific surface area, and the prepared porous γ-Fe2O3 exhibits a superior adsorption performance for As(V and As(III ions removal in water treatment.

  11. Metal finishing and vacuum processes groups, Materials Fabrication Division progress report, March-May 1984

    International Nuclear Information System (INIS)

    Dini, J.W.; Romo, J.G.; Jones, L.M.

    1984-01-01

    Progress is reported in fabrication and coating activities being conducted for the weapons program, nuclear test program, nuclear design program, magnetic fusion program, and miscellaneous applications

  12. Limitation of productivity by trace metals in the sea

    International Nuclear Information System (INIS)

    Morel, F.M.M.; Price, N.M.; Hudson, R.J.M.

    1991-01-01

    Some trace metals such as Fe, Ni, Cu, and Zn are essential for the growth of phytoplankton. The concentrations of these essential trace elements in seawater are so low as to limit their availability to aquatic microbiota. Trace element uptake is ultimately limited by kinetics of reaction with transport ligands or by diffusion to the cell. From what the authors know of the characteristics of the uptake systems of phytoplankton and their trace metal requirements they can estimate that Fe and Zn may at some times in some place limit phytoplankton productivity, which is in accord with available field data on trace metal enrichments

  13. Fabrication of Hierarchically Micro- and Nano-structured Mold Surfaces Using Laser Ablation for Mass Production of Superhydrophobic Surfaces

    Science.gov (United States)

    Noh, Jiwhan; Lee, Jae-Hoon; Na, Suckjoo; Lim, Hyuneui; Jung, Dae-Hwan

    2010-10-01

    Many studies have examined the formation of surfaces with mixed patterns of micro- and nano-sized lotus leaves that have hydrophobic properties. In this study, micro- and nano-shapes such as lotus leaves were fabricated on a metal mold surface using laser ablation and ripple formation. A microstructure on the mold surface was replicated onto poly(dimethylsiloxane) (PDMS) using the polymer casting method to manufacture low-cost hydrophobic surfaces. A PDMS surface with micro- and nano-structures that were the inverse image of a lotus leaf showed hydrophobic characteristics (water contact angle: 157°). From these results, we deduced that portions of the microstructures were wet and that air gaps existed between the microstructures and the water drops. In this paper we suggest the possibility of the mass production of hydrophobic plastic surfaces and the development of a methodology for the hydrophobic texturing of various polymer surfaces, using the polymer casting method with laser-processed molds.

  14. Process for continuous production of metallic uranium and uranium alloys

    Science.gov (United States)

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  15. Process for continuous production of metallic uranium and uranium alloys

    Science.gov (United States)

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  16. HIGHLY REFRACTORY CRUCIBLES OF STABILIZED ZIRCONIA FOR INDUCTION MELTING OF THE PLATINUM GROUP METALS, FABRICATED BY VIBROCASTING

    Directory of Open Access Journals (Sweden)

    V. V. Primachenko

    2012-01-01

    Full Text Available As the result of the studies at PJSC « UKRNIIO them. A.S.Berezhnogo» the technology and commercial production of crucibles from stabilized zirconia for the smelting of platinum group metals are develop

  17. HIGHLY REFRACTORY CRUCIBLES OF STABILIZED ZIRCONIA FOR INDUCTION MELTING OF THE PLATINUM GROUP METALS, FABRICATED BY VIBROCASTING

    OpenAIRE

    V. V. Primachenko; V. V. Martynenko; I. G. Szulik; I. A. Kushchenko

    2012-01-01

    As the result of the studies at PJSC « UKRNIIO them. A.S.Berezhnogo» the technology and commercial production of crucibles from stabilized zirconia for the smelting of platinum group metals are develop

  18. Fabrication of magnetic nano liquid metal fluid through loading of Ni nanoparticles into gallium or its alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Mingfeng; Gao, Yunxia [Key Lab of Cryogenics and Beijing Key Lab of CryoBiomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Jing, E-mail: jliu@mail.ipc.ac.cn [Key Lab of Cryogenics and Beijing Key Lab of CryoBiomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China)

    2014-03-15

    In this study, Ni nanoparticles were loaded into the partially oxidized gallium and its alloys to fabricate desired magnetic nanofluid. It was disclosed that the Ni nanoparticles sharply increased the freezing temperature and latent heat of the obtained magnetic nano liquid metal fluid, while the melting process was less affected. For the gallium sample added with 10 vol% coated Ni particles, a hysteresis loop was observed and the magnetization intensity decreased with the increase of the temperature. The slope for the magnetization-temperature curve within 10–30 K was about 20 times of that from 40 K to 400 K. Further, the dynamic impact experiments of striking magnetic liquid metal droplets on the magnet revealed that the regurgitating of the leading edge of the liquid disk and the subsequent wave that often occurred in the gallium-indium droplets would disappear for the magnetic fluids case due to attraction force of the magnet. - Graphical abstract: High speed videos for the impact of striking GaIn{sub 24.5} based magnetic liquid metal droplets on a magnet plate. - Highlights: • A feasible way to fabricate magnetic nano liquid metal fluid was presented. • Ni nanoparticles sharply increased freezing temperature and latent heat of magnetic nanofluid. • A hysteresis loop phenomenon was observed for the magnetic nanofluid. • Temperature dependent magnetization spanning from 10 K to 400 K was measured. • Impact phenomena of striking magnetic droplets on magnet were disclosed.

  19. Microbial Metabolite Production for Accelerated Metal and Radionuclide Bioremediation (Microbial Metabolite Production Report)

    International Nuclear Information System (INIS)

    TURICK, CHARLES

    2004-01-01

    Biogeochemical activity is an ongoing and dynamic process due to bacterial activity in the subsurface. Bacteria contribute significantly to biotransformation of metals and radionuclides. As basic science reveals more information about specific mechanisms of bacterial-metal reduction, an even greater contribution of bacteria to biogeochemical activities is realized. An understanding and application of the mechanisms of metal and radionuclide reduction offers tremendous potential for development into bioremedial processes and technologies. Most bacteria are capable of biogeochemical transformation as a result of meeting nutrient requirements. These assimilatory mechanisms for metals transformation include production of small molecules that serve as electron shuttles for metal reduction. This contribution to biogeochemistry is small however due to only trace requirements for minerals by bacteria. Dissimilatory metal reducing bacteria (DMRB) reduce oxidized metals and insoluble mineral oxides as a means for biological energy production during growth. These types of bacteria offer considerable potential for bioremediation of environments contaminated with toxic metals and radionuclides because of the relatively large amount of metal biotransformation they require for growth. One of the mechanisms employed by some DMRB for electron transfer to insoluble metal oxides is melanin production. The electrochemical properties of melanin provide this polymeric, humic-type compound with electron shuttling properties. Melanin, specifically, pyomelanin, increases the rate and degree of metal reduction in DMRB as a function of pyomelanin concentration. Due to its electron shuttling behavior, only low femtogram quantities per cell are required to significantly increase metal reduction capacity of DMRB. Melanin production is not limited to DMRB. In fact melanin is one of the most common pigments produced by biological systems. Numerous soil microorganisms produce melanin, contributing

  20. Estimating product-to-product variations in metal forming using force measurements

    NARCIS (Netherlands)

    Havinga, Gosse Tjipke; Van Den Boogaard, Ton

    2017-01-01

    The limits of production accuracy of metal forming processes can be stretched by the development of control systems for compensation of product-to-product variations. Such systems require the use of measurements from each semi-finished product. These measurements must be used to estimate the final

  1. Oxidation kinetics of reaction products formed in uranium metal corrosion

    International Nuclear Information System (INIS)

    Totemeier, T. C.

    1998-01-01

    The oxidation behavior of uranium metal ZPPR fuel corrosion products in environments of Ar-4%O 2 and Ar-20%O 2 were studied using thermo-gravimetric analysis (TGA). These tests were performed to extend earlier work in this area specifically, to assess plate-to-plate variations in corrosion product properties and the effect of oxygen concentration on oxidation behavior. The corrosion products from two relatively severely corroded plates were similar, while the products from a relatively intact plate were not reactive. Oxygen concentration strongly affected the burning rate of reactive products, but had little effect on low-temperature oxidation rates

  2. Oxidation kinetics of reaction products formed in uranium metal corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Totemeier, T. C.

    1998-04-22

    The oxidation behavior of uranium metal ZPPR fuel corrosion products in environments of Ar-4%O{sub 2} and Ar-20%O{sub 2} were studied using thermo-gravimetric analysis (TGA). These tests were performed to extend earlier work in this area specifically, to assess plate-to-plate variations in corrosion product properties and the effect of oxygen concentration on oxidation behavior. The corrosion products from two relatively severely corroded plates were similar, while the products from a relatively intact plate were not reactive. Oxygen concentration strongly affected the burning rate of reactive products, but had little effect on low-temperature oxidation rates.

  3. Fabrication and Optical Characterization of Silicon Nanostructure Arrays by Laser Interference Lithography and Metal-Assisted Chemical Etching

    Directory of Open Access Journals (Sweden)

    P. Heydari

    2014-10-01

    Full Text Available In this paper metal-assisted chemical etching has been applied to pattern porous silicon regions and silicon nanohole arrays in submicron period simply by using positive photoresist as a mask layer. In order to define silicon nanostructures, Metal-assisted chemical etching (MaCE was carried out with silver catalyst. Provided solution (or materiel in combination with laser interference lithography (LIL fabricated different reproducible pillars, holes and rhomboidal structures. As a result, Submicron patterning of porous areas and nanohole arrays on Si substrate with a minimum feature size of 600nm was achieved. Measured reflection spectra of the samples present different optical characteristics which is dependent on the shape, thickness of metal catalyst and periodicity of the structure. These structures can be designed to reach a photonic bandgap in special range or antireflection layer in energy harvesting applications. The resulted reflection spectra of applied method are comparable to conventional expensive and complicated dry etching techniques.

  4. Fabrication of highly co2 selective metal organic framework membrane using liquid phase epitaxy approach

    KAUST Repository

    Eddaoudi, Mohamed

    2016-01-28

    Embodiments include a method of making a metal organic framework membrane comprising contacting a substrate with a solution including a metal ion and contacting the substrate with a solution including an organic ligand, sufficient to form one or more layers of a metal organic framework on a substrate. Embodiments further include a defect-free metal organic framework membrane comprising MSiF6(pyz)2, wherein M is a metal, wherein the thickness of the membrane is less than 1,000 µm, and wherein the metal organic has a growth orientation along the [110] plane relative to a substrate.

  5. Non-polluting metal production network

    Energy Technology Data Exchange (ETDEWEB)

    Kojo, I.V.; Hanniala, P. [Outokumpu Engineering Conctractors OY, Espoo (Finland)

    2001-07-01

    The Flash Smelting process of copper is described. The process is characterised by low external energy utilization, therefore low greenhouse gas emissions. In addition to energy efficiency the sealed process gives an economic incentive to eliminate the emissions from the smelting process by capturing the dust in a gas cleaning system and in the sulfuric acid plant, following the gas cleaning. Besides the energy efficiency and environmental advantages the Flash Smelting Technology also boast high flexibility and high specific capacity, due to the better understanding of the combustion phenomena taking place in the oxidation of copper-iron-sulfur concentrates, which is most effective in an even suspension. This process has been intensively developed and as a result has been widely utilized for production of copper and nickel matte, elemental sulfur, and blister from both concentrates and matte or from mixture of matte and concentrate. The paper illustrates some options by describing examples of how Direct-to-Blister Flash Smelting or matte production in any smelting process combined with Flash Converting could be adapted to some existing smelters, and how these combinations would benefit smelters by not only lowering greenhouse gas emissions, but also increasing production and decreasing operating cost with a relatively small investment of capital. 5 refs., 2 tabs., 3 figs.

  6. Alkali semi-metal films and method and apparatus for fabricating them

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Harish B.; Nagarkar, Vivek V.; Ovechkina, Olena E.; Frisch, Henry J.; Attenkofer, Klaus; Smedley, John M.

    2018-03-13

    Methods and systems for fabricating a film, such as, for example, a photocathode, having a tailored band structure and thin-film components that can be tailored for specific applications, such as, for example photocathode having a high quantum efficiency, and simple components fabricated by those methods.

  7. Evaluation of metal-ceramic bond characteristics of three dental Co-Cr alloys prepared with different fabrication techniques.

    Science.gov (United States)

    Wang, Hongmei; Feng, Qing; Li, Ning; Xu, Sheng

    2016-12-01

    Limited information is available regarding the metal-ceramic bond strength of dental Co-Cr alloys fabricated by casting (CAST), computer numerical control (CNC) milling, and selective laser melting (SLM). The purpose of this in vitro study was to evaluate the metal-ceramic bond characteristics of 3 dental Co-Cr alloys fabricated by casting, computer numerical control milling, and selective laser melting techniques using the 3-point bend test (International Organization for Standardization [ISO] standard 9693). Forty-five specimens (25×3×0.5 mm) made of dental Co-Cr alloys were prepared by CAST, CNC milling, and SLM techniques. The morphology of the oxidation surface of metal specimens was evaluated by scanning electron microscopy (SEM). After porcelain application, the interfacial characterization was evaluated by SEM equipped with energy-dispersive spectrometry (EDS) analysis, and the metal-ceramic bond strength was assessed with the 3-point bend test. Failure type and elemental composition on the debonding interface were assessed by SEM/EDS. The bond strength was statistically analyzed by 1-way ANOVA and Tukey honest significant difference test (α=.05). The oxidation surfaces of the CAST, CNC, and SLM groups were different. They were porous in the CAST group but compact and irregular in the CNC and SLM groups. The metal-ceramic interfaces of the SLM and CNC groups showed excellent combination compared with those of the CAST group. The bond strength was 37.7 ±6.5 MPa for CAST, 43.3 ±9.2 MPa for CNC, and 46.8 ±5.1 MPa for the SLM group. Statistically significant differences were found among the 3 groups tested (P=.028). The debonding surfaces of all specimens exhibited cohesive failure mode. The oxidation surface morphologies and thicknesses of dental Co-Cr alloys are dependent on the different fabrication techniques used. The bond strength of all 3 groups exceed the minimum acceptable value of 25 MPa recommended by ISO 9693; hence, dental Co-Cr alloy

  8. Fabrication and characterization of NiO based metal-insulator-metal diode using Langmuir-Blodgett method for high frequency rectification

    Science.gov (United States)

    Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias

    2018-04-01

    Thin film metal-insulator-metal (MIM) diodes have attracted significant attention for use in infrared energy harvesting and detection applications. As demonstrated over the past decades, MIM or metal-insulator-insulator-metal (MIIM) diodes can operate at the THz frequencies range by quantum tunneling of electrons. The aim of this work is to synthesize required ultra-thin insulating layers and fabricate MIM diodes using the Langmuir-Blodgett (LB) technique. The nickel stearate (NiSt) LB precursor film was deposited on glass, silicon (Si), ITO glass and gold coated silicon substrates. The photodesorption (UV exposure) and the thermodesorption (annealing at 100 °C and 350 °C) methods were used to remove organic components from the NiSt LB film and to achieve a uniform homogenous nickel oxide (NiO) film. These ultrathin NiO films were characterized by EDS, AFM, FTIR and cyclic voltammetry methods, respectively. The MIM diode was fabricated by depositing nickel (Ni) on the NiO film, all on a gold (Au) plated silicon (Si) substrate. The current (I)-voltage (V) characteristics of the fabricated diode were studied to understand the conduction mechanism assumed to be tunneling of electron through the ultra-thin insulating layer. The sensitivity of the diode was measured to be as high as 35 V-1. The diode resistance was ˜100 ohms (at a bias voltage of 0.60 V), and the rectification ratio was about 22 (for a signal voltage of ±200 mV). At the bias point, the diode response demonstrated significant non-linearity and high asymmetry, which are very desirable characteristics for applications in infrared detection and harvesting.

  9. Refining of crude uranium by solvent extraction for production of nuclear pure uranium metal

    International Nuclear Information System (INIS)

    Gupta, S.K.; Manna, S.; Singha, M.; Hareendran, K.N.; Chowdhury, S.; Satpati, S.K.; Kumar, K.

    2007-01-01

    Uranium is the primary fuel material for any nuclear fission energy program. Natural uranium contains only 0.712% of 235 U as fissile constituent. This low concentration of fissile isotope in natural uranium calls for a very high level of purity, especially with respect to neutron poisons like B, Cd, Gd etc. before it can be used as nuclear fuel. Solvent extraction is a widely used technique by which crude uranium is purified for reactor use. Uranium metal plant (UMP), BARC, Trombay is engaged in refining of uranium concentrate for production of nuclear pure uranium metal for fabrication of fuel for research reactors. This paper reviews some of the fundamental aspects of this refining process with some special references to UMP, BARC. (author)

  10. PLC and SCADA based automation of injection casting process for casting of uranium-zirconium blanket fuel slugs for metallic fuel fabrication

    International Nuclear Information System (INIS)

    Yathish Kumar, G.; Jagadeeschandran, J.; Avvaru, Prafulla Kumar; Yadaw, Abhishek Kumar; Lavakumar, R.; Prabhu, T.V.; Muralidharan, P.; Anthonysamy, S.

    2016-01-01

    Fabrication of metallic (U-6wt.%Zr) slugs involves melting of binary alloy under vacuum and injection casting into quartz moulds at high pressure. Injection casting system housed inside glove box comprises of high vacuum, induction melting, high pressure control, motion control, mould preheating, chamber cooling, crucible handling and glove box pressure control systems. The technology development for process automation of injection casting system and process optimisation for fabrication of metallic (U-6%Zr) slugs is outlined in this paper. (author)

  11. In-process fault detection for textile fabric production: onloom imaging

    Science.gov (United States)

    Neumann, Florian; Holtermann, Timm; Schneider, Dorian; Kulczycki, Ashley; Gries, Thomas; Aach, Til

    2011-05-01

    Constant and traceable high fabric quality is of high importance both for technical and for high-quality conventional fabrics. Usually, quality inspection is carried out by trained personal, whose detection rate and maximum period of concentration are limited. Low resolution automated fabric inspection machines using texture analysis were developed. Since 2003, systems for the in-process inspection on weaving machines ("onloom") are commercially available. With these defects can be detected, but not measured quantitative precisely. Most systems are also prone to inevitable machine vibrations. Feedback loops for fault prevention are not established. Technology has evolved since 2003: Camera and computer prices dropped, resolutions were enhanced, recording speeds increased. These are the preconditions for real-time processing of high-resolution images. So far, these new technological achievements are not used in textile fabric production. For efficient use, a measurement system must be integrated into the weaving process; new algorithms for defect detection and measurement must be developed. The goal of the joint project is the development of a modern machine vision system for nondestructive onloom fabric inspection. The system consists of a vibration-resistant machine integration, a high-resolution machine vision system, and new, reliable, and robust algorithms with quality database for defect documentation. The system is meant to detect, measure, and classify at least 80 % of economically relevant defects. Concepts for feedback loops into the weaving process will be pointed out.

  12. Additive manufacturing technology (direct metal laser sintering) as a novel approach to fabricate functionally graded titanium implants: preliminary investigation of fabrication parameters.

    Science.gov (United States)

    Lin, Wei-Shao; Starr, Thomas L; Harris, Bryan T; Zandinejad, Amirali; Morton, Dean

    2013-01-01

    This article describes the preliminary findings of the mechanical properties of functionally graded titanium with controlled distribution of porosity and a reduced Young's modulus on the basis of a computeraided design (CAD) file, using the rapid-prototyping, direct metal laser sintering (DMLS) technique. Sixty specimens of Ti-6Al-4V were created using a DMLS machine (M270) following the standard for tensile testing of metals. One group was fabricated with only 170 W of laser energy to create fully dense specimens (control group). The remaining specimens all featured an outer fully dense "skin" layer and a partially sintered porous inner "core" region. The outer "skin" of each specimen was scanned at 170 W and set at a thickness of 0.35, 1.00, or 1.50 mm for different specimen groups. The inner "core" of each specimen was scanned at a lower laser power (43 or 85 W). The partially sintered core was clearly visible in all specimens, with somewhat greater porosity with the lower laser power. However, the amount of porosity in the core region was not related to the laser power alone; thinner skin layers resulted in higher porosity for the same power values in the core structure. The lowest Young's modulus achieved, 35 GPa, is close to that of bone and was achieved with a laser power of 43 W and a skin thickness of 0.35 mm, producing a core that comprised 74% of the total volume. Additive manufacturing technology may provide an efficient alternative way to fabricate customized dental implants based on a CAD file with a functionally graded structure that may minimize stress shielding and improve the long-term performance of dental implants.

  13. Marginal accuracy of nickel chromium copings fabricated by conventional and accelerated casting procedures, produced with ringless and metal ring investment procedures: A comparative in vitro study

    Directory of Open Access Journals (Sweden)

    Deepa Alex

    2015-01-01

    Conclusion: The Ni-Cr cast copings fabricated with the conventional casting using ringless investment system showed significantly better marginal fit than that of cast copings fabricated from conventional and accelerated casting with metal ring investment and accelerated casting using ringless investment since those copings had shown the least vertical marginal discrepancies among the four methods evaluated in this study.

  14. Fabrication of highly co2 selective metal organic framework membrane using liquid phase epitaxy approach

    KAUST Repository

    Eddaoudi, Mohamed; Shekhah, Osama; Belmabkhout, Youssef

    2016-01-01

    Embodiments include a method of making a metal organic framework membrane comprising contacting a substrate with a solution including a metal ion and contacting the substrate with a solution including an organic ligand, sufficient to form one

  15. All-solid-state lithium-ion and lithium metal batteries - paving the way to large-scale production

    Science.gov (United States)

    Schnell, Joscha; Günther, Till; Knoche, Thomas; Vieider, Christoph; Köhler, Larissa; Just, Alexander; Keller, Marlou; Passerini, Stefano; Reinhart, Gunther

    2018-04-01

    Challenges and requirements for the large-scale production of all-solid-state lithium-ion and lithium metal batteries are herein evaluated via workshops with experts from renowned research institutes, material suppliers, and automotive manufacturers. Aiming to bridge the gap between materials research and industrial mass production, possible solutions for the production chains of sulfide and oxide based all-solid-state batteries from electrode fabrication to cell assembly and quality control are presented. Based on these findings, a detailed comparison of the production processes for a sulfide based all-solid-state battery with conventional lithium-ion cell production is given, showing that processes for composite electrode fabrication can be adapted with some effort, while the fabrication of the solid electrolyte separator layer and the integration of a lithium metal anode will require completely new processes. This work identifies the major steps towards mass production of all-solid-state batteries, giving insight into promising manufacturing technologies and helping stakeholders, such as machine engineering, cell producers, and original equipment manufacturers, to plan the next steps towards safer batteries with increased storage capacity.

  16. Statistical methods to assess and control processes and products during nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Weidinger, H.

    1999-01-01

    Very good statistical tools and techniques are available today to access the quality and the reliability of fabrication process as the original sources for a good and reliable quality of the fabricated processes. Quality control charts of different types play a key role and the high capability of modern electronic data acquisition technologies proved, at least potentially, a high efficiency in the more or less online application of these methods. These techniques focus mainly on stability and the reliability of the fabrication process. In addition, relatively simple statistical tolls are available to access the capability of fabrication process, assuming they are stable, to fulfill the product specifications. All these techniques can only result in as good a product as the product design is able to describe the product requirements necessary for good performance. Therefore it is essential that product design is strictly and closely performance oriented. However, performance orientation is only successful through an open and effective cooperation with the customer who uses or applies those products. During the last one to two decades in the west, a multi-vendor strategy has been developed by the utility, sometimes leading to three different fuel vendors for one reactor core. This development resulted in better economic conditions for the user but did not necessarily increase an open attitude with the vendor toward the using utility. The responsibility of the utility increased considerably to ensure an adequate quality of the fuel they received. As a matter of fact, sometimes the utilities had to pay a high price because of unexpected performance problems. Thus the utilities are now learning that they need to increase their knowledge and experience in the area of nuclear fuel quality management and technology. This process started some time ago in the west. However, it now also reaches the utilities in the eastern countries. (author)

  17. Trace metal contents in barbeque (BBQ) charcoal products

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, Ehsanul [Department of Environment and Energy, Sejong University, 98 Goon Ja Dong, Seoul 143-747 (Korea, Republic of); Kim, Ki-Hyun, E-mail: khkim@sejong.ac.kr [Department of Environment and Energy, Sejong University, 98 Goon Ja Dong, Seoul 143-747 (Korea, Republic of); Yoon, H.O. [Korea Basic Science Institute, Seoul Center, Seoul 136-701 (Korea, Republic of)

    2011-01-30

    In this study, the concentrations of trace elements contained in solid barbeque (BBQ) charcoal products have been investigated. Eleven brands of charcoal products were analyzed, consisting of both Korean (3 types) and imported products (eight types from three countries) commonly available in the Korean market places. The concentrations of trace metals in solid charcoal varied widely across metal types and between samples with the overall range of 5 {mu}g kg{sup -1} (As) to 118 mg kg{sup -1} (Zn). The patterns of metal distribution between different products appeared to be affected by the properties of raw materials and/or the processes involved in their production. Although concentrations of certain trace metals were significantly high in certain charcoal samples, their emission concentrations were below legislative guidelines (e.g., the permissible exposure limit (PEL) set by the Occupational Safety and Health Administration (OSHA)). In light of the potential harm of grilling activities, proper regulation should be considered to control the use of BBQ charcoal from a toxicological viewpoint to help reduce the potential health risks associated with its use.

  18. Trace metal contents in barbeque (BBQ) charcoal products

    International Nuclear Information System (INIS)

    Kabir, Ehsanul; Kim, Ki-Hyun; Yoon, H.O.

    2011-01-01

    In this study, the concentrations of trace elements contained in solid barbeque (BBQ) charcoal products have been investigated. Eleven brands of charcoal products were analyzed, consisting of both Korean (3 types) and imported products (eight types from three countries) commonly available in the Korean market places. The concentrations of trace metals in solid charcoal varied widely across metal types and between samples with the overall range of 5 μg kg -1 (As) to 118 mg kg -1 (Zn). The patterns of metal distribution between different products appeared to be affected by the properties of raw materials and/or the processes involved in their production. Although concentrations of certain trace metals were significantly high in certain charcoal samples, their emission concentrations were below legislative guidelines (e.g., the permissible exposure limit (PEL) set by the Occupational Safety and Health Administration (OSHA)). In light of the potential harm of grilling activities, proper regulation should be considered to control the use of BBQ charcoal from a toxicological viewpoint to help reduce the potential health risks associated with its use.

  19. Visible-blind ultraviolet photodiode fabricated by UV oxidation of metallic zinc on p-Si

    International Nuclear Information System (INIS)

    Zhang, Dongyuan; Uchida, Kazuo; Nozaki, Shinji

    2015-01-01

    A UV photodiode fabricated by the UV oxidation of a metallic zinc thin film on p-Si has manifested unique photoresponse characteristics. The electron concentration found by the Hall measurement was 3 × 10 16  cm −3 , and such a low electron concentration resulted in a low visible photoluminescence. UV illumination enhances the oxidation at low temperatures and decreases the concentration of the oxygen vacancies. The I-V characteristic showed a good rectification with a four-order magnitude difference in the forward and reverse currents at 2 V, and its linear and frequency independent C −2 –V characteristic confirmed an abrupt pn junction. The photoresponse showed a visible blindness with a responsivity ratio of UV and visible light as high as 100. Such a visible-blind photoresponse was attributed to the optimum thickness of the SiO 2 formed on the Si surface during the UV oxidation at 400 °C. A lower potential barrier to holes at the ZnO/SiO 2 interface facilitates Fowler-Nordheim tunneling of the photo-generated holes during the UV illumination, while a higher potential barrier to electrons efficiently blocks transport of the photo-generated electrons to the ZnO during the visible light illumination. The presence of oxide resulted in a slow photoresponse to the turn-on and off of the UV light. A detailed analysis is presented to understand how the photo-generated carriers contribute step by step to the photocurrent. In addition to the slow photoresponse associated with the SiO 2 interfacial layer, the decay of the photocurrent was found extremely slow after turn-off of the UV light. Such a slow decay of the photocurrent is referred to as a persistent photoconductivity, which is caused by metastable deep levels. It is hypothesized that Zn vacancies form such a deep level, and that the photo-generated electrons need to overcome a thermal-energy barrier for capture. The ZnO film by the UV oxidation at 400 °C was found to be rich in oxygen and

  20. Visible-blind ultraviolet photodiode fabricated by UV oxidation of metallic zinc on p-Si

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongyuan; Uchida, Kazuo; Nozaki, Shinji, E-mail: nozaki@ee.uec.ac.jp [Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu-shi, Tokyo 182-8585 (Japan)

    2015-09-07

    A UV photodiode fabricated by the UV oxidation of a metallic zinc thin film on p-Si has manifested unique photoresponse characteristics. The electron concentration found by the Hall measurement was 3 × 10{sup 16 }cm{sup −3}, and such a low electron concentration resulted in a low visible photoluminescence. UV illumination enhances the oxidation at low temperatures and decreases the concentration of the oxygen vacancies. The I-V characteristic showed a good rectification with a four-order magnitude difference in the forward and reverse currents at 2 V, and its linear and frequency independent C{sup −2}–V characteristic confirmed an abrupt pn junction. The photoresponse showed a visible blindness with a responsivity ratio of UV and visible light as high as 100. Such a visible-blind photoresponse was attributed to the optimum thickness of the SiO{sub 2} formed on the Si surface during the UV oxidation at 400 °C. A lower potential barrier to holes at the ZnO/SiO{sub 2} interface facilitates Fowler-Nordheim tunneling of the photo-generated holes during the UV illumination, while a higher potential barrier to electrons efficiently blocks transport of the photo-generated electrons to the ZnO during the visible light illumination. The presence of oxide resulted in a slow photoresponse to the turn-on and off of the UV light. A detailed analysis is presented to understand how the photo-generated carriers contribute step by step to the photocurrent. In addition to the slow photoresponse associated with the SiO{sub 2} interfacial layer, the decay of the photocurrent was found extremely slow after turn-off of the UV light. Such a slow decay of the photocurrent is referred to as a persistent photoconductivity, which is caused by metastable deep levels. It is hypothesized that Zn vacancies form such a deep level, and that the photo-generated electrons need to overcome a thermal-energy barrier for capture. The ZnO film by the UV oxidation at 400 °C was found

  1. Impact of process temperature on GaSb metal-oxide-semiconductor interface properties fabricated by ex-situ process

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Masafumi, E-mail: yokoyama@mosfet.t.u-tokyo.ac.jp; Takenaka, Mitsuru; Takagi, Shinichi [Department of Electrical Engineering and Information Systems, The University of Tokyo, Yayoi 2-11-16, Bunkyo, Tokyo 113-0032 (Japan); JST-CREST, Yayoi 2-11-16, Bunkyo, Tokyo 113-0032 (Japan); Asakura, Yuji [Department of Electrical Engineering and Information Systems, The University of Tokyo, Yayoi 2-11-16, Bunkyo, Tokyo 113-0032 (Japan); Yokoyama, Haruki [NTT Photonics Laboratories, NTT Corporation, Atsugi 243-0198 (Japan)

    2014-06-30

    We have studied the impact of process temperature on interface properties of GaSb metal-oxide-semiconductor (MOS) structures fabricated by an ex-situ atomic-layer-deposition (ALD) process. We have found that the ALD temperature strongly affects the Al{sub 2}O{sub 3}/GaSb MOS interface properties. The Al{sub 2}O{sub 3}/GaSb MOS interfaces fabricated at the low ALD temperature of 150 °C have the minimum interface-trap density (D{sub it}) of ∼4.5 × 10{sup 13 }cm{sup −2} eV{sup −1}. We have also found that the post-metalization annealing at temperature higher than 200 °C degrades the Al{sub 2}O{sub 3}/GaSb MOS interface properties. The low-temperature process is preferable in fabricating GaSb MOS interfaces in the ex-situ ALD process to avoid the high-temperature-induced degradations.

  2. Structural Engineering of Metal-Mesh Structure Applicable for Transparent Electrodes Fabricated by Self-Formable Cracked Template

    Directory of Open Access Journals (Sweden)

    Yeong-gyu Kim

    2017-08-01

    Full Text Available Flexible and transparent conducting electrodes are essential for future electronic devices. In this study, we successfully fabricated a highly-interconnected metal-mesh structure (MMS using a self-formable cracked template. The template—fabricated from colloidal silica—can be easily formed and removed, presenting a simple and cost-effective way to construct a randomly and uniformly networked MMS. The structure of the MMS can be controlled by varying the spin-coating speed during the coating of the template solution or by stacking of metal-mesh layers. Through these techniques, the optical transparency and sheet resistance of the MMS can be designed for a specific purpose. A double-layered Al MMS showed high optical transparency (~80% in the visible region, low sheet resistance (~20 Ω/sq, and good flexibility under bending test compared with a single-layered MMS, because of its highly-interconnected wire structure. Additionally, we identified the applicability of the MMS in the case of practical devices by applying it to electrodes of thin-film transistors (TFTs. The TFTs with MMS electrodes showed comparable electrical characteristics to those with conventional film-type electrodes. The cracked template can be used for the fabrication of a mesh structure consisting of any material, so it can be used for not only transparent electrodes, but also various applications such as solar cells, sensors, etc.

  3. Metal powder production by gas atomization

    Science.gov (United States)

    Ting, E. Y.; Grant, N. J.

    1986-01-01

    The confined liquid, gas-atomization process was investigated. Results from a two-dimensional water model showed the importance of atomization pressure, as well as delivery tube and atomizer design. The atomization process at the tip of the delivery tube was photographed. Results from the atomization of a modified 7075 aluminum alloy yielded up to 60 wt pct. powders that were finer than 45 microns in diameter. Two different atomizer designs were evaluated. The amount of fine powders produced was correlated to a calculated gas-power term. An optimal gas-power value existed for maximized fine powder production. Atomization at gas-power greater than or less than this optimal value produced coarser powders.

  4. Diffusion welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    Science.gov (United States)

    Byrne, Stephen C.; Vasudevan, Asuri K.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor diffusion welded to a portion of a ceramic electrode body having a level of free metal or metal alloy sufficient to effect a metal bond.

  5. Comparative Study of Laboratory-Scale and Prototypic Production-Scale Fuel Fabrication Processes and Product Characteristics

    International Nuclear Information System (INIS)

    Marshall, Douglas W.

    2014-01-01

    An objective of the High Temperature Gas Reactor fuel development and qualification program for the United States Department of Energy has been to qualify fuel fabricated in prototypic production-scale equipment. The quality and characteristics of the tristructural isotropic (TRISO) coatings on fuel kernels are influenced by the equipment scale and processing parameters. The standard deviations of some TRISO layer characteristics were diminished while others have become more significant in the larger processing equipment. The impact on statistical variability of the processes and the products, as equipment was scaled, are discussed. The prototypic production-scale processes produce test fuels meeting all fuel quality specifications. (author)

  6. Selection of engineering materials and fabrication of liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Patriarca, P.

    1975-01-01

    Information is presented graphically and pictorially concerning the need for nuclear power; basic nuclear concepts including BWR, PWR, HTGR, and LMFBR; the fissioning process; nuclear reactor fuel; fabrication of reactor vessels for LMFBR's; fabrication of intermediate heat exchangers for LMFBR's; piping fabrication for LMFBR's; transition welds; steam generators for LMFBR demonstration plants worldwide; stress corrosion cracking of steam generator materials and weldments; post--test examination of the Alco/BLH sodium-heated steam generator; alternate steam generator designs; and alternate structural materials. (DCC)

  7. Analysis of toxic metals in branded Pakistani herbal products

    International Nuclear Information System (INIS)

    Saeed, M.; Muhammad, N.; Khan, H.

    2010-01-01

    The present study was designed to estimate the concentration of heavy toxic metals in Pakistani herbal products frequently used for the treatment of various ailments. For this purpose, twenty five herbal products of well reputed herbal manufacturers were selected. The results of our investigation revealed that the concentrations of lead, cadmium, nickel and chromium were far beyond the permissible limits proposed by the International Regulatory Authorities for herbal drugs. Therefore, this study conveys a strong message to the ministry of health to establish proper rules and regulations for the validation of herbal products on scientific grounds in order to protect the general public from the harmful effects of these heavy metals in herbal products. (author)

  8. The industrial production of fuel elements; La fabrication en france des elements combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Boussard, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires; Nadal, J [Societe Industrielle de Combustible Nucleaire (SICN), 75 - Paris (France); Pellen, A [Compagnie pour l' Etude et la Realisation de Combustibles Atomiques (CERCA), 75 - Paris (France)

    1964-07-01

    -pool type reactors. The authors show how the problem of the industrial production of rolled fuel elements has been solved in France, and give the three steps involved: 1 - Assembly of the plates made in the U.S.A., 2 - Rolling of the cores made in the U.S.A. to obtain the plates, 3 - Fabrication of the U-Al alloy and production of the cores. They then recall briefly the characteristics of the different fuel elements now in production. A description is given of the various stages of the production including information about the equipment; stress is laid on the extent of the controls carried out at each stage. In conclusion the authors consider the future development of this type of production taking into account the improvements planned and those which are possible. (authors) [French] Les auteurs traitent successivement de la fabrication industrielle des elements combustibles pour reacteurs de puissance de la filiere U naturel graphite-gaz et plus particulierement pour les centrales energetiques d'E.D.F. et de celle des elements combustibles a base d'U enrichi destines aux reacteurs experimentaux du type 'piscine'. 1ere Partie - LES ELEMENTS COMBUSTIBLES AVANCES POUR LES REACTEURS E.D.F.: Apres un bref rappel des caracteristiques des elements combustibles actuellement fabriques industriellement pour les reacteurs de MARCOULE et de CHINON, les auteurs indiquent les differentes etapes suivies pour aboutir au stade de la fabrication industrielle d'un element combustible nouveau, tant en ce qui concerne la gaine et eventuellement la chemise de graphite que le combustible lui-meme. Pour ce qui est de l'elaboration du combustible, ils decrivent les differentes operations en insistant sur les points originaux de la fabrication et de l'appareillage tels que: - coulees en moules chauds, - traitement thermique des alliages U.Mo 1 p. 100, - soudure des pastilles de fermeture des tubes, - gainage - controle aux differents stades. En ce qui concerne la fabrication des gaines, ils

  9. Flexible semi-transparent silicon (100) fabric with high-k/metal gate devices

    KAUST Repository

    Rojas, Jhonathan Prieto; Hussain, Muhammad Mustafa

    2013-01-01

    (100) wafers and then released as continuous, mechanically flexible, optically semi-transparent and high thermal budget compatible silicon fabric with devices. This is the first ever demonstration with this set of materials which allows full degree

  10. Simple and fast fabrication of superhydrophobic metal wire mesh for efficiently gravity-driven oil/water separation.

    Science.gov (United States)

    Song, Botao

    2016-12-15

    Superhydrophobic metal wire mesh (SMWM) has frequently been applied for the selective and efficient separation of oil/water mixture due to its porous structure and special wettability. However, current methods for the modification of metal wire mesh to be superhydrophobic suffered from problems with respect to complex experimental procedures or time-consuming process. In this study, a very simple, time-saving and single-step electrospray method was proposed to fabricate SMWM and the whole procedure required about only 2min. The morphology, surface composition and wettability of the SMWM were all evaluated, and the oil/water separation ability was further investigated. In addition, a commercial available sponge covered with SMWM was fabricated as an oil adsorbent for the purpose of oil recovery. This study demonstrated a convenient and fast method to modify the metal wire mesh to be superhydrophobic and such simple method might find practical applications in the large-scale removal of oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. HEAVY METAL CONTENT OF AYURVEDIC HERBAL MEDICINE PRODUCTS

    Science.gov (United States)

    Case reports of individuals taking Ayurvedic herbal medicine products (HMPs) suggest that they may contain lead, mercury, and/or arsenic. We analyzed the heavy metal content of Ayurvedic HMPs manufactured in India and Pakistan, available in South Asian grocery stores in the Bost...

  12. Iron Drinking Water Pipe Corrosion Products: Concentrators of Toxic Metals

    Science.gov (United States)

    2013-01-01

    health risk. In addition Pb corrosion products may be sinks for other metals such as chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn). These...Vanadium K-Edge X-ray Absorption Near-Edge Structure Interpretation: Application to the Speciation of Vanadium in Oxide Phases from Steel Slag ’, Journal

  13. Marginal discrepancy of noble metal-ceramic fixed dental prosthesis frameworks fabricated by conventional and digital technologies.

    Science.gov (United States)

    Afify, Ahmed; Haney, Stephan; Verrett, Ronald; Mansueto, Michael; Cray, James; Johnson, Russell

    2018-02-01

    Studies evaluating the marginal adaptation of available computer-aided design and computer-aided manufacturing (CAD-CAM) noble alloys for metal-ceramic prostheses are lacking. The purpose of this in vitro study was to evaluate the vertical marginal adaptation of cast, milled, and direct metal laser sintered (DMLS) noble metal-ceramic 3-unit fixed partial denture (FDP) frameworks before and after fit adjustments. Two typodont teeth were prepared for metal-ceramic FDP abutments. An acrylic resin pattern of the prepared teeth was fabricated and cast in nickel-chromium (Ni-Cr) alloy. Each specimen group (cast, milled, DMLS) was composed of 12 casts made from 12 impressions (n=12). A single design for the FDP substructure was created on a laboratory scanner and used for designing the specimens in the 3 groups. Each specimen was fitted to its corresponding cast by using up to 5 adjustment cycles, and marginal discrepancies were measured on the master Ni-Cr model before and after laboratory fit adjustments. The milled and DMLS groups had smaller marginal discrepancy measurements than those of the cast group (PDMLS and cast groups (F=30.643, P<.001). Metal-ceramic noble alloy frameworks fabricated by using a CAD-CAM workflow had significantly smaller marginal discrepancies compared with those with a traditional cast workflow, with the milled group demonstrating the best marginal fit among the 3 test groups. Manual refining significantly enhanced the marginal fit of all groups. All 3 groups demonstrated marginal discrepancies within the range of clinical acceptability. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication

    International Nuclear Information System (INIS)

    Duan Xuanming; Sun Hongbo; Kaneko, Koshiro; Kawata, Satoshi

    2004-01-01

    We have investigated two-photon polymerization of metal ions doped acrylate monomers and oligomers which is applied for three-dimensional (3D) micro/nano-structure fabrication. Titanium (IV) ions doped urethane acrylate photopolymerizable resins were synthesized, and their optical and polymerization properties were investigated. The resolution of two-photon polymerization for micro/nanofabrication was evaluated. Titanium dioxide (TiO 2 ) nanoparticles were generated in the polymer matrix of micron-sized polymer structures. A 3D diamond photonic crystal structure, which consisted of polymer composite materials of TiO 2 nanoparticles, was successfully fabricated by direct laser writing and its photonic bandgap was confirmed. This work would give us a new solution for producing 3D micro/nanodevices of functional polymer composite materials

  15. Fabrication and characterization of metal-packaged fiber Bragg grating sensor by one-step ultrasonic welding

    Science.gov (United States)

    Zhang, Yumin; Zhu, Lianqing; Luo, Fei; Dong, Mingli; Ding, Xiangdong; He, Wei

    2016-06-01

    A metallic packaging technique of fiber Bragg grating (FBG) sensors is developed for measurement of strain and temperature, and it can be simply achieved via one-step ultrasonic welding. The average strain transfer rate of the metal-packaged sensor is theoretically evaluated by a proposed model aiming at surface-bonded metallic packaging FBG. According to analytical results, the metallic packaging shows higher average strain transfer rate compared with traditional adhesive packaging under the same packaging conditions. Strain tests are performed on an elaborate uniform strength beam for both tensile and compressive strains; strain sensitivities of approximately 1.16 and 1.30 pm/μɛ are obtained for the tensile and compressive situations, respectively. Temperature rising and cooling tests are also executed from 50°C to 200°C, and the sensitivity of temperature is 36.59 pm/°C. All the measurements of strain and temperature exhibit good linearity and stability. These results demonstrate that the metal-packaged sensors can be successfully fabricated by one-step welding technique and provide great promise for long-term and high-precision structural health monitoring.

  16. Clinical acceptability of metal-ceramic fixed partial dental prosthesis fabricated with direct metal laser sintering technique-5 year follow-up.

    Science.gov (United States)

    Prabhu, Radhakrishnan; Prabhu, Geetha; Baskaran, Eswaran; Arumugam, Eswaran M

    2016-01-01

    In recent years, direct metal laser sintered (DMLS) metal-ceramic-based fixed partial denture prostheses have been used as an alternative to conventional metal-ceramic fixed partial denture prostheses. However, clinical studies for evaluating their long-term clinical survivability and acceptability are limited. The aim of this study was to assess the efficacy of metal-ceramic fixed dental prosthesis fabricated with DMLS technique, and its clinical acceptance on long-term clinical use. The study group consisted of 45 patients who were restored with posterior three-unit fixed partial denture prosthesis made using direct laser sintered metal-ceramic restorations. Patient recall and clinical examination of the restorations were done after 6months and every 12 months thereafter for the period of 60 months. Clinical examination for evaluation of longevity of restorations was done using modified Ryge criteria which included chipping of the veneered ceramic, connector failure occurring in the fixed partial denture prosthesis, discoloration at the marginal areas of the veneered ceramic, and marginal adaptation of the metal and ceramic of the fixed denture prosthesis. Periapical status was assessed using periodical radiographs during the study period. Survival analysis was made using the Kaplan-Meier method. None of the patients had failure of the connector of the fixed partial denture prostheses during the study period. Two exhibited biological changes which included periapical changes and proximal caries adjacent to the abutments. DMLS metal-ceramic fixed partial denture prosthesis had a survival rate of 95.5% and yielded promising results during the 5-year clinical study.

  17. Continuous process of powder production for MOX fuel fabrication according to ''granat'' technology

    International Nuclear Information System (INIS)

    Morkovnikov, V.E.; Raginskiy, L.S.; Pavlinov, A.P.; Chernov, V.A.; Revyakin, V.V.; Varykhanov, V.S.; Revnov, V.N.

    2000-01-01

    During last years the problem of commercial MOX fuel fabrication for nuclear reactors in Russia was solved in a number of directions. The paper deals with the solution of the problem of creating a continuous pilot plant for the production of MOX fuel powders on the basis of the home technology 'Granat', that was tested before on a small-scale pilot-commercial batch-operated plant of the same name and confirmed good results. (authors)

  18. Comparison of Jacket Production Processes Designed by Fabric Materials and Leather

    OpenAIRE

    Emine Utkun; Ziynet Öndoğan

    2011-01-01

    Leather and leather products industry has shown a significant improvement in export area, as a result of intensive shuttle trades and demand that comes from crumbling Eastern Bloc countries in 1990's. This development has caused capacity increasing and thus makes large investments in this sector. Leather garment industry differs from woven or fabrics industry at various points. Differantation seems in raw materials features such as size, thickness, biological, chemical or physical homogenity....

  19. Metal stress in zooplankton diapause production: post-hatching response.

    Science.gov (United States)

    Aránguiz-Acuña, Adriana; Pérez-Portilla, Pablo

    2017-04-01

    Aquatic organisms commonly respond to harsh conditions by forming diapausing stages, which enable populations to survive adverse periods forming egg banks. Production of diapausing eggs is frequently observed in monogonont rotifers, previously changing from asexual to partial sexual reproduction (mixis). In despite that zooplankton are frequently used in ecotoxicological assessment because of their sensitivity to various toxicants and their important role in the ecosystems, toxicity evaluations often consider the directly exposed population produced by parthenogenetic reproduction, exclusively. We assessed experimentally effects of exposure to metals on mixis delay and fitness of hatchlings of the rotifer Brachionus plicatilis obtained from a brackish water lagoon with high metal content, especially copper. We show that sub-lethal concentrations of copper affected traits related to sexual reproduction and diapausing egg production in the rotifer. Copper addition did not delay the start of mixis, suggesting that rapid initiation of mixis is promoted in risky environments, according to the hypothesis of mixis as an escape strategy. Higher investment in mixis was obtained when individuals were exposed to metal. Addition of copper negatively affected the hatching success of diapausing eggs and performance of hatchlings. Nevertheless, these effects were greater for individuals formed in non-metal conditions, suggesting an adaptive advantage of populations from natural sediments exposed to copper. These results highlight the ecological and evolutionary consequences of the presence of metals in freshwater environments by modulating diapause adaptive efficacy and the selective process in egg banks.

  20. Fabrication of mesoporous metal oxide coated-nanocarbon hybrid materials via a polyol-mediated self-assembly process

    Science.gov (United States)

    Feng, Bingmei; Wang, Huixin; Wang, Dongniu; Yu, Huilong; Chu, Yi; Fang, Hai-Tao

    2014-11-01

    After clarifying the formation mechanism of a typical metal glycolate precipitate, Ti glycolate, in a polyol-mediated synthesis using acetone as a precipitation medium, we describe a simple template-free approach based on an ethylene glycol-mediated synthesis to fabricate mesoporous metal oxide coated-nanocarbon hybrid materials including TiO2 coated-carbon nanotube (CNT), SnO2 coated-CNT, Cu2O/CuO coated-CNT and TiO2 coated-graphene sheet (GS). In the approach, metal oxide precursors, metal glycolates, were first deposited on CNTs or GSs, and subsequently transformed to the metal oxide coatings by pyrolysis or hydrolysis. By a comparison between the characterization of two TiO2-CNT hybrid materials using carboxylated CNTs and pristine CNTs without carboxyl groups, the driving force for initiating the deposition of metal glycolates on the carboxylated CNTs is confirmed to be the hydrogen bonding between the carboxyl groups and the polymer chains in metal glycolate sols. The electrochemical performances of the mesoporous TiO2 coated-carboxylated CNTs and TiO2-pristine CNT hybrid materials were investigated. The results show that the mesoporous TiO2 coated-carboxylated CNT with a uniform core-shell nanostructure exhibits substantial improvement in the rate performance in comparison with its counterpart from 0.5 C to 100 C because of its higher electronic conductivity and shorter diffusion path for the lithium ion. At the extremely high rate of 100 C, the specific capacity of TiO2 of the former reaches 85 mA h g-1, twice as high as that of the latter.After clarifying the formation mechanism of a typical metal glycolate precipitate, Ti glycolate, in a polyol-mediated synthesis using acetone as a precipitation medium, we describe a simple template-free approach based on an ethylene glycol-mediated synthesis to fabricate mesoporous metal oxide coated-nanocarbon hybrid materials including TiO2 coated-carbon nanotube (CNT), SnO2 coated-CNT, Cu2O/CuO coated-CNT and TiO2

  1. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ling [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Memarzadeh, Kaveh [Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Newark Street, London E1 2AT (United Kingdom); Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Ren, Guogang [University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Allaker, Robert P., E-mail: r.p.allaker@qmul.ac.uk [Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Newark Street, London E1 2AT (United Kingdom); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-10-01

    Objective: The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Methods: Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. Results: SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. Significance: The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. - Highlights: • Novel CoCrCu alloys were fabricated by using selective laser melting (SLM). • SLM CoCrCu alloys showed satisfied antimicrobial and antibiofilm activities. • SLM CoCrCu alloys have no cytotoxic effect on normal cells. • Other properties of SLM CoCrCu alloys were similar to SLM CoCr alloys. • SLM CoCrCu alloys have the potential to be used as coping metals.

  2. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties

    International Nuclear Information System (INIS)

    Ren, Ling; Memarzadeh, Kaveh; Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang; Ren, Guogang; Allaker, Robert P.; Yang, Ke

    2016-01-01

    Objective: The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Methods: Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. Results: SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. Significance: The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. - Highlights: • Novel CoCrCu alloys were fabricated by using selective laser melting (SLM). • SLM CoCrCu alloys showed satisfied antimicrobial and antibiofilm activities. • SLM CoCrCu alloys have no cytotoxic effect on normal cells. • Other properties of SLM CoCrCu alloys were similar to SLM CoCr alloys. • SLM CoCrCu alloys have the potential to be used as coping metals.

  3. Crack and wear behavior of SiC particulate reinforced aluminium based metal matrix composite fabricated by direct metal laser sintering process

    International Nuclear Information System (INIS)

    Ghosh, Subrata Kumar; Saha, Partha

    2011-01-01

    In this investigation, crack density and wear performance of SiC particulate (SiCp) reinforced Al-based metal matrix composite (Al-MMC) fabricated by direct metal laser sintering (DMLS) process have been studied. Mainly, size and volume fraction of SiCp have been varied to analyze the crack and wear behavior of the composite. The study has suggested that crack density increases significantly after 15 volume percentage (vol.%) of SiCp. The paper has also suggested that when size (mesh) of reinforcement increases, wear resistance of the composite drops. Three hundred mesh of SiCp offers better wear resistance; above 300 mesh the specific wear rate increases significantly. Similarly, there has been no improvement of wear resistance after 20 vol.% of reinforcement. The scanning electron micrographs of the worn surfaces have revealed that during the wear test SiCp fragments into small pieces which act as abrasives to result in abrasive wear in the specimen.

  4. Marginal Accuracy of Castings Fabricated with Ringless Casting Investment System and Metal Ring Casting Investment System: A Comparative Study.

    Science.gov (United States)

    Kalavathi, M; Sachin, Bhuvana; Prasanna, B G; Shreeharsha, T V; Praveen, B; Ragher, Mallikarjuna

    2016-02-01

    The thermal expansion of the investment can be restricted by the metal casting ring because the thermal expansion of the ring is less than that of the investment. The ringless casting procedure is in use in clinical dentistry, though there is little scientific data to support its use in fixed partial dentures. In this study, marginal discrepancy of castings produced with the ringless casting technique and the conventional technique using the metal rings were compared. A total of 30 wax patterns were fabricated directly on a metal die. Optical stereomicroscope was used to measure the marginal discrepancy between the metal die and wax patterns. A total of 15 castings were invested using Bellavest T phosphate-bonded investment with the ringless technique and 15 were invested with the same investment with a metal ring; 30 castings were produced using a nickel-chromium ceramo-metal alloy. The internal surface of the castings was not modified and seated with finger pressure. The vertical marginal discrepancy was measured using an optical stereomicroscope at a magnification of 100x. The data obtained were statistically analyzed using students t-test (paired t-test and unpaired t-test). The castings of the ringless technique provided less vertical marginal discrepancy (240.56 ± 45.81 μ) than the castings produced with the conventional metal ring technique (281.98± 53.05 μ). The difference was statistically significant. The ringless casting technique had produced better marginal accuracy compared with conventional casting technique. Ringless casting system can be used routinely for clinical purpose.

  5. Fabrication techniques of metal liner used for pressure vessels made by composite material

    International Nuclear Information System (INIS)

    Takahashi, W.K.; Al-Qureshi, H.A.

    1982-01-01

    Different viable techniques for the manufacturing of metal liner used for pressure vessels are presented. The aim of these metal liner is to avoid the fluid leakage from the pressurized vessel and to serve as a mandreal to be wound by composite material. The studied techniques are described and the practical results are illustrated. Finally a comparative study of the manufacturing techniques is made in order to define the process that furnishes the metal liner with the best characteristics. The advantages offered by these type of pressure vessels when compared with the conventional metallic vessels, are also presented. (Author) [pt

  6. Testing the electrostatic characteristics of polypropylene fabric with metallic yarns, intended for use in coal mines threatened by the explosion hazard. Part 2: Tests in coal mine

    International Nuclear Information System (INIS)

    Talarek, M; Orzech, L

    2011-01-01

    The aim of this paper was to assess the electrostatic safety of polypropylene fabric with metallic yarns intended for use in coal mines. Such fabrics have not been used in the Polish mining industry yet. The tests conducted have been divided into two subgroups: laboratory tests and tests in a coal mine. This paper presents the results of tests in a coal mine, where we have focused on the resistance-to-ground in some specific situations. Bags made of fabric at the roadway face were tested, as well as the roll of fabric during transport and carried by a miner. The results obtained allow the reliable assessment of the risk of using fabrics with metallic yarns in the explosive atmosphere which often occurs in coal mines.

  7. Manufacturing processes in the textile industry. Expert Systems for fabrics production

    Directory of Open Access Journals (Sweden)

    Juan BULLON

    2017-03-01

    Full Text Available The textile industry is characterized by the economic activity whose objective is the production of fibres, yarns, fabrics, clothing and textile goods for home and decoration,as well as technical and industrial purposes. Within manufacturing, the Textile is one of the oldest and most complex sectors which includes a large number of sub-sectors covering the entire production cycle, from raw materials and intermediate products, to the production of final products. Textile industry activities present different subdivisions, each with its own traits. The length of the textile process and the variety of its technical processes lead to the coexistence of different sub-sectors in regards to their business structure and integration. The textile industry is developing expert systems applications to increase production, improve quality and reduce costs. The analysis of textile designs or structures includes the use of mathematical models to simulate the behavior of the textile structures (yarns, fabrics and knitting. The Finite Element Method (FEM has largely facilitated the prediction of the behavior of that textile structure under mechanical loads. For classification problems Artificial Neural Networks (ANNs haveproved to be a very effective tool as a quick and accurate solution. The Case-Based Reasoning (CBR method proposed in this study complements the results of the finite element simulation, mathematical modeling and neural networks methods.

  8. The release of fission products from uranium metal: a review

    International Nuclear Information System (INIS)

    Minshall, P.C.

    1989-03-01

    The literature on the release of fission products as gaseous species from irradiated uranium metal in oxidising atmospheres has been reviewed. Release of actinides and of fission products as spalled particulate were not considered. Data is given on the release in air, carbon dioxide, steam and mixtures of steam and air. The majority of data discussed lie between 800 and 1200 0 C though some results for xenon, krypton and iodine releases below 800 0 C are given. Two measures of fission product release are discussed: the release fraction, F(tot), which is the ratio of the total release to the initial inventory, and the fractional release, F(ox), which is the fraction released from the oxidised metal. The effect of burn-up, atmosphere and temperature on F(tot) and F(ox) is examined and the conditions under which the release fraction, F(tot) is proportional to the extent of oxidation discussed. (author)

  9. Fabrication of metallic nanomasks by transfer of self-organized nanodot patterns from semiconductor material into thin metallic layers

    International Nuclear Information System (INIS)

    Bobek, T.; Kurz, H.

    2007-01-01

    The basic understanding of the formation of highly regular nanostructures during ion erosion of amorphous GaSb layers is revised. The essential physical parameters for the formation of the highly regular dot pattern are discussed. Numerical modelling based on the stabilized isotropic Kuramoto-Sivashinsky equation is presented and discussed. The experimental part of this contribution presents the successful pattern transfer into metallic buried thin layers as well as into Silicon underlayers. The critical conditions for this transfer technique are discussed. Application potential of using this self-organization scheme for the generation of highly regular patterns in ferromagnetic metal layers as well as in crystalline silicon is estimated

  10. Cumulative exergy losses associated with the production of lead metal

    Energy Technology Data Exchange (ETDEWEB)

    Szargut, J [Technical Univ. of Silesia, Gliwice (PL). Inst. of Thermal-Engineering; Morris, D R [New Brunswick Univ., Fredericton, NB (Canada). Dept. of Chemical Engineering

    1990-08-01

    Cumulative exergy losses result from the irreversibility of the links of a technological network leading from raw materials and fuels extracted from nature to the product under consideration. The sum of these losses can be apportioned into partial exergy losses (associated with particular links of the technological network) or into constituent exergy losses (associated with constituent subprocesses of the network). The methods of calculation of the partial and constituent exergy losses are presented, taking into account the useful byproducts substituting the major products of other processes. Analyses of partial and constituent exergy losses are made for the technological network of lead metal production. (author).

  11. The series production in a standardized fabrication line for silicide fuels and commercial aspects

    International Nuclear Information System (INIS)

    Wehner, E.L.; Hassel, H.W.

    1987-01-01

    NUKEM has been responsible for the development and fabrication of LEU fuel elements for MTR reactors under the frame of the German AF program since 1979. The AF program is part of the international RERTR efforts, which were initiated by the INFCE Group in 1978. This paper describes the actual status of development and the transition from the prototype to the series production in a standardized manufacturing line for silicide fuels at NUKEM. Technical provisions and a customer oriented standardized product range aim at an economized manufacturing. (Author)

  12. Fabrication of metal organic framework materials using a layer-by-layer spin coating approach

    KAUST Repository

    Eddaoudi, Mohamed; Shekhah, Osama

    2016-01-01

    Embodiments describe a method of depositing an MOF, including depositing a metal solution onto a substrate, spinning the substrate sufficient to spread the metal solution, depositing an organic ligand solution onto the substrate and spinning the substrate sufficient to spread the organic ligand solution and form a MOF layer.

  13. Fabrication of metal organic framework materials using a layer-by-layer spin coating approach

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-17

    Embodiments describe a method of depositing an MOF, including depositing a metal solution onto a substrate, spinning the substrate sufficient to spread the metal solution, depositing an organic ligand solution onto the substrate and spinning the substrate sufficient to spread the organic ligand solution and form a MOF layer.

  14. Fabrication and electrical characterization of a MOS memory device containing self-assembled metallic nanoparticles

    Science.gov (United States)

    Sargentis, Ch.; Giannakopoulos, K.; Travlos, A.; Tsamakis, D.

    2007-04-01

    Floating gate devices with nanoparticles embedded in dielectrics have recently attracted much attention due to the fact that these devices operate as non-volatile memories with high speed, high density and low power consumption. In this paper, memory devices containing gold (Au) nanoparticles have been fabricated using e-gun evaporation. The Au nanoparticles are deposited on a very thin SiO 2 layer and are then fully covered by a HfO 2 layer. The HfO 2 is a high- k dielectric and gives good scalability to the fabricated devices. We studied the effect of the deposition parameters to the size and the shape of the Au nanoparticles using capacitance-voltage and conductance-voltage measurements, we demonstrated that the fabricated device can indeed operate as a low-voltage memory device.

  15. Metal-organic framework superhydrophobic coating on Kevlar fabric with efficient drag reduction and wear resistance

    Science.gov (United States)

    Li, Deke; Guo, Zhiguang

    2018-06-01

    Superhydrophobic layers are extremely essential for protecting material surface in various applications. In this study, a stable superhydrophobic mixed matrix surface with a 152.2° contact angle can be fabricated through the technology of layer-by-layer hot-pressing (HoP), and then modified by 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES) on the ZIF-8@Kevlar fabric surface. The morphology and chemical composition were analyzed by the means of SEM, XRD and FTIR. The obtained superhydrophobic coatings showed excellent antiwear performance and drag reduction under desired working conditions. Moreover, we successfully applied superhydrophobic F-ZIF-8@Kevlar fabric in the alcohol adsorbent with high removal capacity, and it can be reused for several times without serious efficiency loss.

  16. Comparative Study of Laboratory-Scale and Prototypic Production-Scale Fuel Fabrication Processes and Product Characteristics

    International Nuclear Information System (INIS)

    2014-01-01

    An objective of the High Temperature Gas Reactor fuel development and qualification program for the United States Department of Energy has been to qualify fuel fabricated in prototypic production-scale equipment. The quality and characteristics of the tristructural isotropic coatings on fuel kernels are influenced by the equipment scale and processing parameters. Some characteristics affecting product quality were suppressed while others have become more significant in the larger equipment. Changes to the composition and method of producing resinated graphite matrix material has eliminated the use of hazardous, flammable liquids and enabled it to be procured as a vendor-supplied feed stock. A new method of overcoating TRISO particles with the resinated graphite matrix eliminates the use of hazardous, flammable liquids, produces highly spherical particles with a narrow size distribution, and attains product yields in excess of 99%. Compact fabrication processes have been scaled-up and automated with relatively minor changes to compact quality to manual laboratory-scale processes. The impact on statistical variability of the processes and the products as equipment was scaled are discussed. The prototypic production-scale processes produce test fuels that meet fuel quality specifications.

  17. Updated Life-Cycle Assessment of Aluminum Production and Semi-fabrication for the GREET Model

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Qiang [Argonne National Lab. (ANL), Argonne, IL (United States); Kelly, Jarod C. [Argonne National Lab. (ANL), Argonne, IL (United States); Burnham, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    This report serves as an update for the life-cycle analysis (LCA) of aluminum production based on the most recent data representing the state-of-the-art of the industry in North America. The 2013 Aluminum Association (AA) LCA report on the environmental footprint of semifinished aluminum products in North America provides the basis for the update (The Aluminum Association, 2013). The scope of this study covers primary aluminum production, secondary aluminum production, as well as aluminum semi-fabrication processes including hot rolling, cold rolling, extrusion and shape casting. This report focuses on energy consumptions, material inputs and criteria air pollutant emissions for each process from the cradle-to-gate of aluminum, which starts from bauxite extraction, and ends with manufacturing of semi-fabricated aluminum products. The life-cycle inventory (LCI) tables compiled are to be incorporated into the vehicle cycle model of Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model for the release of its 2015 version.

  18. Inspection logistics planning for multi-stage production systems with applications to semiconductor fabrication lines

    Science.gov (United States)

    Chen, Kyle Dakai

    Since the market for semiconductor products has become more lucrative and competitive, research into improving yields for semiconductor fabrication lines has lately received a tremendous amount of attention. One of the most critical tasks in achieving such yield improvements is to plan the in-line inspection sampling efficiently so that any potential yield problems can be detected early and eliminated quickly. We formulate a multi-stage inspection planning model based on configurations in actual semiconductor fabrication lines, specifically taking into account both the capacity constraint and the congestion effects at the inspection station. We propose a new mixed First-Come-First-Serve (FCFS) and Last-Come-First-Serve (LCFS) discipline for serving the inspection samples to expedite the detection of potential yield problems. Employing this mixed FCFS and LCFS discipline, we derive approximate expressions for the queueing delays in yield problem detection time and develop near-optimal algorithms to obtain the inspection logistics planning policies. We also investigate the queueing performance with this mixed type of service discipline under different assumptions and configurations. In addition, we conduct numerical tests and generate managerial insights based on input data from actual semiconductor fabrication lines. To the best of our knowledge, this research is novel in developing, for the first time in the literature, near-optimal results for inspection logistics planning in multi-stage production systems with congestion effects explicitly considered.

  19. PRODUCTION OF PROTOTYPE PARTS USING DIRECT METAL LASER SINTERING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Josef Sedlak

    2015-08-01

    Full Text Available Unconventional methods of modern materials preparation include additive technologies which involve the sintering of powders of different chemical composition, granularity, physical, chemical and other utility properties. The technology called Rapid Prototyping, which uses different technological principles of producing components, belongs to this type of material preparation. The Rapid Prototyping technology facilities use photopolymers, thermoplastics, specially treated paper or metal powders. The advantage is the direct production of metal parts from input data and the fact that there is no need for the production of special tools (moulds, press tools, etc.. Unused powder from sintering technologies is re-used for production 98% of the time, which means that the process is economical, as well as ecological.The present paper discusses the technology of Direct Metal Laser Sintering (DMLS, which falls into the group of additive technologies of Rapid Prototyping (RP. The major objective is a detailed description of DMLS, pointing out the benefits it offers and its application in practice. The practical part describes the production and provides an economic comparison of several prototype parts that were designed for testing in the automotive industry.

  20. Modernity Evaluation of the Machines Used During Production Process of Metal Products

    OpenAIRE

    Ingaldi, Manuela; Dziuba, Szymon T.

    2015-01-01

    Most manufacturing companies realize its technologies, implemented through concrete machinery parts. They differ in terms of importance, the relevance of their selection and the level of their modernity. Modernity and efficiency of the machine are also very important during production process of the metal products. They have an influence on the quality of these products. The purpose of this article is to analyse the chosen production machine (CNC machine AFE-3D8-T) used during pro...

  1. Bioethanol production from recovered napier grass with heavy metals.

    Science.gov (United States)

    Ko, Chun-Han; Yu, Fan-Chun; Chang, Fang-Chih; Yang, Bing-Yuan; Chen, Wen-Hua; Hwang, Wen-Song; Tu, Ta-Chih

    2017-12-01

    Using plants to absorb and accumulate heavy metals from polluted soil, followed by the recycling of explants containing heavy metals, can help achieve the goal of reverting contaminated soil to low heavy-metal content soil. However, the re-use of recovered explants can also be problematic. Meanwhile, bioethanol has become a popular energy source. In this study, napier grass was used for the remediation of soil contaminated with heavy metals (artificially contaminated soil). The influence of bioethanol production from napier grass after phytoremediation was also investigated. The concentration of Zn, Cd, and Cr in the contaminated soil was 1000, 100, and 250 mg/kg, respectively. After napier grass phytoremediation, the concentration (dry biomass) of Zn, Cd, and Cr in the explants was 2701.97 ± 173.49, 6.1 ± 2.3, and 74.24 ± 1.42 mg/kg, respectively. Biomass production in the unpolluted soil was 861.13 ± 4.23 g. The biomass production ratio in high Zn-polluted soil was only 3.89%, while it was 4.68% for Cd and 21.4% for Cr. The biomass obtained after napier grass phytoremediation was pretreated using the steam explosion conditions of 180 °C, for 10 min, with 1.5% H 2 SO 2 , followed by enzymatic hydrolysis. The efficiency of enzymatic hydrolysis for Zn-polluted biomass was 90% of the unpolluted biomass, while it was 77% for Cd, and approximately the same for Cr. The fermentation efficiency of the heavy-metal-containing biomass was higher than the control biomass. The fermentation ethanol concentration obtained was 8.69-12.68, 13.03-15.50, and 18.48-19.31 g/L in Zn, Cd, and Cr environments, respectively. Results show that the heavy metals had a positive effect on bacteria fermentation. However, the fermentation efficiency was lower for biomass with severe heavy metal pollution. Thus, the utilization of napier grass phytoremediation for bioethanol production has a positive effect on the sustainability of environmental resources. Copyright © 2017

  2. Understanding the Thermal Properties of Precursor-Ionomers to Optimize Fabrication Processes for Ionic Polymer-Metal Composites (IPMCs

    Directory of Open Access Journals (Sweden)

    Sarah Trabia

    2018-04-01

    Full Text Available Ionic polymer-metal composites (IPMCs are one of many smart materials and have ionomer bases with a noble metal plated on the surface. The ionomer is usually Nafion, but recently Aquivion has been shown to be a promising alternative. Ionomers are available in the form of precursor pellets. This is an un-activated form that is able to melt, unlike the activated form. However, there is little study on the thermal characteristics of these precursor ionomers. This lack of knowledge causes issues when trying to fabricate ionomer shapes using methods such as extrusion, hot-pressing, and more recently, injection molding and 3D printing. To understand the two precursor-ionomers, a set of tests were conducted to measure the thermal degradation temperature, viscosity, melting temperature, and glass transition. The results have shown that the precursor Aquivion has a higher melting temperature (240 °C than precursor Nafion (200 °C and a larger glass transition range (32–65°C compared with 21–45 °C. The two have the same thermal degradation temperature (~400 °C. Precursor Aquivion is more viscous than precursor Nafion as temperature increases. Based on the results gathered, it seems that the precursor Aquivion is more stable as temperature increases, facilitating the manufacturing processes. This paper presents the data collected to assist researchers in thermal-based fabrication processes.

  3. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties.

    Science.gov (United States)

    Ren, Ling; Memarzadeh, Kaveh; Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang; Ren, Guogang; Allaker, Robert P; Yang, Ke

    2016-10-01

    The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Transfer-Free Fabrication of Graphene Scaffolds on High-k Dielectrics from Metal-Organic Oligomers.

    Science.gov (United States)

    Pang, Qingqing; Wang, Deyan; Wang, Xiuyan; Feng, Shaoguang; Clark, Michael B; Li, Qiaowei

    2016-09-28

    In situ fabrication of graphene scaffold-ZrO2 nanofilms is achieved by thermal annealing of Zr-based metal-organic oligomers on SiO2 substrates. The structural similarities of the aromatic moieties in the ligand (phenyl-, naphthyl-, anthryl-, and pyrenyl-) compared to graphene play a major role in the ordering of the graphene scaffolds obtained. The depth profiling analysis reveals ultrathin carbon-pure or carbon-rich surfaces of the graphene scaffold-ZrO2 nanofilms. The graphene scaffolds with ∼96.0% transmittance in the visible region and 4.8 nm in thickness can be grown with this non-chemical vapor deposition method. Furthermore, the heterogeneous graphene scaffold-ZrO2 nanofilms show a low sheet resistance of 17.0 kΩ per square, corresponding to electrical conductivity of 3197 S m(-1). The strategy provides a facile method to fabricate graphene scaffolds directly on high-k dielectrics without transferring process, paving the way for its application in fabricating electronic devices.

  5. Fabrication and characterization of a micromachined swirl-shaped ionic polymer metal composite actuator with electrodes exhibiting asymmetric resistance.

    Science.gov (United States)

    Feng, Guo-Hua; Liu, Kim-Min

    2014-05-12

    This paper presents a swirl-shaped microfeatured ionic polymer-metal composite (IPMC) actuator. A novel micromachining process was developed to fabricate an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur between the electrodes of the actuator. We demonstrated a microfluidic scheme in which surface tension was used to construct swirl-shaped planar IPMC devices of microfeature size and investigated the flow velocity of Nafion solutions, which formed the backbone polymer of the actuator, within the microchannel. The unique fabrication process yielded top and bottom electrodes that exhibited asymmetric surface resistance. A tool for measuring surface resistance was developed and used to characterize the resistances of the electrodes for the fabricated IPMC device. The actuator, which featured asymmetric electrode resistance, caused a nonzero-bias current when the device was driven using a zero-bias square wave, and we propose a circuit model to describe this phenomenon. Moreover, we discovered and characterized a bending and rotating motion when the IPMC actuator was driven using a square wave. We observed a strain rate of 14.6% and a displacement of 700 μm in the direction perpendicular to the electrode surfaces during 4.5-V actuation.

  6. Fabrication and characterization of organic solar cells using metal complex of phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Kida, Tomoyasu, E-mail: suzuki@mat.usp.ac.jp; Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Akiyama, Tsuyoshi, E-mail: suzuki@mat.usp.ac.jp; Oku, Takeo, E-mail: suzuki@mat.usp.ac.jp [Department of Materials Science, The University of Shiga Prefecture 2500 Hassaka, Hikone, Shiga 522-8533 (Japan)

    2015-02-27

    Fabrication and characterization of organic solar cells using shuttle-cock-type phthalocyanines were carried out. Photovoltaic properties of the solar cells with inverted structures were investigated by current density-voltage characteristics. Effects of phase transition between H and J aggregates on the photovoltaic and optical properties were investigated. The photovoltaic mechanisms, energy levels and band gap of active layers were discussed.

  7. Additive manufacturing of metals the technology, materials, design and production

    CERN Document Server

    Yang, Li; Baughman, Brian; Godfrey, Donald; Medina, Francisco; Menon, Mamballykalathil; Wiener, Soeren

    2017-01-01

    This book offers a unique guide to the three-dimensional (3D) printing of metals. It covers various aspects of additive, subtractive, and joining processes used to form three-dimensional parts with applications ranging from prototyping to production. Examining a variety of manufacturing technologies and their ability to produce both prototypes and functional production-quality parts, the individual chapters address metal components and discuss some of the important research challenges associated with the use of these technologies. As well as exploring the latest technologies currently under development, the book features unique sections on electron beam melting technology, material lifting, and the importance this science has in the engineering context. Presenting unique real-life case studies from industry, this book is also the first to offer the perspective of engineers who work in the field of aerospace and transportation systems, and who design components and manufacturing networks. Written by the leadin...

  8. Applications of a Hybrid Manufacturing Process for Fabrication and Repair of Metallic Structures (Preprint)

    National Research Council Canada - National Science Library

    Liou, Frank; Slattery, Kevin; Kinsella, Mary; Newkirk, Joseph; Chou, Hsin-Nan; Landers, Robert

    2006-01-01

    .... Coupled between the additive and the subtractive processes into a single workstation, the integrated process, or hybrid process, can produce a metal part with machining accuracy and surface finish...

  9. Rapid selective metal patterning on polydimethylsiloxane (PDMS) fabricated by capillarity-assisted laser direct write

    KAUST Repository

    Lee, Ming-Tsang; Lee, Daeho; Sherry, Alexander; Grigoropoulos, Costas P

    2011-01-01

    direct write (LDW) technology. To achieve good metal film quality, a capillarity-assisted laser direct writing (CALDW) of nanoparticle suspensions on a low surface energy material (PDMS) was utilized. Experimental results showed controllable electrical

  10. Proposed industrial recovered materials utilization targets for the metals and metal products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    Set targets for increased utilization of energy-saving recovered materials in the metals and metal products industries (ferrous, aluminium, copper, zinc, and lead) are discussed. Data preparation and methodology development and analysis of the technological and economic factors in order to prepare draft targets for the use of recovered materials are covered. Chapter 2 provides an introductory discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33, including industry structure, process technology, materials and recycling flow, and future trends for the 5 industries: ferrous, aluminium, copper, zinc, and lead. Chapter 4 presents the evaluation of recycling targets for those industries. (MCW)

  11. Hydrometallurgical Approach for Leaching of Metals from Copper Rich Side Stream Originating from Base Metal Production

    Directory of Open Access Journals (Sweden)

    Udit Surya Mohanty

    2018-01-01

    Full Text Available Pyrometallurgical metal production results in side streams, such as dusts and slags, which are carriers of metals, though commonly containing lower metal concentrations compared to the main process stream. In order to improve the circular economy of metals, selective leaching of copper from an intermediate raw material originating from primary base metal production plant was investigated. The raw material investigated was rich in Cu (12.5%, Ni (2.6%, Zn (1.6%, and Fe (23.6% with the particle size D80 of 124 µm. The main compounds present were nickel ferrite (NiFe2O4, fayalite (Fe2SiO4, cuprite (Cu2O, and metallic copper. Leaching was studied in 16 different solutions. The results revealed that copper phases could be dissolved with high yield (>90% and selectivity towards nickel (Cu/Ni > 7 already at room temperature with the following solutions: 0.5 M HCl, 1.5 M HCl, 4 M NaOH, and 2 M HNO3. A concentration of 4 M NaOH provided a superior selectivity between Cu/Ni (340 and Cu/Zn (51. In addition, 1–2 M HNO3 and 0.5 M HCl solutions were shown to result in high Pb dissolution (>98%. Consequently, 0.5 M HCl leaching is suggested to provide a low temperature, low chemical consumption method for selective copper removal from the investigated side stream, resulting in PLS (pregnant leach solution which is a rich in Cu and lead free residue, also rich in Ni and Fe.

  12. Metals and cocoa products: a study on characterization of toxic and essential metals in chocolates

    International Nuclear Information System (INIS)

    Rahman, S.; Husnain, S.M.

    2012-01-01

    Metals (Pb, Cd, Ni, Fe, Cu, Zn and Mn) were assessed in 32 commonly consumed cocoa products (chocolates) prepared by different national and multinational companies. Significant differences were observed between the micro element contents of these varieties (P < 0.01). Frequent consumption of chocolates can enhance the intake of toxic metals in children. The concentration of Pb and Cd in cocoa powder is found to be highest 492 and 197 mu g/L followed by cocoa based chocolates 306 and 46.8 mu g/L, sugar based chocolates 209.8 and 40.3 mu g/L whereas it is least in milk based chocolates samples 88.3 and 33 mu g/L respectively. Weekly intake of toxic metals Pb, Cd and Ni was also calculated. Mean concentration of Pb and Cd was found below the provisional tolerable weekly intake defined by FAO/WHO. All essential elements were assessed for their weekly intake with the dietary reference intakes (DRI). Results were validated through the analysis of certified reference materials and determined metals concentrations were quite in good agreement with certified levels. Data was interpreted through cluster analysis and pattern recognition as depicted. The concentrations of Pb, Cd, Ni and Fe were found to be highest in the cocoa-based followed by milk-based and sugar-based chocolates. The daily intake of cocoa-based chocolates must be reduced as lead and cadmium intake can otherwise cross the limits set by Codex Alimentarius (FAO/WHO 2006). Raw materials should be checked before use for metal contents in order to decrease the concentrations of these metals in final chocolate products. (Orig./A.B.)

  13. The computer-aided design of rubber-metal products

    Directory of Open Access Journals (Sweden)

    Pavlo S. Shvets

    2015-12-01

    Full Text Available The important problem in design of rubber-metal products is the optimization of their mass without sacrificing of proportionality factor is in the limits of standard. Aim: The aim of this work is to improve the computer-aided systems by development and implementation of improved optimization method in rubber-metal CAD systems for designers based on the reverse optimization. Materials and Methods: The paper studies the matters of computer-aided structural design of technical composite products composed of anisotropic materials that are essentially different in properties. Results: The structure of CAD systems for designers solving the problems of such design is offered and the work principles of its subsystems are described. It is shown that complicated systems optimization in CAD systems must consider as restrictions the entitative connection between separate elements of these systems within the area of the optimizing arguments. Conclusions: The problem of the “reverse” optimization when objective functions are the connectivity area parameters is considered. In many cases, this allows receiving solutions that are more effective during the computer-aided design process. The developed CAD system for designers was used during the production of rubber-metal shock absorbers at the Odessa Rubber Technical Articles Plant. The positive technical and economic effect was obtained.

  14. Size characterization of metal oxide nanoparticles in commercial sunscreen products

    Science.gov (United States)

    Bairi, Venu Gopal; Lim, Jin-Hee; Fong, Andrew; Linder, Sean W.

    2017-07-01

    There is an increase in the usage of engineered metal oxide (TiO2 and ZnO) nanoparticles in commercial sunscreens due to their pleasing esthetics and greater sun protection efficiency. A number of studies have been done concerning the safety of nanoparticles in sunscreen products. In order to do the safety assessment, it is pertinent to develop novel analytical techniques to analyze these nanoparticles in commercial sunscreens. This study is focused on developing analytical techniques that can efficiently determine particle size of metal oxides present in the commercial sunscreens. To isolate the mineral UV filters from the organic matrices, specific procedures such as solvent extraction were identified. In addition, several solvents (hexane, chloroform, dichloromethane, and tetrahydrofuran) have been investigated. The solvent extraction using tetrahydrofuran worked well for all the samples investigated. The isolated nanoparticles were characterized by using several different techniques such as transmission electron microscopy, scanning electron microscopy, dynamic light scattering, differential centrifugal sedimentation, and x-ray diffraction. Elemental analysis mapping studies were performed to obtain individual chemical and morphological identities of the nanoparticles. Results from the electron microscopy techniques were compared against the bulk particle sizing techniques. All of the sunscreen products tested in this study were found to contain nanosized (≤100 nm) metal oxide particles with varied shapes and aspect ratios, and four among the 11 products were showed to have anatase TiO2.

  15. Abaca/polyester nonwoven fabric functionalization for metal ion adsorbent synthesis via electron beam-induced emulsion grafting

    International Nuclear Information System (INIS)

    Madrid, Jordan F.; Ueki, Yuji; Seko, Noriaki

    2013-01-01

    A metal ion adsorbent was developed from a nonwoven fabric trunk material composed of both natural and synthetic polymers. A pre-irradiation technique was used for emulsion grafting of glycidyl methacrylate (GMA) onto an electron beam irradiated abaca/polyester nonwoven fabric (APNWF). The dependence of degree of grafting (Dg), calculated from the weight of APNWF before and after grafting, on absorbed dose, reaction time and monomer concentration were evaluated. After 50 kGy irradiation with 2 MeV electron beam and subsequent 3 h reaction with an emulsion consisting of 5% GMA and 0.5% polyoxyethylene sorbitan monolaurate (Tween 20) surfactant in deionized water at 40 °C, a grafted APNWF with a Dg greater than 150% was obtained. The GMA-grafted APNWF was further modified by reaction with ethylenediamine (EDA) in isopropyl alcohol at 60 °C to introduce amine functional groups. After a 3 h reaction with 50% EDA, an amine group density of 2.7 mmole/gram adsorbent was achieved based from elemental analysis. Batch adsorption experiments were performed using Cu 2+ and Ni 2+ ions in aqueous solutions with initial pH of 5 at 30 °C. Results show that the adsorption capacity of the grafted adsorbent for Cu 2+ is four times higher than Ni 2+ ions. - Highlights: • An amine type adsorbent from abaca/polyester nonwoven fabric was synthesized. • Pre-irradiation method was used in grafting glycidyl methacrylate on nonwoven fabric. • Radiation-induced grafting was performed with monomer in emulsion state. • The calculated adsorption capacity for Cu 2+ is four times higher than Ni 2+ ions. • Grafted adsorbent can remove Cu 2+ faster than a chemically similar commercial resin

  16. Recent developments in high purity niobium metal production at CBMM

    International Nuclear Information System (INIS)

    Abdo, Gustavo Giovanni Ribeiro; Sousa, Clovis Antonio de Faria; Guimarães, Rogério Contato; Ribas, Rogério Marques; Vieira, Alaércio Salvador Martins; Menezes, Andréia Duarte; Fridman, Daniel Pallos; Cruz, Edmundo Burgos

    2015-01-01

    CBMM is a global supplier of high quality niobium products including pure niobium, the focus of this paper. CBMM’s position has been consolidated over three decades of producing high purity niobium metal ingots. The company supplies, among other products, commercial and reactor grade niobium ingots. One of the main uses of CBMM’s ingots is for the manufacture of particle accelerators (superconducting radio frequency – SRF – cavities), where the purity and homogeneity of niobium metal is essentially important for good performance. CBMM constantly strives to improve process controls and product quality, and is currently implementing innovations in production, research and development to further improve ingot quality. The main aim is to reduce the content of interstitial elements, such as nitrogen (N), oxygen (O), carbon (C), and hydrogen (H), starting with the raw materials through the final step of ingot production. CBMM held the first trial to produce the world’s largest-diameter niobium ingot (as cast 535 mm). The results of this initial trial presented very low levels of interstitial impurities (N, O, C, H), allowing the achievement of residual resistivity ratio (RRR) values very close to 300 in a six-melt process in an electron beam furnace. These values were reached with 850 ppm of tantalum. SRF cavities will be produced with this material in order to study the effect of low impurities and high RRR on the Q factor and accelerating gradient

  17. Process Development And Simulation For Cold Fabrication Of Doubly Curved Metal Plate By Using Line Array Roll Set

    International Nuclear Information System (INIS)

    Shim, D. S.; Jung, C. G.; Seong, D. Y.; Yang, D. Y.; Han, J. M.; Han, M. S.

    2007-01-01

    For effective manufacturing of a doubly curved sheet metal, a novel sheet metal forming process is proposed. The suggested process uses a Line Array Roll Set (LARS) composed of a pair of upper and lower roll assemblies in a symmetric manner. The process offers flexibility as compared with the conventional manufacturing processes, because it does not require any complex-shaped die and loss of material by blank-holding is minimized. LARS allows flexibility of the incremental forming process and adopts the principle of bending deformation, resulting in a slight deformation in thickness. Rolls composed of line array roll sets are divided into a driving roll row and two idle roll rows. The arrayed rolls in the central lines of the upper and lower roll assemblies are motor-driven so that they deform and transfer the sheet metal using friction between the rolls and the sheet metal. The remaining rolls are idle rolls, generating bending deformation with driving rolls. Furthermore, all the rolls are movable in any direction so that they are adaptable to any size or shape of the desired three-dimensional configuration. In the process, the sheet is deformed incrementally as deformation proceeds simultaneously in rolling and transverse directions step by step. Consequently, it can be applied to the fabrication of doubly curved ship hull plates by undergoing several passes. In this work, FEM simulations are carried out for verification of the proposed incremental forming system using the chosen design parameters. Based on the results of the simulation, the relationship between the roll set configuration and the curvature of a sheet metal is determined. The process information such as the forming loads and torques acting on every roll is analyzed as important data for the design and development of the manufacturing system

  18. Optimization of Additive-Powder Characteristics for Metallic Micro-Cell UO{sub 2} Fuel Pellet Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Joo; Kim, Keon Sik; Rhee, Young Woo; Kim, Jong Hun; Oh, Jang Soo; Yang, Jae Ho; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The improvement in the thermal conductivity of the UO{sub 2} fuel pellet can enhance the fuel performance in various aspects. The mobility of the fission gases is reduced by the lower temperature gradient in the UO{sub 2} fuel pellet. That is to say, the capability of the fission gas retention of the fuel pellet can increase. In addition, the lower centerline temperature of the fuel pellet affects the accident tolerance for nuclear fuel as well as the enhancement of fuel safety and fuel pellet integrity under normal operation conditions. The nuclear reactor power can be uprated owing to the higher safety margin. Thus, many researches on enhancing the thermal conductivity of a nuclear fuel pellet for LWRs have been performed. Typically, an enhancement of the thermal conductivity of the UO{sub 2} fuel pellet can be obtained by the addition of a higher thermal conductive material in the fuel pellet. To maximize the effect of the thermal conductivity enhancement, a continuous and uniform channel of the thermal conductive material in the UO{sub 2} matrix must be formed. To enhance the thermal conductivity of a UO{sub 2} fuel pellet, the development of fabrication process of a Cr metallic micro-cell UO{sub 2} pellet with a continuous and uniform channel of the Cr metallic phase was carried out. The formation of the Cr-oxide phases was prevented and the uniformity of the Cr-metal phase distribution was enhanced simultaneously, through the optimization of the additive-powder characteristics. In the results, the Cr metallic micro-cell pellet with continuous and uniform Cr metallic channel could be obtained.

  19. Development of metallic fuel fabrication - A study on the interdiffusion behavior between ternary metallic fuel and cladding materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Soo; Seol, Kyung Won; Shon, In Jin [Chonbuk National University, Chonju (Korea)

    1999-04-01

    To study a new ternary metallic fuel for liquid metal reactor, various U-Zr-X alloys have been made by induction melting. The specimens were prepared for thermal stability tests at 630 deg. C upto 5000 hours in order to estimate the decomposition of the lamellar structure. Interdiffusion studies were carried out at 700 deg. C for 200 hours for the diffusion couples assembled with U-Zr-X ternary fuel versus austenitic stainless steel D9 and martensitic stainless steel HT9, respectively, to investigate the fuel-cladding compatibility. The ternary alloy, especially U-Zr-Mo and U-Zr-Nb alloys showed relatively good thermal stability as long as 5000hrs at 630 deg. C. From the composition profiles of the interdiffusion study, Fe penetrated deeper to the fuel side than other cladding elements such as Ni and Cr, whereas U did to the cladding side of fuel elements in the fuel/D9 couples. On the contrary, the reaction layers of Fuel/HT9 couple were thinner than that of Fuel/D9 couples and were less affected by cladding element, which was believed to be due to Zr rich layer between the fuel-cladding interface. HT9 is considered to be superior to D9 and a favorable choice as a cladding material in terms of fuel-cladding compatibility. 21 refs., 24 figs., 7 tabs. (Author)

  20. Single step fabrication method of fullerene/TiO2 composite photocatalyst for hydrogen production

    International Nuclear Information System (INIS)

    Kum, Jong Min; Cho, Sung Oh

    2011-01-01

    Hydrogen is one of the most promising alternative energy sources. Fossil fuel, which is the most widely used energy source, has two defects. One is CO 2 emission causing global warming. The other is exhaustion. On the other hand, hydrogen emits no CO 2 and can be produced by splitting water which is renewable and easily obtainable source. However, about 95% of hydrogen is derived from fossil fuel. It limits the merits of hydrogen. Hydrogen from fossil fuel is not a renewable energy anymore. To maximize the merits of hydrogen, renewability and no CO 2 emission, unconventional hydrogen production methods without using fossil fuel are required. Photocatalytic water-splitting is one of the unconventional hydrogen production methods. Photocatalytic water-splitting that uses hole/electron pairs of semiconductor is expectable way to produce clean and renewable hydrogen from solar energy. TiO 2 is the semiconductor material which has been most widely used as photocatalyst. TiO 2 shows high photocatalytic reactivity and stability in water. However, its wide band gap only absorbs UV light which is only 5% of sun light. To enhance the visible light responsibility, composition with fullerene based materials has been investigated. 1-2 Methano-fullerene carboxylic acid (FCA) is one of the fullerene based materials. We tried to fabricate FCA/TiO 2 composite using UV assisted single step method. The method not only simplified the fabrication procedures, but enhanced hydrogen production rate

  1. Production planning and control for semiconductor wafer fabrication facilities modeling, analysis, and systems

    CERN Document Server

    Mönch, Lars; Mason, Scott J

    2012-01-01

    Over the last fifty-plus years, the increased complexity and speed of integrated circuits have radically changed our world. Today, semiconductor manufacturing is perhaps the most important segment of the global manufacturing sector. As the semiconductor industry has become more competitive, improving planning and control has become a key factor for business success. This book is devoted to production planning and control problems in semiconductor wafer fabrication facilities. It is the first book that takes a comprehensive look at the role of modeling, analysis, and related information systems

  2. Benzyl Alcohol-Mediated Versatile Method to Fabricate Nonstoichiometric Metal Oxide Nanostructures.

    Science.gov (United States)

    Qamar, Mohammad; Adam, Alaaldin; Azad, Abdul-Majeed; Kim, Yong-Wah

    2017-11-22

    Nanostructured metal oxides with cationic or anionic deficiency find applications in a wide range of technological areas including the energy sector and environment. However, a facile route to prepare such materials in bulk with acceptable reproducibility is still lacking; many synthesis techniques are still only bench-top and cannot be easily scaled-up. Here, we report that the benzyl alcohol (BA)-mediated method is capable of producing a host of nanostructured metal oxides (MO x , where M = Ti, Zn, Ce, Sn, In, Ga, or Fe) with inherent nonstoichiometry. It employs multifunctional BA as a solvent, a reducing agent, and a structure-directing agent. Depending on the oxidation states of metal, elemental or nonstoichiometric oxide forms are obtained. Augmented photoelectrochemical oxidation of water under visible light by some of these nonstoichiometric oxides highlights the versatility of the BA-mediated synthesis protocol.

  3. In situ fabrication of electrochemically grown mesoporous metallic thin films by anodic dissolution in deep eutectic solvents.

    Science.gov (United States)

    Renjith, Anu; Roy, Arun; Lakshminarayanan, V

    2014-07-15

    We describe here a simple electrodeposition process of forming thin films of noble metallic nanoparticles such as Au, Ag and Pd in deep eutectic solvents (DES). The method consists of anodic dissolution of the corresponding metal in DES followed by the deposition on the cathodic surface. The anodic dissolution process in DES overcomes the problems associated with copious hydrogen and oxygen evolution on the electrode surface when carried out in aqueous medium. The proposed method utilizes the inherent abilities of DES to act as a reducing medium while simultaneously stabilizing the nanoparticles that are formed. The mesoporous metal films were characterized by SEM, XRD and electrochemical techniques. Potential applications of these substrates in surface enhanced Raman spectroscopy and electrocatalysis have been investigated. A large enhancement of Raman signal of analyte was achieved on the mesoporous silver substrate after removing all the stabilizer molecules from the surface by calcination. The highly porous texture of the electrodeposited film provides superior electro catalytic performance for hydrogen evolution reaction (HER). The mechanisms of HER on the fabricated substrates were studied by Tafel analysis and electrochemical impedance spectroscopy (EIS). Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Fabrication and Evaluation of One-Axis Oriented Lead Zirconate Titanate Films Using Metal-Oxide Nanosheet Interface Layer

    Science.gov (United States)

    Minemura, Yoshiki; Nagasaka, Kohei; Kiguchi, Takanori; Konno, Toyohiko J.; Funakubo, Hiroshi; Uchida, Hiroshi

    2013-09-01

    Nanosheet Ca2Nb3O20 (ns-CN) layers with pseudo-perovskite-type crystal configuration were applied on the surface of polycrystalline metal substrates to achieve preferential crystal orientation of Pb(Zr,Ti)O3 (PZT) films for the purpose of enhanced ferroelectricity comparable to that of epitaxial thin films. PZT films with tetragonal symmetry (Zr/Ti=0.40:0.60) were fabricated by chemical solution deposition (CSD) on ns-CN-buffered Inconel 625 and SUS 316L substrates, while ns-CN was applied on the the substrates by dip-coating. The preferential crystal growth on the ns-CN layer can be achieved by favorable lattice matching between (001)/(100)PZT and (001)ns-CN planes. The degree of (001) orientation was increased for PZT films on ns-CN/Inconel 625 and ns-CN/SUS 316L substrates, whereas randomly-oriented PZT films with a lower degree of (001) orientation were grown on bare and Inconel 625 films. Enhanced remanent polarization of 60 µC/cm2 was confirmed for the PZT films on ns-CN/metal substrates, ascribed to the preferential alignment of the polar [001] axis normal to the substrate surface, although it also suffered from higher coercive field above 500 kV/cm caused by PZT/metal interfacial reaction.

  5. Fabrication and characterisation of ligand-functionalised ultrapure monodispersed metal nanoparticle nanoassemblies employing advanced gas deposition technique

    Science.gov (United States)

    Geremariam Welearegay, Tesfalem; Cindemir, Umut; Österlund, Lars; Ionescu, Radu

    2018-02-01

    Here, we report for the first time the fabrication of ligand-functionalised ultrapure monodispersed metal nanoparticles (Au, Cu, and Pt) from their pure metal precursors using the advanced gas deposition technique. The experimental conditions during nanoparticle formation were adjusted in order to obtain ultrafine isolated nanoparticles on different substrates. The morphology and surface analysis of the as-deposited metal nanoparticles were investigated using scanning electron microscopy, x-ray diffraction and Fourier transform infra-red spectroscopy, which demonstrated the formation of highly ordered pure crystalline nanoparticles with a relatively uniform size distribution of ∼10 nm (Au), ∼4 nm (Cu) and ∼3 nm (Pt), respectively. A broad range of organic ligands containing thiol or amine functional groups were attached to the nanoparticles to form continuous networks of nanoparticle-ligand nanoassemblies, which were characterised by scanning electron microscopy and x-ray photoelectron spectroscopy. The electrical resistance of the functional nanoassemblies deposited in the gap spacing of two microfabricated parallel Au electrodes patterned on silicon substrates ranged between tens of kΩ and tens of MΩ, which is suitable for use in many applications including (bio)chemical sensors, surface-enhanced Raman spectroscopy and molecular electronic rectifiers.

  6. Fabrication of metal/semiconductor nanocomposites by selective laser nano-welding.

    Science.gov (United States)

    Yu, Huiwu; Li, Xiangyou; Hao, Zhongqi; Xiong, Wei; Guo, Lianbo; Lu, Yongfeng; Yi, Rongxing; Li, Jiaming; Yang, Xinyan; Zeng, Xiaoyan

    2017-06-01

    A green and simple method to prepare metal/semiconductor nanocomposites by selective laser nano-welding metal and semiconductor nanoparticles was presented, in which the sizes, phases, and morphologies of the components can be maintained. Many types of nanocomposites (such as Ag/TiO 2 , Ag/SnO 2 , Ag/ZnO 2 , Pt/TiO 2 , Pt/SnO 2 , and Pt/ZnO) can be prepared by this method and their corresponding performances were enhanced.

  7. Fabricating large-area metallic woodpile photonic crystals using stacking and rolling

    International Nuclear Information System (INIS)

    Ibbotson, Lindsey A; Baumberg, Jeremy J

    2013-01-01

    Stacking thin polymer films supporting metal nanowire gratings provides a simple route, demonstrated here, to producing large-area metallic woodpile structures with high throughput. Under appropriate conditions the grating films can spontaneously roll up, giving a rapid and controllable method of creating multilayers. The resulting three-dimensional (3D) wire structures are flexible and potentially stretchable. Since this process can be extended to include a wide variety of functional materials, it opens up the manufacture of many tailored 3D optical metamaterials. (paper)

  8. 40 CFR 415.110 - Applicability; description of the potassium metal production subcategory.

    Science.gov (United States)

    2010-07-01

    ... potassium metal production subcategory. 415.110 Section 415.110 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.110 Applicability; description of the potassium metal production subcategory. The provisions of this subpart are applicable to discharges...

  9. Study of Wastewaters Contaminated with Heavy Metals in Bioethanol Production

    Science.gov (United States)

    Bartošová, Alica; Blinová, Lenka

    2017-06-01

    Bioethanol as a substitute for traditional sources of energy, especially oil transport, is currently one of the most researched alternative motor fuels. Normally, bioethanol is produced from agricultural crops such as sugar cane or corn. However, this is counter-productive, because agriculture is primarily serving to ensure enough food for the people. It is therefore necessary to look for new production of appropriate non-food crops or find an added value to this process. Utilisation of contaminated water from metal industry could be one of them. Based on the hypothesis of reduction of some toxic metals with higher oxidation number is opening the possibility of using this wastewater in alcohol fermentation of any kind of biomass. In this study, hexavalent chromium Cr(VI) was used as a model contaminant in the process of aerobic fermentation of corn to bioethanol. To determine the reduction potential of glucose to Cr(VI), and to quantitatively determinate the glucose content after saccharification, UV/VIS spectrophotometry was used. As a method of qualitative determination of fermentation product, gas chromatography with mass detection was used. Infrared spectrometry was used for qualitative analyses of produced ethanol. Based on the established results shown in this paper, we can conclude that the presence of hexavalent chromium in the fermentation process does not have a significant negative impact, while offering the opportunity of using the industrial wastewaters for the production of bioethanol fuel.

  10. Study of Wastewaters Contaminated with Heavy Metals in Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Bartošová Alica

    2017-06-01

    Full Text Available Bioethanol as a substitute for traditional sources of energy, especially oil transport, is currently one of the most researched alternative motor fuels. Normally, bioethanol is produced from agricultural crops such as sugar cane or corn. However, this is counter-productive, because agriculture is primarily serving to ensure enough food for the people. It is therefore necessary to look for new production of appropriate non-food crops or find an added value to this process. Utilisation of contaminated water from metal industry could be one of them. Based on the hypothesis of reduction of some toxic metals with higher oxidation number is opening the possibility of using this wastewater in alcohol fermentation of any kind of biomass. In this study, hexavalent chromium Cr(VI was used as a model contaminant in the process of aerobic fermentation of corn to bioethanol. To determine the reduction potential of glucose to Cr(VI, and to quantitatively determinate the glucose content after saccharification, UV/VIS spectrophotometry was used. As a method of qualitative determination of fermentation product, gas chromatography with mass detection was used. Infrared spectrometry was used for qualitative analyses of produced ethanol. Based on the established results shown in this paper, we can conclude that the presence of hexavalent chromium in the fermentation process does not have a significant negative impact, while offering the opportunity of using the industrial wastewaters for the production of bioethanol fuel.

  11. High Terahertz Absorbing Nanoscale Metal Films for Fabrication of Micromechanical Bi-material THz Sensors

    Science.gov (United States)

    2010-06-01

    to be 6.75 x 105 [S/m] and 7.2 x 105 [S/m] for 15 nm and 30 nm layers, respectively. These values are consistent with the measurements by Laman et...edition (expanded),” Cambridge University, 1999. [11] N. Laman , and D. Grischkowsky, “Terahertz Conductivity of Thin Metal Films,” Applied Physics

  12. CVD tungsten metallization and electron beam lithography for fabricating submicron interconnects for advanced ULSI

    International Nuclear Information System (INIS)

    Wilson, S.R.; Mattox, R.J.

    1988-01-01

    CVD W (0.45μm thick) and CVD W (0.25μm thick) strapped by Al (0.5μm thick) have been used as metal 1 systems. Electrical and physical data are presented from experiments exploring the effects of processing issues with both e-beam and stepper lithography as well as dry etch chemistry on both metal systems. The special issues encountered with the thick tungsten processing were: (i) Significant e-beam proximity related problems as compared to the sandwich metal layers. The resultant e-beam proximity problem contributed to a high level of metal bridging and poor CD control. (ii) Multiple etch related problems due to mask failure and a lack of etch selectivity. The multilevel masks utilized, consisting of photoresist and plasma enhanced oxide (PEO), failed due to the poor etch selectivity. Poor etch selectivity with respect to the underlying oxide was also observed. These issues were addressed with thicker organic and PEO mask layers as well as changes in etch chemistry. These thick layers were successful in preventing the loss of the mask during etch., but caused problems in the e-beam CD control and did not prevent the degradation of the underlying glass. A higher selectivity etch was developed which greatly reduced the underlying dielectric damage and also allowed the use of the thinner organic and PEO hardmask layers without mask failure

  13. Metal-ceramic bond strength of Co-Cr alloy fabricated by selective laser melting.

    Science.gov (United States)

    Xiang, Nan; Xin, Xian-Zhen; Chen, Jie; Wei, Bin

    2012-06-01

    This study was to evaluated the metal-ceramic bond strength of a Co-Cr dental alloy prepared using a selective laser melting (SLM) technique. Two groups comprised of twenty Co-Cr metal bars each were prepared using either a SLM or traditional lost-wax casting method. Ten bars from each group were moulded into standard ISO 9693:1999 dimensions of 25 mm × 3 mm × 0.5 mm with 1.1 mm of porcelain fused onto an 8 mm × 3 mm rectangular area in the centre of each bar. Metal-ceramic bonding was assessed using a three-point bending test. Fracture mode analysis and area fraction of adherence porcelain (AFAP) were determined by measuring Si content of specimens by SEM/EDS. Student's t-test within the groups demonstrated no significant difference for the mean bond strength between the SLM and traditional cast sample groups. While SEM/EDS analysis indicated a mixed fracture mode on the debonding interface of both the SLM and the cast groups, the SLM group showed significantly more porcelain adherence than the control group (p<0.05). The SLM metal-ceramic system exhibited a bonding strength that exceeds the requirement of ISO 9691:1999(E) and it even showed a better behaviour in porcelain adherence test comparable to traditional cast methods. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Fabrication of Polymer Solar Cells Using Aqueous Processing for All Layers Including the Metal Back Electrode

    DEFF Research Database (Denmark)

    Søndergaard, Roar; Helgesen, Martin; Jørgensen, Mikkel

    2011-01-01

    The challenges of printing all layers in polymer solar cells from aqueous solution are met by design of inks for the electron-, hole-, active-, and metallic back electrode-layers. The conversion of each layer to an insoluble state after printing enables multilayer formation from the same solvent...

  15. THE MINING ACTIVITIES AND THE METAL PRODUCTION IN ARYCANDA IN LYCIA

    OpenAIRE

    B.S. Alptekin Oransay

    2012-01-01

    Arycanda lies in eastern Lycia, which is in 35.th km of the modern Elmalı – Finike highway. During the excavations since 1971, there were found so many metal artifacts and metal slags especially from the late Roman layers in the city. These finds revealed that there was a specific metal production in Arykanda. This production covers not only the tool production from pure metal, but also includes metal purification process around the city. This metal production industry of Arykanda adds so man...

  16. Fabrication of U-Pu-Zr metallic fuel containing minor actinides

    International Nuclear Information System (INIS)

    Kurata, Masaki; Sasahara, Akihiro; Inoue, Tadashi; Betti, M.; Babelot, J.F.; Spirlet, J.C.; Koch, L.

    1997-01-01

    Rods of UPuZr alloy containing 5% minor actinides, 2% minor actinides and 2% rare-earth elements, and 5% minor actinides and 5% rare-earth elements have been fabricated by casting in yttria molds. Parts of the ingots were cut off for quantitative analysis and the rods characterized to the required extent, which included measurement of length, weight, diameter, and bending. For selected samples, metallographic study was carried out to examine the dispersion of the various phases contained in the alloy. Finally, the rods were encapsulated in stainless steel pin with the UPuZr reference after sodium bonding for the irradiation study. (author)

  17. Friction welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    Science.gov (United States)

    Byrne, Stephen C.; Ray, Siba P.; Rapp, Robert A.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor and a ceramic electrode body connected by a friction weld between a portion of the body having a level of free metal or metal alloy sufficient to effect such a friction weld and a portion of the metal conductor.

  18. Trial fabrication of Be12Ti electrode for pebble production by rotating electrode method

    International Nuclear Information System (INIS)

    Uda, M.; Iwadachi, T.; Uchida, M.; Nakamichi, M.; Kawamura, H.

    2004-01-01

    Be 12 Ti has been one of candidates for advanced neutron multipliers, due to its high melting points and good chemical stability. Although Be 12 Ti is too brittle to product pebbles for neutron multipliers with the rotating electrode method (REM), a preliminary production of the pebbles which was made of two phase material of α-beryllium (α-Be) and Be 12 Ti was successfully demonstrated with REM. In this study a trial fabrication of the Be-5at%Ti'' ingot (α-Be + Be 12 Ti) for the REM electrode was carried out with a vacuum casting process. Three kinds of refractory crucibles (MgO, CaO and BeO) were tested for the evaluation of durability to the melt of Be-5%Ti. The water-cooled copper mould was applied for the casting mold to assist a one-direction solidification. The appearance (crack(s), shrinkage, etc.), microstructure and chemical analysis of the ''Be-5at%Ti'' ingots were investigated. As for the results of the trial fabrication, it was made clear that BeO crucible is most useful for the melting of Be-5at%Ti. The ingot, which was a size of φ85 x h 150 mm, had h 40mm sound portion from the bottom. The microstructure of the ingots showed two phases (probably α-Be and Be 12 Ti). The chemical composition of the Ti in the ingot were 3.1 - 6.2at%. (author)

  19. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W.R.; Smith, J.P.; Trester, P.W.

    1997-04-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy, and processing into final sheet and rod product forms suitable for components of the DIII-D Radiative Divertor structure, has been completed at Wah Chang (formerly Teledyne Wah Chang) of Albany, Oregon (WCA). Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RD Program, and research into several joining methods for fabrication of the RD components, including resistance seam, friction, and electron beam welding, is continuing. Preliminary trials have been successful in the joining of V-alloy to itself by electron beam, resistance, and friction welding processes, and to Inconel 625 by friction welding. An effort to investigate the explosive bonding of V-4Cr-4Ti alloy to Inconel 625 has also been initiated, and results have been encouraging. In addition, preliminary tests have been completed to evaluate the susceptibility of V-4Cr-4Ti alloy to stress corrosion cracking in DIII-D cooling water, and the effects of exposure to DIII-D bakeout conditions on the tensile and fracture behavior of V-4Cr-4Ti alloy.

  20. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W.R.; Smith, J.P.

    1997-08-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy, and processing into final sheet and rod product forms suitable for components of the DIII-D Radiative Divertor Program (RDP), has been completed by Wah Chang (formerly Teledyne Wah Chang) of Albany, Oregon (WCA). CVN impact tests on sheet material indicate that the material has properties comparable to other previously-processed V-4Cr-4Ti and V-5Cr-5Ti alloys. Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RDP, and research into several joining methods for fabrication of the RDP components, including resistance seam, friction, and electron beam welding, and explosive bonding is being pursued. Preliminary trials have been successful in the joining of V-alloy to itself by resistance, friction, and electron beam welding processes, and to Inconel 625 by friction welding. In addition, an effort to investigate the explosive bonding of V-4Cr-4Ti alloy to Inconel 625, in both tube-to-bar and sheet-to-sheet configurations, has been initiated, and results have been encouraging.

  1. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    International Nuclear Information System (INIS)

    Johnson, W.R.; Smith, J.P.

    1997-01-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy, and processing into final sheet and rod product forms suitable for components of the DIII-D Radiative Divertor Program (RDP), has been completed by Wah Chang (formerly Teledyne Wah Chang) of Albany, Oregon (WCA). CVN impact tests on sheet material indicate that the material has properties comparable to other previously-processed V-4Cr-4Ti and V-5Cr-5Ti alloys. Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RDP, and research into several joining methods for fabrication of the RDP components, including resistance seam, friction, and electron beam welding, and explosive bonding is being pursued. Preliminary trials have been successful in the joining of V-alloy to itself by resistance, friction, and electron beam welding processes, and to Inconel 625 by friction welding. In addition, an effort to investigate the explosive bonding of V-4Cr-4Ti alloy to Inconel 625, in both tube-to-bar and sheet-to-sheet configurations, has been initiated, and results have been encouraging

  2. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    International Nuclear Information System (INIS)

    Johnson, W.R.; Smith, J.P.; Trester, P.W.

    1997-01-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy, and processing into final sheet and rod product forms suitable for components of the DIII-D Radiative Divertor structure, has been completed at Wah Chang (formerly Teledyne Wah Chang) of Albany, Oregon (WCA). Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RD Program, and research into several joining methods for fabrication of the RD components, including resistance seam, friction, and electron beam welding, is continuing. Preliminary trials have been successful in the joining of V-alloy to itself by electron beam, resistance, and friction welding processes, and to Inconel 625 by friction welding. An effort to investigate the explosive bonding of V-4Cr-4Ti alloy to Inconel 625 has also been initiated, and results have been encouraging. In addition, preliminary tests have been completed to evaluate the susceptibility of V-4Cr-4Ti alloy to stress corrosion cracking in DIII-D cooling water, and the effects of exposure to DIII-D bakeout conditions on the tensile and fracture behavior of V-4Cr-4Ti alloy

  3. FREVAP-6, Metal Fission Products Release from HTGR Fuel Elements

    International Nuclear Information System (INIS)

    Pierce, V.H.

    2005-01-01

    1 - Description of problem or function: The FREVAP type of code for estimating the release of longer-lived metallic fission products from HTGR fuel elements has been developed to take into account the combined effects of the retention of metallic fission products by fuel particles and the rather strong absorption of these fission products by the graphite of the fuel elements. Release calculations are made on the basis that the loss of fission product nuclides such as strontium, cesium, and barium is determined by their evaporation from the graphite surfaces and their transpiration induced by the flowing helium coolant. The code is devised so that changes of fission rate (fuel element power), fuel temperature, and graphite temperature may be incorporated into the calculation. Temperature is quite important in determining release because, in general, both release from fuel particles and loss by evaporation (transpiration) vary exponentially with the reciprocal of the absolute temperature. NESC0301/02: This version differs from the previous one in the following points: The source and output files were converted from BCD to ASCII coding. 2 - Method of solution: A problem is defined as having a one-dimensional segment made up of three parts - (1) the fission product source (fuel particles) in series with, (2) a non-source and absorption part (element graphite) and (3) a surface for evaporation to the coolant (graphite-helium interface). More than one segment may be connected (possibly segments stacked axially) by way of the coolant. At any given segment, a continuity equation is solved assuming equilibrium between the source term, absorption term, evaporation at coolant interface and the partial pressure of the fission product isotope in the coolant. 3 - Restrictions on the complexity of the problem - Maxima of: 5 isotopes; 10 time intervals for time-dependent variable; 49 segments (times number of isotopes); 5 different output print time-steps

  4. Solutions to commercializing metal hydride hydrogen storage products

    International Nuclear Information System (INIS)

    Tomlinson, J.J.; Belanger, R.

    2004-01-01

    'Full text:' Whilst the concept of a Hydrogen economy in the broad sense may for some analysts and Fuel Cell technology developers be an ever moving target the use of hydrogen exists and is growing in other markets today. The use of hydrogen is increasing. Who are the users? What are their unique needs? How can they better be served? As the use of hydrogen increases there are things we can do to improve the perception and handling of hydrogen as an industrial gas that will impact the future issues of hydrogen as a fuel thereby assisting the mainstream availability of hydrogen fuel a reality. Factors that will induce change in the way hydrogen is used, handled, transported and stored are the factors to concentrate development efforts on. Other factors include: cost; availability; safety; codes and standards; and regulatory authorities acceptance of new codes and standards. New methods of storage and new devices in which the hydrogen is stored will influence and bring about change and increased use. New innovative products based on Metal Hydride hydrogen storage will address some of the barriers to widely distributed hydrogen as a fuel or energy carrier to which successful fuel cell product commercialization is subject. Palcan has developed innovative products based on it's Rare Earth Metal Hydride alloy. Some of these innovations will aid the distribution of hydrogen as a fuel and offer alternatives to the existing hydrogen user and to the Fuel Cell product developer. An overview of the products and how these products will affect the distribution and use of hydrogen as an industrial gas and fuel is presented. (author)

  5. Transparent Conducting Film Fabricated by Metal Mesh Method with Ag and Cu@Ag Mixture Nanoparticle Pastes

    Directory of Open Access Journals (Sweden)

    Hyun Min Nam

    2017-05-01

    Full Text Available Transparent conducting electrode film is highly desirable for application in touch screen panels (TSPs, flexible and wearable displays, sensors, and actuators. A sputtered film of indium tin oxide (ITO shows high transmittance (90% at low sheet resistance (50 Ω/cm2. However, ITO films lack mechanical flexibility, especially under bending stress, and have limitation in application to large-area TSPs (over 15 inches due to the trade-off in high transmittance and low sheet resistance properties. One promising solution is to use metal mesh-type transparent conducting film, especially for touch panel application. In this work, we investigated such inter-related issues as UV imprinting process to make a trench layer pattern, the synthesis of core-shell-type Ag and Cu@Ag composite nanoparticles and their paste formulation, the filling of Ag and Cu@Ag mixture nanoparticle paste to the trench layer, and touch panel fabrication processes.

  6. Freeform Fabrication of Magnetophotonic Crystals with Diamond Lattices of Oxide and Metallic Glasses for Terahertz Wave Control by Micro Patterning Stereolithography and Low Temperature Sintering

    Directory of Open Access Journals (Sweden)

    Maasa Nakano

    2013-04-01

    Full Text Available Micrometer order magnetophotonic crystals with periodic arranged metallic glass and oxide glass composite materials were fabricated by stereolithographic method to reflect electromagnetic waves in terahertz frequency ranges through Bragg diffraction. In the fabrication process, the photo sensitive acrylic resin paste mixed with micrometer sized metallic glass of Fe72B14.4Si9.6Nb4 and oxide glass of B2O3·Bi2O3 particles was spread on a metal substrate, and cross sectional images of ultra violet ray were exposed. Through the layer by layer stacking, micro lattice structures with a diamond type periodic arrangement were successfully formed. The composite structures could be obtained through the dewaxing and sintering process with the lower temperature under the transition point of metallic glass. Transmission spectra of the terahertz waves through the magnetophotonic crystals were measured by using a terahertz time domain spectroscopy.

  7. Fabrication of single-phase ε-GaSe films on Si(100) substrate by metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia-Chen; Zeng, Jia-Xian; Lan, Shan-Ming [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Uen, Wu-Yih, E-mail: uenwuyih@ms37.hinet.net [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Liao, Sen-Mao [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Yang, Tsun-Neng; Ma, Wei-Yang [Institute of Nuclear Energy Research, P.O. Box 3-11, Lungtan 32500, Taiwan (China); Chang, Kuo-Jen [Chung-Shan Institute of Science and Technology, No.15, Shi Qi Zi, Gaoping Village, Longtan Township, Taoyuan County, Taiwan (China)

    2013-09-02

    Single-phase ε-gallium selenide (GaSe) films were fabricated on Si(100) substrate by metal organic chemical vapor deposition using dual-source precursors: triethylgallium (TEG) and hydrogen selenide (H{sub 2}Se) with the flow ratio of [H{sub 2}Se]/[TEG] being maintained at 1.2. In particular, an arsine (AsH{sub 3}) flow was introduced to the Si substrate before the film deposition to induce an arsenic (As)-passivation effect on the substrate. The crystalline structure of GaSe films prepared was analyzed using X-ray diffraction and the surface morphology of them was characterized by scanning electron microscopy. It was found that the film quality could be improved by the As-passivation effect. The optical properties of the films were studied by temperature dependent photoluminescence (PL) measurements. PL spectra obtained with different distributions and intensities favored for resolving the superior material quality of the films produced on the substrate with As-passivation compared to those produced on the substrate without As-passivation. The former was dominated by the excitonic emissions for the whole temperature range of 20–300 K examined, while the latter was initially dominated by the defect-related emission at 1.907 eV for a low-temperature range ≦ 80 K and then became dominated by the weak excitonic emission band instead. The ε modification of GaSe films prepared was further recognized by the Raman scattering measurements conducted at room temperature. - Highlights: • Gallium selenide (GaSe) layered structures are fabricated on Si(100) substrate. • Metal–organic chemical vapor deposition is used for film fabrication. • Arsenic-passivation effects of Si substrate on the GaSe film quality are analyzed. • Photoluminescence measurements of GaSe polycrystals are reported.

  8. Metal Triflates for the Production of Aromatics from Lignin.

    Science.gov (United States)

    Deuss, Peter J; Lahive, Ciaran W; Lancefield, Christopher S; Westwood, Nicholas J; Kamer, Paul C J; Barta, Katalin; de Vries, Johannes G

    2016-10-20

    The depolymerization of lignin into valuable aromatic chemicals is one of the key goals towards establishing economically viable biorefineries. In this contribution we present a simple approach for converting lignin to aromatic monomers in high yields under mild reaction conditions. The methodology relies on the use of catalytic amounts of easy-to-handle metal triflates (M(OTf) x ). Initially, we evaluated the reactivity of a broad range of metal triflates using simple lignin model compounds. More advanced lignin model compounds were also used to study the reactivity of different lignin linkages. The product aromatic monomers were either phenolic C2-acetals obtained by stabilization of the aldehyde cleavage products by reaction with ethylene glycol or methyl aromatics obtained by catalytic decarbonylation. Notably, when the method was ultimately tested on lignin, especially Fe(OTf) 3 proved very effective and the phenolic C2-acetal products were obtained in an excellent, 19.3±3.2 wt % yield. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Abaca/polyester nonwoven fabric functionalization for metal ion adsorbent synthesis via electron beam-induced emulsion grafting

    Science.gov (United States)

    Madrid, Jordan F.; Ueki, Yuji; Seko, Noriaki

    2013-09-01

    A metal ion adsorbent was developed from a nonwoven fabric trunk material composed of both natural and synthetic polymers. A pre-irradiation technique was used for emulsion grafting of glycidyl methacrylate (GMA) onto an electron beam irradiated abaca/polyester nonwoven fabric (APNWF). The dependence of degree of grafting (Dg), calculated from the weight of APNWF before and after grafting, on absorbed dose, reaction time and monomer concentration were evaluated. After 50 kGy irradiation with 2 MeV electron beam and subsequent 3 h reaction with an emulsion consisting of 5% GMA and 0.5% polyoxyethylene sorbitan monolaurate (Tween 20) surfactant in deionized water at 40 °C, a grafted APNWF with a Dg greater than 150% was obtained. The GMA-grafted APNWF was further modified by reaction with ethylenediamine (EDA) in isopropyl alcohol at 60 °C to introduce amine functional groups. After a 3 h reaction with 50% EDA, an amine group density of 2.7 mmole/gram adsorbent was achieved based from elemental analysis. Batch adsorption experiments were performed using Cu2+ and Ni2+ ions in aqueous solutions with initial pH of 5 at 30 °C. Results show that the adsorption capacity of the grafted adsorbent for Cu2+ is four times higher than Ni2+ ions.

  10. An evaluation of marginal fit of three-unit fixed dental prostheses fabricated by direct metal laser sintering system.

    Science.gov (United States)

    Kim, Ki-Baek; Kim, Woong-Chul; Kim, Hae-Young; Kim, Ji-Hwan

    2013-07-01

    This in vitro study aimed to evaluate and compare marginal fit of three-unit fixed dental prostheses (FDPs) fabricated using a newly developed direct metal laser sintering (DMLS) system with that of three-unit FDPs by a conventional lost wax technique (LW) method. Ten cobalt-chromium alloy three-unit FDPs using DMLS system and another ten nickel-chromium alloy FDPs using LW method were fabricated. Marginal fit was examined using a light-body silicone. After setting, the silicon film was cut into four parts and the thickness of silicon layer was measured at 160× magnification using a digital microscope to measure absolute marginal discrepancy (AMD), marginal gap (MG) and internal gap (IG). A repeated measure ANOVA for statistical analysis was performed using the SPSS statistical package version 12.0 (α=0.05). The mean values of AMD, MG, and IG were significantly larger in the DMLS group than in the LW group (p0.05). The marginal fit of the DMLS system appeared significantly inferior compared to that of the conventional LW method and slightly larger than the acceptable range. For clinical application further improvement of DMLS system may be required. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Development of metallic molds for the large volume plastic scintillator fabrication

    International Nuclear Information System (INIS)

    Calvo, Wilson A.P.; Vieira, Jose M.; Rela, Paulo R.; Bruzinga, Wilson A.; Araujo, Eduardo P.; Costa Junior, Nelson P.; Hamada, Margarida M.

    1997-01-01

    The plastic scintillators are radiation detectors made of organic fluorescent compounds dissolved in a solidified polymer matrix. The manufacturing process of large volume detectors (55 liters) at low cost, by polymerization of the styrene monomer plus PPO and POPOP scintillators, was studied in this paper. Metallic molds of ASTM 1200 aluminum and AISI 304 stainless steel were produced by TIG welding process since the polymerization reaction is very exothermic. The measurements of transmittance, luminescence, X-ray fluorescence and light output were carried out in the plastic scintillators made using different metallic molds. The characterization results of the detectors produced in an open system using ASTM 1200 aluminum mold show that there is not quality change in the scintillator, even with aluminum being considered as unstable for styrene monomer. Therefore, the ASTM 1200 aluminum was found to be the best alternative to produce the detector by an open system polymerization. (author). 11 refs., 8 figs., 1 tab

  12. Use of metallic glasses for fabrication of structures with submicron dimensions

    Science.gov (United States)

    Wiley, John D.; Perepezko, John H.

    1986-01-01

    Patterned structures of submicron dimension formed of supported or unsupported amorphous metals having submicron feature sizes characterized by etching behavior sufficient to allow delineation of sharp edges and smooth flat flanks, resistance to time-dependent dimensional changes caused by creep, flow, in-diffusion of unwanted impurities, out-diffusion of constituent atoms, void formation, grain growth or phase separation and resistance to phase transformations or compound formation.

  13. Considerations of metal joining processes for space fabrication, construction and repair

    Science.gov (United States)

    Russell, C.; Poorman, R.; Jones, C.; Nunes, A.; Hoffman, D.

    1991-01-01

    A comprehensive evaluation is conducted of candidate processes for metalworking in orbital (vacuum-microgravity) conditions. Attention is given to electron-beam welding, brazing, gas-tungsten arc welding, laser welding, plasma arc welding, and gas-metal arc welding. It is established that several of these processes will be required to cover all foreseeable requirements. Microgravity effects are considered minor, and efforts are being concentrated on problems associated with vacuum conditions and with process-operator safety.

  14. Towards zero waste production in the minerals and metals sector

    Science.gov (United States)

    Rankin, William J.

    The production of mineral and metal commodities results in large quantities of wastes (solid, liquid and gaseous) at each stage of value-adding — from mining to manufacturing. Waste production (both consumer and non-consumer) is a major contributor to environmental degradation. Approaches to waste management in the minerals industry are largely `after the event'. These have moved progressively from foul-and-flee to dilute-and-disperse to end end-of-pipe treatments. There is now a need to move to approaches which aim to reduce or eliminate waste production at source. Modern waste management strategies include the application of cleaner production principles, the use of wastes as raw materials, the reengineering of process flowsheets to minimise waste production, and use of industrial symbioses through industrial ecology to convert wastes into useful by-products. This paper examines how these can be adopted by the minerals industry, with some recent examples. The financial, technical, systemic and regulatory drivers and barriers are also examined.

  15. Production of metal and metal-ceramic coatings on D-Gun Ob

    International Nuclear Information System (INIS)

    Gavrilenko, T.P.; Nikolaev, Y.A.; Ulianitsky, V.Y.

    1995-01-01

    Optimization of the detonation spraying process has been made for the production of metal and metal-ceramics coatings with the D-Gun Ob. Owing to the ability of Ob to work with several fuels and an inert diluent simultaneously, variation of detonation regimes in a wide range is possible, and because of localized powder injection in the D-Gun barrel, high uniformity of parameters of powder particles is achieved. The best conditions for particle heating and acceleration were calculated with the help of mathematical simulation, and the corresponding regimes were realized on D-Gun Ob. High-quality aluminum, copper, nickel, and nickel-chromium-silicon-carbon-boron alloy coatings were produced by using only propane fuel. Chromium carbide with nickel and tungsten carbide with cobalt coatings were produced with addition of acetylene. Optimal efficiency and high bonding strength were achieved for all powders. Data on microhardness, bonding strength, and efficiency are presented

  16. The prospect for recycle of radioactive scrap metals to products for restricted and unrestricted use

    International Nuclear Information System (INIS)

    Liby, A.L.

    1995-01-01

    Large quantities of radioactive scrap metals will arise from decontamination and decommissioning of nuclear power plants and DOE facilities. Much of this metal can be easily decontaminated and released to the existing secondary metals industry for recycling. For metal that can not be readily released, recycle into restricted-use end products is an economically attractive alternative to burial as low level radioactive waste. This paper will examine sources and types of scrap metal, technical approaches, potential products, and economics of metals recycle. Construction, licensing, environmental compliance, and possible reuse of existing nuclear facilities for metals recycling will be discussed. (author)

  17. Metallizing porous scaffolds as an alternative fabrication method for solid oxide fuel cell anodes

    Science.gov (United States)

    Ruiz-Trejo, Enrique; Atkinson, Alan; Brandon, Nigel P.

    2015-04-01

    A combination of electroless and electrolytic techniques is used to incorporate nickel into a porous Ce0.9Gd0.1O1.90 scaffold. First a porous backbone was screen printed into a YSZ electrolyte using an ink that contains sacrificial pore formers. Once sintered, the scaffold was coated with silver using Tollens' reaction followed by electrodeposition of nickel in a Watts bath. At high temperatures the silver forms droplets enabling direct contact between the gadolinia-doped ceria and nickel. Using impedance spectroscopy analysis in a symmetrical cell a total area specific resistance of 1 Ωcm2 at 700 °C in 97% H2 with 3% H2O was found, indicating the potential of this fabrication method for scaling up.

  18. Sensitivity of imaging properties of metal-dielectric layered flat lens to fabrication inaccuracies

    DEFF Research Database (Denmark)

    Kotynski, R.; Baghdasaryan, H.; Stefaniuk, T.

    2010-01-01

    We characterize the sensitivity of imaging properties of a layered silver-TiO2 flat lens to fabrication inaccuracies. The lens is designed for approximately diffraction-free imaging with subwavelength resolution at distances in the order of a wavelength. Its operation may be attributed to self......-collimation with a secondary role of Fabry-Perot resonant transmission, even though the first order effective medium description of the structure is inaccurate. Super-resolution is maintained for a broad range of overall thicknesses and the total thickness of the multilayer is limited by absorption. The tolerance analysis...... indicates that the resolution and transmission efficiency are highly sensitive to small changes of layer thicknesses....

  19. 100-kW hingeless metal wind turbine blade design, analysis and fabrication

    Science.gov (United States)

    Donham, R. E.; Schmidt, J.; Linscott, B. S.

    1975-01-01

    The design, fabrication and analysis of aluminum wind turbine rotor blades is discussed. The blades are designed to meet criteria established for a 100-kilowatt wind turbine generator operating between 8 and 60-mile-per-hour speeds at 40 revolutions per minute. The design wind speed is 18 miles per hour. Two rotor blades are used on a new facility which includes a hingeless hub and its shaft, gearbox, generator and tower. Experience shows that, for stopped rotors, safe wind speeds are strongly dependent on blade torsional and bending rigidities which the basic D spar structural blade design provides. The 0.25-inch-thick nose skin is brake/bump formed to provide the basic 'D' spar structure for the tapered, twisted blades. Adequate margins for flutter and divergence are predicted from the use of existing, correlated stopped rotor and helicopter rotor analysis programs.

  20. Metal forming technology for the fabrication of seamless Superconducting radiofrequency cavities for particle accelerators

    Directory of Open Access Journals (Sweden)

    Palmieri Vincenzo

    2015-01-01

    Full Text Available The world of Particle accelerators is rather unique, since in a few high-energy Physics great laboratories, such at CERN for example, there have been built the largest technological installations ever conceived by humankind. The Radiofrequency resonant cavities are the pulsing heart of an accelerator. In case of superconducting accelerators, bulk niobium cavities, able to perform accelerating gradients up to 40 MeV/m, are just a jewel of modern technology. The standard fabrication technology foresees the cutting of circular blanks, their deep-drawing into half-cells, and its further joining by electron beam welding under ultra high vacuum environment that takes several hours. However, proposals such as the International Linear Collider, to which more than 900 scientists from all over the world participate, foresee the installation of 20.000 cavities. In numbers, it means the electron beam weld one by one under Ultra High Vacuum of 360,000 hemi-cells. At a cost of 500 €/Kg of high purity Niobium, this will mean a couple of hundreds of millions of Euros only for the bare material. In this panorama it is evident that a cost reducing approach must be considered. In alternative the author has proposed a seamless and low cost fabrication method based on spinning of fully resonators. Preliminary RF tests at low temperatures have proved that high accelerating gradients are achievable and that they are not worse than those obtainable with the standard technology. Nevertheless up to when the next accelerator will be decided to be built there is still room for improvement.

  1. Heavy Metals in the Vegetables Collected from Production Sites

    Directory of Open Access Journals (Sweden)

    Hassan Taghipour

    2013-12-01

    Full Text Available Background: Contamination of vegetable crops (as an important part of people's diet with heavy metals is a health concern. Therefore, monitoring levels of heavy metals in vegetables can provide useful information for promoting food safety. The present study was carried out in north-west of Iran (Tabriz on the content of heavy metals in vegetable crops. Methods: Samples of vegetables including kurrat (n=20 (Allium ampeloprasumssp. Persicum, onion (n=20 (Allium cepa and tomato (n=18 (Lycopersiconesculentum var. esculentum, were collected from production sites in west of Tabriz and analyzed for presence of Cd, Cr, Cu, Ni, Pb and Zn by atomic absorption spectroscopy (AAS after extraction by aqua regia method (drying, grounding and acid digestion. Results: Mean ± SD (mg/kg DW concentrations of Cd, Cu, Cr, Ni and Zn were 0.32 ± 0.58, 28.86 ± 28.79, 1.75 ± 2.05, 6.37± 5.61 and 58.01 ± 27.45, respectively. Cr, Cu and Zn were present in all the samples and the highest concentrations were observed in kurrat (leek. Levels of Cd, Cr and Cu were higher than the acceptable limits. There was significant difference in levels of Cr (P<0.05 and Zn (P<0.001 among the studied vegetables. Positive correlation was observed between Cd:Cu (R=0.659, P<0.001 Cr:Ni (R=0.326, P<0.05 and Cr:Zn (R=0.308, P<0.05. Conclusion: Level of heavy metals in some of the analyzed vegetables, especially kurrat samples, was higher than the standard levels. Considering the possible health outcomes due to the consumption of contaminated vegetables, it is required to take proper actions for avoiding people's chronic exposure.

  2. Fabrication of periodic arrays of metallic nanoparticles by block copolymer templates on HfO_2 substrates

    International Nuclear Information System (INIS)

    Frascaroli, Jacopo; Seguini, Gabriele; Spiga, Sabina; Perego, Michele; Boarino, Luca

    2015-01-01

    Block copolymer-based templates can be exploited for the fabrication of ordered arrays of metal nanoparticles (NPs) with a diameter down to a few nanometers. In order to develop this technique on metal oxide substrates, we studied the self-assembly of polymeric templates directly on the HfO_2 surface. Using a random copolymer neutralization layer, we obtained an effective HfO_2 surface neutralization, while the effects of surface cleaning and annealing temperature were carefully examined. Varying the block copolymer molecular weight, we produced regular nanoporous templates with feature size variable between 10 and 30 nm and a density up to 1.5 × 10"1"1 cm"−"2. With the adoption of a pattern transfer process, we produced ordered arrays of Pt and Pt/Ti NPs with diameters of 12, 21 and 29 nm and a constant size dispersion (σ) of 2.5 nm. For the smallest template adopted, the NP diameter is significantly lower than the original template dimension. In this specific configuration, the granularity of the deposited film probably influences the pattern transfer process and very small NPs of 12 nm were achieved without a significant broadening of the size distribution. (paper)

  3. Designing Metallic and Insulating Nanocrystal Heterostructures to Fabricate Highly Sensitive and Solution Processed Strain Gauges for Wearable Sensors.

    Science.gov (United States)

    Lee, Woo Seok; Lee, Seung-Wook; Joh, Hyungmok; Seong, Mingi; Kim, Haneun; Kang, Min Su; Cho, Ki-Hyun; Sung, Yun-Mo; Oh, Soong Ju

    2017-12-01

    All-solution processed, high-performance wearable strain sensors are demonstrated using heterostructure nanocrystal (NC) solids. By incorporating insulating artificial atoms of CdSe quantum dot NCs into metallic artificial atoms of Au NC thin film matrix, metal-insulator heterostructures are designed. This hybrid structure results in a shift close to the percolation threshold, modifying the charge transport mechanism and enhancing sensitivity in accordance with the site percolation theory. The number of electrical pathways is also manipulated by creating nanocracks to further increase its sensitivity, inspired from the bond percolation theory. The combination of the two strategies achieves gauge factor up to 5045, the highest sensitivity recorded among NC-based strain gauges. These strain sensors show high reliability, durability, frequency stability, and negligible hysteresis. The fundamental charge transport behavior of these NC solids is investigated and the combined site and bond percolation theory is developed to illuminate the origin of their enhanced sensitivity. Finally, all NC-based and solution-processed strain gauge sensor arrays are fabricated, which effectively measure the motion of each finger joint, the pulse of heart rate, and the movement of vocal cords of human. This work provides a pathway for designing low-cost and high-performance electronic skin or wearable devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fabrication of a polyvinylidene difluoride fiber with a metal core and its application as directional air flow sensor

    Science.gov (United States)

    Bian, Yixiang; Liu, Rongrong; Hui, Shen

    2016-09-01

    We fabricated a sensitive air flow detector that mimic the sensing mechanism found at the tail of some insects. [see Y. Yang, A. Klein, H. Bleckmann and C. Liu, Appl. Phys. Lett. 99(2) (2011); J. J. Heys, T. Gedeon, B. C. Knott and Y. Kim, J. Biomech. 41(5), 977 (2008); J. Tao and X. Yu, Smart Mat. Struct. 21(11) (2012)]. Our bionic airflow sensor uses a polyvinylidene difluoride (PVDF) microfiber with a molybdenum core which we produced with the hot extrusion tensile method. The surface of the fiber is partially coated with conductive silver adhesive that serve as surface electrodes. A third electrode, the metal core is used to polarize polyvinylidene difluoride (PVDF) under the surface electrodes. The cantilever beam structure of the prepared symmetric electrodes of metal core piezoelectric fiber (SMPF) is used as the artificial hair airflow sensor. The surface electrodes are used to measure output voltage. Our theoretical and experimental results show that the SMPF responds fast to air flow changes, the output charge has an exponential correlation with airflow velocity and a cosine relation with the direction of airflow. Our bionic airflow sensor with directional sensing ability can also measure air flow amplitude. [see H. Droogendijk, R. G. P. Sanders and G. J. M. Krijnen, New J. Phys. 15 (2013)]. By using two surface electrodes, our sensing circuit further improves sensitivity.

  5. From Oxygen Generation to Metals Production: In Situ Resource Utilization by Molten Oxide Electrolysis

    Science.gov (United States)

    Khetpal, Deepak; Ducret, Andrew C.; Sadoway, Donald R.

    2003-01-01

    For the exploration of other bodies in the solar system, electrochemical processing is arguably the most versatile technology for conversion of local resources into usable commodities: by electrolysis one can, in principle, produce (1) breathable oxygen, (2) silicon for the fabrication of solar cells, (3) various reactive metals for use as electrodes in advanced storage batteries, and (4) structural metals such as steel and aluminum. Even so, to date there has been no sustained effort to develop such processes, in part due to the inadequacy of the database. The objective here is to identify chemistries capable of sustaining molten oxide electrolysis in the cited applications and to examine the behavior of laboratory-scale cells designed to generate oxygen and to produce metal. The basic research includes the study of the underlying high-temperature physical chemistry of oxide melts representative of lunar regolith and of Martian soil. To move beyond empirical approaches to process development, the thermodynamic and transport properties of oxide melts are being studied to help set the limits of composition and temperature for the processing trials conducted in laboratory-scale electrolysis cells. The goal of this investigation is to deliver a working prototype cell that can use lunar regolith and Martian soil to produce breathable oxygen along with metal by-product. Additionally, the process can be generalized to permit adaptation to accommodate different feedstock chemistries, such as those that will be encountered on other bodies in the solar system. The expected results of this research include: (1) the identification of appropriate electrolyte chemistries; (2) the selection of candidate anode and cathode materials compatible with electrolytes named above; and (3) performance data from a laboratory-scale cell producing oxygen and metal. On the strength of these results it should be possible to assess the technical viability of molten oxide electrolysis for in

  6. A comparative study of nitride purity and Am fabrication losses in PuN materials by the powder and internal gelation production routes

    Energy Technology Data Exchange (ETDEWEB)

    Hedberg, Marcus, E-mail: marhed@chalmers.se; Ekberg, Christian

    2016-12-15

    Fabrication of plutonium containing fuels through the internal gelation method has mostly been studied in mixed metal systems such as U, Pu or Zr,Pu. In this work production of undiluted PuN has been performed by carbothermal reduction on both oxide powder and Pu microspheres produced by the internal gelation method. Nitride purities reached using the different methods have been studied together with final densities achieved during pellet fabrication as well as losses of ingrown Am during the different production steps. Formation of Pu microspheres was successfully performed using the internal gelation method, although extensive microsphere fracturing occurred during thermal treatment. Final densities of PuN pellets produced by cold pressing and sintering reached 70–80% of theoretical density. Am losses during the carbothermal reduction step was on average about 3.7%. After sintering about 11% of Am was lost in total through the entire production process if sintering in N{sub 2} + 5% H{sub 2} atmosphere while about 50% of the Am in total was lost when using Ar as sintering atmosphere. - Highlights: • Internal gelation Pu based sols was performed. • Nitride formation by carbothermal reduction on Pu microspheres and powders was performed. • Pelletization and sintering of pellets was performed. • Am losses were measured throughout the production steps.

  7. Challenges in bioethanol production: Utilization of cotton fabrics as a feedstock

    Directory of Open Access Journals (Sweden)

    Nikolić Svetlana

    2016-01-01

    Full Text Available Bioethanol, as a clean and renewable fuel with its major environmental benefits, represents a promising biofuel today which is mostly used in combination with gasoline. It can be produced from different kinds of renewable feedstocks. Whereas the first generation of processes (saccharide-based have been well documented and are largely applied, the second and third generation of bioethanol processes (cellulose- or algae-based need further research and development since bioethanol yields are still too low to be economically viable. In this study, the possibilities of bioethanol production from cotton fabrics as valuable cellulosic raw material were investigated and presented. Potential lignocellulosic biomass for bioethanol production and their characteristics, especially cotton-based materials, were analyzed. Available lignocellulosic biomass, the production of textile and clothing and potential for sustainable bioethanol production in Serbia is presented. The progress possibilities are discussed in the domain of different pretreatment methods, optimization of enzymatic hydrolysis and different ethanol fermentation process modes. [Projekat Ministarstva nauke Republike Srbije, br. 31017

  8. Fabrication and non-covalent modification of highly oriented thin films of a zeolite-like metal-organic framework (ZMOF) with rho topology

    KAUST Repository

    Shekhah, Osama; Cadiau, Amandine; Eddaoudi, Mohamed

    2015-01-01

    Here we report the fabrication of the first thin film of a zeolite-like metal-organic framework (ZMOF) with rho topology (rho-ZMOF-1, ([In48(HImDC)96]48-)n) in a highly oriented fashion on a gold-functionalized substrate. The oriented rho-ZMOF-1

  9. Fabrication of a Porous Metal via Selective Phase Dissolution in Al-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Juan Vargas-Martínez

    2018-05-01

    Full Text Available Through free corrosion, a new low cost porous material was successfully fabricated by removing a single phase of a binary aluminum-copper alloy. This selective phase dissolution was carried out an Al-Al2Cu eutectic alloy of the Al-Cu binary system and additionally for two hypereutectic compositions. The porosity of the material depends on the microstructure formed upon solidification. For this reason, several solidification methods were studied to define the most convenient in terms of uniformity and refinement of the average pore and ligament sizes. The samples were corroded in a 10% v/v NaOH aqueous solution, which demonstrated to be the most convenient in terms of time involved and resulting porosity conditions after the corrosion process. The porosity was measured through analysis of secondary electron images. The effectiveness of the process was verified using X-ray diffraction, which showed that, under the proposed methodology, there was complete removal of one of the phases, namely the aluminum one.

  10. Further studies on gold alloys used in fabrication of porcelain-fused-to-metal restorations.

    Science.gov (United States)

    Civjan, S; Huget, E F; Dvivedi, N; Cosner, H J

    1975-03-01

    Composition, microstructure, castability, mechanical properties, and heat treatment characteristics of two gold-palladium-silver-based alloys were studied. The materials exhibited compositional as well as microstructural differences. Clinically acceptable castings could not be obtained when manufacturers' recommended casting temperatures were used. Ultimate tensile strength, yield strength, modulus of elasticity, and Brinell hardness values for the alloys were comparable. The elastic limit of Cameo, however, was significantly higher than that of vivo-star. Maximum rehardening of annealed castings occurred on reheat treatment at temperatures between 1,200 and 1,300 F. As-cast specimens, however, were not heat hardenable. The sequence of heat treatments used in the application of porcelain reduced slightly the hardness of both alloys. Hardness of the metal substructures was not increased by return of porcelain-coated specimens to a 1,250 F oven for final heat treatment.

  11. Bi--Sr--Ca--Cu--O superconducting films fabricated using metal alkoxides

    International Nuclear Information System (INIS)

    Katayama, S.; Sekine, M.

    1991-01-01

    Superconducting films in the Bi--Sr--Ca--Cu--O systems were made using metal alkoxides. To prepare a dip-coating solution using a mixed alkoxide solution, insoluble Cu and Bi alkoxides were dissolved by modification with 2-dimethylaminoethanol and formation of a double alkoxide, respectively. Formation of the double alkoxides of Bi with Ca or Sr was confirmed using FT-IR and 1 H-NMR. Bi--Sr--Ca--Cu--O films on yttria-stabilized ZrO 2 and single crystal MgO(100) substrates were made using this solution. The films were closely oriented along the c-axis perpendicular to the substrate. The film on MgO(100) fired at 850 degree C for 48 h showed two resistance drops around 115 and 85 K, corresponding to the high-T c and low-T c phases, respectively, and zero resistance at 72 K

  12. New fabrication method for an ellipsoidal neutron focusing mirror with a metal substrate.

    Science.gov (United States)

    Guo, Jiang; Takeda, Shin; Morita, Shin-ya; Hino, Masahiro; Oda, Tatsuro; Kato, Jun-ichi; Yamagata, Yutaka; Furusaka, Michihiro

    2014-10-06

    We propose an ellipsoidal neutron focusing mirror using a metal substrate made with electroless nickel-phosphorus (NiP) plated material for the first time. Electroless NiP has great advantages for realizing an ellipsoidal neutron mirror because of its amorphous structure, good machinability and relatively large critical angle of total reflection for neutrons. We manufactured the mirror by combining ultrahigh precision cutting and fine polishing to generate high form accuracy and low surface roughness. The form accuracy of the mirror was estimated to be 5.3 μm P-V and 0.8 μm P-V for the minor-axis and major-axis direction respectively, while the surface roughness was reduced to 0.2 nm rms. The effect of form error on focusing spot size was evaluated by using a laser beam and the focusing performance of the mirror was verified by neutron experiments.

  13. Fabrication of self supporting metallic rare earth targets using a piezo-electric quartz as substrate

    International Nuclear Information System (INIS)

    Bonetti, C.P.

    1975-01-01

    Metallic self-supporting targets of cerium and praseodymium of 1 to 2.5mg/cm 2 on a diameter of 18mm were made using the process of evaporation by electron bombardment. Materials are placed on a piezo-electric quartz which permits the direct and precise measurement of the mass of the deposit. Then, such a deposit must be removed and placed on a frame in an environment of argon gas. This method is important because it can be used for small quantities of materials (case of separated isotopes). These high purity foils are used for the study of (d,n) reactions with the Tandem Van de Graaff Accelerator [fr

  14. Metals and cocoa products: a study on characterization of toxic and essential metals in chocolates (abstract)

    International Nuclear Information System (INIS)

    Rehman, S.; Husnain, S.M.

    2011-01-01

    In this study, a sophisticated analytical technique, atomic absorption spectrometer (both with FAAS and GFAAS modes of atomization), was used for analyzing essential and toxic metal (Fe, Mn, Cu, Zn, Ni, Pb and Cd) contents in 32 commonly consumed cocoa products (chocolates) prepared by different national and multinational companies. Significant differences were observed between the micro element contents of the 32 varieties (P < 0.01). The risk posed by the quantity of heavy metals lead, cadmium and nickel present in cocoa products (chocolates) is of serious apprehension and weekly intake was calculated. The Concentration of Pb and Cd in cocoa powder is found to be highest 492 and 197 mu g/L followed by cocoa based chocolates 306 and 46.8 mu g/L, sugar based chocolates 209.8 and 40.3 mu g/L whereas it is least in milk based chocolates samples 88.3 and 33 mu g/L respectively. The concentration of Pb and Cd was found below the provisional tolerable weekly intake defined by FAO/WHO. All essential elements were assessed for their weekly intake with the dietary reference intakes. In order to validate our results, certified reference material (Wheat flour 1589, Milk powder A-11 and Milk Powder A-8) were analyzed for Fe, Mn, Cu, Zn, Ni, Pb and Cd levels. Determined concentrations were quite in good agreement with certified levels. Data was interpreted through cluster analysis and pattern recognition. (author)

  15. 50 years of uranium metal production in Uranium Metal Plant, BARC, Trombay

    International Nuclear Information System (INIS)

    2009-01-01

    The Atomic Energy Programme in India, from the very beginning, has laid emphasis on indigenous capabilities in all aspects of nuclear technology. This meant keeping pace with developments abroad and recognizing the potentials of indigenous technologies. With the development of nuclear programme in India, the importance of uranium was growing at a rapid pace. The production of reactor grade uranium in India started in January 1959 when the first ingot of nuclear pure uranium was discharged using CTR process at Trombay. The decision to set up a uranium refinery to purify the crude uranium fluoride, obtained as a by-product of the DAE's Thorium Plant at Trombay, and to produce nuclear grade pure uranium metal was taken at the end of 1956. The task was assigned to the 'Project Fire Wood Group'. The main objective of the plant was to produce pure uranium metal for use in the Canada India Reactor and Zerlina. Besides this, it was to function as a pilot plant to collect operational data and to train personnel for larger plants to be set up in future. The plant designing and erection work was entrusted to Messrs. Indian Rare Earths Ltd.

  16. Inherent health and environmental risk assessment of nanostructured metal oxide production processes.

    Science.gov (United States)

    Torabifard, Mina; Arjmandi, Reza; Rashidi, Alimorad; Nouri, Jafar; Mohammadfam, Iraj

    2018-01-10

    The health and environmental effects of chemical processes can be assessed during the initial stage of their production. In this paper, the Chemical Screening Tool for Exposure and Environmental Release (ChemSTEER) software was used to compare the health and environmental risks of spray pyrolysis and wet chemical techniques for the fabrication of nanostructured metal oxide on a semi-industrial scale with a capacity of 300 kg/day in Iran. The pollution sources identified in each production process were pairwise compared in Expert Choice software using indicators including respiratory damage, skin damage, and environmental damages including air, water, and soil pollution. The synthesis of nanostructured zinc oxide using the wet chemical technique (with 0.523 wt%) leads to lower health and environmental risks compared to when spray pyrolysis is used (with 0.477 wt%). The health and environmental risk assessment of nanomaterial production processes can help select safer processes, modify the operation conditions, and select or modify raw materials that can help eliminate the risks.

  17. Comparative evaluation of marginal fit and axial wall adaptability of copings fabricated by metal laser sintering and lost-wax technique: An in vitro study.

    Science.gov (United States)

    Gaikwad, Bhushan Satish; Nazirkar, Girish; Dable, Rajani; Singh, Shailendra

    2018-01-01

    The present study aims to compare and evaluate the marginal fit and axial wall adaptability of Co-Cr copings fabricated by metal laser sintering (MLS) and lost-wax (LW) techniques using a stereomicroscope. A stainless steel master die assembly was fabricated simulating a prepared crown; 40 replicas of master die were fabricated in gypsum type IV and randomly divided in two equal groups. Group A coping was fabrication by LW technique and the Group B coping fabrication by MLS technique. The copings were seated on their respective gypsum dies and marginal fit was measured using stereomicroscope and image analysis software. For evaluation of axial wall adaptability, the coping and die assembly were embedded in autopolymerizing acrylic resin and sectioned vertically. The discrepancies between the dies and copings were measured along the axial wall on each halves. The data were subjected to statistical analysis using unpaired t -test. The mean values of marginal fit for copings in Group B (MLS) were lower (24.6 μm) than the copings in Group A (LW) (39.53 μm), and the difference was statistically significant ( P adaptability in comparison with copings fabricated by the LW technique. However, the values of marginal fit of copings fabricated that the two techniques were within the clinically acceptable limit (<50 μm).

  18. Fabrication and characterization of metal–semiconductor–metal ultraviolet photodetector based on rutile TiO{sub 2} nanorod

    Energy Technology Data Exchange (ETDEWEB)

    Selman, Abbas M., E-mail: alabbasiabbas@yahoo.co.uk [Nano-Optoelectronics Research and Technology Laboratory (N.O.R.), School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia); Department of Pharmacology and Toxicology, College of Pharmacy, University of Kufa, Najaf (Iraq); Hassan, Z. [Nano-Optoelectronics Research and Technology Laboratory (N.O.R.), School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia)

    2016-01-15

    The fabrication and characterization of a metal–semiconductor–metal ultraviolet photodetector are studied. The photodetector is based on TiO{sub 2} nanorods (NRs) grown on p-type (1 1 1)-oriented silicon substrate seeded with a TiO{sub 2} layer is synthesized by radio frequency reactive magnetron sputtering. A chemical bath deposition is used to grow TiO{sub 2} NRs on Si substrate. The structural and optical properties of the obtained sample are analyzed by using X-ray diffraction and field emission-scanning electron microscopy. Results show a tetragonal rutile structure of the synthesized TiO{sub 2} NRs. Optical properties are further examined using photoluminescence spectroscopy. A sharp and high-intensity UV peak at 367 nm is observed in comparison with visible defect peaks centered at 432 and 718 nm. Upon exposure to 365 nm light (2.3 mW/cm) at 5 V bias, the device displays 76.06 × 10{sup 2} sensitivity, internal photodetector gain of 77.06, photocurrent of the device is 2.62 × 10{sup −5} A and photoresponse peak of 69.7 mA/W. The response and recovery times are calculated as 18.5 and 19.1 ms upon illumination to a pulse UV light (365 nm, 2.3 mW/cm{sup 2}) at 5 V applied bias. These results demonstrate that the fabricated high-quality photodiode is a promising candidate as a low-cost UV photodetector for commercially-integrated photoelectronic applications.

  19. Electrolytic production of metals using a resistant anode

    Science.gov (United States)

    Tarcy, G.P.; Gavasto, T.M.; Ray, S.P.

    1986-11-04

    An electrolytic process is described comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO[sub 2] and/or Cu[sub 2]O. 2 figs.

  20. A functionalized phosphonate-rich organosilica layered hybrid material (PSLM) fabricated through a mild process for heavy metal uptake

    Energy Technology Data Exchange (ETDEWEB)

    Daikopoulos, Chris [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece); Bourlinos, Athanasios B. [Institute of Materials Science, NCSR “Demokritos”, Ag. Paraskevi Attikis, Athens 15310 (Greece); Georgiou, Yiannis [Laboratory of Physical Chemistry, Department of Environmental and Natural Resources Management, University of Patras, Seferi 2, Agrinio 30100 (Greece); Deligiannakis, Yiannis, E-mail: ideligia@cc.uoi.gr [Laboratory of Physical Chemistry, Department of Environmental and Natural Resources Management, University of Patras, Seferi 2, Agrinio 30100 (Greece); Zboril, Radek [Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry and Experimental Physics, Palacky University, Olomouc 77146 (Czech Republic); Karakassides, Michael A. [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece)

    2014-04-01

    Highlights: • Novel phosphonate-rich organosilica layered hybrid material (PSLM) fabricated through a mild xerogel process. • Surface Complexation Modeling reveals that PSLM bears 2 types of functional groups able to bind heavy metal. • Maximum metal uptake capacities were found 2.72 mmol g{sup −1} for Cu{sup 2+}, 1.67 mmol g{sup −1} for Pb{sup 2+} and 1.00 mmol g{sup −1} for Cd{sup 2+} at pH 7. • EPR spectroscopy reveals local coordination environment for Cu{sup 2+} ions. - Abstract: A phosphonate-rich organosilica layered hybrid material (PSLM) made of 3-(trihydroxysilyl)propyl methylphosphonate, monosodium salt, as the single silica source, has been obtained from its aqueous solution through a xerogel process and mild thermal aging. The method is simple, affording bulk quantities of powdered PSLM in a single-step. The hybrid is stable in water and possesses a high content of phosphonate groups fixed on the solid matrix. In addition, PSLM shows good thermal stability, which exceeds 300 °C in air. The material was characterized using SEM, TEM, XRD, FT-IR and TGA techniques. Potentiometric titrations show that PSLM bears high-surface density of phosphonate groups (3 mmol g{sup −1}). As a result, the material displays high metal uptake capacity for heavy metal ions such as Cu{sup 2+} (2.72 mmol g{sup −1}), Pb{sup 2+} (1.67 mmol g{sup −1}) and Cd{sup 2+} (1.00 mmol g{sup −1}) at neutral pH values e.g. the pH of natural waters. Detailed theoretical modeling using a Surface Complexation Model combined with Electron Paramagnetic Resonance (EPR) spectroscopy shows that the surface distribution of surface bound Cu{sup 2+} ions is rather homogeneous e.g. copper-binding phosphonate sites are arranged in average distances 5–8 Å.

  1. Sputter fabricated Nb-oxide-Nb josephson junctions incorporating post-oxidation noble metal layers

    International Nuclear Information System (INIS)

    Bain, R.J.P.; Donaldson, G.B.

    1985-01-01

    We present an extension, involving other metals, of the work of Hawkins and Clarke, who found that a thin layer of copper prevented the formation of the superconductive shorts which are an inevitable consequence of sputtering niobium counter-electrodes directly on top of niobium oxide. We find gold to be the most satisfactory, and that 0.3 nm is sufficient to guarantee short-free junctions of excellent electrical and mechanical stability, though high excess conductance means they are best suited to shunted-junction applications, as in SQUIDs. We present results for critical current dependence on oxide thickness and on gold thickness. Our data shows that thermal oxide growth is described by the Cabrera-Mott mechanism. We show that the protective effect of the gold layer can be understood in terms of the electro-chemistry of the Nb-oxide-Au structure, and that the reduced quasi-particle resistance of the junctions relative to goldfree junctions with evaporated counterelectrodes can be explained in terms of barrier shape modification, and not by proximity effect mechanisms. The performance of a DC SQUID based on these junctions is described

  2. Nano-fabrication of molecular electronic junctions by targeted modification of metal-molecule bonds

    Science.gov (United States)

    Jafri, S. Hassan M.; Löfås, Henrik; Blom, Tobias; Wallner, Andreas; Grigoriev, Anton; Ahuja, Rajeev; Ottosson, Henrik; Leifer, Klaus

    2015-09-01

    Reproducibility, stability and the coupling between electrical and molecular properties are central challenges in the field of molecular electronics. The field not only needs devices that fulfill these criteria but they also need to be up-scalable to application size. In this work, few-molecule based electronics devices with reproducible electrical characteristics are demonstrated. Our previously reported 5 nm gold nanoparticles (AuNP) coated with ω-triphenylmethyl (trityl) protected 1,8-octanedithiol molecules are trapped in between sub-20 nm gap spacing gold nanoelectrodes forming AuNP-molecule network. When the trityl groups are removed, reproducible devices and stable Au-thiol junctions are established on both ends of the alkane segment. The resistance of more than 50 devices is reduced by orders of magnitude as well as a reduction of the spread in the resistance histogram is observed. By density functional theory calculations the orders of magnitude decrease in resistance can be explained and supported by TEM observations thus indicating that the resistance changes and strongly improved resistance spread are related to the establishment of reproducible and stable metal-molecule bonds. The same experimental sequence is carried out using 1,6-hexanedithiol functionalized AuNPs. The average resistances as a function of molecular length, demonstrated herein, are comparable to the one found in single molecule devices.

  3. Process model for carbothermic production of silicon metal

    Energy Technology Data Exchange (ETDEWEB)

    Andresen, B.

    1995-09-12

    This thesis discusses an advanced dynamical two-dimensional cylinder symmetric model for the high temperature part of the carbothermic silicon metal process, and its computer encoding. The situation close to that which is believed to exist around one of three electrodes in full-scale industrial furnaces is modelled. This area comprises a gas filled cavity surrounding the lower tip of the electrode, the metal pool underneath and the lower parts of the materials above. The most important phenomena included are: Heterogeneous chemical reactions taking place in the high-temperature zone (above 1860 {sup o}C), Evaporation and condensation of silicon, Transport of materials by dripping, Turbulent or laminar fluid flow, DC electric arcs, Heat transport by convection, conduction and radiation. The results from the calculations, such as production rates, gas- and temperature distributions, furnace- and particle geometries, fluid flow fields etc, are presented graphically. In its present state the model is a prototype. The process is very complex, and the calculations are time consuming. The governing equations are coded into a Fortran 77 computer code applying the commercial 3D code FLUENT as a basis. 64 refs., 110 figs., 11 tabs.

  4. Lunar Metal Oxide Electrolysis with Oxygen and Photovoltaic Array Production Applications

    Science.gov (United States)

    Curreri, P. A.; Ethridge, E.; Hudson, S.; Sen, S.

    2006-01-01

    This paper presents the results of a Marshall Space Flight Center funded effort to conduct an experimental demonstration of the processing of simulated lunar resources by the molten oxide electrolysis (MOE) process to produce oxygen and metal from lunar resources to support human exploration of space. Oxygen extracted from lunar materials can be used for life support and propellant, and silicon and metallic elements produced can be used for in situ fabrication of thin-film solar cells for power production. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis, MOE, is chosen for extraction, since the electron is the most practical reducing agent. MOE was also chosen for following reasons. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. In the experiments reported here, melts containing iron oxide were electrolyzed in a low temperature supporting oxide electrolyte (developed by D. Sadoway, MIT). The production of oxygen and reduced iron were observed. Electrolysis was also performed on the supporting electrolyte with JSC-1 Lunar Simulant. The cell current for the supporting electrolyte alone is negligible while the current for the electrolyte with JSC-1 shows significant current and a peak at about -0.6 V indicating reductive reaction in the simulant.

  5. Estimating product-to-product variations in metal forming using force measurements

    Science.gov (United States)

    Havinga, Jos; van den Boogaard, Ton

    2017-10-01

    The limits of production accuracy of metal forming processes can be stretched by the development of control systems for compensation of product-to-product variations. Such systems require the use of measurements from each semi-finished product. These measurements must be used to estimate the final quality of each product. We propose to predict part of the product-to-product variations in multi-stage forming processes based on force measurements from previous process stages. The reasoning is that final product properties as well as process forces are expected to be correlated since they are both affected by material and process variation. In this study, an approach to construct a moving window process model based on historical data from the process is presented. These regression models can be built and updated in real-time during production. The approach is tested with data from a demonstrator process with cutting, deep drawing and bending stages. It is shown that part of the product-to-product variations in the process can be predicted with the developed process model.

  6. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    Science.gov (United States)

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  7. Simulating the production of free defects in irradiated metals

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1995-01-01

    Under cascade-producing irradiation by high energy neutrons or charged particles, only a small fraction of the initially displaced atoms contribute to the population of free defects that are available to migrate throughout the metal and cause microstructural changes. Although, in principle, computer simulations of free defect production could best be done using molecular dynamics, in practice, the wide ranges of time and distance scales involved can be done only by a combination of atomistic models that employ various levels of approximation. An atomic-scale, multi-model approach has been developed that combines molecular dynamics, binary collision models and stochastic annealing simulation. The annealing simulation is utilized in calibrating binary collision simulations to the results of molecular dynamics calculations, as well as to model the subsequent migration of the defects on more macroscopic time and size scales. The annealing simulation and the method of calibrating the multi-model approach are discussed, and the results of simulations of cascades in copper are presented. The temperature dependence of free defect production following simulated annealing of isolated cascades in copper shows a differential in the fractions of free vacancies and interstitial defects escaping from the cascade above stage V. This differential, a consequence of the direct formation of interstitial clusters in cascades and the relative thermal stability of vacancy and interstitial clusters during subsequent annealing, is the basis for the production bias mechanism of void swelling. (orig.)

  8. Fabrication of full-color GaN-based light-emitting diodes on nearly lattice-matched flexible metal foils.

    Science.gov (United States)

    Kim, Hyeryun; Ohta, Jitsuo; Ueno, Kohei; Kobayashi, Atsushi; Morita, Mari; Tokumoto, Yuki; Fujioka, Hiroshi

    2017-05-18

    GaN-based light-emitting diodes (LEDs) have been widely accepted as highly efficient solid-state light sources capable of replacing conventional incandescent and fluorescent lamps. However, their applications are limited to small devices because their fabrication process is expensive as it involves epitaxial growth of GaN by metal-organic chemical vapor deposition (MOCVD) on single crystalline sapphire wafers. If a low-cost epitaxial growth process such as sputtering on a metal foil can be used, it will be possible to fabricate large-area and flexible GaN-based light-emitting displays. Here we report preparation of GaN films on nearly lattice-matched flexible Hf foils using pulsed sputtering deposition (PSD) and demonstrate feasibility of fabricating full-color GaN-based LEDs. It was found that introduction of low-temperature (LT) grown layers suppressed the interfacial reaction between GaN and Hf, allowing the growth of high-quality GaN films on Hf foils. We fabricated blue, green, and red LEDs on Hf foils and confirmed their normal operation. The present results indicate that GaN films on Hf foils have potential applications in fabrication of future large-area flexible GaN-based optoelectronics.

  9. Effect of repeated ceramic firings on the marginal and internal adaptation of metal-ceramic restorations fabricated with different CAD-CAM technologies.

    Science.gov (United States)

    Kocaağaoğlu, Hasan; Albayrak, Haydar; Kilinc, Halil Ibrahim; Gümüs, Hasan Önder

    2017-11-01

    The use of computer-aided design and computer-aided manufacturing (CAD-CAM) for metal-ceramic restorations has increased with advances in the technology. However, little is known about the marginal and internal adaptation of restorations fabricated using laser sintering (LS) and soft milling (SM). Moreover, the effects of repeated ceramic firings on the marginal and internal adaptation of metal-ceramic restorations fabricated with LS and SM is also unknown. The purpose of this in vitro study was to investigate the effects of repeated ceramic firings on the marginal and internal adaptation of metal-ceramic copings fabricated using the lost wax (LW), LS, and SM techniques. Ten LW, 10 LS, and 10 SM cobalt-chromium (Co-Cr) copings were fabricated for an artificial tooth (Frasaco GmbH). After the application of veneering ceramic (VITA VMK Master; VITA Zahnfabrik), the marginal and internal discrepancies of these copings were measured with a silicone indicator paste and a stereomicroscope at ×100 magnification after the first, second, and third clinical simulated ceramic firing cycles. Repeated measures 2-way ANOVA and the Fisher LSD post hoc test were used to evaluate differences in marginal and internal discrepancies (α=.05). Neither fabrication protocol nor repeated ceramic firings had any statistically significant effect on internal discrepancy values (P>.05). Marginal discrepancy values were also statistically unaffected by repeated ceramic firings (P>.05); however, the fabrication protocol had a significant effect on marginal discrepancy values (Pmarginal discrepancy values than LS or SM (PMarginal discrepancy values did not vary between LS and SM (P>.05). All groups demonstrated clinically acceptable marginal adaptation after repeated ceramic firing cycles; however, the LS and SM groups demonstrated better marginal adaptation than that of LW group and may be appropriate clinical alternatives to LW. Copyright © 2017 Editorial Council for the Journal of

  10. Low-loss integrated electrical surface plasmon source with ultra-smooth metal film fabricated by polymethyl methacrylate ‘bond and peel’ method

    Science.gov (United States)

    Liu, Wenjie; Hu, Xiaolong; Zou, Qiushun; Wu, Shaoying; Jin, Chongjun

    2018-06-01

    External light sources are mostly employed to functionalize the plasmonic components, resulting in a bulky footprint. Electrically driven integrated plasmonic devices, combining ultra-compact critical feature sizes with extremely high transmission speeds and low power consumption, can link plasmonics with the present-day electronic world. In an effort to achieve this prospect, suppressing the losses in the plasmonic devices becomes a pressing issue. In this work, we developed a novel polymethyl methacrylate ‘bond and peel’ method to fabricate metal films with sub-nanometer smooth surfaces on semiconductor wafers. Based on this method, we further fabricated a compact plasmonic source containing a metal-insulator-metal (MIM) waveguide with an ultra-smooth metal surface on a GaAs-based light-emitting diode wafer. An increase in propagation length of the SPP mode by a factor of 2.95 was achieved as compared with the conventional device containing a relatively rough metal surface. Numerical calculations further confirmed that the propagation length is comparable to the theoretical prediction on the MIM waveguide with perfectly smooth metal surfaces. This method facilitates low-loss and high-integration of electrically driven plasmonic devices, thus provides an immediate opportunity for the practical application of on-chip integrated plasmonic circuits.

  11. The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination.

    Science.gov (United States)

    Mikes, J; Siglova, M; Cejkova, A; Masak, J; Jirku, V

    2005-01-01

    Wastewaters from a chemical industry polluted by heavy metal ions represent a hazard for all living organisms. It can mean danger for ecosystems and human health. New methods are sought alternative to traditional chemical and physical processes. Active elimination process of heavy metals ions provided by living cells, their components and extracellular products represents a potential way of separating toxic heavy metals from industrial wastewaters. While the abilities of bacteria to remove metal ions in solution are extensively used, fungi have been recognized as a promising kind of low-cost adsorbents for removal of heavy-metal ions from aqueous waste sources. Yeasts and fungi differ from each other in their constitution and in their abilities to produce variety of extracellular polymeric substances (EPS) with different mechanisms of metal interactions. The accumulation of Cd(2+), Cr(6+), Pb(2+), Ni(2+) and Zn(2+) by yeasts and their EPS was screened at twelve different yeast species in microcultivation system Bioscreen C and in the shaking Erlenmayer's flasks. This results were compared with the production of yeast EPS and the composition of yeast cell walls. The EPS production was measured during the yeast growth and cell wall composition was studied during the cultivations in the shaking flasks. At the end of the process extracellular polymers and their chemical composition were isolated and amount of bound heavy metals was characterized. The variable composition and the amount of the EPS were found at various yeast strains. It was influenced by various compositions of growth medium and also by various concentrations of heavy metals. It is evident, that the amount of bound heavy metals was different. The work reviews the possibilities of usage of various yeast EPS and components of cell walls in the elimination processes of heavy metal ions. Further the structure and properties of yeasts cell wall and EPS were discussed. The finding of mechanisms mentioned

  12. Photoreactivity of Metal-Organic Frameworks in Aqueous Solutions: Metal Dependence of Reactive Oxygen Species Production.

    Science.gov (United States)

    Liu, Kai; Gao, Yanxin; Liu, Jing; Wen, Yifan; Zhao, Yingcan; Zhang, Kunyang; Yu, Gang

    2016-04-05

    Promising applications of metal-organic frameworks (MOFs) in various fields have raised concern over their environmental fate and safety upon inevitable discharge into aqueous environments. Currently, no information regarding the transformation processes of MOFs is available. Due to the presence of repetitive π-bond structure and semiconductive property, photochemical transformations are an important fate process that affects the performance of MOFs in practical applications. In the current study, the generation of reactive oxygen species (ROS) in isoreticular MIL-53s was studied. Scavengers were employed to probe the production of (1)O2, O2(•-), and •OH, respectively. In general, MIL-53(Cr) and MIL-53(Fe) are dominated by type I and II photosensitization reactions, respectively, and MIL-53(Al) appears to be less photoreactive. The generation of ROS in MIL-53(Fe) may be underestimated due to dismutation. Further investigation of MIL-53(Fe) encapsulated diclofenac transformation revealed that diclofenac can be easily transformed by MIL-53(Fe) generated ROS. However, the cytotoxicity results implied that the ROS generated from MIL-53s have little effect on the viability of the human hepatocyte (HepG2) cell line. These results suggest that the photogeneration of ROS by MOFs may be metal-node dependent, and the application of MIL-53s as drug carriers needs to be carefully considered due to their high photoreactivity.

  13. Structure and properties of nanoparticles fabricated by laser ablation of Zn metal targets in water and ethanol

    Science.gov (United States)

    Svetlichnyi, V. A.; Lapin, I. N.

    2013-10-01

    Size characteristics, structure, and spectral and luminescent properties of nanoparticles fabricated by laser ablation of zinc metal targets in water and ethanol are experimentally investigated upon excitation by Nd:YAG-laser radiation (1064 nm, 7 ns, and 15 Hz). It is demonstrated that zinc oxide nanoparticles with average sizes of 10 nm (in water) and 16 nm (in ethanol) are formed in the initial stage as a result of ablation. The kinetics of the absorption and luminescence spectra, transmission electron microscopy, and x-ray structural analysis demonstrate that during long storage of water dispersions and their drying, nanoparticles efficiently interact with carbon dioxide gas of air that leads to the formation of water-soluble Zn(CO3)2(OH)6. In ethanol, Zn oxidation leads to the formation of stable dispersions of ZnO nanoparticles with 99% of the wurtzite phase; in this case, the fluorescence spectra of ZnO nanoparticles change with time, shifting toward longer wavelength region from 550 to 620 nm, which is caused by the changed nature of defects.

  14. Fabrication of a micro-hole array on metal foil by nanosecond pulsed laser beam machining using a cover plate

    International Nuclear Information System (INIS)

    Ha, Kyoung Ho; Lee, Se Won; Jee, Won Young; Chu, Chong Nam; Kim, Janggil

    2015-01-01

    A novel laser beam machining (LBM) method is proposed to achieve higher precision and better quality beyond the limits of a commercialized nanosecond pulsed laser system. The use of a cover plate is found to be effective for the precision machining of a thin metal foil at micro scale. For verifying the capability of cover plate laser beam machining (c-LBM) technology, a 30 by 30 array of micro-holes was fabricated on 8 µm-thick stainless steel 304 (STS) foil. As a result, thermal deformation and cracks were significantly reduced in comparison with the results using LBM without a cover plate. The standard deviation of the inscribed and circumscribed circle of the holes with a diameter of 12 µm was reduced to 33% and 81%, respectively and the average roundness improved by 77%. Moreover, the smallest diameter obtainable by c-LBM in the given equipment was found to be 6.9 µm, which was 60% less than the minimum size hole by LBM without a cover plate. (technical note)

  15. Fabrication of ZnAl mixed metal-oxides/RGO nanohybrid composites with enhanced photocatalytic activity under visible light

    Science.gov (United States)

    Ni, Jie; Xue, Jinjuan; Shen, Jing; He, Guangyu; Chen, Haiqun

    2018-05-01

    The ZnAl mixed metal-oxides (MMOs)/graphene nanocomposites were successfully fabricated by a facile hydrothermal method combined with a calcination process. The thermal treatment enables simultaneously the formation of ZnO/ZnAl2O4 heterogeneous structure, which are uniformly decorated on the surface of graphene, accompanying with the reduction of graphene oxide. The as-prepared heterostructure photocatalysts were well characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and UV-vis diffuse reflectance spectroscopy (DRS) to conduct investigations into the phase structures, microstructure and optical capability. The ZnAl MMO/RGO20 composite displayed favorable adsorption property and photo-degradation efficiency for Ciprofloxacin (CIP) aqueous solution under visible light. The photo-degradation efficiency of the as-prepared ZnAl MMO/RGO20 was 3.0 and even 4.6 times higher than that of ZnAl MMO and pure ZnAl LDH, respectively. The improvement of photocatalytic performance is ascribed to the synergistic effect of heterogeneous structure coupled with graphene, which realizes efficient charge separation efficiency, enlarged visible light adsorption range, and chemical stability of hybrid nanocomposite. The results of EIS, PL and photocurrent response also explained the best performance of ZnAl MMO/RGO20 nanocomposite. Besides, the mechanism of ZnAl MMO/RGO20 photocatalytic system was proposed and analyzed in detail.

  16. Semiconductor-Free Nonvolatile Resistive Switching Memory Devices Based on Metal Nanogaps Fabricated on Flexible Substrates via Adhesion Lithography

    KAUST Repository

    Semple, James

    2017-01-02

    Electronic memory cells are of critical importance in modern-day computing devices, including emerging technology sectors such as large-area printed electronics. One technology that has being receiving significant interest in recent years is resistive switching primarily due to its low dimensionality and nonvolatility. Here, we describe the development of resistive switching memory device arrays based on empty aluminum nanogap electrodes. By employing adhesion lithography, a low-temperature and large-area compatible nanogap fabrication technique, dense arrays of memory devices are demonstrated on both rigid and flexible plastic substrates. As-prepared devices exhibit nonvolatile memory operation with stable endurance, resistance ratios >10⁴ and retention times of several months. An intermittent analysis of the electrode microstructure reveals that controlled resistive switching is due to migration of metal from the electrodes into the nanogap under the application of an external electric field. This alternative form of resistive random access memory is promising for use in emerging sectors such as large-area electronics as well as in electronics for harsh environments, e.g., space, high/low temperature, magnetic influences, radiation, vibration, and pressure.

  17. An oxygen-insensitive degradable resist for fabricating metallic patterns on highly curved surfaces by UV-nanoimprint lithography.

    Science.gov (United States)

    Hu, Xin; Huang, Shisong; Gu, Ronghua; Yuan, Changsheng; Ge, Haixiong; Chen, Yanfeng

    2014-10-01

    In this paper, an oxygen-insensitive degradable resist for UV-nanoimprint is designed, com-prising a polycyclic degradable acrylate monomer, 2,10-diacryloyloxymethyl-1,4,9,12-tetraoxa-spiro [4.2.4.2] tetradecane (DAMTT), and a multifunctional thiol monomer pentaerythritol tetra(3-mercaptopropionate) (PETMP). The resist can be quickly UV-cured in the air atmosphere and achieve a high monomer conversion of over 98%, which greatly reduce the adhesion force between the resist and the soft mold. High conversion, in company with an adequate Young's modulus (about 1 GPa) and an extremely low shrinkage (1.34%), promises high nanoimprint resolution of sub-50 nm. The cross-linked resist is able to break into linear molecules in a hot acid solvent. As a result, metallic patterns are fabricated on highly curved surfaces via the lift off process without the assistance of a thermoplastic polymer layer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Semiconductor-Free Nonvolatile Resistive Switching Memory Devices Based on Metal Nanogaps Fabricated on Flexible Substrates via Adhesion Lithography

    KAUST Repository

    Semple, James; Wyatt-Moon, Gwenhivir; Georgiadou, Dimitra G.; McLachlan, Martyn A.; Anthopoulos, Thomas D.

    2017-01-01

    Electronic memory cells are of critical importance in modern-day computing devices, including emerging technology sectors such as large-area printed electronics. One technology that has being receiving significant interest in recent years is resistive switching primarily due to its low dimensionality and nonvolatility. Here, we describe the development of resistive switching memory device arrays based on empty aluminum nanogap electrodes. By employing adhesion lithography, a low-temperature and large-area compatible nanogap fabrication technique, dense arrays of memory devices are demonstrated on both rigid and flexible plastic substrates. As-prepared devices exhibit nonvolatile memory operation with stable endurance, resistance ratios >10⁴ and retention times of several months. An intermittent analysis of the electrode microstructure reveals that controlled resistive switching is due to migration of metal from the electrodes into the nanogap under the application of an external electric field. This alternative form of resistive random access memory is promising for use in emerging sectors such as large-area electronics as well as in electronics for harsh environments, e.g., space, high/low temperature, magnetic influences, radiation, vibration, and pressure.

  19. Effect of Nb addition on microstructure and corrosion resistance of novel stainless steels fabricated by direct laser metal deposition

    Science.gov (United States)

    Wu, S. Q.; Zhang, C. H.; Zhang, S.; Wang, Q.; Liu, Y.; Abdullah, Adil O.

    2018-03-01

    The study demonstrated the successful fabrication of novel stainless steels by direct laser metal deposition with the aim of investigating the impact of niobium content (Nb = 0, 0.25, 0.75, 1.25 wt%) on their microstructure and electrochemical properties. The microstructure and phase evolution of the as-built stainless steels were studied using scanning electron microscope (SEM) and electron back-scatter diffraction (EBSD). Corrosion behavior of the samples was evaluated using electrochemical workstation in 3.5 wt% NaCl. Experimental results have shown that the crystal structure of as-built stainless steels was BCC with a small trace of dispersive carbides and FCC phase. Grain refinement was observed with increasing niobium content. Large-angle boundaries were obtained in different Nb-containing samples with distribution from 50° to 60°. An increase in niobium content extremely improved the corrosion resistance of as-built stainless steels and the as-built samples with 1.25 wt% exhibited the best corrosion resistance among the tested samples as indicated by its lowest corrosion rate, which was an order of magnitude lower than that of Nb-free samples.

  20. Fabrication of superhydrophilic and underwater superoleophobic metal mesh by laser treatment and its application

    Science.gov (United States)

    Yu, Peng; Lian, Zhongxu; Xu, Jinkai; Yu, Zhanjiang; Ren, Wanfei; Yu, Huadong

    2018-04-01

    In this paper, a lot of micron-sized sand granular structures were formed on the substrate of the stainless steel mesh (SSM) by laser treatment. The rough surface with sand granular structures showed superhydrophilic in air and superoleophobic under water. With its special wettability, the SSM by laser treatment could achieve the separation of the oil/water mixture, showing good durability and high separation efficiency, which was very useful in the practical application of large-scale oil/water separation facility for reducing the impacts of oil leaked on the environment. In addition, it showed that the laser-treated SSM had a very high separation rate. The development of the laser-treated SSM is a simple, environmental, economical and high-efficiency method, which provides a new approach to the production of high efficiency facilities for oil/water separation.

  1. Fit accuracy of metal partial removable dental prosthesis frameworks fabricated by traditional or light curing modeling material technique: An in vitro study

    Science.gov (United States)

    Anan, Mohammad Tarek M.; Al-Saadi, Mohannad H.

    2015-01-01

    Objective The aim of this study was to compare the fit accuracies of metal partial removable dental prosthesis (PRDP) frameworks fabricated by the traditional technique (TT) or the light-curing modeling material technique (LCMT). Materials and methods A metal model of a Kennedy class III modification 1 mandibular dental arch with two edentulous spaces of different spans, short and long, was used for the study. Thirty identical working casts were used to produce 15 PRDP frameworks each by TT and by LCMT. Every framework was transferred to a metal master cast to measure the gap between the metal base of the framework and the crest of the alveolar ridge of the cast. Gaps were measured at three points on each side by a USB digital intraoral camera at ×16.5 magnification. Images were transferred to a graphics editing program. A single examiner performed all measurements. The two-tailed t-test was performed at the 5% significance level. Results The mean gap value was significantly smaller in the LCMT group compared to the TT group. The mean value of the short edentulous span was significantly smaller than that of the long edentulous span in the LCMT group, whereas the opposite result was obtained in the TT group. Conclusion Within the limitations of this study, it can be concluded that the fit of the LCMT-fabricated frameworks was better than the fit of the TT-fabricated frameworks. The framework fit can differ according to the span of the edentate ridge and the fabrication technique for the metal framework. PMID:26236129

  2. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    Science.gov (United States)

    Totemeier, Terry C.; Pahl, Robert G.; Frank, Steven M.

    The oxidation behavior of hydride-bearing uranium metal corrosion products from Zero Power Physics Reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2, Ar-9%O 2, and Ar-20%O 2. Ignition of corrosion product samples from two moderately corroded plates was observed between 125°C and 150°C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride.

  3. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    International Nuclear Information System (INIS)

    Totemeier, T.C.; Pahl, R.G.; Frank, S.M.

    1998-01-01

    The oxidation behavior of hydride-bearing uranium metal corrosion products from zero power physics reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2 , Ar-9%O 2 , and Ar-20%O 2 . Ignition of corrosion product samples from two moderately corroded plates was observed between 125 C and 150 C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride. (orig.)

  4. Mass production of polymer nano-wires filled with metal nano-particles.

    Science.gov (United States)

    Lomadze, Nino; Kopyshev, Alexey; Bargheer, Matias; Wollgarten, Markus; Santer, Svetlana

    2017-08-17

    Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.

  5. Production of metals and compounds by radiation chemistry

    Science.gov (United States)

    Marsik, S. J.; Philipp, W. H.

    1969-01-01

    Preparation of metals and compounds by radiation induced chemical reactions involves irradiation of metal salt solutions with high energy electrons. This technique offers a method for the preparation of high purity metals with minimum contamination from the container material or the cover gas.

  6. Heavy metals content in plant-growing products as the results of agroecological monitoring

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Lunev, M.I.; Pavlikhina, A.V.; Lobas, N.V.

    2008-01-01

    The generalised data on the heavy metals and arsenic contents in grain and vegetable cultures, green mass and hay of various grasses are presented. The dependence of heavy metal accumulation factors in plant-growing products on soil properties is shown. The estimation of levels of the heavy metals contents in accordance with the admissible content standards is given.

  7. Fabrication, Quality Assurance, and Quality Control for PROSPECT Detector Component Production

    Science.gov (United States)

    Gustafson, Ian; Prospect (The Precision Reactor Oscillation; Spectrum Experiment) Collaboration

    2017-09-01

    The Precision Reactor Oscillation and Spectrum Experiment (PROSPECT) is an electron antineutrino (νe) detector intended to make a precision measurement of the 235U neutrino spectrum and to search for the possible existence of sterile neutrinos with a mass splitting of Δm2 on the order of 1 eV2 . As a short baseline detector, PROSPECT will be located less than 10 meters from the High Flux Isotope Reactor at Oak Ridge National Laboratory. As PROSPECT intends to search for baseline-dependent oscillations, physical segmentation is needed to better measure the interaction position. PROSPECT will therefore be a segmented detector in two dimensions, thereby improving position measurements. PROSPECT will be segmented into 154 (11×14) 1.2-meter long rectangular tubes, using optical separators. Each separator will consist of a carbon fiber core, laminated with optical reflector (to increase light collection) and Teflon (to ensure compatibility with the scintillator). These optical separators will be held in place via strings of 3D printed PLA rods called `pinwheels.' This poster discusses the fabrication and quality assurance (QA) procedures used in the production of both the PROSPECT optical separators and pinwheels. For the PROSPECT collaboration.

  8. Single-Step Fabrication of Computationally Designed Microneedles by Continuous Liquid Interface Production.

    Directory of Open Access Journals (Sweden)

    Ashley R Johnson

    Full Text Available Microneedles, arrays of micron-sized needles that painlessly puncture the skin, enable transdermal delivery of medications that are difficult to deliver using more traditional routes. Many important design parameters, such as microneedle size, shape, spacing, and composition, are known to influence efficacy, but are notoriously difficult to alter due to the complex nature of microfabrication techniques. Herein, we utilize a novel additive manufacturing ("3D printing" technique called Continuous Liquid Interface Production (CLIP to rapidly prototype sharp microneedles with tuneable geometries (size, shape, aspect ratio, spacing. This technology allows for mold-independent, one-step manufacturing of microneedle arrays of virtually any design in less than 10 minutes per patch. Square pyramidal CLIP microneedles composed of trimethylolpropane triacrylate, polyacrylic acid and photopolymerizable derivatives of polyethylene glycol and polycaprolactone were fabricated to demonstrate the range of materials that can be utilized within this platform for encapsulating and controlling the release of therapeutics. These CLIP microneedles effectively pierced murine skin ex vivo and released the fluorescent drug surrogate rhodamine.

  9. Fabrication of a metallic roll stamp with low internal stress and high hardness for large area display applications by a pulse reverse current electroforming process

    International Nuclear Information System (INIS)

    Kim, Joongeok; Han, Jungjin; Kim, Taekyung; Kang, Shinill

    2014-01-01

    With the increasing demand for large scale micro/nano components in the fields of display, energy and electrical devices, etc, the establishment of a roll imprinting process has become a priority. The fabrication of a roll stamp with high dimensional accuracy and uniformity is one of the key issues in the roll imprinting process, because the roll stamp determines the properties of the replicated micro/nano structures. In this study, a method to fabricate a metallic roll stamp with low internal stress, high flatness, and high hardness was proposed by a pulse reverse current (PRC) electroforming process. The effects of PRC electroforming processes on the internal stress, hardness, and grain size of the electroformed stamp were examined, and the optimum process conditions were suggested. As a practical example of the proposed method, various micro-patterns for electronic circuits were fabricated via the roll imprinting process using a PRC electroformed stamp. (paper)

  10. Metal-doped single-walled carbon nanotubes and production thereof

    Science.gov (United States)

    Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.

    2007-01-09

    Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.

  11. LIFE CYCLE INVENTORY ANALYSIS IN THE PRODUCTION OF METALS USED IN PHOTOVOLTAICS.

    Energy Technology Data Exchange (ETDEWEB)

    FTHENAKIS,V.M.; KIM, H.C.; WANG, W.

    2007-03-30

    Material flows and emissions in all the stages of production of zinc, copper, aluminum, cadmium, indium, germanium, gallium, selenium, tellurium, and molybdenum were investigated. These metals are used selectively in the manufacture of solar cells, and emission and energy factors in their production are used in the Life Cycle Analysis (LCA) of photovoltaics. Significant changes have occurred in the production and associated emissions for these metals over the last 10 years, which are not described in the LCA databases. Furthermore, emission and energy factors for several of the by-products of the base metal production were lacking. This report aims in updating the life-cycle inventories associated with the production of the base metals (Zn, Cu, Al, Mo) and in defining the emission and energy allocations for the minor metals (Cd, In, Ge, Se, Te and Ga) used in photovoltaics.

  12. Effect of shock pressure on the structure and superconducting properties of Y-Ba-Cu-O in explosively fabricated bulk metal-matrix composites

    Science.gov (United States)

    Murr, L. E.; Niou, C. S.; Pradhan-Advani, M.

    1991-01-01

    While it is now well established that copper-oxide-based power, or virtually any other ceramic superconductor powder, can be consolidated and encapsulated within a metal matrix by explosive consolidation, the erratic superconductivity following fabrication has posed a major problem for bulk applications. The nature of this behavior was found to arise from microstructural damage created in the shock wave front, and the residual degradation in superconductivity was demonstrated to be directly related to the peak shock pressure. The explosively fabricated or shock loaded YBa2Cu3Ox examples exhibit drastically altered rho (or R) - T curves. The deterioration in superconductivity is even more noticeable in the measurement of ac magnetic susceptibility and flux exclusion or shielding fraction which is also reduced in proportion to increasing peak shock pressure. The high frequency surface resistance (in the GHz range) is also correspondingly compromised in explosively fabricated, bulk metal-matrix composites based on YBa2Cu3O7. Transmission electron microscopy (including lattice imaging techniques) is being applied in an effort to elucidate the fundamental (microstructural) nature of the shock-induced degradation of superconductivity and normal state conductivity. One focus of TEM observations has assumed that oxygen displaced from b-chains rather than oxygen-vacancy disorder in the basal plane of oxygen deficient YBa2Cu3Ox may be a prime mechanism. Shock-wave displaced oxygen may also be locked into new positions or interstitial clusters or chemically bound to displaced metal (possibly copper) atoms to form precipitates, or such displacements may cause the equivalent of local lattice cell changes as a result of stoichiometric changes. While the shock-induced suppression of T(sub c) is not desirable in the explosive fabrication of bulk metal-matrix superconductors, it may be turned into an advantage if the atomic-scale distortion can be understood and controlled as local

  13. Effective ways of decrease in the maintenance of heavy metals in soils and vegetative production

    International Nuclear Information System (INIS)

    Komarova, N.A.; Komarov, V.I.; Grishina, A.V.; Akanova, N.I.

    2008-01-01

    Receptions detoxication of heavy metals and reception vegetative production adequating to sanitary-and-hygienic norms are developed and scientifically proved. Correlation dependence between pH, concentration of heavy metals in vegetative production and level of productivity of agricultural crops is established. The most essential factor reducing till 8-10 of time receipt in plants Cu, Cd, Zn and Pb, level of reaction of environment in soil is. Dynamics of migration of heavy metals from the soil polluted water-soluble form of heavy metals is investigated

  14. Noble metal catalysts in the production of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, A.

    2013-11-01

    The energy demand is increasing in the world together with the need to ensure energy security and the desire to decrease greenhouse gas emissions. While several renewable alternatives are available for the production of electricity, e.g. solar energy, wind power, and hydrogen, biomass is the only renewable source that can meet the demand for carbon-based liquid fuels and chemicals. The technology applied in the conversion of biomass depends on the type and complexity of the biomass, and the desired fuel. Hydrogen and hydrogen-rich mixtures (synthesis gas) are promising energy sources as they are more efficient and cleaner than existing fuels, especially when they are used in fuel cells. Hydrotreatment is a catalytic process that can be used in the conversion of biomass or biomass-derived liquids into fuels. In autothermal reforming (ATR), catalysts are used in the production of hydrogen-rich mixtures from conventional fuels or bio-fuels. The different nature of biomass and biomass-derived liquids and mineral oil makes the use of catalysts developed for the petroleum industry challenging. This requires the improvement of available catalysts and the development of new ones. To overcome the limitations of conventional hydrotreatment and ATR catalysts, zirconia-supported mono- and bimetallic rhodium, palladium, and platinum catalysts were developed and tested in the upgrading of model compounds for wood-based pyrolysis oil and in the production of hydrogen, using model compounds for gasoline and diesel. Catalysts were also tested in the ATR of ethanol. For comparative purposes commercial catalysts were tested and the results obtained with model compounds were compared with those obtained with real feedstocks (hydrotreatmet tests with wood-based pyrolysis oil and ATR tests with NExBTL renewable diesel). Noble metal catalysts were active and selective in the hydrotreatment of guaiacol used as the model compound for the lignin fraction of wood-based pyrolysis oil and wood

  15. Method and apparatus for the production of metal oxide powder

    Science.gov (United States)

    Harris, Michael T.; Scott, Timothy C.; Byers, Charles H.

    1992-01-01

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  16. Method and apparatus for the production of metal oxide powder

    Science.gov (United States)

    Harris, M.T.; Scott, T.C.; Byers, C.H.

    1992-06-16

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed. 2 figs.

  17. 75 FR 49527 - Metaldyne Corporation, Metaldyne Tubular Products, Currently Known as Flexible Metal, Inc...

    Science.gov (United States)

    2010-08-13

    ..., Metaldyne Tubular Products, Currently Known as Flexible Metal, Inc., Powertrain Division, Hamburg, MI... certification for workers of the subject firm. The workers are engaged in the production of exhaust manifolds and turbo tubes for the automotive industry. Information shows that on June 10, 2010, Flexible Metals...

  18. Effect of metal ions on the growth and metabolites production of ...

    African Journals Online (AJOL)

    Effect of metal ions on the growth and metabolites production of Ganoderma lucidum in submerged culture. YH Cui, KC Zhang. Abstract. The effects of several metal ions on the cell growth, production of polysaccharides by Ganoderma lucidum in submerged fermentation were studied. The results showed that 50 ppm Se2+ ...

  19. Process for fabrication of cermets

    Science.gov (United States)

    Landingham, Richard L [Livermore, CA

    2011-02-01

    Cermet comprising ceramic and metal components and a molten metal infiltration method and process for fabrication thereof. The light weight cermets having improved porosity, strength, durability, toughness, elasticity fabricated from presintered ceramic powder infiltrated with a molten metal or metal alloy. Alumina titanium cermets biocompatible with the human body suitable for bone and joint replacements.

  20. A study on compound contents for plastic injection molding products of metallic resin pigment

    International Nuclear Information System (INIS)

    Park, Young Whan; Kwak, Jae Seob; Lee, Gyu Sang

    2016-01-01

    Injection molding process is widely used for producing most plastic products. In order to make a metal-colored plastic product especially in modern luxury home alliances, metallic pigments which are mixed to a basic resin material for injection molding are available. However, the process control for the metal-colored plastic product is extremely difficult due to non-uniform melt flow of the metallic resin pigments. To improve the process efficiency, a rapid mold cooling method by a compressed cryogenic fluid and electricity mold are also proposed to decrease undesired compound contents within a molded plastic product. In this study, a quality of the metal-colored plastic product is evaluated with process parameters; injection speed, injection pressure, and pigment contents, and an influence of the rapid cooling and heating system is demonstrated

  1. A study on compound contents for plastic injection molding products of metallic resin pigment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Whan; Kwak, Jae Seob [Dept. of Mechanical Engineering, Pukyong National University, Busan (Korea, Republic of); Lee, Gyu Sang [Alliance Molding Engineering TeamLG Electronics Inc., Osan (Korea, Republic of)

    2016-12-15

    Injection molding process is widely used for producing most plastic products. In order to make a metal-colored plastic product especially in modern luxury home alliances, metallic pigments which are mixed to a basic resin material for injection molding are available. However, the process control for the metal-colored plastic product is extremely difficult due to non-uniform melt flow of the metallic resin pigments. To improve the process efficiency, a rapid mold cooling method by a compressed cryogenic fluid and electricity mold are also proposed to decrease undesired compound contents within a molded plastic product. In this study, a quality of the metal-colored plastic product is evaluated with process parameters; injection speed, injection pressure, and pigment contents, and an influence of the rapid cooling and heating system is demonstrated.

  2. Low-Cost and Rapid Fabrication of Metallic Nanostructures for Sensitive Biosensors Using Hot-Embossing and Dielectric-Heating Nanoimprint Methods

    Directory of Open Access Journals (Sweden)

    Kuang-Li Lee

    2017-07-01

    Full Text Available We propose two approaches—hot-embossing and dielectric-heating nanoimprinting methods—for low-cost and rapid fabrication of periodic nanostructures. Each nanofabrication process for the imprinted plastic nanostructures is completed within several seconds without the use of release agents and epoxy. Low-cost, large-area, and highly sensitive aluminum nanostructures on A4 size plastic films are fabricated by evaporating aluminum film on hot-embossing nanostructures. The narrowest bandwidth of the Fano resonance is only 2.7 nm in the visible light region. The periodic aluminum nanostructure achieves a figure of merit of 150, and an intensity sensitivity of 29,345%/RIU (refractive index unit. The rapid fabrication is also achieved by using radio-frequency (RF sensitive plastic films and a commercial RF welding machine. The dielectric-heating, using RF power, takes advantage of the rapid heating/cooling process and lower electric power consumption. The fabricated capped aluminum nanoslit array has a 5 nm Fano linewidth and 490.46 nm/RIU wavelength sensitivity. The biosensing capabilities of the metallic nanostructures are further verified by measuring antigen–antibody interactions using bovine serum albumin (BSA and anti-BSA. These rapid and high-throughput fabrication methods can benefit low-cost, highly sensitive biosensors and other sensing applications.

  3. 3D Microstructural Architectures for Metal and Alloy Components Fabricated by 3D Printing/Additive Manufacturing Technologies

    Science.gov (United States)

    Martinez, E.; Murr, L. E.; Amato, K. N.; Hernandez, J.; Shindo, P. W.; Gaytan, S. M.; Ramirez, D. A.; Medina, F.; Wicker, R. B.

    The layer-by-layer building of monolithic, 3D metal components from selectively melted powder layers using laser or electron beams is a novel form of 3D printing or additive manufacturing. Microstructures created in these 3D products can involve novel, directional solidification structures which can include crystallographically oriented grains containing columnar arrays of precipitates characteristic of a microstructural architecture. These microstructural architectures are advantageously rendered in 3D image constructions involving light optical microscopy and scanning and transmission electron microscopy observations. Microstructural evolution can also be effectively examined through 3D image sequences which, along with x-ray diffraction (XRD) analysis in the x-y and x-z planes, can effectively characterize related crystallographic/texture variances. This paper compares 3D microstructural architectures in Co-base and Ni-base superalloys, columnar martensitic grain structures in 17-4 PH alloy, and columnar copper oxides and dislocation arrays in copper.

  4. A CNC Sheetmetal Fabrication System for Production of Ships Ventilation Components and Flatwork

    National Research Council Canada - National Science Library

    Galie, Thomas R; Blais, David R

    1981-01-01

    .... By utilizing computer graphics technology and Computer Numeric Control (CNC) machine tools, it is possible to reduce the manhours required for fabrication of ventilation and flatwork by as much as 40 percent...

  5. Interactive influences of bioactive trace metals on biological production in oceanic waters

    International Nuclear Information System (INIS)

    Bruland, K.W.; Donat, J.R.; Hutchins, D.A.

    1991-01-01

    The authors present an overview of the oceanic chemistries of the bioactive trace metals, Mn, Fe, Co, Ni, Cu, and Zn; the authors combine field data with results from laboratory phytoplankton culture-trace metal studies and speculate on the potential influences of these trace metals on oceanic plankton production and species composition. Most field studies have focused on the effects of single metals. However, they propose that synergistic and antagonistic interactions between multiple trace metals could be very important in the oceans. Trace metal antagonisms that may prove particularly important are those between Cu and the potential biolimiting metals Fe, Mn, and Zn. These antagonistic interactions could have the greatest influence on biological productivity in areas of the open ocean isolated from terrestrial inputs, such as the remote high nutrient regions of the Pacific and Antarctic Oceans. The emerging picture of trace metal-biota interactions in these oceanic areas is one in which biology strongly influences distribution and chemical speciation of all these bioactive trace metals. It also seems likely that many of these bioactive trace metals and their speciation may influence levels of primary productivity, species composition, and trophic structure. Future investigations should give more complete consideration to the interactive effects of biologically important trace metals

  6. TECHNOLOGY OF PRODUCTION OF METAL-CONTAINING SLAGS

    Directory of Open Access Journals (Sweden)

    O. M. Djakonov

    2011-01-01

    Full Text Available Technological operations of mechanical squeezing of water-based final tailings from lubricoolants, washing of metal-abrasive final tailings on oil lubricoolants and their magnetic separation are offered and investigated. Advantages of technology washing and magnetic separation of final tailings are ecological cleanliness of the process, high degree of clearing of metal powder and qualitative division of mixture component.

  7. Tracing heavy metals in 'swine manure - maggot - chicken' production chain.

    Science.gov (United States)

    Wang, Wanqiang; Zhang, Wenjuan; Wang, Xiaoping; Lei, Chaoliang; Tang, Rui; Zhang, Feng; Yang, Qizhi; Zhu, Fen

    2017-08-21

    With the development of large-scale livestock farming, manure pollution has drawn much attention. Conversion by insects is a rapid and cost-effective new method for manure management. Swine manure conversion with maggots (Musca domestica larvae) has developed, and the harvested maggots are often used as animal feed. However, the flow of heavy metals from manure to downstream processes cannot be ignored, and therefore, heavy metal content was measured in untreated raw manure, maggot-treated manure, harvested maggots and maggot-eating chickens (chest muscle and liver) to evaluate potential heavy metal risks. The levels of zinc, copper, chromium, selenium, cadmium and lead had significant differences between untreated raw manure and maggot-treated manure. The concentrations of all detected heavy metals, except for cadmium and selenium, in maggots met the limits established by the feed or feed additive standards of many countries. The bioaccumulation factor (BAF) of heavy metals decreased with the increase of the maggot instar, indicating that heavy metals were discharged from the bodies of maggots with the growth of maggots. Also, the contents of overall heavy metals in chickens fed harvested maggots met the standards for food. In conclusion, regarding heavy metals, it is eco-safe to use maggots in manure management.

  8. Production of Manual Metal Arc Welding Electrodes with Local Raw ...

    African Journals Online (AJOL)

    Manual arc welding using flux coated electrodes is carried out by producing an electric arc between the base metal and a flux covered metal electrode with electric current that depends on the type of electrode, material, welding position and the desired strength. The composition of flux coated electrodes is complex and a ...

  9. Production of cotton fabrics with durable antibacterial property by using gum tragacanth and silver.

    Science.gov (United States)

    Ranjbar-Mohammadi, Marziyeh

    2018-04-01

    A simple and inexpensive procedure has been devised to prepare antibacterial cotton fabric using silver nanoparticles (AgNPs) and bio degradable gum tragacanth (GT). For this, different concentrations of GT (2, 4 and 6 g/L) along with a constant amount of Ag (5%; according to weight of dry GT used in the solutions) were applied to investigate the efficacy of antibacterial potency against Escherichia coli and Staphylococcus aureus and their effect on physical, mechanical and biological characteristics of cotton fabric. Our study exhibited the presence of small amount of AgNPs in the composite structure was enough to increase the antibacterial activity of fabrics compared to fabric that were treated by only GT. Moreover, the treated cotton with GT-4%/Ag indicated proper tensile strength and stiffness compared to treated fabric with GT-6%/Ag composite. The biocompatibility of the GT and GT/Ag treated fabrics was verified through MTT assay on fibroblast cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Production management and quality assurance for the fabrication of the In-Vessel Components of the stellarator Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Li, C., E-mail: chuanfei.li@ipp.mpg.de; Boscary, J.; Dekorsy, N.; Junghanns, P.; Mendelevitch, B.; Peacock, A.; Pirsch, H.; Sellmeier, O.; Springer, J.; Stadler, R.; Streibl, B.

    2014-10-15

    Highlights: • Thousand parts for the divertor, first wall, cooling supply and diagnostics as W7-X In-Vessel Components. • Database building including part and assembly data, work and capacity organization, quality assurance documents. • Production management system to organize the fabrication and the associated quality assurance. • Successful use of an efficient and flexible product planning and scheduling tool for W7-X In-Vessel Components. - Abstract: The In-Vessel Components (IVC) of the stellarator Wendelstein 7-X consist of the divertor components and the first wall (FW) with their internal water cooling supply and a set of diagnostics. Due to the significant amount of different components, including many variants, a tool called Production Managing System (PMS) has been developed to organize the fabrication and the associated quality assurance. The PMS works by building a database containing the basic parts and assembly data, manufacturing and quality control plans, and available machine capacity. The creation of this database is based mainly on the parts lists, the manufacturing drawings, and details of the working flow organization. As a consequence of the learning process and technical adjustments during the design and manufacturing phase, the database needed to be permanently updated. Therefore an interface tool to optimize the data preparation has been developed. PMS has been demonstrated to be an efficient tool to support the IVC production activities providing reliable planning estimates, easily adaptable to problems encountered during the fabrication and provided a basis for the integration of quality assurance requirements.

  11. Production management and quality assurance for the fabrication of the In-Vessel Components of the stellarator Wendelstein 7-X

    International Nuclear Information System (INIS)

    Li, C.; Boscary, J.; Dekorsy, N.; Junghanns, P.; Mendelevitch, B.; Peacock, A.; Pirsch, H.; Sellmeier, O.; Springer, J.; Stadler, R.; Streibl, B.

    2014-01-01

    Highlights: • Thousand parts for the divertor, first wall, cooling supply and diagnostics as W7-X In-Vessel Components. • Database building including part and assembly data, work and capacity organization, quality assurance documents. • Production management system to organize the fabrication and the associated quality assurance. • Successful use of an efficient and flexible product planning and scheduling tool for W7-X In-Vessel Components. - Abstract: The In-Vessel Components (IVC) of the stellarator Wendelstein 7-X consist of the divertor components and the first wall (FW) with their internal water cooling supply and a set of diagnostics. Due to the significant amount of different components, including many variants, a tool called Production Managing System (PMS) has been developed to organize the fabrication and the associated quality assurance. The PMS works by building a database containing the basic parts and assembly data, manufacturing and quality control plans, and available machine capacity. The creation of this database is based mainly on the parts lists, the manufacturing drawings, and details of the working flow organization. As a consequence of the learning process and technical adjustments during the design and manufacturing phase, the database needed to be permanently updated. Therefore an interface tool to optimize the data preparation has been developed. PMS has been demonstrated to be an efficient tool to support the IVC production activities providing reliable planning estimates, easily adaptable to problems encountered during the fabrication and provided a basis for the integration of quality assurance requirements

  12. Role of modern analytical techniques in the production of uranium metal

    International Nuclear Information System (INIS)

    Hareendran, K.N.; Roy, S.B.

    2009-01-01

    Production of nuclear grade uranium metal conforming to its stringent specification with respect to metallic and non metallic impurities necessitates implementation of a comprehensive quality control regime. Founding members of Uranium Metal Plant realised the importance of this aspect of metal production and a quality control laboratory was set up as part of the production plant. In the initial stages of its existence, the laboratory mainly catered to the process control analysis of the plant process samples and Spectroscopy Division and Analytical Division of BARC provided analysis of trace metallic impurities in the intermediates as well as in the product uranium metal. This laboratory also provided invaluable R and D support for the optimization of the process involving both calciothermy and magnesiothermy. Prior to 1985, analytical procedures used were limited to classical methods of analysis with minimal instrumental procedures. The first major analytical instrument, a Flame AAS was installed in 1985 and a beginning to the trace analysis was made. However during the last 15 years the Quality Control Section has modernized the analytical set up by acquiring appropriate instruments. Presently the facility has implemented a complete quality control and quality assurance program required to cover all aspects of uranium metal production viz analysis of raw materials, process samples, waste disposal samples and also determination of all the specification elements in uranium metal. The current analytical practices followed in QCS are presented here

  13. GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSILICATE FRIT X COMPOSITION FOR PLUTONIUM DISPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J

    2006-11-15

    The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) to disposition excess weapons-usable plutonium. A plutonium glass waste form is the preferred option for immobilization of the plutonium for subsequent disposition in a geologic repository. A reference glass composition (Lanthanide Borosilicate (LaBS) Frit B) was developed during the Plutonium Immobilization Program (PIP) to immobilize plutonium in the late 1990's. A limited amount of performance testing was performed on this baseline composition before efforts to further pursue Pu disposition via a glass waste form ceased. Recent FY05 studies have further investigated the LaBS Frit B formulation as well as development of a newer LaBS formulation denoted as LaBS Frit X. The objectives of this present task were to fabricate plutonium loaded LaBS Frit X glass and perform corrosion testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the Yucca Mountain Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit X composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL). The glass was thoroughly characterized using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. A series of PCTs were conducted at SRNL using quenched Pu Frit X glass with varying exposed surface areas. Effects of isothermal and can-in-canister heat treatments on the Pu Frit X glass were also investigated. Another series of PCTs were performed on these different heat-treated Pu Frit X glasses. Leachates from all these PCTs

  14. Biogas production as affected by heavy metals in the anaerobic digestion of sludge

    Directory of Open Access Journals (Sweden)

    Hussein I. Abdel-Shafy

    2014-12-01

    The sewage sludge samples were separated from the sewage water of the pilot plant at the National Research Centre, TDC site. The effect of heavy metals on the biogas production of the anaerobic digester was studied. The inhibitory effect on the biogas production and toxic level of metals was determined in this study. The general ranking of heavy metal toxicity appears to be Hg > Cd > Cr (III. The present investigation reveals that heavy metals in addition to the anaerobic digester decreased the biogas production as an indication of efficiency of the process. A significant decrease in gas production and volatile organic matter removal was obtained. It was also noted that an accumulation of organic acid intermediates was obtained as a result of methanogenic bacterial inhibition. This accumulation was limited during the pulse feed of metals. This is due to the rapid poisoning of the active bacterial forms in the digester.

  15. Universal liquid-phase laser fabrication of various nano-metals encapsulated by ultrathin carbon shells for deep-UV plasmonics.

    Science.gov (United States)

    Yu, Miao; Yang, Chao; Li, Xiao-Ming; Lei, Tian-Yu; Sun, Hao-Xuan; Dai, Li-Ping; Gu, Yu; Ning, Xue; Zhou, Ting; Wang, Chao; Zeng, Hai-Bo; Xiong, Jie

    2017-06-29

    The exploration of localized surface plasmon resonance (LSPR) beyond the usual visible waveband, for example within the ultraviolet (UV) or deep-ultraviolet (D-UV) regions, is of great significance due to its unique applications in secret communications and optics. However, it is still challenging to universally synthesize the corresponding metal nanostructures due to their high activity. Herein, we report a universal, eco-friendly, facile and rapid synthesis of various nano-metals encapsulated by ultrathin carbon shells, significantly with a remarkable deep-UV LSPR characteristic, via a liquid-phase laser fabrication method. Firstly, a new generation of the laser ablation in liquid (LAL) method has been developed with an emphasis on the elaborate selection of solvents to generate ultrathin carbon shells, and hence to stabilize the formed metal nanocrystals. As a result, a series of metal@carbon nanoparticles (NPs), including Cr@C, Ti@C, Fe@C, V@C, Al@C, Sn@C, Mn@C and Pd@C, can be fabricated by this modified LAL method. Interestingly, these NPs exhibit LSPR peaks in the range of 200-330 nm, which are very rare for localized surface plasmon resonance. Consequently, the UV plasmonic effects of these metal@carbon NPs were demonstrated both by the observed enhancement in UV photoluminescence (PL) from the carbon nanoshells and by the improvement of the photo-responsivity of UV GaN photodetectors. This work could provide a universal method for carbon shelled metal NPs and expand plasmonics into the D-UV waveband.

  16. Improvements in process technology for uranium metal production

    International Nuclear Information System (INIS)

    Meghal, A.M.; Singh, H.; Koppiker, K.S.

    1991-01-01

    The research reactors in Trombay use uranium metal as a fuel. The plant to produce nuclear grade uranium metal ingots has been in operation at Trombay since 1959. Recently, the capacity of the plant has been expanded to meet the additional demand of the uranium metal. The operation of the expanded plant, has brought to the surface various shortcomings. This paper identifies various problems and describes the measures to be taken to upgrade the technology. Some comments are made on the necessity for development of technology for future requirement. (author). 6 refs., 1 fig

  17. Production of nanocrystalline metal powders via combustion reaction synthesis

    Science.gov (United States)

    Frye, John G.; Weil, Kenneth Scott; Lavender, Curt A.; Kim, Jin Yong

    2017-10-31

    Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.

  18. Irradiation tests of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.; Suripto, A.; Nasution, H.; Lufti-Amin, D.; Gogo, A.

    1996-01-01

    Most of the world's supply of 99 mTc for medical purposes is currently produced from the decay of 99 Mo derived from the fissioning of high-enriched uranium (HEU). Substitution of low-enriched uranium (LEU) metal foils for the HEU UO 2 used in current target designs will allow equivalent 99 Mo yields with little change in target geometries. Substitution of uranium metal for uranium alloy and aluminide in other target designs will also allow the conversion of HEU to LEU. Several uranium-metal-foil targets have been fabricated at ANL and irradiated to prototypic burnup in the Indonesian RSG-GAS reactor. Postirradiation examination of the initial test indicated that design modifications were required to allow the irradiated foil to be removed for chemical processing. The latest test has shown good irradiation behavior, satisfactory dismantling and foil removal when the U-foil is separated from its containment by metallic, fission-recoil absorbing barriers. (author)

  19. Irradiation tests of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.; Suripto, A.; Nasution, H.; Lufti-Amin, D.; Gogo, A.

    1996-01-01

    Most of the world's supply of 99m Tc for medical purposes is currently produced form the decay of 99 Mo derived from the fissioning of high-enriched uranium (HEU). Substitution of low-enriched uranium (LEU) metal foils for the HEU UO 2 used in current target designs will allow equivalent 99 Mo yields with little change in target geometries. Substitution of uranium metal for uranium alloy and aluminide in other target designs will also allow the conversion of HEU to LEU. Several uranium-metal-foil targets have been fabricated at ANL and irradiated to prototypic burnup in the Indonesian RSG-GAS reactor. Postirradiation examination of the initial test indicated that design modifications were required to allow the irradiated foil to be removed for chemical processing. The latest test has shown good irradiation behavior, satisfactory dismantling and foil removal when the U-foil is separated from its containment by metallic, fission-recoil absorbing barriers

  20. Development of electrolytic process in molten salt media for light rare-earth metals production. The metallic cerium electrodeposition

    International Nuclear Information System (INIS)

    Restivo, T.A.G.

    1994-01-01

    The development of molten salt process and the respective equipment aiming rare-earth metals recovery was described. In the present case, the liquid cerium metal electrodeposition in a molten electrolytes of cerium chloride and an equimolar mixture of sodium and potassium chlorides in temperatures near 800 C was studied. Due the high chemical reactivity of the rare-earth metals in the liquid state and their molten halides, an electrolytic cell was constructed with controlled atmosphere, graphite crucibles and anodes and a tungsten cathode. The electrolytic process variables and characteristics were evaluated upon the current efficiency and metallic product purity. Based on this evaluations, were suggested some alterations on the electrolytic reactor design and upon the process parameters. (author). 90 refs, 37 figs, 20 tabs