WorldWideScience

Sample records for fabric filter performance

  1. Ion exchange nonwoven fabric chemical filter. 2

    International Nuclear Information System (INIS)

    Sekiguchi, Hideaki

    2000-01-01

    This report outlined the characteristics of EPIX filter and its complex with activated carbon to eliminate organic compounds from solvent. Elimination performance of this filter was determined using an ion chromatographic analyzer. EPIX filter showed high performance to eliminate trace amount of ionic compounds. The rate of elimination was both 99% or more for NH 3 and SO 2 in an early phase of filtration. Release of dust as well as impurities was significantly reduced by the use of EPIX filter. Gases once adsorbed on the filter were not released even at an elevated temperature of atmosphere. Combined use of non-woven fabrics was possible. For EPIX filter, there are three kinds; strong acid cation exchange filter and strong/weak basic anion filters. The weak basic anion filter has been applied to the conventional apparatus in wafer makers because the filter was very effective for selective boron trapping. When polyethyleneterephthalate was used as the base polymer, radical groups produced on the polymer were co-polymerized with monomer substances. The lifetime of filter was estimated on a base of gas concentration and wind velocity to determine the time to replace with a new one. Furthermore, the loss of pressure became less than a half when EPIX filter was used. (M.N.)

  2. Non toxic additives for improved fabric filter performance

    Energy Technology Data Exchange (ETDEWEB)

    Bustard, C.J.; Baldrey, K.E.; Ebner, T.G. [ADA Technologies, Inc., Englewood, CO (United States)] [and others

    1995-11-01

    The overall objective of this three-phase Small Business innovative Research (SBIR) program funded by the Department of Energy pittsburgh Energy Technology Center (PETC) is to commercialize a technology based upon the use of non-toxic, novel flue gas conditioning agents to improve particulate air toxic control and overall fabric filter performance. The ultimate objective of the Phase II program currently in progress is to demonstrate that the candidate additives are successful at full-scale on flue gas from a coal-fired utility boiler. This paper covers bench-scale field tests conducted during the period February through May, 1995. The bench-scale additives testing was conducted on a flue gas slipstream taken upstream of the existing particulate control device at a utility power plant firing a Texas lignite coal. These tests were preceded by extensive testing with additives in the laboratory using a simulated flue gas stream and re-dispersed flyash from the same power plant. The bench-scale field testing was undertaken to demonstrate the performance with actual flue gas of the bet candidate additives previously identified in the laboratory. Results from the bench-scale tests will be used to establish operating parameters for a larger-scale demonstration on either a single baghouse compartment or a full baghouse at the same site.

  3. Effects of fixture rotation on coating uniformity for high-performance optical filter fabrication

    Science.gov (United States)

    Rubin, Binyamin; George, Jason; Singhal, Riju

    2018-04-01

    Coating uniformity is critical in fabricating high-performance optical filters by various vacuum deposition methods. Simple and planetary rotation systems with shadow masks are used to achieve the required uniformity [J. B. Oliver and D. Talbot, Appl. Optics 45, 13, 3097 (2006); O. Lyngnes, K. Kraus, A. Ode and T. Erguder, in `Method for Designing Coating Thickness Uniformity Shadow Masks for Deposition Systems with a Planetary Fixture', 2014 Technical Conference Proceedings, Optical Coatings, August 13, 2014, DOI: 10.14332/svc14.proc.1817.]. In this work, we discuss the effect of rotation pattern and speed on thickness uniformity in an ion beam sputter deposition system. Numerical modeling is used to determine statistical distribution of random thickness errors in coating layers. The relationship between thickness tolerance and production yield are simulated theoretically and demonstrated experimentally. Production yields for different optical filters produced in an ion beam deposition system with planetary rotation are presented. Single-wavelength and broadband optical monitoring systems were used for endpoint monitoring during filter deposition. Limitations of thickness tolerances that can be achieved in systems with planetary rotation are shown. Paths for improving production yield in an ion beam deposition system are described.

  4. Fabrication of dense wavelength division multiplexing filters with large useful area

    Science.gov (United States)

    Lee, Cheng-Chung; Chen, Sheng-Hui; Hsu, Jin-Cherng; Kuo, Chien-Cheng

    2006-08-01

    Dense Wavelength Division Multiplexers (DWDM), a kind of narrow band-pass filter, are extremely sensitive to the optical thickness error in each composite layer. Therefore to have a large useful coating area is extreme difficult because of the uniformity problem. To enlarge the useful coating area it is necessary to improve their design and their fabrication. In this study, we discuss how the tooling factors at different positions and for different materials are related to the optical performance of the design. 100GHz DWDM filters were fabricated by E-gun evaporation with ion-assisted deposition (IAD). To improve the coating uniformity, an analysis technique called shaping tooling factor (STF) was used to analyze the deviation of the optical thickness in different materials so as to enlarge the useful coating area. Also a technique of etching the deposited layers with oxygen ions was introduced. When the above techniques were applied in the fabrication of 100 GHz DWDM filters, the uniformity was better than +/-0.002% over an area of 72 mm in diameter and better than +/-0.0006% over 20mm in diameter.

  5. Rapid monitoring particulate radiocesium with nonwoven fabric cartridge filter and application to field monitoring

    International Nuclear Information System (INIS)

    Tsuji, Hideki; Yasutaka, Tetsuo; Kondo, Yoshihiko; Kawashima, Shoji

    2013-01-01

    A method for rapid monitoring particulate radiocesium using a nonwoven fabric cartridge filter was developed, which needs no further preprocessing before served to a detector. By a performance test, more than 98% of suspended solid (SS) was collected. This method showed the same radioactivity measurement accuracy as filtration by membrane filter and more rapid extraction capability of SS. (author)

  6. Evaluation of filter fabrics for use in silt fences.

    Science.gov (United States)

    1980-01-01

    The study reported was initiated to develop tests simulating field conditions that could be used to develop information for the formulation of specifications for use in purchasing filter fabrics to be used to construct silt fences. Fifteen fabrics we...

  7. Numerical and experimental study of pulse-jet cleaning in fabric filters

    DEFF Research Database (Denmark)

    O. Andersen, B.; Nielsen, N. F.; Walther, J. H.

    2016-01-01

    Pulse-jet cleaning and understanding of the complex physics are essential when designing fabric filters used for air pollution control. Today, low-pressure cleaning is of particular interest due to demand for reduced compressed air consumption. Pulse-jet cleaned fabric filters have been studied......-pressure fabric filters (2 bar) is studied using a full three-dimensional (3D) CFD model. Experimental results obtained in a pilot-scale test filter with 28 bags, in length of 10 m and in general full-scale dimensions of the cleaning system are used to verify the reliability of the present CFD model....... The validated CFD model reveals the strong compressible effects, a highly transient behaviour, the formation of compressible vortex rings and the shock cell phenomenon within the overexpanded supersonic jet. The cleaning nozzles and venturi design aid or oppose the pulse-pressure within the bags, and this plays...

  8. Design, Fabrication and Installation of the Charcoal Filter Housing in RIPF

    International Nuclear Information System (INIS)

    Kim, Min Jin; Lim, I. C.; Bang, H. S.

    2008-05-01

    In the Hot Cell Bank 3 of the Radioisotope Production Facility, production and dispense of I-131 solution and capsule that are used for the diagnosis and treatment of thyroid cancer are made. The original charcoal filter housings installed in 1994 and were utilized until the leakage of a very small amount of radio-iodine was found due to the erroneous installation of the charcoal filter in the filter housing. Thus the production of I-131 was discontinued until the repair and performance testing of the filter housing and the inspection by the regulatory body were finished. Although the production of I-131 was resumed, there was a desire for installing the brand-new charcoal filter housing which has an intrinsically safe design and no possibility of leakage. This report describes the design, fabrication and installation of brand-new charcoal filter housing. And also were described the dismantlement of the old housings, the assessment of the structural integrity of the shielding concrete wall and the installation of the shielding doors

  9. Guided-mode resonant filters and reflectors: Principles, design, and fabrication

    Science.gov (United States)

    Niraula, Manoj

    In this dissertation, we overview the operational principles of these resonant periodic structures, discuss the methods of their design and fabrication, and propose and demonstrate novel functionalities for spatial and spectral filtering, and unpolarized wideband reflection. Fashioned with materially sparse gratings, these optical devices are easy to fabricate and integration friendly compared to their traditional multi-layer counterparts making their research and development critical for practical applications. We study, theoretically, modal properties and parametric dependence of resonant periodic bandpass filters operating in the mid- and near-infrared spectral domains. We investigate three different device architectures consisting of single, double, and triple layers based on all-transparent dielectric and semiconductor thin films. We present three modal coupling configurations forming complex mixtures of two or three distinct leaky modes coupling at different evanescent diffraction orders. Our modal analysis demonstrates key attributes of subwavelength periodic thin-film structures in multiple-modal blending to achieve desired transmission spectra. We provide the first experimental demonstration of high-efficiency and narrow-linewidth resonant bandpass filter applying a single patterned silicon layer on a quartz substrate. Its performance corresponds to bandpass filters requiring 15 traditional Si/SiO2 thin-film layers. The feasibility of sparse narrowband, high-efficiency bandpass filters with extremely wide, flat, and low sidebands is thereby demonstrated. The proposed technology is integration-friendly and opens doors for further development in various disciplines and spectral regions where thin-film solutions are traditionally applied. We demonstrate concurrent spatial and spectral filtering as a new outstanding attribute of resonant periodic devices. This functionality is enabled by a unique, near-complete, reflection state that is discrete in both

  10. Fabrication of Compact Microstrip Line-Based Balun-Bandpass Filter with High Common-Mode Suppression

    Directory of Open Access Journals (Sweden)

    Chia-Mao Chen

    2014-01-01

    Full Text Available A new type of balun-bandpass filter was proposed based on the traditional coupled-line theory and folded open-loop ring resonators (OLRRs configuration. For that, a new device with both filter-type and balun-type characteristics was investigated and fabricated. Both magnetic and electric coupling structures were implemented to provide high performance balun-bandpass responses. The fabricated balun-bandpass filters had a wide bandwidth more than 200 MHz and a low insertion loss less than 2.51 dB at a center frequency of 2.6 GHz. The differences between the two outputs were below 0.4 dB in magnitude and within 180 ± 7° in phase. Also, the balun-bandpass filter presented an excellent common-mode rejection ratio over 25 dB in the passband. An advanced design methodology had been adopted based on EM simulation for making these designed parameters of OLRRs, microstrip lines, and open stubs. The measured frequency responses agreed well with simulated ones.

  11. Multichannel silicon WDM ring filters fabricated with DUV lithography

    Science.gov (United States)

    Lee, Jong-Moo; Park, Sahnggi; Kim, Gyungock

    2008-09-01

    We have fabricated 9-channel silicon wavelength-division-multiplexing (WDM) ring filters using 193 nm deep-ultraviolet (DUV) lithography and investigated the spectral properties of the ring filters by comparing the transmission spectra with and without an upper cladding. The average channel-spacing of the 9-channel WDM ring filter with a polymeric upper cladding is measured about 1.86 nm with the standard deviation of the channel-spacing about 0.34 nm. The channel crosstalk is about -30 dB, and the minimal drop loss is about 2 dB.

  12. Polymeric THz 2D Photonic Crystal Filters Fabricated by Fiber Drawing

    DEFF Research Database (Denmark)

    Stecher, Matthias; Jansen, Christian; Ahmadi-Boroujeni, Mehdi

    2012-01-01

    In this paper, we report on a new form of polymeric 2D photonic crystal filters for THz frequencies fabricated using a standard fiber drawing technique. The band stop filters were modeled and designed using the generalized multipole technique. The frequency and angle-dependent transmission...

  13. Factors Influencing HEPA Filter Performance

    International Nuclear Information System (INIS)

    Parsons, M.S.; Waggoner, Ch.A.

    2009-01-01

    Properly functioning HEPA air filtration systems depend on a variety of factors that start with the use of fully characterized challenge conditions for system design and then process control during operation. This paper addresses factors that should be considered during the design phase as well as operating parameters that can be monitored to ensure filter function and lifetime. HEPA filters used in nuclear applications are expected to meet design, fabrication, and performance requirements set forth in the ASME AG-1 standard. The DOE publication Nuclear Air Cleaning Handbook (NACH) is an additional guidance document for design and operation HEPA filter systems in DOE facilities. These two guidelines establish basic maximum operating parameters for temperature, maximum aerosol particle size, maximum particulate matter mass concentration, acceptable differential pressure range, and filter media velocity. Each of these parameters is discussed along with data linking variability of each parameter with filter function and lifetime. Temporal uncertainty associated with gas composition, temperature, and absolute pressure of the air flow can have a direct impact on the volumetric flow rate of the system with a corresponding impact on filter media velocity. Correlations between standard units of flow rate (standard meters per minute or cubic feet per minute) versus actual units of volumetric flow rate are shown for variations in relative humidity for a 70 deg. C to 200 deg. C temperature range as an example of gas composition that, uncorrected, will influence media velocity. The AG-1 standard establishes a 2.5 cm/s (5 feet per minute) ceiling for media velocities of nuclear grade HEPA filters. Data are presented that show the impact of media velocities from 2.0 to 4.0 cm/s media velocities (4 to 8 fpm) on differential pressure, filter efficiency, and filter lifetime. Data will also be presented correlating media velocity effects with two different particle size

  14. Design and fabrication of broadband rugate filter

    International Nuclear Information System (INIS)

    Zhang Jun-Chao; Fang Ming; Shao Yu-Chuan; Jin Yun-Xia; He Hong-Bo

    2012-01-01

    The design and the deposition of a rugate filter for broadband applications are discussed. The bandwidth is extended by increasing the rugate period continuously with depth. The width and the smoothness of the reflection band with the distribution of the periods are investigated. The improvement of the steepness of the stopband edges and the suppression of the side lobes in the transmission zone are realized by adding two apodized rugate structures with fixed periods at the external broadband rugate filter interfaces. The rapidly alternating deposition technology is used to fabricate a rugate filter sample. The measured transmission spectrum with a reflection bandwidth of approximately 505 nm is close to that of the designed broadband rugate filter except a transmittance peak in the stopband. Based on the analysis of the cross-sectional scanning electron microscopic image of the sample, it is found that the transmission peak is most likely to be caused by the instability of the deposition rate. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  15. SERS substrates fabricated using ceramic filters for the detection of bacteria

    Science.gov (United States)

    Mosier-Boss, P. A.; Sorensen, K. C.; George, R. D.; Obraztsova, A.

    2016-01-01

    SERS substrates were fabricated by filtering either Ag or Au colloidal particles onto rigid, ceramic filters - onto which suspensions of bacteria were then filtered. SERS spectra of the bacteria were obtained using a Raman spectrometer that has an 'orbital raster scan' capability. It was shown that bacteria samples prepared in this manner were uniformly distributed onto the surface of the SERS substrate. The effect of common buffer systems on the SERS spectra was investigated and the utility of using the SERS technique for speciation of bacteria was explored.

  16. Fabrication of a Cryogenic Bias Filter for Ultrasensitive Focal Plane

    Science.gov (United States)

    Chervenak, James; Wollack, Edward

    2012-01-01

    A fabrication process has been developed for cryogenic in-line filtering for the bias and readout of ultrasensitive cryogenic bolometers for millimeter and submillimeter wavelengths. The design is a microstripline filter that cuts out, or strongly attenuates, frequencies (10 50 GHz) that can be carried by wiring staged at cryogenic temperatures. The filter must have 100-percent transmission at DC and low frequencies where the bias and readout lines will carry signal. The fabrication requires the encapsulation of superconducting wiring in a dielectric-metal envelope with precise electrical characteristics. Sufficiently thick insulation layers with high-conductivity metal layers fully surrounding a patterned superconducting wire in arrayable formats have been demonstrated. A degenerately doped silicon wafer has been chosen to provide a metallic ground plane. A metallic seed layer is patterned to enable attachment to the ground plane. Thick silicon dioxide films are deposited at low temperatures to provide tunable dielectric isolation without degrading the metallic seed layer. Superconducting wiring is deposited and patterned using microstripline filtering techniques to cut out the relevant frequencies. A low Tc superconductor is used so that it will attenuate power strongly above the gap frequency. Thick dielectric is deposited on top of the circuit, and then vias are patterned through both dielectric layers. A thick conductive film is deposited conformally over the entire circuit, except for the contact pads for the signal and bias attachments to complete the encapsulating ground plane. Filters are high-aspect- ratio rectangles, allowing close packing in one direction, while enabling the chip to feed through the wall of a copper enclosure. The chip is secured in the copper wall using a soft metal seal to make good thermal and electrical contact to the outer shield.

  17. Design and fabrication of a 100 GHz channel-drop filter

    Energy Technology Data Exchange (ETDEWEB)

    Smirnova, Evgenya I [Los Alamos National Laboratory; Earley, Lawrence M [Los Alamos National Laboratory; Heath, Cynthia E [Los Alamos National Laboratory; Shchegolkov, Dmitry Y [Los Alamos National Laboratory

    2008-01-01

    We have designed and are fabricating a novel passive mm-wave spectrometer based on a Photonic Band Gap (PBG) channel-drop filter (CDF). There is a need for a compact wide-band versatile and configurable mm-wave spectrometer for applications in mm-wave communications, radio astronomy, and radar receivers for remote sensing and nonproliferation.

  18. Design and fabrication of ultrathin silicon-nitride membranes for use in UV-visible airgap-based MEMS optical filters

    International Nuclear Information System (INIS)

    Ghaderi, Mohammadamir; Wolffenbuttel, Reinoud F.

    2016-01-01

    MEMS-based airgap optical filters are composed of quarter-wave thick high-index dielectric membranes that are separated by airgaps. The main challenge in the fabrication of these filters is the intertwined optical and mechanical requirements. The thickness of the layers decreases with design wavelength, which makes the optical performance in the UV more susceptible to fabrication tolerances, such as thickness and composition of the deposited layers, while the ability to sustain a certain level of residual stress by the structural strength becomes more critical. Silicon-nitride has a comparatively high Young's modulus and good optical properties, which makes it a suitable candidate as the membrane material. However, both the mechanical and optical properties in a silicon-nitride film strongly depend on the specifics of the deposition process. A design trade-off is required between the mechanical strength and the index of refraction, by tuning the silicon content in the silicon-nitride film. However, also the benefit of a high index of refraction in a silicon-rich film should be weighed against the increased UV optical absorption. This work presents the design, fabrication, and preliminary characterization of one and three quarter-wave thick silicon-nitride membranes with a one-quarter airgap and designed to give a spectral reflectance at 400 nm. The PECVD silicon-nitride layers were initially characterized, and the data was used for the optical and mechanical design of the airgap filters. A CMOS compatible process based on polysilicon sacrificial layers was used for the fabrication of the membranes. Optical characterization results are presented. (paper)

  19. Fabricating high-resolution offset color-filter black matrix by integrating heterostructured substrate with inkjet printing

    International Nuclear Information System (INIS)

    Lu, Guo-Shin; You, Po-Chin; Lin, Kai-Lun; Hong, Chien-Chong; Liou, Tong-Miin

    2014-01-01

    This paper presents a self-aligning ink by integrating an inkjet printing technique and heterostructures to fabricate a black matrix with a micrometer-scale tunable thickness. The black matrix is a grid-like structure used in color filters. Traditionally, a black matrix has been fabricated using photolithography techniques, the disadvantages of which are high material consumption, less fabrication flexibility, complex processing procedures, and high chemical pollution. Inkjet printing technology has garnered attention because of its low material costs, high fabrication flexibility, and reduced processing procedures and pollution. In this study, a fabricating process combining an inkjet printing technique with heterostructures to form stripe-arranged and delta-arranged thickness-tunable black matrices has been demonstrated. The deformation and self-aligning process of ink droplet impingement onto gutters are driven by designed heterogeneous surface properties. The minimum track width attained is 10 µm, which is competitive for color filter resolutions for thin-film transistor liquid crystal displays. The developed technology surmounts the bottlenecks of inkjet printing resolution, and saves more than 75% black material than modern photolithography. (paper)

  20. SERS substrates fabricated using ceramic filters for the detection of bacteria: Eliminating the citrate interference

    Science.gov (United States)

    Mosier-Boss, P. A.; Sorensen, K. C.; George, R. D.; Sims, P. C.; O'braztsova, A.

    2017-06-01

    It was found that spectra obtained for bacteria on SERS substrates fabricated by filtering citrate-generated Ag nanoparticles (NPs) onto rigid, ceramic filters exhibited peaks due to citrate as well as the bacteria. In many cases the citrate spectrum overwhelmed that of the bacteria. Given the simplicity of the method to prepare these substrates, means of eliminating this citrate interference were explored. It was found that allowing a mixture of bacteria suspension and citrate-generated Ag NPs to incubate prior to filtering onto the ceramic filter eliminated this interference.

  1. Performance Estimation for Lowpass Ternary Filters

    Directory of Open Access Journals (Sweden)

    Brenton Steele

    2003-11-01

    Full Text Available Ternary filters have tap values limited to −1, 0, or +1. This restriction in tap values greatly simplifies the multipliers required by the filter, making ternary filters very well suited to hardware implementations. Because they incorporate coarse quantisation, their performance is typically limited by tap quantisation error. This paper derives formulae for estimating the achievable performance of lowpass ternary filters, thereby allowing the number of computationally intensive design iterations to be reduced. Motivated by practical communications systems requirements, the performance measure which is used is the worst-case stopband attenuation.

  2. Directly-deposited blocking filters for high-performance silicon x-ray detectors

    Science.gov (United States)

    Bautz, M.; Kissel, S.; Masterson, R.; Ryu, K.; Suntharalingam, V.

    2016-07-01

    Silicon X-ray detectors often require blocking filters to mitigate noise and out-of-band signal from UV and visible backgrounds. Such filters must be thin to minimize X-ray absorption, so direct deposition of filter material on the detector entrance surface is an attractive approach to fabrication of robust filters. On the other hand, the soft (E OD 6) care must be taken to prevent light from entering the sides and mounting surfaces of the detector. Our methods have been used to deposit filters on the detectors of the REXIS instrument scheduled to fly on OSIRIS-ReX later this year.

  3. Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering.

    Science.gov (United States)

    Sagues, Mikel; García Olcina, Raimundo; Loayssa, Alayn; Sales, Salvador; Capmany, José

    2008-01-07

    We propose a novel scheme to implement tunable multi-tap complex coefficient filters based on optical single sideband modulation and narrow band optical filtering. A four tap filter is experimentally demonstrated to highlight the enhanced tuning performance provided by complex coefficients. Optical processing is performed by the use of a cascade of four phase-shifted fiber Bragg gratings specifically fabricated for this purpose.

  4. TESTING OF THE SECOND GENERATION SPINTEK ROTARY FILTER -11357

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D.; Poirier, M.; Fowley, M.; Keefer, M.; Huff, T.

    2011-02-02

    The SpinTek rotary microfilter has been developed under the Department of Energy (DOE) Office of Environmental Management (EM) for the purpose of deployment in radioactive service in the DOE complex. The unit that was fabricated and tested is the second generation of the filter that incorporates recommended improvements from previous testing. The completion of this test satisfied a key milestone for the EM technology development program and technology readiness for deployment by Savannah River Remediation in the Small Column Ion Exchange and Sludge Washing processes at the Savannah River Site (SRS). The Savannah River National Laboratory (SRNL) contracted SpinTek Filtration to fabricate a full scale 25 disk rotary filter and perform a 1000 hour endurance test with a simulated SRS sludge. Over 1500 hours of operation have been completed with the filter. SpinTek Filtration fabricated a prototypic 25 disk rotary filter including updates to manufacturing tolerances, an updated design to the rotary joint, improved cooling to the bottom journal, decreases in disk and filter shaft hydraulic resistances. The filter disks were fabricated with 0.5 {micro} pore size, sintered-metal filter media manufactured by Pall Corporation (M050). After fabrication was complete, the filter passed acceptance tests demonstrating rejection of solids and clean water flux with a 50% improvement over the previous filters. Once the acceptance test was complete, a 1000 hour endurance test was initiated simulating a sludge washing process. The test used a simulated SRS Sludge Batch 6 recipe. The insoluble solids started at 5 wt% and were raised to 10 and 15 wt% insoluble solids to simulate the concentration of a large volume tank. The filter system was automated and set up for 24 hour unattended operation. To facilitate this, process control logic was written to operate the filter. During the development it was demonstrated that the method of starting and stopping the filter can affect the build

  5. Performance comparison of various time variant filters

    Energy Technology Data Exchange (ETDEWEB)

    Kuwata, M [JEOL Engineering Co. Ltd., Akishima, Tokyo (Japan); Husimi, K

    1996-07-01

    This paper describes the advantage of the trapezoidal filter used in semiconductor detector system comparing with the other time variant filters. The trapezoidal filter is the compose of a rectangular pre-filter and a gated integrator. We indicate that the best performance is obtained by the differential-integral summing type rectangular pre-filter. This filter is not only superior in performance, but also has the useful feature that the rising edge of the output waveform is linear. We introduce an example of this feature used in a high-energy experiment. (author)

  6. Immobilized Filters for Air Filtration

    National Research Council Canada - National Science Library

    Mahle, John J; Zaiee, Saeed

    2002-01-01

    ... (settling performance) and attrition resistance. The fabricated filter samples will be analyzed in order to determine the physical and chemical factors affecting mechanical strength and chemical filtration...

  7. Liquid-crystal laser optics: design, fabrication, and performance

    International Nuclear Information System (INIS)

    Jacobs, S.D.; Cerqua, K.A.; Marshall, K.L.; Schmid, A.; Guardalben, M.J.; Skerrett, K.J.

    1988-01-01

    We describe the development of laser optics utilizing liquid crystals. Devices discussed constitute passive optical elements for both low-power and high-power laser systems, operating in either the pulsed or cw mode. Designs and fabrication methods are given in detail for wave plates, circular polarizers, optical isolators, laser-blocking notch filters, and soft apertures. Performance data in the visible to near infrared show these devices to be useful alternatives to other technologies based on conventional glasses, crystals, or thin films. The issue of laser damage is examined on the basis of off-line threshold testing and daily use in OMEGA, the 24-beam Nd:glass laser system at the Laboratory for Laser Energetics. Results demonstrate that long-term survivability has been achieved

  8. Design and fabrication of bandwidth tunable HTS transmit filter using {pi}-shaped waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Sekiya, N., E-mail: nsekiya@yamanashi.ac.j [Department of Electrical Engineering, Yamanashi University, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Harada, H.; Nakagawa, Y. [Department of Electrical Engineering, Yamanashi University, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Ono, S.; Ohshima, S. [Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510 (Japan)

    2010-11-01

    We have developed a method for tuning the bandwidth of a high-temperature superconducting (HTS) microstrip filter. Several {pi}-shaped waveguides are placed between the resonators, and the bandwidth is tuned in discrete steps by changing the switch states of the waveguides, which changes the coupling coefficient between the resonators. The filter contains 3-pole half-wavelength straight-line resonators and two {pi}-shaped waveguides for bandwidth tuning. It also has several electrical pads distributed around the feed lines for trimming after tuning. The filter was fabricated by depositing YBa{sub 2}Cu{sub 3}O{sub 7} thin film on an MgO substrate and has a measured center frequency of 5.17 GHz and bandwidth of 220 MHz. Use of the {pi}-shaped waveguides to adjust the coupling coefficients and the electrical pads to adjust the external quality factors resulted in 80-MHz bandwidth tuning without increased insertion loss.

  9. Ultra-compact broadband higher order-mode pass filter fabricated in a silicon waveguide for multimode photonics

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Ding, Yunhong; Frandsen, Lars Hagedorn

    2015-01-01

    An ultra-compact and broadband higher order-mode pass filter in a 1D photonic crystal silicon waveguide is proposed and experimentally demonstrated. The photonic crystal is designed for the lower order mode to work in the photonic band gap, while the higher order mode is located in the air band....... Consequently, light on the lower order mode is prohibited to pass through the filter, while light on a higher order mode can be converted to a Bloch mode in the photonic crystal and pass through the filter with low insertion loss. As an example, we fabricate a similar to 15-mu m-long first-order-mode pass...

  10. Preliminary enviromagnetic comparison of the moss, lichen, and filter fabric bags to air pollution monitoring

    Directory of Open Access Journals (Sweden)

    Hanna Salo

    2014-08-01

    Full Text Available Air quality and anthropogenic air pollutants are usually investigated by passive biomonitoring which utilizes native species. Active biomonitoring, instead, refers to the use of transplants or bags in areas lacking native species. In Finland, the standardized moss bag technique SFS 5794 is commonly applied in active monitoring but there is still need for simpler and labor-saving sample material even on international scale. This article focuses on a preliminary comparison of the usability and collection efficiency of bags made of moss Sphagnum papillosum, lichen Hypogymnia physodes, and filter fabric (Filtrete™ in active biomonitoring of air pollutants around an industrial site in Harjavalta, SW Finland. The samples are analyzed with magnetic (i.e. magnetic susceptibility, isothermal remanent magnetization, hysteresis loop and hysteresis parameters methods highly suitable as a first-step tool for pollution studies. The results show that the highest magnetic susceptibility of each sample material is measured close to the industrial site. Furthermore, moss bags accumulate more magnetic material than lichen bags which, on the contrary, perform better at further distances. Filter fabric bags are tested only at 1 km sites indicating a good accumulation capability near the source. Pseudo-single-domain (PSD magnetite is identified as the main magnetic mineral in all sample materials and good correlations are found between different bag types. To conclude, all three materials effectively accumulate air pollutants and are suitable for air quality studies. The results of this article provide a base for later studies which are needed in order to fully determine a new, efficient, and easy sample material for active monitoring.

  11. A MEMS coupled resonator for frequency filtering in air

    KAUST Repository

    Ilyas, Saad

    2018-02-03

    We present design, fabrication, and characterization of a mechanically coupled MEMS H resonator capable of performing simultaneous mechanical amplification and filtering in air. The device comprises of two doubly clamped polyimide microbeams joined through the middle by a coupling beam of the same size. The resonator is fabricated via a multi-layer surface micromachining process. A special fabrication process and device design is employed to enable operation in air and to achieve mechanical amplification of the output response. Moreover, mixed-frequency excitation is used to demonstrate a tunable wide band filter for low frequency applications. It is demonstrated that through the multi-source harmonic excitation and the operation in air, an improved band-pass filter with flat response and minimal ripples can be achieved.

  12. Steady-State Performance of Kalman Filter for DPLL

    Institute of Scientific and Technical Information of China (English)

    QIAN Yi; CUI Xiaowei; LU Mingquan; FENG Zhenming

    2009-01-01

    For certain system models, the structure of the Kalman filter is equivalent to a second-order vari-able gain digital phase-locked loop (DPLL). To apply the knowledge of DPLLs to the design of Kalman filters, this paper studies the steady-state performance of Kalman filters for these system models. The results show that the steady-state Kalman gain has the same form as the DPLL gain. An approximate simple form for the steady-state Kalman gain is used to derive an expression for the equivalent loop bandwidth of the Kalman filter as a function of the process and observation noise variances. These results can be used to analyze the steady-state performance of a Kalman filter with DPLL theory or to design a Kalman filter model with the same steady-state performance as a given DPLL.

  13. Preliminary Analytical Reviews on the Performance of Fibrous Filter

    International Nuclear Information System (INIS)

    Choi, Yu Jung; Hong, Tae Hyub; Kim, Hyeong-Taek

    2015-01-01

    The wet type Containment Filtered Vent System (CFVS) is composed of a tank including nozzles in a liquid pool, moisture separators, and a few dry filters such as a metal fiber filter and a molecular sieve. After injecting gases from the containment into the CFVS under severe accident conditions, the CFVS will release decontaminated radioactive materials to the environment. To protect against the release of uncontrolled fission products to the environment, we need to confirm the performance of the CFVS in terms of not only the integral capability but also the capabilities of the individual components. It is crucial to confirm the performance of the metal fiber filter in both analytical and experimental ways. Pressure drop across a filter and collection efficiency are ways to explain the performance of a fibrous filter. Based on data from the literature survey, pressure drop and collection efficiency for a single filter were calculated. The trends of pressure drop and collection efficiencies due to various deposition mechanisms of particles onto the fiber of the filters were roughly confirmed. Therefore, to obtain better quantitative predictions of the performance of the metal fiber filter, a new model able to evaluate the performance of fibrous filters under severe conditions should be developed

  14. Enhanced performance of a filter-sensor system.

    Science.gov (United States)

    Sasaki, Isao; Josowicz, Mira; Janata, Jirí; Glezer, Ari

    2006-06-01

    In this paper are addressed two important, but seemingly unrelated issues: long term performance of a gas sensing array and performance of an air purification unit. It is shown that when considered together, the system can be regarded as a "smart filter". The enhancement is achieved by periodic differential sampling and measurement of the "upstream" and "downstream" gases of a filter. The correctly functioning filter supplies the "zero gas" from the downstream for the continuous sensor baseline correction. A key element in this scheme is the synthetic jet that delivers well-defined pulses of the two gases. The deterioration of the performance of the "smart filter" can be diagnosed from the response pattern of the sensor. The approach has been demonstrated on removal/sensing of ammonia gas from air.

  15. Model for predicting fabric filter and ESP costs

    International Nuclear Information System (INIS)

    Hoskins, W.; Terrill, J.K.

    1992-01-01

    United Engineers and Constructors (UE and C) has developed a personal computer (PC) based program (Model) for estimating capital and operating costs of fabric filters (FFs) and electrostatic precipitators (ESPs). The program contains proprietary sizing routines for both types of particulate control devices. For the FF, it determines the number of compartments, number of bags, physical dimensions and other important information. For the ESP, it determines specific collection area (SCA), number of cells, and number of TR sets. This paper reports that the program has the capability of handling a wide range of gas flows. It adjusts construction costs for the labor productivity factors in different locations. The capital costs are considered conceptual in nature with an absolute accuracy range of ±25%. The capital and operating costs are used along with economic factors to determine present worth costs. This allows site specific side-by-side comparisons of FFs and ESPs

  16. MEMS Coupled Resonator for Filter Application in Air

    KAUST Repository

    Ilyas, Saad; Jaber, Nizar; Younis, Mohammad I.

    2017-01-01

    We present a mechanically coupled MEMS H resonator capable of performing simultaneous amplification and filter operation in air. The device comprises of two doubly clamped polyimide microbeams joined through the middle by a coupling beam of the same size. The resonator is fabricated via a multilayer surface micromachining process. A special fabrication process and device design is employed to enable the device's operation in air and to achieve mechanical amplification of the output response. Moreover, mixed-frequency excitation is used to demonstrate a tunable wide band filter. The device design combined with the mixed-frequency excitation is used to demonstrate simultaneous amplification and filtering in air.

  17. MEMS Coupled Resonator for Filter Application in Air

    KAUST Repository

    Ilyas, Saad

    2017-11-03

    We present a mechanically coupled MEMS H resonator capable of performing simultaneous amplification and filter operation in air. The device comprises of two doubly clamped polyimide microbeams joined through the middle by a coupling beam of the same size. The resonator is fabricated via a multilayer surface micromachining process. A special fabrication process and device design is employed to enable the device\\'s operation in air and to achieve mechanical amplification of the output response. Moreover, mixed-frequency excitation is used to demonstrate a tunable wide band filter. The device design combined with the mixed-frequency excitation is used to demonstrate simultaneous amplification and filtering in air.

  18. New polymorphous computing fabric

    International Nuclear Information System (INIS)

    Wolinski, Christophe; Gokhale, Maya; McCabe, Kevin P.

    2002-01-01

    This paper introduces a new polymorphous computing Fabric well suited to DSP and Image Processing and describes its implementation on a Configurable System on a Chip (CSOC). The architecture is highly parameterized and enables customization of the synthesized Fabric to achieve high performance for a specific class of application. For this reason it can be considered to be a generic model for hardware accelerator synthesis from a high level specification. Another important innovation is the Fabric uses a global memory concept, which gives the host processor random access to all the variables and instructions on the Fabric. The Fabric supports different computing models including MIMD, SPMD and systolic flow and permits dynamic reconfiguration. We present a specific implementation of a bank of FIR filters on a Fabric composed of 52 cells on the Altera Excalibur ARM running at 33 MHz. The theoretical performance of this Fabric is 1.8 GMACh. For the FIR application we obtain 1.6 GMAC/s real performance. Some automatic tools have been developed like the tool to provide a host access utility and assembler.

  19. Interactions between protein molecules and the virus removal membrane surface: Effects of immunoglobulin G adsorption and conformational changes on filter performance.

    Science.gov (United States)

    Hamamoto, Ryo; Ito, Hidemi; Hirohara, Makoto; Chang, Ryongsok; Hongo-Hirasaki, Tomoko; Hayashi, Tomohiro

    2018-03-01

    Membrane fouling commonly occurs in all filter types during virus filtration in protein-based biopharmaceutical manufacturing. Mechanisms of decline in virus filter performance due to membrane fouling were investigated using a cellulose-based virus filter as a model membrane. Filter performance was critically dependent on solution conditions; specifically, ionic strength. To understand the interaction between immunoglobulin G (IgG) and cellulose, sensors coated with cellulose were fabricated for surface plasmon resonance and quartz crystal microbalance with energy dissipation measurements. The primary cause of flux decline appeared to be irreversible IgG adsorption on the surface of the virus filter membrane. In particular, post-adsorption conformational changes in the IgG molecules promoted further irreversible IgG adsorption, a finding that could not be adequately explained by DLVO theory. Analyses of adsorption and desorption and conformational changes in IgG molecules on cellulose surfaces mimicking cellulose-based virus removal membranes provide an effective approach for identifying ways of optimizing solution conditions to maximize virus filter performance. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:379-386, 2018. © 2017 American Institute of Chemical Engineers.

  20. Performance Comparison of Various Filters Media in

    Directory of Open Access Journals (Sweden)

    Lilyan Yaqup Matti

    2013-05-01

    Full Text Available   In this research, a bench-scale filter is designed and constructed in order to compare the performance of different media namely, sand, crushed marble stone and crushed red brick. The filters are operated under various operating conditions such as filter depth, raw water turbidity, pretreatment, effective size and uniformity coefficient.          These filters are operated under conventional and direct filtration modes with different doses of alum. Statistical methods had been used to determine the best media using  Duncan multiple range test.     The result showed the superiority of crushed red brick media in the  removal of turbidity and total bacteria. The results also indicated that filters operated under direct filtration mode show better performance than that operated under conventional filtration mode. The pH of treated water show slight increase for the two modes of filtration.

  1. Performance of HEPA filters under hot dynamic conditions

    International Nuclear Information System (INIS)

    Frankum, D.P.; Costigan, G.

    1995-01-01

    Accidents in nuclear facilities involving fires may have implications upon the ventilation systems where high efficiency particulate air (HEPA) filters are used to minimise the airborne release of radioactive or toxic particles. The Filter Development Section at Harwell Laboratory has been investigating the effect of temperature on the performance of HEPA filters under hot dynamic conditions[ 1 ] for a number of years. The test rig is capable of delivering air flows of 10001/s (at ambient conditions) at temperatures up to 500 degrees C, where measurements of the penetration and pressure drop across the filter are obtained. This paper reports the experiments on different constructions of HEPA filters; rectangular and circular. The filters were tested at an air temperature of 200 degrees C for up to 48 hours at the rated airflow to assess their performance. The penetration measurements for rectangular filters were observed to be below 0.021% after prolonged operation. In a number of cases, holes appeared along the pleat creases of circular filters although the penetration remained below 1%. The sealing gasket for these filters was noted to deform with temperature, permitting a leakage path. A prototype high strength circular filter was evaluated at temperatures of up to 400 degrees C with a penetration less than 0.65%

  2. Performance of HEPA filters under hot dynamic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Frankum, D.P.; Costigan, G. [AEA Technology, Oxfordshire (United Kingdom)

    1995-02-01

    Accidents in nuclear facilities involving fires may have implications upon the ventilation systems where high efficiency particulate air (HEPA) filters are used to minimise the airborne release of radioactive or toxic particles. The Filter Development Section at Harwell Laboratory has been investigating the effect of temperature on the performance of HEPA filters under hot dynamic conditions[{sub 1}] for a number of years. The test rig is capable of delivering air flows of 10001/s (at ambient conditions) at temperatures up to 500{degrees}C, where measurements of the penetration and pressure drop across the filter are obtained. This paper reports the experiments on different constructions of HEPA filters; rectangular and circular. The filters were tested at an air temperature of 200{degrees}C for up to 48 hours at the rated airflow to assess their performance. The penetration measurements for rectangular filters were observed to be below 0.021% after prolonged operation. In a number of cases, holes appeared along the pleat creases of circular filters although the penetration remained below 1%. The sealing gasket for these filters was noted to deform with temperature, permitting a leakage path. A prototype high strength circular filter was evaluated at temperatures of up to 400{degrees}C with a penetration less than 0.65%.

  3. Application of HTSC-thin films in microwave bandpass filters

    International Nuclear Information System (INIS)

    Jha, A.R.

    1993-01-01

    This paper reveals unique performance capabilities of High-Temperature Superconducting Thin-Film (HTSCTFs) for possible applications in microwave bandpass filters (BPFs). Microwave filters fabricated with HTSCTFs have demonstrated lowest insertion loss, highest rejection, and sharpest skirt selectivity. Thin films of Yttrium Barium Copper Oxide (YBCO), Bismuth Strontium Calcium Copper Oxide (BSCCO) and Thallium Calcium Barium Copper Oxide (TCBCO) will be most attractive for filters

  4. Stabilization of Cs/Re trapping filters using magnesium phosphate ceramics

    International Nuclear Information System (INIS)

    Jae Hwan Yang; Jin Myeong Shin; Chang Hwa Lee; Chul Min Heo; Min Ku Jeon; Kweon Ho Kang

    2013-01-01

    The present study a promising method for stabilizing spent filters trapping cesium and technetium by using magnesium phosphate ceramics. Simulated spent filters were fabricated by vaporizing nonradioactive cesium and rhenium (a surrogate of Tc) through the voloxidizer. In order to reveal the characteristics of spent filters, phase structures and thermal stability were analyzed by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy, and thermogravimetric analysis techniques. Waste forms were fabricated by crushing spent filters and mixing them with magnesium oxide and potassium phosphate. Characterizations of the waste forms were performed by the analyses of compressive strength, apparent porosity, XRD, and scanning electron microscopy. The waste forms showed the excellent mechanical property compared with that of ordinary Portland cement, with the highest compressive strength of 38.1 MPa in the sample with 30 wt% of Cs-filter. Microstructural analysis suggests that waste materials are encapsulated by the binding matrix composed of magnesium potassium phosphate. The results of characterization suggest that fabricating a sound and durable waste form is possible with magnesium phosphate ceramics. (author)

  5. Filters for mobile radio from high Tc ceramic superconductors

    International Nuclear Information System (INIS)

    Peterson, G.E.; Wong, E.; Alford, N.McN.

    1990-01-01

    Mobile radio frequencies lie between 30 MHz and 1,000 MHz. This frequency range is ideal for ceramic high T c superconductors. We have designed Chebyshev, Butterworth and interdigital filters that can employ high T c superconductors in the form of rods, tubes and helices. In general, the performance of these filters at milliwatt power levels is excellent. We will describe fabrication of the superconductors and filter design

  6. Tunable electro-optic filter stack

    Science.gov (United States)

    Fontecchio, Adam K.; Shriyan, Sameet K.; Bellingham, Alyssa

    2017-09-05

    A holographic polymer dispersed liquid crystal (HPDLC) tunable filter exhibits switching times of no more than 20 microseconds. The HPDLC tunable filter can be utilized in a variety of applications. An HPDLC tunable filter stack can be utilized in a hyperspectral imaging system capable of spectrally multiplexing hyperspectral imaging data acquired while the hyperspectral imaging system is airborne. HPDLC tunable filter stacks can be utilized in high speed switchable optical shielding systems, for example as a coating for a visor or an aircraft canopy. These HPDLC tunable filter stacks can be fabricated using a spin coating apparatus and associated fabrication methods.

  7. WE-F-16A-02: Design, Fabrication, and Validation of a 3D-Printed Proton Filter for Range Spreading

    International Nuclear Information System (INIS)

    Remmes, N; Courneyea, L; Corner, S; Beltran, C; Kemp, B; Kruse, J; Herman, M; Stoker, J

    2014-01-01

    Purpose: To design, fabricate and test a 3D-printed filter for proton range spreading in scanned proton beams. The narrow Bragg peak in lower-energy synchrotron-based scanned proton beams can result in longer treatment times for shallow targets due to energy switching time and plan quality degradation due to minimum monitor unit limitations. A filter with variable thicknesses patterned on the same scale as the beam's lateral spot size will widen the Bragg peak. Methods: The filter consists of pyramids dimensioned to have a Gaussian distribution in thickness. The pyramids are 2.5mm wide at the base, 0.6 mm wide at the peak, 5mm tall, and are repeated in a 2.5mm pseudo-hexagonal lattice. Monte Carlo simulations of the filter in a proton beam were run using TOPAS to assess the change in depth profiles and lateral beam profiles. The prototypes were constrained to a 2.5cm diameter disk to allow for micro-CT imaging of promising prototypes. Three different 3D printers were tested. Depth-doses with and without the prototype filter were then measured in a ~70MeV proton beam using a multilayer ion chamber. Results: The simulation results were consistent with design expectations. Prototypes printed on one printer were clearly unacceptable on visual inspection. Prototypes on a second printer looked acceptable, but the micro-CT image showed unacceptable voids within the pyramids. Prototypes from the third printer appeared acceptable visually and on micro-CT imaging. Depth dose scans using the prototype from the third printer were consistent with simulation results. Bragg peak width increased by about 3x. Conclusions: A prototype 3D printer pyramid filter for range spreading was successfully designed, fabricated and tested. The filter has greater design flexibility and lower prototyping and production costs compared to traditional ridge filters. Printer and material selection played a large role in the successful development of the filter

  8. WE-F-16A-02: Design, Fabrication, and Validation of a 3D-Printed Proton Filter for Range Spreading

    Energy Technology Data Exchange (ETDEWEB)

    Remmes, N; Courneyea, L; Corner, S; Beltran, C; Kemp, B; Kruse, J; Herman, M [Mayo Clinic, Rochester, MN (United States); Stoker, J [MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Purpose: To design, fabricate and test a 3D-printed filter for proton range spreading in scanned proton beams. The narrow Bragg peak in lower-energy synchrotron-based scanned proton beams can result in longer treatment times for shallow targets due to energy switching time and plan quality degradation due to minimum monitor unit limitations. A filter with variable thicknesses patterned on the same scale as the beam's lateral spot size will widen the Bragg peak. Methods: The filter consists of pyramids dimensioned to have a Gaussian distribution in thickness. The pyramids are 2.5mm wide at the base, 0.6 mm wide at the peak, 5mm tall, and are repeated in a 2.5mm pseudo-hexagonal lattice. Monte Carlo simulations of the filter in a proton beam were run using TOPAS to assess the change in depth profiles and lateral beam profiles. The prototypes were constrained to a 2.5cm diameter disk to allow for micro-CT imaging of promising prototypes. Three different 3D printers were tested. Depth-doses with and without the prototype filter were then measured in a ~70MeV proton beam using a multilayer ion chamber. Results: The simulation results were consistent with design expectations. Prototypes printed on one printer were clearly unacceptable on visual inspection. Prototypes on a second printer looked acceptable, but the micro-CT image showed unacceptable voids within the pyramids. Prototypes from the third printer appeared acceptable visually and on micro-CT imaging. Depth dose scans using the prototype from the third printer were consistent with simulation results. Bragg peak width increased by about 3x. Conclusions: A prototype 3D printer pyramid filter for range spreading was successfully designed, fabricated and tested. The filter has greater design flexibility and lower prototyping and production costs compared to traditional ridge filters. Printer and material selection played a large role in the successful development of the filter.

  9. Performance tuning for CUDA-accelerated neighborhood denoising filters

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ziyi; Mueller, Klaus [Stony Brook Univ., NY (United States). Center for Visual Computing, Computer Science; Xu, Wei

    2011-07-01

    Neighborhood denoising filters are powerful techniques in image processing and can effectively enhance the image quality in CT reconstructions. In this study, by taking the bilateral filter and the non-local mean filter as two examples, we discuss their implementations and perform fine-tuning on the targeted GPU architecture. Experimental results show that the straightforward GPU-based neighborhood filters can be further accelerated by pre-fetching. The optimized GPU-accelerated denoising filters are ready for plug-in into reconstruction framework to enable fast denoising without compromising image quality. (orig.)

  10. Fabrication of recyclable superhydrophobic cotton fabrics

    Science.gov (United States)

    Han, Sang Wook; Park, Eun Ji; Jeong, Myung-Geun; Kim, Il Hee; Seo, Hyun Ook; Kim, Ju Hwan; Kim, Kwang-Dae; Kim, Young Dok

    2017-04-01

    Commercial cotton fabric was coated with SiO2 nanoparticles wrapped with a polydimethylsiloxane (PDMS) layer, and the resulting material surface showed a water contact angle greater than 160°. The superhydrophobic fabric showed resistance to water-soluble contaminants and maintained its original superhydrophobic properties with almost no alteration even after many times of absorption-washing cycles of oil. Moreover, superhydrophobic fabric can be used as a filter to separate oil from water. We demonstrated a simple method of fabrication of superhydrophobic fabric with potential interest for use in a variety of applications.

  11. Studies on denitrification performance of tricking filters

    International Nuclear Information System (INIS)

    Ruediger, A.

    1993-01-01

    Trickling filters are one of the oldest methods of biological waste water purification, widely used ever since they were first developed. These filters are mostly used for aerobic purification of water as highly polluted or lightly polluted reactors. While these systems are very useful for the elemination of organic pollution and the nitrification of the waste waters, denitrification of the whole plant poses considerable problems. The question is in how far trickling filters can be used as denitrification reactors. The conditions of successful denitrification in trickling filters is investigated, denitrification performance is established. Studies were conducted in laboratory, semi-industrial and industrial scale. (BBR) [de

  12. Fully integrated low-loss band-pass filters for wireless applications

    International Nuclear Information System (INIS)

    Rais-Zadeh, M; Kapoor, A; Lavasani, H M; Ayazi, F

    2009-01-01

    Fully integrated low insertion loss micromachined band-pass filters are designed and fabricated on the silicon substrate (ρ = 10–20 Ω cm, ε r = 11.9) for UHF applications. Filters are made of silver, which has the highest conductivity of all metals, to minimize the ohmic loss. A detailed analysis for realizing low insertion loss and high out-of-band rejection filters using elliptic magnitude characteristics is presented, and a comprehensive model to take into account inductive parasitics of the interconnects is developed. Temperature characteristics of the filters are measured and show stable performance. The presented filters are different from the previously reported lumped element filters in that all filters are fully integrated on silicon substrate and occupy a remarkably smaller die area. Two filters are fabricated using the silver micromachining technique with center frequencies at 1.05 and 1.35 GHz. The filters have a constant 3 dB bandwidth of 300 MHz (28.6% and 22.2%) and an insertion loss of 1.4–1.7 dB. The low insertion loss and CMOS compatibility make the presented filters suitable candidates for radio frequency integrated circuits

  13. SU-E-T-61: A Practical Process for Fabricating Passive Scatter Proton Beam Modulation Compensation Filters Using 3D Printing

    International Nuclear Information System (INIS)

    Zhao, T; Drzymala, R

    2015-01-01

    Purpose: The purpose of this project was to devise a practical fabrication process for passive scatter proton beam compensation filters (CF) that is competitive in time, cost and effort using 3D printing. Methods: DICOM compensator filter files for a proton beam were generated by our Eclipse (Varian, Inc.) treatment planning system. The compensator thickness specifications were extracted with in-house software written in Matlab (MathWorks, Inc.) code and written to a text file which could be read by the Rhinoceros 5, computer-aided design (CAD) package (Robert McNeel and Associates), which subsequently generated a smoothed model in a STereoLithographic also known as a Standard Tesselation Language file (STL). The model in the STL file was subsequently refined using Netfabb software and then converted to printing instructions using Cura. version 15.02.1. for our 3D printer. The Airwolf3D, model HD2x, fused filament fabrication (FFF) 3D printer (Airwolf3D.com) was used for our fabrication system with a print speed of 150mm per second. It can print in over 22 different plastic filament materials in a build volume of 11” x 8” x 12”. We choose ABS plastic to print the 3D model of the imprint for our CFs. Results: Prints of the CF could be performed at a print speed of 70mm per second. The time to print the 3D topology for the CF for the 14 cm diameter snout of our Mevion 250 proton accelerator was less than 3 hours. The printed model is intended to subsequently be used as a mold to imprint a molten wax cylindrical to form the compensation after cooling. The whole process should be performed for a typical 3 beam treatment plan within a day. Conclusion: Use of 3D printing is practical and can be used to print a 3D model of a CF within a few hours

  14. SU-E-T-61: A Practical Process for Fabricating Passive Scatter Proton Beam Modulation Compensation Filters Using 3D Printing

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, T; Drzymala, R [Washington University School of Medicine, St. Louis, MO (United States)

    2015-06-15

    Purpose: The purpose of this project was to devise a practical fabrication process for passive scatter proton beam compensation filters (CF) that is competitive in time, cost and effort using 3D printing. Methods: DICOM compensator filter files for a proton beam were generated by our Eclipse (Varian, Inc.) treatment planning system. The compensator thickness specifications were extracted with in-house software written in Matlab (MathWorks, Inc.) code and written to a text file which could be read by the Rhinoceros 5, computer-aided design (CAD) package (Robert McNeel and Associates), which subsequently generated a smoothed model in a STereoLithographic also known as a Standard Tesselation Language file (STL). The model in the STL file was subsequently refined using Netfabb software and then converted to printing instructions using Cura. version 15.02.1. for our 3D printer. The Airwolf3D, model HD2x, fused filament fabrication (FFF) 3D printer (Airwolf3D.com) was used for our fabrication system with a print speed of 150mm per second. It can print in over 22 different plastic filament materials in a build volume of 11” x 8” x 12”. We choose ABS plastic to print the 3D model of the imprint for our CFs. Results: Prints of the CF could be performed at a print speed of 70mm per second. The time to print the 3D topology for the CF for the 14 cm diameter snout of our Mevion 250 proton accelerator was less than 3 hours. The printed model is intended to subsequently be used as a mold to imprint a molten wax cylindrical to form the compensation after cooling. The whole process should be performed for a typical 3 beam treatment plan within a day. Conclusion: Use of 3D printing is practical and can be used to print a 3D model of a CF within a few hours.

  15. Convergence Performance of Adaptive Algorithms of L-Filters

    Directory of Open Access Journals (Sweden)

    Robert Hudec

    2003-01-01

    Full Text Available This paper deals with convergence parameters determination of adaptive algorithms, which are used in adaptive L-filters design. Firstly the stability of adaptation process, convergence rate or adaptation time, and behaviour of convergence curve belong among basic properties of adaptive algorithms. L-filters with variety of adaptive algorithms were used to their determination. Convergence performances finding of adaptive filters is important mainly for their hardware applications, where filtration in real time or adaptation of coefficient filter with low capacity of input data are required.

  16. High Performance, Three-Dimensional Bilateral Filtering

    International Nuclear Information System (INIS)

    Bethel, E. Wes

    2008-01-01

    Image smoothing is a fundamental operation in computer vision and image processing. This work has two main thrusts: (1) implementation of a bilateral filter suitable for use in smoothing, or denoising, 3D volumetric data; (2) implementation of the 3D bilateral filter in three different parallelization models, along with parallel performance studies on two modern HPC architectures. Our bilateral filter formulation is based upon the work of Tomasi [11], but extended to 3D for use on volumetric data. Our three parallel implementations use POSIX threads, the Message Passing Interface (MPI), and Unified Parallel C (UPC), a Partitioned Global Address Space (PGAS) language. Our parallel performance studies, which were conducted on a Cray XT4 supercomputer and aquad-socket, quad-core Opteron workstation, show our algorithm to have near-perfect scalability up to 120 processors. Parallel algorithms, such as the one we present here, will have an increasingly important role for use in production visual analysis systems as the underlying computational platforms transition from single- to multi-core architectures in the future.

  17. High Performance, Three-Dimensional Bilateral Filtering

    Energy Technology Data Exchange (ETDEWEB)

    Bethel, E. Wes

    2008-06-05

    Image smoothing is a fundamental operation in computer vision and image processing. This work has two main thrusts: (1) implementation of a bilateral filter suitable for use in smoothing, or denoising, 3D volumetric data; (2) implementation of the 3D bilateral filter in three different parallelization models, along with parallel performance studies on two modern HPC architectures. Our bilateral filter formulation is based upon the work of Tomasi [11], but extended to 3D for use on volumetric data. Our three parallel implementations use POSIX threads, the Message Passing Interface (MPI), and Unified Parallel C (UPC), a Partitioned Global Address Space (PGAS) language. Our parallel performance studies, which were conducted on a Cray XT4 supercomputer and aquad-socket, quad-core Opteron workstation, show our algorithm to have near-perfect scalability up to 120 processors. Parallel algorithms, such as the one we present here, will have an increasingly important role for use in production visual analysis systems as the underlying computational platforms transition from single- to multi-core architectures in the future.

  18. High-efficiency particulate air (HEPA) filter performance following service and radiation exposure

    International Nuclear Information System (INIS)

    Jones, L.R.

    1975-01-01

    Small HEPA filters were exposed to a 60 Co source with a radiation strength of 3 x 10 7 rads per hour and then exposed to steam--air mixtures at several times filter design flow, followed by extended exposure to steam and air at reduced flow. Additional filters were exposed to air flow in a reactor confinement system and then similarly tested with steam--air mixture flows. The test data and calculated effects of filter pluggage with moisture on confinement system performance following potential reactor accidents are described. Gamma radiation exposure impaired the performance of new filters only slightly and temporarily improved performance of service aged filters. Normal confinement system service significantly impaired filter performance although not sufficiently to prevent adequate performance of the SRP confinement system following an unlikely reactor accident. Calculations based on measured filter pluggage indicate that during an accident air flow could be reduced approximately 50 percent with service-degraded HEPA filters present, or approximately 10 percent with new filters damaged by the radiation exposure. (U.S.)

  19. Filtering Performance Comparison of Kernel and Wavelet Filters for Reactivity Signal Noise

    International Nuclear Information System (INIS)

    Park, Moon Ghu; Shin, Ho Cheol; Lee, Yong Kwan; You, Skin

    2006-01-01

    Nuclear reactor power deviation from the critical state is a parameter of specific interest defined by the reactivity measuring neutron population. Reactivity is an extremely important quantity used to define many of the reactor startup physics parameters. The time dependent reactivity is normally determined by solving the using inverse neutron kinetics equation. The reactivity computer is a device to provide an on-line solution of the inverse kinetics equation. The measurement signal of the neutron density is normally noise corrupted and the control rods movement typically gives reactivity variation with edge signals like saw teeth. Those edge regions should be precisely preserved since the measured signal is used to estimate the reactivity wroth which is a crucial parameter to assure the safety of the nuclear reactors. In this paper, three kind of edge preserving noise filters are proposed and their performance is demonstrated using stepwise signals. The tested filters are based on the unilateral, bilateral kernel and wavelet filters which are known to be effective in edge preservation. The bilateral filter shows a remarkable improvement compared with unilateral kernel and wavelet filters

  20. Field test of radioactive high efficiency filter and filter exchange techniques of fuel cycle examination facility

    International Nuclear Information System (INIS)

    Hwang, Yong Hwa; Lee, Hyung Kwon; Chun, Young Bum; Park, Dae Gyu; Ahn, Sang Bok; Chu, Yong Sun; Kim, Eun Ka.

    1997-12-01

    The development of high efficiency filter was started to protect human beings from the contamination of radioactive particles, toxic gases and bacillus, and its gradual performance increment led to the fabrication of Ultra Low Penetration Air Filter (ULPA) today. The application field of ULPA has been spread not only to the air conditioning of nuclear power facilities, semiconductor industries, life science, optics, medical care and general facilities but also to the core of ultra-precision facilities. Periodic performance test on the filters is essential to extend its life-time through effective maintenance. Especially, the bank test on HEPA filter of nuclear facilities handling radioactive materials is required for environmental safety. Nowadays, the bank test technology has been reached to the utilization of a minimized portable detecting instruments and the evaluation techniques can provide high confidence in the area of particle distribution and leakage test efficiency. (author). 16 refs., 13 tabs., 14 figs

  1. A MEMS coupled resonator for frequency filtering in air

    KAUST Repository

    Ilyas, Saad; Jaber, Nizar; Younis, Mohammad I.

    2018-01-01

    We present design, fabrication, and characterization of a mechanically coupled MEMS H resonator capable of performing simultaneous mechanical amplification and filtering in air. The device comprises of two doubly clamped polyimide microbeams joined

  2. Blind Source Parameters for Performance Evaluation of Despeckling Filters

    Directory of Open Access Journals (Sweden)

    Nagashettappa Biradar

    2016-01-01

    Full Text Available The speckle noise is inherent to transthoracic echocardiographic images. A standard noise-free reference echocardiographic image does not exist. The evaluation of filters based on the traditional parameters such as peak signal-to-noise ratio, mean square error, and structural similarity index may not reflect the true filter performance on echocardiographic images. Therefore, the performance of despeckling can be evaluated using blind assessment metrics like the speckle suppression index, speckle suppression and mean preservation index (SMPI, and beta metric. The need for noise-free reference image is overcome using these three parameters. This paper presents a comprehensive analysis and evaluation of eleven types of despeckling filters for echocardiographic images in terms of blind and traditional performance parameters along with clinical validation. The noise is effectively suppressed using the logarithmic neighborhood shrinkage (NeighShrink embedded with Stein’s unbiased risk estimation (SURE. The SMPI is three times more effective compared to the wavelet based generalized likelihood estimation approach. The quantitative evaluation and clinical validation reveal that the filters such as the nonlocal mean, posterior sampling based Bayesian estimation, hybrid median, and probabilistic patch based filters are acceptable whereas median, anisotropic diffusion, fuzzy, and Ripplet nonlinear approximation filters have limited applications for echocardiographic images.

  3. Blind Source Parameters for Performance Evaluation of Despeckling Filters.

    Science.gov (United States)

    Biradar, Nagashettappa; Dewal, M L; Rohit, ManojKumar; Gowre, Sanjaykumar; Gundge, Yogesh

    2016-01-01

    The speckle noise is inherent to transthoracic echocardiographic images. A standard noise-free reference echocardiographic image does not exist. The evaluation of filters based on the traditional parameters such as peak signal-to-noise ratio, mean square error, and structural similarity index may not reflect the true filter performance on echocardiographic images. Therefore, the performance of despeckling can be evaluated using blind assessment metrics like the speckle suppression index, speckle suppression and mean preservation index (SMPI), and beta metric. The need for noise-free reference image is overcome using these three parameters. This paper presents a comprehensive analysis and evaluation of eleven types of despeckling filters for echocardiographic images in terms of blind and traditional performance parameters along with clinical validation. The noise is effectively suppressed using the logarithmic neighborhood shrinkage (NeighShrink) embedded with Stein's unbiased risk estimation (SURE). The SMPI is three times more effective compared to the wavelet based generalized likelihood estimation approach. The quantitative evaluation and clinical validation reveal that the filters such as the nonlocal mean, posterior sampling based Bayesian estimation, hybrid median, and probabilistic patch based filters are acceptable whereas median, anisotropic diffusion, fuzzy, and Ripplet nonlinear approximation filters have limited applications for echocardiographic images.

  4. Mean-square performance of a convex combination of two adaptive filters

    DEFF Research Database (Denmark)

    Garcia, Jeronimo; Figueiras-Vidal, A.R.; Sayed, A.H.

    2006-01-01

    Combination approaches provide an interesting way to improve adaptive filter performance. In this paper, we study the mean-square performance of a convex combination of two transversal filters. The individual filters are independently adapted using their own error signals, while the combination i...

  5. Fabrication of antibacterial water filter by coating silver nanoparticles on flexible polyurethane foams

    International Nuclear Information System (INIS)

    Nguyen Thi Phuong Phong; Ngo Vo Ke Thanh; Phan Hue Phuong

    2009-01-01

    In this paper, we fabricated silver-coated polyurethane foams and used it as a bacterial filter for contaminated drinking water. Flexible PU foams were soaked in silver colloidal solutions for 10 h, then washed and air-dried at room temperature. The prepared silver colloidal solutions and silver-coated PU materials were characterized by several techniques including TEM, FESEM/EDS, UV-VIS, ICP-AAS, and Raman spectroscopy. The TEM images showed that the size of silver nanoparticles in colloidal solutions varies from 6 to 12nm. The Raman, FE-SEM/EDS and ICP-AAS data illustrated that silver nanoparticles were stable on the PU foam and were not washed away by water. Furthermore, the microbiological tests (tube tests and flow test) were carried out on silver-coated PU materials with the Coliforms, E. coli, and B. subtilis. The obtained results showed that the bacteria was killed completely with antibacterial efficiency of 100% being observed. Our research suggests that silver-coated polyurethane foams can be used as excellent antibacterial water filters and would have several applications in other sectors.

  6. DC-pass filter design with notch filters superposition for CPW rectenna at low power level

    Science.gov (United States)

    Rivière, J.; Douyère, A.; Alicalapa, F.; Luk, J.-D. Lan Sun

    2016-03-01

    In this paper the challenging coplanar waveguide direct current (DC) pass filter is designed, analysed, fabricated and measured. As the ground plane and the conductive line are etched on the same plane, this technology allows the connection of series and shunt elements to the active devices without via holes through the substrate. Indeed, this study presents the first step in the optimization of a complete rectenna in coplanar waveguide (CPW) technology: key element of a radio frequency (RF) energy harvesting system. The measurement of the proposed filter shows good performance in the rejection of F0=2.45 GHz and F1=4.9 GHz. Additionally, a harmonic balance (HB) simulation of the complete rectenna is performed and shows a maximum RF-to-DC conversion efficiency of 37% with the studied DC-pass filter for an input power of 10 µW at 2.45 GHz.

  7. Nuclear fuel elements design, fabrication and performance

    CERN Document Server

    Frost, Brian R T

    1982-01-01

    Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overvie

  8. Performance of multiple HEPA filters against plutonium aerosols

    International Nuclear Information System (INIS)

    Gonzales, M.; Elder, J.C.; Tillery, M.I.; Ettinger, H.J.

    1976-11-01

    Performance of multiple stages of high-efficiency particulate air (HEPA) filters has been verified against plutonium aerosols similar in size characteristics to those challenging the air-cleaning systems of plutonium-processing facilities. An experimental program was conducted to test each filter in systems of three HEPA filters operated in series against 238 PuO 2 aerosols as high as 3.3 x 10 10 dis/s . m 3 in activity concentration and ranging from 0.22 μm to 1.6 μm in activity median aerodynamic diameter (amad). Mean penetration (ratio of downstream to upstream concentration) of each of the three filters in series was below 0.0002, but it apparently increased at each successive filter. Penetration vs size measurements showed that maximum penetration of 238 PuO 2 occurred for sizes between 0.4- and 0.7-μm aerodynamic diameter (D/sub ae/). HEPA filter penetration at half of rated flow differed little from full-flow penetration

  9. Preparation and characterization of monel (70% Ni-30% Cu) metallic filters

    International Nuclear Information System (INIS)

    Camargo Lavos, I. de.

    1993-01-01

    This work investigates a process for the fabrication and characterization of monel (Ni-Cu) filters. The powder consolidation was made by vibration or by pressing at various pressures (200, 300 e 400 MPa). The sintering was carried out at 1100 0 C during 1 hour under H 2 atmosphere. The filter characterization was performed by measuring its density, porosity, filtering capacity and permeability. It was obtained a correlation between the processing variables (consolidation and sintering), including powder properties, and the filters characteristics. (author). 59 refs, 41 figs, 7 tabs

  10. Control of oil-wetting on technical textiles by means of photo-chemical surface modification and its relevance to the performance of compressed air filters

    International Nuclear Information System (INIS)

    Bahners, Thomas; Mölter-Siemens, Wolfgang; Haep, Stefan; Gutmann, Jochen S.

    2014-01-01

    Highlights: • The oil repellence of textile fabrics was increased following the Wenzel concept. • Fiber surfaces were micro-roughened by means of pulsed UV laser irradiation. • Subsequent UV-induced grafting yielded pronounced oil repellence. • The grafting process conserved the delicate topography of the fiber surfaces. • The modified fabrics showed favorable drainage behavior in oil droplet separation. - Abstract: A two-step process comprising a surface roughening step by excimer laser irradiation and a post-treatment by photo-grafting to decrease the surface free energy was employed to increase the oil repellence of technical fabrics made of poly(ethylene terephthalate) (PET). The modification was designed to improve the performance of multi-layer filters for compressed air filtration, in which the fabrics served to remove, i.e. drain, oil separated from the air stream. In detail, the fibers surfaces were roughened by applying several laser pulses at a wavelength of 248 nm and subsequently photo-grafted with 1H,1H,2H,2H-perfluoro-decyl acrylate (PPFDA). The oil wetting behavior was increased by the treatments from full wetting on the as-received fabrics to highly repellent with oil contact angles of (131 ± 7)°. On surfaces in the latter state, oil droplets did not spread or penetrate even after one day. The grafting of PPFDA alone without any surface roughening yielded an oil contact angle of (97 ± 11)°. However, the droplet completely penetrated the fabric over a period of one day. The drainage performance was characterized by recording the pressure drop over a two-layer model filter as a function of time. The results proved the potential of the treatment, which reduced the flow resistance after 1-h operation by approximately 25%

  11. Fabrication of TiO2/EP super-hydrophobic thin film on filter paper surface.

    Science.gov (United States)

    Gao, Zhengxin; Zhai, Xianglin; Liu, Feng; Zhang, Ming; Zang, Deli; Wang, Chengyu

    2015-09-05

    A composite filter paper with super-hydrophobicity was obtained by adhering micro/nano structure of amorphous titanium dioxide on the filter paper surface with modifying low surface energy material. By virtue of the coupling agent, which plays an important part in bonding amorphous titanium dioxide and epoxy resin, the structure of super-hydrophobic thin film on the filter paper surface is extremely stable. The microstructure of super-hydrophobic filter paper was characterized by scanning electron microscopy (SEM), the images showed that the as-prepared filter paper was covered with uniform amorphous titanium dioxide particles, generating a roughness structure on the filter paper surface. The super-hydrophobic performance of the filter paper was characterized by water contact angle measurements. The observations showed that the wettability of filter paper samples transformed from super-hydrophilicity to super-hydrophobicity with the water contact angle of 153 ± 1°. Some experiments were also designed to test the effect of water-oil separation and UV-resistant by the super-hydrophobic filter paper. The prepared super-hydrophobic filter paper worked efficiently and simply in water-oil separation as well as enduringly in anti-UV property after the experiments. This method offers an opportunity to the practical applications of the super-hydrophobic filter paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Power and Aging Characterization of Digital FIR Filters Architectures

    DEFF Research Database (Denmark)

    Calimera, Andrea; Liu, Wei; Macii, Enrico

    2012-01-01

    -variation, temperature and aging induced variations pose new challenges in the fabrication of the next generation of ICs. This work presents a detailed power and aging characterization of digital FIR filters in an industrial 45nm CMOS technology, and a design space exploration of different filter architectures...... with respect to throughput, area, power dissipation and aging. The exploration is intended to provide new design guidelines when considering aging of components in power/performance tradeoffs....

  13. Result of desalinating filter performance at representative coastal area

    International Nuclear Information System (INIS)

    Ohtake, Nobuyosi; Wada, Tadamasa

    1989-01-01

    In Japan, Nuclear energy facilities are usually located within 1 km from sea shore. Lately, manufacturing plants for semiconductors and precision machines have also taken locations at the sea side. At these locations, salt particles coming from the sea flow into a plant through its air-intakes. This is a problem, because if can cause electric equipment and other important equipment to deteriorate and may influence production yield. An effective solution to this problem is to install a filter at the air-intake. However, few data in this area is available, because the salt concentration in the air is too low to verify acutual affects of installed filters. This report describes the performance of a filter system installed in an actual building located 300 m from the sea shore. We used a radioactivation analysis method with a detection limit up to 0.01 μg/m 3 to measure concentrations at the up stream and down stream of the filter. A flame spectrochemical analysis measured salt adhering to filter materials. The particle collection performance averaged 80 % for the prefilter and 90 % for a desalinating filter. We also investigated the possibility that captured NaCl might rescatter with the deliquescence due to high humidity, and we found this phenomenon at least in the prefilter. (author)

  14. The case for improved HEPA-filter mechanical performance standards revisited

    Energy Technology Data Exchange (ETDEWEB)

    Ricketts, C.I.; Smith, P.R. [New Mexico State Univ., Las Cruces, NM (United States)

    1997-08-01

    Under benign operating conditions, High Efficiency Particulate Air (HEPA) filter units serve as reliable and relatively economical components in the air cleaning systems of nuclear facilities worldwide. Despite more than four decades of filter-unit evaluation and improvements, however, the material strength characteristics of the glass fiber filter medium continue to ultimately limit filter functional reliability. In worst-case scenarios involving fire suppression, loss-of-coolant accidents (LOCA`s), or exposure to shock waves or tornado induced flows, rupture of the filter medium of units meeting current qualification standards cannot be entirely ruled out. Even under so-called normal conditions of operation, instances of filter failure reported in the literature leave open questions of filter-unit reliability. Though developments of filter units with improved burst strengths have been pursued outside the United States, support for efforts in this country has been comparatively minimal. This despite user requests for filters with greater moisture resistance, for example. Or the fact that conventional filter designs result in not only the least robust component to be found in a nuclear air cleaning system, but also the one most sensitive to the adverse effects of conditions deviating from those of normal operation. Filter qualification-test specifications of current codes, standards, and regulatory guidelines in the United States are based primarily upon research performed in a 30-year period beginning in the 1950`s. They do not seem to reflect the benefits of the more significant developments and understanding of filter failure modes and mechanisms achieved since that time. One overseas design, based on such knowledge, has proven reliability under adverse operating conditions involving combined and serial challenges. Its widespread use, however, has faltered on a lack of consensus in upgrading filter performance standards. 34 refs., 2 figs., 3 tabs.

  15. Performance of HEPA filters under severe conditions, 3

    International Nuclear Information System (INIS)

    Osaki, Makoto; Zanma, Tokugo; Kanagawa, Akira.

    1986-01-01

    Performance of high efficiency particulate air (HEPA) filters at temperatures from ambient to 240 deg C was measured to prove that HEPA filters kept up their regulated decontamination factor (DF) at elevated temperatures. The DF for NaCl aerosol was measured by using a laser particle spectrometer. Pressure drop of HEPA filters at elevated temperatures was also measured. The DF increased at elevated temperatures. The DF at 200 deg C was an order of magnitude higher than that at ambient. The change of DF at elevated temperatures of various HEPA filters was effectively evaluated by using the ratio of single fiber collection efficiencies at ambient to those at elevated temperatures. Pressure drop of HEPA filters also increased at elevated temperatures. The pressure drop at 200 deg C was 1.3 times larger than that at ambient. The change of DF and pressure drop at elevated temperatures was explained by applying Kirsh's theory to elevated temperatures. (author)

  16. Carbon nanotube filters

    Science.gov (United States)

    Srivastava, A.; Srivastava, O. N.; Talapatra, S.; Vajtai, R.; Ajayan, P. M.

    2004-09-01

    Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus (~25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.

  17. Programmable Baseband Filter for Multistandard Mobile Phones

    DEFF Research Database (Denmark)

    Jensen, Rasmus Glarborg; Christensen, Kåre Tais; Bruun, Erik

    2003-01-01

    of the input transconductor. The entire filter consumes between 2.5 mW and 7.5 mW, depending on the desired noise performance. It is implemented in a standard 0.25 mum CMOS process. A test circuit has been developed and fabricated and measurements show that both the required programmability and the required...

  18. System on Package (SoP) Millimeter Wave Filters for 5G Applications

    KAUST Repository

    Showail, Jameel

    2018-05-01

    Bandpass filters are an essential component of wireless communication systems that only transmits frequencies corresponding to the communication band and rejects all other frequencies. As the deployment of 5G draws nearer, first deployments are expected in 2020 [1], the need for viable filters at the new frequency bands becomes more imminent. Size and performance are two critical considerations for a filter that will be used in emerging mobile communication applications. The high frequency of 5G communication, 28 GHz as opposed to sub 6 GHz for nearly all previous communication protocols, means that previously utilized lumped component based solutions cannot be implemented since they are ill-suited for mm-wave applications. The focus of this work is the miniaturization of a high-performance filter. The Substrate Integrated Waveguide (SIW) is a high performance and promising structure and Low Temperature Co-Fired Ceramic (LTCC) is a high-performance material that both can operate at higher frequencies than the technologies used for previous telecommunication generations. To miniaturize the structure, a compact folded four-cavity SIW filter is designed, implemented and tested. The feeding structure is integrated into the filter to exploit the System on Package (SoP) attributes of LTCC and further reduce the total area of the filter individually and holistically when looking at the final integrated system. Two unique three dimensional (3D) integrated SoP LTCC two-stage SIW single cavity filters and one unique four-cavity filter all with embedded planar resonators are designed, fabricated and tested. The embedded resonators create a two-stage effect in a single cavity filter. The better single cavity design provides a 15% fractional bandwidth at a center frequency of 28.12 GHz, and with an insertion loss of -0.53 dB. The fabricated four-cavity filter has a 3-dB bandwidth of .98GHz centered at 27.465 GHz, and with an insertion loss of -2.66 dB. The designs presented

  19. Improved Sound Absorption Performance of Nonwoven Fabric using Fabric Facing and Air Back Cavity

    Directory of Open Access Journals (Sweden)

    Ismail Ahmad Yusuf

    2017-01-01

    Full Text Available This paper presents the improvement methods to increase sound absorption performance of polyethylene based nonwoven fabric (PNF. The methods are placing a woven fabric in front of the sample as well as providing air cavity behind the sample. The samples were experimentally tested in an impedance tube based on ISO 10354-2:2001 whereby two microphones are used and the transfer matrix methods are employed. From the results, it can be seen that placing front woven fabric effectively increases sound absorption performance. Moreover, introducing air cavity gap behind the sample is also found to be more significant to increase sound absorption.

  20. Performance of non woven synthetic fabric and disc filters for fertirrigation water treatment Desempenho dos filtros de mantas não tecidas e de disco no tratamento de água para fertirrigação

    Directory of Open Access Journals (Sweden)

    Túlio Assunção Pires Ribeiro

    2004-04-01

    Full Text Available Obstruction of emitters caused by the presence of solid particles in the water raises the cost and maintenance of trickle irrigation systems, and might compromise their utilization. This research was performed through test fields, with the objective of evaluating the performance of a disc filter (130 microns and a non woven synthetic fabric filter on the removal of physical, chemical and biological impurities from the irrigation water, which may cause emitter obstruction during fertirrigation processes. The evaluation criteria of the impurities present in the irrigation water, were based on studies performed on trickle irrigation systems. Specifically, physical, chemical and biological parameters analyzed in the inflow and outflow water from both filters were: pH, turbidity, total suspended solids, salinity, total iron, sulphites, manganese, algae and bacteria. Results pointed to chemical factors, which presented medium clogging risks to the emitters; those factors were: pH, total iron and sulphite concentration. All the other parameters of water quality did not present clogging risks. A comparative analysis of head loss evolution, according to the filtered volume, was also atempted Non woven synthetic fabric filter presented a higher evolution when compared to the disc filter.Um dos fatores que elevam os custos de operação e manutenção dos sistemas de irrigação localizada e, em certos casos, inviabiliza a utilização desse método, é a obstrução de emissores pela presença de partículas sólidas na água de irrigação. O presente trabalho teve por objetivo principal estimar, através de ensaios experimentais de campo, o desempenho de um filtro de disco (130 microns com outro de manta sintética não tecida na remoção de impurezas de origens físicas, químicas e biológicas presentes na água de irrigação que promovem o entupimento dos emissores, quando se utiliza a fertirrigação. Os critérios para avaliação das impurezas

  1. Performance Improvement of Shunt Active Power Filter With Dual Parallel Topology

    DEFF Research Database (Denmark)

    Asiminoaei, Lucian; Lascu, Cristian; Blaabjerg, Frede

    2007-01-01

    loop and the other is in a feedforward loop for harmonic compensation. Thus, both active power filters bring their own characteristic advantages, i.e., the feedback filter improves the steady-state performance of the harmonic mitigation and the feedforward filter improves the dynamic response. Another......This paper describes the control and parallel operation of two active power filters (APFs). Possible parallel operation situations of two APFs are investigated, and then the proposed topology is analyzed. The filters are coupled in a combined topology in which one filter is connected in a feedback...

  2. Filter aids influence on pressure drop across a filtration system

    Science.gov (United States)

    Hajar, S.; Rashid, M.; Nurnadia, A.; Ammar, M. R.; Hasfalina, C. M.

    2017-06-01

    Filter aids is commonly used to reduce pressure drop across air filtration system as it helps to increase the efficiency of filtration of accumulated filter cake. Filtration velocity is one of the main parameters that affect the performance of filter aids material. In this study, a formulated filter aids consisting of PreKot™ and activated carbon mixture (designated as PrekotAC) was tested on PTFE filter media under various filtration velocities of 5, 6, and 8 m/min at a constant material loading of 0.2 mg/mm2. Results showed that pressure drop is highly influenced by filtration velocity where higher filtration velocity leads to a higher pressure drop across the filter cake. It was found that PrekotAC performed better in terms of reducing the pressure drop across the filter cake even at the highest filtration velocity. The diversity in different particle size distribution of non-uniform particle size in the formulated PrekotAC mixture presents a higher permeability causes a lower pressure drop across the accumulated filter cake. The finding suggests that PrekotAC is a promising filter aids material that helps reducing the pressure drop across fabric filtration system.

  3. Tunable Microwave Filter Design Using Thin-Film Ferroelectric Varactors

    Science.gov (United States)

    Haridasan, Vrinda

    Military, space, and consumer-based communication markets alike are moving towards multi-functional, multi-mode, and portable transceiver units. Ferroelectric-based tunable filter designs in RF front-ends are a relatively new area of research that provides a potential solution to support wideband and compact transceiver units. This work presents design methodologies developed to optimize a tunable filter design for system-level integration, and to improve the performance of a ferroelectric-based tunable bandpass filter. An investigative approach to find the origins of high insertion loss exhibited by these filters is also undertaken. A system-aware design guideline and figure of merit for ferroelectric-based tunable band- pass filters is developed. The guideline does not constrain the filter bandwidth as long as it falls within the range of the analog bandwidth of a system's analog to digital converter. A figure of merit (FOM) that optimizes filter design for a specific application is presented. It considers the worst-case filter performance parameters and a tuning sensitivity term that captures the relation between frequency tunability and the underlying material tunability. A non-tunable parasitic fringe capacitance associated with ferroelectric-based planar capacitors is confirmed by simulated and measured results. The fringe capacitance is an appreciable proportion of the tunable capacitance at frequencies of X-band and higher. As ferroelectric-based tunable capac- itors form tunable resonators in the filter design, a proportionally higher fringe capacitance reduces the capacitance tunability which in turn reduces the frequency tunability of the filter. Methods to reduce the fringe capacitance can thus increase frequency tunability or indirectly reduce the filter insertion-loss by trading off the increased tunability achieved to lower loss. A new two-pole tunable filter topology with high frequency tunability (> 30%), steep filter skirts, wide stopband

  4. Spectral and Wavefront Error Performance of WFIRST/AFTA Prototype Filters

    Science.gov (United States)

    Quijada, Manuel; Seide, Laurie; Marx, Cathy; Pasquale, Bert; McMann, Joseph; Hagopian, John; Dominguez, Margaret; Gong, Qian; Morey, Peter

    2016-01-01

    The Cycle 5 design baseline for the Wide-Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRSTAFTA) instrument includes a single wide-field channel (WFC) instrument for both imaging and slit-less spectroscopy. The only routinely moving part during scientific observations for this wide-field channel is the element wheel (EW) assembly. This filter-wheel assembly will have 8 positions that will be populated with 6 bandpass filters, a blank position, and a Grism that will consist of a three-element assembly to disperse the full field with an undeviated central wavelength for galaxy redshift surveys. All filter elements in the EW assembly will be made out of fused silica substrates (110 mm diameter) that will have the appropriate bandpass coatings according to the filter designations (Z087, Y106, J129, H158, F184, W149 and Grism). This paper presents and discusses the performance (including spectral transmission and reflectedtransmitted wavefront error measurements) of a subset of bandpass filter coating prototypes that are based on the WFC instrument filter compliment. The bandpass coating prototypes that are tested in this effort correspond to the Z087, W149, and Grism filter elements. These filter coatings have been procured from three different vendors to assess the most challenging aspects in terms of the in-band throughput, out of band rejection (including the cut-on and cutoff slopes), and the impact the wavefront error distortions of these filter coatings will have on the imaging performance of the de-field channel in the WFIRSTAFTA observatory.

  5. Performance of drippers in two filtering systems using sewage treatment effluent

    Directory of Open Access Journals (Sweden)

    Alexandre B. Dalri

    Full Text Available ABSTRACT The objective of this study was to evaluate the performance of three models of drippers using treated sewage effluent, pure and diluted, and two types of filters, screen and disc. The treated sewage effluent used in the experiment was collected from the city’s treatment plant. The experiment included 12 lateral lines with three types of emitters to apply pure (100% and diluted (50% effluent filtered by screen and disc filters. The combination of those factors set the treatments: T1 (50% effluent diluted in fresh water filtered by a screen filter; T2 (50% effluent diluted in fresh water filtered by a disc filter; T3 (pure effluent filtered by a screen filter; T4 (pure effluent filtered by a disc filter. The results showed that the flat type emitter is less sensitive to clogging, the disc filter is the most suitable to prevent clogging and the use of pure or diluted sewage effluent increases the drippers’ flow rate coefficient of variation.

  6. Optimizing nitrification in biological rapid sand filters: Diagnosing and supplementing micronutrients needed for proper filter performance

    DEFF Research Database (Denmark)

    Lee, Carson Odell; Wagner, Florian Benedikt; Boe-Hansen, Rasmus

    Nitrification is an important biological process commonly used in biological drinking water filters to remove ammonium from drinking water. Recent research has shown that a lack of micronutrients could be limiting the performance of these filters. Because nitrification is a biological process, ca...... to be an important diagnostic tool that could decrease regulatory hurdles, and save time and money....

  7. UV Bandpass Optical Filter for Microspectometers

    NARCIS (Netherlands)

    Correia, J.H.; Emadi, A.R.; Wolffenbuttel, R.F.

    2006-01-01

    This paper describes the design and modeling of a UV bandpass optical filter for microspectrometers. The materials used for fabricating the multilayer UV filter are: silicon dioxide (SiO2), titanium dioxide (TiO2) and yttrium oxide (Y2O3). The optical filter shows a bandpass response wavelength in

  8. Alternating current line-filter based on electrochemical capacitor utilizing template-patterned graphene.

    Science.gov (United States)

    Wu, Zhenkun; Li, Liyi; Lin, Ziyin; Song, Bo; Li, Zhuo; Moon, Kyoung-Sik; Wong, Ching-Ping; Bai, Shu-Lin

    2015-06-17

    Aluminum electrolytic capacitors (AECs) are widely used for alternating current (ac) line-filtering. However, their bulky size is becoming more and more incompatible with the rapid development of portable electronics. Here we report a scalable process to fabricate miniaturized graphene-based ac line-filters on flexible substrates at room temperature. In this work, graphene oxide (GO) is reduced by patterned metal interdigits at room temperature and used directly as the electrode material. The as-fabricated device shows a phase angle of -75.4° at 120 Hz with a specific capacitance of 316 µF/cm(2) and a RC time constant of 0.35 ms. In addition, it retains 97.2% of the initial capacitance after 10000 charge/discharge cycles. These outstanding performance characteristics of our device demonstrate its promising to replace the conventional AECs for ac line filtering.

  9. Long term performance of particulate air-filter in an office environment

    DEFF Research Database (Denmark)

    Afshari, Alireza; Iqbal, Ahsan; Bergsøe, Niels Christian

    2015-01-01

    The present article is based on initial findings of an ongoing study. The objective of present study is to analyse the long term performance of an air particulate filter with and without ionizer. To study the performance of the air filters, a test rig was built in the Danish Building Research Ins...

  10. Hybrid Filter Membrane

    Science.gov (United States)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  11. Field evaluation of prototype electrofibrous filters

    International Nuclear Information System (INIS)

    Kuhl, W.D.; Bergman, W.; Biermann, A.H.; Lum, B.Y.

    1982-01-01

    New prototype electrofibrous filters were designed, built and evaluated in laboratory tests and in field installations. Two prototypes were designed for use in nuclear ventilation ducts as prefilters to HEPA filters. One prototype is designed to be a permanent component of the ventilation system while the other is a disposable unit. The disposable electrofibrous prefilter was installed in the exhaust stream of a glove box in which barrels of uranium turnings are burned. Preliminary tests show the disposal prefilter is effectively prolonging the HEPA filter life. An earlier prototype of the rolling prefilter was upgraded to meet the increased requirements for installation in a nuclear facility. This upgraded prototype was evaluated in the fire test facility at LLNL and shown to be effective in protecting HEPA filters from plugging under the most severe smoke conditions. The last prototype described in this report is a recirculating air filter. After demonstrating a high performance in laboratory tests the unit was shipped to Savannah River where it is awaiting installation in a Pu fuel fabrication facility. An analysis of the particulate problem in Savannah River indicates that four recirculating air filter will save $172,000 per year in maintenance costs

  12. Evaluation of self-contained HEPA filter

    Energy Technology Data Exchange (ETDEWEB)

    Arndt, T.E. [Westinghouse Hanford Company, Richland, WA (United States)

    1995-02-01

    This paper presents the results of an evaluation of a self-contained high-efficiency particulate air filter (SHEPA) used in nuclear applications. A SCHEPA consists of filter medium encapsulated in a casing that is part of the system boundary. The SCHEPA filter serves as a combination of filter housing and filter. The filter medium is attached directly to the casing using adhesive as a bonding agent. A cylindrical connection in the middle of the end caps connects the filter assembly to adjoining ductwork. The SCHEPA must perform the functions of a filter housing, filter frame, and filter. It was recognized that the codes and standards do not address the SCHEPA specifically. Therefore, the investigation evaluated the SCHEPA against current codes and standards related to the functional requirements of an air-cleaning system. The specific standards used are required by DOE Order 6430.1A{sup 1} and include ASME N509{sup 3}, ASME N510{sup 4}, ERDA 76-21{sup 5}, MIL-F-51068F{sup 6}, NFPA 90A, {sup 7} and NFPA 91{sup 8}. The evaluation does not address whether the SCHEPA as a standard (off-the-shelf) filter could be upgraded to meet the current code requirements for an air-cleaning unit. The evaluation also did not consider how the SCHEPA was used in a system (e.g., whether it was under positive or negative pressure or whether it served as an air inlet filter to prevent contamination releases under system pressurization). The results of the evaluation show that, the SCHEPA filter does not meet design, fabrication, testing, and documentation requirements of ASME N509{sup 3} and ASME N510{sup 4}. The paper will identify these deficiencies. Specific exhaust system requirements and application should be considered when an evaluation of the SCHEPA filter is being performed in existing systems. When new designs are being comtemplated, other types of HEPA filter housings can be used in lieu of the SCHEPA filter.

  13. Nonlinear performance characterization in an eight-pole quasi-elliptic bandpass filter

    International Nuclear Information System (INIS)

    Mateu, J; Collado, C; Menendez, O; O'Callaghan, J M

    2004-01-01

    In this work we predict the nonlinear behaviour of an eight-pole quasi-elliptic bandpass high temperature superconducting (HTS) filter with an equivalent circuit extracted from intermodulation measurements performed at the centre of the filter passband. We present measurements that show that the equivalent circuit is able to predict the intermodulation products produced by the filter when driven by two in-band or out-of-band sinusoidal signals. Numerical techniques based on harmonic balance are used to extract the elements of the equivalent circuit and to simulate its nonlinear performance

  14. Optimal Performance Simulation of a Metal Fiber Filter for Capturing Radioactive Aerosols

    International Nuclear Information System (INIS)

    Lee, Seung Uk; Lee, Chan Hyun; Park, Min Chan; Lee, Jaek Eun

    2016-01-01

    In this study, the metal fiber filter used for removing radioactive aerosol is systematically dissected and studied in order to figure out the optimal design which can be applied to the actual operation conditions in nuclear heating, ventilation and air conditioning (HVAC) systems for particle collection. In order to derive the optimal design for metal fiber HEPA filter, a numerical model is developed and its results are compared to experimental data to test reliability. Moreover, sensitivity analysis is performed using important parameters to determine which parameters have large influence on the filter performance. Using the model developed in this study, optimal design parameters for pleated metal fiber filters are derived which include fiber diameter less than 4 μm, solidity larger than 0.2, filter thickness larger than 1 mm, and face velocity lower than 5 cm/s. With these conditions, the metal filter qualified for the HEPA filter standard which specified 99.97% efficiency in the 0.3 μm particle size range.

  15. Performance of Magnetic Filter for Separation of Magnetic Gel Particles

    OpenAIRE

    栗延, 俊太郎; 尾崎, 博明; 渡辺, 恒雄; クリノブ, シュンタロウ; オザキ, ヒロアキ; ワタナベ, ツネオ; Shuntaro, KURINOBU; Hiroaki, OZAKI; Tuneo, WATANABE

    2003-01-01

    We have developed a new wastewater treatment process using magnetic gel particles containing immobilized microorganisms and magnetic particles. The performance of magnetic gel particles using a magnetic filter is very important to control the process. In this study, the performance of a magnetic filter was studied for magnetic gel, particles. Agar particles containing magnetite particles were used as gel particles. The recovery and the relative retention area of magnetic gel particles on the ...

  16. A Codesigned Compact Dual-Band Filtering Antenna with PIN Loaded for WLAN Applications

    Directory of Open Access Journals (Sweden)

    Shanxiong Chen

    2014-01-01

    Full Text Available A codesigned compact dual-band filtering antenna incorporating a PIN diode for 2.45/5.2 GHz wireless local area network (WLAN applications is proposed in this paper. The integrated filtering antenna system consists of a simple monopole radiator, a microstrip dual-band band-pass filter, and a PIN diode. The performance of the filtering antenna is notably promoted by optimizing the impedance between the antenna and the band-pass filter, with good selectivity and out-of-band rejection. The design process follows the approach of the synthesis of band-pass filter. In addition, the PIN diode is incorporated in the filtering antenna for further size reduction, which also widens the coverage of the bandwidth by about 230% for 2.4 GHz WLAN. With the presence of small size and good filtering performances, the proposed filtering antenna is a good candidate for the wireless communication systems. Prototypes of the proposed filtering antenna incorporating a PIN diode are fabricated and measured. The measured results including return losses and radiation patterns are presented.

  17. UWB Bandpass Filter with Ultra-wide Stopband based on Ring Resonator

    Science.gov (United States)

    Kazemi, Maryam; Lotfi, Saeedeh; Siahkamari, Hesam; Mohammadpanah, Mahmood

    2018-04-01

    An ultra-wideband (UWB) bandpass filter with ultra-wide stopband based on a rectangular ring resonator is presented. The filter is designed for the operational frequency band from 4.10 GHz to 10.80 GHz with an ultra-wide stopband from 11.23 GHz to 40 GHz. The even and odd equivalent circuits are used to achieve a suitable analysis of the proposed filter performance. To verify the design and analysis, the proposed bandpass filter is simulated using full-wave EM simulator Advanced Design System and fabricated on a 20mil thick Rogers_RO4003 substrate with relative permittivity of 3.38 and a loss tangent of 0.0021. The proposed filter behavior is investigated and simulation results are in good agreement with measurement results.

  18. Design and experimentally measure a high performance metamaterial filter

    Science.gov (United States)

    Xu, Ya-wen; Xu, Jing-cheng

    2018-03-01

    Metamaterial filter is a kind of expecting optoelectronic device. In this paper, a metal/dielectric/metal (M/D/M) structure metamaterial filter is simulated and measured. Simulated results indicate that the perfect impedance matching condition between the metamaterial filter and the free space leads to the transmission band. Measured results show that the proposed metamaterial filter achieves high performance transmission on TM and TE polarization directions. Moreover, the high transmission rate is also can be obtained when the incident angle reaches to 45°. Further measured results show that the transmission band can be expanded through optimizing structural parameters. The central frequency of the transmission band is also can be adjusted through optimizing structural parameters. The physical mechanism behind the central frequency shifted is solved through establishing an equivalent resonant circuit model.

  19. High-Performance Monitoring Architecture for Large-Scale Distributed Systems Using Event Filtering

    Science.gov (United States)

    Maly, K.

    1998-01-01

    Monitoring is an essential process to observe and improve the reliability and the performance of large-scale distributed (LSD) systems. In an LSD environment, a large number of events is generated by the system components during its execution or interaction with external objects (e.g. users or processes). Monitoring such events is necessary for observing the run-time behavior of LSD systems and providing status information required for debugging, tuning and managing such applications. However, correlated events are generated concurrently and could be distributed in various locations in the applications environment which complicates the management decisions process and thereby makes monitoring LSD systems an intricate task. We propose a scalable high-performance monitoring architecture for LSD systems to detect and classify interesting local and global events and disseminate the monitoring information to the corresponding end- points management applications such as debugging and reactive control tools to improve the application performance and reliability. A large volume of events may be generated due to the extensive demands of the monitoring applications and the high interaction of LSD systems. The monitoring architecture employs a high-performance event filtering mechanism to efficiently process the large volume of event traffic generated by LSD systems and minimize the intrusiveness of the monitoring process by reducing the event traffic flow in the system and distributing the monitoring computation. Our architecture also supports dynamic and flexible reconfiguration of the monitoring mechanism via its Instrumentation and subscription components. As a case study, we show how our monitoring architecture can be utilized to improve the reliability and the performance of the Interactive Remote Instruction (IRI) system which is a large-scale distributed system for collaborative distance learning. The filtering mechanism represents an Intrinsic component integrated

  20. Controllable liquid colour-changing lenses with microfluidic channels for vision protection, camouflage and optical filtering based on soft lithography fabrication.

    Science.gov (United States)

    Zhang, Min; Li, Songjing

    2016-01-01

    In this work, liquid colour-changing lenses for vision protection, camouflage and optical filtering are developed by circulating colour liquids through microfluidic channels on the lenses manually. Soft lithography technology is applied to fabricate the silicone liquid colour-changing layers with microfluidic channels on the lenses instead of mechanical machining. To increase the hardness and abrasion resistance of the silicone colour-changing layers on the lenses, proper fabrication parameters such as 6:1 (mass ration) mixing proportion and 100 °C curing temperature for 2 h are approved for better soft lithography process of the lenses. Meanwhile, a new surface treatment for the irreversible bonding of silicone colour-changing layer with optical resin (CR39) substrate lens by using 5 % (volume ratio) 3-Aminopropyltriethoxysilane solution is proposed. Vision protection, camouflage and optical filtering functions of the lenses are investigated with different designs of the channels and multi-layer structures. Each application can not only well achieve their functional demands, but also shows the advantages of functional flexibility, rapid prototyping and good controllability compared with traditional ways. Besides optometry, some other designs and applications of the lenses are proposed for potential utility in the future.

  1. Study of loading/air back-pulse cleaning cycles on the performance of ceramic membrane filters

    International Nuclear Information System (INIS)

    Waggoner, Charles; Alderman, Steven; Parsons, Michael; Hogoncamp, Kristina; Alderman, Steven

    2007-01-01

    Available in abstract form only. Full text of publication follows: The most commonly identified threats to conventional glass fiber HEPA filter performance are moisture and rapid blinding of filters by smoke. Regenerable filter media composed of ceramics or sintered metal can be utilized as pre-filters to protect the more vulnerable glass fiber HEPA filters in the event of upset conditions. Additionally, used in a pre-filtering application, the use of these regenerable filters can potentially extend the lifetime of conventional units. A series of tests have been conducted using CeraMem ceramic membrane filters in an effort to evaluate their performance after repeated loading and air back pulse cleaning. This was done in an effort to access filter performance after repeated loading/cleaning cycles. The filters were loaded using a solid potassium chloride aerosol challenge. The filters were evaluated for pressure drop and filtering efficiency changes from one cleaning cycle to the next. Additionally, the particle size distribution of the aerosol penetrating the filters was measured. (authors)

  2. Effect of Coil Current on the Properties of Hydrogenated DLC Coatings Fabricated by Filtered Cathodic Vacuum Arc Technique

    Science.gov (United States)

    Liao, Bin; Ouyang, Xiaoping; Zhang, Xu; Wu, Xianying; Bian, Baoan; Ying, Minju; Jianwu, Liu

    2018-01-01

    We successfully prepared hydrogenated DLC (a-C:H) with a thickness higher than 25 μm on stainless steel using a filtered cathode vacuum arc (FCVA) technique. The structural and mechanical properties of DLC were systematically analyzed using different methods such as x-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, Vickers hardness, nanohardness, and friction and wear tests. The effect of coil current on the arc voltage, ion current, and mechanical properties of resultant films was systematically investigated. The novelty of this study is the fabrication of DLC with Vickers hardness higher than 1500 HV, in the meanwhile with the thickness higher than 30 μm through varying the coil current with FCVA technique. The results indicated that the ion current, deposition rate, friction coefficient, and Vickers hardness of DLC were significantly affected by the magnetic field inside the filtered duct.

  3. Mode-routed fiber-optic add-drop filter

    Science.gov (United States)

    Moslehi, Behzad (Inventor); Black, Richard James (Inventor); Shaw, Herbert John (Inventor)

    2000-01-01

    New elements mode-converting two-mode grating and mode-filtering two-mode coupler are disclosed and used as elements in a system for communications, add-drop filtering, and strain sensing. Methods of fabrication for these new two-mode gratings and mode-filtering two-mode couplers are also disclosed.

  4. Performance evaluation and modelling studies of gravel--coir fibre--sand multimedia stormwater filter.

    Science.gov (United States)

    Samuel, Manoj P; Senthilvel, S; Tamilmani, D; Mathew, A C

    2012-09-01

    A horizontal flow multimedia stormwater filter was developed and tested for hydraulic efficiency and pollutant removal efficiency. Gravel, coconut (Cocos nucifera) fibre and sand were selected as the media and filled in 1:1:1 proportion. A fabric screen made up of woven sisal hemp was used to separate the media. The adsorption behaviour of coir fibre was determined in a series of column and batch studies and the corresponding isotherms were developed. The hydraulic efficiency of the filter showed a diminishing trend as the sediment level in inflow increased. The filter exhibited 100% sediment removal at lower sediment concentrations in inflow water (>6 g L(-1)). The filter could remove NO3(-), SO4(2-) and total solids (TS) effectively. Removal percentages of Mg(2+) and Na(+) were also found to be good. Similar results were obtained from a field evaluation study. Studies were also conducted to determine the pattern of silt and sediment deposition inside the filter body. The effects of residence time and rate of flow on removal percentages of NO3(-) and TS were also investigated out. In addition, a multiple regression equation that mathematically represents the filtration process was developed. Based on estimated annual costs and returns, all financial viability criteria (internal rate of return, net present value and benefit-cost ratio) were found favourable and affordable to farmers for investment in the developed filtration system. The model MUSIC was calibrated and validated for field conditions with respect to the developed stormwater filter.

  5. Design and fabrication of magnetic coolant filter

    Science.gov (United States)

    Prashanth, B. N.

    2017-07-01

    Now a day's use of coolants in industry has become dominant because of high production demands. Coolants not only help in speeding up the production but also provide many advantages in the metal working operation. As the consumption of coolants is very high a system is badly in need, so as to recirculate the used coolant. Also the amount of hazardous waste generated by industrial plants has become an increasingly costly problem for the manufactures and an additional stress on the environment. Since the purchase and disposal of the spent cutting fluids is becoming increasingly expensive, fluid recycling is a viable option for minimizing the cost. Separation of metallic chips from the coolants by using magnetic coolant separation has proven a good management and maintenance of the cutting fluid. By removing the metallic chips, the coolant life is greatly extended, increases the machining quality and reduces downtime. Above being the case, a magnetic coolant filter is developed which utilizes high energy permanent magnets to develop a dense magnetic field along a narrow flow path into which the contaminated coolant is directed. The ferromagnetic particles captured and aligned by the dense magnetic field, from the efficient filter medium. This enables the unit to remove ferromagnetic particles from the coolant. Magnetic coolant filters use the principle of magnetic separation to purify the used coolant. The developed magnetic coolant separation has the capability of purifying 40 litres per minute of coolant with the size of the contaminants ranging from 1 µm to 30 µm. The filter will be helpful in saving the production cost as the cost associated with the proposed design is well justified by the cost savings in production. The magnetic field produced by permanent magnets will be throughout the area underneath the reservoir. This produces magnetic field 30mm above the coolant reservoir. Very fine particles are arrested without slip. The magnetic material used will not

  6. Performance of High Temperature Filter System for Radioactive Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Park, Seung Chul; Hwang, Tae Won; Shin, Sang Won; Ha, Jong Hyun; Kim, Hey Suk; Park, So Jin

    2004-01-01

    Important operation parameters and performance of a high temperature ceramic candle filter system were evaluated through a series of demonstration tests at a pilot-scale vitrification plant. At the initial period of each test, due to the growth of dust cake on the surface of ceramic candles, the pressure drop across the filter media increased sharply. After that it became stable to a certain range and varied continuously proportion to the face velocity of off-gas. On the contrary, at the initial period of each test, the permeability of filter element decreased rapidly and then it became stable. Back flushing of the filter system was effective under the back flushing air pressure range of 3∼5 bar. Based on the dust concentrations measured by iso-kinetic dust sampling at the inlet and outlet point of HTF, the dust collection efficiency of HTF evaluated. The result met the designed performance value of 99.9%. During the demonstration tests including a hundred hour long test, no specific failure or problem affecting the performance of HTF system were observed.

  7. Performance behavior of prediction filters for respiratory motion compensation in radiotherapy

    Directory of Open Access Journals (Sweden)

    Jöhl Alexander

    2017-09-01

    Full Text Available Introduction: In radiotherapy, tumors may move due to the patient’s respiration, which decreases treatment accuracy. Some motion mitigation methods require measuring the tumor position during treatment. Current available sensors often suffer from time delays, which degrade the motion mitigation performance. However, the tumor motion is often periodic and continuous, which allows predicting the motion ahead. Method and Materials: A couch tracking system was simulated in MATLAB and five prediction filters selected from literature were implemented and tested on 51 respiration signals (median length: 103 s. The five filters were the linear filter (LF, the local regression (LOESS, the neural network (NN, the support vector regression (SVR, and the wavelet least mean squares (wLMS. The time delay to compensate was 320 ms. The normalized root mean square error (nRMSE was calculated for all prediction filters and respiration signals. The correlation coefficients between the nRMSE of the prediction filters were computed. Results: The prediction filters were grouped into a low and a high nRMSE group. The low nRMSE group consisted of the LF, the NN, and the wLMS with a median nRMSE of 0.14, 0.15, and 0.14, respectively. The high nRMSE group consisted of the LOESS and the SVR with both a median nRMSE of 0.34. The correlations between the low nRMSE filters were above 0.87 and between the high nRMSE filters it was 0.64. Conclusion: The low nRMSE prediction filters not only have similar median nRMSEs but also similar nRMSEs for the same respiration signals as the high correlation shows. Therefore, good prediction filters perform similarly for identical respiration patterns, which might indicate a minimally achievable nRMSE for a given respiration pattern.

  8. Fabrication of porous zirconia using filter paper template

    International Nuclear Information System (INIS)

    Deng Yuhua; Wei Pan

    2005-01-01

    In this work, porous zirconia ceramic was synthesized using filter papers as a template. Special attention is paid to whether the structural of the filter paper can be transferred to the zirconia structure. Microstructure of so synthesized porous zirconia was observed with SEM and the phase was determined by XRD. The surface area and the pore were investigated with an automatic volumetric sorption analyzer. It has been found that the morphology of the template transmit to the porous zirconia quite well. (orig.)

  9. Performance of multiple HEPA filters against plutonium aerosols

    International Nuclear Information System (INIS)

    Gonzales, M.; Elder, J.; Ettinger, H.

    1975-01-01

    Performance of multiple stages of High Efficiency Particulate Air (HEPA) filters against aerosols similar to those produced by plutonium processing facilities has been verified as part of an experimental program. A system of three HEPA filters in series was tested against 238 PuO 2 aerosol concentrations as high as 3.3 x 10 10 d/s-m 3 . An air nebulization aerosol generation system, using ball milled plutonium oxide suspended in water, provided test aerosols with size characteristics similar to those defined by a field sampling program at several different AEC plutonium processing facilities. Aerosols have been produced ranging from 0.22 μm activity median aerodynamic diameter (amad) to 1.6 μm amad. The smaller size distributions yield 10 to 30 percent of the total activity in the less than 0.22 μm size range allowing efficiency measurement as a function of size for the first two HEPA filters in series. The low level of activity on the sampler downstream of the third HEPA filter (approximately 0.01 c/s) precludes aerosol size characterization downstream of this filter. For the first two HEPA filters, overall efficiency, and efficiency as a function of size, exceeds 99.98 percent including the <0.12 μm and the 0.12 to 0.22 μm size intervals. Efficiency of the third HEPA filter is somewhat lower with an overall average efficiency of 99.8 percent and an apparent minimum efficiency of 99.5 percent. This apparently lower efficiency is an artifact due to the low level of activity on the sampler downstream of HEPA No. 3 and the variations due to counting statistics. Recent runs with higher concentrations, thereby improving statistical variations, show efficiencies well within minimum requirements. (U.S.)

  10. Performance evaluation of nuclear grade filters for the Trupact-I pressure equalization system

    International Nuclear Information System (INIS)

    Sandoval, R.P.; Joseph, B.J.

    1987-01-01

    The performance of high-efficiency-particulate-air and ultra-low- penetration-air filters subjected to extreme environments of temperature, shock, pressure, and particulate loading was evaluated in a test program at the Sandia National Laboratories. The test program was initiated to evaluate the feasibility of using commercially available nuclear-grade filters in the filtered pressure equalization system of a contact-handled transuranic waste transport system, called TRUPACT-I. The filtered pressure equalization system of TRUPACT-I assures containment of the activity within the limits permitted by federal regulations and simultaneously equalizes the pressure between the cavity of the packaging and the environment, and minimizes the buildup of radiolytically generated gases. The filters were exposed to temperatures, pressures and stresses that exceed expected environments in normal and accident conditions of transport. The performance of the test filters was determined by measuring and quantifying filter efficiency and the Darcy constant. In addition, the integrity of the filter housing was evaluated using non-destructive helium leak testing. The details of the test program and results obtained from the tests are presented in this paper

  11. Evaluation of the effect of media velocity on HEPA filter performance

    International Nuclear Information System (INIS)

    Alderman, Steven; Parsons, Michael; Hogancamp, Kristina; Norton, O. Perry; Waggoner, Charles

    2007-01-01

    Section FC of the ASME AG-1 Code addresses glass fiber HEPA filters and restricts the media velocity to a maximum of 2.54 cm/s (5 ft/min). Advances in filter media technology allow glass fiber HEPA filters to function at significantly higher velocities and still achieve HEPA performance. However, diffusional capture of particles < 100 nm is reduced at higher media velocities due to shorter residence times within the media matrix. Therefore, it is unlikely that higher media velocities for HEPA filters will be allowed without data to demonstrate the effect of media velocity on removal of particles in the smaller size classes. In order to address this issue, static testing has been conducted to generate performance related data and a range of dynamic testing has provided data regarding filter lifetimes, loading characteristics, changes in filter efficiency and the most penetrating particle size over time. Testing was conducted using 31 cm x 31 cm x 29 cm deep pleat HEPA filters supplied from two manufacturers. Testing was conducted at media velocities ranging from 2.0-4.5 cm/s with a solid aerosol challenge composed of potassium chloride. Two set of media velocity data were obtained for each filter type. In one set of evaluations, the maximum aerosol challenge particle size was limited to 3 μm, while particles above 3 μm were not constrained in the second set. This provided for considerable variability in the challenge mass mean diameter and overall mass loading rate. Results of this testing will be provided to the ASME AG-1 FC Committee for consideration in future versions of the HEPA standard. In general, the initial filter efficiency decreased with increasing media velocity. However, initial filter efficiencies were generally good in all cases. Filter efficiency values averaged over the first ten minute of the loading cycle ranged from 99.970 to 99.996 %. Additionally, the most penetrating particle size was observed to decrease with increasing media velocity

  12. HEPA Filter Performance under Adverse Conditions

    International Nuclear Information System (INIS)

    Parsons, Michael; Hogancamp, Kristina; Alderman, Steven; Waggoner, Charles

    2007-01-01

    This study involved challenging nuclear grade high-efficiency particulate air (HEPA) filters under a variety of conditions that can arise in Department of Energy (DOE) applications such as: low or high RH, controlled and uncontrolled challenge, and filters with physically damaged media or seals (i.e., leaks). Reported findings correlate filter function as measured by traditional differential pressure techniques in comparison with simultaneous instrumental determination of up and down stream PM concentrations. Additionally, emission rates and failure signatures will be discussed for filters that have either failed or exceeded their usable lifetime. Significant findings from this effort include the use of thermocouples up and down stream of the filter housing to detect the presence of moisture. Also demonstrated in the moisture challenge series of tests is the effect of repeated wetting of the filter. This produces a phenomenon referred to as transient failure before the tensile strength of the media weakens to the point of physical failure. An evaluation of the effect of particle size distribution of the challenge aerosol on loading capacity of filters is also included. Results for soot and two size distributions of KCl are reported. Loading capacities for filters ranged from approximately 70 g of soot to nearly 900 g for the larger particle size distribution of KCl. (authors)

  13. Exposure to space radiation of high-performance infrared multilayer filters

    Science.gov (United States)

    Seeley, J. S.; Hawkins, G. J.; Hunneman, R.

    1991-01-01

    The University of Reading experiment exposed IR interference filters and crystal substrates on identical earth facing and leading-edge sites of the Long Duration Exposure Facility (LDEF). Filters mostly comprised multilayer coatings of lead telluride (PbTe)/II-IV on germanium (Ge) and other substrates: crystals comprised CdTe, MgF2, sapphire, quartz, silicon, and some softer materials. Identical control samples were maintained in the laboratory throughout the experiment. The filters were novel in their design, construction and manufacture, and categorized high-performance because of their ability to resolve emission spectra of the important atmospheric gases for various purposes in remote sensing. No significant changes were found in the spectra of the hard-coated filters or in the harder crystals (the softer materials were degraded to an extent). By virtue of this well-documented and long exposure in LDEF, the qualification of the filter type is significantly improved for its future requirements.

  14. Development of a method for rapid and simultaneous monitoring of particulate and dissolved radiocesium in water with nonwoven fabric cartridge filters

    International Nuclear Information System (INIS)

    Hideki Tsuji; Tetsuo Yasutaka; Yoshihiko Kondo; Yasukazu Suzuki

    2014-01-01

    A method for the rapid and simultaneous monitoring of particulate and dissolved 137 Cs concentration in water was developed. This method uses pleated polypropylene nonwoven fabric filter to collect particulate radiocesium, and nonwoven fabric impregnated with Prussian blue (PB) to absorb dissolved radiocesium. The fabric was placed into cylindrical plastic cartridges (SS-cartridge and PB-cartridge). Traditional monitoring methods, such as evaporative concentration, often require time for pre-processing. However, this method described requires much less pre-processing time before the detection. Experiments conducted with simulated river water demonstrated that almost all of the suspended solids weight was collected in the SS-cartridge, and that more than 92 % of dissolved 137 Cs was absorbed onto the two PB-cartridges by 2.5 L/min flow rate when the range of the pH was 6-8. This device was applied to monitor Abukuma River water at two locations and the results were compared with those obtained using the filtrating and evaporative concentration method. The suspended solids concentration in river water, calculated by weight gain of the SS-cartridge and by sediment weight after filtration with a 0.45-μm membrane filter, agreed well. The radioactivity of the particulate and dissolved 137 Cs also agreed well in one of the two replications of this method. In addition, the required time for pre-processing was reduced by 60 times that by filtrating and evaporative concentration method. This method can separately collect and concentrate particulate and dissolved radiocesium rapidly and simultaneously in the field. (author)

  15. Spectral and Wavefront Error Performance of WFIRST-AFTA Bandpass Filter Coating Prototypes

    Science.gov (United States)

    Quijada, Manuel A.; Seide, Laurie; Pasquale, Bert A.; McMann, Joseph C.; Hagopian, John G.; Dominguez, Margaret Z.; Gong, Quian; Marx, Catherine T.

    2016-01-01

    The Cycle 5 design baseline for the Wide-Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRST/AFTA) instrument includes a single wide-field channel (WFC) instrument for both imaging and slit-less spectroscopy. The only routinely moving part during scientific observations for this wide-field channel is the element wheel (EW) assembly. This filter-wheel assembly will have 8 positions that will be populated with 6 bandpass filters, a blank position, and a Grism that will consist of a three-element assembly to disperse the full field with an undeviated central wavelength for galaxy redshift surveys. All filter elements in the EW assembly will be made out of fused silica substrates (110 mm diameter) that will have the appropriate bandpass coatings according to the filter designations (Z087, Y106, J129, H158, F184, W149 and Grism). This paper presents and discusses the performance (including spectral transmission and reflected/transmitted wavefront error measurements) of a subset of bandpass filter coating prototypes that are based on the WFC instrument filter compliment. The bandpass coating prototypes that are tested in this effort correspond to the Z087, W149, and Grism filter elements. These filter coatings have been procured from three different vendors to assess the most challenging aspects in terms of the in-band throughput, out of band rejection (including the cut-on and cutoff slopes), and the impact the wavefront error distortions of these filter coatings will have on the imaging performance of the wide-field channel in the WFIRST/AFTA observatory.

  16. Performance-Based Technology Selection Filter description report

    International Nuclear Information System (INIS)

    O'Brien, M.C.; Morrison, J.L.; Morneau, R.A.; Rudin, M.J.; Richardson, J.G.

    1992-05-01

    A formal methodology has been developed for identifying technology gaps and assessing innovative or postulated technologies for inclusion in proposed Buried Waste Integrated Demonstration (BWID) remediation systems. Called the Performance-Based Technology Selection Filter, the methodology provides a formalized selection process where technologies and systems are rated and assessments made based on performance measures, and regulatory and technical requirements. The results are auditable, and can be validated with field data. This analysis methodology will be applied to the remedial action of transuranic contaminated waste pits and trenches buried at the Idaho National Engineering Laboratory (INEL)

  17. Performance-Based Technology Selection Filter description report

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, M.C.; Morrison, J.L.; Morneau, R.A.; Rudin, M.J.; Richardson, J.G.

    1992-05-01

    A formal methodology has been developed for identifying technology gaps and assessing innovative or postulated technologies for inclusion in proposed Buried Waste Integrated Demonstration (BWID) remediation systems. Called the Performance-Based Technology Selection Filter, the methodology provides a formalized selection process where technologies and systems are rated and assessments made based on performance measures, and regulatory and technical requirements. The results are auditable, and can be validated with field data. This analysis methodology will be applied to the remedial action of transuranic contaminated waste pits and trenches buried at the Idaho National Engineering Laboratory (INEL).

  18. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, BAGHOUSE FILTRATION PRODUCTS, TETRATEC PTFE PRODUCTS, TETRATEX 6212 FILTER SAMPLE

    Science.gov (United States)

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size of those particles equal to and smalle...

  19. Progress on the development of NbZr Radio frequency band reject filters

    International Nuclear Information System (INIS)

    Hudak, J.J.; Alper, M.; Cotte, D.; Gardner, C.G.; Harvey, A.

    1983-01-01

    This chapter reports on the design and testing of a tunable superconducting filter element fabricated from Nb25%Zr having a transition temperature of 11 K. The filter element will serve as a component in a multielement filter bank to be cooled to less than 10 K by a two stage Gifford-McMahon refrigerator. A radio frequency (RF) interference rejection system composed of a set of tunable superconducting filter elements is being developed to supplement conventional interference rejection tehcniques. The thermal loading performance of the 8.5 K Gifford-McMahon refrigerator is found to exceed 2 watts at 10 K on the second stage with a 10 watt loading on the first stage. A superconducting filter bank consisting of tunable narrow band RF filters applied to strong interfering signals can be used to match the dynamic range of the RF signal environment to that of the receiving system

  20. Nuclear target foil fabrication for the Romano Event

    International Nuclear Information System (INIS)

    Weed, J.W.; Romo, J.G. Jr.; Griggs, G.E.

    1984-01-01

    The Vacuum Processes Lab, of LLNL's M.E. Dept. - Material Fabrication Division, was requested to provide 250 coated Parylene target foils for a nuclear physics experiment titled the ROMANO Event. Due to the developmental nature of some of the fabrication procedures, approximately 400 coated foils were produced to satisfy the event's needs. The foils were used in the experiment as subkilovolt x-ray, narrow band pass filters, and wide band ultraviolet filters. This paper is divided into three sections describing: (1) nuclear target foil fabrication, (2) Parylene substrate preparation and production, and (3) foil and substrate inspections

  1. Performance of HEPA Filter Medium under Accidental Conditions in Nuclear Installations

    International Nuclear Information System (INIS)

    El-Fawal, M.M.

    2011-01-01

    High Efficiency Particulate Air filters (HEPA Filters) are the main components in ventilation or confinement system for the retention of radioactive particles in nuclear installations. During abnormal conditions or accidents (e.g. fire accident, criticality in a nuclear fuel cycle facility and LOCA in power reactors) the resulting heat, smoke and humidity affect to a large extent the performance of HEPA filters. As a part of a research programme aims at the evaluation and improvement of the performance of HEPA filter media during abnormal conditions, the effect of elevated temperatures up to 400 degree C on the resistance of medium to penetration of water under pressure has been investigated. The test results showed that the resistance of the medium to penetration of water decreases with increase in temperature and thermal exposure time. This could be attributed to burnout of the organic binder used to improve the resistance of the medium to the penetration of water. The results also showed that at 400 degree C the resistance of the medium to the penetration of water disappeared. This was confirmed by inspection of the filter medium samples after exposure to high temperature using a scanning electron microscope. The inspection of the medium samples showed that the organic binder in the medium was deformed and finally collapsed at 400 degree C. Also, a best estimate model for the relation of filter medium resistance to water penetration under elevated temperature has been implemented. The results of this study can help in establishing a regulatory operating limit conditions (OLCs) for HEPA filter operation at high temperatures conditions in nuclear installations

  2. Performance of HEPA Filter Medium under Accidental Conditions in Nuclear Installations

    International Nuclear Information System (INIS)

    ElFawal, M.M.

    2009-01-01

    High Efficiency Particulate Air filters (HEPA Filters) are the main components in ventilation or confinement system for the retention of radioactive particles in nuclear installations. During abnormal conditions or accidents (e.g. fire accident, criticality in a nuclear fuel cycle facility and LOCA in power reactors) the resulting heat, smoke and humidity affect to a large extent the performance of HEPA filters. As a part of a research programme aims at the evaluation and improvement of the performance of HEPA filter media during abnormal conditions, the effect of elevated temperatures up to 400 degree C on the resistance of medium to penetration of water under pressure has been investigated. The test results showed that the resistance of the medium to penetration of water decreases with increase in temperature and thermal exposure time. This could be attributed to burnout of the organic binder used to improve the resistance of the medium to the penetration of water. The results also showed that at 400 degree C the resistance of the medium to the penetration of water disappeared. This was confirmed by inspection of the filter medium samples after exposure to high temperature using a scanning electron microscope. The inspection of the medium samples showed that the organic binder in the medium was deformed and finally collapsed at 400 degree C. Also, a best estimate model for the relation of filter medium resistance to water penetration under elevated temperature has been implemented. The results of this study can help in establishing a regulatory operating limit conditions (OLCs) for HEPA filter operation at high temperatures conditions in nuclear installations.

  3. Performance Evaluation of Two Different Industrial Foam Filters with LiMCA II Data

    Science.gov (United States)

    Syvertsen, Martin; Bao, Sarina

    2015-04-01

    Plant-scale filtration experiments with molten aluminum have been carried out with two different types of 10 × 10 × 2 in, 30 ppi ceramic foam filters. The filters were produced in the same production line where the only difference was the composition of the ceramic slurry used for the filter production. The inclusion contents in the aluminum melt before and after the filters were measured with two constantly running liquid metal cleanliness analyzer (LiMCA) II units. Three methods for analyzing the recorded data are presented. A significant difference in the filtration performance as function of time was found when settling of inclusions in the melt was taken into account. Statistical treatment of the time dependent LiMCA II data was performed.

  4. Novel fabrication method of the peritoneal dialysis filter using silk fibroin with urease fixation system.

    Science.gov (United States)

    Moon, Bo Mi; Choi, Myung-Jin; Sultan, Md Tipu; Yang, Jae Won; Ju, Hyung Woo; Lee, Jung Min; Park, Hyun Jung; Park, Ye Ri; Kim, Soo Hyeon; Kim, Dong Wook; Lee, Min Chae; Jeong, Ju Yeon; Lee, Ok Joo; Sung, Gun Yong; Park, Chan Hum

    2017-10-01

    During the last decade, there has been a great advance in the kidney dialysis system by wearable artificial kidney (WAK) system for end-stage renal disease patients. Uremic solute removal and water regeneration system are the most prerequisite for WAK to work properly. In this study, we designed a filtering membrane system by using immobilized urease silk fibroin filter and evaluated its comparative effectiveness with a PVDF filtering system in peritoneal dialysate regeneration system by urea removal efficacy. We evaluated this membrane's characteristic and performances by conducting SEM-EDX analyze, water-binding abilities and porosity test, removal abilities of urea, cytotoxicity assay and enzyme activity assay. Under the condition for optimization of urease, the percentage removal of urea was about 40% and 60% in 50 mg/dL urea solution by urease immobilized PVDF and silk fibroin scaffolds, respectively. The batch experimental result showed that immobilized filter removed more than 50% of urea in 50 mg/dL urea solution. In addition silk fibroin with urease filter removed 90 percent of urea in the peritoneal dialysate after 24 h filtration. We suggest that silk fibroin with urease fixation filter can be used more effectively for peritoneal dialysate regeneration system, which have hydrophilic property and prolonged enzyme activity. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2136-2144, 2017. © 2016 Wiley Periodicals, Inc.

  5. High-performance implementation of Chebyshev filter diagonalization for interior eigenvalue computations

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, Andreas [Ernst-Moritz-Arndt-Universität Greifswald (Germany); Kreutzer, Moritz [Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany); Alvermann, Andreas, E-mail: alvermann@physik.uni-greifswald.de [Ernst-Moritz-Arndt-Universität Greifswald (Germany); Galgon, Martin [Bergische Universität Wuppertal (Germany); Fehske, Holger [Ernst-Moritz-Arndt-Universität Greifswald (Germany); Hager, Georg [Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany); Lang, Bruno [Bergische Universität Wuppertal (Germany); Wellein, Gerhard [Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany)

    2016-11-15

    We study Chebyshev filter diagonalization as a tool for the computation of many interior eigenvalues of very large sparse symmetric matrices. In this technique the subspace projection onto the target space of wanted eigenvectors is approximated with filter polynomials obtained from Chebyshev expansions of window functions. After the discussion of the conceptual foundations of Chebyshev filter diagonalization we analyze the impact of the choice of the damping kernel, search space size, and filter polynomial degree on the computational accuracy and effort, before we describe the necessary steps towards a parallel high-performance implementation. Because Chebyshev filter diagonalization avoids the need for matrix inversion it can deal with matrices and problem sizes that are presently not accessible with rational function methods based on direct or iterative linear solvers. To demonstrate the potential of Chebyshev filter diagonalization for large-scale problems of this kind we include as an example the computation of the 10{sup 2} innermost eigenpairs of a topological insulator matrix with dimension 10{sup 9} derived from quantum physics applications.

  6. A rigid porous filter and filtration method

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Ta-Kuan; Straub, Douglas, Straub L.; Dennis, Richard A.

    1998-12-01

    The present invention involves a porous rigid filter comprising a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulate from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulate. The present filter has the advantage of requiring fewer filter elements due to the high surface area- to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.

  7. Spatial filters on demand based on aperiodic Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gailevicius, Darius; Purlys, Vytautas; Peckus, Martynas; Gadonas, Roaldas [Laser Research Center, Department of Quantum Electronics, Vilnius University (Lithuania); Staliunas, Kestutis [DONLL, Departament de Fisica, Universitat Politecnica de Catalunya (UPC), Terrassa (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain)

    2017-08-15

    Photonic Crystal spatial filters, apart from stand-alone spatial filtering function, can also suppress multi-transverse-mode operation in laser resonators. Here it is shown that such photonic crystals can be designed by solving the inverse problem: for a given spatial filtering profile. Optimized Photonic Crystal filters were fabricated in photosensitive glass. Experiments have shown that such filters provide a more pronounced filtering effect for total and partial transmissivity conditions. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. High temperature superconducting YBCO microwave filters

    Science.gov (United States)

    Aghabagheri, S.; Rasti, M.; Mohammadizadeh, M. R.; Kameli, P.; Salamati, H.; Mohammadpour-Aghdam, K.; Faraji-Dana, R.

    2018-06-01

    Epitaxial thin films of YBCO high temperature superconductor are widely used in telecommunication technology such as microwave filter, antenna, coupler and etc., due to their lower surface resistance and lower microwave loss than their normal conductor counterparts. Thin films of YBCO were fabricated by PLD technique on LAO substrate. Transition temperature and width were 88 K and 3 K, respectively. A filter pattern was designed and implemented by wet photolithography method on the films. Characterization of the filter at 77 K has been compared with the simulation results and the results for a made gold filter. Both YBCO and gold filters show high microwave loss. For YBCO filter, the reason may be due to the improper contacts on the feedlines and for gold filter, low thickness of the gold film has caused the loss increased.

  9. Eco-friendly all-carbon paper electronics fabricated by a solvent-free drawing method

    International Nuclear Information System (INIS)

    Kanaparthi, Srinivasulu; Badhulika, Sushmee

    2016-01-01

    Here we report the fabrication of high-performance all-carbon temperature and infrared (IR) sensors with a solvent-free multiwalled carbon nanotube (MWCNT) trace as the sensing element and commercial graphite pencil trace as the electrical contact on recyclable and biodegradable cellulose filter paper without using any toxic materials or complex procedures. The temperature sensor shows a large negative temperature coefficient of resistance (TCR) in the range of −3100 ppm K −1 to −4900 ppm K −1 , which is comparable to available commercial temperature sensors, and an activation energy of 34.85 meV. The IR sensor shows a high responsivity of 58.5 V W −1 , which is greater than reported IR sensors with similar dimensions. A detailed study of the conduction mechanism in MWCNTs with temperature and the photo response with IR illumination was done and it was found that the conduction is due to thermally assisted hopping in band tails and the photo response is bolometric in nature. The successful fabrication of these sensors on cellulose filter paper with a comparable performance to existing components indicates that it is possible to fabricate high-performance electronics using low-cost, eco-friendly materials without the need for expensive clean-room processing techniques or harmful chemicals. (paper)

  10. Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation

    Science.gov (United States)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A linear point design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. This paper derives theoretical Kalman filter estimation error bias and variance values at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the conventional approach of tuner selection. Experimental simulation results are found to be in agreement with theoretical predictions. The new methodology is shown to yield a significant improvement in on-line engine performance estimation accuracy

  11. [Design Method Analysis and Performance Comparison of Wall Filter for Ultrasound Color Flow Imaging].

    Science.gov (United States)

    Wang, Lutao; Xiao, Jun; Chai, Hua

    2015-08-01

    The successful suppression of clutter arising from stationary or slowly moving tissue is one of the key issues in medical ultrasound color blood imaging. Remaining clutter may cause bias in the mean blood frequency estimation and results in a potentially misleading description of blood-flow. In this paper, based on the principle of general wall-filter, the design process of three classes of filters, infinitely impulse response with projection initialization (Prj-IIR), polynomials regression (Pol-Reg), and eigen-based filters are previewed and analyzed. The performance of the filters was assessed by calculating the bias and variance of a mean blood velocity using a standard autocorrelation estimator. Simulation results show that the performance of Pol-Reg filter is similar to Prj-IIR filters. Both of them can offer accurate estimation of mean blood flow speed under steady clutter conditions, and the clutter rejection ability can be enhanced by increasing the ensemble size of Doppler vector. Eigen-based filters can effectively remove the non-stationary clutter component, and further improve the estimation accuracy for low speed blood flow signals. There is also no significant increase in computation complexity for eigen-based filters when the ensemble size is less than 10.

  12. Design of a micromachined terahertz electromagnetic crystals (EMXT) channel-drop filter on silicon-substrate

    Science.gov (United States)

    Zhou, Kai; Liu, Yong; Si, Liming; Lv, Xin

    2013-08-01

    An integrated 0.5 THz electromagnetic crystals(EMXT) channel-drop filter based on PBG structure is presented in this paper. A channel-drop filter is a device in which a narrow bandwidth is redirected to another "drop" waveguide while other frequencies are unaffected. It's capable of extracting a certain frequency from a continuous spectrum in the bus channel and passing it to the test channel. It has potential applications in photonic integrated circuits, radio astronomy, THz spectroscopy, THz communication and remote sensing radar receiver. PBG structures(or photonic crystals) are periodic structures which possess band gaps, where the electromagnetic wave of certain ranges of frequencies cannot pass through and is reflected. The proposed channel-drop filter consists of input waveguide,output waveguide and PBG structure. The proposed filter is simulated using the finite element method and can be fabricated by micro-electromechanical systems (MEMS) technology,due to its low cost, high performance and high processing precision.The filter operation principle and fabrication process are discussed.The simulation results show its ability to filter the frequency of 496GHz with a linewidth of approximately 4GHz and transmission of 27.2 dB above background.The loss at resonant frequency is less than 1dB considering the thickness and roughness of gold layer required by the MEMS process.The channel drop efficiency is 84%.

  13. Scandium/carbon filters for soft x rays

    NARCIS (Netherlands)

    Artioukov, IA; Kasyanov, YS; Kopylets, IA; Pershin, YP; Romanova, SA

    2003-01-01

    This Note deals with thin-film soft x-ray filters for operation at the wavelengths near carbon K edge (similar to4.5 nm). The filters were fabricated by magnetron sputtering deposition of thin layers of scandium (total thickness 0.1-0.2 mum) onto films of polypropylene (thickness 1.5 mum) and

  14. Alkali metal for ultraviolet band-pass filter

    Science.gov (United States)

    Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  15. Fundamental study on recovery uranium oxide from HEPA filters

    International Nuclear Information System (INIS)

    Izumida, T.; Noguchi, Y.

    1993-01-01

    Large numbers of spent HEPA filters are produced at uranium fuel fabrication facilities. Uranium oxide particles have been collected on these filters. Then, a spent HEPA filter treatment system was developed from the viewpoint of recovering the UO 2 and minimizing the volume. The system consists of a mechanical separation process and a chemical dissolution process. This paper describes the results of fundamental experiments on recovering UO 2 from HEPA filters

  16. Narrowband spectral filter based on biconical tapered fiber

    Science.gov (United States)

    Celaschi, Sergio; Malheiros-Silveira, Gilliard N.

    2018-02-01

    The ease of fabrication and compactness of devices based on tapered optical fibers contribute to its potential using in several applications ranging from telecommunication components to sensing devices. In this work, we proposed, fabricated, and characterized a spectral filter made of biconical taper from a coaxial optical fiber. This filter is defined by adiabatically tapering a depressed-cladding fiber. The adiabatic taper profile obtained during fabrication prevents the interference of other modes than HE11 and HE12 ones, which play the main role for the beating phenomenon and the filter response. The evolution of the fiber shapes during the pulling was modeled by two coupled partial differential equations, which relate the normalized cross-section area, and the axial velocity of the fiber elongation. These equations govern the mass and axial momentum conservation. The numerical results of the filter characteristics are in good accordance with the experimental ones. The filter was packaged in order to let it ready for using in optical communication bands. The characteristics are: free spectral range (FSR) of 6.19 nm, insertion loss bellow 0.5 dB, and isolation > 20 dB at C-band. Its transmission spectrum extends from 1200 to 1600 nm where the optical fiber core supports monomode transmission. Such characteristics may also be interesting to be applied in sensing applications. We show preliminary numerical results assuming a biconic taper embedded into a dielectric media, showing promising results for electro-optic sensing applications.

  17. High-performance analysis of filtered semantic graphs

    OpenAIRE

    Buluç, A; Fox, A; Gilbert, JR; Kamil, S; Lugowski, A; Oliker, L; Williams, S

    2012-01-01

    High performance is a crucial consideration when executing a complex analytic query on a massive semantic graph. In a semantic graph, vertices and edges carry \\attributes" of various types. Analytic queries on semantic graphs typically depend on the values of these attributes; thus, the computation must either view the graph through a filter that passes only those individual vertices and edges of interest, or else must first materialize a subgraph or subgraphs consisting of only the vertices ...

  18. Porous Metal Filters for Gas and Liquid Applications in the Nuclear Industry

    International Nuclear Information System (INIS)

    Kenneth, Rubow

    2009-01-01

    Sintered metal media are ideally suited for use in the most demanding industrial applications where long life is required and often other media are not cost-effective solution. As examples, filtration technology utilizing sintered metal media provides excellent performance in numerous liquid/solids and gas/solid separation applications found in the handling and processing of fluids containing radioactive materials. Many types of filter media, ranging from single use (disposable) to semi-permanent, are utilized today for separation of particulate matter. However, semi-permanent media are usually cleanable, either on or off-line, and are intended for sustainable, often multi-year, operating life in harsh environments. These harsh environments, which may involve corrosive fluids, high temperatures, high pressures or pressure spikes, often requiring continuous filtration service, are ideally suited for all-metal filtration systems employing semi-permanent sintered metal media. Sintered metal media, usually fabricated into tubular metal elements, have proven high particle removal efficiency and demonstrated reliability that uniquely afford excellent performance for demanding liquid/solids and gas/solids separation processes. The filter element and, in certain cases, the entire filter are weldable; therefore, the inherent sealing eliminates the need for potentially problematic seals. These media provide a positive barrier to ensure particulate removal to protect downstream equipment, for product separation, and/or to meet health, safety and environmental regulations. Typical applications for sintered metal media include: 1) gas and liquid filter systems used in various nuclear and radioactive waste processing applications, 2) an all-metal High Efficiency Particulate Air (HEPA) filter developed under Department of Energy (DOE) funding as an alternative to traditional HEPA filters fabricated with conventional glass fibers used on High Level Waste (HLW) tank ventilation

  19. Optimum color filters for CCD digital cameras

    Science.gov (United States)

    Engelhardt, Kai; Kunz, Rino E.; Seitz, Peter; Brunner, Harald; Knop, Karl

    1993-12-01

    As part of the ESPRIT II project No. 2103 (MASCOT) a high performance prototype color CCD still video camera was developed. Intended for professional usage such as in the graphic arts, the camera provides a maximum resolution of 3k X 3k full color pixels. A high colorimetric performance was achieved through specially designed dielectric filters and optimized matrixing. The color transformation was obtained by computer simulation of the camera system and non-linear optimization which minimized the perceivable color errors as measured in the 1976 CIELUV uniform color space for a set of about 200 carefully selected test colors. The color filters were designed to allow perfect colorimetric reproduction in principle and at the same time with imperceptible color noise and with special attention to fabrication tolerances. The camera system includes a special real-time digital color processor which carries out the color transformation. The transformation can be selected from a set of sixteen matrices optimized for different illuminants and output devices. Because the actual filter design was based on slightly incorrect data the prototype camera showed a mean colorimetric error of 2.7 j.n.d. (CIELUV) in experiments. Using correct input data in the redesign of the filters, a mean colorimetric error of only 1 j.n.d. (CIELUV) seems to be feasible, implying that it is possible with such an optimized color camera to achieve such a high colorimetric performance that the reproduced colors in an image cannot be distinguished from the original colors in a scene, even in direct comparison.

  20. Mini-pleat filters for improved indoor air quality. Filtri a 'piccole pieghe' per una migliore qualita' dell'aria negli ambienti civili e negli impianti industriali

    Energy Technology Data Exchange (ETDEWEB)

    Zucchelli, D.

    1992-07-01

    Advanced manufacturing techniques applied to the fabrication of air filters have led to the creation of a high quality/efficiency mini-pleat filter which, however, has yet to see wide use in commercial space heating ventilation and air conditioning systems. Now, with greater attention being given to indoor air quality, these high performance filters should see greater market demand. This paper discusses the design and performance characteristics of mini-pleat filters and surveys the range of models currently available on the market.

  1. A 15-pole high temperature superconductor filter for radar applications

    Science.gov (United States)

    Yu, Xiao; Xi, Weibin; Wu, Songtao

    2018-06-01

    This paper presents a compact and high first harmonic frequency resonator. The characteristics of this resonator are theoretically analyzed. A highly selective 15-pole Chebyshev high temperature superconducting ultra-high frequency narrowband filter for radar applications was fabricated by using this resonator. The filter has a center frequency of 495 MHz and a fractional bandwidth of 1%. The first harmonic frequency is more than 3.3 times the fundamental frequency. The measured filter shows excellent selectivity, better than 85 dB/1 MHz skirt slopes, and more than 85 dB of rejection at 497.5 MHz from the band edge. The filter was fabricated on a 2 inch YBCO thin film with a 0.5 mm thick MgO substrate. The experimental results are consistent with the simulations.

  2. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  3. High-performance information search filters for CKD content in PubMed, Ovid MEDLINE, and EMBASE.

    Science.gov (United States)

    Iansavichus, Arthur V; Hildebrand, Ainslie M; Haynes, R Brian; Wilczynski, Nancy L; Levin, Adeera; Hemmelgarn, Brenda R; Tu, Karen; Nesrallah, Gihad E; Nash, Danielle M; Garg, Amit X

    2015-01-01

    Finding relevant articles in large bibliographic databases such as PubMed, Ovid MEDLINE, and EMBASE to inform care and future research is challenging. Articles relevant to chronic kidney disease (CKD) are particularly difficult to find because they are often published under different terminology and are found across a wide range of journal types. We used computer automation within a diagnostic test assessment framework to develop and validate information search filters to identify CKD articles in large bibliographic databases. 22,992 full-text articles in PubMed, Ovid MEDLINE, or EMBASE. 1,374,148 unique search filters. We established the reference standard of article relevance to CKD by manual review of all full-text articles using prespecified criteria to determine whether each article contained CKD content or not. We then assessed filter performance by calculating sensitivity, specificity, and positive predictive value for the retrieval of CKD articles. Filters with high sensitivity and specificity for the identification of CKD articles in the development phase (two-thirds of the sample) were then retested in the validation phase (remaining one-third of the sample). We developed and validated high-performance CKD search filters for each bibliographic database. Filters optimized for sensitivity reached at least 99% sensitivity, and filters optimized for specificity reached at least 97% specificity. The filters were complex; for example, one PubMed filter included more than 89 terms used in combination, including "chronic kidney disease," "renal insufficiency," and "renal fibrosis." In proof-of-concept searches, physicians found more articles relevant to the topic of CKD with the use of these filters. As knowledge of the pathogenesis of CKD grows and definitions change, these filters will need to be updated to incorporate new terminology used to index relevant articles. PubMed, Ovid MEDLINE, and EMBASE can be filtered reliably for articles relevant to CKD. These

  4. Optimal Tuner Selection for Kalman-Filter-Based Aircraft Engine Performance Estimation

    Science.gov (United States)

    Simon, Donald L.; Garg, Sanjay

    2011-01-01

    An emerging approach in the field of aircraft engine controls and system health management is the inclusion of real-time, onboard models for the inflight estimation of engine performance variations. This technology, typically based on Kalman-filter concepts, enables the estimation of unmeasured engine performance parameters that can be directly utilized by controls, prognostics, and health-management applications. A challenge that complicates this practice is the fact that an aircraft engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. Through Kalman-filter-based estimation techniques, the level of engine performance degradation can be estimated, given that there are at least as many sensors as health parameters to be estimated. However, in an aircraft engine, the number of sensors available is typically less than the number of health parameters, presenting an under-determined estimation problem. A common approach to address this shortcoming is to estimate a subset of the health parameters, referred to as model tuning parameters. The problem/objective is to optimally select the model tuning parameters to minimize Kalman-filterbased estimation error. A tuner selection technique has been developed that specifically addresses the under-determined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine that seeks to minimize the theoretical mean-squared estimation error of the Kalman filter. This approach can significantly reduce the error in onboard aircraft engine parameter estimation

  5. Performance of sand filters for the separations areas at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Orth, D.A.; Sykes, G.H.; McKibben, J.M.

    1981-01-01

    Two new large sand filters, 30.5 by 100 m, were constructed and put into service at the Savannah River Plant (SRP) in 1975 and 1976. These units were designed to provide final filtration of process air - one for each of the two separations areas. Eventual flow will be 4950 m 3 /min (205,000 scfm) on each unit when all facilities are connected. They were built as replacements for the original sand filters that began operation in 1954 and 1955. The new filters have been operated in parallel with the old units following partial failure of the old units from acid attack and erosion of the concrete support structure for the sand beds. The design of the new units was based on extensive tests at SRP on characteristics of different sands. The performance of the new filters meets criteria for pressure drop, flow capacity, and efficiency. The efficiencies measured by DOP test are greater than 99.98%. Parallel operation reduces air velocity through the beds, which increases efficiency. A characteristic of sand filter performance has been low apparent efficiency at low input; efficiency increases as the activity input rises. This is attributed to a small entrainment release from the large amount of activity already sorbed on the filter; this release controls and lowers the calculated efficiency at low input. An analysis of efficiency as a function of input activity projects efficiencies greater than 99.99% for large inputs that might be characteristic of large internal accidents. The data indicate that DOP efficiencies can be used in hazards analyses to determine accident consequences. Routine evaluation of filter releases can be used for surveillance to establish that performance is normal at other times

  6. Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters

    International Nuclear Information System (INIS)

    Lee, Kyu-Tae; Seo, Sungyong; Yong Lee, Jae; Jay Guo, L.

    2014-01-01

    We present transmission visible wavelength filters based on strong interference behaviors in an ultrathin semiconductor material between two metal layers. The proposed devices were fabricated on 2 cm × 2 cm glass substrate, and the transmission characteristics show good agreement with the design. Due to a significantly reduced light propagation phase change associated with the ultrathin semiconductor layer and the compensation in phase shift of light reflecting from the metal surface, the filters show an angle insensitive performance up to ±70°, thus, addressing one of the key challenges facing the previously reported photonic and plasmonic color filters. This principle, described in this paper, can have potential for diverse applications ranging from color display devices to the image sensors.

  7. Tracking performance of unbalanced QPSK demodulators. I - Biphase Costas loop with passive arm filters

    Science.gov (United States)

    Simon, M. K.; Alem, W. K.

    1978-01-01

    Unbalanced quadriphase-shift-keying (QPSK) is an attractive means for transmitting two digital data streams which in general have different average powers, data rates, and data formats. Previous analyses of the tracking performance of Costas loop demodulators of unbalanced QPSK have accounted only for the filtering effect produced by the loop's two arm filters on the equivalent additive noise perturbing the loop. When the bandwidth of these filters is selected on the basis of the order of the data rate, as is typical of optimum Costas loop design, the filtering degradations of the data modulations themselves and the cross-modulation noise produced by their multiplication in the loop often cannot be neglected. The purpose of this paper is to incorporate these additional filtering effects into the analysis. Many of the results obtained herein are in the form of closed-form expressions which can easily be evaluated numerically for design and performance prediction purposes.

  8. Spatial filtering with photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maigyte, Lina [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222 (Spain); Staliunas, Kestutis [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222 (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona 08010 (Spain)

    2015-03-15

    Photonic crystals are well known for their celebrated photonic band-gaps—the forbidden frequency ranges, for which the light waves cannot propagate through the structure. The frequency (or chromatic) band-gaps of photonic crystals can be utilized for frequency filtering. In analogy to the chromatic band-gaps and the frequency filtering, the angular band-gaps and the angular (spatial) filtering are also possible in photonic crystals. In this article, we review the recent advances of the spatial filtering using the photonic crystals in different propagation regimes and for different geometries. We review the most evident configuration of filtering in Bragg regime (with the back-reflection—i.e., in the configuration with band-gaps) as well as in Laue regime (with forward deflection—i.e., in the configuration without band-gaps). We explore the spatial filtering in crystals with different symmetries, including axisymmetric crystals; we discuss the role of chirping, i.e., the dependence of the longitudinal period along the structure. We also review the experimental techniques to fabricate the photonic crystals and numerical techniques to explore the spatial filtering. Finally, we discuss several implementations of such filters for intracavity spatial filtering.

  9. Development of active porous medium filters based on plasma textiles

    International Nuclear Information System (INIS)

    Kuznetsov, Ivan A.; Saveliev, Alexei V.; Rasipuram, Srinivasan; Kuznetsov, Andrey V.; Brown, Alan; Jasper, Warren

    2012-01-01

    Inexpensive, flexible, washable, and durable materials that serve as antimicrobial filters and self-decontaminating fabrics are needed to provide active protection to people in areas regularly exposed to various biohazards, such as hospitals and bio research labs working with pathogens. Airlines and cruise lines need such material to combat the spread of infections. In households these materials can be used in HVAC filters to fight indoor pollution, which is especially dangerous to people suffering from asthma. Efficient filtering materials are also required in areas contaminated by other types of hazardous dust particulates, such as nuclear dust. The primary idea that guided the undertaken study is that a microplasma-generating structure can be embedded in a textile fabric to generate a plasma sheath (''plasma shield'') that kills bacterial agents coming in contact with the fabric. The research resulted in the development of a plasma textile that can be used for producing new types of self-decontaminating garments, fabrics, and filter materials, capable of activating a plasma sheath that would filter, capture, and destroy any bacteriological agent deposited on its surface. This new material relies on the unique antimicrobial and catalytic properties of cold (room temperature) plasma that is benign to people and does not cause thermal damage to many polymer textiles, such as Nomex and polypropylene. The uniqueness of cold plasma as a disinfecting agent lies in the inability of bacteria to develop resistance to plasma exposure, as they can for antibiotics. Plasma textiles could thus be utilized for microbial destruction in active antimicrobial filters (for continuous decontamination and disinfection of large amounts of air) as well as in self-decontaminating surfaces and antibacterial barriers (for example, for creating local antiseptic or sterile environments around wounds and burns).

  10. Development of active porous medium filters based on plasma textiles

    Science.gov (United States)

    Kuznetsov, Ivan A.; Saveliev, Alexei V.; Rasipuram, Srinivasan; Kuznetsov, Andrey V.; Brown, Alan; Jasper, Warren

    2012-05-01

    Inexpensive, flexible, washable, and durable materials that serve as antimicrobial filters and self-decontaminating fabrics are needed to provide active protection to people in areas regularly exposed to various biohazards, such as hospitals and bio research labs working with pathogens. Airlines and cruise lines need such material to combat the spread of infections. In households these materials can be used in HVAC filters to fight indoor pollution, which is especially dangerous to people suffering from asthma. Efficient filtering materials are also required in areas contaminated by other types of hazardous dust particulates, such as nuclear dust. The primary idea that guided the undertaken study is that a microplasma-generating structure can be embedded in a textile fabric to generate a plasma sheath ("plasma shield") that kills bacterial agents coming in contact with the fabric. The research resulted in the development of a plasma textile that can be used for producing new types of self-decontaminating garments, fabrics, and filter materials, capable of activating a plasma sheath that would filter, capture, and destroy any bacteriological agent deposited on its surface. This new material relies on the unique antimicrobial and catalytic properties of cold (room temperature) plasma that is benign to people and does not cause thermal damage to many polymer textiles, such as Nomex and polypropylene. The uniqueness of cold plasma as a disinfecting agent lies in the inability of bacteria to develop resistance to plasma exposure, as they can for antibiotics. Plasma textiles could thus be utilized for microbial destruction in active antimicrobial filters (for continuous decontamination and disinfection of large amounts of air) as well as in self-decontaminating surfaces and antibacterial barriers (for example, for creating local antiseptic or sterile environments around wounds and burns).

  11. Development of active porous medium filters based on plasma textiles

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Ivan A.; Saveliev, Alexei V.; Rasipuram, Srinivasan; Kuznetsov, Andrey V.; Brown, Alan; Jasper, Warren [Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Textile Engineering Chemistry and Science, North Carolina State University, Raleigh, NC 27695 (United States)

    2012-05-15

    Inexpensive, flexible, washable, and durable materials that serve as antimicrobial filters and self-decontaminating fabrics are needed to provide active protection to people in areas regularly exposed to various biohazards, such as hospitals and bio research labs working with pathogens. Airlines and cruise lines need such material to combat the spread of infections. In households these materials can be used in HVAC filters to fight indoor pollution, which is especially dangerous to people suffering from asthma. Efficient filtering materials are also required in areas contaminated by other types of hazardous dust particulates, such as nuclear dust. The primary idea that guided the undertaken study is that a microplasma-generating structure can be embedded in a textile fabric to generate a plasma sheath (''plasma shield'') that kills bacterial agents coming in contact with the fabric. The research resulted in the development of a plasma textile that can be used for producing new types of self-decontaminating garments, fabrics, and filter materials, capable of activating a plasma sheath that would filter, capture, and destroy any bacteriological agent deposited on its surface. This new material relies on the unique antimicrobial and catalytic properties of cold (room temperature) plasma that is benign to people and does not cause thermal damage to many polymer textiles, such as Nomex and polypropylene. The uniqueness of cold plasma as a disinfecting agent lies in the inability of bacteria to develop resistance to plasma exposure, as they can for antibiotics. Plasma textiles could thus be utilized for microbial destruction in active antimicrobial filters (for continuous decontamination and disinfection of large amounts of air) as well as in self-decontaminating surfaces and antibacterial barriers (for example, for creating local antiseptic or sterile environments around wounds and burns).

  12. Design and fabrication of multi-dielectric thin film laser filters and mirrors

    International Nuclear Information System (INIS)

    Alsous, M. B.

    2005-01-01

    Multi-dielectric-film optical filters have designed as mirrors for frequency-doubled-Nd-YAG pumped Raman lasers at different wavelengths (435, 369.9, 319.8, 953.6, 683 nm), and for use in CVL pumped dye lasers: as beam-splitters, antireflection filters, and narrow-band filters. In this work, a theoretical design of these mirrors and filters is given. The treatment and optimization of these designs is detailed in order to overcome the difficulties and reach the final and suitable designs for our needs. In addition, we will describe the evaporation method and the best conditions to do it. These filters should be easy to make and able to resist the laser powers of the pulsed Nd-YAG laser (200mJ/pulse) and the output power of the CVL. Thus, we have adopted designs with the least number of layers and used materials and oxides, which could resist to high laser powers. These filters were tested with laser shots and the convenient designs that were able to support the laser power have been adopted. (Author)

  13. Performance of an area variable MOS varicap weighted programmable CCD transversal filter

    OpenAIRE

    Bhattacharyya, A.B.; Shankarnarayan, L.; Kapur, N.; Wallinga, Hans

    1981-01-01

    The performance of an electrically programmable CCD transversal filter (PTF) is presented in which tap-weight multiplication is performed by a novel and compact on chip voltage controlled area variable MOS varicap.

  14. Aerodynamic characteristics and heat radiation performance of sportswear fabrics

    Science.gov (United States)

    Koga, H.; Hiratsuka, M.; Ito, S.; Konno, A.

    2017-10-01

    Sports such as swimming, speed skating, and marathon are sports competing for time. In recent years, reduction of the fluid drag of sportswear is required for these competitions in order to improve the record. In addition, sweating and discomfort due to body temperature rise during competition are thought to affect competitor performance, and heat radiation performance is also an important factor for sportswear. The authors have measured fluid force drag by wrapping cloth around a cylinder and have confirmed their differences due to the roughness of the fabric surface, differences in sewing. The authors could be verified the drag can be reduced by the position of the wear stitch. This time, we measured the heat radiation performance of 14 types of cloths whose aero dynamic properties are known using cylinders which are regarded as human fuselages, and found elements of cloth with heat radiation performance. It was found to be important for raising the heat radiation performance of sportswear that the fabric is thin and flat surface processing.

  15. Experimental demonstration of H∞ filter performance for dynamic compensation of rhodium neutron detectors

    International Nuclear Information System (INIS)

    Park, Moon-Ghu; Choi, Yu-Sun; Lee, Kwang-Dae

    2008-01-01

    This paper describes the experimental demonstration of the theoretical result of the previous work on LMI (linear matrix inequality) based H ∞ filter for time-delay compensation of self-powered neutron detectors. The filter gains are optimized in the sense of noise attenuation level of H ∞ setting. By introducing bounded real lemma, the conventional algebraic Riccati inequalities are converted into linear matrix inequalities (LMIs). Finally, the filter design problem is solved via the convex optimization framework using LMIs. The experimental measurements of rhodium detector signal from a research reactor show that the predicted theoretical filter performance is verified by showing successful reconstruction of the reference power signal

  16. Low-loss interference filter arrays made by plasma-assisted reactive magnetron sputtering (PARMS) for high-performance multispectral imaging

    Science.gov (United States)

    Broßmann, Jan; Best, Thorsten; Bauer, Thomas; Jakobs, Stefan; Eisenhammer, Thomas

    2016-10-01

    Optical remote sensing of the earth from air and space typically utilizes several channels in the visible and near infrared spectrum. Thin-film optical interference filters, mostly of narrow bandpass type, are applied to select these channels. The filters are arranged in filter wheels, arrays of discrete stripe filters mounted in frames, or patterned arrays on a monolithic substrate. Such multi-channel filter assemblies can be mounted close to the detector, which allows a compact and lightweight camera design. Recent progress in image resolution and sensor sensitivity requires improvements of the optical filter performance. Higher demands placed on blocking in the UV and NIR and in between the spectral channels, in-band transmission and filter edge steepness as well as scattering lead to more complex filter coatings with thicknesses in the range of 10 - 25μm. Technological limits of the conventionally used ion-assisted evaporation process (IAD) can be overcome only by more precise and higher-energetic coating technologies like plasma-assisted reactive magnetron sputtering (PARMS) in combination with optical broadband monitoring. Optics Balzers has developed a photolithographic patterning process for coating thicknesses up to 15μm that is fully compatible with the advanced PARMS coating technology. This provides the possibility of depositing multiple complex high-performance filters on a monolithic substrate. We present an overview of the performance of recently developed filters with improved spectral performance designed for both monolithic filter-arrays and stripe filters mounted in frames. The pros and cons as well as the resulting limits of the filter designs for both configurations are discussed.

  17. Performance of Plain Woven Jute Fabric-Reinforced Polyester Matrix Composite in Multilayered Ballistic System

    Directory of Open Access Journals (Sweden)

    Sergio Neves Monteiro

    2018-02-01

    Full Text Available The ballistic performance of plain woven jute fabric-reinforced polyester matrix composites was investigated as the second layer in a multilayered armor system (MAS. Volume fractions of jute fabric, up to 30 vol %, were mixed with orthophthalic polyester to fabricate laminate composites. Ballistic tests were conducted using high velocity 7.62 mm ammunition. The depth of penetration caused by the bullet in a block of clay witness, simulating a human body, was used to evaluate the MAS ballistic performance according to the international standard. The fractured materials after tests were analyzed by scanning electron microscopy (SEM. The results indicated that jute fabric composites present a performance similar to that of the much stronger Kevlar™, which is an aramid fabric laminate, as MAS second layer with the same thickness. The mechanism of this similar ballistic behavior as well as the comparative advantages of the jute fabric composites over the Kevlar™ are discussed.

  18. Preparation and characterization of monel (70% Ni-30% Cu) metallic filters; Preparacao e caracterizacao de filtro metalico monel (70% Ni-30% Cu)

    Energy Technology Data Exchange (ETDEWEB)

    Camargo Lavos, I de

    1994-12-31

    This work investigates a process for the fabrication and characterization of monel (Ni-Cu) filters. The powder consolidation was made by vibration or by pressing at various pressures (200, 300 e 400 MPa). The sintering was carried out at 1100{sup 0} C during 1 hour under H{sub 2} atmosphere. The filter characterization was performed by measuring its density, porosity, filtering capacity and permeability. It was obtained a correlation between the processing variables (consolidation and sintering), including powder properties, and the filters characteristics. (author). 59 refs, 41 figs, 7 tabs.

  19. Comparison of filters: Inkjet printed on PEN substrate versus a laser-etched on LCP substrate

    KAUST Repository

    Arabi, Eyad A.

    2014-10-01

    In this paper, microstrip-based bandpass filters on polyethylene naphthalate (PEN) and liquid crystal polymers (LCP) are presented to investigate the performance of filters on ultra-thin substrates. PEN (with a thickness of 120 μm) has been characterized and used for a filter for the first time. In addition to being low cost and transparent, it demonstrates comparable RF performance to LCP. The conductor losses are compared by fabricating filters with inkjet printed lines as well as laser etched copper clad LCP sheets. With 5 layers of inkjet printing, and a curing temperature below 200°C, a final silver thickness of 2 μm and conductivity of 9.6 × 106 S/m are achieved. The designs are investigated at two frequencies, 24 GHz as well as 5 GHz to assess their performance at high and low frequencies respectively. The 24 GHz inkjet printed filter shows an insertion loss of 2 dB, while the 5 GHz design gives an insertion loss of 8 dB. We find that thin substrates have a strong effect on the insertion loss of filters especially as the frequency is reduced. The same design, realized on LCP (thickness of 100 μm) through laser etching, demonstrates a very similar performance, thus verifying this finding. © 2014 European Microwave Association.

  20. Comparison of filters: Inkjet printed on PEN substrate versus a laser-etched on LCP substrate

    KAUST Repository

    Arabi, Eyad A.; McKerricher, Garret; Shamim, Atif

    2014-01-01

    In this paper, microstrip-based bandpass filters on polyethylene naphthalate (PEN) and liquid crystal polymers (LCP) are presented to investigate the performance of filters on ultra-thin substrates. PEN (with a thickness of 120 μm) has been characterized and used for a filter for the first time. In addition to being low cost and transparent, it demonstrates comparable RF performance to LCP. The conductor losses are compared by fabricating filters with inkjet printed lines as well as laser etched copper clad LCP sheets. With 5 layers of inkjet printing, and a curing temperature below 200°C, a final silver thickness of 2 μm and conductivity of 9.6 × 106 S/m are achieved. The designs are investigated at two frequencies, 24 GHz as well as 5 GHz to assess their performance at high and low frequencies respectively. The 24 GHz inkjet printed filter shows an insertion loss of 2 dB, while the 5 GHz design gives an insertion loss of 8 dB. We find that thin substrates have a strong effect on the insertion loss of filters especially as the frequency is reduced. The same design, realized on LCP (thickness of 100 μm) through laser etching, demonstrates a very similar performance, thus verifying this finding. © 2014 European Microwave Association.

  1. Biodegradable microfabricated plug-filters for glaucoma drainage devices.

    Science.gov (United States)

    Maleki, Teimour; Chitnis, Girish; Park, Jun Hyeong; Cantor, Louis B; Ziaie, Babak

    2012-06-01

    We report on the development of a batch fabricated biodegradable truncated-cone-shaped plug filter to overcome the postoperative hypotony in nonvalved glaucoma drainage devices. Plug filters are composed of biodegradable polymers that disappear once wound healing and bleb formation has progressed past the stage where hypotony from overfiltration may cause complications in the human eye. The biodegradable nature of device eliminates the risks associated with permanent valves that may become blocked or influence the aqueous fluid flow rate in the long term. The plug-filter geometry simplifies its integration with commercial shunts. Aqueous humor outflow regulation is achieved by controlling the diameter of a laser-drilled through-hole. The batch compatible fabrication involves a modified SU-8 molding to achieve truncated-cone-shaped pillars, polydimethylsiloxane micromolding, and hot embossing of biodegradable polymers. The developed plug filter is 500 μm long with base and apex plane diameters of 500 and 300 μm, respectively, and incorporates a laser-drilled through-hole with 44-μm effective diameter in the center.

  2. Stochastic simulation and robust design optimization of integrated photonic filters

    Directory of Open Access Journals (Sweden)

    Weng Tsui-Wei

    2016-07-01

    Full Text Available Manufacturing variations are becoming an unavoidable issue in modern fabrication processes; therefore, it is crucial to be able to include stochastic uncertainties in the design phase. In this paper, integrated photonic coupled ring resonator filters are considered as an example of significant interest. The sparsity structure in photonic circuits is exploited to construct a sparse combined generalized polynomial chaos model, which is then used to analyze related statistics and perform robust design optimization. Simulation results show that the optimized circuits are more robust to fabrication process variations and achieve a reduction of 11%–35% in the mean square errors of the 3 dB bandwidth compared to unoptimized nominal designs.

  3. Corrosive environment tester for filter media

    International Nuclear Information System (INIS)

    Petit, G.S.; Weber, C.W.; Keinberger, C.A.; Rivers, R.D.

    1977-02-01

    Two continuous dynamic systems have been designed and fabricated for testing filter media in humid, corrosive environments--one for fluorine or fluoride exposures, and the other for nitrogen dioxide exposures. The tester using fluorine or fluoride atmospheres was constructed of nickel and the one using nitrogen dioxide was fabricated of stainless steel. Other corrosive gases could be used with the appropriate choice of system. For example, chlorine or hydrogen chloride could be used in the system fabricated of nickel, and sulfur dioxides or ammonia could be used in the stainless steel testing apparatus. Each tester is comprised of four equivalent dynamic systems designed for diluting a corrosive reagent with dry air, then with humidified air to provide a humid-corrosive environment for filter media testing. Auxiliary equipment includes a water injection system, corrosive reagent supply systems, and an automatic pressure differential (ΔP) monitoring and recording system. The testers are relatively maintenance-free and have operated continuously for periods as long as 96 h without requiring any attention, during total exposures of materials exceeding 600 h

  4. High performance 3D adaptive filtering for DSP based portable medical imaging systems

    Science.gov (United States)

    Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark

    2015-03-01

    Portable medical imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. Despite their constraints on power, size and cost, portable imaging devices must still deliver high quality images. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often cannot be run with sufficient performance on a portable platform. In recent years, advanced multicore digital signal processors (DSP) have been developed that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms on a portable platform. In this study, the performance of a 3D adaptive filtering algorithm on a DSP is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec with an Ultrasound 3D probe. Relative performance and power is addressed between a reference PC (Quad Core CPU) and a TMS320C6678 DSP from Texas Instruments.

  5. Efficient spin filter using multi-terminal quantum dot with spin-orbit interaction

    Directory of Open Access Journals (Sweden)

    Yokoyama Tomohiro

    2011-01-01

    Full Text Available Abstract We propose a multi-terminal spin filter using a quantum dot with spin-orbit interaction. First, we formulate the spin Hall effect (SHE in a quantum dot connected to three leads. We show that the SHE is significantly enhanced by the resonant tunneling if the level spacing in the quantum dot is smaller than the level broadening. We stress that the SHE is tunable by changing the tunnel coupling to the third lead. Next, we perform a numerical simulation for a multi-terminal spin filter using a quantum dot fabricated on semiconductor heterostructures. The spin filter shows an efficiency of more than 50% when the conditions for the enhanced SHE are satisfied. PACS numbers: 72.25.Dc,71.70.Ej,73.63.Kv,85.75.-d

  6. Damping control of micromachined lowpass mechanical vibration isolation filters using electrostatic actuation with electronic signal processing

    Science.gov (United States)

    Dean, Robert; Flowers, George; Sanders, Nicole; MacAllister, Ken; Horvath, Roland; Hodel, A. S.; Johnson, Wayne; Kranz, Michael; Whitley, Michael

    2005-05-01

    Some harsh environments, such as those encountered by aerospace vehicles and various types of industrial machinery, contain high frequency/amplitude mechanical vibrations. Unfortunately, some very useful components are sensitive to these high frequency mechanical vibrations. Examples include MEMS gyroscopes and resonators, oscillators and some micro optics. Exposure of these components to high frequency mechanical vibrations present in the operating environment can result in problems ranging from an increased noise floor to component failure. Passive micromachined silicon lowpass filter structures (spring-mass-damper) have been demonstrated in recent years. However, the performance of these filter structures is typically limited by low damping (especially if operated in near-vacuum environments) and a lack of tunability after fabrication. Active filter topologies, such as piezoelectric, electrostrictive-polymer-film and SMA have also been investigated in recent years. Electrostatic actuators, however, are utilized in many micromachined silicon devices to generate mechanical motion. They offer a number of advantages, including low power, fast response time, compatibility with silicon micromachining, capacitive position measurement and relative simplicity of fabrication. This paper presents an approach for realizing active micromachined mechanical lowpass vibration isolation filters by integrating an electrostatic actuator with the micromachined passive filter structure to realize an active mechanical lowpass filter. Although the electrostatic actuator can be used to adjust the filter resonant frequency, the primary application is for increasing the damping to an acceptable level. The physical size of these active filters is suitable for use in or as packaging for sensitive electronic and MEMS devices, such as MEMS vibratory gyroscope chips.

  7. Durable superhydrophobic and superoleophilic filter paper for oil–water separation prepared by a colloidal deposition method

    International Nuclear Information System (INIS)

    Du, Chuan; Wang, Jiadao; Chen, Zhifu; Chen, Darong

    2014-01-01

    Graphical abstract: - Highlights: • A method for fabricating durable superhydrophobic filter paper was developed. • Oil–water separation efficiency exceeds 99% using the as-prepared filter paper. • The as-prepared filter paper has good recyclability and durability. • The method is easy, low cost and can be industrialized. - Abstract: A method for manufacturing durable superhydrophobic and superoleophilic filter paper for oil–water separation was developed via colloidal deposition. A porous film composed of PTFE nanoparticles was formed on filter paper, which was superhydrophobic with a water contact angle of 155.5° and superoleophilic with an oil contact angle of 0°. The obtained filter paper could separate a series of oil–water mixtures effectively with high separation efficiencies over 99%. Besides, the as-prepared filter paper kept stable superhydrophobicity and high separation efficiency even after 30 cycle times and could also work well under harsh environmental conditions like strong acidic or alkaline solutions, high temperature and ultraviolet irradiation. Compared with other approaches for fabricating oil–water materials, this approach is able to fabricate full-scale durable and practical oil–water materials easily and economically. The as-prepared filter paper is a promising candidate for oil–water separation

  8. Potential of simple filters to improve microbial quality of irrigation water used in urban vegetable farming in Ghana

    DEFF Research Database (Denmark)

    Keraita, Bernard; Drechsel, Pay; Konradsen, Flemming

    2008-01-01

    . As part of a larger study on possible interventions for health risk reduction, the potential of simple interventions was explored. Column slow sand filters with three levels of sand depths (0.5 m, 0.75 m and 1 m) and fabric filters made of nylon, cotton and netting were assessed. More than 600 water...... samples were analyzed for helminth eggs and thermotolerant coliforms. Flow rates were also measured. From slow sand filters, 71-96% of helminths and 2 log units (from 7 to 5 log units) of thermotolerant coliforms were removed. Sand depths had no significant influence in the removal. Lower removal rates...... were achieved by fabric filters, with an average removal of 12-62% for helminth eggs and 1 log unit for thermotolerant coliforms. Nylon filters had higher removal rates especially for helminth eggs (58%). Average flow rates for sand filters were 3 m per day and fabric filters had steady flows of about...

  9. Graphene double-layer capacitor with ac line-filtering performance.

    Science.gov (United States)

    Miller, John R; Outlaw, R A; Holloway, B C

    2010-09-24

    Electric double-layer capacitors (DLCs) can have high storage capacity, but their porous electrodes cause them to perform like resistors in filter circuits that remove ripple from rectified direct current. We have demonstrated efficient filtering of 120-hertz current with DLCs with electrodes made from vertically oriented graphene nanosheets grown directly on metal current collectors. This design minimized electronic and ionic resistances and produced capacitors with RC time constants of less than 200 microseconds, in contrast with ~1 second for typical DLCs. Graphene nanosheets have a preponderance of exposed edge planes that greatly increases charge storage as compared with that of designs that rely on basal plane surfaces. Capacitors constructed with these electrodes could be smaller than the low-voltage aluminum electrolyte capacitors that are typically used in electronic devices.

  10. Graphene Double-Layer Capacitor with ac Line-Filtering Performance

    Science.gov (United States)

    Miller, John R.; Outlaw, R. A.; Holloway, B. C.

    2010-09-01

    Electric double-layer capacitors (DLCs) can have high storage capacity, but their porous electrodes cause them to perform like resistors in filter circuits that remove ripple from rectified direct current. We have demonstrated efficient filtering of 120-hertz current with DLCs with electrodes made from vertically oriented graphene nanosheets grown directly on metal current collectors. This design minimized electronic and ionic resistances and produced capacitors with RC time constants of less than 200 microseconds, in contrast with ~1 second for typical DLCs. Graphene nanosheets have a preponderance of exposed edge planes that greatly increases charge storage as compared with that of designs that rely on basal plane surfaces. Capacitors constructed with these electrodes could be smaller than the low-voltage aluminum electrolyte capacitors that are typically used in electronic devices.

  11. Improved reading performance using individualized compensation filters for observers with losses in central vision

    Science.gov (United States)

    Lawton, Teri B.

    1989-01-01

    A method to improve the reading performance of subjects with losses in central vision is proposed in which the amplitudes of the intermediate spatial frequencies are boosted relative to the lower spatial frequencies. In the method, words are filtered using an image enhancement function which is based on a subject's losses in visual function relative to a normal subject. It was found that 30-70 percent less magnification was necessary, and that reading rates were improved 2-3 times, using the method. The individualized compensation filters improved the clarity and visibility of words. The shape of the enhancement function was shown to be important in determining the optimum compensation filter for improving reading performance.

  12. High-performance information search filters for acute kidney injury content in PubMed, Ovid Medline and Embase.

    Science.gov (United States)

    Hildebrand, Ainslie M; Iansavichus, Arthur V; Haynes, R Brian; Wilczynski, Nancy L; Mehta, Ravindra L; Parikh, Chirag R; Garg, Amit X

    2014-04-01

    We frequently fail to identify articles relevant to the subject of acute kidney injury (AKI) when searching the large bibliographic databases such as PubMed, Ovid Medline or Embase. To address this issue, we used computer automation to create information search filters to better identify articles relevant to AKI in these databases. We first manually reviewed a sample of 22 992 full-text articles and used prespecified criteria to determine whether each article contained AKI content or not. In the development phase (two-thirds of the sample), we developed and tested the performance of >1.3-million unique filters. Filters with high sensitivity and high specificity for the identification of AKI articles were then retested in the validation phase (remaining third of the sample). We succeeded in developing and validating high-performance AKI search filters for each bibliographic database with sensitivities and specificities in excess of 90%. Filters optimized for sensitivity reached at least 97.2% sensitivity, and filters optimized for specificity reached at least 99.5% specificity. The filters were complex; for example one PubMed filter included >140 terms used in combination, including 'acute kidney injury', 'tubular necrosis', 'azotemia' and 'ischemic injury'. In proof-of-concept searches, physicians found more articles relevant to topics in AKI with the use of the filters. PubMed, Ovid Medline and Embase can be filtered for articles relevant to AKI in a reliable manner. These high-performance information filters are now available online and can be used to better identify AKI content in large bibliographic databases.

  13. Modeling the Performance of Biological Rapid Sand Filters Used to Remove Ammonium, Iron, and Manganese From Drinking Water

    DEFF Research Database (Denmark)

    Lee, Carson; Albrechtsen, Hans-Jørgen; Smets, Barth F.

    activated carbon and are often used following ozonation to remove additional biodegradable organics created during ozonation. In Europe, biological filters are also used to remove ammonium and reduced forms of iron and manganese. These compounds can cause biological instability in the distribution system...... tracer, are performed during an operational cycle of a filter to examine how the filter flow changes with time. The data is used to validate a mathematical model that can both predict process performance and to gain an understanding of how dynamic conditions can influence filter performance....... The mathematical model developed is intended to assist in the design of new filters, set up of pilot plant studies, and as a tool to troubleshoot existing problems in full scale filters. Unlike previous models, the model developed accounts for the effects of particle/precipitate accumulation and its effects...

  14. Performance evaluation of 3-D enhancement filters for detection of lung cancer from 3-D chest X-ray CT images

    International Nuclear Information System (INIS)

    Shimizu, Akinobu; Hagai, Makoto; Toriwaki, Jun-ichiro; Hasegawa, Jun-ichi.

    1995-01-01

    This paper evaluates the performance of several three dimensional enhancement filters used in procedures for detecting lung cancer shadows from three dimensional (3D) chest X-ray CT images. Two dimensional enhancement filters such as Min-DD filter, Contrast filter and N-Quoit filter have been proposed for enhancing cancer shadows in conventional 2D X-ray images. In this paper, we extend each of these 2D filters to a 3D filter and evaluate its performance experimentally by using CT images with artificial and true lung cancer shadows. As a result, we find that these 3D filters are effective for determining the position of a lung cancer shadow in a 3D chest CT image, as compared with the simple procedure such as smoothing filter, and that the performance of these filters become lower in the hilar area due to the influence of the vessel shadows. (author)

  15. ACTIVE FILTER HARDWARE DESIGN and PERFORMANCE FOR THE DIII-D PLASMA CONTROL SYSTEM

    International Nuclear Information System (INIS)

    SELLERS, D.; FERRON, J.R; WALKER, M.L; BROESCH, J.D

    2004-03-01

    OAK-B135 The digital plasma control system (PCS), currently in operation on the DIII-D tokamak, requires inputs from a large number of sensors. Due to the nature of the digitizers and the relative noisy environment from which these signals are derived, each of the 32 signals must be conditioned via an active filter. Two different types of filters, Chebyshev and Bessel with fixed frequencies: 100 Hz Bessel was used for filtering the motional Stark effect diagnostic data. 800 Hz Bessel was designed to filter plasma control data and 1200 Hz Chebyshev is used with closed loop control of choppers. The performance of the plasma control system is greatly influenced by how well the actual filter responses match the software model used in the control system algorithms. This paper addresses the various issues facing the designer in matching the electrical design with the theoretical

  16. Chest radiography with a shaped filter has no diagnostic advantage: Demonstration by observer performance tests

    International Nuclear Information System (INIS)

    Guilbeau, J.C.; Mazoyer, B.; Pruvost, P.; Verrey, B.; Grenier, P.

    1987-01-01

    The effectiveness of a shaped filter in improving the detection of mediastinal and retrocardiac abnormalities on 140-kV posteroanterior chest radiographs was measured by observer performance testing. The filtered and unfiltered radiographs of 50 patients were randomly selected from 1,000 radiographs obtained from 500 ambulatory or hospitalized patients and were independently read by five observers. Observer performance in detecting abnormalities in the central area was analyzed by receiver operating characteristic (ROC) techniques. The results indicate that the use of a filter has no significant diagnostic advantage, regardless of type or location of lesions over the mediastinum and the retrocardiac areas

  17. Performance Evaluation of Glottal Inverse Filtering Algorithms Using a Physiologically Based Articulatory Speech Synthesizer

    Science.gov (United States)

    2017-01-05

    vol. 74, pp. 279–295, 1999. [11] M. Fröhlich, D. Michaelis, and H. W. Strube, “SIM— simultaneous inverse filtering and matching of a glottal flow...1 Performance Evaluation of Glottal Inverse Filtering Algorithms Using a Physiologically Based Articulatory Speech Synthesizer Yu-Ren Chien, Daryush...D. Mehta, Member, IEEE, Jón Guðnason, Matías Zañartu, Member, IEEE, and Thomas F. Quatieri, Fellow, IEEE Abstract—Glottal inverse filtering aims to

  18. Evaluation of performance loss of paraffin oil loaded filtering facepieces.

    Science.gov (United States)

    Tombolini, Francesca; Listrani, Stefano; Campopiano, Antonella; Plebani, Carmela

    2016-01-01

    Penetration measurements through commercially available filtering facepieces were performed with monodisperse DEHS aerosols ranging from 0.03 μm to 0.40 μm (either singly charged or neutralized), before and after 500 mg of paraffin oil loading. The distinct behavior of Coulomb and polarization capture efficiency is studied: as in the case of non loading also in the case of loading 500 mg of paraffin oil, the electrostatic capture mechanisms are mainly due to the Coulomb contribution up to aerosol particle diameter of about 0.10 μm, just when the polarization contribution becomes substantial. Both Coulomb and polarization capture mechanisms are influenced by the presence of 500 mg of paraffin oil, resulting less effective than the oil unloaded case of about 12% and 11%, respectively. By the occupational hygiene point of view, there is a degradation in the filter performance due to oil loading that the user does not realize because there is no remarkable variation in the breathing resistance.

  19. Generalized design of high performance shunt active power filter with output LCL filter

    DEFF Research Database (Denmark)

    Tang, Yi; Loh, Poh Chiang; Wang, Peng

    2012-01-01

    parameters, interactions between resonance damping and harmonic compensation, bandwidth design of the closed-loop system, and active damping implementation with fewer current sensors. These described design concerns, together with their generalized design procedure, are applied to an analytical example......This paper concentrates on the design, control, and implementation of an LCL-filter-based shunt active power filter (SAPF), which can effectively compensate for harmonic currents produced by nonlinear loads in a three-phase three-wire power system. With an LCL filter added at its output...

  20. Performance Analysis and Design Strategy for a Second-Order, Fixed-Gain, Position-Velocity-Measured (α-β-η-θ Tracking Filter

    Directory of Open Access Journals (Sweden)

    Kenshi Saho

    2017-07-01

    Full Text Available We present a strategy for designing an α - β - η - θ filter, a fixed-gain moving-object tracking filter using position and velocity measurements. First, performance indices and stability conditions for the filter are analytically derived. Then, an optimal gain design strategy using these results is proposed and its relationship to the position-velocity-measured (PVM Kalman filter is shown. Numerical analyses demonstrate the effectiveness of the proposed strategy, as well as a performance improvement over the traditional position-only-measured α - β filter. Moreover, we apply an α - β - η - θ filter designed using this strategy to ultra-wideband Doppler radar tracking in numerical simulations. We verify that the proposed strategy can easily design the gains for an α - β - η - θ filter based on the performance of the ultra-wideband Doppler radar and a rough approximation of the target’s acceleration. Moreover, its effectiveness in predicting the steady state performance in designing the position-velocity-measured Kalman filter is also demonstrated.

  1. The role of model dynamics in ensemble Kalman filter performance for chaotic systems

    Science.gov (United States)

    Ng, G.-H.C.; McLaughlin, D.; Entekhabi, D.; Ahanin, A.

    2011-01-01

    The ensemble Kalman filter (EnKF) is susceptible to losing track of observations, or 'diverging', when applied to large chaotic systems such as atmospheric and ocean models. Past studies have demonstrated the adverse impact of sampling error during the filter's update step. We examine how system dynamics affect EnKF performance, and whether the absence of certain dynamic features in the ensemble may lead to divergence. The EnKF is applied to a simple chaotic model, and ensembles are checked against singular vectors of the tangent linear model, corresponding to short-term growth and Lyapunov vectors, corresponding to long-term growth. Results show that the ensemble strongly aligns itself with the subspace spanned by unstable Lyapunov vectors. Furthermore, the filter avoids divergence only if the full linearized long-term unstable subspace is spanned. However, short-term dynamics also become important as non-linearity in the system increases. Non-linear movement prevents errors in the long-term stable subspace from decaying indefinitely. If these errors then undergo linear intermittent growth, a small ensemble may fail to properly represent all important modes, causing filter divergence. A combination of long and short-term growth dynamics are thus critical to EnKF performance. These findings can help in developing practical robust filters based on model dynamics. ?? 2011 The Authors Tellus A ?? 2011 John Wiley & Sons A/S.

  2. HEPA Filter Vulnerability Assessment

    International Nuclear Information System (INIS)

    GUSTAVSON, R.D.

    2000-01-01

    This assessment of High Efficiency Particulate Air (HEPA) filter vulnerability was requested by the USDOE Office of River Protection (ORP) to satisfy a DOE-HQ directive to evaluate the effect of filter degradation on the facility authorization basis assumptions. Within the scope of this assessment are ventilation system HEPA filters that are classified as Safety-Class (SC) or Safety-Significant (SS) components that perform an accident mitigation function. The objective of the assessment is to verify whether HEPA filters that perform a safety function during an accident are likely to perform as intended to limit release of hazardous or radioactive materials, considering factors that could degrade the filters. Filter degradation factors considered include aging, wetting of filters, exposure to high temperature, exposure to corrosive or reactive chemicals, and exposure to radiation. Screening and evaluation criteria were developed by a site-wide group of HVAC engineers and HEPA filter experts from published empirical data. For River Protection Project (RPP) filters, the only degradation factor that exceeded the screening threshold was for filter aging. Subsequent evaluation of the effect of filter aging on the filter strength was conducted, and the results were compared with required performance to meet the conditions assumed in the RPP Authorization Basis (AB). It was found that the reduction in filter strength due to aging does not affect the filter performance requirements as specified in the AB. A portion of the HEPA filter vulnerability assessment is being conducted by the ORP and is not part of the scope of this study. The ORP is conducting an assessment of the existing policies and programs relating to maintenance, testing, and change-out of HEPA filters used for SC/SS service. This document presents the results of a HEPA filter vulnerability assessment conducted for the River protection project as requested by the DOE Office of River Protection

  3. Design and evaluation of three-level composite filters obtained by optimizing a compromise average performance measure

    Science.gov (United States)

    Hendrix, Charles D.; Vijaya Kumar, B. V. K.

    1994-06-01

    Correlation filters with three transmittance levels (+1, 0, and -1) are of interest in optical pattern recognition because they can be implemented on available spatial light modulators and because the zero level allows us to include a region of support (ROS). The ROS can provide additional control over the filter's noise tolerance and peak sharpness. A new algorithm based on optimizing a compromise average performance measure (CAPM) is proposed for designing three-level composite filters. The performance of this algorithm is compared to other three-level composite filter designs using a common image database and using figures of merit such as the Fisher ratio, error rate, and light efficiency. It is shown that the CAPM algorithm yields better results.

  4. Highly conductive and flexible color filter electrode using multilayer film structure

    Science.gov (United States)

    Han, Jun Hee; Kim, Dong-Young; Kim, Dohong; Choi, Kyung Cheol

    2016-07-01

    In this paper, a high performance flexible component that serves as a color filter and an electrode simultaneously is suggested. The suggested highly conductive and flexible color filter electrode (CFE) has a multilayer film structure composed of silver (Ag) and tungsten trioxide (WO3). The CFE maintained its color filtering capability even when the films were bent on a polyethylene terephthalate (PET) film. Low sheet resistance of the CFE was obtained using WO3 as a bridge layer that connects two Ag layers electrically. The sheet resistance was less than 2 Ω/sq. and it was negligibly changed after bending the film, confirming the flexibility of the CFE. The CFE can be easily fabricated using a thermal evaporator and is easily patterned by photolithography or a shadow mask. The proposed CFE has enormous potential for applications involving optical devices including large area devices and flexible devices.

  5. Acoustic wave filter based on periodically poled lithium niobate.

    Science.gov (United States)

    Courjon, Emilie; Bassignot, Florent; Ulliac, Gwenn; Benchabane, Sarah; Ballandras, Sylvain

    2012-09-01

    Solutions for the development of compact RF passive transducers as an alternative to standard surface or bulk acoustic wave devices are receiving increasing interest. This article presents results on the development of an acoustic band-pass filter based on periodically poled ferroelectric domains in lithium niobate. The fabrication of periodically poled transducers (PPTs) operating in the range of 20 to 650 MHz has been achieved on 3-in (76.2-mm) 500-μm-thick wafers. This kind of transducer is able to excite elliptical as well as longitudinal modes, yielding phase velocities of about 3800 and 6500 ms(-1), respectively. A new type of acoustic band-pass filter is proposed, based on the use of PPTs instead of the SAWs excited by classical interdigital transducers. The design and the fabrication of such a filter are presented, as well as experimental measurements of its electrical response and transfer function. The feasibility of such a PPT-based filter is thereby demonstrated and the limitations of this method are discussed.

  6. Ultra compact triplexing filters based on SOI nanowire AWGs

    Science.gov (United States)

    Jiashun, Zhang; Junming, An; Lei, Zhao; Shijiao, Song; Liangliang, Wang; Jianguang, Li; Hongjie, Wang; Yuanda, Wu; Xiongwei, Hu

    2011-04-01

    An ultra compact triplexing filter was designed based on a silicon on insulator (SOI) nanowire arrayed waveguide grating (AWG) for fiber-to-the-home FTTH. The simulation results revealed that the design performed well in the sense of having a good triplexing function. The designed SOI nanowire AWGs were fabricated using ultraviolet lithography and induced coupler plasma etching. The experimental results showed that the crosstalk was less than -15 dB, and the 3 dB-bandwidth was 11.04 nm. The peak wavelength output from ports a, c, and b were 1455, 1510 and 1300 nm, respectively, which deviated from our original expectations. The deviation of the wavelength is mainly caused by 45 nm width deviation of the arrayed waveguides during the course of the fabrication process and partly caused by material dispersion.

  7. Effect of gamma radiation on the performance of jute fabrics-reinforced polypropylene composites

    Energy Technology Data Exchange (ETDEWEB)

    Haydaruzzaman [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh); Khan, Ruhul A. [Radiation and Polymer Chemistry Laboratory, Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, G. P.O. Box 3787, Dhaka 1000 (Bangladesh); Khan, Mubarak A. [Radiation and Polymer Chemistry Laboratory, Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, G. P.O. Box 3787, Dhaka 1000 (Bangladesh)], E-mail: makhan.inst@gmail.com; Khan, A.H.; Hossain, M.A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2009-11-15

    Jute fabrics-reinforced polypropylene (PP) composites (50% fiber) were prepared by compression molding. Composites were fabricated with non-irradiated jute fabrics/non-irradiated PP (C-0), non-irradiated jute fabrics/irradiated PP (C-1), irradiated jute fabrics/non-irradiated PP (C-2) and irradiated jute fabrics/irradiated PP (C-3). It was found that C-3 composite performed the best mechanical properties over other composites. Total radiation dose varied from 250-1000 krad and composites made of using 500 krad showed the best results. The optimized values (C-3 composites) for tensile strength (TS), bending strength (BS) and impact strength (IS) were found to be 63 MPa, 73 MPa and 2.93 kJ/m{sup 2}, respectively.

  8. Filter bed systems treating domestic wastewater in the Nordic countries - Performance and reuse of filter media

    DEFF Research Database (Denmark)

    Jenssen, Petter D.; Krogstad, T.; Paruch, A.M.

    2010-01-01

    Nine filter beds have been constructed in the Nordic countries, Denmark, Finland, Norway and Sweden. Filter beds consist of a septic tank followed by an aerobic pre-treatment biofilter and a subsequent saturated flow grass-covered filter. Thus, filter beds are similar to subsurface flow construct...

  9. Filter arrays

    Science.gov (United States)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  10. Novel nanocomposite Kevlar fabric membranes: Fabrication characterization, and performance in oil/water separation

    Science.gov (United States)

    Karimnezhad, Hanieh; Rajabi, Laleh; Salehi, Ehsan; Derakhshan, Ali Ashraf; Azimi, Sara

    2014-02-01

    Nanocomposite membranes with hydrophilic surface were fabricated for separation of oil (n-hexane) from oil/water emulsion. Three different nanomaterials namely, para-aminobenzoate alumoxane (PAB-A), boehmite-epoxide and polycitrate alumoxane (PC-A) were coated on the Kevlar fabric (support), according to a three-step dip-coating protocol. FTIR, SEM, TEM, UV/vis spectrophotometer, and wettability analyses were used to characterize the composite membranes. The three coating layers interacted chemically with one another and also physically with the Kevlar fabric. Water uptake measurements indicated that the membrane is a hydrophilic one. SEM and TEM analyses showed the smooth surface of the composite membrane and three-dimensional dendrimeric hyper-branched structure of (PC-A), respectively. A dead-end filtration setup was applied to test the membranes performance under natural gravity force. Effect of pH as an important variable affecting separation process was investigated with the neutral pH provided the optimum condition for the separation. Oil rejection and permeate fluxes were also monitored. The optimum flux and rejection obtained, were 7392 (Lm-2 h-1) and 89.06% at pH 7, respectively. Fouling occurred as a gel layer on the membrane surface. The deposited oil droplets on the surface of the membrane were successfully washed away with satisfactory permeate flux recovery (FRR = 88.88% at neutral pH), using hot distilled water and acidic solution as eluents.

  11. Performance evaluation of a dual-flow recharge filter for improving groundwater quality.

    Science.gov (United States)

    Samuel, Manoj P; Senthilvel, S; Mathew, Abraham C

    2014-07-01

    A dual-flow multimedia stormwater filter integrated with a groundwater recharge system was developed and tested for hydraulic efficiency and pollutant removal efficiency. The influent stormwater first flows horizontally through the circular layers of planted grass and biofibers. Subsequently, the flow direction changes to a vertical direction so that water moves through layers of pebbles and sand and finally gets recharged to the deep aquifers. The media in the sequence of vegetative medium:biofiber to pebble:sand were filled in nine proportions and tested for the best performing combination. Three grass species, viz., Typha (Typha angustifolia), Vetiver (Chrysopogon zizanioides), and St. Augustine grass (Stenotaphrum secundatum), were tested as the best performing vegetative medium. The adsorption behavior of Coconut (Cocos nucifera) fiber, which was filled in the middle layer, was determined by a series of column and batch studies.The dual-flow filter showed an increasing trend in hydraulic efficiency with an increase in flowrate. The chemical removal efficiency of the recharge dual-flow filter was found to be very high in case of K+ (81.6%) and Na+ (77.55%). The pH normalizing efficiency and electrical conductivity reduction efficiency were also recorded as high. The average removal percentage of Ca2+ was moderate, while that of Mg2+ was very low. The filter proportions of 1:1 to 1:2 (plant:fiber to pebble:sand) showed a superior performance compared to all other proportions. Based on the estimated annual costs and returns, all the financial viability criteria (internal rate of return, net present value, and benefit-cost ratio) were found to be favorable and affordable to farmers in terms of investing in the developed filtration system.

  12. CuO Nanoflowers growing on Carbon Fiber Fabric for Flexible High-Performance Supercapacitors

    International Nuclear Information System (INIS)

    Xu, Weina; Dai, Shuge; Liu, Guanlin; Xi, Yi; Hu, Chenguo; Wang, Xue

    2016-01-01

    Graphical abstract: One of the best electrochemical performances for CuOelectrodes based supercapacitorisachieved by the CuOhierarchical structure growing on the carbon fiber fabric (CuO/CFF) in aqueous electrolyte. Meanwhile, a flexible solid-state supercapacitoris also fabricated as a promising candidate in energy storage for flexible, wearable and lightweight electronics. - Highlights: • The electrodes are fabricated by cupric oxide growing on carbon fiber fabric (CuO/CFF). • The capacitor performance is optimized by the mass loading. • One of the best electrochemical performances is achieved for CuO/CFF supercapacitor. • A highly flexible solid-state supercapacitor can power 3 light-emitting diodes for about 5 min. - Abstract: A hierarchical CuO nano-structure is prepared by directly growing CuO nanoflowers on carbon fiber fabric (CuO/CFF) via a hydrothermal method. The CuO/CFF is used as the electrode material of a supercapacitor for electrochemical energy storage. The supercapacitor displays superior electrochemical performance in aqueous electrolyte with the specific capacitance of 839.9 F/g at the scan rate of 1 mV/s, energy density of 10.05 Wh/kg and power density of 1798.5 W/kg, which are the highest values for the CuO/CFF electrodes. Moreover, a flexible symmetric solid-state symmetric supercapacitor is also fabricated by using the CuO/CFF as electrodes. The solid-state supercapacitor exhibits a specific capacitance of 131.34 F/g at the scan rate of 1 mV/s with a power density of 145.12 W/kg, and 95.8% capacitance retention after 2000 charge-discharge cycles.

  13. Predicting BCI subject performance using probabilistic spatio-temporal filters.

    Directory of Open Access Journals (Sweden)

    Heung-Il Suk

    Full Text Available Recently, spatio-temporal filtering to enhance decoding for Brain-Computer-Interfacing (BCI has become increasingly popular. In this work, we discuss a novel, fully Bayesian-and thereby probabilistic-framework, called Bayesian Spatio-Spectral Filter Optimization (BSSFO and apply it to a large data set of 80 non-invasive EEG-based BCI experiments. Across the full frequency range, the BSSFO framework allows to analyze which spatio-spectral parameters are common and which ones differ across the subject population. As expected, large variability of brain rhythms is observed between subjects. We have clustered subjects according to similarities in their corresponding spectral characteristics from the BSSFO model, which is found to reflect their BCI performances well. In BCI, a considerable percentage of subjects is unable to use a BCI for communication, due to their missing ability to modulate their brain rhythms-a phenomenon sometimes denoted as BCI-illiteracy or inability. Predicting individual subjects' performance preceding the actual, time-consuming BCI-experiment enhances the usage of BCIs, e.g., by detecting users with BCI inability. This work additionally contributes by using the novel BSSFO method to predict the BCI-performance using only 2 minutes and 3 channels of resting-state EEG data recorded before the actual BCI-experiment. Specifically, by grouping the individual frequency characteristics we have nicely classified them into the subject 'prototypes' (like μ - or β -rhythm type subjects or users without ability to communicate with a BCI, and then by further building a linear regression model based on the grouping we could predict subjects' performance with the maximum correlation coefficient of 0.581 with the performance later seen in the actual BCI session.

  14. Metal matrix composite fabrication processes for high performance aerospace structures

    Science.gov (United States)

    Ponzi, C.

    A survey is conducted of extant methods of metal matrix composite (MMC) production in order to serve as a basis for prospective MMC users' selection of a matrix/reinforcement combination, cost-effective primary fabrication methods, and secondary fabrication techniques for the achievement of desired performance levels. Attention is given to the illustrative cases of structural fittings, control-surface connecting rods, hypersonic aircraft air inlet ramps, helicopter swash plates, and turbine rotor disks. Methods for technical and cost analysis modeling useful in process optimization are noted.

  15. Stresses and Temperature Stability of Dense Wavelength Division Multiplexing Filters Prepared by Reactive Ion-Assisted E-Gun Evaporation

    Science.gov (United States)

    Wei, Chao-Tsang; Shieh, Han-Ping D.

    2005-10-01

    In this paper, we report the in situ measurement of the temperature stability of narrow-band-pass filters on different types of substrate, for dense wavelength division multiplexing (DWDM) filters in optical-fiber transmission systems. The DWDM filters were designed as all-dielectric Fabry-Perot filters and fabricated by reactive ion-assisted deposition. Ta2O5 and SiO2 were used as high- and low-refractive-index layers, respectively, for constructing the DWDM filters. The accuracy and stability of the coating process were evaluated for fabricating the DWDM filters for the temperature stability of the center wavelength. The center wavelength shift was determined to be greatly dependent on the coefficient of thermal expansion of the substrate on which the filter is deposited.

  16. Development and testing the modular fireproof fine filters on the basis of glass paper

    International Nuclear Information System (INIS)

    Rovnyj, S.I.; Glagolenko, Yu.V.; Pyatin, N.P.; Tranchuk, O.A.; Maksimov, V.E.; Afanas'eva, E.V.

    2006-01-01

    Paper describes a procedure to fabricate modified module glass paper fine filters to trap radioactive substances (14 models). The mentioned filters are made of a glass paper ensuring their fire-resistance. Paper describes the procedure of service life tests of the designed filters and the efficient procedure to extract valuable components from the spent filters [ru

  17. Performance and Fabrication Status of TREAT LEU Conversion Conceptual Design Concepts

    Energy Technology Data Exchange (ETDEWEB)

    IJ van Rooyen; SR Morrell; AE Wright; E. P Luther; K Jamison; AL Crawford; HT III Hartman

    2014-10-01

    Resumption of transient testing at the TREAT facility was approved in February 2014 to meet U.S. Department of Energy (DOE) objectives. The National Nuclear Security Administration’s Global Threat Reduction Initiative Convert Program is evaluating conversion of TREAT from its existing highly enriched uranium (HEU) core to a new core containing low enriched uranium (LEU). This paper describes briefly the initial pre-conceptual designs screening decisions with more detailed discussions on current feasibility, qualification and fabrication approaches. Feasible fabrication will be shown for a LEU fuel element assembly that can meet TREAT design, performance, and safety requirements. The statement of feasibility recognizes that further development, analysis, and testing must be completed to refine the conceptual design. Engineering challenges such as cladding oxidation, high temperature material properties, and fuel block fabrication along with neutronics performance, will be highlighted. Preliminary engineering and supply chain evaluation provided confidence that the conceptual designs can be achieved.

  18. Assessing the performance of methodological search filters to improve the efficiency of evidence information retrieval: five literature reviews and a qualitative study.

    Science.gov (United States)

    Lefebvre, Carol; Glanville, Julie; Beale, Sophie; Boachie, Charles; Duffy, Steven; Fraser, Cynthia; Harbour, Jenny; McCool, Rachael; Smith, Lynne

    2017-11-01

    Effective study identification is essential for conducting health research, developing clinical guidance and health policy and supporting health-care decision-making. Methodological search filters (combinations of search terms to capture a specific study design) can assist in searching to achieve this. This project investigated the methods used to assess the performance of methodological search filters, the information that searchers require when choosing search filters and how that information could be better provided. Five literature reviews were undertaken in 2010/11: search filter development and testing; comparison of search filters; decision-making in choosing search filters; diagnostic test accuracy (DTA) study methods; and decision-making in choosing diagnostic tests. We conducted interviews and a questionnaire with experienced searchers to learn what information assists in the choice of search filters and how filters are used. These investigations informed the development of various approaches to gathering and reporting search filter performance data. We acknowledge that there has been a regrettable delay between carrying out the project, including the searches, and the publication of this report, because of serious illness of the principal investigator. The development of filters most frequently involved using a reference standard derived from hand-searching journals. Most filters were validated internally only. Reporting of methods was generally poor. Sensitivity, precision and specificity were the most commonly reported performance measures and were presented in tables. Aspects of DTA study methods are applicable to search filters, particularly in the development of the reference standard. There is limited evidence on how clinicians choose between diagnostic tests. No published literature was found on how searchers select filters. Interviewing and questioning searchers via a questionnaire found that filters were not appropriate for all tasks but were

  19. Reflection color filters of the three primary colors with wide viewing angles using common-thickness silicon subwavelength gratings.

    Science.gov (United States)

    Kanamori, Yoshiaki; Ozaki, Toshikazu; Hane, Kazuhiro

    2014-10-20

    We fabricated reflection color filters of the three primary colors with wide viewing angles using silicon two-dimensional subwavelength gratings on the same quartz substrate. The grating periods were 400, 340, and 300 nm for red, green, and blue filters, respectively. All of the color filters had the same grating thickness of 100 nm, which enabled simple fabrication of a color filter array. Reflected colors from the red, green, and blue filters under s-polarized white-light irradiation appeared in the respective colors at incident angles from 0 to 50°. By rigorous coupled-wave analysis, the dimensions of each color filter were designed, and the calculated reflectivity was compared with the measured reflectivity.

  20. Comparative performance analysis of shunt and series passive filter for LED lamp

    Science.gov (United States)

    Sarwono, Edi; Facta, Mochammad; Handoko, Susatyo

    2018-03-01

    Light Emitting Diode lamp or LED lamp nowadays is widely used by consumers as a new innovation in the lighting technologies due to its energy saving for low power consumption lamps for brighter light intensity. How ever, the LED lamp produce an electric pollutant known as harmonics. The harmonics is generated by rectifier as part of LED lamp circuit. The present of harmonics in current or voltage has made the source waveform from the grid is distorted. This distortion may cause inacurrate measurement, mall function, and excessive heating for any element at the grid. This paper present an analysis work of shunt and series filters to suppress the harmonics generated by the LED lamp circuit. The work was initiated by conducting several tests to investigate the harmonic content of voltage and currents. The measurements in this work were carried out by using HIOKI Power Quality Analyzer 3197. The measurement results showed that the harmonics current of tested LED lamps were above the limit of IEEE standard 519-2014. Based on the measurement results shunt and series filters were constructed as low pass filters. The bode analysis were appled during construction and prediction of the filters performance. Based on experimental results, the application of shunt filter at input side of LED lamp has reduced THD current up to 88%. On the other hand, the series filter has significantly reduced THD current up to 92%.

  1. Fabrication of a phantom and its application for checking gamma camera performance

    International Nuclear Information System (INIS)

    Yesmin, S; Ahmad, G. U.; Afroz, S.; Hossain, S.; Rashid, H.

    2004-01-01

    The primary aim of the present work is to fabricate a total performance phantom, which could be used for checking the performance characteristics of gamma camera. The phantom was locally fabricated at machine shop of Bangladesh University of Engineering and Technology (BUET) and used for checking the performance characteristics of gamma camera LF-61 of Centre for Nuclear Medicine and Ultrasound, Dhaka. With 10 mCi of Tc-99m, imaging of the phantom acquired with a reasonable counts. The image was inspected physically for evaluation of the camera performances. The visual inspection of the phantom image revealed that the performance characteristics like: spatial resolution, linearity, uniformity and lesion detection capability of the gamma camera could clearly be evaluated with reasonable acceptance level. This phantom is expected to be useful for checking performance characteristics of SPECT system as well. (author)

  2. Substrate Integrated Waveguide Cross-Coupling Filter with Multilayer Hexagonal Cavity

    Directory of Open Access Journals (Sweden)

    B. Wu

    2013-01-01

    Full Text Available Hexagonal cavities and their applications to multilayer substrate integrated waveguide (SIW filters are presented. The hexagonal SIW cavity which can combine flexibility of rectangular one and performance of circular one is convenient for bandpass filter’s design. Three types of experimental configuration with the same central frequency of 10 GHz and bandwidth of 6%, including three-order and four-order cross-coupling topologies, are constructed and fabricated based on low temperature cofired ceramic (LTCC technology. Both theoretical and experimental results are presented.

  3. Ultra compact triplexing filters based on SOI nanowire AWGs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jiashun; An Junming; Zhao Lei; Song Shijiao; Wang Liangliang; Li Jianguang; Wang Hongjie; Wu Yuanda; Hu Xiongwei, E-mail: junming@red.semi.ac.cn [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2011-04-15

    An ultra compact triplexing filter was designed based on a silicon on insulator (SOI) nanowire arrayed waveguide grating (AWG) for fiber-to-the-home FTTH. The simulation results revealed that the design performed well in the sense of having a good triplexing function. The designed SOI nanowire AWGs were fabricated using ultraviolet lithography and induced coupler plasma etching. The experimental results showed that the crosstalk was less than -15 dB, and the 3 dB-bandwidth was 11.04 nm. The peak wavelength output from ports a, c, and b were 1455, 1510 and 1300 nm, respectively, which deviated from our original expectations. The deviation of the wavelength is mainly caused by 45 nm width deviation of the arrayed waveguides during the course of the fabrication process and partly caused by material dispersion. (semiconductor devices)

  4. Ultra compact triplexing filters based on SOI nanowire AWGs

    International Nuclear Information System (INIS)

    Zhang Jiashun; An Junming; Zhao Lei; Song Shijiao; Wang Liangliang; Li Jianguang; Wang Hongjie; Wu Yuanda; Hu Xiongwei

    2011-01-01

    An ultra compact triplexing filter was designed based on a silicon on insulator (SOI) nanowire arrayed waveguide grating (AWG) for fiber-to-the-home FTTH. The simulation results revealed that the design performed well in the sense of having a good triplexing function. The designed SOI nanowire AWGs were fabricated using ultraviolet lithography and induced coupler plasma etching. The experimental results showed that the crosstalk was less than -15 dB, and the 3 dB-bandwidth was 11.04 nm. The peak wavelength output from ports a, c, and b were 1455, 1510 and 1300 nm, respectively, which deviated from our original expectations. The deviation of the wavelength is mainly caused by 45 nm width deviation of the arrayed waveguides during the course of the fabrication process and partly caused by material dispersion. (semiconductor devices)

  5. The Study of Fabric Performance for Car Seats

    Directory of Open Access Journals (Sweden)

    Antonin Havelka

    2017-09-01

    Full Text Available This paper deals with the investigation of the performance of car seat fabrics in terms of physiological comfort of sitting, specifi cally their water vapour resistance and air permeability. The current work presents an alternative approach to increasing the effectiveness of car seat fabrics through a combination of newly designed middle layer with forced convection achieved by a supplementary suction ventilation device. The supplementary device was designed to measure water vapour permeability by means of the sweating guarded hot plate (SGHP system. It consists of two parts: a frame to grip a tested sample for measurements within the SGHP system and two suction ventilators which are arranged at one end of the mentioned frame in order to provide suction into the tested fabric plane during the SGHP test. The results of this investigation show that water vapour transport is increased by approximately 20% compared to the standard way of measurement by means of SGHP because of forced air flow in the plane of ribbed – channelled structure of the car seat middle layer. The findings of this study have a number of important implications for future practice. The combination of a car seat cover with channelled structure and forced air fl ow improves physiological comfort of sitting which is a key issue for both drivers and manufacturers. The suggested device for forced air flow convection in the plane of a car seat fabric has not yet been part of an actual car seat, however it is possible to use its principles in a smart car seat prototype.

  6. Antimicrobial Air Filters Using Natural Euscaphis japonica Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Gi Byoung Hwang

    Full Text Available Controlling bioaerosols has become more important with increasing participation in indoor activities. Treatments using natural-product nanomaterials are a promising technique because of their relatively low toxicity compared to inorganic nanomaterials such as silver nanoparticles or carbon nanotubes. In this study, antimicrobial filters were fabricated from natural Euscaphis japonica nanoparticles, which were produced by nebulizing E. japonica extract. The coated filters were assessed in terms of pressure drop, antimicrobial activity, filtration efficiency, major chemical components, and cytotoxicity. Pressure drop and antimicrobial activity increased as a function of nanoparticle deposition time (590, 855, and 1150 µg/cm2(filter at 3-, 6-, and 9-min depositions, respectively. In filter tests, the antimicrobial efficacy was greater against Staphylococcus epidermidis than Micrococcus luteus; ~61, ~73, and ~82% of M. luteus cells were inactivated on filters that had been coated for 3, 6, and 9 min, respectively, while the corresponding values were ~78, ~88, and ~94% with S. epidermidis. Although statistically significant differences in filtration performance were not observed between samples as a function of deposition time, the average filtration efficacy was slightly higher for S. epidermidis aerosols (~97% than for M. luteus aerosols (~95%. High-performance liquid chromatography (HPLC and electrospray ionization-tandem mass spectrometry (ESI/MS analyses confirmed that the major chemical compounds in the E. japonica extract were 1(ß-O-galloyl pedunculagin, quercetin-3-O-glucuronide, and kaempferol-3-O-glucoside. In vitro cytotoxicity and disk diffusion tests showed that E. japonica nanoparticles were less toxic and exhibited stronger antimicrobial activity toward some bacterial strains than a reference soluble nickel compound, which is classified as a human carcinogen. This study provides valuable information for the development of a

  7. An evaluation of a pre-charging pulse-jet filter for small combustor particulate control

    Energy Technology Data Exchange (ETDEWEB)

    Quimby, J.M.

    1990-04-01

    The objective of this test program is the performance and economic evaluation of a pre charged-pulse jet filter as the principal particulate control device for a commercial or industrial scale coal fired combustor. Performance factors that will be considered are the effects of particle charge, air/cloth ratio, fabric types, percent humidity and inlet particulate loading on fine particle collection efficiency, and pressure drop. Economic factors that will be considered are capital costs, energy and other operating costs, and maintenance costs. The program will result in a recommendation regarding the relative suitability of the pre charged pulse-jet filter for small combustor particulate control, as compared to other control devices. Fine particle control capability, ease of operation, and overall economics will be taken into consideration in making comparisons.

  8. Structural performance of HEPA filters under simulated tornado conditions

    International Nuclear Information System (INIS)

    Horak, H.L.; Gregory, W.S.; Ricketts, C.I.; Smith, P.R.

    1982-02-01

    This report contains the results of structural tests to determine the response of High Efficiency Particulate Air filters to simulated tornado conditions. The data include the structural limits of the filters, their resistance at high flow rates, and the effects of filter design features and tornado parameters. Considering all the filters tested, the mean break pressure or structural limit was found to be 2.35 pse (16.2 kPa). The maximum value was 2.87 psi (19.8 kPa), and the low value found was 1.31 psi (9.0 kPa). The type of failure was usually a medium break of the downstream filter fold. The type of filters that were evaluated were nuclear grade with design flow rates of 1000 cfm (0.472 m 3 /s), standard separators, and folded medium design. The parameters evaluated that are characteristic of the filter included manufacturer, separator type, faceguards, pack tightness, and aerosol loading. Manufacturer and medium properties were found to have a large effect on the structural limits

  9. Restrictions on TWT Helix Voltage Ripple for Acceptable Notch Filter Performance

    Energy Technology Data Exchange (ETDEWEB)

    Hyslop, B.

    1984-12-01

    An ac ripple on the helix voltage of the 1-2 GHz TWT's creates FM sidebands that cause amplitude and phase modulation of the microwave TWT output signal. A limit of 16 volts peak-to-peak is required for acceptable superconducting notch filter performance.

  10. Electrospun Magnetic Nanoparticle-Decorated Nanofiber Filter and Its Applications to High-Efficiency Air Filtration.

    Science.gov (United States)

    Kim, Juyoung; Chan Hong, Seung; Bae, Gwi Nam; Jung, Jae Hee

    2017-10-17

    Filtration technology has been widely studied due to concerns about exposure to airborne dust, including metal oxide nanoparticles, which cause serious health problems. The aim of these studies has been to develop mechanisms for the continuous and efficient removal of metal oxide dusts. In this study, we introduce a novel air filtration system based on the magnetic attraction force. The filtration system is composed of a magnetic nanoparticle (MNP)-decorated nanofiber (MNP-NF) filter. Using a simple electrospinning system, we fabricated continuous and smooth electrospun nanofibers with evenly distributed Fe 3 O 4 MNPs. Our electrospun MNP-NF filter exhibited high particle collection efficiency (∼97% at 300 nm particle size) compared to the control filter (w/o MNPs, ∼ 68%), with a ∼ 64% lower pressure drop (∼17 Pa) than the control filter (∼27 Pa). Finally, the filter quality factors of the MNP-NF filter were 4.7 and 11.9 times larger than those of the control filter and the conventional high-efficiency particulate air filters (>99% and ∼269 Pa), respectively. Furthermore, we successfully performed a field test of our MNP-NF filter using dust from a subway station tunnel. This work suggests that our novel MNP-NF filter can be used to facilitate effective protection against hazardous metal oxide dust in real environments.

  11. Travelling wave resonators fabricated with low-loss hydrogenated amorphous silicon

    Science.gov (United States)

    Lipka, Timo; Amthor, Julia; Trieu, Hoc Khiem; Müller, Jörg

    2013-05-01

    Low-loss hydrogenated amorphous silicon is employed for the fabrication of various planar integrated travelling wave resonators. Microring, racetrack, and disk resonators of different dimensions were fabricated with CMOS-compatible processes and systematically investigated. The key properties of notch filter ring resonators as extinction ratio, Q-factor, free spectral range, and the group refractive index were determined for resonators of varying radius, thereby achieving critically coupled photonic systems with high extinction ratios of about 20 dB for both polarizations. Racetrack resonators that are arranged in add/drop configuration and high quality factor microdisk resonators were optically characterized, with the microdisks exhibiting Q-factors of greater than 100000. Four-channel add/drop wavelength-division multiplexing filters that are based on cascaded racetrack resonators are studied. The design, the fabrication, and the optical characterization are presented.

  12. Performance of a grid connected PV system used as active filter

    International Nuclear Information System (INIS)

    Calleja, Hugo; Jimenez, Humberto

    2004-01-01

    In this paper, the performance of a grid connected photovoltaic (PV) system used as an active filter is presented. Its main feature is the capability to compensate the reactive and harmonic currents drawn by nonlinear loads while simultaneously injecting into the grid the maximum power available from the cells. The system can also operate as a stand alone active filter. The system was connected to a 1 kW PV array and tested with the loads typically found in households: small motors, personal computers and electronic ballasts. The results show that the system can correct the power factor to values close to unity for all the cases tested, thereby improving the efficiency of the electric energy supply

  13. Fabrication and Performance of a Lithium X-Ray Lens

    Science.gov (United States)

    Young, Kristina; Khounsary, Ali; Jansen, Andrew N.; Dufresne, Eric M.; Nash, Philip

    2007-01-01

    Compound refractive lenses (CRLs) are arrays of concave lenses whose simple design and ease in implementation and alignment make them an attractive optic to focus x-rays. Factors considered in designing CRLs include lens material, fabrication, and assembly. Lithium is a desirable material because it provides the largest index of refraction decrement per unit absorption length of any solid elements. Lithium is a difficult material to handle and fabricate because it is rather malleable and more importantly, it reacts with moisture, and to a lesser extent, with oxygen and nitrogen in air. It also tends to adhere to molds and dies. We report on the fabrication and performance of a parabolic lithium lens consisting of 32 lenslets. Lenslets are fabricated in a precision press using an indenter with a parabolic profile and a 100 μm tip radius. The indenter is made of stainless steel and is figured using a computer numerically controlled (CNC) machine. The lens is designed to have a 1.7 m focal length at 10 keV energy. In an experiment conducted at the Advanced Photon Source (APS), a 0.5 mm × 0.5 mm monochromatic undulator beam strikes the lens. A focal length of 1.71, a focal spot size of 24 μm × 34 μm, and a peak intensity gain of over 18 are obtained.

  14. Fabrication and Performance of a Lithium X-Ray Lens

    International Nuclear Information System (INIS)

    Young, Kristina; Khounsary, Ali; Jansen, Andrew N.; Dufresne, Eric M.; Nash, Philip

    2007-01-01

    Compound refractive lenses (CRLs) are arrays of concave lenses whose simple design and ease in implementation and alignment make them an attractive optic to focus x-rays. Factors considered in designing CRLs include lens material, fabrication, and assembly. Lithium is a desirable material because it provides the largest index of refraction decrement per unit absorption length of any solid elements. Lithium is a difficult material to handle and fabricate because it is rather malleable and more importantly, it reacts with moisture, and to a lesser extent, with oxygen and nitrogen in air. It also tends to adhere to molds and dies.We report on the fabrication and performance of a parabolic lithium lens consisting of 32 lenslets. Lenslets are fabricated in a precision press using an indenter with a parabolic profile and a 100 μm tip radius. The indenter is made of stainless steel and is figured using a computer numerically controlled (CNC) machine. The lens is designed to have a 1.7 m focal length at 10 keV energy. In an experiment conducted at the Advanced Photon Source (APS), a 0.5 mm x 0.5 mm monochromatic undulator beam strikes the lens. A focal length of 1.71, a focal spot size of 24 μm x 34 μm, and a peak intensity gain of over 18 are obtained

  15. Performance and optimisation of trickling filters on eel farms

    NARCIS (Netherlands)

    Kamstra, A.; Heul, van der J.W.; Nijhof, M.

    1998-01-01

    The design of trickling filters used on commercial eel farms differs considerably with respect to dimensions, hydraulic and substrate loads and filter medium applied. In this paper, a model, developed for ammonium removal in a pilot-scale trickling filter, has been validated for a range of

  16. A Performance Weighted Collaborative Filtering algorithm for personalized radiology education.

    Science.gov (United States)

    Lin, Hongli; Yang, Xuedong; Wang, Weisheng; Luo, Jiawei

    2014-10-01

    Devising an accurate prediction algorithm that can predict the difficulty level of cases for individuals and then selects suitable cases for them is essential to the development of a personalized training system. In this paper, we propose a novel approach, called Performance Weighted Collaborative Filtering (PWCF), to predict the difficulty level of each case for individuals. The main idea of PWCF is to assign an optimal weight to each rating used for predicting the difficulty level of a target case for a trainee, rather than using an equal weight for all ratings as in traditional collaborative filtering methods. The assigned weight is a function of the performance level of the trainee at which the rating was made. The PWCF method and the traditional method are compared using two datasets. The experimental data are then evaluated by means of the MAE metric. Our experimental results show that PWCF outperforms the traditional methods by 8.12% and 17.05%, respectively, over the two datasets, in terms of prediction precision. This suggests that PWCF is a viable method for the development of personalized training systems in radiology education. Copyright © 2014. Published by Elsevier Inc.

  17. Effects of SiC and MgO on aluminabased ceramic foams filters

    OpenAIRE

    CAO Da-li; ZHOU Jing-yi; JIN Yong-ming

    2007-01-01

    Alumina-based foam ceramic filters were fabricated by using alumina, SiC, magnesia powder as major materials. It has been found that this ceramic filter has a uniform macrostructure for filtering molten metals. The influences of SiC and magnesia content, the sintering temperatures on ceramic properties were discussed. Aluminabased foam ceramic filters containing 2.2 mass% magnesia and 7.6 mass% SiC has a compressive strength of 1.36 MPa and a thermal shock resistance of 5 times. Its main phas...

  18. Experimental Study on Ultrafine Particle Removal Performance of Portable Air Cleaners with Different Filters in an Office Room

    Directory of Open Access Journals (Sweden)

    Huan Ma

    2016-01-01

    Full Text Available Size- and time-dependent aerodynamic behaviors of indoor particles, including PM1.0, were evaluated in a school office in order to test the performance of air-cleaning devices using different filters. In-situ real-time measurements were taken using an optical particle counter. The filtration characteristics of filter media, including single-pass efficiency, volume and effectiveness, were evaluated and analyzed. The electret filter (EE medium shows better initial removal efficiency than the high efficiency (HE medium in the 0.3–3.5 μm particle size range, while under the same face velocity, the filtration resistance of the HE medium is several times higher than that of the EE medium. During service life testing, the efficiency of the EE medium decreased to 60% with a total purifying air flow of 25 × 104 m3/m2. The resistance curve rose slightly before the efficiency reached the bottom, and then increased almost exponentially. The single-pass efficiency of portable air cleaner (PAC with the pre-filter (PR or the active carbon granule filter (CF was relatively poor. While PAC with the pre-filter and the high efficiency filter (PR&HE showed maximum single-pass efficiency for PM1.0 (88.6%, PAC with the HE was the most effective at removing PM1.0. The enhancement of PR with HE and electret filters augmented the single-pass efficiency, but lessened the airflow rate and effectiveness. Combined with PR, the decay constant of large-sized particles could be greater than for PACs without PR. Without regard to the lifetime, the electret filters performed better with respect to resource saving and purification improvement. A most penetrating particle size range (MPPS: 0.4–0.65 μm exists in both HE and electret filters; the MPPS tends to become larger after HE and electret filters are combined with PR. These results serve to provide a better understanding of the indoor particle removal performance of PACs when combined with different kinds of filters in

  19. Airborne effluent control at fuel enrichment, conversion, and fabrication plants

    International Nuclear Information System (INIS)

    Mitchell, M.E.

    1976-01-01

    Uranium conversion, enrichment, and fuel fabrication facilities generate gaseous wastes that must be treated prior to being discharged to the atmosphere. Since all three process and/or handle similar compounds, they also encounter similar gaseous waste disposal problems, the majority of which are treated in a similar manner. Ventilation exhausts from personnel areas and equipment off-gases that do not contain corrosive gases (such as HF) are usually passed through roughening and/or HEPA filters prior to release. Ventilation exhausts that contain larger quantities of particles, such as the conversion facilities' U 3 O 8 sampling operation, are passed through bag filters or cyclone separators, while process off-gases containing corrosive materials are normally treated by sintered metal filters or scrubbers. The effectiveness of particle removal varies from about 90 percent for a scrubber alone to more than 99.9 percent for HEPA filters or a combination of the various filters and scrubbers. The removal of nitrogen compounds (N 2 , HNO 3 , NO/sub x/, and NH 3 ) is accomplished by scrubbers in the enrichment and fuel fabrication facilities. The conversion facility utilizes a nitric acid recovery facility for both pollution control and economic recovery of raw materials. Hydrogen removal from gaseous waste streams is generally achieved with burners. Three different systems are currently utilized by the conversion, enrichment, and fuel fabrication plants to remove gaseous fluorides from airborne effluents. The HF-rich streams, such as those emanating from the hydrofluorination and fluorine production operations of the conversion plant, are passed through condensers to recover aqueous hydrofluoric acid

  20. Design and Analysis of a Micromachined LC Low Pass Filter For 2.4GHz Application

    Science.gov (United States)

    Saroj, Samruddhi R.; Rathee, Vishal R.; Pande, Rajesh S.

    2018-02-01

    This paper reports design and analysis of a passive low pass filter with cut-off frequency of 2.4 GHz using MEMS (Micro Electro-Mechanical Systems) technology. The passive components such as suspended spiral inductors and metal-insulator-metal (MIM) capacitor are arranged in T network form to implement LC low pass filter design. This design employs a simple approach of suspension thereby reducing parasitic losses to eliminate the performance degrading effects caused by integrating an off-chip inductor in the filter circuit proposed to be developed on a low cost silicon substrate using RF-MEMS components. The filter occupies only 2.1 mm x 0.66 mm die area and is designed using micro-strip transmission line placed on a silicon substrate. The design is implemented in High Frequency Structural Simulator (HFSS) software and fabrication flow is proposed for its implementation. The simulated results show that the design has an insertion loss of -4.98 dB and return loss of -2.60dB.

  1. Wideband filter radiometers for blackbody temperature measurements

    Science.gov (United States)

    Boivin, L. P.; Bamber, C.; Gaertner, A. A.; Gerson, R. K.; Woods, D. J.; Woolliams, E. R.

    2010-10-01

    The use of high-temperature blackbody (HTBB) radiators to realize primary spectral irradiance scales requires that the operating temperature of the HTBB be accurately determined. We have developed five filter radiometers (FRs) to measure the temperature of the National Research Council of Canada's HTBB. The FRs are designed to minimize sensitivity to ambient temperature fluctuations. They incorporate air-spaced colored glass filters and a Si photodiode detector that are housed in a cell whose temperature is controlled to ±0.1°C by means of annular thermoelectric elements at the front and rear of the cell. These wideband filter radiometers operate in four different wavelength bands. The spectral responsivity measurements were performed in an underfill geometry for a power-mode calibration that is traceable to NRC's cryogenic radiometer. The spectral temperature sensitivity of each of these FRs has been measured. The apertures for these FRs were cold-formed by swaging machine-cut apertures onto precision dowel pins. A description of the filter radiometer design, fabrication and testing, together with a detailed uncertainty analysis, is presented. We derive the equations that relate the spectral irradiance measured by the FRs to the spectral radiance and temperature of the HTBB, and deal specifically with the change of index of refraction over the path of the radiation from the interior of the HTBB to the FRs. We believe these equations are more accurate than recently published derivations. Our measurements of the operating temperature of our HTBB working at temperatures near 2500 K, 2700 K and 2900 K, together with measurements using a pyrometer, show agreement between the five filter radiometers and with the pyrometer to within the estimated uncertainties.

  2. Fabrication of Ultra-thin Color Films with Highly Absorbing Media Using Oblique Angle Deposition.

    Science.gov (United States)

    Yoo, Young Jin; Lee, Gil Ju; Jang, Kyung-In; Song, Young Min

    2017-08-29

    Ultra-thin film structures have been studied extensively for use as optical coatings, but performance and fabrication challenges remain.  We present an advanced method for fabricating ultra-thin color films with improved characteristics. The proposed process addresses several fabrication issues, including large area processing. Specifically, the protocol describes a process for fabricating ultra-thin color films using an electron beam evaporator for oblique angle deposition of germanium (Ge) and gold (Au) on silicon (Si) substrates.  Film porosity produced by the oblique angle deposition induces color changes in the ultra-thin film. The degree of color change depends on factors such as deposition angle and film thickness. Fabricated samples of the ultra-thin color films showed improved color tunability and color purity. In addition, the measured reflectance of the fabricated samples was converted into chromatic values and analyzed in terms of color. Our ultra-thin film fabricating method is expected to be used for various ultra-thin film applications such as flexible color electrodes, thin film solar cells, and optical filters. Also, the process developed here for analyzing the color of the fabricated samples is broadly useful for studying various color structures.

  3. Influence of Fabric Parameters on Thermal Comfort Performance of Double Layer Knitted Interlock Fabrics

    Directory of Open Access Journals (Sweden)

    Afzal Ali

    2017-03-01

    Full Text Available The aim of this study was to analyse the effects of various fabric parameters on the thermal resistance, thermal conductivity, thermal transmittance, thermal absorptivity and thermal insulation of polyester/cotton double layer knitted interlock fabrics. It was found that by increasing fibre content with higher specific heat increases the thermal insulation while decreases the thermal transmittance and absorptivity of the fabric. It was concluded that double layer knitted fabrics developed with higher specific heat fibres, coarser yarn linear densities, higher knitting loop length and fabric thickness could be adequately used for winter clothing purposes.

  4. Design of Microwave Multibandpass Filters with Quasilumped Resonators

    Directory of Open Access Journals (Sweden)

    Dejan Miljanović

    2015-01-01

    Full Text Available Design of RF and microwave filters has always been the challenging engineering field. Modern filter design techniques involve the use of the three-dimensional electromagnetic (3D EM solvers for predicting filter behavior, yielding the most accurate filter characteristics. However, the 3D EM simulations are time consuming. In this paper, we propose electric-circuit models, instead of 3D EM models, suitable for design of RF and microwave filters with quasilumped coupled resonators. Using the diakoptic approach, the 3D filter structure is decomposed into domains that are modeled by electric networks. The coupling between these domains is modeled by capacitors and coupled inductors. Furthermore, we relate the circuit-element values to the physical dimensions of the 3D filter structure. We propose the filter design procedure that is based on the circuit models and fast circuit-level simulations, yielding the element values from which the physical dimensions can be obtained. The obtained dimensions should be slightly refined for achieving the desired filter characteristics. The mathematical problems encountered in the procedure are solved by numerical and symbolic computations. The procedure is exemplified by designing a triple-bandpass filter and validated by measurements on the fabricated filter. The simulation and experimental results are in good agreement.

  5. Very High-Performance Advanced Filter Bank Analog-to-Digital Converter (AFB ADC) Project

    National Research Council Canada - National Science Library

    Velazquez, Scott

    1999-01-01

    ... of the art by using a parallel array of individual commercial off the shelf converters. The significant performance improvements afforded by the Advanced Filter Bank Analog to Digital Converter (AFB ADC...

  6. Signal processing for high granularity calorimeter: amplification, filtering, memorization and digitalization

    Energy Technology Data Exchange (ETDEWEB)

    Royer, L; Manen, S; Gay, P, E-mail: royer@clermont.in2p3.f [Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, LPC, BP 10448, F-63000 Clermont-Ferrand (France)

    2010-12-15

    A very-front-end electronics dedicated to high granularity calorimeters has been designed and its performance measured. This electronics performs the amplification of the charge delivered by the detector thanks to a low-noise Charge Sensitive Amplifier. The dynamic range is improved using a bandpass filter based on a Gated Integrator. Studying its weighting function, we show that this filter is more efficient than standard CRRC shaper, thanks to the integration time which can be expand near the bunch interval time, whereas the peaking time of the CRRC shaper is limited to pile-up consideration. Moreover, the Gated Integrator performs intrinsically the analog memorization of the signal before its delayed digital conversion. The analog-to-digital conversion is performed through a 12-bit cyclic ADC specifically developed for this application. The very-front-end channel has been fabricated using a 0.35 {mu}m CMOS technology. Measurements show a global non-linearity better than 0.1%. The Equivalent Noise Charge at the input of the channel is evaluated to 1.8 fC, compare to the maximum input charge of 10 pC. The power consumption of the complete channel is limited to 6.5 mW.

  7. Evaluation of Alternative Filter Media for the Rotary Microfilter

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R.; Herman, D. T.; Bhave, R.

    2011-11-09

    The Savannah River Site is currently developing and testing several processes to treat high level radioactive liquid waste. Each of these processes has a solid-liquid separation process that limits its throughput. Savannah River National Laboratory researchers identified and tested the rotary microfilter as a technology to increase solid-liquid separation throughput. The authors believe the rotary microfilter throughput can be improved by using a better filter membrane. Previous testing showed that asymmetric filters composed of a ceramic membrane on top of a stainless steel support produced higher filter flux than 100% stainless steel symmetric filters in crossflow filter tests. Savannah River National Laboratory and Oak Ridge National Laboratory are working together to develop asymmetric ceramic ? stainless steel composite filters and asymmetric 100% stainless steel filters to improve the throughput of the rotary microfilter. The Oak Ridge National Laboratory Inorganic Membrane Group fabricated samples of alternative filter membranes. In addition, Savannah River National Laboratory obtained samples of filter membranes from Pall, Porvair, and SpinTek. They tested these samples in a static test cell with feed slurries containing monosodium titanate and simulated sludge.

  8. Evaluation of Alternative Filter Media for the Rotary Microfilter

    International Nuclear Information System (INIS)

    Poirier, M. R.; Herman, D. T.; Bhave, R.

    2011-01-01

    The Savannah River Site is currently developing and testing several processes to treat high level radioactive liquid waste. Each of these processes has a solid-liquid separation process that limits its throughput. Savannah River National Laboratory researchers identified and tested the rotary microfilter as a technology to increase solid-liquid separation throughput. The authors believe the rotary microfilter throughput can be improved by using a better filter membrane. Previous testing showed that asymmetric filters composed of a ceramic membrane on top of a stainless steel support produced higher filter flux than 100% stainless steel symmetric filters in crossflow filter tests. Savannah River National Laboratory and Oak Ridge National Laboratory are working together to develop asymmetric ceramic-stainless steel composite filters and asymmetric 100% stainless steel filters to improve the throughput of the rotary microfilter. The Oak Ridge National Laboratory Inorganic Membrane Group fabricated samples of alternative filter membranes. In addition, Savannah River National Laboratory obtained samples of filter membranes from Pall, Porvair, and SpinTek. They tested these samples in a static test cell with feed slurries containing monosodium titanate and simulated sludge

  9. Hardware Architecture of Polyphase Filter Banks Performing Embedded Resampling for Software-Defined Radio Front-Ends

    DEFF Research Database (Denmark)

    Awan, Mehmood-Ur-Rehman; Le Moullec, Yannick; Koch, Peter

    2012-01-01

    , and power optimization for field programmable gate array (FPGA) based architectures in an M -path polyphase filter bank with modified N -path polyphase filter. Such systems allow resampling by arbitrary ratios while simultaneously performing baseband aliasing from center frequencies at Nyquist zones......In this paper, we describe resource-efficient hardware architectures for software-defined radio (SDR) front-ends. These architectures are made efficient by using a polyphase channelizer that performs arbitrary sample rate changes, frequency selection, and bandwidth control. We discuss area, time...... that are not multiples of the output sample rate. A non-maximally decimated polyphase filter bank, where the number of data loads is not equal to the number of M subfilters, processes M subfilters in a time period that is either less than or greater than the M data-load’s time period. We present a load...

  10. Performance of 1000- and 1800- cfm HEPA filters on long exposure to low atmospheric dust loadings, II

    International Nuclear Information System (INIS)

    First, M.W.; Rudnick, S.N.

    1981-01-01

    Comparative tests were made to evaluate the performance characteristics of American- and European-design HEPA filters when exposed, for a number of years, to aerosols characteristic of nuclear and biohazard service. Although some of the European-design filters were operated at their rated airflow capacity of 1800 cfm, some were downrated to 1000 cfm to determine if their service life could be more than tripled compared to conventional 1000-cfm Americal-design HEPA filters, as filter theory predicts. Initial results indicate, however, that for the ambient aerosol used in this study, a European-design filter has a service life of only 1.6 times greater than an American-design filter when both operate at 1000 cfm. Further tests are in progress to verify this result

  11. Planar Superconducting Millimeter-Wave/Terahertz Channelizing Filter

    Science.gov (United States)

    Ehsan, Negar; U-yen, Kongpop; Brown, Ari; Hsieh, Wen-Ting; Wollack, Edward; Moseley, Samuel

    2013-01-01

    This innovation is a compact, superconducting, channelizing bandpass filter on a single-crystal (0.45 m thick) silicon substrate, which operates from 300 to 600 GHz. This device consists of four channels with center frequencies of 310, 380, 460, and 550 GHz, with approximately 50-GHz bandwidth per channel. The filter concept is inspired by the mammalian cochlea, which is a channelizing filter that covers three decades of bandwidth and 3,000 channels in a very small physical space. By using a simplified physical cochlear model, and its electrical analog of a channelizing filter covering multiple octaves bandwidth, a large number of output channels with high inter-channel isolation and high-order upper stopband response can be designed. A channelizing filter is a critical component used in spectrometer instruments that measure the intensity of light at various frequencies. This embodiment was designed for MicroSpec in order to increase the resolution of the instrument (with four channels, the resolution will be increased by a factor of four). MicroSpec is a revolutionary wafer-scale spectrometer that is intended for the SPICA (Space Infrared Telescope for Cosmology and Astrophysics) Mission. In addition to being a vital component of MicroSpec, the channelizing filter itself is a low-resolution spectrometer when integrated with only an antenna at its input, and a detector at each channel s output. During the design process for this filter, the available characteristic impedances, possible lumped element ranges, and fabrication tolerances were identified for design on a very thin silicon substrate. Iterations between full-wave and lumped-element circuit simulations were performed. Each channel s circuit was designed based on the availability of characteristic impedances and lumped element ranges. This design was based on a tabular type bandpass filter with no spurious harmonic response. Extensive electromagnetic modeling for each channel was performed. Four channels

  12. Study of skin model and geometry effects on thermal performance of thermal protective fabrics

    Science.gov (United States)

    Zhu, Fanglong; Ma, Suqin; Zhang, Weiyuan

    2008-05-01

    Thermal protective clothing has steadily improved over the years as new materials and improved designs have reached the market. A significant method that has brought these improvements to the fire service is the NFPA 1971 standard on structural fire fighters’ protective clothing. However, this testing often neglects the effects of cylindrical geometry on heat transmission in flame resistant fabrics. This paper deals with methods to develop cylindrical geometry testing apparatus incorporating novel skin bioheat transfer model to test flame resistant fabrics used in firefighting. Results show that fabrics which shrink during the test can have reduced thermal protective performance compared with the qualities measured with a planar geometry tester. Results of temperature differences between skin simulant sensors of planar and cylindrical tester are also compared. This test method provides a new technique to accurately and precisely characterize the thermal performance of thermal protective fabrics.

  13. Performance of an optical filter for the XMM focal plane CCD camera EPIC

    Science.gov (United States)

    Stephan, Karl-Heinz; Reppin, C.; Hirschinger, M.; Maier, H. J.; Frischke, D.; Fuchs, Detlef; Mueller, Peter; Guertler, Peter

    1996-10-01

    We have been developing optical filters for ESA's x-ray astronomy project XMM (x-ray multi mirror mission). Specific CCDs will be used as detectors in the focal plane on board the observatory. Since these detectors are sensitive from the x-ray to the NIR (near infrared) spectral range, x-ray observations require optical filters, which combine a high transparency for photon energies in the soft x-ray region and a high opacity for UV (ultraviolet) and VIS (visible) radiation as well. With respect to the mission goal in orbit three types of flight model filters are designed having different spectral transmittance functions. We report on one of these types, a so-called 'thick' filter, which has been realized within the EQM (electrical qualification model)- phase of the project. The filter features a cut-off in the EUV (extreme ultraviolet) spectral range and suppresses radiation below 10 eV photon energy by more than 8 orders of magnitude. It has an effective aperture of 73 mm without any support structure. A 0.35 micrometer thick polypropylene carrier foil is coated with metallic films of Al and Sn. The manufacturing process, the qualification measurements and the environmental tests are described, and the resulting performance data is presented.

  14. A highly linear baseband Gm—C filter for WLAN application

    Science.gov (United States)

    Lijun, Yang; Zheng, Gong; Yin, Shi; Zhiming, Chen

    2011-09-01

    A low voltage, highly linear transconductan—C (Gm—C) low-pass filter for wireless local area network (WLAN) transceiver application is proposed. This transmitter (Tx) filter adopts a 9.8 MHz 3rd-order Chebyshev low pass prototype and achieves 35 dB stop-band attenuation at 30 MHz frequency. By utilizing pseudo-differential linear-region MOS transconductors, the filter IIP3 is measured to be as high as 9.5 dBm. Fabricated in a 0.35 μm standard CMOS technology, the proposed filter chip occupies a 0.41 × 0.17 mm2 die area and consumes 3.36 mA from a 3.3-V power supply.

  15. Experimental use of iteratively designed rotation invariant correlation filters

    International Nuclear Information System (INIS)

    Sweeney, D.W.; Ochoa, E.; Schils, G.F.

    1987-01-01

    Iteratively designed filters are incorporated into an optical correlator for position, rotation, and intensity invariant recognition of target images. The filters exhibit excellent discrimination because they are designed to contain full information about the target image. Numerical simulations and experiments demonstrate detection of targets that are corrupted with random noise (SNR≅0.5) and also partially obscured by other objects. The complex valued filters are encoded in a computer generated hologram and fabricated directly using an electron-beam system. Experimental results using a liquid crystal spatial light modulator for real-time input show excellent agreement with analytical and numerical computations

  16. DESIGN AND FABRICATION OF MULTI STAGE CUTTING OIL FILTER SYSTEM

    OpenAIRE

    ABHIJIT S. GETME , ADITENDRA JAISWAL

    2018-01-01

    Multistage oil filtration system is a system used to filter out all the metallic, non metallic particles from the cutting fluid, which is used during the machining processes. Basic procedures we are using in it are: centrifugal process, magnetic filtration, paper filtration.

  17. Nuclear fuel conversion and fabrication chemistry

    International Nuclear Information System (INIS)

    Lerch, R.E.; Norman, R.E.

    1984-01-01

    Following irradiation and reprocessing of nuclear fuel, two operations are performed to prepare the fuel for subsequent reuse as fuel: fuel conversion, and fuel fabrication. These operations complete the classical nuclear fuel cycle. Fuel conversion involves generating a solid form suitable for fabrication into nuclear fuel. For plutonium based fuels, either a pure PuO 2 material or a mixed PuO 2 -UO 2 fuel material is generated. Several methods are available for preparation of the pure PuO 2 including: oxalate or peroxide precipitation; or direct denitration. Once the pure PuO 2 is formed, it is fabricated into fuel by mechanically blending it with ceramic grade UO 2 . The UO 2 can be prepared by several methods which include direct denitration. ADU precipitation, AUC precipitation, and peroxide precipitation. Alternatively, UO 2 -PuO 2 can be generated directly using coprecipitation, direct co-denitration, or gel sphere processes. In coprecipitation, uranium and plutonium are either precipitated as ammonium diuranate and plutonium hydroxide or as a mixture of ammonium uranyl-plutonyl carbonate, filtered and dried. In direct thermal denitration, solutions of uranium and plutonium nitrates are heated causing concentration and, subsequently, direct denitration. In gel sphere conversion, solutions of uranium and plutonium nitrate containing additives are formed into spherical droplets, gelled, washed and dried. Refabrication of these UO 3 -PuO 2 starting materials is accomplished by calcination-reduction to UO 2 -PuO 2 followed by pellet fabrication. (orig.)

  18. Performance of zeolite ceramic membrane synthesized by wet mixing method as methylene blue dye wastewater filter

    Science.gov (United States)

    Masturi; Widodo, R. D.; Edie, S. S.; Amri, U.; Sidiq, A. L.; Alighiri, D.; Wulandari, N. A.; Susilawati; Amanah, S. N.

    2018-03-01

    Problem of pollution in water continues in Indonesia, with its manufacturing sector as biggest contributor to economic growth. One out of many technological solutions is post-treating industrial wastewater by membrane filtering technology. We presented a result of our fabrication of ceramic membrane made from zeolite with simple mixing and he. At 5% of (poring agent):(total weight), its permeability stays around 2.8 mD (10‑14m2) with slight variance around it, attributed to the mixture being in far below percolating threshold. All our membranes achieve remarkable above 90% rejection rate of methylene blue as solute waste in water solvent.

  19. A Study of Parallel Operation of an active Filter and passive Filters

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Pedersen, John Kim

    2002-01-01

    This paper reports investigations of the parallel operations of a current controlled active filter and passive filters in a system with current harmonic sources. The task of reactive power and harmonic compensation is shared by the active filter and passive filters. The passive filters are used...... arrangements of the active and passive filters can operate relatively independently, also the compensation flexibility of the active filter can be fully exploited, such as one active filter for several harmonic sources.The simulation studies on various systems have been performed to evaluate the effectiveness...... of the systems. The results show that the power factor is corrected by the passive filters, harmonics are minimized by both active and passive filters and overloading of the filter system can be avoided....

  20. Fabrication of a Miniaturized ZnO Nanowire Accelerometer and Its Performance Tests

    Directory of Open Access Journals (Sweden)

    Hyun Chan Kim

    2016-09-01

    Full Text Available This paper reports a miniaturized piezoelectric accelerometer suitable for a small haptic actuator array. The accelerometer is made with zinc oxide (ZnO nanowire (NW grown on a copper wafer by a hydrothermal process. The size of the accelerometer is 1.5 × 1.5 mm2, thus fitting the 1.8 × 1.8 mm2 haptic actuator array cell. The detailed fabrication process of the miniaturized accelerometer is illustrated. Performance evaluation of the fabricated accelerometer is conducted by comparing it with a commercial piezoelectric accelerometer. The output current of the fabricated accelerometer increases linearly with the acceleration. The miniaturized ZnO NW accelerometer is feasible for acceleration measurement of small and lightweight devices.

  1. Antibacterial performance of nano polypropylene filter media containing nano-TiO{sub 2} and clay particles

    Energy Technology Data Exchange (ETDEWEB)

    Shafiee, Sara; Zarrebini, Mohammad; Naghashzargar, Elham, E-mail: e.naghashzargar@tx.iut.ac.ir; Semnani, Dariush, E-mail: d-semnani@cc.iut.ac.ir [Isfahan University of Technology, Department of Textile Engineering (Iran, Islamic Republic of)

    2015-10-15

    Disinfection and elimination of pathogenic microorganisms from liquid can be achieved by filtration process using antibacterial filter media. The advent of nanotechnology has facilitated the introduction of membranes consisting of nano-fiber in filtration operations. The melt electro-spun fibers due to their extremely small diameters are used in the production of this particular filtration medium. In this work, antibacterial polypropylene filter medium containing clay particles and nano-TiO{sub 2} were made using melt electro-spun technology. Antibacterial performance of polypropylene nano-filters was evaluated using E. coli bacteria. Additionally, filtration efficiency of the samples in terms fiber diameter, filter porosity, and fiber distribution using image processing technique was determined. Air permeability and dust aerosol tests were conducted to establish the suitability of the samples as a filter medium. It was concluded that as far as antibacterial property is concerned, nano-fibers filter media containing clay particles are preferential to similar media containing TiO{sub 2} nanoparticles.

  2. Removal efficiency of silver impregnated filter materials and performance of iodie filters in the off-gas of the Karlsruhe reprocessing plant WAK

    International Nuclear Information System (INIS)

    Herrmann, F.J.; Herrmann, B.; Hoeflich, V.

    1997-01-01

    An almost quantitative retention of iodine is required in reprocessing plants. For the iodine removal in the off-gas streams of a reprocessing plant various sorption materials had been tested under realistic conditions in the Karlsruhe reprocessing plant WAK in cooperation with the Karlsruhe research center FZK. The laboratory results achieved with different iodine sorption materials justified long time performance tests in the WAK Plant. Technical iodine filters and sorption materials for measurements of iodine had been tested from 1972 through 1992. This paper gives an overview over the most important results, Extended laboratory, pilot plant, hot cell and plant experiences have been performed concerning the behavior and the distribution of iodine-129 in chemical processing plants. In a conventional reprocessing plant for power reactor fuel, the bulk of iodine-129 and iodine-127 is evolved into the dissolver off-gas. The remainder is dispersed over many aqueous, organic and gaseous process and waste streams of the plant. Iodine filters with silver nitrate impregnated silica were installed in the dissolver off-gas of the Karlsruhe reprocessing plant WAK in 1975 and in two vessel vent systems in 1988. The aim of the Karlsruhe iodine research program was an almost quantitative evolution of the iodine during the dissolution process to remove as much iodine with the solid bed filters as possible. After shut down of the WAK plant in December 1990 the removal efficiency of the iodine filters at low iodine concentrations had been investigated during the following years. 12 refs., 2 figs., 2 tabs

  3. Removal efficiency of silver impregnated filter materials and performance of iodie filters in the off-gas of the Karlsruhe reprocessing plant WAK

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, F.J.; Herrmann, B.; Hoeflich, V. [Wiederaufarbeitungsanlage Karlsruhe (Germany)] [and others

    1997-08-01

    An almost quantitative retention of iodine is required in reprocessing plants. For the iodine removal in the off-gas streams of a reprocessing plant various sorption materials had been tested under realistic conditions in the Karlsruhe reprocessing plant WAK in cooperation with the Karlsruhe research center FZK. The laboratory results achieved with different iodine sorption materials justified long time performance tests in the WAK Plant. Technical iodine filters and sorption materials for measurements of iodine had been tested from 1972 through 1992. This paper gives an overview over the most important results, Extended laboratory, pilot plant, hot cell and plant experiences have been performed concerning the behavior and the distribution of iodine-129 in chemical processing plants. In a conventional reprocessing plant for power reactor fuel, the bulk of iodine-129 and iodine-127 is evolved into the dissolver off-gas. The remainder is dispersed over many aqueous, organic and gaseous process and waste streams of the plant. Iodine filters with silver nitrate impregnated silica were installed in the dissolver off-gas of the Karlsruhe reprocessing plant WAK in 1975 and in two vessel vent systems in 1988. The aim of the Karlsruhe iodine research program was an almost quantitative evolution of the iodine during the dissolution process to remove as much iodine with the solid bed filters as possible. After shut down of the WAK plant in December 1990 the removal efficiency of the iodine filters at low iodine concentrations had been investigated during the following years. 12 refs., 2 figs., 2 tabs.

  4. Design, fabrication and performance tests for a polymer-based flexible flat heat pipe

    International Nuclear Information System (INIS)

    Hsieh, Shou-Shing; Yang, Ya-Ru

    2013-01-01

    Highlights: ► Fabrication of a polymer-based flexible flat heat pipe. ► Bending angle of 15° will lead to a better thermal performance of the system. ► Powers higher than 12.67 W can be transferred/delivered. - Abstract: In this paper, we report on the novel design, fabrication and performance tests for a polymer-based flexible flat heat pipe (FHP) with a bending angle in the range of 15–90°. Each heat pipe is 4 mm thick, 20 mm wide and 80 mm long, with two layers of No. 250 copper mesh as the wicking material. A copper/silicone rubber hybrid structure is designed and fabricated to achieve the flexibility of the heat pipe. Thermal characteristics are measured and studied for de-ionized water under different working conditions. Experimental results reveal that a bending angle of 15° on the vertical plane has a better thermal performance than those of heat pipes with/without bending. In addition, a higher power of 12.67 W can be transferred/delivered

  5. Selection vector filter framework

    Science.gov (United States)

    Lukac, Rastislav; Plataniotis, Konstantinos N.; Smolka, Bogdan; Venetsanopoulos, Anastasios N.

    2003-10-01

    We provide a unified framework of nonlinear vector techniques outputting the lowest ranked vector. The proposed framework constitutes a generalized filter class for multichannel signal processing. A new class of nonlinear selection filters are based on the robust order-statistic theory and the minimization of the weighted distance function to other input samples. The proposed method can be designed to perform a variety of filtering operations including previously developed filtering techniques such as vector median, basic vector directional filter, directional distance filter, weighted vector median filters and weighted directional filters. A wide range of filtering operations is guaranteed by the filter structure with two independent weight vectors for angular and distance domains of the vector space. In order to adapt the filter parameters to varying signal and noise statistics, we provide also the generalized optimization algorithms taking the advantage of the weighted median filters and the relationship between standard median filter and vector median filter. Thus, we can deal with both statistical and deterministic aspects of the filter design process. It will be shown that the proposed method holds the required properties such as the capability of modelling the underlying system in the application at hand, the robustness with respect to errors in the model of underlying system, the availability of the training procedure and finally, the simplicity of filter representation, analysis, design and implementation. Simulation studies also indicate that the new filters are computationally attractive and have excellent performance in environments corrupted by bit errors and impulsive noise.

  6. Compact HTS bandpass filter employing CPW quarter-wavelength resonators with strongly-coupled open stubs

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, K; Koizumi, D; Narahashi, S [Research Laboratories, NTT DoCoMo, Inc., 3-5 Hikari-no-oka, Yokosuka, Kanagwa, 239-8536 (Japan)], E-mail: satokei@nttdocomo.co.jp

    2008-02-01

    This paper presents a novel compact high temperature superconducting (HTS) bandpass filter (BPF) that employs a newly developed miniaturized coplanar-waveguide (CPW) quarter-wavelength resonators with strongly-coupled open stubs. The proposed resonator has a structure in which the open stubs are aligned close to the center conductor of the resonator. This is because strongly-coupled resonators have widely-split resonant frequencies, and the lowest resonant frequency is employed as the fundamental resonant frequency of the resonator in order to achieve miniaturization. The proposed resonator is 1.7 mm or less in length for use in the 5-GHz band, whereas the conventional straight resonator is approximately 6.4 mm long. A four-pole Chebyshev HTS BPF is designed and fabricated using the proposed CPW resonators. The entire length of the proposed four-pole filter is 15 mm. The frequency response of the fabricated filter agrees well with the electromagnetic simulation results. The proposed filter achieves a size reduction of at least 50% compared to previously reported filters without any degradation in the frequency characteristics.

  7. Replicating the microbial community and water quality performance of full-scale slow sand filters in laboratory-scale filters.

    Science.gov (United States)

    Haig, Sarah-Jane; Quince, Christopher; Davies, Robert L; Dorea, Caetano C; Collins, Gavin

    2014-09-15

    Previous laboratory-scale studies to characterise the functional microbial ecology of slow sand filters have suffered from methodological limitations that could compromise their relevance to full-scale systems. Therefore, to ascertain if laboratory-scale slow sand filters (L-SSFs) can replicate the microbial community and water quality production of industrially operated full-scale slow sand filters (I-SSFs), eight cylindrical L-SSFs were constructed and were used to treat water from the same source as the I-SSFs. Half of the L-SSFs sand beds were composed of sterilized sand (sterile) from the industrial filters and the other half with sand taken directly from the same industrial filter (non-sterile). All filters were operated for 10 weeks, with the microbial community and water quality parameters sampled and analysed weekly. To characterize the microbial community phyla-specific qPCR assays and 454 pyrosequencing of the 16S rRNA gene were used in conjunction with an array of statistical techniques. The results demonstrate that it is possible to mimic both the water quality production and the structure of the microbial community of full-scale filters in the laboratory - at all levels of taxonomic classification except OTU - thus allowing comparison of LSSF experiments with full-scale units. Further, it was found that the sand type composing the filter bed (non-sterile or sterile), the water quality produced, the age of the filters and the depth of sand samples were all significant factors in explaining observed differences in the structure of the microbial consortia. This study is the first to the authors' knowledge that demonstrates that scaled-down slow sand filters can accurately reproduce the water quality and microbial consortia of full-scale slow sand filters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. 40 CFR 62.14720 - What information must I submit following my initial performance test?

    Science.gov (United States)

    2010-07-01

    ... report for the initial performance test results obtained under § 62.14660, as applicable. (b) The values... fabric filter to comply with the emission limitations, documentation that a bag leak detection system has...

  9. A highly linear baseband Gm-C filter for WLAN application

    International Nuclear Information System (INIS)

    Yang Lijun; Chen Zhiming; Gong Zheng; Shi Yin

    2011-01-01

    A low voltage, highly linear transconductan-C (G m -C) low-pass filter for wireless local area network (WLAN) transceiver application is proposed. This transmitter (Tx) filter adopts a 9.8 MHz 3rd-order Chebyshev low pass prototype and achieves 35 dB stop-band attenuation at 30 MHz frequency. By utilizing pseudo-differential linear-region MOS transconductors, the filter IIP 3 is measured to be as high as 9.5 dBm. Fabricated in a 0.35 μm standard CMOS technology, the proposed filter chip occupies a 0.41 x 0.17 mm 2 die area and consumes 3.36 mA from a 3.3-V power supply. (semiconductor integrated circuits)

  10. Fabrication of nitrogen-containing diamond-like carbon film by filtered arc deposition as conductive hard-coating film

    Science.gov (United States)

    Iijima, Yushi; Harigai, Toru; Isono, Ryo; Imai, Takahiro; Suda, Yoshiyuki; Takikawa, Hirofumi; Kamiya, Masao; Taki, Makoto; Hasegawa, Yushi; Tsuji, Nobuhiro; Kaneko, Satoru; Kunitsugu, Shinsuke; Habuchi, Hitoe; Kiyohara, Shuji; Ito, Mikio; Yick, Sam; Bendavid, Avi; Martin, Phil

    2018-01-01

    Diamond-like carbon (DLC) films, which are amorphous carbon films, have been used as hard-coating films for protecting the surface of mechanical parts. Nitrogen-containing DLC (N-DLC) films are expected as conductive hard-coating materials. N-DLC films are expected in applications such as protective films for contact pins, which are used in the electrical check process of integrated circuit chips. In this study, N-DLC films are prepared using the T-shaped filtered arc deposition (T-FAD) method, and film properties are investigated. Film hardness and film density decreased when the N content increased in the films because the number of graphite structures in the DLC film increased as the N content increased. These trends are similar to the results of a previous study. The electrical resistivity of N-DLC films changed from 0.26 to 8.8 Ω cm with a change in the nanoindentation hardness from 17 to 27 GPa. The N-DLC films fabricated by the T-FAD method showed high mechanical hardness and low electrical resistivity.

  11. Waste to wealth concept: Disposable RGO filter paper for flexible temperature sensor applications

    Science.gov (United States)

    Neella, Nagarjuna; Kedambaimoole, Vaishakh; Gaddam, Venkateswarlu; Nayak, M. M.; Rajanna, K.

    2018-04-01

    We have developed a flexible reduced graphene oxide (RGO) temperature sensor on filter paper based cellulose substrate using vacuum filtration method. One of the most commonly used synthesized methods for RGO thin films is vacuum filtration process. It has several advantages such as simple operation and good controllability. The structural analysis was carried out by FE-SEM, in which the surface morphology images confirm the formation of RGO nanostructures on the filter paper substrate. It was observed that the pores of the filter paper were completely filled with the RGO material during the filtration process, subsequently the formation of continuous RGO thin films. As a results, the RGO films exhibits a piezoresistive property. The resulted RGO based films on the filter paper reveals the semiconducting behavior having sensitivity of 0.278 Ω /°C and negative temperature coefficient (NTC) about -0.00254 Ω/ Ω / °C. Thus, we demonstrate a simplified way for the fabrication of RGO films on filter paper that possesses better and easier measurable macroscopic electrical properties. Our approach is for easy way of electronics, cost-effective and environment friendly fabrication route for flexible conducting graphene films on filter paper. This will enable for the potential applications in flexible electronics in various fields including biomedical, automobile and aerospace engineering.

  12. Pressure transients across HEPA filters

    International Nuclear Information System (INIS)

    Gregory, W.; Reynolds, G.; Ricketts, C.; Smith, P.R.

    1977-01-01

    Nuclear fuel cycle facilities require ventilation for health and safety reasons. High efficiency particulate air (HEPA) filters are located within ventilation systems to trap radioactive dust released in reprocessing and fabrication operations. Pressure transients within the air cleaning systems may be such that the effectiveness of the filtration system is questioned under certain accident conditions. These pressure transients can result from both natural and man-caused phenomena: atmospheric pressure drop caused by a tornado or explosions and nuclear excursions initiate pressure pulses that could create undesirable conditions across HEPA filters. Tornado depressurization is a relatively slow transient as compared to pressure pulses that result from combustible hydrogen-air mixtures. Experimental investigation of these pressure transients across air cleaning equipment has been undertaken by Los Alamos Scientific Laboratory and New Mexico State University. An experimental apparatus has been constructed to impose pressure pulses across HEPA filters. The experimental equipment is described as well as preliminary results using variable pressurization rates. Two modes of filtration of an aerosol injected upstream of the filter is examined. A laser instrumentation for measuring the aerosol release, during the transient, is described

  13. A Performance Comparison Between Extended Kalman Filter and Unscented Kalman Filter in Power System Dynamic State Estimation

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2016-01-01

    Dynamic State Estimation (DSE) is a critical tool for analysis, monitoring and planning of a power system. The concept of DSE involves designing state estimation with Extended Kalman Filter (EKF) or Unscented Kalman Filter (UKF) methods, which can be used by wide area monitoring to improve......-linear state estimator is developed in MatLab to solve states by applying the unscented Kalman filter (UKF) and Extended Kalman Filter (EKF) algorithm. Finally, a DSE model is built for a 14 bus power system network to evaluate the proposed algorithm for the networks.This article will focus on comparing...

  14. Decentralized wastewater treatment using passively aerated biological filter.

    Science.gov (United States)

    Abou-Elela, Sohair I; Hellal, Mohamed S; Aly, Olfat H; Abo-Elenin, Salah A

    2017-10-13

    This study aimed to evaluate the efficiency of a novel pilot-scale passively aerated biological filter (PABF) as a low energy consumption system for the treatment of municipal wastewater. It consists of four similar compartments, each containing 40% of a non-woven polyester fabric as a bio-bed. The PABF was fed with primary treated wastewater under a hydraulic retention time (HRT) of 3.5 hr and a hydraulic loading rate of 5.5 m 2 /m 3 /d. The effect of media depth, HRT, dissolved oxygen (DO) and surface area of the media on the removal efficiency of pollutants was investigated. Results indicated that increasing media depth along the axis of the reactor and consequently increasing the HRT and DO resulted in great removal of different pollutants. A significant increase in the DO levels in the final effluent up to 6.7 mg/l resulted in good nitrification processes. Statistical analysis using SPSS showed that the reactor performance has significant removal efficiency (p filter systems.

  15. Performance reliability prediction for thermal aging based on kalman filtering

    International Nuclear Information System (INIS)

    Ren Shuhong; Wen Zhenhua; Xue Fei; Zhao Wensheng

    2015-01-01

    The performance reliability of the nuclear power plant main pipeline that failed due to thermal aging was studied by the performance degradation theory. Firstly, through the data obtained from the accelerated thermal aging experiments, the degradation process of the impact strength and fracture toughness of austenitic stainless steel material of the main pipeline was analyzed. The time-varying performance degradation model based on the state space method was built, and the performance trends were predicted by using Kalman filtering. Then, the multi-parameter and real-time performance reliability prediction model for the main pipeline thermal aging was developed by considering the correlation between the impact properties and fracture toughness, and by using the stochastic process theory. Thus, the thermal aging performance reliability and reliability life of the main pipeline with multi-parameter were obtained, which provides the scientific basis for the optimization management of the aging maintenance decision making for nuclear power plant main pipelines. (authors)

  16. Water reactor fuel element fabrication, with special emphasis on its effects on fuel performance

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: The performance of nuclear fuel has improved over the years and is now a minor cause of outages and of power limitations in nuclear power plants. On the other hand, an increasing number of countries are in the process of developing or implementing their own capability for manufacturing fuel elements. In this context, the IAEA International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT) advised that a symposium be organized devoted to the relationship between fuel fabrication and performance The Czechoslovak Atomic Energy Commission agreed to co-operate in the organization of this symposium and to host it in Prague. Those factors which influence fuel fabrication requirements are now well ascertained: as little reactor primary circuit contamination as possible, the tendency to increased burnups, reactor manoeuverability to match power grid demands, the desirability of an autonomous fabrication capability. It is the general experience of fuel element suppliers that fuel quality and performance has increased over the years, the importance of quality assurance and process monitoring has been decisive in this respect The ever increasing mass-production aspect of nuclear fuel leads to some processing steps being revised and alternatives being developed. The relation between fabrication processes and fuel performance characteristics, although generally well perceived, are still the subject of a large amount of experiment and assessment in most countries, both industrial and developing This evidence is most encouraging; it means indeed that nuclear power, which is already amongst the cheapest and safest sources of energy, will continue to be improved. The performance of Zircaloy fuel cladding - presently the material used in most water reactors - is under particular consideration. Better understanding of this quite recent alloy will pave the way for broader fuel utilization limits in the future. The panel discussion, which noted some

  17. Compact Unequal Power Divider with Filtering Response

    Directory of Open Access Journals (Sweden)

    Wei-Qiang Pan

    2015-01-01

    Full Text Available We present a novel unequal power divider with bandpass responses. The proposed power divider consists of five resonators and a resistor. The power division ratio is controlled by altering the coupling strength among the resonators. The output ports have the characteristic impedance of 50 Ω and impedance transformers in classical Wilkinson power dividers are not required in this design. Use of resonators enables the filtering function of the power divider. Two transmission zeros are generated near the passband edges, resulting in quasielliptic bandpass responses. For validation, a 2 : 1 filtering power divider is implemented. The fabricated circuit size is 0.22 λg × 0.08 λg, featuring compact size for unequal filtering power dividers, which is suitable for the feeding networks of antenna arrays.

  18. Filtering of Discrete-Time Switched Neural Networks Ensuring Exponential Dissipative and $l_{2}$ - $l_{\\infty }$ Performances.

    Science.gov (United States)

    Choi, Hyun Duck; Ahn, Choon Ki; Karimi, Hamid Reza; Lim, Myo Taeg

    2017-10-01

    This paper studies delay-dependent exponential dissipative and l 2 - l ∞ filtering problems for discrete-time switched neural networks (DSNNs) including time-delayed states. By introducing a novel discrete-time inequality, which is a discrete-time version of the continuous-time Wirtinger-type inequality, we establish new sets of linear matrix inequality (LMI) criteria such that discrete-time filtering error systems are exponentially stable with guaranteed performances in the exponential dissipative and l 2 - l ∞ senses. The design of the desired exponential dissipative and l 2 - l ∞ filters for DSNNs can be achieved by solving the proposed sets of LMI conditions. Via numerical simulation results, we show the validity of the desired discrete-time filter design approach.

  19. Effects of SiC and MgO on aluminabased ceramic foams filters

    Directory of Open Access Journals (Sweden)

    CAO Da-li

    2007-11-01

    Full Text Available Alumina-based foam ceramic filters were fabricated by using alumina, SiC, magnesia powder as major materials. It has been found that this ceramic filter has a uniform macrostructure for filtering molten metals. The influences of SiC and magnesia content, the sintering temperatures on ceramic properties were discussed. Aluminabased foam ceramic filters containing 2.2 mass% magnesia and 7.6 mass% SiC has a compressive strength of 1.36 MPa and a thermal shock resistance of 5 times. Its main phases after 1 hour sintering at 1 500 consist of alumina, silicon carbide, spinel and mullite.

  20. A general strategy for the fabrication of high performance microsupercapacitors

    KAUST Repository

    Kurra, Narendra

    2015-06-04

    We propose a generic strategy for microsupercapacitor fabrication that integrates layers of reduced graphene oxide (rGO) and pseudocapacitive materials to create electrode heterostructures with significantly improved cycling stability and performance. Our approach involves a combination of photolithography and a simple transfer method of free-standing reduced graphene oxide film onto an Au/patterned photoresist bilayer. The resulting stack (rGO/Au/patterned resist/substrate) is then used for the electrochemical deposition of various pseudocapacitive materials before the final step of lift-off. To prove the viability of this method, we have successfully fabricated microsupercapacitors (MSCs) with the following interdigitated electrode heterostructures: MnO2/rGO, Co(OH)2/rGO and PANI/rGO. These MSCs show better performance and cycling stability compared to the single layer, (i.e., rGO-free) counterparts. The interdigitated electrode heterostructures result in MSCs with energy densities in the range of 3–12 mW h/cm3 and power densities in the range of 400–1200 mW/cm3, which is superior to the Li thin film batteries (E=10 mW h/cm3), carbon, and metal oxide based MSCs (E=1–6 mW h/cm3) while device energy densities are in the range of 1.3–5.3 mW h/cm3, corresponding power densities are in the range of 178–533 mW/cm3. These results can be explained by a facilitated nucleation model, where surface topology of the rGO film creates a favorable environment for the nucleation and growth of pseudocapacitive materials with strong interfacial contacts and enhanced surface area. This approach opens up a new avenue in fabricating MSCs involving a variety of heterostructures combining electrical double layer carbon type with Faradaic pseudocapacitive materials for enhanced electrochemical performance.

  1. A general strategy for the fabrication of high performance microsupercapacitors

    KAUST Repository

    Kurra, Narendra; Jiang, Qiu; Alshareef, Husam N.

    2015-01-01

    We propose a generic strategy for microsupercapacitor fabrication that integrates layers of reduced graphene oxide (rGO) and pseudocapacitive materials to create electrode heterostructures with significantly improved cycling stability and performance. Our approach involves a combination of photolithography and a simple transfer method of free-standing reduced graphene oxide film onto an Au/patterned photoresist bilayer. The resulting stack (rGO/Au/patterned resist/substrate) is then used for the electrochemical deposition of various pseudocapacitive materials before the final step of lift-off. To prove the viability of this method, we have successfully fabricated microsupercapacitors (MSCs) with the following interdigitated electrode heterostructures: MnO2/rGO, Co(OH)2/rGO and PANI/rGO. These MSCs show better performance and cycling stability compared to the single layer, (i.e., rGO-free) counterparts. The interdigitated electrode heterostructures result in MSCs with energy densities in the range of 3–12 mW h/cm3 and power densities in the range of 400–1200 mW/cm3, which is superior to the Li thin film batteries (E=10 mW h/cm3), carbon, and metal oxide based MSCs (E=1–6 mW h/cm3) while device energy densities are in the range of 1.3–5.3 mW h/cm3, corresponding power densities are in the range of 178–533 mW/cm3. These results can be explained by a facilitated nucleation model, where surface topology of the rGO film creates a favorable environment for the nucleation and growth of pseudocapacitive materials with strong interfacial contacts and enhanced surface area. This approach opens up a new avenue in fabricating MSCs involving a variety of heterostructures combining electrical double layer carbon type with Faradaic pseudocapacitive materials for enhanced electrochemical performance.

  2. Fast and Sustained Degradation of Chemical Warfare Agent Simulants Using Flexible Self-Supported Metal-Organic Framework Filters.

    Science.gov (United States)

    Liang, Huixin; Yao, Aonan; Jiao, Xiuling; Li, Cheng; Chen, Dairong

    2018-06-20

    Self-detoxification filters against lethal chemical warfare agents (CWAs) are highly desirable for the protection of human beings and the environment. In this report, flexible self-supported filters of a series of Zr(IV)-based metal-organic frameworks (MOFs) including UiO-66, UiO-67, and UiO-66-NH 2 were successfully prepared and exhibited fast and sustained degradation of CWA simulants. A half-life as short as 2.4 min was obtained for the catalytic hydrolysis of dimethyl 4-nitrophenyl phosphate, and the percent conversion remained above 90% over a long-term exposure of 120 min, well exceeding those of the previously reported composite MOF filters and the corresponding MOF powders. The outstanding detoxification performance of the self-supported fibrous filter comes from the exceptionally high surface area, excellent pore accessibility, and hierarchical structure from the nano- to macroscale. This work demonstrates, for the first time, MOF-only filters as efficient self-detoxification media, which will offer new opportunities for the design and fabrication of functional materials for toxic chemical protection.

  3. Neural Model for Left-Handed CPW Bandpass Filter Loaded Split Ring Resonator

    Science.gov (United States)

    Liu, Haiwen; Wang, Shuxin; Tan, Mingtao; Zhang, Qijun

    2010-02-01

    Compact left-handed coplanar waveguide (CPW) bandpass filter loaded split ring resonator (SRR) is presented in this paper. The proposed filter exhibits a quasi-elliptic function response and its circuit size occupies only 12 × 11.8 mm2 (≈0.21 λg × 0.20 λg). Also, a simple circuit model is given and the parametric study of this filter is discussed. Then, with the aid of NeuroModeler software, a five-layer feed-forward perceptron neural networks model is built up to optimize the proposed filter design fast and accurately. Finally, this newly left-handed CPW bandpass filter was fabricated and measured. A good agreement between simulations and measurement verifies the proposed left-handed filter and the validity of design methodology.

  4. Compact Dual-Band Bandpass Filter Using Stubs Loaded Ring Resonator

    Science.gov (United States)

    Xu, Jin

    2016-01-01

    This paper presents a novel second-order dual-band bandpass filter (BPF) by using proposed stubs loaded ring resonator. The resonant behavior of proposed stubs loaded ring resonator is analyzed by even-/odd-mode method, which shows its multiple-mode resonant characteristic. Parameters sweep is done so as to give the design guidelines. As an example, a second-order dual-band BPF operating at 1.8/5.2 GHz for GSM and WLAN applications is designed, fabricated and measured. The fabricated filter has a very compact size of 0.05λg×0.15λg. Measured results also show that the proposed dual-band BPF has a better than 20 dB rejection upper stopband from 5.47 GHz to 12.56 GHz. Good agreement is shown between the simulated and measured results.

  5. The dry filter method for passive filtered venting of the containment

    International Nuclear Information System (INIS)

    Freis, Daniel; Tietsch, Wolfgang; Obenland, Ralf; Kroes, Bert; Martinsteg, Hans

    2013-01-01

    Filtered Venting is a mitigative emergency measure to protect the containment from pressure failure in case of a severe accident. Filtered vent systems which are based on the Dry Filter Method (DFM) are proven technology, work completely passive, meet all functional requirements and show excellent performance with respect to filter efficiency. With such a system the release of radioactive fission products to the environment can be effectively minimized. Short and long term land contaminations can be avoided. (orig.)

  6. Cost/benefit evaluation of electrofibrous air filters

    International Nuclear Information System (INIS)

    Bergman, W.; Kuhl, W.; Biermann, A.; Lum, B.

    1986-01-01

    Experimental electric air filters based on the principle of superimposing an electric field over conventional fibrous air filters have been developed. The different experimental electric filters described in this report include prefilters for use in glove boxes and in ventilation systems, re-circulating air filters, electric HEPA filters, and high efficiency, high temperature air filters. In each case the large improvement in filter efficiency that occurs when a mechanical filter is electrified is demonstrated. Also a significant increase in the particle loading capacity of filters in many of our evaluations is demonstrated. Both laboratory and field test results are presented. This paper also demonstrates that the performance of all of our electric filter designs, except one, can be matched by conventional mechanical air filters and usually at a lower cost. The one exception is the high temperature, high efficiency electric air filter. In that case there is no mechanical filter media that can match the performance of the electric air filter. Our findings show that electric air filters are only cost effective compared to mechanical air filters when the performance of the mechanical air filter cannot be further improved by mechanical means. (author)

  7. Fabrication of PLA Filaments and its Printable Performance

    Science.gov (United States)

    Liu, Wenjie; Zhou, Jianping; Ma, Yuming; Wang, Jie; Xu, Jie

    2017-12-01

    Fused deposition modeling (FDM) is a typical 3D printing technology and preparation of qualified filaments is the basis. In order to prepare polylactic acid (PLA) filaments suitable for personalized FDM 3D printing, this article investigated the effect of factors such as extrusion temperature and screw speed on the diameter, surface roughness and ultimate tensile stress of the obtained PLA filaments. The optimal process parameters for fabrication of qualified filaments were determined. Further, the printable performance of the obtained PLA filaments for 3D objects was preliminarily explored.

  8. The Building Fabric Thermal Performance of Passivhaus Dwellings—Does It Do What It Says on the Tin?

    Directory of Open Access Journals (Sweden)

    David Johnston

    2016-01-01

    Full Text Available The Passivhaus (or Passive House Standard is one of the world’s most widely known voluntary energy performance standards. For a dwelling to achieve the Standard and be granted Certification, the building fabric requires careful design and detailing, high levels of thermal insulation, building airtightness, close site supervision and careful workmanship. However, achieving Passivhaus Certification is not a guarantee that the thermal performance of the building fabric as designed will actually be achieved in situ. This paper presents the results obtained from measuring the in situ whole building heat loss coefficient (HLC of a small number of Certified Passivhaus case study dwellings. They are located on different sites and constructed using different technologies in the UK. Despite the small and non-random nature of the dwelling sample, the results obtained from the in situ measurements revealed that the thermal performance of the building fabric, for all of the dwellings, performed very close to the design predictions. This suggests that in terms of the thermal performance of the building fabric, Passivhaus does exactly what it says on the tin.

  9. Implant overdentures: dental students' performance in fabrication, denture quality, and patient satisfaction.

    Science.gov (United States)

    Aragon, Cecilia E; Cornacchio, Angelica Lee Petrina; Ibarra, Lilia Marcela; Saad, Muhammed N; Zibrowski, Elaine

    2010-09-01

    The purpose of this study was to evaluate dental students' performance when fabricating a mandibular two-implant overdenture (OD) as compared to conventional dentures (CD) and to determine if these prostheses were successful. Twenty students and twenty patients were divided into two groups: complete denture group (CDG) and maxillary denture and two-implant OD group (ODG). Students' progress was evaluated at each appointment as they were given a clinical assessment score (CAS), which varied from 1 (unacceptable, needs to repeat procedure) to 4 (acceptable, no errors). The success of the prosthesis was evaluated by the patients using a visual analog scale (VAS) and an expert (a prosthodontist) using a denture quality assessment (DQA) form. Performance for both groups was not statistically different across all eight appointments (CDG 3.16 versus ODG 3.25; p=0.46). Patients with ODs reported greater stability with their dentures (p=0.048) and greater ability to chew than patients with CDs (p=0.03). There were no differences between the groups in terms of expert appraisal (ODG 71.1 versus CDG 67.5; p=0.59). The performance of dental students when fabricating a two-implant OD is thus not different from that of a CD. Students can successfully fabricate a two-implant OD as perceived by both patients and prosthodontists.

  10. Fabrication and performance of PET mesh enhanced cellulose acetate membranes for forward osmosis.

    Science.gov (United States)

    Li, Guoliang; Wang, Jun; Hou, Deyin; Bai, Yu; Liu, Huijuan

    2016-07-01

    Polyethylene terephthalate mesh (PET) enhanced cellulose acetate membranes were fabricated via a phase inversion process. The membrane fabrication parameters that may affect the membrane performance were systematically evaluated including the concentration and temperature of the casting polymer solution and the temperature and time of the evaporation, coagulation and annealing processes. The water permeability and reverse salt flux were measured in forward osmosis (FO) mode for determination of the optimal membrane fabrication conditions. The optimal FO membrane shows a typical asymmetric sandwich structure with a mean thickness of about 148.2μm. The performance of the optimal FO membrane was tested using 0.2mol/L NaCl as the feed solution and 1.5mol/L glucose as the draw solution. The membrane displayed a water flux of 3.47L/(m(2)·hr) and salt rejection of 95.48% in FO mode. While in pressure retarded osmosis (PRO) mode, the water flux was 4.74L/(m(2)·hr) and salt rejection 96.03%. The high ratio of water flux in FO mode to that in PRO mode indicates that the fabricated membrane has a lower degree of internal concentration polarization than comparable membranes. Copyright © 2016. Published by Elsevier B.V.

  11. Environmental aspects based on operation performance of nuclear fuel fabrication facilities

    International Nuclear Information System (INIS)

    2001-07-01

    This publication was prepared within the framework of the IAEA Project entitled Development and Upgrading of Guidelines, Databases and Tools for Integrating Comparative Assessment into Energy System Analysis and Policy Making, which included the collection, review and input of data into a database on health and environmental impacts related to operation of nuclear fuel cycle facilities. The objectives of the report included assembling environmental data on operational performance of nuclear fabrication facilities in each country; compiling and arranging the data in a database, which will be easily available to experts and the public; and presenting data that may be of value for future environmental assessment of nuclear fabrication facilities

  12. Storm Water Pollution Removal Performance of Compost Filter Socks

    Science.gov (United States)

    In 2005, the US Environmental Protection Agency National Menu of Best Management Practices (BMPs) listed compost filter socks as an approved BMP for controlling sediment in storm runoff on construction sites. Filtrexx International manufactures and distributes Filter Soxx (FS). Literature suggests...

  13. Kernel-based noise filtering of neutron detector signals

    International Nuclear Information System (INIS)

    Park, Moon Ghu; Shin, Ho Cheol; Lee, Eun Ki

    2007-01-01

    This paper describes recently developed techniques for effective filtering of neutron detector signal noise. In this paper, three kinds of noise filters are proposed and their performance is demonstrated for the estimation of reactivity. The tested filters are based on the unilateral kernel filter, unilateral kernel filter with adaptive bandwidth and bilateral filter to show their effectiveness in edge preservation. Filtering performance is compared with conventional low-pass and wavelet filters. The bilateral filter shows a remarkable improvement compared with unilateral kernel and wavelet filters. The effectiveness and simplicity of the unilateral kernel filter with adaptive bandwidth is also demonstrated by applying it to the reactivity measurement performed during reactor start-up physics tests

  14. Performance Analysis of Local Ensemble Kalman Filter

    Science.gov (United States)

    Tong, Xin T.

    2018-03-01

    Ensemble Kalman filter (EnKF) is an important data assimilation method for high-dimensional geophysical systems. Efficient implementation of EnKF in practice often involves the localization technique, which updates each component using only information within a local radius. This paper rigorously analyzes the local EnKF (LEnKF) for linear systems and shows that the filter error can be dominated by the ensemble covariance, as long as (1) the sample size exceeds the logarithmic of state dimension and a constant that depends only on the local radius; (2) the forecast covariance matrix admits a stable localized structure. In particular, this indicates that with small system and observation noises, the filter error will be accurate in long time even if the initialization is not. The analysis also reveals an intrinsic inconsistency caused by the localization technique, and a stable localized structure is necessary to control this inconsistency. While this structure is usually taken for granted for the operation of LEnKF, it can also be rigorously proved for linear systems with sparse local observations and weak local interactions. These theoretical results are also validated by numerical implementation of LEnKF on a simple stochastic turbulence in two dynamical regimes.

  15. A Novel Design of Sparse Prototype Filter for Nearly Perfect Reconstruction Cosine-Modulated Filter Banks

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2018-05-01

    Full Text Available Cosine-modulated filter banks play a major role in digital signal processing. Sparse FIR filter banks have lower implementation complexity than full filter banks, while keeping a good performance level. This paper presents a fast design paradigm for sparse nearly perfect-reconstruction (NPR cosine-modulated filter banks. First, an approximation function is introduced to reduce the non-convex quadratically constrained optimization problem to a linearly constrained optimization problem. Then, the desired sparse linear phase FIR prototype filter is derived through the orthogonal matching pursuit (OMP performed under the weighted l 2 norm. The simulation results demonstrate that the proposed scheme is an effective paradigm to design sparse NPR cosine-modulated filter banks.

  16. Energy performance of building fabric - Comparing two types of vernacular residential houses

    Science.gov (United States)

    Draganova, Vanya Y.; Matsumoto, Hiroshi; Tsuzuki, Kazuyo

    2017-10-01

    Notwithstanding apparent differences, Japanese and Bulgarian traditional residential houses share a lot of common features - building materials, building techniques, even layout design. Despite the similarities, these two types of houses have not been compared so far. The study initiates such comparison. The focus is on houses in areas with similar climate in both countries. Current legislation requirements are compared, as well as the criteria for thermal comfort of people. Achieving high energy performance results from a dynamic system of 4 main key factors - thermal comfort range, heating/cooling source, building envelope and climatic conditions. A change in any single one of them can affect the final energy performance. However, it can be expected that a combination of changes in more than one factor usually occurs. The aim of this study is to evaluate the correlation between the thermal performance of building envelope designed under current regulations and a traditional one, having in mind the different thermal comfort range in the two countries. A sample building model is calculated in Scenario 1 - Japanese traditional building fabric, Scenario 2 - Bulgarian traditional building fabric and Scenario 3 - meeting the requirements of the more demanding current regulations. The energy modelling is conducted using EnergyPlus through OpenStudio cross-platform of software tools. The 3D geometry for the simulation is created using OpenStudio SketchUp Plug-in. Equal number of inhabitants, electricity consumption and natural ventilation is assumed. The results show that overall low energy consumption can be achieved using traditional building fabric as well, when paired with a wider thermal comfort range. Under these conditions traditional building design is still viable today. This knowledge can reestablish the use of traditional building fabric in contemporary design, stimulate preservation of local culture, building traditions and community identity.

  17. Optimal Nonlinear Filter for INS Alignment

    Institute of Scientific and Technical Information of China (English)

    赵瑞; 顾启泰

    2002-01-01

    All the methods to handle the inertial navigation system (INS) alignment were sub-optimal in the past. In this paper, particle filtering (PF) as an optimal method is used for solving the problem of INS alignment. A sub-optimal two-step filtering algorithm is presented to improve the real-time performance of PF. The approach combines particle filtering with Kalman filtering (KF). Simulation results illustrate the superior performance of these approaches when compared with extended Kalman filtering (EKF).

  18. Improving indoor air quality by using the new generation of corrugated cardboard-based filters.

    Science.gov (United States)

    Candiani, Gabriele; Del Curto, Barbara; Cigada, Alberto

    2012-09-27

    Indoor Air Quality (IAQ) is strictly affected by the concentration of total suspended particulate matter (TSP). Air filtration is by far the most feasible suggestion to improve IAQ. Unfortunately, highly effective HEPA filters also have a few major weaknesses that have hindered their widespread use. There is therefore a renewed interest in developing novel, cost-effective filtration systems. We have recently reported the development of cardboard-based filters for bacterial removal that were further implemented and tested herein. A parallelepiped filter manufactured by aligning strips of corrugated cardboard and surrounded by a cardboard frame was specifically designed with an internal pocket holding a partially cut antistatic pleated fabric (HP). This filter, together with its parent version (CTRL) and a commercially sourced specimen (CAF), were assessed comparatively in a long-time test to assess their effectiveness on TSP removal. We found that the TSP abatement efficiency (E%) of the HP filter was relatively high and invariable over the 93 days of test and the pressure drop (PD%) decrease because of filter clogging was moderate. Most important, the HP filter was the most effective if assessed in terms of overall yield (Y%) and its performance was quite constant over the entire period considered. This work disclosed this novel class of corrugated cardboard-based filters as promising tools to ameliorate IAQ in light of their good TSP removal properties that endure over time. Moreover, cardboard is a lightweight, inexpensive, and eco-friendly material and corrugated cardboard-based air filters are very easy to shape and mount on and/or replace in existing ventilation systems.

  19. Filter device for high density aerozol

    International Nuclear Information System (INIS)

    Karasawa, Hidetoshi; Endo, Masao; Utamura, Motoaki; Tozuka, Fumio; Tate, Hitoshi.

    1991-01-01

    In a reactor, filters for capturing aerozol particles at high concentration have such a structure that a great number of fine pores are formed. Aerozols are introduced to a filter portion from the place remote from a first inlet. Cloggings are caused successively from the places remote from the inlet. Even if the clogging should occur, since there are many pores, the performance of filters is not deteriorated. Further, the filter has a multi-layered structure. With such a constitution, if the filter at a first stage is clogged to increase the pressure, a partitioning plate is opened and fluids are introduced into a second filter. This is conducted successively to suppress the deterioration of the performance of the filter. In view of the above, even if cloggings should occur, the filter performance is not deteriorated and, accordingly, reactor container ventilation can be conducted at high reliability upon occurrence of accidents. (T.M.)

  20. Miniaturized bandpass filter using a meandered stepped-impedance resonator with a meandered-line stub-load on a GaAs substrate.

    Science.gov (United States)

    Chuluunbaatar, Z; Wang, C; Kim, N Y

    2014-01-01

    This paper reports a compact bandpass filter with improved skirt selectivity using integrated passive device fabrication technology on a GaAs substrate. The structure of the filter consists of electromagnetically coupled meandered-line symmetric stepped-impedance resonators. The strength of the coupling between the resonators is enhanced by using a meandered-line stub-load inside the resonators to improve the selectivity and miniaturize the size of the filter. In addition, the center frequency of the filter can be flexibly controlled by varying degrees of the capacitive coupling between resonator and stub-load. To verify the proposed concept, a protocol bandpass filter with center frequency of 6.53 GHz was designed, fabricated, and measured, with a return loss and insertion loss of 39.1 dB and 1.63 dB.

  1. Effect of on-chip filter on Coulomb blockade thermometer

    International Nuclear Information System (INIS)

    Roschier, L; Penttilä, J S; Gunnarsson, D; Prunnila, M; Meschke, M; Savin, A

    2012-01-01

    Coulomb Blockade Thermometer (CBT) is a primary thermometer based on electric conductance of normal tunnel junction arrays. One limitation for CBT use at the lowest temperatures has been due to environmental noise heating. To improve on this limitation, we have done measurements on CBT sensors fabricated with different on-chip filtering structures in a dilution refrigerator with a base temperature of 10 mK. The CBT sensors were produced with a wafer scale tunnel junction process. We present how the different on-chip filtering schemes affect the limiting saturation temperatures and show that CBT sensors with proper on-chip filtering work at temperatures below 20 mK and are tolerant to noisy environment.

  2. Heat Release Property and Fire Performance of the Nomex/Cotton Blend Fabric Treated with a Nonformaldehyde Organophosphorus System

    Directory of Open Access Journals (Sweden)

    Charles Q. Yang

    2016-09-01

    Full Text Available Blending Nomex® with cotton improves its affordability and serviceability. Because cotton is a highly flammable fiber, Nomex®/cotton blend fabrics containing more than 20% cotton require flame-retardant treatment. In this research, combination of a hydroxyl functional organophosphorus oligmer (HFPO and 1,2,3,4-butanetetracarboxylic acid (BTCA was used for flame retardant finishing of the 65/35 Nomex®/cotton blend woven fabric. The system contains HFPO as a flame retardant, BTCA as a bonding agent, and triethenolamine (TEA as a reactive additive used to enhance the performance of HFPO/BTCA. Addition of TEA improves the hydrolysis resistance of the HFPO/BTCA crosslinked polymeric network on the blend fabric. Additionally, TEA enhances HFPO’s flame retardant performance by reducing formation of calcium salts and also by providing synergistic nitrogen to the treated blend fabric. The Nomex®/cotton blend fabric treated with the HFPO/BTCA/TEA system shows high flame resistance and high laundering durability at a relatively low HFPO concentration of 8% (w/w. The heat release properties of the treated Nomex®/cotton blend fabric were measured using microscale combustion calorimetry. The functions of BTCA; HFPO and TEA on the Nomex®/cotton blend fabric were elucidated based on the heat release properties, char formation, and fire performance of the treated blend fabric.

  3. Design and Fabrication of Porous Yttria-Stabilized Zirconia Ceramics for Hot Gas Filtration Applications

    Science.gov (United States)

    Shahini, Shayan

    Hot gas filtration has received growing attention in a variety of applications over the past few years. Yttria-stabilized zirconia (YSZ) is a promising candidate for such an application. In this study, we fabricated disk-type porous YSZ filters using the pore forming procedure, in which poly methyl methacrylate (PMMA) was used as the pore-forming agent. After fabricating the pellets, we characterized them to determine their potential for application as gas filters. We investigated the effect of sintering temperature, polymer particle size, and polymer-to-ceramic ratio on the porosity, pore size, gas permeability, and Vickers hardness of the sintered pellets. Furthermore, we designed two sets of experiments to investigate the robustness of the fabricated pellets--i.e., cyclic heating/cooling and high temperature exposure. This study ushers in a robust technique to fabricate such porous ceramics, which have the potential to be utilized in hot gas filtration.

  4. Study of Periodic Fabrication Error of Optical Splitter Device Performance

    OpenAIRE

    Ab-Rahman, Mohammad Syuhaimi; Ater, Foze Saleh; Jumari, Kasmiran; Mohammad, Rahmah

    2012-01-01

    In this paper, the effect of fabrication errors (FEs) on the performance of 1×4 optical power splitter is investigated in details. The FE, which is assumed to take regular shape, is considered in each section of the device. Simulation result show that FE has a significant effect on the output power especially when it occurs in coupling regions.

  5. Nanoscale freestanding gratings for ultraviolet blocking filters

    Energy Technology Data Exchange (ETDEWEB)

    van Beek, J.T.; Fleming, R.C.; Hindle, P.S.; Prentiss, J.D.; Schattenburg, M.L. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Ritzau, S. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1998-11-01

    Ultraviolet (UV) blocking filters are needed for atomic flux imaging in environments where high levels of ultraviolet radiation are present. Freestanding gratings are a promising candidate for UV filtering. They have a high aspect ratio ({approximately}13), narrow ({approximately}40 nm) slots, and effectively block UV radiation. The grating fabrication process makes use of several etching, electroplating, and lithographic steps and includes an optional step to plug pinholes induced by particles during processing. Gratings were successfully manufactured and tested. Measured UV transmissions of {approximately}10{sup {minus}5} and particle transmissions of {approximately}10{percent} are in agreement with theoretical predictions. {copyright} {ital 1998 American Vacuum Society.}

  6. Risk Sensitive Filtering with Poisson Process Observations

    International Nuclear Information System (INIS)

    Malcolm, W. P.; James, M. R.; Elliott, R. J.

    2000-01-01

    In this paper we consider risk sensitive filtering for Poisson process observations. Risk sensitive filtering is a type of robust filtering which offers performance benefits in the presence of uncertainties. We derive a risk sensitive filter for a stochastic system where the signal variable has dynamics described by a diffusion equation and determines the rate function for an observation process. The filtering equations are stochastic integral equations. Computer simulations are presented to demonstrate the performance gain for the risk sensitive filter compared with the risk neutral filter

  7. Performance evaluation of bipolar and tripolar excitations during nozzle-jetting-based alginate microsphere fabrication

    Science.gov (United States)

    Herran, C. Leigh; Huang, Yong; Chai, Wenxuan

    2012-08-01

    Microspheres, small spherical (polymeric) particles with or without second phase materials embedded or encapsulated, are important for many biomedical applications such as drug delivery and organ printing. Scale-up fabrication with the ability to precisely control the microsphere size and morphology has always been of great manufacturing interest. The objective of this work is to experimentally study the performance differences of bipolar and tripolar excitation waveforms in using drop-on-demand (DOD)-based single nozzle jetting for alginate microsphere fabrication. The fabrication performance has been evaluated based on the formability of alginate microspheres as a function of materials properties (sodium alginate and calcium chloride concentrations) and operating conditions. The operating conditions for each excitation include voltage rise/fall times, dwell times and excitation voltage amplitudes. Overall, the bipolar excitation is more robust in making spherical, monodispersed alginate microspheres as good microspheres for its wide working range of material properties and operating conditions, especially during the fabrication of highly viscous materials such as the 2% sodium alginate solution. For both bipolar and tripolar excitations, the sodium alginate concentration and the voltage dwell times should be carefully selected to achieve good microsphere formability.

  8. Performance evaluation of bipolar and tripolar excitations during nozzle-jetting-based alginate microsphere fabrication

    International Nuclear Information System (INIS)

    Leigh Herran, C; Huang, Yong; Chai, Wenxuan

    2012-01-01

    Microspheres, small spherical (polymeric) particles with or without second phase materials embedded or encapsulated, are important for many biomedical applications such as drug delivery and organ printing. Scale-up fabrication with the ability to precisely control the microsphere size and morphology has always been of great manufacturing interest. The objective of this work is to experimentally study the performance differences of bipolar and tripolar excitation waveforms in using drop-on-demand (DOD)-based single nozzle jetting for alginate microsphere fabrication. The fabrication performance has been evaluated based on the formability of alginate microspheres as a function of materials properties (sodium alginate and calcium chloride concentrations) and operating conditions. The operating conditions for each excitation include voltage rise/fall times, dwell times and excitation voltage amplitudes. Overall, the bipolar excitation is more robust in making spherical, monodispersed alginate microspheres as good microspheres for its wide working range of material properties and operating conditions, especially during the fabrication of highly viscous materials such as the 2% sodium alginate solution. For both bipolar and tripolar excitations, the sodium alginate concentration and the voltage dwell times should be carefully selected to achieve good microsphere formability. (paper)

  9. Designing Asynchronous Circuits for Low Power: An IFIR Filter

    DEFF Research Database (Denmark)

    Nielsen, Lars Skovby; Sparsø, Jens

    1999-01-01

    This paper addresses the design of asynchronous circuits for low power through an example: a filter bank for a digital hearing aid. The asynchronous design re-implements an existing synchronous circuit which is used in a commercial product. For comparison, both designs have been fabricated...

  10. Synthesis of highly integrated optical network based on microdisk-resonator add-drop filters in silicon-on-insulator technology

    Science.gov (United States)

    Kaźmierczak, Andrzej; Dortu, Fabian; Giannone, Domenico; Bogaerts, Wim; Drouard, Emmanuel; Rojo-Romeo, Pedro; Gaffiot, Frederic

    2009-10-01

    We analyze a highly compact optical add-drop filter topology based on a pair of microdisk resonators and a bus waveguide intersection. The filter is further assessed on an integrated optical 4×4 network for optical on-chip communication. The proposed network structure, as compact as 50×50 μm, is fabricated in a CMOS-compatible process on a silicon-on-insulator (SOI) substrate. Finally, the experimental results demonstrate the proper operation of the fabricated devices.

  11. Influence of Pulse Shaping Filters on PAPR Performance of Underwater 5G Communication System Technique: GFDM

    Directory of Open Access Journals (Sweden)

    Jinqiu Wu

    2017-01-01

    Full Text Available Generalized frequency division multiplexing (GFDM is a new candidate technique for the fifth generation (5G standard based on multibranch multicarrier filter bank. Unlike OFDM, it enables the frequency and time domain multiuser scheduling and can be implemented digitally. It is the generalization of traditional OFDM with several added advantages like the low PAPR (peak to average power ratio. In this paper, the influence of the pulse shaping filter on PAPR performance of the GFDM system is investigated and the comparison of PAPR in OFDM and GFDM is also demonstrated. The PAPR is restrained by selecting proper parameters and filters to make the underwater acoustic communication more efficient.

  12. Factors in electrode fabrication for performance enhancement of anion exchange membrane water electrolysis

    Science.gov (United States)

    Cho, Min Kyung; Park, Hee-Young; Choe, Seunghoe; Yoo, Sung Jong; Kim, Jin Young; Kim, Hyoung-Juhn; Henkensmeier, Dirk; Lee, So Young; Sung, Yung-Eun; Park, Hyun S.; Jang, Jong Hyun

    2017-04-01

    To improve the cell performance for alkaline anion exchange membrane water electrolysis (AEMWE), the effects of the amount of polytetrafluoroethylene (PTFE) non-ionomeric binder in the anode and the hot-pressing conditions during the fabrication of the membrane electrode assemblies (MEAs) on cell performances are studied. The electrochemical impedance data indicates that hot-pressing at 50 °C for 1 min during MEA construction can reduce the polarization resistance of AEMWE by ∼12%, and increase the initial water electrolysis current density at 1.8 V (from 195 to 243 mA cm-2). The electrochemical polarization and impedance results also suggest that the AEMWE performance is significantly affected by the content of PTFE binder in the anode electrode, and the optimal content is found to be 9 wt% between 5 and 20 wt%. The AEMWE device fabricated with the optimized parameters exhibits good water splitting performance (299 mA cm-2 at 1.8 V) without noticeable degradation in voltage cycling operations.

  13. Performance of water filters towards the removal of selected ...

    African Journals Online (AJOL)

    Organic matter removal was found to be 47%, 43%, 53%, 43.4% for bio-sand, slow sand, ceramic and membrane purifier respectively, while, fluoride removal was found to be 95.5% for bone char filter. Furthermore, filters were also assessed in terms of media availability, buying costs, operation, benefits/ effectiveness ...

  14. Thin-film X-ray filters on microstructured substrates and their thermophysical properties

    Science.gov (United States)

    Mitrofanov, A. V.

    2018-02-01

    It is shown that structured substrates having micron- or submicron-sized through holes and coated with an ultrathin organic film can be used for the fabrication of thin-film X-ray filters via direct growth of functional layers on a substrate by sputter deposition, without additional complex processing steps. An optimised process is considered for the fabrication of X-ray filters on support structures in the form of electroplated fine nickel grids and on track-etched polymer membranes with micron- and submicrondiameter through pores. 'Optimisation' is here taken to mean matching the sputter deposition conditions with the properties of substrates so as to avoid overheating. The filters in question are intended for both imaging and single-channel detectors operating in the soft X-ray and vacuum UV spectral regions, at wavelengths from 10 to 60 nm. Thermal calculations are presented for the heating of ultrathin layers of organic films and thin-film support substrates during the sputter deposition of aluminium or other functional materials. The paper discusses approaches for cooling thinfilm composites during the sputter deposition process and the service of the filters in experiments and gives a brief overview of the works that utilised filters produced by the described technique on microstructured substrates, including orbital solar X-ray research in the framework of the CORONAS programme and laboratory laser plasma experiments.

  15. High Performance Miniature Bandpass Filters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is submitted for developing low impedance, miniature bandpass RF frequency filter via MEMS technique, in applications of SMAP, Aquarius follow-on,...

  16. Fabrication of Activated Rice Husk Charcoal by Slip Casting as a Hybrid Material for Water Filter Aid

    International Nuclear Information System (INIS)

    Tuaprakone, T; Wongphaet, N; Wasanapiarnpong, T

    2011-01-01

    Activated charcoal has been widely used as an odor absorbent in household and water purification industry. Filtration equipment for drinking water generally consists of four parts, which are microporous membrane (porous alumina ceramic or diatomite, or porous polymer), odor absorbent (activated carbon), hard water treatment (ion exchange resin), and UV irradiation. Ceramic filter aid is usually prepared by slip casting of alumina or diatomite. The membrane offers high flux, high porosity and maximum pore size does not exceed 0.3 μm. This study investigated the fabrication of hybrid activated charcoal tube for water filtration and odor absorption by slip casting. The suitable rice husk charcoal and water ratio was 48 to 52 wt% by weight with 1.5wt% (by dry basis) of CMC binder. The green rice husk charcoal bodies were dried and fired between 700-900 deg. C in reduction atmosphere. The resulting prepared slip in high speed porcelain pot for 60 min and sintered at 700 deg. C for 1 h showed the highest specific surface area as 174.95 m 2 /g. The characterizations of microstructure and pore size distribution as a function of particle size were investigated.

  17. Fabrication of Activated Rice Husk Charcoal by Slip Casting as a Hybrid Material for Water Filter Aid

    Science.gov (United States)

    Tuaprakone, T.; Wongphaet, N.; Wasanapiarnpong, T.

    2011-04-01

    Activated charcoal has been widely used as an odor absorbent in household and water purification industry. Filtration equipment for drinking water generally consists of four parts, which are microporous membrane (porous alumina ceramic or diatomite, or porous polymer), odor absorbent (activated carbon), hard water treatment (ion exchange resin), and UV irradiation. Ceramic filter aid is usually prepared by slip casting of alumina or diatomite. The membrane offers high flux, high porosity and maximum pore size does not exceed 0.3 μm. This study investigated the fabrication of hybrid activated charcoal tube for water filtration and odor absorption by slip casting. The suitable rice husk charcoal and water ratio was 48 to 52 wt% by weight with 1.5wt% (by dry basis) of CMC binder. The green rice husk charcoal bodies were dried and fired between 700-900 °C in reduction atmosphere. The resulting prepared slip in high speed porcelain pot for 60 min and sintered at 700 °C for 1 h showed the highest specific surface area as 174.95 m2/g. The characterizations of microstructure and pore size distribution as a function of particle size were investigated.

  18. Fabrication of Activated Rice Husk Charcoal by Slip Casting as a Hybrid Material for Water Filter Aid

    Energy Technology Data Exchange (ETDEWEB)

    Tuaprakone, T; Wongphaet, N; Wasanapiarnpong, T, E-mail: tonggogo@hotmail.com [Research Unit of Advanced Ceramic, Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok (Thailand)

    2011-04-15

    Activated charcoal has been widely used as an odor absorbent in household and water purification industry. Filtration equipment for drinking water generally consists of four parts, which are microporous membrane (porous alumina ceramic or diatomite, or porous polymer), odor absorbent (activated carbon), hard water treatment (ion exchange resin), and UV irradiation. Ceramic filter aid is usually prepared by slip casting of alumina or diatomite. The membrane offers high flux, high porosity and maximum pore size does not exceed 0.3 {mu}m. This study investigated the fabrication of hybrid activated charcoal tube for water filtration and odor absorption by slip casting. The suitable rice husk charcoal and water ratio was 48 to 52 wt% by weight with 1.5wt% (by dry basis) of CMC binder. The green rice husk charcoal bodies were dried and fired between 700-900 deg. C in reduction atmosphere. The resulting prepared slip in high speed porcelain pot for 60 min and sintered at 700 deg. C for 1 h showed the highest specific surface area as 174.95 m{sup 2}/g. The characterizations of microstructure and pore size distribution as a function of particle size were investigated.

  19. Design of a Balun Bandpass Filter with Asymmetrical Coupled Microstrip Lines

    Science.gov (United States)

    Wang, Xuedao; Wang, Jianpeng; Zhang, Gang; Huang, Feng

    2017-07-01

    A new microstrip coupled-line balun topology and its application to the balun bandpass filter (BPF) with a triple mode response are proposed in this paper. The involved balun structure is composed of two back-to-back quarter-wavelength (λ/4) asymmetrical coupled-line sections. Detailed design formulas based on the asymmetrical coupled-line theory are given to validate the feasibility of the balun. Besides, to obtain filtering performance simultaneously, the balun is then effectively integrated with a pair of triple mode resonators. To demonstrate the design concept of the balun BPF, a prototype operating at 2.4 GHz with the fractional bandwidth (FBW) of about 19.2 % is designed, fabricated, and measured. Results indicate that between the two balanced outputs, the amplitude imbalance is less than 0.3 dB and the phase difference is within 180°±5° inside the whole passband. Both simulated and experimental results are in good agreement.

  20. Vapour HF release of airgap-based UV-visible optical filters

    NARCIS (Netherlands)

    Ghaderi, M.; Ayerden, N.P.; De Graaf, G.; Wolffenbuttel, R.F.

    2015-01-01

    The design and CMOS-compatible fabrication of airgap-based optical filters in a surface micromachining process with sacrificial release using thevapour phase is presented. An airgap-dielectric layer combination offers a higher refractive index contrast, as compared to the conventional

  1. Formulation of nano-ceramic filters used in separation of heavy metals . Part II: Zirconia ceramic filters

    International Nuclear Information System (INIS)

    Khalil, T.; Labib, Sh.; Abou EI-Nour, F.H.; Abdel-Kbalik, M.

    2007-01-01

    Zirconia ceramic filters are prepared using polymeric sol-gel process. An optimization of synthesis parameters was studied to give cracked free coated nano porous film with high performance quality. Zirconia ceramic filters are characterized to select tbe optimized conditions that give tbe suitable zirconia filter used in heavy metal separation. The ceramic filters were characterized using BET method for surface measurements, mercury porosimeter for pore size distribution analysis and coating thickness measurements, SEM for microstructural studies and atomic absorption spectrophotometer (AAS) for metal analysis. The results indicated that zirconia ceramic filters. show high separation performance for cadmium, cupper, iron, manganese and lead

  2. Analysis of Dynamic Performance of a Kalman Filter for Combining Multiple MEMS Gyroscopes

    Directory of Open Access Journals (Sweden)

    Liang Xue

    2014-11-01

    Full Text Available In this paper, the dynamic performance of a Kalman filter (KF was analyzed, which is used to combine multiple measurements of a gyroscopes array to reduce the noise and improve the accuracy of the individual sensors. A principle for accuracy improvement by the KF was briefly presented to obtain an optimal estimate of input rate signal. In particular, the influences of some crucial factors on the KF dynamic performance were analyzed by simulations such as the factors input signal frequency, signal sampling, and KF filtering rate. Finally, a system that was comprised of a six-gyroscope array was designed and implemented to test the dynamic performance. Experimental results indicated that the 1σ error for the combined rate signal was reduced to about 0.2°/s in the constant rate test, which was a reduction by a factor of more than eight compared to the single gyroscope. The 1σ error was also reduced from 1.6°/s to 0.48°/s in the swing test. It showed that the estimated angular rate signal could well reflect the dynamic characteristic of the input signal in dynamic conditions.

  3. Miniaturized Bandpass Filter Using a Meandered Stepped-Impedance Resonator with a Meandered-Line Stub-Load on a GaAs Substrate

    Directory of Open Access Journals (Sweden)

    Z. Chuluunbaatar

    2014-01-01

    Full Text Available This paper reports a compact bandpass filter with improved skirt selectivity using integrated passive device fabrication technology on a GaAs substrate. The structure of the filter consists of electromagnetically coupled meandered-line symmetric stepped-impedance resonators. The strength of the coupling between the resonators is enhanced by using a meandered-line stub-load inside the resonators to improve the selectivity and miniaturize the size of the filter. In addition, the center frequency of the filter can be flexibly controlled by varying degrees of the capacitive coupling between resonator and stub-load. To verify the proposed concept, a protocol bandpass filter with center frequency of 6.53 GHz was designed, fabricated, and measured, with a return loss and insertion loss of 39.1 dB and 1.63 dB.

  4. Braile vena cava filter and greenfield filter in terms of centralization.

    Science.gov (United States)

    de Godoy, José Maria Pereira; Menezes da Silva, Adinaldo A; Reis, Luis Fernando; Miquelin, Daniel; Torati, José Luis Simon

    2013-01-01

    The aim of this study was to evaluate complications experienced during implantation of the Braile Vena Cava filter (VCF) and the efficacy of the centralization mechanism of the filter. This retrospective cohort study evaluated all Braile Biomédica VCFs implanted from 2004 to 2009 in Hospital de Base Medicine School in São José do Rio Preto, Brazil. Of particular concern was the filter's symmetry during implantation and complications experienced during the procedure. All the angiographic examinations performed during the implantation of the filters were analyzed in respect to the following parameters: migration of the filter, non-opening or difficulties in the implantation and centralization of the filter. A total of 112 Braile CVFs were implanted and there were no reports of filter opening difficulties or in respect to migration. Asymmetry was observed in 1/112 (0.9%) cases. A statistically significant difference was seen on comparing historical data on decentralization of the Greenfield filter with the data of this study. The Braile Biomédico filter is an evolution of the Greenfield filter providing improved embolus capture and better implantation symmetry.

  5. HTS dual-band bandpass filters using stub-loaded hair-pin resonators for mobile communication systems

    Energy Technology Data Exchange (ETDEWEB)

    Sekiya, N., E-mail: nsekiya@yamanashi.ac.jp; Sugiyama, S.

    2014-09-15

    Highlights: • We have developed a HTS five-pole dual-band bandpass filter using stub-loaded hair-pin resonators. • The proposed dual-band BPF can independently control of the center frequency. • Flexibly adjustment of the bandwidth can be achieved by the H-shaped waveguide. • The proposed BPF is evaluated by simulation and measurement with good agreement. - Abstract: A HTS dual-band bandpass filter is developed to obtain sharp-cut off characteristics for mobile communication systems. The filter is composed of five stub-loaded hair-pin resonators with H-shaped waveguides between them. The main advantage of the proposed filter is to allow independent control of the center frequency of the first and second bands. The bandwidths can be flexibly adjusted using the H-shaped waveguide. An electromagnetic simulator was used to design and analyze the filter, which have a 3.5-GHz center frequency and a 70-MHz (2%) bandwidth for the first band and a 5.0-GHz center frequency and a 100-MHz (2%) bandwidth for the second band. The filter was fabricated using YBa{sub 2}Cu{sub 3}O{sub y} thin film on an Al{sub 2}O{sub 3} substrate. Ground plane was fabricated using Au thin film. The measured frequency responses of the filter tally well with the simulated ones.

  6. Gel-sphere-pac fuel for thermal reactors: assessment of fabrication technology and irradiation performance

    Energy Technology Data Exchange (ETDEWEB)

    Beatty, R.L. Norman, R.E.; Notz, K.J. (comps.)

    1979-11-01

    Recent interest in proliferation-resistant fuel cycles for light-water reactors has focused attention on spiked plutonium and /sup 233/U-Th fuels, requiring remote refabrication. The gel-sphere-pac process for fabricating metal-clad fuel elements has drawn special attention because it involves fewer steps. Gel-sphere-pac fabrication technology involves two major areas: the preparation of fuel spheres of high density and loading these spheres into rods in an efficiently packed geometry. Gel sphere preparation involves three major steps: preparation of a sol or of a special solution (broth), gelation of droplets of sol or broth to give semirigid spheres of controlled size, and drying and sintering these spheres to a high density. Gelation may be accomplished by water extraction (suitable only for sols) or ammonia gelation (suitable for both sols and broths but used almost exclusively with broths). Ammonia gelation can be accomplished either externally, via ammonia gas and ammonium hydroxide, or internally via an added ammonia generator such as hexamethylenetetramine. Sphere-pac fuel rod fabrication involves controlled blending and metering of three sizes of spheres into the rod and packing by low- to medium-energy vibration to achieve about 88% smear density; these sizes have diametral ratios of about 40:10:1 and are blended in size fraction amounts of about 60% coarse, 18% medium, and 22% fine. Irradiation test results indicate that sphere-pac fuel performs at least as well as pellet fuel, and may in fact offer an advantage in significantly reducing mechanical and chemical interaction between the fuel and cladding. The normal feed for gel sphere preparation, heavy metal nitrate solution, is the usual product of fuel reprocessing, so that fabrication of gel spheres performs all the functions performed by both conversion and pellet fabrication in the case of pellet technology.

  7. Gel-sphere-pac fuel for thermal reactors: assessment of fabrication technology and irradiation performance

    International Nuclear Information System (INIS)

    Beatty, R.L.; Norman, R.E.; Notz, K.J.

    1979-11-01

    Recent interest in proliferation-resistant fuel cycles for light-water reactors has focused attention on spiked plutonium and 233 U-Th fuels, requiring remote refabrication. The gel-sphere-pac process for fabricating metal-clad fuel elements has drawn special attention because it involves fewer steps. Gel-sphere-pac fabrication technology involves two major areas: the preparation of fuel spheres of high density and loading these spheres into rods in an efficiently packed geometry. Gel sphere preparation involves three major steps: preparation of a sol or of a special solution (broth), gelation of droplets of sol or broth to give semirigid spheres of controlled size, and drying and sintering these spheres to a high density. Gelation may be accomplished by water extraction (suitable only for sols) or ammonia gelation (suitable for both sols and broths but used almost exclusively with broths). Ammonia gelation can be accomplished either externally, via ammonia gas and ammonium hydroxide, or internally via an added ammonia generator such as hexamethylenetetramine. Sphere-pac fuel rod fabrication involves controlled blending and metering of three sizes of spheres into the rod and packing by low- to medium-energy vibration to achieve about 88% smear density; these sizes have diametral ratios of about 40:10:1 and are blended in size fraction amounts of about 60% coarse, 18% medium, and 22% fine. Irradiation test results indicate that sphere-pac fuel performs at least as well as pellet fuel, and may in fact offer an advantage in significantly reducing mechanical and chemical interaction between the fuel and cladding. The normal feed for gel sphere preparation, heavy metal nitrate solution, is the usual product of fuel reprocessing, so that fabrication of gel spheres performs all the functions performed by both conversion and pellet fabrication in the case of pellet technology

  8. Study of LCL filter performance for inverter fed grid connected system

    Science.gov (United States)

    Thamizh Thentral, T. M.; Geetha, A.; Subramani, C.

    2018-04-01

    The abandoned use of power electronic converters in the application of grid connected system paves a way for critical injected harmonics. Hence the use of filter becomes a significant play among the present scenario. Higher order passive filter is mostly preferred in this application because of its reduced cost and size. This paper focuses on the design of LCL filter for the reduction of injected harmonics. The reason behind choosing LCL filter is inductor sizing and good ripple component attenuation over the other conventional filters. This work is simulated in MATLAB platform and the results are prominent to the objectives mentioned above. Also, the simulation results are verified with the implemented hardware model.

  9. Estimation and control in HTGR fuel rod fabrication

    International Nuclear Information System (INIS)

    Downing, D.J.; Bailey, M.J.

    1980-01-01

    A control algorithm has been derived for a HTGR Fuel Rod Fabrication Process utilizing the method of Box and Jenkins. The estimator is a Kalman filter and is compared with a Least Square estimator and a standard control chart. The effects of system delays are presented

  10. A Novel CPW BandPass Filter Integrating Periodic Rectangular Slot Cells

    Directory of Open Access Journals (Sweden)

    Fouad Aytouna

    2015-12-01

    Full Text Available In this paper, we introduce the design and the achievement of a Bandpass filter structure based on the use of rectangular slot cell. The originality of this work is to achieve a coplanar filter easy to integrate with microwave planar circuits and having a wide frequency bandwidth. The proposed bandpass filter is a low cost and compact planar filter structure. The final circuit is simulated by using two electromagnetic solvers, ADS and HFSS. The validation into simulation is based on using optimization methods integrated into the both solvers. Simulations have taken into account a high meshing density to cover the whole circuit. The fabricated bandpass filter has an area of 35X31mm2 and having a good insertion loss around -0.75dB in the bandwidth. The comparison between simulation and measurement results presents a good agreement.

  11. Semiconductor cleaning liquid delivery system and its filter; Handotaiyo seijo yakueki kyokyu system to filter

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T. [Kanto Chemical Co. Inc., Tokyo (Japan); Hayama, H.; Sakka, T. [Nitto Denko Corp., Osaka (Japan)

    1994-11-30

    Most of chemicals used for producing semiconductors are supplied automatically by a chemical delivery system to production devices. This paper explains the current status and the trends of the system. This system supplies the chemicals in the order of a tank lorry, a storage tank, a supply tank, a filter and a production device, and the transfer is performed receiving a supply signal from the supply tank and the production device. The transfer may be done through a dilution equipment. Filters currently used have membrane pore sizes of 0.2 to 0.1 microns as prefilters, and 0.1 to 0.05 microns as final filters. Chemicals used are diverse and can be divided into acid-, alkaline-, and solvent-based groups. Fluorine resin filters are used for acid- and alkaline-resistant applications, and SUS/fluorine resin filters for solvent-resistant applications. Use of large-sized filters of element construction with a membrane area of 1 m{sup 2} class is increasing recently in addition to selection from a performance viewpoint, including particle removing performance. 9 figs., 7 tabs.

  12. Novel method to improve power handling capability for coplanar waveguide high-temperature superconducting filter

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, K; Koizumi, D; Narahashi, S [NTT DoCoMo, Inc., 3-5 Hikari-no-oka, 239-8536 Yokosuka (Japan)

    2006-06-01

    This paper proposes a novel method to improve the power handling capability of a coplanar waveguide (CPW) high-temperature superconducting (HTS) filter. The noteworthy point of the proposed method is that it is based on the concept that the power handling capability is improved by reducing the maximum current density of the filter. Numerical investigations confirm that a CPW HTS filter using 66-{omega} characteristic impedance resonators (66-{omega} CPW HTSF) reduces the maximum current density compared to that using conventional 50-{omega} resonators (50-{omega} CPW HTSF). We fabricated 5-GHz band four-pole Chevyshev CPW HTSFs based on the proposed and conventional methods. The fabricated 66-{omega} CPW HTSF exhibited the third-order intercept point (TOI) of + 61 dBm while the 50-{omega} CPW HTSF exhibited the TOI of + 54 dBm, both at 60 K. These results indicate the effectiveness of the proposed method.

  13. Multiterminal semiconductor/ferromagnet probes for spin-filter scanning tunneling microscopy

    NARCIS (Netherlands)

    Vera Marun, I.J.; Jansen, R.

    2009-01-01

    We describe the fabrication of multiterminal semiconductor/ferromagnet probes for a new technique to study magnetic nanostructures: spin-filter scanning tunneling microscopy. We describe the principle of the technique, which is based on spin-polarized tunneling and subsequent analysis of the spin

  14. Research on the relationship between viscoelasticity and shock isolation performance of warp knitted spacer fabrics

    Directory of Open Access Journals (Sweden)

    Jin JIANG

    2016-04-01

    Full Text Available Warp-knitted spacer fabric which is commonly used in impact protection is selected as test materials to study the relationship between viscoelasticity and the performance of shock isolation. A damping test platform is built to test different specifications of warp-knitted spacer fabric including compression elastic modulus, damping ratio and the residual impact load under different impact speed. Experimental results show that there is no clear correlation between the shock isolation performance and the viscidity or the elasticity. Accordingly, viscosity-to-elasticity ratio is proposed to characterize the relationship between viscoelasticity and shock isolation performance, and it is found that appropriate viscosity-to-elasticity ratio within a certain range can help to achieve better shock isolation performance.

  15. A highly linear baseband G{sub m}-C filter for WLAN application

    Energy Technology Data Exchange (ETDEWEB)

    Yang Lijun; Chen Zhiming [Department of Electronic Engineering, Xi' an University of Technology, Xi' an 710048 (China); Gong Zheng; Shi Yin, E-mail: ljyang@sci-inc.com.cn [Suzhou-CAS Semiconductors Integrated Technology Research Center, Suzhou 215021 (China)

    2011-09-15

    A low voltage, highly linear transconductan-C (G{sub m}-C) low-pass filter for wireless local area network (WLAN) transceiver application is proposed. This transmitter (Tx) filter adopts a 9.8 MHz 3rd-order Chebyshev low pass prototype and achieves 35 dB stop-band attenuation at 30 MHz frequency. By utilizing pseudo-differential linear-region MOS transconductors, the filter IIP{sub 3} is measured to be as high as 9.5 dBm. Fabricated in a 0.35 {mu}m standard CMOS technology, the proposed filter chip occupies a 0.41 x 0.17 mm{sup 2} die area and consumes 3.36 mA from a 3.3-V power supply. (semiconductor integrated circuits)

  16. First Study Of HEPA Filter Prototype Performance To Control The Airborne Pollution

    International Nuclear Information System (INIS)

    Soetomo; Suwarno

    2000-01-01

    This paper will report the efficiency test result of the filtration tool prototype of High Efficiency Particulate Air (HEPA filter) for low temperature, to control the airborne pollution of aerosol particle of solid and liquid. The prototype design of HEPA filter was based on the characteristic data of filter material (fibrous diameter, density, filter thickness), flow rate of air and first pressure drop. From the result of laboratory scale test, using DOP/PSL aerosol with 0,3 mum diameter and the flow rate of 3,78 m exp.3/min, was obtained filtration efficiency revolve between 89,90 and 99,94 % for the filter prototype of A, B, C, and D. the efficiency estimation of theory with filtration programme and the experiment was different amount 1 %. The value of the prototype efficiency of D filter was not far different with AAF-USA filter and its price is cheaper 30 % than the price of AAF-USA filter

  17. Impact of axial velocity and transmembrane pressure (TMP) on ARP filter performance

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-29

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. One potential method for increasing filter flux is to adjust the axial velocity and transmembrane pressure (TMP). SRR requested SRNL to conduct bench-scale filter tests to evaluate the effects of axial velocity and transmembrane pressure on crossflow filter flux. The objective of the testing was to determine whether increasing the axial velocity at the ARP could produce a significant increase in filter flux. The authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate and 2.5 g MST/L, processing the slurry through a bench-scale crossflow filter unit at varying axial velocity and TMP, and measuring filter flux as a function of time.

  18. Soft X-ray multilayers and filters

    CERN Document Server

    Wang Zhan Shan; Tang Wei Xing; Qin Shuji; Zhou Bing; Chen Ling Ya

    2002-01-01

    The periodic and non-periodic multilayers were designed by using a random number to change each layer and a suitable merit function. Ion beam sputtering and magnetron sputtering were used to fabricate various multilayers and beam splitters in soft X-ray range. The characterization of multilayers by small angle X-ray diffraction, Auger electron spectroscopy, Rutherford back scattering spectroscopy and reflectivity illustrated the multilayers had good structures and smooth interlayers. The reflectivity and transmission of a beam splitter is about 5%. The fabrication and transmission properties of Ag, Zr were studied. The Rutherford back scattering spectroscopy and auger electron spectroscopy were used to investigate the contents and distributions of impurities and influence on qualities of filters. The attenuation coefficients were corrected by the data obtained by measurements

  19. Particle Kalman Filtering: A Nonlinear Bayesian Framework for Ensemble Kalman Filters*

    KAUST Repository

    Hoteit, Ibrahim

    2012-02-01

    This paper investigates an approximation scheme of the optimal nonlinear Bayesian filter based on the Gaussian mixture representation of the state probability distribution function. The resulting filter is similar to the particle filter, but is different from it in that the standard weight-type correction in the particle filter is complemented by the Kalman-type correction with the associated covariance matrices in the Gaussian mixture. The authors show that this filter is an algorithm in between the Kalman filter and the particle filter, and therefore is referred to as the particle Kalman filter (PKF). In the PKF, the solution of a nonlinear filtering problem is expressed as the weighted average of an “ensemble of Kalman filters” operating in parallel. Running an ensemble of Kalman filters is, however, computationally prohibitive for realistic atmospheric and oceanic data assimilation problems. For this reason, the authors consider the construction of the PKF through an “ensemble” of ensemble Kalman filters (EnKFs) instead, and call the implementation the particle EnKF (PEnKF). It is shown that different types of the EnKFs can be considered as special cases of the PEnKF. Similar to the situation in the particle filter, the authors also introduce a resampling step to the PEnKF in order to reduce the risk of weights collapse and improve the performance of the filter. Numerical experiments with the strongly nonlinear Lorenz-96 model are presented and discussed.

  20. A wideband superconducting filter at Ku-band based on interdigital coupling

    Science.gov (United States)

    Jiang, Ying; Wei, Bin; Cao, Bisong; Li, Qirong; Guo, Xubo; Jiang, Linan; Song, Xiaoke; Wang, Xiang

    2018-04-01

    In this paper, an interdigital-type resonator with strong electric coupling is proposed for the wideband high-frequency (>10 GHz) filter design. The proposed microstrip resonator consists of an H-shaped main line part with its both ends installed with interdigital finger parts. Strong electric coupling is achieved between adjacent resonators. A six-pole high-temperature superconducting filter at Ku-band using this resonator is designed and fabricated. The filter has a center frequency of 15.11 GHz with a fractional bandwidth of 30%. The insertion loss of the passband is less than 0.3 dB, and the return loss is greater than 14 dB without any tuning.

  1. FY 1989 report on the results of the development of the entrained bed coal gasification power plant. Part 3. Fabrication/installation of pilot plant (Fabrication/installation drawings and fabrication/installation pictures - 1/2); 1989 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 3. Pilot plant seisaku suetsuke hen (Seisaku suetsukezu oyobi seisaku suetsuke shashin) (1/2)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    For the purpose of establishing the technology of the integrated coal gasification combined cycle power generation, the fabrication, installation work, etc. were conducted of a 200t/d entrained bed coal gasification pilot plant, and drawings of fabrication/installation in the FY 1989 were summarized. In fabrication/installation drawings, drawings of the following were included: layout of the total system and the yard, gasifier facilities (assembly drawing of the pressure part of gasifier, drawing of machinery arrangement of gasifier facilities, system diagram of raw coal receiving device, system diagram of pulverized coal feed equipment, system diagram of char feed equipment, etc.), gas refining facilities - dry desulfurizer (assembly drawing of desulfurizing agent carrying filter, assembly drawing of regeneration tower filter, structural drawing of SO{sub 2} reduction tower filter, assembly drawing of start-up heater, etc.), gas refining facilities - dry dust removal system (assembly drawing of No.1 dust separation filter, installation drawing of elevator, etc.), gas turbine facilities (cross section of gas turbine, front view of gas turbine, structural cross section of gas turbogenerator, etc.), actual-pressure/actual-size combustor test equipment (structural drawing of test stand, structural drawing of exhaust temperature reduction device, assembly/sectioned drawing of low-pressure air compressor, etc.) (NEDO)

  2. All-fiber probe for optical coherence tomography with an extended depth of focus by a high-efficient fiber-based filter

    Science.gov (United States)

    Qiu, Jianrong; Shen, Yi; Shangguan, Ziwei; Bao, Wen; Yang, Shanshan; Li, Peng; Ding, Zhihua

    2018-04-01

    Although methods have been proposed to maintain high transverse resolution over an increased depth range, it is not straightforward to scale down the bulk-optic solutions to minimized probes of optical coherence tomography (OCT). In this paper, we propose a high-efficient fiber-based filter in an all-fiber OCT probe to realize an extended depth of focus (DOF) while maintaining a high transverse resolution. Mode interference in the probe is exploited to modulate the complex field with controllable radial distribution. The principle of DOF extension by the fiber-based filter is theoretically analyzed. Numerical simulations are conducted to evaluate the performances of the designed probes. A DOF extension ratio of 2.6 over conventional Gaussian beam is obtainable in one proposed probe under a focused beam diameter of 4 . 6 μm. Coupling efficiencies of internal interfaces of the proposed probe are below -40 dB except the last probe-air interface, which can also be depressed to be -44 dB after minor modification in lengths for the filter. Length tolerance of the proposed probe is determined to be - 28 / + 20 μm, which is readily satisfied in fabrication. With the merits of extended-DOF, high-resolution, high-efficiency and easy-fabrication, the proposed probe is promising in endoscopic applications.

  3. Fabrication and Performance Evaluation of a Thevetia Nut Cracking Machine

    Directory of Open Access Journals (Sweden)

    M. M. Odewole

    2015-06-01

    Full Text Available Thevetia seed contains about 64 percent of non-edible oil in its oily kernel and this oil can be used for various purposes such as biofuel and bio-oil; making of paints, insecticides, cosmetics, lubricants and cooling oil in electrical transformers. The cakes obtained after oil extraction are incorporated on the field as manure. In order to get quality oil kernels from the hard nuts, there is need to properly crack them; this process of cracking is still a great challenge. As result of the aforementioned problem, this work focused on the design, fabrication and performance evaluation of a thevetia nut cracking machine. The machine works based on the principle of attrition force. Some of the parts designed for were diameter of shaft (13 mm solid shaft and length of belt (A55, power required to operate the machine (2.5 hp, speed of operation (9.14 m/s and the appropriate dimension of angle iron bar of 45 mm × 45 mm × 3 mm was used for the structural support. The fabrication was done systematically followed by the performance evaluation of the machine. The result of the overall cracking efficiency and throughput capacity of the machine were evaluated to be 96.65 % and 510 g⁄min respectively.

  4. Impact of the genfit2 Kalman-filter-based algorithms on physics simulations performed with PandaRoot

    Energy Technology Data Exchange (ETDEWEB)

    Prencipe, Elisabetta; Ritman, James [Forschungszentrum Juelich, IKP1, Juelich (Germany); Collaboration: PANDA-Collaboration

    2016-07-01

    PANDA is a planned experiment at FAIR (Darmstadt) with a cooled antiproton beam in a range [1.5;15] GeV/c, allowing a wide physics program in nuclear and particle physics. It is the only experiment worldwide, which combines a solenoid field (B=2 T) and a dipole field (B=2 Tm) in an experiment with a fixed target topology, in that energy regime. The tracking system of PANDA involves the presence of a high performance silicon vertex detector, a GEM detector, a Straw-Tubes central tracker, a forward tracking system, and a luminosity monitor. The offline tracking algorithm is developed within the PandaRoot framework, which is a part of the FAIRRoot project. The algorithm here presented is based on a tool containing the Kalman Filter equations and a deterministic annealing filter (genfit). The Kalman-Filter-based algorithms have a wide range of applications; among those in particle physics they can perform extrapolations of track parameters and covariance matrices. The impact on physics simulations performed for the PANDA experiment is shown for the first time, with the PandaRoot framework: improvement is shown for those channels where a good low momentum tracking is required (p{sub T}<400 MeV/c), i.e. D mesons and Λ reconstruction, of about a factor 2.

  5. Polymorphous computing fabric

    Science.gov (United States)

    Wolinski, Christophe Czeslaw [Los Alamos, NM; Gokhale, Maya B [Los Alamos, NM; McCabe, Kevin Peter [Los Alamos, NM

    2011-01-18

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  6. Controllable Fabrication of Amorphous Co-Ni Pyrophosphates for Tuning Electrochemical Performance in Supercapacitors.

    Science.gov (United States)

    Chen, Chen; Zhang, Ning; He, Yulu; Liang, Bo; Ma, Renzhi; Liu, Xiaohe

    2016-09-07

    Incorporation of two transition metals offers an effective method to enhance the electrochemical performance in supercapacitors for transition metal compound based electrodes. However, such a configuration is seldom concerned in pyrophosphates. Here, amorphous phase Co-Ni pyrophosphates are fabricated as electrodes in supercapacitors. Through controllably adjusting the ratios of Co and Ni as well as the calcination temperature, the electrochemical performance can be tuned. An optimized amorphous Ni-Co pyrophosphate exhibits much higher specific capacitance than monometallic Ni and Co pyrophosphates and shows excellent cycling ability. When employing Ni-Co pyrophosphates as positive electrode and activated carbon as a negative electrode, the fabricated asymmetric supercapacitor cell exhibits favorable capacitance and cycling ability. This study provides facile methods to improve the transition metal pyrophosphate electrodes for efficient electrodes in electrochemical energy storage devices.

  7. Deeply-etched micromirror with vertical slit and metallic coating enabling transmission-type optical MEMS filters

    Science.gov (United States)

    Othman, Muhammad A.; Sabry, Yasser M.; Sadek, Mohamed; Nassar, Ismail M.; Khalil, Diaa A.

    2016-03-01

    In this work we report a novel optical MEMS deeply-etched mirror with metallic coating and vertical slot, where the later allows reflection and transmission by the micromirror. The micromirror as well as fiber grooves are fabricated using deep reactive ion etching technology, where the optical axis is in-plane and the components are self-aligned. The etching depth is 150 μm chosen to improve the micromirror optical throughput. The vertical optical structure is Al metal coated using the shadow mask technique. A fiber-coupled Fabry-Pérot filter is successfully realized using the fabricated structure. Experimental measurements were obtained based on a dielectric-coated optical fiber inserted into a fiber groove facing the slotted micromirror. A versatile performance in terms of the free spectral range and 3-dB bandwidth is achieved.

  8. A new approach to characterize the effect of fabric deformation on thermal protective performance

    International Nuclear Information System (INIS)

    Li, Jun; Li, Xiaohui; Lu, Yehu; Wang, Yunyi

    2012-01-01

    It is very important to evaluate thermal protective performance (TPP) in laboratory-simulated fire scenes as accurately as possible. For this paper, to thoroughly understand the effect of fabric deformation on basic physical properties and TPP of flame-retardant fabrics exposed to flash fire, a new modified TPP testing apparatus was developed. Different extensions were employed to simulate the various extensions displayed during different body motions. The tests were also carried out with different air gaps. The results showed a significant decrease in air permeability after deformation. However, the change of thickness was slight. The fabric deformation had a complicated effect on thermal protection with different air gaps. The change of TPP depended on the balance between the surface contact area and the thermal insulation. The newly developed testing apparatus could be well employed to evaluate the effect of deformation on TPP of flame-resistant fabrics. (paper)

  9. A new approach to characterize the effect of fabric deformation on thermal protective performance

    Science.gov (United States)

    Li, Jun; Li, Xiaohui; Lu, Yehu; Wang, Yunyi

    2012-04-01

    It is very important to evaluate thermal protective performance (TPP) in laboratory-simulated fire scenes as accurately as possible. For this paper, to thoroughly understand the effect of fabric deformation on basic physical properties and TPP of flame-retardant fabrics exposed to flash fire, a new modified TPP testing apparatus was developed. Different extensions were employed to simulate the various extensions displayed during different body motions. The tests were also carried out with different air gaps. The results showed a significant decrease in air permeability after deformation. However, the change of thickness was slight. The fabric deformation had a complicated effect on thermal protection with different air gaps. The change of TPP depended on the balance between the surface contact area and the thermal insulation. The newly developed testing apparatus could be well employed to evaluate the effect of deformation on TPP of flame-resistant fabrics.

  10. Characterization of magnesium phosphate ceramics incorporating off-gas filters

    International Nuclear Information System (INIS)

    Yang, Jae Hwan; Lee, Chang Hwa; Heo, Chul Min; Jeon, Min Ku; Kang, Kweon Ho

    2011-01-01

    Radioactive cesium (Cs-137) and technetium (Tc-99) are discharged from the spent fuel as gaseous forms during the head-end process in pyroprocess. These off-gases are safely trapped via porous ceramic filters made of fly ash and calcium based material. Spent filters have to be treated, converted into proper waste forms in order to be disposed safely at a repository. Conventional technology used to make waste forms such as vitrification requires high temperature and complex process. In this study, we report a promising method to stabilize spent filters containing cesium and technetium using magnesium phosphate ceramics. Simulated spent filters were fabricated by vaporizing nonradioactive cesium and rhenium (a surrogate of Tc) through the voloxidizer. The crushed filters were mixed with raw materials of magnesium phosphate ceramics, to be stabilized in the phosphate ceramic matrix. Characterization of the waste forms was made by the compressive strength test, apparent porosity, XRD analysis, and SEM analysis. The sample containing filters showed the excellent mechanical property, with the highest compressive strength of 38.1 MPa in the sample with 30 wt% of Cs-filter. Microstructural analysis suggests that wastes are embedded in the crystalline phase formed by an acid-base reaction. (author)

  11. Alternating current line-filter based on electrochemical capacitor utilizing template-patterned graphene

    OpenAIRE

    Zhenkun Wu; Liyi Li; Ziyin Lin; Bo Song; Zhuo Li; Kyoung-Sik Moon; Ching-Ping Wong; Shu-Lin Bai

    2015-01-01

    Aluminum electrolytic capacitors (AECs) are widely used for alternating current (ac) line-filtering. However, their bulky size is becoming more and more incompatible with the rapid development of portable electronics. Here we report a scalable process to fabricate miniaturized graphene-based ac line-filters on flexible substrates at room temperature. In this work, graphene oxide (GO) is reduced by patterned metal interdigits at room temperature and used directly as the electrode material. The...

  12. Full color organic light-emitting devices with microcavity structure and color filter.

    Science.gov (United States)

    Zhang, Weiwei; Liu, Hongyu; Sun, Runguang

    2009-05-11

    This letter demonstrated the fabrication of the full color passive matrix organic light-emitting devices based on the combination of the microcavity structure, color filter and a common white polymeric OLED. In the microcavity structure, patterned ITO terraces with different thickness were used as the anode as well as cavity spacer. The primary color emitting peaks were originally generated by the microcavity and then the second resonance peak was absorbed by the color filter.

  13. Modeling astronomical adaptive optics performance with temporally filtered Wiener reconstruction of slope data

    Science.gov (United States)

    Correia, Carlos M.; Bond, Charlotte Z.; Sauvage, Jean-François; Fusco, Thierry; Conan, Rodolphe; Wizinowich, Peter L.

    2017-10-01

    We build on a long-standing tradition in astronomical adaptive optics (AO) of specifying performance metrics and error budgets using linear systems modeling in the spatial-frequency domain. Our goal is to provide a comprehensive tool for the calculation of error budgets in terms of residual temporally filtered phase power spectral densities and variances. In addition, the fast simulation of AO-corrected point spread functions (PSFs) provided by this method can be used as inputs for simulations of science observations with next-generation instruments and telescopes, in particular to predict post-coronagraphic contrast improvements for planet finder systems. We extend the previous results and propose the synthesis of a distributed Kalman filter to mitigate both aniso-servo-lag and aliasing errors whilst minimizing the overall residual variance. We discuss applications to (i) analytic AO-corrected PSF modeling in the spatial-frequency domain, (ii) post-coronagraphic contrast enhancement, (iii) filter optimization for real-time wavefront reconstruction, and (iv) PSF reconstruction from system telemetry. Under perfect knowledge of wind velocities, we show that $\\sim$60 nm rms error reduction can be achieved with the distributed Kalman filter embodying anti- aliasing reconstructors on 10 m class high-order AO systems, leading to contrast improvement factors of up to three orders of magnitude at few ${\\lambda}/D$ separations ($\\sim1-5{\\lambda}/D$) for a 0 magnitude star and reaching close to one order of magnitude for a 12 magnitude star.

  14. LHCb: Fabric Management with Diskless Servers and Quattor on LHCb

    CERN Multimedia

    Schweitzer, P; Brarda, L; Neufeld, N

    2011-01-01

    Large scientific experiments nowadays very often are using large computer farms to process the events acquired from the detectors. In LHCb a small sysadmin team manages 1400 servers of the LHCb Event Filter Farm, but also a wide variety of control servers for the detector electronics and infrastructure computers: file servers, gateways, DNS, DHCP and others. This variety of servers could not be handled without a solid fabric management system. We choose the Quattor toolkit for this task. We will present our use of this toolkit, with an emphasis on how we handle our diskless nodes (Event filter farm nodes and computers embedded in the acquisition electronic cards). We will show our current tests to replace the standard (RedHat/Scientific Linux) way of handling diskless nodes to fusion filesystems and how it improves fabric management.

  15. Comparison of reactivity estimation performance between two extended Kalman filtering schemes

    International Nuclear Information System (INIS)

    Peng, Xingjie; Cai, Yun; Li, Qing; Wang, Kan

    2016-01-01

    Highlights: • The performances of two EKF schemes using different Jacobian matrices are compared. • Numerical simulations are used for the validation and comparison of these two EKF schemes. • The simulation results show that the EKF scheme adopted by this paper performs better than the one adopted by previous literatures. - Abstract: The extended Kalman filtering (EKF) technique has been utilized in the estimation of reactivity which is a significantly important parameter to indicate the status of the nuclear reactor. In this paper, the performances of two EKF schemes using different Jacobian matrices are compared. Numerical simulations are used for the validation and comparison of these two EKF schemes, and the results show that the Jacobian matrix obtained directly from the discrete-time state model performs better than the one which is the discretization form of the Jacobian matrix obtained from the continuous-time state model.

  16. Front Surface Tandem Filters using Sapphire (Al2O3) Substrates for Spectral Control in thermophotovoltaic Energy Conversion Systems

    International Nuclear Information System (INIS)

    T Rahmlow, Jr.; J Lazo-Wasem; E Gratrix; P Fourspring; D DePoy

    2005-01-01

    Front surface filters provide an effective means of improving thermophotovoltaic (TPV) system efficiency through spectral control of incident radiant energy. A front surface filter reflects the below band gap photons that can not be converted by the TPV cell back towards the high temperature radiator and allows convertible above band gap photons to pass through the filter into the TPV cell for conversion to electricity. The best spectral control efficiency to date has been demonstrated by front surface, tandem filters that combine an interference filter and an InPAs layer (plasma filter) in series. The InPAs material is a highly doped, epitaxially grown layer on an InP substrate. These tandem filter designs have been fabricated with energy and angle weighted spectral efficiencies of 76% for TPV cells with a 2.08(micro)m (0.6eV) band gap [1]. An alternative to the InPAs layer on an InP substrate is an Al 2 O 3 (sapphire) substrate. The use of Al 2 O 3 may increase transmission of above band gap photons, increase the mechanical strength of the tandem filter, and lower the cost of the tandem filter, all at the expense of lower spectral efficiency. This study presents design and fabrication results for front surface tandem filters that use an Al 2 O 3 substrate for 2.08(micro)m band gap TPV cells

  17. High flow ceramic pot filters.

    Science.gov (United States)

    van Halem, D; van der Laan, H; Soppe, A I A; Heijman, S G J

    2017-11-01

    Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more water without sacrificing their microbial removal efficacy. High flow pot filters, produced by increasing the rice husk content, had a higher initial flow rate (6-19 L h -1 ), but initial LRVs for E. coli of high flow filters was slightly lower than for regular ceramic pot filters. This disadvantage was, however, only temporarily as the clogging in high flow filters had a positive effect on the LRV for E. coli (from below 1 to 2-3 after clogging). Therefore, it can be carefully concluded that regular ceramic pot filters perform better initially, but after clogging, the high flow filters have a higher flow rate as well as a higher LRV for E. coli. To improve the initial performance of new high flow filters, it is recommended to further utilize residence time of the water in the receptacle, since additional E. coli inactivation was observed during overnight storage. Although a relationship was observed between flow rate and LRV of MS2 bacteriophages, both regular and high flow filters were unable to reach over 2 LRV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. High-performance ceramic filters for energy engineering. Final report; Filter aus Hochleistungskeramik fuer die Energietechnik. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Westerheide, R. [Fraunhofer-Institut fuer Werkstoffmechanik (IWM), Freiburg im Breisgau (Germany); Adler, J. [Fraunhofer-Institut fuer Keramische Technologien und Sinterwerkstoffe (IKTS), Dresden (Germany); Buhl, H. [ESK-SIC GmbH, Frechen-Grefrath (Germany); Fister, D. [H.C. Starck GmbH, Laufenburg (Germany); Krein, J. [LLB Lurgi Lentjes Energietechnik GmbH, Frankfurt (Germany); Voelker, W. [Annawerk GmbH, Roedental (Germany); Walch, A. [eds.] [USF Schumacher Umwelt- und Trenntechnik GmbH, Crailsheim (Germany)

    1999-09-30

    The hot gas particulate removal of many advanced coal fired power generation technologies works at temperatures above 800 C. The filter elements for these applications are often based on ceramic materials, e.g. silicon carbide. However, the mostly clay bonded silicon carbide is subject to creep and oxidation due to probable changes of the binder phase. In this work the development of new ceramic filter materials based on silicon carbide and alumina is described. The goal of the development was to increase the potential application temperature. To obtain the goal, the work was performed together with ceramic powder manufacturers, developers of ceramic materials and components as well as with companies who operate test facilities. Different routes were chosen to increase the high temperature resistance in consideration of corrosion resistance, fracture strength and pressure loss of the filter materials. One of these routes was the optimization of the binder phase of the silicon carbide materials. Other routes were concentrated on the base material and the investigation of other possibilities for the silicon carbide bonding, i.e. a recrystallization process of SiC (RSiC) or a self bonding of granulated small grained silicon carbide powder. Additionally filter materials based on alumina were developed. The report covers these material development oriented topics as well as the additional work in materials reliability, coating development and modeling of microstructure. (orig.) [German] In der Kombikraftwerkstechnik wird insbesondere bei Kohlefeuerung die Heissgasreinigung oft bei Temperaturen ueber 800 C eingesetzt. Die Filterelemente fuer diese Anwendungen bestehen oft aus keramischen Materialien. Das haeufig eingesetzte tongebundene Siliciumcarbid unterliegt jedoch besonders aufgrund der Beschaffenheit der Bindephase Kriech- und Oxidationsschaedigungen. In diesem Bericht wird die Entwicklung von neuen keramischen Filtermaterialien, die auf Siliciumcarbid oder

  19. The electrocatalytic oxidation of carbohydrates at a nickel/carbon paper electrode fabricated by the filtered cathodic vacuum arc technique

    International Nuclear Information System (INIS)

    Fu, Yingyi; Wang, Tong; Su, Wen; Yu, Yanan; Hu, Jingbo

    2015-01-01

    The direct electrochemical behaviour of carbohydrates at a nickel/carbon paper electrode with a novel fabrication method is investigated. The investigation is used for verification the feasibility of using monosaccharides and disaccharides in the application of fuel cell. The selected monosaccharides are glucose, fructose and galactose; the disaccharides are sucrose, maltose and lactose. The modified nickel/carbon paper electrode was prepared using a filtered cathodic vacuum arc technique. The morphology image of the nickel thin film on the carbon paper surface was characterized by scanning electron microscopy (SEM). The existence of nickel was verified by X-ray photoelectron spectroscopy (XPS). The contact angle measurement was also used to characterize the modified electrode. Cyclic voltammetry (CV) was employed to evaluate the electrochemical behaviour of monosaccharides and disaccharides in an alkaline aqueous solution. The modified electrode exhibits good electrocatalytic activities towards carbohydrates. In addition, the stability of the nickel/carbon paper electrode with six sugars was also investigated. The good catalytic effects of the nickel/carbon paper electrode allow for the use of carbohydrates as fuels in fuel cell applications

  20. Turbidity and microbes removal from water using an electrochemical filter

    International Nuclear Information System (INIS)

    Venkateswaran, G.; Gokhale, B.K.; Belapurkar, A.D.; Kumbhar, A.G.; Balaji, V.

    2004-01-01

    An in-house designed and fabricated Electrochemical fibrous graphite filter (ECF) was used to remove turbidity and microbes. The filter was found to be effective in removing sub micron size indium turbidity from RAPS-1 moderator water, iron turbidity from Active Process Cooling Water (APCW) of Kaiga Generating Station and microbial reduction from process cooling water RAPS-2. Unlike conventional turbidity removal by addition of coagulants and biocide chemical additions for purification, ECF is a clean way to remove the turbidity without contaminating the system and is best suited for close loop systems

  1. Fabrication and wear protection performance of superhydrophobic surface on zinc

    Energy Technology Data Exchange (ETDEWEB)

    Wan Yong, E-mail: wanyong@qtech.edu.cn [School of Mechanical Engineering, Qingdao Technological University, 11 Fushun Road, Qingdao 266033 (China); Wang Zhongqian; Xu Zhen; Liu Changsong [School of Mechanical Engineering, Qingdao Technological University, 11 Fushun Road, Qingdao 266033 (China); Zhang Junyan [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Lanzhou 730000 (China)

    2011-06-15

    A simple two-step process has been developed to render zinc surface superhydrophobic, resulting in low friction coefficient and long wear resistance performance. The ZnO film with uniform and packed nanorod structure was firstly created by immersing the zinc substrates into 4% N,N-dimethylformamide solution. The as-fabricated surface was then coated a layer of fluoroalkylsilane (FAS) by gas phase deposition. Scanning electron microscopy (SEM) and water contact angle (WCA) measurement have been performed to characterize the morphological feature, chemical composition and superhydrophobicity of the surface. The resulting surfaces have a WCA as high as 156 deg. and provide effective friction-reducing and wear protection for zinc substrate.

  2. Fabrication and wear protection performance of superhydrophobic surface on zinc

    International Nuclear Information System (INIS)

    Wan Yong; Wang Zhongqian; Xu Zhen; Liu Changsong; Zhang Junyan

    2011-01-01

    A simple two-step process has been developed to render zinc surface superhydrophobic, resulting in low friction coefficient and long wear resistance performance. The ZnO film with uniform and packed nanorod structure was firstly created by immersing the zinc substrates into 4% N,N-dimethylformamide solution. The as-fabricated surface was then coated a layer of fluoroalkylsilane (FAS) by gas phase deposition. Scanning electron microscopy (SEM) and water contact angle (WCA) measurement have been performed to characterize the morphological feature, chemical composition and superhydrophobicity of the surface. The resulting surfaces have a WCA as high as 156 deg. and provide effective friction-reducing and wear protection for zinc substrate.

  3. Fresnel Lenses fabricated by femtosecond laser micromachining on Polymer 1D Photonic Crystal

    Directory of Open Access Journals (Sweden)

    Guduru Surya S.K.

    2013-11-01

    Full Text Available We report the fabrication of micro Fresnel lenses by femtosecond laser surface ablation on polymer 1D photonic crystals. This device is designed to focus the transmitted wavelength of the photonic crystal and filter the wavelengths corresponding to the photonic band gap region. Integration of such devices in a wavelength selective light harvesting and filtering microchip can be achieved.

  4. Highly Sensitive Filter Paper Substrate for SERS Trace Explosives Detection

    Directory of Open Access Journals (Sweden)

    Pedro M. Fierro-Mercado

    2012-01-01

    Full Text Available We report on a novel and extremely low-cost surface-enhanced Raman spectroscopy (SERS substrate fabricated depositing gold nanoparticles on common lab filter paper using thermal inkjet technology. The paper-based substrate combines all advantages of other plasmonic structures fabricated by more elaborate techniques with the dynamic flexibility given by the inherent nature of the paper for an efficient sample collection, robustness, and stability. We describe the fabrication, characterization, and SERS activity of our substrate using 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 1,3,5-trinitrobenzene as analytes. The paper-based SERS substrates presented a high sensitivity and excellent reproducibility for analytes employed, demonstrating a direct application in forensic science and homeland security.

  5. Fabricating an Identity in Neo-Liberal Times: Performing Schooling as "Number One"

    Science.gov (United States)

    Keddie, Amanda; Mills, Martin; Pendergast, Donna

    2011-01-01

    This paper presents interview data from a case study of "Lemontyne College"; a large government school situated in a "master planned community" (MPC) in Australia. The paper draws on Ball's (2003) theorising of performativity and fabrication to analyse this school's take up of the status-oriented corporate discourses of…

  6. Fabrication and performance evaluation of flexible heat pipes for potential thermal control of foldable electronics

    International Nuclear Information System (INIS)

    Yang, Chao; Chang, Chao; Song, Chengyi; Shang, Wen; Wu, Jianbo; Tao, Peng; Deng, Tao

    2016-01-01

    Highlights: • A flexible and high-performance heat pipe is fabricated. • Bending effect on thermal performance of flexible heat pipes is evaluated. • Theoretical analysis is carried out to reveal the change of thermal resistance with bending. • Thermal control of foldable electronics with flexible heat pipes is demonstrated. - Abstract: In this work, we report the fabrication and thermal performance evaluation of flexible heat pipes prepared by using a fluororubber tube as the connector in the adiabatic section and using strong base treated hydrophilic copper meshes as the wick structure. Deionized water was chosen as working fluid and three different filling ratios (10%, 20%, and 30%) of working fluid were loaded into the heat pipe to investigate its impact on thermal performance. The fabricated heat pipes can be easily bended from 0"o to 180"o in the horizontal operation mode and demonstrated consistently low thermal resistances after repeated bending. It was found that with optimized amount of working fluid, the thermal resistance of flexible heat pipes increased with larger bending angles. Theoretical analysis reveals that bending disturbs the normal vapor flow from evaporator to condenser in the heat pipe, thus leads to increased liquid–vapor interfacial thermal resistance in the evaporator section. The flexible heat pipes have been successfully applied for thermal control of foldable electronic devices showing superior uniform heat-transfer performance.

  7. Filters in nuclear facilities

    International Nuclear Information System (INIS)

    Berg, K.H.; Wilhelm, J.G.

    1985-01-01

    The topics of the nine papers given include the behavior of HEPA filters during exposure to air flows of high humidity as well as of high differential pressure, the development of steel-fiber filters suitable for extreme operating conditions, and the occurrence of various radioactive iodine species in the exhaust air from boiling water reactors. In an introductory presentation the German view of the performance requirements to be met by filters in nuclear facilities as well as the present status of filter quality assurance are discussed. (orig.) [de

  8. Estimation and control in HTGR fuel rod fabrication

    International Nuclear Information System (INIS)

    Downing, D.J.; Bailey, J.M.

    1980-01-01

    A control algorithm has been derived for an HTGR Fuel Rod Fabrication Process utilizing the method of G.E.P. Box and G.M. Jenkins. The estimator is a Kalman filter and is compared with a Least Square estimator and a standard control chart. The effects of system delays are presented. 1 ref

  9. The Influence of Optical Filtering on the Noise Performance of Microwave Photonic Phase Shifters Based on SOAs

    DEFF Research Database (Denmark)

    Lloret, Juan; Ramos, Francisco; Xue, Weiqi

    2011-01-01

    Different optical filtering scenarios involving microwave photonic phase shifters based on semiconductor optical amplifiers are investigated numerically as well as experimentally with respect to noise performance. Investigations on the role of the modulation depth and number of elements in cascad...... shifting stages are also carried out. Suppression of the noise level by more than 5 dB has been achieved in schemes based on band-pass optical filtering when three phase shifting stages are cascaded....

  10. Point-of-use water purification using clay pot water filters and copper ...

    African Journals Online (AJOL)

    2011-11-24

    Nov 24, 2011 ... clay pot water filters (CPWFs) were fabricated using terracotta clay and sawdust. The sawdust was .... developed by educational initiatives and non-governmental .... est filtration rate, it had the disadvantage of not being able to.

  11. Digital Filter Performance for the ATLAS Level-1 Calorimeter Trigger

    CERN Document Server

    Hadley, D R; The ATLAS collaboration

    2010-01-01

    The ATLAS Level-1 Calorimeter Trigger is a hardware-based system designed to identify high-pT jets, electron/photon and tau candidates, and to measure total and missing ET in the ATLAS Liquid Argon and Tile calorimeters. It is a pipelined processor system, with a new set of inputs being evaluated every 25ns. The overall trigger decision has a latency budget of 2µs, including all transmission delays. The calorimeter trigger uses about 7200 reduced granularity analogue signals, which are first digitized at the 40 MHz LHC bunch-crossing frequency, before being passed to a digital Finite Impulse Response (FIR) filter. Due to latency and chip real-estate constraints, only a simple 5-element filter with limited precision can be used. Nevertheless this filter achieves a significant reduction in noise, along with improving the bunch-crossing assignment and energy resolution for small signals. The context in which digital filters are used for the ATLAS Level-1 Calorimeter Trigger will be presented, before describing ...

  12. The Development of a Microbial Challenge Test with Acholeplasma laidlawii To Rate Mycoplasma-Retentive Filters by Filter Manufacturers.

    Science.gov (United States)

    Folmsbee, Martha; Lentine, Kerry Roche; Wright, Christine; Haake, Gerhard; Mcburnie, Leesa; Ashtekar, Dilip; Beck, Brian; Hutchison, Nick; Okhio-Seaman, Laura; Potts, Barbara; Pawar, Vinayak; Windsor, Helena

    2014-01-01

    Mycoplasma are bacteria that can penetrate 0.2 and 0.22 μm rated sterilizing-grade filters and even some 0.1 μm rated filters. Primary applications for mycoplasma filtration include large scale mammalian and bacterial cell culture media and serum filtration. The Parenteral Drug Association recognized the absence of standard industry test parameters for testing and classifying 0.1 μm rated filters for mycoplasma clearance and formed a task force to formulate consensus test parameters. The task force established some test parameters by common agreement, based upon general industry practices, without the need for additional testing. However, the culture medium and incubation conditions, for generating test mycoplasma cells, varied from filter company to filter company and was recognized as a serious gap by the task force. Standardization of the culture medium and incubation conditions required collaborative testing in both commercial filter company laboratories and in an Independent laboratory (Table I). The use of consensus test parameters will facilitate the ultimate cross-industry goal of standardization of 0.1 μm filter claims for mycoplasma clearance. However, it is still important to recognize filter performance will depend on the actual conditions of use. Therefore end users should consider, using a risk-based approach, whether process-specific evaluation of filter performance may be warranted for their application. Mycoplasma are small bacteria that have the ability to penetrate sterilizing-grade filters. Filtration of large-scale mammalian and bacterial cell culture media is an example of an industry process where effective filtration of mycoplasma is required. The Parenteral Drug Association recognized the absence of industry standard test parameters for evaluating mycoplasma clearance filters by filter manufacturers and formed a task force to formulate such a consensus among manufacturers. The use of standardized test parameters by filter manufacturers

  13. Fabrication and RF characterization of zinc oxide based Film Bulk Acoustic Resonator

    Science.gov (United States)

    Patel, Raju; Bansal, Deepak; Agrawal, Vimal Kumar; Rangra, Kamaljit; Boolchandani, Dharmendar

    2018-06-01

    This work reports fabrication and characterization of Film Bulk Acoustic Resonator (FBAR) to improve the performance characteristics for RF filter and sensing application. Zinc oxide as a piezoelectric (PZE) material was deposited on an aluminum bottom electrode using an RF magnetron sputtering, at room temperature, and gold as top electrode for the resonator. Tetramethyl ammonium hydroxide (TMAH) setup was used for bulk silicon etching to make back side cavity to confine the acoustic signals. The transmission characteristics show that the FBARs have a central frequency at 1.77 GHz with a return loss of -10.7 dB.

  14. EMI filter design

    CERN Document Server

    Ozenbaugh, Richard Lee

    2011-01-01

    With today's electrical and electronics systems requiring increased levels of performance and reliability, the design of robust EMI filters plays a critical role in EMC compliance. Using a mix of practical methods and theoretical analysis, EMI Filter Design, Third Edition presents both a hands-on and academic approach to the design of EMI filters and the selection of components values. The design approaches covered include matrix methods using table data and the use of Fourier analysis, Laplace transforms, and transfer function realization of LC structures. This edition has been fully revised

  15. Performance of HEPA filters at LLNL following the 1980 and 1989 earthquakes

    International Nuclear Information System (INIS)

    Bergman, W.; Elliott, J.; Wilson, K.

    1995-01-01

    The Lawrence Livermore National Laboratory has experienced two significant earthquakes for which data is available to assess the ability of HEPA filters to withstand seismic conditions. A 5.9 magnitude earthquake with an epicenter 10 miles from LLNL struck on January 24, l980. Estimates of the peak ground accelerations ranged from 0.2 to 0.3 g. A 7.0 magnitude earthquake with an epicenter about 50 miles from LLNL struck on October 17, 1989. Measurements of the ground accelerations at LLNL averaged 0.1 g. The results from the in-place filter tests obtained after each of the earthquakes were compiled and studied to determine if the earthquakes had caused filter leakage. Our study showed that only the 1980 earthquake resulted in a small increase in the number of HEPA filters developing leaks. In the 12 months following the 1980 and 1989 earthquakes, the in-place filter tests showed 8.0% and 4.1% of all filters respectively developed leaks. The average percentage of filters developing leaks from 1980 to 1993 was 3.3%+/-1.7%. The increase in the filter leaks is significant for the 1980 earthquake, but not for the 1989 earthquake. No contamination was detected following the earthquakes that would suggest transient releases from the filtration system

  16. Performance of HEPA filters at LLNL following the 1980 and 1989 earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Elliott, J.; Wilson, K. [Lawrence Livermore National Laboratory, CA (United States)

    1995-02-01

    The Lawrence Livermore National Laboratory has experienced two significant earthquakes for which data is available to assess the ability of HEPA filters to withstand seismic conditions. A 5.9 magnitude earthquake with an epicenter 10 miles from LLNL struck on January 24, l980. Estimates of the peak ground accelerations ranged from 0.2 to 0.3 g. A 7.0 magnitude earthquake with an epicenter about 50 miles from LLNL struck on October 17, 1989. Measurements of the ground accelerations at LLNL averaged 0.1 g. The results from the in-place filter tests obtained after each of the earthquakes were compiled and studied to determine if the earthquakes had caused filter leakage. Our study showed that only the 1980 earthquake resulted in a small increase in the number of HEPA filters developing leaks. In the 12 months following the 1980 and 1989 earthquakes, the in-place filter tests showed 8.0% and 4.1% of all filters respectively developed leaks. The average percentage of filters developing leaks from 1980 to 1993 was 3.3%+/-1.7%. The increase in the filter leaks is significant for the 1980 earthquake, but not for the 1989 earthquake. No contamination was detected following the earthquakes that would suggest transient releases from the filtration system.

  17. Si nanowires/Cu nanowires bilayer fabric as a lithium ion capacitor anode with excellent performance

    Science.gov (United States)

    Lai, Chien-Ming; Kao, Tzu-Lun; Tuan, Hsing-Yu

    2018-03-01

    A light and binder-free bilayer fabric electrode composed of silicon nanowires and copper nanowires for lithium-ion capacitors (LICs) is reported. A lithium ion capacitor is proposed employing pre-lithiated silicon/copper nanowire fabric and activated carbon as the anode and the cathode, respectively. These LICs show remarkable performance with a specific capacitance of 156 F g-1 at 0.1 A g-1, which is approximately twice of that of activated carbon in electric double-layer capacitors (EDLCs), and still exhibit a fine specific capacitance of 68 F g-1 even at a high current density of 20 A g-1. At a low power density of 193 W kg-1, the Si/Cu fabric//AC LIC can achieve high energy density of 210 W h kg-1. As the power density is increased to 99 kW kg-1, the energy density still remains at 43 W h kg-1, showing the prominent rate performance.

  18. Polymer filters for ultraviolet-excited integrated fluorescence sensing

    International Nuclear Information System (INIS)

    Dandin, Marc; Abshire, Pamela; Smela, Elisabeth

    2012-01-01

    Optical filters for blocking ultraviolet (UV) light were fabricated by doping various polymer hosts with a UV absorbing chromophore. The polymers were polydimethylsiloxane (PDMS), a silicone elastomer frequently used in microfluidics, SU-8, a photopatternable epoxy, and Humiseal 1B66, an acrylic coating used for moisture protection of integrated circuits. The chromophore was 2-(2′-hydroxy-5′-methylphenyl) benzotriazole (BTA), which has a high extinction coefficient between 300 nm and 400 nm. We demonstrate filters 5 µm thick that exhibit high ultraviolet rejection (nearly −40 dB at 342 nm) yet pass visible light (near 0 dB above 400 nm), making them ideal for ultraviolet-excited fluorescence sensing within microsystems. The absorbance of the BTA depended on the host polymer. These filters are promising for integrated fluorescence spectroscopy in bioanalytical platforms because they can be patterned by dry etching, molding or exposure to ultraviolet light. (paper)

  19. Generalized Selection Weighted Vector Filters

    Directory of Open Access Journals (Sweden)

    Rastislav Lukac

    2004-09-01

    Full Text Available This paper introduces a class of nonlinear multichannel filters capable of removing impulsive noise in color images. The here-proposed generalized selection weighted vector filter class constitutes a powerful filtering framework for multichannel signal processing. Previously defined multichannel filters such as vector median filter, basic vector directional filter, directional-distance filter, weighted vector median filters, and weighted vector directional filters are treated from a global viewpoint using the proposed framework. Robust order-statistic concepts and increased degree of freedom in filter design make the proposed method attractive for a variety of applications. Introduced multichannel sigmoidal adaptation of the filter parameters and its modifications allow to accommodate the filter parameters to varying signal and noise statistics. Simulation studies reported in this paper indicate that the proposed filter class is computationally attractive, yields excellent performance, and is able to preserve fine details and color information while efficiently suppressing impulsive noise. This paper is an extended version of the paper by Lukac et al. presented at the 2003 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP '03 in Grado, Italy.

  20. Particle Kalman Filtering: A Nonlinear Framework for Ensemble Kalman Filters

    KAUST Repository

    Hoteit, Ibrahim

    2010-09-19

    Optimal nonlinear filtering consists of sequentially determining the conditional probability distribution functions (pdf) of the system state, given the information of the dynamical and measurement processes and the previous measurements. Once the pdfs are obtained, one can determine different estimates, for instance, the minimum variance estimate, or the maximum a posteriori estimate, of the system state. It can be shown that, many filters, including the Kalman filter (KF) and the particle filter (PF), can be derived based on this sequential Bayesian estimation framework. In this contribution, we present a Gaussian mixture‐based framework, called the particle Kalman filter (PKF), and discuss how the different EnKF methods can be derived as simplified variants of the PKF. We also discuss approaches to reducing the computational burden of the PKF in order to make it suitable for complex geosciences applications. We use the strongly nonlinear Lorenz‐96 model to illustrate the performance of the PKF.

  1. Novel Simplex Unscented Transform and Filter

    Institute of Scientific and Technical Information of China (English)

    Wan-Chun Li; Ping Wei; Xian-Ci Xiao

    2008-01-01

    In this paper, a new simplex unscented transform (UT) based Schmidt orthogonal algorithm and a new filter method based on this transform are proposed. This filter has less computation consumption than UKF (unscented Kalman filter), SUKF (simplex unscented Kalman filter) and EKF (extended Kalman filter). Computer simulation shows that this filter has the same performance as UKF and SUKF, and according to the analysis of the computational requirements of EKF, UKF and SUKF, this filter has preferable practicality value. Finally, the appendix shows the efficiency for this UT.

  2. Influence of Tencel/cotton blends on knitted fabric performance

    Directory of Open Access Journals (Sweden)

    Alaa Arafa Badr

    2016-09-01

    Full Text Available The requirements in terms of wearing comfort with sportswear, underwear and outerwear are widely linked to the use of new fibers. Today, Tencel fiber is one of the most important developments in regenerated cellulosic fiber. However, the relation between Tencel fiber properties and fabric characteristics has not been enough studied in the literature especially the influence of fiber materials on mechanical, Ultraviolet Protection Factor (UPF and absorption properties. Therefore, in this study, knitted fabric samples were manufactured with eight different yarns with two fabric types (single jersey and single jersey with Lycra. 30/1-Ne yarns from natural and regenerated cellulosic fibers: 50% Tencel-LF/50% cotton, 67% Tencel-LF/33% cotton, 67% Tencel-STD/33% cotton, 70% bamboo/30% cotton, 100% bamboo, 100% Modal, 100% Micro-Modal and 100% cotton were employed. Then, all the produced fabrics were subjected to five cycles laundering and then flat dried. The results show that 67% Tencel-LF/33% cotton has more flexural rigidity and withdrawing handle force than 67% Tencel-STD/33% cotton fabric, while 67% Tencel-STD/33% cotton has a merit of durability during bursting test. Blending Egyptian cotton fibers with bamboo and Tencel as in 70/30% bamboo/cotton and 50/50% Tencel-LF/cotton improve UPF of the produced fabric.

  3. Laser surface modification of electrically conductive fabrics: Material performance improvement and design effects

    Science.gov (United States)

    Tunakova, Veronika; Hrubosova, Zuzana; Tunak, Maros; Kasparova, Marie; Mullerova, Jana

    2018-01-01

    Development of lightweight flexible materials for electromagnetic interference shielding has obtained increased attention in recent years particularly for clothing, textiles in-house use and technical applications especially in areas of aircraft, aerospace, automobiles and flexible electronics such as portable electronics and wearable devices. There are many references in the literature concerning development and investigation of electromagnetic shielding lightweight flexible materials especially textile based with different electrically conductive additives. However, only little attention is paid to designing and enhancing the properties of these special fabrics by textile finishing processes. Laser technology applied as a physical treatment method is becoming very popular and can be used in different applications to make improvement and even overcome drawbacks of some of the traditional processes. The main purpose of this study is firstly to analyze the possibilities of transferring design onto the surface of electrically conductive fabrics by laser beam and secondly to study of effect of surface modification degree on performance of conductive fabric including electromagnetic shielding ability and mechanical properties. Woven fabric made of yarns containing 10% of extremely thin stainless steel fiber was used as a conductive substrate.

  4. TRUSSELATOR - On-Orbit Fabrication of High Performance Support Structures for Solar Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TUI proposes to develop and demonstrate a process for fabricating high-performance composite truss structures on-orbit and integrating them with thin film solar cell...

  5. Nonlinear Kalman filtering in affine term structure models

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Dorion, Christian; Jacobs, Kris

    2014-01-01

    The extended Kalman filter, which linearizes the relationship between security prices and state variables, is widely used in fixed-income applications. We investigate whether the unscented Kalman filter should be used to capture nonlinearities and compare the performance of the Kalman filter...... with that of the particle filter. We analyze the cross section of swap rates, which are mildly nonlinear in the states, and cap prices, which are highly nonlinear. When caps are used to filter the states, the unscented Kalman filter significantly outperforms its extended counterpart. The unscented Kalman filter also...... performs well when compared with the much more computationally intensive particle filter. These findings suggest that the unscented Kalman filter may be a good approach for a variety of problems in fixed-income pricing....

  6. Novel noise reduction filter for improving visibility of early computed tomography signs of hyperacute stroke. Evaluation of the filter's performance. Preliminary clinical experience

    International Nuclear Information System (INIS)

    Takahashi, Noriyuki; Ishii, Kiyoshi; Lee, Y.; Tsai, D.Y.

    2007-01-01

    The aim of this study was to evaluate the performance of a novel noise reduction filter for improving the visibility of early computed tomography (CT) signs of hyperacute stroke on nonenhanced CT images. Fourteen patients with a middle cerebral artery occlusion within 4.5 h after onset were evaluated. The signal-to-noise ratio (SNR) of the processed images with the noise reduction filter and that of original images were measured. Two neuroradiologists visually rated all the processed and original images on the visibility of normal and abnormal gray-white matter interfaces. The SNR value of the processed images was approximately eight times as high as that of the original images, and a 87% reduction of noise was achieved using this technique. For the visual assessment, the results showed that the visibility of normal gray-white matter interface and that of the loss of the gray-white matter interface were significantly improved using the proposed method (P<0.05). The noise reduction filter proposed in the present study has the potential to improve the visibility of early CT signs of hyperacute stroke on nonenhanced CT images. (author)

  7. New approaches for the design and the fabrication of pixelated filters

    Science.gov (United States)

    Lumeau, J.; Lemarquis, F.; Begou, T.; Mathieu, K.; Savin De Larclause, I.; Berthon, J.

    2017-09-01

    Multispectral or hyperspectral images allow acquiring new information that could not be acquired using colored images and, for example, identifying chemical species on an observed scene using specific highly selective thin film filters. Those images are commonly used in numerous fields, e.g. in agriculture or homeland security and are of prime interest for imaging systems for onboard scientific applications (e.g. for planetology).

  8. Efficient particle filtering through residual nudging

    KAUST Repository

    Luo, Xiaodong

    2013-05-15

    We introduce an auxiliary technique, called residual nudging, to the particle filter to enhance its performance in cases where it performs poorly. The main idea of residual nudging is to monitor and, if necessary, adjust the residual norm of a state estimate in the observation space so that it does not exceed a pre-specified threshold. We suggest a rule to choose the pre-specified threshold, and construct a state estimate accordingly to achieve this objective. Numerical experiments suggest that introducing residual nudging to a particle filter may (substantially) improve its performance, in terms of filter accuracy and/or stability against divergence, especially when the particle filter is implemented with a relatively small number of particles. © 2013 Royal Meteorological Society.

  9. High-performance liquid chromatography determination of dapsone, monoacetyldapsone, and pyrimethamine in filter paper blood spots

    DEFF Research Database (Denmark)

    Rønn, A M; Lemnge, M M; Angelo, H R

    1995-01-01

    A high-performance liquid chromatography method for the simultaneous analysis of dapsone (DDS), the major metabolite of DDS, monoacetyldapsone (MADDS), and pyrimethamine (PYR) was modified for capillary blood samples obtained by finger prick and dried on filter paper. Limit of quantitation using...

  10. Decentralized Social Filtering based on Trust

    OpenAIRE

    Olsson, Tomas

    1998-01-01

    This paper describes a decentralised approach to social filtering based on trust between agents in a multiagent system. The social filtering in the proposed approach is built on the interactions between collaborative software agents performing content-based filtering. This means that it uses a mixture of content-based and social filtering and thereby, it takes advantage of both methods.

  11. Theory and validation of a liquid radiation filter greenhouse simulation for performance prediction

    International Nuclear Information System (INIS)

    Feuermann, D.; Kopel, R.; Zeroni, M.; Levi, S.; Gale, J.

    1997-01-01

    A greenhouse is described which has a selectively absorbing liquid radiation filter (LRF) circulating in double layered cladding. The filter removes much of the near infrared wave band of solar radiation (700 nm) while transmitting most of the photosynthetic radiation (400-700 nm). This greatly reduces the heat input to the greenhouse and, by transferring heat from day to night, facilitates better temperature control. This is particularly important for CO2 fertilization, which requires that the greenhouse should remain closed during daylight hours. A computer simulation model was developed to study the relationship between design parameters of such a LRF greenhouse and its thermal performance under different climatic conditions. The model was based on a small number of governing equations describing the major physical phenomena responsible for the greenhouse climate. Validation of the simulation was performed with data from a 330 m2 LRF greenhouse, operating in the Negev (Israel) desert highlands. The predicted greenhouse temperatures were found to agree with measured values to within one to two degrees Celsius. Performances of a LRF and a conventional greenhouse were compared using the simulation and hourly meteorological data for central Israel. For the summer season of May to October, the number of daylight hours during which the LRF greenhouse could remain closed was larger by about two-thirds than that of the conventional greenhouse

  12. A multi-standard active-RC filter with accurate tuning system

    International Nuclear Information System (INIS)

    Ma Heping; Yuan Fang; Shi Yin; Dai, F F

    2009-01-01

    A low-power, highly linear, multi-standard, active-RC filter with an accurate and novel tuning architecture is presented. It exhibits IEEE 802.11 a/b/g (9.5 MHz) and DVB-H (3 MHz, 4 MHz) application. The filter exploits digitally-controlled polysilicon resistor banks and a phase lock loop type automatic tuning system. The novel and complex automatic frequency calibration scheme provides better than 4 corner frequency accuracy, and it can be powered down after calibration to save power and avoid digital signal interference. The filter achieves OIP3 of 26 dBm and the measured group delay variation of the receiver filter is 50 ns (WLAN mode). Its dissipation is 3.4 mA in RX mode and 2.3 mA (only for one path) in TX mode from a 2.85 V supply. The dissipation of calibration consumes 2 mA. The circuit has been fabricated in a 0.35 μm 47 GHz SiGe BiCMOS technology; the receiver and transmitter filter occupy 0.21 mm 2 and 0.11 mm 2 (calibration circuit excluded), respectively.

  13. Design and implementation of predictive filtering system for current reference generation of active power filter

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Tomislav; Milun, Stanko; Petrovic, Goran [FESB University of Split, Faculty of Electrical Engineering, Machine Engineering and Naval Architecture, R. Boskovica bb, 21000, Split (Croatia)

    2007-02-15

    The shunt active power filters are used to attenuate the harmonic currents in power systems by injecting equal but opposite compensating currents. Successful control of the active filters requires an accurate current reference. In this paper the current reference determination based on predictive filtering structure is presented. Current reference was obtained by taking the difference of load current and its fundamental harmonic. For fundamental harmonic determination with no time delay a combination of digital predictive filter and low pass filter is used. The proposed method was implemented on a laboratory prototype of a three-phase active power filter. The algorithm for current reference determination was adapted and implemented on DSP controller. Simulation and experimental results show that the active power filter with implemented predictive filtering structure gives satisfactory performance in power system harmonic attenuation. (author)

  14. Performance analysis of a low power low noise tunable band pass filter for multiband RF front end

    International Nuclear Information System (INIS)

    Manjula, J.; Malarvizhi, S.

    2014-01-01

    This paper presents a low power tunable active inductor and RF band pass filter suitable for multiband RF front end circuits. The active inductor circuit uses the PMOS cascode structure as the negative transconductor of a gyrator to reduce the noise voltage. Also, this structure provides possible negative resistance to reduce the inductor loss with wide inductive bandwidth and high resonance frequency. The RF band pass filter is realized using the proposed active inductor with suitable input and output buffer stages. The tuning of the center frequency for multiband operation is achieved through the controllable current source. The designed active inductor and RF band pass filter are simulated in 180 nm and 45 nm CMOS process using the Synopsys HSPICE simulation tool and their performances are compared. The parameters, such as resonance frequency, tuning capability, noise and power dissipation, are analyzed for these CMOS technologies and discussed. The design of a third order band pass filter using an active inductor is also presented. (semiconductor integrated circuits)

  15. Unscented Kalman filter for SINS alignment

    Institute of Scientific and Technical Information of China (English)

    Zhou Zhanxin; Gao Yanan; Chen Jiabin

    2007-01-01

    In order to improve the filter accuracy for the nonlinear error model of strapdown inertial navigation system (SINS) alignment, Unscented Kalman Filter (UKF) is presented for simulation with stationary base and moving base of SINS alignment.Simulation results show the superior performance of this approach when compared with classical suboptimal techniques such as extended Kalman filter in cases of large initial misalignment.The UKF has good performance in case of small initial misalignment.

  16. Porous ceramic materials for micro filtration processes I: Al2 O3 fabrication and characterization

    International Nuclear Information System (INIS)

    Salas K, J.; Reyes M, P.E.; Piderit A, G.

    1992-01-01

    Ceramic filters in separation processes are becoming more important every day. The use of these filters or membranes in the micro and ultrafiltration range, which origin goes back to the nuclear industry for uranium isotopes separation by gaseous diffusion and radioactive waste treatments, significantly improves some industrial processes efficiency. The present work describes the research done in the filters, or ceramic membrane supports fabrication field, the obtained operational results and their relation with the microstructure. (author)

  17. Impact Of Sodium Oxalate, Sodium Aluminosilicate, and Gibbsite/Boehmite on ARP Filter Performance

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-11-01

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. SRR requested SRNL to conduct bench-scale filter tests to evaluate whether sodium oxalate, sodium aluminosilicate, or aluminum solids (i.e., gibbsite and boehmite) could be the cause of excessive fouling of the crossflow or secondary filter at ARP. The authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate, 2.5 g MST/L slurry, and varying concentrations of sodium oxalate, sodium aluminosilicate, and aluminum solids, processing the slurry through a bench-scale filter unit that contains a crossflow primary filter and a dead-end secondary filter, and measuring filter flux and transmembrane pressure as a function of time. Among the conclusions drwn from this work are the following: (1) All of the tests showed some evidence of fouling the secondary filter. This fouling could be from fine particles passing through the crossflow filter. (2) The sodium oxalate-containing feeds behaved differently from the sodium aluminosilicate- and gibbsite/boehmite-containing feeds.

  18. GPU Accelerated Vector Median Filter

    Science.gov (United States)

    Aras, Rifat; Shen, Yuzhong

    2011-01-01

    Noise reduction is an important step for most image processing tasks. For three channel color images, a widely used technique is vector median filter in which color values of pixels are treated as 3-component vectors. Vector median filters are computationally expensive; for a window size of n x n, each of the n(sup 2) vectors has to be compared with other n(sup 2) - 1 vectors in distances. General purpose computation on graphics processing units (GPUs) is the paradigm of utilizing high-performance many-core GPU architectures for computation tasks that are normally handled by CPUs. In this work. NVIDIA's Compute Unified Device Architecture (CUDA) paradigm is used to accelerate vector median filtering. which has to the best of our knowledge never been done before. The performance of GPU accelerated vector median filter is compared to that of the CPU and MPI-based versions for different image and window sizes, Initial findings of the study showed 100x improvement of performance of vector median filter implementation on GPUs over CPU implementations and further speed-up is expected after more extensive optimizations of the GPU algorithm .

  19. Factors for Consideration in an Open-Flame Test for Assessing Fire Blocking Performance of Barrier Fabrics

    Directory of Open Access Journals (Sweden)

    Shonali Nazaré

    2016-09-01

    Full Text Available The main objective of the work reported here is to assess factors that could affect the outcome of a proposed open flame test for barrier fabrics (BF-open flame test. The BF-open flame test characterizes barrier effectiveness by monitoring the ignition of a flexible polyurethane foam (FPUF layer placed in contact with the upper side of the barrier fabric, exposed to a burner flame from below. Particular attention is given to the factors that influence the ignitibility of the FPUF, including thermal resistance, permeability, and structural integrity of the barrier fabrics (BFs. A number of barrier fabrics, displaying a wide range of the properties, are tested with the BF-open flame test. Visual observations of the FPUF burning behavior and BF char patterns, in addition to heat flux measurements on the unexposed side of the barrier fabrics, are used to assess the protective performance of the BF specimen under the open flame test conditions. The temperature and heat transfer measurements on the unexposed side of the BF and subsequent ranking of BFs for their thermal protective performance suggest that the BF-open flame test does not differentiate barrier fabrics based on their heat transfer properties. A similar conclusion is reached with regard to BF permeability characterized at room temperature. However, the outcome of this BF-open flame test is found to be heavily influenced by the structural integrity of thermally degraded BF. The BF-open flame test, in its current form, only ignited FPUF when structural failure of the barrier was observed.

  20. [Testing method research for key performance indicator of imaging acousto-optic tunable filter (AOTF)].

    Science.gov (United States)

    Hu, Shan-Zhou; Chen, Fen-Fei; Zeng, Li-Bo; Wu, Qiong-Shui

    2013-01-01

    Imaging AOTF is an important optical filter component for new spectral imaging instruments developed in recent years. The principle of imaging AOTF component was demonstrated, and a set of testing methods for some key performances were studied, such as diffraction efficiency, wavelength shift with temperature, homogeneity in space for diffraction efficiency, imaging shift, etc.

  1. Performance testing of HEPA filters: Progress towards a European standard procedure

    Energy Technology Data Exchange (ETDEWEB)

    Dyment, J.

    1997-08-01

    Proposals for a future European testing procedure for {open_quotes}High Efficiency Particulate Air Filters (HEPA and ULPA){close_quotes} are being developed by CEN (Comite Europeen de Normalisation). The new standard will be given the status of national standard in participating countries, conflicting national standards being withdrawn. The standard will comprise 5 parts covering the grouping and classification of HEPA and ULPA filters according to their efficiency, fundamental principles of testing, marking etc (in part 1). Part 2 will cover aerosol production, measurement principles, counting equipment and statistics. Parts 3-5 will cover testing flat sheet media, leak testing of filter elements and the efficiency testing of filter elements respectively. The efficiency test methods allow the use of either homogeneous monodisperse or polydisperse aerosols for the determination of particulate filtration efficiencies as a function of particle size. The particle size at which maximum penetration occurs is first determined in flat sheet media tests; tests on filter elements (constructed using the same filter medium) may be carried out using either a homogeneous monodisperse aerosol of the size at which maximum penetration occurs (MPPS) or a polydisperse aerosol whose median size is close to the MPPS. Tests with monodisperse aerosols may be conducted using condensation nucleus counting equipment; tests using polydisperse test aerosols require the use of optical sizing particle counters. When determining the efficiency of filter elements the downstream aerosol concentrations may be determined from air samples obtained using either an overall method (single point sampling after mixing) or a scan method. The scan method also allows {open_quotes}local{close_quotes} efficiency values to be determined. 1 ref., 1 fig., 1 tab.

  2. CFD Simulation on Cooling Down of Beryllium Filters for Neutron Conditioning for Small Angle Neutron Scattering

    International Nuclear Information System (INIS)

    Azraf Azman; Shahrir Abdullah; Mohd Rizal Mamat

    2011-01-01

    The cryogenic system for cooling Beryllium filter utilizing liquid nitrogen was designed, fabricated, tested and installed at SANS instrument of TRIGA MARK II PUSPATI research reactor. A computational fluid dynamics (CFD) modeling was used to predict the cooling performance of the beryllium for optimization of neutron beam resolution and transmission. This paper presents the transient CFD results of temperature distributions via the thermal link to the beryllium and simulation of heat flux. The simulation data are also compared with the experimental results for the cooling time and distribution to the beryllium. (author)

  3. An evaluation of a pre-charging pulse-jet filter for small combustor particulate control. Project quarterly report, December 1, 1989--February 28, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Quimby, J.M.

    1990-04-01

    The objective of this test program is the performance and economic evaluation of a pre charged-pulse jet filter as the principal particulate control device for a commercial or industrial scale coal fired combustor. Performance factors that will be considered are the effects of particle charge, air/cloth ratio, fabric types, percent humidity and inlet particulate loading on fine particle collection efficiency, and pressure drop. Economic factors that will be considered are capital costs, energy and other operating costs, and maintenance costs. The program will result in a recommendation regarding the relative suitability of the pre charged pulse-jet filter for small combustor particulate control, as compared to other control devices. Fine particle control capability, ease of operation, and overall economics will be taken into consideration in making comparisons.

  4. Multiplier-free filters for wideband SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Christensen, Erik Lintz

    2001-01-01

    This paper derives a set of parameters to be optimized when designing filters for digital demodulation and range prefiltering in SAR systems. Aiming at an implementation in field programmable gate arrays (FPGAs), an approach for the design of multiplier-free filters is outlined. Design results...... are presented in terms of filter complexity and performance. One filter has been coded in VHDL and preliminary results indicate that the filter can meet a 2 GHz input sample rate....

  5. Series active power filter in power conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Turunen, J.

    2009-07-01

    Power quality has become an important issue nowadays for several reasons, e.g. modern society's growing dependence on electricity and the fact that poor power quality may generate significant economic losses in few moments. Probable power quality problems are, e.g. harmonics, flicker, voltage dips and supply interruptions. The power quality may be improved by using filters and compensators.The purpose of this thesis is to research the operation of the series active power filter (SAPF) in power conditioning. Therefore, this thesis presents a comparison of three series hybrid active power filters (SHAPFs) in current harmonics filtering. In addition to this, it is shown how the voltage dip compensation performance of the SAPF is improved in a unified power quality conditioner (UPQC) application.The three SHAPFs included in the comparison are series connected topology (SCT), filter connected topology (FCT) and electrically tuned LC shunt circuit (ETLC). The operating principle of these filters is to direct the harmonic currents produced by the load to flow in the LC shunt circuits instead of the supply. In the case of the SCT this phenomenon is boosted by applying so-called active resistance in the supply branch using the SAPF. In the case of the FCT a similar action is achieved by applying the compensation voltage in series with the LC shunt circuits using the SAPF. In the case of the ETLC the performance of the LC shunt circuit is enhanced by applying so-called active inductances in series with the LC shunt circuit using the SAPF. The SHAPFs are compared by searching for their best current filtering performance using various main circuit and control system configurations and loads. The operation of the SHAPFs is first analysed mathematically. After this, the current filtering performance of the SHAPFs is inspected using simulations and experimental tests. The experimental tests are carried out using SHAPF prototypes. As a result, it is shown that the current

  6. Optimization of the reconstruction and anti-aliasing filter in a Wiener filter system

    NARCIS (Netherlands)

    Wesselink, J.M.; Berkhoff, Arthur P.

    2006-01-01

    This paper discusses the influence of the reconstruction and anti-aliasing filters on the performance of a digital implementation of a Wiener filter for active noise control. The overall impact will be studied in combination with a multi-rate system approach. A reconstruction and anti-aliasing

  7. Multilevel ensemble Kalman filter

    KAUST Repository

    Chernov, Alexey; Hoel, Haakon; Law, Kody; Nobile, Fabio; Tempone, Raul

    2016-01-01

    This work embeds a multilevel Monte Carlo (MLMC) sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF). In terms of computational cost vs. approximation error the asymptotic performance of the multilevel ensemble Kalman filter (MLEnKF) is superior to the EnKF s.

  8. Multilevel ensemble Kalman filter

    KAUST Repository

    Chernov, Alexey

    2016-01-06

    This work embeds a multilevel Monte Carlo (MLMC) sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF). In terms of computational cost vs. approximation error the asymptotic performance of the multilevel ensemble Kalman filter (MLEnKF) is superior to the EnKF s.

  9. Electrochemical fabrication of interconnected tungsten bronze nanosheets for high performance supercapacitor

    Science.gov (United States)

    Yang, Gan; Liu, Xiao-Xia

    2018-04-01

    Interconnected H0.12WO3ṡH2O nanosheets with high electrochemical performances are fabricated on partial exfoliated graphite substrate (Ex-GF) by potential-limited pulse galvanostatic method (PLPG). The dead volume problem of bulk pesudocapacitive materials is addressed by the novel interconnected nanosheets structure, enabling a large specific capacitance of 5.95 F cm-2 (495.8 F g-1) at 2 mA cm-2. Merited from the fluent electrolyte penetration channels established by the plenty voids among nanosheets, as well as fast electron transportation in the electronic conductive tungsten bronze which is directly grown from graphite substrate, the obtained WO3/Ex-GF demonstrates excellent rate capability. The material can maintain 60.0% of its capacitance when the discharge current density increases from 2 to 100 mA cm-2. Moreover, WO3/Ex-GF doesn't show capacitance decay after 5000 galvanostatic charge-discharge cycles, displaying its super stability. Furthermore, a high performance asymmetric supercapacitor assembled by using WO3/Ex-GF and electrochemical fabricated MnO2/Ex-GF as negative and positive electrodes, respectively displays a high energy density of 2.88 mWh cm-3 at the power density of 11.1 mW cm-3, demonstrating its potential application for energy storage.

  10. Performance of biomorphic Silicon Carbide as particulate filter in diesel boilers.

    Science.gov (United States)

    Orihuela, M Pilar; Gómez-Martín, Aurora; Becerra, José A; Chacartegui, Ricardo; Ramírez-Rico, Joaquín

    2017-12-01

    Biomorphic Silicon Carbide (bioSiC) is a novel porous ceramic material with excellent mechanical and thermal properties. Previous studies have demonstrated that it may be a good candidate for its use as particle filter media of exhaust gases at medium or high temperature. In order to determine the filtration efficiency of biomorphic Silicon Carbide, and its adequacy as substrate for diesel particulate filters, different bioSiC-samples have been tested in the flue gases of a diesel boiler. For this purpose, an experimental facility to extract a fraction of the boiler exhaust flow and filter it under controlled conditions has been designed and built. Several filter samples with different microstructures, obtained from different precursors, have been tested in this bench. The experimental campaign was focused on the measurement of the number and size of particles before and after placing the samples. Results show that the initial efficiency of filters made from natural precursors is severely determined by the cutting direction and associated microstructure. In biomorphic Silicon Carbide derived from radially cut wood, the initial efficiency of the filter is higher than 95%. Nevertheless, when the cut of the wood is axial, the efficiency depends on the pore size and the permeability, reaching in some cases values in the range 70-90%. In this case, the presence of macropores in some of the samples reduces their efficiency as particle traps. In continuous operation, the accumulation of particles within the porous media leads to the formation of a soot cake, which improves the efficiency except in the case when extra-large pores exist. For all the samples, after a few operation cycles, capture efficiency was higher than 95%. These experimental results show the potential for developing filters for diesel boilers based on biomorphic Silicon Carbide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Simultaneous analysis and monitoring of 16 UV filters in cosmetics by high-performance liquid chromatography.

    Science.gov (United States)

    Kim, Dojung; Kim, Sangseop; Kim, Seol-A; Choi, Myoengsin; Kwon, Kyoung-Jin; Kim, Mijeong; Kim, Dong-Sup; Kim, Seung-Hee; Choi, Bo-Kyung

    2012-01-01

    Sixteen UV filters were simultaneously analyzed using the high-performance liquid chromatographic method. They were drometrizole (USAN Drometrizole), 4-methylbenzylidene camphor (USAN Enzacamene), menthyl anthranilate (USAN Menthyl anthranilate), benzophenone-3 (USAN Oxybenzone), benzophenone-8 (USAN Dioxybenzone), butyl methoxydibenzoylmethane (USAN Avobenzone), ethylhexyl triazone (USAN Octyl triazone), octocrylene (USAN Octocrylene), ethylhexyl dimethyl p-aminobenzoic acid (USAN Padimate O), ethylhexyl methoxycinnamate (USAN Octinoxate), p-aminobenzoic acid (USAN Aminobenzoic acid), 2-phenylbenzimidazole-5-sulfonic acid (USAN Ensulizole), isoamyl p-methoxycinnamate (USAN Amiloxate), and recent UV filters such as diethylhexyl butamidotriazone (USAN Iscotrizinol), methylene bis-benzotriazolyl tetramethylbutylphenol (USAN Bisoctrizole), and terephthalylidene dicamphor sulfonic acid (USAN Ecamsule). Separation of the UV filters was carried out in a C(18) column with a gradient of methanol-phosphate buffer, and the UV detection was at 300, 320, or 360 nm without any interference. The limits of detection were between 0.08 and 1.94 μg/ml, and the limits of quantitation were between 0.24 and 5.89 μg/ml. The extracting solvent for the UV filters was methanol, except for ethylhexyl triazone and methylene bis-benzotriazolyl tetramethylbutylphenol, which were prepared with tetrahydrofuran. The recoveries from spiked samples were between 94.90% and 116.54%, depending on the matrixes used. The developed method was applied to 23 sunscreens obtained from local markets, and the results were acceptable to their own criteria and to maximum authorized concentrations. Consequently, these results would provide a simple extracting method and a simultaneous determination for various UV filters, which can improve the quality control process as well as the environmental monitoring of sunscreens.

  12. 21 CFR 870.4280 - Cardiopulmonary prebypass filter.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary prebypass filter. 870.4280 Section... prebypass filter. (a) Identification. A cardiopulmonary prebypass filter is a device used during priming of... bypass. The device is not used to filter blood. (b) Classification. Class II (performance standards). ...

  13. Design of UWB Filter with WLAN Notch

    Directory of Open Access Journals (Sweden)

    Harish Kumar

    2012-01-01

    Full Text Available UWB technology- (operating in broad frequency range of 3.1–10.6 GHz based filter with WLAN notch has shown great achievement for high-speed wireless communications. To satisfy the UWB system requirements, a band pass filter with a broad pass band width, low insertion loss, and high stop-band suppression are needed. UWB filter with wireless local area network (WLAN notch at 5.6 GHz and 3 dB fractional bandwidth of 109.5% using a microstrip structure is presented. Initially a two-transmission-pole UWB band pass filter in the frequency range 3.1–10.6 GHz is achieved by designing a parallel-coupled microstrip line with defective ground plane structure using GML 1000 substrate with specifications: dielectric constant 3.2 and thickness 0.762 mm at centre frequency 6.85 GHz. In this structure a λ/4 open-circuited stub is introduced to achieve the notch at 5.6 GHz to avoid the interference with WLAN frequency which lies in the desired UWB band. The design structure was simulated on electromagnetic circuit simulation software and fabricated by microwave integrated circuit technique. The measured VNA results show the close agreement with simulated results.

  14. Influence of particulates on crossflow filter performance with tetraphenylborate precipitate

    International Nuclear Information System (INIS)

    Peterson, R.A.; Nash, C.A.; McCabe, D.J.

    1995-01-01

    The pretreatment of High Level Waste at the Savannah River Site, prior to vitrification, includes tetraphenylborate precipitation of cesium. Also, strontium and actinides are removed from solution by sorption on monosodium titanate. The resulting slurry is concentrated and washed using 0.4 micron stainless steel Mott filters in a crossflow assembly. The rate of filtrate production is governed by a number of parameters including the concentration of both soluble and insoluble solids present in the process stream. The major insoluble constituents in the process stream are tetraphenylborate solids. However, the presence of small quantities of monosodium titanate as well as sludge particulates, typically less than 10% of the total solids concentration, produces up to a 50% decline in the rate of filtrate production. The cake that develops during filtration is the primary resistance to flow of filtrate. In addition, experimental data indicate the filter cake is enriched in the insoluble solids relative to the bulk of the solution. The presence of these insoluble solids in the filter cake influences not only the overall filtrate flow rate, but also the mechanisms by which the filter cake is formed

  15. DSP Control of Line Hybrid Active Filter

    DEFF Research Database (Denmark)

    Dan, Stan George; Benjamin, Doniga Daniel; Magureanu, R.

    2005-01-01

    Active Power Filters have been intensively explored in the past decade. Hybrid active filters inherit the efficiency of passive filters and the improved performance of active filters, and thus constitute a viable improved approach for harmonic compensation. In this paper a parallel hybrid filter...... is studied for current harmonic compensation. The hybrid filter is formed by a single tuned Le filter and a small-rated power active filter, which are directly connected in series without any matching transformer. Thus the required rating of the active filter is much smaller than a conventional standalone...... active filter. Simulation and experimental results obtained in laboratory confirmed the validity and effectiveness of the control....

  16. Multiband Bandstop Filter using an I-Stub-Loaded Meandered Defected Microstrip Structure

    Directory of Open Access Journals (Sweden)

    G. R. Koirala

    2016-04-01

    Full Text Available This paper presents a compact multiband bandstop filter (BSF that utilizes an I-stub embedded within a meandered defected microstrip structure (MDMS. The proposed design for obtaining a single stopband is analyzed by using a transmission line network model. On the basis of the single stopband structure, we designed and fabricated a dual- and tri-band bandstop filters operating at 2.5/6.78 GHz and 1.98/5.60/7.78 GHz, respectively, thereby exploring the concept of generating as many stopbands by simply adding the same number of I-stubs. The proposed filter also features the possibility of tuning the resonant frequencies by varying the width of the I-stubs.

  17. MOX fuel fabrication, in reactor performance and improvement

    International Nuclear Information System (INIS)

    Vliet, J. van; Deramaix, P.; Nigon, J.L.; Fournier, W.

    1998-01-01

    In Europe, MOX fuel for light water reactors (LWRs) has first been manufactured in Belgium and Germany. Belgonucleaire (BN) loaded the first MOX assembly in the BR3 Pressurised Water Reactor (PWR) in 1963. In June 1998, more than 750 tHM LWR MOX fuel assemblies were manufactured on a industrial scale in Europe without any particular difficulty relating to fuel fabrication, reactor operation or fuel behaviour. So, today plutonium recycling through MOX fuel is a mature industry, with successful operational experience and large-scale fabrication plants. In this field, COGEMA and BELGONUCLEAIRE are the main actors by operating simultaneously three complete multidesign fuel production plants: MELOX plant (in Marcoule), CADARACHE plant and P0 plant (in Dessel, Belgium). Present MOX production capacity available to COGEMA and BN fits 175 tHM per year and is to be extended to reach about 325 tHM in the year 2000. This will represent 75% of the total MOX fabrication capacity in Europe. The industrial mastery and the high production level in MOX fabrication assured by high technology processes confer to these companies a large expertise for Pu recycling. This allows COGEMA and BN to be major actors in Pu-based fuels in the coming second nuclear era with advanced fuel cycles. (author)

  18. Influence of flow direction in the performance of anaerobic filters - doi: 10.4025/actascitechnol.v34i2.10353

    Directory of Open Access Journals (Sweden)

    Ronaldo Fia

    2012-03-01

    Full Text Available This work aimed to evaluate the performance of similar anaerobic filters operating with opposite wastewater flows, and compare mathematical models that describe the kinetics of organic matter degradation in both. Two pilot-scale filters were fed with domestic effluent – one filter worked as upflow (UAF and the other as downflow (DAF. Experimental COD data obtained from samples taken along the length of the filters were used to fit the first-order mathematical model, the model proposed by Leduy and Zajic (1973 and the model proposed by Brasil et al. (2007. The first model showed overestimated reaction constant (k values when compared to those obtained using the other models. The models proposed by Brasil et al. (2007 and Leduy and Zajic (1973 presented the highest coefficients of determination (R2. The average removal efficiencies of total COD were equal to 68 and 79% for UAF and DAF, respectively. The results revealed no significant differences between the two filters with regard to the variables applied.

  19. A large-area, wide-incident-angle, and polarization-independent plasmonic color filter for glucose sensing

    Science.gov (United States)

    Lin, Yu-Sheng; Chen, Wenjun

    2018-01-01

    We develop an effective method for glucose sensing by using a plasmonic color filter (PCF) integrated with a microfluidic chip. The morphology of PCF is composed of hybrid nanopillars fabricated with SiO2 and Au thin-films on silicon substrate. It exhibits angle-independence, polarization-independence and wafer-level fabrication, which are the most important factors for color filters for industrial applications. The shift of resonant wavelength is 56 nm with a stable bandwidth (∼30 nm) by varying concentration of glucose solution. The sensitivity is 157.61 nm/RIU and the corresponding figure-of-merit is 5.25. Such strategy can be exploited to further increase the detection and potentially enter the ultra-strong coupling regime in chemical solution sensors.

  20. Fabrication of advanced military radiation detector sensor and performance evaluation

    International Nuclear Information System (INIS)

    Kang, Sin Yang

    2010-02-01

    Recently, our country is facing a continuous nuclear weapons threat. Therefore, we must have a high-level nuclear weapons protection system. The best protection against nuclear weapons is detecting their use to reduce casualties in our country to a minimum. That means, the development of a military radiation detector is a very important issue. The Korea army is using the 'PDR - 1K portable military radiation surveymeter' in NBC (Nuclear, Biological, Chemical warfare) operations. The PDR - 1K military detector can measure beta and gamma rays only but it cannot detect alpha particles. Because of its characteristics, the Korea army has weaknesses in tactical operations. The PDR - 1K sensor is based on a GM - tube sensor system. For the mechanical structure, detectors utilizing a GM-tube sensor do not work on a high - radiation battlefield and they do not carry out nuclide analysis for fixed electron signal output. In the meantime, the United States of America and Germany are using 'AN/PDR - 77' and 'SVG - 2' that were made from scintillator sensors. They have excellent physical qualities and radiation responses for military use. Also, nuclide analysis is available. Therefore, in this study we fabricated a military - grade scintillator radiation sensor that is able to detect alpha, beta, and gamma - rays to overcome PDR - 1K's weaknesses. Also, physical characteristics and radiation response evaluation for the fabricated sensors was carried out. The alpha - particle sensor and beta - ray sensor were fabricated using a ZnS(Ag) powder state scintillator, and a Saint - Gobain organic plastic scintillator BC-408 panel, respectively. The gamma ray sensor was manufactured using a 10 x 10 x 10 mm 3 CsI(Tl) inorganic scintillator crystal. A detailed explanation follows. The alpha particle sensor was fabricated by using air - brushing method to Zns(Ag) powder scintillator spreading. The ZnS(Ag) layer thickness was 35 μm (detection efficiency: 41%). This alpha - particle sensor

  1. Qualitative performance comparison of reactivity estimation between the extended Kalman filter technique and the inverse point kinetic method

    International Nuclear Information System (INIS)

    Shimazu, Y.; Rooijen, W.F.G. van

    2014-01-01

    Highlights: • Estimation of the reactivity of nuclear reactor based on neutron flux measurements. • Comparison of the traditional method, and the new approach based on Extended Kalman Filtering (EKF). • Estimation accuracy depends on filter parameters, the selection of which is described in this paper. • The EKF algorithm is preferred if the signal to noise ratio is low (low flux situation). • The accuracy of the EKF depends on the ratio of the filter coefficients. - Abstract: The Extended Kalman Filtering (EKF) technique has been applied for estimation of subcriticality with a good noise filtering and accuracy. The Inverse Point Kinetic (IPK) method has also been widely used for reactivity estimation. The important parameters for the EKF estimation are the process noise covariance, and the measurement noise covariance. However the optimal selection is quite difficult. On the other hand, there is only one parameter in the IPK method, namely the time constant for the first order delay filter. Thus, the selection of this parameter is quite easy. Thus, it is required to give certain idea for the selection of which method should be selected and how to select the required parameters. From this point of view, a qualitative performance comparison is carried out

  2. Ultra-wideband ladder filters using zero-th shear mode plate wave in ultrathin LiNbO3 plate with apodized interdigital transducers

    Science.gov (United States)

    Kadota, Michio; Tanaka, Shuji

    2016-07-01

    There are two kinds of plate waves propagating in a thin plate, Lamb and shear horizontal (SH) waves. The former has a velocity higher than 15,000 m/s when the plate is very thin. On the contrary, 0th SH (SH0) mode plate wave in an ultrathin LiNbO3 plate has an electro-mechanical coupling factor larger than 50%. Authors fabricated an ultra-wideband T-type ladder filter with a relative bandwidth (BW) of 41% using the SH0 mode plate wave. Although the BW of the filter fully covers the digital TV band in Japan, it does not have sufficient margin at the lower and higher end of BW. Besides, periodic small ripples due to transverse mode in pass-band of the filter were observed. In this study π-type ladder filters were fabricated by changing the pitch ratio of interdigital transducer (IDT) of parallel and series arm resonators (PR(IDT)) to control the BW, and by apodizing IDTs to improve the periodic small ripples due to transverse mode. Ultra-wideband filters without periodic small transverse mode with ultrawide bandwidth from 41 to 49% were fabricated. The BWs fully cover ultrawide digital television bands in Japan and U.S.A. These filters with an ultrawide BW and a steep characteristic show the possibility to be applied to a reported cognitive radio system and other communication systems requiring an ultrawide BW.

  3. High-performance semiconductors based on oligocarbazole–thiophene derivatives for solution-fabricated organic field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Gung-Pei; Hsieh, Kuo-Huang, E-mail: khhsieh@ntu.edu.tw

    2013-01-01

    A series of oligocarbazole–thiophenes based on a constant conjugate backbone (carbazole–bithiophene–carbazole) with various n-alkyl chain lengths was prepared for application to organic field-effect transistors (OFETs). The lengths of the n-alkyl substitutions attached on 9-position of carbazole moieties were methyl (CCzT2), hexyl (C6CzT2), dodecyl (C12CzT2), and octadecyl (C18CzT2), called CxCzT2. Variations of n-alkyl chain lengths are proposed to figure out the optimization of OFET performance via solution fabrication of the active layer. Before fabricating OFET devices, the thermal, optical, and electrochemical properties of CxCzT2 were fully characterized with thermogravimetric analysis, differential scanning calorimetry, ultraviolet–visible spectroscopy, and cyclic voltammetry to realize the relationships of the structure to the properties. After fabricating CxCzT2 on Si/SiO{sub 2} substrates via solution casting, the thin film morphologies were also studied with polarizing optical microscopy, atomic force microscopy, and X-ray diffraction to investigate the structural relationship to OFET performance. A higher hole mobility was observed with C12CzT2 (3.6 × 10{sup −2} cm{sup 2} V{sup −1} s{sup −1}) due to its liquid crystal properties, and the hole mobility could be further improved to 1.2 × 10{sup −1} cm{sup 2} V{sup −1} s{sup −1} by the introduction of a phenyl-self-assembled monolayer on the Si/SiO{sub 2} substrates. The excellent OFET performances of C12CzT2 by solution–fabrication could be considered as a promising candidate for high-end OFET application. - Highlights: ► These oligomeric semiconductors were synthesized rapidly. ► The thermal, optical, and electrochemical properties were fully investigated. ► The liquid crystal properties can be obtained via alkyl chain length adjustment. ► These oligomeric semiconductors can be solution-fabricated. ► One of these oligomeric semiconductors yields high field-effect hole

  4. FULL SCALE REGENERABLE HEPA FILTER DESIGN USING SINTERED METAL FILTER ELEMENTS

    International Nuclear Information System (INIS)

    Gil Ramos; Kenneth Rubow; Ronald Sekellick

    2002-01-01

    A Department of Energy funded contract involved the development of porous metal as a HEPA filter, and the subsequent design of a full-scale regenerable HEPA filtration system (RHFS). This RHFS could replace the glass fiber HEPA filters currently being used on the high level waste (HLW) tank ventilation system with a system that would be moisture tolerant, durable, and cleanable in place. The origins of the contract are a 1996 investigation at the Savannah River Technology Center (SRTC) regarding the use of porous metal as a HEPA filter material. This contract was divided into Phases I, IIA and IIB. Phase I of the contract evaluated simple filter cylinders in a simulated High Level Waste (HLW) environment and the ability to clean and regenerate the filter media after fouling. Upon the successful completion of Phase I, Phase IIA was conducted, which included lab scale prototype testing and design of a full-scale system. The work completed under Phase IIA included development of a full-scale system design, development of a filter media meeting the HEPA filtration efficiency that would also be regenerable using prescribed cleaning procedures, and the testing of a single element system prototype at Savannah River. All contract objectives were met. The filter media selected was a nickel material already under development at Mott, which met the HEPA filtration efficiency standard. The Mott nickel media met and exceeded the HEPA requirement, providing 99.99% removal against a requirement of 99.97%. Double open-ended elements of this media were provided to the Savannah River Test Center for HLW simulation testing in the single element prototype filter. These elements performed well and further demonstrated the practicality of a metallic media regenerable HEPA filter system. An evaluation of the manufacturing method on many elements demonstrated the reproducibility to meet the HEPA filtration requirement. The full-scale design of the Mott RHFS incorporated several important

  5. Design to fabrication integration and material craftsmanship - A performance driven stone architecture design system based on material, structural and fabrication constraints and criteria

    NARCIS (Netherlands)

    Mostafavi, S.; Tanti, M.

    2014-01-01

    This paper presents a computational design methodology through describing of a case study on stone building system. In addition to establishing a performance driven form-finding methodology, the objective is to redefine local craftsmanship methods as industrial fabrication techniques in order to

  6. Mixed-integrator-based bi-quad cell for designing a continuous time filter

    International Nuclear Information System (INIS)

    Chen Yong; Zhou Yumei

    2010-01-01

    A new mixed-integrator-based bi-quad cell is proposed. An alternative synthesis mechanism of complex poles is proposed compared with source-follower-based bi-quad cells which is designed applying the positive feedback technique. Using the negative feedback technique to combine different integrators, the proposed bi-quad cell synthesizes complex poles for designing a continuous time filter. It exhibits various advantages including compact topology, high gain, no parasitic pole, no CMFB circuit, and high capability. The fourth-order Butterworth lowpass filter using the proposed cells has been fabricated in 0.18 μm CMOS technology. The active area occupied by the filter with test buffer is only 200 x 170 μm 2 . The proposed filter consumes a low power of 201 μW and achieves a 68.5 dB dynamic range. (semiconductor integrated circuits)

  7. Robust non-local median filter

    Science.gov (United States)

    Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji

    2017-04-01

    This paper describes a novel image filter with superior performance on detail-preserving removal of random-valued impulse noise superimposed on natural gray-scale images. The non-local means filter is in the limelight as a way of Gaussian noise removal with superior performance on detail preservation. By referring the fundamental concept of the non-local means, we had proposed a non-local median filter as a specialized way for random-valued impulse noise removal so far. In the non-local processing, the output of a filter is calculated from pixels in blocks which are similar to the block centered at a pixel of interest. As a result, aggressive noise removal is conducted without destroying the detailed structures in an original image. However, the performance of non-local processing decreases enormously in the case of high noise occurrence probability. A cause of this problem is that the superimposed noise disturbs accurate calculation of the similarity between the blocks. To cope with this problem, we propose an improved non-local median filter which is robust to the high level of corruption by introducing a new similarity measure considering possibility of being the original signal. The effectiveness and validity of the proposed method are verified in a series of experiments using natural gray-scale images.

  8. Super-resolution pupil filtering for visual performance enhancement using adaptive optics

    Science.gov (United States)

    Zhao, Lina; Dai, Yun; Zhao, Junlei; Zhou, Xiaojun

    2018-05-01

    Ocular aberration correction can significantly improve visual function of the human eye. However, even under ideal aberration correction conditions, pupil diffraction restricts the resolution of retinal images. Pupil filtering is a simple super-resolution (SR) method that can overcome this diffraction barrier. In this study, a 145-element piezoelectric deformable mirror was used as a pupil phase filter because of its programmability and high fitting accuracy. Continuous phase-only filters were designed based on Zernike polynomial series and fitted through closed-loop adaptive optics. SR results were validated using double-pass point spread function images. Contrast sensitivity was further assessed to verify the SR effect on visual function. An F-test was conducted for nested models to statistically compare different CSFs. These results indicated CSFs for the proposed SR filter were significantly higher than the diffraction correction (p vision optical correction of the human eye.

  9. Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication.

    Science.gov (United States)

    Sima, Chaotan; Gates, J C; Holmes, C; Mennea, P L; Zervas, M N; Smith, P G R

    2013-09-01

    Terahertz bandwidth photonic Hilbert transformers are proposed and experimentally demonstrated. The integrated device is fabricated via a direct UV grating writing technique in a silica-on-silicon platform. The photonic Hilbert transformer operates at bandwidths of up to 2 THz (~16 nm) in the telecom band, a 10-fold greater bandwidth than any previously reported experimental approaches. Achieving this performance requires detailed knowledge of the system transfer function of the direct UV grating writing technique; this allows improved linearity and yields terahertz bandwidth Bragg gratings with improved spectral quality. By incorporating a flat-top reflector and Hilbert grating with a waveguide coupler, an ultrawideband all-optical single-sideband filter is demonstrated.

  10. A planar and tunable bandpass filter on a ferrite substrate with integrated windings

    KAUST Repository

    Arabi, Eyad A.

    2015-05-01

    Tunable Filters that are based on ferrite materials are often biased by external magnets or coils which are large and bulky. In this work a completely planar, CPW-based bandpass filter is presented with integrated windings. Due to these windings the size of the filter is only 26mm × 34mm × 0.38mm which is orders of magnitude smaller than the traditional designs with external windings. The filter is realized by electroplating of Copper over seed layers of Titanium and Gold over a YIG substrate. The fabricated filter achieves a tunability of 3.4% without any external magnets or coils. A good insertion loss of 2.3 dBs and rejection greater than 50 dBs have been obtained. To the best of the authors knowledge, this design is the first ferrite-based design that is completely planar and self-biased.

  11. Nano sand filter with functionalized nanoparticles embedded in anodic aluminum oxide templates

    Science.gov (United States)

    Phuong, Nguyenthi; Andisetiawan, Anugrah; van Lam, Do; Kim, Jeong Hwan; Choi, Doo-Sun; Whang, Kyung-Hyun; Nham, Jeasun; Lee, Yun Jung; Yoo, Yeong-Eun; Yoon, Jae Sung

    2016-11-01

    Since the ancient Egyptians had used sand as filter media for water purification, its principle has been inherited through generations and it is still being used now in industries. The sand filter consists of sand literally, and the voids within the sand bed are the pores for filtration. Here we present a filtration principle using nanoparticles, so that the voids between the nanoparticles can be considered as effective pores in nanoscale dimension. Anodic aluminum oxide (AAO) membrane has been used as the working template, and the nanoparticles have been injected and embedded within the pores of the AAO template. Nanoparticles with multiple sizes have been used in order to obtain smaller voids. Moreover, the nanoparticles have been functionalized, or electrically charged, with arginine/phenylalanine (RF) peptide group. In this way, filtration performance for charged particles or molecules, such as methylene blue, has been enhanced. Consequently, this study is expected to provide a new principle for fabrication of nano voids, or nano pores, and for filtration in nanoscale dimension.

  12. Analog filters in nanometer CMOS

    CERN Document Server

    Uhrmann, Heimo; Zimmermann, Horst

    2014-01-01

    Starting from the basics of analog filters and the poor transistor characteristics in nanometer CMOS 10 high-performance analog filters developed by the authors in 120 nm and 65 nm CMOS are described extensively. Among them are gm-C filters, current-mode filters, and active filters for system-on-chip realization for Bluetooth, WCDMA, UWB, DVB-H, and LTE applications. For the active filters several operational amplifier designs are described. The book, furthermore, contains a review of the newest state of research on low-voltage low-power analog filters. To cover the topic of the book comprehensively, linearization issues and measurement methods for the characterization of advanced analog filters are introduced in addition. Numerous elaborate illustrations promote an easy comprehension. This book will be of value to engineers and researchers in industry as well as scientists and Ph.D students at universities. The book is also recommendable to graduate students specializing on nanoelectronics, microelectronics ...

  13. Adaptive filtering and change detection

    CERN Document Server

    Gustafsson, Fredrik

    2003-01-01

    Adaptive filtering is a classical branch of digital signal processing (DSP). Industrial interest in adaptive filtering grows continuously with the increase in computer performance that allows ever more conplex algorithms to be run in real-time. Change detection is a type of adaptive filtering for non-stationary signals and is also the basic tool in fault detection and diagnosis. Often considered as separate subjects Adaptive Filtering and Change Detection bridges a gap in the literature with a unified treatment of these areas, emphasizing that change detection is a natural extensi

  14. GRIM-Filter: Fast seed location filtering in DNA read mapping using processing-in-memory technologies.

    Science.gov (United States)

    Kim, Jeremie S; Senol Cali, Damla; Xin, Hongyi; Lee, Donghyuk; Ghose, Saugata; Alser, Mohammed; Hassan, Hasan; Ergin, Oguz; Alkan, Can; Mutlu, Onur

    2018-05-09

    Seed location filtering is critical in DNA read mapping, a process where billions of DNA fragments (reads) sampled from a donor are mapped onto a reference genome to identify genomic variants of the donor. State-of-the-art read mappers 1) quickly generate possible mapping locations for seeds (i.e., smaller segments) within each read, 2) extract reference sequences at each of the mapping locations, and 3) check similarity between each read and its associated reference sequences with a computationally-expensive algorithm (i.e., sequence alignment) to determine the origin of the read. A seed location filter comes into play before alignment, discarding seed locations that alignment would deem a poor match. The ideal seed location filter would discard all poor match locations prior to alignment such that there is no wasted computation on unnecessary alignments. We propose a novel seed location filtering algorithm, GRIM-Filter, optimized to exploit 3D-stacked memory systems that integrate computation within a logic layer stacked under memory layers, to perform processing-in-memory (PIM). GRIM-Filter quickly filters seed locations by 1) introducing a new representation of coarse-grained segments of the reference genome, and 2) using massively-parallel in-memory operations to identify read presence within each coarse-grained segment. Our evaluations show that for a sequence alignment error tolerance of 0.05, GRIM-Filter 1) reduces the false negative rate of filtering by 5.59x-6.41x, and 2) provides an end-to-end read mapper speedup of 1.81x-3.65x, compared to a state-of-the-art read mapper employing the best previous seed location filtering algorithm. GRIM-Filter exploits 3D-stacked memory, which enables the efficient use of processing-in-memory, to overcome the memory bandwidth bottleneck in seed location filtering. We show that GRIM-Filter significantly improves the performance of a state-of-the-art read mapper. GRIM-Filter is a universal seed location filter that can be

  15. Design of a Narrow Bandwidth Bandpass Filter Using Compact Spiral Resonator with Chirality

    Directory of Open Access Journals (Sweden)

    Weiping Li

    2016-01-01

    Full Text Available In this article, a compact narrow-bandpass filter with high selectivity and improved rejection level is presented. For miniaturization, a pair of double negative (DNG cells consisting of quasi-planar chiral resonators are cascaded and electrically loaded to a microstrip transmission line; short ended stubs are introduced to expand upper rejection band. The structure is analyzed using equivalent circuit models and simulated based on EM simulation software. For validation, the proposed filter is fabricated and measured. The measured results are in good agreement with the simulated ones. By comparing to other filters in the references, it is shown that the proposed filter has the advantage of skirt selectivity and compact size, so it can be integrated more conveniently in modern wireless communication systems and microwave planar circuits.

  16. Evidence-Based Evaluation of Inferior Vena Cava Filter Complications Based on Filter Type

    Science.gov (United States)

    Deso, Steven E.; Idakoji, Ibrahim A.; Kuo, William T.

    2016-01-01

    Many inferior vena cava (IVC) filter types, along with their specific risks and complications, are not recognized. The purpose of this study was to evaluate the various FDA-approved IVC filter types to determine device-specific risks, as a way to help identify patients who may benefit from ongoing follow-up versus prompt filter retrieval. An evidence-based electronic search (FDA Premarket Notification, MEDLINE, FDA MAUDE) was performed to identify all IVC filter types and device-specific complications from 1980 to 2014. Twenty-three IVC filter types (14 retrievable, 9 permanent) were identified. The devices were categorized as follows: conical (n = 14), conical with umbrella (n = 1), conical with cylindrical element (n = 2), biconical with cylindrical element (n = 2), helical (n = 1), spiral (n = 1), and complex (n = 1). Purely conical filters were associated with the highest reported risks of penetration (90–100%). Filters with cylindrical or umbrella elements were associated with the highest reported risk of IVC thrombosis (30–50%). Conical Bard filters were associated with the highest reported risks of fracture (40%). The various FDA-approved IVC filter types were evaluated for device-specific complications based on best current evidence. This information can be used to guide and optimize clinical management in patients with indwelling IVC filters. PMID:27247477

  17. Optical properties of the two-port resonant tunneling filters in two-dimensional photonic crystal slabs

    International Nuclear Information System (INIS)

    Ren Cheng; Cheng Li-Feng; Kang Feng; Gan Lin; Zhang Dao-Zhong; Li Zhi-Yuan

    2012-01-01

    We have designed and fabricated two types of two-port resonant tunneling filters with a triangular air-hole lattice in two-dimensional photonic crystal slabs. In order to improve the filtering efficiency, a feedback method is introduced by closing the waveguide. It is found that the relative position between the closed waveguide boundary and the resonator has an important impact on the dropping efficiency. Based on our analyses, two different types of filters are designed. The transmission spectra and scattering-light far-field patterns are measured, which agree well with theoretical prediction. In addition, the resonant filters are highly sensitive to the size of the resonant cavities, which are useful for practical applications

  18. Multilevel ensemble Kalman filtering

    KAUST Repository

    Hoel, Haakon

    2016-01-08

    The ensemble Kalman filter (EnKF) is a sequential filtering method that uses an ensemble of particle paths to estimate the means and covariances required by the Kalman filter by the use of sample moments, i.e., the Monte Carlo method. EnKF is often both robust and efficient, but its performance may suffer in settings where the computational cost of accurate simulations of particles is high. The multilevel Monte Carlo method (MLMC) is an extension of classical Monte Carlo methods which by sampling stochastic realizations on a hierarchy of resolutions may reduce the computational cost of moment approximations by orders of magnitude. In this work we have combined the ideas of MLMC and EnKF to construct the multilevel ensemble Kalman filter (MLEnKF) for the setting of finite dimensional state and observation spaces. The main ideas of this method is to compute particle paths on a hierarchy of resolutions and to apply multilevel estimators on the ensemble hierarchy of particles to compute Kalman filter means and covariances. Theoretical results and a numerical study of the performance gains of MLEnKF over EnKF will be presented. Some ideas on the extension of MLEnKF to settings with infinite dimensional state spaces will also be presented.

  19. Multilevel ensemble Kalman filtering

    KAUST Repository

    Hoel, Haakon; Chernov, Alexey; Law, Kody; Nobile, Fabio; Tempone, Raul

    2016-01-01

    The ensemble Kalman filter (EnKF) is a sequential filtering method that uses an ensemble of particle paths to estimate the means and covariances required by the Kalman filter by the use of sample moments, i.e., the Monte Carlo method. EnKF is often both robust and efficient, but its performance may suffer in settings where the computational cost of accurate simulations of particles is high. The multilevel Monte Carlo method (MLMC) is an extension of classical Monte Carlo methods which by sampling stochastic realizations on a hierarchy of resolutions may reduce the computational cost of moment approximations by orders of magnitude. In this work we have combined the ideas of MLMC and EnKF to construct the multilevel ensemble Kalman filter (MLEnKF) for the setting of finite dimensional state and observation spaces. The main ideas of this method is to compute particle paths on a hierarchy of resolutions and to apply multilevel estimators on the ensemble hierarchy of particles to compute Kalman filter means and covariances. Theoretical results and a numerical study of the performance gains of MLEnKF over EnKF will be presented. Some ideas on the extension of MLEnKF to settings with infinite dimensional state spaces will also be presented.

  20. Optimal search filters for renal information in EMBASE.

    Science.gov (United States)

    Iansavichus, Arthur V; Haynes, R Brian; Shariff, Salimah Z; Weir, Matthew; Wilczynski, Nancy L; McKibbon, Ann; Rehman, Faisal; Garg, Amit X

    2010-07-01

    EMBASE is a popular database used to retrieve biomedical information. Our objective was to develop and test search filters to help clinicians and researchers efficiently retrieve articles with renal information in EMBASE. We used a diagnostic test assessment framework because filters operate similarly to screening tests. We divided a sample of 5,302 articles from 39 journals into development and validation sets of articles. Information retrieval properties were assessed by treating each search filter as a "diagnostic test" or screening procedure for the detection of relevant articles. We tested the performance of 1,936,799 search filters made of unique renal terms and their combinations. REFERENCE STANDARD & OUTCOME: The reference standard was manual review of each article. We calculated the sensitivity and specificity of each filter to identify articles with renal information. The best renal filters consisted of multiple search terms, such as "renal replacement therapy," "renal," "kidney disease," and "proteinuria," and the truncated terms "kidney," "dialy," "neph," "glomerul," and "hemodial." These filters achieved peak sensitivities of 98.7% (95% CI, 97.9-99.6) and specificities of 98.5% (95% CI, 98.0-99.0). The retrieval performance of these filters remained excellent in the validation set of independent articles. The retrieval performance of any search will vary depending on the quality of all search concepts used, not just renal terms. We empirically developed and validated high-performance renal search filters for EMBASE. These filters can be programmed into the search engine or used on their own to improve the efficiency of searching.

  1. Fabricating microfluidic valve master molds in SU-8 photoresist

    Science.gov (United States)

    Dy, Aaron J.; Cosmanescu, Alin; Sluka, James; Glazier, James A.; Stupack, Dwayne; Amarie, Dragos

    2014-05-01

    Multilayer soft lithography has become a powerful tool in analytical chemistry, biochemistry, material and life sciences, and medical research. Complex fluidic micro-circuits require reliable components that integrate easily into microchips. We introduce two novel approaches to master mold fabrication for constructing in-line micro-valves using SU-8. Our fabrication techniques enable robust and versatile integration of many lab-on-a-chip functions including filters, mixers, pumps, stream focusing and cell-culture chambers, with in-line valves. SU-8 created more robust valve master molds than the conventional positive photoresists used in multilayer soft lithography, but maintained the advantages of biocompatibility and rapid prototyping. As an example, we used valve master molds made of SU-8 to fabricate PDMS chips capable of precisely controlling beads or cells in solution.

  2. Fabricating microfluidic valve master molds in SU-8 photoresist

    International Nuclear Information System (INIS)

    Dy, Aaron J; Cosmanescu, Alin; Sluka, James; Glazier, James A; Amarie, Dragos; Stupack, Dwayne

    2014-01-01

    Multilayer soft lithography has become a powerful tool in analytical chemistry, biochemistry, material and life sciences, and medical research. Complex fluidic micro-circuits require reliable components that integrate easily into microchips. We introduce two novel approaches to master mold fabrication for constructing in-line micro-valves using SU-8. Our fabrication techniques enable robust and versatile integration of many lab-on-a-chip functions including filters, mixers, pumps, stream focusing and cell-culture chambers, with in-line valves. SU-8 created more robust valve master molds than the conventional positive photoresists used in multilayer soft lithography, but maintained the advantages of biocompatibility and rapid prototyping. As an example, we used valve master molds made of SU-8 to fabricate PDMS chips capable of precisely controlling beads or cells in solution. (technical note)

  3. Similitude study of a moving bed granular filter

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Brown; Huawei Shi; Gerald Colver; Saw-Choon Soo [Iowa State University, IA (United States)

    2003-12-10

    The goal of this study was to evaluate the performance of a moving bed granular filter designed for hot gas clean up. This study used similitude theory to devise experiments that were conducted at near-ambient conditions while simulating the performance of filters operated at elevated temperatures and pressures (850{sup o}C and 1000 kPa). These experiments revealed that the proposed moving bed granular filter can operate at high collection efficiencies, typically exceeding 99%, and low pressure drops without the need for periodic regeneration through the use of a continuous flow of fresh granular filter media in the filter. In addition, important design constraints were discovered for the successful operation of the proposed moving bed granular filter.

  4. Linear Regression Based Real-Time Filtering

    Directory of Open Access Journals (Sweden)

    Misel Batmend

    2013-01-01

    Full Text Available This paper introduces real time filtering method based on linear least squares fitted line. Method can be used in case that a filtered signal is linear. This constraint narrows a band of potential applications. Advantage over Kalman filter is that it is computationally less expensive. The paper further deals with application of introduced method on filtering data used to evaluate a position of engraved material with respect to engraving machine. The filter was implemented to the CNC engraving machine control system. Experiments showing its performance are included.

  5. A multi-standard active-RC filter with accurate tuning system

    Energy Technology Data Exchange (ETDEWEB)

    Ma Heping; Yuan Fang; Shi Yin [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Dai, F F, E-mail: hpma@semi.ac.c [Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849-5201 (United States)

    2009-09-15

    A low-power, highly linear, multi-standard, active-RC filter with an accurate and novel tuning architecture is presented. It exhibits IEEE 802.11 a/b/g (9.5 MHz) and DVB-H (3 MHz, 4 MHz) application. The filter exploits digitally-controlled polysilicon resistor banks and a phase lock loop type automatic tuning system. The novel and complex automatic frequency calibration scheme provides better than 4 corner frequency accuracy, and it can be powered down after calibration to save power and avoid digital signal interference. The filter achieves OIP3 of 26 dBm and the measured group delay variation of the receiver filter is 50 ns (WLAN mode). Its dissipation is 3.4 mA in RX mode and 2.3 mA (only for one path) in TX mode from a 2.85 V supply. The dissipation of calibration consumes 2 mA. The circuit has been fabricated in a 0.35 {mu}m 47 GHz SiGe BiCMOS technology; the receiver and transmitter filter occupy 0.21 mm{sup 2} and 0.11 mm{sup 2} (calibration circuit excluded), respectively.

  6. An Efficient State–Parameter Filtering Scheme Combining Ensemble Kalman and Particle Filters

    KAUST Repository

    Ait-El-Fquih, Boujemaa

    2017-12-11

    This work addresses the state-parameter filtering problem for dynamical systems with relatively large-dimensional state and low-dimensional parameters\\' vector. A Bayesian filtering algorithm combining the strengths of the particle filter (PF) and the ensemble Kalman filter (EnKF) is proposed. At each assimilation cycle of the proposed EnKF-PF, the PF is first used to sample the parameters\\' ensemble followed by the EnKF to compute the state ensemble conditional on the resulting parameters\\' ensemble. The proposed scheme is expected to be more efficient than the traditional state augmentation techniques, which suffer from the curse of dimensionality and inconsistency that is particularly pronounced when the state is a strongly nonlinear function of the parameters. In the new scheme, the EnKF and PF interact via their ensembles\\' members, in contrast with the recently introduced two-stage EnKF-PF (TS-EnKF-PF), which exchanges point estimates between EnKF and PF while requiring almost double the computational load. Numerical experiments are conducted with the Lorenz-96 model to assess the behavior of the proposed filter and to evaluate its performances against the joint PF, joint EnKF, and TS-EnKF-PF. Numerical results suggest that the EnKF-PF performs best in all tested scenarios. It was further found to be more robust, successfully estimating both state and parameters in different sensitivity experiments.

  7. An Efficient State–Parameter Filtering Scheme Combining Ensemble Kalman and Particle Filters

    KAUST Repository

    Ait-El-Fquih, Boujemaa; Hoteit, Ibrahim

    2017-01-01

    This work addresses the state-parameter filtering problem for dynamical systems with relatively large-dimensional state and low-dimensional parameters' vector. A Bayesian filtering algorithm combining the strengths of the particle filter (PF) and the ensemble Kalman filter (EnKF) is proposed. At each assimilation cycle of the proposed EnKF-PF, the PF is first used to sample the parameters' ensemble followed by the EnKF to compute the state ensemble conditional on the resulting parameters' ensemble. The proposed scheme is expected to be more efficient than the traditional state augmentation techniques, which suffer from the curse of dimensionality and inconsistency that is particularly pronounced when the state is a strongly nonlinear function of the parameters. In the new scheme, the EnKF and PF interact via their ensembles' members, in contrast with the recently introduced two-stage EnKF-PF (TS-EnKF-PF), which exchanges point estimates between EnKF and PF while requiring almost double the computational load. Numerical experiments are conducted with the Lorenz-96 model to assess the behavior of the proposed filter and to evaluate its performances against the joint PF, joint EnKF, and TS-EnKF-PF. Numerical results suggest that the EnKF-PF performs best in all tested scenarios. It was further found to be more robust, successfully estimating both state and parameters in different sensitivity experiments.

  8. Full-color large-scaled computer-generated holograms using RGB color filters.

    Science.gov (United States)

    Tsuchiyama, Yasuhiro; Matsushima, Kyoji

    2017-02-06

    A technique using RGB color filters is proposed for creating high-quality full-color computer-generated holograms (CGHs). The fringe of these CGHs is composed of more than a billion pixels. The CGHs reconstruct full-parallax three-dimensional color images with a deep sensation of depth caused by natural motion parallax. The simulation technique as well as the principle and challenges of high-quality full-color reconstruction are presented to address the design of filter properties suitable for large-scaled CGHs. Optical reconstructions of actual fabricated full-color CGHs are demonstrated in order to verify the proposed techniques.

  9. Assessment of a membrane drinking water filter in an emergency setting.

    Science.gov (United States)

    Ensink, Jeroen H J; Bastable, Andy; Cairncross, Sandy

    2015-06-01

    The performance and acceptability of the Nerox(TM) membrane drinking water filter were evaluated among an internally displaced population in Pakistan. The membrane filter and a control ceramic candle filter were distributed to over 3,000 households. Following a 6-month period, 230 households were visited and filter performance and use were assessed. Only 6% of the visited households still had a functioning filter, and the removal performance ranged from 80 to 93%. High turbidity in source water (irrigation canals), together with high temperatures and large family size were likely to have contributed to poor performance and uptake of the filters.

  10. A low loss superconducting filter with four states based on symmetrical interdigital-loaded structure

    International Nuclear Information System (INIS)

    Gao, Tianqi; Wei, Bin; Cao, Bisong; Wang, Dan; Guo, Xubo

    2016-01-01

    Highlights: • A novel symmetrical interdigital-loaded microstrip structure is presents. • A six-pole L-band HTS filter with four states has similar in-band responses. • The coupling coefficients between resonators keep unchanged during tuning. • The low loss HTS filter can be tuned from 1.382 GHz to 1.193 GHz. - Abstract: This paper presents a new symmetrical interdigital-loaded microstrip structure. The symmetrical structure can be applied to design a filter that can work at different frequencies. The filter has similar in-band response at each working frequency with low insertion loss. Based on the proposed structures, a low-loss six-pole high temperature superconducting (HTS) filter with four different working states is designed and fabricated. The center frequency of the filter can be tuned discretely from 1.382 GHz to 1.193 GHz. All four states have similar in-band characters, whereas the insertion losses are less than 0.3 dB. The measured results are consistent with the simulations.

  11. Filter-adsorber aging assessment

    Energy Technology Data Exchange (ETDEWEB)

    Winegardner, W.K. [Pacific Northwest Laboratory, Richland, WA (United States)

    1995-02-01

    An aging assessment of high-efficiency particulate (HEPA) air filters and activated carbon gas adsorption units was performed by the Pacific Northwest Laboratory as part of the U.S. Nuclear Regulatory Commission`s (USNRC) Nuclear Plant Aging Research (NPAR) Program. This evaluation of the general process in which characteristics of these two components gradually change with time or use included the compilation of information concerning failure experience, stressors, aging mechanisms and effects, and inspection, surveillance, and monitoring methods (ISMM). Stressors, the agents or stimuli that can produce aging degradation, include heat, radiation, volatile contaminants, and even normal concentrations of aerosol particles and gasses. In an experimental evaluation of degradation in terms of the tensile breaking strength of aged filter media specimens, over forty percent of the samples did not meet specifications for new material. Chemical and physical reactions can gradually embrittle sealants and gaskets as well as filter media. Mechanisms that can lead to impaired adsorber performance are associated with the loss of potentially available active sites as a result of the exposure of the carbon to airborne moisture or volatile organic compounds. Inspection, surveillance, and monitoring methods have been established to observe filter pressure drop buildup, check HEPA filters and adsorbers for bypass, and determine the retention effectiveness of aged carbon. These evaluations of installed filters do not reveal degradation in terms of reduced media strength but that under normal conditions aged media can continue to effectively retain particles. However, this degradation may be important when considering the likelihood of moisture, steam, and higher particle loadings during severe accidents and the fact it is probable that the filters have been in use for an extended period.

  12. Vessel Wall Reaction after Vena Cava Filter Placement

    International Nuclear Information System (INIS)

    Hoekstra, Arend; Elstrodt, Jan M.; Nikkels, Peter G.J.; Tiebosch, Anton T.M.G.

    2002-01-01

    Purpose: To evaluate the interaction between the Cordis Keeper vena caval filter and vessel wall in aporcine model.Methods: Implantation of the filter was performed in five pigs. Radiologic data concerning inferior vena cava(IVC) diameter and filter patency, filter leg span, and stability were collected. At 2 or 6 months post-implantation, histopathologic analysis of the IVC wall was performed.Results: All filters remained patent with no evidence of migration. However, at 6 months follow-up, two legs of one filter penetrated the vessel wall and were adherent to the liver. These preliminary results suggest that with the observed gradual increase in the filter span, the risk of caval wall penetration increases with time, especially in a relatively small IVC(average diameter 16 mm).Conclusion: The Cordis Keeper filter was well tolerated, but seems to be prone to caval wall penetration in the long term

  13. Switching non-local median filter

    Science.gov (United States)

    Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji

    2015-06-01

    This paper describes a novel image filtering method for removal of random-valued impulse noise superimposed on grayscale images. Generally, it is well known that switching-type median filters are effective for impulse noise removal. In this paper, we propose a more sophisticated switching-type impulse noise removal method in terms of detail-preserving performance. Specifically, the noise detector of the proposed method finds out noise-corrupted pixels by focusing attention on the difference between the value of a pixel of interest (POI) and the median of its neighboring pixel values, and on the POI's isolation tendency from the surrounding pixels. Furthermore, the removal of the detected noise is performed by the newly proposed median filter based on non-local processing, which has superior detail-preservation capability compared to the conventional median filter. The effectiveness and the validity of the proposed method are verified by some experiments using natural grayscale images.

  14. Manufacturing and testing of wavefront filters for DARWIN

    Science.gov (United States)

    Flatscher, R.; Artjushenko, V.; Sakharova, T.; Pereira do Carmo, Joao

    2017-11-01

    Wavefront filtering is mandatory in the realisation of nulling interferometers with high star light suppression capability required to detect extrasolar planets, such as the one foreseen for the ESA Darwin mission. This paper presents the design, manufacturing, and test results of single mode fibres to be used as wavefront filters in mid-infrared range. Fibres made from chalcogenide glass and silver halide crystals were produced. The first class can serve as wavefront filters up to a wavelength of 11 microns, while silver halide fibres can be used over the full Darwin wavelength range from 6.5 to 18 micron. The chalcogenide glass fibres were drawn by double crucible method whereas polycrystalline fibres from silver halides were fabricated by multiple extrusion from a crystalline preform. Multi-layer AR-coatings for fibre ends were developed and environmentally tested for both types of fibres. Special fibre facet polishing procedures were established, in particular for the soft silver halide fibre ends. Cable design and assembly process were also developed, including termination by SMA-connectors with ceramic ferrules and fibre protection by loose PEEK-tubings to prevent excessive bending and chemical attacks for fibres. The wavefront filtering capability of the fibres was demonstrated on a high quality Mach-Zehnder interferometer. Two different groups of laser sources were used to measure the wavefront filtering of the fibres by using a CO-laser for testing in the lower sub-band and a CO2-laser to check the upper sub-band. Measurements of the fibres far field intensity distribution and transmission were performed for numerous cable samples. Single mode behaviour was observed in more than 25 silver halide fibre cables before AR-coating of their ends, while after that 17 cables were compliant with all technical requirements. Residual cladding modes existing in short single mode fibres were effectively removed by applying of a proper absorbing jacket to the fibre

  15. Advanced photonic filters based on cascaded Sagnac loop reflector resonators in silicon-on-insulator nanowires

    Science.gov (United States)

    Wu, Jiayang; Moein, Tania; Xu, Xingyuan; Moss, David J.

    2018-04-01

    We demonstrate advanced integrated photonic filters in silicon-on-insulator (SOI) nanowires implemented by cascaded Sagnac loop reflector (CSLR) resonators. We investigate mode splitting in these standing-wave (SW) resonators and demonstrate its use for engineering the spectral profile of on-chip photonic filters. By changing the reflectivity of the Sagnac loop reflectors (SLRs) and the phase shifts along the connecting waveguides, we tailor mode splitting in the CSLR resonators to achieve a wide range of filter shapes for diverse applications including enhanced light trapping, flat-top filtering, Q factor enhancement, and signal reshaping. We present the theoretical designs and compare the CSLR resonators with three, four, and eight SLRs fabricated in SOI. We achieve versatile filter shapes in the measured transmission spectra via diverse mode splitting that agree well with theory. This work confirms the effectiveness of using CSLR resonators as integrated multi-functional SW filters for flexible spectral engineering.

  16. Elastic-resilience-induced dispersion of carbon nanotubes: a novel way of fabricating high performance elastomer

    International Nuclear Information System (INIS)

    Wu, Siwu; Lin, Tengfei; Guo, Baochun

    2013-01-01

    State-of-the-art processes cannot achieve rubber/multi-walled carbon nanotube (MWCNT) composites with satisfactory performance by using pristine MWCNTs and conventional processing equipment. In this work, high performance rubber/MWCNT composites featuring a combination of good mechanical properties, electrical and thermal conductivities and damping capacity over a wide temperature range are fabricated based on a well-developed master batch process. It is demonstrated that the MWCNTs are dispersed homogeneously due to the disentanglement induced by well-wetting and shearing, and the elastic-resilience-induced dispersion of the MWCNTs by rubber chains via the novel processing method. To further enhance the efficacy of elastic-resilience-induced dispersion for MWCNTs, a slightly pre-crosslinked network is constructed in the master batch. Consequently, we obtain rubber/MWCNT composites with unprecedented performance by amplifying the reinforcing effect of relatively low MWCNT loading. This work provides a novel insight into the fabrication of high performance functional elastomeric composites with pristine CNTs by taking advantage of the unique elastic resilience of rubber chains as the driving force for the disentanglement of CNTs. (paper)

  17. Development of a test device to characterize thermal protective performance of fabrics against hot steam and thermal radiation

    International Nuclear Information System (INIS)

    Su, Yun; Li, Jun

    2016-01-01

    Steam burns severely threaten the life of firefighters in the course of their fire-ground activities. The aim of this paper was to characterize thermal protective performance of flame-retardant fabrics exposed to hot steam and low-level thermal radiation. An improved testing apparatus based on ASTM F2731-11 was developed in order to simulate the routine fire-ground conditions by controlling steam pressure, flow rate and temperature of steam box. The thermal protective performance of single-layer and multi-layer fabric system with/without an air gap was studied based on the calibrated tester. It was indicated that the new testing apparatus effectively evaluated thermal properties of fabric in hot steam and thermal radiation. Hot steam significantly exacerbated the skin burn injuries while the condensed water on the skin’s surface contributed to cool down the skin tissues during the cooling. Also, the absorbed thermal energy during the exposure and the cooling was mainly determined by the fabric’s configuration, the air gap size, the exposure time and the existence of hot steam. The research provides a effective method to characterize the thermal protection of fabric in complex conditions, which will help in optimization of thermal protection performance of clothing and reduction of steam burn. (paper)

  18. Digital notch filter based active damping for LCL filters

    DEFF Research Database (Denmark)

    Yao, Wenli; Yang, Yongheng; Zhang, Xiaobin

    2015-01-01

    . In contrast, the active damping does not require any dissipation elements, and thus has become of increasing interest. As a result, a vast of active damping solutions have been reported, among which multi-loop control systems and additional sensors are necessary, leading to increased cost and complexity....... In this paper, a notch filter based active damping without the requirement of additional sensors is proposed, where the inverter current is employed as the feedback variable. Firstly, a design method of the notch filter for active damping is presented. The entire system stability has then been investigated...... in the z-domain. Simulations and experiments are carried out to verify the proposed active damping method. Both results have confirmed that the notch filter based active damping can ensure the entire system stability in the case of resonances with a good system performance....

  19. Dynamic beam filtering for miscentered patients.

    Science.gov (United States)

    Mao, Andrew; Shyr, William; Gang, Grace J; Stayman, J Webster

    2018-02-01

    Accurate centering of the patient within the bore of a CT scanner takes time and is often difficult to achieve precisely. Patient miscentering can result in significant dose and image noise penalties with the use of traditional bowtie filters. This work describes a system to dynamically position an x-ray beam filter during image acquisition to enable more consistent image performance and potentially lower dose needed for CT imaging. We propose a new approach in which two orthogonal low-dose scout images are used to estimate a parametric model of the object describing its shape, size, and location within the field of view (FOV). This model is then used to compute an optimal filter motion profile by minimizing the variance of the expected detector fluence for each projection. Dynamic filtration was implemented on a cone-beam CT (CBCT) test bench using two different physical filters: 1) an aluminum bowtie and 2) a structured binary filter called a multiple aperture device (MAD). Dynamic filtration performance was compared to a static filter in studies of dose and reconstruction noise as a function of the degree of miscentering of a homogeneous water phantom. Estimated filter trajectories were found to be largely sinusoidal with an amplitude proportional to the amount of miscentering. Dynamic filtration demonstrated an improved ability to keep the spatial distribution of dose and reconstruction noise at baseline levels across varying levels of miscentering, reducing the maximum noise and dose deviation from 53% to 15% and 42% to 14% respectively for the bowtie filter, and 25% to 8% and 24% to 15% respectively for the MAD filter. Dynamic positioning of beam filters during acquisition improves dose utilization and image quality over static filters for miscentered patients. Such dynamic filters relax positioning requirements and have the potential to reduce set-up time and lower dose requirements.

  20. Vessel wall reaction after vena cava filter placement

    NARCIS (Netherlands)

    Hoekstra, A; Elstrodt, JM; Nikkels, PGJ; Tiebosch, ATMG

    2002-01-01

    Purpose: To evaluate the interaction between the Cordis Keeper vena caval filter and vessel wall in a porcine model. Methods: Implantation of the filter was performed in five pigs. Radiologic data concerning inferior vena cava (IVC) diameter and filter patency, filter leg span, and stability were

  1. Fabrication of advanced military radiation detector sensor and performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sin Yang

    2010-02-15

    Recently, our country is facing a continuous nuclear weapons threat. Therefore, we must have a high-level nuclear weapons protection system. The best protection against nuclear weapons is detecting their use to reduce casualties in our country to a minimum. That means, the development of a military radiation detector is a very important issue. The Korea army is using the 'PDR - 1K portable military radiation surveymeter' in NBC (Nuclear, Biological, Chemical warfare) operations. The PDR - 1K military detector can measure beta and gamma rays only but it cannot detect alpha particles. Because of its characteristics, the Korea army has weaknesses in tactical operations. The PDR - 1K sensor is based on a GM - tube sensor system. For the mechanical structure, detectors utilizing a GM-tube sensor do not work on a high - radiation battlefield and they do not carry out nuclide analysis for fixed electron signal output. In the meantime, the United States of America and Germany are using 'AN/PDR - 77' and 'SVG - 2' that were made from scintillator sensors. They have excellent physical qualities and radiation responses for military use. Also, nuclide analysis is available. Therefore, in this study we fabricated a military - grade scintillator radiation sensor that is able to detect alpha, beta, and gamma - rays to overcome PDR - 1K's weaknesses. Also, physical characteristics and radiation response evaluation for the fabricated sensors was carried out. The alpha - particle sensor and beta - ray sensor were fabricated using a ZnS(Ag) powder state scintillator, and a Saint - Gobain organic plastic scintillator BC-408 panel, respectively. The gamma ray sensor was manufactured using a 10 x 10 x 10 mm{sup 3} CsI(Tl) inorganic scintillator crystal. A detailed explanation follows. The alpha particle sensor was fabricated by using air - brushing method to Zns(Ag) powder scintillator spreading. The ZnS(Ag) layer thickness was 35 {mu}m (detection

  2. Electron mean-free-path filtering in Dirac material for improved thermoelectric performance.

    Science.gov (United States)

    Liu, Te-Huan; Zhou, Jiawei; Li, Mingda; Ding, Zhiwei; Song, Qichen; Liao, Bolin; Fu, Liang; Chen, Gang

    2018-01-30

    Recent advancements in thermoelectric materials have largely benefited from various approaches, including band engineering and defect optimization, among which the nanostructuring technique presents a promising way to improve the thermoelectric figure of merit ( zT ) by means of reducing the characteristic length of the nanostructure, which relies on the belief that phonons' mean free paths (MFPs) are typically much longer than electrons'. Pushing the nanostructure sizes down to the length scale dictated by electron MFPs, however, has hitherto been overlooked as it inevitably sacrifices electrical conduction. Here we report through ab initio simulations that Dirac material can overcome this limitation. The monotonically decreasing trend of the electron MFP allows filtering of long-MFP electrons that are detrimental to the Seebeck coefficient, leading to a dramatically enhanced power factor. Using SnTe as a material platform, we uncover this MFP filtering effect as arising from its unique nonparabolic Dirac band dispersion. Room-temperature zT can be enhanced by nearly a factor of 3 if one designs nanostructures with grain sizes of ∼10 nm. Our work broadens the scope of the nanostructuring approach for improving the thermoelectric performance, especially for materials with topologically nontrivial electronic dynamics.

  3. Resistance of HEPA filter separator materials to humid air--hydrogen fluoride--fluorine environments

    International Nuclear Information System (INIS)

    Weber, C.W.; Petit, G.S.; Woodfin, S.B.

    1977-01-01

    The U. S. Energy Research and Development Administration (ERDA) is interested in the development of a high-efficiency particulate air (HEPA) filter that is resistant to such corrosive reagents as hydrogen fluoride (HF) and fluorine (F 2 ) in air environments of normal relative humidity (about 50% RH). Several types of separator materials are used in the fabrication of commercial filters. The basic types of separator materials are asbestos, Kraft paper, plastic, and aluminum. At the request of the ERDA Division of Operational Safety, the different types of separator materials have been evaluated for their resistance to corrosive attack by HF and F 2 . The separator materials were dynamically tested in the 4-stage multiunit tester located in the Oak Ridge Gaseous Diffusion Plant laboratories. This is the system previously used in the evaluation of the Herty Foundation filter paper samples. Concurrent with the testing of filter media for its resistance to HF and F 2 , another component of the completed filter, the separator, was tested. All samples were exposed to a constant air flow (50% RH) of 32 liters/min, at 100 0 F, containing 900 ppM HF and 300 ppM F 2 . Exposure periods varied from 2 to 1000 h; however, the longer exposures were made only on the stronger candidates. Test results show the plastic and aluminum separator materials to be superior to the other types in resistance to HF and F 2 . The asbestos separators disintegrated after a relatively short exposure time; the Kraft paper types were the next weakest. The Clear Plastic S was the best performer of the plastics tested

  4. Aerosol filtration with metallic fibrous filters

    International Nuclear Information System (INIS)

    Klein, M.; Goossens, W.R.A.

    1983-01-01

    The filtration efficiency of stainless steel fibrous filters (BEKIPOR porous mats and sintered webs) is determined using submicronic monodisperse polystyrene aerosols. Lasers spectrometers are used for the aerosol measurements. The parameters varied are the fiber diameter, the number of layers, the aerosol diameter and the superficial velocity. Two selected types of filters are tested with polydisperse methylene blue aerosols to determine the effect of bed loading on the filter performance and to test washing techniques for the regeneration of the filter

  5. Optical filter finesses enhancement based on nested coupled cavities and active medium

    Science.gov (United States)

    Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2016-04-01

    Optical filters with relatively large FSR and narrow linewidth are simultaneously needed for different applications. The ratio between the FSR and the 3-dB linewidth is given by finesse of the filter, which is solely determined by the different energy loss mechanisms limited by the technology advancement. In this work, we present a novel coupled-cavity configuration embedding an optical filter and a gain medium; allowing an overall finesse enhancement and simultaneous FSR and 3-dB linewidth engineering beyond the technological limits of the filter fabrication method. The configuration consists of two resonators. An active ring resonator comprises an optical gain medium and a passive resonator. In one configuration, the optical filter is the passive resonator itself. In a second configuration, the passive resonator is another ring resonator that embeds the optical filter. The presented configurations using a semiconductor optical amplifier are applied one time to a mechanically Fabry-Perot filter in the first presented configuration; and a second time to a fiber ring filter in the second presented configuration. The mechanical filter has an original 3-dB linewidth of 1nm and an FSR that is larger than 100nm while the enhanced linewidth is about 0.3nm. The fiber ring filter length is 4 m and directional coupler ratios of 90/10corresponding to a 3-dBlinewidth of about 4MHz and an FSR of 47 MHz. The enhanced 3- dBlinewidth of the overall filter configuration is 200kHz, demonstrating finesse enhancement up to20 times the original finesse of the filter.

  6. Effect of chromatic filters on visual performance in individuals with mild traumatic brain injury (mTBI): A pilot study.

    Science.gov (United States)

    Fimreite, Vanessa; Willeford, Kevin T; Ciuffreda, Kenneth J

    2016-01-01

    Spectral filters have been used clinically in patients with mild traumatic brain injury (mTBI). However, they have not been formally assessed using objective techniques in this population. Thus, the aim of the present pilot study was to determine the effect of spectral filters on reading performance and visuo-cortical responsivity in adults with mTBI. 12 adults with mTBI/concussion were tested. All reported photosensitivity and reading problems. They were compared to 12 visually-normal, asymptomatic adults. There were several test conditions: three luminance-matched control filters (gray neutral density, blue, and red), the patient-selected 'precision tint lens' that provided the most comfort and clarity of text using the Intuitive Colorimeter System, and baseline without any filters. The Visagraph was used to assess reading eye movements and reading speed objectively with each filter. In addition, both the amplitude and latency of the visual-evoked potential (VEP) were assessed with the same filters. There were few significant group differences in either the reading-related parameters or VEP latency for any of the test filter conditions. Subjective improvements were noted in most with mTBI (11/12). The majority of patients with mTBI chose a tinted filter that resulted in increased visual comfort. While significant findings based on the objective testing were found for some conditions, the subjective results suggest that precision tints should be considered as an adjunctive treatment in patients with mTBI and photosensitivity. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  7. Truncation correction for oblique filtering lines

    International Nuclear Information System (INIS)

    Hoppe, Stefan; Hornegger, Joachim; Lauritsch, Guenter; Dennerlein, Frank; Noo, Frederic

    2008-01-01

    State-of-the-art filtered backprojection (FBP) algorithms often define the filtering operation to be performed along oblique filtering lines in the detector. A limited scan field of view leads to the truncation of those filtering lines, which causes artifacts in the final reconstructed volume. In contrast to the case where filtering is performed solely along the detector rows, no methods are available for the case of oblique filtering lines. In this work, the authors present two novel truncation correction methods which effectively handle data truncation in this case. Method 1 (basic approach) handles data truncation in two successive preprocessing steps by applying a hybrid data extrapolation method, which is a combination of a water cylinder extrapolation and a Gaussian extrapolation. It is independent of any specific reconstruction algorithm. Method 2 (kink approach) uses similar concepts for data extrapolation as the basic approach but needs to be integrated into the reconstruction algorithm. Experiments are presented from simulated data of the FORBILD head phantom, acquired along a partial-circle-plus-arc trajectory. The theoretically exact M-line algorithm is used for reconstruction. Although the discussion is focused on theoretically exact algorithms, the proposed truncation correction methods can be applied to any FBP algorithm that exposes oblique filtering lines.

  8. Quantitative fabrication, performance optimization and comparison of PEG and zwitterionic polymer antifouling coatings.

    Science.gov (United States)

    Xing, Cheng-Mei; Meng, Fan-Ning; Quan, Miao; Ding, Kai; Dang, Yuan; Gong, Yong-Kuan

    2017-09-01

    A versatile fabrication and performance optimization strategy of PEG and zwitterionic polymer coatings is developed on the sensor chip of surface plasma resonance (SPR) instrument. A random copolymer bearing phosphorylcholine zwitterion and active ester side chains (PMEN) and carboxylic PEG coatings with comparable thicknesses were deposited on SPR sensor chips via amidation coupling on the precoated polydopamine (PDA) intermediate layer. The PMEN coating showed much stronger resistance to bovine serum albumin (BSA) adsorption than PEG coating at very thin thickness (∼1nm). However, the BSA resistant efficacy of PEG coating could exceed that of PMEN due to stronger steric repelling effect when the thickness increased to 1.5∼3.3nm. Interestingly, both the PEG and PMEN thick coatings (≈3.6nm) showed ultralow fouling by BSA and bovine plasma fibrinogen (Fg). Moreover, changes in the PEG end group from -OH to -COOH, protein adsorption amount could increase by 10-fold. Importantly, the optimized PMEN and PEG-OH coatings were easily duplicated on other substrates due to universal adhesion of the PDA layer, showed excellent resistance to platelet, bacteria and proteins, and no significant difference in the antifouling performances was observed. These detailed results can explain the reported discrepancy in performances between PEG and zwitterionic polymer coatings by thickness. This facile and substrate-independent coating strategy may benefit the design and manufacture of advanced antifouling biomedical devices and long circulating nanocarriers. Prevention of biofouling is one of the biggest challenges for all biomedical applications. However, it is very difficult to fabricate a highly hydrophilic antifouling coating on inert materials or large devices. In this study, PEG and zwitterion polymers, the most widely investigated polymers with best antifouling performance, are conveniently immobilized on different kinds of substrates from their aqueous solutions by

  9. Microwave bonding of MWNTs and fabrication of a low-cost, high-performance polymer pressure sensor

    International Nuclear Information System (INIS)

    Gau, C; Chen, H T; Ko, H S

    2010-01-01

    This paper describes the fabrication of a simple, low-cost pressure sensor that can be readily mass produced. Microwave-induced heating is used to bond a multiwall carbon nanotube (MWNT) network to a poly(ethylene terephthalate) substrate that serves as a pressure diaphragm. The MWNT network can be patterned with a damascene process and used as the sensor material. The pressure diaphragm with the MWNT network can be bonded with any flexible substrate pre-drilled with a cavity that allows a deflection of the diaphragm. Design and fabrication considerations for the sensor are discussed and its performance is demonstrated and evaluated. The sensor is thermally stable and has a much higher sensitivity and gauge factor than polysilicon sensors. In addition to the simple fabrication process, the sensor can be widely applied and integrated into microfluidic systems or biochips where pressure information is required.

  10. In-situ continuous scanning high efficiency particulate air (HEPA) filter monitoring system

    International Nuclear Information System (INIS)

    Kirchner, K.N.; Johnson, C.M.; Lucerna, J.J.; Barnett, R.L.

    1985-01-01

    The testing and replacement of HEPA filters, which are widely used in the nuclear industry to purify process air before it is ventilated to the atmosphere, is a costly and labor-intensive undertaking. Current methods of testing filter performance, such as differential pressure measurement and scanning air monitoring, allow for determination of overall filter performance but preclude detection of symptoms of incipient filter failure, such as small holes in the filters themselves. Using current technology, a continual in-situ monitoring system has been designed which provides three major improvements over current methods of filter testing and replacement. This system (1) realizes a cost savings by reducing the number of intact filters which are currently being replaced unnecessarily, (2) provides a more accurate and quantitative measurement of filter performance than is currently achieved with existing testing methods, and (3) reduces personnel exposure to a radioactive environment by automatically performing most testing operations. The operation and performance of the HEPA filter monitoring system are discussed

  11. Oil Bypass Filter Technology Performance Evaluation - First Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Zirker, L.R.; Francfort, J.E.

    2003-01-31

    This report details the initial activities to evaluate the performance of the oil bypass filter technology being tested by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight full-size, four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass systems from the puraDYN Corporation. Each bus averages about 60,000 miles a year. The evaluation includes an oil analysis regime to monitor the presence of necessary additives in the oil and to detect undesirable contaminants. Very preliminary economic analysis suggests that the oil bypass system can reduce life-cycle costs. As the evaluation continues and oil avoidance costs are quantified, it is estimated that the bypass system economics may prove increasingly favorable, given the anticipated savings in operational costs and in reduced use of oil and waste oil avoidance.

  12. Stacking metal nano-patterns and fabrication of moth-eye structure

    Science.gov (United States)

    Taniguchi, Jun

    2018-01-01

    Nanoimprint lithography (NIL) can be used as a tool for three-dimensional nanoscale fabrication. In particular, complex metal pattern structures in polymer material are demanded as plasmonic effect devices and metamaterials. To fabricate of metallic color filter, we used silver ink and NIL techniques. Metallic color filter was composed of stacking of nanoscale silver disc patterns and polymer layers, thus, controlling of polymer layer thickness is necessary. To control of thickness of polymer layer, we used spin-coating of UV-curable polymer and NIL. As a result, ten stacking layers with 1000 nm layer thickness was obtained and red color was observed. Ultraviolet nanoimprint lithography (UV-NIL) is the most effective technique for mass fabrication of antireflection structure (ARS) films. For the use of ARS films in mobile phones and tablet PCs, which are touch-screen devices, it is important to protect the films from fingerprints and dust. In addition, as the nanoscale ARS that is touched by the hand is fragile, it is very important to obtain a high abrasion resistance. To solve these problems, a UV-curable epoxy resin has been developed that exhibits antifouling properties and high hardness. The high abrasion resistance ARS films are shown to withstand a load of 250 g/cm2 in the steel wool scratch test, and the reflectance is less than 0.4%.

  13. Advanced photonic filters based on cascaded Sagnac loop reflector resonators in silicon-on-insulator nanowires

    Directory of Open Access Journals (Sweden)

    Jiayang Wu

    2018-04-01

    Full Text Available We demonstrate advanced integrated photonic filters in silicon-on-insulator (SOI nanowires implemented by cascaded Sagnac loop reflector (CSLR resonators. We investigate mode splitting in these standing-wave (SW resonators and demonstrate its use for engineering the spectral profile of on-chip photonic filters. By changing the reflectivity of the Sagnac loop reflectors (SLRs and the phase shifts along the connecting waveguides, we tailor mode splitting in the CSLR resonators to achieve a wide range of filter shapes for diverse applications including enhanced light trapping, flat-top filtering, Q factor enhancement, and signal reshaping. We present the theoretical designs and compare the CSLR resonators with three, four, and eight SLRs fabricated in SOI. We achieve versatile filter shapes in the measured transmission spectra via diverse mode splitting that agree well with theory. This work confirms the effectiveness of using CSLR resonators as integrated multi-functional SW filters for flexible spectral engineering.

  14. Analysis of an MCU HEPA filter

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-01

    A series of direct analyses on three portions (inlet, center, and outlet) of the High Efficiency Particulate Air (HEPA) filter material from the Modular Caustic-Side Solvent Extraction Unit (MCU) have been performed; this includes x-ray methods such as X-Ray Diffraction (XRD), Contained Scanning Electron Microscopy (CSEM) and X-Ray Fluorescence (XRF), as well as Fourier Transform InfraRed spectroscopy (FTIR). Additionally, two leaching studies (one with water, one with dichloromethane) have been performed on three portions (inlet, center, and outlet) of the HEPA filter material, with the leachates being analyzed by Inductively-coupled plasma emission spectroscopy (ICPES), Semi-Volatile Organic Analysis (SVOA) and gammascan. From the results of the analyses, SRNL feels that cesium-depleted solvent is being introduced into the HEPA filter. The most likely avenue for this is mechanical aerosolization of solvent, where the aerosol is then carried along an airstream into the HEPA filter. Once introduced into the HEPA filter media, the solvent wicks throughout the material, and migrates towards the outlet end. Once on the outlet end, continual drying could cause particulate flakes to exit the filter and travel farther down the airstream path.

  15. Extension of the maintenance cycle of HEPA filters by optimization of the technical characteristics of filters and their construction

    International Nuclear Information System (INIS)

    Bella, H.; Stiehl, H.H.; Sinhuber, D.

    1977-01-01

    The knowledge of the parameters of HEPA filters used at present in nuclear plants allows optimization of such filters with respect to flow rate, pressure drop and service life. The application of optimizing new types of HEPA filters of improved performance is reported. The calculated results were checked experimentally. The use of HEPA filters optimized with respect to dust capacity and service life, and the effects of this new type of filter on the reduction of operating and maintenance costs are discussed

  16. Evaluation of miniature tension specimen fabrication techniques and performance

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Blotter, M.A.; Edwards, D.J.

    1993-01-01

    The confident application of miniature tensile specimens requires adequate control over their fabrication and is facilitated by automated test and analysis techniques. Three fabrication processes -- punching, chemical milling, and electrical discharge machining (EDM) -- were recently evaluated, leading to the replacement of the previously used punching technique with a wire EDM technique. The automated data acquisition system was upgraded, and an interactive data analysis program was developed

  17. Evaluation of miniature tensile specimen fabrication techniques and performance

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, M.L. (Pacific Northwest Lab., Richland, WA (United States)); Blotter, M.A.; Edwards, D.J. (Missouri Univ., Rolla, MO (United States))

    1992-01-01

    The confident application of miniature tensile specimens requires adequate control over their fabrication and is facilitated by automated test and analysis techniques. Three fabrication processes -- punching, chemical, milling, and electrical discharge machining (EDM) -- were recently evaluated, leading to the replacement of the previously used punching technique with a wire EDM technique. The automated data acquisition system was upgraded, and an interactive data analysis program was developed.

  18. Evaluation of miniature tensile specimen fabrication techniques and performance

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Blotter, M.A.; Edwards, D.J.

    1992-01-01

    The confident application of miniature tensile specimens requires adequate control over their fabrication and is facilitated by automated test and analysis techniques. Three fabrication processes -- punching, chemical, milling, and electrical discharge machining (EDM) -- were recently evaluated, leading to the replacement of the previously used punching technique with a wire EDM technique. The automated data acquisition system was upgraded, and an interactive data analysis program was developed

  19. Artificial neural network (ANN)-based prediction of depth filter loading capacity for filter sizing.

    Science.gov (United States)

    Agarwal, Harshit; Rathore, Anurag S; Hadpe, Sandeep Ramesh; Alva, Solomon J

    2016-11-01

    This article presents an application of artificial neural network (ANN) modelling towards prediction of depth filter loading capacity for clarification of a monoclonal antibody (mAb) product during commercial manufacturing. The effect of operating parameters on filter loading capacity was evaluated based on the analysis of change in the differential pressure (DP) as a function of time. The proposed ANN model uses inlet stream properties (feed turbidity, feed cell count, feed cell viability), flux, and time to predict the corresponding DP. The ANN contained a single output layer with ten neurons in hidden layer and employed a sigmoidal activation function. This network was trained with 174 training points, 37 validation points, and 37 test points. Further, a pressure cut-off of 1.1 bar was used for sizing the filter area required under each operating condition. The modelling results showed that there was excellent agreement between the predicted and experimental data with a regression coefficient (R 2 ) of 0.98. The developed ANN model was used for performing variable depth filter sizing for different clarification lots. Monte-Carlo simulation was performed to estimate the cost savings by using different filter areas for different clarification lots rather than using the same filter area. A 10% saving in cost of goods was obtained for this operation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1436-1443, 2016. © 2016 American Institute of Chemical Engineers.

  20. Coaxial higher-order mode damper employing a high-pass filter

    International Nuclear Information System (INIS)

    Kang, Y.W.; Jiang, X.

    1997-01-01

    Two different types of coaxial higher-order mode (HOM) dampers have been investigated for the Advanced Photon Source (APS) storage ring cavities: e-probe dampers and h-loop dampers. Realization of the h-loop dampers has been difficult because the loop antenna couples not only to the HOMs but also to the accelerating mode and results in loss of Q at the fundamental frequency. Previously, a first-order fundamental rejection filter was tested with unsatisfactory rejection characteristics. This problem can be overcome by using a higher-order high-pass filter between the loop and the matched load. Prototype dampers have been fabricated and tested in a storage ring single-cell cavity and the damping characteristic was analyzed

  1. Analysis and control of a shunt active power filter

    Energy Technology Data Exchange (ETDEWEB)

    Ottersten, R.; Petersson, Andreas [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1999-09-01

    This report deals with active power filtering of low-frequency current harmonics. The active filter consists of a forced-commutated voltage source inverter with a digital control system. The aim of this master thesis is to investigate the performance of a shunt active power filter, and the parameters influence on the system performance. Three different harmonic identification methods are presented and compared. The shunt active power filter is very well suited for harmonic current reduction, provided that the phase shift due to the digital implementation of the control system is compensated. The performance of the active power filter depends on the switching frequency. When using individual harmonic detection methods the amount of compensation can be fully controlled for each current harmonic.

  2. Topology optimization of microwave waveguide filters

    DEFF Research Database (Denmark)

    Aage, Niels; Johansen, Villads Egede

    2017-01-01

    We present a density based topology optimization approach for the design of metallic microwave insert filters. A two-phase optimization procedure is proposed in which we, starting from a uniform design, first optimize to obtain a set of spectral varying resonators followed by a band gap...... optimization for the desired filter characteristics. This is illustrated through numerical experiments and comparison to a standard band pass filter design. It is seen that the carefully optimized topologies can sharpen the filter characteristics and improve performance. Furthermore, the obtained designs share...... little resemblance to standard filter layouts and hence the proposed design method offers a new design tool in microwave engineering....

  3. Reduced enrichment fuels for Canadian research reactors - Fabrication and performance

    Energy Technology Data Exchange (ETDEWEB)

    Wood, J C; Foo, M T; Berthiaume, L C; Herbert, L N; Schaefer, J D; Hawley, D [Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, ON KOJ 1JO (Canada)

    1985-07-01

    Our facilities have been upgraded to manufacture fuel rods comprising dispersions of U{sub 3}Si in aluminum, to complement the dispersions of U{sub 3}Si alloyed with 1.5 and 3.0 wt% Al fabricated and tested previously. Further advances have been made in process optimization particularly in core extrusion where production rate has been doubled while maintaining high quality standards. Our mini-element irradiations of Al-61.5 wt% (U,3.5 wt% Si, 1.5 wt% Al) and Al-62.4 wt% (U,3.2 wt% Si, 30 wt% Al) have been completed successfully up to the terminal burnup of 93 atomic percent. Fuel core swelling remained marginally below 1% per 10 atomic percent burnup over the whole irradiation. Also mini-elements containing Al-72.4 wt% USiAl and Al-73.4 wt% USi*Al have been irradiated to 82 atomic percent burnup, their swelling rate marginally exceeding 1% per 10 atomic percent burnup. Three full-size 12-element NRU assemblies containing Al-62.4 wt% USi*Al have been fabricated and installed in the NRU reactor where they have performed normally without problems. The cores for four more full-size 12-element NRU assemblies containing Al-61.0 wt% U{sub 3}Si have been manufactured. (author)

  4. Reduced enrichment fuels for Canadian research reactors - Fabrication and performance

    International Nuclear Information System (INIS)

    Wood, J.C.; Foo, M.T.; Berthiaume, L.C.; Herbert, L.N.; Schaefer, J.D.; Hawley, D.

    1985-01-01

    Our facilities have been upgraded to manufacture fuel rods comprising dispersions of U 3 Si in aluminum, to complement the dispersions of U 3 Si alloyed with 1.5 and 3.0 wt% Al fabricated and tested previously. Further advances have been made in process optimization particularly in core extrusion where production rate has been doubled while maintaining high quality standards. Our mini-element irradiations of Al-61.5 wt% (U,3.5 wt% Si, 1.5 wt% Al) and Al-62.4 wt% (U,3.2 wt% Si, 30 wt% Al) have been completed successfully up to the terminal burnup of 93 atomic percent. Fuel core swelling remained marginally below 1% per 10 atomic percent burnup over the whole irradiation. Also mini-elements containing Al-72.4 wt% USiAl and Al-73.4 wt% USi*Al have been irradiated to 82 atomic percent burnup, their swelling rate marginally exceeding 1% per 10 atomic percent burnup. Three full-size 12-element NRU assemblies containing Al-62.4 wt% USi*Al have been fabricated and installed in the NRU reactor where they have performed normally without problems. The cores for four more full-size 12-element NRU assemblies containing Al-61.0 wt% U 3 Si have been manufactured. (author)

  5. Convective heat exposure from large fires to the final filters of ventilation systems

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1979-01-01

    The Fire Science Group of the Hazards Control Department, Lawrence Livermore Laboratory has been asked to design a probable fire scenario for a fuel-pellet fabrication facility. This model was used to estimate the potential for thermal damage to the final HEPA filters. These filters would not experience direct fire exposure because they are the last component of the ventilation system before the exhaust air pumps. However, they would be exposed to hot air and fire gases that are drawn into the ventilation system. Because fire is one of the few occurrences that can defeat the containment integrity of facilities where radioactive materials are stored and processed, the fire scenarios must be defined to ensure that containment systems are adequate to meet the threat of such events. Fire-growth calculations are based on the measured fuel load of materials within the fabrication enclosure and on semi-empirical fire-spread models. It is assumed that the fire never becomes ventilation controlled. The temperature rise of ceiling gases and heat transfer from ventilation ducting are calculated using accepted empirical relationships, and the analysis shows that even under the most severe exposure conditions, heat transfer from the duct reduces the fire gas temperatures to levels that would not hamper filter function

  6. Thin film polarizer and color filter based on photo-polymerizable nematic liquid crystal

    Science.gov (United States)

    Mohammadimasoudi, Mohammad; Neyts, Kristiaan; Beeckman, Jeroen

    2015-03-01

    We present a method to fabricate a thin film color filter based on a mixture of photo-polymerizable liquid crystal and chiral dopant. A chiral nematic liquid crystal layer reflects light for a certain wavelength interval Δλ (= Δn.P) with the period and Δn the birefringence of the liquid crystal. The reflection band is determined by the chiral dopant concentration. The bandwidth is limited to 80nm and the reflectance is at most 50% for unpolarized incident light. The thin color filter is interesting for innovative applications like polarizer-free reflective displays, polarization-independent devices, stealth technologies, or smart switchable reflective windows to control solar light and heat. The reflected light has strong color saturation without absorption because of the sharp band edges. A thin film polarizer is developed by using a mixture of photo-polymerizable liquid crystal and color-neutral dye. The fabricated thin film absorbs light that is polarized parallel to the c axis of the LC. The obtained polarization ratio is 80% for a film of only 12 μm. The thin film polarizer and the color filter feature excellent film characteristics without domains and can be detached from the substrate which is useful for e.g. flexible substrates.

  7. The performance evaluation of fabricated solar still in local environmental conditions

    International Nuclear Information System (INIS)

    Memon, A.H.; Akhund, M.A.; Leghari, A.N.

    2005-01-01

    To investigate the effectiveness and performance of the fabricated solar distill unit in local environmental conditions of Nawabshah within the temperature range of 23 deg. C to 28 deg. C in terms of quantity and quality of distilled water, an experimental based study was carried out during the month of March. Various samples of water with different degrees of hardness were collected from the different areas in the vicinity of Nawabshah University and supplied to the unit in order to desalinize the saline water. All samples after distillation were chemically analyzed at laboratory; the concentrations of salts were reduced at remarkable level and performance of unit was excellent especially in terms of quality. The chemical composition of analyzed samples shows that the TDS value is decreased from 2259 ppm to 378 ppm, EC (micro s/cm) value from 3.53 to 0.59, pH value from 8.4 to 7.7. The values of other parameters (i.e. Ca, Mg, Na, K, HCO/sub 3/, SO/sub 4/, Cl, SAR, and RSC) were also reduced at significant level. By comparing results, it is evident that the water is purified to the satisfactory level, which indicated that the fabricated unit has a good capability of desalination. The results indicate that the distilled water can be used for the drinking purposes as well as for the irrigation purposes also. All values of various parameters are within range of standard values. (author)

  8. Optimum processing parameters for the fabrication of twill flax fabric-reinforced polypropylene (PP) composites

    Science.gov (United States)

    Zuhudi, Nurul Zuhairah Mahmud; Minhat, Mulia; Shamsuddin, Mohd Hafizi; Isa, Mohd Dali; Nur, Nurhayati Mohd

    2017-12-01

    In recent years, natural fabric thermoplastic composites such as flax have received much attention due to its attractive capabilities for structural applications. It is crucial to study the processing of flax fabric materials in order to achieve good quality and cost-effectiveness in fibre reinforced composites. Though flax fabric has been widely utilized for several years in composite applications due to its high strength and abundance in nature, much work has been concentrated on short flax fibre and very little work focused on using flax fabric. The effectiveness of the flax fabric is expected to give higher strength performance due to its structure but the processing needs to be optimised. Flax fabric composites were fabricated using compression moulding due to its simplicity, gives good surface finish and relatively low cost in terms of labour and production. Further, the impregnation of the polymer into the fabric is easier in this process. As the fabric weave structure contributes to the impregnation quality which leads to the overall performance, the processing parameters of consolidation i.e. pressure, time, and weight fraction of fabric were optimized using the Taguchi method. This optimization enhances the consolidation quality of the composite by improving the composite mechanical properties, three main tests were conducted i.e. tensile, flexural and impact test. It is observed that the processing parameter significantly affected the consolidation and quality of composite.

  9. Survey of loading performance of currently available types HEPA filters under in-service conditions

    International Nuclear Information System (INIS)

    Gunn, C.A.; McDonough, J.B.

    1981-01-01

    Atmospheric dust loading tests were conducted on various industrial grade High Efficiency Particulate Air Filters. The filters tested were the European Style, Super-Flow, Standard US Design, and a Super-Pak. Filters were installed on the roof of a 3-story building. Test flows were set at a media velocity of 5 FPM (1.52 meters per min) and results show that filter life varies from 8.8 to 12.7 months. In addition, tests were coucted on the European Style filter at media velocities of 5.6 and 2.6 FPM. On the filter tested at 5.6 FPM an abrupt change in life was observed at 4 months. After more than 1 year operation at a lower velocity of 2.6 FPM the pressure rise with time is still very slow

  10. Glass sample preparation and performance investigations. [solar x-ray imager

    Science.gov (United States)

    Johnson, R. Barry

    1992-01-01

    This final report details the work performed under this delivery order from April 1991 through April 1992. The currently available capabilities for integrated optical performance modeling at MSFC for large and complex systems such as AXAF were investigated. The Integrated Structural Modeling (ISM) program developed by Boeing for the U.S. Air Force was obtained and installed on two DECstations 5000 at MSFC. The structural, thermal and optical analysis programs available in ISM were evaluated. As part of the optomechanical engineering activities, technical support was provided in the design of support structure, mirror assembly, filter wheel assembly and material selection for the Solar X-ray Imager (SXI) program. As part of the fabrication activities, a large number of zerodur glass samples were prepared in different sizes and shapes for acid etching, coating and polishing experiments to characterize the subsurface damage and stresses produced by the grinding and polishing operations. Various optical components for AXAF video microscope and the x-ray test facility were also fabricated. A number of glass fabrication and test instruments such as a scatter plate interferometer, a gravity feed saw and some phenolic cutting blades were fabricated, integrated and tested.

  11. A Comparison of Ensemble Kalman Filters for Storm Surge Assimilation

    KAUST Repository

    Altaf, Muhammad

    2014-08-01

    This study evaluates and compares the performances of several variants of the popular ensembleKalman filter for the assimilation of storm surge data with the advanced circulation (ADCIRC) model. Using meteorological data from Hurricane Ike to force the ADCIRC model on a domain including the Gulf ofMexico coastline, the authors implement and compare the standard stochastic ensembleKalman filter (EnKF) and three deterministic square root EnKFs: the singular evolutive interpolated Kalman (SEIK) filter, the ensemble transform Kalman filter (ETKF), and the ensemble adjustment Kalman filter (EAKF). Covariance inflation and localization are implemented in all of these filters. The results from twin experiments suggest that the square root ensemble filters could lead to very comparable performances with appropriate tuning of inflation and localization, suggesting that practical implementation details are at least as important as the choice of the square root ensemble filter itself. These filters also perform reasonably well with a relatively small ensemble size, whereas the stochastic EnKF requires larger ensemble sizes to provide similar accuracy for forecasts of storm surge.

  12. A Comparison of Ensemble Kalman Filters for Storm Surge Assimilation

    KAUST Repository

    Altaf, Muhammad; Butler, T.; Mayo, T.; Luo, X.; Dawson, C.; Heemink, A. W.; Hoteit, Ibrahim

    2014-01-01

    This study evaluates and compares the performances of several variants of the popular ensembleKalman filter for the assimilation of storm surge data with the advanced circulation (ADCIRC) model. Using meteorological data from Hurricane Ike to force the ADCIRC model on a domain including the Gulf ofMexico coastline, the authors implement and compare the standard stochastic ensembleKalman filter (EnKF) and three deterministic square root EnKFs: the singular evolutive interpolated Kalman (SEIK) filter, the ensemble transform Kalman filter (ETKF), and the ensemble adjustment Kalman filter (EAKF). Covariance inflation and localization are implemented in all of these filters. The results from twin experiments suggest that the square root ensemble filters could lead to very comparable performances with appropriate tuning of inflation and localization, suggesting that practical implementation details are at least as important as the choice of the square root ensemble filter itself. These filters also perform reasonably well with a relatively small ensemble size, whereas the stochastic EnKF requires larger ensemble sizes to provide similar accuracy for forecasts of storm surge.

  13. Non-specific filtering of beta-distributed data.

    Science.gov (United States)

    Wang, Xinhui; Laird, Peter W; Hinoue, Toshinori; Groshen, Susan; Siegmund, Kimberly D

    2014-06-19

    Non-specific feature selection is a dimension reduction procedure performed prior to cluster analysis of high dimensional molecular data. Not all measured features are expected to show biological variation, so only the most varying are selected for analysis. In DNA methylation studies, DNA methylation is measured as a proportion, bounded between 0 and 1, with variance a function of the mean. Filtering on standard deviation biases the selection of probes to those with mean values near 0.5. We explore the effect this has on clustering, and develop alternate filter methods that utilize a variance stabilizing transformation for Beta distributed data and do not share this bias. We compared results for 11 different non-specific filters on eight Infinium HumanMethylation data sets, selected to span a variety of biological conditions. We found that for data sets having a small fraction of samples showing abnormal methylation of a subset of normally unmethylated CpGs, a characteristic of the CpG island methylator phenotype in cancer, a novel filter statistic that utilized a variance-stabilizing transformation for Beta distributed data outperformed the common filter of using standard deviation of the DNA methylation proportion, or its log-transformed M-value, in its ability to detect the cancer subtype in a cluster analysis. However, the standard deviation filter always performed among the best for distinguishing subgroups of normal tissue. The novel filter and standard deviation filter tended to favour features in different genome contexts; for the same data set, the novel filter always selected more features from CpG island promoters and the standard deviation filter always selected more features from non-CpG island intergenic regions. Interestingly, despite selecting largely non-overlapping sets of features, the two filters did find sample subsets that overlapped for some real data sets. We found two different filter statistics that tended to prioritize features with

  14. MR image reconstruction via guided filter.

    Science.gov (United States)

    Huang, Heyan; Yang, Hang; Wang, Kang

    2018-04-01

    Magnetic resonance imaging (MRI) reconstruction from the smallest possible set of Fourier samples has been a difficult problem in medical imaging field. In our paper, we present a new approach based on a guided filter for efficient MRI recovery algorithm. The guided filter is an edge-preserving smoothing operator and has better behaviors near edges than the bilateral filter. Our reconstruction method is consist of two steps. First, we propose two cost functions which could be computed efficiently and thus obtain two different images. Second, the guided filter is used with these two obtained images for efficient edge-preserving filtering, and one image is used as the guidance image, the other one is used as a filtered image in the guided filter. In our reconstruction algorithm, we can obtain more details by introducing guided filter. We compare our reconstruction algorithm with some competitive MRI reconstruction techniques in terms of PSNR and visual quality. Simulation results are given to show the performance of our new method.

  15. Control strategies of active filters in the context of power conditioning

    DEFF Research Database (Denmark)

    Dan, Stan George; Benjamin, Doniga Daniel; Magureanu, R.

    2005-01-01

    performance of active filters, and thus constitute a viable improved approach for harmonic compensation. In this paper a parallel hybrid filter is studied for current harmonic compensation. The hybrid filter is formed by a single tuned LC filter per phase and a small-rated power three-phase active filter......Active Power Filters have been intensively explored in the past decade. Various topologies and control schemes have been documented aiming at reducing the cost and improving the performance of the compensation system. Hybrid active filters inherit the efficiency of passive filters and the improved......, which are directly connected in series without any matching transformer. The required rating of the active filter is much smaller than a conventional standalone active filter would be. No additional switching-ripple filter is required for the hybrid filter because the LC filter functions not only...

  16. Image enhancement filters significantly improve reading performance for low vision observers

    Science.gov (United States)

    Lawton, T. B.

    1992-01-01

    As people age, so do their photoreceptors; many photoreceptors in central vision stop functioning when a person reaches their late sixties or early seventies. Low vision observers with losses in central vision, those with age-related maculopathies, were studied. Low vision observers no longer see high spatial frequencies, being unable to resolve fine edge detail. We developed image enhancement filters to compensate for the low vision observer's losses in contrast sensitivity to intermediate and high spatial frequencies. The filters work by boosting the amplitude of the less visible intermediate spatial frequencies. The lower spatial frequencies. These image enhancement filters not only reduce the magnification needed for reading by up to 70 percent, but they also increase the observer's reading speed by 2-4 times. A summary of this research is presented.

  17. Interferometric filters for spectral discrimination in high-spectral-resolution lidar: performance comparisons between Fabry-Perot interferometer and field-widened Michelson interferometer.

    Science.gov (United States)

    Cheng, Zhongtao; Liu, Dong; Yang, Yongying; Yang, Liming; Huang, Hanlu

    2013-11-10

    Thanks to wavelength flexibility, interferometric filters such as Fabry-Perot interferometers (FPIs) and field-widened Michelson interferometers (FWMIs) have shown great convenience for spectrally separating the molecule and aerosol scattering components in the high-spectral-resolution lidar (HSRL) return signal. In this paper, performance comparisons between the FPI and FWMI as a spectroscopic discrimination filter in HSRL are performed. We first present a theoretical method for spectral transmission analysis and quantitative evaluation on the spectral discrimination. Then the process in determining the parameters of the FPI and FWMI for the performance comparisons is described. The influences from the incident field of view (FOV), the cumulative wavefront error induced by practical imperfections, and the frequency locking error on the spectral discrimination performance of the two filters are discussed in detail. Quantitative analyses demonstrate that FPI can produce higher transmittance while the remarkable spectral discrimination is one of the most appealing advantages of FWMI. As a result of the field-widened design, the FWMI still performs well even under the illumination with large FOV while the FPI is only qualified for a small incident angle. The cumulative wavefront error attaches a great effect on the spectral discrimination performance of the interferometric filters. We suggest if a cumulative wavefront error is less than 0.05 waves RMS, it is beneficial to employ the FWMI; otherwise, FPI may be more proper. Although the FWMI shows much more sensitivity to the frequency locking error, it can outperform the FPI given a locking error less than 0.1 GHz is achieved. In summary, the FWMI is very competent in HSRL applications if these practical engineering and control problems can be solved, theoretically. Some other estimations neglected in this paper can also be carried out through the analytical method illustrated herein.

  18. Frequency Domain Image Filtering Using CUDA

    Directory of Open Access Journals (Sweden)

    Muhammad Awais Rajput

    2014-10-01

    Full Text Available In this paper, we investigate the implementation of image filtering in frequency domain using NVIDIA?s CUDA (Compute Unified Device Architecture. In contrast to signal and image filtering in spatial domain which uses convolution operations and hence is more compute-intensive for filters having larger spatial extent, the frequency domain filtering uses FFT (Fast Fourier Transform which is much faster and significantly reduces the computational complexity of the filtering. We implement the frequency domain filtering on CPU and GPU respectively and analyze the speed-up obtained from the CUDA?s parallel processing paradigm. In order to demonstrate the efficiency of frequency domain filtering on CUDA, we implement three frequency domain filters, i.e., Butterworth, low-pass and Gaussian for processing different sizes of images on CPU and GPU respectively and perform the GPU vs. CPU benchmarks. The results presented in this paper show that the frequency domain filtering with CUDA achieves significant speed-up over the CPU processing in frequency domain with the same level of (output image quality on both the processing architectures

  19. Frequency domain image filtering using cuda

    International Nuclear Information System (INIS)

    Rajput, M.A.; Khan, U.A.

    2014-01-01

    In this paper, we investigate the implementation of image filtering in frequency domain using NVIDIA's CUDA (Compute Unified Device Architecture). In contrast to signal and image filtering in spatial domain which uses convolution operations and hence is more compute-intensive for filters having larger spatial extent, the frequency domain filtering uses FFT (Fast Fourier Transform) which is much faster and significantly reduces the computational complexity of the filtering. We implement the frequency domain filtering on CPU and GPU respectively and analyze the speed-up obtained from the CUDA's parallel processing paradigm. In order to demonstrate the efficiency of frequency domain filtering on CUDA, we implement three frequency domain filters, i.e., Butter worth, low-pass and Gaussian for processing different sizes of images on CPU and GPU respectively and perform the GPU vs. CPU benchmarks. The results presented in this paper show that the frequency domain filtering with CUDA achieves significant speed-up over the CPU processing in frequency domain with the same level of (output) image quality on both the processing architectures. (author)

  20. Performance-Based Technology Selection Filter description report. INEL Buried Waste Integrated Demonstration System Analysis project

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, M.C.; Morrison, J.L.; Morneau, R.A.; Rudin, M.J.; Richardson, J.G.

    1992-05-01

    A formal methodology has been developed for identifying technology gaps and assessing innovative or postulated technologies for inclusion in proposed Buried Waste Integrated Demonstration (BWID) remediation systems. Called the Performance-Based Technology Selection Filter, the methodology provides a formalized selection process where technologies and systems are rated and assessments made based on performance measures, and regulatory and technical requirements. The results are auditable, and can be validated with field data. This analysis methodology will be applied to the remedial action of transuranic contaminated waste pits and trenches buried at the Idaho National Engineering Laboratory (INEL).

  1. Preliminary studies to determine the shelf life of HEPA filters

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, H.; Fretthold, J.K.; Rainer, F. [Lawrence Livermore National Laboratory, CA (United States)] [and others

    1995-02-01

    We have completed a preliminary study using filter media tests and filter qualification tests to investigate the effect of shelf-life on HEPA filter performance. Our media studies showed that the tensile strength decreased with age, but the data were not sufficient to establish a shelf-life. Thermogravimetric analyses demonstrated that one manufacturer had media with low tensile strength due to insufficient binder. The filter qualification tests (heated air and overpressure) conducted on different aged filters showed that filter age is not the primary factor affecting filter performance; materials and the construction design have a greater effect. An unexpected finding of our study was that sub-standard HEPA filters have been installed in DOE facilities despite existing regulations and filter qualification tests. We found that the filter with low tensile strength failed the overpressure test. The same filter had passed the heated air test, but left the filter so structurally weak, it was prone to blow-out. We recommend that DOE initiate a filter qualification program to prevent this occurrence.

  2. Plasmonic coaxial Fabry-Pérot nanocavity color filter

    Science.gov (United States)

    Si, G. Y.; Leong, E. S. P.; Danner, A. J.; Teng, J. H.

    2010-08-01

    Plamonic coaxial structures have drawn considerable attetion recently because of their unique properties. They exhibit different mechanisms of extraordinary optical transmission observed from subwavelength holes and they can support localized Fabry-Pérot plasmon modes. In this work, we experimentally demonstrate color filters based on coaxial structures fabricated in optically thick metallic films. Using nanogaps with different apertures from 160 nm down to only 40 nm, we show varying color outputs when the annular aperture arrays are illuminated with a broadband light source. Effective color-filter function is demonstrated in the optical regime. Different color outputs are observed and optical spectra are measured. In such structures, it is the propagating mode playing an important role rather than the evanescent. Resonances depend strongly on ring apertures, enabling devices with tunability of output colors using simple geometry control.

  3. Flexible RF filter using a nonuniform SCISSOR.

    Science.gov (United States)

    Zhuang, Leimeng

    2016-03-15

    This work presents a flexible radiofrequency (RF) filter using an integrated microwave photonic circuit that comprises a nonuniform side-coupled integrated spaced sequence of resonators (N-SCISSOR). The filter passband can be reconfigured by varying the N-SCISSOR parameters. When employing a dual-parallel Mach-Zechnder modulator, the filter is also able to perform frequency down-conversion. In the experiment, various filter response shapes are shown, ranging from a flat-top band-pass filter to a total opposite high-rejection (>40  dB) notch filter, with a frequency coverage of greater than two octaves. The frequency down-conversion function is also demonstrated.

  4. Error Correction and Calibration of a Sun Protection Measurement System for Textile Fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Moss, A.R.L

    2000-07-01

    Clothing is increasingly being labelled with a Sun Protection Factor number which indicates the protection against sunburn provided by the textile fabric. This Factor is obtained by measuring the transmittance of samples of the fabric in the ultraviolet region (290-400 nm). The accuracy and hence the reliability of the label depends on the accuracy of the measurement. Some sun protection measurement systems quote a transmittance accuracy at 2%T of {+-} 1.5%T. This means a fabric classified under the Australian standard (AS/NZ 4399:1996) with an Ultraviolet Protection Factor (UPF) of 40 would have an uncertainty of +15 or -10. This would not allow classification to the nearest 5, and a UVR protection category of 'excellent protection' might in fact be only 'very good protection'. An accuracy of {+-}0.1%T is required to give a UPF uncertainty of {+-}2.5. The measurement system then does not contribute significantly to the error, and the problems are now limited to sample conditioning, position and consistency. A commercial sun protection measurement system has been developed by Camspec Ltd which used traceable neutral density filters and appropriate design to ensure high accuracy. The effects of small zero offsets are corrected and the effect of the reflectivity of the sample fabric on the integrating sphere efficiency is measured and corrected. Fabric orientation relative to the light patch is considered. Signal stability is ensured by means of a reference beam. Traceable filters also allow wavelength accuracy to be conveniently checked. (author)

  5. Error Correction and Calibration of a Sun Protection Measurement System for Textile Fabrics

    International Nuclear Information System (INIS)

    Moss, A.R.L.

    2000-01-01

    Clothing is increasingly being labelled with a Sun Protection Factor number which indicates the protection against sunburn provided by the textile fabric. This Factor is obtained by measuring the transmittance of samples of the fabric in the ultraviolet region (290-400 nm). The accuracy and hence the reliability of the label depends on the accuracy of the measurement. Some sun protection measurement systems quote a transmittance accuracy at 2%T of ± 1.5%T. This means a fabric classified under the Australian standard (AS/NZ 4399:1996) with an Ultraviolet Protection Factor (UPF) of 40 would have an uncertainty of +15 or -10. This would not allow classification to the nearest 5, and a UVR protection category of 'excellent protection' might in fact be only 'very good protection'. An accuracy of ±0.1%T is required to give a UPF uncertainty of ±2.5. The measurement system then does not contribute significantly to the error, and the problems are now limited to sample conditioning, position and consistency. A commercial sun protection measurement system has been developed by Camspec Ltd which used traceable neutral density filters and appropriate design to ensure high accuracy. The effects of small zero offsets are corrected and the effect of the reflectivity of the sample fabric on the integrating sphere efficiency is measured and corrected. Fabric orientation relative to the light patch is considered. Signal stability is ensured by means of a reference beam. Traceable filters also allow wavelength accuracy to be conveniently checked. (author)

  6. RAPID TRANSFER ALIGNMENT USING FEDERATED KALMAN FILTER

    Institute of Scientific and Technical Information of China (English)

    GUDong-qing; QINYong-yuan; PENGRong; LIXin

    2005-01-01

    The dimension number of the centralized Kalman filter (CKF) for the rapid transfer alignment (TA) is as high as 21 if the aircraft wing flexure motion is considered in the rapid TA. The 21-dimensional CKF brings the calculation burden on the computer and the difficulty to meet a high filtering updating rate desired by rapid TA. The federated Kalman filter (FKF) for the rapid TA is proposed to solve the dilemma. The structure and the algorithm of the FKF, which can perform parallel computation and has less calculation burden, are designed.The wing flexure motion is modeled, and then the 12-order velocity matching local filter and the 15-order attitud ematching local filter are devised. Simulation results show that the proposed EKE for the rapid TA almost has the same performance as the CKF. Thus the calculation burden of the proposed FKF for the rapid TA is markedly decreased.

  7. Input filter compensation for switching regulators

    Science.gov (United States)

    Lee, F. C.; Kelkar, S. S.

    1982-01-01

    The problems caused by the interaction between the input filter, output filter, and the control loop are discussed. The input filter design is made more complicated because of the need to avoid performance degradation and also stay within the weight and loss limitations. Conventional input filter design techniques are then dicussed. The concept of pole zero cancellation is reviewed; this concept is the basis for an approach to control the peaking of the output impedance of the input filter and thus mitigate some of the problems caused by the input filter. The proposed approach for control of the peaking of the output impedance of the input filter is to use a feedforward loop working in conjunction with feedback loops, thus forming a total state control scheme. The design of the feedforward loop for a buck regulator is described. A possible implementation of the feedforward loop design is suggested.

  8. Evaluation of HEPA filter service life

    International Nuclear Information System (INIS)

    Fretthold, J.K.; Stithem, A.R.

    1997-01-01

    Rocky Flats Environmental Technology Site (RFETS), has approximately 10,000 High Efficiency Particulate Air (HEPA) Filters installed in a variety of filter plenums. These ventilation/filtration plenum systems are used to control the release of airborne particulate contaminates to the environment during normal operations and potential accidents. This report summarizes the results of destructive and non-destructive tests on HEPA filters obtained from a wide variety of ages and service conditions. These tests were performed to determine an acceptable service life criteria for HEPA filters used at Rocky Flats Environmental Technology Site (RFETS). A total of 140 filters of various ages (1972 to 1996) and service history (new, aged unused, used) were tested. For the purpose of this report, filter age from manufacture date/initial test date to the current sample date was used, as opposed to the actual time a filter was installed in an operating system

  9. Designing H-shaped micromechanical filters

    International Nuclear Information System (INIS)

    Arhaug, O P; Soeraasen, O

    2006-01-01

    This paper investigates the design constraints and possibilities given when designing a micromechanical band pass filter for intermediate frequencies (e.g. 10 MHz). The class of filters are based on coupled clamped-clamped beams constituting an H-shaped structure. A primary beam can electrostatically be activated in one of its different harmonic modes, setting the filter center frequency. The motion is transferred to an accompanying beam of equal dimensions by a mechanical coupling beam. The placement or coupling points of the quarterwavelength coupling beam which connects the vertically resonating beams is critical with respect to the bandwidth of the filters. Of special concern has been to investigate realistic dimensions allowing the filters to be processed by an actual foundry process and to find out how the choice of materials and actual dimensions would affect the performance

  10. Long-Term Metal Retention Performance of Media Filter Drains for Stormwater Management

    Directory of Open Access Journals (Sweden)

    Agathe Thomas

    2015-03-01

    Full Text Available Stormwater runoff, a substantial source of nonpoint pollution, can be treated using Best Management Practices (BMPs, such as the Media Filter Drain (MFD. An MFD is a trench filled with an engineered media mix, usually with a grass overlay, that receives runoff from the paved roadway next to it. The MFD was shown to remove dissolved metals (zinc and copper, typical pollutants from vehicles and urban areas, which might negatively impact aquatic species in receiving waters, but its long-term effectiveness was not known. Existing media filter mixes of different ages were collected from two different sites in the Pacific Northwest of the United States. Columns made with these media mixes received concentrated copper and zinc loading to simulate accelerated aging for estimated total lifespans from 14 to 22 years of copper and zinc loading, with little or no decrease in sorption. Throughout the aging process, some columns were subjected to performance testing with higher levels of typical runoff concentrations and average concentration decreases from influent to effluent were found to be greater than 90% for both copper and zinc. Based on this study, the MFD’s lifespan for zinc and copper treatment is significantly greater than the initial ten-year estimate.

  11. Nonlinear filtering for LIDAR signal processing

    Directory of Open Access Journals (Sweden)

    D. G. Lainiotis

    1996-01-01

    Full Text Available LIDAR (Laser Integrated Radar is an engineering problem of great practical importance in environmental monitoring sciences. Signal processing for LIDAR applications involves highly nonlinear models and consequently nonlinear filtering. Optimal nonlinear filters, however, are practically unrealizable. In this paper, the Lainiotis's multi-model partitioning methodology and the related approximate but effective nonlinear filtering algorithms are reviewed and applied to LIDAR signal processing. Extensive simulation and performance evaluation of the multi-model partitioning approach and its application to LIDAR signal processing shows that the nonlinear partitioning methods are very effective and significantly superior to the nonlinear extended Kalman filter (EKF, which has been the standard nonlinear filter in past engineering applications.

  12. Investigation of the Dependences of the Attenuation Properties of Cryogenic Metal-Powder Filters on the Preparation Method

    Science.gov (United States)

    Lee, Sung Hoon; Lee, Soon-Gul

    2018-04-01

    We fabricated low-pass metal powder filters for use in low-noise measurements at cryogenic temperatures and investigated their attenuation characteristics for different wire-turn densities, metalpowder shapes, and preparation methods at frequencies up to 20 GHz. We used nominally 30-μmsized stainless-steel 304L powder and mixed it with low-temperature binders. The low-temperature binders used were Stycast 2850FT (Emerson and Cumming) with catalyst 23LV and GE-7031 varnish. A 0.1-mm insulated copper wire was wound on preformed powder-mixture bobbins in the shape of a circular rod and was encapsulated in metal tubes with the powder mixture. All the fabricated powder filters showed a large attenuation at high frequencies with a cut-off frequency near 1 GHz. For filters of the same wire length, a lower wiring density showed a larger attenuation, which implies that the amount of powder in close contact with the wire determines the attenuation. Filters made of a powder/varnish mixture showed significantly larger attenuations than those of a powder/stycast mixture, and the attenuation improved with increasing powder ratio in the mixture. The low-temperature thermal conductivities of a 2 : 1 powder/Stycast mixture and a 5 : 1 powder/varnish mixture showed similar values at temperatures up to 4.2 K.

  13. Moving Average Filter-Based Phase-Locked Loops: Performance Analysis and Design Guidelines

    DEFF Research Database (Denmark)

    Golestan, Saeed; Ramezani, Malek; Guerrero, Josep M.

    2014-01-01

    this challenge, incorporating moving average filter(s) (MAF) into the PLL structure has been proposed in some recent literature. A MAF is a linear-phase finite impulse response filter which can act as an ideal low-pass filter, if certain conditions hold. The main aim of this paper is to present the control...... design guidelines for a typical MAF-based PLL. The paper starts with the general description of MAFs. The main challenge associated with using the MAFs is then explained, and its possible solutions are discussed. The paper then proceeds with a brief overview of the different MAF-based PLLs. In each case......, the PLL block diagram description is shown, the advantages and limitations are briefly discussed, and the tuning approach (if available) is evaluated. The paper then presents two systematic methods to design the control parameters of a typical MAF-based PLL: one for the case of using a proportional...

  14. Development of nuclear standard filter elements for PWR plant

    International Nuclear Information System (INIS)

    Weng Minghui; Wu Jidong; Gu Xiuzhang; Zhang Jinghua

    1988-11-01

    Model FRX-5 and FRX-10 nuclear standard filter elements are used for the fluid clarification of the chemical and volume control system (CVCS), boron recycle system (BRS), spent fuel pit cooling system (SFPCS) and steam generator blowdown system (SGBS) in Qinshan Nuclear Power Plant. The radioactive contaminant, fragment of resin and impurity are collected by these filter elements, The core of filter elements consists of polypropylene frames and paper filter medium bonded by resin. A variety of filter papers are tested for optimization. The flow rate and comprehensive performance have been measured in the simulation condition. The results showed that the performance and lifetime have met the designing requirements. The advantages of the filter elements are simple in manufacturing, less expense and facilities for waste-disposal. At present, some of filter elements have been produced and put in operation

  15. On-Chip Hardware for Cell Monitoring: Contact Imaging and Notch Filtering

    Science.gov (United States)

    2005-07-07

    a polymer carrier. Spectrophotometer chosen and purchased for testing optical filters and materials. Characterization and comparison of fabricated...reproducibility of behavior. Multi-level SU8 process developed. Optimization of actuator for closing vial lids and development of lid sealing technology is...bending angles characterized as a function of temperature in NaDBS solution. " Photopatternable polymers are a viable interim packaging solution; through

  16. Two-dimensional filtering of SPECT images using the Metz and Wiener filters

    International Nuclear Information System (INIS)

    King, M.A.; Schwinger, R.B.; Penney, B.C.; Doherty, P.W.

    1984-01-01

    Presently, single photon emission computed tomographic (SPECT) images are usually reconstructed by arbitrarily selecting a one-dimensional ''window'' function for use in reconstruction. A better method would be to automatically choose among a family of two-dimensional image restoration filters in such a way as to produce ''optimum'' image quality. Two-dimensional image processing techniques offer the advantages of a larger statistical sampling of the data for better noise reduction, and two-dimensional image deconvolution to correct for blurring during acquisition. An investigation of two such ''optimal'' digital image restoration techniques (the count-dependent Metz filter and the Wiener filter) was made. They were applied both as two-dimensional ''window'' functions for preprocessing SPECT images, and for filtering reconstructed images. Their performance was compared by measuring image contrast and per cent fractional standard deviation (% FSD) in multiple-acquisitions of the Jaszczak SPECT phantom at two different count levels. A statistically significant increase in image contrast and decrease in % FSD was observed with these techniques when compared to the results of reconstruction with a ramp filter. The adaptability of the techniques was manifested in a lesser % reduction in % FSD at the high count level coupled with a greater enhancement in image contrast. Using an array processor, processing time was 0.2 sec per image for the Metz filter and 3 sec for the Wiener filter. It is concluded that two-dimensional digital image restoration with these techniques can produce a significant increase in SPECT image quality

  17. Filtration and retention capacities of filter aids

    International Nuclear Information System (INIS)

    Mellah, A.; Boualia, A.

    1992-01-01

    The present work involves the filtration of impure uranyl nitrate solutions by different filter aids such as kieselguhr, celite and bleaching clay. The retention of substances contained in uranyl nitrate solution was determined using the three filter aids. A study of the effects of granulometry and filter earths treatment (thermal and chemical) on the filtration rate was performed

  18. Zirconia based superhydrophobic coatings on cotton fabrics exhibiting excellent durability for versatile use

    Science.gov (United States)

    Das, Indranee; De, Goutam

    2015-01-01

    A fluorinated silyl functionalized zirconia was synthesized by the sol-gel method to fabricate an extremely durable superhydrophobic coating on cotton fabrics by simple immersion technique. The fabric surfaces firmly attached with the coating material through covalent bonding, possessed superhydrophobicity with high water contact angle ≈163 ± 1°, low hysteresis ≈3.5° and superoleophilicity. The coated fabrics were effective to separate oil/water mixture with a considerably high separation efficiency of 98.8 wt% through ordinary filtering. Presence of highly stable (chemically and mechanically) superhydrophobic zirconia bonded with cellulose makes such excellent water repelling ability of the fabrics durable under harsh environment conditions like high temperature, strong acidic or alkaline solutions, different organic solvents and mechanical forces including extensive washings. Moreover, these coated fabrics retained self-cleanable superhydrophobic property as well as high water separation efficiency even after several cycles, launderings and abrasions. Therefore, such robust superhydrophobic ZrO2 coated fabrics have strong potential for various industrial productions and uses. PMID:26678754

  19. Experimental investigation of in situ cleanable HEPA filter

    International Nuclear Information System (INIS)

    Adamson, D.J.

    1999-01-01

    The Westinghouse Savannah River Company located at the Savannah River Site (SRS) in Aiken, South Carolina is currently testing the feasibility of developing an in situ cleanable high efficiency particulate air (HEPA) filter system. Sintered metal filters are being tested for regenerability or cleanability in simulated conditions found in a high level waste (HLW) tank ventilation system. The filters are being challenged using materials found in HLW tanks. HLW simulated salt, HLW simulated sludge and South Carolina road dust. Various cleaning solutions have been used to clean the filters in situ. The tanks are equipped with a ventilation system to maintain the tank contents at negative pressure to prevent the release of radioactive material to the environment. This system is equipped with conventional disposable glass-fiber HEPA filter cartridges. Removal and disposal of these filters is not only costly, but subjects site personnel to radiation exposure and possible contamination. A test apparatus was designed to simulate the ventilation system of a HLW tank with an in situ cleaning system. Test results indicate that the Mott sintered metal HEPA filter is suitable as an in situ cleanable or regenerable HEPA filter. Data indicates that high humidity or water did not effect the filter performance and the sintered metal HEPA filter was easily cleaned numerous times back to new filter performance by an in situ spray system. The test apparatus allows the cleaning of the soiled HEPA filters to be accomplished without removing the filters from process. This innovative system would eliminate personnel radiation exposure associated with removal of contaminated filters and the high costs of filter replacement and disposal. The results of these investigations indicate that an in situ cleanable HEPA filter system for radioactive and commercial use could be developed and manufactured

  20. Sensory Pollution from Bag Filters, Carbon Filters and Combinations

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Clausen, Geo; Weschler, Charles J.

    2008-01-01

    by an upstream pre-filter (changed monthly), an EU7 filter protected by an upstream activated carbon (AC) filter, and EU7 filters with an AC filter either downstream or both upstream and downstream. In addition, two types of stand-alone combination filters were evaluated: a bag-type fiberglass filter...... that contained AC and a synthetic fiber cartridge filter that contained AC. Air that had passed through used filters was most acceptable for those sets in which an AC filter was used downstream of the particle filter. Comparable air quality was achieved with the stand-alone bag filter that contained AC...