WorldWideScience

Sample records for faah inhibitor urb597

  1. Lack of effect of chronic pre-treatment with the FAAH inhibitor URB597 on inflammatory pain behaviour: evidence for plastic changes in the endocannabinoid system

    Science.gov (United States)

    Okine, Bright N; Norris, Leonie M; Woodhams, Stephen; Burston, James; Patel, Annie; Alexander, Stephen PH; Barrett, David A; Kendall, David A; Bennett, Andrew J; Chapman, Victoria

    2012-01-01

    BACKGROUND AND PURPOSE Elevating levels of endocannabinoids with inhibitors of fatty acid amide hydrolase (FAAH) is a major focus of pain research, purported to be a safer approach devoid of cannabinoid receptor-mediated side effects. Here, we have determined the effects of sustained pharmacological inhibition of FAAH on inflammatory pain behaviour and if pharmacological inhibition of FAAH was as effective as genetic deletion of FAAH on pain behaviour. EXPERIMENTAL APPROACH Effects of pre-treatment with a single dose, versus 4 day repeated dosing with the selective FAAH inhibitor, URB597 (i.p. 0.3 mg·kg−1), on carrageenan-induced inflammatory pain behaviour and spinal pro-inflammatory gene induction were determined in rats. Effects of pain induction and of the drug treatments on levels of arachidonoyl ethanolamide (AEA), palmitoyl ethanolamide (PEA) and oleolyl ethanolamide (OEA) in the spinal cord were determined. KEY RESULTS Single, but not repeated, URB597 treatment significantly attenuated the development of inflammatory hyperalgesia (P < 0.001, vs. vehicle-treated animals). Neither mode of URB597 treatment altered levels of AEA, PEA and OEA in the hind paw, or carrageenan-induced paw oedema. Single URB597 treatment produced larger increases in AEA, PEA and OEA in the spinal cord, compared with those after repeated administration. Single and repeated URB597 treatment decreased levels of immunoreactive N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) in the spinal cord and attenuated carrageenan-induced spinal pro-inflammatory gene induction. CONCLUSION AND IMPLICATIONS Changes in the endocannabinoid system may contribute to the loss of analgesic effects following repeated administration of low dose URB597 in this model of inflammatory pain. PMID:22595021

  2. Crosstalk between liver antioxidant and the endocannabinoid systems after chronic administration of the FAAH inhibitor, URB597, to hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Biernacki, Michał; Łuczaj, Wojciech; Gęgotek, Agnieszka [Department of Analytical Chemistry Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok (Poland); Toczek, Marek [Department of Experimental Physiology and Pathophysiology Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok (Poland); Bielawska, Katarzyna [Department of Analytical Chemistry Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok (Poland); Skrzydlewska, Elżbieta, E-mail: elzbieta.skrzydlewska@umb.edu.pl [Department of Analytical Chemistry Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok (Poland)

    2016-06-15

    Hypertension is accompanied by perturbations to the endocannabinoid and antioxidant systems. Thus, potential pharmacological treatments for hypertension should be examined as modulators of these two metabolic systems. The aim of this study was to evaluate the effects of chronic administration of the fatty acid amide hydrolase (FAAH) inhibitor [3-(3-carbamoylphenyl)phenyl]N-cyclohexylcarbamate (URB597) on the endocannabinoid system and on the redox balance in the livers of DOCA-salt hypertensive rats. Hypertension caused an increase in the levels of endocannabinoids [anandamide (AEA), 2-arachidonoyl-glycerol (2-AG) and N-arachidonoyl-dopamine (NADA)] and CB{sub 1} receptor and the activities of FAAH and monoacylglycerol lipase (MAGL). These effects were accompanied by an increase in the level of reactive oxygen species (ROS), a decrease in antioxidant activity/level, enhanced expression of transcription factor Nrf2 and changes to Nrf2 activators and inhibitors. Moreover, significant increases in lipid, DNA and protein oxidative modifications, which led to enhanced levels of proapoptotic caspases, were also observed. URB597 administration to the hypertensive rats resulted in additional increases in the levels of AEA, NADA and the CB{sub 1} receptor, as well as decreases in vitamin E and C levels, glutathione peroxidase and glutathione reductase activities and Nrf2 expression. Thus, after URB597 administration, oxidative modifications of cellular components were increased, while the inflammatory response was reduced. This study revealed that chronic treatment of hypertensive rats with URB597 disrupts the endocannabinoid system, which causes an imbalance in redox status. This imbalance increases the levels of electrophilic lipid peroxidation products, which later participate in metabolic disturbances in liver homeostasis. - Highlights: • Chronic administration of URB597 to hypertensive rats reduces liver inflammation. • URB597 enhances the redox imbalance in the

  3. Crosstalk between liver antioxidant and the endocannabinoid systems after chronic administration of the FAAH inhibitor, URB597, to hypertensive rats

    International Nuclear Information System (INIS)

    Biernacki, Michał; Łuczaj, Wojciech; Gęgotek, Agnieszka; Toczek, Marek; Bielawska, Katarzyna; Skrzydlewska, Elżbieta

    2016-01-01

    Hypertension is accompanied by perturbations to the endocannabinoid and antioxidant systems. Thus, potential pharmacological treatments for hypertension should be examined as modulators of these two metabolic systems. The aim of this study was to evaluate the effects of chronic administration of the fatty acid amide hydrolase (FAAH) inhibitor [3-(3-carbamoylphenyl)phenyl]N-cyclohexylcarbamate (URB597) on the endocannabinoid system and on the redox balance in the livers of DOCA-salt hypertensive rats. Hypertension caused an increase in the levels of endocannabinoids [anandamide (AEA), 2-arachidonoyl-glycerol (2-AG) and N-arachidonoyl-dopamine (NADA)] and CB 1 receptor and the activities of FAAH and monoacylglycerol lipase (MAGL). These effects were accompanied by an increase in the level of reactive oxygen species (ROS), a decrease in antioxidant activity/level, enhanced expression of transcription factor Nrf2 and changes to Nrf2 activators and inhibitors. Moreover, significant increases in lipid, DNA and protein oxidative modifications, which led to enhanced levels of proapoptotic caspases, were also observed. URB597 administration to the hypertensive rats resulted in additional increases in the levels of AEA, NADA and the CB 1 receptor, as well as decreases in vitamin E and C levels, glutathione peroxidase and glutathione reductase activities and Nrf2 expression. Thus, after URB597 administration, oxidative modifications of cellular components were increased, while the inflammatory response was reduced. This study revealed that chronic treatment of hypertensive rats with URB597 disrupts the endocannabinoid system, which causes an imbalance in redox status. This imbalance increases the levels of electrophilic lipid peroxidation products, which later participate in metabolic disturbances in liver homeostasis. - Highlights: • Chronic administration of URB597 to hypertensive rats reduces liver inflammation. • URB597 enhances the redox imbalance in the liver of

  4. The association of N-palmitoylethanolamine with the FAAH inhibitor URB597 impairs melanoma growth through a supra-additive action

    International Nuclear Information System (INIS)

    Hamtiaux, Laurie; Masquelier, Julien; Muccioli, Giulio G; Bouzin, Caroline; Feron, Olivier; Gallez, Bernard; Lambert, Didier M

    2012-01-01

    The incidence of melanoma is considerably increasing worldwide. Frequent failing of classical treatments led to development of novel therapeutic strategies aiming at managing advanced forms of this skin cancer. Additionally, the implication of the endocannabinoid system in malignancy is actively investigated. We investigated the cytotoxicity of endocannabinoids and their hydrolysis inhibitors on the murine B16 melanoma cell line using a MTT test. Enzyme and receptor expression was measured by RT-PCR and enzymatic degradation of endocannabinoids using radiolabeled substrates. Cell death was assessed by Annexin-V/Propidium iodine staining. Tumors were induced in C57BL/6 mice by s.c. flank injection of B16 melanoma cells. Mice were injected i.p. for six days with vehicle or treatment, and tumor size was measured each day and weighted at the end of the treatment. Haematoxylin-Eosin staining and TUNEL assay were performed to quantify necrosis and apoptosis in the tumor and endocannabinoid levels were quantified by HPLC-MS. Tube formation assay and CD31 immunostaining were used to evaluate the antiangiogenic effects of the treatments. The N-arachidonoylethanolamine (anandamide, AEA), 2-arachidonoylglycerol and N- palmitoylethanolamine (PEA) reduced viability of B16 cells. The association of PEA with the fatty acid amide hydrolase (FAAH) inhibitor URB597 considerably reduced cell viability consequently to an inhibition of PEA hydrolysis and an increase of PEA levels. The increase of cell death observed with this combination of molecules was confirmed in vivo where only co-treatment with both PEA and URB597 led to decreased melanoma progression. The antiproliferative action of the treatment was associated with an elevation of PEA levels and larger necrotic regions in the tumor. This study suggests the interest of targeting the endocannabinoid system in the management of skin cancer and underlines the advantage of associating endocannabinoids with enzymatic hydrolysis

  5. The association of N-palmitoylethanolamine with the FAAH inhibitor URB597 impairs melanoma growth through a supra-additive action

    Directory of Open Access Journals (Sweden)

    Hamtiaux Laurie

    2012-03-01

    Full Text Available Abstract Background The incidence of melanoma is considerably increasing worldwide. Frequent failing of classical treatments led to development of novel therapeutic strategies aiming at managing advanced forms of this skin cancer. Additionally, the implication of the endocannabinoid system in malignancy is actively investigated. Methods We investigated the cytotoxicity of endocannabinoids and their hydrolysis inhibitors on the murine B16 melanoma cell line using a MTT test. Enzyme and receptor expression was measured by RT-PCR and enzymatic degradation of endocannabinoids using radiolabeled substrates. Cell death was assessed by Annexin-V/Propidium iodine staining. Tumors were induced in C57BL/6 mice by s.c. flank injection of B16 melanoma cells. Mice were injected i.p. for six days with vehicle or treatment, and tumor size was measured each day and weighted at the end of the treatment. Haematoxylin-Eosin staining and TUNEL assay were performed to quantify necrosis and apoptosis in the tumor and endocannabinoid levels were quantified by HPLC-MS. Tube formation assay and CD31 immunostaining were used to evaluate the antiangiogenic effects of the treatments. Results The N-arachidonoylethanolamine (anandamide, AEA, 2-arachidonoylglycerol and N- palmitoylethanolamine (PEA reduced viability of B16 cells. The association of PEA with the fatty acid amide hydrolase (FAAH inhibitor URB597 considerably reduced cell viability consequently to an inhibition of PEA hydrolysis and an increase of PEA levels. The increase of cell death observed with this combination of molecules was confirmed in vivo where only co-treatment with both PEA and URB597 led to decreased melanoma progression. The antiproliferative action of the treatment was associated with an elevation of PEA levels and larger necrotic regions in the tumor. Conclusions This study suggests the interest of targeting the endocannabinoid system in the management of skin cancer and underlines the

  6. Redox system and phospholipid metabolism in the kidney of hypertensive rats after FAAH inhibitor URB597 administration

    Directory of Open Access Journals (Sweden)

    Michał Biernacki

    2018-05-01

    In conclusion, because URB597 disturbed the kidney redox system and phospholipid ROS-dependent and enzymatic-dependent metabolism, the administration of this inhibitor may enhance kidney disorders depending on model of hypertension, but may also cause kidney disturbances in control rats. Therefore, further studies are warranted.

  7. Effects of URB597 as an inhibitor of fatty acid amide hydrolase on WIN55, 212-2-induced learning and memory deficits in rats.

    Science.gov (United States)

    Hasanein, Parisa; Teimuri Far, Massoud

    2015-04-01

    Cannabinoid and endocannabinoid systems have been implicated in several physiological functions including modulation of cognition. In this study we evaluated the effects and interaction between fatty-acid amide hydrolase (FAAH) inhibitor URB597 and CB1 receptor agonist WIN55, 212-2 on memory using object recognition and passive avoidance learning (PAL) tests. Learning and memory impairment was induced by WIN 55, 212-2 administration (1mg/kg, i.p.) 30min before the acquisition trial. URB597 (0.1, 0.3 and 1mg/kg, i.p.) or SR141716A (1mg/kg, i.p.) was injected to rats 10min before WIN 55, 212-2 or URB597 respectively. URB597 (0.3 and 1mg/kg) but not 0.1mg/kg induced higher discrimination index (DI) in object recognition test and enhanced memory acquisition in PAL test. The cognitive enhancing effect of URB597 was blocked by a CB1 receptor antagonist, SR141716A which at this dose alone had no effect on cognition. WIN55, 212-2 caused cognition deficits in both tests. URB597 (0.3 and 1mg/kg) treatment could alleviate the negative influence of WIN 55, 212-2 on cognition and memory. These results indicate URB597 potential to protect against memory deficits induced by cannabinoid. Therefore, in combination with URB597 beneficial effects, this study suggests that URB597 has recognition and acquisition memory enhancing effects. It may also constitute a novel approach for the treatment of cannabinoid induced memory deficits and lead to a better understanding of the brain mechanisms underlying cognition. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. The fatty acid amide hydrolase inhibitor URB597 exerts anti-inflammatory effects in hippocampus of aged rats and restores an age-related deficit in long-term potentiation

    Directory of Open Access Journals (Sweden)

    Murphy Niamh

    2012-04-01

    Full Text Available Abstract Background Several factors contribute to the deterioration in synaptic plasticity which accompanies age and one of these is neuroinflammation. This is characterized by increased microglial activation associated with increased production of proinflammatory cytokines like interleukin-1β (IL-1β. In aged rats these neuroinflammatory changes are associated with a decreased ability of animals to sustain long-term potentiation (LTP in the dentate gyrus. Importantly, treatment of aged rats with agents which possess anti-inflammatory properties to decrease microglial activation, improves LTP. It is known that endocannabinoids, such as anandamide (AEA, have anti-inflammatory properties and therefore have the potential to decrease the age-related microglial activation. However, endocannabinoids are extremely labile and are hydrolyzed quickly after production. Here we investigated the possibility that inhibiting the degradation of endocannabinoids with the fatty acid amide hydrolase (FAAH inhibitor, URB597, could ameliorate age-related increases in microglial activation and the associated decrease in LTP. Methods Young and aged rats received subcutaneous injections of the FAAH inhibitor URB597 every second day and controls which received subcutaneous injections of 30% DMSO-saline every second day for 28 days. Long-term potentiation was recorded on day 28 and the animals were sacrificed. Brain tissue was analyzed for markers of microglial activation by PCR and for levels of endocannabinoids by liquid chromatography coupled to tandem mass spectrometry. Results The data indicate that expression of markers of microglial activation, MHCII, and CD68 mRNA, were increased in the hippocampus of aged, compared with young, rats and that these changes were associated with increased expression of the proinflammatory cytokines interleukin (IL-1β and tumor necrosis factor-α (TNFα which were attenuated by treatment with URB597. Coupled with these changes, we

  9. Interactions between environmental aversiveness and the anxiolytic effects of enhanced cannabinoid signaling by FAAH inhibition in rats.

    Science.gov (United States)

    Haller, J; Barna, I; Barsvari, B; Gyimesi Pelczer, K; Yasar, S; Panlilio, L V; Goldberg, S

    2009-07-01

    Since the discovery of endogenous cannabinoid signaling, the number of studies exploring its role in health and disease has increased exponentially. Fatty acid amide hydrolase (FAAH), the enzyme responsible for degradation of the endocannabinoid anandamide, has emerged as a promising target for anxiety-related disorders. FAAH inhibitors (e.g., URB597) increase brain levels of anandamide and induce anxiolytic-like effects in rodents. Recent findings, however, questioned the efficacy of URB597 as an anxiolytic. We tested here the hypothesis that conflicting findings are due to variations in the stressfulness of experimental conditions employed in various studies. We found that URB597 (0.1-0.3 mg/kg) did not produce anxiolytic effects when the aversiveness of testing procedures was minimized by handling rats daily before experimentation, by habituating them to the experimental room, or by employing low illumination during testing. In contrast, URB597 had robust anxiolytic effects when the aversiveness of the testing environment was increased by eliminating habituation to the experimental room or by employing bright lighting conditions. Unlike URB597, the benzodiazepine chlordiazepoxide (5 mg/kg) had anxiolytic effects under all testing conditions. The anxiolytic effects of URB597 were abolished by the cannabinoid CB1-receptor antagonist AM251, showing that they were mediated by CB1 receptors. Close inspection of experimental conditions employed in earlier reports suggests that conflicting findings with URB597 can be explained by different testing conditions, such as those manipulated in the present study. Our findings show that FAAH inhibition does not affect anxiety under mildly stressful circumstances but protects against the anxiogenic effects of aversive stimuli.

  10. The influence of DOCA-salt hypertension and chronic administration of the FAAH inhibitor URB597 on KCa2.3/KCa3.1-EDH-type relaxation in rat small mesenteric arteries.

    Science.gov (United States)

    Kloza, Monika; Baranowska-Kuczko, Marta; Malinowska, Barbara; Karpińska, Olga; Harasim-Symbor, Ewa; Kasacka, Irena; Kozłowska, Hanna

    2017-12-01

    The aim of this study was to examine the influence of deoxycorticosterone acetate-salt (DOCA-salt) hypertension and chronic treatment with the fatty acid amide hydrolase inhibitor, URB597, on small and intermediate conductance calcium-activated potassium channels and endothelium-dependent hyperpolarization (K Ca 2.3/K Ca 3.1-EDH) in rat small mesenteric arteries (sMAs). The EDH-type response was investigated, in endothelium-intact sMAs using a wire myograph, by examining acetylcholine-evoked vasorelaxation in the presence of N ω -nitro-L-arginine methyl ester and indomethacin (inhibitors of nitric oxide synthase and cyclooxygenase, respectively). In normo- and hypertension the efficacy of EDH-type relaxation was similar and inhibition of K Ca 2.3 and K Ca 3.1 by UCL1684 and TRAM-34, respectively, given alone or in combination, attenuated EDH-mediated vasorelaxation. K Ca 3.1 expression and NS309 (K Ca 2.3/K Ca 3.1 activator)-induced relaxation was reduced in sMAs of DOCA-salt rats. Endothelium denudation and incubation with UCL1684 and TRAM-34 attenuated the maximal NS309-evoked vasorelaxation in both groups. URB597 had no effect in functional studies, but increased the expression of K Ca 3.1 in the sMAs. K Ca 2.3/K Ca 3.1-EDH-mediated relaxation was maintained in the sMAs of DOCA-salt rats despite endothelial dysfunction and down-regulation of K Ca 3.1. Furthermore, K Ca 3.1 played a key role in the EDH-type dilator response of sMAs in normo- and hypertension. The hypotensive effect of URB597 is independent of K Ca 2.3/K Ca 3.1-EDH-type relaxation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Fatty acid amide hydrolase inhibition heightens anandamide signaling without producing reinforcing effects in primates

    Science.gov (United States)

    Justinova, Zuzana; Mangieri, Regina A.; Bortolato, Marco; Chefer, Svetlana I.; Mukhin, Alexey G.; Clapper, Jason R.; King, Alvin R.; Redhi, Godfrey H.; Yasar, Sevil; Piomelli, Daniele; Goldberg, Steven R.

    2008-01-01

    Background CB1 cannabinoid receptors in the brain are known to participate in the regulation of reward-based behaviors, however, the contribution of each of the endocannabinoid transmitters, anandamide and 2-arachidonoylglycerol (2-AG), to these behaviors remains undefined. To address this question, we assessed the effects of URB597, a selective anandamide deactivation inhibitor, as a reinforcer of drug-seeking and drug-taking behavior in squirrel monkeys. Methods We investigated the reinforcing effects of the fatty acid amide hydrolase (FAAH) inhibitor URB597 in monkeys trained to intravenously self-administer Δ9-tetrahydrocannabinol (THC), anandamide or cocaine, and quantified brain endocannabinoid levels using liquid chromatography/mass spectrometry. We measured brain FAAH activity using an ex vivo enzyme assay. Results URB597 (0.3 mg/kg, intravenous) blocked FAAH activity and increased anandamide levels throughout the monkey brain. This effect was accompanied by a marked compensatory decrease in 2-AG levels. Monkeys did not self-administer URB597 and the drug did not promote reinstatement of extinguished drug-seeking behavior previously maintained by THC, anandamide, or cocaine. Pretreatment with URB597 did not modify self-administration of THC or cocaine even though, as expected, it significantly potentiated anandamide self-administration. Conclusions In the monkey brain, the FAAH inhibitor URB597 increases anandamide levels while causing a compensatory down-regulation in 2-AG levels. These effects are accompanied by a striking lack of reinforcing properties, which distinguishes URB597 from direct-acting cannabinoid agonists such as THC. Our results reveal an unexpected functional heterogeneity within the endocannabinoid signaling system, and suggest that FAAH inhibitors might be used therapeutically without risk of abuse or triggering of relapse to drug abuse. PMID:18814866

  12. Distinct neuronal activation patterns are associated with PCP-induced social withdrawal and its reversal by the endocannabinoid-enhancing drug URB597.

    Science.gov (United States)

    Matricon, Julien; Seillier, Alexandre; Giuffrida, Andrea

    2016-09-01

    The fatty acid amide hydrolase inhibitor, URB597, an endocannabinoid enhancing drug, reverses social withdrawal in the sub-chronic PCP rat model of schizophrenia, but reduces social interaction (SI) in controls. To identify the anatomical substrates associated with PCP-induced social withdrawal and the contrasting effects of URB597 on SI in PCP- versus saline-treated rats, we analyzed SI-induced c-Fos expression in 28 brain areas relevant to schizophrenia and/or social behavior following vehicle or URB597 administration. In saline-treated rats, SI was accompanied by changes in c-Fos expression in the infralimbic and orbitofrontal cortices, dorsomedial caudate putamen, ventrolateral nucleus of the septum, dorsolateral periaqueductal gray (dlPAG) and central amygdala. Except for the dlPAG, these changes were not observed in PCP-treated rats or in saline-treated rats receiving URB597. In the dorsomedial part of the bed nucleus of the stria terminalis (dmBNST), SI-induced c-Fos expression was observed only in PCP-treated rats. Interestingly, URB597 in PCP-treated rats restored a similar c-Fos expression pattern as observed in saline-treated rats: activation of the orbitofrontal cortex, inhibition of the central amygdala and suppression of activation of the dmBNST. These data suggest that orbitofrontal cortex, central amygdala and dmBNST play a critical role in the reversal of PCP-induced social withdrawal by URB597. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  13. The cannabinoid transporter inhibitor OMDM-2 reduces social interaction: Further evidence for transporter-mediated endocannabinoid release.

    Science.gov (United States)

    Seillier, Alexandre; Giuffrida, Andrea

    2018-03-01

    Experimental evidence suggests that the transport of endocannabinoids might work bi-directionally. Accordingly, it is possible that pharmacological blockade of the latter affects not only the re-uptake, but also the release of endocannabinoids, thus preventing them from stimulating CB 1 receptors. We used biochemical, pharmacological, and behavioral approaches to investigate the effects of the transporter inhibitor OMDM-2 on social interaction, a behavioral assay that requires activation of CB 1 receptors. The underlying mechanisms of OMDM-2 were compared with those of the Fatty Acid Amide Hydrolase (FAAH) inhibitor URB597. Systemic administration of OMDM-2 reduced social interaction, but in contrast to URB597-induced social deficit, this effect was not reversed by the TRPV1 antagonist capsazepine. The CB 1 antagonist AM251, which did not affect URB597-induced social withdrawal, exacerbated OMDM-2 effect. In addition, the potent CB 1 agonist CP55,940 reversed OMDM-2-, but not URB597-, induced social withdrawal. Blockade of CB 1 receptor by AM251 reduced social interaction and the cholecystokinin CCK2 antagonist LY225910 reversed this effect. Similarly, OMDM-2-induced social withdrawal was reversed by LY225910, whereas URB597 effect was not. Elevation of endocannabinoid levels by URB597 or JZL184, an inhibitor of 2-AG degradation, failed to reverse OMDM-2-induced social withdrawal, and did not show additive effects on cannabinoid measurements when co-administered with OMDM-2. Taken together, these findings indicate that OMDM-2 impaired social interaction in a manner that is consistent with reduced activation of presynaptic CB 1 receptors. As cannabinoid reuptake inhibitors may impair endocannabinoid release, caution should be taken when using these drugs to enhance endocannabinoid tone in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. [11C]CURB: Evaluation of a novel radiotracer for imaging fatty acid amide hydrolase by positron emission tomography

    International Nuclear Information System (INIS)

    Wilson, Alan A.; Garcia, Armando; Parkes, Jun; Houle, Sylvain; Tong, Junchao; Vasdev, Neil

    2011-01-01

    Introduction: Fatty acid amide hydrolase (FAAH) is the enzyme responsible for metabolising the endogenous cannabinoid, anandamide, and thus represents an important target for molecular imaging. To date, no radiotracer has been shown to be useful for imaging of FAAH using either positron emission tomography (PET) or single photon emission computed tomography (SPECT). We here determine the suitability of a novel carbon-11-labeled inhibitor of FAAH via ex vivo biodistribution studies in rat brain in conjunction with pharmacological challenges. Methods: A potent irreversible inhibitor of FAAH, URB694, radiolabeled with carbon-11 in the carbonyl position ([ 11 C]CURB), was administered to male rats via tail-vein injection. Rats were sacrificed at various time points postinjection, and tissue samples were dissected, counted and weighed. Specific binding to FAAH was investigated by pretreatment of animals with URB694 or URB597. For metabolism and mechanism of binding studies, whole brains were excised post-radiotracer injection, homogenised and extracted exhaustively with 80% aq. acetonitrile to determine the time course and fraction of radioactivity that was irreversibly bound to brain parenchyma. Results: Upon intravenous injection into rats, [ 11 C]CURB showed high brain uptake [standard uptake value (SUV) of 1.6-2.4 at 5 min] with little washout over time, which is characteristic of irreversible binding. Highest uptake of radioactivity was seen in the cortex, intermediate in the cerebellum and lowest in the hypothalamus, reflecting the reported distribution of FAAH. Brain uptake of radioactivity was decreased in a dose-dependent manner by pretreatment with increasing amounts of URB694, demonstrating that binding was saturable. Pretreatment with the well-characterised FAAH inhibitor, URB597, reduced binding in all brain regions by 70-80%. Homogenised brain extraction experiments demonstrated unequivocally that [ 11 C]CURB was irreversibly bound to FAAH. Conclusions

  15. [{sup 11}C]CURB: Evaluation of a novel radiotracer for imaging fatty acid amide hydrolase by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Alan A., E-mail: alan.wilson@camhpet.c [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Garcia, Armando; Parkes, Jun [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Houle, Sylvain [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Tong, Junchao [Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8 (Canada); Vasdev, Neil [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada)

    2011-02-15

    Introduction: Fatty acid amide hydrolase (FAAH) is the enzyme responsible for metabolising the endogenous cannabinoid, anandamide, and thus represents an important target for molecular imaging. To date, no radiotracer has been shown to be useful for imaging of FAAH using either positron emission tomography (PET) or single photon emission computed tomography (SPECT). We here determine the suitability of a novel carbon-11-labeled inhibitor of FAAH via ex vivo biodistribution studies in rat brain in conjunction with pharmacological challenges. Methods: A potent irreversible inhibitor of FAAH, URB694, radiolabeled with carbon-11 in the carbonyl position ([{sup 11}C]CURB), was administered to male rats via tail-vein injection. Rats were sacrificed at various time points postinjection, and tissue samples were dissected, counted and weighed. Specific binding to FAAH was investigated by pretreatment of animals with URB694 or URB597. For metabolism and mechanism of binding studies, whole brains were excised post-radiotracer injection, homogenised and extracted exhaustively with 80% aq. acetonitrile to determine the time course and fraction of radioactivity that was irreversibly bound to brain parenchyma. Results: Upon intravenous injection into rats, [{sup 11}C]CURB showed high brain uptake [standard uptake value (SUV) of 1.6-2.4 at 5 min] with little washout over time, which is characteristic of irreversible binding. Highest uptake of radioactivity was seen in the cortex, intermediate in the cerebellum and lowest in the hypothalamus, reflecting the reported distribution of FAAH. Brain uptake of radioactivity was decreased in a dose-dependent manner by pretreatment with increasing amounts of URB694, demonstrating that binding was saturable. Pretreatment with the well-characterised FAAH inhibitor, URB597, reduced binding in all brain regions by 70-80%. Homogenised brain extraction experiments demonstrated unequivocally that [{sup 11}C]CURB was irreversibly bound to FAAH

  16. Binge Alcohol Exposure Transiently Changes the Endocannabinoid System: A Potential Target to Prevent Alcohol-Induced Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Daniel J. Liput

    2017-11-01

    Full Text Available Excessive alcohol consumption leads to neurodegeneration, which contributes to cognitive decline that is associated with alcohol use disorders (AUDs. The endocannabinoid system has been implicated in the development of AUDs, but little is known about how the neurotoxic effects of alcohol impact the endocannabinoid system. Therefore, the current study investigated the effects of neurotoxic, binge-like alcohol exposure on components of the endocannabinoid system and related N-acylethanolamines (NAEs, and then evaluated the efficacy of fatty acid amide hydrolase (FAAH inhibition on attenuating alcohol-induced neurodegeneration. Male rats were administered alcohol according to a binge model, which resulted in a transient decrease in [3H]-CP-55,940 binding in the entorhinal cortex and hippocampus following two days, but not four days, of treatment. Furthermore, binge alcohol treatment did not change the tissue content of the three NAEs quantified, including the endocannabinoid and anandamide. In a separate study, the FAAH inhibitor, URB597 was administered to rats during alcohol treatment and neuroprotection was assessed by FluoroJade B (FJB staining. The administration of URB597 during binge treatment did not significantly reduce FJB+ cells in the entorhinal cortex or hippocampus, however, a follow up “target engagement” study found that NAE augmentation by URB597 was impaired in alcohol intoxicated rats. Thus, potential alcohol induced alterations in URB597 pharmacodynamics may have contributed to the lack of neuroprotection by FAAH inhibition.

  17. Effect of inhibition of fatty acid amide hydrolase on MPTP-induced dopaminergic neuronal damage.

    Science.gov (United States)

    Viveros-Paredes, J M; Gonzalez-Castañeda, R E; Escalante-Castañeda, A; Tejeda-Martínez, A R; Castañeda-Achutiguí, F; Flores-Soto, M E

    2017-01-16

    Parkinson's disease (PD) is a neurodegenerative disorder characterised by balance problems, muscle rigidity, and slow movement due to low dopamine levels and loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The endocannabinoid system is known to modulate the nigrostriatal pathway through endogenous ligands such as anandamide (AEA), which is hydrolysed by fatty acid amide hydrolase (FAAH). The purpose of this study was to increase AEA levels using FAAH inhibitor URB597 to evaluate the modulatory effect of AEA on dopaminergic neuronal death induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our study included 4 experimental groups (n = 6 mice per group): a control group receiving no treatment, a group receiving URB597 (0.2mg/kg) every 3 days for 30 days, a group treated with MPTP (30mg/kg) for 5 days, and a group receiving URB597 and subsequently MPTP injections. Three days after the last dose, we conducted a series of behavioural tests (beam test, pole test, and stride length test) to compare motor coordination between groups. We subsequently analysed immunoreactivity of dopaminergic cells and microglia in the SNpc and striatum. Mice treated with URB597 plus MPTP were found to perform better on behavioural tests than mice receiving MPTP only. According to the immunohistochemistry study, mice receiving MPTP showed fewer dopaminergic cells and fibres in the SNpc and striatum. Animals treated with URB597 plus MPTP displayed increased tyrosine hydroxylase immunoreactivity compared to those treated with MPTP only. Regarding microglial immunoreactivity, the group receiving MPTP showed higher Iba1 immunoreactivity in the striatum and SNpc than did the group treated with URB597 plus MPTP. Our results show that URB597 exerts a protective effect since it inhibits dopaminergic neuronal death, decreases microglial immunoreactivity, and improves MPTP-induced motor alterations. Copyright © 2016 Sociedad Española de Neurología. Publicado

  18. Effects of centrally administered endocannabinoids and opioids on orofacial pain perception in rats.

    Science.gov (United States)

    Zubrzycki, Marek; Janecka, Anna; Liebold, Andreas; Ziegler, Mechthild; Zubrzycka, Maria

    2017-11-01

    Endocannabinoids and opioids play a vital role in mediating pain-induced analgesia. The specific effects of these compounds within the orofacial region are largely unknown. In this study, we tried to determine whether an increase in cannabinoid and opioid concentration in the CSF affects impulse transmission between the motor centres localized in the vicinity of the third and fourth cerebral ventricles. The study objectives were realized on rats using a method that allows the recording of the amplitude of evoked tongue jerks (ETJ) in response to noxious tooth pulp stimulation. The amplitude of ETJ was a measure of the effect of neurotransmitters on neural structures. Perfusion of cerebral ventricles with anandamide (AEA), endomorphin-2 (EM-2), URB597, an inhibitor of fatty acid amide hydrolase (FAAH) and JZL195, a dual inhibitor of FAAH and monoacylglycerol lipase (MAGL) reduced the ETJ amplitude. The antinociceptive effect of AEA, EM-2, URB597 and JZL195 was blocked by CB 1 receptor antagonist, AM251 and by μ receptor-antagonist, β-funaltrexamine. In contrast to AEA, 2-arachidonoylglycerol alone did not decrease ETJ amplitude. We demonstrated that in the orofacial area, analgesic activity is modulated by AEA and that EM-2-induced antinociception was mediated by μ and CB 1 receptors. The action of AEA and EM-2 is tightly regulated by FAAH and FAAH/MAGL, by preventing the breakdown of endogenous cannabinoids in regions where they are produced on demand. Therefore, the current findings support the therapeutic potential of FAAH and FAAH/MAGL inhibitors as novel pharmacotherapeutic agents for orofacial pain. © 2017 The British Pharmacological Society.

  19. Synthesis and preclinical evaluation of [11C-carbonyl]PF-04457845 for neuroimaging of fatty acid amide hydrolase

    International Nuclear Information System (INIS)

    Hicks, Justin W.; Parkes, Jun; Sadovski, Oleg; Tong, Junchao; Houle, Sylvain; Vasdev, Neil; Wilson, Alan A.

    2013-01-01

    Introduction: Fatty acid amide hydrolase (FAAH) has a significant role in regulating endocannabinoid signaling in the central nervous system. As such, FAAH inhibitors are being actively sought for pain, addiction, and other indications. This has led to the recent pursuit of positron emission tomography (PET) radiotracers targeting FAAH. We report herein the preparation and preclinical evaluation of [ 11 C-carbonyl]PF-04457845, an isotopologue of the potent irreversible FAAH inhibitor. Methods: PF-04457845 was radiolabeled at the carbonyl position via automated [ 11 C]CO 2 -fixation. Ex vivo brain biodistribution of [ 11 C-carbonyl]PF-04457845 was carried out in conscious rats. Specificity was determined by pre-administration of PF-04457845 or URB597 prior to [ 11 C-carbonyl]PF-04457845. In a separate experiment, rats injected with the title radiotracer had whole brains excised, homogenized and extracted to examine irreversible binding to brain parenchyma. Results: The title compound was prepared in 5 ± 1% (n = 4) isolated radiochemical yield based on starting [ 11 C]CO 2 (decay uncorrected) within 25 min from end-of-bombardment in > 98% radiochemical purity and a specific activity of 73.5 ± 8.2 GBq/μmol at end-of-synthesis. Uptake of [ 11 C-carbonyl]PF-04457845 into the rat brain was high (range of 1.2–4.4 SUV), heterogeneous, and in accordance with reported FAAH distribution. Saturable binding was demonstrated by a dose-dependent reduction in brain radioactivity uptake following pre-treatment with PF-04457845. Pre-treatment with the prototypical FAAH inhibitor, URB597, reduced the brain radiotracer uptake in all regions by 71–81%, demonstrating specificity for FAAH. The binding of [ 11 C-carbonyl]PF-04457845 to FAAH at 40 min post injection was irreversible as 98% of the radioactivity in the brain could not be extracted. Conclusions: [ 11 C-carbonyl]PF-04457845 was rapidly synthesized via an automated radiosynthesis. Ex vivo biodistribution studies in

  20. Elevation of endogenous anandamide impairs LTP, learning, and memory through CB1 receptor signaling in mice.

    Science.gov (United States)

    Basavarajappa, Balapal S; Nagre, Nagaraja N; Xie, Shan; Subbanna, Shivakumar

    2014-07-01

    In rodents, many exogenous and endogenous cannabinoids, such as anandamide (AEA) and 2-arachidonyl glycerol (2-AG), have been shown to play an important role in certain hippocampal memory processes. However, the mechanisms by which endogenous AEA regulate this processes are not well understood. Here the effects of AEA on long-term potentiation (LTP), hippocampal-dependent learning and memory tasks, pERK1/2, pCaMKIV, and pCREB signaling events in both cannabinoid receptor type 1 (CB1R) wild-type (WT) and knockout (KO) mice were assessed following administration of URB597, an inhibitor of the fatty acid amide hydrolase (FAAH). Acute administration of URB597 enhanced AEA levels without affecting the levels of 2-AG or CB1R in the hippocampus and neocortex as compared to vehicle. In hippocampal slices, URB597 impaired LTP in CB1R WT but not in KO littermates. URB597 impaired object recognition, spontaneous alternation and spatial memory in the Y-maze test in CB1R WT mice but not in KO mice. Furthermore, URB597 enhanced ERK phosphorylation in WT without affecting total ERK levels in WT or KO mice. URB597 impaired CaMKIV and CREB phosphorylation in WT but not in KO mice. CB1R KO mice have a lower pCaMKIV/CaMKIV ratio and higher pCREB/CREB ratio as compared to WT littermates. Our results indicate that pharmacologically elevated AEA impair LTP, learning and memory and inhibit CaMKIV and CREB phosphorylation, via the activation of CB1Rs. Collectively, these findings also suggest that pharmacological elevation of AEA beyond normal concentrations is also detrimental for the underlying physiological responses. © 2014 Wiley Periodicals, Inc.

  1. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity

    International Nuclear Information System (INIS)

    Vilela, Luciano R.; Gobira, Pedro H.; Viana, Thercia G.; Medeiros, Daniel C.; Ferreira-Vieira, Talita H.; Doria, Juliana G.; Rodrigues, Flávia; Aguiar, Daniele C.; Pereira, Grace S.; Massessini, André R.; Ribeiro, Fabíola M.; Oliveira, Antonio Carlos P. de; Moraes, Marcio F.D.; Moreira, Fabricio A.

    2015-01-01

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB 1 receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB 1 receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity. - Highlights: • Cocaine toxicity is characterized by seizures and hippocampal cell death. • The endocannabinoid anandamide acts as a brain protective mechanism. • Inhibition of anandamide hydrolysis attenuates

  2. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Vilela, Luciano R. [Graduate Program in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Gobira, Pedro H.; Viana, Thercia G. [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Medeiros, Daniel C.; Ferreira-Vieira, Talita H. [Department of Physiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Doria, Juliana G. [Graduate Program in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Rodrigues, Flávia [Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Aguiar, Daniele C. [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Pereira, Grace S.; Massessini, André R. [Department of Physiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Ribeiro, Fabíola M. [Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Oliveira, Antonio Carlos P. de [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Moraes, Marcio F.D., E-mail: mfdm@icb.ufmg.br [Department of Physiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Moreira, Fabricio A., E-mail: fabriciomoreira@icb.ufmg.br [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2015-08-01

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB{sub 1} receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB{sub 1} receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity. - Highlights: • Cocaine toxicity is characterized by seizures and hippocampal cell death. • The endocannabinoid anandamide acts as a brain protective mechanism. • Inhibition of anandamide hydrolysis

  3. The CB1 receptor antagonist AM251 impairs reconsolidation of pavlovian fear memory in the rat basolateral amygdala.

    Science.gov (United States)

    Ratano, Patrizia; Everitt, Barry J; Milton, Amy L

    2014-10-01

    We have investigated the requirement for signaling at CB1 receptors in the reconsolidation of a previously consolidated auditory fear memory, by infusing the CB1 receptor antagonist AM251, or the FAAH inhibitor URB597, directly into the basolateral amygdala (BLA) in conjunction with memory reactivation. AM251 disrupted memory restabilization, but only when administered after reactivation. URB597 produced a small, transient enhancement of memory restabilization when administered after reactivation. The amnestic effect of AM251 was rescued by coadministration of the GABAA receptor antagonist bicuculline at reactivation, indicating that the disruption of reconsolidation was mediated by altered GABAergic transmission in the BLA. These data show that the endocannabinoid system in the BLA is an important modulator of fear memory reconsolidation and that its effects on memory are mediated by an interaction with the GABAergic system. Thus, targeting the endocannabinoid system may have therapeutic potential to reduce the impact of maladaptive memories in neuropsychiatric disorders such as posttraumatic stress disorder.

  4. The effect of FAAH, MAGL, and Dual FAAH/MAGL inhibition on inflammatory and colorectal distension-induced visceral pain models in Rodents.

    Science.gov (United States)

    Sakin, Y S; Dogrul, A; Ilkaya, F; Seyrek, M; Ulas, U H; Gulsen, M; Bagci, S

    2015-07-01

    Recent studies showed that the pharmacological inhibition of endocannabinoid degrading enzymes such as fatty acid amide hydrolase (FAAH) and monoacyl glycerol lipase (MAGL) elicit promising analgesic effects in a variety of nociceptive models without serious side effects. However, the full spectrum of activities is not observed upon inhibition of either FAAH or MAGL enzymes alone and thus dual FAAH and MAGL inhibitors have been described. Visceral pain is strongly associated with inflammation and distension of the gut. Thus, we explored the comparable effects of FAAH, MAGL, and dual FAAH/MAGL inhibitors on inflammatory and mechanically evoked visceral pain models. Visceral inflammatory and distension-induced pain were assessed with the 0.6% acetic acid writhing test in mice and colorectal distension (CRD) test in rats, respectively. The selective FAAH inhibitor PF 3845, MAGL inhibitor JZL 184, dual inhibitor JZL 195, and the cannabis analog CP 55,940 were given systemically 30 min prior to nociceptive testing. PF 3845 (5, 10, and 20 mg/kg), JZL 184 (5, 10, and 20 mg/kg), and JZL 195 (5, 10, and 20 mg/kg) elicit dose-dependent antinociceptive in the acetic acid writhing test. In the CRD model, while JZL 195 (5, 10, or 20 mg/kg) and PF3845 (10, 20, and 40 mg/kg) produced dose-dependent antinociceptive effects comparable to those of CP 55,940 (0.1, 0.3, or 1 mg/kg), JZL 184 (10, 20, and 40 mg/kg) alone did not alter the visceromotor response (VMR). The selective FAAH inhibitor and dual FAAH/MAGL inhibitors were effective in both inflammatory and mechanically evoked visceral pain, while the MAGL inhibitor elicited an analgesic effect in inflammatory, but not in distension-induced, visceral pain. © 2015 John Wiley & Sons Ltd.

  5. The dual FAAH/MAGL inhibitor JZL195 has enhanced effects on endocannabinoid transmission and motor behavior in rats as compared to those of the MAGL inhibitor JZL184

    OpenAIRE

    Seillier, Alexandre; Aguilar, David Dominguez; Giuffrida, Andrea

    2014-01-01

    The biological actions of the endocannabinoids anandamide and 2-arachidonoyl glycerol (2-AG) are terminated by enzymatic hydrolysis of these lipids via fatty acid amide hydrolase (FAAH ) and monoacylglycerol lipase (MAGL), respectively. While several selective FAAH inhibitors have been developed and characterized in vitro and in vivo, none of the initial MAGL blockers have shown adequate potency and specificity for in vivo applications. More recently, a selective MAGL inhibitor, JZL184, has b...

  6. The Endocannabinoid System Affects Myocardial Glucose Metabolism in the DOCA-Salt Model of Hypertension

    Directory of Open Access Journals (Sweden)

    Agnieszka Polak

    2018-03-01

    Full Text Available Background/Aims: Recent interest in the use of cannabinoids as therapeutic agents has revealed the involvement of the endogenous cannabinoid system (ECS in the regulation of the cardiovascular system in hypertension. Abnormalities in glucose metabolism and insulin action are commonly detected in hypertensive animals. Thus, potential antihypertensive drugs should be investigated with respect to modulation of glucose homeostasis. Therefore, the aim of the present study was to evaluate the effects of the ECS activation after chronic fatty acid amide hydrolase inhibitor (URB597 administration on plasma glucose and insulin concentrations as well as parameters of myocardial glucose metabolism in the deoxycorticosterone acetate (DOCA-salt hypertensive rats, an animal model of secondary hypertension. Methods: Hypertension was induced by DOCA (25mg/kg injections and addition of 1% NaCl in the drinking water for six weeks. Chronic activation of the ECS was performed by URB597 (1mg/kg injections for two weeks. We examined fasting plasma levels of insulin (ELISA, glucose and intramyocardial glycogen (colorimetric method. Expressions of glucose transporters (GLUT1, 4 and selected proteins engaged in GLUT translocation as well as glucose metabolism were determined using Western blotting. Results: Hypertension induced hypoinsulinemia with concomitant lack of significant changes in glycemia, reduced intramyocardial glycogen content and increased pyruvate dehydrogenase (PDH expression in the cardiac muscle. Importantly, chronic URB597 administration in the hypertensive rats increased insulin concentration, elevated plasmalemmal GLUT1 and GLUT4 expression and concomitantly improved myocardial glycogen storage. Conclusion: Chronic administration of fatty acid amide hydrolase (FAAH inhibitor has potential protective properties on myocardial glucose metabolism in hypertension.

  7. Characterization of fatty acid amide hydrolase activity by a fluorescence-based assay.

    Science.gov (United States)

    Dato, Florian M; Maaßen, Andreas; Goldfuß, Bernd; Pietsch, Markus

    2018-04-01

    Fatty acid amide hydrolase (FAAH) is involved in many human diseases, particularly cancer, pain and inflammation as well as neurological, metabolic and cardiovascular disorders. Therefore, FAAH is an attractive target for the development of low-molecular-weight inhibitors as therapeutics, which requires robust assays that can be used for high-throughput screening (HTS) of compound libraries. Here, we report the development of a fluorometric assay based on FAAH's ability to effectively hydrolyze medium-chain fatty acid amides, introducing N-decanoyl-substituted 5-amino-2-methoxypyridine (D-MAP) as new amide substrate. D-MAP is cleaved by FAAH with an 8-fold larger specificity constant than the previously reported octanoyl-analog Oc-MAP (V max /K m of 1.09 and 0.134 mL min -1 mg -1 , respectively), with both MAP derivatives possessing superior substrate properties and much increased aqueous solubility compared to the respective p-nitroaniline compounds D-pNA and Oc-pNA. The new assay with D-MAP as substrate is highly sensitive using a lower enzyme concentration (1 μg mL -1 ) than literature-reported fluorimetric FAAH assays. In addition, D-MAP was validated in comparison to the substrate Oc-MAP for the characterization of FAAH inhibitors by means of the reference compounds URB597 and TC-F2 and was shown to be highly suitable for HTS in both kinetic and endpoint assays (Z' factors of 0.81 and 0.78, respectively). Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Identification and characterization of carprofen as a multi-target FAAH/COX inhibitor

    Science.gov (United States)

    Favia, Angelo D.; Habrant, Damien; Scarpelli, Rita; Migliore, Marco; Albani, Clara; Bertozzi, Sine Mandrup; Dionisi, Mauro; Tarozzo, Glauco; Piomelli, Daniele; Cavalli, Andrea; De Vivo, Marco

    2013-01-01

    Pain and inflammation are major therapeutic areas for drug discovery. Current drugs for these pathologies have limited efficacy, however, and often cause a number of unwanted side effects. In the present study, we identify the non-steroid anti-inflammatory drug, carprofen, as a multi-target-directed ligand that simultaneously inhibits cyclooxygenase-1 (COX-1), COX-2 and fatty acid amide hydrolase (FAAH). Additionally, we synthesized and tested several racemic derivatives of carprofen, sharing this multi-target activity. This may result in improved analgesic efficacy and reduced side effects (Naidu, et al (2009) J Pharmacol Exp Ther 329, 48-56; Fowler, C.J. et al. (2012) J Enzym Inhib Med Chem Jan 6; Sasso, et al (2012) Pharmacol Res 65, 553). The new compounds are among the most potent multi-target FAAH/COXs inhibitors reported so far in the literature, and thus may represent promising starting points for the discovery of new analgesic and anti-inflammatory drugs. PMID:23043222

  9. Characterisation of (R-2-(2-Fluorobiphenyl-4-yl-N-(3-Methylpyridin-2-ylPropanamide as a Dual Fatty Acid Amide Hydrolase: Cyclooxygenase Inhibitor.

    Directory of Open Access Journals (Sweden)

    Sandra Gouveia-Figueira

    Full Text Available Increased endocannabinoid tonus by dual-action fatty acid amide hydrolase (FAAH and substrate selective cyclooxygenase (COX-2 inhibitors is a promising approach for pain-relief. One such compound with this profile is 2-(2-fluorobiphenyl-4-yl-N-(3-methylpyridin-2-ylpropanamide (Flu-AM1. These activities are shown by Flu-AM1 racemate, but it is not known whether its two single enantiomers behave differently, as is the case towards COX-2 for the parent flurbiprofen enantiomers. Further, the effects of the compound upon COX-2-derived lipids in intact cells are not known.COX inhibition was determined using an oxygraphic method with arachidonic acid and 2-arachidonoylglycerol (2-AG as substrates. FAAH was assayed in mouse brain homogenates using anandamide (AEA as substrate. Lipidomic analysis was conducted in unstimulated and lipopolysaccharide + interferon γ- stimulated RAW 264.7 macrophage cells. Both enantiomers inhibited COX-2 in a substrate-selective and time-dependent manner, with IC50 values in the absence of a preincubation phase of: (R-Flu-AM1, COX-1 (arachidonic acid 6 μM; COX-2 (arachidonic acid 20 μM; COX-2 (2-AG 1 μM; (S-Flu-AM1, COX-1 (arachidonic acid 3 μM; COX-2 (arachidonic acid 10 μM; COX-2 (2-AG 0.7 μM. The compounds showed no enantiomeric selectivity in their FAAH inhibitory properties. (R-Flu-AM1 (10 μM greatly inhibited the production of prostaglandin D2 and E2 in both unstimulated and lipopolysaccharide + interferon γ- stimulated RAW 264.7 macrophage cells. Levels of 2-AG were not affected either by (R-Flu-AM1 or by 10 μM flurbiprofen, either alone or in combination with the FAAH inhibitor URB597 (1 μM.Both enantiomers of Flu-AM1 are more potent inhibitors of 2-AG compared to arachidonic acid oxygenation by COX-2. Inhibition of COX in lipopolysaccharide + interferon γ- stimulated RAW 264.7 cells is insufficient to affect 2-AG levels despite the large induction of COX-2 produced by this treatment.

  10. Activity-based protein profiling reveals off-target proteins of the FAAH inhibitor BIA 10-2474

    NARCIS (Netherlands)

    van Esbroeck, Annelot C M; Janssen, Antonius P A; Cognetta, Armand B; Ogasawara, Daisuke; Shpak, Guy; van der Kroeg, Mark; Kantae, Vasudev; Baggelaar, Marc P; de Vrij, Femke M S; Deng, Hui; Allarà, Marco; Fezza, Filomena; Lin, Zhanmin; van der Wel, Tom; Soethoudt, Marjolein; Mock, Elliot D; den Dulk, Hans; Baak, Ilse L; Florea, Bogdan I; Hendriks, Giel; De Petrocellis, Luciano; Overkleeft, Herman S; Hankemeier, Thomas; De Zeeuw, Chris I; Di Marzo, Vincenzo; Maccarrone, Mauro; Cravatt, Benjamin F; Kushner, Steven A; van der Stelt, Mario

    2017-01-01

    A recent phase 1 trial of the fatty acid amide hydrolase (FAAH) inhibitor BIA 10-2474 led to the death of one volunteer and produced mild-to-severe neurological symptoms in four others. Although the cause of the clinical neurotoxicity is unknown, it has been postulated, given the clinical safety

  11. Potential Therapeutic Value of a Novel FAAH Inhibitor for the Treatment of Anxiety.

    Directory of Open Access Journals (Sweden)

    Eva M Marco

    Full Text Available Anxiety disorders are among the most prevalent psychiatric diseases with high personal costs and a remarkable socio-economic burden. However, current treatment of anxiety is far from satisfactory. Novel pharmacological targets have emerged in the recent years, and attention has focused on the endocannabinoid (eCB system, given the increasing evidence that supports its central role in emotion, coping with stress and anxiety. In the management of anxiety disorders, drug development strategies have left apart the direct activation of type-1 cannabinoid receptors to indirectly enhance eCB signalling through the inhibition of eCB deactivation, that is, the inhibition of the fatty acid amide hydrolase (FAAH enzyme. In the present study, we provide evidence for the anxiolytic-like properties of a novel, potent and selective reversible inhibitor of FAAH, ST4070, orally administered to rodents. ST4070 (3 to 30 mg/kg per os administered to CD1 male mice induced an increase of time spent in the exploration of the open arms of the elevated-plus maze. A partial reduction of anxiety-related behaviour by ST4070 was also obtained in Wistar male rats, which moderately intensified the time spent in the illuminated compartment of the light-dark box. ST4070 clearly inhibited FAAH activity and augmented the levels of two of its substrates, N-arachidonoylethanolamine (anandamide and N-palmitoylethanolamine, in anxiety-relevant brain regions. Altogether, ST4070 offers a promising anxiolytic-like profile in preclinical studies, although further studies are warranted to clearly demonstrate its efficacy in the clinic management of anxiety disorders.

  12. A binding site for non-steroidal anti-inflammatory drugs in FAAH

    Science.gov (United States)

    Bertolacci, Laura; Romeo, Elisa; Veronesi, Marina; Magotti, Paola; Albani, Clara; Dionisi, Mauro; Lambruschini, Chiara; Scarpelli, Rita; Cavalli, Andrea; Vivo, Marco De; Piomelli, Daniele; Garau, Gianpiero

    2013-01-01

    In addition to inhibiting the cyclooxygenasemediated biosynthesis of prostanoids, various widely used non-steroidal anti-inflammatory drugs (NSAIDs) enhance endocannabinoid signaling by blocking the anandamidedegrading membrane enzyme, fatty acid amide hydrolase (FAAH). The X-ray structure of FAAH in complex with the NSAID carprofen, along with studies of site-directed mutagenesis, enzyme activity assays, and nuclear magnetic resonance, now reveal the molecular details of this interaction, providing information that may guide the design of dual FAAH-cyclooxygenase inhibitors with superior analgesic efficacy. PMID:23240907

  13. Molecular Understanding of the Activation of CB1 and Blockade of TRPV1 Receptors: Implications for Novel Treatment Strategies in Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Jakub Mlost

    2018-01-01

    Full Text Available Osteoarthritis (OA is a joint disease in which cartilage degenerates as a result of mechanical and biochemical changes. The main OA symptom is chronic pain involving both peripheral and central mechanisms of nociceptive processing. Our previous studies have implicated the benefits of dual- over single-acting compounds interacting with the endocannabinoid system (ECS in OA treatment. In the present study, we focused on the specific molecular alterations associated with pharmacological treatment. OA was induced in Wistar rats by intra-articular injection of 3 mg of monoiodoacetate (MIA. Single target compounds (URB597, an FAAH inhibitor, and SB366791, a TRPV1 antagonist and a dual-acting compound OMDM198 (FAAH inhibitor/TRPV1 antagonist were used in the present study. At day 21 post-MIA injection, rats were sacrificed 1 h after i.p. treatment, and changes in mRNA expression were evaluated in the lumbar spinal cord by RT-qPCR. Following MIA administration, we observed 2-4-fold increase in mRNA expression of targeted receptors (Cnr1, Cnr2, and Trpv1, endocannabinoid degradation enzymes (Faah, Ptgs2, and Alox12, and TRPV1 sensitizing kinases (Mapk3, Mapk14, Prkcg, and Prkaca. OMDM198 treatment reversed some of the MIA effects on the spinal cord towards intact levels (Alox12, Mapk14, and Prkcg. Apparent regulation of ECS and TRPV1 in response to pharmacological intervention is a strong justification for novel ECS-based multi-target drug treatment in OA.

  14. Lipid nanoparticles for administration of poorly water soluble neuroactive drugs.

    Science.gov (United States)

    Esposito, Elisabetta; Drechsler, Markus; Mariani, Paolo; Carducci, Federica; Servadio, Michela; Melancia, Francesca; Ratano, Patrizia; Campolongo, Patrizia; Trezza, Viviana; Cortesi, Rita; Nastruzzi, Claudio

    2017-09-01

    This study describes the potential of solid lipid nanoparticles and nanostructured lipid carriers as nano-formulations to administer to the central nervous system poorly water soluble drugs. Different neuroactive drugs, i.e. dimethylfumarate, retinyl palmitate, progesterone and the endocannabinoid hydrolysis inhibitor URB597 have been studied. Lipid nanoparticles constituted of tristearin or tristearin in association with gliceryl monoolein were produced. The nanoencapsulation strategy allowed to obtain biocompatible and non-toxic vehicles, able to increase the solubility of the considered neuroactive drugs. To improve URB597 targeting to the brain, stealth nanoparticles were produced modifying the SLN surface with polysorbate 80. A behavioural study was conducted in rats to test the ability of SLN containing URB597 given by intranasal administration to alter behaviours relevant to psychiatric disorders. URB597 maintained its activity after nanoencapsulation, suggesting the possibility to propose this kind of vehicle as alternative to unphysiological mixtures usually employed for animal and clinical studies.

  15. Interaction of the N-(3-Methylpyridin-2-ylamide Derivatives of Flurbiprofen and Ibuprofen with FAAH: Enantiomeric Selectivity and Binding Mode.

    Directory of Open Access Journals (Sweden)

    Jessica Karlsson

    Full Text Available Combined fatty acid amide hydrolase (FAAH and cyclooxygenase (COX inhibition is a promising approach for pain-relief. The Flu-AM1 and Ibu-AM5 derivatives of flurbiprofen and ibuprofen retain similar COX-inhibitory properties and are more potent inhibitors of FAAH than the parent compounds. However, little is known as to the nature of their interaction with FAAH, or to the importance of their chirality. This has been explored here.FAAH inhibitory activity was measured in rat brain homogenates and in lysates expressing either wild-type or FAAH(T488A-mutated enzyme. Molecular modelling was undertaken using both docking and molecular dynamics. The (R- and (S-enantiomers of Flu-AM1 inhibited rat FAAH with similar potencies (IC50 values of 0.74 and 0.99 μM, respectively, whereas the (S-enantiomer of Ibu-AM5 (IC50 0.59 μM was more potent than the (R-enantiomer (IC50 5.7 μM. Multiple inhibition experiments indicated that both (R-Flu-AM1 and (S-Ibu-AM5 inhibited FAAH in a manner mutually exclusive to carprofen. Computational studies indicated that the binding site for the Flu-AM1 and Ibu-AM5 enantiomers was located between the acyl chain binding channel and the membrane access channel, in a site overlapping the carprofen binding site, and showed a binding mode in line with that proposed for carprofen and other non-covalent ligands. The potency of (R-Flu-AM1 was lower towards lysates expressing FAAH mutated at the proposed carprofen binding area than in lysates expressing wild-type FAAH.The study provides kinetic and structural evidence that the enantiomers of Flu-AM1 and Ibu-AM5 bind in the substrate channel of FAAH. This information will be useful in aiding the design of novel dual-action FAAH: COX inhibitors.

  16. Genetically reduced FAAH activity may be a risk for the development of anxiety and depression in persons with repetitive childhood trauma.

    Science.gov (United States)

    Lazary, Judit; Eszlari, Nora; Juhasz, Gabriella; Bagdy, Gyorgy

    2016-06-01

    Fatty acid amide hydrolase (FAAH) inhibitors are addressed for promising anxiolytics, but human studies on genetically reduced FAAH activity, stress and affective phenotypes are scarce. We investigated the effect of a functional polymorphism of FAAH (FAAH C385A or rs324420; low FAAH activity and high anandamide concentration are associated with the A allele) together with childhood adversity on the anxious and depressive phenotypes in 858 subjects from the general population. Phenotypes were measured by the Zung Self-Rating Depression Scale (ZSDS), the depression and anxiety subscales of the Brief Symptom Inventory (BSI-DEP, BSI-ANX) and the State-Trait Anxiety scales (STAI-S, STAI-T). Childhood Adversity Questionnaire (CHA) was used to assess early life traumas. Frequency of the A allele was greater among subjects with high ZSDS scores compared to the CC genotype. Furthermore, FAAH C385A and the CHA have shown a robust gene-environment interaction, namely, significantly higher anxiety and depression scores were exhibited by individuals carrying the A allele if they had high CHA scores compared to CC carriers. These data provided preliminary evidence that genetically reduced FAAH activity and repetitive stress in the childhood are associated with increased vulnerability for anxiety and depression in later life. Our results together with earlier experimental data suggest that permanently elevated anandamide level together with early life stress may cause a lifelong damage on stress response probably via the downregulation of CB1R during the neurodevelopment in the brain. It may also point to pharmacogenomic consequences, namely ineffectiveness or adverse effects of FAAH inhibitors in this subpopulation. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  17. The blockade of the transient receptor potential vanilloid type 1 and fatty acid amide hydrolase decreases symptoms and central sequelae in the medial prefrontal cortex of neuropathic rats

    Directory of Open Access Journals (Sweden)

    Di Marzo Vincenzo

    2011-01-01

    Full Text Available Abstract Background Neuropathic pain is a chronic disease resulting from dysfunction within the "pain matrix". The basolateral amygdala (BLA can modulate cortical functions and interactions between this structure and the medial prefrontal cortex (mPFC are important for integrating emotionally salient information. In this study, we have investigated the involvement of the transient receptor potential vanilloid type 1 (TRPV1 and the catabolic enzyme fatty acid amide hydrolase (FAAH in the morphofunctional changes occurring in the pre-limbic/infra-limbic (PL/IL cortex in neuropathic rats. Results The effect of N-arachidonoyl-serotonin (AA-5-HT, a hybrid FAAH inhibitor and TPRV1 channel antagonist, was tested on nociceptive behaviour associated with neuropathic pain as well as on some phenotypic changes occurring on PL/IL cortex pyramidal neurons. Those neurons were identified as belonging to the BLA-mPFC pathway by electrical stimulation of the BLA followed by hind-paw pressoceptive stimulus application. Changes in their spontaneous and evoked activity were studied in sham or spared nerve injury (SNI rats before or after repeated treatment with AA-5-HT. Consistently with the SNI-induced changes in PL/IL cortex neurons which underwent profound phenotypic reorganization, suggesting a profound imbalance between excitatory and inhibitory responses in the mPFC neurons, we found an increase in extracellular glutamate levels, as well as the up-regulation of FAAH and TRPV1 in the PL/IL cortex of SNI rats. Daily treatment with AA-5-HT restored cortical neuronal activity, normalizing the electrophysiological changes associated with the peripheral injury of the sciatic nerve. Finally, a single acute intra-PL/IL cortex microinjection of AA-5-HT transiently decreased allodynia more effectively than URB597 or I-RTX, a selective FAAH inhibitor or a TRPV1 blocker, respectively. Conclusion These data suggest a possible involvement of endovanilloids in the cortical

  18. A Personal Retrospective: Elevating Anandamide (AEA by Targeting Fatty Acid Amide Hydrolase (FAAH and the Fatty Acid Binding Proteins (FABPs

    Directory of Open Access Journals (Sweden)

    Dale Deutsch

    2016-10-01

    Full Text Available This perspective was adapted from a Career Achievement Award talk given at the International Cannabinoid Research Society Symposium in Bukovina, Poland on June 27, 2016. As a biochemist working in the neurosciences, I was always fascinated with neurotransmitter inactivation. In 1993 we identified an enzyme activity that breaks down anandamide. We called the enzyme anandamide amidase, now called FAAH. We and other laboratories developed FAAH inhibitors that were useful reagents that also proved to have beneficial physiological effects and, until recently, new generations of inhibitors were in clinical trials. Nearly all neurotransmitters are water soluble and, as such, require a transmembrane protein transporter to pass through the lipid membrane for inactivation inside the cell. However, using model systems, we and others have shown that this is unnecessary for anandamide, an uncharged hydrophobic molecule that readily diffuses across the cellular membrane. Interestingly, its uptake is driven by the concentration gradient resulting from its breakdown mainly by FAAH localized in the endoplasmic reticulum. We identified the FABPs as intracellular carriers that solubilize anandamide, transporting anandamide to FAAH. Compounds that bind to FABPs block AEA breakdown, raising its level. The cannabinoids (THC and CBD also were discovered to bind FABPs and this may be one of the mechanisms by which CBD works in childhood epilepsy, raising anandamide levels. Targeting FABPs may be advantageous since they have some tissue specificity and do not require reactive serine hydrolase inhibitors, as does FAAH, with potential for off-target reactions.

  19. Cannabinoids prevent the differential long-term effects of exposure to severe stress on hippocampal- and amygdala-dependent memory and plasticity.

    Science.gov (United States)

    Shoshan, Noa; Segev, Amir; Abush, Hila; Mizrachi Zer-Aviv, Tomer; Akirav, Irit

    2017-10-01

    Exposure to excessive or uncontrolled stress is a major factor associated with various diseases including posttraumatic stress disorder (PTSD). The consequences of exposure to trauma are affected not only by aspects of the event itself, but also by the frequency and severity of trauma reminders. It was suggested that in PTSD, hippocampal-dependent memory is compromised while amygdala-dependent memory is strengthened. Several lines of evidence support the role of the endocannabinoid (eCB) system as a modulator of the stress response. In this study we aimed to examine cannabinoids modulation of the long-term effects (i.e., 1 month) of exposure to a traumatic event on memory and plasticity in the hippocampus and amygdala. Following exposure to the shock and reminders model of PTSD in an inhibitory avoidance light-dark apparatus rats demonstrated: (i) enhanced fear retrieval and impaired inhibitory extinction (Ext), (ii) no long-term potentiation (LTP) in the CA1, (iii) impaired hippocampal-dependent short-term memory in the object location task, (iv) enhanced LTP in the amygdala, and (v) enhanced amygdala-dependent conditioned taste aversion memory. The cannabinoid CB1/2 receptor agonist WIN55-212,2 (0.5mg/kg, i.p.) and the fatty acid amide hydrolase (FAAH) inhibitor URB597 (0.3mg/kg, i.p.), administered 2 hr after shock exposure prevented these opposing effects on hippocampal- and amygdala-dependent processes. Moreover, the effects of WIN55-212,2 and URB597 on Ext and acoustic startle were prevented by co-administration of a low dose of the CB1 receptor antagonist AM251 (0.5mg/kg, i.p.), suggesting that the preventing effects of both drugs are mediated by CB1 receptors. Exposure to shock and reminders increased CB1 receptor levels in the CA1 and basolateral amygdala 1 month after shock exposure and this increase was also prevented by administering WIN55-212,2 or URB597. Taken together, these findings suggest the involvement of the eCB system, and specifically CB1

  20. Brain uptake and metabolism of the endocannabinoid anandamide labeled in either the arachidonoyl or ethanolamine moiety

    International Nuclear Information System (INIS)

    Hu, Kun; Sonti, Shilpa; Glaser, Sherrye T.; Duclos, Richard I.; Gatley, Samuel J.

    2017-01-01

    Introduction: Anandamide (N-arachidonoylethanolamine) is a retrograde neuromodulator that activates cannabinoid receptors. The concentration of anandamide in the brain is controlled by fatty acid amide hydrolase (FAAH), which has been the focus of recent drug discovery efforts. Previous studies in C57BL/6 mice using [ 3 H-arachidonoyl]anandamide demonstrated deposition of tritium in thalamus and cortical areas that was blocked by treatment with an FAAH inhibitor and that was not seen in FAAH-knockout mice. This suggested that long chain fatty acid amides radiolabeled in the fatty acid moiety might be useful as ex vivo and in vivo radiotracers for FAAH, since labeled fatty acid released by hydrolysis would be rapidly incorporated into phospholipids with long metabolic turnover periods. Methods: Radiotracers were administered intravenously to conscious Swiss–Webster mice, and radioactivity concentrations in brain areas was quantified and radiolabeled metabolites determined by radiochromatography. Results: [ 14 C]Arachidonic acid, [ 14 C-arachidonoyl]anandamide and [ 14 C-ethanolamine]anandamide, and also [ 14 C]myristic acid, [ 14 C-myristoyl]myristoylethanolamine and [ 14 C-ethanolamine]myristoyl-ethanolamine all had very similar distribution patterns, with whole brain radioactivity concentrations of 2–4% injected dose per gram. Pretreatment with the potent selective FAAH inhibitor URB597 did not significantly alter distribution patterns although radiochromatography demonstrated that the rate of incorporation of label from [ 14 C]anandamide into phospholipids was decreased. Pretreatment with the muscarinic agonist arecoline which increases cerebral perfusion increased brain uptake of radiolabel from [ 14 C]arachidonic acid and [ 14 C-ethanolamine]anandamide, and (in dual isotope studies) from the unrelated tracer [ 125 I]RTI-55. Conclusions: Together with our previously published study with [ 18 F-palmitoyl]16-fluoro-palmitoylethanolamine, the data show that the

  1. Ketoconazole inhibits the cellular uptake of anandamide via inhibition of FAAH at pharmacologically relevant concentrations.

    Directory of Open Access Journals (Sweden)

    Emmelie Björklund

    Full Text Available The antifungal compound ketoconazole has, in addition to its ability to interfere with fungal ergosterol synthesis, effects upon other enzymes including human CYP3A4, CYP17, lipoxygenase and thromboxane synthetase. In the present study, we have investigated whether ketoconazole affects the cellular uptake and hydrolysis of the endogenous cannabinoid receptor ligand anandamide (AEA.The effects of ketoconazole upon endocannabinoid uptake were investigated using HepG2, CaCo2, PC-3 and C6 cell lines. Fatty acid amide hydrolase (FAAH activity was measured in HepG2 cell lysates and in intact C6 cells. Ketoconazole inhibited the uptake of AEA by HepG2 cells and CaCo2 cells with IC50 values of 17 and 18 µM, respectively. In contrast, it had modest effects upon AEA uptake in PC-3 cells, which have a low expression of FAAH. In cell-free HepG2 lysates, ketoconazole inhibited FAAH activity with an IC50 value (for the inhibitable component of 34 µM.The present study indicates that ketoconazole can inhibit the cellular uptake of AEA at pharmacologically relevant concentrations, primarily due to its effects upon FAAH. Ketoconazole may be useful as a template for the design of dual-action FAAH/CYP17 inhibitors as a novel strategy for the treatment of prostate cancer.

  2. A Personal Retrospective: Elevating Anandamide (AEA) by Targeting Fatty Acid Amide Hydrolase (FAAH) and the Fatty Acid Binding Proteins (FABPs).

    Science.gov (United States)

    Deutsch, Dale G

    2016-01-01

    This perspective was adapted from a Career Achievement Award talk given at the International Cannabinoid Research Society Symposium in Bukovina, Poland on June 27, 2016. As a biochemist working in the neurosciences, I was always fascinated with neurotransmitter inactivation. In 1993 we identified an enzyme activity that breaks down anandamide. We called the enzyme anandamide amidase, now called FAAH. We and other laboratories developed FAAH inhibitors that were useful reagents that also proved to have beneficial physiological effects and until recently, new generations of inhibitors were in clinical trials. Nearly all neurotransmitters are water soluble and as such, require a transmembrane protein transporter to pass through the lipid membrane for inactivation inside the cell. However, using model systems, we and others have shown that this is unnecessary for anandamide, an uncharged hydrophobic molecule that readily diffuses across the cellular membrane. Interestingly, its uptake is driven by the concentration gradient resulting from its breakdown mainly by FAAH localized in the endoplasmic reticulum. We identified the FABPs as intracellular carriers that "solubilize" anandamide, transporting anandamide to FAAH. Compounds that bind to FABPs block AEA breakdown, raising its level. The cannabinoids (THC and CBD) also were discovered to bind FABPs and this may be one of the mechanisms by which CBD works in childhood epilepsy, raising anandamide levels. Targeting FABPs may be advantageous since they have some tissue specificity and do not require reactive serine hydrolase inhibitors, as does FAAH, with potential for off-target reactions. At the International Cannabis Research Society Symposium in 1992, Raphe Mechoulam revealed that his laboratory isolated an endogenous lipid molecule that binds to the CB1 receptor (cannabinoid receptor type 1) and this became the milestone paper published in December of that year describing anandamide (AEA, Devane et al., 1992). As to

  3. Examination of the effects of cannabinoid ligands on decision making in a rat gambling task.

    Science.gov (United States)

    Ferland, Jacqueline-Marie N; Carr, Madison R; Lee, Angela M; Hoogeland, Myrthe E; Winstanley, Catharine A; Pattij, Tommy

    2018-07-01

    Although exposure to delta-9-tetrahydrocannabinol (THC) is perceived to be relatively harmless, mounting evidence has begun to show that it is associated with a variety of cognitive deficits, including poor decision making. THC-induced impairments in decision making are thought to be the result of cannabinoid CB1 receptor activation, and although clinical literature suggests that chronic activation via THC contributes to perturbations in decision making, acute CB1 receptor modulation has yielded mixed results. Using an animal model to examine how CB1-specific ligands impact choice biases would provide significant insight as to how recruitment of the endocannabinoid system may influence decision making. Here, we used the rat gambling task (rGT), a validated analogue of the human Iowa Gambling Task, to assess baseline decision making preferences in male Wistar rats. After acquisition rGT performance was measured. Animals were challenged with the CB1 receptor antagonist rimonabant, the partial agonist THC, and the synthetic agonist WIN55,212-2. Animals were also treated acutely with the fatty acid amide hydrolase (FAAH) inhibitor URB597 to selectively upregulate the endocannabinoid anandamide. Blockade of the CB1 receptor produced a trend improvement in decision making in animals who preferred the advantageous task options, yet left choice unaffected in risk-prone rats. Neither CB1 receptor agonist had strong effects on decision making, but a high dose THC decreased premature responses, whereas WIN55,212-2 did the opposite. URB597 did not affect task performance. These results indicate that although chronic CB1 receptor activation may be associated with impaired decision making, acute modulation has modest effects on choice and instead may play a substantive role in regulating impulsive responding. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors

    Science.gov (United States)

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  5. Peripheral effects of FAAH deficiency on fuel and energy homeostasis: role of dysregulated lysine acetylation.

    Directory of Open Access Journals (Sweden)

    Bhavapriya Vaitheesvaran

    Full Text Available FAAH (fatty acid amide hydrolase, primarily expressed in the liver, hydrolyzes the endocannabinoids fatty acid ethanolamides (FAA. Human FAAH gene mutations are associated with increased body weight and obesity. In our present study, using targeted metabolite and lipid profiling, and new global acetylome profiling methodologies, we examined the role of the liver on fuel and energy homeostasis in whole body FAAH(-/- mice.FAAH(-/- mice exhibit altered energy homeostasis demonstrated by decreased oxygen consumption (Indirect calorimetry. FAAH(-/- mice are hyperinsulinemic and have adipose, skeletal and hepatic insulin resistance as indicated by stable isotope phenotyping (SIPHEN. Fed state skeletal muscle and liver triglyceride levels was increased 2-3 fold, while glycogen was decreased 42% and 57% respectively. Hepatic cholesterol synthesis was decreased 22% in FAAH(-/- mice. Dysregulated hepatic FAAH(-/- lysine acetylation was consistent with their metabolite profiling. Fasted to fed increases in hepatic FAAH(-/- acetyl-CoA (85%, p<0.01 corresponded to similar increases in citrate levels (45%. Altered FAAH(-/- mitochondrial malate dehydrogenase (MDH2 acetylation, which can affect the malate aspartate shuttle, was consistent with our observation of a 25% decrease in fed malate and aspartate levels. Decreased fasted but not fed dihydroxyacetone-P and glycerol-3-P levels in FAAH(-/- mice was consistent with a compensating contribution from decreased acetylation of fed FAAH(-/- aldolase B. Fed FAAH(-/- alcohol dehydrogenase (ADH acetylation was also decreased.Whole body FAAH deletion contributes to a pre-diabetic phenotype by mechanisms resulting in impairment of hepatic glucose and lipid metabolism. FAAH(-/- mice had altered hepatic lysine acetylation, the pattern sharing similarities with acetylation changes reported with chronic alcohol treatment. Dysregulated hepatic lysine acetylation seen with impaired FAA hydrolysis could support the liver

  6. RDA implementation in the URBE Network

    Directory of Open Access Journals (Sweden)

    Stefano Bargioni

    2018-01-01

    Full Text Available URBE -Unione Romana Biblioteche Ecclesiastiche- is composed of 18 academic libraries and adopted RDA starting from March 2017. The process of the decision, the formation and training of cataloguers, and the modifications made to 4 different ILSs, as well as the goals URBE hopes to achieve thanks to RDA adoption, are presented. Also, the adoption of the RDA Toolkit, and the problems related to local variants, currently examined in collaboration with the Vatican Library, are discussed.

  7. The endocannabinoid gene faah2a modulates stress-associated behavior in zebrafish.

    Directory of Open Access Journals (Sweden)

    Randall G Krug

    Full Text Available The ability to orchestrate appropriate physiological and behavioral responses to stress is important for survival, and is often dysfunctional in neuropsychiatric disorders that account for leading causes of global disability burden. Numerous studies have shown that the endocannabinoid neurotransmitter system is able to regulate stress responses and could serve as a therapeutic target for the management of these disorders. We used quantitative reverse transcriptase-polymerase chain reactions to show that genes encoding enzymes that synthesize (abhd4, gde1, napepld, enzymes that degrade (faah, faah2a, faah2b, and receptors that bind (cnr1, cnr2, gpr55-like endocannabinoids are expressed in zebrafish (Danio rerio. These genes are conserved in many other vertebrates, including humans, but fatty acid amide hydrolase 2 has been lost in mice and rats. We engineered transcription activator-like effector nucleases to create zebrafish with mutations in cnr1 and faah2a to test the role of these genes in modulating stress-associated behavior. We showed that disruption of cnr1 potentiated locomotor responses to hyperosmotic stress. The increased response to stress was consistent with rodent literature and served to validate the use of zebrafish in this field. Moreover, we showed for the first time that disruption of faah2a attenuated the locomotor responses to hyperosmotic stress. This later finding suggests that FAAH2 may be an important mediator of stress responses in non-rodent vertebrates. Accordingly, FAAH and FAAH2 modulators could provide distinct therapeutic options for stress-aggravated disorders.

  8. Fatty acid amide hydrolase (FAAH) regulates hypercapnia/ischemia-induced increases in n-acylethanolamines in mouse brain.

    Science.gov (United States)

    Lin, Lin; Metherel, Adam H; Jones, Peter J; Bazinet, Richard P

    2017-09-01

    N-acylethanolamines (NAEs) are endogenous lipid ligands for several receptors including cannabinoid receptors and peroxisome proliferator-activated receptor-alpha (PPAR-α), which regulate numerous physiological functions. Fatty acid amide hydrolase (FAAH) is largely responsible for the degradation of NAEs. However, at high concentrations of ethanolamines and unesterified fatty acids, FAAH can also catalyze the reverse reaction, producing NAEs. Several brain insults such as ischemia and hypoxia increase brain unesterified fatty acids. Because FAAH can catalyze the synthesis of NAE, we aimed to test whether FAAH was necessary for CO 2 -induced hypercapnia/ischemia increases in NAE. To test this, we examined levels of NAEs, 1- and 2-arachidonoylglycerols as well as their corresponding fatty acid precursors in wild-type and mice lacking FAAH (FAAH-KO) with three Kill methods: (i) head-focused, high-energy microwave irradiation (microwave), (ii) 5 min CO 2 followed by microwave irradiation (CO 2 + microwave), and (iii) 5 min CO 2 only (CO 2 ). Both CO 2 -induced groups increased, to a similar extent, brain levels of unesterified oleic, arachidonic, and docosahexaenoic acid and 1- and 2-arachidonoylglycerols compared to the microwave group in both wild-type and FAAH-KO mice. Oleoylethanolamide (OEA), arachidonoylethanolamide (AEA), and docosahexaenoylethanolamide (DHEA) levels were about 8-, 7-, and 2.5-fold higher, respectively, in the FAAH-KO mice compared with the wild-type mice. Interestingly, the concentrations of OEA, AEA, and DHEA increased 2.5- to 4-fold in response to both CO 2 -induced groups in wild-type mice, but DHEA increased only in the CO 2 group in FAAH-KO mice. Our study demonstrates that FAAH is necessary for CO 2 - induced increases in OEA and AEA but not DHEA. Targeting brain FAAH could impair the production of NAEs in response to brain injuries. © 2017 International Society for Neurochemistry.

  9. Phencyclidine-induced social withdrawal results from deficient stimulation of cannabinoid CB₁ receptors: implications for schizophrenia.

    Science.gov (United States)

    Seillier, Alexandre; Martinez, Alex A; Giuffrida, Andrea

    2013-08-01

    The neuronal mechanisms underlying social withdrawal, one of the core negative symptoms of schizophrenia, are not well understood. Recent studies suggest an involvement of the endocannabinoid system in the pathophysiology of schizophrenia and, in particular, of negative symptoms. We used biochemical, pharmacological, and behavioral approaches to investigate the role played by the endocannabinoid system in social withdrawal induced by sub-chronic administration of phencyclidine (PCP). Pharmacological enhancement of endocannabinoid levels via systemic administration of URB597, an inhibitor of endocannabinoid degradation, reversed social withdrawal in PCP-treated rats via stimulation of CB1 receptors, but reduced social interaction in control animals through activation of a cannabinoid/vanilloid-sensitive receptor. In addition, the potent CB agonist CP55,940 reversed PCP-induced social withdrawal in a CB₁-dependent manner, whereas pharmacological blockade of CB₁ receptors by either AM251 or SR141716 reduced the time spent in social interaction in control animals. PCP-induced social withdrawal was accompanied by a decrease of anandamide (AEA) levels in the amygdala and prefrontal cortex, and these deficits were reversed by URB597. As CB₁ receptors are predominantly expressed on GABAergic interneurons containing the anxiogenic peptide cholecystokinin (CCK), we also examined whether the PCP-induced social withdrawal resulted from deficient CB₁-mediated modulation of CCK transmission. The selective CCK2 antagonist LY225910 blocked both PCP- and AM251-induced social withdrawal, but not URB597 effect in control rats. Taken together, these findings indicate that AEA-mediated activation of CB₁ receptors is crucial for social interaction, and that PCP-induced social withdrawal results from deficient endocannabinoid transmission.

  10. Pain and beyond: fatty acid amides and fatty acid amide hydrolase inhibitors in cardiovascular and metabolic diseases.

    Science.gov (United States)

    Pillarisetti, Sivaram; Alexander, Christopher W; Khanna, Ish

    2009-12-01

    Fatty acid amide hydrolase (FAAH) is responsible for the hydrolysis of several important endogenous fatty acid amides (FAAs), including anandamide, oleoylethanolamide and palmitoylethanolamide. Because specific FAAs interact with cannabinoid and vanilloid receptors, they are often referred to as 'endocannabinoids' or 'endovanilloids'. Initial interest in this area, therefore, has focused on developing FAAH inhibitors to augment the actions of FAAs and reduce pain. However, recent literature has shown that these FAAs - through interactions with unique receptors (extracellular and intracellular) - can induce a diverse array of effects that include appetite suppression, modulation of lipid and glucose metabolism, vasodilation, cardiac function and inflammation. This review gives an overview of FAAs and diverse FAAH inhibitors and their potential therapeutic utility in pain and non-pain indications.

  11. O Dorpat, urbs addictissima musis ... / Marju Lepajõe

    Index Scriptorium Estoniae

    Lepajõe, Marju, 1962-

    2011-01-01

    Toimetaja sõnavõtt luulekogu esitlusel 26.9.2007 Tartus: O Dorpat, urbs addictissima musis ... : valik 17. sajandi Tartu juhuluulet / toimetanud Marju Lepajõe. Tallinn : Eesti Keele Sihtasutus, c2007

  12. [Association of polymorphisms of NAPE-PLD and FAAH genes with schizophrenia in Chinese Han population].

    Science.gov (United States)

    Si, Peiru; Liu, Shulian; Tong, Dongxiao; Cheng, Meijin; Wang, Liwen; Cheng, Xiaoli

    2018-04-10

    To assess the association of polymorphisms of N-acyl-phosphatidylethanolamine-phospholipase D (DAPE-PLD) and fatty acid amide hydrolase (FAAH) genes, as well as their interaction, with schizophrenia. Polymorphisms of NAPE-PLD rs12540583 and FAAH rs324420, rs2295633, and rs6429600 were determined with PCR - restriction fragment length polymorphism assay and Sanger sequencing. The genotypes of 345 subjects of Han Chinese origin diagnosed with schizophrenia and a 403 controls were compared. The results were analyzed with SPSS 17.0, and the interaction of the two genes was analyzed using a multifactor dimensionality reduction (MDR) method. The frequency of NAPE-PLD rs12540583 polymorphism was significantly different between the two groups under both dominant and additive models (χ2=17.18 vs. χ2=18.94, P<0.0125). The frequencies of AC genotype and C allele of the patient group at rs12540583 were higher than those of the controls, and the interaction of NAPE-PLD and FAAH was associated with schizophrenia. A four-loci model (rs12540583, rs324420, rs2295633 and rs6429600) can best model the interaction between NAPE-PLD and FAAH. The AC genotype and C allele of NAPE-PLD rs12540583 locus are risk factors for schizophrenia, and the interaction between NAPE-PLD rs12540583 and FAAH rs324420, rs2295633 and rs6429600 is associated with schizophrenia.

  13. Tom Olaf Urb / intervjueerinud Siim Õ. Ilves

    Index Scriptorium Estoniae

    Urb, Tom Olaf, 1985-

    2016-01-01

    Muusik, produtsent, kirjanik ja näitleja Tom-Olaf Urb, lavanimega Reket, arutleb disaini teemal ja nimetab kümme disainieset, mis teda elus köitnud on. Eesti Hip-Hop auhindade jagamisel valiti Reketi "Tuule tee" 2015.a. parimaks kodumaiseks hip-hop albumiks

  14. Phencyclidine-Induced Social Withdrawal Results from Deficient Stimulation of Cannabinoid CB1 Receptors: Implications for Schizophrenia

    Science.gov (United States)

    Seillier, Alexandre; Martinez, Alex A; Giuffrida, Andrea

    2013-01-01

    The neuronal mechanisms underlying social withdrawal, one of the core negative symptoms of schizophrenia, are not well understood. Recent studies suggest an involvement of the endocannabinoid system in the pathophysiology of schizophrenia and, in particular, of negative symptoms. We used biochemical, pharmacological, and behavioral approaches to investigate the role played by the endocannabinoid system in social withdrawal induced by sub-chronic administration of phencyclidine (PCP). Pharmacological enhancement of endocannabinoid levels via systemic administration of URB597, an inhibitor of endocannabinoid degradation, reversed social withdrawal in PCP-treated rats via stimulation of CB1 receptors, but reduced social interaction in control animals through activation of a cannabinoid/vanilloid-sensitive receptor. In addition, the potent CB agonist CP55,940 reversed PCP-induced social withdrawal in a CB1-dependent manner, whereas pharmacological blockade of CB1 receptors by either AM251 or SR141716 reduced the time spent in social interaction in control animals. PCP-induced social withdrawal was accompanied by a decrease of anandamide (AEA) levels in the amygdala and prefrontal cortex, and these deficits were reversed by URB597. As CB1 receptors are predominantly expressed on GABAergic interneurons containing the anxiogenic peptide cholecystokinin (CCK), we also examined whether the PCP-induced social withdrawal resulted from deficient CB1-mediated modulation of CCK transmission. The selective CCK2 antagonist LY225910 blocked both PCP- and AM251-induced social withdrawal, but not URB597 effect in control rats. Taken together, these findings indicate that AEA-mediated activation of CB1 receptors is crucial for social interaction, and that PCP-induced social withdrawal results from deficient endocannabinoid transmission. PMID:23563893

  15. Δ9-tetrahydrocannabinol and endocannabinoid degradative enzyme inhibitors attenuate intracranial self-stimulation in mice.

    Science.gov (United States)

    Wiebelhaus, Jason M; Grim, Travis W; Owens, Robert A; Lazenka, Matthew F; Sim-Selley, Laura J; Abdullah, Rehab A; Niphakis, Micah J; Vann, Robert E; Cravatt, Benjamin F; Wiley, Jenny L; Negus, S Stevens; Lichtman, Aron H

    2015-02-01

    A growing body of evidence implicates endogenous cannabinoids as modulators of the mesolimbic dopamine system and motivated behavior. Paradoxically, the reinforcing effects of Δ(9)-tetrahydrocannabinol (THC), the primary psychoactive constituent of cannabis, have been difficult to detect in preclinical rodent models. In this study, we investigated the impact of THC and inhibitors of the endocannabinoid hydrolytic enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) on operant responding for electrical stimulation of the medial forebrain bundle [intracranial self-stimulation (ICSS)], which is known to activate the mesolimbic dopamine system. These drugs were also tested in assays of operant responding for food reinforcement and spontaneous locomotor activity. THC and the MAGL inhibitor JZL184 (4-[bis(1,3-benzodioxol-5-yl)hydroxymethyl]-1-piperidinecarboxylic acid 4-nitrophenyl ester) attenuated operant responding for ICSS and food, and also reduced spontaneous locomotor activity. In contrast, the FAAH inhibitor PF-3845 (N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidinecarboxamide) was largely without effect in these assays. Consistent with previous studies showing that combined inhibition of FAAH and MAGL produces a substantially greater cannabimimetic profile than single enzyme inhibition, the dual FAAH-MAGL inhibitor SA-57 (4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester) produced a similar magnitude of ICSS depression as that produced by THC. ICSS attenuation by JZL184 was associated with increased brain levels of 2-arachidonoylglycerol (2-AG), whereas peak effects of SA-57 were associated with increased levels of both N-arachidonoylethanolamine (anandamide) and 2-AG. The cannabinoid receptor type 1 receptor antagonist rimonabant, but not the cannabinoid receptor type 2 receptor antagonist SR144528, blocked the attenuating effects of THC, JZL184, and SA-57 on

  16. Legionum Urbs and the British Martyrs Aaron and Julius

    Directory of Open Access Journals (Sweden)

    Andrew Breeze

    2016-07-01

    Full Text Available The article focuses on the localization of the martyrdom of the British saints Aaron and Julius, known of solely from Gildas, writing in the early 530s. His remarks were taken up by Bede (d. 737, so that the two saints have never been forgotten, their cult surviving to this day. The author provides a detailed survey of discussion of Aaron and Julius over the centuries, and argues that their martyrdom was neither at Caerleon (in south-east Wales nor Chester (in north-west England, as suggested by numerous scholars, but at Leicester, another major city of Roman Britain. Working from epigraphic sources and taking into account ancient models of naming, the author attempts a reinterpretation of Legionum urbs in the original texts by emending it to Legorum urbs “city of the Legores,” the Celtic people of the Leicester region. The latter, by the time of Gildas, was occupied by the Angles, while the city itself was abandoned, which may explain Gildas’s remarks, otherwise unclear if one identifies Legionum urbs with Caerleon or Chester. The author adduces both historical and linguistic arguments for his proposal and shows that it sheds new light on the history of early British Christianity.

  17. Lam. Urb. (Bombacaceae

    Directory of Open Access Journals (Sweden)

    Fabrízia De Oliveira Alvino

    2007-01-01

    Full Text Available The objective of this paper was to analyze the effect of different substrata in the germination of Ochroma pyramidale (Cav. ex Lam. Urb. (Bombacaceae. The experiment was conducted in delineation randomized with three treatments (substratum and four repetitions of 25 seeds. The following substrata had been tested: sand + vermiculite (1:1; vermiculite and, sand + shavings (1:1. The effect of substrata through the percentage of germination of the seeds, average time of germination and index of germination speed (IGS were evaluated. There had been significant difference between the treatments in of all the observed variable. The seeds, when conditioned in vermiculite, had presented the biggest tax of germination, greatest speed and lowest germination time.

  18. 31 CFR 597.406 - Offshore transactions.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Offshore transactions. 597.406 Section 597.406 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE... REGULATIONS Interpretations § 597.406 Offshore transactions. The prohibitions contained in § 597.201 apply to...

  19. 24 CFR 597.3 - Definitions.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Definitions. 597.3 Section 597.3... COMMUNITY FACILITIES URBAN EMPOWERMENT ZONES AND ENTERPRISE COMMUNITIES: ROUND ONE DESIGNATIONS General Provisions § 597.3 Definitions. The terms HUD and Secretary are defined in 24 CFR part 5. Designation means...

  20. Cannabidiol Rescues Acute Hepatic Toxicity and Seizure Induced by Cocaine

    Directory of Open Access Journals (Sweden)

    Luciano Rezende Vilela

    2015-01-01

    Full Text Available Cocaine is a commonly abused illicit drug that causes significant morbidity and mortality. The most severe and common complications are seizures, ischemic strokes, myocardial infarction, and acute liver injury. Here, we demonstrated that acute cocaine intoxication promoted seizure along with acute liver damage in mice, with intense inflammatory infiltrate. Considering the protective role of the endocannabinoid system against cell toxicity, we hypothesized that treatment with an anandamide hydrolysis inhibitor, URB597, or with a phytocannabinoid, cannabidiol (CBD, protects against cocaine toxicity. URB597 (1.0 mg/kg abolished cocaine-induced seizure, yet it did not protect against acute liver injury. Using confocal liver intravital microscopy, we observed that CBD (30 mg/kg reduced acute liver inflammation and damage induced by cocaine and prevented associated seizure. Additionally, we showed that previous liver damage induced by another hepatotoxic drug (acetaminophen increased seizure and lethality induced by cocaine intoxication, linking hepatotoxicity to seizure dynamics. These findings suggest that activation of cannabinoid system may have protective actions on both liver and brain induced by cocaine, minimizing inflammatory injury promoted by cocaine, supporting its further clinical application in the treatment of cocaine abuse.

  1. Estrés en docentes universitarios. Caso LUZ, URBE y UNICA

    Directory of Open Access Journals (Sweden)

    Marhilde Sánchez de Gallardo

    2003-01-01

    Full Text Available Esta investigación de campo, tipo descriptiva, tuvo como propósito determinar el estrés en docentes universitarios activos, mediante las subvariables: situaciones estresantes, síntomas manifestados, formas de afrontamiento, personalidad típica y motivos sociales (logro, afiliación y poder. Se tomaron muestras utilizando muestreo probabilístico estratificado, de tres Universidades: Universidad del Zulia (n=187, Universidad “Dr. Rafael Belloso Chacín” (n=149, Universidad Católica “Cecilio Acosta” (n=93, participando en el estudio 429 docentes, quienes contestaron las escalas SITESTRÉS, SINTOESTRÉS, AFRONTAESTRÉS, escala de personalidad típica (de Howard L. Glazer e inventario MOSE (Salom, 1992. Subescalas logro afiliación y poder. Los coeficientes de confiabilidad (alfa de Cronbach, División por mitades, corrección Guttman fueron en promedio 0,80. Los datos recabados fueron analizados en función de la media, categorizada según baremo preestablecido, encontrándose puntajes medio bajos en la subescala SITESTRÉS para los grupos de LUZ y URBE a diferencia del grupo de la UNICA, en la categoría media alta, SINTOESTRÉS en la categoría media baja para las tres universidades, AFRONTAESTRÉS medio bajo en LUZ y URBE y medio alto en la UNICA, personalidad típica ADÉBIL en LUZ y URBE y B DÉBIL en UNICA, motivación al logro alta, afiliación media alta y poder medio bajo en LUZ y UNICA y medio alto en URBE.

  2. Behavioral and electrophysiological effects of endocannabinoid and dopaminergic systems on salient stimuli

    Directory of Open Access Journals (Sweden)

    Daniela eLaricchiuta

    2014-05-01

    Full Text Available Rewarding effects have been related to enhanced dopamine (DA release in corticolimbic and basal ganglia structures. The DAergic and endocannabinoid interaction in the responses to reward is described. This study investigated the link between endocannabinoid and DAergic transmission in the processes that are related to response to two types of reward, palatable food and novelty. Mice treated with drugs acting on endocannabinoid system (ECS (URB597, AM251 or DAergic system (haloperidol were submitted to approach-avoidance conflict tasks with palatable food or novelty. In the same mice, the cannabinoid type-1 (CB1-mediated GABAergic transmission in medium spiny neurons of the dorsomedial striatum was analyzed. The endocannabinoid potentiation by URB597 magnified approach behavior for reward (food and novelty and in parallel inhibited dorsostriatal GABAergic neurotransmission. The decreased activity of CB1 receptor by AM251 (alone or with URB597 or of DAergic D2 receptor by haloperidol had inhibitory effects toward the reward and did not permit the inhibition of dorsostriatal GABAergic transmission. When haloperidol was coadministered with URB597, a restoration effect on reward and reward-dependent motor activity was observed, only if the reward was the palatable food. In parallel, the coadministration led to restoring inhibition of CB1-mediated GABAergic transmission. Thus, in the presence of simultaneous ECS activation and inhibition of DAergic system the response to reward appears to be a stimulus-dependent manner.

  3. Urbs oblivionalis. Urban Spaces and Terrorism in Italy

    Directory of Open Access Journals (Sweden)

    Elena Pirazzoli

    2016-03-01

    Urbs oblivionalis. Urban Spaces and Terrorism in Italy was the research focusing the planning reaction after terroristic attacks occurred in this country between 1961 and 1993. In this text the two authors underline the essential points of their research, still open and sadly actual.

  4. 31 CFR 597.318 - United States.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false United States. 597.318 Section 597... General Definitions § 597.318 United States. The term United States means the United States, its territories, states, commonwealths, districts, and possessions, and all areas under the jurisdiction or...

  5. Urban Typologies: Towards an ORNL Urban Information System (UrbIS)

    Science.gov (United States)

    KC, B.; King, A. W.; Sorokine, A.; Crow, M. C.; Devarakonda, R.; Hilbert, N. L.; Karthik, R.; Patlolla, D.; Surendran Nair, S.

    2016-12-01

    Urban environments differ in a large number of key attributes; these include infrastructure, morphology, demography, and economic and social variables, among others. These attributes determine many urban properties such as energy and water consumption, greenhouse gas emissions, air quality, public health, sustainability, and vulnerability and resilience to climate change. Characterization of urban environments by a single property such as population size does not sufficiently capture this complexity. In addressing this multivariate complexity one typically faces such problems as disparate and scattered data, challenges of big data management, spatial searching, insufficient computational capacity for data-driven analysis and modelling, and the lack of tools to quickly visualize the data and compare the analytical results across different cities and regions. We have begun the development of an Urban Information System (UrbIS) to address these issues, one that embraces the multivariate "big data" of urban areas and their environments across the United States utilizing the Big Data as a Service (BDaaS) concept. With technological roots in High-performance Computing (HPC), BDaaS is based on the idea of outsourcing computations to different computing paradigms, scalable to super-computers. UrbIS aims to incorporate federated metadata search, integrated modeling and analysis, and geovisualization into a single seamless workflow. The system includes web-based 2D/3D visualization with an iGlobe interface, fast cloud-based and server-side data processing and analysis, and a metadata search engine based on the Mercury data search system developed at Oak Ridge National Laboratory (ORNL). Results of analyses will be made available through web services. We are implementing UrbIS in ORNL's Compute and Data Environment for Science (CADES) and are leveraging ORNL experience in complex data and geospatial projects. The development of UrbIS is being guided by an investigation of

  6. 24 CFR 597.103 - Poverty rate.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Poverty rate. 597.103 Section 597... Area Requirements § 597.103 Poverty rate. (a) General. The poverty rate shall be established in accordance with the following criteria: (1) In each census tract within a nominated urban area, the poverty...

  7. 31 CFR 597.317 - Transfer.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Transfer. 597.317 Section 597.317 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN...; the creation or transfer of any lien; the issuance, docketing, filing, or levy of or under any...

  8. Bibliography of Selected SCSD, URBS, SSP, SEF, and RAS Publications.

    Science.gov (United States)

    Stanford Univ., CA. School Planning Lab.

    The annotated bibliography contains publications and report listings of the following sources--(1) School Construction Systems Development (SCSD), (2) University Residential Building Systems (URBS), (3) Florida Schoolhouse Systems Project (SSP), (4) Study of Educational Facilities (SEF), and (5) Recherches en Amenagements Scolaires (RAS) Building…

  9. Alcaloides en la especie cubana Croton micradenus Urb

    Directory of Open Access Journals (Sweden)

    Armando Payo Hill

    2001-04-01

    Full Text Available Se emprendió el estudio del contenido de alcaloides en las hojas y tallos de la especie endémica cubana, potencialmente medicinal, Crotón micradenus Urb. Para la extracción y purificación de dichos metabolitos se utilizaron solventes orgánicos y métodos cromatográficos de separación por columna y placa. Mediante métodos espectroscópicos de UV, IR, Masa y RMN ¹H y 13C, así como por la medición de sus constantes físicas, se caracterizaron 4 de los 6 alcaloides aislados, de ellos 3 morfinandienonas: ocobotrina, sinoacutina y 8,14 dihidrosalutaridina y una aporfina: isoboldina.The study of the content of alkaloids in the leaves and stems of the Croton micradenus Urb Cuban endemic species, which is potentially medicinal, was conducted. Organic solvents and chromatographic methods of separation by column and plate were used for the extraction and purification of these metabolites. 4 of the 6 isolated alkaloids, 3 of them morphinandienones: ocobotrine, sinoacutine and 8,14-dihydrosalutaridine and an aporphine (Isobol-dine were characterized by spectroscopic methods of UV, IR, Mass and NMR ¹H and 13C, as well as by the measurement of their physical constants.

  10. 24 CFR 597.202 - Submission of nominations for designation.

    Science.gov (United States)

    2010-04-01

    ... nominated urban area satisfies the poverty rate tests set forth in § 597.103; (4) The nominated urban area... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Submission of nominations for designation. 597.202 Section 597.202 Housing and Urban Development Regulations Relating to Housing and Urban...

  11. Cuerpos fantasmales en la urbe global

    Directory of Open Access Journals (Sweden)

    Angel Martínez-Hernáez

    2009-08-01

    Full Text Available La fluidez se ha convertido en metáfora de una sociedad contemporánea donde, paradójicamente, la única estabilidad descansa en lo efímero, donde las formas sociales cambian antes de que se sedimenten. No obstante, en la urbe global entendida como espacio de flujos cristalizan algunas relaciones sociales - por ejemplo, el vínculo consumidor-mercancía. Esta relación social propicia la creación de una subjetividad corporalizada donde el cuerpo se ha convertido en un fin y no sólo en un medio. El cuerpo es aquí una doble entidad subjetivada (el cuerpo-consumidor y objetivada (el cuerpo-mercancía, un ente fantasmal que deviene funcional a la sociedad de consumo.

  12. Simulations with COSMO-CLM over Turin including TERRA-URB parameterization

    Science.gov (United States)

    Bucchignani, Edoardo; Mercogliano, Paola; Milelli, Massimo; Raffa, Mario

    2017-04-01

    The increase of built surfaces constitutes the main reason for the formation of Urban Heat Islands (UHIs), since urban canyons block the release of the reflected radiation. The main contribution to the formation of UHIs is the missing night-cooling of horizontal surfaces, together with cloudless sky and light winds. Of course, there is also a contribution from indoor heating, vehicles presence, and waste heat from air conditioning and refrigeration systems. The COSMO-CLM model, even at high resolution, is currently not able to cope with this effect. Nevertheless, the increase of applications in which a high number of grid points is located over urban areas, requires that COSMO-CLM becomes able to take into account also urban climate features. In fact, they are crucial for better forecast of temperature and for a better characterization of the local patterns of several atmospherical variables (wind, surface fluxes). Recently TERRA-URB, a bulk parameterisation scheme with a prescribed anthropogenic heat flux, has been incorporated into COSMO-CLM for the standard land-surface module TERRA-ML. It offers an intrinsic representation of the urban physics with modifications of input data, soil module and land atmospheric interactions. In the first half of July 2015, Piemonte region and Turin in particular experienced extreme temperature values and uncomfortable conditions for the population. In Turin, the maximum temperature since 1990 (38.5°) has been recorded in July 2015. Ground stations data highlighted the presence of a UHI effect over Turin. This is the reason why this area and this period represent a suitable benchmark to test the capabilities of COSMO-CLM, and in particular of the urban parameterization. The computational domain considered is centered over Turin, discretized with 100 x 100 grid-points, employing a spatial resolution of 0.009° (about 1 km). The ECMWF IFS analysis at 0.075° have been used as forcing data. Two simulations have been performed over

  13. 27 CFR 19.597 - Kind of spirits.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Kind of spirits. 19.597 Section 19.597 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... more than 160 degrees of proof, which lack the taste, aroma, and other characteristics generally...

  14. Poorer frontolimbic white matter integrity is associated with chronic cannabis use, FAAH genotype, and increased depressive and apathy symptoms in adolescents and young adults

    Directory of Open Access Journals (Sweden)

    Skyler G. Shollenbarger

    2015-01-01

    Conclusions: Consistent with prior findings, cannabis use was associated with reduced frontolimbic WM integrity. WM integrity was also moderated by FAAH genotype, in that cannabis-using FAAH C/C carriers and A carrying controls had reduced WM integrity compared to control C/C carriers. Observed frontolimbic white matter abnormalities were linked with increased depressive and apathy symptoms in the cannabis users.

  15. The effect of anandamide on uterine nitric oxide synthase activity depends on the presence of the blastocyst.

    Directory of Open Access Journals (Sweden)

    Micaela S Sordelli

    2011-04-01

    Full Text Available Nitric oxide production, catalyzed by nitric oxide synthase (NOS, should be strictly regulated to allow embryo implantation. Thus, our first aim was to study NOS activity during peri-implantation in the rat uterus. Day 6 inter-implantation sites showed lower NOS activity (0.19±0.01 pmoles L-citrulline mg prot(-1 h(-1 compared to days 4 (0.34±0.03 and 5 (0.35±0.02 of pregnancy and to day 6 implantation sites (0.33±0.01. This regulation was not observed in pseudopregnancy. Both dormant and active blastocysts maintained NOS activity at similar levels. Anandamide (AEA, an endocannabinoid, binds to cannabinoid receptors type 1 (CB1 and type 2 (CB2, and high concentrations are toxic for implantation and embryo development. Previously, we observed that AEA synthesis presents an inverted pattern compared to NOS activity described here. We adopted a pharmacological approach using AEA, URB-597 (a selective inhibitor of fatty acid amide hydrolase, the enzyme that degrades AEA and receptor selective antagonists to investigate the effect of AEA on uterine NOS activity in vitro in rat models of implantation. While AEA (0.70±0.02 vs 0.40±0.04 and URB-597 (1.08±0.09 vs 0.83±0.06 inhibited NOS activity in the absence of a blastocyst (pseudopregnancy through CB2 receptors, AEA did not modulate NOS on day 5 pregnant uterus. Once implantation begins, URB-597 decreased NOS activity on day 6 implantation sites via CB1 receptors (0.25±0.04 vs 0.40±0.05. While a CB1 antagonist augmented NOS activity on day 6 inter-implantation sites (0.17±0.02 vs 0.27±0.02, a CB2 antagonist decreased it (0.17±0.02 vs 0.12±0.01. Finally, we described the expression and localization of cannabinoid receptors during implantation. In conclusion, AEA levels close to and at implantation sites seems to modulate NOS activity and thus nitric oxide production, fundamental for implantation, via cannabinoid receptors. This modulation depends on the presence of the blastocyst. These

  16. Association of CNR1 and FAAH endocannabinoid gene polymorphisms with anorexia nervosa and bulimia nervosa: evidence for synergistic effects.

    Science.gov (United States)

    Monteleone, P; Bifulco, M; Di Filippo, C; Gazzerro, P; Canestrelli, B; Monteleone, F; Proto, M C; Di Genio, M; Grimaldi, C; Maj, M

    2009-10-01

    Endocannabinoids modulate eating behavior; hence, endocannabinoid genes may contribute to the biological vulnerability to eating disorders. The rs1049353 (1359 G/A) single nucleotide polymorphism (SNP) of the gene coding the endocannabinoid CB1 receptor (CNR1) and the rs324420 (cDNA 385C to A) SNP of the gene coding fatty acid amide hydrolase (FAAH), the major degrading enzyme of endocannabinoids, have been suggested to have functional effects on mature proteins. Therefore, we explored the possibility that those SNPs were associated to anorexia nervosa and/or bulimia nervosa. The distributions of the CNR1 1359 G/A SNP and of the FAAH cDNA 385C to A SNP were investigated in 134 patients with anorexia nervosa, 180 patients with bulimia nervosa and 148 normal weight healthy controls. Additive effects of the two SNPs in the genetic susceptibility to anorexia nervosa and bulimia nervosa were also tested. As compared to healthy controls, anorexic and bulimic patients showed significantly higher frequencies of the AG genotype and the A allele of the CNR1 1359 G/A SNP. Similarly, the AC genotype and the A allele of the FAAH cDNA 385C to A SNP were significantly more frequent in anorexic and bulimic individuals. A synergistic effect of the two SNPs was evident in anorexia nervosa but not in bulimia nervosa. Present findings show for the first time that the CNR1 1359 G/A SNP and the FAAH cDNA 385C to A SNP are significantly associated to anorexia nervosa and bulimia nervosa, and demonstrate a synergistic effect of the two SNPs in anorexia nervosa.

  17. 26 CFR 1.597-2 - Taxation of Federal financial assistance.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 7 2010-04-01 2010-04-01 true Taxation of Federal financial assistance. 1.597-2 Section 1.597-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Mutual Savings Banks, Etc. § 1.597-2 Taxation of Federal...

  18. Increased Contextual Fear Conditioning in iNOS Knockout Mice: Additional Evidence for the Involvement of Nitric Oxide in Stress-Related Disorders and Contribution of the Endocannabinoid System

    Science.gov (United States)

    Gomes, Felipe V.; Silva, Andréia L.; Uliana, Daniela L.; Camargo, Laura H. A.; Guimarães, Francisco S.; Cunha, Fernando Q.; Joca, Sâmia R. L.; Resstel, Leonardo B. M.

    2015-01-01

    Background: Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. Methods: We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Results: Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. Conclusion: These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in

  19. The functional Pro129Thr variant of the FAAH gene is not associated with various fat accumulation phenotypes in a population-based cohort of 5,801 whites

    DEFF Research Database (Denmark)

    Jensen, Dorit P; Andersen, Mette K; Hansen, Lars

    2007-01-01

    Food intake and weight gain are influenced by endocannabinoids whose actions are regulated by the fatty acid amide hydrolase (FAAH) enzyme. The homozygous Thr/Thr genotype of the functional Pro129Thr variant (rs324420) in the gene encoding FAAH was recently reported to associate with overweight a...

  20. Comparative effects of pulmonary and parenteral Δ⁹-tetrahydrocannabinol exposure on extinction of opiate-induced conditioned aversion in rats.

    Science.gov (United States)

    Manwell, Laurie A; Mallet, Paul E

    2015-05-01

    Evidence suggesting that the endogenous cannabinoid (eCB) system can be manipulated to facilitate or impair extinction of learned behaviours has important consequences for opiate withdrawal and abstinence. We demonstrated that the fatty acid amide hydrolase (FAAH) inhibitor URB597, which increases eCB levels, facilitates extinction of a naloxone-precipitated morphine withdrawal-induced conditioned place aversion (CPA). The potential of the exogenous CB1 ligand, Δ(9)-tetrahydrocannabinol (Δ(9)-THC), to facilitate extinction of this CPA was tested. Effects of both pulmonary and parenteral Δ(9)-THC exposure were evaluated using comparable doses previously determined. Rats trained to associate a naloxone-precipitated morphine withdrawal with a floor cue were administered Δ(9)-THC-pulmonary (1, 5, 10 mg vapour inhalation) or parenteral (0.5, 1.0, 1.5 mg/kg intraperitoneal injection)-prior to each of 20 to 28 extinction/testing trials. Vapourized Δ(9)-THC facilitated extinction of the CPA in a dose- and time-dependent manner: 5 and 10 mg facilitated extinction compared to vehicle and 1 mg Δ(9)-THC. Injected Δ(9)-THC significantly impaired extinction only for the 1.0-mg/kg dose: it prolonged the CPA fourfold longer than the vehicle and 0.5- and 1.5-mg/kg doses. These data suggest that both dose and route of Δ(9)-THC administration have important consequences for its pharmacokinetic and behavioural effects; specifically, pulmonary exposure at higher doses facilitates, whereas pulmonary and parenteral exposure at lower doses impairs, rates of extinction learning for CPA. Pulmonary-administered Δ(9)-THC may prove beneficial for potentiation of extinction learning for aversive memories, such as those supporting drug-craving/seeking in opiate withdrawal syndrome, and other causes of conditioned aversions, such as illness and stress.

  1. 31 CFR 597.319 - U.S. financial institution.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false U.S. financial institution. 597.319 Section 597.319 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE... financial institution's foreign branches; (b) Any financial institution operating or doing business in the...

  2. 31 CFR 597.501 - Effect of license or authorization.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Effect of license or authorization. 597.501 Section 597.501 Money and Finance: Treasury Regulations Relating to Money and Finance... not otherwise exist under ordinary principles of law. ...

  3. Simultaneous Inhibition of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase Shares Discriminative Stimulus Effects with Δ9-Tetrahydrocannabinol in Mice

    OpenAIRE

    Hruba, Lenka; Seillier, Alexandre; Zaki, Armia; Cravatt, Benjamin F.; Lichtman, Aron H.; Giuffrida, Andrea; McMahon, Lance R.

    2015-01-01

    Monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) inhibitors exert preclinical effects indicative of therapeutic potential (i.e., analgesia). However, the extent to which MAGL and FAAH inhibitors produce unwanted effects remains unclear. Here, FAAH and MAGL inhibition was examined separately and together in a Δ9-tetrahydrocannabinol (Δ9-THC; 5.6 mg/kg i.p.) discrimination assay predictive of subjective effects associated with cannabis use, and the relative contribution of N...

  4. Identification and characterization of carprofen as a multitarget fatty acid amide hydrolase/cyclooxygenase inhibitor.

    Science.gov (United States)

    Favia, Angelo D; Habrant, Damien; Scarpelli, Rita; Migliore, Marco; Albani, Clara; Bertozzi, Sine Mandrup; Dionisi, Mauro; Tarozzo, Glauco; Piomelli, Daniele; Cavalli, Andrea; De Vivo, Marco

    2012-10-25

    Pain and inflammation are major therapeutic areas for drug discovery. Current drugs for these pathologies have limited efficacy, however, and often cause a number of unwanted side effects. In the present study, we identify the nonsteroidal anti-inflammatory drug carprofen as a multitarget-directed ligand that simultaneously inhibits cyclooxygenase-1 (COX-1), COX-2, and fatty acid amide hydrolase (FAAH). Additionally, we synthesized and tested several derivatives of carprofen, sharing this multitarget activity. This may result in improved analgesic efficacy and reduced side effects (Naidu et al. J. Pharmacol. Exp. Ther.2009, 329, 48-56; Fowler, C. J.; et al. J. Enzyme Inhib. Med. Chem.2012, in press; Sasso et al. Pharmacol. Res.2012, 65, 553). The new compounds are among the most potent multitarget FAAH/COX inhibitors reported so far in the literature and thus may represent promising starting points for the discovery of new analgesic and anti-inflammatory drugs.

  5. Model developments in TERRA_URB, the upcoming standard urban parametrization of the atmospheric numerical model COSMO(-CLM)

    Science.gov (United States)

    Wouters, Hendrik; Blahak, Ulrich; Helmert, Jürgen; Raschendorfer, Matthias; Demuzere, Matthias; Fay, Barbara; Trusilova, Kristina; Mironov, Dmitrii; Reinert, Daniel; Lüthi, Daniel; Machulskaya, Ekaterina

    2015-04-01

    In order to address urban climate at the regional scales, a new efficient urban land-surface parametrization TERRA_URB has been developed and coupled to the atmospheric numerical model COSMO-CLM. Hereby, several new advancements for urban land-surface models are introduced which are crucial for capturing the urban surface-energy balance and its seasonal dependency in the mid-latitudes. This includes a new PDF-based water-storage parametrization for impervious land, the representation of radiative absorption and emission by greenhouse gases in the infra-red spectrum in the urban canopy layer, and the inclusion of heat emission from human activity. TERRA_URB has been applied in offline urban-climate studies during European observation campaigns at Basel (BUBBLE), Toulouse (CAPITOUL), and Singapore, and currently applied in online studies for urban areas in Belgium, Germany, Switzerland, Helsinki, Singapore, and Melbourne. Because of its computational efficiency, high accuracy and its to-the-point conceptual easiness, TERRA_URB has been selected to become the standard urban parametrization of the atmospheric numerical model COSMO(-CLM). This allows for better weather forecasts for temperature and precipitation in cities with COSMO, and an improved assessment of urban outdoor hazards in the context of global climate change and urban expansion with COSMO-CLM. We propose additional extensions to TERRA_URB towards a more robust representation of cities over the world including their structural design. In a first step, COSMO's standard EXTernal PARarameter (EXTPAR) tool is updated for representing the cities into the land cover over the entire globe. Hereby, global datasets in the standard EXTPAR tool are used to retrieve the 'Paved' or 'sealed' surface Fraction (PF) referring to the presence of buildings and streets. Furthermore, new global data sets are incorporated in EXTPAR for describing the Anthropogenic Heat Flux (AHF) due to human activity, and optionally the

  6. Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo

    OpenAIRE

    Long, Jonathan Z.; Nomura, Daniel K.; Vann, Robert E.; Walentiny, D. Matthew; Booker, Lamont; Jin, Xin; Burston, James J.; Sim-Selley, Laura J.; Lichtman, Aron H.; Wiley, Jenny L.; Cravatt, Benjamin F.

    2009-01-01

    Δ9-Tetrahydrocannabinol (THC), the psychoactive component of marijuana, and other direct cannabinoid receptor (CB1) agonists produce a number of neurobehavioral effects in mammals that range from the beneficial (analgesia) to the untoward (abuse potential). Why, however, this full spectrum of activities is not observed upon pharmacological inhibition or genetic deletion of either fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), enzymes that regulate the two major endocanna...

  7. Radiosynthesis and ex vivo evaluation of [11C-carbonyl]carbamate- and urea-based monoacylglycerol lipase inhibitors

    International Nuclear Information System (INIS)

    Hicks, Justin W.; Parkes, Jun; Tong, Junchao; Houle, Sylvain; Vasdev, Neil; Wilson, Alan A.

    2014-01-01

    Introduction: Monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) are the two primary enzymes that regulate the tone of endocannabinoid signaling. Although new PET radiotracers have been discovered for imaging FAAH in vivo, no such radiotracer exists for imaging MAGL. Here we report the radiosynthesis of five candidate MAGL radiotracers and their ex vivo evaluations in mice and rats. Methods: Candidate carbamate and urea MAGL inhibitors were radiolabeled at the carbonyl position by [ 11 C]CO 2 fixation. Radiotracers were administered (tail-vein injection) to rodents and brain uptake of radioactivity measured at early and late time points ex vivo. Specificity of uptake was explored by pretreatment with unlabeled inhibitors (2 mg/kg, ip) 30 min prior to radiotracer administration. Results: All five candidate MAGL radiotracers were prepared in high specific activity (> 65 GBq/μmol) and radiochemical purity (> 98%). Moderate brain uptake (0.2–0.8 SUV) was observed for each candidate while pretreatment did not reduce uptake for four of the five tested. For two candidates ([ 11 C]12 and [ 11 C]14), high retention of radioactivity was observed in the blood (ca. 10 and 4 SUV at 40 min) which was blocked by pretreatment with unlabeled inhibitors. The most promising candidate, [ 11 C]18, demonstrated moderate brain uptake (ca. 0.8 SUV) which showed circa 50% blockade by pretreatment with unlabeled 18. Conclusion: One putative and four reported potent and selective MAGL inhibitors have been radiolabeled via [ 11 C]CO 2 fixation as radiotracers for this enzyme. Despite the promising in vitro pharmacological profile, none of the five candidate radiotracers exhibited in vivo behavior suitable for PET neuroimaging

  8. 31 CFR 597.309 - Foreign terrorist organization.

    Science.gov (United States)

    2010-07-01

    ... REGULATIONS General Definitions § 597.309 Foreign terrorist organization. The term foreign terrorist... respect to which the Secretary of State has notified Congress of the intention to designate as a foreign...

  9. Mustard vesicants alter expression of the endocannabinoid system in mouse skin

    International Nuclear Information System (INIS)

    Wohlman, Irene M.; Composto, Gabriella M.; Heck, Diane E.; Heindel, Ned D.; Lacey, C. Jeffrey; Guillon, Christophe D.; Casillas, Robert P.; Croutch, Claire R.; Gerecke, Donald R.; Laskin, Debra L.; Joseph, Laurie B.; Laskin, Jeffrey D.

    2016-01-01

    Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants. - Highlights: • Sulfur mustard and nitrogen mustard are potent skin vesicants. • The endocannabinoid system regulates keratinocyte growth and differentiation. • Vesicants are potent inducers of the endocannabinoid system in mouse skin. • Endocannabinoid proteins upregulated are FAAH, CB1, CB2 and PPARα. • FAAH inhibitors suppress vesicant-induced inflammation in mouse skin.

  10. Mustard vesicants alter expression of the endocannabinoid system in mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Wohlman, Irene M.; Composto, Gabriella M. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Environmental Health Science, New York Medical College, Valhalla, NY (United States); Heindel, Ned D.; Lacey, C. Jeffrey; Guillon, Christophe D. [Department of Chemistry, Lehigh University, Bethlehem, PA (United States); Casillas, Robert P.; Croutch, Claire R. [MRIGlobal, Kansas City, MO (United States); Gerecke, Donald R.; Laskin, Debra L.; Joseph, Laurie B. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ (United States)

    2016-07-15

    Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants. - Highlights: • Sulfur mustard and nitrogen mustard are potent skin vesicants. • The endocannabinoid system regulates keratinocyte growth and differentiation. • Vesicants are potent inducers of the endocannabinoid system in mouse skin. • Endocannabinoid proteins upregulated are FAAH, CB1, CB2 and PPARα. • FAAH inhibitors suppress vesicant-induced inflammation in mouse skin.

  11. 24 CFR 597.102 - Tests of pervasive poverty, unemployment and general distress.

    Science.gov (United States)

    2010-04-01

    ..., unemployment and general distress. 597.102 Section 597.102 Housing and Urban Development Regulations Relating..., unemployment and general distress. (a) Pervasive poverty. Pervasive poverty shall be demonstrated by the... component areas of an affluent character. (b) Unemployment. Unemployment shall be demonstrated by: (1) Data...

  12. 31 CFR 597.503 - Payments and transfers to blocked accounts in U.S. financial institutions.

    Science.gov (United States)

    2010-07-01

    ... accounts in U.S. financial institutions. 597.503 Section 597.503 Money and Finance: Treasury Regulations... Licensing Policy § 597.503 Payments and transfers to blocked accounts in U.S. financial institutions. (a... financial institution into a blocked account in a U.S. financial institution is authorized, provided that a...

  13. Prior stimulation of the endocannabinoid system prevents methamphetamine-induced dopaminergic neurotoxicity in the striatum through activation of CB2 receptors

    Science.gov (United States)

    Nader, Joëlle; Rapino, Cinzia; Gennequin, Benjamin; Chavant, Francois; Francheteau, Maureen; Makriyannis, Alexandros; Duranti, Andrea; Maccarrone, Mauro; Solinas, Marcello; Thiriet, Nathalie

    2016-01-01

    Methamphetamine toxicity is associated with cell death and loss of dopamine neuron terminals in the striatum similar to what is found in some neurodegenerative diseases. Conversely, the endocannabinoid system (ECS) has been suggested to be neuroprotective in the brain, and new pharmacological tools have been developed to increase their endogenous tone. In this study, we evaluated whether ECS stimulation could reduce the neurotoxicity of high doses of methamphetamine on the dopamine system. We found that methamphetamine alters the levels of the major endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) in the striatum, suggesting that the ECS participates in the brain responses to methamphetamine. Δ9-tetrahydrocannabinol (THC), a cannabis-derived agonist of both CB1 and CB2 cannabinoid receptors, or inhibitors of the main enzymes responsible for the degradation of AEA and 2-AG (URB597 and JZL184, respectively), blunted the decrease in striatal protein levels of tyrosine hydroxylase induced by methamphetamine. In addition, antagonists of CB2, but not of CB1, blocked the preventive effects of URB597 and JZL184, suggesting that only the former receptor subtype is engaged in neuroprotection exerted by ECS stimulation. Finally, we found that methamphetamine increases striatal levels of the cytokine tumor necrosis factor alpha, an effect that was blocked by ECS stimulation. Altogether, our results indicate that stimulation of ECS prior to the administration of an overdose of meth-amphetamine considerably reduces the neurotoxicity of the drug through CB2 receptor activation and highlight a protective function for the ECS against the toxicity induced by drugs and other external insults to the brain. This article is part of the Special Issue entitled ‘CNS Stimulants’. PMID:24709540

  14. El modelo de urbe global

    Directory of Open Access Journals (Sweden)

    María del Mar Chaves Carrillo

    2004-01-01

    Full Text Available Este artículo pretende aportar una perspectiva holista necesaria al debate teórico que desde las ciencias sociales, y desde la sociología en particular, se viene fraguando en el ámbito académico en torno a la emergente Sociedad de la Información. Para ello, y como referencia fundamental, es indispensable el libro 'Hacia la Urbe Global' de Baigorri. Su visión global y la utilización del paradigma del materialismo ecológico, nos ayudan a acometer el análisis de la Sociedad Telemática, el papel de las ciudades y el territorio, las relaciones sociales, los cambios culturales, los focos de conflicto y las desigualdades, desde una perspectiva global necesaria para la comprensión del todo y de las partes. Comprobar, cómo las tesis economicistas centradas en la supremacía de ciertas Ciudades-Estados, según el modelo de Castells, Sassen o Mazza, no pueden ser sostenidas sin tener en cuenta el territorio de anclaje en el que se encuentran, así como su situación de dependencia hacia otros territorios. Asimismo, esta perspectiva holista nos ofrece la alternativa del análisis de los aspectos negativos y positivos de la sociedad basada en las Nuevas Tecnologías de la Información y la Comunicación, superando las visiones unidireccionales, como las de Bauman o Giddens.

  15. The administration of endocannabinoid uptake inhibitors OMDM-2 or VDM-11 promotes sleep and decreases extracellular levels of dopamine in rats.

    Science.gov (United States)

    Murillo-Rodríguez, Eric; Palomero-Rivero, Marcela; Millán-Aldaco, Diana; Di Marzo, Vincenzo

    2013-01-17

    The family of the endocannabinoid system comprises endogenous lipids (such as anandamide [ANA]), receptors (CB(1)/CB(2) cannabinoid receptors), metabolic enzymes (fatty acid amide hydrolase [FAAH]) and a putative membrane transporter (anandamide membrane transporter [AMT]). Although the role of ANA, FAAH or the CB(1) cannabinoid receptor in sleep modulation has been reported, the effects of the inhibition of AMT on sleep remain unclear. In the present study, we show that microdialysis perfusion in rats of AMT inhibitors, (9Z)-N-[1-((R)-4-hydroxbenzyl)-2-hydroxyethyl]-9-octadecenamide (OMDM-2) or N-(4-hydroxy-2-methylphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (VDM-11; 10, 20 or 30 μM; each compound) delivered into the paraventricular thalamic nucleus (PVA) increased sleep and decreased waking. In addition, the infusion of compounds reduced the extracellular levels of dopamine collected from nucleus accumbens. Taken together, these findings illustrate a critical role of AMT in sleep modulation. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. 31 CFR 597.705 - Administrative collection; referral to United States Department of Justice.

    Science.gov (United States)

    2010-07-01

    ... to United States Department of Justice. 597.705 Section 597.705 Money and Finance: Treasury... collection; referral to United States Department of Justice. In the event that the respondent does not pay... Department of the Treasury or to the United States Department of Justice for appropriate action to recover...

  17. 26 CFR 1.597-5 - Taxable Transfers.

    Science.gov (United States)

    2010-04-01

    ... pursuant to an election under § 1.597-4(g)); or (iii) Issues stock such that the stock that was outstanding...) Basis limited to fair market value. If all of the stock of the corporation is not acquired on the date... acquisitions are provided in paragraph (e) of this section. (b) Deemed asset acquisitions upon stock purchase...

  18. 24 CFR 597.502 - Nominations by economic development corporations or the District of Columbia.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Nominations by economic development corporations or the District of Columbia. 597.502 Section 597.502 Housing and Urban Development Regulations... development corporations or the District of Columbia. Any urban area nominated by an Economic Development...

  19. Fatty Acid Amide Hydrolase Binding in Brain of Cannabis Users: Imaging with the Novel Radiotracer [11C]CURB

    Science.gov (United States)

    Boileau, Isabelle; Mansouri, Esmaeil; Williams, Belinda; Le Foll, Bernard; Rusjan, Pablo; Mizrahi, Romina; Tyndale, Rachel F.; Huestis, Marilyn A.; Payer, Doris E.; Wilson, Alan A.; Houle, Sylvain; Kish, Stephen J.; Tong, Junchao

    2016-01-01

    Background One of the major mechanisms for terminating the actions of the endocannabinoid anandamide is hydrolysis by fatty acid amide hydrolase (FAAH) and inhibitors of the enzyme were suggested as potential treatment for human cannabis dependence. However, the status of brain FAAH in cannabis use disorder is unknown. Methods Brain FAAH binding was measured with positron emission tomography and [11C]CURB in 22 healthy control subjects and ten chronic, frequent cannabis users during early abstinence. The FAAH genetic polymorphism (rs324420) and blood, urine and hair levels of cannabinoids and metabolites were determined. Results In cannabis users FAAH binding was significantly lower by 14–20% across the brain regions examined as compared to matched control subjects (overall Cohen’s d=0.96). Lower binding was negatively correlated with cannabinoid concentrations in blood and urine and was associated with higher trait impulsiveness. Conclusions Lower FAAH binding levels in the brain may be a consequence of chronic and recent cannabis exposure and could contribute to cannabis withdrawal. This effect should be considered in the development of novel treatment strategies for cannabis use disorder that target FAAH and endocannabinoids. Further studies are needed to examine possible changes in FAAH binding during prolonged cannabis abstinence and whether lower FAAH binding predates drug use. PMID:27345297

  20. Tunable ultraviolet solid-state dye laser based on MPMMA doped with pyrromethene 597

    International Nuclear Information System (INIS)

    Jiang, Y G; Fan, R W; Xia, Y Q; Chen, D Y

    2011-01-01

    Solid-state dye sample based on modified polymethyl methacrylate (MPMMA) co-doped with pyrromethene 597 (PM597), and coumarin 460 (C460) were prepared. A frequency-doubled pulsed Nd:YAG laser is used to pump solid-state dye sample, and the narrow linewidth dye laser of 94.4 mJ was obtained at 582 nm in an oscillator-amplifier configuration. Using a beta-BaB 2 O 4 (BBO) crystal to frequency double the dye laser into ultraviolet (UV), a tuning range from 279 to 305 nm was demonstrated from a single doped PM597 dye. To the best of our knowledge, the UV tuning range is the best under the same condition so far. The conversion slope efficiency from solid dye laser to UV laser was 8.9% and the highest UV laser output energy reached 6.94 mJ at 291 nm

  1. 26 CFR 1.597-4 - Bridge Banks and Agency Control.

    Science.gov (United States)

    2010-04-01

    ... of an Institution's assets are reduced by the amount of the Institution's reserves for bad debts... building and loan association within the meaning of section 597. (v) Loss carrybacks. To the extent a...

  2. DIFFERENT SUBSTRATA EFFECTS IN THE GERMINATION OF Ochroma pyramidale (CAV. EX LAM. URB. (BOMBACACEAE

    Directory of Open Access Journals (Sweden)

    Fabrízia de Oliveira Alvino

    2010-08-01

    Full Text Available The objective of this paper was to analyze the effect of different substrata in the germination of Ochroma pyramidale (Cav. ex Lam. Urb. (Bombacaceae. The experiment was conducted in delineation randomized with three treatments (substratum and four repetitions of 25 seeds. The following substrata had been tested: sand + vermiculite (1:1; vermiculite and, sand + shavings (1:1. The effect of substrata through the percentage of germination of the seeds, average time of germination and index of germination speed (IGS were evaluated. There had been significant difference between the treatments in of all the observed variable. The seeds, when conditioned in vermiculite, had presented the biggest tax of germination, greatest speed and lowest germination time.

  3. Luciferin Amides Enable in Vivo Bioluminescence Detection of Endogenous Fatty Acid Amide Hydrolase Activity.

    Science.gov (United States)

    Mofford, David M; Adams, Spencer T; Reddy, G S Kiran Kumar; Reddy, Gadarla Randheer; Miller, Stephen C

    2015-07-15

    Firefly luciferase is homologous to fatty acyl-CoA synthetases. We hypothesized that the firefly luciferase substrate d-luciferin and its analogs are fatty acid mimics that are ideally suited to probe the chemistry of enzymes that release fatty acid products. Here, we synthesized luciferin amides and found that these molecules are hydrolyzed to substrates for firefly luciferase by the enzyme fatty acid amide hydrolase (FAAH). In the presence of luciferase, these molecules enable highly sensitive and selective bioluminescent detection of FAAH activity in vitro, in live cells, and in vivo. The potency and tissue distribution of FAAH inhibitors can be imaged in live mice, and luciferin amides serve as exemplary reagents for greatly improved bioluminescence imaging in FAAH-expressing tissues such as the brain.

  4. 40 CFR 80.597 - What are the registration requirements?

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Recordkeeping and Reporting Requirements § 80.597 What are...) Registration for motor vehicle diesel fuel. Refiners having any refinery that is subject to a sulfur standard...

  5. Identification and recombinant expression of anandamide hydrolyzing enzyme from Dictyostelium discoideum

    Directory of Open Access Journals (Sweden)

    Neelamegan Dhamodharan

    2012-06-01

    Full Text Available Abstract Background Anandamide (Arachidonoyl ethanolamide is a potent bioactive lipid studied extensively in humans, which regulates several neurobehavioral processes including pain, feeding and memory. Bioactivity is terminated when hydrolyzed into free arachidonic acid and ethanolamine by the enzyme fatty acid amide hydrolase (FAAH. In this study we report the identification of a FAAH homolog from Dictyostelium discoideum and its function to hydrolyze anandamide. Results A putative FAAH DNA sequence coding for a conserved amidase signature motif was identified in the Dictyostelium genome database and the corresponding cDNA was isolated and expressed as an epitope tagged fusion protein in either E.coli or Dictyostelium. Wild type Dictyostelium cells express FAAH throughout their development life cycle and the protein was found to be predominantly membrane associated. Production of recombinant HIS tagged FAAH protein was not supported in E.coli host, but homologous Dictyostelium host was able to produce the same successfully. Recombinant FAAH protein isolated from Dictyostelium was shown to hydrolyze anandamide and related synthetic fatty acid amide substrates. Conclusions This study describes the first identification and characterisation of an anandamide hydrolyzing enzyme from Dictyostelium discoideum, suggesting the potential of Dictyostelium as a simple eukaryotic model system for studying mechanisms of action of any FAAH inhibitors as drug targets.

  6. New Tools to Document and Manage Data/Metadata: Example NGEE Arctic and UrbIS

    Science.gov (United States)

    Crow, M. C.; Devarakonda, R.; Hook, L.; Killeffer, T.; Krassovski, M.; Boden, T.; King, A. W.; Wullschleger, S. D.

    2016-12-01

    Tools used for documenting, archiving, cataloging, and searching data are critical pieces of informatics. This discussion describes tools being used in two different projects at Oak Ridge National Laboratory (ORNL), but at different stages of the data lifecycle. The Metadata Entry and Data Search Tool is being used for the documentation, archival, and data discovery stages for the Next Generation Ecosystem Experiment - Arctic (NGEE Arctic) project while the Urban Information Systems (UrbIS) Data Catalog is being used to support indexing, cataloging, and searching. The NGEE Arctic Online Metadata Entry Tool [1] provides a method by which researchers can upload their data and provide original metadata with each upload. The tool is built upon a Java SPRING framework to parse user input into, and from, XML output. Many aspects of the tool require use of a relational database including encrypted user-login, auto-fill functionality for predefined sites and plots, and file reference storage and sorting. The UrbIS Data Catalog is a data discovery tool supported by the Mercury cataloging framework [2] which aims to compile urban environmental data from around the world into one location, and be searchable via a user-friendly interface. Each data record conveniently displays its title, source, and date range, and features: (1) a button for a quick view of the metadata, (2) a direct link to the data and, for some data sets, (3) a button for visualizing the data. The search box incorporates autocomplete capabilities for search terms and sorted keyword filters are available on the side of the page, including a map for searching by area. References: [1] Devarakonda, Ranjeet, et al. "Use of a metadata documentation and search tool for large data volumes: The NGEE arctic example." Big Data (Big Data), 2015 IEEE International Conference on. IEEE, 2015. [2] Devarakonda, R., Palanisamy, G., Wilson, B. E., & Green, J. M. (2010). Mercury: reusable metadata management, data discovery

  7. 20 CFR 411.597 - Will SSA periodically review the outcome payment system and the outcome-milestone payment system...

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Will SSA periodically review the outcome payment system and the outcome-milestone payment system for possible modifications? 411.597 Section 411... Employment Network Payment Systems § 411.597 Will SSA periodically review the outcome payment system and the...

  8. Activation of Endocannabinoid Receptor 2 as a Mechanism of Propofol Pretreatment-Induced Cardioprotection against Ischemia-Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Hai-Jing Sun

    2017-01-01

    Full Text Available Propofol pretreatment before reperfusion, or propofol conditioning, has been shown to be cardioprotective, while its mechanism is unclear. The current study investigated the roles of endocannabinoid signaling in propofol cardioprotection in an in vivo model of myocardial ischemia/reperfusion (I/R injury and in in vitro primary cardiomyocyte hypoxia/reoxygenation (H/R injury. The results showed that propofol conditioning increased both serum and cell culture media concentrations of endocannabinoids including anandamide (AEA and 2-arachidonoylglycerol (2-AG detected by LC-MS/MS. The reductions of myocardial infarct size in vivo and cardiomyocyte apoptosis and death in vitro were accompanied with attenuations of oxidative injuries manifested as decreased reactive oxygen species (ROS, malonaldehyde (MDA, and MPO (myeloperoxidase and increased superoxide dismutase (SOD production. These effects were mimicked by either URB597, a selective endocannabinoids degradation inhibitor, or VDM11, a selective endocannabinoids reuptake inhibitor. In vivo study further validated that the cardioprotective and antioxidative effects of propofol were reversed by selective CB2 receptor antagonist AM630 but not CB1 receptor antagonist AM251. We concluded that enhancing endogenous endocannabinoid release and subsequent activation of CB2 receptor signaling represent a major mechanism whereby propofol conditioning confers antioxidative and cardioprotective effects against myocardial I/R injury.

  9. Roma Interrotta. The Urbs that is not a Capital

    Directory of Open Access Journals (Sweden)

    Maarten Delbeke

    2011-12-01

    Full Text Available Roma Interrotta. L’Urbe non è una capitale   Nel 1978 fu presentato a Roma il progetto Roma Interrotta, comprendente progettazioni urbane elaborate da dodici architetti di fama internazionale ispiratisi alla Nuova Pianta di Roma di Giambattista Nolli (1748. Il titolo e la struttura del progetto ne sottolineano il carattere critico: lo sviluppo di Roma sarebbe stato interrotto verso la metà del XVIII secolo e in particolare dopo il 1870 la città avrebbe subito una drammatica trasformazione, per cui le tracce della sua evoluzione storica non sarebbero quasi più visibili. I progetti avanzati vogliono essere un tentativo di riallacciarsi nuovamente a tale evoluzione. In questo contributo si esplorano le idee su Roma capitale avanzate da architetti e storici dell’architettura negli anni Settanta del secolo scorso, al fine di comprendere le ragioni del loro radicale rifiuto della Terza Roma e perché tale presa di posizione fosse proprio in quel momento attuale e importante. La Roma barocca immaginata da Nolli funge nell’ambito dell’architettura come un’immagine ideale della città, tuttavia anche essa è completamente spogliata da qualunque significato culturale e politico. Le proposte di Roma Interrotta dunque non sono soltanto esemplari del dibattito sviluppatosi nel mondo dell’architettura nel periodo considerato, ma ne rivelano anche i limiti intrinseci e le lacune.

  10. 42 CFR 59.7 - What criteria will the Department of Health and Human Services use to decide which family...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false What criteria will the Department of Health and Human Services use to decide which family planning services projects to fund and in what amount? 59.7... FOR FAMILY PLANNING SERVICES Project Grants for Family Planning Services § 59.7 What criteria will the...

  11. Endocannabinoid Catabolic Enzymes Play Differential Roles in Thermal Homeostasis in Response to Environmental or Immune Challenge.

    Science.gov (United States)

    Nass, Sara R; Long, Jonathan Z; Schlosburg, Joel E; Cravatt, Benjamin F; Lichtman, Aron H; Kinsey, Steven G

    2015-06-01

    Cannabinoid receptor agonists, such as Δ(9)-THC, the primary active constituent of Cannabis sativa, have anti-pyrogenic effects in a variety of assays. Recently, attention has turned to the endogenous cannabinoid system and how endocannabinoids, including 2-arachidonoylglycerol (2-AG) and anandamide, regulate multiple homeostatic processes, including thermoregulation. Inhibiting endocannabinoid catabolic enzymes, monoacylglycerol lipase (MAGL) or fatty acid amide hydrolase (FAAH), elevates levels of 2-AG or anandamide in vivo, respectively. The purpose of this experiment was to test the hypothesis that endocannabinoid catabolic enzymes function to maintain thermal homeostasis in response to hypothermic challenge. In separate experiments, male C57BL/6J mice were administered a MAGL or FAAH inhibitor, and then challenged with the bacterial endotoxin lipopolysaccharide (LPS; 2 mg/kg ip) or a cold (4 °C) ambient environment. Systemic LPS administration caused a significant decrease in core body temperature after 6 h, and this hypothermia persisted for at least 12 h. Similarly, cold environment induced mild hypothermia that resolved within 30 min. JZL184 exacerbated hypothermia induced by either LPS or cold challenge, both of which effects were blocked by rimonabant, but not SR144528, indicating a CB1 cannabinoid receptor mechanism of action. In contrast, the FAAH inhibitor, PF-3845, had no effect on either LPS-induced or cold-induced hypothermia. These data indicate that unlike direct acting cannabinoid receptor agonists, which elicit profound hypothermic responses on their own, neither MAGL nor FAAH inhibitors affect normal body temperature. However, these endocannabinoid catabolic enzymes play distinct roles in thermoregulation following hypothermic challenges.

  12. Optimized PCR with sequence specific primers (PCR-SSP for fast and efficient determination of Interleukin-6 Promoter -597/-572/-174Haplotypes

    Directory of Open Access Journals (Sweden)

    Bugert Peter

    2009-12-01

    Full Text Available Abstract Background Interleukin-6 (IL-6 promoter polymorphisms at positions -597(G→A, -572(G→C and -174(G→C were shown to have a clinical impact on different major diseases. At present PCR-SSP protocols for IL-6 -597/-572/-174haplotyping are elaborate and require large amounts of genomic DNA. Findings We describe an improved typing technique requiring a decreased number of PCR-reactions and a reduced PCR-runtime due to optimized PCR-conditions. Conclusion This enables a fast and efficient determination of IL-6 -597/-572/-174haplotypes in clinical diagnosis and further evaluation of IL-6 promoter polymorphisms in larger patient cohorts.

  13. Optical, photo-physical properties and photostability of pyrromethene (PM-597) in ionic liquids as benign green-solvents

    International Nuclear Information System (INIS)

    AL-Aqmar, Dalal M.; Abdelkader, H.I.; Abou Kana, Maram T.H.

    2015-01-01

    Laser dye pyrromethene-597 was dissolved with different concentrations in three types of ionic liquids (ILs): 1-Butyl-3-methylimidazolium chloride (BMIM Cl), 1-butyl-3-methylimidazolium tetrachloroaluminate (BMIM AlCl 4 ) and 1-butyl-3-methylimidazolium tetrafluoro-borate (BMIM BF 4 ) in addition to ethanol as reference solvent. This paper investigates optical spectra and some photo-physical parameters of PM-597 in BMIM Cl, BMIM AlCl 4 , BMIM BF 4 and ethanol. These parameters are absorption and emission cross sections, fluorescence lifetime and quantum yield. The amplified spontaneous emission (ASE) was studied using the second harmonic Nd-YAG laser of 532 nm. Also, the gain and energy conversion efficiencies were investigated. Relatively high efficiency was obtained with good photostability in case of PM-597 in BMIM BF 4 that was a decrease to ~90% of the initial amplified spontaneous emission. This output energy was observed after pumping by 75,000 shots at a relatively high repetition rate of 10 Hz and pumping energy of 37 mJ. The composition and properties of the matrix of ILs were found to lead to optimize the laser performance and photostability of the investigated laser dye. In this study, we considered ionic liquids as the environmentally benign green solvents in place of volatile toxic organic solvents. - Highlights: • Pyrromethen-597 as laser dye was dissolved in three types of ionic liquids (ILs): BMIM Cl, BMIM AlCl 4 and BMIM BF 4 as benign green-solvent in addition to ethanol as reference solvent. • Important spectroscopic properties of PM-597 dye such as quantum yield, fluorescence lifetime, radiative and nonradiative rate, transition dipole moment, attenuation length and oscillator strength were affected by changing the host material. • The dye laser gain, quantum yield, peak intensity of ASE and photostability were found to be better in BMIM BF 4 than in BMIM Cl and in ethanol. • ILs may be used as ideal hosts for dye laser systems to

  14. EFEITO DE DIFERENTES SUBSTRATOS NA GERMINAÇÃO DE Ochroma pyramidale (CAV. EX LAM. URB. (BOMBACACEAE

    Directory of Open Access Journals (Sweden)

    Breno Pinto Rayol

    2007-03-01

    Full Text Available O objetivo deste trabalho foi analisar o efeito de diferentes substratos na germinação de Ochroma pyramidale (Cav. ex Lam. Urb. (Bombacaceae. O experimento foi conduzido em delineamento inteiramente casualizado com três tratamentos (substratos e quatro repetições de 25 sementes. Foram testados os seguintes substratos: areia + vermiculita (1:1; vermiculita e, areia + serragem (1:1. Foi avaliado o efeito dos substratos pelo percentual de germinação das sementes, tempo médio de germinação e índice de velocidade de germinação (IVG. Houve diferença significativa entre os tratamentos em todas as variáveis observadas. As sementes, quando acondicionadas em vermiculita, apresentaram a maior taxa de germinação, maior velocidade e menor tempo de germinação.

  15. Enhancement of fluorescence, photo-physical parameters and laser performance of pyrromethene (PM597) laser dye by Ag nanoparticles in different media

    Energy Technology Data Exchange (ETDEWEB)

    Alhijry, Ibraheem A. [National Institute of Laser Enhanced Sciences, Cairo University, 12613 Giza (Egypt); Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt); Faculty of Education, Department of Physics, Hajjah University, Hajjah (Yemen); Gadallah, A.-S. [National Institute of Laser Enhanced Sciences, Cairo University, 12613 Giza (Egypt); Abdelkader, H.I. [Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt); Abou Kana, Maram T.H., E-mail: mabou202@niles.edu.eg [National Institute of Laser Enhanced Sciences, Cairo University, 12613 Giza (Egypt)

    2016-03-15

    The effect of surface plasmon resonance (SPR) of silver nanoparticles (Ag NPs), exposure to radiation, on the optical and photo-physical properties of pyrromethene (PM597) laser dye in liquid and solid media was assessed. 2-hydroxyethyl methacrylate was used as homo-monomer and homo-polymer, while 2-hydroxyethyl methacrylate / methyl methacrylate were used as co-monomer and co-polymer hosts. Ag NPs was prepared and confirmed its size by high resolution transmission electron microscope (HRTEM), UV/vis absorption spectroscopy and also, theoretically by using Mie theory. The molar concentration of prepared NPs was C=3.39×10{sup −9} mol/L. 40% C (1.356×10{sup −9} mol/L) Ag NPs was found to have the optimum distance with (1×10{sup −4} mol/L PM597 in liquid medium and 1×10{sup −3} mol/L PM597 in solid medium) dye molecules according to Metal Enhancement Fluorescence (MEF) model. [40% C Ag NPs: 1×10{sup −3} mol/L PM597] complex samples had 3.12 cm{sup −1} and 3.89 cm{sup −1} gain values in homo-and co-polymer media, while parent PM597 dye had 2.5 cm{sup −1} and 3.45 cm{sup −1} gain values. Also, amplified spontaneous emission (ASE) value of complex samples was 0.455% and 0.538% in case of homo- and co-polymer respectively. While it was 0.4% and 0.457% in case of parent PM597 dye in the same sequent media. Finally, photo-stabilities of complex samples had higher values in co-monomer and co-polymer hosts compared with respect to their stabilities in homo-monomer and homo-polymer hosts.

  16. Enhancement of fluorescence, photo-physical parameters and laser performance of pyrromethene (PM597) laser dye by Ag nanoparticles in different media

    International Nuclear Information System (INIS)

    Alhijry, Ibraheem A.; Gadallah, A.-S.; Abdelkader, H.I.; Abou Kana, Maram T.H.

    2016-01-01

    The effect of surface plasmon resonance (SPR) of silver nanoparticles (Ag NPs), exposure to radiation, on the optical and photo-physical properties of pyrromethene (PM597) laser dye in liquid and solid media was assessed. 2-hydroxyethyl methacrylate was used as homo-monomer and homo-polymer, while 2-hydroxyethyl methacrylate / methyl methacrylate were used as co-monomer and co-polymer hosts. Ag NPs was prepared and confirmed its size by high resolution transmission electron microscope (HRTEM), UV/vis absorption spectroscopy and also, theoretically by using Mie theory. The molar concentration of prepared NPs was C=3.39×10 −9 mol/L. 40% C (1.356×10 −9 mol/L) Ag NPs was found to have the optimum distance with (1×10 −4 mol/L PM597 in liquid medium and 1×10 −3 mol/L PM597 in solid medium) dye molecules according to Metal Enhancement Fluorescence (MEF) model. [40% C Ag NPs: 1×10 −3 mol/L PM597] complex samples had 3.12 cm −1 and 3.89 cm −1 gain values in homo-and co-polymer media, while parent PM597 dye had 2.5 cm −1 and 3.45 cm −1 gain values. Also, amplified spontaneous emission (ASE) value of complex samples was 0.455% and 0.538% in case of homo- and co-polymer respectively. While it was 0.4% and 0.457% in case of parent PM597 dye in the same sequent media. Finally, photo-stabilities of complex samples had higher values in co-monomer and co-polymer hosts compared with respect to their stabilities in homo-monomer and homo-polymer hosts.

  17. Full Fatty Acid Amide Hydrolase Inhibition Combined with Partial Monoacylglycerol Lipase Inhibition: Augmented and Sustained Antinociceptive Effects with Reduced Cannabimimetic Side Effects in Mice.

    Science.gov (United States)

    Ghosh, Sudeshna; Kinsey, Steven G; Liu, Qing-Song; Hruba, Lenka; McMahon, Lance R; Grim, Travis W; Merritt, Christina R; Wise, Laura E; Abdullah, Rehab A; Selley, Dana E; Sim-Selley, Laura J; Cravatt, Benjamin F; Lichtman, Aron H

    2015-08-01

    Inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), the primary hydrolytic enzymes for the respective endocannabinoids N-arachidonoylethanolamine (AEA) and 2-arachidonylglycerol (2-AG), produces antinociception but with minimal cannabimimetic side effects. Although selective inhibitors of either enzyme often show partial efficacy in various nociceptive models, their combined blockade elicits augmented antinociceptive effects, but side effects emerge. Moreover, complete and prolonged MAGL blockade leads to cannabinoid receptor type 1 (CB1) receptor functional tolerance, which represents another challenge in this potential therapeutic strategy. Therefore, the present study tested whether full FAAH inhibition combined with partial MAGL inhibition would produce sustained antinociceptive effects with minimal cannabimimetic side effects. Accordingly, we tested a high dose of the FAAH inhibitor PF-3845 (N-​3-​pyridinyl-​4-​[[3-​[[5-​(trifluoromethyl)-​2-​pyridinyl]oxy]phenyl]methyl]-​1-​piperidinecarboxamide; 10 mg/kg) given in combination with a low dose of the MAGL inhibitor JZL184 [4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate] (4 mg/kg) in mouse models of inflammatory and neuropathic pain. This combination of inhibitors elicited profound increases in brain AEA levels (>10-fold) but only 2- to 3-fold increases in brain 2-AG levels. This combination produced significantly greater antinociceptive effects than single enzyme inhibition and did not elicit common cannabimimetic effects (e.g., catalepsy, hypomotility, hypothermia, and substitution for Δ(9)-tetrahydrocannabinol in the drug-discrimination assay), although these side effects emerged with high-dose JZL184 (i.e., 100 mg/kg). Finally, repeated administration of this combination did not lead to tolerance to its antiallodynic actions in the carrageenan assay or CB1 receptor functional tolerance. Thus, full FAAH inhibition

  18. Modelling of Rod No 8 in IFA-597:3

    International Nuclear Information System (INIS)

    Malen, K.

    2002-06-01

    A Westinghouse Atom 8x8 fuel rod irradiated in the Ringhals 1 BWR for 12 years to a local burnup of about 67 MWd/kgU was refabricated, instrumented with centreline thermocouple and pressure transducer, and irradiated in IFA-597.2 for about 20 days and in IFA-597.3 for about four months. The rod was then sent to Kjeller for puncturing and then to the Studsvik hot cells for detailed post-irradiation examinations. The peak centreline, temperature was close to 1350 deg C. The total fission gas release (FGR) determined from the puncturing was approximately 20 %. Electron probe microanalysis on a fuel section from the central part of the rod showed that virtually 100 % Xe release had occurred in the central part of the pellet out to about half the pellet radius, and this thermal release from the central part of the fuel accounted for the measured total FGR. Optical and scanning electron microscopy of the fuel cross-section showed complete pellet-clad bonding as well as an extensive high burnup 'rim' structure extending at least 0,15 mm in from the fuel surface. The fuel microstructure was characterised at different radial positions in the pellet. This report describes modelling of the rod behaviour using the code SKIROD, in particular fuel temperature and fission gas release. The transient response of the fuel centre line temperature after a scram is also modelled using the code TOODEE2. The modelling results are compared to the experimental results

  19. Formulation of Bawang Dayak (Eleutherine bulbosa (Mill. Urb. Extract into a Gel Toothpaste

    Directory of Open Access Journals (Sweden)

    Husnul Warnida

    2016-12-01

    Full Text Available Dental caries is a disease of tooth decay that starts from the surface and evolve in the direction of the tooth, beginning with the process of tooth demineralization. Tooth decay is usually caused by the bacterium Streptococcus mutans. Bawang Dayak (Eleutherine bulbosa (Mill. Urb. has antibacterial activity due to its compound i.e. flavonoid, fenol, triterpenoid, dan antrakuinon. This study aims to formulate the bawang dayak ethanol extract into a stable gel toothpaste. Bawang dayak ethanol extract 2,5% was formulated in 5 formulas with varying degree of sorbitol (5 - 50% and carboxymethyl cellulose (3 - 7%. Physical stability of bawang dayak ethanol extract gel toothpastes were evaluated including organoleptic and homogeneity test, pH measurement, viscosity measurement, spreading test, and freeze-thaw cycling test. The result showed bawang dayak ethanol extract gel toothpastes have pH range of 5.50 - 5.80, spreading area 4.61 - 5.82, viscosity value 17066 - 99877 mPas. Organoleptic and homogeneity in 7 days showed two layers color of gel toothpaste. Consistency test and Freeze-thaw cycling test results showed no change in organoleptic, homogeneity, pH, and viscosity of gel toothpastes.

  20. Sacrificio y ciudad: notas sobre la formación humana en las urbes

    Directory of Open Access Journals (Sweden)

    Ana Ma. Valle Vázquez

    2013-12-01

    Full Text Available El escrito tiene como principal propósito reflexionar en torno a las relaciones que pudiese haber entre sacrificio y ciudad. Para ello nos centramos en lo más elemental de lo que uno y otra pueden significar. La principal pregunta que guía esta reflexión es ¿qué elementos del sacrificio pueden encontrarse en lo que llamamos ciudad? No se pretende hacer un análisis exhaustivo de estas nociones tan profundas y complejas, sino que partiremos de los significados más primarios, desde Durkheim, Mauss y Simmel, para centrar nuestra atención en sus vínculos. Al final nos preguntamos ¿es posible el espíritu del Don en el espacio urbano donde impera la economía monetaria? Asumimos que la profanación del vínculo y del espíritu del Don de nada es inevitable en las urbes, sin embargo, en el dar, recibir y devolver habita la nada como el espíritu del Don, y esta es la sangre que no se está dispuesto a pagar aunque simulemos que se otorga en las cosas que intercambiamos.

  1. Solvent Hold Tank Sample Results for MCU-16-596-597-598: April 2016 Monthly Sample

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Advanced Characterization and Processing; Jones, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Research Support

    2016-07-12

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-16-596-597-598), pulled on 04/30/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-596-597-598 indicated the Isopar™L concentration is above its nominal level (102%). The modifier (CS-7SB) is 14% below its nominal concentration, while the TiDG and MaxCalix concentrations are at and above their nominal concentrations, respectively. This analysis confirms the solvent may require the addition of modifier. Based on the current monthly sample, the levels of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time. Periodic characterization and trimming additions to the solvent are recommended.

  2. Optical, photo-physical properties and photostability of pyrromethene (PM-597) in ionic liquids as benign green-solvents

    Energy Technology Data Exchange (ETDEWEB)

    AL-Aqmar, Dalal M. [Physics Department, Ibb University, Ibb (Yemen); Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt); Abdelkader, H.I. [Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt); Abou Kana, Maram T.H., E-mail: mabou202@niles.edu.eg [National Institute of Laser Enhanced Sciences, Cairo University, Giza (Egypt)

    2015-05-15

    Laser dye pyrromethene-597 was dissolved with different concentrations in three types of ionic liquids (ILs): 1-Butyl-3-methylimidazolium chloride (BMIM Cl), 1-butyl-3-methylimidazolium tetrachloroaluminate (BMIM AlCl{sub 4}) and 1-butyl-3-methylimidazolium tetrafluoro-borate (BMIM BF{sub 4}) in addition to ethanol as reference solvent. This paper investigates optical spectra and some photo-physical parameters of PM-597 in BMIM Cl, BMIM AlCl{sub 4}, BMIM BF{sub 4} and ethanol. These parameters are absorption and emission cross sections, fluorescence lifetime and quantum yield. The amplified spontaneous emission (ASE) was studied using the second harmonic Nd-YAG laser of 532 nm. Also, the gain and energy conversion efficiencies were investigated. Relatively high efficiency was obtained with good photostability in case of PM-597 in BMIM BF{sub 4} that was a decrease to ~90% of the initial amplified spontaneous emission. This output energy was observed after pumping by 75,000 shots at a relatively high repetition rate of 10 Hz and pumping energy of 37 mJ. The composition and properties of the matrix of ILs were found to lead to optimize the laser performance and photostability of the investigated laser dye. In this study, we considered ionic liquids as the environmentally benign green solvents in place of volatile toxic organic solvents. - Highlights: • Pyrromethen-597 as laser dye was dissolved in three types of ionic liquids (ILs): BMIM Cl, BMIM AlCl{sub 4} and BMIM BF{sub 4} as benign green-solvent in addition to ethanol as reference solvent. • Important spectroscopic properties of PM-597 dye such as quantum yield, fluorescence lifetime, radiative and nonradiative rate, transition dipole moment, attenuation length and oscillator strength were affected by changing the host material. • The dye laser gain, quantum yield, peak intensity of ASE and photostability were found to be better in BMIM BF{sub 4} than in BMIM Cl and in ethanol. • ILs may be used as ideal

  3. 31 CFR 597.504 - Entries in certain accounts for normal service charges authorized.

    Science.gov (United States)

    2010-07-01

    ... Licensing Policy § 597.504 Entries in certain accounts for normal service charges authorized. (a) U.S... institution in payment or reimbursement for normal service charges owed to such U.S. financial institution by the owner of such blocked account. (b) As used in this section, the term normal service charge shall...

  4. Projektile Urb.Energy pandi lõpp-punkt väärika konverentsiga = Точку в проекте "Urb.Energy" поставили проведением достойной конференции / Marit Otsing

    Index Scriptorium Estoniae

    Otsing, Marit

    2011-01-01

    9. detsembril toimunud konverentsil tutvustati kõigile huvilistele kolme aasta jooksul Urb.Energy projekti raames tehtud tööd - Rakveres Seminari tänava piirkonnas arendati omavalitsuse ning piirkonna elanike koostöös välja ühtne visioon sellest, kuidas piirkonna avalikud alad ning korterelamud välja nägema hakkavad

  5. 31 CFR 597.511 - In-kind donations of medicine, medical devices, and medical services.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false In-kind donations of medicine... Licensing Policy § 597.511 In-kind donations of medicine, medical devices, and medical services. (a... incident to the provision by nongovernmental organizations that are U.S. persons of in-kind donations of...

  6. Geoarchaeological results from geophysical prospections at the Roman city of Urbs Salvia, central Italy

    Science.gov (United States)

    Schettino, Antonio; Perna, Roberto; Pierantoni, Pietro Paolo; Ghezzi, Annalisa; Tassi, Luca; Cingolani, Sofia

    2017-04-01

    We report on a combined magnetic-GPR survey performed in 2015 and 2016 at the ancient Roman city of Urbs Salvia, located in central Italy. The main objective of this survey was to reconstruct the urban organization of the city forum and determine possible sites of future excavations. We found a complex pattern of buried structures, possibly resulting from the coexistence of republican and imperial artifacts and burned structures. A test excavation at the location where we detected a long linear structure characterized by strong magnetic signal revealed the presence of thermal baths. GPR data were acquired in areas characterized by high magnetic noise induced by metallic infrastructures (e.g., fences), which prevented a correct acquisition of archaeological anomalies. These data not only allowed to overcome the magnetic noise, but provided interesting 3D reconstructions of the buried structures. A detailed GPR survey in the theatre area was also performed, with the aim to investigate the plan of the porticus post scaenam. This survey allowed to identify some interesting structures related to different chronological phases and confirms the epigraphic data related to the development of the monument.

  7. THC and endocannabinoids differentially regulate neuronal activity in the prefrontal cortex and hippocampus in the subchronic PCP model of schizophrenia.

    Science.gov (United States)

    Aguilar, David D; Giuffrida, Andrea; Lodge, Daniel J

    2016-02-01

    Cannabis use has been associated with an increased risk to develop schizophrenia as well as symptom exacerbation in patients. In contrast, clinical studies have revealed an inverse relationship between the cerebrospinal fluid levels of the endocannabinoid anandamide and symptom severity, suggesting a therapeutic potential for endocannabinoid-enhancing drugs. Indeed, preclinical studies have shown that these drugs can reverse distinct behavioral deficits in a rodent model of schizophrenia. The mechanisms underlying the differences between exogenous and endogenous cannabinoid administration are currently unknown. Using the phencyclidine (PCP) rat model of schizophrenia, we compared the effects on neuronal activity of systematic administration of delta-9-tetrahydrocannabinol (THC) with the fatty acid amide hydrolase inhibitor URB597. Specifically, we found that the inhibitory response in the prefrontal cortex to THC administration was absent in PCP-treated rats. In contrast, an augmented response to endocannabinoid upregulation was observed in the prefrontal cortex of PCP-treated rats. Interestingly, differential effects were also observed at the neuronal population level, as endocannabinoid upregulation induced opposite effects on coordinated activity when compared with THC. Such information is important for understanding why marijuana and synthetic cannabinoid use may be contraindicated in schizophrenia patients while endocannabinoid enhancement may provide a novel therapeutic approach. © The Author(s) 2015.

  8. Genetic variation in the endocannabinoid degrading enzyme fatty acid amide hydrolase (FAAH) and their influence on weight loss and insulin resistance under a high monounsaturated fat hypocaloric diet.

    Science.gov (United States)

    de Luis, Daniel; Aller, Rocio; Izaola, Olatz; Conde, Rosa; de la Fuente, Beatriz; Gonzalez Sagrado, Manuel

    2013-01-01

    The C385A polymorphism of FAAH gene (rs324420C>A) has been associated with obesity. We investigate the role of this polymorphism on anthropometric and metabolic responses after an enriched monounsaturated fat hypocaloric diet. A sample of 95 obese individuals was analyzed at baseline and after 3 months of an enriched monounsaturated fat hypocaloric diet. Sixty two patients (65.3%) had the genotype C385C and 33 (34.7%) patients had C385A genotype (30 patients, 31.6%) or A358A (3 patients, 3.2%) (A carriers group). In subjects with C385C genotype, insulin (-1.9±5.3 mUI/l) and HOMA-R (-0.48±0.75 U) decreased. In A carriers subjects, the decreases in weight were 3.7±3.4 kg (decrease in C385C genotype group 4.4±3.6 kg), fat mass 2.7±3.2 kg (decrease in C385C genotype group 3.4±3.2 kg) and waist circumference 3.1±3.4cm (decrease in C385 genotype group 4.4±4.6 cm). These changes were significantly higher in the C385C genotype group than the A carriers subjects. After weight loss, noncarriers of the allele A385 of FAAH had an improvement on insulin and HOMA-R levels with an enriched monounsaturated fat hypocaloric diet. A better response of weight, fat mass and waist circumference was observed in C385 genotype subjects than A carriers participants. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Inhibition of fatty acid binding proteins elevates brain anandamide levels and produces analgesia.

    Directory of Open Access Journals (Sweden)

    Martin Kaczocha

    Full Text Available The endocannabinoid anandamide (AEA is an antinociceptive lipid that is inactivated through cellular uptake and subsequent catabolism by fatty acid amide hydrolase (FAAH. Fatty acid binding proteins (FABPs are intracellular carriers that deliver AEA and related N-acylethanolamines (NAEs to FAAH for hydrolysis. The mammalian brain expresses three FABP subtypes: FABP3, FABP5, and FABP7. Recent work from our group has revealed that pharmacological inhibition of FABPs reduces inflammatory pain in mice. The goal of the current work was to explore the effects of FABP inhibition upon nociception in diverse models of pain. We developed inhibitors with differential affinities for FABPs to elucidate the subtype(s that contributes to the antinociceptive effects of FABP inhibitors. Inhibition of FABPs reduced nociception associated with inflammatory, visceral, and neuropathic pain. The antinociceptive effects of FABP inhibitors mirrored their affinities for FABP5, while binding to FABP3 and FABP7 was not a predictor of in vivo efficacy. The antinociceptive effects of FABP inhibitors were mediated by cannabinoid receptor 1 (CB1 and peroxisome proliferator-activated receptor alpha (PPARα and FABP inhibition elevated brain levels of AEA, providing the first direct evidence that FABPs regulate brain endocannabinoid tone. These results highlight FABPs as novel targets for the development of analgesic and anti-inflammatory therapeutics.

  10. Targeting fatty acid amide hydrolase and transient receptor potential vanilloid-1 simultaneously to modulate colonic motility and visceral sensation in the mouse: A pharmacological intervention with N-arachidonoyl-serotonin (AA-5-HT).

    Science.gov (United States)

    Bashashati, M; Fichna, J; Piscitelli, F; Capasso, R; Izzo, A A; Sibaev, A; Timmermans, J-P; Cenac, N; Vergnolle, N; Di Marzo, V; Storr, M

    2017-12-01

    Endocannabinoid anandamide (AEA) inhibits intestinal motility and visceral pain, but it may also be proalgesic through transient receptor potential vanilloid-1 (TRPV1). AEA is degraded by fatty acid amide hydrolase (FAAH). This study explored whether dual inhibition of FAAH and TRPV1 reduces diarrhea and abdominal pain. Immunostaining was performed on myenteric plexus of the mouse colon. The effects of the dual FAAH/TRPV1 inhibitor AA-5-HT on electrically induced contractility, excitatory junction potential (EJP) and fast (f) and slow (s) inhibitory junction potentials (IJP) in the mouse colon, colonic propulsion and visceromotor response (VMR) to rectal distension were studied. The colonic levels of endocannabinoids and fatty acid amides were measured. CB1-positive neurons exhibited TRPV1; only some TRPV1 positive neurons did not express CB1. CB1 and FAAH did not colocalize. AA-5-HT (100 nM-10 μM) decreased colonic contractility by ~60%; this effect was abolished by TRPV1 antagonist 5'-IRTX, but not by CB1 antagonist, SR141716. AA-5-HT (1 μM-10 μM) inhibited EJP by ~30% and IJPs by ~50%. The effects of AA-5-HT on junction potentials were reversed by SR141716 and 5`-IRTX. AA-5-HT (20 mg/kg; i.p.) inhibited colonic propulsion by ~30%; SR141716 but not 5`-IRTX reversed this effect. AA-5-HT decreased VMR by ~50%-60%; these effects were not blocked by SR141716 or 5`-IRTX. AA-5-HT increased AEA in the colon. The effects of AA-5-HT on visceral sensation and colonic motility are differentially mediated by CB1, TRPV1 and non-CB1/TRPV1 mechanisms, possibly reflecting the distinct neuromodulatory roles of endocannabinoid and endovanilloid FAAH substrates in the mouse intestine. © 2017 John Wiley & Sons Ltd.

  11. Sugar content in nectar flowers of siratro (Macroptilium atropurpureum Urb. - DOI: 10.4025/actascianimsci.v27i1.1248 Concentração de açúcares no néctar e visitantes florais do siratro (Macroptilium atropurpureum Urb. - DOI: 10.4025/actascianimsci.v27i1.1248

    Directory of Open Access Journals (Sweden)

    Renata Eunice Vieira

    2005-03-01

    Full Text Available Siratro (Macroptilium atropurpureum Urb. is a forager with high nutritional values and excellent palatability, and its phenology is almost unknown. Aiming at improving the knowledge and understanding siratro pollinators and floral biology, the total sugar contents on its flowers nectar and the identification of these sugars were determined by, respectively, spectrophotometry and chromatography. The total sugar concentration varied from a maximum of 1.36 and 3.23 mg/flower and a minimum of 0.19 and 0.42 mg/flower. Results showed that the total sugar concentration is high at 8:30 a.m., when the flowers open, and varies slightly during the time the flowers keep open. The variations can be related to the number of insects that visit the flowers, especially bees that may collect pollen and nectar during the open period (8:30 a.m. to 4:30 p.m.. Through enzymatic analysis, data showed that siratro has only glucose in its compositionSiratro (Macroptilium atropurpureum Urb. é uma planta forrageira com alto valor nutricional e excelente palatabilidade, sua fenologia é pouco conhecida. Objetivando melhorar o conhecimento e compreensão dos polinizadores do siratro e sua biologia floral, o conteúdo de açúcares totais no néctar de suas flores e a identificação desses açúcares foram determinados por espectrofotometria e cromatografia, respectivamente. A concentração de açúcares totais variou de 1,36 a 3,23 mg/flor para o valor máximo e de 0,19 a 0,42 mg/flor para o valor mínimo. Os resultados mostraram que a concentração de açúcares totais é alta às 8h30min, quando as flores estão abertas e varia um pouco durante o tempo que as flores permanecem abertas. A variação pode estar relacionada ao número de insetos que visitam as flores, especialmente as abelhas que podem coletar pólen e néctar durante o período de antese (8h30min às 16h30min. Por meio de análise enzimática, foi verificado que o siratro possui somente a glicose na sua

  12. A dual inhibitor of FAAH and TRPV1 channels shows dose-dependent effect on depression-like behaviour in rats.

    Science.gov (United States)

    Kirkedal, Christian; Wegener, Gregers; Moreira, Fabricio; Joca, Sâmia Regiane Lourenco; Liebenberg, Nico

    2017-12-01

    The cannabinoid receptor 1 (CB1) and transient receptor potential cation channel subfamily V member 1 (TRPV1) are proposed to mediate opposite behavioural responses. Their common denominator is the endocannabinoid ligand anandamide (AEA), which is believed to mediate antidepressant-like effect via CB1-R stimulation and depressive-like effect via TRPV1 activation. This is supposed to explain the bell-shaped dose-response curve for anandamide in preclinical models. We investigated this assumption by administering the dual inhibitor of AEA hydrolysis and TRPV1 activation N-arachidonoyl-serotonin (AA-5HT) into the medial prefrontal cortex of rats. AA-5HT was given in three different doses (0.125, 0.250, 0.500 nmol/0.4 µl/side) and rat behaviour was assessed in the forced swim test. Our results show significant antidepressant-like effect of AA-5HT (0.250 nmol) but no effects of low or high doses. The effect of 0.250 nmol AA-5HT was partially attenuated when coadministering the inverse CB1-agonist rimonabant (1.6 µg). A 0.250 nmol of AA-5HT administration into the medial prefrontal cortex induced a significant antidepressant-like effect that was partially attenuated by locally blocking CB1-receptor.

  13. Potential of Endocannabinoids to Control Bladder Pain

    Directory of Open Access Journals (Sweden)

    Dale E. Bjorling

    2018-05-01

    Full Text Available Bladder-related pain is one of the most common forms of visceral pain, and visceral pain is among the most common complaints for which patients seek physician consultation. Despite extensive studies of visceral innervation and treatment of visceral pain, opioids remain a mainstay for management of bladder pain. Side effects associated with opioid therapy can profoundly diminish quality of life, and improved options for treatment of bladder pain remain a high priority. Endocannabinoids, primarily anandamide (AEA and 2-arachidonoylglycerol (2-AG, are endogenously-produced fatty acid ethanolamides with that induce analgesia. Animal experiments have demonstrated that inhibition of enzymes that degrade AEA or 2-AG have the potential to prevent development of visceral and somatic pain. Although experimental results in animal models have been promising, clinical application of this approach has proven difficult. In addition to fatty acid amide hydrolase (FAAH; degrades AEA and monacylglycerol lipase (MAGL; degrades 2-AG, cyclooxygenase (COX acts to metabolize endocannabinoids. Another potential limitation of this strategy is that AEA activates pro-nociceptive transient receptor potential vanilloid 1 (TRPV1 channels. Dual inhibitors of FAAH and TRPV1 or FAAH and COX have been synthesized and are currently undergoing preclinical testing for efficacy in providing analgesia. Local inhibition of FAAH or MAGL within the bladder may be viable options to reduce pain associated with cystitis with fewer systemic side effects, but this has not been explored. Further investigation is required before manipulation of the endocannabinoid system can be proven as an efficacious alternative for management of bladder pain.

  14. Determinación de biflavonoides en diferentes partes de la especie Garcinia bakeriana (Urb Borhidi

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Shaghdari

    Full Text Available Introducción: el género Garcinia produce una gran variedad de metabolitos secundarios representados por xantonas, acilfloroglucinoles y biflavonoides fundamentalmente. Sin embargo, existe muy poca información sobre la composición química de las especies cubanas pertenecientes a este género. Objetivo: determinar la presencia de 11 biflavonoides en las hojas, la corteza del tallo y el látex de Garcinia bakeriana (Urb Borhidi. Métodos : los extractos de las hojas, látex y la corteza del tallo de G. bakeriana fueron comparados empleando un método de cromatografía líquida de ultra alta eficacia (CLUAE y 11 biflavonoides como sustancias de referencia. Resultados: los biflavonoides GB-1A, GB-2A, glicósido de GB-2A, glicósido de morelloflavona, 4´´´metoxi- I3,II8-biapigenina, I3,II8-biapigenina, amentoflavona y 4´´´-metoxiamentoflavona fueron detectados como constituyentes de las hojas y la corteza del tallo de G. bakeriana. Conclusiones: la especie G. bakeriana presenta biflavonoides como constituyentes de las hojas y la corteza del tallo. Además, la metodología de trabajo desarrollada contribuye al conocimiento de la composición química de la flora cubana y podría constituir una alternativa, rápida y de bajo consumo de disolventes, para el estudio comparativo de especies endémicas cubanas de escasa distribución y abundancia.

  15. Photophysical characterization of pyrromethene 597 laser dye in cross-linked silicon-containing organic copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, A.; Agua, D. del [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, 93053 Regensburg (Germany); Penzkofer, A. [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, 93053 Regensburg (Germany)], E-mail: alfons.penzkofer@physik.uni-regensburg.de; Garcia, O.; Sastre, R. [Instituto de Ciencia y Tecnologia de Polimeros, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain); Costela, A.; Garcia-Moreno, I. [Instituto de Quimica Fisica ' Rocasolano' , CSIC, Serrano 119, 28006 Madrid (Spain)

    2007-12-06

    Samples of the dipyrromethene-BF{sub 2} dye PM597 incorporated in copolymers of 3-trimethoxysilylpropyl 2-methylprop-2-enoate (TMSPMA, number of polymerizable CC double bonds: {kappa} = 1) with 2-(2-methylprop-2-enoyloxy)ethyl 2-methylprop-2-enoate (EGDMA, {kappa} = 2), [2-(hydroxymethyl)-3-prop-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate (PETA, {kappa} = 3), and [3-prop-2-enoyloxy-2,2-bis(prop-2-2-enoyloxymethyl)propyl]prop-2-enoate (PETRA, {kappa} = 4) are characterized. The fluorescence quantum distributions, fluorescence quantum yields, degrees of fluorescence polarization, and fluorescence lifetimes are measured. The radiative lifetimes are calculated from fluorescence lifetime and quantum yield. Absorption coefficient spectra are determined from transmission measurements. Absolute absorption cross-section spectra and dye concentrations are obtained by calibration to the radiative lifetimes and to saturable absorptions. Excited-state absorption cross-sections at 527 nm are determined by saturable absorption measurements. The photo-degradation is studied under cw laser excitation conditions and quantum yields of photo-degradation are extracted. The excited-state absorption cross-sections were found to be rather small, and the photo-stability turned out to be high (up to 3 million excitation cycles before degradation) making this class of dipyrromethene dye-doped polymers attractive active laser media. Structural and thermo-mechanical properties of the materials have been determined by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetry, densitometry, and refractometry. They improve with increasing inter-crossing (copolymerization of TMSPMA with PETA and PETRA). The laser properties of the PM597 doped copolymers were evaluated by transverse pumping with 6 ns laser pulses at 532 nm. The best laser materials resulted to be the 7:3 and 9:1 TMSPMA-monomer copolymers.

  16. Discriminative Stimulus Properties of the Endocannabinoid Catabolic Enzyme Inhibitor SA-57 in Mice

    OpenAIRE

    Owens, Robert A.; Ignatowska-Jankowska, Bogna; Mustafa, Mohammed; Beardsley, Patrick M.; Wiley, Jenny L.; Jali, Abdulmajeed; Selley, Dana E.; Niphakis, Micah J.; Cravatt, Benjamin F.; Lichtman, Aron H.

    2016-01-01

    Whereas the inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), the respective major hydrolytic enzymes of N-arachidonoyl ethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), elicits no or partial substitution for Δ9-tetrahydrocannabinol (THC) in drug-discrimination procedures, combined inhibition of both enzymes fully substitutes for THC, as well as produces a constellation of cannabimimetic effects. The present study tested whether C57BL/6J mice would learn t...

  17. Application of 3D-QSAR in the rational design of receptor ligands and enzyme inhibitors.

    Science.gov (United States)

    Mor, Marco; Rivara, Silvia; Lodola, Alessio; Lorenzi, Simone; Bordi, Fabrizio; Plazzi, Pier Vincenzo; Spadoni, Gilberto; Bedini, Annalida; Duranti, Andrea; Tontini, Andrea; Tarzia, Giorgio

    2005-11-01

    Quantitative structure-activity relationships (QSARs) are frequently employed in medicinal chemistry projects, both to rationalize structure-activity relationships (SAR) for known series of compounds and to help in the design of innovative structures endowed with desired pharmacological actions. As a difference from the so-called structure-based drug design tools, they do not require the knowledge of the biological target structure, but are based on the comparison of drug structural features, thus being defined ligand-based drug design tools. In the 3D-QSAR approach, structural descriptors are calculated from molecular models of the ligands, as interaction fields within a three-dimensional (3D) lattice of points surrounding the ligand structure. These descriptors are collected in a large X matrix, which is submitted to multivariate analysis to look for correlations with biological activity. Like for other QSARs, the reliability and usefulness of the correlation models depends on the validity of the assumptions and on the quality of the data. A careful selection of compounds and pharmacological data can improve the application of 3D-QSAR analysis in drug design. Some examples of the application of CoMFA and CoMSIA approaches to the SAR study and design of receptor or enzyme ligands is described, pointing the attention to the fields of melatonin receptor ligands and FAAH inhibitors.

  18. Plasminogen Activator Inhibitor-1 (PAI-1) gene 4G/5G alleles frequency distribution in the Lebanese population.

    Science.gov (United States)

    Shammaa, Dina M R; Sabbagh, Amira S; Taher, Ali T; Zaatari, Ghazi S; Mahfouz, Rami A R

    2008-09-01

    Plasminogen activator inhibitor-1 (PAI-1) is an inhibitor of fibrinolysis. Increased plasma PAI-1 levels play an essential role in the pathogenesis of cardiovascular risk and other diseases associated with thrombosis. The 4G/5G polymorphism of the PAI-1 promoter region has been extensively studied in different populations. We studied 160 healthy unrelated Lebanese individuals using a reverse hybridization PCR assay to detect the 5G/5G, 4G/5G and, 4G/4G genotypes of the PAI-1 gene and the frequencies of the 4G and 5G alleles. We found that 4G/5G genotype was the most prevalent (45.6%) followed by 5G/5G (36.9%) and 4G/4G (17.5%). The frequencies of the 4G and 5G alleles were calculated to be 0.403 and 0.597, respectively. Compared to other ethnic communities, the Lebanese population was found to harbour a relatively high prevalence of the rare 4G allele. This, in turn, may predispose this population to develop cardiovascular diseases and other thrombotic clinical conditions. This study aids to enhance our understanding of the genetic features of the Lebanese population.

  19. Dissociating the role of endocannabinoids in the pleasurable and motivational properties of social play behaviour in rats.

    Science.gov (United States)

    Achterberg, E J Marijke; van Swieten, Maaike M H; Driel, Nina V; Trezza, Viviana; Vanderschuren, Louk J M J

    2016-08-01

    Social play behaviour is a vigorous form of social interaction, abundant during the juvenile and adolescent phases of life in many mammalian species, including humans. Social play is highly rewarding and it is important for social and cognitive development. Being a rewarding activity, social play can be dissociated in its pleasurable and motivational components. We have previously shown that endocannabinoids modulate the expression of social play behaviour in rats. In the present study, we investigated whether endocannabinoids modulate the motivational and pleasurable properties of social play behaviour, using operant and place conditioning paradigms, respectively. Treatment with the anandamide hydrolysis inhibitor URB597 did not affect operant responding or social play-induced conditioned place preference (CPP) when administered at a dose (0.1mg/kg) known to increase the expression of social play behaviour, while it modestly reduced operant responding at a higher dose (0.2mg/kg). The cannabinoid-1 (CB1) receptor antagonist rimonabant reduced operant responding when administered at a dose (1mg/kg) known to decrease the expression of social play behaviour, although this effect may be secondary to concurrent drug-induced stereotypic behaviours (i.e., grooming and scratching). These data demonstrate that enhancing endocannabinoid levels does not differentially affect the motivational and pleasurable aspects of social play behaviour, whereas CB1 receptor blockade reduces the motivational aspects of social play behaviour, possibly due to response competition. Thus, endocannabinoids likely drive the expression of social play behaviour as a whole, without differentially affecting its motivational or pleasurable properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Overexpression of fatty acid amide hydrolase induces early flowering in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Neal D. Teaster

    2012-02-01

    Full Text Available N-Acylethanolamines (NAEs are bioactive lipids derived from the hydrolysis of the membrane phospholipid N-acylphosphatidylethanolamine (NAPE. In animal systems this reaction is part of the endocannabinoid signaling pathway, which regulates a variety of physiological processes. The signaling function of NAE is terminated by fatty acid amide hydrolase (FAAH, which hydrolyzes NAE to ethanolamine and free fatty acid. Our previous work in Arabidopsis thaliana showed that overexpression of AtFAAH (At5g64440 lowered endogenous levels of NAEs in seeds, consistent with its role in NAE signal termination. Reduced NAE levels were accompanied by an accelerated growth phenotype, increased sensitivity to abscisic acid (ABA, enhanced susceptibility to bacterial pathogens, and early flowering. Here we investigated the nature of the early flowering phenotype of AtFAAH overexpression. AtFAAH overexpressors flowered several days earlier than wild type and AtFAAH knockouts under both non-inductive short day (SD and inductive long day (LD conditions. Microarray analysis revealed that the FLOWERING LOCUS T (FT gene, which plays a major role in regulating flowering time, and one target MADS box transcription factor, SEPATALLA3 (SEP3, were elevated in AtFAAH overexpressors. Furthermore, AtFAAH overexpressors, with the early flowering phenotype had lower endogenous NAE levels in leaves compared to wild type prior to flowering. Exogenous application of NAE 12:0, which was reduced by up to 30% in AtFAAH overexpressors, delayed the onset of flowering in wild type plants. We conclude that the early flowering phenotype of AtFAAH overexpressors is, in part, explained by elevated FT gene expression resulting from the enhanced NAE hydrolase activity of AtFAAH, suggesting that NAE metabolism may participate in floral signaling pathways.

  1. The MOX fuel behaviour test IFA-597.4/.5/.6/.7; Summary of in-pile fuel temperature and gas release data

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Hisashi

    2003-11-15

    It is considered important to study the in-reactor behaviour of MOX fuel in order to enhance the database on such fuel. For this reason, IFA-597.4/.5/.6/.7 were included in the joint research programme of the Halden Project. The series of tests, containing two MIMAS-MOX fuel rods, both equipped with a fuel centre thermocouple and a pressure bellows transducer, has been irradiated in the Halden Reactor since July 1997 under HBWR conditions. The objectives of the test series were to study the thermal and fission gas release (FGR) behaviour of MOX fuel and to explore potential differences in behaviour between solid and hollow pellets. One of the rods had mainly solid pellets, while the other contained only hollow pellets. Both rods had an initial Pu-fissile enrichment of 6.07%. The cladding outside diameter was 9.50 mm, and the initial fuel-clad gap was 180 mum. In the course of the test, power upratings for FGR studies of the MOX fuel were planned at burnup intervals of about 10 MWd/kg MOX. The power uprating was successfully performed at approx10 MWd/kg MOX, where the estimated fuel peak temperature of the solid pellets exceeded the FGR threshold temperature for UO{sub 2} fuel, while that of the hollow pellets remained below the threshold. For the solid fuel, the temperature at onset of FGR was consistent with the empirical threshold temperature for UO{sub 2} fuel. For the hollow fuel, gas release was observed at temperatures below the threshold. FGRs at the end-of-life were approx17% for the solid pellet rod and approx14% for the hollow pellet rod, respectively. As a result of discussions in HPG meetings, IFA-597.7 was unloaded in January 2002. PIE was carried out to check in-pile pressure measurements and examine fuel structural characteristics. The discharge burn-up of the MOX fuel was 32 MWd/kg MOX as determined from in-pile power data. This report supersedes HWR-712 (June 2002) previously issued on in-pile data from IFA-597.4/5/6/7. (Author)

  2. Time-Dependent Vascular Effects of Endocannabinoids Mediated by Peroxisome Proliferator-Activated Receptor Gamma (PPAR

    Directory of Open Access Journals (Sweden)

    Saoirse E. O'Sullivan

    2009-01-01

    Full Text Available The aim of the present study was to examine whether endocannabinoids cause PPAR-mediated vascular actions. Functional vascular studies were carried out in rat aortae. Anandamide and N-arachidonoyl-dopamine (NADA, but not palmitoylethanolamide, caused significant vasorelaxation over time (2 hours. Vasorelaxation to NADA, but not anandamide, was inhibited by CB1 receptor antagonism (AM251, 1 M, and vasorelaxation to both anandamide and NADA was inhibited by PPAR antagonism (GW9662, 1 M. Pharmacological inhibition of de novo protein synthesis, nitric oxide synthase, and super oxide dismutase abolished the responses to anandamide and NADA. Removal of the endothelium partly inhibited the vasorelaxant responses to anandamide and NADA. Inhibition of fatty acid amide hydrolase (URB597, 1 M inhibited the vasorelaxant response to NADA, but not anandamide. These data indicate that endocannabinoids cause time-dependent, PPAR-mediated vasorelaxation. Activation of PPAR in the vasculature may represent a novel mechanism by which endocannabinoids are involved in vascular regulation.

  3. Dual-acting compounds targeting endocannabinoid and endovanilloid systems — a novel treatment option for chronic pain management.

    Directory of Open Access Journals (Sweden)

    Natalia Malek

    2016-08-01

    Full Text Available Compared with acute pain that arises suddenly in response to a specific injury and is usually treatable, chronic pain persists over time and is often resistant to medical treatment. Because of the heterogeneity of chronic pain origins, satisfactory therapies for its treatment are lacking, leading to an urgent need for the development of new treatments. The leading approach in drug design is selective compounds, though they are often less effective and require chronic dosing with many side effects. Herein, we review novel approaches to drug design for the treatment of chronic pain represented by dual-acting compounds, which operate at more than one biological target. A number of studies suggest the involvement of the cannabinoid and vanilloid receptors in pain. Interestingly cannabinoid system is in interrelation with other systems that comprise lipid mediators: prostaglandins, produced by COX enzyme. Therefore, in the present review, we summarize the role of dual-acting molecules (FAAH/TRPV1 and FAAH/COX-2 inhibitors that interact with endocannabinoid and endovanillinoid systems and act as analgesics by elevating the endogenously produced endocannabinoids and dampening the production of pro-inflammatory prostaglandins. The plasticity of the endocannabinoid system and the ability of a single chemical entity to exert an activity on two receptor systems has been developed and extensively investigated. Here, we review up-to-date pharmacological studies on compounds interacting with FAAH enzyme together with TRPV1 receptor or COX-2 enzyme respectively. Multi-target pharmacological intervention for treating pain may lead to the development of original and efficient treatments.

  4. Molecular components and functions of the endocannabinoid system in mouse prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Mathieu Lafourcade

    2007-08-01

    Full Text Available Cannabinoids have deleterious effects on prefrontal cortex (PFC-mediated functions and multiple evidences link the endogenous cannabinoid (endocannabinoid system, cannabis use and schizophrenia, a disease in which PFC functions are altered. Nonetheless, the molecular composition and the physiological functions of the endocannabinoid system in the PFC are unknown.Here, using electron microscopy we found that key proteins involved in endocannabinoid signaling are expressed in layers v/vi of the mouse prelimbic area of the PFC: presynaptic cannabinoid CB1 receptors (CB1R faced postsynaptic mGluR5 while diacylglycerol lipase alpha (DGL-alpha, the enzyme generating the endocannabinoid 2-arachidonoyl-glycerol (2-AG was expressed in the same dendritic processes as mGluR5. Activation of presynaptic CB1R strongly inhibited evoked excitatory post-synaptic currents. Prolonged synaptic stimulation at 10Hz induced a profound long-term depression (LTD of layers V/VI excitatory inputs. The endocannabinoid -LTD was presynaptically expressed and depended on the activation of postsynaptic mGluR5, phospholipase C and a rise in postsynaptic Ca(2+ as predicted from the localization of the different components of the endocannabinoid system. Blocking the degradation of 2-AG (with URB 602 but not of anandamide (with URB 597 converted subthreshold tetanus to LTD-inducing ones. Moreover, inhibiting the synthesis of 2-AG with Tetrahydrolipstatin, blocked endocannabinoid-mediated LTD. All together, our data show that 2-AG mediates LTD at these synapses.Our data show that the endocannabinoid -retrograde signaling plays a prominent role in long-term synaptic plasticity at the excitatory synapses of the PFC. Alterations of endocannabinoid -mediated synaptic plasticity may participate to the etiology of PFC-related pathologies.

  5. Antidepressants and changes in concentration of endocannabinoids and N-acylethanolamines in rat brain structures.

    Science.gov (United States)

    Smaga, Irena; Bystrowska, Beata; Gawliński, Dawid; Pomierny, Bartosz; Stankowicz, Piotr; Filip, Małgorzata

    2014-08-01

    The endocannabinoid (eCB) system has recently been implicated in both the pathogenesis of depression and the action of antidepressants. Here, we investigated the effect of acutely or chronically administering antidepressants [imipramine (IMI) (15 mg/kg), escitalopram (ESC) (10 mg/kg), and tianeptine (10 mg/kg)] on the levels of both eCBs [anandamide (AEA) and 2-arachidonoylglycerol (2-AG)] and N-acylethanolamines (NAEs) [palmitoylethanolamide (PEA) and oleoylethanolamide (OEA)] in various rat brain regions. We also examined the ability of the acute and chronic administration of N-acetylcysteine (NAC) (a mucolytic drug; 100 mg/kg) or URB597 (a fatty acid amide hydrolase inhibitor; 0.3 mg/kg), which have both elicited antidepressant activity in preclinical studies, to affect eCB and NAE levels. Next, we determined whether the observed effects are stable 10 days after the chronic administration of these drugs was halted. We report that the chronic administration of all investigated drugs increased AEA levels in the hippocampus and also increased both AEA and 2-AG levels in the dorsal striatum. NAE levels in limbic regions also increased after treatment with IMI (PEA/OEA), ESC (PEA), and NAC (PEA/OEA). Removing chronic ESC treatment for 10 days affected eCB and NAE levels in the frontal cortex, hippocampus, dorsal striatum, and cerebellum, while a similar tianeptine-free period enhanced accumbal NAE levels. All other drugs maintained their effects after the 10-day washout period. Therefore, the eCB system appears to play a significant role in the mechanism of action of clinically effective and potential antidepressants and may serve as a target for drug design and discovery.

  6. Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice.

    Science.gov (United States)

    Walentiny, D Matthew; Vann, Robert E; Wiley, Jenny L

    2015-06-01

    A number of studies have examined the ability of the endogenous cannabinoid anandamide to elicit Δ(9)-tetrahydrocannabinol (THC)-like subjective effects, as modeled through the THC discrimination paradigm. In the present study, we compared transgenic mice lacking fatty acid amide hydrolase (FAAH), the enzyme primarily responsible for anandamide catabolism, to wildtype counterparts in a THC discrimination procedure. THC (5.6 mg/kg) served as a discriminative stimulus in both genotypes, with similar THC dose-response curves between groups. Anandamide fully substituted for THC in FAAH knockout, but not wildtype, mice. Conversely, the metabolically stable anandamide analog O-1812 fully substituted in both groups, but was more potent in knockouts. The CB1 receptor antagonist rimonabant dose-dependently attenuated THC generalization in both groups and anandamide substitution in FAAH knockouts. Pharmacological inhibition of monoacylglycerol lipase (MAGL), the primary catabolic enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG), with JZL184 resulted in full substitution for THC in FAAH knockout mice and nearly full substitution in wildtypes. Quantification of brain endocannabinoid levels revealed expected elevations in anandamide in FAAH knockout mice compared to wildtypes and equipotent dose-dependent elevations in 2-AG following JZL184 administration. Dual inhibition of FAAH and MAGL with JZL195 resulted in roughly equipotent increases in THC-appropriate responding in both groups. While the notable similarity in THC's discriminative stimulus effects across genotype suggests that the increased baseline brain anandamide levels (as seen in FAAH knockout mice) do not alter THC's subjective effects, FAAH knockout mice are more sensitive to the THC-like effects of pharmacologically induced increases in anandamide and MAGL inhibition (e.g., JZL184). Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Biomarkers of endocannabinoid system activation in severe obesity.

    Directory of Open Access Journals (Sweden)

    Jack C Sipe

    2010-01-01

    Full Text Available Obesity is a worldwide epidemic, and severe obesity is a risk factor for many diseases, including diabetes, heart disease, stroke, and some cancers. Endocannabinoid system (ECS signaling in the brain and peripheral tissues is activated in obesity and plays a role in the regulation of body weight. The main research question here was whether quantitative measurement of plasma endocannabinoids, anandamide, and related N-acylethanolamines (NAEs, combined with genotyping for mutations in fatty acid amide hydrolase (FAAH would identify circulating biomarkers of ECS activation in severe obesity.Plasma samples were obtained from 96 severely obese subjects with body mass index (BMI of > or = 40 kg/m(2, and 48 normal weight subjects with BMI of A (P129T mutation by comparing plasma ECS metabolite levels in the FAAH 385 minor A allele carriers versus wild-type C/C carriers in both groups. The main finding was significantly elevated mean plasma levels of anandamide (15.1+/-1.4 pmol/ml and related NAEs in study subjects that carried the FAAH 385 A mutant alleles versus normal subjects (13.3+/-1.0 pmol/ml with wild-type FAAH genotype (p = 0.04, and significance was maintained after controlling for BMI.Significantly increased levels of the endocannabinoid anandamide and related NAEs were found in carriers of the FAAH 385 A mutant alleles compared with wild-type FAAH controls. This evidence supports endocannabinoid system activation due to the effect of FAAH 385 mutant A genotype on plasma AEA and related NAE analogs. This is the first study to document that FAAH 385 A mutant alleles have a direct effect on elevated plasma levels of anandamide and related NAEs in humans. These biomarkers may indicate risk for severe obesity and may suggest novel ECS obesity treatment strategies.

  8. A C597-->A polymorphism in the Norrie disease gene is associated with advanced retinopathy of prematurity in premature Kuwaiti infants.

    Science.gov (United States)

    Haider, M Z; Devarajan, L V; Al-Essa, M; Kumar, H

    2002-01-01

    Retinopathy of prematurity (ROP) is a retinal vascular disease which occurs in infants with a short gestational age and low birth weight and may lead to retinal detachment and blindness. In some premature infants, ROP progresses to advanced stages despite rigorous intervention, but in the majority, it spontaneously regresses before the threshold stage. Genetic factors, e.g. mutations in the Norrie disease (ND) gene, have been implicated in determining the progression of ROP to advanced stages. We have identified a novel C597A polymorphism of the ND gene; we screened this and another mutation in the ND gene, C110G, in 210 premature Kuwaiti infants using PCR-RFLP, DNA sequence analysis and DNA enzyme immunoassay hybridization to investigate their association with advanced-stage ROP. In this cohort of premature Kuwaiti newborns, 115 of 210 babies had no eye problems and served as controls, while 95 were found to have ROP. In 71 of the 95 ROP cases, the disease spontaneously regressed at or before stage 3, while in 24 of 95 ROP cases, the disease progressed to advanced stages 4 or 5. The incidence of the AA genotype of the C597A polymorphism was considerably higher in advanced-stage ROP cases (83.3%) compared to spontaneously regressing ROP cases (0%) and the normal controls (10.4%) (p < 0.0001). For the other genotypes, no significant difference was detected between the controls and ROP cases. In the case of the C110G mutation in the ND gene, no significant differences were detected between the controls and ROP cases, and the majority of subjects had a CC genotype in all three groups. Copyright 2002 National Science Council, ROC and S. Karger AG, Basel

  9. Fenitrothion action at the endocannabinoid system leading to spermatotoxicity in Wistar rats

    International Nuclear Information System (INIS)

    Ito, Yuki; Tomizawa, Motohiro; Suzuki, Himiko; Okamura, Ai; Ohtani, Katsumi; Nunome, Mari; Noro, Yuki; Wang, Dong; Nakajima, Tamie; Kamijima, Michihiro

    2014-01-01

    Organophosphate (OP) compounds as anticholinesterase agents may secondarily act on diverse serine hydrolase targets, revealing unfavorable physiological effects including male reproductive toxicity. The present investigation proposes that fenitrothion (FNT, a major OP compound) acts on the endocannabinoid signaling system in male reproductive organs, thereby leading to spermatotoxicity (sperm deformity, underdevelopment, and reduced motility) in rats. FNT oxon (bioactive metabolite of FNT) preferentially inhibited the fatty acid amide hydrolase (FAAH), an endocannabinoid anandamide (AEA) hydrolase, in the rat cellular membrane preparation from the testis in vitro. Subsequently, male Wistar rats were treated orally with 5 or 10 mg/kg FNT for 9 weeks and the subchronic exposure unambiguously deteriorated sperm motility and morphology. The activity-based protein profiling analysis with a phosphonofluoridate fluorescent probe revealed that FAAH was selectively inhibited among the FNT-treated cellular membrane proteome in testis. Intriguingly, testicular AEA (endogenous substrate of FAAH) levels were elevated along with the FAAH inhibition caused by the subchronic exposure. More importantly, linear regression analyses for the FNT-elicited spermatotoxicity reveal a good correlation between the testicular FAAH activity and morphological indices or sperm motility. Accordingly, the present study proposes that the FNT-elicited spermatotoxicity appears to be related to inhibition of FAAH leading to overstimulation of the endocannabinoid signaling system, which plays crucial roles in spermatogenesis and sperm motility acquirement. - Highlights: • Subchronic exposure to fenitrothion induces spermatotoxicity in rats. • The fatty acid amide hydrolase is a potential target for the spermatotoxicity. • Overstimulation of the endocannabinoid signal possibly leads to the spermatotoxicity

  10. Fenitrothion action at the endocannabinoid system leading to spermatotoxicity in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Yuki, E-mail: yukey@med.nagoya-cu.ac.jp [Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601 (Japan); Tomizawa, Motohiro [Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601 (Japan); Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo 156-8502 (Japan); Suzuki, Himiko [Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601 (Japan); Okamura, Ai [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Ohtani, Katsumi [National Institute of Occupational Safety and Health, Kanagawa 214-8585 (Japan); Nunome, Mari; Noro, Yuki [Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601 (Japan); Wang, Dong; Nakajima, Tamie [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Kamijima, Michihiro, E-mail: kamijima@med.nagoya-cu.ac.jp [Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601 (Japan)

    2014-09-15

    Organophosphate (OP) compounds as anticholinesterase agents may secondarily act on diverse serine hydrolase targets, revealing unfavorable physiological effects including male reproductive toxicity. The present investigation proposes that fenitrothion (FNT, a major OP compound) acts on the endocannabinoid signaling system in male reproductive organs, thereby leading to spermatotoxicity (sperm deformity, underdevelopment, and reduced motility) in rats. FNT oxon (bioactive metabolite of FNT) preferentially inhibited the fatty acid amide hydrolase (FAAH), an endocannabinoid anandamide (AEA) hydrolase, in the rat cellular membrane preparation from the testis in vitro. Subsequently, male Wistar rats were treated orally with 5 or 10 mg/kg FNT for 9 weeks and the subchronic exposure unambiguously deteriorated sperm motility and morphology. The activity-based protein profiling analysis with a phosphonofluoridate fluorescent probe revealed that FAAH was selectively inhibited among the FNT-treated cellular membrane proteome in testis. Intriguingly, testicular AEA (endogenous substrate of FAAH) levels were elevated along with the FAAH inhibition caused by the subchronic exposure. More importantly, linear regression analyses for the FNT-elicited spermatotoxicity reveal a good correlation between the testicular FAAH activity and morphological indices or sperm motility. Accordingly, the present study proposes that the FNT-elicited spermatotoxicity appears to be related to inhibition of FAAH leading to overstimulation of the endocannabinoid signaling system, which plays crucial roles in spermatogenesis and sperm motility acquirement. - Highlights: • Subchronic exposure to fenitrothion induces spermatotoxicity in rats. • The fatty acid amide hydrolase is a potential target for the spermatotoxicity. • Overstimulation of the endocannabinoid signal possibly leads to the spermatotoxicity.

  11. Examination of the Addictive and Behavioral Properties of Fatty Acid Binding Protein Inhibitor SBFI26

    Directory of Open Access Journals (Sweden)

    Panayotis eThanos

    2016-04-01

    Full Text Available Abstract:The therapeutic properties of cannabinoids have been well demonstrated but are overshadowed by such adverse effects as cognitive and motor dysfunction, as well as their potential for addiction. Recent research on the natural lipid ligands of cannabinoid receptors, also known as endocannabinoids, have shed light on the mechanisms of intracellular transport of the endocannabinoid anandamide by fatty acid binding proteins (FABPs and subsequent catabolism by fatty acid amide hydrolase (FAAH. These findings facilitated the recent development of SBFI26, a pharmacological inhibitor of epidermal- and brain-specific FABP5 and FABP7, which effectively increases anandamide signaling. The goal of this study was to examine this compound for any possible rewarding and addictive properties as well as effects on locomotor activity, working / recognition memory, and propensity for sociability and preference for social novelty given its recently reported anti-inflammatory and analgesic properties. Male C57BL mice were split into four treatment groups and conditioned with 5.0 mg/kg, 20.0 mg/kg, 40.0 mg/kg SBFI26 or vehicle during a conditioned placed preference (CPP paradigm. Following CPP, mice underwent a battery of behavioral tests (open field, novel object recognition (NOR, and social interaction (SI and novelty (SN paired with acute SBFI26 administration. Results showed that SBFI26 did not produce conditioned placed preference or conditioned place aversion regardless of dose, and did not induce any differences in locomotor and exploratory activity during CPP or SBFI26-paired open field activity. We also observed no differences between treatment groups in NOR, SI, and SN. In conclusion, as SBFI26 was shown previously by our group to have significant analgesic and anti-inflammatory properties, here we show that it does not pose a risk of dependence or motor and cognitive impairment under the conditions tested.

  12. Ethanol attenuation of long-term depression in the nucleus accumbens can be overcome by activation of TRPV1 receptors.

    Science.gov (United States)

    Renteria, Rafael; Jeanes, Zachary M; Morrisett, Richard A

    2014-11-01

    Altered expression of synaptic plasticity within the nucleus accumbens (NAc) constitutes a critical neuroadaptive response to ethanol (EtOH) and other drugs of abuse. We have previously reported that N-methyl-D-aspartate receptor (NMDAR)-dependent long-term depression (LTD) is markedly affected by chronic intermittent ethanol exposure in vivo; however, endocannabinoid (eCB)-dependent synaptic depression, despite being very well-documented in the dorsal striatum, is much less well understood in the NAc. Whole cell patch clamp electrophysiology was used to investigate interactions between these different plasticity-induction systems. Excitatory postsynaptic currents (EPSCs) were measured in the NAc shell and NMDAR-LTD was induced by a pairing protocol (500 stimuli at 1 Hz stimulation [low-frequency stimulation (LFS)] paired with postsynaptic depolarization to -50 mV). AM251, a CB1 receptor antagonist, was used to determine whether this form of LTD is modulated by eCBs. To determine the effect of EtOH on a purely eCB-dependent response in the NAc, depolarization-induced suppression of excitation (DSE) was used in the presence of 40 mM EtOH. Finally, we determined whether the enhancement of eCB signaling with URB597, a fatty acid amide hydrolase inhibitor, and AM404, an anandamide re-uptake inhibitor would also modulate LFS LTD in the presence of NMDAR blockade or EtOH. In the presence of AM251, the LFS pairing protocol resulted in NMDAR-dependent long-term potentiation that was blocked with either EtOH or DL-APV. We also found that DSE in the NAc shell was blocked by AM251 and suppressed by EtOH. Enhanced eCB signaling rescued NAc-LTD expression in the presence of EtOH through a distinct mechanism requiring activation of TRPV1 receptors. EtOH modulation of synaptic plasticity in the NAc is dependent upon a complex interplay between NMDARs, eCBs, and TRPV1 receptors. These findings demonstrate a novel form of TRPV1-dependent LTD in the NAc shell that may be critical

  13. A potential target for organophosphate insecticides leading to spermatotoxicity.

    Science.gov (United States)

    Suzuki, Himiko; Tomizawa, Motohiro; Ito, Yuki; Abe, Keisuke; Noro, Yuki; Kamijima, Michihiro

    2013-10-16

    Organophosphate (OP) insecticides as an anticholinesterase also act on the diverse serine hydrolase targets, thereby revealing secondary or unexpected toxic effects including male reproductive toxicity. The present investigation detects a possible target molecule(s) for OP-induced spermatotoxicity (sperm deformity, underdevelopment, and reduced motility) from a chemical standpoint. The activity-based protein profiling (ABPP) approach with a phosphonofluoridate fluorescent probe pinpointed the molecular target for fenitrothion (FNT, a major OP insecticide) oxon (bioactive metabolite of FNT) in the mouse testicular membrane proteome, i.e., FNT oxon phosphorylates the fatty acid amide hydrolase (FAAH), which plays pivotal roles in spermatogenesis and sperm motility acquirement. Subsequently, mice were treated orally with vehicle or FNT for 10 days, and FAAH activity in testis or epididymis cauda was markedly reduced by the subacute exposure. ABPP analysis revealed that FAAH was selectively inhibited among the FNT-treated testicular membrane proteome. Accordingly, FAAH is a potential target for OP-elicited spermatotoxicity.

  14. AKTIVITAS KOMBINASI EKSTRAK ETANOL DAUN SIRSAK (Annona muricata L. DAN DAUN PEGAGAN (Centella asiatica L.Urb TERHADAP KELARUTAN KALSIUM BATU GINJAL SECARA IN VITRO

    Directory of Open Access Journals (Sweden)

    Ni Wayan Swintari

    2017-03-01

    Full Text Available Soursop (Annona muricata L. and gotu kola (Centella asiatica L.Urb is a plant that can be used as a laxative medicine kidney stones. This is because of the content of bioactive compounds including flavonoids, especially the leaf section. The use of a combination of soursop leaf extract and gotu kola can improve their effectiveness in order to remove calcium kidney stones. Therefore, this study aims to determine the activity and to determine dose combination soursop leaf ethanol extract (SS and gotu kola leaf (GK which is effective for dissolving potassium kidney stones. Extracts prepared by maceration method using ethanol 96% then subsequently tested phytochemical screening and thin layer chromatography profiles on each extract. Results chromatogram showed the extract containing flavonoids. Testing the activity of the combination of soursop and gotu kola extract performed using seven treatments, combination 1 (SS 1% + GK 7.5% , a combination of 2 (SS  0.5% + GK 3.75%, the combination of 3 (SS 0, 25% + GK 1.875%, single soursop leaf extract (1%, single gotu kola extract (7.5%, negative control (aquadest and positive control (Batugin elixir. Kidney stones are then put as much as 100 mg in each treatment and incubated for 6 hours (37 ℃. Results filtrate then didestruksi and dissolved calcium levels measured using Atomic Absorption Spectrophotometer. The results showed the combination soursop leaf ethanol extract and gotu kola leaf extract with a combination of 2 (SS 0.5% + GK 3.75% is an effective combination of the ability to dissolve calcium kidney stones in vitro.

  15. Inhibitors

    Science.gov (United States)

    ... JM, and the Hemophilia Inhibitor Research Study Investigators. Validation of Nijmegen-Bethesda assay modifications to allow inhibitor ... webinars on blood disorders Language: English (US) Español (Spanish) File Formats Help: How do I view different ...

  16. Inhibition of fatty acid amide hydrolase by kaempferol and related naturally occurring flavonoids

    Science.gov (United States)

    Thors, L; Belghiti, M; Fowler, C J

    2008-01-01

    Background and purpose: Recent studies have demonstrated that the naturally occurring isoflavone compounds genistein and daidzein inhibit the hydrolysis of anandamide by fatty acid amide hydrolase (FAAH) in the low micromolar concentration range. The purpose of the present study was to determine whether this property is shared by flavonoids. Experimental approach: The hydrolysis of anandamide in homogenates and intact cells was measured using the substrate labelled in the ethanolamine part of the molecule. Key results: Twenty compounds were tested. Among the commonly occurring flavonoids, kaempferol was the most potent, inhibiting FAAH in a competitive manner with a Ki value of 5 μM. Among flavonoids with a more restricted distribution in nature, the two most active toward FAAH were 7-hydroxyflavone (IC50 value of 0.5–1 μM depending on the solvent used) and 3,7-dihydroxyflavone (IC50 value 2.2 μM). All three compounds reduced the FAAH-dependent uptake of anandamide and its metabolism by intact RBL2H3 basophilic leukaemia cells. Conclusions and implications: Inhibition of FAAH is an additional in vitro biochemical property of flavonoids. Kaempferol, 7-hydroxyflavone and 3,7-dihydroxyflavone may be useful as templates for the synthesis of novel compounds, which target several systems that are involved in the control of inflammation and cancer. PMID:18552875

  17. The MOX fuel behaviour test IFA-597.4/.5. Temperature and pressure data to a burn-up of 15 MWd/kg MOX

    International Nuclear Information System (INIS)

    Takano, K.

    1999-04-01

    The behaviour of MOX fuel should be investigated in detail for more effective use in the future, especially concerning its thermal performance and fission gas release. IFA-597.4 and IFA-597.5, containing two MOX fuel rods each with a fuel centre thermocouple and a pressure transducer, have been irradiated in the Halden Reactor to study the temperature threshold of fission gas release for MOX fuel and to explore potential differences in the thermal and fission gas release behaviour between solid and hollow pellets. The two rods of MOX fuel with an initial Pu-fissile content of 6.07 percent have solid pellets and hollow pellets respectively, and with an active length of about 220 mm. The diameter of the pellets is 8.05 mm with 180μm of diametral gap to the cladding. For the purpose of the test, power ramp operation, in which estimated peak temperature of the MOX pellets increases and decreases above and below the threshold for fission gas release in UO 2 fuel, is planned every 10 MWd/kgMOX of burn-up. The first ramp operation has been successfully performed at 10 MWd/kgMOX. When the estimated peak temperature of the fuel gets close to but below the threshold of UO 2 , fission gas release was observed at around 28 kW/m of power. Densification of the MOX pellets could be estimated to about 1.2 percent for the solid pellets and about 2,3 percent for the hollow pellets from normalised internal rod pressure. After 13.5 MWd/kgMOX the average assembly power has been operated low enough to observe swelling rate of MOX fuel pellets and behaviour after significant fission gas release. The burn-up had reached 15.5 MWd/kgMOX as of the end of 1998. The target burn-up of this MOX test is 60 MWd/kgMOX (author) (ml)

  18. The activity of the endocannabinoid metabolising enzyme fatty acid amide hydrolase in subcutaneous adipocytes correlates with BMI in metabolically healthy humans

    Directory of Open Access Journals (Sweden)

    Alexander Stephen PH

    2011-08-01

    Full Text Available Abstract Background The endocannabinoid system (ECS is a ubiquitously expressed signalling system, with involvement in lipid metabolism and obesity. There are reported changes in obesity of blood concentrations of the endocannabinoids anandamide (AEA and 2-arachidonoylglcyerol (2-AG, and of adipose tissue expression levels of the two key catabolic enzymes of the ECS, fatty acid amide hydrolase (FAAH and monoacylglycerol lipase (MGL. Surprisingly, however, the activities of these enzymes have not been assayed in conditions of increasing adiposity. The aim of the current study was to investigate whether FAAH and MGL activities in human subcutaneous adipocytes are affected by body mass index (BMI, or other markers of adiposity and metabolism. Methods Subcutaneous abdominal mature adipocytes, fasting blood samples and anthropometric measurements were obtained from 28 metabolically healthy subjects representing a range of BMIs. FAAH and MGL activities were assayed in mature adipocytes using radiolabelled substrates. Serum glucose, insulin and adipokines were determined using ELISAs. Results MGL activity showed no relationship with BMI or other adiposity indices, metabolic markers (fasting serum insulin or glucose or serum adipokine levels (adiponectin, leptin or resistin. In contrast, FAAH activity in subcutaneous adipocytes correlated positively with BMI and waist circumference, but not with skinfold thickness, metabolic markers or serum adipokine levels. Conclusions In this study, novel evidence is provided that FAAH activity in subcutaneous mature adipocytes increases with BMI, whereas MGL activity does not. These findings support the hypothesis that some components of the ECS are upregulated with increasing adiposity in humans, and that AEA and 2-AG may be regulated differently.

  19. Discovery of natural mouse serum derived HIV-1 entry inhibitor(s).

    Science.gov (United States)

    Wei, M; Chen, Y; Xi, J; Ru, S; Ji, M; Zhang, D; Fang, Q; Tang, B

    Among rationally designed human immunodeficiency virus 1 (HIV-1) inhibitors, diverse natural factors have showed as potent anti-HIV activity in human blood. We have discovered that the boiled supernatant of healthy mouse serum could suppress HIV-1 entry, and exhibited reduced inhibitory activity after trypsin digestion. Further analysis demonstrated that only the fraction containing 10-25 K proteins could inhibit HIV-1 mediated cell-cell fusion. These results suggest that the 10-25 K protein(s) is novel natural HIV-1 entry inhibitor(s). Our findings provide important information about novel natural HIV entry inhibitors in mouse serum.

  20. Detailed climate-change projections for urban land-use change and green-house gas increases for Belgium with COSMO-CLM coupled to TERRA_URB

    Science.gov (United States)

    Wouters, Hendrik; Vanden Broucke, Sam; van Lipzig, Nicole; Demuzere, Matthias

    2016-04-01

    Recent research clearly show that climate modelling at high resolution - which resolve the deep convection, the detailed orography and land-use including urbanization - leads to better modelling performance with respect to temperatures, the boundary-layer, clouds and precipitation. The increasing computational power enables the climate research community to address climate-change projections with higher accuracy and much more detail. In the framework of the CORDEX.be project aiming for coherent high-resolution micro-ensemble projections for Belgium employing different GCMs and RCMs, the KU Leuven contributes by means of the downscaling of EC-EARTH global climate model projections (provided by the Royal Meteorological Institute of the Netherlands) to the Belgian domain. The downscaling is obtained with regional climate simulations at 12.5km resolution over Europe (CORDEX-EU domain) and at 2.8km resolution over Belgium (CORDEX.be domain) using COSMO-CLM coupled to urban land-surface parametrization TERRA_URB. This is done for the present-day (1975-2005) and future (2040 → 2070 and 2070 → 2100). In these high-resolution runs, both GHG changes (in accordance to RCP8.5) and urban land-use changes (in accordance to a business-as-usual urban expansion scenario) are taken into account. Based on these simulations, it is shown how climate-change statistics are modified when going from coarse resolution modelling to high-resolution modelling. The climate-change statistics of particular interest are the changes in number of extreme precipitation events and extreme heat waves in cities. Hereby, it is futher investigated for the robustness of the signal change between the course and high-resolution and whether a (statistical) translation is possible. The different simulations also allow to address the relative impact and synergy between the urban expansion and increased GHG on the climate-change statistics. Hereby, it is investigated for which climate-change statistics the

  1. Fatty acid-binding proteins (FABPs) are intracellular carriers for Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD).

    Science.gov (United States)

    Elmes, Matthew W; Kaczocha, Martin; Berger, William T; Leung, KwanNok; Ralph, Brian P; Wang, Liqun; Sweeney, Joseph M; Miyauchi, Jeremy T; Tsirka, Stella E; Ojima, Iwao; Deutsch, Dale G

    2015-04-03

    Δ(9)-Tetrahydrocannabinol (THC) and cannabidiol (CBD) occur naturally in marijuana (Cannabis) and may be formulated, individually or in combination in pharmaceuticals such as Marinol or Sativex. Although it is known that these hydrophobic compounds can be transported in blood by albumin or lipoproteins, the intracellular carrier has not been identified. Recent reports suggest that CBD and THC elevate the levels of the endocannabinoid anandamide (AEA) when administered to humans, suggesting that phytocannabinoids target cellular proteins involved in endocannabinoid clearance. Fatty acid-binding proteins (FABPs) are intracellular proteins that mediate AEA transport to its catabolic enzyme fatty acid amide hydrolase (FAAH). By computational analysis and ligand displacement assays, we show that at least three human FABPs bind THC and CBD and demonstrate that THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs. Furthermore, we show that in contrast to rodent FAAH, CBD does not inhibit the enzymatic actions of human FAAH, and thus FAAH inhibition cannot account for the observed increase in circulating AEA in humans following CBD consumption. Using computational molecular docking and site-directed mutagenesis we identify key residues within the active site of FAAH that confer the species-specific sensitivity to inhibition by CBD. Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids. These data shed light on the mechanism of action of CBD in modulating the endocannabinoid tone in vivo and may explain, in part, its reported efficacy toward epilepsy and other neurological disorders. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. The effect of chemical anti-inhibitors on fibrinolytic enzymes and inhibitors

    DEFF Research Database (Denmark)

    Sidelmann, Johannes Jakobsen; Jespersen, J; Kluft, C

    1997-01-01

    proteases. We studied the influence of chemical anti-inhibitors (chloramine T, flufenamate, sodium lauryl sulfate, and methylamine) on fibrinolytic serine proteases and fibrinolytic enzyme inhibitors using the physiological substrate fibrin as plasmin substrate. Low concentrations of chloramine T (0.01 mmol......%) and plasminogen activators (apparent recovery > 200%). Sodium lauryl sulfate eliminates the major fibrinolytic enzyme inhibitors, but increases the activity of plasmin (apparent recovery > 200%) and plasminogen activator, urokinase type (apparent recovery 130%). Methylamine affects only plasmin inhibition. We...

  3. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyeon-Ok [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Hong, Sung-Eun [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Kim, Chang Soon [Department of Microbiological Engineering, Kon-Kuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143–701 (Korea, Republic of); Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Park, In-Chul, E-mail: parkic@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Lee, Jin Kyung, E-mail: jklee@kirams.re.kr [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of)

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.

  4. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors.

    Science.gov (United States)

    Halasi, Marianna; Wang, Ming; Chavan, Tanmay S; Gaponenko, Vadim; Hay, Nissim; Gartel, Andrei L

    2013-09-01

    NAC (N-acetyl-L-cysteine) is commonly used to identify and test ROS (reactive oxygen species) inducers, and to inhibit ROS. In the present study, we identified inhibition of proteasome inhibitors as a novel activity of NAC. Both NAC and catalase, another known scavenger of ROS, similarly inhibited ROS levels and apoptosis associated with H₂O₂. However, only NAC, and not catalase or another ROS scavenger Trolox, was able to prevent effects linked to proteasome inhibition, such as protein stabilization, apoptosis and accumulation of ubiquitin conjugates. These observations suggest that NAC has a dual activity as an inhibitor of ROS and proteasome inhibitors. Recently, NAC was used as a ROS inhibitor to functionally characterize a novel anticancer compound, piperlongumine, leading to its description as a ROS inducer. In contrast, our own experiments showed that this compound depicts features of proteasome inhibitors including suppression of FOXM1 (Forkhead box protein M1), stabilization of cellular proteins, induction of ROS-independent apoptosis and enhanced accumulation of ubiquitin conjugates. In addition, NAC, but not catalase or Trolox, interfered with the activity of piperlongumine, further supporting that piperlongumine is a proteasome inhibitor. Most importantly, we showed that NAC, but not other ROS scavengers, directly binds to proteasome inhibitors. To our knowledge, NAC is the first known compound that directly interacts with and antagonizes the activity of proteasome inhibitors. Taken together, the findings of the present study suggest that, as a result of the dual nature of NAC, data interpretation might not be straightforward when NAC is utilized as an antioxidant to demonstrate ROS involvement in drug-induced apoptosis.

  5. Synergistic apoptosis induction in leukemic cells by the phosphatase inhibitor salubrinal and proteasome inhibitors.

    Directory of Open Access Journals (Sweden)

    Hannes C A Drexler

    Full Text Available Cells adapt to endoplasmic reticulum (ER-stress by arresting global protein synthesis while simultaneously activating specific transcription factors and their downstream targets. These processes are mediated in part by the phosphorylation-dependent inactivation of the translation initiation factor eIF2alpha. Following restoration of homeostasis protein synthesis is resumed when the serine/threonine-protein phosphatase PP1 dephosphorylates and reactivates eIF2alpha. Proteasome inhibitors, used to treat multiple myeloma patients evoke ER-stress and apoptosis by blocking the ER-associated degradation of misfolded proteins (ERAD, however, the role of eIF2alpha phosphorylation in leukemic cells under conditions of proteasome inhibitor-mediated ER stress is currently unclear.Bcr-Abl-positive and negative leukemic cell lines were used to investigate the functional implications of PP1-related phosphatase activities on eIF2alpha phosphorylation in proteasome inhibitor-mediated ER stress and apoptosis. Rather unexpectedly, salubrinal, a recently identified PP1 inhibitor capable to protect against ER stress in various model systems, strongly synergized with proteasome inhibitors to augment apoptotic death of different leukemic cell lines. Salubrinal treatment did not affect the phosphorlyation status of eIF2alpha. Furthermore, the proapoptotic effect of salubrinal occurred independently from the chemical nature of the proteasome inhibitor, was recapitulated by a second unrelated phosphatase inhibitor and was unaffected by overexpression of a dominant negative eIF2alpha S51A variant that can not be phosphorylated. Salubrinal further aggravated ER-stress and proteotoxicity inflicted by the proteasome inhibitors on the leukemic cells since characteristic ER stress responses, such as ATF4 and CHOP synthesis, XBP1 splicing, activation of MAP kinases and eventually apoptosis were efficiently abrogated by the translational inhibitor cycloheximide.Although PP1

  6. Screening of protein kinase inhibitors identifies PKC inhibitors as inhibitors of osteoclastic acid secretion and bone resorption

    Directory of Open Access Journals (Sweden)

    Boutin Jean A

    2010-10-01

    Full Text Available Abstract Background Bone resorption is initiated by osteoclastic acidification of the resorption lacunae. This process is mediated by secretion of protons through the V-ATPase and chloride through the chloride antiporter ClC-7. To shed light on the intracellular signalling controlling extracellular acidification, we screened a protein kinase inhibitor library in human osteoclasts. Methods Human osteoclasts were generated from CD14+ monocytes. The effect of different kinase inhibitors on lysosomal acidification in human osteoclasts was investigated using acridine orange for different incubation times (45 minutes, 4 and 24 hours. The inhibitors were tested in an acid influx assay using microsomes isolated from human osteoclasts. Bone resorption by human osteoclasts on bone slices was measured by calcium release. Cell viability was measured using AlamarBlue. Results Of the 51 compounds investigated only few inhibitors were positive in both acidification and resorption assays. Rottlerin, GF109203X, Hypericin and Ro31-8220 inhibited acid influx in microsomes and bone resorption, while Sphingosine and Palmitoyl-DL-carnitine-Cl showed low levels of inhibition. Rottlerin inhibited lysosomal acidification in human osteoclasts potently. Conclusions In conclusion, a group of inhibitors all indicated to inhibit PKC reduced acidification in human osteoclasts, and thereby bone resorption, indicating that acid secretion by osteoclasts may be specifically regulated by PKC in osteoclasts.

  7. Lectotypifications of six taxa in the Boraginales (Cordiaceae and Heliotropiaceae)

    Science.gov (United States)

    Feuillet, Christian

    2016-01-01

    Abstract A large number of specimens used as original material for the description of new species were destroyed in the bombing of the Berlin-Dahlem herbarium, B, in 1943. Six lectotypes are designated here for Cordia discolor Cham., Cordia multispicata Cham., Cordia tobagensis Urb. and its variety broadwayi Urb. in the Cordiaceae and for Tournefortia paniculata Cham. and Tournefortia ulei Vaupel in the Heliotropiaceae. PMID:27212885

  8. Allosteric small-molecule kinase inhibitors

    DEFF Research Database (Denmark)

    Wu, Peng; Clausen, Mads Hartvig; Nielsen, Thomas E.

    2015-01-01

    current barriers of kinase inhibitors, including poor selectivity and emergence of drug resistance. In spite of the small number of identified allosteric inhibitors in comparison with that of inhibitors targeting the ATP pocket, encouraging results, such as the FDA-approval of the first small...

  9. SGLT2 inhibitors.

    Science.gov (United States)

    Dardi, I; Kouvatsos, T; Jabbour, S A

    2016-02-01

    Diabetes mellitus is a serious health issue and an economic burden, rising in epidemic proportions over the last few decades worldwide. Although several treatment options are available, only half of the global diabetic population achieves the recommended or individualized glycemic targets. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with a novel insulin-independent action. SGLT2 is a transporter found in the proximal renal tubules, responsible for the reabsorption of most of the glucose filtered by the kidney. Inhibition of SGLT2 lowers the blood glucose level by promoting the urinary excretion of excess glucose. Due to their insulin-independent action, SGLT2 inhibitors can be used with any degree of beta-cell dysfunction or insulin resistance, related to a very low risk of hypoglycemia. In addition to improving glycemic control, SGLT2 inhibitors have been associated with a reduction in weight and blood pressure when used as monotherapy or in combination with other antidiabetic agents in patients with type 2 diabetes mellitus (T2DM). Treatment with SGLT2 inhibitors is usually well tolerated; however, they have been associated with an increased incidence of urinary tract and genital infections, although these infections are usually mild and easy to treat. SGLT2 inhibitors are a promising new option in the armamentarium of drugs for patients with T2DM. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Proteinaceous alpha-araylase inhibitors

    DEFF Research Database (Denmark)

    Svensson, Birte; Fukuda, Kenji; Nielsen, P.K.

    2004-01-01

    -amylase inhibitors belong to seven different protein structural families, most of which also contain evolutionary related proteins without inhibitory activity. Two families include bifunctional inhibitors acting both on alpha-amylases and proteases. High-resolution structures are available of target alpha...

  11. Syk inhibitors.

    Science.gov (United States)

    Chihara, Kazuyasu; Kimura, Yukihiro; Honjo, Chisato; Takeuchi, Kenji; Sada, Kiyonao

    2013-01-01

    Non-receptor type of protein-tyrosine kinase Syk (spleen tyrosine kinase) was isolated in University of Fukui in 1991. Syk is most highly expressed by haemopoietic cells and known to play crucial roles in the signal transduction through various immunoreceptors of the adaptive immune response. However, recent reports demonstrate that Syk also mediates other biological functions, such as innate immune response, osteoclast maturation, platelet activation and cellular adhesion. Moreover, ectopic expression of Syk by epigenetic changes is reported to cause retinoblastoma. Because of its critical roles on the cellular functions, the development of Syk inhibitors for clinical use has been desired. Although many candidate compounds were produced, none of them had progressed to clinical trials. However, novel Syk inhibitors were finally developed and its usefulness has been evaluated in the treatment of allergic rhinitis, rheumatoid arthritis and idiopathic thrombocytopenic purpura. In this review, we will summarize the history, structure and function of Syk, and then the novel Syk inhibitors and their current status. In addition, we will introduce our research focused on the functions of Syk on Dectin-1-mediated mast cell activation.

  12. Adipose tissue endocannabinoid system gene expression: depot differences and effects of diet and exercise

    Directory of Open Access Journals (Sweden)

    Yang Rongze

    2011-10-01

    Full Text Available Abstract Background Alterations of endocannabinoid system in adipose tissue play an important role in lipid regulation and metabolic dysfunction associated with obesity. The purpose of this study was to determine whether gene expression levels of cannabinoid type 1 receptor (CB1 and fatty acid amide hydrolase (FAAH are different in subcutaneous abdominal and gluteal adipose tissue, and whether hypocaloric diet and aerobic exercise influence subcutaneous adipose tissue CB1 and FAAH gene expression in obese women. Methods Thirty overweight or obese, middle-aged women (BMI = 34.3 ± 0.8 kg/m2, age = 59 ± 1 years underwent one of three 20-week weight loss interventions: caloric restriction only (CR, N = 9, caloric restriction plus moderate-intensity aerobic exercise (CRM, 45-50% HRR, N = 13, or caloric restriction plus vigorous-intensity aerobic exercise (CRV, 70-75% HRR, N = 8. Subcutaneous abdominal and gluteal adipose tissue samples were collected before and after the interventions to measure CB1 and FAAH gene expression. Results At baseline, FAAH gene expression was higher in abdominal, compared to gluteal adipose tissue (2.08 ± 0.11 vs. 1.78 ± 0.10, expressed as target gene/β-actin mRNA ratio × 10-3, P Conclusions There are depot differences in subcutaneous adipose tissue endocannabinoid system gene expression in obese individuals. Aerobic exercise training may preferentially modulate abdominal adipose tissue endocannabinoid-related gene expression during dietary weight loss. Trial Registration ClinicalTrials.gov: NCT00664729.

  13. Restored Plasma Anandamide and Endometrial Expression of Fatty Acid Amide Hydrolase in Women With Polycystic Ovary Syndrome by the Combination Use of Diane-35 and Metformin.

    Science.gov (United States)

    Cui, Na; Feng, Xiaoye; Zhao, Zhiming; Zhang, Jie; Xu, Yueming; Wang, Luning; Hao, Guimin

    2017-04-01

    Polycystic ovary syndrome (PCOS) is a metabolic and endocrinal disorder affecting a number of women of reproductive age. We aimed to reveal the correlation between the endocannabinoid system and PCOS, which may provide a new therapeutic target for PCOS treatment. Serum levels of anandamide and 2-arachidonoylglycerol andexpression of cannabinoid receptors and fatty acid amide hydrolase (FAAH) in the endometrium were compared between women with PCOS and infertile women without PCOS, as well as women with PCOS before and after treatment with Diane-35 and metformin. Cannabinoid receptors and FAAH in the endometrium were stained using the immunohistochemical method. Results were analyzed by calculating integrated optical density. Plasma anandamide was increased significantly in women with PCOS compared with infertile women without PCOS. Treatment with Diane-35 and metformin reversed this increase in women with PCOS. No significant difference in 2-arachidonoylglycerol was observed between the infertile women with or without PCOS. The women with PCOS had lower endometrial expression of FAAH compared with infertile women without PCOS, whereas no significant difference in endometrial expression of cannabinoid receptors was observed between the women with PCOS and infertile women without PCOS. We found that after treatment with Diane-35 and metformin, FAAH expression tended toward a significant increase compared with women before the treatment. Endocannabinoid system may be involved in the progression of PCOS, and serum anandamide could serve as a potential biomarker of clinical diagnosis of PCOS. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.

  14. The effects of residual platelets in plasma on plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays.

    Directory of Open Access Journals (Sweden)

    Marlien Pieters

    Full Text Available Due to controversial evidence in the literature pertaining to the activity of plasminogen activator inhibitor-1 in platelets, we examined the effects of residual platelets present in plasma (a potential pre-analytical variable on various plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays. Blood samples were collected from 151 individuals and centrifuged at 352 and 1500 g to obtain plasma with varying numbers of platelet. In a follow-up study, blood samples were collected from an additional 23 individuals, from whom platelet-poor (2000 g, platelet-containing (352 g and platelet-rich plasma (200 g were prepared and analysed as fresh-frozen and after five defrost-refreeze cycles (to determine the contribution of in vitro platelet degradation. Plasminogen activator inhibitor-1 activity, plasminogen activator inhibitor-1 antigen, tissue plasminogen activator/plasminogen activator inhibitor-1 complex, plasma clot lysis time, β-thromboglobulin and plasma platelet count were analysed. Platelet α-granule release (plasma β-thromboglobulin showed a significant association with plasminogen activator inhibitor-1 antigen levels but weak associations with plasminogen activator inhibitor-1 activity and a functional marker of fibrinolysis, clot lysis time. Upon dividing the study population into quartiles based on β-thromboglobulin levels, plasminogen activator inhibitor-1 antigen increased significantly across the quartiles while plasminogen activator inhibitor-1 activity and clot lysis time tended to increase in the 4th quartile only. In the follow-up study, plasma plasminogen activator inhibitor-1 antigen was also significantly influenced by platelet count in a concentration-dependent manner. Plasma plasminogen activator inhibitor-1 antigen levels increased further after complete platelet degradation. Residual platelets in plasma significantly influence plasma plasminogen activator inhibitor-1 antigen levels mainly

  15. mTOR inhibitors alone and in combination with JAK2 inhibitors effectively inhibit cells of myeloproliferative neoplasms.

    Directory of Open Access Journals (Sweden)

    Costanza Bogani

    Full Text Available BACKGROUND: Dysregulated signaling of the JAK/STAT pathway is a common feature of chronic myeloproliferative neoplasms (MPN, usually associated with JAK2V617F mutation. Recent clinical trials with JAK2 inhibitors showed significant improvements in splenomegaly and constitutional symptoms in patients with myelofibrosis but meaningful molecular responses were not documented. Accordingly, there remains a need for exploring new treatment strategies of MPN. A potential additional target for treatment is represented by the PI3K/AKT/mammalian target of rapamycin (mTOR pathway that has been found constitutively activated in MPN cells; proof-of-evidence of efficacy of the mTOR inhibitor RAD001 has been obtained recently in a Phase I/II trial in patients with myelofibrosis. The aim of the study was to characterize the effects in vitro of mTOR inhibitors, used alone and in combination with JAK2 inhibitors, against MPN cells. FINDINGS: Mouse and human JAK2V617F mutated cell lines and primary hematopoietic progenitors from MPN patients were challenged with an allosteric (RAD001 and an ATP-competitive (PP242 mTOR inhibitor and two JAK2 inhibitors (AZD1480 and ruxolitinib. mTOR inhibitors effectively reduced proliferation and colony formation of cell lines through a slowed cell division mediated by changes in cell cycle transition to the S-phase. mTOR inhibitors also impaired the proliferation and prevented colony formation from MPN hematopoietic progenitors at doses significantly lower than healthy controls. JAK2 inhibitors produced similar antiproliferative effects in MPN cell lines and primary cells but were more potent inducers of apoptosis, as also supported by differential effects on cyclinD1, PIM1 and BcLxL expression levels. Co-treatment of mTOR inhibitor with JAK2 inhibitor resulted in synergistic activity against the proliferation of JAK2V617F mutated cell lines and significantly reduced erythropoietin-independent colony growth in patients with

  16. Effects of various cannabinoid ligands on choice behaviour in a rat model of gambling.

    Science.gov (United States)

    Gueye, Aliou B; Trigo, Jose M; Vemuri, Kiran V; Makriyannis, Alexandros; Le Foll, Bernard

    2016-04-01

    It is estimated that 0.6-1% of the population in the USA and Canada fulfil the Diagnostic and Statistical Manual of Mental Disorders, 5th ed. (DSM-5) criteria for gambling disorders (GD). To date, there are no approved pharmacological treatments for GD. The rat gambling task (rGT) is a recently developed rodent analogue of the Iowa gambling task in which rats are trained to associate four response holes with different magnitudes and probabilities of food pellet rewards and punishing time-out periods. Similar to healthy human volunteers, most rats adopt the optimal strategies (optimal group). However, a subset of animals show preference for the disadvantageous options (suboptimal group), mimicking the choice pattern of patients with GD. Here, we explored for the first time the effects of various cannabinoid ligands (WIN 55,212-2, AM 4113, AM 630 and URB 597) on the rGT. Administration of the cannabinoid agonist CB1/CB2 WIN 55,212-2 improved choice strategy and increased choice latency in the suboptimal group, but only increased perseverative behaviour, when punished, in the optimal group. Blockade of CB1 or CB2 receptors or inhibition of fatty-acid amide hydrolase did not affect rGT performance. These results suggest that stimulation of cannabinoid receptors could affect gambling choice behaviours differentially in some subgroups of subjects.

  17. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents.

    Science.gov (United States)

    Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while

  18. Identification of fermentation inhibitors in wood hydrolyzates and removal of inhibitors by ion exchange and liquid-liquid extraction

    Science.gov (United States)

    Luo, Caidian

    1998-12-01

    Common methods employed in the ethanol production from biomass consist of chemical or enzymatic degradation of biomass into sugars and then fermentation of sugars into ethanol or other chemicals. However, some degradation products severely inhibit the fermentation processes and substantially reduce the efficiency of ethanol production. How to remove inhibitors from the reaction product mixture and increase the production efficiency are critical in the commercialization of any processes of energy from biomass. The present study has investigated anion exchange and liquid-liquid extraction as potential methods for inhibitor removal. An analytical method has been developed to identify the fermentation inhibitors in a hydrolyzate. The majority of inhibitors present in hybrid poplar hydrolyzate have positively been identified. Ion exchange with weak basic Dowex-MWA-1 resin has been proved to be an effective mean to remove fermentation inhibitors from hybrid poplar hydrolyzate and significantly increase the fermentation productivity. Extraction with n-butanol might be a preferred way to remove inhibitors from wood hydrolyzates and improve the fermentability of sugars in the hydrolyzates. n-Butanol also removes some glucose, mannose and xylose from the hydrolyzate. Inhibitor identification reveals that lignin and sugar degradation compounds including both aromatic and aliphatic aldehydes and carboxylic acids formed in hydrolysis, plus fatty acids and other components from wood extractives are major fermentation inhibitors in Sacchromyces cerevisiae fermentation. There are 35 components identified as fermentation inhibitors. Among them, 4-hydroxy benzoic acid, 3,4-dihydroxy benzoic acid, syringic acid, syringaldehyde, and ferulic acid are among the most abundant aromatic inhibitors in hybrid poplar hydrolyzate. The conversion of aldehyde groups into carboxylic acid groups in the nitric acid catalyzed hydrolysis reduces the toxicity of the hydrolyzate. A wide spectrum of

  19. A sensitive and specific radiochromatographic assay of fatty acid amide hydrolase activity.

    Science.gov (United States)

    Maccarrone, M; Bari, M; Agrò, A F

    1999-02-15

    A radiochromatographic method has been set up in order to determine fatty acid amide hydrolase (FAAH) activity, based on reversed-phase high-performance liquid chromatography and on-line scintillation counting. The reaction products were separated using a C18 column eluted with methanol-water-acetic acid and quantitated with an external standard. Baseline separation of the acid product from the substrate was completed in less than 4 min, with a detection limit of 2.5 fmol arachidonic acid at a signal to noise ratio of 4:1. The method enabled to determine the kinetic constants (i.e., apparent Km of 2.0 +/- 0.2 microM and Vmax of 800 +/- 75 pmol. min-1. mg protein-1 toward anandamide) and the substrate specificity of human brain FAAH, as well as the extent of enzyme inhibition by some anandamide congeners. The femtomole sensitivity and the accuracy of the method allow detection and characterization of the activity of FAAH in very minute tissue samples or in samples where the enzymatic activity is very low. Copyright 1999 Academic Press.

  20. Inga laurina trypsin inhibitor (ILTI) obstructs Spodoptera frugiperda trypsins expressed during adaptive mechanisms against plant protease inhibitors.

    Science.gov (United States)

    Machado, Suzy Wider; de Oliveira, Caio Fernando Ramalho; Zério, Neide Graciano; Parra, José Roberto Postali; Macedo, Maria Lígia Rodrigues

    2017-08-01

    Plant protease inhibitors (PIs) are elements of a common plant defense mechanism induced in response to herbivores. The fall armyworm, Spodoptera frugiperda, a highly polyphagous lepidopteran pest, responds to various PIs in its diet by expressing genes encoding trypsins. This raises the question of whether the PI-induced trypsins are also inhibited by other PIs, which we posed as the hypothesis that Inga laurina trypsin inhibitor (ILTI) inhibits PI-induced trypsins in S. frugiperda. In the process of testing our hypothesis, we compared its properties with those of selected PIs, soybean Kunitz trypsin inhibitor (SKTI), Inga vera trypsin inhibitor (IVTI), Adenanthera pavonina trypsin inhibitor (ApTI), and Entada acaciifolia trypsin inhibitor (EATI). We report that ILTI is more effective in inhibiting the induced S. frugiperda trypsins than SKTI and the other PIs, which supports our hypothesis. ILTI may be more appropriate than SKTI for studies regarding adaptive mechanisms to dietary PIs. © 2017 Wiley Periodicals, Inc.

  1. Reduction rules for reset/inhibitor nets

    NARCIS (Netherlands)

    Verbeek, H.M.W.; Wynn, M.T.; Aalst, van der W.M.P.; Hofstede, ter A.H.M.

    2010-01-01

    Reset/inhibitor nets are Petri nets extended with reset arcs and inhibitor arcs. These extensions can be used to model cancellation and blocking. A reset arc allows a transition to remove all tokens from a certain place when the transition fires. An inhibitor arc can stop a transition from being

  2. Histone deacetylase inhibitors (HDACIs: multitargeted anticancer agents

    Directory of Open Access Journals (Sweden)

    Ververis K

    2013-02-01

    Full Text Available Katherine Ververis,1 Alison Hiong,1 Tom C Karagiannis,1,* Paul V Licciardi2,*1Epigenomic Medicine, Alfred Medical Research and Education Precinct, 2Allergy and Immune Disorders, Murdoch Childrens Research Institute, Melbourne, VIC, Australia*These authors contributed equally to this workAbstract: Histone deacetylase (HDAC inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza and depsipeptide (romidepsin, Istodax. More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the

  3. Histone Deacetylase Inhibitors as Anticancer Drugs.

    Science.gov (United States)

    Eckschlager, Tomas; Plch, Johana; Stiborova, Marie; Hrabeta, Jan

    2017-07-01

    Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  4. Histone Deacetylase Inhibitors as Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Tomas Eckschlager

    2017-07-01

    Full Text Available Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC and histone acetyltransferases (HAT. HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  5. Inhibition of monoacylglycerol lipase (MAGL) enhances cue-induced reinstatement of nicotine-seeking behavior in mice.

    Science.gov (United States)

    Trigo, Jose M; Le Foll, Bernard

    2016-05-01

    Tobacco smoking is still a major population health issue. The endocannabinoid system has been shown to control drug-seeking behaviors. There are two main endocannabinoids: anandamide degraded by fatty acid amide hydrolase (FAAH) and 2-arachidonoylglycerol (2-AG) degraded by monoacylglycerol lipase (MAGL). The role of MAGL has only been explored recently, and so far, no study have been performed to evaluate the effects of MAGL inhibitor on nicotine reinforcing properties and cue-induced reinstatement of nicotine seeking. Here, we investigated the effects of the MAGL inhibitor JZL184 on nicotine self-administration under fixed and progressive-ratio schedules of reinforcement and on cue-induced reinstatement of nicotine seeking in mice. We also evaluated the effects of JZL184 on food self-administration for possible non-specific effects. JZL184 (0, 8, and 16 mg/kg) did not affect food taking, nicotine taking, or motivation for nicotine. MAGL inhibition by JZL184 (16 mg/kg) increased reinstatement of previously extinguished nicotine seeking induced by presentation of nicotine-associated cues, but did not produce reinstatement on its own. This study implicates involvement of 2-AG in nicotine-seeking behaviors.

  6. [ACE inhibitors and the kidney].

    Science.gov (United States)

    Hörl, W H

    1996-01-01

    Treatment with ACE inhibitors results in kidney protection due to reduction of systemic blood pressure, intraglomerular pressure, an antiproliferative effect, reduction of proteinuria and a lipid-lowering effect in proteinuric patients (secondary due to reduction of protein excretion). Elderly patients with diabetes melitus, coronary heart disease or peripheral vascular occlusion are at risk for deterioration of kidney function due to a high frequency of renal artery stenosis in these patients. In patients with renal insufficiency dose reduction of ACE inhibitors is necessary (exception: fosinopril) but more important is the risk for development of hyperkalemia. Patients at risk for renal artery stenosis and patients pretreated with diuretics should receive a low ACE inhibitor dosage initially ("start low - go slow"). For compliance reasons once daily ACE inhibitor dosage is recommended.

  7. Natural inhibitors of tumor-associated proteases

    International Nuclear Information System (INIS)

    Magdolen, U.; Krol, J.; Sato, S.; Schmitt, M.; Magdolen, V.; Krueger, A.; Mueller, M.M.; Sperl, S.

    2002-01-01

    The turnover and remodelling of extracellular matrix (ECM) is an essential part of many normal biological processes including development, morphogenesis, and wound healing. ECM turnover also occurs in severe pathological situations like artherosclerosis, fibrosis, tumor invasion and metastasis. The major proteases involved in this turnover are serine proteases (especially the urokinase-type plasminogen activator/plasmin system), matrix metalloproteases (a family of about 20 zinc-dependent endopeptidases including collagenases, gelatinases, stromelysins, and membrane-type metalloproteases), and cysteine proteases. In vivo, the activity of these proteases is tightly regulated in the extracellular space by zymogen activation and/or controlled inhibition. In the present review, we give an overview on the structure and biochemical properties of important tumor-associated protease inhibitors such as plasminogen activator inhibitor type 1 and type 2 (PAI-1, PAI-2), tissue inhibitors of metalloproteinases (TIMP-1, -2, -3, and -4), and the cysteine protease inhibitor cystatin C. Interestingly, some of these inhibitors of tumor-associated proteases display multiple functions which rather promote than inhibit tumor progression, when the presence of inhibitors in the tumor tissue is not balanced. (author)

  8. Aromatase inhibitors in pediatrics.

    Science.gov (United States)

    Wit, Jan M; Hero, Matti; Nunez, Susan B

    2011-10-25

    Aromatase, an enzyme located in the endoplasmic reticulum of estrogen-producing cells, catalyzes the rate-limiting step in the conversion of androgens to estrogens in many tissues. The clinical features of patients with defects in CYP19A1, the gene encoding aromatase, have revealed a major role for this enzyme in epiphyseal plate closure, which has promoted interest in the use of inhibitors of aromatase to improve adult height. The availability of the selective aromatase inhibitors letrozole and anastrozole--currently approved as adjuvant therapy for breast cancer--have stimulated off-label use of aromatase inhibitors in pediatrics for the following conditions: hyperestrogenism, such as aromatase excess syndrome, Peutz-Jeghers syndrome, McCune-Albright syndrome and functional follicular ovarian cysts; hyperandrogenism, for example, testotoxicosis (also known as familial male-limited precocious puberty) and congenital adrenal hyperplasia; pubertal gynecomastia; and short stature and/or pubertal delay in boys. Current data suggest that aromatase inhibitors are probably effective in the treatment of patients with aromatase excess syndrome or testotoxicosis, partially effective in Peutz-Jeghers and McCune-Albright syndrome, but probably ineffective in gynecomastia. Insufficient data are available in patients with congenital adrenal hyperplasia or functional ovarian cysts. Although aromatase inhibitors appear effective in increasing adult height of boys with short stature and/or pubertal delay, safety concerns, including vertebral deformities, a decrease in serum HDL cholesterol levels and increase of erythrocytosis, are reasons for caution.

  9. [The primary structure of the alpha-amylase inhibitor Hoe 467A from Streptomyces tendae 4158. A new class of inhibitors].

    Science.gov (United States)

    Aschauer, H; Vértesy, L; Nesemann, G; Braunitzer, G

    1983-10-01

    The native or modified alpha-amylase inhibitor Hoe 467A - isolated from the culture medium of Streptomyces tendae 4158 - and overlapping peptides were degraded by the automatic Edman technique. The oxidized or aminoethylated or oxidized and maleoylated inhibitor was digested with trypsin and the native inhibitor with pepsin. Further digestion with Staphylococcus aureus proteinase was also carried out. After peptic digestion two cystin peptides were isolated, which allowed the establishment of the disulfide bonds. The alpha-amylase inhibitor is a polypeptid consisting of 74 amino-acid residues with a molecular mass of 7958 Da. The inhibitor is composed of all naturally occurring amino acids except methionine and phenylalanine and shows no sequence homology to known inhibitors. The clinical and pharmacological importance in respect to the inhibitors ability for inactivation of human salivary and pancreatic alpha-amylase is discussed. Especially the proteinase resistance of the inhibitor enables a clinical application in human (e.g. Diabetes mellitus) per os.

  10. IFPE/IFA-597.3, centre-line temperature, fission gas release and clad elongation at high burn-up (60-62 MWd/kg)

    International Nuclear Information System (INIS)

    Turnbull, J.A.

    2003-01-01

    Description: The fuel segments for the high burn-up integral rod behaviour test IFA-597 were taken from fuel rod 33-25065, which was irradiated in the Ringhals 1 BWR for approximately 12 years. The irradiation of this rod and its sibling rod 33-25046 was performed in two stages. During the first irradiation, 1980 to 1986, the rods were part of Ringhals assembly 6477 and an approximate rod averaged burn-up of 31 MWd/kg UO 2 was reached. The rods were then placed into fuel assembly 9902 for a second period of irradiation from 1986 to 1992. The location of the fuel rods 33-25065 and 33-25046 in this assembly were in positions 9902/D and 9902/E4 respectively. A final rod averaged burn-up of 52 MWd/kg UO 2 was achieved. The burn-up at the location of the Halden segments was estimated as 59 MWd/kg UO 2 , well beyond the formation of High Burn-up Structure (Hobs) formation at the pellet rim. At the rim, the burn-up was estimated as 130 MWd/kg UO 2 . After commercial irradiation, PIE was performed at Studsvik. Inner and outer clad oxide thickness measurements were 42 and 5 microns respectively. The measured cold rod diameter varied between 12.20 and 12.25 mm, thus only a small amount of creep-down had occurred from the original diameter of 12.25 mm. Cold gap measurements were taken by diametral compression of the clad onto the fuel. The stiffness changes twice during these measurements, the first (relocated gap) associated with the onset of pellet fragment movement, the second (compressed gap) when the fragments are together and the pellet is compressed. For these rods, the compressed diametral gap was measured as 30 microns. This is in agreement with the pellet and cladding being in contact during the final irradiation cycle, i.e., at ∼12 kW/m. FGR measurements were made after puncturing and values of 2.5%-3.3% were calculated from the extracted gas. The uncertainty is due to different methods of calculation. Ceramography showed a normal crack pattern and no evidence of

  11. Squash inhibitor family of serine proteinases

    International Nuclear Information System (INIS)

    Otlewski, J.; Krowarsch, D.

    1996-01-01

    Squash inhibitors of serine proteinases form an uniform family of small proteins. They are built of 27-33 amino-acid residues and cross-linked with three disulfide bridges. The reactive site peptide bond (P1-P1') is between residue 5 (Lys, Arg or Leu) and 6 (always Ile). High resolution X-ray structures are available for two squash inhibitors complexed with trypsin. NMR solution structures have also been determined for free inhibitors. The major structural motif is a distorted, triple-stranded antiparallel beta-sheet. A similar folding motif has been recently found in a number of proteins, including: conotoxins from fish-hunting snails, carboxypeptidase inhibitor from potato, kalata B1 polypeptide, and in some growth factors (e.g. nerve growth factor, transforming growth factor β2, platelet-derived growth factor). Squash inhibitors are highly stable and rigid proteins. They inhibit a number of serine proteinases: trypsin, plasmin, kallikrein, blood clotting factors: X a and XII a , cathepsin G. The inhibition spectrum can be much broadened if specific amino-acid substitutions are introduced, especially at residues which contact proteinase. Squash inhibitors inhibit proteinases via the standard mechanism. According to the mechanism, inhibitors are substrates which exhibit at neutral pH a high k cat /K m index for hydrolysis and resynthesis of the reactive site, and a low value of the hydrolysis constant. (author)

  12. Metal corrosion inhibitors and ecology

    International Nuclear Information System (INIS)

    Krasts, H.; Svarce, J.; Berge, B.

    1999-01-01

    The use of metal corrosion inhibitors in water is one of the cheapest method to protect metals against corrosion. However, the used inhibitors can come to surface water in the course of time and can become as source of environmental pollution. It is important to co-ordinate amount of substances in the elaborated inhibitors not only with demands for metal protection, but also with demands for quality of surface water and drinking water according to normative statements: 3.5 mg/l (as PO 4 ) for hexametaphosphate, tripolyphosphate and phosphonate; 40 mg/l (as SiO 2 for silicate, up to 1 mg/l for CU 2+ ; up to 5 mg/l for Zn 2+ ; up to 1 mg/l for B; up to 0.5 mg/l for Mo 2+ . The examples of the elaborated inhibitors are given. Many organic substances can be used as corrosion inhibitors, but there is shortage of standard methods for their analysis in water in Latvia. Removing of salt's deposits from boilers needs elaboration of a separate normative statement for dispersing waste water which content chloride at high concentration and heavy metals. (authors)

  13. Invertase proteinaceous inhibitor of Cyphomandra betacea Sendt fruits.

    Science.gov (United States)

    Ordóñez, R M; Isla, M I; Vattuone, M A; Sampietro, A R

    2000-01-01

    This work describes a new invertase proteinaceous inhibitor from Cyphomandra betacea Sendt. (tomate de arbol) fruits. The proteinaceous inhibitor was isolated and purified from a cell wall preparation. The pH stability, kinetics of the inhibition of the C. betacea invertase, inhibition of several higher plant invertases and lectin nature of the inhibitor were studied. The inhibitor structure involves a single polypeptide (Mr = 19000), as shown by gel filtration and SDS-PAGE determinations. N-terminal aminoacid sequence was determined. The properties and some structural features of the inhibitor are compared with the proteinaceous inhibitors from several plant species (Beta vulgaris L., Ipomoea batatas L. and Lycopersicon esculentum Mill.). All these inhibitors share lectinic properties, some common epitopes, some aminoacid sequences and a certain lack of specificity towards invertases of different species, genera and even plant family. In consequence, the inhibitors appear to belong to the same lectin family. It is now known that some lectins are part of the defence mechanism of higher plants against fungi and bacteria and this is a probable role of the proteinaceous inhibitors.

  14. Cathepsin D inhibitors

    Directory of Open Access Journals (Sweden)

    M. Gacko

    2007-11-01

    Full Text Available Inhibitors of cathepsin D belong to chemical compounds that estrify carboxyl groups of the Asp33 and Asp231residues of its catalytic site, penta-peptides containing statin, i.e. the amino acid similar in structure to the tetraedric indirectproduct, and polypeptides found in the spare organs of many plants and forming permanent noncovalent complexes withcathepsin. Cathepsin D activity is also inhibited by alpha2-macroglobulin and antibodies directed against this enzyme.Methods used to determine the activity and concentration of these inhibitors and their analytical, preparative and therapeuticapplications are discussed.

  15. Development of Radiosensitizer using farnesyltransferase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jong Seok; Choe, Yong Kyung; Han, Mi Young; Kim, Kwang Dong [Korea Research Institute of Bioscience and Biotechnology, Taejon (Korea)

    1999-03-01

    We selected some compounds that were reported to have an activity of farneyltransferase inhibitor and tested the hypothesis that they might be used to radiosensitize cells transformed by ras oncogenes. The inhibition of ras processing using some, but not all, inhibitors resulted in higher levels of cell death after {gamma}-irradiation and increased radiosensitivity in H-ras-transformed NIH3T3 cells and MCF-10A human tumor cells. They did not induce additional cell death in control cells that doe not have ras mutation. Furthermore, the treatment of inhibitors alone induced a weak G0/G1 block, whereas inhibitors in combination with {gamma}-irradiation induced an additional enrichment in the G2/M phase of the cell cycle that typically represents irradiation-induced growth arrest. At present, the underling mechanism by which the farnesylltransferase inhibitors exert radiosensitizing effect is not known. In summary, our results suggest and lead to the possibility that some of farnesylation inhibitors may prove clinically useful not only as antitumor agents, but also radiosensitizers of tumors whose growth is dependent on ras function. (author). 15 refs., 10 figs., 4 tabs.

  16. [Syk inhibitors].

    Science.gov (United States)

    Kimura, Yukihiro; Chihara, Kazuyasu; Takeuchi, Kenji; Sada, Kiyonao

    2013-07-01

    Non-receptor type of protein-tyrosine kinase Syk (spleen tyrosine kinase) was isolated in the University of Fukui in 1991. Syk is known to be essential for the various physiological functions, especially in hematopoietic lineage cells. Moreover, ectopic expression of Syk by epigenetic changes is reported to cause retinoblastoma. Recently, novel Syk inhibitors were developed and its usefulness has been evaluated in the treatment of allergic rhinitis, rheumatoid arthritis, and idiopathic thrombocytopenic purpura. In this review, we will summarize the history, structure, and function of Syk, and then describe the novel Syk inhibitors and their current status. Furthermore, we will introduce our findings of the adaptor protein 3BP2 (c-Abl SH3 domain-binding protein-2), as a novel target of Syk.

  17. Organization of the gene coding for human protein C inhibitor (plasminogen activator inhibitor-3). Assignment of the gene to chromosome 14

    NARCIS (Netherlands)

    Meijers, J. C.; Chung, D. W.

    1991-01-01

    Protein C inhibitor (plasminogen activator inhibitor-3) is a plasma glycoprotein and a member of the serine proteinase inhibitor superfamily. In the present study, the human gene for protein C inhibitor was isolated and characterized from three independent phage that contained overlapping inserts

  18. Inhibitor chymotrypsynowy nasion wiechliny łąkowej (Poa pratensis [Chymotrypsin inhibitor from Poa pratensis seeds

    Directory of Open Access Journals (Sweden)

    I. Lorenc-Kubis

    2015-01-01

    Full Text Available A chymotrypsin inhibitor was isolated from Poa pratensis seeds. The inhibitor showed also antytriptic activity. It is a termostable protein, soluble in water, sodium chloride, but insoluble in 5% trichloracetic acid and 0.15 M sulphosalicylic acid.

  19. A comparison of effects of DPP-4 inhibitor and SGLT2 inhibitor on lipid profile in patients with type 2 diabetes.

    Science.gov (United States)

    Cha, Seon-Ah; Park, Yong-Moon; Yun, Jae-Seung; Lim, Tae-Seok; Song, Ki-Ho; Yoo, Ki-Dong; Ahn, Yu-Bae; Ko, Seung-Hyun

    2017-04-13

    Previous studies suggest that dipeptidyl peptidase-4 (DPP-4) inhibitors and sodium glucose cotransporter 2 (SGLT2) inhibitors have different effects on the lipid profile in patients with type 2 diabetes. We investigated the effects of DPP-4 inhibitors and SGLT2 inhibitors on the lipid profile in patients with type 2 diabetes. From January 2013 to December 2015, a total of 228 patients with type 2 diabetes who were receiving a DPP-4 inhibitor or SGLT2 inhibitor as add-on therapy to metformin and/or a sulfonylurea were consecutively enrolled. We compared the effects of DPP-4 inhibitors and SGLT2 inhibitors on the lipid profile at baseline and after 24 weeks of treatment. To compare lipid parameters between the two groups, we used the analysis of covariance (ANCOVA). A total of 184 patients completed follow-up (mean age: 53.1 ± 6.9 years, mean duration of diabetes: 7.1 ± 5.7 years). From baseline to 24 weeks, HDL-cholesterol (HDL-C) levels were increased by 0.5 (95% CI, -0.9 to 2.0) mg/dl with a DPP-4 inhibitor and by 5.1 (95% CI, 3.0 to 7.1) mg/dl with an SGLT2 inhibitor (p = 0.001). LDL-cholesterol (LDL-C) levels were reduced by 8.4 (95% CI, -14.0 to -2.8) mg/dl with a DPP-4 inhibitor, but increased by 1.3 (95% CI, -5.1 to 7.6) mg/dl with an SGLT2 inhibitor (p = 0.046). There was no significant difference in the mean hemoglobin A1c (8.3 ± 1.1 vs. 8.0 ± 0.9%, p = 0.110) and in the change of total cholesterol (TC) (p = 0.836), triglyceride (TG) (p = 0.867), apolipoprotein A (p = 0.726), apolipoprotein B (p = 0.660), and lipoprotein (a) (p = 0.991) between the DPP-4 inhibitor and the SGLT2 inhibitor. The SGLT2 inhibitor was associated with a significant increase in HDL-C and LDL-C after 24 weeks of SGLT2 inhibitor treatment in patients with type 2 diabetes compared with those with DPP-4 inhibitor treatment in this study. This study was conducted by retrospective medical record review.

  20. Tyrosine kinase inhibitors: Multi-targeted or single-targeted?

    Science.gov (United States)

    Broekman, Fleur; Giovannetti, Elisa; Peters, Godefridus J

    2011-02-10

    Since in most tumors multiple signaling pathways are involved, many of the inhibitors in clinical development are designed to affect a wide range of targeted kinases. The most important tyrosine kinase families in the development of tyrosine kinase inhibitors are the ABL, SCR, platelet derived growth factor, vascular endothelial growth factor receptor and epidermal growth factor receptor families. Both multi-kinase inhibitors and single-kinase inhibitors have advantages and disadvantages, which are related to potential resistance mechanisms, pharmacokinetics, selectivity and tumor environment. In different malignancies various tyrosine kinases are mutated or overexpressed and several resistance mechanisms exist. Pharmacokinetics is influenced by interindividual differences and differs for two single targeted inhibitors or between patients treated by the same tyrosine kinase inhibitor. Different tyrosine kinase inhibitors have various mechanisms to achieve selectivity, while differences in gene expression exist between tumor and stromal cells. Considering these aspects, one type of inhibitor can generally not be preferred above the other, but will depend on the specific genetic constitution of the patient and the tumor, allowing personalized therapy. The most effective way of cancer treatment by using tyrosine kinase inhibitors is to consider each patient/tumor individually and to determine the strategy that specifically targets the consequences of altered (epi)genetics of the tumor. This strategy might result in treatment by a single multi kinase inhibitor for one patient, but in treatment by a couple of single kinase inhibitors for other patients.

  1. Evaluation of Encapsulated Inhibitor for Autonomous Corrosion Protection

    Science.gov (United States)

    Johnsey, M. N.; Li, W.; Buhrow, J. W.; Calle, L. M.; Pearman, B. P.; Zhang, X.

    2015-01-01

    This work concerns the development of smart coating technologies based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of corrosion inhibitors into coating which provides protection through corrosion-controlled release of these inhibitors.One critical aspect of a corrosion protective smart coating is the selection of corrosion inhibitor for encapsulation and comparison of the inhibitor function before and after encapsulation. For this purpose, a systematic approach is being used to evaluate free and encapsulated corrosion inhibitors by salt immersion. Visual, optical microscope, and Scanning Electron Microscope (with low-angle backscatter electron detector) are used to evaluate these inhibitors. It has been found that the combination of different characterization tools provide an effective method for evaluation of early stage localized corrosion and the effectiveness of corrosion inhibitors.

  2. Biological abatement of cellulase inhibitors

    Science.gov (United States)

    Bio-abatement uses a fungus to metabolize and remove fermentation inhibitors. To determine whether bio-abatement could alleviate enzyme inhibitor effects observed in biomass liquors after pretreatment, corn stover at 10% (w/v) solids was pretreated with either dilute acid or liquid hot water. The ...

  3. Use of selective-serotonin reuptake inhibitors and platelet aggregation inhibitors among individuals with co-occurring atherosclerotic cardiovascular disease and depression or anxiety

    Directory of Open Access Journals (Sweden)

    J Douglas Thornton

    2016-12-01

    Full Text Available Objective: Medications commonly used to treat heart disease, anxiety, and depression can interact resulting in an increased risk of bleeding, warranting a cautious approach in medical decision making. This retrospective, descriptive study examined the prevalence and the factors associated with the use of both selective-serotonin reuptake inhibitor and platelet aggregation inhibitor among individuals with co-occurring atherosclerotic cardiovascular disease and anxiety or depression. Methods: Respondents aged 22 years and older, alive throughout the study period, and diagnosed with co-occurring atherosclerotic cardiovascular disease and anxiety or depression (n = 1507 in years 2007 through 2013 of the Medical Expenditures Panel Survey were included. The use of treatment was grouped as follows: selective-serotonin reuptake inhibitor and platelet aggregation inhibitor, selective-serotonin reuptake inhibitor or platelet aggregation inhibitor, and neither selective-serotonin reuptake inhibitor nor platelet aggregation inhibitor. Results: Overall, 16.5% used both selective-serotonin reuptake inhibitor and platelet aggregation inhibitor, 61.2% used selective-serotonin reuptake inhibitor or platelet aggregation inhibitor, and 22.3% used neither selective-serotonin reuptake inhibitor nor platelet aggregation inhibitor. Respondents aged over 65 years (adjusted odds ratio = 1.93 (95% confidence interval = 1.08–3.45 and having a diagnosis of diabetes (adjusted odds ratio = 1.63 (95% confidence interval = 1.15–2.31 and hypertension (adjusted odds ratio = 1.84 (95% confidence interval = 1.04–3.27 were more likely to be prescribed the combination. Conclusion: The drug interaction was prevalent in patients who are already at higher risk of health disparities and worse outcomes thus requiring vigilant evaluation.

  4. Emerging Corrosion Inhibitors for Interfacial Coating

    Directory of Open Access Journals (Sweden)

    Mona Taghavikish

    2017-12-01

    Full Text Available Corrosion is a deterioration of a metal due to reaction with environment. The use of corrosion inhibitors is one of the most effective ways of protecting metal surfaces against corrosion. Their effectiveness is related to the chemical composition, their molecular structures and affinities for adsorption on the metal surface. This review focuses on the potential of ionic liquid, polyionic liquid (PIL and graphene as promising corrosion inhibitors in emerging coatings due to their remarkable properties and various embedment or fabrication strategies. The review begins with a precise description of the synthesis, characterization and structure-property-performance relationship of such inhibitors for anti-corrosion coatings. It establishes a platform for the formation of new generation of PIL based coatings and shows that PIL corrosion inhibitors with various heteroatoms in different form can be employed for corrosion protection with higher barrier properties and protection of metal surface. However, such study is still in its infancy and there is significant scope to further develop new structures of PIL based corrosion inhibitors and coatings and study their behaviour in protection of metals. Besides, it is identified that the combination of ionic liquid, PIL and graphene could possibly contribute to the development of the ultimate corrosion inhibitor based coating.

  5. Structural Mechanism of the Pan-BCR-ABL Inhibitor Ponatinib (AP24534): Lessons for Overcoming Kinase Inhibitor Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tianjun; Commodore, Lois; Huang, Wei-Sheng; Wang, Yihan; Thomas, Mathew; Keats, Jeff; Xu, Qihong; Rivera, Victor M.; Shakespeare, William C.; Clackson, Tim; Dalgarno, David C.; Zhu, Xiaotian (ARIAD)

    2012-01-20

    The BCR-ABL inhibitor imatinib has revolutionized the treatment of chronic myeloid leukemia. However, drug resistance caused by kinase domain mutations has necessitated the development of new mutation-resistant inhibitors, most recently against the T315I gatekeeper residue mutation. Ponatinib (AP24534) inhibits both native and mutant BCR-ABL, including T315I, acting as a pan-BCR-ABL inhibitor. Here, we undertook a combined crystallographic and structure-activity relationship analysis on ponatinib to understand this unique profile. While the ethynyl linker is a key inhibitor functionality that interacts with the gatekeeper, virtually all other components of ponatinib play an essential role in its T315I inhibitory activity. The extensive network of optimized molecular contacts found in the DFG-out binding mode leads to high potency and renders binding less susceptible to disruption by single point mutations. The inhibitory mechanism exemplified by ponatinib may have broad relevance to designing inhibitors against other kinases with mutated gatekeeper residues.

  6. Laura: Soybean variety lacking Kunitz trypsin inhibitor

    Directory of Open Access Journals (Sweden)

    Srebrić Mirjana

    2010-01-01

    Full Text Available Grain of conventional soybean varieties requires heat processing to break down trypsin inhibitor's activity before using as food or animal feed. At the same time, protein denaturation and other qualitative changes occur in soybean grain, especially if the temperature of heating is not controlled. Two types of trypsin inhibitor were found in soybean grain the Kunitz trypsin inhibitor and the Bowman-Birk inhibitor. Mature grain of soybean Laura is lacking Kunitz trypsin inhibitor. Grain yield of variety Laura is equal to high yielding varieties from the maturity group I, where it belongs. Lacking of Kunitz-trypsin inhibitor makes soybean grain suitable for direct feeding in adult non ruminant animals without previous thermal processing. Grain of variety Laura can be processed for a shorter period of time than conventional soybeans. This way we save energy, and preserve valuable nutritional composition of soybean grain, which is of interest in industrial processing.

  7. Corrosion inhibitors. Manufacture and technology

    International Nuclear Information System (INIS)

    Ranney, M.W.

    1976-01-01

    Detailed information is presented relating to corrosion inhibitors. Areas covered include: cooling water, boilers and water supply plants; oil well and refinery operations; fuel and lubricant additives for automotive use; hydraulic fluids and machine tool lubes; grease compositions; metal surface treatments and coatings; and general processes for corrosion inhibitors

  8. Potential physiological role of plant glycosidase inhibitors

    DEFF Research Database (Denmark)

    Bellincampi, D.; Carmadella, L.; Delcour, J.A.

    2004-01-01

    Carbohydrate-active enzymes including glycosidases, transglycosidases, glycosyltransferases, polysaccharide lyases and carbohydrate esterases are responsible for the enzymatic processing of carbohydrates in plants. A number of carbohydrate-active enzymes are produced by microbial pathogens...... and insects responsible of severe crop losses. Plants have evolved proteinaceous inhibitors to modulate the activity of several of these enzymes. The continuing discovery of new inhibitors indicates that this research area is still unexplored and may lead to new exciting developments. To date, the role...... of the inhibitors is not completely understood. Here we review recent results obtained on the best characterised inhibitors, pointing to their possible biological role in vivo. Results recently obtained with plant transformation technology indicate that this class of inhibitors has potential biotechnological...

  9. SGLT2 Inhibitors May Predispose to Ketoacidosis.

    Science.gov (United States)

    Taylor, Simeon I; Blau, Jenny E; Rother, Kristina I

    2015-08-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors are antidiabetic drugs that increase urinary excretion of glucose, thereby improving glycemic control and promoting weight loss. Since approval of the first-in-class drug in 2013, data have emerged suggesting that these drugs increase the risk of diabetic ketoacidosis. In May 2015, the Food and Drug Administration issued a warning that SGLT2 inhibitors may lead to ketoacidosis. Using PubMed and Google, we conducted Boolean searches including terms related to ketone bodies or ketoacidosis with terms for SGLT2 inhibitors or phlorizin. Priority was assigned to publications that shed light on molecular mechanisms whereby SGLT2 inhibitors could affect ketone body metabolism. SGLT2 inhibitors trigger multiple mechanisms that could predispose to diabetic ketoacidosis. When SGLT2 inhibitors are combined with insulin, it is often necessary to decrease the insulin dose to avoid hypoglycemia. The lower dose of insulin may be insufficient to suppress lipolysis and ketogenesis. Furthermore, SGLT2 is expressed in pancreatic α-cells, and SGLT2 inhibitors promote glucagon secretion. Finally, phlorizin, a nonselective inhibitor of SGLT family transporters decreases urinary excretion of ketone bodies. A decrease in the renal clearance of ketone bodies could also increase the plasma ketone body levels. Based on the physiology of SGLT2 and the pharmacology of SGLT2 inhibitors, there are several biologically plausible mechanisms whereby this class of drugs has the potential to increase the risk of developing diabetic ketoacidosis. Future research should be directed toward identifying which patients are at greatest risk for this side effect and also to optimizing pharmacotherapy to minimize the risk to patients.

  10. Acetaminophen-Induced Liver Injury Alters the Acyl Ethanolamine-Based Anti-Inflammatory Signaling System in Liver

    Directory of Open Access Journals (Sweden)

    Patricia Rivera

    2017-10-01

    Full Text Available Protective mechanisms against drug-induced liver injury are actively being searched to identify new therapeutic targets. Among them, the anti-inflammatory N-acyl ethanolamide (NAE-peroxisome proliferators activated receptor alpha (PPARα system has gained much interest after the identification of its protective role in steatohepatitis and liver fibrosis. An overdose of paracetamol (APAP, a commonly used analgesic/antipyretic drug, causes hepatotoxicity, and it is being used as a liver model. In the present study, we have analyzed the impact of APAP on the liver NAE-PPARα system. A dose-response (0.5–5–10–20 mM and time-course (2–6–24 h study in human HepG2 cells showed a biphasic response, with a decreased PPARα expression after 6-h APAP incubation followed by a generalized increase of NAE-PPARα system-related components (PPARα, NAPE-PLD, and FAAH, including the NAEs oleoyl ethanolamide (OEA and docosahexaenoyl ethanolamide, after a 24-h exposure to APAP. These results were partially confirmed in a time-course study of mice exposed to an acute dose of APAP (750 mg/kg. The gene expression levels of Pparα and Faah were decreased after 6 h of treatment and, after 24 h, the gene expression levels of Nape-pld and Faah, as well as the liver levels of OEA and palmitoyl ethanolamide, were increased. Repeated APAP administration (750 mg/kg/day up to 4 days also decreased the expression levels of PPARα and FAAH, and increased the liver levels of NAEs. A resting period of 15 days completely restored these impairments. Liver immunohistochemistry in a well-characterized human case of APAP hepatotoxicity confirmed PPARα and FAAH decrements. Histopathological and hepatic damage (Cyp2e1, Caspase3, αSma, Tnfα, and Mcp1-related alterations observed after repeated APAP administration were aggravated in the liver of Pparα-deficient mice. Our results demonstrate that the anti-inflammatory NAE-PPARα signaling system is implicated in liver

  11. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    Directory of Open Access Journals (Sweden)

    Shohei Sakuda

    2014-03-01

    Full Text Available Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control.

  12. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    Science.gov (United States)

    Sakuda, Shohei; Prabowo, Diyan Febri; Takagi, Keiko; Shiomi, Kazuro; Mori, Mihoko; Ōmura, Satoshi; Nagasawa, Hiromichi

    2014-01-01

    Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A) inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III) and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control. PMID:24674936

  13. Serotonin and Norepinephrine Reuptake Inhibitors (SNRIs)

    Science.gov (United States)

    Serotonin and norepinephrine reuptake inhibitors (SNRIs) Antidepressant SNRIs help relieve depression symptoms, such as irritability and sadness, ... effects they may cause. By Mayo Clinic Staff Serotonin and norepinephrine reuptake inhibitors (SNRIs) are a class ...

  14. Novel orally bioavailable EZH1/2 dual inhibitors with greater antitumor efficacy than an EZH2 selective inhibitor.

    Science.gov (United States)

    Honma, Daisuke; Kanno, Osamu; Watanabe, Jun; Kinoshita, Junzo; Hirasawa, Makoto; Nosaka, Emi; Shiroishi, Machiko; Takizawa, Takeshi; Yasumatsu, Isao; Horiuchi, Takao; Nakao, Akira; Suzuki, Keisuke; Yamasaki, Tomonori; Nakajima, Katsuyoshi; Hayakawa, Miho; Yamazaki, Takanori; Yadav, Ajay Singh; Adachi, Nobuaki

    2017-10-01

    Polycomb repressive complex 2 (PRC2) methylates histone H3 lysine 27 and represses gene expression to regulate cell proliferation and differentiation. Enhancer of zeste homolog 2 (EZH2) or its close homolog EZH1 functions as a catalytic subunit of PRC2, so there are two PRC2 complexes containing either EZH2 or EZH1. Tumorigenic functions of EZH2 and its synthetic lethality with some subunits of SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes have been observed. However, little is known about the function of EZH1 in tumorigenesis. Herein, we developed novel, orally bioavailable EZH1/2 dual inhibitors that strongly and selectively inhibited methyltransferase activity of both EZH2 and EZH1. EZH1/2 dual inhibitors suppressed trimethylation of histone H3 lysine 27 in cells more than EZH2 selective inhibitors. They also showed greater antitumor efficacy than EZH2 selective inhibitor in vitro and in vivo against diffuse large B-cell lymphoma cells harboring gain-of-function mutation in EZH2. A hematological cancer panel assay indicated that EZH1/2 dual inhibitor has efficacy against some lymphomas, multiple myeloma, and leukemia with fusion genes such as MLL-AF9, MLL-AF4, and AML1-ETO. A solid cancer panel assay demonstrated that some cancer cell lines are sensitive to EZH1/2 dual inhibitor in vitro and in vivo. No clear correlation was detected between sensitivity to EZH1/2 dual inhibitor and SWI/SNF mutations, with a few exceptions. Severe toxicity was not seen in rats treated with EZH1/2 dual inhibitor for 14 days at drug levels higher than those used in the antitumor study. Our results indicate the possibility of EZH1/2 dual inhibitors for clinical applications. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  15. Structure-Based Search for New Inhibitors of Cholinesterases

    Directory of Open Access Journals (Sweden)

    Barbara Malawska

    2013-03-01

    Full Text Available Cholinesterases are important biological targets responsible for regulation of cholinergic transmission, and their inhibitors are used for the treatment of Alzheimer’s disease. To design new cholinesterase inhibitors, of different structure-based design strategies was followed, including the modification of compounds from a previously developed library and a fragment-based design approach. This led to the selection of heterodimeric structures as potential inhibitors. Synthesis and biological evaluation of selected candidates confirmed that the designed compounds were acetylcholinesterase inhibitors with IC50 values in the mid-nanomolar to low micromolar range, and some of them were also butyrylcholinesterase inhibitors.

  16. Biological abatement of cellulase inhibitors.

    Science.gov (United States)

    Cao, Guangli; Ximenes, Eduardo; Nichols, Nancy N; Zhang, Leyu; Ladisch, Michael

    2013-10-01

    Removal of enzyme inhibitors released during lignocellulose pretreatment is essential for economically feasible biofuel production. We tested bio-abatement to mitigate enzyme inhibitor effects observed in corn stover liquors after pretreatment with either dilute acid or liquid hot water at 10% (w/v) solids. Bio-abatement of liquors was followed by enzymatic hydrolysis of cellulose. To distinguish between inhibitor effects on enzymes and recalcitrance of the substrate, pretreated corn stover solids were removed and replaced with 1% (w/v) Solka Floc. Cellulose conversion in the presence of bio-abated liquors from dilute acid pretreatment was 8.6% (0.1x enzyme) and 16% (1x enzyme) higher than control (non-abated) samples. In the presence of bio-abated liquor from liquid hot water pretreated corn stover, 10% (0.1x enzyme) and 13% (1x enzyme) higher cellulose conversion was obtained compared to control. Bio-abatement yielded improved enzyme hydrolysis in the same range as that obtained using a chemical (overliming) method for mitigating inhibitors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Phosphodiesterase inhibitors in clinical urology.

    Science.gov (United States)

    Ückert, Stefan; Kuczyk, Markus A; Oelke, Matthias

    2013-05-01

    To date, benign diseases of the male and female lower urinary and genital tract, such as erectile dysfunction, bladder overactivity, lower urinary tract symptomatology secondary to benign prostatic hyperplasia and symptoms of female sexual dysfunction (including arousal and orgasmic disorders), can be therapeutically approached by influencing the function of the smooth musculature of the respective tissues. The use of isoenzyme-selective phosphodiesterase (PDE) inhibitors is considered a great opportunity to treat various diseases of the human urogenital tract. PDE inhibitors, in particular the PDE5 (cyclic GMP PDE) inhibitors avanafil, lodenafil, sildenafil, tadalafil, udenafil and vardenafil, are regarded as efficacious, having a fast onset of drug action and an improved effect-to-adverse event ratio, combining a high response rate with the advantage of an on-demand intake. The purpose of this review is to summarize recent as well as potential future indications, namely, erectile dysfunction, Peyronie's disease, overactive bladder, urinary stone disease, lower urinary tract symptomatology secondary to benign prostatic hyperplasia and premature ejaculation, for the use of PDE inhibitors in clinical urology.

  18. F8 haplotype and inhibitor risk: results from the Hemophilia Inhibitor Genetics Study (HIGS) Combined Cohort

    Science.gov (United States)

    Schwarz, John; Astermark, Jan; Menius, Erika D.; Carrington, Mary; Donfield, Sharyne M.; Gomperts, Edward D.; Nelson, George W.; Oldenburg, Johannes; Pavlova, Anna; Shapiro, Amy D.; Winkler, Cheryl A.; Berntorp, Erik

    2012-01-01

    Background Ancestral background, specifically African descent, confers higher risk for development of inhibitory antibodies to factor VIII (FVIII) in hemophilia A. It has been suggested that differences in the distribution of factor VIII gene (F8) haplotypes, and mismatch between endogenous F8 haplotypes and those comprising products used for treatment could contribute to risk. Design and Methods Data from the HIGS Combined Cohort were used to determine the association between F8 haplotype 3 (H3) vs. haplotypes 1 and 2 (H1+H2) and inhibitor risk among individuals of genetically-determined African descent. Other variables known to affect inhibitor risk including type of F8 mutation and HLA were included in the analysis. A second research question regarding risk related to mismatch in endogenous F8 haplotype and recombinant FVIII products used for treatment was addressed. Results H3 was associated with higher inhibitor risk among those genetically-identified (N=49) as of African ancestry, but the association did not remain significant after adjustment for F8 mutation type and the HLA variables. Among subjects of all racial ancestries enrolled in HIGS who reported early use of recombinant products (N=223), mismatch in endogenous haplotype and the FVIII proteins constituting the products used did not confer greater risk for inhibitor development. Conclusion H3 was not an independent predictor of inhibitor risk. Further, our findings did not support a higher risk of inhibitors in the presence of a haplotype mismatch between the FVIII molecule infused and that of the individual. PMID:22958194

  19. Monoamine depletion by reuptake inhibitors

    Directory of Open Access Journals (Sweden)

    Hinz M

    2011-10-01

    Full Text Available Marty Hinz1, Alvin Stein2, Thomas Uncini31Clinical Research, NeuroResearch Clinics Inc, Cape Coral, FL; 2Stein Orthopedic Associates, Plantation, FL; 3DBS Labs Inc, Duluth, MN, USABackground: Disagreement exists regarding the etiology of cessation of the observed clinical results with administration of reuptake inhibitors. Traditionally, when drug effects wane, it is known as tachyphylaxis. With reuptake inhibitors, the placebo effect is significantly greater than the drug effect in the treatment of depression and attention deficit hyperactivity disorder, leading some to assert that waning of drug effects is placebo relapse, not tachyphylaxis.Methods: Two groups were retrospectively evaluated. Group 1 was composed of subjects with depression and Group 2 was composed of bariatric subjects treated with reuptake inhibitors for appetite suppression.Results: In Group 1, 200 subjects with depression were treated with citalopram 20 mg per day. A total of 46.5% (n = 93 achieved relief of symptoms (Hamilton-D rating score ≤ 7, of whom 37 (39.8% of whom experienced recurrence of depression symptoms, at which point an amino acid precursor formula was started. Within 1–5 days, 97.3% (n = 36 experienced relief of depression symptoms. In Group 2, 220 subjects were treated with phentermine 30 mg in the morning and citalopram 20 mg at 4 pm. In this group, 90.0% (n = 198 achieved adequate appetite suppression. The appetite suppression ceased in all 198 subjects within 4–48 days. Administration of an amino acid precursor formula restored appetite suppression in 98.5% (n = 195 of subjects within 1–5 days.Conclusion: Reuptake inhibitors do not increase the total number of monoamine molecules in the central nervous system. Their mechanism of action facilitates redistribution of monoamines from one place to another. In the process, conditions are induced that facilitate depletion of monoamines. The "reuptake inhibitor monoamine depletion theory" of this paper

  20. Theoretical study on the interaction of pyrrolopyrimidine derivatives as LIMK2 inhibitors: insight into structure-based inhibitor design.

    Science.gov (United States)

    Shen, Mingyun; Zhou, Shunye; Li, Youyong; Li, Dan; Hou, Tingjun

    2013-10-01

    LIM kinases (LIMKs), downstream of Rho-associated protein kinases (ROCKs) and p21-activated protein kinases (PAKs), are shown to be promising targets for the treatment of cancers. In this study, the inhibition mechanism of 41 pyrrolopyrimidine derivatives as LIMK2 inhibitors was explored through a series of theoretical approaches. First, a model of LIMK2 was generated through molecular homology modeling, and the studied inhibitors were docked into the binding active site of LIMK2 by the docking protocol, taking into consideration the flexibility of the protein. The binding poses predicted by molecular docking for 17 selected inhibitors with different bioactivities complexed with LIMK2 underwent molecular dynamics (MD) simulations, and the binding free energies for the complexes were predicted by using the molecular mechanics/generalized born surface area (MM/GBSA) method. The predicted binding free energies correlated well with the experimental bioactivities (r(2) = 0.63 or 0.62). Next, the free energy decomposition analysis was utilized to highlight the following key structural features related to biological activity: (1) the important H-bond between Ile408 and pyrrolopyrimidine, (2) the H-bonds between the inhibitors and Asp469 and Gly471 which maintain the stability of the DFG-out conformation, and (3) the hydrophobic interactions between the inhibitors and several key residues (Leu337, Phe342, Ala345, Val358, Lys360, Leu389, Ile408, Leu458 and Leu472). Finally, a variety of LIMK2 inhibitors with a pyrrolopyrimidine scaffold were designed, some of which showed improved potency according to the predictions. Our studies suggest that the use of molecular docking with MD simulations and free energy calculations could be a powerful tool for understanding the binding mechanism of LIMK2 inhibitors and for the design of more potent LIMK2 inhibitors.

  1. Aromatic inhibitors derived from ammonia-pretreated lignocellulose hinder bacterial ethanologenesis by activating regulatory circuits controlling inhibitor efflux and detoxification

    Directory of Open Access Journals (Sweden)

    David H. Keating

    2014-08-01

    Full Text Available Efficient microbial conversion of lignocellulosic hydrolysates to biofuels is a key barrier to the economically viable deployment of lignocellulosic biofuels. A chief contributor to this barrier is the impact on microbial processes and energy metabolism of lignocellulose-derived inhibitors, including phenolic carboxylates, phenolic amides (for ammonia-pretreated biomass, phenolic aldehydes, and furfurals. To understand the bacterial pathways induced by inhibitors present in ammonia-pretreated biomass hydrolysates, which are less well studied than acid-pretreated biomass hydrolysates, we developed and exploited synthetic mimics of ammonia-pretreated corn stover hydrolysate (ACSH. To determine regulatory responses to the inhibitors normally present in ACSH, we measured transcript and protein levels in an Escherichia coli ethanologen using RNA-seq and quantitative proteomics during fermentation to ethanol of synthetic hydrolysates containing or lacking the inhibitors. Our study identified four major regulators mediating these responses, the MarA/SoxS/Rob network, AaeR, FrmR, and YqhC. Induction of these regulons was correlated with a reduced rate of ethanol production, buildup of pyruvate, depletion of ATP and NAD(PH, and an inhibition of xylose conversion. The aromatic aldehyde inhibitor 5-hydroxymethylfurfural appeared to be reduced to its alcohol form by the ethanologen during fermentation, whereas phenolic acid and amide inhibitors were not metabolized. Together, our findings establish that the major regulatory responses to lignocellulose-derived inhibitors are mediated by transcriptional rather than translational regulators, suggest that energy consumed for inhibitor efflux and detoxification may limit biofuel production, and identify a network of regulators for future synthetic biology efforts.

  2. Predicting DPP-IV inhibitors with machine learning approaches

    Science.gov (United States)

    Cai, Jie; Li, Chanjuan; Liu, Zhihong; Du, Jiewen; Ye, Jiming; Gu, Qiong; Xu, Jun

    2017-04-01

    Dipeptidyl peptidase IV (DPP-IV) is a promising Type 2 diabetes mellitus (T2DM) drug target. DPP-IV inhibitors prolong the action of glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), improve glucose homeostasis without weight gain, edema, and hypoglycemia. However, the marketed DPP-IV inhibitors have adverse effects such as nasopharyngitis, headache, nausea, hypersensitivity, skin reactions and pancreatitis. Therefore, it is still expected for novel DPP-IV inhibitors with minimal adverse effects. The scaffolds of existing DPP-IV inhibitors are structurally diversified. This makes it difficult to build virtual screening models based upon the known DPP-IV inhibitor libraries using conventional QSAR approaches. In this paper, we report a new strategy to predict DPP-IV inhibitors with machine learning approaches involving naïve Bayesian (NB) and recursive partitioning (RP) methods. We built 247 machine learning models based on 1307 known DPP-IV inhibitors with optimized molecular properties and topological fingerprints as descriptors. The overall predictive accuracies of the optimized models were greater than 80%. An external test set, composed of 65 recently reported compounds, was employed to validate the optimized models. The results demonstrated that both NB and RP models have a good predictive ability based on different combinations of descriptors. Twenty "good" and twenty "bad" structural fragments for DPP-IV inhibitors can also be derived from these models for inspiring the new DPP-IV inhibitor scaffold design.

  3. Capture and transformation of urban soundscape data for artistic creation

    Directory of Open Access Journals (Sweden)

    José Alberto Gomes

    2014-12-01

    Full Text Available URB is a research project designed to collect and store raw data from soundscapes analysis. This paper presents a survey about using URB based on the analysis of work developed by several artists, focusing on the description of their creative process and outcome. By comparing the processes and statements of each artists, the authors identified diverse systematic approaches to reinterpreting raw data provided by urban soundscapes, raising questions about the artistic outcomes vs original sound sources. Furthermore, some considerations are inferred about the artistic relevance of using this process in the creation process.

  4. Aromatase inhibitors and breast cancer prevention.

    Science.gov (United States)

    Litton, Jennifer Keating; Arun, Banu K; Brown, Powel H; Hortobagyi, Gabriel N

    2012-02-01

    Endocrine therapy with selective estrogen receptor modulators (SERMs) has been the mainstay of breast cancer prevention trials to date. The aromatase inhibitors, which inhibit the final chemical conversion of androgens to estrogens, have shown increased disease-free survival benefit over tamoxifen in patients with primary hormone receptor-positive breast cancer, as well as reducing the risk of developing contralateral breast cancers. The aromatase inhibitors are being actively evaluated as prevention agents for women with a history of ductal carcinoma in situ as well as for women who are considered to be at high risk for developing primary invasive breast cancer. This review evaluates the available prevention data, as evidenced by the decrease in contralateral breast cancers, when aromatase inhibitors are used in the adjuvant setting, as well as the emerging data of the aromatase inhibitors specifically tested in the prevention setting for women at high risk. Exemestane is a viable option for breast cancer prevention. We continue to await further follow-up on exemestane as well as other aromatase inhibitors in the prevention setting for women at high risk of developing breast cancer or with a history of ductal carcinoma in situ.

  5. Monoamine Oxidase B Inhibitors in Parkinson's Disease.

    Science.gov (United States)

    Dezsi, Livia; Vecsei, Laszlo

    2017-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder with a prevalence increasing with age. Oxidative stress and glutamate toxicity are involved in its pathomechanism. There are still many unmet needs of PD patients, including the alleviation of motor fluctuations and dyskinesias, and the development of therapies with neuroprotective potential. To give an overview of the pharmacological properties, the efficacy and safety of the monoamine oxidase B (MAO-B) inhibitors in the treatment of PD, with special focus on the results of randomized clinical trials. A literature search was conducted in PubMed for 'PD treatment', 'MAO-B inhibitors', 'selegiline', 'rasagiline', 'safinamide' and 'clinical trials' with 'MAO-B inhibitors' in 'Parkinson' disease'. MAO-B inhibitors have a favorable pharmacokinetic profile, improve the dopamine deficient state and may have neuroprotective properties. Safinamide exhibits an anti-glutamatergic effect as well. When applied as monotherapy, MAO-B inhibitors provide a modest, but significant improvement of motor function and delay the need for levodopa. Rasagiline and safinamide were proven safe and effective when added to a dopamine agonist in early PD. As add-on to levodopa, MAO-B inhibitors significantly reduced off-time and were comparable in efficacy to COMT inhibitors. Improvements were achieved as regards certain non-motor symptoms as well. Due to the efficacy shown in clinical trials and their favorable side-effect profile, MAO-B inhibitors are valuable drugs in the treatment of PD. They are recommended as monotherapy in the early stages of the disease and as add-on therapy to levodopa in advanced PD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Enzyme structure and interaction with inhibitors

    International Nuclear Information System (INIS)

    London, R.E.

    1983-01-01

    This article reviews some of the results of studies on the 13 C-labeled enzyme dihydrofolate reductase (DHFR). Nuclear magnetic resonance (NMR) techniques are used in combination with isotopic labeling to learn about the structure and dynamics of this enzyme. 13 C-labeling is used for the purpose of studying enzyme/substrate and enzyme/inhibitor interactions. A second set of studies with DHFR was designed to investigate the basis for the high affinity between the inhibitor methotrexate and DHFR. The label was placed on the inhibitor, rather than the enzyme

  7. ELISA analysis of soybean trypsin inhibitors in processed foods.

    Science.gov (United States)

    Brandon, D L; Bates, A H; Friedman, M

    1991-01-01

    Soybean proteins are widely used in human foods in a variety of forms, including infant formulas, flour, protein concentrates, protein isolates, soy sauces, textured soy fibers, and tofu. The presence of inhibitors of digestive enzymes in soy proteins impairs the nutritional quality and possibly the safety of soybeans and other legumes. Processing, based on the use of heat or fractionation of protein isolates, does not completely inactivate or remove these inhibitors, so that residual amounts of inhibitors are consumed by animals and humans. New monoclonal antibody-based immunoassays can measure low levels of the soybean Kunitz trypsin inhibitor (KTI) and the Bowman-Birk trypsin and chymotrypsin inhibitor (BBI) and the Bowman-Birk foods. The enzyme-linked immunosorbent assay (ELISA) was used to measure the inhibitor content of soy concentrates, isolates, and flours, both heated and unheated; a commercial soy infant formula; KTI and BBI with rearranged disulfide bonds; browning products derived from heat-treatment of KTI with glucose and starch; and KTI exposed to high pH. The results indicate that even low inhibitor isolates contain significant amounts of specific inhibitors. Thus, infants on soy formula consume about 10 mg of KTI plus BBI per day. The immunoassays complement the established enzymatic assays of trypsin and chymotrypsin inhibitors, and have advantages in (a) measuring low levels of inhibitors in processed foods; and (b) differentiating between the Kunitz and Bowman-Birk inhibitors. The significance of our findings for food safety are discussed.

  8. Classification of Cytochrome P450 1A2 Inhibitors and Non-Inhibitors by Machine Learning Techniques

    DEFF Research Database (Denmark)

    Vasanthanathan, Poongavanam; Taboureau, Olivier; Oostenbrink, Chris

    2009-01-01

    of CYP1A2 inhibitors and non-inhibitors. Training and test sets consisted of about 400 and 7000 compounds, respectively. Various machine learning techniques, like binary QSAR, support vector machine (SVM), random forest, kappa nearest neighbors (kNN), and decision tree methods were used to develop...

  9. Retro-binding thrombin active site inhibitors: identification of an orally active inhibitor of thrombin catalytic activity.

    Science.gov (United States)

    Iwanowicz, Edwin J; Kimball, S David; Lin, James; Lau, Wan; Han, W-C; Wang, Tammy C; Roberts, Daniel G M; Schumacher, W A; Ogletree, Martin L; Seiler, Steven M

    2002-11-04

    A series of retro-binding inhibitors of human alpha-thrombin was prepared to elucidate structure-activity relationships (SAR) and optimize in vivo performance. Compounds 9 and 11, orally active inhibitors of thrombin catalytic activity, were identified to be efficacious in a thrombin-induced lethality model in mice.

  10. Contemporary protease inhibitors and cardiovascular risk

    DEFF Research Database (Denmark)

    Lundgren, Jens; Mocroft, Amanda; Ryom, Lene

    2018-01-01

    PURPOSE OF REVIEW: To review the evidence linking use of HIV protease inhibitors with excess risk of cardiovascular disease (CVD) in HIV+ populations. RECENT FINDINGS: For the two contemporary most frequently used protease inhibitors, darunavir and atazanavir [both pharmacologically boosted...

  11. Nonnucleoside Reverse-transcriptase Inhibitor- vs Ritonavir-boosted Protease Inhibitor-based Regimens for Initial Treatment of HIV Infection

    DEFF Research Database (Denmark)

    Borges, Álvaro H; Lundh, Andreas; Tendal, Britta

    2016-01-01

    BACKGROUND: Previous studies suggest that nonnucleoside reverse-transcriptase inhibitors (NNRTIs) cause faster virologic suppression, while ritonavir-boosted protease inhibitors (PI/r) recover more CD4 cells. However, individual trials have not been powered to compare clinical outcomes. METHODS: ...

  12. Chelation: A Fundamental Mechanism of Action of AGE Inhibitors, AGE Breakers, and Other Inhibitors of Diabetes Complications

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Rhoji; Murray, David B.; Metz, Thomas O.; Baynes, John

    2012-03-01

    Advanced glycation or glycoxidation end-products (AGE) increase in tissue proteins with age, and their rate of accumulation is increased in diabetes, nephropathy and inflammatory diseases. AGE inhibitors include a range of compounds that are proposed to act by trapping carbonyl and dicarbonyl intermediates in AGE formation. However, some among the newer generation of AGE inhibitors lack reactive functional groups that would trap reaction intermediates, indicating an alternative mechanism of action. We propose that AGE inhibitors function primarily as chelators, inhibiting metal-catalyzed oxidation reactions. The AGE-inhibitory activity of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers is also consistent with their chelating activity. Finally, compounds described as AGE breakers, or their hydrolysis products, also have strong chelating activity, suggesting that these compounds also act through their chelating activity. We conclude that chelation is the common, and perhaps the primary, mechanism of action of AGE inhibitors and breakers, and that chronic, mild chelation therapy should prove useful in treatment of diabetes and age-related diseases characterized by oxidative stress, inflammation and increased chemical modification of tissue proteins by advanced glycoxidation and lipoxidation end-products.

  13. Potential non-oncological applications of histone deacetylase inhibitors.

    Science.gov (United States)

    Ververis, Katherine; Karagiannis, Tom C

    2011-01-01

    Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutic drugs. Their clinical utility in oncology stems from their intrinsic cytotoxic properties and combinatorial effects with other conventional cancer therapies. To date, the histone deacetylase inhibitors suberoylanilide hydroxamic acid (Vorinostat, Zolinza®) and depsipeptide (Romidepsin, Istodax®) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Further, there are currently over 100 clinical trials involving the use of histone deacetylase inhibitors in a wide range of solid and hematological malignancies. The therapeutic potential of histone deacetylase inhibitors has also been investigated for numerous other diseases. For example, the cytotoxic properties of histone deacetylase inhibitors are currently being harnessed as a potential treatment for malaria, whereas the efficacy of these compounds for HIV relies on de-silencing latent virus. The anti-inflammatory properties of histone deacetylase inhibitors are the predominant mechanisms for other diseases, such as hepatitis, systemic lupus erythematosus and a wide range of neurodegenerative conditions. Additionally, histone deacetylase inhibitors have been shown to be efficacious in animal models of cardiac hypertrophy and asthma. Broad-spectrum histone deacetylase inhibitors are clinically available and have been used almost exclusively in preclinical systems to date. However, it is emerging that class- or isoform-specific compounds, which are becoming more readily available, may be more efficacious particularly for non-oncological applications. The aim of this review is to provide an overview of the effects and clinical potential of histone deacetylase inhibitors in various diseases. Apart from applications in oncology, the discussion is focused on the potential efficacy of histone deacetylase inhibitors for the treatment of neurodegenerative diseases, cardiac

  14. Characterization of inhibitor(s) of β-glucuronidase enzyme activity in GUS-transgenic wheat

    KAUST Repository

    Ramadan, Ahmed M Ali

    2011-06-26

    The uidA gene, encoding for β-glucuronidase (GUS), is the most frequently used reporter gene in plants. As a reporter enzyme, GUS can be assayed both qualitatively and quantitatively. In wheat, there are numerous reports of failure in detecting GUS enzyme activity in tissues of transgenic plants, while other reports have suggested presence of β-glucuronidase inhibitor(s) in wheat tissues. In the present study, we show that the β-glucuronidase enzyme activity is not only tissue-specific but also genotype-dependent. Our data demonstrate that the glucuronic acid could be the candidate inhibitor for β-glucuronidase enzyme activity in wheat leaves and roots. It should be noted that the assays to detect β-glucuronidase enzyme activity in wheat should be interpreted carefully. Based on the data of our present study, we recommend studying the chemical pathways, the unintended effects and the possible loss-of-function of any candidate transgene prior to transformation experiments. © 2011 Springer Science+Business Media B.V.

  15. Characterization of inhibitor(s) of β-glucuronidase enzyme activity in GUS-transgenic wheat

    KAUST Repository

    Ramadan, Ahmed M Ali; Eissa, Hala F.; El-Domyati, Fotouh M.; Saleh, Osama Mesilhy; Ibrahim, Nasser E.; Salama, M. I.; Mahfouz, Magdy M.; Bahieldin, Ahmed M.

    2011-01-01

    The uidA gene, encoding for β-glucuronidase (GUS), is the most frequently used reporter gene in plants. As a reporter enzyme, GUS can be assayed both qualitatively and quantitatively. In wheat, there are numerous reports of failure in detecting GUS enzyme activity in tissues of transgenic plants, while other reports have suggested presence of β-glucuronidase inhibitor(s) in wheat tissues. In the present study, we show that the β-glucuronidase enzyme activity is not only tissue-specific but also genotype-dependent. Our data demonstrate that the glucuronic acid could be the candidate inhibitor for β-glucuronidase enzyme activity in wheat leaves and roots. It should be noted that the assays to detect β-glucuronidase enzyme activity in wheat should be interpreted carefully. Based on the data of our present study, we recommend studying the chemical pathways, the unintended effects and the possible loss-of-function of any candidate transgene prior to transformation experiments. © 2011 Springer Science+Business Media B.V.

  16. The "SWOT" of BRAF inhibition in melanoma: RAF inhibitors, MEK inhibitors or both?

    Science.gov (United States)

    Nissan, Moriah H; Solit, David B

    2011-12-01

    Activating mutations in the BRAF gene are among the most prevalent kinase mutations in human cancer. BRAF mutations are most frequent in patients with melanoma where they occur in approximately 50% of patients with advanced disease. Remarkable clinical activity has recently been reported with highly selective RAF inhibitors in melanoma patients whose tumors harbor V600E BRAF mutations. The response rates of RAF inhibitors in patients with BRAF-mutant melanomas far exceed the activity level of any prior therapy studied in this disease. The results suggest that we have entered an era of personalized therapy for patients with metastatic melanoma in which treatment selection will be guided by BRAF mutational status. This review will discuss the strengths, weaknesses, opportunities and threats ("SWOT") of developing RAF and MEK selective inhibitors as anti-cancer therapies, recent insights into the mechanisms of intrinsic and acquired resistance to these agents, and current efforts to develop mechanism-based combination therapies.

  17. Regulation of collagenase inhibitor production in chondrosarcoma chondrocytes

    International Nuclear Information System (INIS)

    Harper, J.; Harper, E.

    1987-01-01

    Swarm rat chondrosarcoma chondrocytes produce an inhibitor of collagenase. This inhibitor is similar to those isolated from normal cartilage tissues. These cells will synthesize proteins in the absence of serum. Since serum contains inhibitors of collagenase, it is necessary to culture cells without serum in order to obtain accurate measurements of enzyme and inhibitor levels. They examined the effect of insulin on inhibitor secretion by cultures of Swarm rat chondrosarcoma chondrocytes. They observed a 2.5 to 3.5 fold stimulation of inhibitory activity in the presence of as little as 10 ng/ml insulin as compared to controls in serum free Dulbecco's modified Eagle's medium supplemented with 4.5 g/l glucose. The units of inhibitor were determined over a 7 day culture period. Medium was harvested daily and assayed for collagenase activity and for inhibition of a known collagenase from rabbit skin or human skin, using the 14 C-glycine peptide release assay. The amount of inhibitor obtained from days 2 through 7 were: 1.4 unit (control), 3.8 units (10 ng/ml insulin), 5.2 units (1 μg/ml insulin). The addition of 1 mM dibutyryl cyclic AMP to these chondrocytes in the presence of 1 μg/ml insulin caused a decrease in the level of inhibitor, suggesting that a dephosphorylation event may be necessary for this stimulation by insulin to occur

  18. An Updated Review of Tyrosinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Te-Sheng Chang

    2009-05-01

    Full Text Available Tyrosinase is a multifunctional, glycosylated, and copper-containing oxidase, which catalyzes the first two steps in mammalian melanogenesis and is responsible for enzymatic browning reactions in damaged fruits during post-harvest handling and processing. Neither hyperpigmentation in human skin nor enzymatic browning in fruits are desirable. These phenomena have encouraged researchers to seek new potent tyrosinase inhibitors for use in foods and cosmetics. This article surveys tyrosinase inhibitors newly discovered from natural and synthetic sources. The inhibitory strength is compared with that of a standard inhibitor, kojic acid, and their inhibitory mechanisms are discussed.

  19. Cellular growth kinetics distinguish a cyclophilin inhibitor from an HSP90 inhibitor as a selective inhibitor of hepatitis C virus.

    Directory of Open Access Journals (Sweden)

    Rudolf K F Beran

    Full Text Available During antiviral drug discovery, it is critical to distinguish molecules that selectively interrupt viral replication from those that reduce virus replication by adversely affecting host cell viability. In this report we investigate the selectivity of inhibitors of the host chaperone proteins cyclophilin A (CypA and heat-shock protein 90 (HSP90 which have each been reported to inhibit replication of hepatitis C virus (HCV. By comparing the toxicity of the HSP90 inhibitor, 17-(Allylamino-17-demethoxygeldanamycin (17-AAG to two known cytostatic compounds, colchicine and gemcitabine, we provide evidence that 17-AAG exerts its antiviral effects indirectly through slowing cell growth. In contrast, a cyclophilin inhibitor, cyclosporin A (CsA, exhibited selective antiviral activity without slowing cell proliferation. Furthermore, we observed that 17-AAG had little antiviral effect in a non-dividing cell-culture model of HCV replication, while CsA reduced HCV titer by more than two orders of magnitude in the same model. The assays we describe here are useful for discriminating selective antivirals from compounds that indirectly affect virus replication by reducing host cell viability or slowing cell growth.

  20. Structures of human Golgi-resident glutaminyl cyclase and its complexes with inhibitors reveal a large loop movement upon inhibitor binding.

    Science.gov (United States)

    Huang, Kai-Fa; Liaw, Su-Sen; Huang, Wei-Lin; Chia, Cho-Yun; Lo, Yan-Chung; Chen, Yi-Ling; Wang, Andrew H-J

    2011-04-08

    Aberrant pyroglutamate formation at the N terminus of certain peptides and proteins, catalyzed by glutaminyl cyclases (QCs), is linked to some pathological conditions, such as Alzheimer disease. Recently, a glutaminyl cyclase (QC) inhibitor, PBD150, was shown to be able to reduce the deposition of pyroglutamate-modified amyloid-β peptides in brain of transgenic mouse models of Alzheimer disease, leading to a significant improvement of learning and memory in those transgenic animals. Here, we report the 1.05-1.40 Å resolution structures, solved by the sulfur single-wavelength anomalous dispersion phasing method, of the Golgi-luminal catalytic domain of the recently identified Golgi-resident QC (gQC) and its complex with PBD150. We also describe the high-resolution structures of secretory QC (sQC)-PBD150 complex and two other gQC-inhibitor complexes. gQC structure has a scaffold similar to that of sQC but with a relatively wider and negatively charged active site, suggesting a distinct substrate specificity from sQC. Upon binding to PBD150, a large loop movement in gQC allows the inhibitor to be tightly held in its active site primarily by hydrophobic interactions. Further comparisons of the inhibitor-bound structures revealed distinct interactions of the inhibitors with gQC and sQC, which are consistent with the results from our inhibitor assays reported here. Because gQC and sQC may play different biological roles in vivo, the different inhibitor binding modes allow the design of specific inhibitors toward gQC and sQC.

  1. Stabilization versus inhibition of TAFIa by competitive inhibitors in vitro

    NARCIS (Netherlands)

    Walker, J.B.; Hughes, B.; James, I.; Haddock, P.; Kluft, C.; Bajzar, L.

    2003-01-01

    Two competitive inhibitors of TAFIa (activated thrombin-activable fibrinolysis inhibitor), 2-guanidinoethyl-mercaptosuccinic acid and potato tuber carboxypeptidase inhibitor, variably affect fibrinolysis of clotted human plasma. Depending on their concentration, the inhibitors shortened, prolonged,

  2. Replacement inhibitors for tank farm cooling coil systems

    International Nuclear Information System (INIS)

    Hsu, T.C.

    1995-01-01

    Sodium chromate has been an effective corrosion inhibitor for the cooling coil systems in Savannah River Site (SRS) waste tanks for over 40 years. Due to their age and operating history, cooling coils occasionally fail allowing chromate water to leak into the environment. When the leaks spill 10 lbs. or more of sodium chromate over a 24-hr period, the leak incidents are classified as Unusual Occurrences (UO) per CERCLA (Comprehensive Environmental Response, Compensation and Liability Act). The cost of reporting and cleaning up chromate spills prompted High Level Waste Engineering (HLWE) to initiate a study to investigate alternative tank cooling water inhibitor systems and the associated cost of replacement. Several inhibitor systems were investigated as potential alternatives to sodium chromate. All would have a lesser regulatory impact, if a spill occurred. However, the conversion cost is estimated to be $8.5 million over a period of 8 to 12 months to convert all 5 cooling systems. Although each of the alternative inhibitors examined is effective in preventing corrosion, there is no inhibitor identified that is as effective as chromate. Assuming 3 major leaks a year (the average over the past several years), the cost of maintaining the existing inhibitor was estimated at $0.5 million per year. Since there is no economic or regulatory incentive to replace the sodium chromate with an alternate inhibitor, HLWE recommends that sodium chromate continue to be used as the inhibitor for the waste tank cooling systems

  3. The safety of proton pump inhibitors in pregnancy

    DEFF Research Database (Denmark)

    Nielsen, Gunnar Lauge; Sørensen, Henrik Toft; Thulstrup, Ane Marie

    1999-01-01

    AIM: To assess the safety of proton pump inhibitors during pregnancy. METHODS: Fifty-one pregnant women exposed to proton pump inhibitors around the time of conception or during pregnancy were compared with 13 327 controls without exposure to any prescribed drug in a population-based study based...... birth weight or number of preterm deliveries in pregnancies exposed to proton pump inhibitors. However, further monitoring is warranted in order to establish or rule out a potential association between the use of proton pump inhibitors and increased risk of either cardiac malformations or preterm birth....

  4. Epithelial tissue hyperplasia induced by the RAF inhibitor PF-04880594 is attenuated by a clinically well-tolerated dose of the MEK inhibitor PD-0325901.

    Science.gov (United States)

    Torti, Vince R; Wojciechowicz, Donald; Hu, Wenyue; John-Baptiste, Annette; Evering, Winston; Troche, Gabriel; Marroquin, Lisa D; Smeal, Tod; Yamazaki, Shinji; Palmer, Cynthia L; Burns-Naas, Leigh Ann; Bagrodia, Shubha

    2012-10-01

    Clinical trials of selective RAF inhibitors in patients with melanoma tumors harboring activated BRAFV600E have produced very promising results, and a RAF inhibitor has been approved for treatment of advanced melanoma. However, about a third of patients developed resectable skin tumors during the course of trials. This is likely related to observations that RAF inhibitors activate extracellular signal-regulated kinase (ERK) signaling, stimulate proliferation, and induce epithelial hyperplasia in preclinical models. Because these findings raise safety concerns about RAF inhibitor development, we further investigated the underlying mechanisms. We showed that the RAF inhibitor PF-04880594 induces ERK phosphorylation and RAF dimerization in those epithelial tissues that undergo hyperplasia. Hyperplasia and ERK hyperphosphorylation are prevented by treatment with the mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitor PD-0325901 at exposures that extrapolate to clinically well-tolerated doses. To facilitate mechanistic and toxicologic studies, we developed a three-dimensional cell culture model of epithelial layering that recapitulated the RAF inhibitor-induced hyperplasia and reversal by MEK inhibitor in vitro. We also showed that PF-04880594 stimulates production of the inflammatory cytokine interleukin 8 in HL-60 cells, suggesting a possible mechanism for the skin flushing observed in dogs. The complete inhibition of hyperplasia by MEK inhibitor in epithelial tissues does not seem to reduce RAF inhibitor efficacy and, in fact, allows doubling of the PF-04880594 dose without toxicity usually associated with such doses. These findings indicated that combination treatment with MEK inhibitors might greatly increase the safety and therapeutic index of RAF inhibitors for the treatment of melanoma and other cancers. ©2012 AACR.

  5. Janus Associated Kinases Inhibitors in the Pharmacological Thera

    Directory of Open Access Journals (Sweden)

    Daniela Santos1

    2017-01-01

    Full Text Available Janus associated kinases inhibitors are a new strategy for the treatment of different clinical conditions like immunologic, inflammatory and oncology disorders. The aim of this study was to perform a review of all Janus associated kinases inhibitors available in national and international pharmaceutical market, their therapeutic indications and adverse effects, and the potential indications for investigation of those already available in the pharmaceutical market. It was also performed a review of the main new Janus associated kinases inhibitors that are still in clinical research. A literature review was conducted by consulting the summary of product characteristics of Janus associated kinases inhibitors available in the pharmaceutical market and a research in the bibliographic database PubMed using the terms «JAK inhibitors», «Janus associated kinases inhibitors» and «Janus kinases inhibitors». Ninety-five publications were included in the present review, published from January 2014 to January 2015. Drug databases of the European Medicines Agency and United States Food and Drug Administration were also consulted to search for Janus associated kinases inhibitors authorized in clinical practice. Currently, ruxolitinib and tofacitinib are available in the pharmaceutical market and oclatinib is approved as a veterinary medicinal product. Both drugs approved for human use have major adverse effects at hematological and immunological levels, which enhance the importance of the pharmacist’s role in the monitoring of patients involved in these treatments. However, several molecules are in pre-clinical and clinical studies trying to prove its potential in the treatment of several immunologic, inflammatory and oncology disorders. Thus, it is still necessary to deepen the knowledge in this area in order to overcome the risks of therapy with these agents. These risks weighed against the benefits of its clinical use have compromised the progress of

  6. Positron emitter labeled enzyme inhibitors

    International Nuclear Information System (INIS)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-01-01

    This invention involves a new strategy for imagining and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography

  7. Inhibition of matrix metalloproteinase-2 by PARP inhibitors

    International Nuclear Information System (INIS)

    Nicolescu, Adrian C.; Holt, Andrew; Kandasamy, Arulmozhi D.; Pacher, Pal; Schulz, Richard

    2009-01-01

    Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC 50 values of PJ-34 and 5-AIQ were in the high micromolar range and comparable to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.

  8. Inhibition of matrix metalloproteinase-2 by PARP inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Nicolescu, Adrian C.; Holt, Andrew; Kandasamy, Arulmozhi D. [Departments of Pharmacology and Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2 (Canada); Pacher, Pal [National Institutes of Health, NIAAA, Laboratory of Physiologic Studies, Bethesda, MD (United States); Schulz, Richard, E-mail: richard.schulz@ualberta.ca [Departments of Pharmacology and Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2 (Canada)

    2009-10-02

    Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC{sub 50} values of PJ-34 and 5-AIQ were in the high micromolar range and comparable to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.

  9. The Wonders of Phosphodiesterase‑5 Inhibitors: A Majestic History

    African Journals Online (AJOL)

    A milestone in drug discovery was the selective inhibitors of. PDE‑5 that ... the pharmacotherapeutics of PDE‑5 inhibitors and the majestic history that led to their discovery. ..... including HIV protease inhibitors, ketoconazole, itraconazole,.

  10. Inactivation of proteinaceous protease inhibitors of soybeans by isolated fungi

    NARCIS (Netherlands)

    Meijer, M.M.T.; Spekking, W.T.J.; Sijtsma, L.; Bont, de J.A.M.

    1995-01-01

    Proteinaceous protease inhibitors, Kunitz Soybean Trypsin Inhibitor (KSTI) and Bowman Birk Inhibitor (BBI), in legume seeds reduce the digestibility of proteins in feed of monogastric animals. Enzymatic inactivation of these inhibitors will increase the nutritional value of the feed. The aim of this

  11. SGLT2 inhibitors: are they safe?

    Science.gov (United States)

    Filippas-Ntekouan, Sebastian; Filippatos, Theodosios D; Elisaf, Moses S

    2018-01-01

    Sodium-glucose linked transporter type 2 (SGLT2) inhibitors are a relatively new class of antidiabetic drugs with positive cardiovascular and kidney effects. The aim of this review is to present the safety issues associated with SGLT2 inhibitors. Urogenital infections are the most frequently encountered adverse events, although tend to be mild to moderate and are easily manageable with standard treatment. Although no increased acute kidney injury risk was evident in the major trials, the mechanism of action of these drugs requires caution when they are administered in patients with extracellular volume depletion or with drugs affecting renal hemodynamics. Canagliflozin raised the risk of amputations and the rate of fractures in the CANVAS trial, although more data are necessary before drawing definite conclusions. The risk of euglycemic diabetic ketoacidosis seems to be minimal when the drugs are prescribed properly. Regarding other adverse events, SGLT2 inhibitors do not increase the risk of hypoglycemia even when co-administered with insulin, but a decrease in the dose of sulphonylureas may be needed. The available data do not point to a causative role of SGLT2 inhibitors on malignancy risk, however, these drugs should be used with caution in patients with known hematuria or history of bladder cancer. SGLT2 inhibitors seem to be safe and effective in the treatment of diabetes but more studies are required to assess their long-term safety.

  12. Janus kinase inhibitors: jackpot or potluck?

    Directory of Open Access Journals (Sweden)

    Pavithran Keechilat

    2012-06-01

    Full Text Available The reports of a unique mutation in the Janus kinase-2 gene (JAK2 in polycythemia vera by several independent groups in 2005 quickly spurred the development of the Janus kinase inhibitors. In one of the great victories of translational research in recent times, the first smallmolecule Janus kinase inhibitor ruxolitinib entered a phase I trial in 2007. With the approval of ruxolitinib by the US Federal Drug Administration in November 2011 for high-risk and intermediate-2 risk myelofibrosis, a change in paradigm has occurred in the management of a subset of myeloproliferative neoplasms (MPN: primary myelofibrosis, post-polycythemia vera myelofibrosis, and post-essential thrombocythemia myelofibrosis. Whereas the current evidence for ruxolitinib only covers high-risk and intermediate-2 risk myelofibrosis, inhibitors with greater potency are likely to offer better disease control and survival advantage in patients belonging to these categories, and possibly to the low-risk and intermediate-1 risk categories of MPN as well. But use of the Janus kinase inhibitors also probably has certain disadvantages, such as toxicity, resistance, withdrawal phenomenon, non-reversal of histology, and an implausible goal of disease clone eradication, some of which could offset the gains. In spite of this, Janus kinase inhibitors are here to stay, and for use in more than just myeloproliferative neoplasms.

  13. Experimental and theoretical studies of benzoxazines corrosion inhibitors

    Directory of Open Access Journals (Sweden)

    Abdulhadi Kadhim

    Full Text Available 2-Methyl-4H-benzo[d][1,3]oxazin-4-one (BZ1 and 3-amino-2-methylquinazolin-4(3H-one (BZ2 were evaluated for their corrosion inhibition properties on mild steel (MS in hydrochloric acid solution by weight loss technique and scanning electron microscopy. Results show the inhibition efficiency values depend on the amount of nitrogen in the inhibitor, the inhibitor concentration and the inhibitor molecular weight with maximum inhibition efficiency of 89% and 65% for BZ2 and BZ1 at highest concentration of the compounds. Keywords: Methylquinazoline, Benzoxazines, Corrosion, Inhibitors

  14. Acid corrosion inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N G

    1964-04-28

    An acid corrosion inhibitor is prepared by a 2-stage vacuum evaporation of effluents obtained from the ammonia columns of the coking oven plant. The effluent, leaving a scrubber in which the phenols are removed at a temperature of 98$C, passes through a quartz filter and flows into a heated chamber in which it is used for preheating a solution circulating through a vacuum unit, maintaining the temperature of the solution at 55$ to 60$C. The effluent enters a large tank in which it is boiled at 55$ to 60$C under 635 to 640 mm Hg pressure. Double evaporation of this solution yields a very effective acid corrosion inhibitor. Its corrosion-preventing effect is 97.9% compared with 90.1% for thiourea and 88.5% for urotropin under identical conditions.

  15. Novel dual small-molecule HIV inhibitors: scaffolds and discovery strategies.

    Science.gov (United States)

    Song, Anran; Yu, Haiqing; Wang, Changyuan; Zhu, Xingqi; Liu, Kexin; Ma, Xiaodong

    2015-01-01

    Searching for safe and effective treatments for HIV infection is still a great challenge worldwide in spite of the 27 marketed anti-HIV drugs and the powerful highly active antiretroviral therapy (HAART). As a promising prospect for generation of new HIV therapy drugs, multiple ligands (MDLs) were greatly focused on recently due to their lower toxicity, simplified dosing and patient adherence than single-target drugs. Till now, by disrupting two active sites or steps of HIV replications, a number of HIV dual inhibitors, such as CD4-gssucap120 inhibitors, CXCR4-gp20 inhibitors, RT-CXCR4 inhibitors, RT-protease inhibitors, RT-integrase inhibitors, and RTassociated functions inhibitors have been identified. Generally, these dual inhibitors were discovered mainly through screening approaches and design strategies. Of these compounds, the molecules bearing small skeletons exhibited strong anti-HIV activity and aroused great attention recently. Reviewing the progress of the dual small-molecule HIV inhibitors from the point of view of their scaffolds and discovery strategies will provide valuable information for producing more effective anti-HIV drugs. In this regard, novel dual small-molecule HIV inhibitors were illustrated, and their discovery paradigms as the major contents were also summarized in this manuscript.

  16. SGLT2 inhibitors: molecular design and potential differences in effect.

    Science.gov (United States)

    Isaji, Masayuki

    2011-03-01

    The physiological and pathological handling of glucose via sodium-glucose cotransporter-2 (SGLT2) in the kidneys has been evolving, and SGLT2 inhibitors have been focused upon as a novel drug for treating diabetes. SGLT2 inhibitors enhance renal glucose excretion by inhibiting renal glucose reabsorption. Consequently, SGLT2 inhibitors reduce plasma glucose insulin independently and improve insulin resistance in diabetes. To date, various SGLT2 inhibitors have been developed and evaluated in clinical studies. The potency and positioning of SGLT2 inhibitors as an antidiabetic drug are dependent on their characteristic profile, which induces selectivity, efficacy, pharmacokinetics, and safety. This profile decides which SGLT2 inhibitors can be expected for application of the theoretical concept of reducing renal glucose reabsorption for the treatment of diabetes. I review the structure and advancing profile of various SGLT2 inhibitors, comparing their similarities and differences, and discuss the expected SGLT2 inhibitors for an emerging category of antidiabetic drugs.

  17. Microarray-based screening of heat shock protein inhibitors.

    Science.gov (United States)

    Schax, Emilia; Walter, Johanna-Gabriela; Märzhäuser, Helene; Stahl, Frank; Scheper, Thomas; Agard, David A; Eichner, Simone; Kirschning, Andreas; Zeilinger, Carsten

    2014-06-20

    Based on the importance of heat shock proteins (HSPs) in diseases such as cancer, Alzheimer's disease or malaria, inhibitors of these chaperons are needed. Today's state-of-the-art techniques to identify HSP inhibitors are performed in microplate format, requiring large amounts of proteins and potential inhibitors. In contrast, we have developed a miniaturized protein microarray-based assay to identify novel inhibitors, allowing analysis with 300 pmol of protein. The assay is based on competitive binding of fluorescence-labeled ATP and potential inhibitors to the ATP-binding site of HSP. Therefore, the developed microarray enables the parallel analysis of different ATP-binding proteins on a single microarray. We have demonstrated the possibility of multiplexing by immobilizing full-length human HSP90α and HtpG of Helicobacter pylori on microarrays. Fluorescence-labeled ATP was competed by novel geldanamycin/reblastatin derivatives with IC50 values in the range of 0.5 nM to 4 μM and Z(*)-factors between 0.60 and 0.96. Our results demonstrate the potential of a target-oriented multiplexed protein microarray to identify novel inhibitors for different members of the HSP90 family. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Potent Inhibitors against Newcastle Disease Virus Hemagglutinin-Neuraminidase.

    Science.gov (United States)

    Rota, Paola; La Rocca, Paolo; Piccoli, Marco; Montefiori, Marco; Cirillo, Federica; Olsen, Lars; Orioli, Marica; Allevi, Pietro; Anastasia, Luigi

    2018-02-06

    Neuraminidase activity is essential for the infection and propagation of paramyxoviruses, including human parainfluenza viruses (hPIVs) and the Newcastle disease virus (NDV). Thus, many inhibitors have been developed based on the 2-deoxy-2,3-didehydro-d-N-acetylneuraminic acid inhibitor (DANA) backbone. Along this line, herein we report a series of neuraminidase inhibitors, having C4 (p-toluenesulfonamido and azido substituents) and C5 (N-perfluorinated chains) modifications to the DANA backbone, resulting in compounds with 5- to 15-fold greater potency than the currently most active compound, the N-trifluoroacetyl derivative of DANA (FANA), toward the NDV hemagglutinin-neuraminidase (NDV-HN). Remarkably, these inhibitors were found to be essentially inactive against the human sialidase NEU3, which is present on the outer layer of the cell membrane and is highly affected by the current NDV inhibitor FANA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Treatment with a JNK inhibitor increases, whereas treatment with a p38 inhibitor decreases, H2O2-induced calf pulmonary arterial endothelial cell death.

    Science.gov (United States)

    Park, Woo Hyun

    2017-08-01

    Oxidative stress induces apoptosis in endothelial cells (ECs). Reactive oxygen species (ROS) promote cell death by regulating the activity of various mitogen-activated protein kinases (MAPKs) in ECs. The present study investigated the effects of MAPK inhibitors on cell survival and glutathione (GSH) levels upon H 2 O 2 treatment in calf pulmonary artery ECs (CPAECs). H 2 O 2 treatment inhibited the growth and induced the death of CPAECs, as well as causing GSH depletion and the loss of mitochondrial membrane potential (MMP). While treatment with the MEK or JNK inhibitor impaired the growth of H 2 O 2 -treated CPAECs, treatment with the p38 inhibitor attenuated this inhibition of growth. Additionally, JNK inhibitor treatment increased the proportion of sub-G 1 phase cells in H 2 O 2 -treated CPAECs and further decreased the MMP. However, treatment with a p38 inhibitor reversed the effects of H 2 O 2 treatment on cell growth and the MMP. Similarly, JNK inhibitor treatment further increased, whereas p38 inhibitor treatment decreased, the proportion of GSH-depleted cells in H 2 O 2 -treated CPAECs. Each of the MAPK inhibitors affected cell survival, and ROS or GSH levels differently in H 2 O 2 -untreated, control CPAECs. The data suggest that the exposure of CPAECs to H 2 O 2 caused the cell growth inhibition and cell death through GSH depletion. Furthermore, JNK inhibitor treatment further enhanced, whereas p38 inhibitors attenuated, these effects. Thus, the results of the present study suggest a specific protective role for the p38 inhibitor, and not the JNK inhibitor, against H 2 O 2 -induced cell growth inhibition and cell death.

  20. JAK inhibitors in autoinflammation.

    Science.gov (United States)

    Hoffman, Hal M; Broderick, Lori

    2018-06-11

    Interferonopathies are a subset of autoinflammatory disorders with a prominent type I IFN gene signature. Treatment of these patients has been challenging, given the lack of response to common autoinflammatory therapeutics including IL-1 and TNF blockade. JAK inhibitors (Jakinibs) are a family of small-molecule inhibitors that target the JAK/STAT signaling pathway and have shown clinical efficacy, with FDA and European Medicines Agency (EMA) approval for arthritic and myeloproliferative syndromes. Sanchez and colleagues repurposed baricitinib to establish a significant role for JAK inhibition as a novel therapy for patients with interferonopathies, demonstrating the power of translational rare disease research with lifesaving effects.

  1. HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors

    DEFF Research Database (Denmark)

    Vanangamudi, Murugesan; Poongavanam, Vasanthanathan; Namasivayam, Vigneshwaran

    2017-01-01

    BACKGROUND: Design of inhibitors for HIV-1 reverse transcriptase inhibition (HIV-1 RT) is one of the successful chemotherapies for the treatment of HIV infection. Among the inhibitors available for HIV-1 RT, non-nucleoside reverse transcriptase inhibitors (NNRTIs) have shown to be very promising......: The conformation dependent-alignment based (CoMFA and CoMSIA) methods have been proven very successful ligand based strategy in the drug design. Here, CoMFA and CoMSIA studies reported for structurally distinct NNRTIs including thiazolobenzimidazole, dipyridodiazepinone, 1,1,3-trioxo [1,2,4]-thiadiazine...

  2. Inhibitors of Fatty Acid Synthase for Prostate Cancer

    Science.gov (United States)

    2012-05-01

    compounds. For example, numerous classes of acetyl- cholinesterase inhibitors have been developed, m any with fe mtomolar binding affinities (7). This...AD_________________ Award Number: W81XWH-09-1-0204 TITLE: Inhibitors of Fatty Acid Synthase for...CONTRACT NUMBER Inhibitors of Fatty Acid Synthase for Prostate Cancer 5b. GRANT NUMBER W81XWH-09-1-0204 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  3. Convergent Akt activation drives acquired EGFR inhibitor resistance in lung cancer

    DEFF Research Database (Denmark)

    Jacobsen, Kirstine; Bertran-Alamillo, Jordi; Molina, Miguel Angel

    2017-01-01

    Non-small-cell lung cancer patients with activating epidermal growth factor receptor (EGFR) mutations typically benefit from EGFR tyrosine kinase inhibitor treatment. However, virtually all patients succumb to acquired EGFR tyrosine kinase inhibitor resistance that occurs via diverse mechanisms....... The diversity and unpredictability of EGFR tyrosine kinase inhibitor resistance mechanisms presents a challenge for developing new treatments to overcome EGFR tyrosine kinase inhibitor resistance. Here, we show that Akt activation is a convergent feature of acquired EGFR tyrosine kinase inhibitor resistance......, across a spectrum of diverse, established upstream resistance mechanisms. Combined treatment with an EGFR tyrosine kinase inhibitor and Akt inhibitor causes apoptosis and synergistic growth inhibition in multiple EGFR tyrosine kinase inhibitor-resistant non-small-cell lung cancer models. Moreover...

  4. Does plasminogen activator inhibitor-1 drive lymphangiogenesis?

    DEFF Research Database (Denmark)

    Bruyère, Françoise; Melen-Lamalle, Laurence; Blacher, Silvia

    2010-01-01

    The purpose of this study is to explore the function of plasminogen activator inhibitor-1 (PAI-1) during pathological lymphangiogenesis. PAI-1, the main physiological inhibitor of plasminogen activators is involved in pathological angiogenesis at least by controlling extracellular proteolysis and...

  5. Nontoxic corrosion inhibitors for N80 steel in hydrochloric acid

    Directory of Open Access Journals (Sweden)

    M. Yadav

    2016-11-01

    Full Text Available The purpose of this paper is to evaluate the protective ability of 1-(2-aminoethyl-2-oleylimidazoline (AEOI and 1-(2-oleylamidoethyl-2-oleylimidazoline (OAEOI as corrosion inhibitors for N80 steel in 15% hydrochloric acid, which may find application as eco-friendly corrosion inhibitors in acidizing processes in petroleum industry. Different concentrations of synthesized inhibitors AEOI and OAEOI were added to the test solution (15% HCl and the corrosion inhibition of N80 steel in hydrochloric acid medium containing inhibitors was tested by weight loss, potentiodynamic polarization and AC impedance measurements. Influence of temperature (298–323 K on the inhibition behavior was studied. Surface studies were performed by using FTIR spectra and SEM. Both the inhibitors, AEOI and OAEOI at 150 ppm concentration show maximum efficiency 90.26% and 96.23%, respectively at 298 K in 15% HCl solution. Both the inhibitors act as mixed corrosion inhibitors. The adsorption of the corrosion inhibitors at the surface of N80 steel is the root cause of corrosion inhibition.

  6. Indanones as high-potency reversible inhibitors of monoamine oxidase.

    Science.gov (United States)

    Mostert, Samantha; Petzer, Anél; Petzer, Jacobus P

    2015-05-01

    Recent reports document that α-tetralone (3,4-dihydro-2H-naphthalen-1-one) is an appropriate scaffold for the design of high-potency monoamine oxidase (MAO) inhibitors. Based on the structural similarity between α-tetralone and 1-indanone, the present study involved synthesis of 34 1-indanone and related indane derivatives as potential inhibitors of recombinant human MAO-A and MAO-B. The results show that C6-substituted indanones are particularly potent and selective MAO-B inhibitors, with IC50 values ranging from 0.001 to 0.030 μM. C5-Substituted indanone and indane derivatives are comparatively weaker MAO-B inhibitors. Although the 1-indanone and indane derivatives are selective inhibitors of the MAO-B isoform, a number of homologues are also potent MAO-A inhibitors, with three homologues possessing IC50 values 1-indanone as a reversible MAO inhibitor with a competitive mode of inhibition. It may be concluded that 1-indanones are promising leads for the design of therapies for neurodegenerative and neuropsychiatric disorders such as Parkinson's disease and depression. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Insights into the molecular evolution of peptidase inhibitors in arthropods.

    Science.gov (United States)

    Alonso, Joaquin; Martinez, Manuel

    2017-01-01

    Peptidase inhibitors are key proteins involved in the control of peptidases. In arthropods, peptidase inhibitors modulate the activity of peptidases involved in endogenous physiological processes and peptidases of the organisms with which they interact. Exploring available arthropod genomic sequences is a powerful way to obtain the repertoire of peptidase inhibitors in every arthropod species and to understand the evolutionary mechanisms involved in the diversification of this kind of proteins. A genomic comparative analysis of peptidase inhibitors in species belonging to different arthropod taxonomic groups was performed. The results point out: i) species or clade-specific presence is shown for several families of peptidase inhibitors; ii) multidomain peptidase inhibitors are commonly found in many peptidase inhibitor families; iii) several families have a wide range of members in different arthropod species; iv) several peptidase inhibitor families show species-specific (or clade-specific) gene family expansions; v) functional divergence may be assumed for particular clades; vi) passive expansions may be used by natural selection to fix adaptations. In conclusion, conservation and divergence of duplicated genes and the potential recruitment as peptidase inhibitors of proteins from other families are the main mechanisms used by arthropods to fix diversity. This diversity would be associated to the control of target peptidases and, as consequence, to adapt to specific environments.

  8. ROCK inhibitors in ocular disease

    Directory of Open Access Journals (Sweden)

    Eva Halasz

    2016-12-01

    Full Text Available Rho kinases (ROCKs have a crucial role in actin-cytoskeletal reorganization and thus are involved in broad aspects of cell motility, from smooth muscle contraction to neurite outgrowth. The first marketed ROCK inhibitor, called fasudil, has been used safely for treatment of cerebral vasospasm since 1995 in Japan. During the succeeding decades ROCK inhibitors have been applied in many pathological conditions from central nervous system disorders to cardiovascular disease as potential therapeutic agents or experimental tools to help understand the underlying (pathomechanisms. In 2014, a fasudil derivate named ripasudil was accepted for clinical use in glaucoma and ocular hypertension. Since ROCK kinases are widely expressed in ocular tissues, they have been implicated in the pathology of many ocular conditions such as corneal dysfunction, glaucoma, cataract, diabetic retinopathy, age-related macular degeneration, and retinal detachment. This paper aims to provide an overview of the most recent status/application of ROCK inhibitors in the field of eye disease.

  9. SGLT-2 Inhibitors and Cardiovascular Risk

    DEFF Research Database (Denmark)

    Cavender, Matthew A; Norhammar, Anna; Birkeland, Kåre I

    2018-01-01

    BACKGROUND: Prior studies found patients treated with sodium-glucose co-transporter-2 inhibitors (SGLT-2i) had lower rates of death and heart failure (HF). Whether the benefits of SGLT-2i vary based upon the presence of cardiovascular disease (CVD) is unknown. OBJECTIVES: This study sought...... to determine the association between initiation of SGLT-2i therapy and HF or death in patients with and without CVD. METHODS: The CVD-REAL (Comparative Effectiveness of Cardiovascular Outcomes in New Users of SGLT-2 Inhibitors) study was a multinational, observational study in which adults with type 2 diabetes...... evidence regarding the benefit of SGLT-2i in patients without established CVD. (Comparative Effectiveness of Cardiovascular Outcomes in New Users of SGLT-2 Inhibitors [CVD-REAL]; NCT02993614)....

  10. Protein C Inhibitor-A Novel Antimicrobial Agent

    NARCIS (Netherlands)

    Malmström, E.; Mörgelin, M.; Malmsten, M.; Johansson, L.; Norrby-Teglund, A.; Shannon, O.; Schmidtchen, A.; Meijers, J.C.M.; Herwald, H.

    2009-01-01

    Protein C inhibitor (PCI) is a heparin-binding serine proteinase inhibitor belonging to the family of serpin proteins. Here we describe that PCI exerts broad antimicrobial activity against bacterial pathogens. This ability is mediated by the interaction of PCI with lipid membranes, which

  11. Electrochemical Behaviour of Environmentally Friendly Inhibitor of ...

    African Journals Online (AJOL)

    Electrochemical Behaviour of Environmentally Friendly Inhibitor of Aloe Secundiflora Extract in Corrosion Control of Carbon Steel in Soft Water Media. ... The investigation was performed at different inhibitor concentrations under static and dynamic conditions using a Rotating Disk Electrode (RDE). The impedance and ...

  12. Identification of catechols as histone-lysine demethylase inhibitors

    DEFF Research Database (Denmark)

    Nielsen, Anders L; Kristensen, Line H; Stephansen, Karen B

    2012-01-01

    Identification of inhibitors of histone-lysine demethylase (HDM) enzymes is important because of their involvement in the development of cancer. An ELISA-based assay was developed for identification of inhibitors of the HDM KDM4C in a natural products library. Based on one of the hits with affinity...... in the low µM range (1, a catechol), a subset of structurally related compounds was selected and tested against a panel of HDMs. In this subset, two inhibitors (2 and 10) had comparable affinities towards KDM4C and KDM6A but no effect on PHF8. One inhibitor restored H3K9me3 levels in KDM4C transfected U2-OS...

  13. Cardiovascular effects of sodium glucose cotransporter 2 inhibitors

    Directory of Open Access Journals (Sweden)

    Santos Cavaiola T

    2018-04-01

    Full Text Available Tricia Santos Cavaiola, Jeremy Pettus Division of Endocrinology and Metabolism, University of California San Diego, San Diego, CA, USA Abstract: As the first cardiovascular (CV outcome trial of a glucose-lowering agent to demonstrate a reduction in the risk of CV events in patients with type 2 diabetes mellitus (T2DM, the EMPAgliflozin Removal of Excess Glucose: Cardiovascular OUTCOME Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG OUTCOME® trial, which investigated the sodium glucose cotransporter 2 (SGLT2 inhibitor empagliflozin, has generated great interest among health care professionals. CV outcomes data for another SGLT2 inhibitor, canagliflozin, have been published recently in the CANagliflozin CardioVascular Assessment Study (CANVAS Program, as have CV data from the retrospective real-world study Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors (CVD-REAL, which compared SGLT2 inhibitors with other classes of glucose-lowering drugs. This review discusses the results of these three studies and, with a focus on EMPA-REG OUTCOME, examines the possible mechanisms by which SGLT2 inhibitors may reduce CV risk in patients with T2DM. Keywords: canagliflozin, cardiovascular outcomes, dapagliflozin, empagliflozin, mechanisms, sodium glucose cotransporter 2 inhibitors

  14. Synthesis and Application of Pyrrolidone-containing Shale Inhibitors

    Science.gov (United States)

    Liu, Yonggui; Hou, Jie; Zhang, Yang; Yan, Jing; Song, Tao; Xu, Yongjun

    2018-03-01

    New generation polyamine inhibitors are amino-terminated polyethers with excellent inhibiting capabilities; they play a key role in borehole stabilization and reservoir protection. However, polyamine inhibitors are limited by their poor thermal stability, which can be attributed to the presence of ether bonds in their molecular structures. We propose a three-step synthesis approach fora novel pyrrolidone-containing polyamine inhibitor (DYNP) by introducing N-vinyl-2-pyrrolidone (NVP) on divinyloxyethane. This polyamine inhibitor exhibits an optimized molecular structure and has enhanced heat resistance. Characterizations by infrared (IR) spectroscopy and evaluation tests demonstrate several advantages of DYNP inhibitors, including excellent inhibiting capability (superior to similar materials such as polyamines), improved heat resistance (reasonable stability at temperatures up to 240°C), and good compatibility with both fresh water and salt water drilling fluids. These can be attributed to the presence of considerable amounts of amino groups in the repeating unit of DYNP molecules. The DYNP inhibitor was applied in over 20 boreholes in tight oil blocks in Daqing Oilfield to relieve hydration of formations with high shale contents. For instance, drilling in the 2033.5m horizontal section of Dragon 2 borehole was smooth, with a borehole diameter expansion ratio below 10%.

  15. Inhibitor specificity of recombinant and endogenous caspase-9.

    Science.gov (United States)

    Ryan, Ciara A; Stennicke, Henning R; Nava, Victor E; Burch, Jennifer B; Hardwick, J Marie; Salvesen, Guy S

    2002-01-01

    Apoptosis triggered through the intrinsic pathway by radiation and anti-neoplastic drugs is initiated by the activation of caspase-9. To elucidate control mechanisms in this pathway we used a range of synthetic and natural reagents. The inhibitory potency of acetyl-Asp-Glu-Val-Asp-aldehyde ('Ac-DEVD-CHO'), benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone ('Z-VAD-FMK') and the endogenous caspase inhibitor X-chromosome-linked inhibitor of apoptosis protein ('XIAP') against recombinant caspase-9 were predictive of the efficacy of these compounds in a cell-free system. However, the viral proteins CrmA and p35, although potent inhibitors of recombinant caspase-9, had almost no ability to block caspase-9 in this system. These findings were also mirrored in cell expression studies. We hypothesize that the viral inhibitors CrmA and p35 are excluded from reacting productively with the natural form of active caspase-9 in vivo, making the potency of inhibitors highly context-dependent. This is supported by survival data from a mouse model of apoptosis driven by Sindbis virus expressing either p35 or a catalytic mutant of caspase-9. These results consolidate previous findings that CrmA is a potent inhibitor of caspase-9 in vitro, yet fails to block caspase-9-mediated cell death. PMID:12067274

  16. Classification of Breast Cancer Resistant Protein (BCRP) Inhibitors and Non-Inhibitors Using Machine Learning Approaches.

    Science.gov (United States)

    Belekar, Vilas; Lingineni, Karthik; Garg, Prabha

    2015-01-01

    The breast cancer resistant protein (BCRP) is an important transporter and its inhibitors play an important role in cancer treatment by improving the oral bioavailability as well as blood brain barrier (BBB) permeability of anticancer drugs. In this work, a computational model was developed to predict the compounds as BCRP inhibitors or non-inhibitors. Various machine learning approaches like, support vector machine (SVM), k-nearest neighbor (k-NN) and artificial neural network (ANN) were used to develop the models. The Matthews correlation coefficients (MCC) of developed models using ANN, k-NN and SVM are 0.67, 0.71 and 0.77, and prediction accuracies are 85.2%, 88.3% and 90.8% respectively. The developed models were tested with a test set of 99 compounds and further validated with external set of 98 compounds. Distribution plot analysis and various machine learning models were also developed based on druglikeness descriptors. Applicability domain is used to check the prediction reliability of the new molecules.

  17. The effects of residual platelets in plasma on plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays

    NARCIS (Netherlands)

    M. Pieters (Marlien); S.A. Barnard (Sunelle A.); D.T. Loots (Du Toit); D.C. Rijken (Dingeman)

    2017-01-01

    textabstractDue to controversial evidence in the literature pertaining to the activity of plasminogen activator inhibitor-1 in platelets, we examined the effects of residual platelets present in plasma (a potential pre-analytical variable) on various plasminogen activator inhibitor-1 and plasminogen

  18. Pathophysiological significance and therapeutic applications of snake venom protease inhibitors.

    Science.gov (United States)

    Thakur, Rupamoni; Mukherjee, Ashis K

    2017-06-01

    Protease inhibitors are important constituents of snake venom and play important roles in the pathophysiology of snakebite. Recently, research on snake venom protease inhibitors has provided valuable information to decipher the molecular details of various biological processes and offer insight for the development of some therapeutically important molecules from snake venom. The process of blood coagulation and fibrinolysis, in addition to affecting platelet function, are well known as the major targets of several snake venom protease inhibitors. This review summarizes the structure-functional aspects of snake venom protease inhibitors that have been described to date. Because diverse biological functions have been demonstrated by protease inhibitors, a comparative overview of their pharmacological and pathophysiological properties is also highlighted. In addition, since most snake venom protease inhibitors are non-toxic on their own, this review evaluates the different roles of individual protease inhibitors that could lead to the identification of drug candidates and diagnostic molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. New test for oil soluble/water dispersible gas pipeline inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Stegmann, D.W.; Asperger, R.G.

    1987-01-01

    The wheel test provides good mixing of the condensate and water phases, the coupons are exposed to both phases. Therefore, the wheel test cannot distinguish between inhibitors that need continuous mixing of the these phases to maintain a water dispersion of the inhibitor and inhibitors that will self disperse into the water. This concept becomes important for pipelines in stratified flow where the water can settle out. In these cases with low turbulence, the inhibitor must self disperse into the water to be effective. The paper describes a test method to measure the effectiveness of an inhibitor and its ability to self disperse. The effectiveness of several inhibitors as predicted by the new test method is discussed relative to data from the wheel test and breaker tests. Field performance of these inhibitors in a gas gathering line, with liquids in stratified flow, are cities and compared with the results of the various laboratory tests.

  20. Aromatase inhibitors in men: effects and therapeutic options

    Directory of Open Access Journals (Sweden)

    de Jong Frank H

    2011-06-01

    Full Text Available Abstract Aromatase inhibitors effectively delay epiphysial maturation in boys and improve testosterone levels in adult men Therefore, aromatase inhibitors may be used to increase adult height in boys with gonadotropin-independent precocious puberty, idiopathic short stature and constitutional delay of puberty. Long-term efficacy and safety of the use of aromatase inhibitors has not yet been established in males, however, and their routine use is therefore not yet recommended.

  1. Urinary trypsin inhibitor - an experimental and clinical study

    International Nuclear Information System (INIS)

    Berling, B.M.

    1991-01-01

    The urinary trypsin inhibitor (UTI) is an acid stable proteinase inhibitor present in blood and urine. It was purified from urine using affinity chromatography, ion exchange chromatography and gel filtration. Two forms of UTI were present in urine, A and B. A radioimmunoassay for measurement of UTI in urine and plasma was performed. The normal level of UTI in plasma and serum was about 2 mg/l. The normal excretion in urine was about 8 mg per 24 hours. The plasma and urine levels of UTI were studied in patients with acute pancreatitis and in patients undergoing cholecystectomy. Uremic patients had a marked increase of UTI in plasma compatible with decreased glomerular filtration. In samples from healthy persons as well as from patients only inhibitor A was found. Inhibitor B has recently been renamed bikunin because of its two Kunitz-type inhibiting domains. Inhibitor A might be called tetrakunin. Radioactively labeled UTI (inhibitor A) was injected intravenously in three male volunteers. The plasma half-life of 125 I UTI was 2 hours. Free biologically active inhibitor was found in the urine during the first four hours after injection. The organ distribution of intravenously injected 125 I UTI was studied in rats. Fifteen minutes after injection the major part of the radioactivity was found in the kidneys, suggesting that the kidneys are the primary site of UTI metabolism. Using immunohistochemical techniques UTI was found in the proximal tubules of the normal human kidney further indicating the tubular reabsorption and methabolisms of UTI

  2. Azidoblebbistatin, a photoreactive myosin inhibitor

    Science.gov (United States)

    Képiró, Miklós; Várkuti, Boglárka H.; Bodor, Andrea; Hegyi, György; Drahos, László; Kovács, Mihály; Málnási-Csizmadia, András

    2012-01-01

    Photoreactive compounds are important tools in life sciences that allow precisely timed covalent crosslinking of ligands and targets. Using a unique technique we have synthesized azidoblebbistatin, which is a derivative of blebbistatin, the most widely used myosin inhibitor. Without UV irradiation azidoblebbistatin exhibits identical inhibitory properties to those of blebbistatin. Using UV irradiation, azidoblebbistatin can be covalently crosslinked to myosin, which greatly enhances its in vitro and in vivo effectiveness. Photo-crosslinking also eliminates limitations associated with the relatively low myosin affinity and water solubility of blebbistatin. The wavelength used for photo-crosslinking is not toxic for cells and tissues, which confers a great advantage in in vivo tests. Because the crosslink results in an irreversible association of the inhibitor to myosin and the irradiation eliminates the residual activity of unbound inhibitor molecules, azidoblebbistatin has a great potential to become a highly effective tool in both structural studies of actomyosin contractility and the investigation of cellular and physiological functions of myosin II. We used azidoblebbistatin to identify previously unknown low-affinity targets of the inhibitor (EC50 ≥ 50 μM) in Dictyostelium discoideum, while the strongest interactant was found to be myosin II (EC50 = 5 μM). Our results demonstrate that azidoblebbistatin, and potentially other azidated drugs, can become highly useful tools for the identification of strong- and weak-binding cellular targets and the determination of the apparent binding affinities in in vivo conditions. PMID:22647605

  3. Predicting the Performance of Organic Corrosion Inhibitors

    Directory of Open Access Journals (Sweden)

    David A. Winkler

    2017-12-01

    Full Text Available The withdrawal of effective but toxic corrosion inhibitors has provided an impetus for the discovery of new, benign organic compounds to fill that role. Concurrently, developments in the high-throughput synthesis of organic compounds, the establishment of large libraries of available chemicals, accelerated corrosion inhibition testing technologies, and the increased capability of machine learning methods have made discovery of new corrosion inhibitors much faster and cheaper than it used to be. We summarize these technical developments in the corrosion inhibition field and describe how data-driven machine learning methods can generate models linking molecular properties to corrosion inhibition that can be used to predict the performance of materials not yet synthesized or tested. We briefly summarize the literature on quantitative structure–property relationships models of small organic molecule corrosion inhibitors. The success of these models provides a paradigm for rapid discovery of novel, effective corrosion inhibitors for a range of metals and alloys in diverse environments.

  4. SGLT2 Inhibitors and the Diabetic Kidney.

    Science.gov (United States)

    Fioretto, Paola; Zambon, Alberto; Rossato, Marco; Busetto, Luca; Vettor, Roberto

    2016-08-01

    Diabetic nephropathy (DN) is the most common cause of end-stage renal disease worldwide. Blood glucose and blood pressure control reduce the risk of developing this complication; however, once DN is established, it is only possible to slow progression. Sodium-glucose cotransporter 2 (SGLT2) inhibitors, the most recent glucose-lowering oral agents, may have the potential to exert nephroprotection not only through improving glycemic control but also through glucose-independent effects, such as blood pressure-lowering and direct renal effects. It is important to consider, however, that in patients with impaired renal function, given their mode of action, SGLT2 inhibitors are less effective in lowering blood glucose. In patients with high cardiovascular risk, the SGLT2 inhibitor empagliflozin lowered the rate of cardiovascular events, especially cardiovascular death, and substantially reduced important renal outcomes. Such benefits on DN could derive from effects beyond glycemia. Glomerular hyperfiltration is a potential risk factor for DN. In addition to the activation of the renin-angiotensin-aldosterone system, renal tubular factors, including SGLT2, contribute to glomerular hyperfiltration in diabetes. SGLT2 inhibitors reduce sodium reabsorption in the proximal tubule, causing, through tubuloglomerular feedback, afferent arteriole vasoconstriction and reduction in hyperfiltration. Experimental studies showed that SGLT2 inhibitors reduced hyperfiltration and decreased inflammatory and fibrotic responses of proximal tubular cells. SGLT2 inhibitors reduced glomerular hyperfiltration in patients with type 1 diabetes, and in patients with type 2 diabetes, they caused transient acute reductions in glomerular filtration rate, followed by a progressive recovery and stabilization of renal function. Interestingly, recent studies consistently demonstrated a reduction in albuminuria. Although these data are promising, only dedicated renal outcome trials will clarify whether

  5. Inhibitor development and mortality in non-severe hemophilia A.

    Science.gov (United States)

    Eckhardt, C L; Loomans, J I; van Velzen, A S; Peters, M; Mauser-Bunschoten, E P; Schwaab, R; Mazzucconi, M G; Tagliaferri, A; Siegmund, B; Reitter-Pfoertner, S E; van der Bom, J G; Fijnvandraat, K

    2015-07-01

    The life expectancy of non-severe hemophilia A (HA) patients equals the life expectancy of the non-hemophilic population. However, data on the effect of inhibitor development on mortality and on hemophilia-related causes of death are scarce. The development of neutralizing factor VIII antibodies in non-severe HA patients may dramatically change their clinical outcome due to severe bleeding complications. We assessed the association between the occurrence of inhibitors and mortality in patients with non-severe HA. In this retrospective cohort study, clinical data and vital status were collected for 2709 non-severe HA patients (107 with inhibitors) who were treated between 1980 and 2011 in 34 European and Australian centers. Mortality rates for patients with and without inhibitors were compared. During 64,200 patient-years of follow-up, 148 patients died (mortality rate, 2.30 per 1000 person-years; 95% confidence interval (CI), 1.96-2.70) at a median age of 64 years (interquartile range [IQR], 49-76). In 62 patients (42%) the cause of death was hemophilia related. Sixteen inhibitor patients died at a median age of 71 years (IQR, 60-81). In ten patients the inhibitor was present at time of death; seven of them died of severe bleeding complications. The all-cause mortality rate in inhibitor patients was > 5 times increased compared with that for those without inhibitors (age-adjusted mortality rate ratio, 5.6). Inhibitor development in non-severe hemophilia is associated with increased mortality. High rates of hemophilia-related mortality in this study indicate that non-severe hemophilia is not mild at all and stress the importance of close follow-up for these patients. © 2015 International Society on Thrombosis and Haemostasis.

  6. New synthetic thrombin inhibitors: molecular design and experimental verification.

    Science.gov (United States)

    Sinauridze, Elena I; Romanov, Alexey N; Gribkova, Irina V; Kondakova, Olga A; Surov, Stepan S; Gorbatenko, Aleksander S; Butylin, Andrey A; Monakov, Mikhail Yu; Bogolyubov, Alexey A; Kuznetsov, Yuryi V; Sulimov, Vladimir B; Ataullakhanov, Fazoyl I

    2011-01-01

    The development of new anticoagulants is an important goal for the improvement of thromboses treatments. The design, synthesis and experimental testing of new safe and effective small molecule direct thrombin inhibitors for intravenous administration. Computer-aided molecular design of new thrombin inhibitors was performed using our original docking program SOL, which is based on the genetic algorithm of global energy minimization in the framework of a Merck Molecular Force Field. This program takes into account the effects of solvent. The designed molecules with the best scoring functions (calculated binding energies) were synthesized and their thrombin inhibitory activity evaluated experimentally in vitro using a chromogenic substrate in a buffer system and using a thrombin generation test in isolated plasma and in vivo using the newly developed model of hemodilution-induced hypercoagulation in rats. The acute toxicities of the most promising new thrombin inhibitors were evaluated in mice, and their stabilities in aqueous solutions were measured. New compounds that are both effective direct thrombin inhibitors (the best K(I) was 50) in the thrombin generation assay of approximately 100 nM) were discovered. These compounds contain one of the following new residues as the basic fragment: isothiuronium, 4-aminopyridinium, or 2-aminothiazolinium. LD(50) values for the best new inhibitors ranged from 166.7 to >1111.1 mg/kg. A plasma-substituting solution supplemented with one of the new inhibitors prevented hypercoagulation in the rat model of hemodilution-induced hypercoagulation. Activities of the best new inhibitors in physiological saline (1 µM solutions) were stable after sterilization by autoclaving, and the inhibitors remained stable at long-term storage over more than 1.5 years at room temperature and at 4°C. The high efficacy, stability and low acute toxicity reveal that the inhibitors that were developed may be promising for potential medical applications.

  7. Wheat Subtilisin/Chymotrypsin Inhibitor (WSCI) as a scaffold for novel serine protease inhibitors with a given specificity.

    Science.gov (United States)

    Tedeschi, Francesca; Di Maro, Antimo; Facchiano, Angelo; Costantini, Susan; Chambery, Angela; Bruni, Natalia; Capuzzi, Valeria; Ficca, Anna Grazia; Poerio, Elia

    2012-10-30

    WSCI (Wheat Subtilisin/Chymotrypsin Inhibitor) is a small protein belonging to the Potato inhibitor I family exhibiting a high content of essential amino acid. In addition to bacterial subtilisins and mammalian chymotrypsins, WSCI inhibits chymotrypsin-like activities isolated from digestive traits of a number of insect larvae. In vivo, as suggested for many plant proteinase inhibitors, WSCI seems to play a role of natural defence against attacks of pests and pathogens. The functional region of WSCI, containing the inhibitor reactive site (Met48-Glu49), corresponds to an extended flexible loop (Val42-Asp53) whose architecture is somehow stabilized by a number of secondary interactions established with a small β-sheet located underneath. The aim of this study was to employ a WSCI molecule as a stable scaffold to obtain recombinant inhibitors with new acquired anti-proteinase activity or, alternatively, inactive WSCI variants. A gene sequence coding for the native WSCI, along with genes coding for muteins with different specficities, could be exploited to obtain transformed non-food use plants with improved insect resistance. On the other hand, the genetic transformation of cereal plants over-expressing inactive WSCI muteins could represent a possible strategy to improve the nutritional quality of cereal-based foods, without risk of interference with human or animal digestive enzymes. Here, we described the characterization of four muteins containing single/multiple amino acid substitutions at the WSCI reactive site and/or at its proximity. Modalities of interaction of these muteins with proteinases (subtilisin, trypsin and chymotrypsin) were investigated by time course hydrolysis and molecular simulations studies.

  8. Le Corbusier 24NC Un fragmento habitado de la Ville Radieuse = Le Corbusier 24NC An inhabited fragment of the Ville Radieuse

    Directory of Open Access Journals (Sweden)

    José Ramón Alonso Pereira

    2014-11-01

    the word used to define the ideal city: a modern urbs imagined within a large park. This paper tries to analyse this maison radieuse: the place and the space where Le Corbusier lived in and his ways of living in along the time, from 1934 to his death in 1965. To study the double aspect of habitat and living. To analyse the place and the space where Le Corbusier lived, at his projects and his metaphors: the maison radieuse, the urbs in ortu, the crystal house, the labour archipielago, with its different islands of paints and books, of papers and memories...  Because 24NC suppose the transit from project to life: from planning Ville Radieuse, to living in.

  9. Cardiovascular effects of sodium glucose cotransporter 2 inhibitors

    Science.gov (United States)

    Cavaiola, Tricia Santos; Pettus, Jeremy

    2018-01-01

    As the first cardiovascular (CV) outcome trial of a glucose-lowering agent to demonstrate a reduction in the risk of CV events in patients with type 2 diabetes mellitus (T2DM), the EMPAgliflozin Removal of Excess Glucose: Cardiovascular OUTCOME Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG OUTCOME®) trial, which investigated the sodium glucose cotransporter 2 (SGLT2) inhibitor empagliflozin, has generated great interest among health care professionals. CV outcomes data for another SGLT2 inhibitor, canagliflozin, have been published recently in the CANagliflozin CardioVascular Assessment Study (CANVAS) Program, as have CV data from the retrospective real-world study Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors (CVD-REAL), which compared SGLT2 inhibitors with other classes of glucose-lowering drugs. This review discusses the results of these three studies and, with a focus on EMPA-REG OUTCOME, examines the possible mechanisms by which SGLT2 inhibitors may reduce CV risk in patients with T2DM. PMID:29695924

  10. Comparison between SGLT2 inhibitors and DPP4 inhibitors added to insulin therapy in type 2 diabetes: a systematic review with indirect comparison meta-analysis.

    Science.gov (United States)

    Min, Se Hee; Yoon, Jeong-Hwa; Hahn, Seokyung; Cho, Young Min

    2017-01-01

    Both sodium glucose cotransporter 2 (SGLT2) inhibitors and dipeptidyl peptidase-4 (DPP4) inhibitors can be used to treat patients with type 2 diabetes mellitus (T2DM) that is inadequately controlled with insulin therapy, and yet there has been no direct comparison of these two inhibitors. We searched MEDLINE, EMBASE, LILACS, the Cochrane Central Register of Controlled Trials and ClinicalTrials.gov through June 2015. Randomized controlled trials published in English that compare SGLT2 inhibitor plus insulin (SGLT2i/INS) with placebo plus insulin or DPP4 inhibitor plus insulin (DPP4i/INS) with placebo plus insulin in patients with T2DM were selected. Data on the study characteristics, efficacy and safety outcomes were extracted. We compared the efficacy and safety between SGLT2i/INS and DPP4i/INS indirectly with covariates adjustment. Risk of potential bias was assessed. Fourteen eligible randomized controlled trials comprising 6980 patients were included (five SGLT2 inhibitor studies and nine DPP4 inhibitor studies). Covariate-adjusted indirect comparison using meta-regression analyses revealed that SGLT2i/INS achieved greater reduction in HbA 1c [weighted mean difference (WMD) -0.24%, 95% confidence interval (CI) -0.43 to -0.05%], fasting plasma glucose (WMD -18.0 mg/dL, 95% CI -28.5 to -7.6 mg/dL) and body weight (WMD -2.38 kg, 95% CI -3.18 to -1.58 kg) from baseline than DPP4i/INS without increasing the risk of hypoglycaemia (relative risks 1.19, 95% CI 0.78 to 1.82). Sodium glucose cotransporter 2 inhibitors achieved better glycaemic control and greater weight reduction than DPP4 inhibitors without increasing the risk of hypoglycaemia in patients with T2DM that is inadequately controlled with insulin. There has been no direct comparison of SGLT2 inhibitors and DPP4 inhibitors in patients with T2DM inadequately controlled with insulin therapy. In this study, we performed indirect meta-analysis comparing SGLT2 inhibitors and DPP4 inhibitors added to insulin

  11. FAITH – Fast Assembly Inhibitor Test for HIV

    Energy Technology Data Exchange (ETDEWEB)

    Hadravová, Romana [Institute of Organic Chemistry and Biochemistry IOCB Research Centre & Gilead Sciences, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague (Czech Republic); Rumlová, Michaela, E-mail: michaela.rumlova@vscht.cz [Institute of Organic Chemistry and Biochemistry IOCB Research Centre & Gilead Sciences, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague (Czech Republic); Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague (Czech Republic); Ruml, Tomáš, E-mail: tomas.ruml@vscht.cz [Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague (Czech Republic)

    2015-12-15

    Due to the high number of drug-resistant HIV-1 mutants generated by highly active antiretroviral therapy (HAART), there is continuing demand for new types of inhibitors. Both the assembly of the Gag polyprotein into immature and mature HIV-1 particles are attractive candidates for the blocking of the retroviral life cycle. Currently, no therapeutically-used assembly inhibitor is available. One possible explanation is the lack of a reliable and simple assembly inhibitor screening method. To identify compounds potentially inhibiting the formation of both types of HIV-1 particles, we developed a new fluorescent high-throughput screening assay. This assay is based on the quantification of the assembly efficiency in vitro in a 96-well plate format. The key components of the assay are HIV-1 Gag-derived proteins and a dual-labelled oligonucleotide, which emits fluorescence only when the assembly of retroviral particles is inhibited. The method was validated using three (CAI, BM2, PF74) reported assembly inhibitors. - Highlights: • Allows screening of assembly inhibitors of both mature and immature HIV-1 particles. • Based on Gag-derived proteins with CA in mature or immature conformation. • Simple and sensitive method suitable for high-throughput screening of inhibitors. • Unlike in other HIV assembly methods, works under physiological conditions. • No washing steps are necessary.

  12. FAITH – Fast Assembly Inhibitor Test for HIV

    International Nuclear Information System (INIS)

    Hadravová, Romana; Rumlová, Michaela; Ruml, Tomáš

    2015-01-01

    Due to the high number of drug-resistant HIV-1 mutants generated by highly active antiretroviral therapy (HAART), there is continuing demand for new types of inhibitors. Both the assembly of the Gag polyprotein into immature and mature HIV-1 particles are attractive candidates for the blocking of the retroviral life cycle. Currently, no therapeutically-used assembly inhibitor is available. One possible explanation is the lack of a reliable and simple assembly inhibitor screening method. To identify compounds potentially inhibiting the formation of both types of HIV-1 particles, we developed a new fluorescent high-throughput screening assay. This assay is based on the quantification of the assembly efficiency in vitro in a 96-well plate format. The key components of the assay are HIV-1 Gag-derived proteins and a dual-labelled oligonucleotide, which emits fluorescence only when the assembly of retroviral particles is inhibited. The method was validated using three (CAI, BM2, PF74) reported assembly inhibitors. - Highlights: • Allows screening of assembly inhibitors of both mature and immature HIV-1 particles. • Based on Gag-derived proteins with CA in mature or immature conformation. • Simple and sensitive method suitable for high-throughput screening of inhibitors. • Unlike in other HIV assembly methods, works under physiological conditions. • No washing steps are necessary.

  13. Inhibition of endocannabinoid metabolism by the metabolites of ibuprofen and flurbiprofen.

    Science.gov (United States)

    Karlsson, Jessica; Fowler, Christopher J

    2014-01-01

    In addition to their effects upon prostaglandin synthesis, the non-steroidal anti-inflammatory drugs ibuprofen and flurbiprofen inhibit the metabolism of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA) by cyclooxygenase-2 (COX-2) and fatty acid amide hydrolase (FAAH), respectively. Here, we investigated whether these effects upon endocannabinoid metabolism are shared by the main metabolites of ibuprofen and flurbiprofen. COX activities were measured via changes in oxygen consumption due to oxygenation of arachidonic acid (for COX-1) and arachidonic acid and 2-AG (for COX-2). FAAH activity was quantified by measuring hydrolysis of tritium labelled AEA in rat brain homogenates. The ability of ibuprofen and flurbiprofen to inhibit COX-2-catalysed oxygenation of 2-AG at lower concentrations than the oxygenation of arachidonic acid was seen with 4'-hydroxyflurbiprofen and possibly also 3'-hydroxyibuprofen, albeit at lower potencies than the parent compounds. All ibuprofen and flurbiprofen metabolites retained the ability to inhibit FAAH in a pH-dependent manner, although the potency was lower than seen with the parent compounds. It is concluded that the primary metabolites of ibuprofen and flurbiprofen retain some of the properties of the parent compound with respect to inhibition of endocannabinoid metabolism. However, these effects are unlikely to contribute to the actions of the parent compounds in vivo.

  14. Inhibition of endocannabinoid metabolism by the metabolites of ibuprofen and flurbiprofen.

    Directory of Open Access Journals (Sweden)

    Jessica Karlsson

    Full Text Available In addition to their effects upon prostaglandin synthesis, the non-steroidal anti-inflammatory drugs ibuprofen and flurbiprofen inhibit the metabolism of the endocannabinoids 2-arachidonoylglycerol (2-AG and anandamide (AEA by cyclooxygenase-2 (COX-2 and fatty acid amide hydrolase (FAAH, respectively. Here, we investigated whether these effects upon endocannabinoid metabolism are shared by the main metabolites of ibuprofen and flurbiprofen.COX activities were measured via changes in oxygen consumption due to oxygenation of arachidonic acid (for COX-1 and arachidonic acid and 2-AG (for COX-2. FAAH activity was quantified by measuring hydrolysis of tritium labelled AEA in rat brain homogenates. The ability of ibuprofen and flurbiprofen to inhibit COX-2-catalysed oxygenation of 2-AG at lower concentrations than the oxygenation of arachidonic acid was seen with 4'-hydroxyflurbiprofen and possibly also 3'-hydroxyibuprofen, albeit at lower potencies than the parent compounds. All ibuprofen and flurbiprofen metabolites retained the ability to inhibit FAAH in a pH-dependent manner, although the potency was lower than seen with the parent compounds.It is concluded that the primary metabolites of ibuprofen and flurbiprofen retain some of the properties of the parent compound with respect to inhibition of endocannabinoid metabolism. However, these effects are unlikely to contribute to the actions of the parent compounds in vivo.

  15. Rho-associated kinase inhibitors: a novel glaucoma therapy.

    Science.gov (United States)

    Inoue, Toshihiro; Tanihara, Hidenobu

    2013-11-01

    The rho-associated kinase (ROCK) signaling pathway is activated via secreted bioactive molecules or via integrin activation after extracellular matrix binding. These lead to polymerization of actin stress fibers and formation of focal adhesions. Accumulating evidence suggests that actin cytoskeleton-modulating signals are involved in aqueous outflow regulation. Aqueous humor contains various biologically active factors, some of which are elevated in glaucomatous eyes. These factors affect aqueous outflow, in part, through ROCK signaling modulation. Various drugs acting on the cytoskeleton have also been shown to increase aqueous outflow by acting directly on outflow tissue. In vivo animal studies have shown that the trabecular meshwork (TM) actin cytoskeleton in glaucomatous eyes is more disorganized and more randomly oriented than in non-glaucomatous control eyes. In a previous study, we introduced ROCK inhibitors as a potential glaucoma therapy by showing that a selective ROCK inhibitor significantly lowered rabbit IOP. Rho-associated kinase inhibitors directly affect the TM and Schlemm's canal (SC), differing from the target sight of other glaucoma drugs. The TM is affected earlier and more strongly than ciliary muscle cells by ROCK inhibitors, largely because of pharmacological affinity differences stemming from regulatory mechanisms. Additionally, ROCK inhibitors disrupt tight junctions, result in F-actin depolymerization, and modulate intracellular calcium level, effectively increasing SC-cell monolayer permeability. Perfusion of an enucleated eye with a ROCK inhibitor resulted in wider empty spaces in the juxtacanalicular (JCT) area and more giant vacuoles in the endothelial cells of SC, while the endothelial lining of SC was intact. Interestingly, ROCK inhibitors also increase retinal blood flow by relaxing vascular smooth muscle cells, directly protecting neurons against various stresses, while promoting wound healing. These additional effects may help

  16. Kulka lemmikud 2007 / Kalev Kesküla

    Index Scriptorium Estoniae

    Kesküla, Kalev, 1959-2010

    2008-01-01

    Eesti Kultuurikapitali aastapreemia said 17. saj. Tartu juhuluule kogumiku "O Dorpat, urbs addictissima musis" koostajad Kristi Viiding, Jana Orion, Janika Päll (Tallinn : Eesti Keele Sihtasutus, 2007)

  17. RENAL SAFETY OF PROTON PUMP INHIBITORS

    Directory of Open Access Journals (Sweden)

    A. I. Dyadyk

    2017-01-01

    Full Text Available Proton pump inhibitors are a widely used in clinical practice, and are taken by millions of patients around the world for a long time. While proton pump inhibitors are well-tolerated class of drugs, the number of publications has been raised about adverse renal effects, specially their association with acute tubulointerstitial nephritis. It is one of the leading causes of acute renal injury and have catastrophic long-term consequences called chronic kidney disease. In this review, we consider epidemiology, pathogenesis, diagnostic criteria (including biopsy and morphological pattern, clinical manifestations and treatment of proton pump inhibitors-induced acute tubulointerstitial nephritis. A subclinical course without classical manifestations of a cell-mediated hypersensitivity reaction (fever, skin rash, eosinophilia, arthralgia is characteristic of acute tubulointerstitial nephritis. Increased serum creatinine, decreased glomerular filtration rate, electrolyte disorders, pathological changes in urine tests are not highly specific indicators, but allow to suspect the development of acute tubulointerstitial nephritis. The “gold” standard of diagnosis is the intravital morphological examination of the kidney tissue. Timely diagnosis and immediate discontinuation of the potentially causative drug is the mainstay of therapy and the first necessary step in the early management of suspected or biopsy-proven drug-induced acute tubulointerstitial nephritis. The usage of proton pump inhibitors should be performed only on strict indications with optimal duration of treatment and careful monitoring of kidney function. Multiple comorbidities (older age, heart failure, diabetes, cirrhosis, chronic kidney disease, hypovolemia increase potential nephrotoxicity. Awareness of this iatrogenic complication will improve diagnosis of proton pump inhibitors-induced acute tubulointerstitial nephritis by multidisciplinary specialists and increase the possibility

  18. Benzoylurea Chitin Synthesis Inhibitors.

    Science.gov (United States)

    Sun, Ranfeng; Liu, Chunjuan; Zhang, Hao; Wang, Qingmin

    2015-08-12

    Benzoylurea chitin synthesis inhibitors are widely used in integrated pest management (IPM) and insecticide resistance management (IRM) programs due to their low toxicity to mammals and predatory insects. In the past decades, a large number of benzoylurea derivatives have been synthesized, and 15 benzoylurea chitin synthesis inhibitors have been commercialized. This review focuses on the history of commercial benzolyphenylureas (BPUs), synthetic methods, structure-activity relationships (SAR), action mechanism research, environmental behaviors, and ecotoxicology. Furthermore, their disadvantages of high risk to aquatic invertebrates and crustaceans are pointed out. Finally, we propose that the para-substituents at anilide of benzoylphenylureas should be the functional groups, and bipartite model BPU analogues are discussed in an attempt to provide new insight for future development of BPUs.

  19. SAH derived potent and selective EZH2 inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Pei-Pei; Huang, Buwen; Zehnder, Luke; Tatlock, John; Bingham, Patrick; Krivacic, Cody; Gajiwala, Ketan; Diehl, Wade; Yu, Xiu; Maegley, Karen A.

    2015-04-01

    A series of novel enhancer of zeste homolog 2 (EZH2) inhibitors was designed based on the chemical structure of the histone methyltransferase (HMT) inhibitor SAH (S-adenosyl-l-homocysteine). These nucleoside-based EZH2 inhibitors blocked the methylation of nucleosomes at H3K27 in biochemical assays employing both WT PRC2 complex as well as a Y641N mutant PRC2 complex. The most potent compound, 27, displayed IC50’s against both complexes of 270 nM and 70 nM, respectively. To our knowledge, compound 27 is the most potent SAH-derived inhibitor of the EZH2 PRC2 complex yet identified. This compound also displayed improved potency, lipophilic efficiency (LipE), and selectivity profile against other lysine methyltransferases compared with SAH.

  20. Processing cardiovascular information in the vlPAG during electroacupuncture in rats: roles of endocannabinoids and GABA

    Science.gov (United States)

    Tjen-A-Looi, Stephanie C.; Li, Peng; Longhurst, John C.

    2009-01-01

    A long-loop pathway, involving the hypothalamic arcuate nucleus (ARC), ventrolateral periaqueductal gray (vlPAG), and the rostral ventrolateral medulla (rVLM), is essential in electroacupuncture (EA) attenuation of sympathoexcitatory cardiovascular reflex responses. The ARC provides excitatory input to the vlPAG, which, in turn, inhibits neuronal activity in the rVLM. Although previous studies have shown that endocannabinoid CB1 receptor activation modulates γ-aminobutyric acid (GABA)-ergic and glutamatergic neurotransmission in the dorsolateral PAG in stress-induced analgesia, an important role for endocannabinoids in the vlPAG has not yet been observed. We recently have shown (Fu LW, Longhurst JC. J Appl Physiol; doi:10.1152/japplphysiol.91648.2008) that EA reduces the local vlPAG concentration of GABA, but not glutamate, as measured with high-performance liquid chromatography from extracellular samples collected by microdialysis. We, therefore, hypothesized that, during EA, endocannabinoids, acting through CB1 receptors, presynaptically inhibit GABA release to disinhibit the vlPAG and ultimately modulate excitatory reflex blood pressure responses. Rats were anesthetized, ventilated, and instrumented to measure heart rate and blood pressure. Gastric distention-induced blood pressure responses of 18 ± 5 mmHg were reduced to 6 ± 1 mmHg by 30 min of low-current, low-frequency EA applied bilaterally at pericardial P 5–6 acupoints overlying the median nerves. Like EA, microinjection of the fatty acid amide hydrolase inhibitor URB597 (0.1 nmol, 50 nl) into the vlPAG to increase endocannabinoids locally reduced the gastric distention cardiovascular reflex response from 21 ± 5 to 3 ± 4 mmHg. This inhibition was reversed by pretreatment with the GABAA antagonist gabazine (27 mM, 50 nl), suggesting that endocannabinoids exert their action through a GABAergic receptor mechanism in the vlPAG. The EA-related inhibition from 18 ± 3 to 8 ± 2 mmHg was reversed to 14

  1. A cyclic peptidic serine protease inhibitor

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase...... pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending......, in spite of a less favorable binding entropy and loss of a polar interaction. We conclude that increased flexibility of the peptide allows more favorable exosite interactions, which, in combination with the use of novel Arg analogues as P1 residues, can be used to manipulate the affinity and specificity...

  2. Inhibitors of Fatty Acid Synthase for Prostate Cancer. Revision

    Science.gov (United States)

    2013-05-01

    acetyl- cholinesterase inhibitors have been developed, many with femtomolar binding affinities (7). This body of literature also confirms that the...AD_________________ Award Number: W81XWH-09-1-0204 TITLE: Inhibitors of Fatty Acid Synthase for...May 2013 2. REPORT TYPE Revised Final 3. DATES COVERED 01 May 2009-30 Apr 2013 4. TITLE AND SUBTITLE Inhibitors of Fatty Acid Synthase for

  3. The 'retro-design' concept for novel kinase inhibitors.

    Science.gov (United States)

    Müller, Gerhard; Sennhenn, Peter C; Woodcock, Timothy; Neumann, Lars

    2010-07-01

    Protein kinases are among the most attractive therapeutic targets for a broad range of diseases. This feature review highlights and classifies the main design principles employed to generate active and selective kinase inhibitors. In particular, emphasis is focused on a fragment-based lead-generation approach, which constitutes a novel design method for developing type II kinase inhibitors with distinct binding kinetic attributes. This 'retro-design' strategy relies on a customized fragment library, and contrasts the traditional approach used in the design of type II inhibitors.

  4. New synthetic thrombin inhibitors: molecular design and experimental verification.

    Directory of Open Access Journals (Sweden)

    Elena I Sinauridze

    Full Text Available BACKGROUND: The development of new anticoagulants is an important goal for the improvement of thromboses treatments. OBJECTIVES: The design, synthesis and experimental testing of new safe and effective small molecule direct thrombin inhibitors for intravenous administration. METHODS: Computer-aided molecular design of new thrombin inhibitors was performed using our original docking program SOL, which is based on the genetic algorithm of global energy minimization in the framework of a Merck Molecular Force Field. This program takes into account the effects of solvent. The designed molecules with the best scoring functions (calculated binding energies were synthesized and their thrombin inhibitory activity evaluated experimentally in vitro using a chromogenic substrate in a buffer system and using a thrombin generation test in isolated plasma and in vivo using the newly developed model of hemodilution-induced hypercoagulation in rats. The acute toxicities of the most promising new thrombin inhibitors were evaluated in mice, and their stabilities in aqueous solutions were measured. RESULTS: New compounds that are both effective direct thrombin inhibitors (the best K(I was 1111.1 mg/kg. A plasma-substituting solution supplemented with one of the new inhibitors prevented hypercoagulation in the rat model of hemodilution-induced hypercoagulation. Activities of the best new inhibitors in physiological saline (1 µM solutions were stable after sterilization by autoclaving, and the inhibitors remained stable at long-term storage over more than 1.5 years at room temperature and at 4°C. CONCLUSIONS: The high efficacy, stability and low acute toxicity reveal that the inhibitors that were developed may be promising for potential medical applications.

  5. Lack of association of genetic variants in genes of the endocannabinoid system with anorexia nervosa

    Directory of Open Access Journals (Sweden)

    Herpertz-Dahlmann Beate

    2008-11-01

    Full Text Available Abstract Background Several lines of evidence indicate that the central cannabinoid receptor 1 (CNR1 as well as the major endocannabinoid degrading enzymes fatty acid amide hydrolase (FAAH, N-acylethanolamine-hydrolyzing acid amidase (NAAA and monoglyceride lipase (MGLL are implicated in mediating the orexigenic effects of cannabinoids. The aim of this study was to analyse whether nucleotide sequence variations in the CNR1, FAAH, NAAA and MGLL genes are associated with anorexia nervosa (AN. Methods We analysed the association of a previously described (AATn repeat in the 3' flanking region of CNR1 as well as a total of 15 single nucleotide polymorphisms (SNPs representative of regions with restricted haplotype diversity in CNR1, FAAH, NAAA or MGLL in up to 91 German AN trios (patient with AN and both biological parents using the transmission-disequilibrium-test (TDT. One SNP was additionally analysed in an independent case-control study comprising 113 patients with AN and 178 normal weight controls. Genotyping was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, ARMS-PCR or using 3730xl capillary sequencers. Results The TDT revealed no evidence for association for any of the SNPs or the (AATn repeat with AN (all two-sided uncorrected p-values > 0.05. The lowest p-value of 0.11 was detected for the A-allele of the CNR1 SNP rs1049353 for which the transmission rate was 59% (95% confidence interval 47%...70%. Further genotyping of rs1049353 in 113 additional independent patients with AN and 178 normal weight controls could not substantiate the initial trend for association (p = 1.00. Conclusion As we found no evidence for an association of genetic variation in CNR1, FAAH, NAAA and MGLL with AN, we conclude that genetic variations in these genes do not play a major role in the etiology of AN in our study groups.

  6. Aggregation of trypsin and trypsin inhibitor by Al cation.

    Science.gov (United States)

    Chanphai, P; Kreplak, L; Tajmir-Riahi, H A

    2017-04-01

    Al cation may trigger protein structural changes such as aggregation and fibrillation, causing neurodegenerative diseases. We report the effect of Al cation on the solution structures of trypsin (try) and trypsin inhibitor (tryi), using thermodynamic analysis, UV-Visible, Fourier transform infrared (FTIR) spectroscopic methods and atomic force microscopy (AFM). Thermodynamic parameters showed Al-protein bindings occur via H-bonding and van der Waals contacts for trypsin and trypsin inhibitor. AFM showed that Al cations are able to force trypsin into larger or more robust aggregates than trypsin inhibitor, with trypsin 5±1 SE (n=52) proteins per aggregate and for trypsin inhibitor 8.3±0.7 SE (n=118). Thioflavin T test showed no major protein fibrillation in the presence of Al cation. Al complexation induced more alterations of trypsin inhibitor conformation than trypsin. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Peptide inhibitors of botulinum neurotoxin by mRNA display

    International Nuclear Information System (INIS)

    Yiadom, Kwabena P.A.B.; Muhie, Seid; Yang, David C.H.

    2005-01-01

    Botulinum neurotoxins (BoNTs) are extremely toxic. The metalloproteases associated with the toxins cleave proteins essential for neurotransmitter secretion. Inhibitors of the metalloprotease are currently sought to control the toxicity of BoNTs. Toward that goal, we produced a synthetic cDNA for the expression and purification of the metalloprotease of BoNT/A in Escherichia coli as a biotin-ubiquitin fusion protein, and constructed a combinatorial peptide library to screen for BoNT/A light chain inhibitors using mRNA display. A protease assay was developed using immobilized intact SNAP-25 as the substrate. The new peptide inhibitors showed a 10-fold increase in affinity to BoNT/A light chain than the parent peptide. Interestingly, the sequences of the new peptide inhibitors showed abundant hydrophobic residues but few hydrophilic residues. The results suggest that mRNA display may provide a general approach in developing peptide inhibitors of BoNTs

  8. Cyclooxygenase-2 inhibitors and free flap complications after autologous breast reconstruction

    DEFF Research Database (Denmark)

    Bonde, Christian; Khorasani, Hoda; Hoejvig, Jens

    2017-01-01

    BACKGROUND: A key component of modern analgesics is the use of multimodal opioid-sparing analgesia (MOSA). In the past, our analgesic regime after autologous breast reconstruction (ABR) included either NSAID or a selective cyclooxygenase-2 (COX-2) inhibitor. COX-2 inhibitors are superior to NSAID...... or gastrointestinal bleeding. CONCLUSIONS: Multimodal analgesia using a COX-2 inhibitor is safe in ABR with free flaps and does not increase flap failure. COX-2 inhibitors seem superior to NSAID with reduced risk of post-operative haematomas.......BACKGROUND: A key component of modern analgesics is the use of multimodal opioid-sparing analgesia (MOSA). In the past, our analgesic regime after autologous breast reconstruction (ABR) included either NSAID or a selective cyclooxygenase-2 (COX-2) inhibitor. COX-2 inhibitors are superior to NSAIDs...... because of the well-known side effects of NSAID treatment (bleeding/gastrointestinal ulcers). However, COX-2 inhibitors have been suggested to increase flap failure rates. We report our experience in using COX-2 inhibitors as part of our post-operative MOSA after ABR using free flaps. MATERIALS...

  9. Kinase inhibitors: a new class of antirheumatic drugs

    Directory of Open Access Journals (Sweden)

    Kyttaris VC

    2012-09-01

    Full Text Available Vasileios C KyttarisDivision of Rheumatology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USAAbstract: The outlook for patients with rheumatoid arthritis has improved significantly over the last three decades with the use of disease-modifying antirheumatic drugs. However, despite the use of methotrexate, cytokine inhibitors, and molecules targeting T and B cells, a percentage of patients do not respond or lose their response over time. The autoimmune process in rheumatoid arthritis depends on activation of immune cells, which utilize intracellular kinases to respond to external stimuli such as cytokines, immune complexes, and antigens. In the past decade, small molecules targeting several kinases, such as p38 MAPK, Syk, and JAK have been developed. Several p38 MAPK inhibitors proved ineffective in treating rheumatoid arthritis. The Syk inhibitor, fostamatinib, proved superior to placebo in Phase II trials and is currently under Phase III investigation. Tofacitinib, a JAK1/3 inhibitor, was shown to be efficacious in two Phase III trials, while VX-509, a JAK3 inhibitor, showed promising results in a Phase II trial. Fostamatinib and tofacitinib were associated with increased rates of infection, elevation of liver enzymes, and neutropenia. Moreover, fostamatinib caused elevations of blood pressure and diarrhea, while tofacitinib was associated with an increase in creatinine and elevation of lipid levels.Keywords: rheumatoid arthritis, kinase inhibitors, mitogen-activated phosphokinase p38, spleen tyrosine kinase, Janus kinases

  10. Chemoproteomics-Aided Medicinal Chemistry for the Discovery of EPHA2 Inhibitors.

    Science.gov (United States)

    Heinzlmeir, Stephanie; Lohse, Jonas; Treiber, Tobias; Kudlinzki, Denis; Linhard, Verena; Gande, Santosh Lakshmi; Sreeramulu, Sridhar; Saxena, Krishna; Liu, Xiaofeng; Wilhelm, Mathias; Schwalbe, Harald; Kuster, Bernhard; Médard, Guillaume

    2017-06-21

    The receptor tyrosine kinase EPHA2 has gained attention as a therapeutic drug target for cancer and infectious diseases. However, EPHA2 research and EPHA2-based therapies have been hampered by the lack of selective small-molecule inhibitors. Herein we report the synthesis and evaluation of dedicated EPHA2 inhibitors based on the clinical BCR-ABL/SRC inhibitor dasatinib as a lead structure. We designed hybrid structures of dasatinib and the previously known EPHA2 binders CHEMBL249097, PD-173955, and a known EPHB4 inhibitor in order to exploit both the ATP pocket entrance as well as the ribose pocket as binding epitopes in the kinase EPHA2. Medicinal chemistry and inhibitor design were guided by a chemical proteomics approach, allowing early selectivity profiling of the newly synthesized inhibitor candidates. Concomitant protein crystallography of 17 inhibitor co-crystals delivered detailed insight into the atomic interactions that underlie the structure-affinity relationship. Finally, the anti-proliferative effect of the inhibitor candidates was confirmed in the glioblastoma cell line SF-268. In this work, we thus discovered a novel EPHA2 inhibitor candidate that features an improved selectivity profile while maintaining potency against EPHA2 and anticancer activity in SF-268 cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Different angiotensin-converting enzyme inhibitors have similar clinical efficacy after myocardial infarction

    DEFF Research Database (Denmark)

    Hansen, Morten L; Gislason, Gunnar H; Køber, Lars

    2008-01-01

    What is already known about this subject: Treatment with an angiotensin-converting enzyme (ACE) inhibitor benefits many patients with cardiovascular disease. ACE inhibitors are generally assumed to be equally effective, but this has never been fully verified in clinical trials. What this study adds...... important and not which ACE inhibitor is used. AIM: Therapy with angiotensin-converting enzyme (ACE) inhibitors is common after myocardial infarction (MI). Given the lack of randomized trials comparing different ACE inhibitors, the association among ACE inhibitors after MI in risk for mortality...

  12. Discovery and SAR of hydantoin TACE inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wensheng; Guo, Zhuyan; Orth, Peter; Madison, Vincent; Chen, Lei; Dai, Chaoyang; Feltz, Robert J.; Girijavallabhan, Vinay M.; Kim, Seong Heon; Kozlowski, Joseph A.; Lavey, Brian J.; Li, Dansu; Lundell, Daniel; Niu, Xiaoda; Piwinski, John J.; Popovici-Muller, Janeta; Rizvi, Razia; Rosner, Kristin E.; Shankar, Bandarpalle B.; Shih, Neng-Yang; Siddiqui, M.A.; Sun, J.; Tong, L.; Umland, S.; Wong, M.K.; Yang, D.Y.; Zhou, G. (Merck)

    2010-09-03

    We disclose inhibitors of TNF-{alpha} converting enzyme (TACE) designed around a hydantoin zinc binding moiety. Crystal structures of inhibitors bound to TACE revealed monodentate coordination of the hydantoin to the zinc. SAR, X-ray, and modeling designs are described. To our knowledge, these are the first reported X-ray structures of TACE with a hydantoin zinc ligand.

  13. Bicyclic peptide inhibitor of urokinase-type plasminogen activator

    DEFF Research Database (Denmark)

    Roodbeen, Renée; Jensen, Berit Paaske; Jiang, Longguang

    2013-01-01

    The development of protease inhibitors for pharmacological intervention has taken a new turn with the use of peptide-based inhibitors. Here, we report the rational design of bicyclic peptide inhibitors of the serine protease urokinase-type plasminogen activator (uPA), based on the established...... investigated the solution structures of the bicyclic peptide by NMR spectroscopy to map possible conformations. An X-ray structure of the bicyclic-peptide-uPA complex confirmed an interaction similar to that for the previous upain-1/upain-2-uPA complexes. These physical studies of the peptide...

  14. A novel method for screening the glutathione transferase inhibitors

    Directory of Open Access Journals (Sweden)

    Węgrzyn Grzegorz

    2009-03-01

    Full Text Available Abstract Background Glutathione transferases (GSTs belong to the family of Phase II detoxification enzymes. GSTs catalyze the conjugation of glutathione to different endogenous and exogenous electrophilic compounds. Over-expression of GSTs was demonstrated in a number of different human cancer cells. It has been found that the resistance to many anticancer chemotherapeutics is directly correlated with the over-expression of GSTs. Therefore, it appears to be important to find new GST inhibitors to prevent the resistance of cells to anticancer drugs. In order to search for glutathione transferase (GST inhibitors, a novel method was designed. Results Our results showed that two fragments of GST, named F1 peptide (GYWKIKGLV and F2 peptide (KWRNKKFELGLEFPNL, can significantly inhibit the GST activity. When these two fragments were compared with several known potent GST inhibitors, the order of inhibition efficiency (measured in reactions with 2,4-dinitrochlorobenzene (CDNB and glutathione as substrates was determined as follows: tannic acid > cibacron blue > F2 peptide > hematin > F1 peptide > ethacrynic acid. Moreover, the F1 peptide appeared to be a noncompetitive inhibitor of the GST-catalyzed reaction, while the F2 peptide was determined as a competitive inhibitor of this reaction. Conclusion It appears that the F2 peptide can be used as a new potent specific GST inhibitor. It is proposed that the novel method, described in this report, might be useful for screening the inhibitors of not only GST but also other enzymes.

  15. Environmental life cycle analysis of potato sprout inhibitors

    NARCIS (Netherlands)

    Kerstholt, R.P.V.; Ree, C.M.; Moll, H.C.

    Potato sprout inhibitors are generally applied to suppress sprouting during winter storage. This study presents the compared environmental profiles of the two sprout inhibitors available on the Dutch market: A traditional chemical product with isopropyl-3-chlorophenylcarbamate (CIPC) and

  16. Hepatitis C Virus NS3 Inhibitors: Current and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Kazi Abdus Salam

    2013-01-01

    Full Text Available Currently, hepatitis C virus (HCV infection is considered a serious health-care problem all over the world. A good number of direct-acting antivirals (DAAs against HCV infection are in clinical progress including NS3-4A protease inhibitors, RNA-dependent RNA polymerase inhibitors, and NS5A inhibitors as well as host targeted inhibitors. Two NS3-4A protease inhibitors (telaprevir and boceprevir have been recently approved for the treatment of hepatitis C in combination with standard of care (pegylated interferon plus ribavirin. The new therapy has significantly improved sustained virologic response (SVR; however, the adverse effects associated with this therapy are still the main concern. In addition to the emergence of viral resistance, other targets must be continually developed. One such underdeveloped target is the helicase portion of the HCV NS3 protein. This review article summarizes our current understanding of HCV treatment, particularly with those of NS3 inhibitors.

  17. Monoamine Oxidase Inhibitors (MAOIs)

    Science.gov (United States)

    ... health-medications/index.shtml. Accessed May 16, 2016. Hirsch M, et al. Monoamine oxidase inhibitors (MAOIs) for ... www.uptodate.com/home. Accessed May 16, 2016. Hirsch M, et al. Discontinuing antidepressant medications in adults. ...

  18. Recent Natural Corrosion Inhibitors for Mild Steel: An Overview

    Directory of Open Access Journals (Sweden)

    Marko Chigondo

    2016-01-01

    Full Text Available Traditionally, reduction of corrosion has been managed by various methods including cathodic protection, process control, reduction of the metal impurity content, and application of surface treatment techniques, as well as incorporation of suitable alloys. However, the use of corrosion inhibitors has proven to be the easiest and cheapest method for corrosion protection and prevention in acidic media. These inhibitors slow down the corrosion rate and thus prevent monetary losses due to metallic corrosion on industrial vessels, equipment, or surfaces. Inorganic and organic inhibitors are toxic and costly and thus recent focus has been turned to develop environmentally benign methods for corrosion retardation. Many researchers have recently focused on corrosion prevention methods using green inhibitors for mild steel in acidic solutions to mimic industrial processes. This paper provides an overview of types of corrosion, corrosion process, and mainly recent work done on the application of natural plant extracts as corrosion inhibitors for mild steel.

  19. [Isomeric derivatives of lupinine and epilupinine--organophosphorus inhibitors of cholinesterases].

    Science.gov (United States)

    Basova, N E; Kormilitsyn, B N; Perchenok, A Iu; Rosengart, E V; Saakov, V S; Suvorov, A A

    2012-01-01

    The isomeric-structure analysis data of anticholinesterase action of organophosphorous inhibitors with similar structure help in the search of specific effectors and detection of differences in reactivity of various animals' enzymes. This study compared the data of efficacy in respect of 4 mammal and 5 arthropoda cholinesterase preparations for 26 quinolizidine inhibitors, which molecules contain both the isomeric unbranched and branched alkoxyl radicals in the phosphoryl group, and the epimeric lupinine and epilupinine derivatives in the leaving group. The changes in the alkoxyl radical structure of inhibitor molecules act on their efficacy only with respect to the mammal enzymes ("group" inhibitor specificity). The differences between lupinine and epilupinine derivatives were revealed. Highly specific inhibitors of different enzymes were detected among the tested compounds.

  20. Lansoprazole and carbonic anhydrase IX inhibitors sinergize against human melanoma cells.

    Science.gov (United States)

    Federici, Cristina; Lugini, Luana; Marino, Maria Lucia; Carta, Fabrizio; Iessi, Elisabetta; Azzarito, Tommaso; Supuran, Claudiu T; Fais, Stefano

    2016-01-01

    Proton Pump Inhibitors (PPIs) reduce tumor acidity and therefore resistance of tumors to drugs. Carbonic Anhydrase IX (CA IX) inhibitors have proven to be effective against tumors, while tumor acidity might impair their full effectiveness. To analyze the effect of PPI/CA IX inhibitors combined treatment against human melanoma cells. The combination of Lansoprazole (LAN) and CA IX inhibitors (FC9-399A and S4) has been investigated in terms of cell proliferation inhibition and cell death in human melanoma cells. The combination of these inhibitors was more effective than the single treatments in both inhibiting cell proliferation and in inducing cell death in human melanoma cells. These results represent the first successful attempt in combining two different proton exchanger inhibitors. This is the first evidence on the effectiveness of a new approach against tumors based on the combination of PPI and CA IX inhibitors, thus providing an alternative strategy against tumors.

  1. Escape from Human Immunodeficiency Virus Type 1 (HIV-1 Entry Inhibitors

    Directory of Open Access Journals (Sweden)

    Carol D. Weiss

    2012-12-01

    Full Text Available The human immunodeficiency virus (HIV enters cells through a series of molecular interactions between the HIV envelope protein and cellular receptors, thus providing many opportunities to block infection. Entry inhibitors are currently being used in the clinic, and many more are under development. Unfortunately, as is the case for other classes of antiretroviral drugs that target later steps in the viral life cycle, HIV can become resistant to entry inhibitors. In contrast to inhibitors that block viral enzymes in intracellular compartments, entry inhibitors interfere with the function of the highly variable envelope glycoprotein as it continuously adapts to changing immune pressure and available target cells in the extracellular environment. Consequently, pathways and mechanisms of resistance for entry inhibitors are varied and often involve mutations across the envelope gene. This review provides a broad overview of entry inhibitor resistance mechanisms that inform our understanding of HIV entry and the design of new inhibitors and vaccines.

  2. Cancer risk and use of protease inhibitor or nonnucleoside reverse transcriptase inhibitor-based combination antiretroviral therapy: the D: A: D study

    NARCIS (Netherlands)

    Bruyand, M.; Ryom, L.; Shepherd, L.; Fatkenheuer, G.; Grulich, A.; Reiss, P.; Wit, S. de; Monforte, A.M.; Furrer, H.; Pradier, C.; Lundgren, J.; Sabin, C.; Warris, A.; et al.,

    2015-01-01

    BACKGROUND: The association between combination antiretroviral therapy (cART) and cancer risk, especially regimens containing protease inhibitors (PIs) or nonnucleoside reverse transcriptase inhibitors (NNRTIs), is unclear. METHODS: Participants were followed from the latest of D:A:D study entry or

  3. Cancer risk and use of protease inhibitor or nonnucleoside reverse transcriptase inhibitor-based combination antiretroviral therapy : the D: A: D study

    NARCIS (Netherlands)

    Bruyand, Mathias; Ryom, Lene; Shepherd, Leah; Fatkenheuer, Gerd; Grulich, Andrew; Reiss, Peter; de Wit, Stéphane; D Arminio Monforte, Antonella; Furrer, Hansjakob; Pradier, Christian; Lundgren, Jens; Sabin, Caroline; Schölvinck, Elisabeth H.

    2015-01-01

    BACKGROUND: The association between combination antiretroviral therapy (cART) and cancer risk, especially regimens containing protease inhibitors (PIs) or nonnucleoside reverse transcriptase inhibitors (NNRTIs), is unclear. METHODS: Participants were followed from the latest of D:A:D study entry or

  4. Overcoming imatinib resistance using Src inhibitor CGP76030, Abl inhibitor nilotinib and Abl/Lyn inhibitor INNO-406 in newly established K562 variants with BCR-ABL gene amplification.

    Science.gov (United States)

    Morinaga, Koji; Yamauchi, Takahiro; Kimura, Shinya; Maekawa, Taira; Ueda, Takanori

    2008-06-01

    Because imatinib (IM) resistance in chronic myeloid leukemia is primarily caused by the re-establishment of Abl kinase, new inhibitors may be efficacious. We evaluated 3 new agents against 2 new K562 variants, IM-R1 and IM-R2 cells, which were developed having 7- and 27-fold greater IM resistance, respectively, than the parental K562 cells. Both variants possessed BCR-ABL gene amplification along with elevated levels of its transcript and protein. Greater BCR-ABL gene amplification was observed in IM-R2 cells than in IM-R1 cells, which was consistent with the higher mRNA and protein levels of Bcr-Abl, and ultimately correlated with the greater IM resistance in IM-R2 cells. No mutation in the Abl kinase domain was detected in either variant. Despite the absence of Lyn overexpression, the Src kinase inhibitor CGP76030 showed positive cooperability with IM in inhibiting cell growth of not only K562 cells but also these 2 variants. This might be because of the augmented inhibition of Erk1/2 phosphorylation. The new Abl kinase inhibitor nilotinib was 10-fold more potent than IM in inhibiting the growth of K562 cells. Nilotinib inhibited the growth of IM-R1 and IM-R2 cells as potently as K562 cells. The combination of nilotinib with CGP76030 showed little additivity, because the potency of nilotinib masked the efficacy of CGP76030. The new dual Abl/Lyn inhibitor INNO-406 (formerly NS-187) was slightly more potent than nilotinib in inhibiting the growth of all 3 cell lines. Because BCR-ABL gene amplification occurs in blast crisis, these inhibitors might overcome IM resistance in such patients' leukemia. (c) 2008 Wiley-Liss, Inc.

  5. A novel class of small molecule inhibitors of HDAC6.

    Science.gov (United States)

    Inks, Elizabeth S; Josey, Benjamin J; Jesinkey, Sean R; Chou, C James

    2012-02-17

    Histone deacetylases (HDACs) are a family of enzymes that play significant roles in numerous biological processes and diseases. HDACs are best known for their repressive influence on gene transcription through histone deacetylation. Mapping of nonhistone acetylated proteins and acetylation-modifying enzymes involved in various cellular pathways has shown protein acetylation/deacetylation also plays key roles in a variety of cellular processes including RNA splicing, nuclear transport, and cytoskeletal remodeling. Studies of HDACs have accelerated due to the availability of small molecule HDAC inhibitors, most of which contain a canonical hydroxamic acid or benzamide that chelates the metal catalytic site. To increase the pool of unique and novel HDAC inhibitor pharmacophores, a pharmacological active compound screen was performed. Several unique HDAC inhibitor pharmacophores were identified in vitro. One class of novel HDAC inhibitors, with a central naphthoquinone structure, displayed a selective inhibition profile against HDAC6. Here we present the results of a unique class of HDAC6 inhibitors identified using this compound library screen. In addition, we demonstrated that treatment of human acute myeloid leukemia cell line MV4-11 with the selective HDAC6 inhibitors decreases levels of mutant FLT-3 and constitutively active STAT5 and attenuates Erk phosphorylation, all of which are associated with the inhibitor's selective toxicity against leukemia.

  6. Tühjast tihedusest : Liivaoja elamukvartal Kadriorus = Empty Density : Liivaoja Residential Area in Kadriorg, Tallinn / Tuuli Köller

    Index Scriptorium Estoniae

    Köller, Tuuli

    2007-01-01

    Planeering: K-Projekt. Arhitektid: Emil Urbeli Arhitektibüroo, M. Pressi Arhitektuuribüroo. Pikemalt majadevahelisse ruumi sisse programmeeritud tegevusetusest. Projekt: 2005, valmis: 2006-2007. 6 värv. vaadet

  7. Design, Synthesis and Biological Evaluation of Histone Deacetylase (HDAC) Inhibitors: Saha (Vorinostat) Analogs and Biaryl Indolyl Benzamide Inhibitors Display Isoform Selectivity

    Science.gov (United States)

    Negmeldin, Ahmed Thabet

    HDAC proteins have emerged as interesting targets for anti-cancer drugs due to their involvement in cancers, as well as several other diseases. Several HDAC inhibitors have been approved by the FDA as anti-cancer drugs, including SAHA (suberoylanilide hydroxamic acid, Vorinostat). Unfortunately, SAHA inhibits most HDAC isoforms, which limit its use as a pharmacological tool and may lead to side effects in the clinic. In this work we were interested in developing isoform selective HDAC inhibitors, which may decrease or eliminate the side effects associated with non-selective inhibitors treatment. In addition, isoform selective HDAC inhibitors can be used as biological tools to help understand the HDAC-related cancer biology. Our strategy was based on synthesis and screening of several derivatives of the non-selective FDA approved drug SAHA substituted at different positions of the linker region. Several SAHA analogs modified at the C4 and C5 positions of the linker were synthesized. The new C4- and C5-modified SAHA libraries, along with the previously synthesized C2-modified SAHA analogs were screened in vitro and in cellulo for HDAC isoform selectivity. Interestingly, several analogs exhibited dual HDAC6/HDAC8 selectivity. Enantioselective syntheses of the pure enantiomers of some of the interesting analogs were performed and the enantiomers were screened in vitro. Among the most interesting analogs, ( R)-C4-benzyl SAHA displayed 520- to 1300-fold selectivity for HDAC6 and HDAC8 over HDAC1, 2, and 3, with IC50 values of 48 and 27 nM with HDAC6 and 8, respectively. Docking studies were performed to provide structural rationale for the observed selectivity of the new analogs. In addition, rational design, synthesis, and screening of several other biaryl indolyl benzamide HDAC inhibitors is discussed, and some showed modest HDAC1 selectivity. The new biaryl indolyl benzamides can be useful to further develop HDAC1 selective inhibitors. The dual HDAC6/8 selective

  8. Impact of sodium–glucose cotransporter 2 inhibitors on blood pressure

    Directory of Open Access Journals (Sweden)

    Reed JW

    2016-10-01

    Full Text Available James W Reed Morehouse School of Medicine, Atlanta, GA, USA Abstract: SGLT2 inhibitors are glucose-lowering agents used to treat type 2 diabetes mellitus (T2DM. These agents target the kidney to promote urinary glucose excretion, resulting in improved blood glucose control. SGLT2-inhibitor therapy is also associated with weight loss and blood pressure (BP lowering. Hypertension is a common comorbidity in patients with T2DM, and is associated with excess morbidity and mortality. This review summarizes data on the effect of SGLT2 inhibitors marketed in the US (namely canagliflozin, dapagliflozin, or empagliflozin on BP in patients with T2DM. Boolean searches were conducted that included terms related to BP or hypertension with terms for SGLT2 inhibitors, canagliflozin, dapagliflozin, or empagliflozin using PubMed, Google, and Google Scholar. Data from numerous randomized controlled trials of SGLT2 inhibitors in patients with T2DM demonstrated clinically relevant reductions in both systolic and diastolic BP, assessed via seated office measurements and 24-hour ambulatory BP monitoring. Observed BP lowering was not associated with compensatory increases in heart rate. Circadian BP rhythm was also maintained. The mechanism of SGLT2 inhibitor-associated BP reduction is not fully understood, but is assumed to be related to osmotic diuresis and natriuresis. Other factors that may also contribute to BP reduction include SGLT2 inhibitor-associated decreases in body weight and reduced arterial stiffness. Local inhibition of the renin–angiotensin–aldosterone system secondary to increased delivery of sodium to the juxtaglomerular apparatus during SGLT2 inhibition has also been postulated. Although SGLT2 inhibitors are not indicated as BP-lowering agents, the modest decreases in systolic and diastolic BP observed with SGLT2 inhibitors may provide an extra clinical advantage for the majority of patients with T2DM, in addition to improving blood glucose

  9. Organophosphate acetylcholine esterase inhibitor poisoning from a home-made shampoo.

    Science.gov (United States)

    Sadaka, Yair; Broides, Arnon; Tzion, Raffi Lev; Lifshitz, Matitiahu

    2011-07-01

    Organophosphate acetylcholine esterase inhibitor poisoning is a major health problem in children. We report an unusual cause of organophosphate acetylcholine esterase inhibitor poisoning. Two children were admitted to the pediatric intensive care unit due to organophosphate acetylcholine esterase inhibitor poisoning after exposure from a home-made shampoo that was used for the treatment of head lice. Owing to no obvious source of poisoning, the diagnosis of organophosphate acetylcholine esterase inhibitor poisoning in one of these patients was delayed. Both patients had an uneventful recovery. Organophosphate acetylcholine esterase inhibitor poisoning from home-made shampoo is possible. In cases where the mode of poisoning is unclear, direct questioning about the use of home-made shampoo is warranted, in these cases the skin and particularly the scalp should be rinsed thoroughly as soon as possible.

  10. The Nonglycemic Actions of Dipeptidyl Peptidase-4 Inhibitors

    Directory of Open Access Journals (Sweden)

    Na-Hyung Kim

    2014-01-01

    Full Text Available A cell surface serine protease, dipeptidyl peptidase 4 (DPP-4, cleaves dipeptide from peptides containing proline or alanine in the N-terminal penultimate position. Two important incretin hormones, glucagon-like peptide-1 (GLP-1 and glucose-dependent insulinotropic peptide (GIP, enhance meal-stimulated insulin secretion from pancreatic β-cells, but are inactivated by DPP-4. Diabetes and hyperglycemia increase the DPP-4 protein level and enzymatic activity in blood and tissues. In addition, multiple other functions of DPP-4 suggest that DPP-4 inhibitor, a new class of antidiabetic agents, may have pleiotropic effects. Studies have shown that DPP-4 itself is involved in the inflammatory signaling pathway, the stimulation of vascular smooth cell proliferation, and the stimulation of oxidative stress in various cells. DPP-4 inhibitor ameliorates these pathophysiologic processes and has been shown to have cardiovascular protective effects in both in vitro and in vivo experiments. However, in recent randomized clinical trials, DPP-4 inhibitor therapy in high risk patients with type 2 diabetes did not show cardiovascular protective effects. Some concerns on the actions of DPP-4 inhibitor include sympathetic activation and neuropeptide Y-mediated vascular responses. Further studies are required to fully characterize the cardiovascular effects of DPP-4 inhibitor.

  11. Unsaturated fatty acids lactose esters: cytotoxicity, permeability enhancement and antimicrobial activity.

    Science.gov (United States)

    Lucarini, Simone; Fagioli, Laura; Campana, Raffaella; Cole, Hannah; Duranti, Andrea; Baffone, Wally; Vllasaliu, Driton; Casettari, Luca

    2016-10-01

    Sugar based surfactants conjugated with fatty acid chains are an emerging broad group of highly biocompatible and biodegradable compounds with established and potential future applications in the pharmaceutical, cosmetic and food industries. In this work, we investigated absorption enhancing and antimicrobial properties of disaccharide lactose, monoesterified with unsaturated fatty acids through an enzymatic synthetic approach. After chemical and cytotoxicity characterizations, their permeability enhancing activity was demonstrated using intestinal Caco-2 monolayers through transepithelial electrical resistance (TEER) and permeability studies. The synthesized compounds, namely lactose palmitoleate (URB1076) and lactose nervonate (URB1077), were shown to exhibit antimicrobial activity versus eight pathogenic species belonging to Gram-positive, Gram-negative microorganisms and fungi. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A novel small molecule inhibitor of hepatitis C virus entry.

    Directory of Open Access Journals (Sweden)

    Carl J Baldick

    Full Text Available Small molecule inhibitors of hepatitis C virus (HCV are being developed to complement or replace treatments with pegylated interferons and ribavirin, which have poor response rates and significant side effects. Resistance to these inhibitors emerges rapidly in the clinic, suggesting that successful therapy will involve combination therapy with multiple inhibitors of different targets. The entry process of HCV into hepatocytes represents another series of potential targets for therapeutic intervention, involving viral structural proteins that have not been extensively explored due to experimental limitations. To discover HCV entry inhibitors, we utilized HCV pseudoparticles (HCVpp incorporating E1-E2 envelope proteins from a genotype 1b clinical isolate. Screening of a small molecule library identified a potent HCV-specific triazine inhibitor, EI-1. A series of HCVpp with E1-E2 sequences from various HCV isolates was used to show activity against all genotype 1a and 1b HCVpp tested, with median EC50 values of 0.134 and 0.027 µM, respectively. Time-of-addition experiments demonstrated a block in HCVpp entry, downstream of initial attachment to the cell surface, and prior to or concomitant with bafilomycin inhibition of endosomal acidification. EI-1 was equally active against cell-culture adapted HCV (HCVcc, blocking both cell-free entry and cell-to-cell transmission of virus. HCVcc with high-level resistance to EI-1 was selected by sequential passage in the presence of inhibitor, and resistance was shown to be conferred by changes to residue 719 in the carboxy-terminal transmembrane anchor region of E2, implicating this envelope protein in EI-1 susceptibility. Combinations of EI-1 with interferon, or inhibitors of NS3 or NS5A, resulted in additive to synergistic activity. These results suggest that inhibitors of HCV entry could be added to replication inhibitors and interferons already in development.

  13. Impact of sodium–glucose cotransporter 2 inhibitors on blood pressure

    Science.gov (United States)

    Reed, James W

    2016-01-01

    SGLT2 inhibitors are glucose-lowering agents used to treat type 2 diabetes mellitus (T2DM). These agents target the kidney to promote urinary glucose excretion, resulting in improved blood glucose control. SGLT2-inhibitor therapy is also associated with weight loss and blood pressure (BP) lowering. Hypertension is a common comorbidity in patients with T2DM, and is associated with excess morbidity and mortality. This review summarizes data on the effect of SGLT2 inhibitors marketed in the US (namely canagliflozin, dapagliflozin, or empagliflozin) on BP in patients with T2DM. Boolean searches were conducted that included terms related to BP or hypertension with terms for SGLT2 inhibitors, canagliflozin, dapagliflozin, or empagliflozin using PubMed, Google, and Google Scholar. Data from numerous randomized controlled trials of SGLT2 inhibitors in patients with T2DM demonstrated clinically relevant reductions in both systolic and diastolic BP, assessed via seated office measurements and 24-hour ambulatory BP monitoring. Observed BP lowering was not associated with compensatory increases in heart rate. Circadian BP rhythm was also maintained. The mechanism of SGLT2 inhibitor-associated BP reduction is not fully understood, but is assumed to be related to osmotic diuresis and natriuresis. Other factors that may also contribute to BP reduction include SGLT2 inhibitor-associated decreases in body weight and reduced arterial stiffness. Local inhibition of the renin–angiotensin–aldosterone system secondary to increased delivery of sodium to the juxtaglomerular apparatus during SGLT2 inhibition has also been postulated. Although SGLT2 inhibitors are not indicated as BP-lowering agents, the modest decreases in systolic and diastolic BP observed with SGLT2 inhibitors may provide an extra clinical advantage for the majority of patients with T2DM, in addition to improving blood glucose control. PMID:27822054

  14. Sodium-Glucose Linked Transporter-2 Inhibitors in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    L. Zanoli

    2015-01-01

    Full Text Available SGLT2 inhibitors are new antihyperglycaemic agents whose ability to lower glucose is directly proportional to GFR. Therefore, in chronic kidney disease (CKD the blood glucose lowering effect is reduced. Unlike many current therapies, the mechanism of action of SGLT2 inhibitors is independent of insulin action or beta-cell function. In addition, the mechanism of action of SGLT2 inhibitors is complementary and not alternative to other antidiabetic agents. SGLT2 inhibitors could be potentially effective in attenuating renal hyperfiltration and, consequently, the progression of CKD. Moreover, the reductions in intraglomerular pressure, systemic blood pressure, and uric acid levels induced by SGLT inhibition may potentially be of benefit in CKD subjects without diabetes. However, at present, only few clinical studies were designed to evaluate the effects of SGLT2 inhibitors in CKD. Consequently, safety and potential efficacy beyond blood glucose lowering should be better clarified in CKD. In this paper we provide an updated review of the use of SGLT2 inhibitors in clinical practice, with particular attention on subjects with CKD.

  15. Cost of care of haemophilia with inhibitors.

    Science.gov (United States)

    Di Minno, M N D; Di Minno, G; Di Capua, M; Cerbone, A M; Coppola, A

    2010-01-01

    In Western countries, the treatment of patients with inhibitors is presently the most challenging and serious issue in haemophilia management, direct costs of clotting factor concentrates accounting for >98% of the highest economic burden absorbed for the healthcare of patients in this setting. Being designed to address questions of resource allocation and effectiveness, decision models are the golden standard to reliably assess the overall economic implications of haemophilia with inhibitors in terms of mortality, bleeding-related morbidity, and severity of arthropathy. However, presently, most data analyses stem from retrospective short-term evaluations, that only allow for the analysis of direct health costs. In the setting of chronic diseases, the cost-utility analysis, that takes into account the beneficial effects of a given treatment/healthcare intervention in terms of health-related quality of life, is likely to be the most appropriate approach. To calculate net benefits, the quality adjusted life year, that significantly reflects such health gain, has to be compared with specific economic impacts. Differences in data sources, in medical practice and/or in healthcare systems and costs, imply that most current pharmacoeconomic analyses are confined to a narrow healthcare payer perspective. Long-term/lifetime prospective or observational studies, devoted to a careful definition of when to start a treatment; of regimens (dose and type of product) to employ, and of inhibitor population (children/adults, low-responding/high responding inhibitors) to study, are thus urgently needed to allow for newer insights, based on reliable data sources into resource allocation, effectiveness and cost-utility analysis in the treatment of haemophiliacs with inhibitors.

  16. 5 alpha-reductase inhibitors and prostatic disease.

    Science.gov (United States)

    Schröder, F H

    1994-08-01

    5 alpha-Reductase inhibitors are a new class of substances with very specific effects on type I and type II 5 alpha R which may be of use in the treatment of skin disease, such as male pattern baldness, male acne and hirsutism, as well as prostatic hyperplasia and prostate cancer. At least two types of 5 alpha R inhibitors with a different pH optimum have been described. cDNA encoding for both the type I and the type II enzyme has been cloned. Most of the orally effective 5 alpha R inhibitors belong to the class of 4-azasteroids. The radical substituted in the 17 position of the steroid ring seems to be related to species specific variations and to the types of 5 alpha R enzymes in different species and organ systems. 5 alpha R inhibitors lead to a decrease of plasma DHT by about 65% while there is a slight rise in plasma testosterone. The decrease of tissue DHT in the ventral prostate of the intact rat, the dog and in humans is more pronounced and amounts to about 85%. There is a reciprocal rise of tissue T in these systems. The application of an inhibitor of 5 alpha R type II leads to a shrinkage of BPH in men by about 30%. In the rat a similar shrinkage accompanied by a significant decrease of total organ DNA occurs. This decrease, however, is not as pronounced as can be achieved with castration.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Real-Time Inhibitor Recession Measurements in the Space Shuttle Reusable Solid Rocket Motors

    Science.gov (United States)

    McWhorter, Bruce B.; Ewing, Mark E.; McCool, Alex (Technical Monitor)

    2001-01-01

    Real-time char line recession measurements were made on propellant inhibitors of the Space Shuttle Reusable Solid Rocket Motor (RSRM). The RSRM FSM-8 static test motor propellant inhibitors (composed of a rubber insulation material) were successfully instrumented with eroding potentiometers and thermocouples. The data was used to establish inhibitor recession versus time relationships. Normally, pre-fire and post-fire insulation thickness measurements establish the thermal performance of an ablating insulation material. However, post-fire inhibitor decomposition and recession measurements are complicated by the fact that most of the inhibitor is back during motor operation. It is therefore a difficult task to evaluate the thermal protection offered by the inhibitor material. Real-time measurements would help this task. The instrumentation program for this static test motor marks the first time that real-time inhibitors. This report presents that data for the center and aft field joint forward facing inhibitors. The data was primarily used to measure char line recession of the forward face of the inhibitors which provides inhibitor thickness reduction versus time data. The data was also used to estimate the inhibitor height versus time relationship during motor operation.

  18. Crystal structure of a novel cysteinless plant Kunitz-type protease inhibitor

    International Nuclear Information System (INIS)

    Hansen, Daiane; Macedo-Ribeiro, Sandra; Verissimo, Paula; Yoo Im, Sonia; Sampaio, Misako Uemura; Oliva, Maria Luiza Vilela

    2007-01-01

    Bauhinia bauhinioides Cruzipain Inhibitor (BbCI) is a cysteine protease inhibitor highly homologous to plant Kunitz-type inhibitors. However, in contrast to classical Kunitz family inhibitors it lacks cysteine residues and therefore disulfide bridges. BbCI is also distinct in the ability to inactivate enzymes belonging to two different classes, cysteine and serine proteases. Besides inhibiting the cysteine protease cruzipain, BbCI also inhibits cathepsin L and the serine proteases HNE (human neutrophil elastase) and PPE (porcine pancreatic elastase). Monoclinic crystals of the recombinant inhibitor that diffract to 1.7 A resolution were obtained using hanging drop method by vapor diffusion at 18 o C. The refined structure shows the conservative β-trefoil fold features of the Kunitz inhibitors. In BbCI, one of the two characteristic S-S bonds is replaced by the water-mediated interaction between Tyr125 and Gly132. In this work we explore the structural differences between Kunitz-type inhibitors and analyze the essential interactions that maintain the protein structural stability preserving its biological function

  19. HDAC inhibitors: modulating leukocyte differentiation, survival, proliferation and inflammation.

    Science.gov (United States)

    Sweet, Matthew J; Shakespear, Melanie R; Kamal, Nabilah A; Fairlie, David P

    2012-01-01

    Therapeutic effects of histone deacetylase (HDAC) inhibitors in cancer models were first linked to their ability to cause growth arrest and apoptosis of tumor cells. It is now clear that these agents also have pleiotropic effects on angiogenesis and the immune system, and some of these properties are likely to contribute to their anti-cancer activities. It is also emerging that inhibitors of specific HDACs affect the differentiation, survival and/or proliferation of distinct immune cell populations. This is true for innate immune cells such as macrophages, as well as cells of the acquired immune system, for example, T-regulatory cells. These effects may contribute to therapeutic profiles in some autoimmune and chronic inflammatory disease models. Here, we review our current understanding of how classical HDACs (HDACs 1-11) and their inhibitors impact on differentiation, survival and proliferation of distinct leukocyte populations, as well as the likely relevance of these effects to autoimmune and inflammatory disease processes. The ability of HDAC inhibitors to modulate leukocyte survival may have implications for the rationale of developing selective inhibitors as anti-inflammatory drugs.

  20. High throughput in vivo protease inhibitor selection platform

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a recombinant microbial cell comprising a selection platform for screening for a protease inhibitor, wherein the platform comprises transgenes encoding a protease having selective peptide bond cleavage activity at a recognition site amino acid sequence; and transgenes...... platform for screening for a protease inhibitor....

  1. Polyaspartic acid as a green corrosion inhibitor for carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Cui, R. [Department of Chemistry, Hebei Normal University, Shijiazhuang 050016 (China); Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500 (China); Gu, N.; Li, C. [Department of Chemistry, Hebei Normal University, Shijiazhuang 050016 (China)

    2011-04-15

    The inhibitor effect of the environmentally friendly corrosion inhibitor polyaspartic acid (PASP) on the corrosion of carbon steel in 0.5 M H{sub 2}SO{sub 4} was investigated by weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). Polarization curve results clearly reveal the fact that PASP is a good anode-type inhibitor. EIS results confirm its corrosion inhibition ability. The inhibition efficiency increases with increasing PASP concentration, and the maximum inhibition efficiency was 80.33% at 10 C. SEM reveals that a protective film forms on the surface of the inhibited sample. The adsorption of this inhibitor is found to follow the Freundlich adsorption isotherm. A mechanism is proposed to explain the inhibitory action of the corrosion inhibitor. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Transglutaminase inhibitor from milk

    NARCIS (Netherlands)

    Jong, G.A.H. de; Wijngaards, G.; Koppelman, S.J.

    2003-01-01

    Cross-linking experiments of skimmed bovine milk with bacterial transglutaminase isolated from Streptoverticillium mobaraense showed only some degree of formation of high-molecular-weight casein polymers. Studies on the nature of this phenomenon revealed that bovine milk contains an inhibitor of

  3. Natural compounds as corrosion inhibitors for highly cycled systems

    Energy Technology Data Exchange (ETDEWEB)

    Quraishi, M.A.; Farooqi, I.H.; Saini, P.A. [Corrosion Research Lab., Aligarh (India)

    1999-11-01

    Strict environmental legislations have led to the development of green inhibitors in recent years. In continuation of the authors` research work on development of green inhibitors, they have investigated the aqueous extracts of three plants namely: Azadirachta indica, Punica Granatum and Momordica charantia as corrosion inhibitors for mild steel in 3% NaCl using weight loss and electrochemical methods. All the investigated compounds exhibited excellent corrosion inhibition properties comparable to that of HEDP. Azadirachta showed better scale inhibition effect than HEDP.

  4. New halogenated phenylcoumarins as tyrosinase inhibitors.

    Science.gov (United States)

    Matos, Maria João; Santana, Lourdes; Uriarte, Eugenio; Delogu, Giovanna; Corda, Marcella; Fadda, Maria Benedetta; Era, Benedetta; Fais, Antonella

    2011-06-01

    With the aim to find out structural features for the tyrosinase inhibitory activity, in the present communication we report the synthesis and pharmacological evaluation of a new series of phenylcoumarin derivatives with different number of hydroxyl or ether groups and bromo substituent in the scaffold. The synthesized compounds 5-12 were evaluated as mushroom tyrosinase inhibitors showing, two of them, lower IC(50) than the umbelliferone. Compound 12 (IC(50)=215 μM) is the best tyrosinase inhibitor of this series. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Phytochemicals as Green Corrosion Inhibitors in Various Corrosive ...

    African Journals Online (AJOL)

    There is an intensive effort underway to develop new plant origin corrosion inhibitors for metal subjected to various environmental conditions. These efforts have been motivated by the desire to replace toxic inhibitors used for mitigation of corrosion of various metals and alloys in aqueous solutions. Plants represent a class ...

  6. Dysfunction in fatty acid amide hydrolase is associated with depressive-like behavior in Wistar Kyoto rats.

    Science.gov (United States)

    Vinod, K Yaragudri; Xie, Shan; Psychoyos, Delphine; Hungund, Basalingappa L; Cooper, Thomas B; Tejani-Butt, Shanaz M

    2012-01-01

    While the etiology of depression is not clearly understood at the present time, this mental disorder is thought be a complex and multifactorial trait with important genetic and environmental contributing factors. The role of the endocannabinoid (eCB) system in depressive behavior was examined in Wistar Kyoto (WKY) rat strain, a genetic model of depression. Our findings revealed selective abnormalities in the eCB system in the brains of WKY rats compared to Wistar (WIS) rats. Immunoblot analysis indicated significantly higher levels of fatty acid amide hydrolase (FAAH) in frontal cortex and hippocampus of WKY rats with no alteration in the level of N-arachidonyl phosphatidyl ethanolamine specific phospholipase-D (NAPE-PLD). Significantly higher levels of CB1 receptor-mediated G-protein coupling and lower levels of anandamide (AEA) were found in frontal cortex and hippocampus of WKY rats. While the levels of brain derived neurotropic factor (BDNF) were significantly lower in frontal cortex and hippocampus of WKY rats compared to WIS rats, pharmacological inhibition of FAAH elevated BDNF levels in WKY rats. Inhibition of FAAH enzyme also significantly increased sucrose consumption and decreased immobility in the forced swim test in WKY rats. These findings suggest a critical role for the eCB system and BDNF in the genetic predisposition to depressive-like behavior in WKY rats and point to the potential therapeutic utility of eCB enhancing agents in depressive disorder.

  7. Dysfunction in fatty acid amide hydrolase is associated with depressive-like behavior in Wistar Kyoto rats.

    Directory of Open Access Journals (Sweden)

    K Yaragudri Vinod

    Full Text Available BACKGROUND: While the etiology of depression is not clearly understood at the present time, this mental disorder is thought be a complex and multifactorial trait with important genetic and environmental contributing factors. METHODOLOGY/PRINCIPAL FINDINGS: The role of the endocannabinoid (eCB system in depressive behavior was examined in Wistar Kyoto (WKY rat strain, a genetic model of depression. Our findings revealed selective abnormalities in the eCB system in the brains of WKY rats compared to Wistar (WIS rats. Immunoblot analysis indicated significantly higher levels of fatty acid amide hydrolase (FAAH in frontal cortex and hippocampus of WKY rats with no alteration in the level of N-arachidonyl phosphatidyl ethanolamine specific phospholipase-D (NAPE-PLD. Significantly higher levels of CB1 receptor-mediated G-protein coupling and lower levels of anandamide (AEA were found in frontal cortex and hippocampus of WKY rats. While the levels of brain derived neurotropic factor (BDNF were significantly lower in frontal cortex and hippocampus of WKY rats compared to WIS rats, pharmacological inhibition of FAAH elevated BDNF levels in WKY rats. Inhibition of FAAH enzyme also significantly increased sucrose consumption and decreased immobility in the forced swim test in WKY rats. CONCLUSIONS/SIGNIFICANCE: These findings suggest a critical role for the eCB system and BDNF in the genetic predisposition to depressive-like behavior in WKY rats and point to the potential therapeutic utility of eCB enhancing agents in depressive disorder.

  8. Endocannabinoid and cannabinoid-like fatty acid amide levels correlate with pain-related symptoms in patients with IBS-D and IBS-C: a pilot study.

    Directory of Open Access Journals (Sweden)

    Jakub Fichna

    Full Text Available AIMS: Irritable bowel syndrome (IBS is a functional gastrointestinal (GI disorder, associated with alterations of bowel function, abdominal pain and other symptoms related to the GI tract. Recently the endogenous cannabinoid system (ECS was shown to be involved in the physiological and pathophysiological control of the GI function. The aim of this pilot study was to investigate whether IBS defining symptoms correlate with changes in endocannabinoids or cannabinoid like fatty acid levels in IBS patients. METHODS: AEA, 2-AG, OEA and PEA plasma levels were determined in diarrhoea-predominant (IBS-D and constipation-predominant (IBS-C patients and were compared to healthy subjects, following the establishment of correlations between biolipid contents and disease symptoms. FAAH mRNA levels were evaluated in colonic biopsies from IBS-D and IBS-C patients and matched controls. RESULTS: Patients with IBS-D had higher levels of 2AG and lower levels of OEA and PEA. In contrast, patients with IBS-C had higher levels of OEA. Multivariate analysis found that lower PEA levels are associated with cramping abdominal pain. FAAH mRNA levels were lower in patients with IBS-C. CONCLUSION: IBS subtypes and their symptoms show distinct alterations of endocannabinoid and endocannabinoid-like fatty acid levels. These changes may partially result from reduced FAAH expression. The here reported changes support the notion that the ECS is involved in the pathophysiology of IBS and the development of IBS symptoms.

  9. Association of genetic variation in cannabinoid mechanisms and gastric motor functions and satiation in overweight and obesity.

    Science.gov (United States)

    Vazquez-Roque, M I; Camilleri, M; Vella, A; Carlson, P; Laugen, J; Zinsmeister, A R

    2011-07-01

    The endocannabinoid system is associated with food intake. We hypothesized that genes regulating cannabinoids are associated with obesity. Genetic variations in fatty acid amide hydroxylase (FAAH) and cannabinoid receptor 1 (CNR1) are associated with satiation and gastric motor function. In 62 overweight or obese adults of European ancestry, single nucleotide polymorphisms of rs806378 (nearest gene CNR1) and rs324420 (nearest gene FAAH) were genotyped and the associations with gastric emptying (GE) of solids and liquids, gastric volume (GV), and satiation [maximum tolerated volume (MTV) and symptoms after Ensure(®) nutrient drink test] were explored using a dominant genetic model, with gender and BMI as covariates. rs806378 CC genotype was associated with reduced fasting GV (210.2±11.0mL for CC group compared to 242.5±11.3mL for CT/TT group, P=0.031) and a modest, non-significant association with GE of solids (P=0.17). rs324420 genotype was not associated with alterations in gastric motor functions; however, there was a difference in the Ensure(®) MTV (1174.6±37.2mL for CC group compared to 1395.0±123.1mL for CA/AA group, P=0.046) suggesting higher satiation with CC genotype. Our data suggest that CNR1 and FAAH are associated with altered gastric functions or satiation that may predispose to obesity. © 2011 Blackwell Publishing Ltd.

  10. Effect of Wall Shear Stress on Corrosion Inhibitor Film Performance

    Science.gov (United States)

    Canto Maya, Christian M.

    In oil and gas production, internal corrosion of pipelines causes the highest incidence of recurring failures. Ensuring the integrity of ageing pipeline infrastructure is an increasingly important requirement. One of the most widely applied methods to reduce internal corrosion rates is the continuous injection of chemicals in very small quantities, called corrosion inhibitors. These chemical substances form thin films at the pipeline internal surface that reduce the magnitude of the cathodic and/or anodic reactions. However, the efficacy of such corrosion inhibitor films can be reduced by different factors such as multiphase flow, due to enhanced shear stress and mass transfer effects, loss of inhibitor due to adsorption on other interfaces such as solid particles, bubbles and droplets entrained by the bulk phase, and due to chemical interaction with other incompatible substances present in the stream. The first part of the present project investigated the electrochemical behavior of two organic corrosion inhibitors (a TOFA/DETA imidazolinium, and an alkylbenzyl dimethyl ammonium chloride), with and without an inorganic salt (sodium thiosulfate), and the resulting enhancement. The second part of the work explored the performance of corrosion inhibitor under multiphase (gas/liquid, solid/liquid) flow. The effect of gas/liquid multiphase flow was investigated using small and large scale apparatus. The small scale tests were conducted using a glass cell and a submersed jet impingement attachment with three different hydrodynamic patterns (water jet, CO 2 bubbles impact, and water vapor cavitation). The large scale experiments were conducted applying different flow loops (hilly terrain and standing slug systems). Measurements of weight loss, linear polarization resistance (LPR), and adsorption mass (using an electrochemical quartz crystal microbalance, EQCM) were used to quantify the effect of wall shear stress on the performance and integrity of corrosion inhibitor

  11. Reference: 423 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available h, consistent with the timing of NAE depletion during seedling establishment. Collectively, our results show... that AtFAAH is one, but not the only, modulator of endogenous NAE levels in plants, and that NAE depletion

  12. Novel targeted therapeutics: inhibitors of MDM2, ALK and PARP

    Directory of Open Access Journals (Sweden)

    Hsueh Chung-Tsen

    2011-04-01

    Full Text Available Abstract We reviewed preclinical data and clinical development of MDM2 (murine double minute 2, ALK (anaplastic lymphoma kinase and PARP (poly [ADP-ribose] polymerase inhibitors. MDM2 binds to p53, and promotes degradation of p53 through ubiquitin-proteasome degradation. JNJ-26854165 and RO5045337 are 2 small-molecule inhibitors of MDM2 in clinical development. ALK is a transmembrane protein and a member of the insulin receptor tyrosine kinases. EML4-ALK fusion gene is identified in approximately 3-13% of non-small cell lung cancer (NSCLC. Early-phase clinical studies with Crizotinib, an ALK inhibitor, in NSCLC harboring EML4-ALK have demonstrated promising activity with high response rate and prolonged progression-free survival. PARPs are a family of nuclear enzymes that regulates the repair of DNA single-strand breaks through the base excision repair pathway. Randomized phase II study has shown adding PARP-1 inhibitor BSI-201 to cytotoxic chemotherapy improves clinical outcome in patients with triple-negative breast cancer. Olaparib, another oral small-molecule PARP inhibitor, demonstrated encouraging single-agent activity in patients with advanced breast or ovarian cancer. There are 5 other PARP inhibitors currently under active clinical investigation.

  13. Screening of inhibitors for remediation of asphaltene deposits: Experimental and modeling study

    Directory of Open Access Journals (Sweden)

    Mehdi Madhi

    2018-06-01

    Full Text Available One of the most severe problems during production from heavy crude oil reservoirs is the formation of asphaltene precipitation and as a result deposition in the tubing, surface facilities and near wellbore region which causes oil production and permeability reduction in addition to rock wettability alteration in the reservoir. So one of the economical ways to prevent such incidents is using the chemicals which are called asphaltene inhibitor.In this study, the influence of three commercial inhibitors, namely; Cetyl Terimethyl Ammonium Bromide (CTAB, Sodium Dodecyl Sulfate (SDS, Triton X-100 and four non-commercial (Benzene, Benzoic Acid, Salicylic Acid, Naphthalene inhibitors on two Iranian crude oils were investigated. This study extends previous works and contributes toward the better understanding of interactions between asphaltene and inhibitor. Effect of functional groups and structure of inhibitors on asphaltene precipitation were studied and it seems clear that the nature and polarity of asphaltene (structure and amount of impurities presented has a significant impact on the selection of inhibitors. asphaltene dispersant tests and Core flood tests were designed for evaluation of inhibitors in static and dynamic conditions. The results revealed distinguished mechanisms for asphaltene solubilization/dispersion (such as hydrogen bonding, π–π interaction and acid-base interaction and influence of additional side group (OH on inhibition power of inhibitor.During the experiments, it was found that increasing inhibitor concentration may lead to the self-assembly of inhibitor and declining of asphaltene stabilization. So, finding optimum concentration of inhibitor with high efficiency and available at a reasonable price is very important. The results suggest that 600 ppm of CTAB and 300 ppm of SDS were approximately optimum concentrations for the studied crude oils. One of the most important findings that differ from previous studies is the

  14. Pulmonary Toxicity of Cholinesterase Inhibitors

    National Research Council Canada - National Science Library

    Hilmas, Corey; Adler, Michael; Baskin, Steven I; Gupta, Ramesh C

    2006-01-01

    .... Whereas nerve agents were produced primarily for military deployment, other cholinesterase inhibitors were used for treating conditions such as myasthenia gravis and as pretreaunents for nerve agent exposure...

  15. Costs and utilization of hemophilia A and B patients with and without inhibitors.

    Science.gov (United States)

    Armstrong, Edward P; Malone, Daniel C; Krishnan, Sangeeta; Wessler, Maj Jacob

    2014-11-01

    To evaluate the health system costs among patients with hemophilia A and B with and without inhibitors over 5 years. This was a retrospective, observational study utilizing medical and pharmacy electronic medical records and administrative encounters/claims data tracking US patients between 2006-2011. Patients with diagnosis codes for hemophilia A and B were identified. Patients with inhibitors were characterized by utilization of bypassing agents activated prothrombin complex concentrate or factor VIIa on two or more distinct dates. Severity was classified as mild, moderate, or severe based on laboratory tests of clotting factor. There were 160 hemophilia A patients and 54 hemophilia B patients identified. From this group, seven were designated as patients with inhibitors (five with hemophilia A and two with hemophilia B). Hemophilia A patients without inhibitors reported 65 (41.9%) as being severe, 19 (12.3%) as moderate, and 71 (45.8%) as mild. Hemophilia B patients without inhibitors reported nine (17.3%) had severe, 13 (25.0%) had moderate, and 30 (57.7%) had mild hemophilia. All patients with inhibitors had been hospitalized in the previous 5 years compared to 64 (41.3%) with hemophilia A without inhibitors and 22 (42.3%) with hemophilia B without inhibitors. The median aggregate cost per year (including factor and health resource use) was $325,780 for patients with inhibitors compared to $98,334 for hemophilia A patients without inhibitors and $23,265 for hemophilia B patients without inhibitors. The results suggest that, while the frequency of inhibitors within the hemophilia cohort was low, there was a higher frequency of hospitalizations, and the associated median aggregate costs per year were 3-fold higher than those patients without inhibitors. In contrast, hemophilia B patients experience less severe disease and account for lower aggregate yearly costs compared to either patients with hemophilia A or patients with inhibitors.

  16. Cysteine peptidases and their inhibitors in breast and genital cancer.

    Directory of Open Access Journals (Sweden)

    Magdalena Milan

    2010-11-01

    Full Text Available Cysteine proteinases and their inhibitors probably play the main role in carcinogenesis and metastasis. The metastasis process need external proteolytic activities that pass several barriers which are membranous structures of the connective tissue which includes, the basement membrane of blood vessels. Activities of the proteinases are regulated by endogenous inhibitors and activators. The imbalance between cysteine proteinases and cystatins seems to be associated with an increase in metastatic potential in some tumors. It has also been reported that proteinase inhibitors, specific antibodies for these enzymes and inhibition of the urokinase receptor may prevent cancer cell invasion. Some proteinase inhibitor could serve as agents for cancer treatment.

  17. Structure based design of 11β-HSD1 inhibitors.

    Science.gov (United States)

    Singh, Suresh; Tice, Colin

    2010-11-01

    Controlling elevated tissue-specific levels of cortisol may provide a novel therapeutic approach for treating metabolic syndrome. This concept has spurred large scale medicinal chemistry efforts in the pharmaceutical industry for the design of 11β-HSD1 inhibitors. High resolution X-ray crystal structures of inhibitors in complex with the enzyme have facilitated the structure-based design of diverse classes of molecules. A summary of binding modes, trends in structure-activity relationships, and the pharmacodynamic data of inhibitors from each class is presented.

  18. Les experiències artístiques en l'espai públic. Art efímer com a catàlisi de la vida urbana

    Directory of Open Access Journals (Sweden)

    Lucila Urda Peña

    2016-06-01

    Full Text Available L'art efímer urbà, com a corrent d'expressió de pensament col·lectiu és una font de generació de projectes comunitaris en què els ciutadans poden recuperar "l'experiència de ciutat". La profusió de diverses manifestacions d'art efímer en ciutats de tot el món des de començaments del segle XXI està tenint conseqüències en l'espai urbà tant a nivell local com a nivell global. Una d'elles és la transformació del paisatge urbà, cada vegada més considerat com a escenari visible en projectes de regeneració urbana. A més de la transformació física també es produeixen canvis en les dinàmiques urbanes ja que els efectes de les intervencions tenen conseqüències més enllà dels canvis d'imatge. Els efectes socioeconòmics locals o fins i tot globals de les transformacions lligades a l'art efímer són cada vegada més evidents. Aquest article relata l'origen i desenvolupament de diverses manifestacions artístiques urbanes i reflexiona sobre les seves conseqüències en la vida urbana com a eina de transformació física i social.

  19. Inhibitors of MAO-A and MAO-B in Psychiatry and Neurology

    Directory of Open Access Journals (Sweden)

    John Paul Maurice Finberg

    2016-10-01

    Full Text Available Inhibitors of MAO-A and MAO-B are in clinical use for the treatment of psychiatric and neurological disorders respectively. Elucidation of the molecular structure of the active sites of the enzymes has enabled a precise determination of the way in which substrates and inhibitor molecules are metabolized, or inhibit metabolism of substrates, respectively. Despite the knowledge of the strong antidepressant efficacy of irreversible MAO inhibitors, their clinical use has been limited by their side effect of potentiation of the cardiovascular effects of dietary amines (cheese effect. A number of reversible MAO-A inhibitors which are devoid of cheese effect have been described in the literature, but only one, moclobemide, is currently in clinical use. The irreversible inhibitors of MAO-B, selegiline and rasagiline, are used clinically in treatment of Parkinson’s disease, and a recently introduced reversible MAO-B inhibitor, safinamide, has also been found efficacious. Modification of the pharmacokinetic characteristics of selegiline by transdermal administration has led to the development of a new drug form for treatment of depression. The clinical potential of MAO inhibitors together with detailed knowledge of the enzyme’s binding site structure should lead to future developments with these drugs.

  20. Inhibitors of MAO-A and MAO-B in Psychiatry and Neurology.

    Science.gov (United States)

    Finberg, John P M; Rabey, Jose M

    2016-01-01

    Inhibitors of MAO-A and MAO-B are in clinical use for the treatment of psychiatric and neurological disorders respectively. Elucidation of the molecular structure of the active sites of the enzymes has enabled a precise determination of the way in which substrates and inhibitor molecules are metabolized, or inhibit metabolism of substrates, respectively. Despite the knowledge of the strong antidepressant efficacy of irreversible MAO inhibitors, their clinical use has been limited by their side effect of potentiation of the cardiovascular effects of dietary amines ("cheese effect"). A number of reversible MAO-A inhibitors which are devoid of cheese effect have been described in the literature, but only one, moclobemide, is currently in clinical use. The irreversible inhibitors of MAO-B, selegiline and rasagiline, are used clinically in treatment of Parkinson's disease, and a recently introduced reversible MAO-B inhibitor, safinamide, has also been found efficacious. Modification of the pharmacokinetic characteristics of selegiline by transdermal administration has led to the development of a new drug form for treatment of depression. The clinical potential of MAO inhibitors together with detailed knowledge of the enzyme's binding site structure should lead to future developments with these drugs.

  1. SEARCH OF NEW SYNTHETIC INHIBITORS OF TYROSINASE

    Directory of Open Access Journals (Sweden)

    Yu. Shesterenko

    2017-11-01

    Full Text Available Melanin pigmentation of skin plays the most important role in the protection of organism against UV-irradiation, but the excessive accumulation of melanin brings to toxic melanodermia, melasma, lentigo and other skin lesions. Tyrosinase is the key enzyme of skin melanin pigment biosynthesis. In spite of certain progress in investigation of natural and synthetic tyrosinase inhibitors, actuality of such studies is of a high level, because the existing inhibitors are in some cases unstable, expensive, toxic, requires complex methods of synthesis or isolation from natural sources. The aim of the work is screening of new tyrosinase inhibitors, using the enzyme, isolated from Agaricus bisporus. Tyrosinase was isolated from Agaricus bisporus mushrooms by a modified method. It was found, that the introduction of polyethylene glycol 4000 in the extraction process promotes 3-fold reduction of polyphenol content, which leads to increase purity of enzyme with an increase in its activity by 25%. A search for new tyrosinase inhibitors among a wide range of compounds, including derivatives of 3-chloro-1,4-naphthoquinone, isatin, 3-hydroxy-2-naphthoic acid, etc was conducted. The studied substances did not displayed inhibitory effect at concentration of 0,1-0,5 mmol/dm3.

  2. Peptide aldehyde inhibitors of bacterial peptide deformylases.

    Science.gov (United States)

    Durand, D J; Gordon Green, B; O'Connell, J F; Grant, S K

    1999-07-15

    Bacterial peptide deformylases (PDF, EC 3.5.1.27) are metalloenzymes that cleave the N-formyl groups from N-blocked methionine polypeptides. Peptide aldehydes containing a methional or norleucinal inhibited recombinant peptide deformylase from gram-negative Escherichia coli and gram-positive Bacillus subtilis. The most potent inhibitor was calpeptin, N-CBZ-Leu-norleucinal, which was a competitive inhibitor of the zinc-containing metalloenzymes, E. coli and B. subtilis PDF with Ki values of 26.0 and 55.6 microM, respectively. Cobalt-substituted E. coli and B. subtilis deformylases were also inhibited by these aldehydes with Ki values for calpeptin of 9.5 and 12.4 microM, respectively. Distinct spectral changes were observed upon binding of calpeptin to the Co(II)-deformylases, consistent with the noncovalent binding of the inhibitor rather than the formation of a covalent complex. In contrast, the chelator 1,10-phenanthroline caused the time-dependent inhibition of B. subtilis Co(II)-PDF activity with the loss of the active site metal. The fact that calpeptin was nearly equipotent against deformylases from both gram-negative and gram-positive bacterial sources lends further support to the idea that a single deformylase inhibitor might have broad-spectrum antibacterial activity. Copyright 1999 Academic Press.

  3. Immune checkpoint inhibitors for metastatic bladder cancer.

    Science.gov (United States)

    Massari, Francesco; Di Nunno, Vincenzo; Cubelli, Marta; Santoni, Matteo; Fiorentino, Michelangelo; Montironi, Rodolfo; Cheng, Liang; Lopez-Beltran, Anto; Battelli, Nicola; Ardizzoni, Andrea

    2018-03-01

    Chemotherapy has represented the standard therapy for unresectable or metastatic urothelial carcinoma for more than 20 years. The growing knowledge of the interaction between tumour and immune system has led to the advent of new classes of drugs, the immune-checkpoints inhibitors, which are intended to change the current scenario. To date, immunotherapy is able to improve the overall responses and survival. Moreover, thanks to its safety profile immune-checkpoint inhibitors could be proposed also to patients unfit for standard chemotherapy. No doubts that these agents have started a revolution expected for years, but despite this encouraging results it appears clear that not all subjects respond to these agents and requiring the development of reliable predictive response factors able to isolate patients who can more benefit from these treatments as well as new strategies aimed to improve immunotherapy clinical outcome. In this review we describe the active or ongoing clinical trials involving Programmed Death Ligand 1 (PD-L1), Programmed Death receptor 1 (PD-1) and Cytotoxic-T Lymphocyte Antigen 4 (CTLA 4) inhibitors in urothelial carcinoma focusing our attention on the developing new immune-agents and combination strategies with immune-checkpoint inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. MAPK inhibitors, particularly the JNK inhibitor, increase cell death effects in H2O2-treated lung cancer cells via increased superoxide anion and glutathione depletion.

    Science.gov (United States)

    Park, Woo Hyun

    2018-02-01

    Reactive oxygen species (ROS), especially hydrogen peroxide (H2O2), induce apoptosis in cancer cells by regulating mitogen-activated protein kinase (MAPK) signaling pathways. The present study investigated the effects of MAPK inhibitors on cell growth and death as well as changes in ROS and glutathione (GSH) levels in H2O2-treated Calu-6 and A549 lung cancer cells. H2O2 inhibited growth and induced death of Calu-6 and A549 lung cancer cells. All MAPK inhibitors appeared to enhance growth inhibition in H2O2-treated Calu-6 and A549 lung cancer cells and increased the percentage of Annexin V-FITC-positive cells in these cancer cells. Among the MAPK inhibitors, a JNK inhibitor significantly augmented the loss of mitochondrial membrane potential (MMP; ΔΨm) in H2O2-treated Calu-6 and A549 lung cancer cells. Intracellular ROS levels were significantly increased in the H2O2-treated cells at 1 and 24 h. Only the JNK inhibitor increased ROS levels in the H2O2-treated cells at 1 h and all MAPK inhibitors raised superoxide anion levels in these cells at 24 h. In addition, H2O2 induced GSH depletion in Calu-6 and A549 cells and the JNK inhibitor significantly enhanced GSH depletion in H2O2‑treated cells. Each of the MAPK inhibitors altered ROS and GSH levels differently in the Calu-6 and A549 control cells. In conclusion, H2O2 induced growth inhibition and death in lung cancer cells through oxidative stress and depletion of GSH. The enhanced effect of MAPK inhibitors, especially the JNK inhibitor, on cell death in H2O2-treated lung cancer cells was correlated with increased O2•- levels and GSH depletion.

  5. Cytogenetic study of Ascaris trypsin inhibitor in cultured human ...

    Indian Academy of Sciences (India)

    2009-04-01

    Apr 1, 2009 ... Although the physical and chemical properties of Ascaris trypsin inhibitors ... male of Ascaris suum according to the method of Pudles and. Rola (1967). ..... inhibitor isolated from Ascaris resulted in the appearance of dominant ...

  6. HDAC inhibitor L-carnitine and proteasome inhibitor bortezomib synergistically exert anti-tumor activity in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Hongbiao Huang

    Full Text Available Combinations of proteasome inhibitors and histone deacetylases (HDAC inhibitors appear to be the most potent to produce synergistic cytotoxicity in preclinical trials. We have recently confirmed that L-carnitine (LC is an endogenous HDAC inhibitor. In the current study, the anti-tumor effect of LC plus proteasome inhibitor bortezomib (velcade, Vel was investigated both in cultured hepatoma cancer cells and in Balb/c mice bearing HepG2 tumor. Cell death and cell viability were assayed by flow cytometry and MTS, respectively. Gene, mRNA expression and protein levels were detected by gene microarray, quantitative real-time PCR and Western blot, respectively. The effect of Vel on the acetylation of histone H3 associated with the p21(cip1 gene promoter was examined by using ChIP assay and proteasome peptidase activity was detected by cell-based chymotrypsin-like (CT-like activity assay. Here we report that (i the combination of LC and Vel synergistically induces cytotoxicity in vitro; (ii the combination also synergistically inhibits tumor growth in vivo; (iii two major pathways are involved in the synergistical effects of the combinational treatment: increased p21(cip1 expression and histone acetylation in vitro and in vivo and enhanced Vel-induced proteasome inhibition by LC. The synergistic effect of LC and Vel in cancer therapy should have great potential in the future clinical trials.

  7. Cholinesterase inhibitors and hospitalization for bradycardia: a population-based study.

    Directory of Open Access Journals (Sweden)

    Laura Y Park-Wyllie

    2009-09-01

    Full Text Available BACKGROUND: Cholinesterase inhibitors are commonly used to treat dementia. These drugs enhance the effects of acetylcholine, and reports suggest they may precipitate bradycardia in some patients. We aimed to examine the association between use of cholinesterase inhibitors and hospitalization for bradycardia. METHODS AND FINDINGS: We examined the health care records of more than 1.4 million older adults using a case-time-control design, allowing each individual to serve as his or her own control. Case patients were residents of Ontario, Canada, aged 67 y or older hospitalized for bradycardia between January 1, 2003 and March 31, 2008. Control patients (3:1 were not hospitalized for bradycardia, and were matched to the corresponding case on age, sex, and a disease risk index. All patients had received cholinesterase inhibitor therapy in the 9 mo preceding the index hospitalization. We identified 1,009 community-dwelling older persons hospitalized for bradycardia within 9 mo of using a cholinesterase inhibitor. Of these, 161 cases informed the matched analysis of discordant pairs. Of these, 17 (11% required a pacemaker during hospitalization, and six (4% died prior to discharge. After adjusting for temporal changes in drug utilization, hospitalization for bradycardia was associated with recent initiation of a cholinesterase inhibitor (adjusted odds ratio [OR] 2.13, 95% confidence interval [CI] 1.29-3.51. The risk was similar among individuals with pre-existing cardiac disease (adjusted OR 2.25, 95% CI 1.18-4.28 and those receiving negative chronotropic drugs (adjusted OR 2.34, 95% CI 1.16-4.71. We found no such association when we replicated the analysis using proton pump inhibitors as a neutral exposure. Despite hospitalization for bradycardia, more than half of the patients (78 of 138 cases [57%] who survived to discharge subsequently resumed cholinesterase inhibitor therapy. CONCLUSIONS: Among older patients, initiation of cholinesterase

  8. The cardiovascular safety trials of DPP-4 inhibitors, GLP-1 agonists, and SGLT2 inhibitors.

    Science.gov (United States)

    Secrest, Matthew H; Udell, Jacob A; Filion, Kristian B

    2017-04-01

    In this paper, we review the results of large, double-blind, placebo-controlled randomized trials mandated by the US Food and Drug Administration to examine the cardiovascular safety of newly-approved antihyperglycemic agents in patients with type 2 diabetes. The cardiovascular effects of dipeptidyl peptidase-4 (DPP-4) inhibitors remain controversial: while these drugs did not reduce or increase the risk of primary, pre-specified composite cardiovascular outcomes, one DPP-4 inhibitor (saxagliptin) increased the risk of hospitalization for heart failure in the overall population; another (alogliptin) demonstrated inconsistent effects on heart failure hospitalization across subgroups of patients, and a third (sitagliptin) demonstrated no effect on heart failure. Evidence for cardiovascular benefits of glucagon-like peptide-1 (GLP-1) agonists has been similarly heterogeneous, with liraglutide and semaglutide reducing the risk of composite cardiovascular outcomes, but lixisenatide having no reduction or increase in cardiovascular risk. The effect of GLP-1 agonists on retinopathy remains a potential concern. In the only completed trial to date to assess a sodium-glucose cotransporter-2 (SGLT2) inhibitor, empagliflozin reduced the risk of composite cardiovascular endpoints, predominantly through its impact on cardiovascular mortality and heart failure hospitalization. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Developing HIV-1 Protease Inhibitors through Stereospecific Reactions in Protein Crystals.

    Science.gov (United States)

    Olajuyigbe, Folasade M; Demitri, Nicola; De Zorzi, Rita; Geremia, Silvano

    2016-10-31

    Protease inhibitors are key components in the chemotherapy of HIV infection. However, the appearance of viral mutants routinely compromises their clinical efficacy, creating a constant need for new and more potent inhibitors. Recently, a new class of epoxide-based inhibitors of HIV-1 protease was investigated and the configuration of the epoxide carbons was demonstrated to play a crucial role in determining the binding affinity. Here we report the comparison between three crystal structures at near-atomic resolution of HIV-1 protease in complex with the epoxide-based inhibitor, revealing an in-situ epoxide ring opening triggered by a pH change in the mother solution of the crystal. Increased pH in the crystal allows a stereospecific nucleophile attack of an ammonia molecule onto an epoxide carbon, with formation of a new inhibitor containing amino-alcohol functions. The described experiments open a pathway for the development of new stereospecific protease inhibitors from a reactive lead compound.

  10. Developing HIV-1 Protease Inhibitors through Stereospecific Reactions in Protein Crystals

    Directory of Open Access Journals (Sweden)

    Folasade M. Olajuyigbe

    2016-10-01

    Full Text Available Protease inhibitors are key components in the chemotherapy of HIV infection. However, the appearance of viral mutants routinely compromises their clinical efficacy, creating a constant need for new and more potent inhibitors. Recently, a new class of epoxide-based inhibitors of HIV-1 protease was investigated and the configuration of the epoxide carbons was demonstrated to play a crucial role in determining the binding affinity. Here we report the comparison between three crystal structures at near-atomic resolution of HIV-1 protease in complex with the epoxide-based inhibitor, revealing an in-situ epoxide ring opening triggered by a pH change in the mother solution of the crystal. Increased pH in the crystal allows a stereospecific nucleophile attack of an ammonia molecule onto an epoxide carbon, with formation of a new inhibitor containing amino-alcohol functions. The described experiments open a pathway for the development of new stereospecific protease inhibitors from a reactive lead compound.

  11. A bioavailable cathepsin S nitrile inhibitor abrogates tumor development.

    Science.gov (United States)

    Wilkinson, Richard D A; Young, Andrew; Burden, Roberta E; Williams, Rich; Scott, Christopher J

    2016-04-21

    Cathepsin S has been implicated in a variety of malignancies with genetic ablation studies demonstrating a key role in tumor invasion and neo-angiogenesis. Thus, the application of cathepsin S inhibitors may have clinical utility in the treatment of cancer. In this investigation, we applied a cell-permeable dipeptidyl nitrile inhibitor of cathepsin S, originally developed to target cathepsin S in inflammatory diseases, in both in vitro and in vivo tumor models. Validation of cathepsin S selectivity was carried out by assaying fluorogenic substrate turnover using recombinant cathepsin protease. Complete kinetic analysis was carried out and true K i values calculated. Abrogation of tumour invasion using murine MC38 and human MCF7 cell lines were carried out in vitro using a transwell migration assay. Effect on endothelial tube formation was evaluated using primary HUVEC cells. The effect of inhibitor in vivo on MC38 and MCF7 tumor progression was evaluated using cells propagated in C57BL/6 and BALB/c mice respectively. Subsequent immunohistochemical staining of proliferation (Ki67) and apoptosis (TUNEL) was carried out on MCF7 tumors. We confirmed that this inhibitor was able to selectively target cathepsin S over family members K, V, L and B. The inhibitor also significantly reduced MC38 and MCF7 cell invasion and furthermore, significantly reduced HUVEC endothelial tubule formation in vitro. In vivo analysis revealed that the compound could significantly reduce tumor volume in murine MC38 syngeneic and MCF7 xenograft models. Immunohistochemical analysis of MCF7 tumors revealed cathepsin S inhibitor treatment significantly reduced proliferation and increased apoptosis. In summary, these results highlight the characterisation of this nitrile cathepsin S inhibitor using in vitro and in vivo tumor models, presenting a compound which may be used to further dissect the role of cathepsin S in cancer progression and may hold therapeutic potential.

  12. Oral direct thrombin inhibitors or oral factor Xa inhibitors for the treatment of deep vein thrombosis.

    Science.gov (United States)

    Robertson, Lindsay; Kesteven, Patrick; McCaslin, James E

    2015-06-30

    Deep vein thrombosis (DVT) is a condition in which a clot forms in the deep veins, most commonly of the leg. It occurs in approximately 1 in 1,000 people. If left untreated, the clot can travel up to the lungs and cause a potentially life-threatening pulmonary embolism (PE). Previously, a DVT was treated with the anticoagulants heparin and vitamin K antagonists. However, two forms of novel oral anticoagulants (NOACs) have been developed: oral direct thrombin inhibitors (DTI) and oral factor Xa inhibitors. The new drugs have characteristics that may be favourable over conventional treatment, including oral administration, a predictable effect, lack of frequent monitoring or re-dosing and few known drug interactions. To date, no Cochrane review has measured the effectiveness and safety of these drugs in the treatment of DVT. To assess the effectiveness of oral DTIs and oral factor Xa inhibitors for the treatment of DVT. The Cochrane Peripheral Vascular Diseases Group Trials Search Co-ordinator searched the Specialised Register (last searched January 2015) and the Cochrane Register of Studies (last searched January 2015). We searched clinical trials databases for details of ongoing or unpublished studies and the reference lists of relevant articles retrieved by electronic searches for additional citations. We included randomised controlled trials in which people with a DVT confirmed by standard imaging techniques, were allocated to receive an oral DTI or an oral factor Xa inhibitor for the treatment of DVT. Two review authors (LR, JM) independently extracted the data and assessed the risk of bias in the trials. Any disagreements were resolved by discussion with the third review author (PK). We performed meta-analyses when we considered heterogeneity low. The two primary outcomes were recurrent VTE and PE. Other outcomes included all-cause mortality and major bleeding. We calculated all outcomes using an odds ratio (OR) with a 95% confidence interval (CI). We included

  13. Trepp = Stair / Eve Arpo

    Index Scriptorium Estoniae

    Arpo, Eve

    2006-01-01

    Rakvere Vallimäe trepist. Laste vestlus trepil. Projekt: Kavakava. Autorid: Heidi Urb, Siiri Vallner. Trepi valem: Taavi Vallner. Insener: Marika Stokkeby. Projekt 2004, valmis 2005. Ill.: joonis, 7 värv. fotot

  14. Inhibitors of histone demethylases

    DEFF Research Database (Denmark)

    Lohse, Brian; Kristensen, Jesper L; Kristensen, Line H

    2011-01-01

    Methylated lysines are important epigenetic marks. The enzymes involved in demethylation have recently been discovered and found to be involved in cancer development and progression. Despite the relative recent discovery of these enzymes a number of inhibitors have already appeared. Most of the i...

  15. The Use of Plasma-Derived Complement C1-Esterase Inhibitor Concentrate (Berinert®) in the Treatment of Angiotensin Converting Enzyme-Inhibitor Related Angioedema

    DEFF Research Database (Denmark)

    Hermanrud, Thorbjørn; Duus, Nicolaj; Bygum, Anette

    2016-01-01

    Angioedema of the upper airways is a severe and potentially life-threatening condition. The incidence has been increasing in the past two decades, primarily due to pharmaceuticals influencing the generation or degradation of the vasoactive molecule bradykinin. Plasma-derived C1-esterase inhibitor...... concentrate is a well-established treatment option of hereditary and acquired complement C1-esterase inhibitor deficiency, which are also mediated by an increased level of bradykinin resulting in recurrent angioedema. We here present a case of severe angiotensin converting enzyme-inhibitor related angioedema...

  16. Blocking the proliferation of human tumor cell lines by peptidase inhibitors from Bauhinia seeds.

    Science.gov (United States)

    Nakahata, Adriana Miti; Mayer, Barbara; Neth, Peter; Hansen, Daiane; Sampaio, Misako Uemura; Oliva, Maria Luiza Vilela

    2013-03-01

    In cancer tumors, growth, invasion, and formation of metastasis at a secondary site play a pivotal role, participating in diverse processes in the development of the pathology, such as degradation of extracellular matrix. Bauhinia seeds contain relatively large quantities of peptidase inhibitors, and two Bauhinia inhibitors were obtained in a recombinant form from the Bauhinia bauhinioides species, B. bauhinoides cruzipain inhibitor, which is a cysteine and serine peptidase inhibitor, and B. bauhinioides kallikrein inhibitor, which is a serine peptidase inhibitor. While recombinant B. bauhinoides cruzipain inhibitor inhibits human neutrophil elastase cathepsin G and the cysteine proteinase cathepsin L, recombinant B. bauhinioides kallikrein inhibitor inhibits plasma kallikrein and plasmin. The effects of recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor on the viability of tumor cell lines with a distinct potential of growth from the same tissue were compared to those of the clinical cytotoxic drug 5-fluorouracil. At 12.5 µM concentration, recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor were more efficient than 5-fluorouracil in inhibiting MKN-28 and Hs746T (gastric), HCT116 and HT29 (colorectal), SkBr-3 and MCF-7 (breast), and THP-1 and K562 (leukemia) cell lines. Additionally, recombinant B. bauhinoides cruzipain inhibitor inhibited 40 % of the migration of Hs746T, the most invasive gastric cell line, while recombinant B. bauhinioides kallikrein inhibitor did not affect cell migration. Recombinant B. bauhinioides kallikrein inhibitor and recombinant B. bauhinoides cruzipain inhibitor, even at high doses, did not affect hMSC proliferation while 5-fluorouracil greatly reduced the proliferation rates of hMSCs. Therefore, both recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor might be considered for further studies

  17. Novel endogenous angiogenesis inhibitors and their therapeutic potential.

    Science.gov (United States)

    Rao, Nithya; Lee, Yu Fei; Ge, Ruowen

    2015-10-01

    Angiogenesis, the formation of new blood vessels from the pre-existing vasculature is essential for embryonic development and tissue homeostasis. It also plays critical roles in diseases such as cancer and retinopathy. A delicate balance between pro- and anti-angiogenic factors ensures normal physiological homeostasis. Endogenous angiogenesis inhibitors are proteins or protein fragments that are formed in the body and have the ability to limit angiogenesis. Many endogenous angiogenesis inhibitors have been discovered, and the list continues to grow. Endogenous protein/peptide inhibitors are relatively less toxic, better tolerated and have a lower risk of drug resistance, which makes them attractive as drug candidates. In this review, we highlight ten novel endogenous protein angiogenesis inhibitors discovered within the last five years, including ISM1, FKBPL, CHIP, ARHGAP18, MMRN2, SOCS3, TAp73, ZNF24, GPR56 and JWA. Although some of these proteins have been well characterized for other biological functions, we focus on their new and specific roles in angiogenesis inhibition and discuss their potential for therapeutic application.

  18. A thermostable serralysin inhibitor from marine bacterium Flavobacterium sp. YS-80-122

    Science.gov (United States)

    Liang, Pengjuan; Li, Shangyong; Wang, Kun; Wang, Fang; Xing, Mengxin; Hao, Jianhua; Sun, Mi

    2018-03-01

    Serralysin inhibitors have been proposed as potent drugs against many diseases and may help to prevent further development of antibiotic-resistant pathogenic bacteria. In this study, a novel serralysin inhibitor gene, lupI, was cloned from the marine bacterium Flavobacterium sp. YS-80-122 and expressed in Escherichia coli. The deduced serralysin inhibitor, LupI, shows <40% amino acid identity to other reported serralysin inhibitors. Multiple sequence alignment and phylogenetic analysis of LupI with other serralysin inhibitors indicated that LupI was a novel type of serralysin inhibitor. The inhibitory constant for LupI towards its target metalloprotease was 0.64 μmol/L. LupI was thermostable at high temperature, in which 35.6%-90.7% of its inhibitory activity was recovered after treatment at 100°C for 1-60 min followed by incubation at 0°C. This novel inhibitor may represent a candidate drug for the treatment of serralysin-related infections.

  19. Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion.

    Science.gov (United States)

    Wang, Shizeng; Li, Hao; Fan, Xiaoguang; Zhang, Jingkun; Tang, Pingwah; Yuan, Qipeng

    2015-09-01

    During xylitol fermentation, Candida tropicalis is often inhibited by inhibitors in hemicellulose hydrolysate. The mechanisms involved in the metabolic responses to inhibitor stress and the resistances to inhibitors are still not clear. To understand the inhibition mechanisms and the metabolic responses to inhibitors, a GC/MS-based metabolomics approach was performed on C. tropicalis treated with and without complex inhibitors (CI, including furfural, phenol and acetic acid). Partial least squares discriminant analysis was used to determine the metabolic variability between CI-treated groups and control groups, and 25 metabolites were identified as possible entities responsible for the discrimination caused by inhibitors. We found that xylose uptake rate and xylitol oxidation rate were promoted by CI treatment. Metabolomics analysis showed that the flux from xylulose to pentose phosphate pathway increased, and tricarboxylic acid cycle was disturbed by CI. Moreover, the changes in levels of 1,3-propanediol, trehalose, saturated fatty acids and amino acids showed different mechanisms involved in metabolic responses to inhibitor stress. The increase of 1,3-propanediol was considered to be correlated with regulating redox balance and osmoregulation. The increase of trehalose might play a role in protein stabilization and cellular membranes protection. Saturated fatty acids could cause the decrease of membrane fluidity and make the plasma membrane rigid to maintain the integrity of plasma membrane. The deeper understanding of the inhibition mechanisms and the metabolic responses to inhibitors will provide us with more information on the metabolism regulation during xylitol bioconversion and the construction of industrial strains with inhibitor tolerance for better utilization of bioresource. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Synergistic interactions between HDAC and sirtuin inhibitors in human leukemia cells.

    Directory of Open Access Journals (Sweden)

    Michele Cea

    Full Text Available Aberrant histone deacetylase (HDAC activity is frequent in human leukemias. However, while classical, NAD(+-independent HDACs are an established therapeutic target, the relevance of NAD(+-dependent HDACs (sirtuins in leukemia treatment remains unclear. Here, we assessed the antileukemic activity of sirtuin inhibitors and of the NAD(+-lowering drug FK866, alone and in combination with traditional HDAC inhibitors. Primary leukemia cells, leukemia cell lines, healthy leukocytes and hematopoietic progenitors were treated with sirtuin inhibitors (sirtinol, cambinol, EX527 and with FK866, with or without addition of the HDAC inhibitors valproic acid, sodium butyrate, and vorinostat. Cell death was quantified by propidium iodide cell staining and subsequent flow-cytometry. Apoptosis induction was monitored by cell staining with FITC-Annexin-V/propidium iodide or with TMRE followed by flow-cytometric analysis, and by measuring caspase3/7 activity. Intracellular Bax was detected by flow-cytometry and western blotting. Cellular NAD(+ levels were measured by enzymatic cycling assays. Bax was overexpressed by retroviral transduction. Bax and SIRT1 were silenced by RNA-interference. Sirtuin inhibitors and FK866 synergistically enhanced HDAC inhibitor activity in leukemia cells, but not in healthy leukocytes and hematopoietic progenitors. In leukemia cells, HDAC inhibitors were found to induce upregulation of Bax, a pro-apoptotic Bcl2 family-member whose translocation to mitochondria is normally prevented by SIRT1. As a result, leukemia cells become sensitized to sirtuin inhibitor-induced apoptosis. In conclusion, NAD(+-independent HDACs and sirtuins cooperate in leukemia cells to avoid apoptosis. Combining sirtuin with HDAC inhibitors results in synergistic antileukemic activity that could be therapeutically exploited.

  1. SGLT2 Inhibitors as a Therapeutic Option for Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Daiji Kawanami

    2017-05-01

    Full Text Available Diabetic nephropathy (DN is a major cause of end-stage renal disease (ESRD worldwide. Glycemic and blood pressure (BP control are important but not sufficient to attenuate the incidence and progression of DN. Sodium–glucose cotransporter (SGLT 2 inhibitors are a new class of glucose-lowering agent suggested to exert renoprotective effects in glucose lowering-dependent and independent fashions. Experimental studies have shown that SGLT2 inhibitors attenuate DN in animal models of both type 1 diabetes (T1D and type 2 diabetes (T2D, indicating a potential renoprotective effect beyond glucose reduction. Renoprotection by SGLT2 inhibitors has been demonstrated in T2D patients with a high cardiovascular risk in randomized controlled trials (RCTs. These favorable effects of SGLT2 inhibitors are explained by several potential mechanisms, including the attenuation of glomerular hyperfiltration, inflammation and oxidative stress. In this review article, we discuss the renoprotective effects of SGLT2 inhibitors by integrating experimental findings with the available clinical data.

  2. SGLT2 Inhibitors as a Therapeutic Option for Diabetic Nephropathy.

    Science.gov (United States)

    Kawanami, Daiji; Matoba, Keiichiro; Takeda, Yusuke; Nagai, Yosuke; Akamine, Tomoyo; Yokota, Tamotsu; Sango, Kazunori; Utsunomiya, Kazunori

    2017-05-18

    Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD) worldwide. Glycemic and blood pressure (BP) control are important but not sufficient to attenuate the incidence and progression of DN. Sodium-glucose cotransporter (SGLT) 2 inhibitors are a new class of glucose-lowering agent suggested to exert renoprotective effects in glucose lowering-dependent and independent fashions. Experimental studies have shown that SGLT2 inhibitors attenuate DN in animal models of both type 1 diabetes (T1D) and type 2 diabetes (T2D), indicating a potential renoprotective effect beyond glucose reduction. Renoprotection by SGLT2 inhibitors has been demonstrated in T2D patients with a high cardiovascular risk in randomized controlled trials (RCTs). These favorable effects of SGLT2 inhibitors are explained by several potential mechanisms, including the attenuation of glomerular hyperfiltration, inflammation and oxidative stress. In this review article, we discuss the renoprotective effects of SGLT2 inhibitors by integrating experimental findings with the available clinical data.

  3. Substrate and inhibitor specificity of kynurenine monooxygenase from Cytophaga hutchinsonii.

    Science.gov (United States)

    Phillips, Robert S; Anderson, Andrew D; Gentry, Harvey G; Güner, Osman F; Bowen, J Phillip

    2017-04-15

    Kynurenine monooxygenase (KMO) is a potential drug target for treatment of neurodegenerative disorders such as Huntington's and Alzheimer's diseases. We have evaluated substituted kynurenines as substrates or inhibitors of KMO from Cytophaga hutchinsonii. Kynurenines substituted with a halogen at the 5-position are excellent substrates, with values of k cat and k cat /K m comparable to or higher than kynurenine. However, kynurenines substituted in the 3-position are competitive inhibitors, with K I values lower than the K m for kynurenine. Bromination also enhances inhibition, and 3,5-dibromokynurenine is a potent competitive inhibitor with a K I value of 1.5μM. A pharmacophore model of KMO was developed, and predicted that 3,4-dichlorohippuric acid would be an inhibitor. The K I for this compound was found to be 34μM, thus validating the pharmacophore model. We are using these results and our model to design more potent inhibitors of KMO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Further developments and field deployment of phosphorus functionalized polymeric scale inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Todd, Malcolm J.; Thornton, Alex R.; Wylde, Jonathan J.; Strachan, Catherine J.; Moir, Gordon [Clariant Oil Services, Muttenz (Switzerland); Goulding, John [John Goulding Consultancy, York (United Kingdom)

    2012-07-01

    As the oil and gas industry strives to replace ageing, environmentally undesirable scale inhibitors there is an ever increasing use of polymeric inhibitors. The incorporation of phosphorous functionality into a polymer backbone has been shown to improve inhibition efficiency, enhance adsorption characteristics and allow the polymer concentration to be analyzed by elemental phosphorus. It is known that some phosphorus tagged polymers can be problematic to analyze in oil field brines as they typically have a low phosphorus content which is difficult to determine from the background. The development of novel phosphorus functionalized polymeric scale inhibitors was previously described (IBP3530-10). This paper follows the development of the inhibitor class. Utilizing extensive laboratory testing the interactive nature of the scale inhibitors and reservoir lithology was studied. These novel phosphorus functionalized inhibitors were compared to a number of other available scale inhibitors. The incorporation of phosphorus functionality into polymeric inhibitors can be expensive utilizing traditional methods as the phosphorus containing monomers are the financially limiting factor. These are typically vinyl phosphonic acid (VPA), or vinyl diphosphonic acid (VDPA). The novel phosphorus functionalized monomers utilized herein are simpler to manufacture allowing higher phosphorus content within the polymer backbone. The addition of phosphorus into a polymer backbone has previously been known to exacerbate analysis issues in some commercially available scale inhibitors. This is due to incomplete polymerization reactions leaving free and/or inorganic phosphorus containing moieties which can interfere with the analysis, or low levels of phosphorus within end-capped polymers can make it difficult to determine the active concentration accurately within field brines which contain many impuritie. Polymeric inhibitors are known to contain a range of molecular weights with varying

  5. The effects of GLP-1 analogues, DPP-4 inhibitors and SGLT2 inhibitors on the renal system.

    Science.gov (United States)

    Schernthaner, Guntram; Mogensen, Carl Erik; Schernthaner, Gerit-Holger

    2014-09-01

    Diabetic nephropathy (DN) affects an estimated 20%-40% of patients with type 2 diabetes mellitus (T2DM). Key modifiable risk factors for DN are albuminuria, anaemia, dyslipidaemia, hyperglycaemia and hypertension, together with lifestyle factors, such as smoking and obesity. Early detection and treatment of these risk factors can prevent DN or slow its progression, and may even induce remission in some patients. DN is generally preceded by albuminuria, which frequently remains elevated despite treatment in patients with T2DM. Optimal treatment and prevention of DN may require an early, intensive, multifactorial approach, tailored to simultaneously target all modifiable risk factors. Regular monitoring of renal function, including urinary albumin excretion, creatinine clearance and glomerular filtration rate, is critical for following any disease progression and making treatment adjustments. Dipeptidyl peptidase (DPP)-4 inhibitors and sodium-glucose cotransporter 2 (SGLT2) inhibitors lower blood glucose levels without additional risk of hypoglycaemia, and may also reduce albuminuria. Further investigation of the potential renal benefits of DPP-4 and SGLT2 inhibitors is underway. © The Author(s) 2014.

  6. História e civismo na Roma liviana History and good citizenship in Livian Rome

    Directory of Open Access Journals (Sweden)

    Marinalva Vilar de Lima

    2009-01-01

    Full Text Available O artigo focaliza a maneira como Tito Lívio (sécs. I a.C. - I d.C. articula política, civismo e cotidiano em sua Ab urbe condita libri, através da análise das representações sociais que constrói. Discute a noção de história enquanto mimesis de um passado presentificado por Lívio nos primórdios do Império. Apresenta um Lívio construtor de uma memória da sociedade romana que retroage às épocas da realeza e da república romanas. Da ênfase conferida por Lívio a algumas dessas práticas (cerimônias e crenças religiosas, ritos funerários, relações familiares, valores sociais, disputas de poder, etc., resultou nossa compreensão de que a política constitui o fio articulador de sua escritura. Conceito que em Lívio engloba as práticas cívicas/públicas realizadas pelos cives no espaço da urbs a partir do respeito aos valores da civitas.This article focuses on the way in which Titus Livius (1BC - 1AD presented politics, good citizenship and everyday life in his Ab urbe condita libri, through an analysis of the social representations that he constructed. It argues the conception of history as a mimesis of a past offered by Livid in the beginnings of the Empire. It presents Livid as a constructor of a memory of the Roman society that modified the times of royalty and of the Roman republic. The emphasis given by Livius to some of these practices (ceremonies and religious beliefs, funeral rites, family relations, social values, power disputes etc. resulted in our understanding that politics constituted the line of thinking in his writing. It can be assessed that Livius includes civic or public practices exercised by cives in the space of the urbs respecting the values of the civitas.

  7. Novel guanidine-based inhibitors of inosine monophosphate dehydrogenase.

    Science.gov (United States)

    Iwanowicz, Edwin J; Watterson, Scott H; Liu, Chunjian; Gu, Henry H; Mitt, Toomas; Leftheris, Katerina; Barrish, Joel C; Fleener, Catherine A; Rouleau, Katherine; Sherbina, N Z; Hollenbaugh, Diane L

    2002-10-21

    A series of novel guanidine-based small molecule inhibitors of inosine monophosphate dehydrogenase (IMPDH) was explored. IMPDH catalyzes the rate determining step in guanine nucleotide biosynthesis and is a target for anticancer, immunosuppressive and antiviral therapy. The synthesis and the structure-activity relationships (SARs), derived from in vitro studies, for this new series of inhibitors is given.

  8. Structure-Guided Strategy for the Development of Potent Bivalent ERK Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lechtenberg, Bernhard C. [Cancer; Mace, Peter D. [Cancer; Sessions, E. Hampton [Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827, United States; Williamson, Robert [Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827, United States; Stalder, Romain [Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827, United States; Wallez, Yann [Cancer; Roth, Gregory P. [Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827, United States; Riedl, Stefan J. [Cancer; Pasquale, Elena B. [Cancer; Pathology

    2017-06-13

    ERK is the effector kinase of the RAS-RAF-MEK-ERK signaling cascade, which promotes cell transformation and malignancy in many cancers and is thus a major drug target in oncology. Kinase inhibitors targeting RAF or MEK are already used for the treatment of certain cancers, such as melanoma. Although the initial response to these drugs can be dramatic, development of drug resistance is a major challenge, even with combination therapies targeting both RAF and MEK. Importantly, most resistance mechanisms still rely on activation of the downstream effector kinase ERK, making it a promising target for drug development efforts. Here, we report the design and structural/functional characterization of a set of bivalent ERK inhibitors that combine a small molecule inhibitor that binds to the ATP-binding pocket with a peptide that selectively binds to an ERK protein interaction surface, the D-site recruitment site (DRS). Our studies show that the lead bivalent inhibitor, SBP3, has markedly improved potency compared to the small molecule inhibitor alone. Unexpectedly, we found that SBP3 also binds to several ERK-related kinases that contain a DRS, highlighting the importance of experimentally verifying the predicted specificity of bivalent inhibitors. However, SBP3 does not target any other kinases belonging to the same CMGC branch of the kinome. Additionally, our modular click chemistry inhibitor design facilitates the generation of different combinations of small molecule inhibitors with ERK-targeting peptides.

  9. Health economics of treating haemophilia A with inhibitors.

    Science.gov (United States)

    Knight, C

    2005-11-01

    Haemophilia is a rare, inherited blood disorder in which blood clotting is impaired such that patients suffer from excessive internal and external bleeding. At present there is no cure for haemophilia A and patients require expensive, life-long treatment involving clotting factor replacement therapy. Treatment costs are perceived to be higher for patients who have developed inhibitory antibodies to factor VIII, the standard therapy for haemophilia A. However, initial cost analyses suggest that clotting factor therapy with alternative haemostatic agents, such as recombinant activated factor VII or activated prothrombin complex concentrate, is no more expensive for the majority of haemophilia A patients with inhibitors than for those without inhibitors. With the availability of effective alternative haemostatic agents, orthopaedic surgery for haemophilia A patients with inhibitors is now a clinical option, and initial cost analyses suggest this may be a cost-effective treatment strategy for patients with inhibitors whose quality of life (QoL) is severely impaired by joint arthropathy. In an era of finite healthcare resourcing it is important to determine whether new treatments justify higher unit costs compared with standard therapies and whether such higher costs are justified from an individual perspective in terms of improved QoL, and from a societal perspective in terms of improved productivity and reduced overall healthcare costs. This paper examines current data on the health economics of treating haemophilia A patients with inhibitors, focusing on the overall costs of clotting factor replacement therapy and the cost consequences of joint replacement.

  10. Histone deacetylase inhibitors augment doxorubicin-induced DNA damage in cardiomyocytes.

    Science.gov (United States)

    Ververis, Katherine; Rodd, Annabelle L; Tang, Michelle M; El-Osta, Assam; Karagiannis, Tom C

    2011-12-01

    Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutics with suberoylanilide hydroxamic acid (Vorinostat) and depsipeptide (Romidepsin) already being approved for clinical use. Numerous studies have identified that histone deacetylase inhibitors will be most effective in the clinic when used in combination with conventional cancer therapies such as ionizing radiation and chemotherapeutic agents. One promising combination, particularly for hematologic malignancies, involves the use of histone deacetylase inhibitors with the anthracycline, doxorubicin. However, we previously identified that trichostatin A can potentiate doxorubicin-induced hypertrophy, the dose-limiting side-effect of the anthracycline, in cardiac myocytes. Here we have the extended the earlier studies and evaluated the effects of combinations of the histone deacetylase inhibitors, trichostatin A, valproic acid and sodium butyrate on doxorubicin-induced DNA double-strand breaks in cardiomyocytes. Using γH2AX as a molecular marker for the DNA lesions, we identified that all of the broad-spectrum histone deacetylase inhibitors tested augment doxorubicin-induced DNA damage. Furthermore, it is evident from the fluorescence photomicrographs of stained nuclei that the histone deacetylase inhibitors also augment doxorubicin-induced hypertrophy. These observations highlight the importance of investigating potential side-effects, in relevant model systems, which may be associated with emerging combination therapies for cancer.

  11. Changes in glucose-induced plasma active glucagon-like peptide-1 levels by co-administration of sodium–glucose cotransporter inhibitors with dipeptidyl peptidase-4 inhibitors in rodents

    Directory of Open Access Journals (Sweden)

    Takahiro Oguma

    2016-12-01

    Full Text Available We investigated whether structurally different sodium–glucose cotransporter (SGLT 2 inhibitors, when co-administered with dipeptidyl peptidase-4 (DPP4 inhibitors, could enhance glucagon-like peptide-1 (GLP-1 secretion during oral glucose tolerance tests (OGTTs in rodents. Three different SGLT inhibitors—1-(β-d-Glucopyranosyl-4-chloro-3-[5-(6-fluoro-2-pyridyl-2-thienylmethyl]benzene (GTB, TA-1887, and canagliflozin—were examined to assess the effect of chemical structure. Oral treatment with GTB plus a DPP4 inhibitor enhanced glucose-induced plasma active GLP-1 (aGLP-1 elevation and suppressed glucose excursions in both normal and diabetic rodents. In DPP4-deficient rats, GTB enhanced glucose-induced aGLP-1 elevation without affecting the basal level, whereas metformin, previously reported to enhance GLP-1 secretion, increased both the basal level and glucose-induced elevation. Oral treatment with canagliflozin and TA-1887 also enhanced glucose-induced aGLP-1 elevation when co-administered with either teneligliptin or sitagliptin. These data suggest that structurally different SGLT2 inhibitors enhance plasma aGLP-1 elevation and suppress glucose excursions during OGTT when co-administered with DPP4 inhibitors, regardless of the difference in chemical structure. Combination treatment with DPP4 inhibitors and SGLT2 inhibitors having moderate SGLT1 inhibitory activity may be a promising therapeutic option for improving glycemic control in patients with type 2 diabetes mellitus.

  12. The efficiency of a corrosion inhibitor on steel in a simulated concrete environment

    Energy Technology Data Exchange (ETDEWEB)

    Gartner, Nina; Kosec, Tadeja, E-mail: tadeja.kosec@zag.si; Legat, Andraž

    2016-12-01

    The aim of the present work was to characterize the efficiency of a corrosion inhibitor on steel in a simulated concrete pore solution. Laboratory measurements were performed at various chloride and inhibitor concentrations in order to simulate different applications of the inhibitor when used for the protection or rehabilitation of steel reinforcement in concrete. Two electrochemical techniques, i.e. potentiodynamic polarization scans and electrochemical impedance spectroscopy, were used for this study. The exposed surfaces of the steel specimens were subsequently investigated by Raman spectroscopy and scanning electron microscopy. It was found that the inhibitor can efficiently retard the corrosion of steel in a simulated concrete pore solution at concentrations of the inhibitor >2.0% and of chlorides <0.3% at a pH 10.5. On the other hand, when these conditions are not fulfilled, localized corrosion was observed. The results of the Raman and SEM/EDS analysis showed various morphologies of corrosion products and different types of corrosion attack depending on the pH of the pore solution, and the applied concentrations of the chlorides and the inhibitor. - Highlights: • Electrochemical studies performed at various Cl{sup −} and inhibitor concentrations. • Exposed steel surfaces investigated by Raman spectroscopy and SEM. • Cl{sup −}/inhibitor ratio is important parameter for the inhibitor's efficiency. • The corrosion can re-occur if the concentration of the inhibitor is reduced. • Different corrosion behaviour and oxides in the presence of inhibitor and/or Cl{sup −}.

  13. Dry eye syndrome in aromatase inhibitor users.

    Science.gov (United States)

    Turaka, Kiran; Nottage, Jennifer M; Hammersmith, Kristin M; Nagra, Parveen K; Rapuano, Christopher J

    2013-04-01

    Aromatase inhibitors are frequently used as an adjuvant therapy in the treatment of breast cancer. We observed that several patients taking aromatase inhibitors presented with severe dry eye symptoms, and we investigated whether there is a relationship between aromatase inhibitors and dry eyes in these patients. Retrospective chart review. Forty-one women. A computerized search of health records was performed to identify patients using anastrazole, letrozole and exemestane seen by the Cornea Service from August 2008 to March 2011. The results were compared with age-matched controls. Ocular surface changes among aromatase inhibitors users. Of the 41 women, 39 were Caucasians. Thirty-nine patients had breast cancer (95%), one patient had ovarian cancer (2.5%) and one had an unknown primary cancer. Mean age was 68 ± 11.3 years (range 47-95). Most common presenting symptoms were blurred vision in 28 (68%) patients, irritation/foreign body sensation in 12 (29%) patients, redness in 9 (22%) patients, tearing in 6 (22%) patients and photosensitivity in 2 (5%) patients. Mean Schirmer's test measurement was 11 ± 5.8 mm (range 0.5-20 mm). Blepharitis was noted in 68 of 82 eyes (73%), decreased or poor tear function in 24 eyes (29%), conjunctival injection in 18 eyes (22%) and superficial punctate keratitis in 12 eyes (29%). Among an age-matched population (45-95 years), dry eye syndrome was found in only 9.5% of patients. Because the prevalence of ocular surface disease signs and symptoms appears to be higher in study group than control patients, aromatase inhibitors might be a contributing factor to the dry eye symptoms. © 2012 The Authors. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.

  14. Peptide-Based Selective Inhibitors of Matrix Metalloproteinase-Mediated Activities

    Directory of Open Access Journals (Sweden)

    Margaret W. Ndinguri

    2012-11-01

    Full Text Available The matrix metalloproteinases (MMPs exhibit a broad array of activities, some catalytic and some non-catalytic in nature. An overall lack of selectivity has rendered small molecule, active site targeted MMP inhibitors problematic in execution. Inhibitors that favor few or individual members of the MMP family often take advantage of interactions outside the enzyme active site. We presently focus on peptide-based MMP inhibitors and probes that do not incorporate conventional Zn2+ binding groups. In some cases, these inhibitors and probes function by binding only secondary binding sites (exosites, while others bind both exosites and the active site. A myriad of MMP mediated-activities beyond selective catalysis can be inhibited by peptides, particularly cell adhesion, proliferation, motility, and invasion. Selective MMP binding peptides comprise highly customizable, unique imaging agents. Areas of needed improvement for MMP targeting peptides include binding affinity and stability.

  15. Effects of protease inhibitors on radiation transformation in vitro

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Little, J.B.

    1981-01-01

    We have investigated the effects of three protease inhibitors, antipain, leupeptin, and soybean trypsin inhibitor, on the induction of oncogenic transformation in mouse C3H10T 1/2 cells by X-rays. The patterns of inhibition by the three protease inhibitors were different. Antipain was the most effective, having the ability to suppress completely radiation transformation as well as radiation transformation enhanced by the phorbol ester promoting agent 12-O-tetradecanoylphorbol-13-acetate. The fact that antipain could suppress transformation when present for only 1 day following irradiation suggests that an effect on a DNA repair process might be important in its action. Leupeptin was less effective than antipain in its inhibition of radiation transformation. Soybean trypsin inhibitor suppressed only the promotional effects of 12-O-tetradecanoylphorbol-13-acetate on transformation. Our results suggest that there may be more than one protease involved in carcinogenesis

  16. Tubulin Inhibitor-Based Antibody-Drug Conjugates for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Hao Chen

    2017-08-01

    Full Text Available Antibody-drug conjugates (ADCs are a class of highly potent biopharmaceutical drugs generated by conjugating cytotoxic drugs with specific monoclonal antibodies through appropriate linkers. Specific antibodies used to guide potent warheads to tumor tissues can effectively reduce undesired side effects of the cytotoxic drugs. An in-depth understanding of antibodies, linkers, conjugation strategies, cytotoxic drugs, and their molecular targets has led to the successful development of several approved ADCs. These ADCs are powerful therapeutics for cancer treatment, enabling wider therapeutic windows, improved pharmacokinetic/pharmacodynamic properties, and enhanced efficacy. Since tubulin inhibitors are one of the most successful cytotoxic drugs in the ADC armamentarium, this review focuses on the progress in tubulin inhibitor-based ADCs, as well as lessons learned from the unsuccessful ADCs containing tubulin inhibitors. This review should be helpful to facilitate future development of new generations of tubulin inhibitor-based ADCs for cancer therapy.

  17. Comparison of Clot-based, Chromogenic, and Fluorescence Assays for Measurement of Factor VIII Inhibitors in the U.S. Hemophilia Inhibitor Research Study

    Science.gov (United States)

    Miller, Connie H.; Rice, Anne S.; Boylan, Brian; Shapiro, Amy D.; Lentz, Steven R.; Wicklund, Brian M.; Kelly, Fiona M.; Soucie, J. Michael

    2015-01-01

    Summary Background Detection and validation of inhibitors (antibodies) to hemophilia treatment products are important for clinical care, evaluation of product safety, and assessment of population trends. Methods Centralized monitoring for factor VIII (FVIII) inhibitors was conducted for patients in the Hemophilia Inhibitor Research Study using a previously reported modified Nijmegen-Bethesda clotting assay (NBA), a chromogenic Bethesda assay (CBA), and a novel fluorescence immunoassay (FLI). Results NBA and CBA were performed on 1005 specimens and FLI on 272 specimens. CBA was negative on 880/883 specimens (99.7%) with Nijmegen-Bethesda units (NBU)NBA and negative CBA, 58.1% were FLI-negative, 12.9% had evidence of lupus anticoagulant, and 35.5% had non-time-dependent inhibition. CBA and FLI were positive on 72.4% and 100% of 1.0–1.9 NBU specimens and 43.1% and 50.0% of 0.5–0.9 NBU specimens. FLI detected antibodies in 98.0% of CBA-positive and 81.6% of NBA-positive specimens (P=0.004). Among 21 new inhibitors detected by NBA, 5 (23.8%) with 0.7–1.3 NBU did not react in CBA or FLI. Among previously positive patients with 0.5–1.9 NBU, 7/25 (28%) were not CBA or FLI positive. FLI was positive on 36/169 NBU-negative specimens (21.3%). Conclusions FVIII specificity could not be demonstrated by CBA or FLI for 26% of inhibitors of 0.5–1.9 NBU; such results must be interpreted with caution. Low titer inhibitors detected in clot-based assays should always be repeated, with consideration given to evaluating their reactivity with FVIII using more specific assays. PMID:23601690

  18. Congenital ventricular septal defects and prenatal exposure to cyclooxygenase inhibitors

    Directory of Open Access Journals (Sweden)

    F. Burdan

    2006-07-01

    Full Text Available Ventricular septal defects (VSDs are common congenital abnormalities which have been reported to be associated with maternal fever and various environmental factors. The aim of the present study was to evaluate the effect of prenatal exposure to cyclooxygenase (COX inhibitors on heart defects. A retrospective statistical analysis was performed using data collected in our laboratory during various teratological studies carried out on albino CRL:(WIWUBR Wistar strain rats from 1997 to 2004. The observations were compared with concurrent and historic control data, as well as findings from other developmental toxicological studies with selective and nonselective COX-2 inhibitors. Despite the lack of significant differences in the frequency of VSDs between drug-exposed and control groups, statistical analysis by the two-sided Mantel-Haenszel test and historical control data showed a higher incidence of heart defects in offspring exposed to nonselective COX inhibitors (30.06/10,000. Unlike other specific inhibitors, aspirin (46.26/10,000 and ibuprofen (106.95/10,000 significantly increased the incidence of the VSD when compared with various control groups (5.38-19.72/10,000. No significant differences in length or weight were detected between fetuses exposed to COX inhibitors and born with VSD and non-malformed offsprings. However, a statistically significant increase of fetal body length and decrease of body mass index were found in fetuses exposed to COX inhibitors when compared with untreated control. We conclude that prenatal exposure to COX inhibitors, especially aspirin and ibuprofen, increased the incidence of VSDs in rat offspring but was not related to fetal growth retardation.

  19. Inhibitors of mTOR

    NARCIS (Netherlands)

    Klümpen, Heinz-Josef; Beijnen, Jos H.; Gurney, Howard; Schellens, Jan H. M.

    2010-01-01

    Inhibitors of mammalian target of rapamycin (mTOR) have been approved for the treatment of renal cell carcinoma and appear to have a role in the treatment of other malignancies. The primary objective of this drug review is to provide pharmacokinetic and dynamic properties of the commonly used drugs

  20. Reverse zymography alone does not confirm presence of a protease inhibitor.

    Science.gov (United States)

    Dutta, Sangita; Bhattacharyya, Debasish

    2013-03-01

    Reverse zymography is applied for identification and semi-quantification of protease inhibitors that are of protein in nature. However, a protein that shows band in reverse zymography against a protease used for digestion of the gel need not be an inhibitor; it might be resistant to degradation by the protease. We demonstrate that in reverse zymography, avidin, streptavidin and the leaf extract of Catharanthus roseus behave like inhibitors of proteases like papain, ficin, bromelain extracts from pineapple leaf, stem and fruit and trypsin. Still, they do not act as inhibitors of those proteases when enzyme assays were done in solution. In reverse zymography, the extract of pineapple crown leaf shows two major inhibitor bands against its own proteases. Identification of these proteins from sequences derived from MALDI TOF MS analysis indicated that they are fruit and stem bromelains. Avidin, streptavidin and bromelains are 'kinetically stable proteins' that are usually resistant to proteolysis. Thus, it is recommended that identification of an inhibitor of a protease by reverse zymography should be supported by independent assay methods for confirmation.

  1. ERK mutations confer resistance to mitogen-activated protein kinase pathway inhibitors.

    Science.gov (United States)

    Goetz, Eva M; Ghandi, Mahmoud; Treacy, Daniel J; Wagle, Nikhil; Garraway, Levi A

    2014-12-01

    The use of targeted therapeutics directed against BRAF(V600)-mutant metastatic melanoma improves progression-free survival in many patients; however, acquired drug resistance remains a major medical challenge. By far, the most common clinical resistance mechanism involves reactivation of the MAPK (RAF/MEK/ERK) pathway by a variety of mechanisms. Thus, targeting ERK itself has emerged as an attractive therapeutic concept, and several ERK inhibitors have entered clinical trials. We sought to preemptively determine mutations in ERK1/2 that confer resistance to either ERK inhibitors or combined RAF/MEK inhibition in BRAF(V600)-mutant melanoma. Using a random mutagenesis screen, we identified multiple point mutations in ERK1 (MAPK3) and ERK2 (MAPK1) that could confer resistance to ERK or RAF/MEK inhibitors. ERK inhibitor-resistant alleles were sensitive to RAF/MEK inhibitors and vice versa, suggesting that the future development of alternating RAF/MEK and ERK inhibitor regimens might help circumvent resistance to these agents. ©2014 American Association for Cancer Research.

  2. [Mechanisms and efficacy of SGLT2 inhibitors].

    Science.gov (United States)

    Shiba, Teruo

    2015-03-01

    SGLT2 is a low affinity, high capacity glucose co-transporter, almost exclusively expressed in the kidney cortex. Inhibition of SGLT2 has been shown to increase the daily 50g or more urinary glucose excretion, as compared to placebo, leading to a reduction in blood glucose levels and indicated only for the treatment of type 2 diabetes. In Japan 6 species of SGLT2 inhibitors have already been sold and reported to results in a decrease of FPG by 14.4 to 45.8 (mg/dL), in a reduction of HbA1c by 0.35 to 1.24% and in loss of body weight by 1.29 to 2.50(kg). There is less effect of the SGLT2 inhibitor in diabetic subjects with renal impairment and the reduction in HbA1c and FPG will be approximately half of the average in those with 30 ≤ eGFR ≤ 59. The position of SGLT2 inhibitors would be considered as the drug administered in combination or add-on therapy when the young obese type 2 diabetics without renal impairment has not yet reached to the glycemic target with other drugs although in AACE consensus statement of 2013, it has been shelved for inexperienced use with respect to the positioning of the SGLT2 inhibitors.

  3. Structure of a retro-binding peptide inhibitor complexed with human alpha-thrombin.

    Science.gov (United States)

    Tabernero, L; Chang, C Y; Ohringer, S L; Lau, W F; Iwanowicz, E J; Han, W C; Wang, T C; Seiler, S M; Roberts, D G; Sack, J S

    1995-02-10

    The crystallographic structure of the ternary complex between human alpha-thrombin, hirugen and the peptidyl inhibitor Phe-alloThr-Phe-O-CH3, which is acylated at its N terminus with 4-guanidino butanoic acid (BMS-183507), has been determined at 2.6 A resolution. The structure reveals a unique "retro-binding" mode for this tripeptide active site inhibitor. The inhibitor binds with its alkyl-guanidine moiety in the primary specificity pocket and its two phenyl rings occupying the hydrophobic proximal and distal pockets of the thrombin active site. In this arrangement the backbone of the tripeptide forms a parallel beta-strand to the thrombin main-chain at the binding site. This is opposite to the orientation of the natural substrate, fibrinogen, and all the small active site-directed thrombin inhibitors whose bound structures have been previously reported. BMS-183507 is the first synthetic inhibitor proved to bind in a retro-binding fashion to thrombin, in a fashion similar to that of the N-terminal residues of the natural inhibitor hirudin. Furthermore, this new potent thrombin inhibitor (Ki = 17.2 nM) is selective for thrombin over other serine proteases tested and may be a template to be considered in designing hirudin-based thrombin inhibitors with interactions at the specificity pocket.

  4. PI3Kδ inhibitor idelalisib in combination with BTK inhibitor ONO/GS-4059 in diffuse large B cell lymphoma with acquired resistance to PI3Kδ and BTK inhibitors.

    Directory of Open Access Journals (Sweden)

    Anella Yahiaoui

    Full Text Available Activated B-cell-like diffuse large B-cell lymphoma relies on B-cell receptor signaling to drive proliferation and survival. Downstream of the B-cell receptor, the key signaling kinases Bruton's tyrosine kinase and phosphoinositide 3-kinase δ offer opportunities for therapeutic intervention by agents such as ibrutinib, ONO/GS-4059, and idelalisib. Combination therapy with such targeted agents could provide enhanced efficacy due to complimentary mechanisms of action. In this study, we describe both the additive interaction of and resistance mechanisms to idelalisib and ONO/GS-4059 in a model of activated B-cell-like diffuse large B-cell lymphoma. Significant tumor regression was observed with a combination of PI3Kδ and Bruton's tyrosine kinase inhibitors in the mouse TMD8 xenograft. Acquired resistance to idelalisib in the TMD8 cell line occurred by loss of phosphatase and tensin homolog and phosphoinositide 3-kinase pathway upregulation, but not by mutation of PIK3CD. Sensitivity to idelalisib could be restored by combining idelalisib and ONO/GS-4059. Further evaluation of targeted inhibitors revealed that the combination of idelalisib and the phosphoinositide-dependent kinase-1 inhibitor GSK2334470 or the AKT inhibitor MK-2206 could partially overcome resistance. Characterization of acquired Bruton's tyrosine kinase inhibitor resistance revealed a novel tumor necrosis factor alpha induced protein 3 mutation (TNFAIP3 Q143*, which led to a loss of A20 protein, and increased p-IκBα. The combination of idelalisib and ONO/GS-4059 partially restored sensitivity in this resistant line. Additionally, a mutation in Bruton's tyrosine kinase at C481F was identified as a mechanism of resistance. The combination activity observed with idelalisib and ONO/GS-4059, taken together with the ability to overcome resistance, could lead to a new therapeutic option in activated B-cell-like diffuse large B-cell lymphoma. A clinical trial is currently underway to

  5. Acalabrutinib (ACP-196: a selective second-generation BTK inhibitor

    Directory of Open Access Journals (Sweden)

    Jingjing Wu

    2016-03-01

    Full Text Available Abstract More and more targeted agents become available for B cell malignancies with increasing precision and potency. The first-in-class Bruton’s tyrosine kinase (BTK inhibitor, ibrutinib, has been in clinical use for the treatment of chronic lymphocytic leukemia, mantle cell lymphoma, and Waldenstrom’s macroglobulinemia. More selective BTK inhibitors (ACP-196, ONO/GS-4059, BGB-3111, CC-292 are being explored. Acalabrutinib (ACP-196 is a novel irreversible second-generation BTK inhibitor that was shown to be more potent and selective than ibrutinib. This review summarized the preclinical research and clinical data of acalabrutinib.

  6. A framework for developing and integrating effective routing strategies within the emergency management decision-support system : [research brief].

    Science.gov (United States)

    2012-05-01

    The terrorist attacks on September 11th, as well as other coordinated attacks on transit centers in Madrid and London, have underscored the importance of evacuation planning to : transportation professionals. With computer technology advancement, urb...

  7. Cobalt (III) complexes as novel matrix metalloproteinase-9 inhibitors

    International Nuclear Information System (INIS)

    Lee, Jiyoun

    2012-01-01

    We have synthesized a series of novel MMP-9 inhibitors containing cobalt(III) complexes. The synthesized cobalt(III) complexes are effective as enzyme inhibitors and the attachment of a biphenyl group enhanced the efficiency of enzyme inhibition up to 6-fold. When compared to the reported non-hydroxamate MMP inhibitors, the synthesized complexes showed comparable in vitro potency. The enzyme assay showed that the cobalt(III) complex can disrupt the zinc binding active site of MMP-9 and is proposed to work via a ligand exchange mechanism. Since histidine residues are essential for the catalytic activity of a large percentage of enzymes and zinc finger proteins, these cobalt(III) complexes can serve as a prototype inhibitor towards various zinc containing enzymes and proteins. Matrix metalloproteinases (MMPs) are a family of zinc binding endopeptidases that play crucial roles in various physiological processes and diseases such as embryogenic growth, angiogenesis, arthritis, skin ulceration, liver fibrosis and tumor metastasis. Because of their implications in a wide range of diseases, MMPs are considered as intriguing drug targets. The majority of MMP inhibitors are organic small molecules containing a hydroxamate functionality for the zinc binding group. This hydroxamate group binds to a zinc(II) center in a bidentate fashion and creates a distorted trigonal bipyramidal geometry

  8. Cobalt (III) complexes as novel matrix metalloproteinase-9 inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiyoun [Sungshin Women' s Univ., Seoul (Korea, Republic of)

    2012-04-15

    We have synthesized a series of novel MMP-9 inhibitors containing cobalt(III) complexes. The synthesized cobalt(III) complexes are effective as enzyme inhibitors and the attachment of a biphenyl group enhanced the efficiency of enzyme inhibition up to 6-fold. When compared to the reported non-hydroxamate MMP inhibitors, the synthesized complexes showed comparable in vitro potency. The enzyme assay showed that the cobalt(III) complex can disrupt the zinc binding active site of MMP-9 and is proposed to work via a ligand exchange mechanism. Since histidine residues are essential for the catalytic activity of a large percentage of enzymes and zinc finger proteins, these cobalt(III) complexes can serve as a prototype inhibitor towards various zinc containing enzymes and proteins. Matrix metalloproteinases (MMPs) are a family of zinc binding endopeptidases that play crucial roles in various physiological processes and diseases such as embryogenic growth, angiogenesis, arthritis, skin ulceration, liver fibrosis and tumor metastasis. Because of their implications in a wide range of diseases, MMPs are considered as intriguing drug targets. The majority of MMP inhibitors are organic small molecules containing a hydroxamate functionality for the zinc binding group. This hydroxamate group binds to a zinc(II) center in a bidentate fashion and creates a distorted trigonal bipyramidal geometry.

  9. Antitumour agents as inhibitors of tryptophan 2,3-dioxygenase

    Energy Technology Data Exchange (ETDEWEB)

    Pantouris, Georgios; Mowat, Christopher G., E-mail: C.G.Mowat@ed.ac.uk

    2014-01-03

    Highlights: •∼2800 National Cancer Institute USA compounds have been screened as potential inhibitors of TDO and/or IDO. •Seven compounds with anti-tumour properties have been identified as potent inhibitors. •NSC 36398 (taxifolin, dihydroquercetin) is selective for TDO with a K{sub i} of 16 M. •This may help further our understanding of the role of TDO in cancer. -- Abstract: The involvement of tryptophan 2,3-dioxygenase (TDO) in cancer biology has recently been described, with the enzyme playing an immunomodulatory role, suppressing antitumour immune responses and promoting tumour cell survival and proliferation. This finding reinforces the need for specific inhibitors of TDO that may potentially be developed for therapeutic use. In this work we have screened ∼2800 compounds from the library of the National Cancer Institute USA and identified seven potent inhibitors of TDO with inhibition constants in the nanomolar or low micromolar range. All seven have antitumour properties, killing various cancer cell lines. For comparison, the inhibition potencies of these compounds were tested against IDO and their inhibition constants are reported. Interestingly, this work reveals that NSC 36398 (dihydroquercetin, taxifolin), with an in vitro inhibition constant of ∼16 μM, is the first TDO-selective inhibitor reported.

  10. Novel β-amyloid aggregation inhibitors possessing a turn mimic.

    Science.gov (United States)

    Hamada, Yoshio; Miyamoto, Naoko; Kiso, Yoshiaki

    2015-04-01

    Amyloid β peptide, the main component of senile plaques found in the brain of Alzheimer disease (AD) patients, is a molecular target for AD therapeutic intervention. A number of potential AD therapeutics have been reported, including inhibitors of β-secretase, γ-secretase, and Aβ aggregation, and anti-amyloid agents, such as neprilysin, insulin degrading enzyme (IDE), and Aβ antibodies. Recently, we reported potent small-sized β-secretase (BACE1) inhibitors, which could serve as anti-AD drugs. However AD is a progressive disorder, where dementia symptoms gradually worsen over several decades, and therefore may require many years to get cured. One possible way to achieve a greater therapeutic effect is through simultaneous administration of multiple drugs, similar to those used in Highly Active Anti-Retroviral Therapy (HAART) used to treat AIDS. In order to overcome AD, we took a drug discovery approach to evaluate, novel β-amyloid aggregation inhibitors. Previously, we reported that a tong-type compound possessing a turn mimic as the inhibitor of HIV-1 protease dimerization. Oligomerized amyloid β peptides contain a turn structure within the molecule. Here, we designed and synthesized novel β-amyloid aggregation inhibitors with a turn-mimic template, based on the turn conformer of the oligomerized amyloid β peptides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The binding mechanism of a peptidic cyclic serine protease inhibitor

    DEFF Research Database (Denmark)

    Jiang, Longguang; Svane, Anna Sigrid P.; Sørensen, Hans Peter

    2011-01-01

    Serine proteases are classical objects for studies of catalytic and inhibitory mechanisms as well as interesting as therapeutic targets. Since small-molecule serine protease inhibitors generally suffer from specificity problems, peptidic inhibitors, isolated from phage-displayed peptide libraries......, have attracted considerable attention. Here, we have investigated the mechanism of binding of peptidic inhibitors to serine protease targets. Our model is upain-1 (CSWRGLENHRMC), a disulfide-bond-constrained competitive inhibitor of human urokinase-type plasminogen activator with a noncanonical...... inhibitory mechanism and an unusually high specificity. Using a number of modified variants of upain-1, we characterised the upain-1-urokinase-type plasminogen activator complex using X-ray crystal structure analysis, determined a model of the peptide in solution by NMR spectroscopy, and analysed binding...

  12. Boosted protease inhibitors and the electrocardiographic measures of QT and PR durations

    DEFF Research Database (Denmark)

    Soliman, Elsayed Z; Lundgren, Jens D; Roediger, Mollie P

    2011-01-01

    There are contradictory reports regarding the effects of protease inhibitors on the ECG measures of QT and PR interval durations. The effect of interrupting use of protease inhibitors on QT and PR progression is also unknown.......There are contradictory reports regarding the effects of protease inhibitors on the ECG measures of QT and PR interval durations. The effect of interrupting use of protease inhibitors on QT and PR progression is also unknown....

  13. Discovery of novel selenium derivatives as Pin1 inhibitors by high-throughput screening

    International Nuclear Information System (INIS)

    Subedi, Amit; Shimizu, Takeshi; Ryo, Akihide; Sanada, Emiko; Watanabe, Nobumoto; Osada, Hiroyuki

    2016-01-01

    Peptidyl prolyl cis/trans isomerization by Pin1 regulates various oncogenic signals during cancer progression, and its inhibition through multiple approaches has established Pin1 as a therapeutic target. However, lack of simplified screening systems has limited the discovery of potent Pin1 inhibitors. We utilized phosphorylation-dependent binding of Pin1 to its specific substrate to develop a screening system for Pin1 inhibitors. Using this system, we screened a chemical library, and identified a novel selenium derivative as Pin1 inhibitor. Based on structure-activity guided chemical synthesis, we developed more potent Pin1 inhibitors that inhibited cancer cell proliferation. -- Highlights: •Novel screening for Pin1 inhibitors based on Pin1 binding is developed. •A novel selenium compound is discovered as Pin1 inhibitor. •Activity guided chemical synthesis of selenium derivatives resulted potent Pin1 inhibitors.

  14. Real-Time Inhibitor Recession Measurements in Two Space Shuttle Reusable Solid Rocket Motors

    Science.gov (United States)

    McWhorter, B. B.; Ewing, M. E.; Bolton, D. E.; Albrechtsen, K. U.; Earnest, T. E.; Noble, T. C.; Longaker, M.

    2003-01-01

    Real-time internal motor insulation char line recession measurements have been evaluated for two full-scale static tests of the Space Shuttle Reusable Solid Rocket Motor (RSRM). These char line recession measurements were recorded on the forward facing propellant grain inhibitors to better understand the thermal performance of these inhibitors. The RSRM propellant grain inhibitors are designed to erode away during motor operation, thus making it difficult to use post-fire observations to determine inhibitor thermal performance. Therefore, this new internal motor instrumentation is invaluable in establishing an accurate understanding of inhibitor recession versus motor operation time. The data for the first test was presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (AIAA 2001-3280) in July 2001. Since that time, a second full scale static test has delivered additional real-time data on inhibitor thermal performance. The evaluation of this data is presented in this paper. The second static test, in contrast to the first test, used a slightly different arrangement of instrumentation in the inhibitors. This instrumentation has yielded a better understanding of the inhibitor time dependent inboard tip recession. Graphs of inhibitor recession profiles with time are presented. Inhibitor thermal ablation models have been created from theoretical principals. The model predictions compare favorably with data from both tests. This verified modeling effort is important to support new inhibitor designs for a five segment Space Shuttle solid rocket motor. The internal instrumentation project on RSRM static tests is providing unique opportunities for other real-time internal motor measurements that could not otherwise be directly quantified.

  15. Nontoxic corrosion inhibitors for N80 steel in hydrochloric acid

    OpenAIRE

    M. Yadav; Debasis Behera; Usha Sharma

    2016-01-01

    The purpose of this paper is to evaluate the protective ability of 1-(2-aminoethyl)-2-oleylimidazoline (AEOI) and 1-(2-oleylamidoethyl)-2-oleylimidazoline (OAEOI) as corrosion inhibitors for N80 steel in 15% hydrochloric acid, which may find application as eco-friendly corrosion inhibitors in acidizing processes in petroleum industry. Different concentrations of synthesized inhibitors AEOI and OAEOI were added to the test solution (15% HCl) and the corrosion inhibition of N80 steel in hydroch...

  16. Pipeline corrosion prevention by pH stabilization or corrosion inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Nyborg, Rolf [Institute for Energy Technology, Oslo (Norway)

    2009-07-01

    In many offshore oil and gas projects the pipeline costs are a considerable part of the investment and can become prohibitively high if the corrosivity of the fluid necessitates the use of corrosion resistant alloys instead of carbon steel. Development of more robust and reliable methods for internal corrosion control can increase the application range of carbon steel and therefore have a large economic impact. Corrosion control of carbon steel pipelines has traditionally often been managed by the use of corrosion inhibitors. The pH stabilization technique has been successfully used for corrosion control of several large wet gas pipelines in the last years. This method has advantages over film forming corrosion inhibitors when no or little formation water is produced. The use of corrosion inhibitors in multiphase pipelines implies several challenges which are not fully accounted for in traditional corrosion inhibitor testing procedures. Specialized test procedures have been developed to take account for the presence of emulsions dispersions and sand and clay particles in corrosion inhibitor testing. (author)

  17. Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    Science.gov (United States)

    Pearman, B. P.; Calle, L. M.; Zhang, X.; Li, W.; Buhrow, J. W.; Johnsey, M. N.; Montgomery, E. L.; Fitzpatrick, L.; Surma, J. M.

    2015-01-01

    The NASA Kennedy Space Center's Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods. Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The release of the inhibitors from the microparticles in basic solution was studied. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed. The inhibition efficacy of the inhibitors, incorporated directly and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.

  18. Are SGLT2 inhibitors reasonable antihypertensive drugs and renoprotective?

    Science.gov (United States)

    Lovshin, J A; Gilbert, R E

    2015-06-01

    By eliminating glucose in the urine, the sodium-glucose-linked cotransporter-2 (SGLT2) inhibitors act as osmotic diuretics to lower blood pressure in addition to reducing plasma glucose and assisting with weight loss. While not approved as antihypertensive agents, the ability of this new class of antihyperglycemic agents to lower blood pressure is not insubstantial, and while not used primarily for this indication, they may assist diabetic individuals in attaining currently recommended blood pressure targets. In addition to lowering systemic pressure, preclinical and exploratory human studies suggest that SGLT2 inhibitors may also lower intraglomerular pressure, potentially reducing the rate of GFR decline in patients with diabetic nephropathy. However, given the lack of clinically meaningful endpoint data, the use of SGLT2 inhibitors, primarily, as either antihypertensive or renoprotective agents would, at present, be premature. Fortunately, further insight will be garnered from large, randomized controlled trials that will assess the effects of various SGLT2 inhibitors on cardiovascular and renal outcomes.

  19. Structural investigation of HIV-1 nonnucleoside reverse transcriptase inhibitors: 2-Aryl-substituted benzimidazoles

    Science.gov (United States)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2009-11-01

    Acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency virus (HIV) is one of the most destructive epidemics in history. Inhibitors of HIV enzymes are the main targets to develop drugs against that disease. Nonnucleoside reverse transcriptase inhibitors of HIV-1 (NNRTIs) are potentially effective and nontoxic. Structural studies provide information necessary to design more active compounds. The crystal structures of four NNRTI derivatives of 2-aryl-substituted N-benzyl-benzimidazole are presented here. Analysis of the geometrical parameters shows that the structures of the investigated inhibitors are rigid. The important geometrical parameter is the dihedral angle between the planes of the π-electron systems of the benzymidazole and benzyl moieties. The values of these dihedral angles are in a narrow range for all investigated inhibitors. There is no significant difference between the structure of the free inhibitor and the inhibitor in the complex with RT HIV-1. X-ray structures of the investigated inhibitors are a good basis for modeling enzyme-inhibitor interactions in rational drug design.

  20. Green inhibitors. Rare Earth based systems

    International Nuclear Information System (INIS)

    Aballe, A.; Bethencourt, M.; Botana, F.J.; Perez, J.; Rodriguez, M.A.; Marcos, M.

    1997-01-01

    Lanthanum, Cerium and Samarium chlorides have been investigated as uniform and pitting corrosion inhibitors of AISI 434 and AISI 304 stainless steels and AA 5083 Al-Mg alloy in 3.5% Na Cl aerated aqueous solutions. Their inhibitor power was evaluated by using electrochemical techniques such as Linear and Cyclic Polarisation. In each case, the highest protection degree was found in the solution dropped with 500 ppm of CeCl 3 . Similar results were obtained for additions of 500 ppm of LaCl 3 . Scanning Electron Microscopy and Energy Dispersive Spectroscopy allowed us to confirm the cathodic nature of the inhibition process. (Author) 27 refs

  1. The MOX Fuel Behaviour Test IFA-597.4: Temperature And Pressure Data To A Burn-Up Of 5.4 MWd/kg MOX

    International Nuclear Information System (INIS)

    McGrath, M. A.; Teshima, H.

    1998-02-01

    Characterising the behaviour of MOX fuel is becoming increasingly important as many commercial reactors are or will be operating with this type of fuel. With this as a driving force, a new joint programme experiment, IFA-597.4, has been loaded into the reactor at Halden for the purpose of establishing the fission gas release behaviour of MOX fuel. Both annular and solid pellet fuel is being utilised and the irradiation is being conducted such that the fuel is initially operated below the onset of fission gas release. The fuel will later be subjected to small power up ratings which will be held for short periods of time. These are designed to bring the fuel to just above the temperature threshold for fission gas release thus allowing the FGR behaviour of both solid and annular MOX fuel to be established. The rig contains two fuel rods of active length 220 mm and diameter 8.05 mm. Both fuel rods contain MOX fuel with an initial Pu-fissile content of 6.07% and both are instrumented with a fuel centre thermocouple and a pressure transducer. The test is being performed under HBWR conditions and at the time of the reactor shutdown at the end of 1997 a mean burn-up of 5.4 MWd/kg MOX had been achieved with the rods at an average rating of 30 kW/m. The rod pressure data show that no fission gas had been released up to the shutdown. The fuel centre temperatures of both rods exhibit an initial increase concurrent with a fall in the monitored rod internal pressures as a result of fuel densification. It was estimated that about 1-1.4% fuel densification by volume had occurred in the two rods by a burn-up of about 3 MWd/kg MOX. (author)

  2. Histone Deacetylase Inhibitors Prolong Cardiac Repolarization through Transcriptional Mechanisms.

    Science.gov (United States)

    Spence, Stan; Deurinck, Mark; Ju, Haisong; Traebert, Martin; McLean, LeeAnne; Marlowe, Jennifer; Emotte, Corinne; Tritto, Elaine; Tseng, Min; Shultz, Michael; Friedrichs, Gregory S

    2016-09-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of anticancer agents that modify gene expression by altering the acetylation status of lysine residues of histone proteins, thereby inducing transcription, cell cycle arrest, differentiation, and cell death or apoptosis of cancer cells. In the clinical setting, treatment with HDAC inhibitors has been associated with delayed cardiac repolarization and in rare instances a lethal ventricular tachyarrhythmia known as torsades de pointes. The mechanism(s) of HDAC inhibitor-induced effects on cardiac repolarization is unknown. We demonstrate that administration of structurally diverse HDAC inhibitors to dogs causes delayed but persistent increases in the heart rate corrected QT interval (QTc), an in vivo measure of cardiac repolarization, at timepoints far removed from the Tmax for parent drug and metabolites. Transcriptional profiling of ventricular myocardium from dogs treated with various HDAC inhibitors demonstrated effects on genes involved in protein trafficking, scaffolding and insertion of various ion channels into the cell membrane as well as genes for specific ion channel subunits involved in cardiac repolarization. Extensive in vitro ion channel profiling of various structural classes of HDAC inhibitors (and their major metabolites) by binding and acute patch clamp assays failed to show any consistent correlations with direct ion channel blockade. Drug-induced rescue of an intracellular trafficking-deficient mutant potassium ion channel, hERG (G601S), and decreased maturation (glycosylation) of wild-type hERG expressed by CHO cells in vitro correlated with prolongation of QTc intervals observed in vivo The results suggest that HDAC inhibitor-induced prolongation of cardiac repolarization may be mediated in part by transcriptional changes of genes required for ion channel trafficking and localization to the sarcolemma. These data have broad implications for the development of these drug classes and

  3. A screen for kinase inhibitors identifies antimicrobial imidazopyridine aminofurazans as specific inhibitors of the Listeria monocytogenes PASTA kinase PrkA.

    Science.gov (United States)

    Schaenzer, Adam J; Wlodarchak, Nathan; Drewry, David H; Zuercher, William J; Rose, Warren E; Striker, Rob; Sauer, John-Demian

    2017-10-13

    Bacterial signaling systems such as protein kinases and quorum sensing have become increasingly attractive targets for the development of novel antimicrobial agents in a time of rising antibiotic resistance. The family of bacterial P enicillin-binding-protein A nd S erine/ T hreonine kinase- A ssociated (PASTA) kinases is of particular interest due to the role of these kinases in regulating resistance to β-lactam antibiotics. As such, small-molecule kinase inhibitors that target PASTA kinases may prove beneficial as treatments adjunctive to β-lactam therapy. Despite this interest, only limited progress has been made in identifying functional inhibitors of the PASTA kinases that have both activity against the intact microbe and high kinase specificity. Here, we report the results of a small-molecule screen that identified GSK690693, an imidazopyridine aminofurazan-type kinase inhibitor that increases the sensitivity of the intracellular pathogen Listeria monocytogenes to various β-lactams by inhibiting the PASTA kinase PrkA. GSK690693 potently inhibited PrkA kinase activity biochemically and exhibited significant selectivity for PrkA relative to the Staphylococcus aureus PASTA kinase Stk1. Furthermore, other imidazopyridine aminofurazans could effectively inhibit PrkA and potentiate β-lactam antibiotic activity to varying degrees. The presence of the 2-methyl-3-butyn-2-ol (alkynol) moiety was important for both biochemical and antimicrobial activity. Finally, mutagenesis studies demonstrated residues in the back pocket of the active site are important for GSK690693 selectivity. These data suggest that targeted screens can successfully identify PASTA kinase inhibitors with both biochemical and antimicrobial specificity. Moreover, the imidazopyridine aminofurazans represent a family of PASTA kinase inhibitors that have the potential to be optimized for selective PASTA kinase inhibition.

  4. Covalent docking of selected boron-based serine beta-lactamase inhibitors

    Science.gov (United States)

    Sgrignani, Jacopo; Novati, Beatrice; Colombo, Giorgio; Grazioso, Giovanni

    2015-05-01

    AmpC β-lactamase is a hydrolytic enzyme conferring resistance to β-lactam antibiotics in multiple Gram-negative bacteria. Therefore, identification of non-β-lactam compounds able to inhibit the enzyme is crucial for the development of novel antibacterial therapies. In general, AmpC inhibitors have to engage the highly solvent-exposed catalytic site of the enzyme. Therefore, understanding the implications of ligand-protein induced-fit and water-mediated interactions behind the inhibitor-enzyme recognition process is fundamental for undertaking structure-based drug design process. Here, we focus on boronic acids, a promising class of beta-lactamase covalent inhibitors. First, we optimized a docking protocol able to reproduce the experimentally determined binding mode of AmpC inhibitors bearing a boronic group. This goal was pursued (1) performing rigid and flexible docking calculations aiming to establish the role of the side chain conformations; and (2) investigating the role of specific water molecules in shaping the enzyme active site and mediating ligand protein interactions. Our calculations showed that some water molecules, conserved in the majority of the considered X-ray structures, are needed to correctly predict the binding pose of known covalent AmpC inhibitors. On this basis, we formalized our findings in a docking and scoring protocol that could be useful for the structure-based design of new boronic acid AmpC inhibitors.

  5. Purification, partial characterization, and immunological relationships of multiple low molecular weight protease inhibitors of soybean

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, D L.R.; Lin, K T.D.; Yang, W K; Foard, D E

    1977-01-01

    Five protease inhibitors, I-V, in the molecular weight range 7000-8000 were purified from Tracy soybeans by ammonium sulfate precipitation, gel filtration on Sephadex G-100 and G-75, and column chromatography on DEAE-cellulose. In common with previously described trypsin inhibitors from legumes, I-V have a high content of half-cystine and lack tryptophan. By contrast with other legume inhibitors, inhibitor II contains 3 methionine residues. Isoelectric points range from 6.2 to 4.2 in order from inhibitor I to V. Molar ratios (inhibitor/enzyme) for 50% trypsin inhibition are I = 4.76, II = 1.32, III = 3.22, IV = 2.17, V = 0.97. Only V inhibits chymotrypsin significantly (molar ratio = 1.33 for 50% inhibition). The sequence of the first 16 N-terminal amino acid residues of inhibitor V is identical to that of the Bowman-Birk inhibitor; all other observations also indicate that inhibitor V and Bowman-Birk are identical. The first 20 N-terminal amino acid residues of inhibitor II show high homology to those of Bowman-Birk inhibitor, differing by 1 deletion and 5 substitutions. Immunological tests show that inhibitors I through IV are fully cross-reactive with each other but are distinct from inhibitor V.

  6. Cholinesterase inhibitor (Altenuene) from an endophytic fungus Alternaria alternata: optimization, purification and characterization.

    Science.gov (United States)

    Bhagat, J; Kaur, A; Kaur, R; Yadav, A K; Sharma, V; Chadha, B S

    2016-10-01

    The aim of this study was to screen endophytic fungi isolated from Vinca rosea for their potential to produce acetylcholinesterase (AChE) inhibitors. Endophytic fungi isolated from V. rosea (Catharanthus roseus), were screened for AChE inhibitor production using Ellman's method. Maximum inhibition against AChE (78%) was observed in an isolate VS-10, identified to be Alternaria alternata on morphological and molecular basis. The isolate also inhibited butyrylcholinesterase (73%). Significant increase (1·3 fold) was achieved after optimization of process parameters using one variable at time approach. The inhibitor was purified using chromatographic techniques. The structure elucidation of the inhibitor was carried out using spectroscopic techniques and was identified to be 'altenuene'. The purified inhibitor possessed antioxidant potential as revealed by dot blot assay. The insecticidal potential of purified inhibitor was evaluated by feeding Spodoptora litura on diet amended with inhibitor. It evinced significant larval mortality. Endophytic A. alternata can serve as a source of dual cholinesterase inhibitor 'altenuene' with significant antioxidant and insecticidal activity. This is the first report on acetylcholinestearse inhibitory activity of altenuene. Alternaria alternata has the potential to produce a dual ChE inhibitor with antioxidant activity useful in the treatment of neurodegenerative disorders and in agriculture as biocontrol agent. © 2016 The Society for Applied Microbiology.

  7. Ginger extract as green corrosion inhibitor of mild steel in hydrochloric acid solution

    Science.gov (United States)

    Fidrusli, A.; Suryanto; Mahmood, M.

    2018-01-01

    Ginger extract as corrosion inhibitor from natural resources was studied to prevent corrosion of mild steel in acid media. Ginger rhizome was extracted to produce green corrosion inhibitor (G-1) while ginger powder bought at supermarket was also extract to form green corrosion inhibitor (G-2). Effectiveness of inhibitor in preventing corrosion process of mild steel was studied in 1.0 M of hydrochloric acid. The experiment of weight loss method and polarization technique were conducted to measure corrosion rate and inhibition efficiency of mild steel in solution containing 1.0 M of hydrochloric acid with various concentration of inhibitor at room temperature. The results showed that, the rate of corrosion dropped from 8.09 mmpy in solution containing no inhibitor to 0.72 mmpy in solution containing 150g/l inhibitor while inhibition efficiency up to 91% was obtained. The polarization curve in polarization experiments shows that the inhibition efficiency is 86% with high concentration of inhibitor. The adsorption of ginger extract on the surface of mild steel was observed by using optical microscope and the characterization analysis was done by using pH measurement method. When high concentration of green inhibitor in the acid solution is used, the pH at the surface of steel is increasing.

  8. DIPEPTIDYL PEPTIDASE 4 (DPP-4 INHIBITORS FOR THE TREATMENT OF TYPE 2 DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    Erna Kristin

    2016-12-01

    Diabetes mellitus (DM merupakan penyakit kronis yang menyebabkan sekitar 1,5 juta kematian pada tahun 2012 menurut Organisasi Kesehatan Dunia (WHO. DM tipe 2 (DMT2 banyaknya 90% dari keseluruhan DM di seluruh dunia. Prevalensi DMT2 meningkat karena obesitas. Pedoman klinis merekomendasikan penggunaan metformin sebagai pengobatan lini pertama kecuali ada kontraindikasi, maka bisa diikuti dengan penambahan 1 atau 2 OADs, seperti sulfonilurea (SU, inhibitor alpha-glucosidase, atau thiazolidinediones (TZD. Baru-baru ini, obat baru golongan dipeptidyl peptidase 4 (DPP-4 inhibitor telah ditambahkan ke algoritma pengobatan. Dipeptidyl peptidase 4 (DPP-4 inhibitor inhibitor adalah kelas obat antidiabetes oral yang menghambat DPP-4 enzim. Sitagliptin, saxagliptin, vildagliptin dan linagliptin yang merupakan golongan dipeptidyl peptidase-4 (DPP-4 inhibitor tersedia untuk pengobatan diabetes tipe 2 di Indonesia dan banyak negara lainnya. DPP-4 inhibitor memiliki khasiat glikemik yang setara. DPP-4 inhibitor menghasilkan peningkatan moderat hemoglobin terglikasi (A1C. Namun uji coba head-to-head jumlahnya terbatas, dan tidak ada data tentang penggunaan penggunaan jangka panjang (lebih dari dua tahun keamanan, kematian, komplikasi diabetes, atau kualitas-hidup pasien. Meskipun DPP-inhibitor tidak digunakan sebagai terapi awal untuk mayoritas pasien dengan diabetes tipe 2, DPP-4 inhibitor dapat digunakan sebagai terapi tambahan di tipe 2 pasien diabetes yang tidak toleran, ada kontraindikasi, atau tidak terkontrol dengan penggunaan metformin, sulfonilurea, atau thiazolidinediones. Peran sebenarnya dari DPP-4 inhibitor di antara beberapa obat lainnya untuk DMT2 tidak begitu jelas. Hanya ada sejumlah kecil studi jangka panjang pada DPP-4 inhibitor menilai penurunan glikemik, kemanjuran, kejadian kardiovaskular, kematian, atau keamanan. Pada pasien dengan gagal ginjal (perkiraan laju filtrasi glomerulus [eGFR] <30 mL / menit kronis dapat menggunakan DPP-4 inhibitor, linagliptin

  9. β-secretase inhibitor; a promising novel therapeutic drug in AD

    Directory of Open Access Journals (Sweden)

    Kelly Willemijn Menting

    2014-07-01

    Full Text Available Alzheimer’s disease (AD and vascular dementia are responsible for up to 90% of dementia cases. According to the World Health Organization (WHO, a staggering number of 35.6 million people are currently diagnosed with dementia. Blocking disease progression or preventing AD altogether is desirable for both social and economic reasons and recently focus has shifted to a new and promising drug: the β-secretase inhibitor. Much of AD research has investigated the amyloid cascade hypothesis, which postulates that AD is caused by changes in amyloid beta (Aβ stability and aggregation. Blocking Aβ production by inhibiting the first protease required for its generation, β-secretase/BACE1, may be the next step in blocking AD progression. In April 2012, promising phase I data on inhibitor MK-8931 was presented. This drug reduced Aβ CSF levels up to 92% and was well tolerated by patients. In March 2013 data was added from a one week trial in 32 mild to moderate AD patients, showing CSF Aβ levels decreased up to 84%. However, BACE1 inhibitors require further research. First, greatly reducing Aβ levels through BACE1 inhibition may have harmful side effects. Second, BACE1 inhibitors have yet to pass clinical trial phase II/III and no data on possible side effects on AD patients are available. And third, there remains doubt about the clinical efficacy of BACE1 inhibitors. In moderate AD patients, Aβ plaques have already been formed. BACE1 inhibitors prevent production of new Aβ plaques, but hypothetically do not influence already existing Aβ peptides. Therefore, BACE1 inhibitors are potentially better at preventing AD instead of having therapeutic use.

  10. Checkpoint inhibitors in cancer immunotherapy: Cross reactivity of a CTLA-4 antibody and IDO-inhibitor L-1MT in pigs

    DEFF Research Database (Denmark)

    Al-Shatrawi, Zina Adil; Frøsig, Thomas Mørch; Jungersen, Gregers

    a non-specific activation of porcine T cells. This will be further investigated to provide the basis for in vivo studies investigating checkpoint inhibitor blockade in combination with other cancer immunotherapies. Eventually our goal is to establish pigs as an alternative large animal model......Blockade of checkpoint inhibitors has recently shown very convincing results in the treatment of cancer. One key target is CTLA-4, which has been demonstrated to be a potent negative regulator of lymphocyte activation. The treatment with the FDA-approved fully human CTLA-4 monoclonal antibody...... Ipilimumab increases anticancer T-cell reactivity and overall survival of metastatic cancer patients. Indole-amine 2,3-dioxygenase (IDO) is another checkpoint inhibitor which suppresses T-cell immunity by the depletion of tryptophan in the T-cell microenvironment, and also inhibition of IDO by L-1...

  11. Inhibition of SRC-3 enhances sensitivity of human cancer cells to histone deacetylase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhengzhi, E-mail: zouzhengzhi@m.scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510000 (China); Luo, Xiaoyong [Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang 471000 (China); Nie, Peipei [KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510000 (China); Wu, Baoyan; Zhang, Tao; Wei, Yanchun [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510000 (China); Wang, Wenyi [Xiamen Cancer Center, Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China); Geng, Guojun; Jiang, Jie [Xiamen Cancer Center, Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China); Mi, Yanjun, E-mail: myjgj_77@163.com [Xiamen Cancer Center, Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China)

    2016-09-09

    SRC-3 is widely expressed in multiple tumor types and involved in cancer cell proliferation and apoptosis. Histone deacetylase (HDAC) inhibitors are promising antitumor drugs. However, the poor efficacy of HDAC inhibitors in solid tumors has restricted its further clinical application. Here, we reported the novel finding that depletion of SRC-3 enhanced sensitivity of breast and lung cancer cells to HDAC inhibitors (SAHA and romidepsin). In contrast, overexpression of SRC-3 decreased SAHA-induced cancer cell apoptosis. Furthermore, we found that SRC-3 inhibitor bufalin increased cancer cell apoptosis induced by HDAC inhibitors. The combination of bufalin and SAHA was particular efficient in attenuating AKT activation and reducing Bcl-2 levels. Taken together, these accumulating data might guide development of new breast and lung cancer therapies. - Highlights: • Depletion of SRC-3 enhanced sensitivity of breast and lung cancer cells to HDAC inhibitors. • Overexpression of SRC-3 enhanced cancer cell resistance to HDAC inhibitors. • SRC-3 inhibitor bufalin increased cancer cell apoptosis induced by HDAC inhibitors. • Bufalin synergized with HDAC inhibitor attenuated AKT activation and reduced Bcl-2 levels in human cancer cell.

  12. Retroviral proteinases and their inhibitors

    Czech Academy of Sciences Publication Activity Database

    Sedláček, Juraj

    2000-01-01

    Roč. 3, 3,4 (2000), s. 23-24 [ Proteolytic enzymes and their inhibitors in physiology and pathogenesis. 14.09.2000, Plzen] Institutional research plan: CEZ:AV0Z5052915 Subject RIV: EB - Genetics ; Molecular Biology

  13. Small molecule inhibitor screening identifified HSP90 inhibitor 17-AAG as potential therapeutic agent for gallbladder cancer.

    Science.gov (United States)

    Weber, Helga; Valbuena, José R; Barbhuiya, Mustafa A; Stein, Stefan; Kunkel, Hana; García, Patricia; Bizama, Carolina; Riquelme, Ismael; Espinoza, Jaime A; Kurtz, Stephen E; Tyner, Jeffrey W; Calderon, Juan Francisco; Corvalán, Alejandro H; Grez, Manuel; Pandey, Akhilesh; Leal-Rojas, Pamela; Roa, Juan C

    2017-04-18

    Gallbladder cancer (GBC) is a lethal cancer with poor prognosis associated with high invasiveness and poor response to chemotherapy and radiotherapy. New therapeutic approaches are urgently needed in order to improve survival and response rates of GBC patients. We screened 130 small molecule inhibitors on a panel of seven GBC cell lines and identified the HSP90 inhibitor 17-AAG as one of the most potent inhibitory drugs across the different lines. We tested the antitumor efficacy of 17-AAG and geldanamycin (GA) in vitro and in a subcutaneous preclinical tumor model NOD-SCID mice. We also evaluated the expression of HSP90 by immunohistochemistry in human GBC tumors.In vitro assays showed that 17-AAG and GA significantly reduced the expression of HSP90 target proteins, including EGFR, AKT, phospho-AKT, Cyclin B1, phospho-ERK and Cyclin D1. These molecular changes were consistent with reduced cell viability and cell migration and promotion of G2/M cell cycle arrest and apoptosis observed in our in vitro studies.In vivo, 17-AAG showed efficacy in reducing subcutaneous tumors size, exhibiting a 69.6% reduction in tumor size in the treatment group compared to control mice (p < 0.05).The HSP90 immunohistochemical staining was seen in 182/209 cases of GBC (87%) and it was strongly expressed in 70 cases (33%), moderately in 58 cases (28%), and weakly in 54 cases (26%).Our pre-clinical observations strongly suggest that the inhibition of HSP90 function by HSP90 inhibitors is a promising therapeutic strategy for gallbladder cancer that may benefit from new HSP90 inhibitors currently in development.

  14. Platelet GP II b/III a inhibitors in neurointervention therapeutics

    International Nuclear Information System (INIS)

    Wang Kuizhong; Huang Qinghai; Liu Jianmin

    2007-01-01

    The platelet glucoprotein (GP) II b/III a inhibitors prossess inhibiting platelet aggregation effectly. As new drugs of antiplatelet, they are different in mechanism with action, application and dosage between the II b/III a inhibitors and other tradional antiplatelet drugs such as aspirin or clopidogrel. In familiar with the pharmacologic action and clinical application of II b/III a inhibitors is important for endovascular interventional radiology, especially with important significance for obtaining high quality neuro-endovascular stenting in the perioperative period. (authors)

  15. Live-cell microscopy reveals small molecule inhibitor effects on MAPK pathway dynamics.

    Directory of Open Access Journals (Sweden)

    Daniel J Anderson

    Full Text Available Oncogenic mutations in the mitogen activated protein kinase (MAPK pathway are prevalent in human tumors, making this pathway a target of drug development efforts. Recently, ATP-competitive Raf inhibitors were shown to cause MAPK pathway activation via Raf kinase priming in wild-type BRaf cells and tumors, highlighting the need for a thorough understanding of signaling in the context of small molecule kinase inhibitors. Here, we present critical improvements in cell-line engineering and image analysis coupled with automated image acquisition that allow for the simultaneous identification of cellular localization of multiple MAPK pathway components (KRas, CRaf, Mek1 and Erk2. We use these assays in a systematic study of the effect of small molecule inhibitors across the MAPK cascade either as single agents or in combination. Both Raf inhibitor priming as well as the release from negative feedback induced by Mek and Erk inhibitors cause translocation of CRaf to the plasma membrane via mechanisms that are additive in pathway activation. Analysis of Erk activation and sub-cellular localization upon inhibitor treatments reveals differential inhibition and activation with the Raf inhibitors AZD628 and GDC0879 respectively. Since both single agent and combination studies of Raf and Mek inhibitors are currently in the clinic, our assays provide valuable insight into their effects on MAPK signaling in live cells.

  16. ROCK inhibitor prevents the dedifferentiation of human articular chondrocytes

    International Nuclear Information System (INIS)

    Matsumoto, Emi; Furumatsu, Takayuki; Kanazawa, Tomoko; Tamura, Masanori; Ozaki, Toshifumi

    2012-01-01

    Highlights: ► ROCK inhibitor stimulates chondrogenic gene expression of articular chondrocytes. ► ROCK inhibitor prevents the dedifferentiation of monolayer-cultured chondrocytes. ► ROCK inhibitor enhances the redifferentiation of cultured chondrocytes. ► ROCK inhibitor is useful for preparation of un-dedifferentiated chondrocytes. ► ROCK inhibitor may be a useful reagent for chondrocyte-based regeneration therapy. -- Abstract: Chondrocytes lose their chondrocytic phenotypes in vitro. The Rho family GTPase ROCK, involved in organizing the actin cytoskeleton, modulates the differentiation status of chondrocytic cells. However, the optimum method to prepare a large number of un-dedifferentiated chondrocytes is still unclear. In this study, we investigated the effect of ROCK inhibitor (ROCKi) on the chondrogenic property of monolayer-cultured articular chondrocytes. Human articular chondrocytes were subcultured in the presence or absence of ROCKi (Y-27632). The expression of chondrocytic marker genes such as SOX9 and COL2A1 was assessed by quantitative real-time PCR analysis. Cellular morphology and viability were evaluated. Chondrogenic redifferentiation potential was examined by a pellet culture procedure. The expression level of SOX9 and COL2A1 was higher in ROCKi-treated chondrocytes than in untreated cells. Chondrocyte morphology varied from a spreading form to a round shape in a ROCKi-dependent manner. In addition, ROCKi treatment stimulated the proliferation of chondrocytes. The deposition of safranin O-stained proteoglycans and type II collagen was highly detected in chondrogenic pellets derived from ROCKi-pretreated chondrocytes. Our results suggest that ROCKi prevents the dedifferentiation of monolayer-cultured chondrocytes, and may be a useful reagent to maintain chondrocytic phenotypes in vitro for chondrocyte-based regeneration therapy.

  17. Oral direct thrombin inhibitors or oral factor Xa inhibitors for the treatment of pulmonary embolism.

    Science.gov (United States)

    Robertson, Lindsay; Kesteven, Patrick; McCaslin, James E

    2015-12-04

    Pulmonary embolism is a potentially life-threatening condition in which a clot can travel from the deep veins, most commonly in the leg, up to the lungs. Previously, a pulmonary embolism was treated with the anticoagulants heparin and vitamin K antagonists. Recently, however, two forms of direct oral anticoagulants (DOACs) have been developed: oral direct thrombin inhibitors (DTI) and oral factor Xa inhibitors. The new drugs have characteristics that may be favourable over conventional treatment, including oral administration, a predictable effect, lack of frequent monitoring or re-dosing and few known drug interactions. To date, no Cochrane review has measured the effectiveness and safety of these drugs in the long-term treatment (minimum duration of three months) of pulmonary embolism. To assess the effectiveness of oral DTIs and oral factor Xa inhibitors for the long-term treatment of pulmonary embolism. The Cochrane Vascular Trials Search Co-ordinator searched the Specialised Register (last searched January 2015) and the Cochrane Register of Studies (last searched January 2015). Clinical trials databases were also searched for details of ongoing or unpublished studies. We searched the reference lists of relevant articles retrieved by electronic searches for additional citations. We included randomised controlled trials in which patients with a pulmonary embolism confirmed by standard imaging techniques were allocated to receive an oral DTI or an oral factor Xa inhibitor for the long-term (minimum duration three months) treatment of pulmonary embolism. Two review authors (LR, JM) independently extracted the data and assessed the risk of bias in the trials. Any disagreements were resolved by discussion with the third author (PK). We used meta-analyses when we considered heterogeneity low. The two primary outcomes were recurrent venous thromboembolism and pulmonary embolism. Other outcomes included all-cause mortality and major bleeding. We calculated all outcomes

  18. Synergistic efficacy in human ovarian cancer cells by histone deacetylase inhibitor TSA and proteasome inhibitor PS-341.

    Science.gov (United States)

    Fang, Yong; Hu, Yi; Wu, Peng; Wang, Beibei; Tian, Yuan; Xia, Xi; Zhang, Qinghua; Chen, Tong; Jiang, Xuefeng; Ma, Quanfu; Xu, Gang; Wang, Shixuan; Zhou, Jianfeng; Ma, Ding; Meng, Li

    2011-05-01

    Histone deacetylase inhibitors and proteasome inhibitor are all emerging as new classes of anticancer agents. We chose TSA and PS-341 to identify whether they have a synergistic efficacy on human ovarian cancer cells. After incubated with 500 nM TSA or/and 40 nM PS-341, we found that combined groups resulted in a striking increase of apoptosis and G2/M blocking rates, no matter in A2780, cisplatin-sensitive ovarian cancer cell line OV2008 or its resistant variant C13*. This demonstrated that TSA interacted synergistically with PS-341, which raised the possibility that combined the two drugs may represent a novel strategy in ovarian cancer.

  19. Structure-based virtual screening of molecular libraries as cdk2 inhibitors

    International Nuclear Information System (INIS)

    Riaz, U.; Khaleeq, M.

    2011-01-01

    CDK2 inhibitor is an important target in multiple processes associated with tumor growth and development, including proliferation, neovascularization, and metastasis. In this study, hit identification was performed by virtual screening of commercial and in-house compound libraries. Docking studies for the hits were performed, and scoring functions were used to evaluate the docking results and to rank ligand-binding affinities. Subsequently, hit optimization for potent and selective candidate CDK2 inhibitors was performed through focused library design and docking analyses. Consequently, we report that a novel compound with an IC50 value of 89 nM, representing 2-Amino-4,6-di-(4',6'-dibromophenyl)pyrimidine 1, is highly selective for CDK2 inhibitors. The docking structure of compound 1 with CDK2 inhibitor disclosed that the NH moiety and pyrimidine ring appeared to fit tightly into the hydrophobic pocket of CDK2 inhibitor. Additionally, the pyrimidine NH forms a hydrogen bond with the carboxyl group of Asp348. These results confirm the successful application of virtual screening studies in the lead discovery process, and suggest that our novel compound can be an effective CDK2 inhibitor candidate for further lead optimization. (author)

  20. Mechanisms behind efficacy of tumor necrosis factor inhibitors in inflammatory bowel diseases

    DEFF Research Database (Denmark)

    Olesen, Caroline Meyer; Coskun, Mehmet; Peyrin-Biroulet, Laurent

    2016-01-01

    Biological treatment with tumor necrosis factor (TNF) inhibitors is successful in the management of inflammatory bowel disease (IBD). All TNF inhibitors antagonize the pro-inflammatory cytokine TNF-α but with varying efficacies in IBD. The variations in efficacy probably are caused by structural ...... inhibitors in order to identify mechanisms of importance for their efficacy in IBD. Thus, a better understanding of the mechanistic basis for clinical efficacy can lead to a more rational use of TNF inhibitors in the management of IBD....

  1. High-throughput screening to identify inhibitors of lysine demethylases.

    Science.gov (United States)

    Gale, Molly; Yan, Qin

    2015-01-01

    Lysine demethylases (KDMs) are epigenetic regulators whose dysfunction is implicated in the pathology of many human diseases including various types of cancer, inflammation and X-linked intellectual disability. Particular demethylases have been identified as promising therapeutic targets, and tremendous efforts are being devoted toward developing suitable small-molecule inhibitors for clinical and research use. Several High-throughput screening strategies have been developed to screen for small-molecule inhibitors of KDMs, each with advantages and disadvantages in terms of time, cost, effort, reliability and sensitivity. In this Special Report, we review and evaluate the High-throughput screening methods utilized for discovery of novel small-molecule KDM inhibitors.

  2. Inhibition of hydrogenase synthesis by DNA gyrase inhibitors in Bradyrhizobium japonicum

    International Nuclear Information System (INIS)

    Novak, P.D.; Maier, R.J.

    1987-01-01

    Derepression of an uptake hydrogenase in Bradyrhizobium japonicum is dependent on a microaerophilic environment. Addition of DNA gyrase inhibitors during derepression of hydrogenase specifically prevented expression of the hydrogenase enzyme. Antibodies to individual hydrogenase subunits failed to detect the protein after derepression in the presence of inhibitors, although there was no general inhibition of protein synthesis. The general pattern of proteins synthesized from 14 C-labeled amino acids during derepression was no significantly different whether proteins were labeled in the presence or in the absence of gyrase inhibitors. In contrast, if transcription or translation was inhibited by addition of inhibitors of those functions, virtually no proteins were labeled during derepression. This indicated that most of the 14 C-labeled proteins were synthesized de novo during derepression, synthesis of most proteins was unaffected by gyrase inhibitors, and the dependence of hydrogenase synthesis on gyrase activity was a specific one

  3. The Process and Strategy for Developing Selective Histone Deacetylase 3 Inhibitors

    Directory of Open Access Journals (Sweden)

    Fangyuan Cao

    2018-03-01

    Full Text Available Histone deacetylases (HDACs are epigenetic drug targets that have gained major scientific attention. Inhibition of these important regulatory enzymes is used to treat cancer, and has the potential to treat a host of other diseases. However, currently marketed HDAC inhibitors lack selectivity for the various HDAC isoenzymes. Several studies have shown that HDAC3, in particular, plays an important role in inflammation and degenerative neurological diseases, but the development of selective HDAC3 inhibitors has been challenging. This review provides an up-to-date overview of selective HDAC3 inhibitors, and aims to support the development of novel HDAC3 inhibitors in the future.

  4. Reduced Airway Hyperresponsiveness by Phosphodiesterase 3 and 4 Inhibitors in Guinea-Pigs

    Directory of Open Access Journals (Sweden)

    Nöella Germain

    1999-01-01

    Full Text Available The aim of the present study was to compare the effects of selective phosphodiesterase (PDE 3, 4 and 5 inhibitors on antigen-induced airway hyperresponsiveness in sensitized guinea-pigs. When the sensitized guinea-pigs were orally pre-treated with the selective PDE4 inhibitor, Ro 20-1724 (30 mg/kg, and studied 48 h after OA, a significant reduction (p<0.01 of the leftward shift of the dose-response curve to ACh was noted, whereas it was ineffective at the lower dose (10 mg/kg. Administration of the selective PDE3 inhibitor, milrinone (30 mg/kg also elicited a significant reduction (p<0.01 of the airway hyperresponsiveness, whereas the PDE5 inhibitor zaprinast (30 mg/kg was ineffective. These results show that both PDE3 and PDE4 inhibitors are able to inhibit the antigen-induced airway hyperresponsiveness in sensitized guinea-pigs and support the potential utility of selective PDE inhibitors in the treatment of asthma.

  5. Narrativas, rituais urbanos e o contexto social do olhar na virada do século XIX para o século XX

    Directory of Open Access Journals (Sweden)

    Eloiza Gurgel Pires

    2017-08-01

    condensam o pensamento do filósofo em torno do surgimento da grande urbe, da reprodutibilidade técnica da imagem e da centralidade do cinema na modernidade. Palavras-chave> Modernidade. Cinema. W. Benjamin. Narrativas urbanas. Cotidiano.

  6. Barley alpha-amylase/subtilisin inhibitor: structure, biophysics and protein engineering

    DEFF Research Database (Denmark)

    Nielsen, P.K.; Bønsager, Birgit Christine; Fukuda, Kenji

    2004-01-01

    Bifunctional alpha-amylase/subtilisin inhibitors have been implicated in plant defence and regulation of endogenous alpha-amylase action. The barley alpha-amylase/subtilisin inhibitor (BASI) inhibits the barley alpha-amylase 2 (AMY2) and subtilisin-type serine proteases. BASI belongs to the Kunitz...... Ca2+-modulated kinetics of the AMY2/BASl interaction and found that the complex formation involves minimal structural changes. The modulation of the interaction by calcium ions makes it unique among the currently known binding mechanisms of proteinaceous alpha-amylase inhibitors....

  7. Calcineurin-inhibitor pain syndrome.

    Science.gov (United States)

    Prommer, Eric

    2012-07-01

    There has been increased recognition of calcineurin, a phosphoprotein serine/threonine phosphatase enzyme, in the regulation of many physiologic systems. Calcineurin mediates activation of lymphocytes, which play a role in immune response. Widely distributed in the central nervous system, calcinuerin also plays an important role in sensory neural function, via its role in the regulation of newly discovered 2-pore potassium channels, which greatly influence neuronal resting membrane potentials. Calcinuerin inhibition is the mechanism of action of immunomodulatory drugs such as cyclosporine and tacrolimus, which are widely used in transplantation medicine to prevent rejection. While important for immunosuppression, the use of calcineurin inhibitors has been associated with the development of a new pain syndrome called the calcineurin pain syndrome, which appears to be an untoward complication of the interruption of the physiologic function of calcineurin. This is a narrative review focusing on the epidemiology, pathophysiology, characterization of a newly recognized pain syndrome associated with the use of calcineurin inhibitors. The use of immunosuppressants however is associated with several well-known toxicities to which the calcineurin pain syndrome can be added. The development of this syndrome most likely involves altered nociceptive processing due to the effect of calcineurin inhibition on neuronal firing, as well as effects of calcineurin on vascular tone. The most striking aspect of the treatment of this syndrome is the response to calcium channel blockers, which suggest that the effects of calcineurin inhibition on vascular tone play an important role in the development of the calcineurin pain syndrome. The calcineurin syndrome is a newly recognized complication associated with the use of calcineurin inhibitors. There is no standard therapy at this time but anecdotal reports suggest the effectiveness of calcium channel blockers.

  8. Fluoxetine Is a Potent Inhibitor of Coxsackievirus Replication

    OpenAIRE

    Zuo, Jun; Quinn, Kevin K.; Kye, Steve; Cooper, Paige; Damoiseaux, Robert; Krogstad, Paul

    2012-01-01

    No antiviral drugs currently exist for the treatment of enterovirus infections, which are often severe and potentially life threatening. Molecular screening of small molecule libraries identified fluoxetine, a selective serotonin reuptake inhibitor, as a potent inhibitor of coxsackievirus replication. Fluoxetine did not interfere with either viral entry or translation of the viral genome. Instead, fluoxetine and its metabolite norfluoxetine markedly reduced the synthesis of viral RNA and prot...

  9. TRPV1 in brain is involved in acetaminophen-induced antinociception.

    Directory of Open Access Journals (Sweden)

    Christophe Mallet

    2010-09-01

    Full Text Available Acetaminophen, the major active metabolite of acetanilide in man, has become one of the most popular over-the-counter analgesic and antipyretic agents, consumed by millions of people daily. However, its mechanism of action is still a matter of debate. We have previously shown that acetaminophen is further metabolized to N-(4-hydroxyphenyl-5Z,8Z,11Z,14Z -eicosatetraenamide (AM404 by fatty acid amide hydrolase (FAAH in the rat and mouse brain and that this metabolite is a potent activator of transient receptor potential vanilloid 1 (TRPV(1 in vitro. Pharmacological activation of TRPV(1 in the midbrain periaqueductal gray elicits antinociception in rats. It is therefore possible that activation of TRPV(1 in the brain contributes to the analgesic effect of acetaminophen.Here we show that the antinociceptive effect of acetaminophen at an oral dose lacking hypolocomotor activity is absent in FAAH and TRPV(1 knockout mice in the formalin, tail immersion and von Frey tests. This dose of acetaminophen did not affect the global brain contents of prostaglandin E(2 (PGE(2 and endocannabinoids. Intracerebroventricular injection of AM404 produced a TRPV(1-mediated antinociceptive effect in the mouse formalin test. Pharmacological inhibition of TRPV(1 in the brain by intracerebroventricular capsazepine injection abolished the antinociceptive effect of oral acetaminophen in the same test.This study shows that TRPV(1 in brain is involved in the antinociceptive action of acetaminophen and provides a strategy for developing central nervous system active oral analgesics based on the coexpression of FAAH and TRPV(1 in the brain.

  10. 2-Aminobenzimidazoles as potent Aurora kinase inhibitors.

    Science.gov (United States)

    Zhong, Min; Bui, Minna; Shen, Wang; Baskaran, Subramanian; Allen, Darin A; Elling, Robert A; Flanagan, W Michael; Fung, Amy D; Hanan, Emily J; Harris, Shannon O; Heumann, Stacey A; Hoch, Ute; Ivy, Sheryl N; Jacobs, Jeffrey W; Lam, Stuart; Lee, Heman; McDowell, Robert S; Oslob, Johan D; Purkey, Hans E; Romanowski, Michael J; Silverman, Jeffrey A; Tangonan, Bradley T; Taverna, Pietro; Yang, Wenjin; Yoburn, Josh C; Yu, Chul H; Zimmerman, Kristin M; O'Brien, Tom; Lew, Willard

    2009-09-01

    This Letter describes the discovery and key structure-activity relationship (SAR) of a series of 2-aminobenzimidazoles as potent Aurora kinase inhibitors. 2-Aminobenzimidazole serves as a bioisostere of the biaryl urea residue of SNS-314 (1c), which is a potent Aurora kinase inhibitor and entered clinical testing in patients with solid tumors. Compared to SNS-314, this series of compounds offers better aqueous solubility while retaining comparable in vitro potency in biochemical and cell-based assays; in particular, 6m has also demonstrated a comparable mouse iv PK profile to SNS-314.

  11. Corrosion protection with eco-friendly inhibitors

    Science.gov (United States)

    Shahid, Muhammad

    2011-12-01

    Corrosion occurs as a result of the interaction of a metal with its environment. The extent of corrosion depends on the type of metal, the existing conditions in the environment and the type of aggressive ions present in the medium. For example, CO3-2 and NO-3 produce an insoluble deposit on the surface of iron, resulting in the isolation of metal and consequent decrease of corrosion. On the other hand, halide ions are adsorbed selectively on the metal surface and prevent formation of the oxide phase on the metal surface, resulting in continuous corrosion. Iron, aluminum and their alloys are widely used, both domestically and industrially. Linear alkylbenzene and linear alkylbenzene sulfonate are commonly used as detergents. They have also been found together in waste water. It is claimed that these chemicals act as inhibitors for stainless steel and aluminum. Release of toxic gases as a result of corrosion in pipelines may lead in certain cases to air pollution and possible health hazards. Therefore, there are two ways to look at the relationship between corrosion and pollution: (i) corrosion of metals and alloys due to environmental pollution and (ii) environmental pollution as a result of corrosion protection. This paper encompasses the two scenarios and possible remedies for various cases, using 'green' inhibitors obtained either from plant extracts or from pharmaceutical compounds. In the present study, the effect of piperacillin sodium as a corrosion inhibitor for mild steel was investigated using a weight-loss method as well as a three-electrode dc electrochemical technique. It was found that the corrosion rate decreased as the concentration of the inhibitor increased up to 9×10-4 M 93% efficiency was exhibited at this concentration.

  12. GSK-3 inhibitors induce chromosome instability

    Directory of Open Access Journals (Sweden)

    Staples Oliver D

    2007-08-01

    Full Text Available Abstract Background Several mechanisms operate during mitosis to ensure accurate chromosome segregation. However, during tumour evolution these mechanisms go awry resulting in chromosome instability. While several lines of evidence suggest that mutations in adenomatous polyposis coli (APC may promote chromosome instability, at least in colon cancer, the underlying mechanisms remain unclear. Here, we turn our attention to GSK-3 – a protein kinase, which in concert with APC, targets β-catenin for proteolysis – and ask whether GSK-3 is required for accurate chromosome segregation. Results To probe the role of GSK-3 in mitosis, we inhibited GSK-3 kinase activity in cells using a panel of small molecule inhibitors, including SB-415286, AR-A014418, 1-Azakenpaullone and CHIR99021. Analysis of synchronised HeLa cells shows that GSK-3 inhibitors do not prevent G1/S progression or cell division. They do, however, significantly delay mitotic exit, largely because inhibitor-treated cells have difficulty aligning all their chromosomes. Although bipolar spindles form and the majority of chromosomes biorient, one or more chromosomes often remain mono-oriented near the spindle poles. Despite a prolonged mitotic delay, anaphase frequently initiates without the last chromosome aligning, resulting in chromosome non-disjunction. To rule out the possibility of "off-target" effects, we also used RNA interference to selectively repress GSK-3β. Cells deficient for GSK-3β exhibit a similar chromosome alignment defect, with chromosomes clustered near the spindle poles. GSK-3β repression also results in cells accumulating micronuclei, a hallmark of chromosome missegregation. Conclusion Thus, not only do our observations indicate a role for GSK-3 in accurate chromosome segregation, but they also raise the possibility that, if used as therapeutic agents, GSK-3 inhibitors may induce unwanted side effects by inducing chromosome instability.

  13. Adverse Effects of COX-2 Inhibitors

    Directory of Open Access Journals (Sweden)

    Jagdish N. Sharma

    2005-01-01

    Full Text Available Cyclooxygenase-2 selective inhibitors (COXIBs were developed with the prime object of minimizing gastrointestinal adverse effects, which are seen with the use of traditional nonsteroidal anti-inflammatory drugs (NSAIDs. Their long-term use is limited by the development of hypertension, edema, and congestive heart failure in a significant proportion of patients. NSAIDs block the activity of both COX isozymes, COX-1 and COX-2, which mediate the enzymatic conversion of arachidonate to prostaglandin H2 (PGH2 and other prostaglandin (PG metabolites. It is well established that the cardiovascular profile of COX-2 inhibitors can be accounted for by inhibition of COX-dependent PG synthesis. Following the COX-mediated synthesis of PGH2 from arachidonate, PGH2 is metabolized to one of at least five bioactive PGs, including PGE2, PGI2, PGF2, PGD2, or thromboxane A2 (TXA2. These prostanoids have pleiotropic cardiovascular effects, altering platelet function and renal function, and they are acting either as vasodilators or vasoconstrictors. Although COX-1 and COX-2 exhibit similar biochemical activity in converting arachidonate to PGH2in vitro, the ultimate prostanoids they produce in vivo may be different due to differential regulation of COX-1 and COX-2, tissue distribution, and availability of the prostanoid synthases. PGs have been established as being critically involved in mitigating hypertension, helping to maintain medullary blood flow (MBF, promoting urinary salt excretion, and preserving the normal homeostasis of thrombosis, and the researchers found that the use of COX-2 inhibitors caused many serious complications in altering the normal body homeostasis. The purpose of the present research is to explain briefly the side effects of COX-2 inhibitors on the renal and cardiovascular system.

  14. Effect of biocides and anionic homopolymeric inhibitors on the ...

    African Journals Online (AJOL)

    This paper describes the effect of biocides and of the anionic homopolymeric inhibitors on the precipitation behavior of calcium fluoride (CaF2).The efficiency of inhibitors in the presence and absence of biocides was calculated using the half-life (t1/2) approach, where 50% of the concentration has been precipitated.

  15. SjAPI, the first functionally characterized Ascaris-type protease inhibitor from animal venoms.

    Directory of Open Access Journals (Sweden)

    Zongyun Chen

    Full Text Available BACKGROUND: Serine protease inhibitors act as modulators of serine proteases, playing important roles in protecting animal toxin peptides from degradation. However, all known serine protease inhibitors discovered thus far from animal venom belong to the Kunitz-type subfamily, and whether there are other novel types of protease inhibitors in animal venom remains unclear. PRINCIPAL FINDINGS: Here, by screening scorpion venom gland cDNA libraries, we identified the first Ascaris-type animal toxin family, which contains four members: Scorpiops jendeki Ascaris-type protease inhibitor (SjAPI, Scorpiops jendeki Ascaris-type protease inhibitor 2 (SjAPI-2, Chaerilus tricostatus Ascaris-type protease inhibitor (CtAPI, and Buthus martensii Ascaris-type protease inhibitor (BmAPI. The detailed characterization of Ascaris-type peptide SjAPI from the venom gland of scorpion Scorpiops jendeki was carried out. The mature peptide of SjAPI contains 64 residues and possesses a classical Ascaris-type cysteine framework reticulated by five disulfide bridges, different from all known protease inhibitors from venomous animals. Enzyme and inhibitor reaction kinetics experiments showed that recombinant SjAPI was a dual function peptide with α-chymotrypsin- and elastase-inhibiting properties. Recombinant SjAPI inhibited α-chymotrypsin with a Ki of 97.1 nM and elastase with a Ki of 3.7 μM, respectively. Bioinformatics analyses and chimera experiments indicated that SjAPI contained the unique short side chain functional residues "AAV" and might be a useful template to produce new serine protease inhibitors. CONCLUSIONS/SIGNIFICANCE: To our knowledge, SjAPI is the first functionally characterized animal toxin peptide with an Ascaris-type fold. The structural and functional diversity of animal toxins with protease-inhibiting properties suggested that bioactive peptides from animal venom glands might be a new source of protease inhibitors, which will accelerate the

  16. Localization to Chromosomes of Structural Genes for the Major Protease Inhibitors of Barley Grains

    DEFF Research Database (Denmark)

    Hejgaard, Jørn; Bjørn, S.E.; Nielsen, Gunnar Gissel

    1984-01-01

    Wheat-barley chromosome addition lines were compared by isoelectric focusing of protein extracts to identify chromosomes carrying loci for the major immunochemically distinct protease inhibitors of barley grains. Structural genes for the following inhibitors were localized: an inhibitor of both...... endogenous α-amylase 2 and subtilisin (ASI) on chromosome 2, two chymotrypsin/subtilisin inhibitors (CI-1 and CI-2) on chromosome 5 (long arm) and the major trypsin inhibitor (TI-1) on chromosome 3....

  17. [Inhibitors of proteolytic enzymes under abiotic stresses in plants (review)].

    Science.gov (United States)

    Mosolov, V V; Valueva, T A

    2011-01-01

    Data on the role of proteolytic enzyme inhibitors in plant adaptation to various unfavorable environmental abiotic factors--water deficiency, salinization of soil, extreme temperatures, etc.--and also probable functions of proteinases inhibitors in natural plant senescense are considered.

  18. Serine protease inhibitors of parasitic helminths.

    Science.gov (United States)

    Molehin, Adebayo J; Gobert, Geoffrey N; McManus, Donald P

    2012-05-01

    Serine protease inhibitors (serpins) are a superfamily of structurally conserved proteins that inhibit serine proteases and play key physiological roles in numerous biological systems such as blood coagulation, complement activation and inflammation. A number of serpins have now been identified in parasitic helminths with putative involvement in immune regulation and in parasite survival through interference with the host immune response. This review describes the serpins and smapins (small serine protease inhibitors) that have been identified in Ascaris spp., Brugia malayi, Ancylostoma caninum Onchocerca volvulus, Haemonchus contortus, Trichinella spiralis, Trichostrongylus vitrinus, Anisakis simplex, Trichuris suis, Schistosoma spp., Clonorchis sinensis, Paragonimus westermani and Echinococcus spp. and discusses their possible biological functions, including roles in host-parasite interplay and their evolutionary relationships.

  19. Interdependence of Inhibitor Recognition in HIV-1 Protease.

    Science.gov (United States)

    Paulsen, Janet L; Leidner, Florian; Ragland, Debra A; Kurt Yilmaz, Nese; Schiffer, Celia A

    2017-05-09

    Molecular recognition is a highly interdependent process. Subsite couplings within the active site of proteases are most often revealed through conditional amino acid preferences in substrate recognition. However, the potential effect of these couplings on inhibition and thus inhibitor design is largely unexplored. The present study examines the interdependency of subsites in HIV-1 protease using a focused library of protease inhibitors, to aid in future inhibitor design. Previously a series of darunavir (DRV) analogs was designed to systematically probe the S1' and S2' subsites. Co-crystal structures of these analogs with HIV-1 protease provide the ideal opportunity to probe subsite interdependency. All-atom molecular dynamics simulations starting from these structures were performed and systematically analyzed in terms of atomic fluctuations, intermolecular interactions, and water structure. These analyses reveal that the S1' subsite highly influences other subsites: the extension of the hydrophobic P1' moiety results in 1) reduced van der Waals contacts in the P2' subsite, 2) more variability in the hydrogen bond frequencies with catalytic residues and the flap water, and 3) changes in the occupancy of conserved water sites both proximal and distal to the active site. In addition, one of the monomers in this homodimeric enzyme has atomic fluctuations more highly correlated with DRV than the other monomer. These relationships intricately link the HIV-1 protease subsites and are critical to understanding molecular recognition and inhibitor binding. More broadly, the interdependency of subsite recognition within an active site requires consideration in the selection of chemical moieties in drug design; this strategy is in contrast to what is traditionally done with independent optimization of chemical moieties of an inhibitor.

  20. [Sodium Glucose Co-transporter Type 2 (SGLT2) Inhibitors in CKD].

    Science.gov (United States)

    Insalaco, Monica; Zanoli, Luca; Rastelli, Stefania; Lentini, Paolo; Rapisarda, Francesco; Fatuzzo, Pasquale; Castellino, Pietro; Granata, Antonio

    2015-01-01

    Among the new drugs used for the treatment of Diabetes Mellitus type 2, sodium-glucose cotransporter 2 (SGLT2) inhibitors represent a promising therapeutic option. Since their ability to lower glucose is proportional to GFR, their effect is reduced in patients with chronic kidney disease (CKD). The antidiabetic mechanism of these drugs is insulin-independent and, therefore, complimentary to that of others antihyperglicaemic agents. Moreover, SGLT2 inhibitors are able to reduce glomerular hyperfiltration, systemic and intraglomerular pressure and uric acid levels, with consequent beneficial effects on the progression of kidney disease in non diabetic patients as well. Only few studies have been performed to evaluate the effects of SGLT2 inhibitors in patients with CKD. Therefore, safety and efficacy of SGLT2 inhibitors should be better clarified in the setting of CKD. In this paper, we will review the use of SGLT2 inhibitors in diabetic patients, including those with CKD.

  1. BET Bromodomain Inhibition Synergizes with PARP Inhibitor in Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Sergey Karakashev

    2017-12-01

    Full Text Available PARP inhibition is known to be an effective clinical strategy in BRCA mutant cancers, but PARP inhibition has not been applied to BRCA-proficient tumors. Here, we show the synergy of BET bromodomain inhibition with PARP inhibition in BRCA-proficient ovarian cancers due to mitotic catastrophe. Treatment of BRCA-proficient ovarian cancer cells with the BET inhibitor JQ1 downregulated the G2-M cell-cycle checkpoint regulator WEE1 and the DNA-damage response factor TOPBP1. Combining PARP inhibitor Olaparib with the BET inhibitor, we observed a synergistic increase in DNA damage and checkpoint defects, which allowed cells to enter mitosis despite the accumulation of DNA damage, ultimately causing mitotic catastrophe. Moreover, JQ1 and Olaparib showed synergistic suppression of growth of BRCA-proficient cancer in vivo in a xenograft ovarian cancer mouse model. Our findings indicate that a combination of BET inhibitor and PARP inhibitor represents a potential therapeutic strategy for BRCA-proficient cancers.

  2. Application of Molecular Modeling to Urokinase Inhibitors Development

    Directory of Open Access Journals (Sweden)

    V. B. Sulimov

    2014-01-01

    Full Text Available Urokinase-type plasminogen activator (uPA plays an important role in the regulation of diverse physiologic and pathologic processes. Experimental research has shown that elevated uPA expression is associated with cancer progression, metastasis, and shortened survival in patients, whereas suppression of proteolytic activity of uPA leads to evident decrease of metastasis. Therefore, uPA has been considered as a promising molecular target for development of anticancer drugs. The present study sets out to develop the new selective uPA inhibitors using computer-aided structural based drug design methods. Investigation involves the following stages: computer modeling of the protein active site, development and validation of computer molecular modeling methods: docking (SOL program, postprocessing (DISCORE program, direct generalized docking (FLM program, and the application of the quantum chemical calculations (MOPAC package, search of uPA inhibitors among molecules from databases of ready-made compounds to find new uPA inhibitors, and design of new chemical structures and their optimization and experimental examination. On the basis of known uPA inhibitors and modeling results, 18 new compounds have been designed, calculated using programs mentioned above, synthesized, and tested in vitro. Eight of them display inhibitory activity and two of them display activity about 10 μM.

  3. HIV protease drug resistance and its impact on inhibitor design.

    Science.gov (United States)

    Ala, P J; Rodgers, J D; Chang, C H

    1999-07-01

    The primary cause of resistance to the currently available HIV protease inhibitors is the accumulation of multiple mutations in the viral protease. So far more than 20 substitutions have been observed in the active site, dimer interface, surface loops and flaps of the homodimer. While many mutations reduce the protease's affinity for inhibitors, others appear to enhance its catalytic efficiency. This high degree of genetic flexibility has made the protease an elusive drug target. The design of the next generation of HIV protease inhibitors will be discussed in light of the current structural information.

  4. Do we need full mesoscale models to simulate the urban heat island? A study over the city of Barcelona.

    Science.gov (United States)

    García-Díez, Markel; Ballester, Joan; De Ridder, Koen; Hooyberghs, Hans; Lauwaet, Dirk; Rodó, Xavier

    2016-04-01

    As most of the population lives in urban environments, the simulation of the urban climate has become an important part of the global climate change impact assessment. However, due to the high resolution required, these simulations demand a large amount of computational resources. Here we present a comparison between a simplified fast urban climate model (UrbClim) and a widely used full mesoscale model, the Weather Research and Forecasting (WRF) model, over the city of Barcelona. In order to check the advantages and disadvantages of each approach, both simulations were compared with station data and with land surface temperature observations retrieved by satellites, focusing on the urban heat island. The effect of changing the UrbClim boundary conditions was studied too, by using low resolution global reanalysis data (70 km) and a higher resolution forecast model (15 km). Finally, a strict comparison of the computational resources consumed by both models was carried out. Results show that, generally, the performance of the simple model is comparable to or better than the mesoscale model. The exception are the winds and the day-to-day correlation in the reanalysis driven run, but these problems disappear when taking the boundary conditions from a higher resolution global model. UrbClim was found to run 133 times faster than WRF, using 4x times higher resolution and, thus, it is an efficient solution for running long climate change simulations over large city ensembles.

  5. ROCK inhibitor prevents the dedifferentiation of human articular chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Emi [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan); Furumatsu, Takayuki, E-mail: matino@md.okayama-u.ac.jp [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan); Kanazawa, Tomoko; Tamura, Masanori; Ozaki, Toshifumi [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer ROCK inhibitor stimulates chondrogenic gene expression of articular chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor prevents the dedifferentiation of monolayer-cultured chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor enhances the redifferentiation of cultured chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor is useful for preparation of un-dedifferentiated chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor may be a useful reagent for chondrocyte-based regeneration therapy. -- Abstract: Chondrocytes lose their chondrocytic phenotypes in vitro. The Rho family GTPase ROCK, involved in organizing the actin cytoskeleton, modulates the differentiation status of chondrocytic cells. However, the optimum method to prepare a large number of un-dedifferentiated chondrocytes is still unclear. In this study, we investigated the effect of ROCK inhibitor (ROCKi) on the chondrogenic property of monolayer-cultured articular chondrocytes. Human articular chondrocytes were subcultured in the presence or absence of ROCKi (Y-27632). The expression of chondrocytic marker genes such as SOX9 and COL2A1 was assessed by quantitative real-time PCR analysis. Cellular morphology and viability were evaluated. Chondrogenic redifferentiation potential was examined by a pellet culture procedure. The expression level of SOX9 and COL2A1 was higher in ROCKi-treated chondrocytes than in untreated cells. Chondrocyte morphology varied from a spreading form to a round shape in a ROCKi-dependent manner. In addition, ROCKi treatment stimulated the proliferation of chondrocytes. The deposition of safranin O-stained proteoglycans and type II collagen was highly detected in chondrogenic pellets derived from ROCKi-pretreated chondrocytes. Our results suggest that ROCKi prevents the dedifferentiation of monolayer-cultured chondrocytes, and may be a useful reagent to maintain chondrocytic phenotypes in vitro for chondrocyte

  6. Pengaruh Penambahan Inhibitor Alami terhadap Laju Korosi pada Material Pipa dalam Larutan Air Laut Buatan

    Directory of Open Access Journals (Sweden)

    Ardi Prasetia Yanuar

    2017-01-01

    Full Text Available Korosi merupakan penurunan mutu logam akibat adanya reaksi elektrokimia dengan lingkungannya. Banyak faktor yang dapat menyebabkan korosi suatu material, salah satu diantaranya yakni pengaruh konsentrasi media korosi. Ada banyak metode untuk menghambat proses terjadinya korosi. Salah satu diantara banyak metode yaitu penggunaan inhibitor. Inhibitor organik salah satu jenis inhibitor yang bersifat non-toksik, murah, sudah tersedia di alam, mudah diperbaharui dan tidak merusak lingkungan. Inhibitor organik tersebut diperoleh dengan mengekstrak beberapa bahan yang ada di alam. Dalam penetilitian ini inhibitor yang digunakan antara lain daun jambu biji, daun teh, kedelai dan kopi. Inhibitor tersebut digunakan pada material pipa baja dalam media air laut buatan yang memiliki kadar salinitas 35 ‰. Metode perhitungan laju korosi baja menggunakan metode weight loss dan electroplating. Laju korosi paling kecil yakni sebesar 3.10 mpy untuk API 5L dan 1.94 mpy untuk ASTM A53 dengan inhibitor daun teh. Inhibitor yang kurang maksimal dalam menghambat laju korosi yaitu inhibitor kopi yakni 6.12 mpy untuk API 5L dan 2.66 mpy untuk ASTM A53. Nilai laju korosi spesimen API 5L dan ASTM A53 yang tidak menggunakan inhibitor masing-masing 50.26 mpy dan 3.83 mpy. Inhibitor teh memiliki nilai effisiensi mencapai 93.83%. Sedangkan daun jambu biji memiliki nilai effisiensi mencapai 93.45%. Nilai effisiensi inhibitor kedelai mencapai 91.72% dan inhibitor kopi memiliki nilai effisiensi paling rendah hanya mencapai 87.83%.

  7. A Pan-GTPase Inhibitor as a Molecular Probe.

    Directory of Open Access Journals (Sweden)

    Lin Hong

    Full Text Available Overactive GTPases have often been linked to human diseases. The available inhibitors are limited and have not progressed far in clinical trials. We report here a first-in-class small molecule pan-GTPase inhibitor discovered from a high throughput screening campaign. The compound CID1067700 inhibits multiple GTPases in biochemical, cellular protein and protein interaction, as well as cellular functional assays. In the biochemical and protein interaction assays, representative GTPases from Rho, Ras, and Rab, the three most generic subfamilies of the GTPases, were probed, while in the functional assays, physiological processes regulated by each of the three subfamilies of the GTPases were examined. The chemical functionalities essential for the activity of the compound were identified through structural derivatization. The compound is validated as a useful molecular probe upon which GTPase-targeting inhibitors with drug potentials might be developed.

  8. Molecular Dynamics simulations of Inhibitor of Apoptosis Proteins and identification of potential small molecule inhibitors.

    Science.gov (United States)

    Jayakumar, Jayanthi; Anishetty, Sharmila

    2014-05-01

    Chemotherapeutic resistance due to over expression of Inhibitor of Apoptosis Proteins (IAPs) XIAP, survivin and livin has been observed in various cancers. In the current study, Molecular Dynamics (MD) simulations were carried out for all three IAPs and a common ligand binding scaffold was identified. Further, a novel sequence based motif specific to these IAPs was designed. SMAC is an endogenous inhibitor of IAPs. Screening of ChemBank for compounds similar to lead SMAC-non-peptidomimetics yielded a cemadotin related compound NCIMech_000654. Cemadotin is a derivative of natural anti-tumor peptide dolastatin-15; hence these compounds were docked against all three IAPs. Based on our analysis, we propose that NCIMech_000654/dolastatin-15/cemadotin derivatives may be investigated for their potential in inhibiting XIAP, survivin and livin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Tyrosine sulfation modulates activity of tick-derived thrombin inhibitors

    Science.gov (United States)

    Thompson, Robert E.; Liu, Xuyu; Ripoll-Rozada, Jorge; Alonso-García, Noelia; Parker, Benjamin L.; Pereira, Pedro José Barbosa; Payne, Richard J.

    2017-09-01

    Madanin-1 and chimadanin are two small cysteine-free thrombin inhibitors that facilitate blood feeding in the tick Haemaphysalis longicornis. Here, we report a post-translational modification—tyrosine sulfation—of these two proteins that is critical for potent anti-thrombotic and anticoagulant activity. Inhibitors produced in baculovirus-infected insect cells displayed heterogeneous sulfation of two tyrosine residues within each of the proteins. One-pot ligation-desulfurization chemistry enabled access to homogeneous samples of all possible sulfated variants of the proteins. Tyrosine sulfation of madanin-1 and chimadanin proved crucial for thrombin inhibitory activity, with the doubly sulfated variants three orders of magnitude more potent than the unmodified inhibitors. The three-dimensional structure of madanin-1 in complex with thrombin revealed a unique mode of inhibition, with the sulfated tyrosine residues binding to the basic exosite II of the protease. The importance of tyrosine sulfation within this family of thrombin inhibitors, together with their unique binding mode, paves the way for the development of anti-thrombotic drug leads based on these privileged scaffolds.

  10. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    Science.gov (United States)

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2017-12-26

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacyl-ethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings.

  11. SGLT2 Inhibitor-associated Diabetic Ketoacidosis: Clinical Review and Recommendations for Prevention and Diagnosis.

    Science.gov (United States)

    Goldenberg, Ronald M; Berard, Lori D; Cheng, Alice Y Y; Gilbert, Jeremy D; Verma, Subodh; Woo, Vincent C; Yale, Jean-François

    2016-12-01

    Sodium-glucose cotransporter 2 (SGLT2) inhibitors are the newest class of antihyperglycemic agents available on the market. Regulator warnings and concerns regarding the risk of developing diabetic ketoacidosis (DKA), however, have dampened enthusiasm for the class despite the combined glycemic, blood pressure, and occasional weight benefits of SGLT2 inhibitors. With the goal of improving patient safety, a cross-Canada expert panel and writing group were convened to review the evidence to-date on reported SGLT2 inhibitor-related DKA incidents and to offer recommendations for preventing and recognizing patients with SGLT2 inhibitor-associated DKA. Reports covering DKA events in subjects taking SGLT2 inhibitors that were published in PubMed, presented at professional conferences, or in the public domain from January 2013 to mid-August 2016 were reviewed by the group independently and collectively. Practical recommendations for diagnosis and prevention were established by the panel. DKA is rarely associated with SGLT2 inhibitor therapy. Patients with SGLT2 inhibitor-associated DKA may be euglycemic (plasma glucose level SGLT2 inhibitor-associated DKA may be prevented by withholding SGLT2 inhibitors when precipitants develop, avoiding insulin omission or inappropriate insulin dose reduction, and by following sick day protocols as recommended. Preventive strategies should help avoid SGLT2 inhibitor-associated DKA. All SGLT2 inhibitor-treated patients presenting with signs or symptoms of DKA should be suspected to have DKA and be investigated for DKA, especially euglycemic patients. If DKA is diagnosed, SGLT2 inhibitor treatment should be stopped, and the DKA should be treated with a traditional treatment protocol. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.

  12. Enhancing Immune Checkpoint Inhibitor Therapy in Kidney Cancer

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0141 TITLE: Enhancing Immune Checkpoint Inhibitor therapy in Kidney Cancer PRINCIPAL INVESTIGATOR: Hans-Joerg Hammers...SUBTITLE Enhancing Immune Checkpoint Inhibitor therapy in Kidney Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH- 15-1-0141 5c. PROGRAM ELEMENT NUMBER...immune checkpoint inhibition in kidney cancer . The work is designed to test different strategies to induce or enhance the abscopal in a kidney cancer

  13. Effect of kinase inhibitors on the therapeutic properties of monoclonal antibodies.

    Science.gov (United States)

    Duong, Minh Ngoc; Matera, Eva-Laure; Mathé, Doriane; Evesque, Anne; Valsesia-Wittmann, Sandrine; Clémenceau, Béatrice; Dumontet, Charles

    2015-01-01

    Targeted therapies of malignancies currently consist of therapeutic monoclonal antibodies and small molecule kinase inhibitors. The combination of these novel agents raises the issue of potential antagonisms. We evaluated the potential effect of 4 kinase inhibitors, including the Bruton tyrosine kinase inhibitor ibrutinib, and 3 PI3K inhibitors idelalisib, NVP-BEZ235 and LY294002, on the effects of the 3 monoclonal antibodies, rituximab and obinutuzumab (directed against CD20) and trastuzumab (directed against HER2). We found that ibrutinib potently inhibits antibody-dependent cell-mediated cytotoxicity exerted by all antibodies, with a 50% inhibitory concentration of 0.2 microM for trastuzumab, 0.5 microM for rituximab and 2 microM for obinutuzumab, suggesting a lesser effect in combination with obinutuzumab than with rituximab. The 4 kinase inhibitors were found to inhibit phagocytosis by fresh human neutrophils, as well as antibody-dependent cellular phagocytosis induced by the 3 antibodies. Conversely co-administration of ibrutinib with rituximab, obinutuzumab or trastuzumab did not demonstrate any inhibitory effect of ibrutinib in vivo in murine xenograft models. In conclusion, some kinase inhibitors, in particular, ibrutinib, are likely to exert inhibitory effects on innate immune cells. However, these effects do not compromise the antitumor activity of monoclonal antibodies in vivo in the models that were evaluated.

  14. Structure of a Kunitz-type potato cathepsin D inhibitor

    Czech Academy of Sciences Publication Activity Database

    Guo, J.; Erskine, P. T.; Coker, A. R.; Wood, S. P.; Cooper, J. B.; Mareš, Michael; Baudyš, Miroslav

    2015-01-01

    Roč. 192, č. 3 (2015), s. 554-560 ISSN 1047-8477 R&D Projects: GA ČR GA15-18929S; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : potato cathepsin D inhibitor * Kunitz-type protease inhibitor * protein X-ray structure * reactive-site loop * docking Subject RIV: CE - Biochemistry Impact factor: 2.570, year: 2015

  15. A simple radiometric in vitro assay for acetylcholinesterase inhibitors

    International Nuclear Information System (INIS)

    Guilarte, T.R.; Burns, H.D.; Dannals, R.F.; Wagner, H.N. Jr.

    1983-01-01

    A radiometric method for screening acetylcholinesterase inhibitors has been described. The method is based on the production of [ 14 C]carbon dioxide from the hydrolysis of acetylcholine. The inhibitory concentration at 50% (IC50) values for several known acetylcholinesterase inhibitors were in agreement with literature values. The new radiometric method is simple, inexpensive, and has the potential for automation

  16. Comparing the lifetime risks of TNF-alpha inhibitor use to common benchmarks of risk.

    Science.gov (United States)

    Kaminska, Edi; Patel, Isha; Dabade, Tushar S; Chang, Jongwha; Qureshi, Ayub A; O'Neill, Jenna L; Balkrishnan, Rajesh; Feldman, Steven R

    2013-04-01

    The study aims to illustrate the range of lifetime risks of lymphoma, tuberculosis (TB), and demyelinating diseases with TNF-α inhibitors in psoriasis patients. Previously published data and online resources were used to determine the risk of the TB, demyelinating disease, and lymphoma with and without TNF-α inhibitor treatment. Lifetime risks for heart disease and stroke were collected using a Medline search. All cancer, trauma, and environmental statistics were obtained from the data published by National Cancer Institute, National Safety Council, and the National Oceanic and Atmospheric Administration, respectively. The lifetime risks of TNF-α-inhibitor-linked conditions and comparators are as follows: TNF-α inhibitor-linked conditions: lymphoma with: without TNF-α inhibitors (0.5-4.8%:2.3%), TB with:without TNF-α inhibitors (0-17.1%:0.3%), and demyelinating disease with:without TNF-α inhibitors (0.1-1.7%:0.15%). Comparators: cancer (40.4%), heart disease (36.2%), stroke (18.4%), accidental death (3.0%), motor vehicle death (1.2%), and lightning strike (0.033%). Much of the data on lifetime risks of disease with TNF-α inhibitor were for patients with rheumatoid arthritis and not psoriasis. The risks of lymphoma, demyelinating diseases, and tuberculosis with TNF-α inhibitors are lower than risks patients face on a regular basis. Screening reduces the risk of tuberculosis in patients receiving TNF-α inhibitors.

  17. Binding of the Inhibitor Protein IF1 to Bovine F1-ATPase

    Science.gov (United States)

    Bason, John V.; Runswick, Michael J.; Fearnley, Ian M.; Walker, John E.

    2011-01-01

    In the structure of bovine F1-ATPase inhibited with residues 1–60 of the bovine inhibitor protein IF1, the α-helical inhibitor interacts with five of the nine subunits of F1-ATPase. In order to understand the contributions of individual amino acid residues to this complex binding mode, N-terminal deletions and point mutations have been introduced, and the binding properties of each mutant inhibitor protein have been examined. The N-terminal region of IF1 destabilizes the interaction of the inhibitor with F1-ATPase and may assist in removing the inhibitor from its binding site when F1Fo-ATPase is making ATP. Binding energy is provided by hydrophobic interactions between residues in the long α-helix of IF1 and the C-terminal domains of the βDP-subunit and βTP-subunit and a salt bridge between residue E30 in the inhibitor and residue R408 in the C-terminal domain of the βDP-subunit. Several conserved charged amino acids in the long α-helix of IF1 are also required for establishing inhibitory activity, but in the final inhibited state, they are not in contact with F1-ATPase and occupy aqueous cavities in F1-ATPase. They probably participate in the pathway from the initial interaction of the inhibitor and the enzyme to the final inhibited complex observed in the structure, in which two molecules of ATP are hydrolysed and the rotor of the enzyme turns through two 120° steps. These findings contribute to the fundamental understanding of how the inhibitor functions and to the design of new inhibitors for the systematic analysis of the catalytic cycle of the enzyme. PMID:21192948

  18. Structure-Based Design of Novel HIV-1 Protease Inhibitors to Combat Drug Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh,A.; Sridhar, P.; Leshchenko, S.; Hussain, A.; Li, J.; Kovalevsky, A.; Walters, D.; Wedelind, J.; Grum-Tokars, V.; et al.

    2006-01-01

    Structure-based design and synthesis of novel HIV protease inhibitors are described. The inhibitors are designed specifically to interact with the backbone of HIV protease active site to combat drug resistance. Inhibitor 3 has exhibited exceedingly potent enzyme inhibitory and antiviral potency. Furthermore, this inhibitor maintains impressive potency against a wide spectrum of HIV including a variety of multi-PI-resistant clinical strains. The inhibitors incorporated a stereochemically defined 5-hexahydrocyclopenta[b]furanyl urethane as the P2-ligand into the (R)-(hydroxyethylamino)sulfonamide isostere. Optically active (3aS,5R,6aR)-5-hydroxy-hexahydrocyclopenta[b]furan was prepared by an enzymatic asymmetrization of meso-diacetate with acetyl cholinesterase, radical cyclization, and Lewis acid-catalyzed anomeric reduction as the key steps. A protein-ligand X-ray crystal structure of inhibitor 3-bound HIV-1 protease (1.35 Angstroms resolution) revealed extensive interactions in the HIV protease active site including strong hydrogen bonding interactions with the backbone. This design strategy may lead to novel inhibitors that can combat drug resistance.

  19. Tofacitinib and analogs as inhibitors of the histone kinase PRK1 (PKN1).

    Science.gov (United States)

    Ostrovskyi, Dmytro; Rumpf, Tobias; Eib, Julia; Lumbroso, Alexandre; Slynko, Inna; Klaeger, Susan; Heinzlmeir, Stephanie; Forster, Michael; Gehringer, Matthias; Pfaffenrot, Ellen; Bauer, Silke Mona; Schmidtkunz, Karin; Wenzler, Sandra; Metzger, Eric; Kuster, Bernhard; Laufer, Stefan; Schüle, Roland; Sippl, Wolfgang; Breit, Bernhard; Jung, Manfred

    2016-09-01

    The histone kinase PRK1 has been identified as a potential target to combat prostate cancer but selective PRK1 inhibitors are lacking. The US FDA -approved JAK1-3 inhibitor tofacitinib also potently inhibits PRK1 in vitro. We show that tofacitinib also inhibits PRK1 in a cellular setting. Using tofacitinib as a starting point for structure-activity relationship studies, we identified a more potent and another more selective PRK1 inhibitor compared with tofacitinib. Furthermore, we found two potential PRK1/JAK3-selectivity hotspots. The identified inhibitors and the selectivity hotspots lay the basis for the development of selective PRK1 inhibitors. The identification of PRK1, but also of other cellular tofacitinib targets, has implications on its clinical use and on future development of tofacitinib-like JAK inhibitors. [Formula: see text].

  20. Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors.

    Science.gov (United States)

    Thorsell, Ann-Gerd; Ekblad, Torun; Karlberg, Tobias; Löw, Mirjam; Pinto, Ana Filipa; Trésaugues, Lionel; Moche, Martin; Cohen, Michael S; Schüler, Herwig

    2017-02-23

    Selective inhibitors could help unveil the mechanisms by which inhibition of poly(ADP-ribose) polymerases (PARPs) elicits clinical benefits in cancer therapy. We profiled 10 clinical PARP inhibitors and commonly used research tools for their inhibition of multiple PARP enzymes. We also determined crystal structures of these compounds bound to PARP1 or PARP2. Veliparib and niraparib are selective inhibitors of PARP1 and PARP2; olaparib, rucaparib, and talazoparib are more potent inhibitors of PARP1 but are less selective. PJ34 and UPF1069 are broad PARP inhibitors; PJ34 inserts a flexible moiety into hydrophobic subpockets in various ADP-ribosyltransferases. XAV939 is a promiscuous tankyrase inhibitor and a potent inhibitor of PARP1 in vitro and in cells, whereas IWR1 and AZ-6102 are tankyrase selective. Our biochemical and structural analysis of PARP inhibitor potencies establishes a molecular basis for either selectivity or promiscuity and provides a benchmark for experimental design in assessment of PARP inhibitor effects.

  1. Should anti-inhibitor coagulant complex and tranexamic acid be used concomitantly?

    Science.gov (United States)

    Valentino, L A; Holme, P A

    2015-11-01

    Inhibitor development in haemophilia patients is challenging especially when undergoing surgical procedures. The development of an inhibitor precludes using factor VIII (FVIII) therapy thereby requiring a bypassing agent (BPA) for surgical bleeding prophylaxis if the FVIII inhibitor titre >5 BU. Concomitant use of anti-inhibitor coagulant complex (AICC) and tranexamic acid has been reported in the literature as a beneficial treatment for this population. Anti-inhibitor coagulant complex is known to cause an increase in thrombin generation and tranexamic acid inhibits fibrinolysis. Hence, the combined used of AICC and tranexamic acid has been limited due to safety concerns over possibilities of increased risk of thrombotic events and disseminated intravascular coagulation. However, the rationale for concomitant therapy is to obtain a potential synergistic effect and to increase clot stability. We conducted a literature review of past studies and individual case reports of concomitant use of AICC and tranexamic acid, which was extensively used during dental procedures. Evidence also exists for concomitant use of the combined therapy in orthopaedic procedures, control of gastrointestinal bleeding, epistaxis and cerebral haemorrhages. Some patients who received the combined therapy had failed monotherapy with a single BPA prior to combined therapy. There were no reports of thrombotic complications related to the concomitant therapy and haemostasis was achieved in all cases. Anti-inhibitor coagulant complex and tranexamic acid therapy was found to be safe, well-tolerated and effective therapy in haemophilia patients with inhibitors. Additional randomized controlled studies should be performed to confirm these findings. © 2015 John Wiley & Sons Ltd.

  2. The Second-Generation Maturation Inhibitor GSK3532795 Maintains Potent Activity Toward HIV Protease Inhibitor-Resistant Clinical Isolates.

    Science.gov (United States)

    Ray, Neelanjana; Li, Tianbo; Lin, Zeyu; Protack, Tricia; van Ham, Petronella Maria; Hwang, Carey; Krystal, Mark; Nijhuis, Monique; Lataillade, Max; Dicker, Ira

    2017-05-01

    Protease inhibitor (PI)-resistant HIV-1 isolates with primary substitutions in protease (PR) and secondary substitutions in Gag could potentially exhibit cross-resistance to maturation inhibitors. We evaluated the second-generation maturation inhibitor, GSK3532795, for activity toward clinical isolates with genotypic and phenotypic characteristics associated with PI resistance (longitudinal). Longitudinal clinical isolates from 15 PI-treated patients and 7 highly PI-resistant (nonlongitudinal) viruses containing major and minor PI resistance-associated mutations were evaluated for GSK3532795 sensitivity. Phenotypic sensitivity was determined using the PhenoSense Gag/PR assay (Monogram Biosciences) or in-house single- and multiple-cycle assays. Changes from baseline [CFB; ratio of post- to pre-treatment FC-IC50 (fold-change in IC50 versus wild-type virus)] Monogram (11 patients)] and 1.5 (1.0-2.2) [single-cycle (4 patients)]. The 2 post-PI treatment samples showing GSK3532795 CFB >3 (Monogram) were retested using single- and multiple-cycle assays. Neither sample had meaningful sensitivity changes in the multiple-cycle assay. Gag changes were not associated with an increased GSK3532795 CFB. GSK3532795 maintained antiviral activity against PI-resistant isolates with emergent PR and/or Gag mutations. This finding supports continued development of GSK3532795 in treatment-experienced patients with or without previous PI therapy.

  3. Aromatase inhibitor (anastrozole) affects growth of endometrioma cells in culture.

    Science.gov (United States)

    Badawy, Shawky Z A; Brown, Shereene; Kaufman, Lydia; Wojtowycz, Martha A

    2015-05-01

    To study the effects of aromatase inhibitor (anastrozole) on the growth and estradiol secretion of endometrioma cells in culture. Endometrioma cells are grown in vitro until maximum growth before used in this study. This was done in the research laboratory for tissue culture, in an academic hospital. Testosterone at a concentration of 10 μg/mL was added as a substrate for the intracellular aromatase. In addition, aromatase inhibitor was added at a concentration of 200 and 300 μg/mL. The effect on cell growth and estradiol secretion is evaluated using Student's t-test. The use of testosterone increased estradiol secretion by endometrioma cells in culture. The use of aromatase inhibitor significantly inhibited the growth of endometrioma cells, and estradiol secretion. Aromatase inhibitor (anastrozole) may be an effective treatment for endometriosis due to inhibition of cellular aromatase. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Inhibitor development after liver transplantation in congenital factor VII deficiency.

    Science.gov (United States)

    See, W-S Q; Chang, K-O; Cheuk, D K-L; Leung, Y-Y R; Chan, G C-F; Chan, S-C; Ha, S-Y

    2016-09-01

    Congenital factor VII (FVII) deficiency is the commonest type of the rare bleeding disorders. Very few cases of congenital FVII deficiency developed inhibitor and liver transplant is considered as definitive treatment. In the literature, twelve patients with congenital FVII deficiency developed inhibitors. Two had spontaneous resolution of inhibitors and one did not respond to high dose recombinant factor VIIa (rFVIIa) and died. Regarding liver transplant in congenital FVII patients, seven patients underwent liver transplant with good prognosis. We report a 5-year-old girl with confirmed severe congenital FVII deficiency since neonatal period. She suffered from recurrent intracranial bleeding despite rFVIIa replacement. After auxiliary liver transplant at the age of 4, she continued to show persistent deranged clotting profile and was found to have inhibitor towards FVII. Interestingly, she was still responsive to rFVIIa replacement. © 2016 John Wiley & Sons Ltd.

  5. Lilleküla jalgpallistaadion = Lilleküla Football Stadium / Haldo Oravas

    Index Scriptorium Estoniae

    Oravas, Haldo, 1960-

    2001-01-01

    Arhitekt, projekti ja detailplaneeringu (AS Eesti Projekt, 1999) autor Haldo Oravas. Projekteerijad: ETP Grupp, projektijuht Aare Uusalu, arhitekt Peep Urb. Sisekujundaja Sirje Pohl. Projekt 2000-2001. 8 ill.: V korruse ja asendiplaan, tribüüni lõige, vaated

  6. Phosphodiesterase 4 inhibitor and phosphodiesterase 5 inhibitor combination therapy has antifibrotic and anti-inflammatory effects in mdx mice with Duchenne muscular dystrophy.

    Science.gov (United States)

    Nio, Yasunori; Tanaka, Masayuki; Hirozane, Yoshihiko; Muraki, Yo; Okawara, Mitsugi; Hazama, Masatoshi; Matsuo, Takanori

    2017-12-01

    Duchenne muscular dystrophy (DMD) is the most common inherited muscular dystrophy. Patients experience DMD in their 20s from cardiac or respiratory failure related to progressive muscle wasting. Currently, the only treatments for the symptoms of DMD are available. Muscle fibrosis, a DMD feature, leads to reduced muscle function and muscle mass, and hampers pharmaceutical therapeutic efficacy. Although antifibrotic agents may be useful, none is currently approved. Phosphodiesterase 4 (PDE4) inhibitors have exhibited antifibrotic effects in human and animal models. In this study, we showed beneficial effects of the PDE4 inhibitor piclamilast in the DMD mdx mouse. Piclamilast reduced the mRNA level of profibrotic genes, including collagen 1A1, in the gastrocnemius and diaphragm, in the mdx mouse, and significantly reduced the Sirius red staining area. The PDE5 inhibitors sildenafil and tadalafil ameliorated functional muscle ischemia in boys with DMD, and sildenafil reversed cardiac dysfunction in the mdx mouse. Single-treatment piclamilast or sildenafil showed similar antifibrotic effects on the gastrocnemius; combination therapy showed a potent antifibrotic effect, and piclamilast and combination therapy increased peroxisome proliferator-activated receptor γ coactivator-1α mRNA in mouse gastrocnemius. In summary, we confirmed that piclamilast has significant antifibrotic effects in mdx mouse muscle and is a potential treatment for muscle fibrosis in DMD.-Nio, Y., Tanaka, M., Hirozane, Y., Muraki, Y., Okawara, M., Hazama, M., Matsuo, T. Phosphodiesterase 4 inhibitor and phosphodiesterase 5 inhibitor combination therapy has antifibrotic and anti-inflammatory effects in mdx mice with Duchenne muscular dystrophy. © FASEB.

  7. Basic heart examination: feasibility study of first-trimester systematic simplified fetal echocardiography.

    Science.gov (United States)

    Quarello, E; Lafouge, A; Fries, N; Salomon, L J

    2017-02-01

    First-trimester fetal cardiac screening examinations in low-risk populations should not have to meet the specifications required for high-risk populations. Our aim was to evaluate a simplified fetal echocardiographic ('basic heart') examination for early detection of severe congenital heart defects in a low-risk population. This was a first-trimester national 'flash study', performed over a 2-week period. Each observer was requested to perform simplified echocardiography without modifying the time and methods deemed necessary for the routine first-trimester ultrasound examination, in fetuses with crown-rump length between 45 and 84 mm. This basic heart assessment used targeted cross-sections of the four-chamber view (4CV) and of the three vessels and trachea (3VT) view, using color and/or directional power Doppler. All examinations were then reviewed offline and scored for quality by a qualified expert. Sixty observers performed a total of 597 first-trimester ultrasound examinations, each performing an average of 10 (range, 1-26) procedures. Examinations were conducted transabdominally (79%; 472/597), transvaginally (3%; 17/597) or both (18%; 108/597). In 8% (45/597) of cases, the fetal back was anterior, in 18% (108/597) it was on the left side, in 63% (377/597) it was posterior and in 11% (67/597) it was on the right side. It became clear during scoring by the expert that, unlike the Herman quality score for nuchal translucency measurement, it was difficult to assess the quality of these images without taking into account normality of the heart itself. Analysis of scores showed that the 4CV was obtained successfully and was deemed normal in 86% (512/597) of the patients, in 7% (41/597) it was deemed technically infeasible and in 7% (44/597) it was deemed feasible but atypical, which may have been due to the presence of an abnormality or to poor quality of the image. The 3VT view was obtained successfully and was normal in 79% (472/597) of the patients, in 13

  8. Cytological profile of antibacterial FtsZ inhibitors and synthetic peptide MciZ

    Directory of Open Access Journals (Sweden)

    Lidia Araujo-Bazan

    2016-10-01

    Full Text Available Cell division protein FtsZ is the organizer of the cytokinetic ring in almost all bacteria and a target for the discovery of new antibacterial agents that are needed to counter widespread antibiotic resistance. Bacterial cytological profiling, using quantitative microscopy, is a powerful approach for identifying the mechanism of action of antibacterial molecules affecting different cellular pathways. We have determined the cytological profile on Bacillus subtilis cells of a selection of small molecule inhibitors targeting FtsZ on different binding sites. FtsZ inhibitors lead to long undivided cells, impair the normal assembly of FtsZ into the midcell Z-rings, induce aberrant ring distributions, punctate FtsZ foci, membrane spots and also modify nucleoid length. Quantitative analysis of cell and nucleoid length combined, or the Z-ring distribution, allows categorizing FtsZ inhibitors and to distinguish them from antibiotics with other mechanisms of action, which should be useful for identifying new antibacterial FtsZ inhibitors. Biochemical assays of FtsZ polymerization and GTPase activity combined explain the cellular effects of the FtsZ polymer stabilizing agent PC190723 and its fragments. MciZ is a 40-aminoacid endogenous inhibitor of cell division normally expressed during sporulation in B. subtilis. Using FtsZ cytological profiling we have determined that exogenous synthetic MciZ is an effective inhibitor of B. subtilis cell division, Z-ring formation and localization. This finding supports our cell-based approach to screen for FtsZ inhibitors and opens new possibilities for peptide inhibitors of bacterial cell division.

  9. Checkpoint inhibitors in endometrial cancer: preclinical rationale and clinical activity.

    Science.gov (United States)

    Mittica, Gloria; Ghisoni, Eleonora; Giannone, Gaia; Aglietta, Massimo; Genta, Sofia; Valabrega, Giorgio

    2017-10-27

    Treatment of advanced and recurrent endometrial cancer (EC) is still an unmet need for oncologists and gynecologic oncologists. The Cancer Genome Atlas Research Network (TCGA) recently provided a new genomic classification, dividing EC in four subgroups. Two types of EC, the polymerase epsilon (POLE)-ultra-mutated and the microsatellite instability-hyper-mutated (MSI-H), are characterized by a high mutation rate providing the rationale for a potential activity of checkpoint inhibitors. We analyzed all available evidence supporting the role of tumor microenvironment (TME) in EC development and the therapeutic implications offered by immune checkpoint inhibitors in this setting. We performed a review on Pubmed with Mesh keywords 'endometrial cancer' and the name of each checkpoint inhibitor discussed in the article. The same search was operated on clinicaltrial.gov to identify ongoing clinical trials exploring PD-1/PD-L1 and CTLA-4 axis in EC, particularly focusing on POLE-ultra-muted and MSI-H cancer types. POLE-ultra-mutated and MSI-H ECs showed an active TME expressing high number of neo-antigens and an elevated amount of tumor infiltrating lymphocytes (TILs). Preliminary results from a phase-1 clinical trial (KEYNOTE-028) demonstrated antitumor activity of Pembrolizumab in EC. Moreover, both Pembrolizumab and Nivolumab reported durable clinical responses in POLE-ultra-mutated patients. Immune checkpoint inhibitors are an attractive option in POLE-ultra-mutated and MSI-H ECs. Future investigations in these subgroups include combinations of checkpoints inhibitors with chemotherapy and small tyrosine kinase inhibitors (TKIs) to enhance a more robust intra-tumoral immune response.

  10. Kinetic characterization of ebselen, chelerythrine and apomorphine as glutaminase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ajit G.; Rojas, Camilo [Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Tanega, Cordelle; Shen, Min; Simeonov, Anton; Boxer, Matthew B.; Auld, Douglas S. [National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850 (United States); Ferraris, Dana V. [Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Tsukamoto, Takashi [Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Slusher, Barbara S., E-mail: bslusher@jhmi.edu [Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States)

    2013-08-23

    Highlights: •Ebselen, chelerythrine and apomorphine were identified as glutaminase inhibitors. •These had greater affinities and efficiency of inhibition than known prototypes. •Their previously reported biological activity could be due to glutaminase inhibition. -- Abstract: Glutaminase catalyzes the hydrolysis of glutamine to glutamate and plays a central role in the proliferation of neoplastic cells via glutaminolysis, as well as in the generation of excitotoxic glutamate in central nervous system disorders such as HIV-associated dementia (HAD) and multiple sclerosis. Both glutaminase siRNA and glutaminase inhibition have been shown to be effective in in vitro models of cancer and HAD, suggesting a potential role for small molecule glutaminase inhibitors. However, there are no potent, selective inhibitors of glutaminase currently available. The two prototypical glutaminase inhibitors, BPTES and DON, are either insoluble or non-specific. In a search for more drug-like glutaminase inhibitors, we conducted a screen of 1280 in vivo active drugs (Library of Pharmacologically Active Compounds (LOPAC{sup 1280})) and identified ebselen, chelerythrine and (R)-apomorphine. The newly identified inhibitors exhibited 10 to 1500-fold greater affinities than DON and BPTES and over 100-fold increased efficiency of inhibition. Although non-selective, it is noteworthy that the affinity of ebselen for glutaminase is more potent than any other activity yet described. It is possible that the previously reported biological activity seen with these compounds is due, in part, to glutaminase inhibition. Ebselen, chelerythrine and apomorphine complement the armamentarium of compounds to explore the role of glutaminase in disease.

  11. Kinetic characterization of ebselen, chelerythrine and apomorphine as glutaminase inhibitors

    International Nuclear Information System (INIS)

    Thomas, Ajit G.; Rojas, Camilo; Tanega, Cordelle; Shen, Min; Simeonov, Anton; Boxer, Matthew B.; Auld, Douglas S.; Ferraris, Dana V.; Tsukamoto, Takashi; Slusher, Barbara S.

    2013-01-01

    Highlights: •Ebselen, chelerythrine and apomorphine were identified as glutaminase inhibitors. •These had greater affinities and efficiency of inhibition than known prototypes. •Their previously reported biological activity could be due to glutaminase inhibition. -- Abstract: Glutaminase catalyzes the hydrolysis of glutamine to glutamate and plays a central role in the proliferation of neoplastic cells via glutaminolysis, as well as in the generation of excitotoxic glutamate in central nervous system disorders such as HIV-associated dementia (HAD) and multiple sclerosis. Both glutaminase siRNA and glutaminase inhibition have been shown to be effective in in vitro models of cancer and HAD, suggesting a potential role for small molecule glutaminase inhibitors. However, there are no potent, selective inhibitors of glutaminase currently available. The two prototypical glutaminase inhibitors, BPTES and DON, are either insoluble or non-specific. In a search for more drug-like glutaminase inhibitors, we conducted a screen of 1280 in vivo active drugs (Library of Pharmacologically Active Compounds (LOPAC 1280 )) and identified ebselen, chelerythrine and (R)-apomorphine. The newly identified inhibitors exhibited 10 to 1500-fold greater affinities than DON and BPTES and over 100-fold increased efficiency of inhibition. Although non-selective, it is noteworthy that the affinity of ebselen for glutaminase is more potent than any other activity yet described. It is possible that the previously reported biological activity seen with these compounds is due, in part, to glutaminase inhibition. Ebselen, chelerythrine and apomorphine complement the armamentarium of compounds to explore the role of glutaminase in disease

  12. Molecular regulation of MICA expression after HDAC inhibitor treatment of cancer cells

    DEFF Research Database (Denmark)

    Jensen, Helle

    and NKG2D-ligands are upregulated on the surface of abnormal cells. We have previously shown that cancer cells can be stimulated to express the NKG2D-ligands MICA/B after exposure to HDAC-inhibitors (HDAC-i), an occurrence that is not observed in healthy cells. Here we characterize the molecular signal...... pathways that lead to MICA expression after HDAC-inhibitor treatment of cancer cells. Chelating Calcium with Bapta-AM or EGTA potently inhibited HDAC-inhibitor and CMV mediated MICA/B expression. It was further observed that ER Calcium stores were depleted after HDAC-inhibitor treatment. NF-kB activity can...

  13. Second-generation inhibitors of Bruton tyrosine kinase

    Directory of Open Access Journals (Sweden)

    Jingjing Wu

    2016-09-01

    Full Text Available Abstract Bruton tyrosine kinase (BTK is a critical effector molecule for B cell development and plays a major role in lymphoma genesis. Ibrutinib is the first-generation BTK inhibitor. Ibrutinib has off-target effects on EGFR, ITK, and Tec family kinases, which explains the untoward effects of ibrutinib. Resistance to ibrutinib was also reported. The C481S mutation in the BTK kinase domain was reported to be a major mechanism of resistance to ibrutinib. This review summarizes the clinical development of novel BTK inhibitors, ACP-196 (acalabrutinib, ONO/GS-4059, and BGB-3111.

  14. Methods Of Using Chemical Libraries To Search For New Kinase Inhibitors

    Science.gov (United States)

    Gray, Nathanael S. , Schultz, Peter , Wodicka, Lisa , Meijer, Laurent , Lockhart, David J.

    2003-06-03

    The generation of selective inhibitors for specific protein kinases would provide new tools for analyzing signal transduction pathways and possibly new therapeutic agents. We have invented an approach to the development of selective protein kinase inhibitors based on the unexpected binding mode of 2,6,9-trisubstituted purines to the ATP binding site of human CDK2. The most potent inhibitor, purvalanol B (IC.sub.50 =6 nM), binds with a 30-fold greater affinity than the known CDK2 inhibitor, flavopiridol. The cellular effects of this class of compounds were examined and compared to those of flavopiridol by monitoring changes in mRNA expression levels for all genes in treated cells of Saccharomyces cerevisiae using high-density oligonucleotide probe arrays.

  15. The design strategy of selective PTP1B inhibitors over TCPTP.

    Science.gov (United States)

    Li, XiangQian; Wang, LiJun; Shi, DaYong

    2016-08-15

    Protein tyrosine phosphatase 1B (PTP1B) has already been well studied as a highly validated therapeutic target for diabetes and obesity. However, the lack of selectivity limited further studies and clinical applications of PTP1B inhibitors, especially over T-cell protein tyrosine phosphatase (TCPTP). In this review, we enumerate the published specific inhibitors of PTP1B, discuss the structure-activity relationships by analysis of their X-ray structures or docking results, and summarize the characteristic of selectivity related residues and groups. Furthermore, the design strategy of selective PTP1B inhibitors over TCPTP is also proposed. We hope our work could provide an effective way to gain specific PTP1B inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Novel diamide-based inhibitors of IMPDH.

    Science.gov (United States)

    Gu, Henry H; Iwanowicz, Edwin J; Guo, Junqing; Watterson, Scott H; Shen, Zhongqi; Pitts, William J; Dhar, T G Murali; Fleener, Catherine A; Rouleau, Katherine; Sherbina, N Z; Witmer, Mark; Tredup, Jeffrey; Hollenbaugh, Diane

    2002-05-06

    A series of novel amide-based small molecule inhibitors of inosine monophosphate dehydrogenase is described. The synthesis and the structure-activity relationships (SARs) derived from in vitro studies are presented.

  17. Strategic Design of an Effective beta-Lactamase Inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Pattanaik, P.; Bethel, C; Hujer, A; Hujer, K; Distler, A; Taracila, M; Anderson, V; Fritsche, T; Jones, R; et. al.

    2009-01-01

    In an effort to devise strategies for overcoming bacterial beta-lactamases, we studied LN-1-255, a 6-alkylidene-2'-substituted penicillin sulfone inhibitor. By possessing a catecholic functionality that resembles a natural bacterial siderophore, LN-1-255 is unique among beta-lactamase inhibitors. LN-1-255 combined with piperacillin was more potent against Escherichia coli DH10B strains bearing bla(SHV) extended-spectrum and inhibitor-resistant beta-lactamases than an equivalent amount of tazobactam and piperacillin. In addition, LN-1-255 significantly enhanced the activity of ceftazidime and cefpirome against extended-spectrum cephalosporin and Sme-1 containing carbapenem-resistant clinical strains. LN-1-255 inhibited SHV-1 and SHV-2 beta-lactamases with nm affinity (K(I) = 110 +/- 10 and 100 +/- 10 nm, respectively). When LN-1-255 inactivated SHV beta-lactamases, a single intermediate was detected by mass spectrometry. The crystal structure of LN-1-255 in complex with SHV-1 was determined at 1.55A resolution. Interestingly, this novel inhibitor forms a bicyclic aromatic intermediate with its carbonyl oxygen pointing out of the oxyanion hole and forming hydrogen bonds with Lys-234 and Ser-130 in the active site. Electron density for the 'tail' of LN-1-255 is less ordered and modeled in two conformations. Both conformations have the LN-1-255 carboxyl group interacting with Arg-244, yet the remaining tails of the two conformations diverge. The observed presence of the bicyclic aromatic intermediate with its carbonyl oxygen positioned outside of the oxyanion hole provides a rationale for the stability of this inhibitory intermediate. The 2'-substituted penicillin sulfone, LN-1-255, is proving to be an important lead compound for novel beta-lactamase inhibitor design.

  18. Thioredoxin Inhibitors Attenuate Platelet Function and Thrombus Formation.

    Science.gov (United States)

    Metcalfe, Clive; Ramasubramoni, Anjana; Pula, Giordano; Harper, Matthew T; Mundell, Stuart J; Coxon, Carmen H

    2016-01-01

    Thioredoxin (Trx) is an oxidoreductase with important physiological function. Imbalances in the NADPH/thioredoxin reductase/thioredoxin system are associated with a number of pathologies, particularly cancer, and a number of clinical trials for thioredoxin and thioredoxin reductase inhibitors have been carried out or are underway. Due to the emerging role and importance of oxidoreductases for haemostasis and the current interest in developing inhibitors for clinical use, we thought it pertinent to assess whether inhibition of the NADPH/thioredoxin reductase/thioredoxin system affects platelet function and thrombosis. We used small molecule inhibitors of Trx (PMX 464 and PX-12) to determine whether Trx activity influences platelet function, as well as an unbiased proteomics approach to identify potential Trx substrates on the surface of platelets that might contribute to platelet reactivity and function. Using LC-MS/MS we found that PMX 464 and PX-12 affected the oxidation state of thiols in a number of cell surface proteins. Key surface receptors for platelet adhesion and activation were affected, including the collagen receptor GPVI and the von Willebrand factor receptor, GPIb. To experimentally validate these findings we assessed platelet function in the presence of PMX 464, PX-12, and rutin (a selective inhibitor of the related protein disulphide isomerase). In agreement with the proteomics data, small molecule inhibitors of thioredoxin selectively inhibited GPVI-mediated platelet activation, and attenuated ristocetin-induced GPIb-vWF-mediated platelet agglutination, thus validating the findings of the proteomics study. These data reveal a novel role for thioredoxin in regulating platelet reactivity via proteins required for early platelet responses at sites of vessel injury (GPVI and GPIb). This work also highlights a potential opportunity for repurposing of PMX 464 and PX-12 as antiplatelet agents.

  19. Thioredoxin Inhibitors Attenuate Platelet Function and Thrombus Formation.

    Directory of Open Access Journals (Sweden)

    Clive Metcalfe

    Full Text Available Thioredoxin (Trx is an oxidoreductase with important physiological function. Imbalances in the NADPH/thioredoxin reductase/thioredoxin system are associated with a number of pathologies, particularly cancer, and a number of clinical trials for thioredoxin and thioredoxin reductase inhibitors have been carried out or are underway. Due to the emerging role and importance of oxidoreductases for haemostasis and the current interest in developing inhibitors for clinical use, we thought it pertinent to assess whether inhibition of the NADPH/thioredoxin reductase/thioredoxin system affects platelet function and thrombosis. We used small molecule inhibitors of Trx (PMX 464 and PX-12 to determine whether Trx activity influences platelet function, as well as an unbiased proteomics approach to identify potential Trx substrates on the surface of platelets that might contribute to platelet reactivity and function. Using LC-MS/MS we found that PMX 464 and PX-12 affected the oxidation state of thiols in a number of cell surface proteins. Key surface receptors for platelet adhesion and activation were affected, including the collagen receptor GPVI and the von Willebrand factor receptor, GPIb. To experimentally validate these findings we assessed platelet function in the presence of PMX 464, PX-12, and rutin (a selective inhibitor of the related protein disulphide isomerase. In agreement with the proteomics data, small molecule inhibitors of thioredoxin selectively inhibited GPVI-mediated platelet activation, and attenuated ristocetin-induced GPIb-vWF-mediated platelet agglutination, thus validating the findings of the proteomics study. These data reveal a novel role for thioredoxin in regulating platelet reactivity via proteins required for early platelet responses at sites of vessel injury (GPVI and GPIb. This work also highlights a potential opportunity for repurposing of PMX 464 and PX-12 as antiplatelet agents.

  20. Chemical constituents of Zanthoxylum ekmanii (URB.) Alain

    International Nuclear Information System (INIS)

    Facundo, Valdir Alves; Silveira, Augusto Sergio Pinto da; Braz Filho, Raimundo; Pinto, Angelo C.; Rezende, Claudia M.

    2005-01-01

    Chemical investigation of Z. ekmanii resulted in the isolation of skimmianine, dictamnine, tembamide, sesamin, lupeol and β-sitosterol. The structures were established by spectroscopic analyses. This is the first report on the phytochemical study of the roots and leaves of Z. ekmanii. (author)