WorldWideScience

Sample records for faah endocannabinoid gene

  1. The endocannabinoid gene faah2a modulates stress-associated behavior in zebrafish.

    Randall G Krug

    Full Text Available The ability to orchestrate appropriate physiological and behavioral responses to stress is important for survival, and is often dysfunctional in neuropsychiatric disorders that account for leading causes of global disability burden. Numerous studies have shown that the endocannabinoid neurotransmitter system is able to regulate stress responses and could serve as a therapeutic target for the management of these disorders. We used quantitative reverse transcriptase-polymerase chain reactions to show that genes encoding enzymes that synthesize (abhd4, gde1, napepld, enzymes that degrade (faah, faah2a, faah2b, and receptors that bind (cnr1, cnr2, gpr55-like endocannabinoids are expressed in zebrafish (Danio rerio. These genes are conserved in many other vertebrates, including humans, but fatty acid amide hydrolase 2 has been lost in mice and rats. We engineered transcription activator-like effector nucleases to create zebrafish with mutations in cnr1 and faah2a to test the role of these genes in modulating stress-associated behavior. We showed that disruption of cnr1 potentiated locomotor responses to hyperosmotic stress. The increased response to stress was consistent with rodent literature and served to validate the use of zebrafish in this field. Moreover, we showed for the first time that disruption of faah2a attenuated the locomotor responses to hyperosmotic stress. This later finding suggests that FAAH2 may be an important mediator of stress responses in non-rodent vertebrates. Accordingly, FAAH and FAAH2 modulators could provide distinct therapeutic options for stress-aggravated disorders.

  2. Association of CNR1 and FAAH endocannabinoid gene polymorphisms with anorexia nervosa and bulimia nervosa: evidence for synergistic effects.

    Monteleone, P; Bifulco, M; Di Filippo, C; Gazzerro, P; Canestrelli, B; Monteleone, F; Proto, M C; Di Genio, M; Grimaldi, C; Maj, M

    2009-10-01

    Endocannabinoids modulate eating behavior; hence, endocannabinoid genes may contribute to the biological vulnerability to eating disorders. The rs1049353 (1359 G/A) single nucleotide polymorphism (SNP) of the gene coding the endocannabinoid CB1 receptor (CNR1) and the rs324420 (cDNA 385C to A) SNP of the gene coding fatty acid amide hydrolase (FAAH), the major degrading enzyme of endocannabinoids, have been suggested to have functional effects on mature proteins. Therefore, we explored the possibility that those SNPs were associated to anorexia nervosa and/or bulimia nervosa. The distributions of the CNR1 1359 G/A SNP and of the FAAH cDNA 385C to A SNP were investigated in 134 patients with anorexia nervosa, 180 patients with bulimia nervosa and 148 normal weight healthy controls. Additive effects of the two SNPs in the genetic susceptibility to anorexia nervosa and bulimia nervosa were also tested. As compared to healthy controls, anorexic and bulimic patients showed significantly higher frequencies of the AG genotype and the A allele of the CNR1 1359 G/A SNP. Similarly, the AC genotype and the A allele of the FAAH cDNA 385C to A SNP were significantly more frequent in anorexic and bulimic individuals. A synergistic effect of the two SNPs was evident in anorexia nervosa but not in bulimia nervosa. Present findings show for the first time that the CNR1 1359 G/A SNP and the FAAH cDNA 385C to A SNP are significantly associated to anorexia nervosa and bulimia nervosa, and demonstrate a synergistic effect of the two SNPs in anorexia nervosa.

  3. Lack of effect of chronic pre-treatment with the FAAH inhibitor URB597 on inflammatory pain behaviour: evidence for plastic changes in the endocannabinoid system

    Okine, Bright N; Norris, Leonie M; Woodhams, Stephen; Burston, James; Patel, Annie; Alexander, Stephen PH; Barrett, David A; Kendall, David A; Bennett, Andrew J; Chapman, Victoria

    2012-01-01

    BACKGROUND AND PURPOSE Elevating levels of endocannabinoids with inhibitors of fatty acid amide hydrolase (FAAH) is a major focus of pain research, purported to be a safer approach devoid of cannabinoid receptor-mediated side effects. Here, we have determined the effects of sustained pharmacological inhibition of FAAH on inflammatory pain behaviour and if pharmacological inhibition of FAAH was as effective as genetic deletion of FAAH on pain behaviour. EXPERIMENTAL APPROACH Effects of pre-treatment with a single dose, versus 4 day repeated dosing with the selective FAAH inhibitor, URB597 (i.p. 0.3 mg·kg−1), on carrageenan-induced inflammatory pain behaviour and spinal pro-inflammatory gene induction were determined in rats. Effects of pain induction and of the drug treatments on levels of arachidonoyl ethanolamide (AEA), palmitoyl ethanolamide (PEA) and oleolyl ethanolamide (OEA) in the spinal cord were determined. KEY RESULTS Single, but not repeated, URB597 treatment significantly attenuated the development of inflammatory hyperalgesia (P < 0.001, vs. vehicle-treated animals). Neither mode of URB597 treatment altered levels of AEA, PEA and OEA in the hind paw, or carrageenan-induced paw oedema. Single URB597 treatment produced larger increases in AEA, PEA and OEA in the spinal cord, compared with those after repeated administration. Single and repeated URB597 treatment decreased levels of immunoreactive N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) in the spinal cord and attenuated carrageenan-induced spinal pro-inflammatory gene induction. CONCLUSION AND IMPLICATIONS Changes in the endocannabinoid system may contribute to the loss of analgesic effects following repeated administration of low dose URB597 in this model of inflammatory pain. PMID:22595021

  4. The functional Pro129Thr variant of the FAAH gene is not associated with various fat accumulation phenotypes in a population-based cohort of 5,801 whites

    Jensen, Dorit P; Andersen, Mette K; Hansen, Lars

    2007-01-01

    Food intake and weight gain are influenced by endocannabinoids whose actions are regulated by the fatty acid amide hydrolase (FAAH) enzyme. The homozygous Thr/Thr genotype of the functional Pro129Thr variant (rs324420) in the gene encoding FAAH was recently reported to associate with overweight a...

  5. Crosstalk between liver antioxidant and the endocannabinoid systems after chronic administration of the FAAH inhibitor, URB597, to hypertensive rats

    Biernacki, Michał; Łuczaj, Wojciech; Gęgotek, Agnieszka [Department of Analytical Chemistry Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok (Poland); Toczek, Marek [Department of Experimental Physiology and Pathophysiology Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok (Poland); Bielawska, Katarzyna [Department of Analytical Chemistry Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok (Poland); Skrzydlewska, Elżbieta, E-mail: elzbieta.skrzydlewska@umb.edu.pl [Department of Analytical Chemistry Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok (Poland)

    2016-06-15

    Hypertension is accompanied by perturbations to the endocannabinoid and antioxidant systems. Thus, potential pharmacological treatments for hypertension should be examined as modulators of these two metabolic systems. The aim of this study was to evaluate the effects of chronic administration of the fatty acid amide hydrolase (FAAH) inhibitor [3-(3-carbamoylphenyl)phenyl]N-cyclohexylcarbamate (URB597) on the endocannabinoid system and on the redox balance in the livers of DOCA-salt hypertensive rats. Hypertension caused an increase in the levels of endocannabinoids [anandamide (AEA), 2-arachidonoyl-glycerol (2-AG) and N-arachidonoyl-dopamine (NADA)] and CB{sub 1} receptor and the activities of FAAH and monoacylglycerol lipase (MAGL). These effects were accompanied by an increase in the level of reactive oxygen species (ROS), a decrease in antioxidant activity/level, enhanced expression of transcription factor Nrf2 and changes to Nrf2 activators and inhibitors. Moreover, significant increases in lipid, DNA and protein oxidative modifications, which led to enhanced levels of proapoptotic caspases, were also observed. URB597 administration to the hypertensive rats resulted in additional increases in the levels of AEA, NADA and the CB{sub 1} receptor, as well as decreases in vitamin E and C levels, glutathione peroxidase and glutathione reductase activities and Nrf2 expression. Thus, after URB597 administration, oxidative modifications of cellular components were increased, while the inflammatory response was reduced. This study revealed that chronic treatment of hypertensive rats with URB597 disrupts the endocannabinoid system, which causes an imbalance in redox status. This imbalance increases the levels of electrophilic lipid peroxidation products, which later participate in metabolic disturbances in liver homeostasis. - Highlights: • Chronic administration of URB597 to hypertensive rats reduces liver inflammation. • URB597 enhances the redox imbalance in the

  6. Crosstalk between liver antioxidant and the endocannabinoid systems after chronic administration of the FAAH inhibitor, URB597, to hypertensive rats

    Biernacki, Michał; Łuczaj, Wojciech; Gęgotek, Agnieszka; Toczek, Marek; Bielawska, Katarzyna; Skrzydlewska, Elżbieta

    2016-01-01

    Hypertension is accompanied by perturbations to the endocannabinoid and antioxidant systems. Thus, potential pharmacological treatments for hypertension should be examined as modulators of these two metabolic systems. The aim of this study was to evaluate the effects of chronic administration of the fatty acid amide hydrolase (FAAH) inhibitor [3-(3-carbamoylphenyl)phenyl]N-cyclohexylcarbamate (URB597) on the endocannabinoid system and on the redox balance in the livers of DOCA-salt hypertensive rats. Hypertension caused an increase in the levels of endocannabinoids [anandamide (AEA), 2-arachidonoyl-glycerol (2-AG) and N-arachidonoyl-dopamine (NADA)] and CB 1 receptor and the activities of FAAH and monoacylglycerol lipase (MAGL). These effects were accompanied by an increase in the level of reactive oxygen species (ROS), a decrease in antioxidant activity/level, enhanced expression of transcription factor Nrf2 and changes to Nrf2 activators and inhibitors. Moreover, significant increases in lipid, DNA and protein oxidative modifications, which led to enhanced levels of proapoptotic caspases, were also observed. URB597 administration to the hypertensive rats resulted in additional increases in the levels of AEA, NADA and the CB 1 receptor, as well as decreases in vitamin E and C levels, glutathione peroxidase and glutathione reductase activities and Nrf2 expression. Thus, after URB597 administration, oxidative modifications of cellular components were increased, while the inflammatory response was reduced. This study revealed that chronic treatment of hypertensive rats with URB597 disrupts the endocannabinoid system, which causes an imbalance in redox status. This imbalance increases the levels of electrophilic lipid peroxidation products, which later participate in metabolic disturbances in liver homeostasis. - Highlights: • Chronic administration of URB597 to hypertensive rats reduces liver inflammation. • URB597 enhances the redox imbalance in the liver of

  7. Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo

    Long, Jonathan Z.; Nomura, Daniel K.; Vann, Robert E.; Walentiny, D. Matthew; Booker, Lamont; Jin, Xin; Burston, James J.; Sim-Selley, Laura J.; Lichtman, Aron H.; Wiley, Jenny L.; Cravatt, Benjamin F.

    2009-01-01

    Δ9-Tetrahydrocannabinol (THC), the psychoactive component of marijuana, and other direct cannabinoid receptor (CB1) agonists produce a number of neurobehavioral effects in mammals that range from the beneficial (analgesia) to the untoward (abuse potential). Why, however, this full spectrum of activities is not observed upon pharmacological inhibition or genetic deletion of either fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), enzymes that regulate the two major endocanna...

  8. Adipose tissue endocannabinoid system gene expression: depot differences and effects of diet and exercise

    Yang Rongze

    2011-10-01

    Full Text Available Abstract Background Alterations of endocannabinoid system in adipose tissue play an important role in lipid regulation and metabolic dysfunction associated with obesity. The purpose of this study was to determine whether gene expression levels of cannabinoid type 1 receptor (CB1 and fatty acid amide hydrolase (FAAH are different in subcutaneous abdominal and gluteal adipose tissue, and whether hypocaloric diet and aerobic exercise influence subcutaneous adipose tissue CB1 and FAAH gene expression in obese women. Methods Thirty overweight or obese, middle-aged women (BMI = 34.3 ± 0.8 kg/m2, age = 59 ± 1 years underwent one of three 20-week weight loss interventions: caloric restriction only (CR, N = 9, caloric restriction plus moderate-intensity aerobic exercise (CRM, 45-50% HRR, N = 13, or caloric restriction plus vigorous-intensity aerobic exercise (CRV, 70-75% HRR, N = 8. Subcutaneous abdominal and gluteal adipose tissue samples were collected before and after the interventions to measure CB1 and FAAH gene expression. Results At baseline, FAAH gene expression was higher in abdominal, compared to gluteal adipose tissue (2.08 ± 0.11 vs. 1.78 ± 0.10, expressed as target gene/β-actin mRNA ratio × 10-3, P Conclusions There are depot differences in subcutaneous adipose tissue endocannabinoid system gene expression in obese individuals. Aerobic exercise training may preferentially modulate abdominal adipose tissue endocannabinoid-related gene expression during dietary weight loss. Trial Registration ClinicalTrials.gov: NCT00664729.

  9. The dual FAAH/MAGL inhibitor JZL195 has enhanced effects on endocannabinoid transmission and motor behavior in rats as compared to those of the MAGL inhibitor JZL184

    Seillier, Alexandre; Aguilar, David Dominguez; Giuffrida, Andrea

    2014-01-01

    The biological actions of the endocannabinoids anandamide and 2-arachidonoyl glycerol (2-AG) are terminated by enzymatic hydrolysis of these lipids via fatty acid amide hydrolase (FAAH ) and monoacylglycerol lipase (MAGL), respectively. While several selective FAAH inhibitors have been developed and characterized in vitro and in vivo, none of the initial MAGL blockers have shown adequate potency and specificity for in vivo applications. More recently, a selective MAGL inhibitor, JZL184, has b...

  10. Peripheral effects of FAAH deficiency on fuel and energy homeostasis: role of dysregulated lysine acetylation.

    Bhavapriya Vaitheesvaran

    Full Text Available FAAH (fatty acid amide hydrolase, primarily expressed in the liver, hydrolyzes the endocannabinoids fatty acid ethanolamides (FAA. Human FAAH gene mutations are associated with increased body weight and obesity. In our present study, using targeted metabolite and lipid profiling, and new global acetylome profiling methodologies, we examined the role of the liver on fuel and energy homeostasis in whole body FAAH(-/- mice.FAAH(-/- mice exhibit altered energy homeostasis demonstrated by decreased oxygen consumption (Indirect calorimetry. FAAH(-/- mice are hyperinsulinemic and have adipose, skeletal and hepatic insulin resistance as indicated by stable isotope phenotyping (SIPHEN. Fed state skeletal muscle and liver triglyceride levels was increased 2-3 fold, while glycogen was decreased 42% and 57% respectively. Hepatic cholesterol synthesis was decreased 22% in FAAH(-/- mice. Dysregulated hepatic FAAH(-/- lysine acetylation was consistent with their metabolite profiling. Fasted to fed increases in hepatic FAAH(-/- acetyl-CoA (85%, p<0.01 corresponded to similar increases in citrate levels (45%. Altered FAAH(-/- mitochondrial malate dehydrogenase (MDH2 acetylation, which can affect the malate aspartate shuttle, was consistent with our observation of a 25% decrease in fed malate and aspartate levels. Decreased fasted but not fed dihydroxyacetone-P and glycerol-3-P levels in FAAH(-/- mice was consistent with a compensating contribution from decreased acetylation of fed FAAH(-/- aldolase B. Fed FAAH(-/- alcohol dehydrogenase (ADH acetylation was also decreased.Whole body FAAH deletion contributes to a pre-diabetic phenotype by mechanisms resulting in impairment of hepatic glucose and lipid metabolism. FAAH(-/- mice had altered hepatic lysine acetylation, the pattern sharing similarities with acetylation changes reported with chronic alcohol treatment. Dysregulated hepatic lysine acetylation seen with impaired FAA hydrolysis could support the liver

  11. Gestation Related Gene Expression of the Endocannabinoid Pathway in Rat Placenta

    Kanchan Vaswani

    2015-01-01

    Full Text Available Mammalian placentation is a vital facet of the development of a healthy and viable offspring. Throughout gestation the placenta changes to accommodate, provide for, and meet the demands of a growing fetus. Gestational gene expression is a crucial part of placenta development. The endocannabinoid pathway is activated in the placenta and decidual tissues throughout pregnancy and aberrant endocannabinoid signaling during the period of placental development has been associated with pregnancy disorders. In this study, the gene expression of eight endocannabinoid system enzymes was investigated throughout gestation. Rat placentae were obtained at E14.25, E15.25, E17.25, and E20, RNA was extracted, and microarray was performed. Gene expression of enzymes Faah, Mgll, Plcd4, Pld1, Nat1, Daglα, and Ptgs2 was studied (cohort 1, microarray. Biological replication of the results was performed by qPCR (cohort 2. Four genes showed differential expression (Mgll, Plcd4, Ptgs2, and Pld1, from mid to late gestation. Genes positively associated with gestational age were Ptgs2, Mgll, and Pld1, while Plcd4 was downregulated. This is the first comprehensive study that has investigated endocannabinoid pathway gene expression during rat pregnancy. This study provides the framework for future studies that investigate the role of endocannabinoid system during pregnancy.

  12. [Association of polymorphisms of NAPE-PLD and FAAH genes with schizophrenia in Chinese Han population].

    Si, Peiru; Liu, Shulian; Tong, Dongxiao; Cheng, Meijin; Wang, Liwen; Cheng, Xiaoli

    2018-04-10

    To assess the association of polymorphisms of N-acyl-phosphatidylethanolamine-phospholipase D (DAPE-PLD) and fatty acid amide hydrolase (FAAH) genes, as well as their interaction, with schizophrenia. Polymorphisms of NAPE-PLD rs12540583 and FAAH rs324420, rs2295633, and rs6429600 were determined with PCR - restriction fragment length polymorphism assay and Sanger sequencing. The genotypes of 345 subjects of Han Chinese origin diagnosed with schizophrenia and a 403 controls were compared. The results were analyzed with SPSS 17.0, and the interaction of the two genes was analyzed using a multifactor dimensionality reduction (MDR) method. The frequency of NAPE-PLD rs12540583 polymorphism was significantly different between the two groups under both dominant and additive models (χ2=17.18 vs. χ2=18.94, P<0.0125). The frequencies of AC genotype and C allele of the patient group at rs12540583 were higher than those of the controls, and the interaction of NAPE-PLD and FAAH was associated with schizophrenia. A four-loci model (rs12540583, rs324420, rs2295633 and rs6429600) can best model the interaction between NAPE-PLD and FAAH. The AC genotype and C allele of NAPE-PLD rs12540583 locus are risk factors for schizophrenia, and the interaction between NAPE-PLD rs12540583 and FAAH rs324420, rs2295633 and rs6429600 is associated with schizophrenia.

  13. Lack of association of genetic variants in genes of the endocannabinoid system with anorexia nervosa

    Herpertz-Dahlmann Beate

    2008-11-01

    Full Text Available Abstract Background Several lines of evidence indicate that the central cannabinoid receptor 1 (CNR1 as well as the major endocannabinoid degrading enzymes fatty acid amide hydrolase (FAAH, N-acylethanolamine-hydrolyzing acid amidase (NAAA and monoglyceride lipase (MGLL are implicated in mediating the orexigenic effects of cannabinoids. The aim of this study was to analyse whether nucleotide sequence variations in the CNR1, FAAH, NAAA and MGLL genes are associated with anorexia nervosa (AN. Methods We analysed the association of a previously described (AATn repeat in the 3' flanking region of CNR1 as well as a total of 15 single nucleotide polymorphisms (SNPs representative of regions with restricted haplotype diversity in CNR1, FAAH, NAAA or MGLL in up to 91 German AN trios (patient with AN and both biological parents using the transmission-disequilibrium-test (TDT. One SNP was additionally analysed in an independent case-control study comprising 113 patients with AN and 178 normal weight controls. Genotyping was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, ARMS-PCR or using 3730xl capillary sequencers. Results The TDT revealed no evidence for association for any of the SNPs or the (AATn repeat with AN (all two-sided uncorrected p-values > 0.05. The lowest p-value of 0.11 was detected for the A-allele of the CNR1 SNP rs1049353 for which the transmission rate was 59% (95% confidence interval 47%...70%. Further genotyping of rs1049353 in 113 additional independent patients with AN and 178 normal weight controls could not substantiate the initial trend for association (p = 1.00. Conclusion As we found no evidence for an association of genetic variation in CNR1, FAAH, NAAA and MGLL with AN, we conclude that genetic variations in these genes do not play a major role in the etiology of AN in our study groups.

  14. Rare genetic variants in the endocannabinoid system genes CNR1 and DAGLA are associated with neurological phenotypes in humans.

    Douglas R Smith

    Full Text Available Rare genetic variants in the core endocannabinoid system genes CNR1, CNR2, DAGLA, MGLL and FAAH were identified in molecular testing data from 6,032 patients with a broad spectrum of neurological disorders. The variants were evaluated for association with phenotypes similar to those observed in the orthologous gene knockouts in mice. Heterozygous rare coding variants in CNR1, which encodes the type 1 cannabinoid receptor (CB1, were found to be significantly associated with pain sensitivity (especially migraine, sleep and memory disorders-alone or in combination with anxiety-compared to a set of controls without such CNR1 variants. Similarly, heterozygous rare variants in DAGLA, which encodes diacylglycerol lipase alpha, were found to be significantly associated with seizures and neurodevelopmental disorders, including autism and abnormalities of brain morphology, compared to controls. Rare variants in MGLL, FAAH and CNR2 were not associated with any neurological phenotypes in the patients tested. Diacylglycerol lipase alpha synthesizes the endocannabinoid 2-AG in the brain, which interacts with CB1 receptors. The phenotypes associated with rare CNR1 variants are reminiscent of those implicated in the theory of clinical endocannabinoid deficiency syndrome. The severe phenotypes associated with rare DAGLA variants underscore the critical role of rapid 2-AG synthesis and the endocannabinoid system in regulating neurological function and development. Mapping of the variants to the 3D structure of the type 1 cannabinoid receptor, or primary structure of diacylglycerol lipase alpha, reveals clustering of variants in certain structural regions and is consistent with impacts to function.

  15. Genetic variation in the endocannabinoid degrading enzyme fatty acid amide hydrolase (FAAH) and their influence on weight loss and insulin resistance under a high monounsaturated fat hypocaloric diet.

    de Luis, Daniel; Aller, Rocio; Izaola, Olatz; Conde, Rosa; de la Fuente, Beatriz; Gonzalez Sagrado, Manuel

    2013-01-01

    The C385A polymorphism of FAAH gene (rs324420C>A) has been associated with obesity. We investigate the role of this polymorphism on anthropometric and metabolic responses after an enriched monounsaturated fat hypocaloric diet. A sample of 95 obese individuals was analyzed at baseline and after 3 months of an enriched monounsaturated fat hypocaloric diet. Sixty two patients (65.3%) had the genotype C385C and 33 (34.7%) patients had C385A genotype (30 patients, 31.6%) or A358A (3 patients, 3.2%) (A carriers group). In subjects with C385C genotype, insulin (-1.9±5.3 mUI/l) and HOMA-R (-0.48±0.75 U) decreased. In A carriers subjects, the decreases in weight were 3.7±3.4 kg (decrease in C385C genotype group 4.4±3.6 kg), fat mass 2.7±3.2 kg (decrease in C385C genotype group 3.4±3.2 kg) and waist circumference 3.1±3.4cm (decrease in C385 genotype group 4.4±4.6 cm). These changes were significantly higher in the C385C genotype group than the A carriers subjects. After weight loss, noncarriers of the allele A385 of FAAH had an improvement on insulin and HOMA-R levels with an enriched monounsaturated fat hypocaloric diet. A better response of weight, fat mass and waist circumference was observed in C385 genotype subjects than A carriers participants. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Endocannabinoids

    Hansen, Harald S.; Petersen, G.; Artmann, A.

    2006-01-01

    The endocannabinoid system embraces a group of lipid molecules, enzymes and receptor proteins. This system appears to be involved in the modulation of neurotransmitter release thereby modifying learning and memory, in the regulation of food intake, and in the modulation of inflammation and pain...

  17. A binding site for non-steroidal anti-inflammatory drugs in FAAH

    Bertolacci, Laura; Romeo, Elisa; Veronesi, Marina; Magotti, Paola; Albani, Clara; Dionisi, Mauro; Lambruschini, Chiara; Scarpelli, Rita; Cavalli, Andrea; Vivo, Marco De; Piomelli, Daniele; Garau, Gianpiero

    2013-01-01

    In addition to inhibiting the cyclooxygenasemediated biosynthesis of prostanoids, various widely used non-steroidal anti-inflammatory drugs (NSAIDs) enhance endocannabinoid signaling by blocking the anandamidedegrading membrane enzyme, fatty acid amide hydrolase (FAAH). The X-ray structure of FAAH in complex with the NSAID carprofen, along with studies of site-directed mutagenesis, enzyme activity assays, and nuclear magnetic resonance, now reveal the molecular details of this interaction, providing information that may guide the design of dual FAAH-cyclooxygenase inhibitors with superior analgesic efficacy. PMID:23240907

  18. Fabp1 gene ablation inhibits high-fat diet-induced increase in brain endocannabinoids.

    Martin, Gregory G; Landrock, Danilo; Chung, Sarah; Dangott, Lawrence J; Seeger, Drew R; Murphy, Eric J; Golovko, Mikhail Y; Kier, Ann B; Schroeder, Friedhelm

    2017-01-01

    The endocannabinoid system shifts energy balance toward storage and fat accumulation, especially in the context of diet-induced obesity. Relatively little is known about factors outside the central nervous system that may mediate the effect of high-fat diet (HFD) on brain endocannabinoid levels. One candidate is the liver fatty acid binding protein (FABP1), a cytosolic protein highly prevalent in liver, but not detected in brain, which facilitates hepatic clearance of fatty acids. The impact of Fabp1 gene ablation (LKO) on the effect of high-fat diet (HFD) on brain and plasma endocannabinoid levels was examined and data expressed for each parameter as the ratio of high-fat diet/control diet. In male wild-type mice, HFD markedly increased brain N-acylethanolamides, but not 2-monoacylglycerols. LKO blocked these effects of HFD in male mice. In female wild-type mice, HFD slightly decreased or did not alter these endocannabinoids as compared with male wild type. LKO did not block the HFD effects in female mice. The HFD-induced increase in brain arachidonic acid-derived arachidonoylethanolamide in males correlated with increased brain-free and total arachidonic acid. The ability of LKO to block the HFD-induced increase in brain arachidonoylethanolamide correlated with reduced ability of HFD to increase brain-free and total arachidonic acid in males. In females, brain-free and total arachidonic acid levels were much less affected by either HFD or LKO in the context of HFD. These data showed that LKO markedly diminished the impact of HFD on brain endocannabinoid levels, especially in male mice. © 2016 International Society for Neurochemistry.

  19. Endocannabinoid receptor 1 gene variations increase risk for obesity and modulate body mass index in European populations

    Benzinou, Michael; Chèvre, Jean-Claude; Ward, Kirsten J

    2008-01-01

    The therapeutic effects of cannabinoid receptor blockade on obesity-associated phenotypes underline the importance of the endocannabinoid pathway on the energy balance. Using a staged-approach, we examined the contribution of the endocannabinoid receptor 1 gene (CNR1) on obesity and body mass ind...... variations increase the risk for obesity and modulate BMI in our European population. As CB1 is a drug target for obesity, a pharmacogenetic analysis of the endocannabinoid blockade obesity treatment may be of interest to identify best responders....

  20. Mustard vesicants alter expression of the endocannabinoid system in mouse skin

    Wohlman, Irene M.; Composto, Gabriella M.; Heck, Diane E.; Heindel, Ned D.; Lacey, C. Jeffrey; Guillon, Christophe D.; Casillas, Robert P.; Croutch, Claire R.; Gerecke, Donald R.; Laskin, Debra L.; Joseph, Laurie B.; Laskin, Jeffrey D.

    2016-01-01

    Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants. - Highlights: • Sulfur mustard and nitrogen mustard are potent skin vesicants. • The endocannabinoid system regulates keratinocyte growth and differentiation. • Vesicants are potent inducers of the endocannabinoid system in mouse skin. • Endocannabinoid proteins upregulated are FAAH, CB1, CB2 and PPARα. • FAAH inhibitors suppress vesicant-induced inflammation in mouse skin.

  1. Mustard vesicants alter expression of the endocannabinoid system in mouse skin

    Wohlman, Irene M.; Composto, Gabriella M. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Environmental Health Science, New York Medical College, Valhalla, NY (United States); Heindel, Ned D.; Lacey, C. Jeffrey; Guillon, Christophe D. [Department of Chemistry, Lehigh University, Bethlehem, PA (United States); Casillas, Robert P.; Croutch, Claire R. [MRIGlobal, Kansas City, MO (United States); Gerecke, Donald R.; Laskin, Debra L.; Joseph, Laurie B. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ (United States)

    2016-07-15

    Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants. - Highlights: • Sulfur mustard and nitrogen mustard are potent skin vesicants. • The endocannabinoid system regulates keratinocyte growth and differentiation. • Vesicants are potent inducers of the endocannabinoid system in mouse skin. • Endocannabinoid proteins upregulated are FAAH, CB1, CB2 and PPARα. • FAAH inhibitors suppress vesicant-induced inflammation in mouse skin.

  2. Song-associated reward correlates with endocannabinoid-related gene expression in male European starlings (Sturnus vulgaris).

    Hahn, Allison H; Merullo, Devin P; Spool, Jeremy A; Angyal, Caroline S; Stevenson, Sharon A; Riters, Lauren V

    2017-03-27

    Vocal communication is required for successful social interactions in numerous species. During the breeding season, songbirds produce songs that are reinforced by behavioral consequences (e.g., copulation). However, some songbirds also produce songs not obviously directed at other individuals. The consequences maintaining or reinforcing these songs are less obvious and the neural mechanisms associated with undirected communication are not well-understood. Previous studies indicate that undirected singing is intrinsically rewarding and mediated by opioid or dopaminergic systems; however, endocannabinoids are also involved in regulating reward and singing behavior. We used a conditioned place preference paradigm to examine song-associated reward in European starlings and quantitative real-time PCR to measure expression of endocannabinoid-related neural markers (CB 1 , FABP7, FABP5, FAAH, DAGLα), in brain regions involved in social behavior, reward and motivation (ventral tegmental area [VTA], periaqueductal gray [PAG], and medial preoptic nucleus [POM]), and a song control region (Area X). Our results indicate that starlings producing high rates of song developed a conditioned place preference, suggesting that undirected song is associated with a positive affective state. We found a significant positive relationship between song-associated reward and CB 1 receptors in VTA and a significant negative relationship between song-associated reward and CB 1 in PAG. There was a significant positive relationship between reward and the cannabinoid transporter FABP7 in POM and a significant negative relationship between reward and FABP7 in PAG. In Area X, FABP5 and DAGLα correlated positively with singing. These results suggest a role for endocannabinoid signaling in vocal production and reward associated with undirected communication. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. The effect of FAAH, MAGL, and Dual FAAH/MAGL inhibition on inflammatory and colorectal distension-induced visceral pain models in Rodents.

    Sakin, Y S; Dogrul, A; Ilkaya, F; Seyrek, M; Ulas, U H; Gulsen, M; Bagci, S

    2015-07-01

    Recent studies showed that the pharmacological inhibition of endocannabinoid degrading enzymes such as fatty acid amide hydrolase (FAAH) and monoacyl glycerol lipase (MAGL) elicit promising analgesic effects in a variety of nociceptive models without serious side effects. However, the full spectrum of activities is not observed upon inhibition of either FAAH or MAGL enzymes alone and thus dual FAAH and MAGL inhibitors have been described. Visceral pain is strongly associated with inflammation and distension of the gut. Thus, we explored the comparable effects of FAAH, MAGL, and dual FAAH/MAGL inhibitors on inflammatory and mechanically evoked visceral pain models. Visceral inflammatory and distension-induced pain were assessed with the 0.6% acetic acid writhing test in mice and colorectal distension (CRD) test in rats, respectively. The selective FAAH inhibitor PF 3845, MAGL inhibitor JZL 184, dual inhibitor JZL 195, and the cannabis analog CP 55,940 were given systemically 30 min prior to nociceptive testing. PF 3845 (5, 10, and 20 mg/kg), JZL 184 (5, 10, and 20 mg/kg), and JZL 195 (5, 10, and 20 mg/kg) elicit dose-dependent antinociceptive in the acetic acid writhing test. In the CRD model, while JZL 195 (5, 10, or 20 mg/kg) and PF3845 (10, 20, and 40 mg/kg) produced dose-dependent antinociceptive effects comparable to those of CP 55,940 (0.1, 0.3, or 1 mg/kg), JZL 184 (10, 20, and 40 mg/kg) alone did not alter the visceromotor response (VMR). The selective FAAH inhibitor and dual FAAH/MAGL inhibitors were effective in both inflammatory and mechanically evoked visceral pain, while the MAGL inhibitor elicited an analgesic effect in inflammatory, but not in distension-induced, visceral pain. © 2015 John Wiley & Sons Ltd.

  4. Biomarkers of endocannabinoid system activation in severe obesity.

    Jack C Sipe

    2010-01-01

    Full Text Available Obesity is a worldwide epidemic, and severe obesity is a risk factor for many diseases, including diabetes, heart disease, stroke, and some cancers. Endocannabinoid system (ECS signaling in the brain and peripheral tissues is activated in obesity and plays a role in the regulation of body weight. The main research question here was whether quantitative measurement of plasma endocannabinoids, anandamide, and related N-acylethanolamines (NAEs, combined with genotyping for mutations in fatty acid amide hydrolase (FAAH would identify circulating biomarkers of ECS activation in severe obesity.Plasma samples were obtained from 96 severely obese subjects with body mass index (BMI of > or = 40 kg/m(2, and 48 normal weight subjects with BMI of A (P129T mutation by comparing plasma ECS metabolite levels in the FAAH 385 minor A allele carriers versus wild-type C/C carriers in both groups. The main finding was significantly elevated mean plasma levels of anandamide (15.1+/-1.4 pmol/ml and related NAEs in study subjects that carried the FAAH 385 A mutant alleles versus normal subjects (13.3+/-1.0 pmol/ml with wild-type FAAH genotype (p = 0.04, and significance was maintained after controlling for BMI.Significantly increased levels of the endocannabinoid anandamide and related NAEs were found in carriers of the FAAH 385 A mutant alleles compared with wild-type FAAH controls. This evidence supports endocannabinoid system activation due to the effect of FAAH 385 mutant A genotype on plasma AEA and related NAE analogs. This is the first study to document that FAAH 385 A mutant alleles have a direct effect on elevated plasma levels of anandamide and related NAEs in humans. These biomarkers may indicate risk for severe obesity and may suggest novel ECS obesity treatment strategies.

  5. The Endocannabinoid System as Pharmacological Target Derived from Its CNS Role in Energy Homeostasis and Reward. Applications in Eating Disorders and Addiction

    Francisco-Javier Bermúdez-Silva

    2011-08-01

    Full Text Available The endocannabinoid system (ECS has been implicated in many physiological functions, including the regulation of appetite, food intake and energy balance, a crucial involvement in brain reward systems and a role in psychophysiological homeostasis (anxiety and stress responses. We first introduce this important regulatory system and chronicle what is known concerning the signal transduction pathways activated upon the binding of endogenous cannabinoid ligands to the Gi/0-coupled CB1 cannabinoid receptor, as well as its interactions with other hormones and neuromodulators which can modify endocannabinoid signaling in the brain. Anorexia nervosa (AN and bulimia nervosa (BN are severe and disabling psychiatric disorders, characterized by profound eating and weight alterations and body image disturbances. Since endocannabinoids modulate eating behavior, it is plausible that endocannabinoid genes may contribute to the biological vulnerability to these diseases. We present and discuss data suggesting an impaired endocannabinoid signaling in these eating disorders, including association of endocannabinoid components gene polymorphisms and altered CB1-receptor expression in AN and BN. Then we discuss recent findings that may provide new avenues for the identification of therapeutic strategies based on the endocannabinod system. In relation with its implications as a reward-related system, the endocannabinoid system is not only a target for cannabis but it also shows interactions with other drugs of abuse. On the other hand, there may be also a possibility to point to the ECS as a potential target for treatment of drug-abuse and addiction. Within this framework we will focus on enzymatic machinery involved in endocannabinoid inactivation (notably fatty acid amide hydrolase or FAAH as a particularly interesting potential target. Since a deregulated endocannabinoid system may be also related to depression, anxiety and pain symptomatology accompanying drug

  6. FEMALE MICE ARE RESISTANT TO Fabp1 GENE ABLATION-INDUCED ALTERATIONS IN BRAIN ENDOCANNABINOID LEVELS

    Martin, Gregory G.; Chung, Sarah; Landrock, Danilo; Landrock, Kerstin K.; Dangott, Lawrence J.; Peng, Xiaoxue; Kaczocha, Martin; Murphy, Eric J.; Kier, Ann B.; Schroeder, Friedhelm

    2017-01-01

    Although liver fatty acid binding protein (FABP1, L-FABP) is not detectable in brain, Fabp1 gene ablation (LKO) markedly increases endocannabinoids (EC) in brains of male mice. Since the brain EC system of females differs significantly from that of males, it was important to determine if LKO differently impacted the brain EC system. LKO did not alter brain levels of arachidonic acid (ARA)-containing ECs, i.e arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), but decreased non-ARA-containing N-acylethanolamides (OEA, PEA) and 2-oleoylglycerol (2-OG) that potentiate the actions of AEA and 2-AG. These changes in brain potentiating EC levels were not associated with: i) a net decrease in levels of brain membrane proteins associated with fatty acid uptake and EC synthesis; ii) a net increase in brain protein levels of cytosolic EC chaperones and enzymes in EC degradation; or iii) increased brain protein levels of EC receptors (CB1, TRVP1). Instead, the reduced or opposite responsiveness of female brain EC levels to loss of FABP1 (LKO) correlated with intrinsically lower FABP1 level in livers of WT females than males. These data show that female mouse brain endocannabinoid levels were unchanged (AEA, 2-AG) or decreased (OEA, PEA, 2-OG) by complete loss of FABP1 (LKO). PMID:27450559

  7. Ketoconazole inhibits the cellular uptake of anandamide via inhibition of FAAH at pharmacologically relevant concentrations.

    Emmelie Björklund

    Full Text Available The antifungal compound ketoconazole has, in addition to its ability to interfere with fungal ergosterol synthesis, effects upon other enzymes including human CYP3A4, CYP17, lipoxygenase and thromboxane synthetase. In the present study, we have investigated whether ketoconazole affects the cellular uptake and hydrolysis of the endogenous cannabinoid receptor ligand anandamide (AEA.The effects of ketoconazole upon endocannabinoid uptake were investigated using HepG2, CaCo2, PC-3 and C6 cell lines. Fatty acid amide hydrolase (FAAH activity was measured in HepG2 cell lysates and in intact C6 cells. Ketoconazole inhibited the uptake of AEA by HepG2 cells and CaCo2 cells with IC50 values of 17 and 18 µM, respectively. In contrast, it had modest effects upon AEA uptake in PC-3 cells, which have a low expression of FAAH. In cell-free HepG2 lysates, ketoconazole inhibited FAAH activity with an IC50 value (for the inhibitable component of 34 µM.The present study indicates that ketoconazole can inhibit the cellular uptake of AEA at pharmacologically relevant concentrations, primarily due to its effects upon FAAH. Ketoconazole may be useful as a template for the design of dual-action FAAH/CYP17 inhibitors as a novel strategy for the treatment of prostate cancer.

  8. Genetic variation in the endocannabinoid system and response to Cognitive Behavior Therapy for child anxiety disorders

    Coleman, Jonathan R. I.; Roberts, Susanna; Keers, Robert; Breen, Gerome; Bögels, Susan; Creswell, Cathy; Hudson, Jennifer L.; McKinnon, Anna; Nauta, Maaike; Rapee, Ronald M.; Schneider, Silvia; Silverman, Wendy K.; Thastum, Mikael; Waite, Polly; Wergeland, Gro Janne H.; Eley, Thalia C.

    2016-01-01

    Extinction learning is an important mechanism in the successful psychological treatment of anxiety. Individual differences in response and relapse following Cognitive Behavior Therapy may in part be explained by variability in the ease with which fears are extinguished or the vulnerability of these fears to re‐emerge. Given the role of the endocannabinoid system in fear extinction, this study investigates whether genetic variation in the endocannabinoid system explains individual differences in response to CBT. Children (N = 1,309) with a primary anxiety disorder diagnosis were recruited. We investigated the relationship between variation in the CNR1, CNR2, and FAAH genes and change in primary anxiety disorder severity between pre‐ and post‐treatment and during the follow‐up period in the full sample and a subset with fear‐based anxiety disorder diagnoses. Change in symptom severity during active treatment was nominally associated (P < 0.05) with two SNPs. During the follow‐up period, five SNPs were nominally associated with a poorer treatment response (rs806365 [CNR1]; rs2501431 [CNR2]; rs2070956 [CNR2]; rs7769940 [CNR1]; rs2209172 [FAAH]) and one with a more favorable response (rs6928813 [CNR1]). Within the fear‐based subset, the effect of rs806365 survived multiple testing corrections (P < 0.0016). We found very limited evidence for an association between variants in endocannabinoid system genes and treatment response once multiple testing corrections were applied. Larger, more homogenous cohorts are needed to allow the identification of variants of small but statistically significant effect and to estimate effect sizes for these variants with greater precision in order to determine their potential clinical utility. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc. PMID:27346075

  9. Potential of Endocannabinoids to Control Bladder Pain

    Dale E. Bjorling

    2018-05-01

    Full Text Available Bladder-related pain is one of the most common forms of visceral pain, and visceral pain is among the most common complaints for which patients seek physician consultation. Despite extensive studies of visceral innervation and treatment of visceral pain, opioids remain a mainstay for management of bladder pain. Side effects associated with opioid therapy can profoundly diminish quality of life, and improved options for treatment of bladder pain remain a high priority. Endocannabinoids, primarily anandamide (AEA and 2-arachidonoylglycerol (2-AG, are endogenously-produced fatty acid ethanolamides with that induce analgesia. Animal experiments have demonstrated that inhibition of enzymes that degrade AEA or 2-AG have the potential to prevent development of visceral and somatic pain. Although experimental results in animal models have been promising, clinical application of this approach has proven difficult. In addition to fatty acid amide hydrolase (FAAH; degrades AEA and monacylglycerol lipase (MAGL; degrades 2-AG, cyclooxygenase (COX acts to metabolize endocannabinoids. Another potential limitation of this strategy is that AEA activates pro-nociceptive transient receptor potential vanilloid 1 (TRPV1 channels. Dual inhibitors of FAAH and TRPV1 or FAAH and COX have been synthesized and are currently undergoing preclinical testing for efficacy in providing analgesia. Local inhibition of FAAH or MAGL within the bladder may be viable options to reduce pain associated with cystitis with fewer systemic side effects, but this has not been explored. Further investigation is required before manipulation of the endocannabinoid system can be proven as an efficacious alternative for management of bladder pain.

  10. The Endocannabinoid System as a Potential Therapeutic Target for Pain Modulation

    Ahmet Ulugöl

    2014-06-01

    Full Text Available Although cannabis has been used for pain management for millennia, very few approved cannabinoids are indicated for the treatment of pain and other medical symptoms. Cannabinoid therapy re-gained attention only after the discovery of endocannabinoids and fatty acid amide hydrolase (FAAH and monoacylglycerol lipase (MAGL, the enzymes playing a role in endocannabinoid metabolism. Nowadays, research has focused on the inhibition of these degradative enzymes and the elevation of endocannabinoid tonus locally; special emphasis is given on multi-target analgesia compounds, where one of the targets is the endocannabinoid degrading enzyme. In this review, I provide an overview of the current understanding about the processes accounting for the biosynthesis, transport and metabolism of endocannabinoids, and pharmacological approaches and potential therapeutic applications in this area, regarding the use of drugs elevating endocannabinoid levels in pain conditions.

  11. Fenitrothion action at the endocannabinoid system leading to spermatotoxicity in Wistar rats

    Ito, Yuki, E-mail: yukey@med.nagoya-cu.ac.jp [Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601 (Japan); Tomizawa, Motohiro [Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601 (Japan); Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo 156-8502 (Japan); Suzuki, Himiko [Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601 (Japan); Okamura, Ai [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Ohtani, Katsumi [National Institute of Occupational Safety and Health, Kanagawa 214-8585 (Japan); Nunome, Mari; Noro, Yuki [Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601 (Japan); Wang, Dong; Nakajima, Tamie [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Kamijima, Michihiro, E-mail: kamijima@med.nagoya-cu.ac.jp [Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601 (Japan)

    2014-09-15

    Organophosphate (OP) compounds as anticholinesterase agents may secondarily act on diverse serine hydrolase targets, revealing unfavorable physiological effects including male reproductive toxicity. The present investigation proposes that fenitrothion (FNT, a major OP compound) acts on the endocannabinoid signaling system in male reproductive organs, thereby leading to spermatotoxicity (sperm deformity, underdevelopment, and reduced motility) in rats. FNT oxon (bioactive metabolite of FNT) preferentially inhibited the fatty acid amide hydrolase (FAAH), an endocannabinoid anandamide (AEA) hydrolase, in the rat cellular membrane preparation from the testis in vitro. Subsequently, male Wistar rats were treated orally with 5 or 10 mg/kg FNT for 9 weeks and the subchronic exposure unambiguously deteriorated sperm motility and morphology. The activity-based protein profiling analysis with a phosphonofluoridate fluorescent probe revealed that FAAH was selectively inhibited among the FNT-treated cellular membrane proteome in testis. Intriguingly, testicular AEA (endogenous substrate of FAAH) levels were elevated along with the FAAH inhibition caused by the subchronic exposure. More importantly, linear regression analyses for the FNT-elicited spermatotoxicity reveal a good correlation between the testicular FAAH activity and morphological indices or sperm motility. Accordingly, the present study proposes that the FNT-elicited spermatotoxicity appears to be related to inhibition of FAAH leading to overstimulation of the endocannabinoid signaling system, which plays crucial roles in spermatogenesis and sperm motility acquirement. - Highlights: • Subchronic exposure to fenitrothion induces spermatotoxicity in rats. • The fatty acid amide hydrolase is a potential target for the spermatotoxicity. • Overstimulation of the endocannabinoid signal possibly leads to the spermatotoxicity.

  12. Fenitrothion action at the endocannabinoid system leading to spermatotoxicity in Wistar rats

    Ito, Yuki; Tomizawa, Motohiro; Suzuki, Himiko; Okamura, Ai; Ohtani, Katsumi; Nunome, Mari; Noro, Yuki; Wang, Dong; Nakajima, Tamie; Kamijima, Michihiro

    2014-01-01

    Organophosphate (OP) compounds as anticholinesterase agents may secondarily act on diverse serine hydrolase targets, revealing unfavorable physiological effects including male reproductive toxicity. The present investigation proposes that fenitrothion (FNT, a major OP compound) acts on the endocannabinoid signaling system in male reproductive organs, thereby leading to spermatotoxicity (sperm deformity, underdevelopment, and reduced motility) in rats. FNT oxon (bioactive metabolite of FNT) preferentially inhibited the fatty acid amide hydrolase (FAAH), an endocannabinoid anandamide (AEA) hydrolase, in the rat cellular membrane preparation from the testis in vitro. Subsequently, male Wistar rats were treated orally with 5 or 10 mg/kg FNT for 9 weeks and the subchronic exposure unambiguously deteriorated sperm motility and morphology. The activity-based protein profiling analysis with a phosphonofluoridate fluorescent probe revealed that FAAH was selectively inhibited among the FNT-treated cellular membrane proteome in testis. Intriguingly, testicular AEA (endogenous substrate of FAAH) levels were elevated along with the FAAH inhibition caused by the subchronic exposure. More importantly, linear regression analyses for the FNT-elicited spermatotoxicity reveal a good correlation between the testicular FAAH activity and morphological indices or sperm motility. Accordingly, the present study proposes that the FNT-elicited spermatotoxicity appears to be related to inhibition of FAAH leading to overstimulation of the endocannabinoid signaling system, which plays crucial roles in spermatogenesis and sperm motility acquirement. - Highlights: • Subchronic exposure to fenitrothion induces spermatotoxicity in rats. • The fatty acid amide hydrolase is a potential target for the spermatotoxicity. • Overstimulation of the endocannabinoid signal possibly leads to the spermatotoxicity

  13. Endocannabinoids modulate apoptosis in endometriosis and adenomyosis.

    Bilgic, Elif; Guzel, Elif; Kose, Sevil; Aydin, Makbule Cisel; Karaismailoglu, Eda; Akar, Irem; Usubutun, Alp; Korkusuz, Petek

    2017-06-01

    Adenomyosis that is a form of endometriosis is the growth of ectopic endometrial tissue within the muscular wall of the uterus (myometrium), which may cause dysmenorrhea and infertility. Endocannabinoid mediated apoptotic mechanisms of endometriosis and adenomyosis are not known. We hypothesized that the down regulation of endocannabinoid receptors and/or alteration in their regulatory enzymes may have a direct role in the pathogenesis of endometriosis and adenomyosis through apoptosis. Endocannabinoid receptors CB1 and CB2, their synthesizing and catabolizing enzymes (FAAH, NAPE-PLD, DAGL, MAGL) and the apoptotic indexes were immunohistochemically assessed in endometriotic and adenomyotic tissues. Findings were compared to normal endometrium and myometrium. Endometrial adenocarcinoma (Ishikawa) and ovarian endometriosis cyst wall stromal (CRL-7566) cell lines were furthermore cultured with or without cannabinoid receptor agonists. The IC50 value for CB1 and CB2 receptor agonists was quantified. Cannabinoid agonists on cell death were investigated by Annexin-V/Propidium iodide labeling with flow cytometry. CB1 and CB2 receptor levels decreased in endometriotic and adenomyotic tissues compared to the control group (p=0,001 and p=0,001). FAAH, NAPE-PLD, MAGL and DAGL enzyme levels decreased in endometriotic and adenomyotic tissues compared to control (p=0,001, p=0,001, p=0,001 and p=0,002 respectively). Apoptotic cell indexes both in endometriotic and adenomyotic tissues also decreased significantly, compared to the control group (p=0,001 and p=0,001). CB1 and CB2 receptor agonist mediated dose dependent fast anti-proliferative and pro-apoptotic effects were detected in Ishikawa and ovarian endometriosis cyst wall stromal cell lines (CRL-7566). Endocannabinoids are suggested to increase apoptosis mechanisms in endometriosis and adenomyosis. CB1 and CB2 antagonists can be considered as potential medical therapeutic agents for endometriosis and adenomyosis. Copyright

  14. Elevated Levels of Endocannabinoids in Chronic Hepatitis C May Modulate Cellular Immune Response and Hepatic Stellate Cell Activation

    Eleonora Patsenker

    2015-03-01

    Full Text Available The endocannabinoid (EC system is implicated in many chronic liver diseases, including hepatitis C viral (HCV infection. Cannabis consumption is associated with fibrosis progression in patients with chronic hepatitis C (CHC, however, the role of ECs in the development of CHC has never been explored. To study this question, anandamide (AEA and 2-arachidonoyl glycerol (2-AG were quantified in samples of HCV patients and healthy controls by gas and liquid chromatography mass spectrometry. Fatty acid amide hydrolase (FAAH and monoaclyglycerol lipase (MAGL activity was assessed by [3H]AEA and [3H]2-AG hydrolysis, respectively. Gene expression and cytokine release were assayed by TaqMan PCR and ELISpot, respectively. AEA and 2-AG levels were increased in plasma of HCV patients, but not in liver tissues. Hepatic FAAH and MAGL activity was not changed. In peripheral blood mononuclear cells (PBMC, ECs inhibited IFN-γ, TNF-α, and IL-2 secretion. Inhibition of IL-2 by endogenous AEA was stronger in PBMC from HCV patients. In hepatocytes, 2-AG induced the expression of IL-6, -17A, -32 and COX-2, and enhanced activation of hepatic stellate cells (HSC co-cultivated with PBMC from subjects with CHC. In conclusion, ECs are increased in plasma of patients with CHC and might reveal immunosuppressive and profibrogenic effects.

  15. Potential Therapeutic Value of a Novel FAAH Inhibitor for the Treatment of Anxiety.

    Eva M Marco

    Full Text Available Anxiety disorders are among the most prevalent psychiatric diseases with high personal costs and a remarkable socio-economic burden. However, current treatment of anxiety is far from satisfactory. Novel pharmacological targets have emerged in the recent years, and attention has focused on the endocannabinoid (eCB system, given the increasing evidence that supports its central role in emotion, coping with stress and anxiety. In the management of anxiety disorders, drug development strategies have left apart the direct activation of type-1 cannabinoid receptors to indirectly enhance eCB signalling through the inhibition of eCB deactivation, that is, the inhibition of the fatty acid amide hydrolase (FAAH enzyme. In the present study, we provide evidence for the anxiolytic-like properties of a novel, potent and selective reversible inhibitor of FAAH, ST4070, orally administered to rodents. ST4070 (3 to 30 mg/kg per os administered to CD1 male mice induced an increase of time spent in the exploration of the open arms of the elevated-plus maze. A partial reduction of anxiety-related behaviour by ST4070 was also obtained in Wistar male rats, which moderately intensified the time spent in the illuminated compartment of the light-dark box. ST4070 clearly inhibited FAAH activity and augmented the levels of two of its substrates, N-arachidonoylethanolamine (anandamide and N-palmitoylethanolamine, in anxiety-relevant brain regions. Altogether, ST4070 offers a promising anxiolytic-like profile in preclinical studies, although further studies are warranted to clearly demonstrate its efficacy in the clinic management of anxiety disorders.

  16. “Redundancy” of Endocannabinoid Inactivation: New Challenges and Opportunities for Pain Control

    2012-01-01

    Redundancy of metabolic pathways and molecular targets is a typical feature of all lipid mediators, and endocannabinoids, which were originally defined as endogenous agonists at cannabinoid CB1 and CB2 receptors, are no exception. In particular, the two most studied endocannabinoids, anandamide and 2-arachidonoylglycerol, are inactivated through alternative biochemical routes, including hydrolysis and oxidation, and more than one enzyme might be used even for the same type of inactivating reaction. These enzymes also recognize as substrates other concurrent lipid mediators, whereas, in turn, endocannabinoids might interact with noncannabinoid receptors with subcellular distribution and ultimate biological actions either similar to or completely different from those of cannabinoid receptors. Even splicing variants of endocannabinoid hydrolyzing enzymes, such as FAAH-1, might play distinct roles in endocannabinoid inactivation. Finally, the products of endocannabinoid catabolism may have their own targets, with biological roles different from those of cannabinoid receptors. These peculiarities of endocannabinoid signaling have complicated the use of inhibitors of its inactivation mechanisms as a safer and more efficacious alternative to the direct targeting of cannabinoid receptors for the treatment of several pathological conditions, including pain. However, new strategies, including the rediscovery of “dirty drugs”, and the use of certain natural products (including non-THC cannabis constituents), are emerging that might allow us to make a virtue of necessity and exploit endocannabinoid redundancy to develop new analgesics. PMID:22860203

  17. Effects of acute versus repeated cocaine exposure on the expression of endocannabinoid signaling-related proteins in the mouse cerebellum

    Ana ePalomino

    2014-03-01

    Full Text Available Growing awareness of cerebellar involvement in addiction is based on the cerebellum’s intermediary position between motor and reward, potentially acting as an interface between motivational and cognitive functions. Here, we examined the impact of acute and repeated cocaine exposure on the two main signaling systems in the mouse cerebellum: the endocannabinoid (eCB and glutamate systems. To this end, we investigated whether eCB signaling-related gene and protein expression (CB1 receptors and enzymes that produce (DAGLα/β and NAPE-PLD and degrade (MAGL and FAAH eCB were altered. In addition, we analyzed the gene expression of relevant components of the glutamate signaling system (glutamate synthesizing enzymes LGA and KGA, mGluR3/5 metabotropic receptors, and NR1/2A/2B/2C-NMDA and GluR1/2/3/4-AMPA ionotropic receptor subunits and the gene expression of tyrosine hydroxylase (TH, the rate-limiting enzyme in catecholamine biosynthesis, because noradrenergic terminals innervate the cerebellar cortex. Results indicated that acute cocaine exposure decreased DAGLα expression, suggesting a down-regulation of 2-AG production, as well as gene expression of TH, KGA, mGluR3 and all ionotropic receptor subunits analyzed in the cerebellum. The acquisition of conditioned locomotion and sensitization after repeated cocaine exposure were associated with an increased NAPE-PLD/FAAH ratio, suggesting enhanced anandamide production, and a decreased DAGLβ/MAGL ratio, suggesting decreased 2-AG generation. Repeated cocaine also increased LGA gene expression but had no effect on glutamate receptors. These findings indicate that acute cocaine modulates the expression of the eCB and glutamate systems. Repeated cocaine results in normalization of glutamate receptor expression, although sustained changes in eCB is observed. We suggest that cocaine-induced alterations to cerebellar eCB should be considered when analyzing the adaptations imposed by psychostimulants that

  18. Endocannabinoid Catabolic Enzymes Play Differential Roles in Thermal Homeostasis in Response to Environmental or Immune Challenge.

    Nass, Sara R; Long, Jonathan Z; Schlosburg, Joel E; Cravatt, Benjamin F; Lichtman, Aron H; Kinsey, Steven G

    2015-06-01

    Cannabinoid receptor agonists, such as Δ(9)-THC, the primary active constituent of Cannabis sativa, have anti-pyrogenic effects in a variety of assays. Recently, attention has turned to the endogenous cannabinoid system and how endocannabinoids, including 2-arachidonoylglycerol (2-AG) and anandamide, regulate multiple homeostatic processes, including thermoregulation. Inhibiting endocannabinoid catabolic enzymes, monoacylglycerol lipase (MAGL) or fatty acid amide hydrolase (FAAH), elevates levels of 2-AG or anandamide in vivo, respectively. The purpose of this experiment was to test the hypothesis that endocannabinoid catabolic enzymes function to maintain thermal homeostasis in response to hypothermic challenge. In separate experiments, male C57BL/6J mice were administered a MAGL or FAAH inhibitor, and then challenged with the bacterial endotoxin lipopolysaccharide (LPS; 2 mg/kg ip) or a cold (4 °C) ambient environment. Systemic LPS administration caused a significant decrease in core body temperature after 6 h, and this hypothermia persisted for at least 12 h. Similarly, cold environment induced mild hypothermia that resolved within 30 min. JZL184 exacerbated hypothermia induced by either LPS or cold challenge, both of which effects were blocked by rimonabant, but not SR144528, indicating a CB1 cannabinoid receptor mechanism of action. In contrast, the FAAH inhibitor, PF-3845, had no effect on either LPS-induced or cold-induced hypothermia. These data indicate that unlike direct acting cannabinoid receptor agonists, which elicit profound hypothermic responses on their own, neither MAGL nor FAAH inhibitors affect normal body temperature. However, these endocannabinoid catabolic enzymes play distinct roles in thermoregulation following hypothermic challenges.

  19. Inhibition of endocannabinoid metabolism by the metabolites of ibuprofen and flurbiprofen.

    Karlsson, Jessica; Fowler, Christopher J

    2014-01-01

    In addition to their effects upon prostaglandin synthesis, the non-steroidal anti-inflammatory drugs ibuprofen and flurbiprofen inhibit the metabolism of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA) by cyclooxygenase-2 (COX-2) and fatty acid amide hydrolase (FAAH), respectively. Here, we investigated whether these effects upon endocannabinoid metabolism are shared by the main metabolites of ibuprofen and flurbiprofen. COX activities were measured via changes in oxygen consumption due to oxygenation of arachidonic acid (for COX-1) and arachidonic acid and 2-AG (for COX-2). FAAH activity was quantified by measuring hydrolysis of tritium labelled AEA in rat brain homogenates. The ability of ibuprofen and flurbiprofen to inhibit COX-2-catalysed oxygenation of 2-AG at lower concentrations than the oxygenation of arachidonic acid was seen with 4'-hydroxyflurbiprofen and possibly also 3'-hydroxyibuprofen, albeit at lower potencies than the parent compounds. All ibuprofen and flurbiprofen metabolites retained the ability to inhibit FAAH in a pH-dependent manner, although the potency was lower than seen with the parent compounds. It is concluded that the primary metabolites of ibuprofen and flurbiprofen retain some of the properties of the parent compound with respect to inhibition of endocannabinoid metabolism. However, these effects are unlikely to contribute to the actions of the parent compounds in vivo.

  20. Inhibition of endocannabinoid metabolism by the metabolites of ibuprofen and flurbiprofen.

    Jessica Karlsson

    Full Text Available In addition to their effects upon prostaglandin synthesis, the non-steroidal anti-inflammatory drugs ibuprofen and flurbiprofen inhibit the metabolism of the endocannabinoids 2-arachidonoylglycerol (2-AG and anandamide (AEA by cyclooxygenase-2 (COX-2 and fatty acid amide hydrolase (FAAH, respectively. Here, we investigated whether these effects upon endocannabinoid metabolism are shared by the main metabolites of ibuprofen and flurbiprofen.COX activities were measured via changes in oxygen consumption due to oxygenation of arachidonic acid (for COX-1 and arachidonic acid and 2-AG (for COX-2. FAAH activity was quantified by measuring hydrolysis of tritium labelled AEA in rat brain homogenates. The ability of ibuprofen and flurbiprofen to inhibit COX-2-catalysed oxygenation of 2-AG at lower concentrations than the oxygenation of arachidonic acid was seen with 4'-hydroxyflurbiprofen and possibly also 3'-hydroxyibuprofen, albeit at lower potencies than the parent compounds. All ibuprofen and flurbiprofen metabolites retained the ability to inhibit FAAH in a pH-dependent manner, although the potency was lower than seen with the parent compounds.It is concluded that the primary metabolites of ibuprofen and flurbiprofen retain some of the properties of the parent compound with respect to inhibition of endocannabinoid metabolism. However, these effects are unlikely to contribute to the actions of the parent compounds in vivo.

  1. Binge Alcohol Exposure Transiently Changes the Endocannabinoid System: A Potential Target to Prevent Alcohol-Induced Neurodegeneration

    Daniel J. Liput

    2017-11-01

    Full Text Available Excessive alcohol consumption leads to neurodegeneration, which contributes to cognitive decline that is associated with alcohol use disorders (AUDs. The endocannabinoid system has been implicated in the development of AUDs, but little is known about how the neurotoxic effects of alcohol impact the endocannabinoid system. Therefore, the current study investigated the effects of neurotoxic, binge-like alcohol exposure on components of the endocannabinoid system and related N-acylethanolamines (NAEs, and then evaluated the efficacy of fatty acid amide hydrolase (FAAH inhibition on attenuating alcohol-induced neurodegeneration. Male rats were administered alcohol according to a binge model, which resulted in a transient decrease in [3H]-CP-55,940 binding in the entorhinal cortex and hippocampus following two days, but not four days, of treatment. Furthermore, binge alcohol treatment did not change the tissue content of the three NAEs quantified, including the endocannabinoid and anandamide. In a separate study, the FAAH inhibitor, URB597 was administered to rats during alcohol treatment and neuroprotection was assessed by FluoroJade B (FJB staining. The administration of URB597 during binge treatment did not significantly reduce FJB+ cells in the entorhinal cortex or hippocampus, however, a follow up “target engagement” study found that NAE augmentation by URB597 was impaired in alcohol intoxicated rats. Thus, potential alcohol induced alterations in URB597 pharmacodynamics may have contributed to the lack of neuroprotection by FAAH inhibition.

  2. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity

    Vilela, Luciano R.; Gobira, Pedro H.; Viana, Thercia G.; Medeiros, Daniel C.; Ferreira-Vieira, Talita H.; Doria, Juliana G.; Rodrigues, Flávia; Aguiar, Daniele C.; Pereira, Grace S.; Massessini, André R.; Ribeiro, Fabíola M.; Oliveira, Antonio Carlos P. de; Moraes, Marcio F.D.; Moreira, Fabricio A.

    2015-01-01

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB 1 receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB 1 receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity. - Highlights: • Cocaine toxicity is characterized by seizures and hippocampal cell death. • The endocannabinoid anandamide acts as a brain protective mechanism. • Inhibition of anandamide hydrolysis attenuates

  3. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity

    Vilela, Luciano R. [Graduate Program in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Gobira, Pedro H.; Viana, Thercia G. [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Medeiros, Daniel C.; Ferreira-Vieira, Talita H. [Department of Physiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Doria, Juliana G. [Graduate Program in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Rodrigues, Flávia [Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Aguiar, Daniele C. [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Pereira, Grace S.; Massessini, André R. [Department of Physiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Ribeiro, Fabíola M. [Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Oliveira, Antonio Carlos P. de [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Moraes, Marcio F.D., E-mail: mfdm@icb.ufmg.br [Department of Physiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Moreira, Fabricio A., E-mail: fabriciomoreira@icb.ufmg.br [Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2015-08-01

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB{sub 1} receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB{sub 1} receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity. - Highlights: • Cocaine toxicity is characterized by seizures and hippocampal cell death. • The endocannabinoid anandamide acts as a brain protective mechanism. • Inhibition of anandamide hydrolysis

  4. Genetically reduced FAAH activity may be a risk for the development of anxiety and depression in persons with repetitive childhood trauma.

    Lazary, Judit; Eszlari, Nora; Juhasz, Gabriella; Bagdy, Gyorgy

    2016-06-01

    Fatty acid amide hydrolase (FAAH) inhibitors are addressed for promising anxiolytics, but human studies on genetically reduced FAAH activity, stress and affective phenotypes are scarce. We investigated the effect of a functional polymorphism of FAAH (FAAH C385A or rs324420; low FAAH activity and high anandamide concentration are associated with the A allele) together with childhood adversity on the anxious and depressive phenotypes in 858 subjects from the general population. Phenotypes were measured by the Zung Self-Rating Depression Scale (ZSDS), the depression and anxiety subscales of the Brief Symptom Inventory (BSI-DEP, BSI-ANX) and the State-Trait Anxiety scales (STAI-S, STAI-T). Childhood Adversity Questionnaire (CHA) was used to assess early life traumas. Frequency of the A allele was greater among subjects with high ZSDS scores compared to the CC genotype. Furthermore, FAAH C385A and the CHA have shown a robust gene-environment interaction, namely, significantly higher anxiety and depression scores were exhibited by individuals carrying the A allele if they had high CHA scores compared to CC carriers. These data provided preliminary evidence that genetically reduced FAAH activity and repetitive stress in the childhood are associated with increased vulnerability for anxiety and depression in later life. Our results together with earlier experimental data suggest that permanently elevated anandamide level together with early life stress may cause a lifelong damage on stress response probably via the downregulation of CB1R during the neurodevelopment in the brain. It may also point to pharmacogenomic consequences, namely ineffectiveness or adverse effects of FAAH inhibitors in this subpopulation. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  5. Effects of centrally administered endocannabinoids and opioids on orofacial pain perception in rats.

    Zubrzycki, Marek; Janecka, Anna; Liebold, Andreas; Ziegler, Mechthild; Zubrzycka, Maria

    2017-11-01

    Endocannabinoids and opioids play a vital role in mediating pain-induced analgesia. The specific effects of these compounds within the orofacial region are largely unknown. In this study, we tried to determine whether an increase in cannabinoid and opioid concentration in the CSF affects impulse transmission between the motor centres localized in the vicinity of the third and fourth cerebral ventricles. The study objectives were realized on rats using a method that allows the recording of the amplitude of evoked tongue jerks (ETJ) in response to noxious tooth pulp stimulation. The amplitude of ETJ was a measure of the effect of neurotransmitters on neural structures. Perfusion of cerebral ventricles with anandamide (AEA), endomorphin-2 (EM-2), URB597, an inhibitor of fatty acid amide hydrolase (FAAH) and JZL195, a dual inhibitor of FAAH and monoacylglycerol lipase (MAGL) reduced the ETJ amplitude. The antinociceptive effect of AEA, EM-2, URB597 and JZL195 was blocked by CB 1 receptor antagonist, AM251 and by μ receptor-antagonist, β-funaltrexamine. In contrast to AEA, 2-arachidonoylglycerol alone did not decrease ETJ amplitude. We demonstrated that in the orofacial area, analgesic activity is modulated by AEA and that EM-2-induced antinociception was mediated by μ and CB 1 receptors. The action of AEA and EM-2 is tightly regulated by FAAH and FAAH/MAGL, by preventing the breakdown of endogenous cannabinoids in regions where they are produced on demand. Therefore, the current findings support the therapeutic potential of FAAH and FAAH/MAGL inhibitors as novel pharmacotherapeutic agents for orofacial pain. © 2017 The British Pharmacological Society.

  6. Interactions between environmental aversiveness and the anxiolytic effects of enhanced cannabinoid signaling by FAAH inhibition in rats.

    Haller, J; Barna, I; Barsvari, B; Gyimesi Pelczer, K; Yasar, S; Panlilio, L V; Goldberg, S

    2009-07-01

    Since the discovery of endogenous cannabinoid signaling, the number of studies exploring its role in health and disease has increased exponentially. Fatty acid amide hydrolase (FAAH), the enzyme responsible for degradation of the endocannabinoid anandamide, has emerged as a promising target for anxiety-related disorders. FAAH inhibitors (e.g., URB597) increase brain levels of anandamide and induce anxiolytic-like effects in rodents. Recent findings, however, questioned the efficacy of URB597 as an anxiolytic. We tested here the hypothesis that conflicting findings are due to variations in the stressfulness of experimental conditions employed in various studies. We found that URB597 (0.1-0.3 mg/kg) did not produce anxiolytic effects when the aversiveness of testing procedures was minimized by handling rats daily before experimentation, by habituating them to the experimental room, or by employing low illumination during testing. In contrast, URB597 had robust anxiolytic effects when the aversiveness of the testing environment was increased by eliminating habituation to the experimental room or by employing bright lighting conditions. Unlike URB597, the benzodiazepine chlordiazepoxide (5 mg/kg) had anxiolytic effects under all testing conditions. The anxiolytic effects of URB597 were abolished by the cannabinoid CB1-receptor antagonist AM251, showing that they were mediated by CB1 receptors. Close inspection of experimental conditions employed in earlier reports suggests that conflicting findings with URB597 can be explained by different testing conditions, such as those manipulated in the present study. Our findings show that FAAH inhibition does not affect anxiety under mildly stressful circumstances but protects against the anxiogenic effects of aversive stimuli.

  7. The association of N-palmitoylethanolamine with the FAAH inhibitor URB597 impairs melanoma growth through a supra-additive action

    Hamtiaux, Laurie; Masquelier, Julien; Muccioli, Giulio G; Bouzin, Caroline; Feron, Olivier; Gallez, Bernard; Lambert, Didier M

    2012-01-01

    The incidence of melanoma is considerably increasing worldwide. Frequent failing of classical treatments led to development of novel therapeutic strategies aiming at managing advanced forms of this skin cancer. Additionally, the implication of the endocannabinoid system in malignancy is actively investigated. We investigated the cytotoxicity of endocannabinoids and their hydrolysis inhibitors on the murine B16 melanoma cell line using a MTT test. Enzyme and receptor expression was measured by RT-PCR and enzymatic degradation of endocannabinoids using radiolabeled substrates. Cell death was assessed by Annexin-V/Propidium iodine staining. Tumors were induced in C57BL/6 mice by s.c. flank injection of B16 melanoma cells. Mice were injected i.p. for six days with vehicle or treatment, and tumor size was measured each day and weighted at the end of the treatment. Haematoxylin-Eosin staining and TUNEL assay were performed to quantify necrosis and apoptosis in the tumor and endocannabinoid levels were quantified by HPLC-MS. Tube formation assay and CD31 immunostaining were used to evaluate the antiangiogenic effects of the treatments. The N-arachidonoylethanolamine (anandamide, AEA), 2-arachidonoylglycerol and N- palmitoylethanolamine (PEA) reduced viability of B16 cells. The association of PEA with the fatty acid amide hydrolase (FAAH) inhibitor URB597 considerably reduced cell viability consequently to an inhibition of PEA hydrolysis and an increase of PEA levels. The increase of cell death observed with this combination of molecules was confirmed in vivo where only co-treatment with both PEA and URB597 led to decreased melanoma progression. The antiproliferative action of the treatment was associated with an elevation of PEA levels and larger necrotic regions in the tumor. This study suggests the interest of targeting the endocannabinoid system in the management of skin cancer and underlines the advantage of associating endocannabinoids with enzymatic hydrolysis

  8. The association of N-palmitoylethanolamine with the FAAH inhibitor URB597 impairs melanoma growth through a supra-additive action

    Hamtiaux Laurie

    2012-03-01

    Full Text Available Abstract Background The incidence of melanoma is considerably increasing worldwide. Frequent failing of classical treatments led to development of novel therapeutic strategies aiming at managing advanced forms of this skin cancer. Additionally, the implication of the endocannabinoid system in malignancy is actively investigated. Methods We investigated the cytotoxicity of endocannabinoids and their hydrolysis inhibitors on the murine B16 melanoma cell line using a MTT test. Enzyme and receptor expression was measured by RT-PCR and enzymatic degradation of endocannabinoids using radiolabeled substrates. Cell death was assessed by Annexin-V/Propidium iodine staining. Tumors were induced in C57BL/6 mice by s.c. flank injection of B16 melanoma cells. Mice were injected i.p. for six days with vehicle or treatment, and tumor size was measured each day and weighted at the end of the treatment. Haematoxylin-Eosin staining and TUNEL assay were performed to quantify necrosis and apoptosis in the tumor and endocannabinoid levels were quantified by HPLC-MS. Tube formation assay and CD31 immunostaining were used to evaluate the antiangiogenic effects of the treatments. Results The N-arachidonoylethanolamine (anandamide, AEA, 2-arachidonoylglycerol and N- palmitoylethanolamine (PEA reduced viability of B16 cells. The association of PEA with the fatty acid amide hydrolase (FAAH inhibitor URB597 considerably reduced cell viability consequently to an inhibition of PEA hydrolysis and an increase of PEA levels. The increase of cell death observed with this combination of molecules was confirmed in vivo where only co-treatment with both PEA and URB597 led to decreased melanoma progression. The antiproliferative action of the treatment was associated with an elevation of PEA levels and larger necrotic regions in the tumor. Conclusions This study suggests the interest of targeting the endocannabinoid system in the management of skin cancer and underlines the

  9. Δ9-tetrahydrocannabinol and endocannabinoid degradative enzyme inhibitors attenuate intracranial self-stimulation in mice.

    Wiebelhaus, Jason M; Grim, Travis W; Owens, Robert A; Lazenka, Matthew F; Sim-Selley, Laura J; Abdullah, Rehab A; Niphakis, Micah J; Vann, Robert E; Cravatt, Benjamin F; Wiley, Jenny L; Negus, S Stevens; Lichtman, Aron H

    2015-02-01

    A growing body of evidence implicates endogenous cannabinoids as modulators of the mesolimbic dopamine system and motivated behavior. Paradoxically, the reinforcing effects of Δ(9)-tetrahydrocannabinol (THC), the primary psychoactive constituent of cannabis, have been difficult to detect in preclinical rodent models. In this study, we investigated the impact of THC and inhibitors of the endocannabinoid hydrolytic enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) on operant responding for electrical stimulation of the medial forebrain bundle [intracranial self-stimulation (ICSS)], which is known to activate the mesolimbic dopamine system. These drugs were also tested in assays of operant responding for food reinforcement and spontaneous locomotor activity. THC and the MAGL inhibitor JZL184 (4-[bis(1,3-benzodioxol-5-yl)hydroxymethyl]-1-piperidinecarboxylic acid 4-nitrophenyl ester) attenuated operant responding for ICSS and food, and also reduced spontaneous locomotor activity. In contrast, the FAAH inhibitor PF-3845 (N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidinecarboxamide) was largely without effect in these assays. Consistent with previous studies showing that combined inhibition of FAAH and MAGL produces a substantially greater cannabimimetic profile than single enzyme inhibition, the dual FAAH-MAGL inhibitor SA-57 (4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester) produced a similar magnitude of ICSS depression as that produced by THC. ICSS attenuation by JZL184 was associated with increased brain levels of 2-arachidonoylglycerol (2-AG), whereas peak effects of SA-57 were associated with increased levels of both N-arachidonoylethanolamine (anandamide) and 2-AG. The cannabinoid receptor type 1 receptor antagonist rimonabant, but not the cannabinoid receptor type 2 receptor antagonist SR144528, blocked the attenuating effects of THC, JZL184, and SA-57 on

  10. Endocannabinoid and cannabinoid-like fatty acid amide levels correlate with pain-related symptoms in patients with IBS-D and IBS-C: a pilot study.

    Jakub Fichna

    Full Text Available AIMS: Irritable bowel syndrome (IBS is a functional gastrointestinal (GI disorder, associated with alterations of bowel function, abdominal pain and other symptoms related to the GI tract. Recently the endogenous cannabinoid system (ECS was shown to be involved in the physiological and pathophysiological control of the GI function. The aim of this pilot study was to investigate whether IBS defining symptoms correlate with changes in endocannabinoids or cannabinoid like fatty acid levels in IBS patients. METHODS: AEA, 2-AG, OEA and PEA plasma levels were determined in diarrhoea-predominant (IBS-D and constipation-predominant (IBS-C patients and were compared to healthy subjects, following the establishment of correlations between biolipid contents and disease symptoms. FAAH mRNA levels were evaluated in colonic biopsies from IBS-D and IBS-C patients and matched controls. RESULTS: Patients with IBS-D had higher levels of 2AG and lower levels of OEA and PEA. In contrast, patients with IBS-C had higher levels of OEA. Multivariate analysis found that lower PEA levels are associated with cramping abdominal pain. FAAH mRNA levels were lower in patients with IBS-C. CONCLUSION: IBS subtypes and their symptoms show distinct alterations of endocannabinoid and endocannabinoid-like fatty acid levels. These changes may partially result from reduced FAAH expression. The here reported changes support the notion that the ECS is involved in the pathophysiology of IBS and the development of IBS symptoms.

  11. Comparative effects of parathion and chlorpyrifos on endocannabinoid and endocannabinoid-like lipid metabolites in rat striatum.

    Liu, Jing; Parsons, Loren; Pope, Carey

    2015-09-01

    Parathion and chlorpyrifos are organophosphorus insecticides (OPs) that elicit acute toxicity by inhibiting acetylcholinesterase (AChE). The endocannabinoids (eCBs, N-arachidonoylethanolamine, AEA; 2-arachidonoylglycerol, 2AG) are endogenous neuromodulators that regulate presynaptic neurotransmitter release in neurons throughout the central and peripheral nervous systems. While substantial information is known about the eCBs, less is known about a number of endocannabinoid-like metabolites (eCBLs, e.g., N-palmitoylethanolamine, PEA; N-oleoylethanolamine, OEA). We report the comparative effects of parathion and chlorpyrifos on AChE and enzymes responsible for inactivation of the eCBs, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), and changes in the eCBs AEA and 2AG and eCBLs PEA and OEA, in rat striatum. Adult, male rats were treated with vehicle (peanut oil, 2 ml/kg, sc), parathion (27 mg/kg) or chlorpyrifos (280 mg/kg) 6-7 days after surgical implantation of microdialysis cannulae into the right striatum, followed by microdialysis two or four days later. Additional rats were similarly treated and sacrificed for evaluation of tissue levels of eCBs and eCBLs. Dialysates and tissue extracts were analyzed by LC-MS/MS. AChE and FAAH were extensively inhibited at both time-points (85-96%), while MAGL activity was significantly but lesser affected (37-62% inhibition) by parathion and chlorpyrifos. Signs of toxicity were noted only in parathion-treated rats. In general, chlorpyrifos increased eCB levels while parathion had no or lesser effects. Early changes in extracellular AEA, 2AG and PEA levels were significantly different between parathion and chlorpyrifos exposures. Differential changes in extracellular and/or tissue levels of eCBs and eCBLs could potentially influence a number of signaling pathways and contribute to selective neurological changes following acute OP intoxications. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Endocannabinoid System: A Multi-Facet Therapeutic Target.

    Kaur, Rimplejeet; Ambwani, Sneha R; Singh, Surjit

    2016-01-01

    Cannabis sativa is also popularly known as marijuana. It has been cultivated and used by man for recreational and medicinal purposes since many centuries. Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries. The research of drugs acting on endocannabinoid system has seen many ups and downs in the recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve "protective role" in many medical conditions. Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson's disease, Huntington's disease, Alzheimer's disease and Tourette's syndrome could possibly be treated by drugs modulating endocannabinoid system. Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008. Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish

  13. The activity of the endocannabinoid metabolising enzyme fatty acid amide hydrolase in subcutaneous adipocytes correlates with BMI in metabolically healthy humans

    Alexander Stephen PH

    2011-08-01

    Full Text Available Abstract Background The endocannabinoid system (ECS is a ubiquitously expressed signalling system, with involvement in lipid metabolism and obesity. There are reported changes in obesity of blood concentrations of the endocannabinoids anandamide (AEA and 2-arachidonoylglcyerol (2-AG, and of adipose tissue expression levels of the two key catabolic enzymes of the ECS, fatty acid amide hydrolase (FAAH and monoacylglycerol lipase (MGL. Surprisingly, however, the activities of these enzymes have not been assayed in conditions of increasing adiposity. The aim of the current study was to investigate whether FAAH and MGL activities in human subcutaneous adipocytes are affected by body mass index (BMI, or other markers of adiposity and metabolism. Methods Subcutaneous abdominal mature adipocytes, fasting blood samples and anthropometric measurements were obtained from 28 metabolically healthy subjects representing a range of BMIs. FAAH and MGL activities were assayed in mature adipocytes using radiolabelled substrates. Serum glucose, insulin and adipokines were determined using ELISAs. Results MGL activity showed no relationship with BMI or other adiposity indices, metabolic markers (fasting serum insulin or glucose or serum adipokine levels (adiponectin, leptin or resistin. In contrast, FAAH activity in subcutaneous adipocytes correlated positively with BMI and waist circumference, but not with skinfold thickness, metabolic markers or serum adipokine levels. Conclusions In this study, novel evidence is provided that FAAH activity in subcutaneous mature adipocytes increases with BMI, whereas MGL activity does not. These findings support the hypothesis that some components of the ECS are upregulated with increasing adiposity in humans, and that AEA and 2-AG may be regulated differently.

  14. Endocannabinoids as Guardians of Metastasis

    Irmgard Tegeder

    2016-02-01

    Full Text Available Endocannabinoids including anandamide and 2-arachidonoylglycerol are involved in cancer pathophysiology in several ways, including tumor growth and progression, peritumoral inflammation, nausea and cancer pain. Recently we showed that the endocannabinoid profiles are deranged during cancer to an extent that this manifests in alterations of plasma endocannabinoids in cancer patients, which was mimicked by similar changes in rodent models of local and metastatic cancer. The present topical review summarizes the complexity of endocannabinoid signaling in the context of tumor growth and metastasis.

  15. Dual-acting compounds targeting endocannabinoid and endovanilloid systems — a novel treatment option for chronic pain management.

    Natalia Malek

    2016-08-01

    Full Text Available Compared with acute pain that arises suddenly in response to a specific injury and is usually treatable, chronic pain persists over time and is often resistant to medical treatment. Because of the heterogeneity of chronic pain origins, satisfactory therapies for its treatment are lacking, leading to an urgent need for the development of new treatments. The leading approach in drug design is selective compounds, though they are often less effective and require chronic dosing with many side effects. Herein, we review novel approaches to drug design for the treatment of chronic pain represented by dual-acting compounds, which operate at more than one biological target. A number of studies suggest the involvement of the cannabinoid and vanilloid receptors in pain. Interestingly cannabinoid system is in interrelation with other systems that comprise lipid mediators: prostaglandins, produced by COX enzyme. Therefore, in the present review, we summarize the role of dual-acting molecules (FAAH/TRPV1 and FAAH/COX-2 inhibitors that interact with endocannabinoid and endovanillinoid systems and act as analgesics by elevating the endogenously produced endocannabinoids and dampening the production of pro-inflammatory prostaglandins. The plasticity of the endocannabinoid system and the ability of a single chemical entity to exert an activity on two receptor systems has been developed and extensively investigated. Here, we review up-to-date pharmacological studies on compounds interacting with FAAH enzyme together with TRPV1 receptor or COX-2 enzyme respectively. Multi-target pharmacological intervention for treating pain may lead to the development of original and efficient treatments.

  16. Developmental programming of somatic growth, behavior and endocannabinoid metabolism by variation of early postnatal nutrition in a cross-fostering mouse model.

    Schreiner, Felix; Ackermann, Merle; Michalik, Michael; Hucklenbruch-Rother, Eva; Bilkei-Gorzo, Andras; Racz, Ildiko; Bindila, Laura; Lutz, Beat; Dötsch, Jörg; Zimmer, Andreas; Woelfle, Joachim

    2017-01-01

    Nutrient deprivation during early development has been associated with the predisposition to metabolic disorders in adulthood. Considering its interaction with metabolism, appetite and behavior, the endocannabinoid (eCB) system represents a promising target of developmental programming. By cross-fostering and variation of litter size, early postnatal nutrition of CB6F1-hybrid mice was controlled during the lactation period (3, 6, or 10 pups/mother). After weaning and redistribution at P21, all pups received standard chow ad libitum. Gene expression analyses (liver, visceral fat, hypothalamus) were performed at P50, eCB concentrations were determined in liver and visceral fat. Locomotor activity and social behavior were analyzed by means of computer-assisted videotracking. Body growth was permanently altered, with differences for length, weight, body mass index and fat mass persisting beyond P100 (all 3>6>10,p6>10 (DAGLα p6>10 (FAAH pOpen-field social behavior testing revealed significant group differences, with formerly underfed mice turning out to be the most sociable animals (p<0.01). Locomotor activity did not differ. Our data indicate a developmental plasticity of somatic growth, behavior and parameters of the eCB system, with long-lasting impact of early postnatal nutrition. Developmental programming of the eCB system in metabolically active tissues, as shown here for liver and fat, may play a role in the formation of the adult cardiometabolic risk profile following perinatal malnutrition in humans.

  17. The Endocannabinoid System Modulating Levels of Consciousness, Emotions and Likely Dream Contents.

    Murillo-Rodriguez, Eric; Pastrana-Trejo, Jose Carlos; Salas-Crisóstomo, Mireille; de-la-Cruz, Miriel

    2017-01-01

    Cannabinoids are derivatives that are either compounds occurring naturally in the plant, Cannabis sativa or synthetic analogs of these molecules. The first and most widely investigated of the cannabinoids is Δ9-tetrahydrocannabinol (Δ9-THC), which is the main psychotropic constituent of cannabis and undergoes significant binding to cannabinoid receptors. These cannabinoid receptors are seven-transmembrane receptors that received their name from the fact that they respond to cannabinoid compounds, including Δ9-THC. The cannabinoid receptors have been described in rat, human and mouse brains and they have been named the CB1 and CB2 cannabinoid receptors. Later, an endogenous molecule that exerts pharmacological effects similar to those described by Δ9-THC and binds to the cannabinoid receptors was discovered. This molecule, named anandamide, was the first of five endogenous cannabinoid receptor agonists described to date in the mammalian brain and other tissues. Of these endogenous cannabinoids or endocannabinoids, the most thoroughly investigated to date have been anandamide and 2-arachidonoylglycerol (2-AG). Over the years, a significant number of articles have been published in the field of endogenous cannabinoids, suggesting a modulatory profile in multiple neurobiological roles of endocannabinoids. The general consensus accepts that the endogenous cannabinoid system includes natural ligands (such as anandamide and 2- AG), receptors (CB1 and CB2), and the main enzymes responsible for the hydrolysis of anandamide and 2-AG (fatty acid amide hydrolase [FAAH] and monoacylglycerol lipase [MAGL], respectively) as well as the anandamide membrane transporter (AMT). To date, diverse pieces of evidence have shown that the endocannabinoid system controls multiple functions such as feeding, pain, learning and memory and has been linked with various disturbances, such as Parkinson´s disease. Among the modulatory properties of the endocannabinoid system, current data

  18. Regulation of brain reward by the endocannabinoid system: a critical review of behavioral studies in animals.

    Vlachou, S; Panagis, G

    2014-01-01

    The endocannabinoid system has been implicated in the regulation of a variety of physiological processes, including a crucial involvement in brain reward systems and the regulation of motivational processes. Behavioral studies have shown that cannabinoid reward may involve the same brain circuits and similar brain mechanisms with other drugs of abuse, such as nicotine, cocaine, alcohol and heroin, as well as natural rewards, such as food, water and sucrose, although the conditions under which cannabinoids exert their rewarding effects may be more limited. The purpose of the present review is to briefly describe and evaluate the behavioral and pharmacological research concerning the major components of the endocannabinoid system and reward processes. Special emphasis is placed on data received from four procedures used to test the effects of the endocannabinoid system on brain reward in animals; namely, the intracranial self-stimulation paradigm, the self-administration procedure, the conditioned place preference procedure and the drug-discrimination procedure. The effects of cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor agonists, antagonists and endocannabinoid modulators in these procedures are examined. Further, the involvement of CB1 and CB2 receptors, as well the fatty acid amid hydrolase (FAAH) enzyme in reward processes is investigated through presentation of respective genetic ablation studies in mice. We suggest that the endocannabinoid system plays a major role in modulating motivation and reward processes. Further research will provide us with a better understanding of these processes and, thus, could lead to the development of potential therapeutic compounds for the treatment of reward-related disorders.

  19. Lifelong imbalanced LA/ALA intake impairs emotional and cognitive behavior via changes in brain endocannabinoid system

    Zamberletti, Erica; Piscitelli, Fabiana; De Castro, Valentina; Murru, Elisabetta; Gabaglio, Marina; Colucci, Paola; Fanali, Chiara; Prini, Pamela; Bisogno, Tiziana; Maccarrone, Mauro; Campolongo, Patrizia; Banni, Sebastiano; Rubino, Tiziana; Parolaro, Daniela

    2017-01-01

    Imbalanced dietary n-3 and n-6 PUFA content has been associated with a number of neurological conditions. Endocannabinoids are n-6 PUFA derivatives, whose brain concentrations are sensitive to modifications of fatty acid composition of the diet and play a central role in the regulation of mood and cognition. As such, the endocannabinoid system appears to be an ideal candidate for mediating the effects of dietary fatty acids on mood and cognition. Lifelong administration of isocaloric α-linolenic acid (ALA)-deficient and -enriched diets induced short-term memory deficits, whereas only dietary ALA enrichment altered emotional reactivity in adult male rats compared with animals fed a standard diet that was balanced in ALA/linoleic acid (LA) ratio. In the prefrontal cortex, both diets reduced 2-AG levels and increased MAG lipase expression, whereas only the enriched diet reduced AEA levels, simultaneously increasing FAAH expression. In the hippocampus, an ALA-enriched diet decreased AEA content and NAPE-PLD expression, and reduced 2-AG content while increasing MAG lipase expression. These findings highlight the importance of a diet balanced in fatty acid content for normal brain functions and to support a link between dietary ALA, the brain endocannabinoid system, and behavior, which indicates that dietary ALA intake is a sufficient condition for altering the endocannabinoid system in brain regions modulating mood and cognition. PMID:27903595

  20. Endocannabinoids in the Dentate Gyrus

    Frazier, Charles J.

    2007-01-01

    Recent years have produced rapid and enormous growth in our understanding of endocannabinoid-mediated signalling in the CNS. While much of the recent progress has focused on other areas of the brain, a significant body of evidence has developed that indicates the presence of a robust system for endocannabinoid-mediated signalling in the dentate gyrus. This chapter will provide an overview of our current understanding of that system based on available anatomical and physiological data.

  1. Astrocytes in endocannabinoid signalling.

    Navarrete, Marta; Díez, Adolfo; Araque, Alfonso

    2014-10-19

    Astrocytes are emerging as integral functional components of synapses, responding to synaptically released neurotransmitters and regulating synaptic transmission and plasticity. Thus, they functionally interact with neurons establishing tripartite synapses: a functional concept that refers to the existence of communication between astrocytes and neurons and its crucial role in synaptic function. Here, we discuss recent evidence showing that astrocytes are involved in the endocannabinoid (ECB) system, responding to exogenous cannabinoids as well as ECBs through activation of type 1 cannabinoid receptors, which increase intracellular calcium and stimulate the release of glutamate that modulates synaptic transmission and plasticity. We also discuss the consequences of ECB signalling in tripartite synapses on the astrocyte-mediated regulation of synaptic function, which reveal novel properties of synaptic regulation by ECBs, such as the spatially controlled dual effect on synaptic strength and the lateral potentiation of synaptic efficacy. Finally, we discuss the potential implications of ECB signalling for astrocytes in brain pathology and animal behaviour. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Peripheral Endocannabinoid System Activity in Patients Treated With Sibutramine

    Engeli, Stefan; Heusser, Karsten; Janke, Jürgen; Gorzelniak, Kerstin; Bátkai, Sándor; Pacher, Pál; Harvey-White, Judith; Luft, Friedrich C.; Jordan, Jens

    2008-01-01

    Objective The endocannabinoid system (ECS) promotes weight gain and obesity-associated metabolic changes. Weight loss interventions may influence obesity-associated risk indirectly through modulation of the peripheral ECS. We investigated the effect of acute and chronic treatment with sibutramine on components of the peripheral ECS. Methods and Procedures Twenty obese otherwise healthy patients received randomized, double-blind, crossover treatment with placebo and 15 mg/day sibutramine for 5 days each, followed by 12 weeks open-label sibutramine treatment. We determined circulating anandamide and 2-arachidonoylglycerol and expression levels of endocannabinoid genes in subcutaneous abdominal adipose tissue biopsies. Results Body weight was stable during the acute treatment period and decreased by 6.0 ± 0.8 kg in those patients completing 3 months of sibutramine treatment (P sibutramine treatment. Discussion The ECS is activated in obesity. We did not find any influence of 5% body weight loss induced by sibutramine on circulating levels of endocannabinoids and adipose-tissue expression of endocannabinoid genes in obese subjects. These data confirm our previous findings on dietary weight loss and suggest that the dysregulation of the ECS may be a cause rather than a consequence of obesity. PMID:18356837

  3. Endocannabinoid signaling in reward and addiction

    Parsons, Loren H.; Hurd, Yasmin L.

    2015-01-01

    Brain endocannabinoid signaling influences the motivation for natural rewards (such as palatable food, sexual activity and social interaction) and modulates the rewarding effects of addictive drugs. Pathological forms of natural and drug-induced reward are associated with dysregulated endocannabinoid signaling that may derive from pre-existing genetic factors or from prolonged drug exposure. Impaired endocannabinoid signaling contributes to dysregulated synaptic plasticity, increased stress responsivity, negative emotional states, and craving that propel addiction. Understanding the contributions of endocannabinoid disruptions to behavioral and physiological traits provides insight into the endocannabinoid influence on addiction vulnerability. PMID:26373473

  4. The cannabinoid transporter inhibitor OMDM-2 reduces social interaction: Further evidence for transporter-mediated endocannabinoid release.

    Seillier, Alexandre; Giuffrida, Andrea

    2018-03-01

    Experimental evidence suggests that the transport of endocannabinoids might work bi-directionally. Accordingly, it is possible that pharmacological blockade of the latter affects not only the re-uptake, but also the release of endocannabinoids, thus preventing them from stimulating CB 1 receptors. We used biochemical, pharmacological, and behavioral approaches to investigate the effects of the transporter inhibitor OMDM-2 on social interaction, a behavioral assay that requires activation of CB 1 receptors. The underlying mechanisms of OMDM-2 were compared with those of the Fatty Acid Amide Hydrolase (FAAH) inhibitor URB597. Systemic administration of OMDM-2 reduced social interaction, but in contrast to URB597-induced social deficit, this effect was not reversed by the TRPV1 antagonist capsazepine. The CB 1 antagonist AM251, which did not affect URB597-induced social withdrawal, exacerbated OMDM-2 effect. In addition, the potent CB 1 agonist CP55,940 reversed OMDM-2-, but not URB597-, induced social withdrawal. Blockade of CB 1 receptor by AM251 reduced social interaction and the cholecystokinin CCK2 antagonist LY225910 reversed this effect. Similarly, OMDM-2-induced social withdrawal was reversed by LY225910, whereas URB597 effect was not. Elevation of endocannabinoid levels by URB597 or JZL184, an inhibitor of 2-AG degradation, failed to reverse OMDM-2-induced social withdrawal, and did not show additive effects on cannabinoid measurements when co-administered with OMDM-2. Taken together, these findings indicate that OMDM-2 impaired social interaction in a manner that is consistent with reduced activation of presynaptic CB 1 receptors. As cannabinoid reuptake inhibitors may impair endocannabinoid release, caution should be taken when using these drugs to enhance endocannabinoid tone in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Fatty acid amide hydrolase (FAAH) regulates hypercapnia/ischemia-induced increases in n-acylethanolamines in mouse brain.

    Lin, Lin; Metherel, Adam H; Jones, Peter J; Bazinet, Richard P

    2017-09-01

    N-acylethanolamines (NAEs) are endogenous lipid ligands for several receptors including cannabinoid receptors and peroxisome proliferator-activated receptor-alpha (PPAR-α), which regulate numerous physiological functions. Fatty acid amide hydrolase (FAAH) is largely responsible for the degradation of NAEs. However, at high concentrations of ethanolamines and unesterified fatty acids, FAAH can also catalyze the reverse reaction, producing NAEs. Several brain insults such as ischemia and hypoxia increase brain unesterified fatty acids. Because FAAH can catalyze the synthesis of NAE, we aimed to test whether FAAH was necessary for CO 2 -induced hypercapnia/ischemia increases in NAE. To test this, we examined levels of NAEs, 1- and 2-arachidonoylglycerols as well as their corresponding fatty acid precursors in wild-type and mice lacking FAAH (FAAH-KO) with three Kill methods: (i) head-focused, high-energy microwave irradiation (microwave), (ii) 5 min CO 2 followed by microwave irradiation (CO 2 + microwave), and (iii) 5 min CO 2 only (CO 2 ). Both CO 2 -induced groups increased, to a similar extent, brain levels of unesterified oleic, arachidonic, and docosahexaenoic acid and 1- and 2-arachidonoylglycerols compared to the microwave group in both wild-type and FAAH-KO mice. Oleoylethanolamide (OEA), arachidonoylethanolamide (AEA), and docosahexaenoylethanolamide (DHEA) levels were about 8-, 7-, and 2.5-fold higher, respectively, in the FAAH-KO mice compared with the wild-type mice. Interestingly, the concentrations of OEA, AEA, and DHEA increased 2.5- to 4-fold in response to both CO 2 -induced groups in wild-type mice, but DHEA increased only in the CO 2 group in FAAH-KO mice. Our study demonstrates that FAAH is necessary for CO 2 - induced increases in OEA and AEA but not DHEA. Targeting brain FAAH could impair the production of NAEs in response to brain injuries. © 2017 International Society for Neurochemistry.

  6. Endocannabinoids, Related Compounds and Their Metabolic Routes

    Filomena Fezza

    2014-10-01

    Full Text Available Endocannabinoids are lipid mediators able to bind to and activate cannabinoid receptors, the primary molecular targets responsible for the pharmacological effects of the Δ9-tetrahydrocannabinol. These bioactive lipids belong mainly to two classes of compounds: N-acylethanolamines and acylesters, being N-arachidonoylethanolamine (AEA and 2-arachidonoylglycerol (2-AG, respectively, their main representatives. During the last twenty years, an ever growing number of fatty acid derivatives (endocannabinoids and endocannabinoid-like compounds have been discovered and their activities biological is the subject of intense investigations. Here, the most recent advances, from a therapeutic point of view, on endocannabinoids, related compounds, and their metabolic routes will be reviewed.

  7. The endocannabinoid system and spermatogenesis

    Paola eGrimaldi

    2013-12-01

    Full Text Available AbstractSpermatogenesis is a complex process in which male germ cells undergo a mitotic phase followed by meiosis and by a morphogenetic process to form mature spermatozoa. Spermatogenesis is under the control of gonadotropins, steroid hormones and it is modulated by a complex network of autocrine and paracrine factors. These modulators ensure the correct progression of germ cell differentiation to form mature spermatozoa. Recently, it has been pointed out the relevance of endocannabinoids as critical modulators of male reproduction. Endocannabinoids are natural lipids able to bind to cannabinoid receptors and whose levels are regulated by specific biosynthetic and degradative enzymes. Together with their receptors and metabolic enzymes, they form the endocannabinoid system (ECS. In male reproductive tracts, they affect Sertoli cell activities, Leydig cell proliferation, germ cell differentiation, sperm motility, capacitation and acrosome reaction. The ECS interferes with the pituitary-gonadal axis, and an intricate crosstalk between ECS and steroid hormones has been highlighted. This mini-review will focus on the involvement of the ECS in the control of spermatogenesis and on the interaction between ECS and steroid hormones.

  8. Perinatal asphyxia results in altered expression of the hippocampal acylethanolamide/endocannabinoid signaling system associated to memory impairments in postweaned rats.

    Blanco, Eduardo; Galeano, Pablo; Holubiec, Mariana I; Romero, Juan I; Logica, Tamara; Rivera, Patricia; Pavón, Francisco J; Suarez, Juan; Capani, Francisco; Rodríguez de Fonseca, Fernando

    2015-01-01

    Perinatal asphyxia (PA) is an obstetric complication that strongly affects the CNS. The endocannabinoid system (ECS) is a lipid transmitter system involved in several physiological processes including synaptic plasticity, neurogenesis, memory, and mood. Endocannabinoids, and other acylethanolamides (AEs) without endocannabinoid activity, have recently received growing attention due to their potential neuroprotective functions in neurological disorders, including cerebral ischemia. In the present study, we aimed to analyze the changes produced by PA in the major metabolic enzymes and receptors of the ECS/AEs in the hippocampus using a rodent model of PA. To induce PA, we removed uterine horns from ready-to-deliver rats and immersed them into a water bath during 19 min. Animals delivered spontaneously or by cesarean section were employed as controls. At 1 month of age, cognitive functions were assessed and immunohistochemical procedures were carried out to determine the expression of NeuN and glial fibrillary acidic protein, enzymes responsible for synthesis (DAGLα and NAPE-PLD) and degradation (FAAH) of ECS/AEs and their receptors (CB1 and PPARα) in the hippocampus. Postweaned asphyctic rats showed impaired recognition and spatial reference memory that were accompanied by hippocampal astrogliosis and changes in the expression of enzymes and receptors. The most remarkable findings in asphyctic rats were a decrease in the expression of NAPE-PLD and PPARα in both hippocampal areas CA1 and CA3. In addition, postweaned cesarean delivery rats showed an increase in the immunolabeling for FAAH in the hippocampal CA3 area. Since, NAPE-PLD and PPARα are proteins that participate in the biochemical process of AEs, specially the neuroprotective oleoylethanolamide, these results suggest that PA dysregulates this system. These data encourage conducting future studies using AEs as potential neuroprotective compounds in animal models of PA.

  9. Perinatal asphyxia results in altered expression of the hippocampal acylethanolamide/endocannabinoid signaling system associated to memory impairments in postweaned rats

    Eduardo eBlanco Calvo

    2015-11-01

    Full Text Available Perinatal asphyxia (PA is an obstetric complication that strongly affects the CNS. The endocannabinoid system (ECS is a lipid transmitter system involved in several physiological processes including synaptic plasticity, neurogenesis, memory and mood. Endocannabinoids, and other acylethanolamides (AEs without endocannabinoid activity, have recently received growing attention as they have potential neuroprotective functions in neurological disorders, including cerebral ischemia. In the present study, we aimed to analyze the changes produced by PA in the major metabolic enzymes and receptors of the ECS/AEs in the hippocampus using a rodent model of PA. To induce PA, we removed uterine horns from ready-to-deliver rats and immersed them into a water bath during 19 min. Animals that were delivered spontaneously or by caesarean section were employed as controls. At one month of age, cognitive functions were assessed and immunohistochemical procedures were carried out to determine the expression of NeuN and GFAP, enzymes responsible for synthesis (DAGLα and NAPE-PLD and degradation (FAAH of ECS/AEs and their receptors (CB1 and PPARα in the hippocampus. Postweaned asphyctic rats showed impaired recognition and spatial reference memory that were accompanied by hippocampal astrogliosis and changes in the expression of enzymes and receptors. The most remarkable findings in asphyctic rats were a decrease in the expression of NAPE-PLD and PPARα in both hippocampal areas CA1 and CA3. In addition, postweaned cesarean delivery rats showed an increase in the immunolabeling for FAAH in the hippocampal CA3 area. Since NAPE-PLD and PPARα are proteins that participate in the biochemical process of AEs, specially the neuroprotective oleoylethanolamide, these results suggest that PA dysregulates this system. These data encourage conducting future studies using AEs as potential neuroprotective compounds in animal models of PA.

  10. Interaction of the N-(3-Methylpyridin-2-ylamide Derivatives of Flurbiprofen and Ibuprofen with FAAH: Enantiomeric Selectivity and Binding Mode.

    Jessica Karlsson

    Full Text Available Combined fatty acid amide hydrolase (FAAH and cyclooxygenase (COX inhibition is a promising approach for pain-relief. The Flu-AM1 and Ibu-AM5 derivatives of flurbiprofen and ibuprofen retain similar COX-inhibitory properties and are more potent inhibitors of FAAH than the parent compounds. However, little is known as to the nature of their interaction with FAAH, or to the importance of their chirality. This has been explored here.FAAH inhibitory activity was measured in rat brain homogenates and in lysates expressing either wild-type or FAAH(T488A-mutated enzyme. Molecular modelling was undertaken using both docking and molecular dynamics. The (R- and (S-enantiomers of Flu-AM1 inhibited rat FAAH with similar potencies (IC50 values of 0.74 and 0.99 μM, respectively, whereas the (S-enantiomer of Ibu-AM5 (IC50 0.59 μM was more potent than the (R-enantiomer (IC50 5.7 μM. Multiple inhibition experiments indicated that both (R-Flu-AM1 and (S-Ibu-AM5 inhibited FAAH in a manner mutually exclusive to carprofen. Computational studies indicated that the binding site for the Flu-AM1 and Ibu-AM5 enantiomers was located between the acyl chain binding channel and the membrane access channel, in a site overlapping the carprofen binding site, and showed a binding mode in line with that proposed for carprofen and other non-covalent ligands. The potency of (R-Flu-AM1 was lower towards lysates expressing FAAH mutated at the proposed carprofen binding area than in lysates expressing wild-type FAAH.The study provides kinetic and structural evidence that the enantiomers of Flu-AM1 and Ibu-AM5 bind in the substrate channel of FAAH. This information will be useful in aiding the design of novel dual-action FAAH: COX inhibitors.

  11. Endocannabinoids and Human Sperm Cells

    Giovanna Zolese

    2010-10-01

    Full Text Available N-acylethanolamides (NAEs are naturally occurring signaling lipids consisting of amides and esters of long-chain polyunsaturated fatty acids. Usually they are present in a very small amounts in many mammalian tissues and cells, including human reproductive tracts and fluids. Recently, the presence of N-arachidonoylethanolamide (anandamide, AEA, the most characterised member of endocannabinoids, and its congeners palmitoylethanolamide (PEA and oleylethanolamide (OEA in seminal plasma, oviductal fluid, and follicular fluids was demonstrated. AEA has been shown to bind not only type-1 (CB1 and type-2 (CB2 cannabinoid receptors, but also type-1 vanilloid receptor (TRPV1, while PEA and OEA are inactive with respect to classical cannabinoid CB1 and CB2 but activate TRPV1 or peroxisome proliferator activate receptors (PPARs. This review concerns the most recent experimental data on PEA and OEA, endocannabinoid-like molecules which appear to exert their action exclusively on sperm cells with altered features, such as membrane characteristics and kinematic parameters. Their beneficial effects on these cells could suggest a possible pharmacological use of PEA and OEA on patients affected by some forms of idiopathic infertility.

  12. Seeing through the smoke: human and animal studies of cannabis use and endocannabinoid signalling in corticolimbic networks

    Silveira, Mason M.; Arnold, Jonathon C.; Laviolette, Steven R.; Hillard, Cecilia J.; Celorrio, Marta; Aymerich, María S.; Adams, Wendy K.

    2016-01-01

    Public opinion surrounding the recreational use and therapeutic potential of cannabis is shifting. This review describes new work examining the behavioural and neural effects of cannabis and the endocannabinoid system, highlighting key regions within corticolimbic brain circuits. First, we consider the role of human genetic factors and cannabis strain chemotypic differences in contributing to interindividual variation in the response to cannabinoids, such as THC, and review studies demonstrating that THC-induced impairments in decision-making processes are mediated by actions at prefrontal CB1 receptors. We further describe evidence that signalling through prefrontal or ventral hippocampal CB1 receptors modulates mesolimbic dopamine activity, aberrations of which may contribute to emotional processing deficits in schizophrenia. Lastly, we review studies suggesting that endocannabinoid tone in the amygdala is a critical regulator of anxiety, and report new data showing that FAAH activity is integral to this response. Together, these findings underscore the importance of cannabinoid signalling in the regulation of cognitive and affective behaviours, and encourage further research given their social, political, and therapeutic implications. PMID:27639448

  13. Cocaine-induced behavioral sensitization decreases the expression of endocannabinoid signaling-related proteins in the mouse hippocampus.

    Blanco, Eduardo; Galeano, Pablo; Palomino, Ana; Pavón, Francisco J; Rivera, Patricia; Serrano, Antonia; Alen, Francisco; Rubio, Leticia; Vargas, Antonio; Castilla-Ortega, Estela; Decara, Juan; Bilbao, Ainhoa; de Fonseca, Fernando Rodríguez; Suárez, Juan

    2016-03-01

    In the reward mesocorticolimbic circuits, the glutamatergic and endocannabinoid systems are implicated in neurobiological mechanisms underlying cocaine addiction. However, the involvement of both systems in the hippocampus, a critical region to process relational information relevant for encoding drug-associated memories, in cocaine-related behaviors remains unknown. In the present work, we studied whether the hippocampal gene/protein expression of relevant glutamate signaling components, including glutamate-synthesizing enzymes and metabotropic and ionotropic receptors, and the hippocampal gene/protein expression of cannabinoid type 1 (CB1) receptor and endocannabinoid metabolic enzymes were altered following acute and/or repeated cocaine administration resulting in conditioned locomotion and locomotor sensitization. Results showed that acute cocaine administration induced an overall down-regulation of glutamate-related gene expression and, specifically, a low phosphorylation level of GluA1. In contrast, locomotor sensitization to cocaine produced an up-regulation of several glutamate receptor-related genes and, specifically, an increased protein expression of the GluN1 receptor subunit. Regarding the endocannabinoid system, acute and repeated cocaine administration were associated with an increased gene/protein expression of CB1 receptors and a decreased gene/protein expression of the endocannabinoid-synthesis enzymes N-acyl phosphatidylethanolamine D (NAPE-PLD) and diacylglycerol lipase alpha (DAGLα). These changes resulted in an overall decrease in endocannabinoid synthesis/degradation ratios, especially NAPE-PLD/fatty acid amide hydrolase and DAGLα/monoacylglycerol lipase, suggesting a reduced endocannabinoid production associated with a compensatory up-regulation of CB1 receptor. Overall, these findings suggest that repeated cocaine administration resulting in locomotor sensitization induces a down-regulation of the endocannabinoid signaling that could

  14. Role of endocannabinoids in regulating drug dependence

    Daniela Parolaro

    2007-01-01

    Full Text Available Daniela Parolaro, Daniela Vigano’, Natalia Realini, Tiziana RubinoNeuroscience Center, DBSF, University of Insubria, Busto Arsizio, ItalyAbstract: This review will discuss the latest knowledge of how the endocannabinoid system might be involved in treating addiction to the most common illicit drugs. Experimental models are providing increasing evidence for the pharmacological management of endocannabinoid signaling not only to block the direct reinforcing effects of cannabis, opioids, nicotine and ethanol, but also for preventing relapse to the various drugs of abuse, including opioids, cocaine, nicotine, alcohol and metamphetamine. Preclinical and clinical studies suggest that the endocannabinoid system can be manipulated by the CB1 receptor antagonist SR141716A, that might constitute a new generation of compounds for treating addiction across different classes of abused drugs.Keywords: Endocannabinoids, drug dependence, opioids, nicotine, alcohol, psychostimulants

  15. Acylethanolamides and endocannabinoid signaling system in dorsal striatum of rats exposed to perinatal asphyxia.

    Holubiec, Mariana I; Romero, Juan I; Blanco, Eduardo; Tornatore, Tamara Logica; Suarez, Juan; Rodríguez de Fonseca, Fernando; Galeano, Pablo; Capani, Francisco

    2017-07-13

    Endocannabinoids (eCBs) and acylethanolamides (AEs) have lately received more attention due to their neuroprotective functions in neurological disorders. Here we analyze the alterations induced by perinatal asphyxia (PA) in the main metabolic enzymes and receptors of the eCBs/AEs in the dorsal striatum of rats. To induce PA, we used a model developed by Bjelke et al. (1991). Immunohistochemical techniques were carried out to determine the expression of neuronal and glial markers (NeuN and GFAP), eCBs/AEs synthesis and degradation enzymes (DAGLα, NAPE-PLD and FAAH) and their receptors (CB1 and PPARα). We found a decrease in NAPE-PLD and PPARα expression. Since NAPE-PLD and PPARα take part in the production and reception of biochemical actions of AEs, such as oleoylethanolamide, these results may suggest that PA plays a key role in the regulation of this system. These data agree with previous results obtained in the hippocampus and encourage us to develop further studies using AEs as potential neuroprotective compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The administration of endocannabinoid uptake inhibitors OMDM-2 or VDM-11 promotes sleep and decreases extracellular levels of dopamine in rats.

    Murillo-Rodríguez, Eric; Palomero-Rivero, Marcela; Millán-Aldaco, Diana; Di Marzo, Vincenzo

    2013-01-17

    The family of the endocannabinoid system comprises endogenous lipids (such as anandamide [ANA]), receptors (CB(1)/CB(2) cannabinoid receptors), metabolic enzymes (fatty acid amide hydrolase [FAAH]) and a putative membrane transporter (anandamide membrane transporter [AMT]). Although the role of ANA, FAAH or the CB(1) cannabinoid receptor in sleep modulation has been reported, the effects of the inhibition of AMT on sleep remain unclear. In the present study, we show that microdialysis perfusion in rats of AMT inhibitors, (9Z)-N-[1-((R)-4-hydroxbenzyl)-2-hydroxyethyl]-9-octadecenamide (OMDM-2) or N-(4-hydroxy-2-methylphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (VDM-11; 10, 20 or 30 μM; each compound) delivered into the paraventricular thalamic nucleus (PVA) increased sleep and decreased waking. In addition, the infusion of compounds reduced the extracellular levels of dopamine collected from nucleus accumbens. Taken together, these findings illustrate a critical role of AMT in sleep modulation. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Endocannabinoid involvement in reward and impulsivity in addiction

    van Hell, H.H.

    2011-01-01

    Addiction is one of the most disabling diseases in the world. An important neurotransmitter system that has recently been implicated in addiction is the endocannabinoid system. The endocannabinoid system consists of cannabinoid receptors and endocannabinoid ligands that work on these receptors.

  18. Poorer frontolimbic white matter integrity is associated with chronic cannabis use, FAAH genotype, and increased depressive and apathy symptoms in adolescents and young adults

    Skyler G. Shollenbarger

    2015-01-01

    Conclusions: Consistent with prior findings, cannabis use was associated with reduced frontolimbic WM integrity. WM integrity was also moderated by FAAH genotype, in that cannabis-using FAAH C/C carriers and A carrying controls had reduced WM integrity compared to control C/C carriers. Observed frontolimbic white matter abnormalities were linked with increased depressive and apathy symptoms in the cannabis users.

  19. Acute Stress Suppresses Synaptic Inhibition and Increases Anxiety via Endocannabinoid Release in the Basolateral Amygdala.

    Di, Shi; Itoga, Christy A; Fisher, Marc O; Solomonow, Jonathan; Roltsch, Emily A; Gilpin, Nicholas W; Tasker, Jeffrey G

    2016-08-10

    Stress and glucocorticoids stimulate the rapid mobilization of endocannabinoids in the basolateral amygdala (BLA). Cannabinoid receptors in the BLA contribute to anxiogenesis and fear-memory formation. We tested for rapid glucocorticoid-induced endocannabinoid regulation of synaptic inhibition in the rat BLA. Glucocorticoid application to amygdala slices elicited a rapid, nonreversible suppression of spontaneous, but not evoked, GABAergic synaptic currents in BLA principal neurons; the effect was also seen with a membrane-impermeant glucocorticoid, but not with intracellular glucocorticoid application, implicating a membrane-associated glucocorticoid receptor. The glucocorticoid suppression of GABA currents was not blocked by antagonists of nuclear corticosteroid receptors, or by inhibitors of gene transcription or protein synthesis, but was blocked by inhibiting postsynaptic G-protein activity, suggesting a postsynaptic nongenomic steroid signaling mechanism that stimulates the release of a retrograde messenger. The rapid glucocorticoid-induced suppression of inhibition was prevented by blocking CB1 receptors and 2-arachidonoylglycerol (2-AG) synthesis, and it was mimicked and occluded by CB1 receptor agonists, indicating it was mediated by the retrograde release of the endocannabinoid 2-AG. The rapid glucocorticoid effect in BLA neurons in vitro was occluded by prior in vivo acute stress-induced, or prior in vitro glucocorticoid-induced, release of endocannabinoid. Acute stress also caused an increase in anxiety-like behavior that was attenuated by blocking CB1 receptor activation and inhibiting 2-AG synthesis in the BLA. Together, these findings suggest that acute stress causes a long-lasting suppression of synaptic inhibition in BLA neurons via a membrane glucocorticoid receptor-induced release of 2-AG at GABA synapses, which contributes to stress-induced anxiogenesis. We provide a cellular mechanism in the basolateral amygdala (BLA) for the rapid stress

  20. The Endocannabinoid System across Postnatal Development in Transmembrane Domain Neuregulin 1 Mutant Mice

    Rose Chesworth

    2018-02-01

    Full Text Available The use of cannabis is a well-established component risk factor for schizophrenia, particularly in adolescent individuals with genetic predisposition for the disorder. Alterations to the endocannabinoid system have been found in the prefrontal cortex of patients with schizophrenia. Thus, we assessed whether molecular alterations exist in the endocannabinoid signalling pathway during brain development in a mouse model for the schizophrenia risk gene neuregulin 1 (Nrg1. We analysed transcripts encoding key molecules of the endocannabinoid system in heterozygous transmembrane domain Nrg1 mutant mice (Nrg1 TM HET, which is known to have increased sensitivity to cannabis exposure. Tissue from the prelimbic cortex and hippocampus of male and female Nrg1 TM HET mice and wild type-like littermates was collected at postnatal days (PNDs 7, 10, 14, 21, 28, 35, 49, and 161. Quantitative polymerase chain reaction was conducted to assess mRNA levels of cannabinoid receptor 1 (CB1R and enzymes for the synthesis and breakdown of the endocannabinoid 2-arachidonoylglycerol [i.e., diacylglycerol lipase alpha (DAGLα, monoglyceride lipase (MGLL, and α/β-hydrolase domain-containing 6 (ABHD6]. No sex differences were found for any transcripts in either brain region; thus, male and female data were pooled. Hippocampal and cortical mRNA expression of DAGLα, MGLL, and ABHD6 increased until PND 21–35 and then decreased and stabilised for the rest of postnatal development. Hippocampal CB1R mRNA expression increased until PND 21 and decreased after this age. Expression levels of these endocannabinoid markers did not differ in Nrg1 TM HET compared to control mice at any time point. Here, we demonstrate dynamic changes in the developmental trajectory of several key endocannabinoid system transcripts in the mouse brain, which may correspond with periods of endocannabinoid system maturation. Nrg1 TM HET mutation did not alter the developmental trajectory of the

  1. Oxyradical Stress, Endocannabinoids, and Atherosclerosis

    Anberitha T. Matthews

    2015-12-01

    Full Text Available Atherosclerosis is responsible for most cardiovascular disease (CVD and is caused by several factors including hypertension, hypercholesterolemia, and chronic inflammation. Oxidants and electrophiles have roles in the pathophysiology of atherosclerosis and the concentrations of these reactive molecules are an important factor in disease initiation and progression. Overactive NADPH oxidase (Nox produces excess superoxide resulting in oxidized macromolecules, which is an important factor in atherogenesis. Although superoxide and reactive oxygen species (ROS have obvious toxic properties, they also have fundamental roles in signaling pathways that enable cells to adapt to stress. In addition to inflammation and ROS, the endocannabinoid system (eCB is also important in atherogenesis. Linkages have been postulated between the eCB system, Nox, oxidative stress, and atherosclerosis. For instance, CB2 receptor-evoked signaling has been shown to upregulate anti-inflammatory and anti-oxidative pathways, whereas CB1 signaling appears to induce opposite effects. The second messenger lipid molecule diacylglycerol is implicated in the regulation of Nox activity and diacylglycerol lipase β (DAGLβ is a key biosynthetic enzyme in the biosynthesis eCB ligand 2-arachidonylglycerol (2-AG. Furthermore, Nrf2 is a vital transcription factor that protects against the cytotoxic effects of both oxidant and electrophile stress. This review will highlight the role of reactive oxygen species (ROS in intracellular signaling and the impact of deregulated ROS-mediated signaling in atherogenesis. In addition, there is also emerging knowledge that the eCB system has an important role in atherogenesis. We will attempt to integrate oxidative stress and the eCB system into a conceptual framework that provides insights into this pathology.

  2. Comparative effects of parathion and chlorpyrifos on extracellular endocannabinoid levels in rat hippocampus: Influence on cholinergic toxicity

    Liu, Jing; Parsons, Loren; Pope, Carey

    2013-01-01

    Parathion (PS) and chlorpyrifos (CPF) are organophosphorus insecticides (OPs) that elicit acute toxicity by inhibiting acetylcholinesterase (AChE). Endocannabinoids (eCBs, N-arachidonoylethanolamine, AEA; 2-arachidonoylglycerol, 2AG) can modulate neurotransmission by inhibiting neurotransmitter release. We proposed that differential inhibition of eCB-degrading enzymes (fatty acid amide hydrolase, FAAH, and monoacylglycerol lipase, MAGL) by PS and CPF leads to differences in extracellular eCB levels and toxicity. Microdialysis cannulae were implanted into hippocampus of adult male rats followed by treatment with vehicle (peanut oil, 2 ml/kg, sc), PS (27 mg/kg) or CPF (280 mg/kg) 6–7 days later. Signs of toxicity, AChE, FAAH and MAGL inhibition, and extracellular levels of AEA and 2AG were measured 2 and 4 days later. Signs were noted in PS-treated rats but not in controls or CPF-treated rats. Cholinesterase inhibition was extensive in hippocampus with PS (89–90%) and CPF (78–83%) exposure. FAAH activity was also markedly reduced (88–91%) by both OPs at both time-points. MAGL was inhibited by both OPs but to a lesser degree (35–50%). Increases in extracellular AEA levels were noted after either PS (about 2-fold) or CPF (about 3-fold) while lesser treatment-related 2-AG changes were noted. The cannabinoid CB1 receptor antagonist/inverse agonist AM251 (3 mg/kg, ip) had no influence on functional signs after CPF but markedly decreased toxicity in PS-treated rats. The results suggest that extracellular eCBs levels can be markedly elevated by both PS and CPF. CB1-mediated signaling appears to play a role in the acute toxicity of PS but the role of eCBs in CPF toxicity remains unclear. - Highlights: • Chlorpyrifos and parathion both extensively inhibited hippocampal cholinesterase. • Functional signs were only noted with parathion. • Chlorpyrifos and parathion increased hippocampal extracellular anandamide levels. • 2-Arachidonoylglycerol levels were

  3. Comparative effects of parathion and chlorpyrifos on extracellular endocannabinoid levels in rat hippocampus: Influence on cholinergic toxicity

    Liu, Jing [Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK (United States); Parsons, Loren [Committee on Neurobiology of Affective Disorders, The Scripps Research Institute, La Jolla, CA (United States); Pope, Carey, E-mail: carey.pope@okstate.edu [Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK (United States)

    2013-11-01

    Parathion (PS) and chlorpyrifos (CPF) are organophosphorus insecticides (OPs) that elicit acute toxicity by inhibiting acetylcholinesterase (AChE). Endocannabinoids (eCBs, N-arachidonoylethanolamine, AEA; 2-arachidonoylglycerol, 2AG) can modulate neurotransmission by inhibiting neurotransmitter release. We proposed that differential inhibition of eCB-degrading enzymes (fatty acid amide hydrolase, FAAH, and monoacylglycerol lipase, MAGL) by PS and CPF leads to differences in extracellular eCB levels and toxicity. Microdialysis cannulae were implanted into hippocampus of adult male rats followed by treatment with vehicle (peanut oil, 2 ml/kg, sc), PS (27 mg/kg) or CPF (280 mg/kg) 6–7 days later. Signs of toxicity, AChE, FAAH and MAGL inhibition, and extracellular levels of AEA and 2AG were measured 2 and 4 days later. Signs were noted in PS-treated rats but not in controls or CPF-treated rats. Cholinesterase inhibition was extensive in hippocampus with PS (89–90%) and CPF (78–83%) exposure. FAAH activity was also markedly reduced (88–91%) by both OPs at both time-points. MAGL was inhibited by both OPs but to a lesser degree (35–50%). Increases in extracellular AEA levels were noted after either PS (about 2-fold) or CPF (about 3-fold) while lesser treatment-related 2-AG changes were noted. The cannabinoid CB1 receptor antagonist/inverse agonist AM251 (3 mg/kg, ip) had no influence on functional signs after CPF but markedly decreased toxicity in PS-treated rats. The results suggest that extracellular eCBs levels can be markedly elevated by both PS and CPF. CB1-mediated signaling appears to play a role in the acute toxicity of PS but the role of eCBs in CPF toxicity remains unclear. - Highlights: • Chlorpyrifos and parathion both extensively inhibited hippocampal cholinesterase. • Functional signs were only noted with parathion. • Chlorpyrifos and parathion increased hippocampal extracellular anandamide levels. • 2-Arachidonoylglycerol levels were

  4. Identification and characterization of carprofen as a multi-target FAAH/COX inhibitor

    Favia, Angelo D.; Habrant, Damien; Scarpelli, Rita; Migliore, Marco; Albani, Clara; Bertozzi, Sine Mandrup; Dionisi, Mauro; Tarozzo, Glauco; Piomelli, Daniele; Cavalli, Andrea; De Vivo, Marco

    2013-01-01

    Pain and inflammation are major therapeutic areas for drug discovery. Current drugs for these pathologies have limited efficacy, however, and often cause a number of unwanted side effects. In the present study, we identify the non-steroid anti-inflammatory drug, carprofen, as a multi-target-directed ligand that simultaneously inhibits cyclooxygenase-1 (COX-1), COX-2 and fatty acid amide hydrolase (FAAH). Additionally, we synthesized and tested several racemic derivatives of carprofen, sharing this multi-target activity. This may result in improved analgesic efficacy and reduced side effects (Naidu, et al (2009) J Pharmacol Exp Ther 329, 48-56; Fowler, C.J. et al. (2012) J Enzym Inhib Med Chem Jan 6; Sasso, et al (2012) Pharmacol Res 65, 553). The new compounds are among the most potent multi-target FAAH/COXs inhibitors reported so far in the literature, and thus may represent promising starting points for the discovery of new analgesic and anti-inflammatory drugs. PMID:23043222

  5. The endocannabinoid system and nondrug rewarding behaviours.

    Fattore, Liana; Melis, Miriam; Fadda, Paola; Pistis, Marco; Fratta, Walter

    2010-07-01

    Rewarding behaviours such as sexual activity, eating, nursing, parenting, social interactions, and play activity are conserved strongly in evolution, and they are essential for development and survival. All of these behaviours are enjoyable and represent pleasant experiences with a high reward value. Remarkably, rewarding behaviours activate the same brain circuits that mediate the positive reinforcing effects of drugs of abuse and of other forms of addiction, such as gambling and food addiction. Given the involvement of the endocannabinoid system in a variety of physiological functions of the nervous system, it is not surprising that it takes part in the complex machinery that regulates gratification and perception of pleasure. In this review, we focus first on the role of the endocannabinoid system in the modulation of neural activity and synaptic functions in brain regions that are involved in natural and nonnatural rewards (namely, the ventral tegmental area, striatum, amygdala, and prefrontal cortex). Then, we examine the role of the endocannabinoid system in modulating behaviours that directly or indirectly activate these brain reward pathways. More specifically, current knowledge of the effects of the pharmacological manipulation of the endocannabinoid system on natural (eating, sexual behaviour, parenting, and social play) and pathological (gambling) rewarding behaviours is summarised and discussed. Copyright 2010 Elsevier Inc. All rights reserved.

  6. The endocannabinoid system: emotion, learning and addiction.

    Moreira, Fabrício A; Lutz, Beat

    2008-06-01

    The identification of the cannabinoid receptor type 1 (CB1 receptor) was the milestone discovery in the elucidation of the behavioural and emotional responses induced by the Cannabis sativa constituent Delta(9)-tetrahydrocannabinol. The subsequent years have established the existence of the endocannabinoid system. The early view relating this system to emotional responses is reflected by the fact that N-arachidonoyl ethanolamine, the pioneer endocannabinoid, was named anandamide after the Sanskrit word 'ananda', meaning 'bliss'. However, the emotional responses to cannabinoids are not always pleasant and delightful. Rather, anxiety and panic may also occur after activation of CB1 receptors. The present review discusses three properties of the endocannabinoid system as an attempt to understand these diverse effects. First, this system typically functions 'on-demand', depending on environmental stimuli and on the emotional state of the organism. Second, it has a wide neuro-anatomical distribution, modulating brain regions with different functions in responses to aversive stimuli. Third, endocannabinoids regulate the release of other neurotransmitters that may have even opposing functions, such as GABA and glutamate. Further understanding of the temporal, spatial and functional characteristics of this system is necessary to clarify its role in emotional responses and will promote advances in its therapeutic exploitation.

  7. Targeting the endocannabinoid system : future therapeutic strategies

    Aizpurua-Olaizola, Oier; Elezgarai, Izaskun; Rico-Barrio, Irantzu; Zarandona, Iratxe; Etxebarria, Nestor; Usobiaga, Aresatz

    2017-01-01

    The endocannabinoid system (ECS) is involved in many physiological regulation pathways in the human body, which makes this system the target of many drugs and therapies. In this review, we highlight the latest studies regarding the role of the ECS and the drugs that target it, with a particular

  8. The endocannabinoid system in brain reward processes.

    Solinas, M; Goldberg, S R; Piomelli, D

    2008-05-01

    Food, drugs and brain stimulation can serve as strong rewarding stimuli and are all believed to activate common brain circuits that evolved in mammals to favour fitness and survival. For decades, endogenous dopaminergic and opioid systems have been considered the most important systems in mediating brain reward processes. Recent evidence suggests that the endogenous cannabinoid (endocannabinoid) system also has an important role in signalling of rewarding events. First, CB(1) receptors are found in brain areas involved in reward processes, such as the dopaminergic mesolimbic system. Second, activation of CB(1) receptors by plant-derived, synthetic or endogenous CB(1) receptor agonists stimulates dopaminergic neurotransmission, produces rewarding effects and increases rewarding effects of abused drugs and food. Third, pharmacological or genetic blockade of CB(1) receptors prevents activation of dopaminergic neurotransmission by several addictive drugs and reduces rewarding effects of food and these drugs. Fourth, brain levels of the endocannabinoids anandamide and 2-arachidonoylglycerol are altered by activation of reward processes. However, the intrinsic activity of the endocannabinoid system does not appear to play a facilitatory role in brain stimulation reward and some evidence suggests it may even oppose it. The influence of the endocannabinoid system on brain reward processes may depend on the degree of activation of the different brain areas involved and might represent a mechanism for fine-tuning dopaminergic activity. Although involvement of the various components of the endocannabinoid system may differ depending on the type of rewarding event investigated, this system appears to play a major role in modulating reward processes.

  9. Activity-based protein profiling reveals off-target proteins of the FAAH inhibitor BIA 10-2474

    van Esbroeck, Annelot C M; Janssen, Antonius P A; Cognetta, Armand B; Ogasawara, Daisuke; Shpak, Guy; van der Kroeg, Mark; Kantae, Vasudev; Baggelaar, Marc P; de Vrij, Femke M S; Deng, Hui; Allarà, Marco; Fezza, Filomena; Lin, Zhanmin; van der Wel, Tom; Soethoudt, Marjolein; Mock, Elliot D; den Dulk, Hans; Baak, Ilse L; Florea, Bogdan I; Hendriks, Giel; De Petrocellis, Luciano; Overkleeft, Herman S; Hankemeier, Thomas; De Zeeuw, Chris I; Di Marzo, Vincenzo; Maccarrone, Mauro; Cravatt, Benjamin F; Kushner, Steven A; van der Stelt, Mario

    2017-01-01

    A recent phase 1 trial of the fatty acid amide hydrolase (FAAH) inhibitor BIA 10-2474 led to the death of one volunteer and produced mild-to-severe neurological symptoms in four others. Although the cause of the clinical neurotoxicity is unknown, it has been postulated, given the clinical safety

  10. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  11. A Personal Retrospective: Elevating Anandamide (AEA) by Targeting Fatty Acid Amide Hydrolase (FAAH) and the Fatty Acid Binding Proteins (FABPs).

    Deutsch, Dale G

    2016-01-01

    This perspective was adapted from a Career Achievement Award talk given at the International Cannabinoid Research Society Symposium in Bukovina, Poland on June 27, 2016. As a biochemist working in the neurosciences, I was always fascinated with neurotransmitter inactivation. In 1993 we identified an enzyme activity that breaks down anandamide. We called the enzyme anandamide amidase, now called FAAH. We and other laboratories developed FAAH inhibitors that were useful reagents that also proved to have beneficial physiological effects and until recently, new generations of inhibitors were in clinical trials. Nearly all neurotransmitters are water soluble and as such, require a transmembrane protein transporter to pass through the lipid membrane for inactivation inside the cell. However, using model systems, we and others have shown that this is unnecessary for anandamide, an uncharged hydrophobic molecule that readily diffuses across the cellular membrane. Interestingly, its uptake is driven by the concentration gradient resulting from its breakdown mainly by FAAH localized in the endoplasmic reticulum. We identified the FABPs as intracellular carriers that "solubilize" anandamide, transporting anandamide to FAAH. Compounds that bind to FABPs block AEA breakdown, raising its level. The cannabinoids (THC and CBD) also were discovered to bind FABPs and this may be one of the mechanisms by which CBD works in childhood epilepsy, raising anandamide levels. Targeting FABPs may be advantageous since they have some tissue specificity and do not require reactive serine hydrolase inhibitors, as does FAAH, with potential for off-target reactions. At the International Cannabis Research Society Symposium in 1992, Raphe Mechoulam revealed that his laboratory isolated an endogenous lipid molecule that binds to the CB1 receptor (cannabinoid receptor type 1) and this became the milestone paper published in December of that year describing anandamide (AEA, Devane et al., 1992). As to

  12. The Endocannabinoid System and Sex Steroid Hormone-Dependent Cancers

    Thangesweran Ayakannu

    2013-01-01

    Full Text Available The “endocannabinoid system (ECS” comprises the endocannabinoids, the enzymes that regulate their synthesis and degradation, the prototypical cannabinoid receptors (CB1 and CB2, some noncannabinoid receptors, and an, as yet, uncharacterised transport system. Recent evidence suggests that both cannabinoid receptors are present in sex steroid hormone-dependent cancer tissues and potentially play an important role in those malignancies. Sex steroid hormones regulate the endocannabinoid system and the endocannabinoids prevent tumour development through putative protective mechanisms that prevent cell growth and migration, suggesting an important role for endocannabinoids in the regulation of sex hormone-dependent tumours and metastasis. Here, the role of the endocannabinoid system in sex steroid hormone-dependent cancers is described and the potential for novel therapies assessed.

  13. Classical endocannabinoid-like compounds and their regulation by nutrients

    Kleberg, Karen; Hassing, Helle A.; Hansen, Harald S.

    2014-01-01

    Endocannabinoid-like compounds are structurally related to the true endocannabinoids but do not contain highly unsaturated fatty acids, and they do not bind the cannabinoid receptors. The classical endocannabinoid-like compounds include N-acylethanolamines and 2-monoacylglycerols......, which are particularly interesting in a nutritional and metabolic context. Exogenously supplied oleoylethanolamide, palmitoylethanolamide, and linoleoylethanolamide have anorexic effects, and the endogenous formation of these N-acylethanolamines in the small intestine may serve an important role...

  14. The skeletal endocannabinoid system: clinical and experimental insights.

    Raphael, Bitya; Gabet, Yankel

    2016-05-01

    Recently, there has been a rapidly growing interest in the role of cannabinoids in the regulation of skeletal remodeling and bone mass, addressed in basic, translational and clinical research. Since the first publications in 2005, there are more than 1000 publications addressing the skeletal endocannabinoid system. This review focuses on the roles of the endocannabinoid system in skeletal biology via the cannabinoid receptors CB1, CB2 and others. Endocannabinoids play important roles in bone formation, bone resorption and skeletal growth, and are sometimes age, gender, species and strain dependent. Controversies in the literature and potential therapeutic approaches targeting the endocannabinoid system in skeletal disorders are also discussed.

  15. Endocannabinoid System and Synaptic Plasticity: Implications for Emotional Responses

    María-Paz Viveros

    2007-01-01

    Full Text Available The endocannabinoid system has been involved in the regulation of anxiety, and proposed as an inhibitory modulator of neuronal, behavioral and adrenocortical responses to stressful stimuli. Brain regions such as the amygdala, hippocampus and cortex, which are directly involved in the regulation of emotional behavior, contain high densities of cannabinoid CB1 receptors. Mutant mice lacking CB1 receptors show anxiogenic and depressive-like behaviors as well as an altered hypothalamus pituitary adrenal axis activity, whereas enhancement of endocannabinoid signaling produces anxiolytic and antidepressant-like effects. Genetic and pharmacological approaches also support an involvement of endocannabinoids in extinction of aversive memories. Thus, the endocannabinoid system appears to play a pivotal role in the regulation of emotional states. Endocannabinoids have emerged as mediators of short- and long- term synaptic plasticity in diverse brain structures. Despite the fact that most of the studies on this field have been performed using in vitro models, endocannabinoid-mediated plasticity might be considered as a plausible candidate underlying some of the diverse physiological functions of the endogenous cannabinoid system, including developmental, affective and cognitive processes. In this paper, we will focus on the functional relevance of endocannabinoid-mediated plasticity within the framework of emotional responses. Alterations of the endocannabinoid system may constitute an important factor in the aetiology of certain neuropsychiatric disorders, and, in turn, enhancers of endocannabinoid signaling could represent a potential therapeutical tool in the treatment of both anxiety and depressive symptoms.

  16. Beyond Cannabis: Plants and the Endocannabinoid System.

    Russo, Ethan B

    2016-07-01

    Plants have been the predominant source of medicines throughout the vast majority of human history, and remain so today outside of industrialized societies. One of the most versatile in terms of its phytochemistry is cannabis, whose investigation has led directly to the discovery of a unique and widespread homeostatic physiological regulator, the endocannabinoid system. While it had been the conventional wisdom until recently that only cannabis harbored active agents affecting the endocannabinoid system, in recent decades the search has widened and identified numerous additional plants whose components stimulate, antagonize, or modulate different aspects of this system. These include common foodstuffs, herbs, spices, and more exotic ingredients: kava, chocolate, black pepper, and many others that are examined in this review. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Differences in the endocannabinoid system of sperm from fertile and infertile men.

    Sheena E M Lewis

    Full Text Available Male infertility is a major cause of problems for many couples in conceiving a child. Recently, lifestyle pastimes such as alcohol, tobacco and marijuana have been shown to have further negative effects on male reproduction. The endocannabinoid system (ECS, mainly through the action of anandamide (AEA and 2-arachidonoylglycerol (2-AG at cannabinoid (CB(1, CB(2 and vanilloid (TRPV1 receptors, plays a crucial role in controlling functionality of sperm, with a clear impact on male reproductive potential. Here, sperm from fertile and infertile men were used to investigate content (through LC-ESI-MS, mRNA (through quantitative RT-PCR, protein (through Western Blotting and ELISA expression, and functionality (through activity and binding assays of the main metabolic enzymes of AEA and 2-AG (NAPE-PLD and FAAH, for AEA; DAGL and MAGL for 2-AG, as well as of their binding receptors CB(1, CB(2 and TRPV1. Our findings show a marked reduction of AEA and 2-AG content in infertile seminal plasma, paralleled by increased degradation: biosynthesis ratios of both substances in sperm from infertile versus fertile men. In addition, TRPV1 binding was detected in fertile sperm but was undetectable in infertile sperm, whereas that of CB(1 and CB(2 receptors was not statistically different in the two groups. In conclusion, this study identified unprecedented alterations of the ECS in infertile sperm, that might impact on capacitation and acrosome reaction, and hence fertilization outcomes. These alterations might also point to new biomarkers to determine male reproductive defects, and identify distinct ECS elements as novel targets for therapeutic exploitation of ECS-oriented drugs to treat male fertility problems.

  18. Endocannabinoids mediate neuron-astrocyte communication.

    Navarrete, Marta; Araque, Alfonso

    2008-03-27

    Cannabinoid receptors play key roles in brain function, and cannabinoid effects in brain physiology and drug-related behavior are thought to be mediated by receptors present in neurons. Neuron-astrocyte communication relies on the expression by astrocytes of neurotransmitter receptors. Yet, the expression of cannabinoid receptors by astrocytes in situ and their involvement in the neuron-astrocyte communication remain largely unknown. We show that hippocampal astrocytes express CB1 receptors that upon activation lead to phospholipase C-dependent Ca2+ mobilization from internal stores. These receptors are activated by endocannabinoids released by neurons, increasing astrocyte Ca2+ levels, which stimulate glutamate release that activates NMDA receptors in pyramidal neurons. These results demonstrate the existence of endocannabinoid-mediated neuron-astrocyte communication, revealing that astrocytes are targets of cannabinoids and might therefore participate in the physiology of cannabinoid-related addiction. They also reveal the existence of an endocannabinoid-glutamate signaling pathway where astrocytes serve as a bridge for nonsynaptic interneuronal communication.

  19. Motion sickness, stress and the endocannabinoid system.

    Alexander Choukèr

    Full Text Available BACKGROUND: A substantial number of individuals are at risk for the development of motion sickness induced nausea and vomiting (N&V during road, air or sea travel. Motion sickness can be extremely stressful but the neurobiologic mechanisms leading to motion sickness are not clear. The endocannabinoid system (ECS represents an important neuromodulator of stress and N&V. Inhibitory effects of the ECS on N&V are mediated by endocannabinoid-receptor activation. METHODOLOGY/PRINCIPAL FINDINGS: We studied the activity of the ECS in human volunteers (n = 21 during parabolic flight maneuvers (PFs. During PFs, microgravity conditions (<10(-2 g are generated for approximately 22 s which results in a profound kinetic stimulus. Blood endocannabinoids (anandamide and 2-arachidonoylglycerol, 2-AG were measured from blood samples taken in-flight before start of the parabolic maneuvers, after 10, 20, and 30 parabolas, in-flight after termination of PFs and 24 h later. Volunteers who developed acute motion sickness (n = 7 showed significantly higher stress scores but lower endocannabinoid levels during PFs. After 20 parabolas, blood anandamide levels had dropped significantly in volunteers with motion sickness (from 0.39+/-0.40 to 0.22+/-0.25 ng/ml but increased in participants without the condition (from 0.43+/-0.23 to 0.60+/-0.38 ng/ml resulting in significantly higher anandamide levels in participants without motion sickness (p = 0.02. 2-AG levels in individuals with motion sickness were low and almost unchanged throughout the experiment but showed a robust increase in participants without motion sickness. Cannabinoid-receptor 1 (CB1 but not cannabinoid-receptor 2 (CB2 mRNA expression in leucocytes 4 h after the experiment was significantly lower in volunteers with motion sickness than in participants without N&V. CONCLUSIONS/SIGNIFICANCE: These findings demonstrate that stress and motion sickness in humans are associated with impaired endocannabinoid

  20. Endocannabinoids and the Cardiovascular System in Health and Disease.

    O'Sullivan, Saoirse Elizabeth

    2015-01-01

    The endocannabinoid system is widely distributed throughout the cardiovascular system. Endocannabinoids play a minimal role in the regulation of cardiovascular function in normal conditions, but are altered in most cardiovascular disorders. In shock, endocannabinoids released within blood mediate the associated hypotension through CB(1) activation. In hypertension, there is evidence for changes in the expression of CB(1), and CB(1) antagonism reduces blood pressure in obese hypertensive and diabetic patients. The endocannabinoid system is also upregulated in cardiac pathologies. This is likely to be cardioprotective, via CB(2) and CB(1) (lesser extent). In the vasculature, endocannabinoids cause vasorelaxation through activation of multiple target sites, inhibition of calcium channels, activation of potassium channels, NO production and the release of vasoactive substances. Changes in the expression or function of any of these pathways alter the vascular effect of endocannabinoids. Endocannabinoids have positive (CB(2)) and negative effects (CB(1)) on the progression of atherosclerosis. However, any negative effects of CB(1) may not be consequential, as chronic CB(1) antagonism in large scale human trials was not associated with significant reductions in atheroma. In neurovascular disorders such as stroke, endocannabinoids are upregulated and protective, involving activation of CB(1), CB(2), TRPV1 and PPARα. Although most of this evidence is from preclinical studies, it seems likely that cannabinoid-based therapies could be beneficial in a range of cardiovascular disorders.

  1. The in vitro GcMAF effects on endocannabinoid system transcriptionomics, receptor formation, and cell activity of autism-derived macrophages

    2014-01-01

    Background Immune system dysregulation is well-recognized in autism and thought to be part of the etiology of this disorder. The endocannabinoid system is a key regulator of the immune system via the cannabinoid receptor type 2 (CB2R) which is highly expressed on macrophages and microglial cells. We have previously published significant differences in peripheral blood mononuclear cell CB2R gene expression in the autism population. The use of the Gc protein-derived Macrophage Activating Factor (GcMAF), an endogenous glycosylated vitamin D binding protein responsible for macrophage cell activation has demonstrated positive effects in the treatment of autistic children. In this current study, we investigated the in vitro effects of GcMAF treatment on the endocannabinoid system gene expression, as well as cellular activation in blood monocyte-derived macrophages (BMDMs) from autistic patients compared to age-matched healthy developing controls. Methods To achieve these goals, we used biomolecular, biochemical and immunocytochemical methods. Results GcMAF treatment was able to normalize the observed differences in dysregulated gene expression of the endocannabinoid system of the autism group. GcMAF also down-regulated the over-activation of BMDMs from autistic children. Conclusions This study presents the first observations of GcMAF effects on the transcriptionomics of the endocannabinoid system and expression of CB2R protein. These data point to a potential nexus between endocannabinoids, vitamin D and its transporter proteins, and the immune dysregulations observed with autism. PMID:24739187

  2. The in vitro GcMAF effects on endocannabinoid system transcriptionomics, receptor formation, and cell activity of autism-derived macrophages.

    Siniscalco, Dario; Bradstreet, James Jeffrey; Cirillo, Alessandra; Antonucci, Nicola

    2014-04-17

    Immune system dysregulation is well-recognized in autism and thought to be part of the etiology of this disorder. The endocannabinoid system is a key regulator of the immune system via the cannabinoid receptor type 2 (CB2R) which is highly expressed on macrophages and microglial cells. We have previously published significant differences in peripheral blood mononuclear cell CB2R gene expression in the autism population. The use of the Gc protein-derived Macrophage Activating Factor (GcMAF), an endogenous glycosylated vitamin D binding protein responsible for macrophage cell activation has demonstrated positive effects in the treatment of autistic children. In this current study, we investigated the in vitro effects of GcMAF treatment on the endocannabinoid system gene expression, as well as cellular activation in blood monocyte-derived macrophages (BMDMs) from autistic patients compared to age-matched healthy developing controls. To achieve these goals, we used biomolecular, biochemical and immunocytochemical methods. GcMAF treatment was able to normalize the observed differences in dysregulated gene expression of the endocannabinoid system of the autism group. GcMAF also down-regulated the over-activation of BMDMs from autistic children. This study presents the first observations of GcMAF effects on the transcriptionomics of the endocannabinoid system and expression of CB2R protein. These data point to a potential nexus between endocannabinoids, vitamin D and its transporter proteins, and the immune dysregulations observed with autism.

  3. Crystallographic study of FABP5 as an intracellular endocannabinoid transporter

    Sanson, Benoît; Wang, Tao; Sun, Jing; Wang, Liqun; Kaczocha, Martin; Ojima, Iwao; Deutsch, Dale; Li, Huilin

    2014-01-01

    FABP5 was recently found to intracellularly transport endocannabinoid signaling lipids. The structures of FABP5 complexed with two endocannabinoids and an inhibitor were solved. Human FABP5 was found to dimerize via a domain-swapping mechanism. This work will help in the development of inhibitors to raise endocannabinoid levels. In addition to binding intracellular fatty acids, fatty-acid-binding proteins (FABPs) have recently been reported to also transport the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG), arachidonic acid derivatives that function as neurotransmitters and mediate a diverse set of physiological and psychological processes. To understand how the endocannabinoids bind to FABPs, the crystal structures of FABP5 in complex with AEA, 2-AG and the inhibitor BMS-309403 were determined. These ligands are shown to interact primarily with the substrate-binding pocket via hydrophobic interactions as well as a common hydrogen bond to the Tyr131 residue. This work advances our understanding of FABP5–endocannabinoid interactions and may be useful for future efforts in the development of small-molecule inhibitors to raise endocannabinoid levels

  4. Crystallographic study of FABP5 as an intracellular endocannabinoid transporter

    Sanson, Benoît; Wang, Tao [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Sun, Jing; Wang, Liqun; Kaczocha, Martin [Stony Brook University, Stony Brook, NY 11794-5213 (United States); Ojima, Iwao [Stony Brook University, Stony Brook, NY 1794-3400 (United States); Stony Brook University, Stony Brook, NY 11794-3400 (United States); Deutsch, Dale, E-mail: dale.deutsch@stonybrook.edu [Stony Brook University, Stony Brook, NY 11794-5213 (United States); Stony Brook University, Stony Brook, NY 11794-3400 (United States); Li, Huilin, E-mail: dale.deutsch@stonybrook.edu [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Stony Brook University, Stony Brook, NY 11794-5213 (United States); Stony Brook University, Stony Brook, NY 11794-3400 (United States)

    2014-02-01

    FABP5 was recently found to intracellularly transport endocannabinoid signaling lipids. The structures of FABP5 complexed with two endocannabinoids and an inhibitor were solved. Human FABP5 was found to dimerize via a domain-swapping mechanism. This work will help in the development of inhibitors to raise endocannabinoid levels. In addition to binding intracellular fatty acids, fatty-acid-binding proteins (FABPs) have recently been reported to also transport the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG), arachidonic acid derivatives that function as neurotransmitters and mediate a diverse set of physiological and psychological processes. To understand how the endocannabinoids bind to FABPs, the crystal structures of FABP5 in complex with AEA, 2-AG and the inhibitor BMS-309403 were determined. These ligands are shown to interact primarily with the substrate-binding pocket via hydrophobic interactions as well as a common hydrogen bond to the Tyr131 residue. This work advances our understanding of FABP5–endocannabinoid interactions and may be useful for future efforts in the development of small-molecule inhibitors to raise endocannabinoid levels.

  5. Endocannabinoid modulation of homeostatic and non-homeostatic feeding circuits.

    Lau, Benjamin K; Cota, Daniela; Cristino, Luigia; Borgland, Stephanie L

    2017-09-15

    The endocannabinoid system has emerged as a key player in the control of eating. Endocannabinoids, including 2-arachidonoylglycerol (2-AG) and anandamide (AEA), modulate neuronal activity via cannabinoid 1 receptors (CB1Rs) in multiple nuclei of the hypothalamus to induce or inhibit food intake depending on nutritional and hormonal status, suggesting that endocannabinoids may act in the hypothalamus to integrate different types of signals informing about the animal's energy needs. In the mesocorticolimbic system, (endo)cannabinoids modulate synaptic transmission to promote dopamine release in response to palatable food. In addition, (endo)cannabinoids act within the nucleus accumbens to increase food's hedonic impact; although this effect depends on activation of CB1Rs at excitatory, but not inhibitory inputs in the nucleus accumbens. While hyperactivation of the endocannabinoid system is typically associated with overeating and obesity, much evidence has emerged in recent years suggesting a more complicated system than first thought - endocannabinoids promote or suppress feeding depending on cell and input type, or modulation by various neuronal or hormonal signals. This review presents our latest knowledge of the endocannabinoid system in non-homeostatic and homeostatic feeding circuits. In particular, we discuss the functional role and cellular mechanism of action by endocannabinoids within the hypothalamus and mesocorticolimbic system, and how these are modulated by neuropeptide signals related to feeding. In light of recent advances and complexity in the field, we review cannabinoid-based therapeutic strategies for the treatment of obesity and how peripheral restriction of CB1R antagonists may provide a different mechanism of weight loss without the central adverse effects. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology". Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Dynamic regulation of the endocannabinoid system: implications for analgesia

    Wong Amy

    2009-10-01

    Full Text Available Abstract The analgesic effects of cannabinoids are well documented, but these are often limited by psychoactive side-effects. Recent studies indicate that the endocannabinoid system is dynamic and altered under different pathological conditions, including pain states. Changes in this receptor system include altered expression of receptors, differential synthetic pathways for endocannabinoids are expressed by various cell types, multiple pathways of catabolism and the generation of biologically active metabolites, which may be engaged under different conditions. This review discusses the evidence that pain states alter the endocannabinoid receptor system at key sites involved in pain processing and how these changes may inform the development of cannabinoid-based analgesics.

  7. A Personal Retrospective: Elevating Anandamide (AEA by Targeting Fatty Acid Amide Hydrolase (FAAH and the Fatty Acid Binding Proteins (FABPs

    Dale Deutsch

    2016-10-01

    Full Text Available This perspective was adapted from a Career Achievement Award talk given at the International Cannabinoid Research Society Symposium in Bukovina, Poland on June 27, 2016. As a biochemist working in the neurosciences, I was always fascinated with neurotransmitter inactivation. In 1993 we identified an enzyme activity that breaks down anandamide. We called the enzyme anandamide amidase, now called FAAH. We and other laboratories developed FAAH inhibitors that were useful reagents that also proved to have beneficial physiological effects and, until recently, new generations of inhibitors were in clinical trials. Nearly all neurotransmitters are water soluble and, as such, require a transmembrane protein transporter to pass through the lipid membrane for inactivation inside the cell. However, using model systems, we and others have shown that this is unnecessary for anandamide, an uncharged hydrophobic molecule that readily diffuses across the cellular membrane. Interestingly, its uptake is driven by the concentration gradient resulting from its breakdown mainly by FAAH localized in the endoplasmic reticulum. We identified the FABPs as intracellular carriers that solubilize anandamide, transporting anandamide to FAAH. Compounds that bind to FABPs block AEA breakdown, raising its level. The cannabinoids (THC and CBD also were discovered to bind FABPs and this may be one of the mechanisms by which CBD works in childhood epilepsy, raising anandamide levels. Targeting FABPs may be advantageous since they have some tissue specificity and do not require reactive serine hydrolase inhibitors, as does FAAH, with potential for off-target reactions.

  8. Endocannabinoids and the processing of value-related signals

    Miriam eMelis

    2012-02-01

    Full Text Available Endocannabinoids serve as retrograde signaling molecules at many synapses within the CNS, particularly GABAergic and glutamatergic synapses. Synapses onto midbrain dopamine (DA neurons in the ventral tegmental area (VTA make no exception to this rule. In fact, the effects of cannabinoids on dopamine transmission as well as DA-related behaviors are generally exerted through the modulation of inhibitory and excitatory afferents impinging onto DA neurons. Endocannabinoids, by regulating different forms of synaptic plasticity in the VTA, provide a critical modulation of the DA neuron output and, ultimately, of the systems driving and regulating motivated behaviors. Because DA cells exhibit diverse states of activity, which crucially depend on their intrinsic properties and afferent drive, the understanding of the role played by endocannabinoids in synaptic modulations is critical for their overall functions. Particularly, endocannabinoids by selectively inhibiting afferent activity may alter the functional states of DA neurons and potentiate the responsiveness of the reward system to phasic DA.

  9. ENDOCANNABINOIDS AND EICOSAMOIDS: BIOSYNTHESIS AND INTERACTIONS WITH IMMUNE RESPONSE

    Yu. K. Karaman

    2013-01-01

    Full Text Available The review is dedicated to modern concepts of arachidonic acid metabolites, i.e., endocannabinoids and eicosanoids, their biosynthetic pathways, cross-talk mechanisms and participation in immune response. New information from literature and own results include data concerning overlapping enzymatic pathways controlling biosynthesis of endocannabinoids and eicosanoids. Impact of synthetic cannabinoid receptor ligands upon production rates of proinflammatory cytokines and eicosanoids is discussed, as like as relationships among immune system reactivity and expression levels of cannabinoid receptors.

  10. Peripheral endocannabinoids regulate skeletal muscle development and maintenance

    Dongjiao Zhao

    2010-12-01

    Full Text Available As a principal tissue responsible for insulin-mediated glucose uptake, skeletal muscle is important for whole-body health. The role of peripheral endocannabinoids as regulators of skeletal muscle metabolism has recently gained a lot of interest, as endocannabinoid system disorders could cause peripheral insulin resistance. We investigated the role of the peripheral endocannabinoid system in skeletal muscle development and maintenance. Cultures of C2C12 cells, primary satellite cells and mouse skeletal muscle single fibers were used as model systems for our studies. We found an increase in cannabinoid receptor type 1 (CB1 mRNA and endocannabinoid synthetic enzyme mRNA skeletal muscle cells during differentiation. We also found that activation of CB1 inhibited myoblast differentiation, expanded the number of satellite cells, and stimulated the fast-muscle oxidative phenotype. Our findings contribute to understanding of the role of the endocannabinoid system in skeletal muscle metabolism and muscle oxygen consumption, and also help to explain the effects of the peripheral endocannabinoid system on whole-body energy balance.

  11. Western Blotting of the Endocannabinoid System.

    Wager-Miller, Jim; Mackie, Ken

    2016-01-01

    Measuring expression levels of G protein-coupled receptors (GPCRs) is an important step for understanding the distribution, function, and regulation of these receptors. A common approach for detecting proteins from complex biological systems is Western blotting. In this chapter, we describe a general approach to Western blotting protein components of the endocannabinoid system using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and nitrocellulose membranes, with a focus on detecting type 1 cannabinoid (CB1) receptors. When this technique is carefully used, specifically with validation of the primary antibodies, it can provide quantitative information on protein expression levels. Additional information can also be inferred from Western blotting such as potential posttranslational modifications that can be further evaluated by specific analytical techniques.

  12. Polymorphisms in the endocannabinoid receptor 1 in relation to fat mass distribution

    Frost, M; Nielsen, T L; Wraae, K

    2010-01-01

    Both animal and human studies have associated the endocannabinoid system with obesity and markers of metabolic dysfunction. Blockade of the cannabinoid receptor 1 (CB1) caused weight loss and reduction in waist size in both obese and type II diabetics. Recent studies on common variants of the CB1...... receptor gene (CNR1) and the link to obesity have been conflicting. The aim of the present study was to evaluate whether selected common variants of the CNR1 are associated with measures of obesity and fat distribution....

  13. Fetal Alcohol Spectrum Disorder: Potential Role of Endocannabinoids Signaling

    Balapal S. Basavarajappa

    2015-10-01

    Full Text Available One of the unique features of prenatal alcohol exposure in humans is impaired cognitive and behavioral function resulting from damage to the central nervous system (CNS, which leads to a spectrum of impairments referred to as fetal alcohol spectrum disorder (FASD. Human FASD phenotypes can be reproduced in the rodent CNS following prenatal ethanol exposure. Several mechanisms are expected to contribute to the detrimental effects of prenatal alcohol exposure on the developing fetus, particularly in the developing CNS. These mechanisms may act simultaneously or consecutively and differ among a variety of cell types at specific developmental stages in particular brain regions. Studies have identified numerous potential mechanisms through which alcohol can act on the fetus. Among these mechanisms are increased oxidative stress, mitochondrial damage, interference with the activity of growth factors, glia cells, cell adhesion molecules, gene expression during CNS development and impaired function of signaling molecules involved in neuronal communication and circuit formation. These alcohol-induced deficits result in long-lasting abnormalities in neuronal plasticity and learning and memory and can explain many of the neurobehavioral abnormalities found in FASD. In this review, the author discusses the mechanisms that are associated with FASD and provides a current status on the endocannabinoid system in the development of FASD.

  14. Increased Contextual Fear Conditioning in iNOS Knockout Mice: Additional Evidence for the Involvement of Nitric Oxide in Stress-Related Disorders and Contribution of the Endocannabinoid System

    Gomes, Felipe V.; Silva, Andréia L.; Uliana, Daniela L.; Camargo, Laura H. A.; Guimarães, Francisco S.; Cunha, Fernando Q.; Joca, Sâmia R. L.; Resstel, Leonardo B. M.

    2015-01-01

    Background: Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. Methods: We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Results: Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. Conclusion: These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in

  15. Essential fatty acids and lipid mediators. Endocannabinoids

    G. Caramia

    2012-03-01

    Full Text Available In 1929 Burr and Burr discovered the essential fatty acids omega-6 and omega-3. Since then, researchers have shown a growing interest in polyunsaturated fatty acids (PUFA as precursors of “lipid mediator” molecules, often with opposing effects, prostaglandins, prostacyclins, thromboxanes, leukotrienes, lipossines, resolvines, protectines, maresins that regulate immunity, platelet aggregation, inflammation, etc. They showed that the balance between omega-3 and omega-6 acids has a profound influence on all the body’s inflammatory responses and a raised level of PUFA omega-3 in tissue correlate with a reduced incidence of degenerative cardiovascular disease, some mental illnesses such as depression, and neuro-degenerative diseases such as Alzheimer’s. The CYP-catalyzed epoxidation and hydroxylation of arachidonic acid (AA were established recently as the so-called third branch of AGE cascade. Cytochrome P450 (CYP epoxygenases convert AA to four epoxyeicosatrienoic acid (EET regioisomers, that produce vascular relaxation anti-inflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and brain. Eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are accessible to CYP enzymes in the same way as AA. Metabolites derived from EPA include epoxyeicosatetraenoic acids (EETR and hydroxyeicosapentaenoic acids (19- and 20-HEPE, whereas DHA include epoxydocosapentaenoic acids (EDPs hydroxydocosahexaenoic acids (21- and 22-HDoHE. For many of the CYP isoforms, the n-3 PUFAs are the preferred substrates and the available data suggest that some of the vasculo- and cardioprotective effects attributed to dietary n-3 PUFAs may be mediated by CYP-dependent metabolites of EPA and DHA. From AA derives also endocannabinoids like anandamide (N-arachidonoylethanolamine and 2-arachidonoylglycerol, capable of mimicking the pharmacological actions of the active principle of Cannabis sativa preparations such as

  16. Effects of activation of endocannabinoid system on myocardial metabolism

    Agnieszka Polak

    2016-05-01

    Full Text Available Endocannabinoids exert their effect on the regulation of energy homeostasis via activation of specific receptors. They control food intake, secretion of insulin, lipids and glucose metabolism, lipid storage. Long chain fatty acids are the main myocardial energy substrate. However, the heart exerts enormous metabolic flexibility emphasized by its ability to utilzation not only fatty acids, but also glucose, lactate and ketone bodies. Endocannabinoids can directly act on the cardiomyocytes through the CB1 and CB2 receptors present in cardiomyocytes. It appears that direct activation of CB1 receptors promotes increased lipogenesis, pericardial steatosis and bioelectrical dysfunction of the heart. In contrast, stimulation of CB2 receptors exhibits cardioprotective properties, helping to maintain appropriate amount of ATP in cardiomyocytes. Furthermore, the effects of endocannabinoids at both the central nervous system and peripheral tissues, such as liver, pancreas, or adipose tissue, resulting indirectly in plasma availability of energy substrates and affects myocardial metabolism. To date, there is little evidence that describes effects of activation of the endocannabinoid system in the cardiovascular system under physiological conditions. In the present paper the impact of metabolic diseases, i. e. obesity and diabetes, as well as the cardiovascular diseases - hypertension, myocardial ischemia and myocardial infarction on the deregulation of the endocannabinoid system and its effect on the metabolism are described.

  17. Emerging Role of (EndoCannabinoids in Migraine

    Pinja Leimuranta

    2018-04-01

    Full Text Available In this mini-review, we summarize recent discoveries and present new hypotheses on the role of cannabinoids in controlling trigeminal nociceptive system underlying migraine pain. Individual sections of this review cover key aspects of this topic, such as: (i the current knowledge on the endocannabinoid system (ECS with emphasis on expression of its components in migraine related structures; (ii distinguishing peripheral from central site of action of cannabinoids, (iii proposed mechanisms of migraine pain and control of nociceptive traffic by cannabinoids at the level of meninges and in brainstem, (iv therapeutic targeting in migraine of monoacylglycerol lipase and fatty acid amide hydrolase, enzymes which control the level of endocannabinoids; (v dual (possibly opposing actions of cannabinoids via anti-nociceptive CB1 and CB2 and pro-nociceptive TRPV1 receptors. We explore the cannabinoid-mediated mechanisms in the frame of the Clinical Endocannabinoid Deficiency (CECD hypothesis, which implies reduced tone of endocannabinoids in migraine patients. We further discuss the control of cortical excitability by cannabinoids via inhibition of cortical spreading depression (CSD underlying the migraine aura. Finally, we present our view on perspectives of Cannabis-derived (extracted or synthetized marijuana components or novel endocannabinoid therapeutics in migraine treatment.

  18. Responses of peripheral endocannabinoids and endocannabinoid-related compounds to hedonic eating in obesity.

    Monteleone, A M; Di Marzo, V; Monteleone, P; Dalle Grave, R; Aveta, T; Ghoch, M El; Piscitelli, F; Volpe, U; Calugi, S; Maj, M

    2016-06-01

    Hedonic eating occurs independently from homeostatic needs prompting the ingestion of pleasurable foods that are typically rich in fat, sugar and/or salt content. In normal weight healthy subjects, we found that before hedonic eating, plasma levels of 2-arachidonoylglycerol (2-AG) were higher than before nonhedonic eating, and although they progressively decreased after food ingestion in both eating conditions, they were significantly higher in hedonic eating. Plasma levels of anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), instead, progressively decreased in both eating conditions without significant differences. In this study, we investigated the responses of AEA, 2-AG, OEA and PEA to hedonic eating in obese individuals. Peripheral levels of AEA, 2-AG, OEA and PEA were measured in 14 obese patients after eating favourite (hedonic eating) and non-favourite (nonhedonic eating) foods in conditions of no homeostatic needs. Plasma levels of 2-AG increased after eating the favourite food, whereas they decreased after eating the non-favourite food, with the production of the endocannabinoid being significantly enhanced in hedonic eating. Plasma levels of AEA decreased progressively in nonhedonic eating, whereas they showed a decrease after the exposure to the favourite food followed by a return to baseline values after eating it. No significant differences emerged in plasma OEA and PEA responses to favourite and non-favourite food. Present findings compared with those obtained in our previously studied normal weight healthy subjects suggest deranged responses of endocannabinoids to food-related reward in obesity.

  19. Fluoxetine Facilitates Fear Extinction Through Amygdala Endocannabinoids

    Gunduz-Cinar, Ozge; Flynn, Shaun; Brockway, Emma; Kaugars, Katherine; Baldi, Rita; Ramikie, Teniel S; Cinar, Resat; Kunos, George; Patel, Sachin; Holmes, Andrew

    2016-01-01

    Pharmacologically elevating brain endocannabinoids (eCBs) share anxiolytic and fear extinction-facilitating properties with classical therapeutics, including the selective serotonin reuptake inhibitor, fluoxetine. There are also known functional interactions between the eCB and serotonin systems and preliminary evidence that antidepressants cause alterations in brain eCBs. However, the potential role of eCBs in mediating the facilitatory effects of fluoxetine on fear extinction has not been established. Here, to test for a possible mechanistic contribution of eCBs to fluoxetine's proextinction effects, we integrated biochemical, electrophysiological, pharmacological, and behavioral techniques, using the extinction-impaired 129S1/Sv1mJ mouse strain. Chronic fluoxetine treatment produced a significant and selective increase in levels of anandamide in the BLA, and an associated decrease in activity of the anandamide-catabolizing enzyme, fatty acid amide hydrolase. Slice electrophysiological recordings showed that fluoxetine-induced increases in anandamide were associated with the amplification of eCB-mediated tonic constraint of inhibitory, but not excitatory, transmission in the BLA. Behaviorally, chronic fluoxetine facilitated extinction retrieval in a manner that was prevented by systemic or BLA-specific blockade of CB1 receptors. In contrast to fluoxetine, citalopram treatment did not increase BLA eCBs or facilitate extinction. Taken together, these findings reveal a novel, obligatory role for amygdala eCBs in the proextinction effects of a major pharmacotherapy for trauma- and stressor-related disorders and anxiety disorders. PMID:26514583

  20. The endocannabinoid system and its relevance for nutrition

    Maccarrone, Mauro; Gasperi, Valeria; Catani, Maria Valeria

    2010-01-01

    Endocannabinoids bind to cannabinoid, vanilloid, and peroxisome proliferator-activated receptors. The biological actions of these polyunsaturated lipids are controlled by key agents responsible for their synthesis, transport and degradation, which together form an endocannabinoid system (ECS......). In the past few years, evidence has been accumulated for a role of the ECS in regulating food intake and energy balance, both centrally and peripherally. In addition, up-regulation of the ECS in the gastrointestinal tract has a potential impact on inflammatory bowel diseases. In this review, the main features...... of the ECS are summarized in order to put in better focus our current knowledge of the nutritional relevance of endocannabinoid signaling and of its role in obesity, cardiovascular pathologies, and gastrointestinal diseases. The central and peripheral pathways that underlie these effects are discussed...

  1. Endocannabinoids and cardiovascular prevention: real progress?

    Livio Dei Cas

    2009-08-01

    Full Text Available ABSTRACT: The prevalence of obesity continues to increase and represents one of the principal causes of cardiovascular morbidity and mortality. After the discovery of a specific receptor of the psychoactive principle of marijuana, the cannabinoid receptors and their endogenous ligands, several studies have demonstrated the role of this system in the control of food intake and energy balance and its overactivity in obesity. Recent studies with the CB1 receptor antagonist rimonabant have demonstrated favorable effects such as a reduction in body weight and waist circumference and an improvement in metabolic factors (cholesterol, triglycerides, glycemia etc. Therefore, the antagonism of the endocannabinoid (EC system, if recent data can be confirmed, could be a new treatment target for high risk overweight or obese patients. Obesity is a growing problem that has epidemic proportions worldwide and is associated with an increased risk of premature death (1-3. Individuals with a central deposition of fats have elevated cardiovascular morbidity and mortality (including stroke, heart failure and myocardial infarction and, because of a growing prevalence not only in adults but also in adolescents, it was reclassified in AHA guidelines as a “major modifiable risk factor” for coronary heart disease (4, 5. Although first choice therapy in obesity is based on correcting lifestyle (diet and physical activity in patients with abdominal obesity and high cardiovascular risk and diabetes, often it is necessary to use drugs which reduce the risks. The EC system represents a new target for weight control and the improvement of lipid and glycemic metabolism (6, 7. (Heart International 2007; 3: 27-34

  2. Antioxidant status and endocannabinoid concentration in postpartum depressive women

    Mina Ranjbaran

    2015-02-01

    Conclusion: Women’s Job, husband’s job, wanted or unwanted pregnancy from husbands and marital period are associated to postpartum depression. In postpartum depression, TAC, AEA and 2-AG are reduced. So it can be concluded that both antioxidant system and endocannabinoid concentration involved in the development of postpartum depression.

  3. Lipidomic Analysis of Endocannabinoid Signaling: Targeted Metabolite Identification and Quantification

    Jantana Keereetaweep

    2016-01-01

    Full Text Available The endocannabinoids N-arachidonoylethanolamide (or anandamide, AEA and 2-arachidonoylglycerol (2-AG belong to the larger groups of N-acylethanolamines (NAEs and monoacylglycerol (MAG lipid classes, respectively. They are biologically active lipid molecules that activate G-protein-coupled cannabinoid receptors found in various organisms. After AEA and 2-AG were discovered in the 1990s, they have been extensively documented to have a broad range of physiological functions. Along with AEA, several NAEs, for example, N-palmitoylethanolamine (PEA, N-stearoylethanolamine (SEA, and N-oleoylethanolamine (OEA are also present in tissues, usually at much larger concentrations than AEA. Any perturbation that involves the endocannabinoid pathway may subsequently alter basal level or metabolism of these lipid mediators. Further, the altered levels of these molecules often reflect pathological conditions associated with tissue damage. Robust and sensitive methodologies to analyze these lipid mediators are essential to understanding how they act as endocannabinoids. The recent advances in mass spectrometry allow researchers to develop lipidomics approaches and several methodologies have been proposed to quantify endocannabinoids in various biological systems.

  4. Cannabis and endocannabinoid modulators: Therapeutic promises and challenges

    Grant, Igor; Cahn, B. Rael

    2008-01-01

    The discovery that botanical cannabinoids such as delta-9 tetrahydrocannabinol exert some of their effect through binding specific cannabinoid receptor sites has led to the discovery of an endocannabinoid signaling system, which in turn has spurred research into the mechanisms of action and addiction potential of cannabis on the one hand, while opening the possibility of developing novel therapeutic agents on the other. This paper reviews current understanding of CB1, CB2, and other possible cannabinoid receptors, their arachidonic acid derived ligands (e.g. anandamide; 2 arachidonoyl glycerol), and their possible physiological roles. CB1 is heavily represented in the central nervous system, but is found in other tissues as well; CB2 tends to be localized to immune cells. Activation of the endocannabinoid system can result in enhanced or dampened activity in various neural circuits depending on their own state of activation. This suggests that one function of the endocannabinoid system may be to maintain steady state. The therapeutic action of botanical cannabis or of synthetic molecules that are agonists, antagonists, or which may otherwise modify endocannabinoid metabolism and activity indicates they may have promise as neuroprotectants, and may be of value in the treatment of certain types of pain, epilepsy, spasticity, eating disorders, inflammation, and possibly blood pressure control. PMID:18806886

  5. An endocannabinoid hypothesis of drug reward and drug addiction.

    Onaivi, Emmanuel S

    2008-10-01

    Pharmacologic treatment of drug and alcohol dependency has largely been disappointing, and new therapeutic targets and hypotheses are needed. There is accumulating evidence indicating a central role for the previously unknown but ubiquitous endocannabinoid physiological control system (EPCS) in the regulation of the rewarding effects of abused substances. Thus an endocannabinoid hypothesis of drug reward is postulated. Endocannabinoids mediate retrograde signaling in neuronal tissues and are involved in the regulation of synaptic transmission to suppress neurotransmitter release by the presynaptic cannabinoid receptors (CB-Rs). This powerful modulatory action on synaptic transmission has significant functional implications and interactions with the effects of abused substances. Our data, along with those from other investigators, provide strong new evidence for a role for EPCS modulation in the effects of drugs of abuse, and specifically for involvement of cannabinoid receptors in the neural basis of addiction. Cannabinoids and endocannabinoids appear to be involved in adding to the rewarding effects of addictive substances, including, nicotine, opiates, alcohol, cocaine, and BDZs. The results suggest that the EPCS may be an important natural regulatory mechanism for drug reward and a target for the treatment of addictive disorders.

  6. The endocannabinoid system and appetite: relevance for food reward

    Jager, G.; Witkamp, R.F.

    2014-01-01

    Mounting evidence substantiates the central role of the endocannabinoid system (ECS) in the modulation of both homeostatic and hedonic elements of appetite and food intake. Conversely, feeding status and dietary patterns directly influence activity of the ECS. Following a general introduction on the

  7. Endocannabinoid system: Role in depression, reward and pain control (Review).

    Huang, Wen-Juan; Chen, Wei-Wei; Zhang, Xia

    2016-10-01

    Depression and pain co-exist in almost 80% of patients and are associated with impaired health-related quality of life, often contributing to high mortality. However, the majority of patients who suffer from the comorbid depression and pain are not responsive to pharmacological treatments that address either pain or depression, making this comorbidity disorder a heavy burden on patients and society. In ancient times, this depression-pain comorbidity was treated using extracts of the Cannabis sativa plant, known now as marijuana and the mode of action of Δ9‑tetrahydrocannabinol, the active cannabinoid ingredient of marijuana, has only recently become known, with the identification of cannabinoid receptor type 1 (CB1) and CB2. Subsequent investigations led to the identification of endocannabinoids, anandamide and 2-arachidonoylglycerol, which exert cannabinomimetic effects through the CB1 and CB2 receptors, which are located on presynaptic membranes in the central nervous system and in peripheral tissues, respectively. These endocannabinoids are produced from membrane lipids and are lipohilic molecules that are synthesized on demand and are eliminated rapidly after their usage by hydrolyzing enzymes. Clinical studies revealed altered endocannabinoid signaling in patients with chronic pain. Considerable evidence suggested the involvement of the endocannabinoid system in eliciting potent effects on neurotransmission, neuroendocrine, and inflammatory processes, which are known to be deranged in depression and chronic pain. Several synthetic cannabinomimetic drugs are being developed to treat pain and depression. However, the precise mode of action of endocannabinoids on different targets in the body and whether their effects on pain and depression follow the same or different pathways, remains to be determined.

  8. The in vitro GcMAF effects on endocannabinoid system transcriptionomics, receptor formation, and cell activity of autism-derived macrophages

    Siniscalco, Dario; Bradstreet, James Jeffrey; Cirillo, Alessandra; Antonucci, Nicola

    2014-01-01

    Background Immune system dysregulation is well-recognized in autism and thought to be part of the etiology of this disorder. The endocannabinoid system is a key regulator of the immune system via the cannabinoid receptor type 2 (CB2R) which is highly expressed on macrophages and microglial cells. We have previously published significant differences in peripheral blood mononuclear cell CB2R gene expression in the autism population. The use of the Gc protein-derived Macrophage Activating Factor...

  9. Polymorphisms in the endocannabinoid receptor 1 in relation to fat mass distribution

    Nielsen, Morten Frost; Nielsen, T L; Wraae, K

    2010-01-01

    OBJECTIVE: Both animal and human studies have associated the endocannabinoid system with obesity and markers of metabolic dysfunction. Blockade of the cannabinoid receptor 1 (CB1) caused weight loss and reduction in waist size in both obese and type II diabetics. Recent studies on common variants...... of the CB1 receptor gene (CNR1) and the link to obesity have been conflicting. The aim of the present study was to evaluate whether selected common variants of the CNR1 are associated with measures of obesity and fat distribution. DESIGN AND METHODS: The single nucleotide polymorphisms (SNPs) rs806381, rs......10485179 and rs1049353 were genotyped, and body fat and fat distribution were assessed by the use of dual-energy X-ray absorptiometry and magnetic resonance imaging in a population-based study comprising of 783 Danish men, aged 20-29 years. RESULTS: The rs806381 polymorphism was significantly associated...

  10. Updates in Reproduction Coming from the Endocannabinoid System

    Bradshaw, Heather B.

    2014-01-01

    The endocannabinoid system (ECS) is an evolutionarily conserved master system deeply involved in the central and local control of reproductive functions in both sexes. The tone of these lipid mediators—deeply modulated by the activity of biosynthetic and hydrolyzing machineries—regulates reproductive functions from gonadotropin discharge and steroid biosynthesis to the formation of high quality gametes and successful pregnancy. This review provides an overview on ECS and reproduction and focuses on the insights in the regulation of endocannabinoid production by steroids, in the regulation of male reproductive activity, and in placentation and parturition. Taken all together, evidences emerge that the activity of the ECS is crucial for procreation and may represent a target for the therapeutic exploitation of infertility. PMID:24550985

  11. Updates in Reproduction Coming from the Endocannabinoid System

    Rosaria Meccariello

    2014-01-01

    Full Text Available The endocannabinoid system (ECS is an evolutionarily conserved master system deeply involved in the central and local control of reproductive functions in both sexes. The tone of these lipid mediators—deeply modulated by the activity of biosynthetic and hydrolyzing machineries—regulates reproductive functions from gonadotropin discharge and steroid biosynthesis to the formation of high quality gametes and successful pregnancy. This review provides an overview on ECS and reproduction and focuses on the insights in the regulation of endocannabinoid production by steroids, in the regulation of male reproductive activity, and in placentation and parturition. Taken all together, evidences emerge that the activity of the ECS is crucial for procreation and may represent a target for the therapeutic exploitation of infertility.

  12. The endocannabinoid anandamide inhibits potassium conductance in rat cortical astrocytes

    Vignali, M.; Benfenati, V.; Caprini, M.; Anděrová, Miroslava; Nobile, M.; Ferroni, S.

    2009-01-01

    Roč. 57, č. 7 (2009), s. 791-806 ISSN 0894-1491 R&D Projects: GA ČR GA305/06/1316; GA ČR GA305/06/1464; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50390512 Keywords : cortical astroglia * potassium conductance * endocannabinoids Subject RIV: FH - Neurology Impact factor: 4.932, year: 2009

  13. The endocannabinoid system and associative learning and memory in zebrafish.

    Ruhl, Tim; Moesbauer, Kirstin; Oellers, Nadine; von der Emde, Gerhard

    2015-09-01

    In zebrafish the medial pallium of the dorsal telencephalon represents an amygdala homolog structure, which is crucially involved in emotional associative learning and memory. Similar to the mammalian amygdala, the medial pallium contains a high density of endocannabinoid receptor CB1. To elucidate the role of the zebrafish endocannabinoid system in associative learning, we tested the influence of acute and chronic administration of receptor agonists (THC, WIN55,212-2) and antagonists (Rimonabant, AM-281) on two different learning paradigms. In an appetitively motivated two-alternative choice paradigm, animals learned to associate a certain color with a food reward. In a second set-up, a fish shuttle-box, animals associated the onset of a light stimulus with the occurrence of a subsequent electric shock (avoidance conditioning). Once fish successfully had learned to solve these behavioral tasks, acute receptor activation or inactivation had no effect on memory retrieval, suggesting that established associative memories were stable and not alterable by the endocannabinoid system. In both learning tasks, chronic treatment with receptor antagonists improved acquisition learning, and additionally facilitated reversal learning during color discrimination. In contrast, chronic CB1 activation prevented aversively motivated acquisition learning, while different effects were found on appetitively motivated acquisition learning. While THC significantly improved behavioral performance, WIN55,212-2 significantly impaired color association. Our findings suggest that the zebrafish endocannabinoid system can modulate associative learning and memory. Stimulation of the CB1 receptor might play a more specific role in acquisition and storage of aversive learning and memory, while CB1 blocking induces general enhancement of cognitive functions. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Involvement of the endocannabinoid system in periodontal healing

    Kozono, Sayaka; Matsuyama, Takashi; Biwasa, Kamal Krishna; Kawahara, Ko-ichi; Nakajima, Yumiko; Yoshimoto, Takehiko; Yonamine, Yutaka; Kadomatsu, Hideshi; Tancharoen, Salunya; Hashiguchi, Teruto; Noguchi, Kazuyuki; Maruyama, Ikuro

    2010-01-01

    Endocannabinoids including anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are important lipid mediators for immunosuppressive effects and for appropriate homeostasis via their G-protein-coupled cannabinoid (CB) receptors in mammalian organs and tissues, and may be involved in wound healing in some organs. The physiological roles of endocannabinoids in periodontal healing remain unknown. We observed upregulation of the expression of CB1/CB2 receptors localized on fibroblasts and macrophage-like cells in granulation tissue during wound healing in a wound-healing model in rats, as well as an increase in AEA levels in gingival crevicular fluid after periodontal surgery in human patients with periodontitis. In-vitro, the proliferation of human gingival fibroblasts (HGFs) by AEA was significantly attenuated by AM251 and AM630, which are selective antagonists of CB1 and CB2, respectively. CP55940 (CB1/CB2 agonist) induced phosphorylation of the extracellular-regulated kinases (ERK) 1/2, p38 mitogen-activated protein kinase (p38MAPK), and Akt in HGFs. Wound closure by CP55940 in an in-vitro scratch assay was significantly suppressed by inhibitors of MAP kinase kinase (MEK), p38MAPK, and phosphoinositol 3-kinase (PI3-K). These findings suggest that endocannabinoid system may have an important role in periodontal healing.

  15. Involvement of the endocannabinoid system in periodontal healing

    Kozono, Sayaka [Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Matsuyama, Takashi, E-mail: takashi@dent.kagoshima-u.ac.jp [Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Biwasa, Kamal Krishna [Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi 6205 (Bangladesh); Kawahara, Ko-ichi [Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Nakajima, Yumiko; Yoshimoto, Takehiko; Yonamine, Yutaka; Kadomatsu, Hideshi [Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Tancharoen, Salunya [Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok 10400 (Thailand); Hashiguchi, Teruto [Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Noguchi, Kazuyuki [Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Maruyama, Ikuro [Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan)

    2010-04-16

    Endocannabinoids including anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are important lipid mediators for immunosuppressive effects and for appropriate homeostasis via their G-protein-coupled cannabinoid (CB) receptors in mammalian organs and tissues, and may be involved in wound healing in some organs. The physiological roles of endocannabinoids in periodontal healing remain unknown. We observed upregulation of the expression of CB1/CB2 receptors localized on fibroblasts and macrophage-like cells in granulation tissue during wound healing in a wound-healing model in rats, as well as an increase in AEA levels in gingival crevicular fluid after periodontal surgery in human patients with periodontitis. In-vitro, the proliferation of human gingival fibroblasts (HGFs) by AEA was significantly attenuated by AM251 and AM630, which are selective antagonists of CB1 and CB2, respectively. CP55940 (CB1/CB2 agonist) induced phosphorylation of the extracellular-regulated kinases (ERK) 1/2, p38 mitogen-activated protein kinase (p38MAPK), and Akt in HGFs. Wound closure by CP55940 in an in-vitro scratch assay was significantly suppressed by inhibitors of MAP kinase kinase (MEK), p38MAPK, and phosphoinositol 3-kinase (PI3-K). These findings suggest that endocannabinoid system may have an important role in periodontal healing.

  16. A Preliminary Model for the Protective Role of the Endocannabinoid 2-Arachydonylglycerol in Neuroinflammation

    2015-09-30

    Seizure Frequency and Duration in a Model of Temporal Lobe Epilepsy . J Pharmacol Exp Ther, 307:129-137. Zhang M, Chen C. 2008. Endocannabinoid 2... Disorders . Brain Res Rev, 52(2):201-43. Pope C, Mechoulam R, Parsons L. 2010. Endocannabinoid Signaling in Neurotoxicity and Neuroprotection

  17. Remote memories are enhanced by COMT activity through dysregulation of the endocannabinoid system in the prefrontal cortex.

    Scheggia, D; Zamberletti, E; Realini, N; Mereu, M; Contarini, G; Ferretti, V; Managò, F; Margiani, G; Brunoro, R; Rubino, T; De Luca, M A; Piomelli, D; Parolaro, D; Papaleo, F

    2018-04-01

    The prefrontal cortex (PFC) is a crucial hub for the flexible modulation of recent memories (executive functions) as well as for the stable organization of remote memories. Dopamine in the PFC is implicated in both these processes and genetic variants affecting its neurotransmission might control the unique balance between cognitive stability and flexibility present in each individual. Functional genetic variants in the catechol-O-methyltransferase (COMT) gene result in a different catabolism of dopamine in the PFC. However, despite the established role played by COMT genetic variation in executive functions, its impact on remote memory formation and recall is still poorly explored. Here we report that transgenic mice overexpressing the human COMT-Val gene (COMT-Val-tg) present exaggerated remote memories (>50 days) while having unaltered recent memories (remote memories as silencing COMT Val overexpression starting from 30 days after the initial aversive conditioning normalized remote memories. COMT genetic overactivity produced a selective overdrive of the endocannabinoid system within the PFC, but not in the striatum and hippocampus, which was associated with enhanced remote memories. Indeed, acute pharmacological blockade of CB1 receptors was sufficient to rescue the altered remote memory recall in COMT-Val-tg mice and increased PFC dopamine levels. These results demonstrate that COMT genetic variations modulate the retrieval of remote memories through the dysregulation of the endocannabinoid system in the PFC.

  18. A Comparative Analysis of the Endocannabinoid System in the Retina of Mice, Tree Shrews, and Monkeys

    Bouskila, Joseph; Javadi, Pasha; Elkrief, Laurent

    2016-01-01

    is known about the distribution of the enzymes involved in the synthesis and degradation of these eCBs. We therefore examined the expression and localization of the main components of the eCB system in the retina of mice, tree shrews, and monkeys. We found that CB1R and FAAH distributions are well...

  19. Molecular components and functions of the endocannabinoid system in mouse prefrontal cortex.

    Mathieu Lafourcade

    2007-08-01

    Full Text Available Cannabinoids have deleterious effects on prefrontal cortex (PFC-mediated functions and multiple evidences link the endogenous cannabinoid (endocannabinoid system, cannabis use and schizophrenia, a disease in which PFC functions are altered. Nonetheless, the molecular composition and the physiological functions of the endocannabinoid system in the PFC are unknown.Here, using electron microscopy we found that key proteins involved in endocannabinoid signaling are expressed in layers v/vi of the mouse prelimbic area of the PFC: presynaptic cannabinoid CB1 receptors (CB1R faced postsynaptic mGluR5 while diacylglycerol lipase alpha (DGL-alpha, the enzyme generating the endocannabinoid 2-arachidonoyl-glycerol (2-AG was expressed in the same dendritic processes as mGluR5. Activation of presynaptic CB1R strongly inhibited evoked excitatory post-synaptic currents. Prolonged synaptic stimulation at 10Hz induced a profound long-term depression (LTD of layers V/VI excitatory inputs. The endocannabinoid -LTD was presynaptically expressed and depended on the activation of postsynaptic mGluR5, phospholipase C and a rise in postsynaptic Ca(2+ as predicted from the localization of the different components of the endocannabinoid system. Blocking the degradation of 2-AG (with URB 602 but not of anandamide (with URB 597 converted subthreshold tetanus to LTD-inducing ones. Moreover, inhibiting the synthesis of 2-AG with Tetrahydrolipstatin, blocked endocannabinoid-mediated LTD. All together, our data show that 2-AG mediates LTD at these synapses.Our data show that the endocannabinoid -retrograde signaling plays a prominent role in long-term synaptic plasticity at the excitatory synapses of the PFC. Alterations of endocannabinoid -mediated synaptic plasticity may participate to the etiology of PFC-related pathologies.

  20. Marijuana, phytocannabinoids, the endocannabinoid system, and male fertility.

    du Plessis, Stefan S; Agarwal, Ashok; Syriac, Arun

    2015-11-01

    Marijuana has the highest consumption rate among all of the illicit drugs used in the USA, and its popularity as both a recreational and medicinal drug is increasing especially among men of reproductive age. Male factor infertility is on the increase, and the exposure to the cannabinoid compounds released by marijuana could be a contributing cause. The endocannabinoid system (ECS) is deeply involved in the complex regulation of male reproduction through the endogenous release of endocannabinoids and binding to cannabinoid receptors. Disturbing the delicate balance of the ECS due to marijuana use can negatively impact reproductive potential. Various in vivo and in vitro studies have reported on the empirical role that marijuana plays in disrupting the hypothalamus-pituitary-gonadal axis, spermatogenesis, and sperm function such as motility, capacitation, and the acrosome reaction. In this review, we highlight the latest evidence regarding the effect of marijuana use on male fertility and also provide a detailed insight into the ECS and its significance in the male reproductive system.

  1. The endocannabinoid system and appetite: relevance for food reward.

    Jager, Gerry; Witkamp, Renger F

    2014-06-01

    Mounting evidence substantiates the central role of the endocannabinoid system (ECS) in the modulation of both homeostatic and hedonic elements of appetite and food intake. Conversely, feeding status and dietary patterns directly influence activity of the ECS. Following a general introduction on the functioning of the ECS, the present review specifically addresses its role in the modulation of hedonic eating. Humans possess strong motivational systems triggered by rewarding aspects of food. Food reward is comprised of two components: one appetitive (orienting towards food); the other consummatory (hedonic evaluation), also referred to as 'wanting' and 'liking', respectively. Endocannabinoid tone seems to influence both the motivation to feed and the hedonic value of foods, probably by modifying palatability. Human physiology underlying hedonic eating is still not fully understood. A better understanding of the role of the ECS in the rewarding value of specific foods or diets could offer new possibilities to optimise the balance between energy and nutrient intake for different target groups. These groups include the obese and overweight, and potentially individuals suffering from malnutrition. Examples for the latter group are patients with disease-related anorexia, as well as the growing population of frail elderly suffering from persistent loss of food enjoyment and appetite resulting in malnutrition and involuntary weight loss. It has become clear that the psychobiology of food hedonics is extremely complex and the clinical failure of CB1 inverse agonists including rimonabant (Accomplia®) has shown that 'quick wins' in this field are unlikely.

  2. The endocannabinoid system: a new pharmacological target for obesity treatment?

    Hu, Jia; Zhu, Chao; Huang, Mao

    2009-06-01

    Being a great threaten for human health, obesity has become a pandemic chronic disease. There have been several therapeutic treatments for this social health issue, including diet and exercise therapy, medication and surgery, among which the diet is still the most common way. However, none of these therapeutic measures available is ideal, making it necessary to find an effective medical treatment. The endocannabinoid system, which is well known for its contributions in certain mental processes such as relaxation, amelioration of pain and anxiety, and sedation initiation, has been recently reported to play an essential role in regulating appetite and metabolism to maintain energy balance, leading to the belief that endocannabinoid system is closely related to obesity. This new discovery deepens our understanding of obesity, and provides us with a new direction for clinical obesity treatment. Rimonabant is an antagonist for CB1, and has entered the market in some countries. However, although effective as an anti-obesity drug, rimonabant also causes obviously adverse side-effects, thus is being doubted and denied for medical usage.

  3. Obesity, the endocannabinoid system, and bias arising from pharmaceutical sponsorship.

    McPartland, John M

    2009-01-01

    Previous research has shown that academic physicians conflicted by funding from the pharmaceutical industry have corrupted evidence based medicine and helped enlarge the market for drugs. Physicians made pharmaceutical-friendly statements, engaged in disease mongering, and signed biased review articles ghost-authored by corporate employees. This paper tested the hypothesis that bias affects review articles regarding rimonabant, an anti-obesity drug that blocks the central cannabinoid receptor. A MEDLINE search was performed for rimonabant review articles, limited to articles authored by USA physicians who served as consultants for the company that manufactures rimonabant. Extracted articles were examined for industry-friendly bias, identified by three methods: analysis with a validated instrument for monitoring bias in continuing medical education (CME); analysis for bias defined as statements that ran contrary to external evidence; and a tally of misrepresentations about the endocannabinoid system. Eight review articles were identified, but only three disclosed authors' financial conflicts of interest, despite easily accessible information to the contrary. The Takhar CME bias instrument demonstrated statistically significant bias in all the review articles. Biased statements that were nearly identical reappeared in the articles, including disease mongering, exaggerating rimonabant's efficacy and safety, lack of criticisms regarding rimonabant clinical trials, and speculations about surrogate markers stated as facts. Distinctive and identical misrepresentations regarding the endocannabinoid system also reappeared in articles by different authors. The findings are characteristic of bias that arises from financial conflicts of interest, and suggestive of ghostwriting by a common author. Resolutions for this scenario are proposed.

  4. Masturbation to Orgasm Stimulates the Release of the Endocannabinoid 2-Arachidonoylglycerol in Humans.

    Fuss, Johannes; Bindila, Laura; Wiedemann, Klaus; Auer, Matthias K; Briken, Peer; Biedermann, Sarah V

    2017-11-01

    Endocannabinoids are critical for rewarding behaviors such as eating, physical exercise, and social interaction. The role of endocannabinoids in mammalian sexual behavior has been suggested because of the influence of cannabinoid receptor agonists and antagonists on rodent sexual activity. However, the involvement of endocannabinoids in human sexual behavior has not been studied. To investigate plasma endocannabinoid levels before and after masturbation in healthy male and female volunteers. Plasma levels of the endocannabinoids 2-arachidonoylglycerol (2-AG), anandamide, the endocannabinoid-like lipids oleoyl ethanolamide and palmitoyl ethanolamide, arachidonic acid, and cortisol before and after masturbation to orgasm. In study 1, endocannabinoid and cortisol levels were measured before and after masturbation to orgasm. In study 2, masturbation to orgasm was compared with a control condition using a single-blinded, randomized, 2-session crossover design. In study 1, masturbation to orgasm significantly increased plasma levels of the endocannabinoid 2-AG, whereas anandamide, oleoyl ethanolamide, palmitoyl ethanolamide, arachidonic acid, and cortisol levels were not altered. In study 2, only masturbation to orgasm, not the control condition, led to a significant increase in 2-AG levels. Interestingly, we also found a significant increase of oleoyl ethanolamide after masturbation to orgasm in study 2. Endocannabinoids might play an important role in the sexual response cycle, leading to possible implications for the understanding and treatment of sexual dysfunctions. We found an increase of 2-AG through masturbation to orgasm in 2 studies including a single-blinded randomized design. The exact role of endocannabinoid release as part of the sexual response cycle and the biological significance of the finding should be studied further. Cannabis and other drug use and the attainment of orgasm were self-reported in the present study. Our data indicate that the

  5. Overexpression of fatty acid amide hydrolase induces early flowering in Arabidopsis thaliana

    Neal D. Teaster

    2012-02-01

    Full Text Available N-Acylethanolamines (NAEs are bioactive lipids derived from the hydrolysis of the membrane phospholipid N-acylphosphatidylethanolamine (NAPE. In animal systems this reaction is part of the endocannabinoid signaling pathway, which regulates a variety of physiological processes. The signaling function of NAE is terminated by fatty acid amide hydrolase (FAAH, which hydrolyzes NAE to ethanolamine and free fatty acid. Our previous work in Arabidopsis thaliana showed that overexpression of AtFAAH (At5g64440 lowered endogenous levels of NAEs in seeds, consistent with its role in NAE signal termination. Reduced NAE levels were accompanied by an accelerated growth phenotype, increased sensitivity to abscisic acid (ABA, enhanced susceptibility to bacterial pathogens, and early flowering. Here we investigated the nature of the early flowering phenotype of AtFAAH overexpression. AtFAAH overexpressors flowered several days earlier than wild type and AtFAAH knockouts under both non-inductive short day (SD and inductive long day (LD conditions. Microarray analysis revealed that the FLOWERING LOCUS T (FT gene, which plays a major role in regulating flowering time, and one target MADS box transcription factor, SEPATALLA3 (SEP3, were elevated in AtFAAH overexpressors. Furthermore, AtFAAH overexpressors, with the early flowering phenotype had lower endogenous NAE levels in leaves compared to wild type prior to flowering. Exogenous application of NAE 12:0, which was reduced by up to 30% in AtFAAH overexpressors, delayed the onset of flowering in wild type plants. We conclude that the early flowering phenotype of AtFAAH overexpressors is, in part, explained by elevated FT gene expression resulting from the enhanced NAE hydrolase activity of AtFAAH, suggesting that NAE metabolism may participate in floral signaling pathways.

  6. Extravirgin olive oil up-regulates CB₁ tumor suppressor gene in human colon cancer cells and in rat colon via epigenetic mechanisms.

    Di Francesco, Andrea; Falconi, Anastasia; Di Germanio, Clara; Micioni Di Bonaventura, Maria Vittoria; Costa, Antonio; Caramuta, Stefano; Del Carlo, Michele; Compagnone, Dario; Dainese, Enrico; Cifani, Carlo; Maccarrone, Mauro; D'Addario, Claudio

    2015-03-01

    Extravirgin olive oil (EVOO) represents the typical lipid source of the Mediterranean diet, an eating habit pattern that has been associated with a significant reduction of cancer risk. Diet is the more studied environmental factor in epigenetics, and many evidences suggest dysregulation of epigenetic pathways in cancer. The aim of our study was to investigate the effects of EVOO and its phenolic compounds on endocannabinoid system (ECS) gene expression via epigenetic regulation in both human colon cancer cells (Caco-2) and rats exposed to short- and long-term dietary EVOO. We observed a selective and transient up-regulation of CNR1 gene - encoding for type 1 cannabinoid receptor (CB₁) - that was evoked by exposure of Caco-2 cells to EVOO (100 ppm), its phenolic extracts (OPE, 50 μM) or authentic hydroxytyrosol (HT, 50 μM) for 24 h. None of the other major elements of the ECS (i.e., CB₂; GPR55 and TRPV1 receptors; and NAPE-PLD, DAGL, FAAH and MAGL enzymes) was affected at any time point. The stimulatory effect of OPE and HT on CB₁ expression was inversely correlated to DNA methylation at CNR1 promoter and was associated with reduced proliferation of Caco-2 cells. Interestingly, CNR1 gene was less expressed in Caco-2 cells when compared to normal colon mucosa cells, and again this effect was associated with higher level of DNA methylation at CNR1. Moreover, in agreement with the in vitro studies, we also observed a remarkable (~4-fold) and selective increase in CB₁ expression in the colon of rats receiving dietary EVOO supplementation for 10 days. Consistently, CpG methylation of rat Cnr1 promoter, miR23a and miR-301a, previously shown to be involved in the pathogenesis of colorectal cancer and predicted to target CB₁ mRNA, was reduced after EVOO administration down to ~50% of controls. Taken together, our findings demonstrating CB₁ gene expression modulation by EVOO or its phenolic compounds via epigenetic mechanism, both in vitro and in vivo, may

  7. The endocannabinoid system within the dorsal lateral geniculate nucleus of the vervet monkey

    Javadi, P.; Bouskila, J.; Bouchard, J. -F.

    2015-01-01

    The endocannabinoid system mainly consists of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), their endogenous ligands termed endocannabinoids (eCBs), and the enzymes responsible for the synthesis and degradation of eCBs. These cannabinoid receptors have been well characterized in rodent a...... layers may explain some of the behavioral effects of cannabinoids associated with the integrity of the dorsal visual pathway that plays a role in visual-spatial localization and motion perception....

  8. The Role of the Brain's Endocannabinoid System in Pain and Its Modulation by Stress.

    Corcoran, Louise; Roche, Michelle; Finn, David P

    2015-01-01

    Stress has a complex, bidirectional modulatory influence on pain. Stress may either reduce (stress-induced analgesia) or exacerbate (stress-induced hyperalgesia) pain depending on the nature, duration, and intensity of the stressor. The endogenous cannabinoid (endocannabinoid) system is present throughout the neuroanatomical pathways that mediate and modulate responses to painful stimuli. The specific role of the endocannabinoid system in the brain in pain and the modulation of pain by stress is reviewed herein. We first provide a brief overview of the endocannabinoid system, followed by a review of the evidence that the brain's endocannabinoid system modulates pain. We provide a comprehensive evaluation of the role of the endocannabinoid system supraspinally, and particularly in the rostral ventromedial medulla, periaqueductal gray, amygdala, and prefrontal cortex, in pain, stress-induced analgesia, and stress-induced hyperalgesia. Increased understanding of endocannabinoid-mediated regulation of pain and its modulation by stress will inform the development of novel therapeutic approaches for pain and its comorbidity with stress-related disorders. © 2015 Elsevier Inc. All rights reserved.

  9. Metabolism of the Endocannabinoid Anandamide: Open Questions after 25 Years

    Mauro Maccarrone

    2017-05-01

    Full Text Available Cannabis extracts have been used for centuries, but its main active principle ∆9-tetrahydrocannabinol (THC was identified about 50 years ago. Yet, it is only 25 years ago that the first endogenous ligand of the same receptors engaged by the cannabis agents was discovered. This “endocannabinoid (eCB” was identified as N-arachidonoylethanolamine (or anandamide (AEA, and was shown to have several receptors, metabolic enzymes and transporters that altogether drive its biological activity. Here I report on the latest advances about AEA metabolism, with the aim of focusing open questions still awaiting an answer for a deeper understanding of AEA activity, and for translating AEA-based drugs into novel therapeutics for human diseases.

  10. Marijuana, the Endocannabinoid System and the Female Reproductive System.

    Brents, Lisa K

    2016-06-01

    Marijuana use among women is highly prevalent, but the societal conversation on marijuana rarely focuses on how marijuana affects female reproduction and endocrinology. This article reviews the current scientific literature regarding marijuana use and hypothalamic-pituitary-ovarian (HPO) axis regulation, ovarian hormone production, the menstrual cycle, and fertility. Evidence suggests that marijuana can reduce female fertility by disrupting hypothalamic release of gonadotropin releasing hormone (GnRH), leading to reduced estrogen and progesterone production and anovulatory menstrual cycles. Tolerance to these effects has been shown in rhesus monkeys, but the effects of chronic marijuana use on human female reproduction are largely unknown. Marijuana-induced analgesia, drug reinforcement properties, tolerance, and dependence are influenced by ovarian hormones, with estrogen generally increasing and progesterone decreasing sensitivity to marijuana. Carefully controlled regulation of the Endocannabinoid System (ECS) is required for successful reproduction, and the exogenous cannabinoids in marijuana may disrupt the delicate balance of the ECS in the female reproductive system.

  11. Endocannabinoid system in cardiovascular disorders - new pharmacotherapeutic opportunities

    Pedro Cunha

    2011-01-01

    Full Text Available The long history of Cannabis sativa had its development stimulated and oriented for medicine after the discovery and chemical characterization of its main active ingredient, the 9-tetrahydrocannabinol (9-THC. Consequently, a binding site for 9-THC was identified in rat brains and the first cannabinoid receptor (CB1 was cloned, followed by the CB2 and by the discover of two endogenous agonists: anandamide and 2-arachidonoyl glycerol. Cannabinoid receptors, endocannabinoids and the enzymes that catalyze its synthesis and degradation constitute the endocannabinoid system (ECS, which plays an important role in the cardiovascular system. In vivo experiments with rats have demonstrated the action of anandamide and 2-AG on the development of atherosclerotic plaque, as well as an effect on heart rate, blood pressure, vasoactivity and energy metabolism (action in dyslipidemia and obesity. Recent studies with an antagonist of CB1 receptors showed that the modulation of ECS can play an important role in reducing cardiovascular risk in obese and dyslipidemic patients. Similarly, studies in rats have demonstrated the action of CB2 receptors in adhesion, migration, proliferation and function of immune cells involved in the atherosclerotic plaque formation process. The evidence so far gathered shows that the modulation of ECS (as agonism or antagonism of its receptors is an enormous potential field for research and intervention in multiple areas of human pathophysiology. The development of selective drugs for the CB1 and CB2 receptors may open a door to new therapeutic regimens.This review article aims to address the key findings and evidences on the modulation of ECS, in order to prospect future forms of therapeutic intervention at the cardiovascular level. A recent, emerging, controversial and of undoubted scientific interest subject, which states as a potential therapeutic target to reach in the 21 st century.

  12. Obesity, the endocannabinoid system, and bias arising from pharmaceutical sponsorship.

    John M McPartland

    Full Text Available Previous research has shown that academic physicians conflicted by funding from the pharmaceutical industry have corrupted evidence based medicine and helped enlarge the market for drugs. Physicians made pharmaceutical-friendly statements, engaged in disease mongering, and signed biased review articles ghost-authored by corporate employees. This paper tested the hypothesis that bias affects review articles regarding rimonabant, an anti-obesity drug that blocks the central cannabinoid receptor.A MEDLINE search was performed for rimonabant review articles, limited to articles authored by USA physicians who served as consultants for the company that manufactures rimonabant. Extracted articles were examined for industry-friendly bias, identified by three methods: analysis with a validated instrument for monitoring bias in continuing medical education (CME; analysis for bias defined as statements that ran contrary to external evidence; and a tally of misrepresentations about the endocannabinoid system. Eight review articles were identified, but only three disclosed authors' financial conflicts of interest, despite easily accessible information to the contrary. The Takhar CME bias instrument demonstrated statistically significant bias in all the review articles. Biased statements that were nearly identical reappeared in the articles, including disease mongering, exaggerating rimonabant's efficacy and safety, lack of criticisms regarding rimonabant clinical trials, and speculations about surrogate markers stated as facts. Distinctive and identical misrepresentations regarding the endocannabinoid system also reappeared in articles by different authors.The findings are characteristic of bias that arises from financial conflicts of interest, and suggestive of ghostwriting by a common author. Resolutions for this scenario are proposed.

  13. The Endocannabinoid System as a Target for Treatment of Breast Cancer

    2011-08-01

    cannabinoids with radiation in MCF-7, MDA-MB-231, and 4T1 breast tumor cell lines. Interestingly, the high efficacy synthetic cannabinoid agonist...tumorgenesis in FAAH (-/-) mice vs. wild type mice; and 2) the synthetic cannabinoid receptor agonist WIN55,212-2 in combination with radiation or adriamycin...THC (the primary active psychoactive constituent present in marijuana ), cannabidiol (CBD: a marijuana -derived cannabinoid that lacks psychomimetic

  14. Discriminative Stimulus Properties of the Endocannabinoid Catabolic Enzyme Inhibitor SA-57 in Mice

    Owens, Robert A.; Ignatowska-Jankowska, Bogna; Mustafa, Mohammed; Beardsley, Patrick M.; Wiley, Jenny L.; Jali, Abdulmajeed; Selley, Dana E.; Niphakis, Micah J.; Cravatt, Benjamin F.; Lichtman, Aron H.

    2016-01-01

    Whereas the inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), the respective major hydrolytic enzymes of N-arachidonoyl ethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), elicits no or partial substitution for Δ9-tetrahydrocannabinol (THC) in drug-discrimination procedures, combined inhibition of both enzymes fully substitutes for THC, as well as produces a constellation of cannabimimetic effects. The present study tested whether C57BL/6J mice would learn t...

  15. Brain uptake and metabolism of the endocannabinoid anandamide labeled in either the arachidonoyl or ethanolamine moiety

    Hu, Kun; Sonti, Shilpa; Glaser, Sherrye T.; Duclos, Richard I.; Gatley, Samuel J.

    2017-01-01

    Introduction: Anandamide (N-arachidonoylethanolamine) is a retrograde neuromodulator that activates cannabinoid receptors. The concentration of anandamide in the brain is controlled by fatty acid amide hydrolase (FAAH), which has been the focus of recent drug discovery efforts. Previous studies in C57BL/6 mice using [ 3 H-arachidonoyl]anandamide demonstrated deposition of tritium in thalamus and cortical areas that was blocked by treatment with an FAAH inhibitor and that was not seen in FAAH-knockout mice. This suggested that long chain fatty acid amides radiolabeled in the fatty acid moiety might be useful as ex vivo and in vivo radiotracers for FAAH, since labeled fatty acid released by hydrolysis would be rapidly incorporated into phospholipids with long metabolic turnover periods. Methods: Radiotracers were administered intravenously to conscious Swiss–Webster mice, and radioactivity concentrations in brain areas was quantified and radiolabeled metabolites determined by radiochromatography. Results: [ 14 C]Arachidonic acid, [ 14 C-arachidonoyl]anandamide and [ 14 C-ethanolamine]anandamide, and also [ 14 C]myristic acid, [ 14 C-myristoyl]myristoylethanolamine and [ 14 C-ethanolamine]myristoyl-ethanolamine all had very similar distribution patterns, with whole brain radioactivity concentrations of 2–4% injected dose per gram. Pretreatment with the potent selective FAAH inhibitor URB597 did not significantly alter distribution patterns although radiochromatography demonstrated that the rate of incorporation of label from [ 14 C]anandamide into phospholipids was decreased. Pretreatment with the muscarinic agonist arecoline which increases cerebral perfusion increased brain uptake of radiolabel from [ 14 C]arachidonic acid and [ 14 C-ethanolamine]anandamide, and (in dual isotope studies) from the unrelated tracer [ 125 I]RTI-55. Conclusions: Together with our previously published study with [ 18 F-palmitoyl]16-fluoro-palmitoylethanolamine, the data show that the

  16. The Endocannabinoid System in the Postimplantation Period: A Role during Decidualization and Placentation

    B. M. Fonseca

    2013-01-01

    Full Text Available Although the detrimental effects of cannabis consumption during gestation are known for years, the vast majority of studies established a link between cannabis consumption and foetal development. The complex maternal-foetal interrelationships within the placental bed are essential for normal pregnancy, and decidua definitively contributes to the success of this process. Nevertheless, the molecular signalling network that coordinates strategies for successful decidualization and placentation are not well understood. The discovery of the endocannabinoid system highlighted new signalling mediators in various physiological processes, including reproduction. It is known that endocannabinoids present regulatory functions during blastocyst development, oviductal transport, and implantation. In addition, all the endocannabinoid machinery was found to be expressed in decidual and placental tissues. Additionally, endocannabinoid’s plasmatic levels were found to fluctuate during normal gestation and to induce decidual cell death and disturb normal placental development. Moreover, aberrant endocannabinoid signalling during the period of placental development has been associated with pregnancy disorders. It indicates the existence of a possible regulatory role for these molecules during decidualization and placentation processes, which are known to be particularly vulnerable. In this review, the influence of the endocannabinoid system in these critical processes is explored and discussed.

  17. Endocannabinoid antagonism: blocking the excess in the treatment of high-risk abdominal obesity.

    Duffy, Danielle; Rader, Daniel

    2007-02-01

    Abdominal obesity is a prevalent, worldwide problem linked to cardiometabolic comorbidities and an increased risk of coronary heart disease. First-line therapy to reduce such risk revolves around diet and exercise; however, such changes are often difficult to implement and unsuccessful. Understanding the underlying pathophysiology of underlying metabolic derangements could provide new targets for pharmacologic therapy. One system that has gained recent attention is the endocannabinoid system. The endocannabinoid system has a significant role in central appetite control and peripheral lipogenesis and is up-regulated in diet-induced obesity. Rimonabant is a selective cannabinoid-1 receptor antagonist and is the first compound of its type to test the hypothesis that down-regulating an overactive endocannabinoid system could have therapeutic benefit not only for weight loss but also for the atherogenic dyslipidemia and insulin resistance that cluster with abdominal obesity in particular. Animal models have been critical for elucidating the role of the endocannabinoid system in obesity and in demonstrating that antagonism with rimonabant can induce loss of visceral fat and improve insulin sensitivity. Early human trials with rimonabant have confirmed significant reductions in weight, as well as favorable changes in atherogenic dyslipidemia, insulin resistance, and markers of inflammation. Interestingly, some of these beneficial metabolic effects are partially weight-loss-independent, confirming the importance of peripheral endocannabinoid system effects in addition to central effects.

  18. Fatty Acid Modulation of the Endocannabinoid System and the Effect on Food Intake and Metabolism

    Shaan S. Naughton

    2013-01-01

    Full Text Available Endocannabinoids and their G-protein coupled receptors (GPCR are a current research focus in the area of obesity due to the system’s role in food intake and glucose and lipid metabolism. Importantly, overweight and obese individuals often have higher circulating levels of the arachidonic acid-derived endocannabinoids anandamide (AEA and 2-arachidonoyl glycerol (2-AG and an altered pattern of receptor expression. Consequently, this leads to an increase in orexigenic stimuli, changes in fatty acid synthesis, insulin sensitivity, and glucose utilisation, with preferential energy storage in adipose tissue. As endocannabinoids are products of dietary fats, modification of dietary intake may modulate their levels, with eicosapentaenoic and docosahexaenoic acid based endocannabinoids being able to displace arachidonic acid from cell membranes, reducing AEA and 2-AG production. Similarly, oleoyl ethanolamide, a product of oleic acid, induces satiety, decreases circulating fatty acid concentrations, increases the capacity for β-oxidation, and is capable of inhibiting the action of AEA and 2-AG in adipose tissue. Thus, understanding how dietary fats alter endocannabinoid system activity is a pertinent area of research due to public health messages promoting a shift towards plant-derived fats, which are rich sources of AEA and 2-AG precursor fatty acids, possibly encouraging excessive energy intake and weight gain.

  19. Expression and Function of the Endocannabinoid System in the Retina and the Visual Brain

    Jean-François Bouchard

    2016-01-01

    Full Text Available Endocannabinoids are important retrograde modulators of synaptic transmission throughout the nervous system. Cannabinoid receptors are seven transmembrane G-protein coupled receptors favoring Gi/o protein. They are known to play an important role in various processes, including metabolic regulation, craving, pain, anxiety, and immune function. In the last decade, there has been a growing interest for endocannabinoids in the retina and their role in visual processing. The purpose of this review is to characterize the expression and physiological functions of the endocannabinoid system in the visual system, from the retina to the primary visual cortex, with a main interest regarding the retina, which is the best-described area in this system so far. It will show that the endocannabinoid system is widely present in the retina, mostly in the through pathway where it can modulate neurotransmitter release and ion channel activity, although some evidence also indicates possible mechanisms via amacrine, horizontal, and Müller cells. The presence of multiple endocannabinoid ligands, synthesizing and catabolizing enzymes, and receptors highlights various pharmacological targets for novel therapeutic application to retinal diseases.

  20. Endocannabinoids shape accumbal encoding of cue-motivated behavior via CB1 receptor activation in the ventral tegmentum.

    Oleson, Erik B; Beckert, Michael V; Morra, Joshua T; Lansink, Carien S; Cachope, Roger; Abdullah, Rehab A; Loriaux, Amy L; Schetters, Dustin; Pattij, Tommy; Roitman, Mitchell F; Lichtman, Aron H; Cheer, Joseph F

    2012-01-26

    Transient increases in nucleus accumbens (NAc) dopamine concentration are observed when animals are presented with motivationally salient stimuli and are theorized to energize reward seeking. They arise from high-frequency firing of dopamine neurons in the ventral tegmental area (VTA), which also results in the release of endocannabinoids from dopamine cell bodies. In this context, endocannabinoids are thought to regulate reward seeking by modulating dopamine signaling, although a direct link has never been demonstrated. To test this, we pharmacologically manipulated endocannabinoid neurotransmission in the VTA while measuring transient changes in dopamine concentration in the NAc during reward seeking. Disrupting endocannabinoid signaling dramatically reduced, whereas augmenting levels of the endocannabinoid 2-arachidonoylglycerol (2AG) increased, cue-evoked dopamine concentrations and reward seeking. These data suggest that 2AG in the VTA regulates reward seeking by sculpting ethologically relevant patterns of dopamine release during reward-directed behavior. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Impact of cannabis, cannabinoids and endocannabinoids in the lungs

    Caroline Turcotte

    2016-09-01

    Full Text Available Since the identification of cannabinoid receptors in the 1990s, a research field has been dedicated to exploring the role of the cannabinoid system in immunity and the inflammatory response in human tissues and animal models. Although the cannabinoid system is present and crucial in many human tissues, studying the impact of cannabinoids on the lungs is particularly relevant because of their contact with exogenous cannabinoids is the context of marijuana consumption. In the past two decades, the scientific community has gathered a large body of evidence supporting that the activation of the cannabinoid system alleviates pain and reduces inflammation. In the context of lung inflammation, exogenous and endogenous cannabinoids have shown therapeutic potential because of their inhibitory effects on immune cell recruitment and functions. On the other hand, cannabinoids were shown to be deleterious to lung function and to impact respiratory pathogen clearance. In this review, we present the existing data on the regulation of lung immunity and inflammation by phytocannabinoids, synthetic cannabinoids and endocannabinoids.

  2. Pharmacology and toxicology of Cannabis derivatives and endocannabinoid agonists.

    Gerra, Gilberto; Zaimovic, Amir; Gerra, Maria L; Ciccocioppo, Roberto; Cippitelli, Andrea; Serpelloni, Giovanni; Somaini, Lorenzo

    2010-01-01

    For centuries Cannabis sativa and cannabis extracts have been used in natural medicine. Delta(9)-tetrahydrocannabinol (THC) is the main active ingredient of Cannabis. THC seems to be responsible for most of the pharmacological and therapeutic actions of cannabis. In a few countries THC extracts (i.e. Sativex) or THC derivatives such as nabilone, and dronabinol are used in the clinic for the treatment of several pathological conditions like chemotherapy-induced nausea and vomiting, multiple sclerosis and glaucoma. On the other hand the severe side effects and the high abuse liability of these agents represent a serious limitation in their medical use. In addition, diversion in the use of these active ingredients for recreational purpose is a concern. Over recent years, alternative approaches using synthetic cannabinoid receptor agonists or agents acting as activators of the endocannabinoid systems are under scrutiny with the hope to develop more effective and safer clinical applications. Likely, in the near future few of these new molecules will be available for clinical use. The present article review recent study and patents with focus on the cannabinoid system as a target for the treatment of central nervous system disorders with emphasis on agonists.

  3. Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: impact on apelin regulation in adipose tissue

    Lucie eGeurts

    2011-07-01

    Full Text Available Growing evidence supports the role of gut microbiota in the development of obesity, type 2 diabetes and low-grade inflammation. The endocrine activity of adipose tissue has been found to contribute to the regulation of glucose homeostasis and low-grade inflammation. Among the key hormones produced by this tissue, apelin has been shown to regulate glucose homeostasis. Recently, it has been proposed that gut microbiota participate in adipose tissue metabolism via the endocannabinoid system and gut microbiota-derived compounds, namely lipopolysaccharide (LPS. We have investigated gut microbiota composition in obese and diabetic leptin-resistant mice (db/db by combining pyrosequencing and phylogenetic microarray analysis of 16S ribosomal RNA gene sequences. We observed a significant higher abundance of Firmicutes, Proteobacteria and Fibrobacteres phyla in db/db mice compared to lean mice. The abundance of 10 genera was significantly affected by the genotype. We identified the roles of the endocannabinoid system and LPS in the regulation of apelinergic system tone (apelin and APJ mRNA expression in genetic obese and diabetic mice. By using in vivo and in vitro models, we have demonstrated that both the endocannabinoid system and low-grade inflammation differentially regulate apelin and APJ mRNA expression in adipose tissue. Finally, deep-gut microbiota profiling revealed that the gut microbial community of type 2 diabetic mice is significantly different from that of their lean counterparts. This indicates specific relationships between the gut microbiota and the regulation of the apelinergic system. However, the exact roles of specific bacteria in shaping the phenotype of db/db mice remain to be determined.

  4. Endocannabinoid system and drug addiction: new insights from mutant mice approaches.

    Maldonado, Rafael; Robledo, Patricia; Berrendero, Fernando

    2013-08-01

    The involvement of the endocannabinoid system in drug addiction was initially studied by the use of compounds with different affinities for each cannabinoid receptor or for the proteins involved in endocannabinoids inactivation. The generation of genetically modified mice with selective mutations in these endocannabinoid system components has now provided important advances in establishing their specific contribution to drug addiction. These genetic tools have identified the particular interest of CB1 cannabinoid receptor and endogenous anandamide as potential targets for drug addiction treatment. Novel genetic tools will allow determining if the modulation of CB2 cannabinoid receptor activity and 2-arachidonoylglycerol tone can also have an important therapeutic relevance for drug addiction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Alternative Argets Within the Endocannabinoid System for Future Treatment of Gastrointestinal Diseases

    Rudolf Schicho

    2011-01-01

    Full Text Available Many beneficial effects of herbal and synthetic cannabinoids on gut motility and inflammation have been demonstrated, suggesting a vast potential for these compounds in the treatment of gastrointestinal disorders. These effects are based on the so-called ‘endocannabinoid system’ (ECS, a cooperating network of molecules that regulate the metabolism of the body’s own and of exogenously administered cannabinoids. The ECS in the gastrointestinal tract quickly responds to homeostatic disturbances by de novo synthesis of its components to maintain homeostasis, thereby offering many potential targets for pharmacological intervention. Of major therapeutic interest are nonpsychoactive cannabinoids or compounds that do not directly target cannabinoid receptors but still possess cannabinoid-like properties. Drugs that inhibit endocannabinoid degradation and raise the level of endocannabinoids are becoming increasingly promising alternative therapeutic tools to manipulate the ECS.

  6. Effects of C358A missense polymorphism of the endocannabinoid degrading enzyme fatty acid amide hydrolase on weight loss after a hypocaloric diet.

    de Luis, Daniel Antonio; Gonzalez Sagrado, Manuel; Aller, Rocio; Izaola, Olatz; Conde, Rosa

    2011-05-01

    The Pro129THr, C385A, polymorphism of FAAH gene (rs324420C>A) has been associated with overweight and obesity. We investigate the role of this polymorphism on anthropometric and metabolic responses to a weight loss program. Obese individuals (n = 122) were assessed at baseline and after 3 months of a hypocaloric diet. There were 76.2% (n = 93) homozygotes for the C allele, 23.8% (n = 27) AC heterozygotes, and 1.6% (n = 2) homozygotes for the A allele. After the dietary intervention, all individuals decreased their body weight (in kilograms), body mass index (in kilograms per square meter), fat mass (in kilograms), waist circumference (in centimeters), and systolic blood pressure (in millimeters of mercury). In mutant-type group, the decrease in weight was 3.5 ± 3.6 kg (decrease in wild-type group, 2.4 ± 3.8 kg); and the decrease in waist circumference was 5.4 ± 6.4 cm (decrease in wild-type group, 2.6 ± 4.8 cm). Individuals with the A/C or AA genotype had a significant reduction (P < .05) in glucose (96.5 ± 12.5 vs 92.3 ± 10.5 mg/dL; difference, 2.68 ± 1.81 mg/dL), total cholesterol (215.3 ± 49 vs 193.3 ± 27.6 mg/dL; difference, 14.31 ± 7.21 mg/dL), and low-density lipoprotein cholesterol (133.6 ± 53 vs 106.7 ± 39.2 mg/dL; difference, 15.87 ± 9.61 mg/dL) levels. The A allele at rs324420 in the FAAH gene was associated with larger improvements in glucose, total cholesterol, low-density lipoprotein cholesterol, body mass, and waist circumference after a dietary intervention. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Care and feeding of the endocannabinoid system: a systematic review of potential clinical interventions that upregulate the endocannabinoid system.

    McPartland, John M; Guy, Geoffrey W; Di Marzo, Vincenzo

    2014-01-01

    The "classic" endocannabinoid (eCB) system includes the cannabinoid receptors CB1 and CB2, the eCB ligands anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and their metabolic enzymes. An emerging literature documents the "eCB deficiency syndrome" as an etiology in migraine, fibromyalgia, irritable bowel syndrome, psychological disorders, and other conditions. We performed a systematic review of clinical interventions that enhance the eCB system--ways to upregulate cannabinoid receptors, increase ligand synthesis, or inhibit ligand degradation. We searched PubMed for clinical trials, observational studies, and preclinical research. Data synthesis was qualitative. Exclusion criteria limited the results to 184 in vitro studies, 102 in vivo animal studies, and 36 human studies. Evidence indicates that several classes of pharmaceuticals upregulate the eCB system, including analgesics (acetaminophen, non-steroidal anti-inflammatory drugs, opioids, glucocorticoids), antidepressants, antipsychotics, anxiolytics, and anticonvulsants. Clinical interventions characterized as "complementary and alternative medicine" also upregulate the eCB system: massage and manipulation, acupuncture, dietary supplements, and herbal medicines. Lifestyle modification (diet, weight control, exercise, and the use of psychoactive substances--alcohol, tobacco, coffee, cannabis) also modulate the eCB system. Few clinical trials have assessed interventions that upregulate the eCB system. Many preclinical studies point to other potential approaches; human trials are needed to explore these promising interventions.

  8. Care and feeding of the endocannabinoid system: a systematic review of potential clinical interventions that upregulate the endocannabinoid system.

    John M McPartland

    Full Text Available The "classic" endocannabinoid (eCB system includes the cannabinoid receptors CB1 and CB2, the eCB ligands anandamide (AEA and 2-arachidonoylglycerol (2-AG, and their metabolic enzymes. An emerging literature documents the "eCB deficiency syndrome" as an etiology in migraine, fibromyalgia, irritable bowel syndrome, psychological disorders, and other conditions. We performed a systematic review of clinical interventions that enhance the eCB system--ways to upregulate cannabinoid receptors, increase ligand synthesis, or inhibit ligand degradation.We searched PubMed for clinical trials, observational studies, and preclinical research. Data synthesis was qualitative. Exclusion criteria limited the results to 184 in vitro studies, 102 in vivo animal studies, and 36 human studies. Evidence indicates that several classes of pharmaceuticals upregulate the eCB system, including analgesics (acetaminophen, non-steroidal anti-inflammatory drugs, opioids, glucocorticoids, antidepressants, antipsychotics, anxiolytics, and anticonvulsants. Clinical interventions characterized as "complementary and alternative medicine" also upregulate the eCB system: massage and manipulation, acupuncture, dietary supplements, and herbal medicines. Lifestyle modification (diet, weight control, exercise, and the use of psychoactive substances--alcohol, tobacco, coffee, cannabis also modulate the eCB system.Few clinical trials have assessed interventions that upregulate the eCB system. Many preclinical studies point to other potential approaches; human trials are needed to explore these promising interventions.

  9. Endocannabinoids: Multi-scaled, Global Homeostatic Regulators of Cells and Society

    Melamede, Robert

    Living systems are far from equilibrium open systems that exhibit many scales of emergent behavior. They may be abstractly viewed as a complex weave of dissipative structures that maintain organization by passing electrons from reduced hydrocarbons to oxygen. Free radicals are unavoidable byproducts of biological electron flow. Due to their highly reactive chemical properties, free radicals modify all classes of biological molecules (carbohydrates, lipids, nucleic acids, and proteins). As a result, free radicals are destructive. The generally disruptive nature of free radicals makes them the "friction of life." As such, they are believed to be the etiological agents behind age related illnesses such as cardiovascular, immunological, and neurological diseases, cancer, and ageing itself. Free radicals also play a critical constructive role in living systems. From a thermodynamic perspective, life can only exist if a living system takes in sufficient negative entropy from its environment to overcome the obligatory increase in entropy that would result if the system could not appropriately exchange mass, energy and information with its environment. Free radicals are generated in response to perturbations in the relationship between a living system and its environment. However, evolution has selected for biological response systems to free radicals so that the cellular biochemistry can adapt to environmental perturbations by modifying cellular gene expression and biochemistry. Endocannabinoids are marijuana-like compounds that have their origins hundreds of millions of years in the evolutionary past. They serve as fundamental modulators of energy homeostasis in all vertebrates. Their widespread biological activities may often be attributed to their ability to minimize the negative consequences of free radicals.

  10. Neurobiological Interactions Between Stress and the Endocannabinoid System.

    Morena, Maria; Patel, Sachin; Bains, Jaideep S; Hill, Matthew N

    2016-01-01

    Stress affects a constellation of physiological systems in the body and evokes a rapid shift in many neurobehavioral processes. A growing body of work indicates that the endocannabinoid (eCB) system is an integral regulator of the stress response. In the current review, we discuss the evidence to date that demonstrates stress-induced regulation of eCB signaling and the consequential role changes in eCB signaling have with respect to many of the effects of stress. Across a wide array of stress paradigms, studies have generally shown that stress evokes bidirectional changes in the two eCB molecules, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), with stress exposure reducing AEA levels and increasing 2-AG levels. Additionally, in almost every brain region examined, exposure to chronic stress reliably causes a downregulation or loss of cannabinoid type 1 (CB1) receptors. With respect to the functional role of changes in eCB signaling during stress, studies have demonstrated that the decline in AEA appears to contribute to the manifestation of the stress response, including activation of the hypothalamic-pituitary-adrenal (HPA) axis and increases in anxiety behavior, while the increased 2-AG signaling contributes to termination and adaptation of the HPA axis, as well as potentially contributing to changes in pain perception, memory and synaptic plasticity. More so, translational studies have shown that eCB signaling in humans regulates many of the same domains and appears to be a critical component of stress regulation, and impairments in this system may be involved in the vulnerability to stress-related psychiatric conditions, such as depression and posttraumatic stress disorder. Collectively, these data create a compelling argument that eCB signaling is an important regulatory system in the brain that largely functions to buffer against many of the effects of stress and that dynamic changes in this system contribute to different aspects of the stress response.

  11. The Endocannabinoid System: A Dynamic Signalling System at the Crossroads Between Metabolism and Disease

    Witkamp, R.F.

    2014-01-01

    The discovery of the endocannabinoid system (ECS) in the early 1990s of last century generated high expectations of new therapeutic opportunities. Its central role and pleiotropic character seemed to offer promising indications in the fields of pain, inflammation, CNS disorders, weight management

  12. Caloric restriction lowers endocannabinoid tonus and improves cardiac function in type 2 diabetes

    Eyk, van H.J.; Schinkel, van L.D.; Kantae, V.; Dronkers, C.E.A.; Westenberg, J.J.M.; Roos, de A.; Lamb, H.J.; Jukema, J.W.; Harms, A.C.; Hankemeier, T.; Stelt, van der M.; Jazet, I.M.; Rensen, P.C.N.; Smit, J.W.A.

    2018-01-01

    Background/ObjectivesEndocannabinoids (ECs) are associated with obesity and ectopic fat accumulation, both of which play a role in the development of cardiovascular disease (CVD) in type 2 diabetes (T2D). The effect of prolonged caloric restriction on ECs in relation to fat distribution and cardiac

  13. Behavioral and electrophysiological effects of endocannabinoid and dopaminergic systems on salient stimuli

    Daniela eLaricchiuta

    2014-05-01

    Full Text Available Rewarding effects have been related to enhanced dopamine (DA release in corticolimbic and basal ganglia structures. The DAergic and endocannabinoid interaction in the responses to reward is described. This study investigated the link between endocannabinoid and DAergic transmission in the processes that are related to response to two types of reward, palatable food and novelty. Mice treated with drugs acting on endocannabinoid system (ECS (URB597, AM251 or DAergic system (haloperidol were submitted to approach-avoidance conflict tasks with palatable food or novelty. In the same mice, the cannabinoid type-1 (CB1-mediated GABAergic transmission in medium spiny neurons of the dorsomedial striatum was analyzed. The endocannabinoid potentiation by URB597 magnified approach behavior for reward (food and novelty and in parallel inhibited dorsostriatal GABAergic neurotransmission. The decreased activity of CB1 receptor by AM251 (alone or with URB597 or of DAergic D2 receptor by haloperidol had inhibitory effects toward the reward and did not permit the inhibition of dorsostriatal GABAergic transmission. When haloperidol was coadministered with URB597, a restoration effect on reward and reward-dependent motor activity was observed, only if the reward was the palatable food. In parallel, the coadministration led to restoring inhibition of CB1-mediated GABAergic transmission. Thus, in the presence of simultaneous ECS activation and inhibition of DAergic system the response to reward appears to be a stimulus-dependent manner.

  14. Endocannabinoid Signaling in Motivation, Reward, and Addiction: Influences on Mesocorticolimbic Dopamine Function.

    Sagheddu, Claudia; Muntoni, Anna Lisa; Pistis, Marco; Melis, Miriam

    2015-01-01

    Evidence suggests that the endocannabinoid system has been conserved in the animal kingdom for 500 million years, and this system influences many critical behavioral processes including associative learning, reward signaling, goal-directed behavior, motor skill learning, and action-habit transformation. Additionally, the neurotransmitter dopamine has long been recognized to play a critical role in the processing of natural rewards, as well as of motivation that regulates approach and avoidance behavior. This motivational role of dopamine neurons is also based upon the evidence provided by several studies investigating disorders of dopamine pathways such as drug addiction and Parkinson's disease. From an evolutionary point of view, individuals engage in behaviors aimed at maximizing and minimizing positive and aversive consequences, respectively. Accordingly, those with the greatest fitness have a better potential to survival. Hence, deviations from fitness can be viewed as a part of the evolutionary process by means of natural selection. Given the long evolutionary history of both the endocannabinoid and dopaminergic systems, it is plausible that they must serve as fundamental and basic modulators of physiological functions and needs. Notably, endocannabinoids regulate dopamine neuronal activity and its influence on behavioral output. The goal of this chapter is to examine the endocannabinoid influence on dopamine signaling specifically related to (i) those behavioral processes that allow us to successfully adapt to ever-changing environments (i.e., reward signaling and motivational processes) and (ii) derangements from behavioral flexibility that underpin drug addiction. © 2015 Elsevier Inc. All rights reserved.

  15. Stress Response Recruits the Hippocampal Endocannabinoid System for the Modulation of Fear Memory

    Alvares, Lucas de Oliveira; Engelke, Douglas Senna; Diehl, Felipe; Scheffer-Teixeira, Robson; Haubrich, Josue; Cassini, Lindsey de Freitas; Molina, Victor Alejandro; Quillfeldt, Jorge Alberto

    2010-01-01

    The modulation of memory processes is one of the several functions of the endocannabinoid system (ECS) in the brain, with CB1 receptors highly expressed in areas such as the dorsal hippocampus. Experimental evidence suggested an important role of the ECS in aversively motivated memories. Similarly, glucocorticoids released in response to stress…

  16. Role of the endocannabinoid system in human brain functions relevant for psychiatric disorders

    Bossong, M.G.

    2012-01-01

    Impaired cognitive function is a fundamental characteristic of many psychiatric and neurological disorders such as schizophrenia or Alzheimer’s disease. The endocannabinoid (eCB) system, consisting of cannabinoid receptors and accompanying ligands, has been implicated in these disorders. In

  17. Prenatal cannabis exposure - The "first hit" to the endocannabinoid system.

    Richardson, Kimberlei A; Hester, Allison K; McLemore, Gabrielle L

    As more states and countries legalize medical and/or adult recreational marijuana use, the incidences of prenatal cannabis exposure (PCE) will likely increase. While young people increasingly view marijuana as innocuous, marijuana preparations have been growing in potency in recent years, potentially creating global clinical, public health, and workforce concerns. Unlike fetal alcohol spectrum disorder, there is no phenotypic syndrome associated with PCE. There is also no preponderance of evidence that PCE causes lifelong cognitive, behavioral, or functional abnormalities, and/or susceptibility to subsequent addiction. However, there is compelling circumstantial evidence, based on the principles of teratology and fetal malprogramming, suggesting that pregnant women should refrain from smoking marijuana. The usage of marijuana during pregnancy perturbs the fetal endogenous cannabinoid signaling system (ECSS), which is present and active from the early embryonic stage, modulating neurodevelopment and continuing this role into adulthood. The ECSS is present in virtually every brain structure and organ system, and there is also evidence that this system is important in the regulation of cardiovascular processes. Endocannabinoids (eCBs) undergird a broad spectrum of processes, including the early stages of fetal neurodevelopment and uterine implantation. Delta-9-tetrahydrocannabinol (THC), the psychoactive chemical in cannabis, enters maternal circulation, and readily crosses the placental membrane. THC binds to CB receptors of the fetal ECSS, altering neurodevelopment and possibly rewiring ECSS circuitry. In this review, we discuss the Double-Hit Hypothesis as it relates to PCE. We contend that PCE, similar to a neurodevelopmental teratogen, delivers the first hit to the ECSS, which is compromised in such a way that a second hit (i.e., postnatal stressors) will precipitate the emergence of a specific phenotype. In summary, we conclude that perturbations of the

  18. The endocannabinoid system in canine Steroid-Responsive Meningitis-Arteritis and Intraspinal Spirocercosis.

    Freundt-Revilla, Jessica; Heinrich, Franciska; Zoerner, Alexander; Gesell, Felix; Beyerbach, Martin; Shamir, Merav; Oevermann, Anna; Baumgärtner, Wolfgang; Tipold, Andrea

    2018-01-01

    Endocannabinoids (ECs) are involved in immunomodulation, neuroprotection and control of inflammation in the central nervous system (CNS). Activation of cannabinoid type 2 receptors (CB2) is known to diminish the release of pro-inflammatory factors and enhance the secretion of anti-inflammatory cytokines. Furthermore, the endocannabinoid 2-arachidonoyl glycerol (2-AG) has been proved to induce the migration of eosinophils in a CB2 receptor-dependent manner in peripheral blood and activate neutrophils independent of CB activation in humans. The aim of the current study was to investigate the influence of the endocannabinoid system in two different CNS inflammatory diseases of the dog, i.e. Steroid-Responsive Meningitis-Arteritis (SRMA) and Intraspinal Spirocercosis (IS). The two main endocannabinoids, anandamide (AEA) and 2-AG, were quantified by mass spectrometry in CSF and serum samples of dogs affected with Steroid- Responsive Meningitis-Arteritis in the acute phase (SRMA A), SRMA under treatment with prednisolone (SRMA Tr), intraspinal Spirocercosis and healthy dogs. Moreover, expression of the CB2 receptor was evaluated in inflammatory lesions of SRMA and IS and compared to healthy controls using immunohistochemistry (IHC). Dogs with SRMA A showed significantly higher concentrations of total AG and AEA in serum in comparison to healthy controls and in CSF compared to SRMA Tr (p<0.05). Furthermore, dogs with IS displayed the highest ECs concentrations in CSF, being significantly higher than in CSF samples of dogs with SRMA A (p<0.05). CSF samples that demonstrated an eosinophilic pleocytosis had the highest levels of ECs, exceeding those with neutrophilic pleocytosis, suggesting that ECs have a major effect on migration of eosinophils in the CSF. Furthermore, CB2 receptor expression was found in glial cells in the spinal cord of healthy dogs, whereas in dogs with SRMA and IS, CB2 was strongly expressed not only in glial cells but also on the cellular surface of

  19. The endocannabinoid system in canine Steroid-Responsive Meningitis-Arteritis and Intraspinal Spirocercosis.

    Jessica Freundt-Revilla

    Full Text Available Endocannabinoids (ECs are involved in immunomodulation, neuroprotection and control of inflammation in the central nervous system (CNS. Activation of cannabinoid type 2 receptors (CB2 is known to diminish the release of pro-inflammatory factors and enhance the secretion of anti-inflammatory cytokines. Furthermore, the endocannabinoid 2-arachidonoyl glycerol (2-AG has been proved to induce the migration of eosinophils in a CB2 receptor-dependent manner in peripheral blood and activate neutrophils independent of CB activation in humans. The aim of the current study was to investigate the influence of the endocannabinoid system in two different CNS inflammatory diseases of the dog, i.e. Steroid-Responsive Meningitis-Arteritis (SRMA and Intraspinal Spirocercosis (IS. The two main endocannabinoids, anandamide (AEA and 2-AG, were quantified by mass spectrometry in CSF and serum samples of dogs affected with Steroid- Responsive Meningitis-Arteritis in the acute phase (SRMA A, SRMA under treatment with prednisolone (SRMA Tr, intraspinal Spirocercosis and healthy dogs. Moreover, expression of the CB2 receptor was evaluated in inflammatory lesions of SRMA and IS and compared to healthy controls using immunohistochemistry (IHC. Dogs with SRMA A showed significantly higher concentrations of total AG and AEA in serum in comparison to healthy controls and in CSF compared to SRMA Tr (p<0.05. Furthermore, dogs with IS displayed the highest ECs concentrations in CSF, being significantly higher than in CSF samples of dogs with SRMA A (p<0.05. CSF samples that demonstrated an eosinophilic pleocytosis had the highest levels of ECs, exceeding those with neutrophilic pleocytosis, suggesting that ECs have a major effect on migration of eosinophils in the CSF. Furthermore, CB2 receptor expression was found in glial cells in the spinal cord of healthy dogs, whereas in dogs with SRMA and IS, CB2 was strongly expressed not only in glial cells but also on the cellular

  20. Limited Access to a High Fat Diet Alters Endocannabinoid Tone in Female Rats

    Valentina Satta

    2018-02-01

    Full Text Available Emerging evidence suggest an impaired endocannabinoid activity in the pathophysiology of binge eating disorder (BED. Herein, we investigated whether endocannabinoid tone could be modified as a consequence of dietary-induced binge eating in female rats. For this purpose, brain levels of the endocannabinoids anandamide (AEA and 2-arachidonoyl glycerol (2-AG, as well as two endocannabinoid-like lipids, oleoylethanolamide (OEA and palmitoylethanolamide (PEA, were assessed in different brain areas involved in the hedonic feeding (i.e., prefrontal cortex, nucleus accumbens, amygdala, hippocampus, and hypothalamus. The brain density of cannabinoid type-1 receptors (CB1 was also evaluated. Furthermore, we determined plasma levels of leptin, ghrelin, and corticosterone hormones, which are well-known to control the levels of endocannabioids and/or CB1 receptors in the brain. To induce binge eating behavior, rats were subject to an intermittent and limited access to a high fat diet (HFD (margarine. Three experimental groups were used, all with ad libitum access to chow: control (CTRL, with no access to margarine; low restriction (LR, with 2 h margarine access 7 days/week; high restriction (HR, with 2 h margarine access 3 days/week. Bingeing was established when margarine intake in the HR group exceeded that of the LR group. Our results show that, compared to CTRL, AEA significantly decreased in the caudate putamen, amygdala, and hippocampus of HR group. In contrast, 2-AG significantly increased in the hippocampus while OEA decreased in the hypothalamus. Similar to the HR group, AEA and OEA decreased respectively in the amygdala and hypothalamus and 2-AG increased in the hippocampus of LR group. Moreover, LR group also had AEA decreased in the prefrontal cortex and increased in the nucleus accumbens. In both groups we found the same reduction of CB1 receptor density in the prefrontal cortex compared to CTRL. Also, LR and HR groups showed alterations in both

  1. Epigenetic mechanisms associated with addiction-related behavioural effects of nicotine and/or cocaine: implication of the endocannabinoid system.

    Hayase, Tamaki

    2017-10-01

    The addictive use of nicotine (NC) and cocaine (COC) continues to be a major public health problem, and their combined use has been reported, particularly during adolescence. In neural plasticity, commonly induced by NC and COC, as well as behavioural plasticity related to the use of these two drugs, the involvement of epigenetic mechanisms, in which the reversible regulation of gene expression occurs independently of the DNA sequence, has recently been reported. Furthermore, on the basis of intense interactions with the target neurotransmitter systems, the endocannabinoid (ECB) system has been considered pivotal for eliciting the effects of NC or COC. The combined use of marijuana with NC and/or COC has also been reported. This article presents the addiction-related behavioural effects of NC and/or COC, based on the common behavioural/neural plasticity and combined use of NC/COC, and reviews the interacting role of the ECB system. The epigenetic processes inseparable from the effects of NC and/or COC (i.e. DNA methylation, histone modifications and alterations in microRNAs) and the putative therapeutic involvement of the ECB system at the epigenetic level are also discussed.

  2. A Dysregulated Endocannabinoid-Eicosanoid Network Supports Pathogenesis in a Mouse Model of Alzheimer's Disease

    Justin R. Piro

    2012-06-01

    Full Text Available Although inflammation in the brain is meant as a defense mechanism against neurotoxic stimuli, increasing evidence suggests that uncontrolled, chronic, and persistent inflammation contributes to neurodegeneration. Most neurodegenerative diseases have now been associated with chronic inflammation, including Alzheimer's disease (AD. Whether anti-inflammatory approaches can be used to treat AD, however, is a major unanswered question. We recently demonstrated that monoacylglycerol lipase (MAGL hydrolyzes endocannabinoids to generate the primary arachidonic acid pool for neuroinflammatory prostaglandins. In this study, we show that genetic inactivation of MAGL attenuates neuroinflammation and lowers amyloid β levels and plaques in an AD mouse model. We also find that pharmacological blockade of MAGL recapitulates the cytokine-lowering effects through reduced prostaglandin production, rather than enhanced endocannabinoid signaling. Our findings thus reveal a role of MAGL in modulating neuroinflammation and amyloidosis in AD etiology and put forth MAGL inhibitors as a potential next-generation strategy for combating AD.

  3. Translational Evidence for a Role of Endocannabinoids in the Etiology and Treatment of Posttraumatic Stress Disorder

    Neumeister, Alexander; Seidel, Jordan; Ragen, Benjamin J.; Pietrzak, Robert H.

    2014-01-01

    Introduction Posttraumatic stress disorder (PTSD) is a prevalent, chronic, and disabling anxiety disorder that may develop following exposure to a traumatic event. Despite the public health significance of PTSD, relatively little is known about the etiology or pathophysiology of this disorder, and pharmacotherapy development to date has been largely opportunistic instead of mechanism-based. Recently, an accumulating body of evidence has implicated the endocannabinoid system in the etiology of PTSD, and targets within this system are believed to be suitable for treatment development. Methods Herein, we describe evidence from translational studies arguing for the relevance of the endocannabinoid system in the etiology of PTSD. We also show mechanisms relevant for treatment development. Results There is convincing evidence from multiple studies for reduced endocannabinoid availability in PTSD. Brain imaging studies show molecular adaptations with elevated cannabinoid type 1 (CB1) receptor availability in PTSD which is linked to abnormal threat processing and anxious arousal symptoms. Conclusion Of particular relevance is evidence showing reduced levels of the endocannabinoid anandamide and compensatory increase of CB1 receptor availability in PTSD, and an association between increased CB1 receptor availability in the amygdala and abnormal threat processing, as well as increased severity of hyperarousal, but not dysphoric symptomatology, in trauma survivors. Given that hyperarousal symptoms are the key drivers of more disabling aspects of PTSD such as emotional numbing or suicidality, novel, mechanism-based pharmacotherapies that target this particular symptom cluster in patients with PTSD may have utility in mitigating the chronicity and morbidity of the disorder. PMID:25456347

  4. A role for endocannabinoids in viral-induced dyskinetic and convulsive phenomena

    Solbrig, MV; Adrian, R; Baratta, J; Piomelli, D; Giuffrida, A

    2005-01-01

    Dyskinesias and seizures are both medically refractory disorders for which cannabinoid-based treatments have shown early promise as primary or adjunctive therapy. Using the Borna disease (BD) virus rat, an animal model of viral encephalopathy with spontaneous hyperkinetic movements and seizure susceptibility, we identified a key role for endocannabinoids in the maintenance of a balanced tone of activity in extrapyramidal and limbic circuits. BD rats showed significant elevations of the endoca...

  5. A role for endocannabinoids in viral-induced dyskinetic and convulsive phenomena.

    Solbrig, Marylou V; Adrian, Russell; Baratta, Janie; Piomelli, Daniele; Giuffrida, Andrea

    2005-08-01

    Dyskinesias and seizures are both medically refractory disorders for which cannabinoid-based treatments have shown early promise as primary or adjunctive therapy. Using the Borna disease (BD) virus rat, an animal model of viral encephalopathy with spontaneous hyperkinetic movements and seizure susceptibility, we identified a key role for endocannabinoids in the maintenance of a balanced tone of activity in extrapyramidal and limbic circuits. BD rats showed significant elevations of the endocannabinoid anandamide in subthalamic nucleus, a relay nucleus compromised in hyperkinetic disorders. While direct and indirect cannabinoid agonists had limited motor effects in BD rats, abrupt reductions of endocannabinoid tone by the CB1 antagonist SR141716A (0.3 mg/kg, i.p.) caused seizures characterized by myoclonic jerks time-locked to periodic spike/sharp wave discharges on hippocampal electroencephalography. The general opiate antagonist naloxone (NLX) (1 mg/kg, s.c.), another pharmacologic treatment with potential efficacy in dyskinesias or L-DOPA motor complications, produced similar seizures. No changes in anandamide levels in hippocampus and amygdala were found in convulsing NLX-treated BD rats. In contrast, NLX significantly increased anandamide levels in the same areas of normal uninfected animals, possibly protecting against seizures. Pretreatment with the anandamide transport blocker AM404 (20 mg/kg, i.p.) prevented NLX-induced seizures. These findings are consistent with an anticonvulsant role for endocannabinoids, counteracting aberrant firing produced by convulsive agents, and with a functional or reciprocal relation between opioid and cannabinoid tone with respect to limbic convulsive phenomena.

  6. The endocannabinoid transport inhibitor AM404 differentially modulates recognition memory in rats depending on environmental aversiveness

    Campolongo, Patrizia; Ratano, Patrizia; Manduca, Antonia; Scattoni, Maria L.; Palmery, Maura; Trezza, Viviana; Cuomo, Vincenzo

    2012-01-01

    Cannabinoid compounds may influence both emotional and cognitive processes depending on the level of environmental aversiveness at the time of drug administration. However, the mechanisms responsible for these responses remain to be elucidated. The present experiments investigated the effects induced by the endocannabinoid transport inhibitor AM404 (0.5-5 mg/kg, i.p.) on bothemotional and cognitive performances of rats tested in a Spatial Open Field task and subjected to different experimenta...

  7. Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory

    Campolongo, Patrizia; Roozendaal, Benno; Trezza, Viviana; Hauer, Daniela; Schelling, Gustav; McGaugh, James L.; Cuomo, Vincenzo

    2009-01-01

    Extensive evidence indicates that the basolateral complex of the amygdala (BLA) modulates the consolidation of memories for emotionally arousing experiences, an effect that involves the activation of the glucocorticoid system. Because the BLA expresses high densities of cannabinoid CB1 receptors, the present experiments investigated whether the endocannabinoid system in the BLA influences memory consolidation and whether glucocorticoids interact with this system. The CB1 receptor agonist WIN5...

  8. Genetic Disruption of 2-Arachidonoylglycerol Synthesis Reveals a Key Role for Endocannabinoid Signaling in Anxiety Modulation

    Brian C. Shonesy

    2014-12-01

    Full Text Available Summary: Endocannabinoid (eCB signaling has been heavily implicated in the modulation of anxiety and depressive behaviors and emotional learning. However, the role of the most-abundant endocannabinoid 2-arachidonoylglycerol (2-AG in the physiological regulation of affective behaviors is not well understood. Here, we show that genetic deletion of the 2-AG synthetic enzyme diacylglycerol lipase α (DAGLα in mice reduces brain, but not circulating, 2-AG levels. DAGLα deletion also results in anxiety-like and sex-specific anhedonic phenotypes associated with impaired activity-dependent eCB retrograde signaling at amygdala glutamatergic synapses. Importantly, acute pharmacological normalization of 2-AG levels reverses both phenotypes of DAGLα-deficient mice. These data suggest 2-AG deficiency could contribute to the pathogenesis of affective disorders and that pharmacological normalization of 2-AG signaling could represent an approach for the treatment of mood and anxiety disorders. : The role of the primary endogenous cannabinoid 2-AG in mood and anxiety regulation is not well understood. Shonesy et al. show that deletion of a primary 2-AG synthetic enzyme, DAGLα, results in anxiety and sex-specific depressive phenotypes, which can be rapidly reversed by pharmacological normalization of endocannabinoid levels.

  9. Glucocorticoids interact with the hippocampal endocannabinoid system in impairing retrieval of contextual fear memory

    Atsak, Piray; Hauer, Daniela; Campolongo, Patrizia; Schelling, Gustav; McGaugh, James L.; Roozendaal, Benno

    2012-01-01

    There is extensive evidence that glucocorticoid hormones impair the retrieval of memory of emotionally arousing experiences. Although it is known that glucocorticoid effects on memory retrieval impairment depend on rapid interactions with arousal-induced noradrenergic activity, the exact mechanism underlying this presumably nongenomically mediated glucocorticoid action remains to be elucidated. Here, we show that the hippocampal endocannabinoid system, a rapidly activated retrograde messenger system, is involved in mediating glucocorticoid effects on retrieval of contextual fear memory. Systemic administration of corticosterone (0.3–3 mg/kg) to male Sprague–Dawley rats 1 h before retention testing impaired the retrieval of contextual fear memory without impairing the retrieval of auditory fear memory or directly affecting the expression of freezing behavior. Importantly, a blockade of hippocampal CB1 receptors with AM251 prevented the impairing effect of corticosterone on retrieval of contextual fear memory, whereas the same impairing dose of corticosterone increased hippocampal levels of the endocannabinoid 2-arachidonoylglycerol. We also found that antagonism of hippocampal β-adrenoceptor activity with local infusions of propranolol blocked the memory retrieval impairment induced by the CB receptor agonist WIN55,212–2. Thus, these findings strongly suggest that the endocannabinoid system plays an intermediary role in regulating rapid glucocorticoid effects on noradrenergic activity in impairing memory retrieval of emotionally arousing experiences. PMID:22331883

  10. Time-Dependent Vascular Effects of Endocannabinoids Mediated by Peroxisome Proliferator-Activated Receptor Gamma (PPAR

    Saoirse E. O'Sullivan

    2009-01-01

    Full Text Available The aim of the present study was to examine whether endocannabinoids cause PPAR-mediated vascular actions. Functional vascular studies were carried out in rat aortae. Anandamide and N-arachidonoyl-dopamine (NADA, but not palmitoylethanolamide, caused significant vasorelaxation over time (2 hours. Vasorelaxation to NADA, but not anandamide, was inhibited by CB1 receptor antagonism (AM251, 1 M, and vasorelaxation to both anandamide and NADA was inhibited by PPAR antagonism (GW9662, 1 M. Pharmacological inhibition of de novo protein synthesis, nitric oxide synthase, and super oxide dismutase abolished the responses to anandamide and NADA. Removal of the endothelium partly inhibited the vasorelaxant responses to anandamide and NADA. Inhibition of fatty acid amide hydrolase (URB597, 1 M inhibited the vasorelaxant response to NADA, but not anandamide. These data indicate that endocannabinoids cause time-dependent, PPAR-mediated vasorelaxation. Activation of PPAR in the vasculature may represent a novel mechanism by which endocannabinoids are involved in vascular regulation.

  11. Sleep restriction alters plasma endocannabinoids concentrations before but not after exercise in humans.

    Cedernaes, Jonathan; Fanelli, Flaminia; Fazzini, Alessia; Pagotto, Uberto; Broman, Jan-Erik; Vogel, Heike; Dickson, Suzanne L; Schiöth, Helgi B; Benedict, Christian

    2016-12-01

    Following binding to cannabinoid receptors, endocannabinoids regulate a variety of central nervous system processes including appetite and mood. Recent evidence suggests that the systemic release of these lipid metabolites can be altered by acute exercise and that their levels also vary across the 24-h sleep-wake cycle. The present study utilized a within-subject design (involving 16 normal-weight men) to determine whether daytime circulating endocannabinoid concentrations differ following three nights of partial sleep deprivation (4.25-h sleep opportunity, 2:45-7a.m. each night) vs. normal sleep (8.5-h sleep opportunity, 10:30p.m.-7a.m. each night), before and after an acute bout of ergometer cycling in the morning. In addition, subjective hunger and stress were measured. Pre-exercise plasma concentrations of 2-arachidonoylglycerol (2AG) were 80% higher 1.5h after awakening (vs. normal sleep, pexercise (+44%, pexercise-induced rise. Finally, subjective stress was generally lower on the day after three nights of short sleep vs. normal sleep, especially after exercise (pexercise-induced elevations of endocannabinoids appear to be less affected by short sleep duration. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  12. Effect of blockage of the endocannabinoid system by CB(1) antagonism on cardiovascular risk.

    Mach, François; Montecucco, Fabrizio; Steffens, Sabine

    2009-01-01

    The endocannabinoid system is a crucial player in the inflammatory processes underlying atherosclerosis. Recently, basic research studies and animal models have strongly supported the role of the endocannabinoid system not only in the regulation of classical cardiovascular risk factors (including lipid profile and glucose homeostasis), but also in the activation of immune cells and inflammatory mediators. Clinical trials investigating treatment with rimonabant (a selective antagonist of the cannabinoid type 1 receptor) have suggested a beneficial effect of this drug in the management of obesity. Further studies are needed to explore a possible use for rimonabant in treating type 2 diabetes and acute and chronic cardiovascular disease. Despite the slight increase in adverse events (mainly psychiatric), which has led to the recent withdrawal of rimonabant from the market, CB(1) receptor antagonism might represent a very promising therapeutic strategy to reduce the cardiovascular risk. In the present review, we focused on the most important experimental investigations into the role of the endocannabinoid system in atherosclerosis and cardiovascular risk.

  13. The Endocannabinoid System in the Retina: From Physiology to Practical and Therapeutic Applications

    Thomas Schwitzer

    2016-01-01

    Full Text Available Cannabis is one of the most prevalent drugs used in industrialized countries. The main effects of Cannabis are mediated by two major exogenous cannabinoids: ∆9-tetrahydroxycannabinol and cannabidiol. They act on specific endocannabinoid receptors, especially types 1 and 2. Mammals are endowed with a functional cannabinoid system including cannabinoid receptors, ligands, and enzymes. This endocannabinoid signaling pathway is involved in both physiological and pathophysiological conditions with a main role in the biology of the central nervous system. As the retina is a part of the central nervous system due to its embryonic origin, we aim at providing the relevance of studying the endocannabinoid system in the retina. Here, we review the distribution of the cannabinoid receptors, ligands, and enzymes in the retina and focus on the role of the cannabinoid system in retinal neurobiology. This review describes the presence of the cannabinoid system in critical stages of retinal processing and its broad involvement in retinal neurotransmission, neuroplasticity, and neuroprotection. Accordingly, we support the use of synthetic cannabinoids as new neuroprotective drugs to prevent and treat retinal diseases. Finally, we argue for the relevance of functional retinal measures in cannabis users to evaluate the impact of cannabis use on human retinal processing.

  14. Dynamic changes to the endocannabinoid system in models of chronic pain

    Rani Sagar, Devi; Burston, James J.; Woodhams, Stephen G.; Chapman, Victoria

    2012-01-01

    The analgesic effects of cannabinoid ligands, mediated by CB1 receptors are well established. However, the side-effect profile of CB1 receptor ligands has necessitated the search for alternative cannabinoid-based approaches to analgesia. Herein, we review the current literature describing the impact of chronic pain states on the key components of the endocannabinoid receptor system, in terms of regionally restricted changes in receptor expression and levels of key metabolic enzymes that influence the local levels of the endocannabinoids. The evidence that spinal CB2 receptors have a novel role in the modulation of nociceptive processing in models of neuropathic pain, as well as in models of cancer pain and arthritis is discussed. Recent advances in our understanding of the spinal location of the key enzymes that regulate the levels of the endocannabinoid 2-AG are discussed alongside the outcomes of recent studies of the effects of inhibiting the catabolism of 2-AG in models of pain. The complexities of the enzymes capable of metabolizing both anandamide (AEA) and 2-AG have become increasingly apparent. More recently, it has come to light that some of the metabolites of AEA and 2-AG generated by cyclooxygenase-2, lipoxygenases and cytochrome P450 are biologically active and can either exacerbate or inhibit nociceptive signalling. PMID:23108548

  15. Moderate-vigorous physical activity across body mass index in females: moderating effect of endocannabinoids and temperament.

    Fernando Fernández-Aranda

    Full Text Available Endocannabinoids and temperament traits have been linked to both physical activity and body mass index (BMI however no study has explored how these factors interact in females. The aims of this cross-sectional study were to 1 examine differences among distinct BMI groups on daytime physical activity and time spent in moderate-vigorous physical activity (MVPA, temperament traits and plasma endocannabinoid concentrations; and 2 explore the association and interaction between MVPA, temperament, endocannabinoids and BMI.Physical activity was measured with the wrist-worn accelerometer Actiwatch AW7, in a sample of 189 female participants (43 morbid obese, 30 obese, and 116 healthy-weight controls. The Temperament and Character Inventory-Revised questionnaire was used to assess personality traits. BMI was calculated by bioelectrical impedance analysis via the TANITA digital scale. Blood analyses were conducted to measure levels of endocannabinoids and endocannabinoid-related compounds. Path-analysis was performed to examine the association between predictive variables and MVPA.Obese groups showed lower MVPA and dysfunctional temperament traits compared to healthy-weight controls. Plasma concentrations of 2-arachidonoylglyceryl (2-AG were greater in obese groups. Path-analysis identified a direct effect between greater MVPA and low BMI (b = -0.13, p = .039 and high MVPA levels were associated with elevated anandamide (AEA levels (b = 0.16, p = .049 and N-oleylethanolamide (OEA levels (b = 0.22, p = .004, as well as high Novelty seeking (b = 0.18, p<.001 and low Harm avoidance (b = -0.16, p<.001.Obese individuals showed a distinct temperament profile and circulating endocannabinoids compared to controls. Temperament and endocannabinoids may act as moderators of the low MVPA in obesity.

  16. A dual inhibitor of FAAH and TRPV1 channels shows dose-dependent effect on depression-like behaviour in rats.

    Kirkedal, Christian; Wegener, Gregers; Moreira, Fabricio; Joca, Sâmia Regiane Lourenco; Liebenberg, Nico

    2017-12-01

    The cannabinoid receptor 1 (CB1) and transient receptor potential cation channel subfamily V member 1 (TRPV1) are proposed to mediate opposite behavioural responses. Their common denominator is the endocannabinoid ligand anandamide (AEA), which is believed to mediate antidepressant-like effect via CB1-R stimulation and depressive-like effect via TRPV1 activation. This is supposed to explain the bell-shaped dose-response curve for anandamide in preclinical models. We investigated this assumption by administering the dual inhibitor of AEA hydrolysis and TRPV1 activation N-arachidonoyl-serotonin (AA-5HT) into the medial prefrontal cortex of rats. AA-5HT was given in three different doses (0.125, 0.250, 0.500 nmol/0.4 µl/side) and rat behaviour was assessed in the forced swim test. Our results show significant antidepressant-like effect of AA-5HT (0.250 nmol) but no effects of low or high doses. The effect of 0.250 nmol AA-5HT was partially attenuated when coadministering the inverse CB1-agonist rimonabant (1.6 µg). A 0.250 nmol of AA-5HT administration into the medial prefrontal cortex induced a significant antidepressant-like effect that was partially attenuated by locally blocking CB1-receptor.

  17. Role of endocannabinoids and cannabinoid-1 receptors in cerebrocortical blood flow regulation.

    András Iring

    Full Text Available Endocannabinoids are among the most intensively studied lipid mediators of cardiovascular functions. In the present study the effects of decreased and increased activity of the endocannabinoid system (achieved by cannabinoid-1 (CB1 receptor blockade and inhibition of cannabinoid reuptake, respectively on the systemic and cerebral circulation were analyzed under steady-state physiological conditions and during hypoxia and hypercapnia (H/H.In anesthetized spontaneously ventilating rats the CB1-receptor antagonist/inverse agonist AM-251 (10 mg/kg, i.v. failed to influence blood pressure (BP, cerebrocortical blood flow (CoBF, measured by laser-Doppler flowmetry or arterial blood gas levels. In contrast, the putative cannabinoid reuptake inhibitor AM-404 (10 mg/kg, i.v. induced triphasic responses, some of which could be blocked by AM-251. Hypertension during phase I was resistant to AM-251, whereas the concomitant CoBF-increase was attenuated. In contrast, hypotension during phase III was sensitive to AM-251, whereas the concomitant CoBF-decrease was not. Therefore, CoBF autoregulation appeared to shift towards higher BP levels after CB1-blockade. During phase II H/H developed due to respiratory depression, which could be inhibited by AM-251. Interestingly, however, the concomitant rise in CoBF remained unchanged after AM-251, indicating that CB1-blockade potentially enhanced the reactivity of the CoBF to H/H. In accordance with this hypothesis, AM-251 induced a significant enhancement of the CoBF responses during controlled stepwise H/H.Under resting physiological conditions CB1-receptor mediated mechanisms appear to have limited influence on systemic or cerebral circulation. Enhancement of endocannabinoid levels, however, induces transient CB1-independent hypertension and sustained CB1-mediated hypotension. Furthermore, enhanced endocannabinoid activity results in respiratory depression in a CB1-dependent manner. Finally, our data indicate for the

  18. THC and endocannabinoids differentially regulate neuronal activity in the prefrontal cortex and hippocampus in the subchronic PCP model of schizophrenia.

    Aguilar, David D; Giuffrida, Andrea; Lodge, Daniel J

    2016-02-01

    Cannabis use has been associated with an increased risk to develop schizophrenia as well as symptom exacerbation in patients. In contrast, clinical studies have revealed an inverse relationship between the cerebrospinal fluid levels of the endocannabinoid anandamide and symptom severity, suggesting a therapeutic potential for endocannabinoid-enhancing drugs. Indeed, preclinical studies have shown that these drugs can reverse distinct behavioral deficits in a rodent model of schizophrenia. The mechanisms underlying the differences between exogenous and endogenous cannabinoid administration are currently unknown. Using the phencyclidine (PCP) rat model of schizophrenia, we compared the effects on neuronal activity of systematic administration of delta-9-tetrahydrocannabinol (THC) with the fatty acid amide hydrolase inhibitor URB597. Specifically, we found that the inhibitory response in the prefrontal cortex to THC administration was absent in PCP-treated rats. In contrast, an augmented response to endocannabinoid upregulation was observed in the prefrontal cortex of PCP-treated rats. Interestingly, differential effects were also observed at the neuronal population level, as endocannabinoid upregulation induced opposite effects on coordinated activity when compared with THC. Such information is important for understanding why marijuana and synthetic cannabinoid use may be contraindicated in schizophrenia patients while endocannabinoid enhancement may provide a novel therapeutic approach. © The Author(s) 2015.

  19. Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain

    Elphick Maurice R

    2009-07-01

    Full Text Available Abstract Activation of spinal microglia contributes to aberrant pain responses associated with neuropathic pain states. Endocannabinoids (ECs are present in the spinal cord, and inhibit nociceptive processing; levels of ECs may be altered by microglia which modulate the turnover of endocannabinoids in vitro. Here, we investigate the effect of minocycline, an inhibitor of activated microglia, on levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG, and the related compound N-palmitoylethanolamine (PEA, in neuropathic spinal cord. Selective spinal nerve ligation (SNL in rats resulted in mechanical allodynia and the presence of activated microglia in the ipsilateral spinal cord. Chronic daily treatment with minocycline (30 mg/kg, ip for 14 days significantly reduced the development of mechanical allodynia at days 5, 10 and 14 post-SNL surgery, compared to vehicle-treated SNL rats (P P P P P

  20. Deranged endocannabinoid responses to hedonic eating in underweight and recently weight-restored patients with anorexia nervosa.

    Monteleone, Alessio Maria; Di Marzo, Vincenzo; Aveta, Teresa; Piscitelli, Fabiana; Dalle Grave, Riccardo; Scognamiglio, Pasquale; El Ghoch, Marwan; Calugi, Simona; Monteleone, Palmiero; Maj, Mario

    2015-02-01

    A dysregulation of reward mechanisms was suggested in the pathophysiology of anorexia nervosa (AN), but the role of the endogenous mediators of reward has been poorly investigated. Endocannabinoids, including anandamide and 2-arachidonoylglycerol, and the endocannabinoid-related compounds oleoylethanolamide and palmitoylethanolamide modulate food-related and unrelated reward. Hedonic eating, which is the consumption of food just for pleasure and not homeostatic need, is a suitable paradigm to explore food-related reward. We investigated responses of endocannabinoids and endocannabinoid-related compounds to hedonic eating in AN. Peripheral concentrations of anandamide, 2-arachidonoylglycerol, oleoylethanolamide, and palmitoylethanolamide were measured in 7 underweight and 7 weight-restored AN patients after eating favorite and nonfavorite foods in the condition of no homeostatic needs, and these measurements were compared with those of previously studied healthy control subjects. 1) In healthy controls, plasma 2-arachidonoylglycerol concentrations decreased after both types of meals but were significantly higher in hedonic eating; in underweight AN patients, 2-arachidonoylglycerol concentrations did not show specific time patterns after eating either favorite or nonfavorite foods, whereas in weight-restored patients, 2-arachidonoylglycerol concentrations showed similar increases with both types of meals. 2) Anandamide plasma concentrations exhibited no differences in their response patterns to hedonic eating in the groups. 3) Compared with 2-arachidonoylglycerol, palmitoylethanolamide concentrations exhibited an opposite response pattern to hedonic eating in healthy controls; this pattern was partially preserved in underweight AN patients but not in weight-restored ones. 4) Like palmitoylethanolamide, oleoylethanolamide plasma concentrations tended to be higher in nonhedonic eating than in hedonic eating in healthy controls; moreover, no difference between healthy

  1. Driving the need to feed: Insight into the collaborative interaction between ghrelin and endocannabinoid systems in modulating brain reward systems.

    Edwards, Alexander; Abizaid, Alfonso

    2016-07-01

    Independent stimulation of either the ghrelin or endocannabinoid system promotes food intake and increases adiposity. Given the similar distribution of their receptors in feeding associated brain regions and organs involved in metabolism, it is not surprising that evidence of their interaction and its importance in modulating energy balance has emerged. This review documents the relationship between ghrelin and endocannabinoid systems within the periphery and hypothalamus (HYP) before presenting evidence suggesting that these two systems likewise work collaboratively within the ventral tegmental area (VTA) to modulate non-homeostatic feeding. Mechanisms, consistent with current evidence and local infrastructure within the VTA, will be proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Opposing actions of endocannabinoids on cholangiocarcinoma growth is via the differential activation of Notch signaling

    Frampton, Gabriel; Coufal, Monique [Department of Internal Medicine, Texas A and M Health Science Center College of Medicine, Temple, TX (United States); Li, Huang [Department of Internal Medicine, Texas A and M Health Science Center College of Medicine, Temple, TX (United States); Department of Hepatobiliary Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Ramirez, Jonathan [Digestive Disease Research Center, Scott and White Hospital, Temple, TX (United States); DeMorrow, Sharon, E-mail: demorrow@medicine.tamhsc.edu [Department of Internal Medicine, Texas A and M Health Science Center College of Medicine, Temple, TX (United States); Digestive Disease Research Center, Scott and White Hospital, Temple, TX (United States)

    2010-05-15

    The endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) have opposing effects on cholangiocarcinoma growth. Implicated in cancer, Notch signaling requires the {gamma}-secretase complex for activation. The aims of this study were to determine if the opposing effects of endocannabinoids depend on the differential activation of the Notch receptors and to demonstrate that the differential activation of these receptors are due to presenilin 1 containing- and presenilin 2 containing-{gamma}-secretase complexes. Mz-ChA-1 cells were treated with AEA or 2-AG. Notch receptor expression, activation, and nuclear translocation were determined. Specific roles for Notch 1 and 2 on cannabinoid-induced effects were determined by transient transfection of Notch 1 or 2 shRNA vectors before stimulation with AEA or 2-AG. Expression of presenilin 1 and 2 was determined after AEA or 2-AG treatment, and the involvement of presenilin 1 and 2 in the cannabinoid-induced effects was demonstrated in cell lines with low presenilin 1 or 2 expression. Antiproliferative effects of AEA required increased Notch 1 mRNA, activation, and nuclear translocation, whereas the growth-promoting effects induced by 2-AG required increased Notch 2 mRNA expression, activation, and nuclear translocation. AEA increased presenilin 1 expression and recruitment into the {gamma}-secretase complex, whereas 2-AG increased expression and recruitment of presenilin 2. The development of novel therapeutic strategies aimed at modulating the endocannabinoid system or mimicking the mode of action of AEA on Notch signaling pathways would prove beneficial for cholangiocarcinoma management.

  3. Endocannabinoid system acts as a regulator of immune homeostasis in the gut.

    Acharya, Nandini; Penukonda, Sasi; Shcheglova, Tatiana; Hagymasi, Adam T; Basu, Sreyashi; Srivastava, Pramod K

    2017-05-09

    Endogenous cannabinoids (endocannabinoids) are small molecules biosynthesized from membrane glycerophospholipid. Anandamide (AEA) is an endogenous intestinal cannabinoid that controls appetite and energy balance by engagement of the enteric nervous system through cannabinoid receptors. Here, we uncover a role for AEA and its receptor, cannabinoid receptor 2 (CB2), in the regulation of immune tolerance in the gut and the pancreas. This work demonstrates a major immunological role for an endocannabinoid. The pungent molecule capsaicin (CP) has a similar effect as AEA; however, CP acts by engagement of the vanilloid receptor TRPV1, causing local production of AEA, which acts through CB2. We show that the engagement of the cannabinoid/vanilloid receptors augments the number and immune suppressive function of the regulatory CX3CR1 hi macrophages (Mϕ), which express the highest levels of such receptors among the gut immune cells. Additionally, TRPV1 -/- or CB2 -/- mice have fewer CX3CR1 hi Mϕ in the gut. Treatment of mice with CP also leads to differentiation of a regulatory subset of CD4 + cells, the Tr1 cells, in an IL-27-dependent manner in vitro and in vivo. In a functional demonstration, tolerance elicited by engagement of TRPV1 can be transferred to naïve nonobese diabetic (NOD) mice [model of type 1 diabetes (T1D)] by transfer of CD4 + T cells. Further, oral administration of AEA to NOD mice provides protection from T1D. Our study unveils a role for the endocannabinoid system in maintaining immune homeostasis in the gut/pancreas and reveals a conversation between the nervous and immune systems using distinct receptors.

  4. A biophysical model of endocannabinoid-mediated short term depression in hippocampal inhibition.

    Margarita Zachariou

    Full Text Available Memories are believed to be represented in the synaptic pathways of vastly interconnected networks of neurons. The plasticity of synapses, that is, their strengthening and weakening depending on neuronal activity, is believed to be the basis of learning and establishing memories. An increasing number of studies indicate that endocannabinoids have a widespread action on brain function through modulation of synaptic transmission and plasticity. Recent experimental studies have characterised the role of endocannabinoids in mediating both short- and long-term synaptic plasticity in various brain regions including the hippocampus, a brain region strongly associated with cognitive functions, such as learning and memory. Here, we present a biophysically plausible model of cannabinoid retrograde signalling at the synaptic level and investigate how this signalling mediates depolarisation induced suppression of inhibition (DSI, a prominent form of short-term synaptic depression in inhibitory transmission in hippocampus. The model successfully captures many of the key characteristics of DSI in the hippocampus, as observed experimentally, with a minimal yet sufficient mathematical description of the major signalling molecules and cascades involved. More specifically, this model serves as a framework to test hypotheses on the factors determining the variability of DSI and investigate under which conditions it can be evoked. The model reveals the frequency and duration bands in which the post-synaptic cell can be sufficiently stimulated to elicit DSI. Moreover, the model provides key insights on how the state of the inhibitory cell modulates DSI according to its firing rate and relative timing to the post-synaptic activation. Thus, it provides concrete suggestions to further investigate experimentally how DSI modulates and is modulated by neuronal activity in the brain. Importantly, this model serves as a stepping stone for future deciphering of the role of

  5. Immune system modulation in the central nervous system: A possible role for endocannabinoids

    Abd-Allah, Adel R.A.

    2007-01-01

    The immune system is designed to protect the body from infection and tumor formation. To perform this function, cells of the immune system can be dangerous for the survival and function of the neuronal network in the brain under the influence of infection or immune imbalance. An attack of immune cells inside the brain includes the potential for severe neuronal damage or cell death and therefore impairment of the CNS function. To avoid such undesirable action of the immune system, the CNS performs a cascade of cellular and molecular mechanisms enabling strict control of immune reactions i mmune privilege . Under inflammatory and patholological conditions, uncontrolled immune system results in the activation of neuronal damage that is frequently associated with neurological diseases. On the other hand, processes of neuroprotection and neurorepair after neuronal damage depend on a steady and tightly controlled immunesurvelliance. Many immunoprotectants play a role to imbalance the immune reactions in the CNS and other organs which presents an important therapeutic target. It has been reported recently that endocannabinoids are secreted in abundance in the CNS following neuronal insult, probably for its protection. There are at least two types of cannabinoid receptors, CB1 and CB2. Both are coupled to G proteins. CB1 receptors exist primarily on central and peripheral neurons. CB2 receptors are present mainly on immune cells. Endogenous agonists for cannabinoid receptors (endocannabinoids), have been discovered, the most important being arachidonoyl ethanolamide (anandamide), 2-arachidonoyl glycerol (2AG), and 2-archidonyl glyceryl ether. Following their release, endocannabinoids are removed from the extracellular space and then degraded by intracellular enzymic hydrolysis. Therapeutic uses of cannabinoid receptor agonists/antagonists include the management of many disease conditions. They are also involved in immune system suppression and in cell to cell communication

  6. Opposing actions of endocannabinoids on cholangiocarcinoma growth is via the differential activation of Notch signaling

    Frampton, Gabriel; Coufal, Monique; Li, Huang; Ramirez, Jonathan; DeMorrow, Sharon

    2010-01-01

    The endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) have opposing effects on cholangiocarcinoma growth. Implicated in cancer, Notch signaling requires the γ-secretase complex for activation. The aims of this study were to determine if the opposing effects of endocannabinoids depend on the differential activation of the Notch receptors and to demonstrate that the differential activation of these receptors are due to presenilin 1 containing- and presenilin 2 containing-γ-secretase complexes. Mz-ChA-1 cells were treated with AEA or 2-AG. Notch receptor expression, activation, and nuclear translocation were determined. Specific roles for Notch 1 and 2 on cannabinoid-induced effects were determined by transient transfection of Notch 1 or 2 shRNA vectors before stimulation with AEA or 2-AG. Expression of presenilin 1 and 2 was determined after AEA or 2-AG treatment, and the involvement of presenilin 1 and 2 in the cannabinoid-induced effects was demonstrated in cell lines with low presenilin 1 or 2 expression. Antiproliferative effects of AEA required increased Notch 1 mRNA, activation, and nuclear translocation, whereas the growth-promoting effects induced by 2-AG required increased Notch 2 mRNA expression, activation, and nuclear translocation. AEA increased presenilin 1 expression and recruitment into the γ-secretase complex, whereas 2-AG increased expression and recruitment of presenilin 2. The development of novel therapeutic strategies aimed at modulating the endocannabinoid system or mimicking the mode of action of AEA on Notch signaling pathways would prove beneficial for cholangiocarcinoma management.

  7. Endocannabinoids and Endovanilloids: A Possible Balance in the Regulation of the Testicular GnRH Signalling

    Rosanna Chianese

    2013-01-01

    Full Text Available Reproductive functions are regulated both at central (brain and gonadal levels. In this respect, the endocannabinoid system (eCS has a very influential role. Interestingly, the characterization of eCS has taken many advantages from the usage of animal models different from mammals. Therefore, this review is oriented to summarize the main pieces of evidence regarding eCS coming from the anuran amphibian Rana esculenta, with particular interest to the morphofunctional relationship between eCS and gonadotropin releasing hormone (GnRH. Furthermore, a novel role for endovanilloids in the regulation of a testicular GnRH system will be also discussed.

  8. Interplay Between n-3 and n-6 Long-Chain Polyunsaturated Fatty Acids and the Endocannabinoid System in Brain Protection and Repair.

    Dyall, Simon C

    2017-11-01

    The brain is enriched in arachidonic acid (ARA) and docosahexaenoic acid (DHA), long-chain polyunsaturated fatty acids (LCPUFAs) of the n-6 and n-3 series, respectively. Both are essential for optimal brain development and function. Dietary enrichment with DHA and other long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA), has shown beneficial effects on learning and memory, neuroinflammatory processes, and synaptic plasticity and neurogenesis. ARA, DHA and EPA are precursors to a diverse repertoire of bioactive lipid mediators, including endocannabinoids. The endocannabinoid system comprises cannabinoid receptors, their endogenous ligands, the endocannabinoids, and their biosynthetic and degradation enzymes. Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are the most widely studied endocannabinoids and are both derived from phospholipid-bound ARA. The endocannabinoid system also has well-established roles in neuroinflammation, synaptic plasticity and neurogenesis, suggesting an overlap in the neuroprotective effects observed with these different classes of lipids. Indeed, growing evidence suggests a complex interplay between n-3 and n-6 LCPUFA and the endocannabinoid system. For example, long-term DHA and EPA supplementation reduces AEA and 2-AG levels, with reciprocal increases in levels of the analogous endocannabinoid-like DHA and EPA-derived molecules. This review summarises current evidence of this interplay and discusses the therapeutic potential for brain protection and repair.

  9. Endocannabinoid signaling within the basolateral amygdala integrates multiple stress hormone effects on memory consolidation.

    Atsak, Piray; Hauer, Daniela; Campolongo, Patrizia; Schelling, Gustav; Fornari, Raquel V; Roozendaal, Benno

    2015-05-01

    Glucocorticoid hormones are known to act synergistically with other stress-activated neuromodulatory systems, such as norepinephrine and corticotropin-releasing factor (CRF), within the basolateral complex of the amygdala (BLA) to induce optimal strengthening of the consolidation of long-term memory of emotionally arousing experiences. However, as the onset of these glucocorticoid actions appear often too rapid to be explained by genomic regulation, the neurobiological mechanism of how glucocorticoids could modify the memory-enhancing properties of norepinephrine and CRF remained elusive. Here, we show that the endocannabinoid system, a rapidly activated retrograde messenger system, is a primary route mediating the actions of glucocorticoids, via a glucocorticoid receptor on the cell surface, on BLA neural plasticity and memory consolidation. Furthermore, glucocorticoids recruit downstream endocannabinoid activity within the BLA to interact with both the norepinephrine and CRF systems in enhancing memory consolidation. These findings have important implications for understanding the fine-tuned crosstalk between multiple stress hormone systems in the coordination of (mal)adaptive stress and emotional arousal effects on neural plasticity and memory consolidation.

  10. Changes in the Peripheral Endocannabinoid System as a Risk Factor for the Development of Eating Disorders.

    Capasso, Anna; Milano, Walter; Cauli, Omar

    2018-02-12

    Eating Disorder (ED) is characterized by persistently and severely disturbed eating behaviours. They arise from a combination of long-standing behavioural, emotional, psychological, interpersonal, and social factors and result in insufficient nutrient ingestion and/or adsorption. The three main EDs are: anorexia nervosa, bulimia nervosa, and binge eating disorder. We review the role of peripheral endocannabinoids in eating behaviour. The neuronal pathways involved in feeding behaviours are closely related to catecholaminergic, serotoninergic and peptidergic systems. Accordingly, feeding is promoted by serotonin, dopamine, and prostaglandin and inhibited by neuropeptide Y, norepinephrine, GABA, and opioid peptides. The endocannabinoid system plays a role in EDs, and multiple lines of evidence indicate that the cannabinoid signalling system is a key modulatory factor of the activity in the brain areas involved in EDs as well as in reward processes. Besides their central role in controlling food behaviours, peripheral cannabinoids are also involved in regulating adipose tissue and insulin signalling as well as cell metabolism in peripheral tissues such as liver, pancreas, fatty tissue, and skeletal muscle. Altogether, these data indicate that peripheral cannabinoids can provide new therapeutic targets not only for EDs but also for metabolic disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Altering endocannabinoid neurotransmission at critical developmental ages: impact on rodent emotionality and cognitive performance

    Viviana eTrezza

    2012-01-01

    Full Text Available The endocannabinoid system shows functional activity from early stages of brain development: it plays an important role in fundamental developmental processes such as cell proliferation, migration and differentiation, thus shaping brain organization during pre- and postnatal life. Cannabis sativa preparations are among the illicit drugs most commonly used by young people, including pregnant women. The developing brain can be therefore exposed to cannabis preparations during two critical periods: first, in offspring of cannabis-using mothers through perinatal and/or prenatal exposure; second, in adolescent cannabis users during neural maturation. In the last decade, it has become clear that the endocannabinoid system critically modulates memory processing and emotional responses. Therefore, it is well possible that developmental exposure to cannabinoid compounds induces enduring changes in behaviors and neural processes belonging to the cognitive and emotional domains. We address this issue by focusing on rodent studies, in order to provide a framework for understanding the impact of cannabinoid exposure on the developing brain.

  12. Peripheral Endocannabinoid Responses to Hedonic Eating in Binge-Eating Disorder

    Alessio Maria Monteleone

    2017-12-01

    Full Text Available Reward mechanisms are likely implicated in the pathophysiology of binge-eating behaviour, which is a key symptom of binge-eating disorder (BED. Since endocannabinoids modulate food-related reward, we aimed to investigate the responses of anandamide (AEA and 2-arachidonoylglycerol (2-AG to hedonic eating in patients with BED. Peripheral levels of AEA and 2-AG were measured in 7 obese BED patients before and after eating favorite (hedonic eating and non-favorite (non-hedonic eating foods. We found that plasma levels of AEA progressively decreased after eating the non-favorite food and significantly increased after eating the favorite food, whereas plasma levels of 2-AG did not differ significantly between the two test conditions, although they showed a trend toward significantly different time patterns. The changes in peripheral AEA levels were positively correlated to the subjects’ sensations of the urge to eat and the pleasantness while eating the presented food, while changes in peripheral 2-AG levels were positively correlated to the subjects’ sensation of the pleasantness while eating the presented food and to the amount of food they would eat. These results suggest the occurrence of distinctive responses of endocannabinoids to food-related reward in BED. The relevance of such findings to the pathophysiology of BED remains to be elucidated.

  13. Neuroprotective Properties of Endocannabinoids N-Arachidonoyl Dopamine and N-Docosahexaenoyl Dopamine Examined in Neuronal Precursors Derived from Human Pluripotent Stem Cells.

    Novosadova, E V; Arsenyeva, E L; Manuilova, E S; Khaspekov, L G; Bobrov, M Yu; Bezuglov, V V; Illarioshkin, S N; Grivennikov, I A

    2017-11-01

    Neuroprotective properties of endocannabinoids N-arachidonoyl dopamine (NADA) and N-docosahexaenoyl dopamine (DHDA) were examined in neuronal precursor cells differentiated from human induced pluripotent stem cells and subjected to oxidative stress. Both compounds exerted neuroprotective activity, which was enhanced by elevating the concentration of the endocannabinoids within the 0.1-10 µM range. However, both agents at 10 µM concentration showed a marked toxic effect resulting in death of ~30% of the cells. Finally, antagonists of cannabinoid receptors as well as the receptor of the TRPV1 endovanilloid system did not hamper the neuroprotective effects of these endocannabinoids.

  14. Profiling the Oxylipin and Endocannabinoid Metabolome by UPLC-ESI-MS/MS in Human Plasma to Monitor Postprandial Inflammation.

    Gouveia-Figueira, Sandra; Späth, Jana; Zivkovic, Angela M; Nording, Malin L

    2015-01-01

    Bioactive lipids, including oxylipins, endocannabinoids, and related compounds may function as specific biochemical markers of certain aspects of inflammation. However, the postprandial responsiveness of these compounds is largely unknown; therefore, changes in the circulating oxylipin and endocannabinoid metabolome in response to a challenge meal were investigated at six occasions in a subject who freely modified her usual diet. The dietary change, and especially the challenge meal itself, represented a modification of precursor fatty acid status, with expectedly subtle effects on bioactive lipid levels. To detect even the slightest alteration, highly sensitive ultra-performance liquid chromatography (UPLC) coupled to electrospray ionization (ESI) tandem mass spectrometry (MS/MS) methods for bioactive lipid profiling was employed. A previously validated UPLC-ESI-MS/MS method for profiling the endocannabinoid metabolome was used, while validation of an UPLC-ESI-MS/MS method for oxylipin analysis was performed with acceptable outcomes for a majority of the parameters according to the US Food and Drug Administration guidelines for linearity (0.9938 metabolome, caused by changes in diet and ii) responsiveness to a challenge meal for a subset of the oxylipin and endocannabinoid metabolome. To summarize, we have shown proof-of-concept of our UPLC-ESI-MS/MS bioactive lipid protocols for the purpose of monitoring subtle shifts, and thereby useful to address lipid-mediated postprandial inflammation.

  15. From Fertilisation to Implantation in Mammalian Pregnancy—Modulation of Early Human Reproduction by the Endocannabinoid System

    Justin C. Konje

    2010-09-01

    Full Text Available There is an increasing recognition that the endocannabinoid system is the crucial cytokine-hormone system regulating early human pregnancy. The synchronous development of the fertilized embryo and the endometrium to ensure timely implantation has been shown to be one of the pivotal steps to successful implantation. This development is thought to be regulated by a finely balanced relationship between various components of the endocannabinoid system in the endometrium, the embryo and the Fallopian tube. In addition, this system has also been shown to be involved in the regulation of the development and maturation of the gametes prior to fertilization. In this review, we will examine the evidence from animal and human studies to support the role of the endocannabinoid system in gametogenesis, fertilization, implantation, early pregnancy maintenance, and in immunomodulation of pregnancy. We will discuss the role of the cannabinoid receptors and the enzymes involved in the synthesis and degradation of the key endocannabinoid ligands (e.g., anandamide and 2-arachinoylglycerol in early reproduction.

  16. Cannabinoid exposure during zebra finch sensorimotor vocal learning persistently alters expression of endocannabinoid signaling elements and acute agonist responsiveness

    Lichtman Aron H

    2011-01-01

    Full Text Available Abstract Background Previously we have found that cannabinoid treatment of zebra finches during sensorimotor stages of vocal development alters song patterns produced in adulthood. Such persistently altered behavior must be attributable to changes in physiological substrates responsible for song. We are currently working to identify the nature of such physiological changes, and to understand how they contribute to altered vocal learning. One possibility is that developmental agonist exposure results in altered expression of elements of endocannabinoid signaling systems. To test this hypothesis we have studied effects of the potent cannabinoid receptor agonist WIN55212-2 (WIN on endocannabinoid levels and densities of CB1 immunostaining in zebra finch brain. Results We found that late postnatal WIN treatment caused a long-term global disregulation of both levels of the endocannabinoid, 2-arachidonyl glycerol (2-AG and densities of CB1 immunostaining across brain regions, while repeated cannabinoid treatment in adults produced few long-term changes in the endogenous cannabinoid system. Conclusions Our findings indicate that the zebra finch endocannabinoid system is particularly sensitive to exogenous agonist exposure during the critical period of song learning and provide insight into susceptible brain areas.

  17. Gene

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  18. A preliminary study of endocannabinoid system regulation in psychosis: Distinct alterations of CNR1 promoter DNA methylation in patients with schizophrenia.

    D'Addario, Claudio; Micale, Vincenzo; Di Bartolomeo, Martina; Stark, Tibor; Pucci, Mariangela; Sulcova, Alexandra; Palazzo, Mariacarlotta; Babinska, Zuzana; Cremaschi, Laura; Drago, Filippo; Carlo Altamura, A; Maccarrone, Mauro; Dell'Osso, Bernardo

    2017-10-01

    Compelling evidence supports the involvement of the endocannabinoid system (ECS) in psychosis vulnerability. We here evaluated the transcriptional regulation of ECS components in human peripheral blood mononuclear cells (PBMCs) obtained from subjects suffering from bipolar disorder, major depressive disorder and schizophrenia, focusing in particular on the effects of DNA methylation. We observed selective alterations of DNA methylation at the promoter of CNR1, the gene coding for the type-1 cannabinoid receptor, in schizophrenic patients (N=25) with no changes in any other disorder. We confirmed the regulation of CNR1 in a well-validated animal model of schizophrenia, induced by prenatal methylazoxymethanol (MAM) acetate exposure (N=7 per group) where we found, in the prefrontal cortex, a significant increase in CNR1 expression and a consistent reduction in DNA methylation at specific CpG sites of gene promoter. Overall, our findings suggest a selective dysregulation of ECS in psychosis, and highlight the evaluation of CNR1 DNA methylation levels in PBMCs as a potential biomarker for schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Clinical Endocannabinoid Deficiency Reconsidered: Current Research Supports the Theory in Migraine, Fibromyalgia, Irritable Bowel, and Other Treatment-Resistant Syndromes.

    Russo, Ethan B

    2016-01-01

    Medicine continues to struggle in its approaches to numerous common subjective pain syndromes that lack objective signs and remain treatment resistant. Foremost among these are migraine, fibromyalgia, and irritable bowel syndrome, disorders that may overlap in their affected populations and whose sufferers have all endured the stigma of a psychosomatic label, as well as the failure of endless pharmacotherapeutic interventions with substandard benefit. The commonality in symptomatology in these conditions displaying hyperalgesia and central sensitization with possible common underlying pathophysiology suggests that a clinical endocannabinoid deficiency might characterize their origin. Its base hypothesis is that all humans have an underlying endocannabinoid tone that is a reflection of levels of the endocannabinoids, anandamide (arachidonylethanolamide), and 2-arachidonoylglycerol, their production, metabolism, and the relative abundance and state of cannabinoid receptors. Its theory is that in certain conditions, whether congenital or acquired, endocannabinoid tone becomes deficient and productive of pathophysiological syndromes. When first proposed in 2001 and subsequently, this theory was based on genetic overlap and comorbidity, patterns of symptomatology that could be mediated by the endocannabinoid system (ECS), and the fact that exogenous cannabinoid treatment frequently provided symptomatic benefit. However, objective proof and formal clinical trial data were lacking. Currently, however, statistically significant differences in cerebrospinal fluid anandamide levels have been documented in migraineurs, and advanced imaging studies have demonstrated ECS hypofunction in post-traumatic stress disorder. Additional studies have provided a firmer foundation for the theory, while clinical data have also produced evidence for decreased pain, improved sleep, and other benefits to cannabinoid treatment and adjunctive lifestyle approaches affecting the ECS.

  20. Modulation of the Endocannabinoids N-Arachidonoylethanolamine (AEA and 2-Arachidonoylglycerol (2-AG on Executive Functions in Humans.

    Ana B Fagundo

    Full Text Available Animal studies point to an implication of the endocannabinoid system on executive functions. In humans, several studies have suggested an association between acute or chronic use of exogenous cannabinoids (Δ9-tetrahydrocannabinol and executive impairments. However, to date, no published reports establish the relationship between endocannabinoids, as biomarkers of the cannabinoid neurotransmission system, and executive functioning in humans. The aim of the present study was to explore the association between circulating levels of plasma endocannabinoids N-arachidonoylethanolamine (AEA and 2-Arachidonoylglycerol (2-AG and executive functions (decision making, response inhibition and cognitive flexibility in healthy subjects. One hundred and fifty seven subjects were included and assessed with the Wisconsin Card Sorting Test; Stroop Color and Word Test; and Iowa Gambling Task. All participants were female, aged between 18 and 60 years and spoke Spanish as their first language. Results showed a negative correlation between 2-AG and cognitive flexibility performance (r = -.37; p<.05. A positive correlation was found between AEA concentrations and both cognitive flexibility (r = .59; p<.05 and decision making performance (r = .23; P<.05. There was no significant correlation between either 2-AG (r = -.17 or AEA (r = -.08 concentrations and inhibition response. These results show, in humans, a relevant modulation of the endocannabinoid system on prefrontal-dependent cognitive functioning. The present study might have significant implications for the underlying executive alterations described in some psychiatric disorders currently associated with endocannabinoids deregulation (namely drug abuse/dependence, depression, obesity and eating disorders. Understanding the neurobiology of their dysexecutive profile might certainly contribute to the development of new treatments and pharmacological approaches.

  1. The endocannabinoid system as a possible target to treat both the cognitive and emotional features of post-traumatic stress disorder

    Viviana eTrezza

    2013-08-01

    Full Text Available Posttraumatic stress disorder (PTSD is a psychiatric disorder of significant prevalence and morbidity, whose pathogenesis relies on paradoxical changes of emotional memory processing. An ideal treatment would be a drug able to block the pathological over-consolidation and continuous retrieval of the traumatic event, while enhancing its extinction and reducing the anxiety symptoms. While the latter benefit from antidepressant medications, no drug is available to control the cognitive symptomatology. Endocannabinoids regulate affective states and participate in memory consolidation, retrieval and extinction. Clinical findings showing a relationship between Cannabis use and PTSD, as well as changes in endocannabinoid activity in PTSD patients, further suggest the existence of a link between endocannabinoids and maladaptive brain changes after trauma exposure. Along these lines, we suggest that endocannabinoid degradation inhibitors may be an ideal therapeutic approach to simultaneously treat the emotional and cognitive features of PTSD, avoiding the unwanted psychotropic effects of compounds directly binding cannabinoid receptors.

  2. Differential Regulation of Eicosanoid and Endocannabinoid Production by Inflammatory Mediators in Human Choriodecidua.

    M D Mitchell

    Full Text Available An increase in intrauterine prostaglandin production is critical for the onset and progression of labor in women and indeed all mammalian species studied. Endocannabinoids can act as substrates for enzymes of the prostaglandin biosynthetic pathways and can be utilized to generate other related compounds such as prostamides. The end products are indistinguishable by radioimmunoassay. We have separated such compounds by mass spectrometry. We now show that inflammatory stimuli such as LPS and proinflammatory cytokines act differentially on these pathways in human choriodecidua and preferentially create drive through to prostaglandin end products. These findings create doubt about the interpretation of data on prostaglandin biosynthesis in intrauterine tissues from pregnant women especially in the presence of an infection. The possibility is raised that separation of these products might reduce variability in results and lead to potential uses for their measurement in the diagnosis of preterm labor.

  3. Processing cardiovascular information in the vlPAG during electroacupuncture in rats: roles of endocannabinoids and GABA

    Tjen-A-Looi, Stephanie C.; Li, Peng; Longhurst, John C.

    2009-01-01

    A long-loop pathway, involving the hypothalamic arcuate nucleus (ARC), ventrolateral periaqueductal gray (vlPAG), and the rostral ventrolateral medulla (rVLM), is essential in electroacupuncture (EA) attenuation of sympathoexcitatory cardiovascular reflex responses. The ARC provides excitatory input to the vlPAG, which, in turn, inhibits neuronal activity in the rVLM. Although previous studies have shown that endocannabinoid CB1 receptor activation modulates γ-aminobutyric acid (GABA)-ergic and glutamatergic neurotransmission in the dorsolateral PAG in stress-induced analgesia, an important role for endocannabinoids in the vlPAG has not yet been observed. We recently have shown (Fu LW, Longhurst JC. J Appl Physiol; doi:10.1152/japplphysiol.91648.2008) that EA reduces the local vlPAG concentration of GABA, but not glutamate, as measured with high-performance liquid chromatography from extracellular samples collected by microdialysis. We, therefore, hypothesized that, during EA, endocannabinoids, acting through CB1 receptors, presynaptically inhibit GABA release to disinhibit the vlPAG and ultimately modulate excitatory reflex blood pressure responses. Rats were anesthetized, ventilated, and instrumented to measure heart rate and blood pressure. Gastric distention-induced blood pressure responses of 18 ± 5 mmHg were reduced to 6 ± 1 mmHg by 30 min of low-current, low-frequency EA applied bilaterally at pericardial P 5–6 acupoints overlying the median nerves. Like EA, microinjection of the fatty acid amide hydrolase inhibitor URB597 (0.1 nmol, 50 nl) into the vlPAG to increase endocannabinoids locally reduced the gastric distention cardiovascular reflex response from 21 ± 5 to 3 ± 4 mmHg. This inhibition was reversed by pretreatment with the GABAA antagonist gabazine (27 mM, 50 nl), suggesting that endocannabinoids exert their action through a GABAergic receptor mechanism in the vlPAG. The EA-related inhibition from 18 ± 3 to 8 ± 2 mmHg was reversed to 14

  4. Role of the endocannabinoid system in food intake, energy homeostasis and regulation of the endocrine pancreas.

    Li, Chen; Jones, Peter M; Persaud, Shanta J

    2011-03-01

    The endocannabinoid system (ECS) is a signalling cascade consisting of CB1 and CB2 receptors, and enzymes for the synthesis and degradation of endogenous ligands for these receptors. Central CB1 receptors have been most widely studied since they play key roles in energy homeostasis and rimonabant, a CB1 receptor antagonist, was used clinically to treat obesity. Less is known about CB2 receptors, but their abundant expression by lymphocytes and macrophages has led to suggestions of their importance in immune and inflammatory reactions. More recently, it has become apparent that both CB1 and CB2 receptors are more widely expressed than originally thought, and the capacity of endocannabinoids to regulate energy balance also occurs through their interactions with cannabinoid receptors on a variety of peripheral tissues. In general, pathological overactivation of the ECS contributes to weight gain, reduced sensitivity to insulin and glucose intolerance, and blockade of CB1 receptors reduces body weight through increased secretion of anorectic signals and improved insulin sensitivity. However, the notion that the ECS per se is detrimental to energy homeostasis is an oversimplification, since activation of cannabinoid receptors expressed by islet cells can stimulate insulin secretion, which is obviously beneficial under conditions of impaired glucose tolerance or type 2 diabetes. We propose that under normal physiological conditions cannabinoid signalling in the endocrine pancreas is a bona fide mechanism of regulating insulin secretion to maintain blood glucose levels, but that energy balance becomes dysregulated with excessive food intake, leading to adipogenesis and fat accumulation through enhanced cannabinoid synthesis. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Restricted vs. unrestricted wheel running in mice: Effects on brain, behavior and endocannabinoids.

    Biedermann, Sarah V; Auer, Matthias K; Bindila, Laura; Ende, Gabriele; Lutz, Beat; Weber-Fahr, Wolfgang; Gass, Peter; Fuss, Johannes

    2016-11-01

    Beneficial effects of voluntary wheel running on hippocampal neurogenesis, morphology and hippocampal-dependent behavior have widely been studied in rodents, but also serious side effects and similarities to stereotypy have been reported. Some mouse strains run excessively when equipped with running wheels, complicating the comparability to human exercise regimes. Here, we investigated how exercise restriction to 6h/day affects hippocampal morphology and metabolism, stereotypic and basal behaviors, as well as the endocannabinoid system in wheel running C57BL/6 mice; the strain most commonly used for behavioral analyses and psychiatric disease models. Restricted and unrestricted wheel running had similar effects on immature hippocampal neuron numbers, thermoregulatory nest building and basal home-cage behaviors. Surprisingly, hippocampal gray matter volume, assessed with magnetic resonance (MR) imaging at 9.4 Tesla, was only increased in unrestricted but not in restricted runners. Moreover, unrestricted runners showed less stereotypic behavior than restricted runners did. However, after blockage of running wheels for 24h stereotypic behavior also increased in unrestricted runners, arguing against a long-term effect of wheel running on stereotypic behavior. Stereotypic behaviors correlated with frontal glutamate and glucose levels assessed by 1 H-MR spectroscopy. While acute running increased plasma levels of the endocannabinoid anandamide in former studies in mice and humans, we found an inverse correlation of anandamide with the daily running distance after long-term running. In conclusion, although there are some diverging effects of restricted and unrestricted running on brain and behavior, restricted running does not per se seem to be a better animal model for aerobic exercise in mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The multiple functions of the endocannabinoid system: a focus on the regulation of food intake

    Tibiriça Eduardo

    2010-01-01

    Full Text Available Abstract Background Cannabis sativa (also known as marijuana has been cultivated by man for more than 5,000 years. However, there was a rise in its use in the 20th century for recreational, religious or spiritual, and medicinal purposes. The main psychoactive constituent of cannabis, whose structure was identified in the 1960's, is Δ9-tetrahydrocannabinol. On the other hand, the discovery of cannabinoid receptors and their endogenous agonists took place only very recently. In fact, the first cannabinoid receptor (CB1 was cloned in 1990, followed 3 years later by the characterization of a second cannabinoid receptor (CB2. Since the 19th century, the use of cannabis has been reported to stimulate appetite and increase the consumption of sweet and tasty food, sometimes resulting in significant weight gain. The recent description of the endocannabinoid system, not only in the central nervous system but also in peripheral tissues, points to its involvement in the regulation of appetite, food intake and energy metabolism. Consequently, the pharmacological modulation of the over-activity of this system could be useful in the treatment of the metabolic syndrome. Conclusions The endocannabinoid system has important physiological functions not only in the central nervous system but also in peripheral tissues. The activation of central CB1 receptors, particularly in hypothalamic nuclei and in the limbic system, is involved in the regulation of feeding behavior, and especially in the control of the intake of palatable food. In the periphery, cannabinoid receptors are present in adipocytes, skeletal muscle, gastrointestinal tract and liver, modulating energy metabolism.

  7. Sleep Restriction Enhances the Daily Rhythm of Circulating Levels of Endocannabinoid 2-Arachidonoylglycerol.

    Hanlon, Erin C; Tasali, Esra; Leproult, Rachel; Stuhr, Kara L; Doncheck, Elizabeth; de Wit, Harriet; Hillard, Cecilia J; Van Cauter, Eve

    2016-03-01

    Increasing evidence from laboratory and epidemiologic studies indicates that insufficient sleep may be a risk factor for obesity. Sleep curtailment results in stimulation of hunger and food intake that exceeds the energy cost of extended wakefulness, suggesting the involvement of reward mechanisms. The current study tested the hypothesis that sleep restriction is associated with activation of the endocannabinoid (eCB) system, a key component of hedonic pathways involved in modulating appetite and food intake. In a randomized crossover study comparing 4 nights of normal (8.5 h) versus restricted sleep (4.5 h) in healthy young adults, we examined the 24-h profiles of circulating concentrations of the endocannabinoid 2-arachidonoylglycerol (2-AG) and its structural analog 2-oleoylglycerol (2-OG). We concomitantly assessed hunger, appetite, and food intake under controlled conditions. A robust daily variation of 2-AG concentrations with a nadir around the middle of the sleep/overnight fast, followed by a continuous increase culminating in the early afternoon, was evident under both sleep conditions but sleep restriction resulted in an amplification of this rhythm with delayed and extended maximum values. Concentrations of 2-OG followed a similar pattern, but with a lesser amplitude. When sleep deprived, participants reported increases in hunger and appetite concomitant with the afternoon elevation of 2-AG concentrations, and were less able to inhibit intake of palatable snacks. Our findings suggest that activation of the eCB system may be involved in excessive food intake in a state of sleep debt and contribute to the increased risk of obesity associated with insufficient sleep. A commentary on this article appears in this issue on page 495. © 2016 Associated Professional Sleep Societies, LLC.

  8. The endocannabinoid transport inhibitor AM404 differentially modulates recognition memory in rats depending on environmental aversiveness

    Patrizia eCampolongo

    2012-03-01

    Full Text Available Cannabinoid compounds may influence both emotional and cognitive processes depending on the level of environmental aversiveness at the time of drug administration. However, the mechanisms responsible for these responses remain to be elucidated. The present experiments investigated the effects induced by the endocannabinoid transport inhibitor AM404 (0.5-5 mg/kg, i.p. on bothemotional and cognitive performances of rats tested in a Spatial Open Field task and subjected to different experimental settings, named High Arousal and Low Arousal conditions. The two different experimental conditions influenced emotional reactivity independently of drug administration. Indeed, vehicle-treated rats exposed to the Low Arousal condition spent more time in the centre of the arena than vehicle-treated rats exposed to the High Arousal context. Conversely, the different arousal conditions did not affect the cognitive performances of vehicle-treated animals such as the capability to discriminate a spatial displacement of the objects or an object substitution.AM404 administration did not alter the locomotor activity of the animals exposed to both environmental conditions. Interestingly, AM404 administration increased the emotional reactivity of rats exposed to the High Arousal condition but did not influence emotionality of rats exposed to the Low Arousal condition. Moreover, AM404 administration influenced the cognitive parameters depending on the level of emotional arousal: it impaired the capability of rats exposed to the High Arousal condition to recognize a novel object while it did not induce any impairing effect in rats exposed to the Low Arousal condition.These findings suggest that drugs which enhance the endocannabinoid signalling induce different effects on recognition memory performance depending on the level of emotional arousal induced by the environmental conditions.

  9. Circulating Endocannabinoids and Insulin Resistance in Patients with Obstructive Sleep Apnea

    Xiaoya Wang

    2016-01-01

    Full Text Available Objectives. The purpose of this study is to investigate the relationship between plasma endocannabinoids and insulin resistance (IR in patients with obstructive sleep apnea (OSA. Methods. A population of 64 with OSA and 24 control subjects was recruited. Body mass index (BMI, waist circumference, lipids, blood glucose and insulin, homeostasis model of assessment for insulin resistance index (HOMA-IR, anandamide (AEA, 1/2-arachidonoylglycerol (1/2-AG, and apnea-hypopnea index (AHI were analyzed. Results. Fasting blood insulin (22.9 ± 7.8 mIU/L versus 18.5 ± 7.2 mIU/L, P<0.05, HOMA-IR (2.9 ± 1.0 versus 2.4 ± 0.9, P<0.01, AEA (3.2 ± 0.7 nmol/L versus 2.5 ± 0.6 nmol/L, P<0.01, and 1/2-AG (40.8 ± 5.7 nmol/L versus 34.3 ± 7.7 nmol/L, P<0.01 were higher in OSA group than those in control group. In OSA group, AEA, 1/2-AG, and HOMA-IR increase with the OSA severity. The correlation analysis showed significant positive correlation between HOMA-IR and AHI (r=0.44, P<0.01, AEA and AHI (r=0.52, P<0.01, AEA and HOMA-IR (r=0.62, P<0.01, and 1/2-AG and HOMA-IR (r=0.33, P<0.01. Further analysis showed that only AEA was significantly correlated with AHI and HOMA-IR after adjusting for confounding factors. Conclusions. The present study indicated that plasma endocannabinoids levels, especially AEA, were associated with IR and AHI in patients with OSA.

  10. Targeting the endocannabinoid/CB1 receptor system for treating obesity in Prader–Willi syndrome

    Ibrahim Knani

    2016-12-01

    Full Text Available Objective: Extreme obesity is a core phenotypic feature of Prader–Willi syndrome (PWS. Among numerous metabolic regulators, the endocannabinoid (eCB system is critically involved in controlling feeding, body weight, and energy metabolism, and a globally acting cannabinoid-1 receptor (CB1R blockade reverses obesity both in animals and humans. The first-in-class CB1R antagonist rimonabant proved effective in inducing weight loss in adults with PWS. However, it is no longer available for clinical use because of its centrally mediated, neuropsychiatric, adverse effects. Methods: We studied eCB ‘tone’ in individuals with PWS and in the Magel2-null mouse model that recapitulates the major metabolic phenotypes of PWS and determined the efficacy of a peripherally restricted CB1R antagonist, JD5037 in treating obesity in these mice. Results: Individuals with PWS had elevated circulating levels of 2-arachidonoylglycerol and its endogenous precursor and breakdown ligand, arachidonic acid. Increased hypothalamic eCB ‘tone’, manifested by increased eCBs and upregulated CB1R, was associated with increased fat mass, reduced energy expenditure, and decreased voluntary activity in Magel2-null mice. Daily chronic treatment of obese Magel2-null mice and their littermate wild-type controls with JD5037 (3 mg/kg/d for 28 days reduced body weight, reversed hyperphagia, and improved metabolic parameters related to their obese phenotype. Conclusions: Dysregulation of the eCB/CB1R system may contribute to hyperphagia and obesity in Magel2-null mice and in individuals with PWS. Our results demonstrate that treatment with peripherally restricted CB1R antagonists may be an effective strategy for the management of severe obesity in PWS. Author Video: Author Video Watch what authors say about their articles Keywords: Endocannabinoids, PWS, Magel2, Peripheral CB1 blockade, Metabolic syndrome

  11. Neuromodulatory effects of the dorsal hippocampal endocannabinoid system in dextromethorphan/morphine-induced amnesia.

    Ghasemzadeh, Zahra; Rezayof, Ameneh

    2017-01-05

    Dextromethorphan which is an active ingredient in many cough medicines has been previously shown to potentiate amnesic effect of morphine in rats. However, the effect of dextromethorphan, that is also a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, in combination with morphine on hippocampus-based long term memory has not been well characterized. The aim of the present study was to assess the possible role of endocannabinoid system of the dorsal hippocampus in dextromethorphan /morphine-induced amnesia. Our results showed that intraperitoneal (i.p.) injection of morphine (5mg/kg) or dextromethorphan (5-15mg/kg) before testing the passive avoidance learning induced amnesia. Combination of ineffective doses of dextromethorphan (7.5mg/kg, i.p.) and morphine (2mg/kg, i.p.) also produced amnesia, suggesting the enhancing effects of the drugs. To assess the effect of the activation or inhibition of the dorsal hippocampal cannabinoid CB 1 receptors on this amnesia, ACPA or AM251 as selective receptor agonists or antagonists were respectively injected into the CA1 regions before systemic injection of dextromethorphan and morphine. Interestingly, intra-CA1 microinjection of ACPA (0.5-1ng/rat) improved the amnesic effect of dextromethorphan /morphine combination. The microinjection of AM251 into the CA1 region enhanced the response of the combination of dextromethorphan /morphine in inducing amnesia. Moreover, Intra-CA1 microinjection of AM251 inhibited the improving effect of ACPA on dextromethorphan /morphine-induced amnesia. It is important to note that intra-CA1 microinjection of the same doses of the agonist or antagonist by itself had no effects on memory formation. Thus, it can be concluded that the dorsal hippocampal endocannabinoid system, via CB 1 receptor-dependent mechanism, may be involved in morphine/dextromethorphan -induced amnesia. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Extinction of avoidance behavior by safety learning depends on endocannabinoid signaling in the hippocampus.

    Micale, Vincenzo; Stepan, Jens; Jurik, Angela; Pamplona, Fabricio A; Marsch, Rudolph; Drago, Filippo; Eder, Matthias; Wotjak, Carsten T

    2017-07-01

    The development of exaggerated avoidance behavior is largely responsible for the decreased quality of life in patients suffering from anxiety disorders. Studies using animal models have contributed to the understanding of the neural mechanisms underlying the acquisition of avoidance responses. However, much less is known about its extinction. Here we provide evidence in mice that learning about the safety of an environment (i.e., safety learning) rather than repeated execution of the avoided response in absence of negative consequences (i.e., response extinction) allowed the animals to overcome their avoidance behavior in a step-down avoidance task. This process was context-dependent and could be blocked by pharmacological (3 mg/kg, s.c.; SR141716) or genetic (lack of cannabinoid CB1 receptors in neurons expressing dopamine D1 receptors) inactivation of CB1 receptors. In turn, the endocannabinoid reuptake inhibitor AM404 (3 mg/kg, i.p.) facilitated safety learning in a CB1-dependent manner and attenuated the relapse of avoidance behavior 28 days after conditioning. Safety learning crucially depended on endocannabinoid signaling at level of the hippocampus, since intrahippocampal SR141716 treatment impaired, whereas AM404 facilitated safety learning. Other than AM404, treatment with diazepam (1 mg/kg, i.p.) impaired safety learning. Drug effects on behavior were directly mirrored by drug effects on evoked activity propagation through the hippocampal trisynaptic circuit in brain slices: As revealed by voltage-sensitive dye imaging, diazepam impaired whereas AM404 facilitated activity propagation to CA1 in a CB1-dependent manner. In line with this, systemic AM404 enhanced safety learning-induced expression of Egr1 at level of CA1. Together, our data render it likely that AM404 promotes safety learning by enhancing information flow through the trisynaptic circuit to CA1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The Endocannabinoid System Affects Myocardial Glucose Metabolism in the DOCA-Salt Model of Hypertension

    Agnieszka Polak

    2018-03-01

    Full Text Available Background/Aims: Recent interest in the use of cannabinoids as therapeutic agents has revealed the involvement of the endogenous cannabinoid system (ECS in the regulation of the cardiovascular system in hypertension. Abnormalities in glucose metabolism and insulin action are commonly detected in hypertensive animals. Thus, potential antihypertensive drugs should be investigated with respect to modulation of glucose homeostasis. Therefore, the aim of the present study was to evaluate the effects of the ECS activation after chronic fatty acid amide hydrolase inhibitor (URB597 administration on plasma glucose and insulin concentrations as well as parameters of myocardial glucose metabolism in the deoxycorticosterone acetate (DOCA-salt hypertensive rats, an animal model of secondary hypertension. Methods: Hypertension was induced by DOCA (25mg/kg injections and addition of 1% NaCl in the drinking water for six weeks. Chronic activation of the ECS was performed by URB597 (1mg/kg injections for two weeks. We examined fasting plasma levels of insulin (ELISA, glucose and intramyocardial glycogen (colorimetric method. Expressions of glucose transporters (GLUT1, 4 and selected proteins engaged in GLUT translocation as well as glucose metabolism were determined using Western blotting. Results: Hypertension induced hypoinsulinemia with concomitant lack of significant changes in glycemia, reduced intramyocardial glycogen content and increased pyruvate dehydrogenase (PDH expression in the cardiac muscle. Importantly, chronic URB597 administration in the hypertensive rats increased insulin concentration, elevated plasmalemmal GLUT1 and GLUT4 expression and concomitantly improved myocardial glycogen storage. Conclusion: Chronic administration of fatty acid amide hydrolase (FAAH inhibitor has potential protective properties on myocardial glucose metabolism in hypertension.

  14. Individual differences in response to positive and negative stimuli: endocannabinoid-based insight on approach and avoidance behaviors

    Daniela eLaricchiuta

    2014-12-01

    Full Text Available Approach and avoidance behaviors - the primary responses to the environmental stimuli of danger, novelty and reward - are associated with the brain structures that mediate cognitive functionality, reward sensitivity and emotional expression. Individual differences in approach and avoidance behaviors are modulated by the functioning of amygdaloid-hypothalamic-striatal and striatal-cerebellar networks implicated in action and reaction to salient stimuli. The nodes of these networks are strongly interconnected and by acting on them the endocannabinoid and dopaminergic systems increase the intensity of appetitive or defensive motivation. This review analyzes the approach and avoidance behaviors in humans and rodents, addresses neurobiological and neurochemical aspects of these behaviors, and proposes a possible synaptic plasticity mechanism, related to endocannabinoid-dependent long-term potentiation and depression that allows responding to salient positive and negative stimuli.

  15. Dissociating the role of endocannabinoids in the pleasurable and motivational properties of social play behaviour in rats.

    Achterberg, E J Marijke; van Swieten, Maaike M H; Driel, Nina V; Trezza, Viviana; Vanderschuren, Louk J M J

    2016-08-01

    Social play behaviour is a vigorous form of social interaction, abundant during the juvenile and adolescent phases of life in many mammalian species, including humans. Social play is highly rewarding and it is important for social and cognitive development. Being a rewarding activity, social play can be dissociated in its pleasurable and motivational components. We have previously shown that endocannabinoids modulate the expression of social play behaviour in rats. In the present study, we investigated whether endocannabinoids modulate the motivational and pleasurable properties of social play behaviour, using operant and place conditioning paradigms, respectively. Treatment with the anandamide hydrolysis inhibitor URB597 did not affect operant responding or social play-induced conditioned place preference (CPP) when administered at a dose (0.1mg/kg) known to increase the expression of social play behaviour, while it modestly reduced operant responding at a higher dose (0.2mg/kg). The cannabinoid-1 (CB1) receptor antagonist rimonabant reduced operant responding when administered at a dose (1mg/kg) known to decrease the expression of social play behaviour, although this effect may be secondary to concurrent drug-induced stereotypic behaviours (i.e., grooming and scratching). These data demonstrate that enhancing endocannabinoid levels does not differentially affect the motivational and pleasurable aspects of social play behaviour, whereas CB1 receptor blockade reduces the motivational aspects of social play behaviour, possibly due to response competition. Thus, endocannabinoids likely drive the expression of social play behaviour as a whole, without differentially affecting its motivational or pleasurable properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Impaired endocannabinoid signalling in the rostral ventromedial medulla underpins genotype-dependent hyper-responsivity to noxious stimuli.

    Rea, Kieran; Olango, Weredeselam M; Okine, Bright N; Madasu, Manish K; McGuire, Iseult C; Coyle, Kathleen; Harhen, Brendan; Roche, Michelle; Finn, David P

    2014-01-01

    Pain is both a sensory and an emotional experience, and is subject to modulation by a number of factors including genetic background modulating stress/affect. The Wistar-Kyoto (WKY) rat exhibits a stress-hyper-responsive and depressive-like phenotype and increased sensitivity to noxious stimuli, compared with other rat strains. Here, we show that this genotype-dependent hyperalgesia is associated with impaired pain-related mobilisation of endocannabinoids and transcription of their synthesising enzymes in the rostral ventromedial medulla (RVM). Pharmacological blockade of the Cannabinoid1 (CB1) receptor potentiates the hyperalgesia in WKY rats, whereas inhibition of the endocannabinoid catabolising enzyme, fatty acid amide hydrolase, attenuates the hyperalgesia. The latter effect is mediated by CB1 receptors in the RVM. Together, these behavioural, neurochemical, and molecular data indicate that impaired endocannabinoid signalling in the RVM underpins hyper-responsivity to noxious stimuli in a genetic background prone to heightened stress/affect. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  17. Differential alterations of the concentrations of endocannabinoids and related lipids in the subcutaneous adipose tissue of obese diabetic patients

    Verde Roberta

    2010-04-01

    Full Text Available Abstract Background The endocannabinoids, anandamide and 2-AG, are produced by adipocytes, where they stimulate lipogenesis via cannabinoid CB1 receptors and are under the negative control of leptin and insulin. Endocannabinoid levels are elevated in the blood of obese individuals and nonobese type 2 diabetes patients. To date, no study has evaluated endocannabinoid levels in subcutaneous adipose tissue (SAT of subjects with both obesity and type 2 diabetes (OBT2D, characterised by similar adiposity and whole body insulin resistance and lower plasma leptin levels as compared to non-diabetic obese subjects (OB. Design and Methods The levels of anandamide and 2-AG, and of the anandamide-related PPARα ligands, oleoylethanolamide (OEA and palmitoylethanolamide (PEA, in the SAT obtained by abdominal needle biopsy in 10 OBT2D, 11 OB, and 8 non-diabetic normal-weight (NW subjects, were measured by liquid chromatography-mass spectrometry. All subjects underwent a hyperinsulinaemic euglycaemic clamp. Results As compared to NW, anandamide, OEA and PEA levels in the SAT were 2-4.4-fold elevated (p Conclusions The observed alterations emphasize, for the first time in humans, the potential different role and regulation of adipose tissue anandamide (and its congeners and 2-AG in obesity and type 2 diabetes.

  18. Nutritional status-dependent endocannabinoid signalling regulates the integration of rat visceral information.

    Khlaifia, Abdessattar; Matias, Isabelle; Cota, Daniela; Tell, Fabien

    2017-06-01

    Vagal sensory inputs transmit information from the viscera to brainstem neurones located in the nucleus tractus solitarii to set physiological parameters. These excitatory synapses exhibit a CB1 endocannabinoid-induced long-term depression (LTD) triggered by vagal fibre stimulation. We investigated the impact of nutritional status on long-term changes in this long-term synaptic plasticity. Food deprivation prevents LTD induction by disrupting CB1 receptor signalling. Short-term refeeding restores the capacity of vagal synapses to express LTD. Ghrelin and cholecystokinin, respectively released during fasting and refeeding, play a key role in the control of LTD via the activation of energy sensing pathways such as AMPK and the mTOR and ERK pathways. Communication form the viscera to the brain is essential to set physiological homoeostatic parameters but also to drive more complex behaviours such as mood, memory and emotional states. Here we investigated the impact of the nutritional status on long-term changes in excitatory synaptic transmission in the nucleus tractus solitarii, a neural hub integrating visceral signals. These excitatory synapses exhibit a CB1 endocannabinoid (eCB)-induced long-term depression (LTD) triggered by vagal fibre stimulation. Since eCB signalling is known to be an important component of homoeostatic regulation of the body and is regulated during various stressful conditions, we tested the hypothesis that food deprivation alters eCB signalling in central visceral afferent fibres. Food deprivation prevents eCB-LTD induction due to the absence of eCB signalling. This loss was reversed by blockade of ghrelin receptors. Activation of the cellular fuel sensor AMP-activated protein kinase or inhibition of the mechanistic target of rapamycin pathway abolished eCB-LTD in free-fed rats. Signals associated with energy surfeit, such as short-term refeeding, restore eCB-LTD induction, which in turn requires activation of cholecystokinin receptors and

  19. Activation of Endocannabinoid Receptor 2 as a Mechanism of Propofol Pretreatment-Induced Cardioprotection against Ischemia-Reperfusion Injury in Rats

    Hai-Jing Sun

    2017-01-01

    Full Text Available Propofol pretreatment before reperfusion, or propofol conditioning, has been shown to be cardioprotective, while its mechanism is unclear. The current study investigated the roles of endocannabinoid signaling in propofol cardioprotection in an in vivo model of myocardial ischemia/reperfusion (I/R injury and in in vitro primary cardiomyocyte hypoxia/reoxygenation (H/R injury. The results showed that propofol conditioning increased both serum and cell culture media concentrations of endocannabinoids including anandamide (AEA and 2-arachidonoylglycerol (2-AG detected by LC-MS/MS. The reductions of myocardial infarct size in vivo and cardiomyocyte apoptosis and death in vitro were accompanied with attenuations of oxidative injuries manifested as decreased reactive oxygen species (ROS, malonaldehyde (MDA, and MPO (myeloperoxidase and increased superoxide dismutase (SOD production. These effects were mimicked by either URB597, a selective endocannabinoids degradation inhibitor, or VDM11, a selective endocannabinoids reuptake inhibitor. In vivo study further validated that the cardioprotective and antioxidative effects of propofol were reversed by selective CB2 receptor antagonist AM630 but not CB1 receptor antagonist AM251. We concluded that enhancing endogenous endocannabinoid release and subsequent activation of CB2 receptor signaling represent a major mechanism whereby propofol conditioning confers antioxidative and cardioprotective effects against myocardial I/R injury.

  20. TRPV1 and Endocannabinoids: Emerging Molecular Signals that Modulate Mammalian Vision

    Daniel A. Ryskamp

    2014-09-01

    Full Text Available Transient Receptor Potential Vanilloid 1 (TRPV1 subunits form a polymodal cation channel responsive to capsaicin, heat, acidity and endogenous metabolites of polyunsaturated fatty acids. While originally reported to serve as a pain and heat detector in the peripheral nervous system, TRPV1 has been implicated in the modulation of blood flow and osmoregulation but also neurotransmission, postsynaptic neuronal excitability and synaptic plasticity within the central nervous system. In addition to its central role in nociception, evidence is accumulating that TRPV1 contributes to stimulus transduction and/or processing in other sensory modalities, including thermosensation, mechanotransduction and vision. For example, TRPV1, in conjunction with intrinsic cannabinoid signaling, might contribute to retinal ganglion cell (RGC axonal transport and excitability, cytokine release from microglial cells and regulation of retinal vasculature. While excessive TRPV1 activity was proposed to induce RGC excitotoxicity, physiological TRPV1 activity might serve a neuroprotective function within the complex context of retinal endocannabinoid signaling. In this review we evaluate the current evidence for localization and function of TRPV1 channels within the mammalian retina and explore the potential interaction of this intriguing nociceptor with endogenous agonists and modulators.

  1. Don't Worry, Be Happy: Endocannabinoids and Cannabis at the Intersection of Stress and Reward.

    Volkow, Nora D; Hampson, Aidan J; Baler, Ruben D

    2017-01-06

    Cannabis enables and enhances the subjective sense of well-being by stimulating the endocannabinoid system (ECS), which plays a key role in modulating the response to stress, reward, and their interactions. However, over time, repeated activation of the ECS by cannabis can trigger neuroadaptations that may impair the sensitivity to stress and reward. This effect, in vulnerable individuals, can lead to addiction and other adverse consequences. The recent shift toward legalization of medical or recreational cannabis has renewed interest in investigating the physiological role of the ECS as well as the potential health effects, both adverse and beneficial, of cannabis. Here we review our current understanding of the ECS and its complex physiological roles. We discuss the implications of this understanding vis-á-vis the ECS's modulation of stress and reward and its relevance to mental disorders in which these processes are disrupted (i.e., addiction, depression, posttraumatic stress disorder, schizophrenia), along with the therapeutic potential of strategies to manipulate the ECS for these conditions.

  2. Modulation of the Endocannabinoid System: Vulnerability Factor and New Treatment Target for Stimulant Addiction.

    Stéphanie eOlière

    2013-09-01

    Full Text Available Cannabis is one of the most widely used illicit substance among users of stimulants such as cocaine and amphetamine. Interestingly, recent accumulating evidence points toward the involvement of the endocannabinoid system (ECBS in the neurobiological processes related to stimulant addiction. This article presents an up-to-date review with deep-insights into the pivotal role of the ECBS in the neurobiology of stimulant addiction and the effects of its modulation on addictive behaviors. The aims of this article are to: 1 review the role of cannabis use and ECBS modulation in the neurobiological substrates of psychostimulant addiction and 2 evaluate the potential of cannabinoid-based pharmacological strategies to treat stimulant addiction. A growing number of studies support a critical role of the ECBS and its modulation by synthetic or natural cannabinoid in various neurobiological and behavioral aspects of stimulants addiction. Thus, cannabinoids modulate brain reward systems closely involved in stimulants addiction, and provide further evidence that the cannabinoid system could be explored as a potential drug discovery target for treating addiction across different classes of stimulants.

  3. Impaired fear memory specificity associated with deficient endocannabinoid-dependent long-term plasticity.

    Lovelace, Jonathan W; Vieira, Philip A; Corches, Alex; Mackie, Ken; Korzus, Edward

    2014-06-01

    In addition to its central role in learning and memory, N-methyl D-aspartate receptor (NMDAR)-dependent signaling regulates central glutamatergic synapse maturation and has been implicated in schizophrenia. We have transiently induced NMDAR hypofunction in infant mice during postnatal days 7-11, followed by testing fear memory specificity and presynaptic plasticity in the prefrontal cortex (PFC) in adult mice. We show that transient NMDAR hypofunction during early brain development, coinciding with the maturation of cortical plasticity results in a loss of an endocannabinoid (eCB)-mediated form of long-term depression (eCB-LTD) at adult central glutamatergic synapses, while another form of presynaptic long-term depression mediated by the metabotropic glutamate receptor 2/3 (mGluR2/3-LTD) remains intact. Mice with this selective impairment of presynaptic plasticity also showed deficits in fear memory specificity. The observed deficit in cortical presynaptic plasticity may represent a neural maladaptation contributing to network instability and abnormal cognitive functioning.

  4. Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System

    Shenglong Zou

    2018-03-01

    Full Text Available The biological effects of cannabinoids, the major constituents of the ancient medicinal plant Cannabis sativa (marijuana are mediated by two members of the G-protein coupled receptor family, cannabinoid receptors 1 (CB1R and 2. The CB1R is the prominent subtype in the central nervous system (CNS and has drawn great attention as a potential therapeutic avenue in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Furthermore, cannabinoids also modulate signal transduction pathways and exert profound effects at peripheral sites. Although cannabinoids have therapeutic potential, their psychoactive effects have largely limited their use in clinical practice. In this review, we briefly summarized our knowledge of cannabinoids and the endocannabinoid system, focusing on the CB1R and the CNS, with emphasis on recent breakthroughs in the field. We aim to define several potential roles of cannabinoid receptors in the modulation of signaling pathways and in association with several pathophysiological conditions. We believe that the therapeutic significance of cannabinoids is masked by the adverse effects and here alternative strategies are discussed to take therapeutic advantage of cannabinoids.

  5. State-dependent, bidirectional modulation of neural network activity by endocannabinoids.

    Piet, Richard; Garenne, André; Farrugia, Fanny; Le Masson, Gwendal; Marsicano, Giovanni; Chavis, Pascale; Manzoni, Olivier J

    2011-11-16

    The endocannabinoid (eCB) system and the cannabinoid CB1 receptor (CB1R) play key roles in the modulation of brain functions. Although actions of eCBs and CB1Rs are well described at the synaptic level, little is known of their modulation of neural activity at the network level. Using microelectrode arrays, we have examined the role of CB1R activation in the modulation of the electrical activity of rat and mice cortical neural networks in vitro. We find that exogenous activation of CB1Rs expressed on glutamatergic neurons decreases the spontaneous activity of cortical neural networks. Moreover, we observe that the net effect of the CB1R antagonist AM251 inversely correlates with the initial level of activity in the network: blocking CB1Rs increases network activity when basal network activity is low, whereas it depresses spontaneous activity when its initial level is high. Our results reveal a complex role of CB1Rs in shaping spontaneous network activity, and suggest that the outcome of endogenous neuromodulation on network function might be state dependent.

  6. Endocannabinoid and Mood Responses to Exercise in Adults with Varying Activity Levels.

    Brellenthin, Angelique G; Crombie, Kevin M; Hillard, Cecilia J; Koltyn, Kelli F

    2017-08-01

    Acute aerobic exercise improves mood and activates the endocannabinoid (eCB) system in physically active individuals; however, both mood and eCB responses to exercise may vary based on habitual levels of physical activity. This study aimed to examine eCB and mood responses to prescribed and preferred exercises among individuals with low, moderate, and high levels of physical activity. Thirty-six healthy adults (21 ± 4 yr) were recruited from low (≤60 min moderate-vigorous physical activity [MVPA] per week), moderate (150-299 min MVPA per week), and high (≥300 MVPA per week) physical activity groups. Participants performed both prescribed (approximately 70%-75% max) and preferred (i.e., self-selected) aerobic exercise on separate days. Mood states and eCB concentrations were assessed before and after exercise conditions. Both preferred and prescribed exercise resulted in significant increases (P exercise elicited positive mood improvements compared with preexercise values, but changes in state anxiety, total mood disturbance, and confusion were greater in the preferred condition (P mood disturbance in the preferred condition (P mood or eCB outcomes. These results indicate that eCB and mood responses to exercise do not differ significantly between samples with varying physical activity levels. This study also demonstrates that in addition to prescribed exercise, preferred exercise activates the eCB system, and this activation may contribute to positive mood outcomes with exercise.

  7. Endocannabinoid receptor blockade reduces alanine aminotransferase in polycystic ovary syndrome independent of weight loss.

    Dawson, Alison J; Kilpatrick, Eric S; Coady, Anne-Marie; Elshewehy, Abeer M M; Dakroury, Youssra; Ahmed, Lina; Atkin, Stephen L; Sathyapalan, Thozhukat

    2017-07-14

    Evidence suggests that endocannabinoid system activation through the cannabinoid receptor 1 (CB1) is associated with enhanced liver injury, and CB1 antagonism may be beneficial. The aim of this study was to determine the impact of rimonabant (CB1 antagonist) on alanine aminotransferase (ALT), a hepatocellular injury marker, and a hepatic inflammatory cytokine profile. Post hoc review of 2 studies involving 50 obese women with PCOS and well matched for weight, randomised to weight reducing therapy; rimonabant (20 mg od) or orlistat (120 mg tds), or to insulin sensitising therapy metformin, (500 mg tds), or pioglitazone (45 mg od). No subject had non-alcoholic fatty liver disease (NAFLD). Treatment with rimonabant for 12 weeks reduced both ALT and weight (p weight. There was a significant reduction of weight with orlistat (p weight loss and hepatic inflammatory markers in obese women with PCOS without NAFLD. ISRCTN58369615 (February 2007; retrospectively registered) ISRCTN75758249 (October 2007; retrospectively registered).

  8. Endocannabinoid Release Modulates Electrical Coupling between CCK Cells Connected via Chemical and Electrical Synapses in CA1

    Iball, Jonathan; Ali, Afia B.

    2011-01-01

    Electrical coupling between some subclasses of interneurons is thought to promote coordinated firing that generates rhythmic synchronous activity in cortical regions. Synaptic activity of cholecystokinin (CCK) interneurons which co-express cannabinoid type-1 (CB1) receptors are powerful modulators of network activity via the actions of endocannabinoids. We investigated the modulatory actions of endocannabinoids between chemically and electrically connected synapses of CCK cells using paired whole-cell recordings combined with biocytin and double immunofluorescence labeling in acute slices of rat hippocampus at P18–20 days. CA1 stratum radiatum CCK Schaffer collateral-associated cells were coupled electrically with each other as well as CCK basket cells and CCK cells with axonal projections expanding to dentate gyrus. Approximately 50% of electrically coupled cells received facilitating, asynchronously released inhibitory postsynaptic potential (IPSPs) that curtailed the steady-state coupling coefficient by 57%. Tonic CB1 receptor activity which reduces inhibition enhanced electrical coupling between cells that were connected via chemical and electrical synapses. Blocking CB1 receptors with antagonist, AM-251 (5 μM) resulted in the synchronized release of larger IPSPs and this enhanced inhibition further reduced the steady-state coupling coefficient by 85%. Depolarization induced suppression of inhibition (DSI), maintained the asynchronicity of IPSP latency, but reduced IPSP amplitudes by 95% and enhanced the steady-state coupling coefficient by 104% and IPSP duration by 200%. However, DSI did not did not enhance electrical coupling at purely electrical synapses. These data suggest that different morphological subclasses of CCK interneurons are interconnected via gap junctions. The synergy between the chemical and electrical coupling between CCK cells probably plays a role in activity-dependent endocannabinoid modulation of rhythmic synchronization. PMID

  9. Effects of a Weight Loss Program on Metabolic Syndrome, Eating Disorders and Psychological Outcomes: Mediation by Endocannabinoids.

    Pataky, Zoltan; Carrard, Isabelle; Gay, Valerie; Thomas, Aurélien; Carpentier, Anne; Bobbioni-Harsch, Elisabetta; Golay, Alain

    2018-04-10

    To evaluate the effects of weight loss on endocannabinoids, cardiometabolic and psychological parameters, eating disorders (ED) as well as quality of life (QoL) and to elucidate the role of endocannabinoids in metabolic syndrome (MS). In total, 114 patients with obesity were prospectively included in a 12-month weight loss program. Plasma endocannabinoids were measured by mass spectrometry; ED, psychological and QoL-related parameters were evaluated by self-reported questionnaires; physical activity was measured by accelerometer. Nutritional assessment was done by a 3-day food diary. Among completers (n = 87), body weight decreased in 35 patients (-9.1 ± 8.6 kg), remained stable in 39 patients, and increased in 13 patients (+5.8 ± 3.4 kg). 75% of patients with MS at baseline were free of MS at follow-up, and their baseline plasma N-palmitoylethanolamide (PEA) values were significantly lower when compared to patients with persisting MS. At baseline, there was a positive relationship between PEA and waist circumference (p = 0.005, R2 = 0.08), fasting glucose (p < 0.0001, R2 = 0.12), total cholesterol (p = 0.001, R2 = 0.11), triglycerides (p = 0.001, R2 = 0.11), LDL-cholesterol (p = 0.03, R2 = 0.05) as well as depression score (p = 0.002, R2 = 0.29). Plasma PEA might play a role in metabolic improvement after weight loss. Even in subjects without weight loss, a multidisciplinary intervention improves psychological outcomes, ED, and QoL. © 2018 The Author(s) Published by S. Karger GmbH, Freiburg.

  10. Effects of a Weight Loss Program on Metabolic Syndrome, Eating Disorders and Psychological Outcomes: Mediation by Endocannabinoids?

    Zoltan Pataky

    2018-04-01

    Full Text Available Objective: To evaluate the effects of weight loss on endocannabinoids, cardiometabolic and psychological parameters, eating disorders (ED as well as quality of life (QoL and to elucidate the role of endocannabinoids in metabolic syndrome (MS. Methods: In total, 114 patients with obesity were prospectively included in a 12-month weight loss program. Plasma endocannabinoids were measured by mass spectrometry; ED, psychological and QoL-related parameters were evaluated by self-reported questionnaires; physical activity was measured by accelerometer. Nutritional assessment was done by a 3-day food diary. Results: Among completers (n = 87, body weight decreased in 35 patients (-9.1 ± 8.6 kg, remained stable in 39 patients, and increased in 13 patients (+5.8 ± 3.4 kg. 75% of patients with MS at baseline were free of MS at follow-up, and their baseline plasma N-palmitoylethanolamide (PEA values were significantly lower when compared to patients with persisting MS. At baseline, there was a positive relationship between PEA and waist circumference (p = 0.005, R2 = 0.08, fasting glucose (p 2 = 0.12, total cholesterol (p = 0.001, R2 = 0.11, triglycerides (p = 0.001, R2 = 0.11, LDL-cholesterol (p = 0.03, R2 = 0.05 as well as depression score (p = 0.002, R2 = 0.29. Conclusion: Plasma PEA might play a role in metabolic improvement after weight loss. Even in subjects without weight loss, a multidisciplinary intervention improves psychological outcomes, ED, and QoL.

  11. Endocannabinoid release modulates electrical coupling between CCK cells connected via chemical and electrical synapses in CA1

    Jonathan eIball

    2011-11-01

    Full Text Available Electrical coupling between some subclasses of interneurons is thought to promote coordinated firing that generates rhythmic synchronous activity in cortical regions. Synaptic activity of cholesystokinin (CCK interneurons which co-express cannbinoid type-1 (CB1 receptors are powerful modulators of network activity via the actions of endocannabinoids. We investigated the modulatory actions of endocannabinoids between chemically and electrically connected synapses of CCK cells using paired whole-cell recordings combined with biocytin and double immunofluorescence labelling in acute slices of rat hippocampus at P18-20 days. CA1 stratum radiatum CCK Schaffer collateral associated (SCA cells were coupled electrically with each other as well as CCK basket cells and CCK cells with axonal projections expanding to dentate gyrus. Approximately 50% of electrically coupled cells received facilitating, asynchronously released IPSPs that curtailed the steady-state coupling coefficient by 57%. Tonic CB1 receptor activity which reduces inhibition enhanced electrical coupling between cells that were connected via chemical and electrical synapses. Blocking CB1 receptors with antagonist, AM-251 (5M resulted in the synchronized release of larger IPSPs and this enhanced inhibition further reduced the steady-state coupling coefficient by 85%. Depolarization induced suppression of inhibition (DSI, maintained the asynchronicity of IPSP latency, but reduced IPSP amplitudes by 95% and enhanced the steady-state coupling coefficient by 104% and IPSP duration by 200%. However, DSI did not did not enhance electrical coupling at purely electrical synapses. These data suggest that different morphological subclasses of CCK interneurons are interconnected via gap junctions. The synergy between the chemical and electrical coupling between CCK cells probably plays a role in activity-dependent endocannabinoid modulation of rhythmic synchronization.

  12. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids

    Covey, Dan P.; Bunner, Kendra D.; Schuweiler, Douglas R.; Cheer, Joseph F.; Garris, Paul A.

    2018-01-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement

  13. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.

    Covey, Dan P; Bunner, Kendra D; Schuweiler, Douglas R; Cheer, Joseph F; Garris, Paul A

    2016-06-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement

  14. Polarized cellular patterns of endocannabinoid production and detection shape cannabinoid signaling in neurons

    Delphine eLadarre

    2015-01-01

    Full Text Available Neurons display important differences in plasma membrane composition between somatodendritic and axonal compartments, potentially leading to currently unexplored consequences in G-protein-coupled-receptor signaling. Here, by using highly-resolved biosensor imaging to measure local changes in basal levels of key signaling components, we explored features of type-1 cannabinoid receptor (CB1R signaling in individual axons and dendrites of cultured rat hippocampal neurons. Activation of endogenous CB1Rs led to rapid, Gi/o-protein- and cAMP-mediated decrease of cyclic-AMP-dependent protein kinase (PKA activity in the somatodendritic compartment. In axons, PKA inhibition was significantly stronger, in line with axonally-polarized distribution of CB1Rs. Conversely, inverse agonist AM281 produced marked rapid increase of basal PKA activation in somata and dendrites, but not in axons, removing constitutive activation of CB1Rs generated by local production of the endocannabinoid 2-arachidonoylglycerol (2-AG. Interestingly, somatodendritic 2-AG levels differently modified signaling responses to CB1R activation by Δ9-THC, the psychoactive compound of marijuana, and by the synthetic cannabinoids WIN55,212-2 and CP55,940. These highly contrasted differences in sub-neuronal signaling responses warrant caution in extrapolating pharmacological profiles, which are typically obtained in non-polarized cells, to predict in vivo responses of axonal (i.e. presynaptic GPCRs. Therefore, our results suggest that enhanced comprehension of GPCR signaling constraints imposed by neuronal cell biology may improve the understanding of neuropharmacological action.

  15. Antidepressants and changes in concentration of endocannabinoids and N-acylethanolamines in rat brain structures.

    Smaga, Irena; Bystrowska, Beata; Gawliński, Dawid; Pomierny, Bartosz; Stankowicz, Piotr; Filip, Małgorzata

    2014-08-01

    The endocannabinoid (eCB) system has recently been implicated in both the pathogenesis of depression and the action of antidepressants. Here, we investigated the effect of acutely or chronically administering antidepressants [imipramine (IMI) (15 mg/kg), escitalopram (ESC) (10 mg/kg), and tianeptine (10 mg/kg)] on the levels of both eCBs [anandamide (AEA) and 2-arachidonoylglycerol (2-AG)] and N-acylethanolamines (NAEs) [palmitoylethanolamide (PEA) and oleoylethanolamide (OEA)] in various rat brain regions. We also examined the ability of the acute and chronic administration of N-acetylcysteine (NAC) (a mucolytic drug; 100 mg/kg) or URB597 (a fatty acid amide hydrolase inhibitor; 0.3 mg/kg), which have both elicited antidepressant activity in preclinical studies, to affect eCB and NAE levels. Next, we determined whether the observed effects are stable 10 days after the chronic administration of these drugs was halted. We report that the chronic administration of all investigated drugs increased AEA levels in the hippocampus and also increased both AEA and 2-AG levels in the dorsal striatum. NAE levels in limbic regions also increased after treatment with IMI (PEA/OEA), ESC (PEA), and NAC (PEA/OEA). Removing chronic ESC treatment for 10 days affected eCB and NAE levels in the frontal cortex, hippocampus, dorsal striatum, and cerebellum, while a similar tianeptine-free period enhanced accumbal NAE levels. All other drugs maintained their effects after the 10-day washout period. Therefore, the eCB system appears to play a significant role in the mechanism of action of clinically effective and potential antidepressants and may serve as a target for drug design and discovery.

  16. Molecular sites for the positive allosteric modulation of glycine receptors by endocannabinoids.

    Gonzalo E Yévenes

    Full Text Available Glycine receptors (GlyRs are transmitter-gated anion channels of the Cys-loop superfamily which mediate synaptic inhibition at spinal and selected supraspinal sites. Although they serve pivotal functions in motor control and sensory processing, they have yet to be exploited as drug targets partly because of hitherto limited possibilities for allosteric control. Endocannabinoids (ECs have recently been characterized as direct allosteric GlyR modulators, but the underlying molecular sites have remained unknown. Here, we show that chemically neutral ECs (e.g. anandamide, AEA are positive modulators of α(1, α(2 and α(3 GlyRs, whereas acidic ECs (e.g. N-arachidonoyl-glycine; NA-Gly potentiate α(1 GlyRs but inhibit α(2 and α(3. This subunit-specificity allowed us to identify the underlying molecular sites through analysis of chimeric and mutant receptors. We found that alanine 52 in extracellular loop 2, glycine 254 in transmembrane (TM region 2 and intracellular lysine 385 determine the positive modulation of α(1 GlyRs by NA-Gly. Successive substitution of non-conserved extracellular and TM residues in α(2 converted NA-Gly-mediated inhibition into potentiation. Conversely, mutation of the conserved lysine within the intracellular loop between TM3 and TM4 attenuated NA-Gly-mediated potentiation of α(1 GlyRs, without affecting inhibition of α(2 and α(3. Notably, this mutation reduced modulation by AEA of all three GlyRs. These results define molecular sites for allosteric control of GlyRs by ECs and reveal an unrecognized function for the TM3-4 intracellular loop in the allosteric modulation of Cys-loop ion channels. The identification of these sites may help to understand the physiological role of this modulation and facilitate the development of novel therapeutic approaches to diseases such as spasticity, startle disease and possibly chronic pain.

  17. Endocannabinoid system and psychiatry: in search of a neurobiological basis for detrimental and potential therapeutic effects

    Eva M Marco

    2011-10-01

    Full Text Available Public concern on mental health has noticeably increased given the high prevalence of neuropsychiatric disorders. Cognition and emotionality are the most affected functions in neuropsychiatric disorders, i.e. anxiety disorders, depression and schizophrenia. In this review, most relevant literature on the role of the endocannabinoid (eCB system in neuropsychiatric disorders will be presented. Evidence from clinical and animal studies is provided for the participation of CB1 and CB2 receptors (CB1R and CB2R in the above mentioned neuropsychiatric disorders. CBRs are crucial in some of the emotional and cognitive impairments reported, although more research is required to understand the specific role of the eCB system in neuropsychiatric disorders. Cannabidiol (CBD, the main non-psychotropic component of the Cannabis sativa plant, has shown therapeutic potential in several neuropsychiatric disorders. Although further studies are needed, recent studies indicate that CBD therapeutic effects may partially depend on facilitation of eCB-mediated neurotransmission. Last but not least, this review includes recent findings on the role of the eCB system in eating disorders. A deregulation of the eCB system has been proposed to be in the bases of several neuropsychiatric disorders, including eating disorders. Cannabis consumption has been related to the appearance of psychotic symptoms and schizophrenia. In contrast, the pharmacological manipulation of this eCB system has been proposed as a potential strategy for the treatment of anxiety disorders, depression, and anorexia nervosa. In conclusion, the eCB system plays a critical role in psychiatry; however, detrimental consequences of manipulating this endogenous system cannot be underestimated over the potential and promising perspectives of its therapeutic manipulation.

  18. Glucose metabolism: focus on gut microbiota, the endocannabinoid system and beyond.

    Cani, P D; Geurts, L; Matamoros, S; Plovier, H; Duparc, T

    2014-09-01

    The gut microbiota is now considered as a key factor in the regulation of numerous metabolic pathways. Growing evidence suggests that cross-talk between gut bacteria and host is achieved through specific metabolites (such as short-chain fatty acids) and molecular patterns of microbial membranes (lipopolysaccharides) that activate host cell receptors (such as toll-like receptors and G-protein-coupled receptors). The endocannabinoid (eCB) system is an important target in the context of obesity, type 2 diabetes (T2D) and inflammation. It has been demonstrated that eCB system activity is involved in the control of glucose and energy metabolism, and can be tuned up or down by specific gut microbes (for example, Akkermansia muciniphila). Numerous studies have also shown that the composition of the gut microbiota differs between obese and/or T2D individuals and those who are lean and non-diabetic. Although some shared taxa are often cited, there is still no clear consensus on the precise microbial composition that triggers metabolic disorders, and causality between specific microbes and the development of such diseases is yet to be proven in humans. Nevertheless, gastric bypass is most likely the most efficient procedure for reducing body weight and treating T2D. Interestingly, several reports have shown that the gut microbiota is profoundly affected by the procedure. It has been suggested that the consistent postoperative increase in certain bacterial groups such as Proteobacteria, Bacteroidetes and Verrucomicrobia (A. muciniphila) may explain its beneficial impact in gnotobiotic mice. Taken together, these data suggest that specific gut microbes modulate important host biological systems that contribute to the control of energy homoeostasis, glucose metabolism and inflammation in obesity and T2D. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Effects of the antipsychotic paliperidone on stress-induced changes in the endocannabinoid system in rat prefrontal cortex.

    MacDowell, Karina S; Sayd, Aline; García-Bueno, Borja; Caso, Javier R; Madrigal, José L M; Leza, Juan Carlos

    2017-09-01

    Objectives There is a need to explore novel mechanisms of action of existing/new antipsychotics. One potential candidate is the endocannabinoid system (ECS). The present study tried to elucidate the effects of the antipsychotic paliperidone on stress-induced ECS alterations. Methods Wister rats were submitted to acute/chronic restraint stress. Paliperidone (1 mg/kg) was given prior each stress session. Cannabinoid receptors and endocannabinoids (eCBs) synthesis and degradation enzymes were measured in prefrontal cortex (PFC) samples by RT-PCR and Western Blot. Results In the PFC of rats exposed to acute stress, paliperidone increased CB1 receptor (CB1R) expression. Furthermore, paliperidone increased the expression of the eCB synthesis enzymes N-acylphosphatidylethanolamine- hydrolysing phospholipase D and DAGLα, and blocked the stress-induced increased expression of the degrading enzyme fatty acid amide hydrolase. In chronic conditions, paliperidone prevented the chronic stress-induced down-regulation of CB1R, normalised DAGLα expression and reverted stress-induced down-regulation of the 2-AG degrading enzyme monoacylglycerol lipase. ECS was analysed also in periphery. Acute stress decreased DAGLα expression, an effect prevented by paliperidone. Contrarily, chronic stress increased DAGLα and this effect was potentiated by paliperidone. Conclusions The results obtained described a preventive effect of paliperidone on stress-induced alterations in ECS. Considering the diverse alterations on ECS described in psychotic disease, targeting ECS emerges as a new therapeutic possibility.

  20. The endocannabinoid system and Post Traumatic Stress Disorder (PTSD): From preclinical findings to innovative therapeutic approaches in clinical settings.

    Berardi, Andrea; Schelling, Gustav; Campolongo, Patrizia

    2016-09-01

    Post-Traumatic Stress Disorder (PTSD) is a psychiatric chronic disease developing in individuals after the experience of an intense and life-threatening traumatic event. The post-traumatic symptomatology encompasses alterations in memory processes, mood, anxiety and arousal. There is now consensus in considering the disease as an aberrant adaptation to traumatic stress. Pharmacological research, aimed at the discovery of new potential effective treatments, has lately directed its attention towards the "so-called" cognitive enhancers. This class of substances, by modulating cognitive processes involved in the development and/or persistence of the post-traumatic symptomatology, could be of great help in improving the outcome of psychotherapies and patients' prognosis. In this perspective, drugs acting on the endocannabinoid system are receiving great attention due to their dual ability to modulate memory processes on one hand, and to reduce anxiety and depression on the other. The purpose of the present review is to offer a thorough overview of both animal and human studies investigating the effects of cannabinoids on memory processes. First, we will briefly describe the characteristics of the endocannabinoid system and the most commonly used animal models of learning and memory. Then, studies investigating cannabinoid modulatory influences on memory consolidation, retrieval and extinction will be separately presented, and the potential benefits associated with each approach will be discussed. In the final section, we will review literature data reporting beneficial effects of cannabinoid drugs in PTSD patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Potential role of the endocannabinoid receptor antagonist rimonabant in the management of cardiometabolic risk: a narrative review of available data

    Kirk A Bronander

    2007-05-01

    Full Text Available Kirk A Bronander1, Michael J Bloch21Division of General Internal Medicine, 2Divisions of Cardiology and General Internal Medicine, Department of Medicine, University of Nevada School of Medicine, Reno, NV, USAAbstract: The endocannabinoid system (ECS is an endogenous physiological system composed of two cannabinoid receptors and several endogenous ligands. The ECS is intimately involved in appetite regulation and energy homeostasis, which makes it an intriguing target for pharmacological treatment of obesity, diabetes, and the metabolic syndrome. Rimonabant is the first cannabinoid receptor (CB-1 antagonist being studied and utilized to treat obesity (it is approved in Europe but is currently under review in the United States. Large randomized trials with rimonabant have demonstrated efficacy in treatment of overweight and obese individuals with weight loss significantly greater than a reduced calorie diet alone. In addition, multiple other cardiometabolic parameters were improved in the treatment groups including increased levels of high density lipoprotein cholesterol, reduced triglycerides, reduced waist circumference, improved insulin sensitivity, decreased insulin levels, and in diabetic patients improvement in glycosylated hemoglobin percentage. There was an increase in the adverse effects of depression, anxiety, irritability, and nausea in rimonabant-treated groups. This novel medication may become an important therapeutic option in the fight to reduce cardiovascular disease worldwide through its unique action on cardiometabolic risk.Keywords: rimonabant, endocannabinoid, metabolic syndrome, obesity

  2. Plasma endocannabinoid levels in lean, overweight and obese humans: relationships with intestinal permeability markers, inflammation and incretin secretion.

    Little, Tanya J; Cvijanovic, Nada; DiPatrizio, Nicholas V; Argueta, Donovan A; Rayner, Christopher K; Feinle-Bisset, Christine; Young, Richard L

    2018-02-13

    Intestinal production of endocannabinoid and oleoylethanolamide (OEA) is impaired in high-fat diet/obese rodents, leading to reduced satiety. Such diets also alter the intestinal microbiome in association with enhanced intestinal permeability and inflammation, however little is known of these effects in humans. This study aimed to: (i) evaluate effects of lipid on plasma anandamide (AEA), 2-arachidonyl-sn-glycerol (2-AG) and OEA in humans, and (ii) examine relationships with intestinal permeability, inflammation markers and incretin hormone secretion. 20 lean, 18 overweight and 19 obese participants underwent intraduodenal Intralipid® infusion (2 kcal/min) with collection of endoscopic duodenal biopsies and blood. Plasma AEA, 2-AG, and OEA (HPLC/tandem mass spectrometry), tumour necrosis factor-α (TNF-α), glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) (multiplex), and duodenal expression of occludin, zona-occludin-1 (ZO-1), intestinal-alkaline-phosphatase (IAP), and toll-like receptor-4 (TLR4) (RT-PCR), were assessed. Fasting plasma AEA was increased in obese, compared with lean and overweight (Plean (Plean and overweight. The relationships between plasma AEA with duodenal ZO-1 and IAP, and GIP, suggest that altered endocannabinoid signalling may contribute to changes in intestinal permeability, inflammation and incretin release in human obesity.

  3. Development and validation of a quantitative method for the determination of 12 endocannabinoids and related compounds in human plasma using liquid chromatography-tandem mass spectrometry

    Balvers, M.G.J.; Verhoeckx, K.C.M.; Witkamp, R.F.

    2009-01-01

    A sensitive and specific LC¿MS/MS method for the quantification of the endocannabinoids and related structures anandamide, 2-arachidonoyl glycerol, 2-arachidonyl glycerol ether, O-arachidonoyl ethanolamide, dihomo-¿-linolenoyl ethanolamide, docosatetraenoyl ethanolamide, N-arachidonoyl dopamine,

  4. A role for the endocannabinoid 2-arachidonoyl-sn-glycerol for social and high-fat food reward in male mice.

    Wei, Don; Lee, DaYeon; Li, Dandan; Daglian, Jennifer; Jung, Kwang-Mook; Piomelli, Daniele

    2016-05-01

    The endocannabinoid system is an important modulator of brain reward signaling. Investigations have focused on cannabinoid (CB1) receptors, because dissection of specific contributions of individual endocannabinoids has been limited by the available toolset. While we recently described an important role for the endocannabinoid anandamide in the regulation of social reward, it remains to be determined whether the other major endocannabinoid, 2-arachidonoyl-sn-glycerol (2-AG), serves a similar or different function. To study the role of 2-AG in natural reward, we used a transgenic mouse model (MGL-Tg mice) in which forebrain 2-AG levels are selectively reduced. We complemented behavioral analysis with measurements of brain 2-AG levels. We tested male MGL-Tg mice in conditioned place preference (CPP) tasks for high-fat food, social contact, and cocaine. We measured 2-AG content in the brain regions of interest by liquid chromatography/mass spectrometry. Male MGL-Tg mice are impaired in developing CPP for high-fat food and social interaction, but do develop CPP for cocaine. Furthermore, compared to isolated mice, levels of 2-AG in socially stimulated wild-type mice are higher in the nucleus accumbens and ventral hippocampus (183 and 140 % of controls, respectively), but unchanged in the medial prefrontal cortex. The results suggest that reducing 2-AG-mediated endocannabinoid signaling impairs social and high-fat food reward in male mice, and that social stimulation mobilizes 2-AG in key brain regions implicated in the control of motivated behavior. The time course of this response differentiates 2-AG from anandamide, whose role in mediating social reward was previously documented.

  5. Fatty Acid Amide Hydrolase Binding in Brain of Cannabis Users: Imaging with the Novel Radiotracer [11C]CURB

    Boileau, Isabelle; Mansouri, Esmaeil; Williams, Belinda; Le Foll, Bernard; Rusjan, Pablo; Mizrahi, Romina; Tyndale, Rachel F.; Huestis, Marilyn A.; Payer, Doris E.; Wilson, Alan A.; Houle, Sylvain; Kish, Stephen J.; Tong, Junchao

    2016-01-01

    Background One of the major mechanisms for terminating the actions of the endocannabinoid anandamide is hydrolysis by fatty acid amide hydrolase (FAAH) and inhibitors of the enzyme were suggested as potential treatment for human cannabis dependence. However, the status of brain FAAH in cannabis use disorder is unknown. Methods Brain FAAH binding was measured with positron emission tomography and [11C]CURB in 22 healthy control subjects and ten chronic, frequent cannabis users during early abstinence. The FAAH genetic polymorphism (rs324420) and blood, urine and hair levels of cannabinoids and metabolites were determined. Results In cannabis users FAAH binding was significantly lower by 14–20% across the brain regions examined as compared to matched control subjects (overall Cohen’s d=0.96). Lower binding was negatively correlated with cannabinoid concentrations in blood and urine and was associated with higher trait impulsiveness. Conclusions Lower FAAH binding levels in the brain may be a consequence of chronic and recent cannabis exposure and could contribute to cannabis withdrawal. This effect should be considered in the development of novel treatment strategies for cannabis use disorder that target FAAH and endocannabinoids. Further studies are needed to examine possible changes in FAAH binding during prolonged cannabis abstinence and whether lower FAAH binding predates drug use. PMID:27345297

  6. Influence of dietary fatty acids on endocannabinoid and N-acylethanolamine levels in rat brain, liver and small intestine

    Artmann, Andreas; Petersen, Gitte; Hellgren, Lars

    2008-01-01

    and docosahexaenoylethanolamide) with similar changes in precursor lipids. The AA-diet and FO-diet had no effect on N-acylethanolamines, endocannabinoids or precursor lipids in brain. All N-acylethanolamines activated PPAR-alpha. In conclusion, short-term feeding of diets resembling human diets (Mediterranean diet high...... (AA)) on tissue levels of 2-arachidonoylglycerol, anandamide, oleoylethanolamide, palmitoylethanolamide, stearoylethanolamide, linoleoylethanolamide, eicosapentaenoylethanolamide, docosahexaenoylethanolamide and tissue fatty acid composition. The LA-diet increased linoleoylethanolamide and linoleic...... acid in brain, jejunum and liver. The OA-diet increased brain levels of anandamide and oleoylethanolamide (not 2-arachidonoylglycerol) without changing tissue fatty acid composition. The same diet increased oleoylethanolamide in liver. All five dietary fats decreased oleoylethanolamide in jejunum...

  7. Reduced alcohol intake and reward associated with impaired endocannabinoid signaling in mice with a deletion of the glutamate transporter GLAST

    Karlsson, Rose-Marie; Adermark, Louise; Molander, Anna

    2012-01-01

    mice with a deletion of GLAST to test this prediction. WT and GLAST KO mice were tested for alcohol consumption using two-bottle free-choice drinking. Alcohol reward was evaluated using conditioned place preference (CPP). Sensitivity to depressant alcohol effects was tested using the accelerating...... rotarod, alcohol-induced hypothermia, and loss of righting reflex. Extracellular glutamate was measured using microdialysis, and striatal slice electrophysiology was carried out to examine plasticity of the cortico-striatal pathway as a model system in which adaptations to the constitutive GLAST deletion...... deletion of GLAST unexpectedly results in markedly reduced alcohol consumption and preference, associated with markedly reduced alcohol reward. Endocannabinoid signaling appears to be down-regulated upstream of the CB1 receptor as a result of the GLAST deletion, and is a candidate mechanism behind...

  8. Adverse social experiences in adolescent rats result in enduring effects on social competence, pain sensitivity and endocannabinoid signaling

    Peggy Schneider

    2016-10-01

    Full Text Available Social affiliation is essential for many species and gains significant importance during adolescence. Disturbances in social affiliation, in particular social rejection experiences during adolescence, affect an individual’s well-being and are involved in the emergence of psychiatric disorders. The underlying mechanisms are still unknown, partly because of a lack of valid animal models. By using a novel animal model for social peer-rejection, which compromises adolescent rats in their ability to appropriately engage in playful activities, here we report on persistent impairments in social behavior and dysregulations in the endocannabinoid system. From postnatal day (pd 21 to pd 50 adolescent female Wistar rats were either reared with same-strain partners (control or within a group of Fischer 344 rats (inadequate social rearing, ISR, previously shown to serve as inadequate play partners for the Wistar strain. Adult ISR animals showed pronounced deficits in social interaction, social memory, processing of socially transmitted information, and decreased pain sensitivity. Molecular analysis revealed increased CB1 receptor protein levels and CP55,940 stimulated 35SGTPγS binding activity specifically in the amygdala and thalamus in previously peer-rejected rats. Along with these changes, increased levels of the endocannabinoid anandamide and a corresponding decrease of its degrading enzyme fatty acid amide hydrolase were seen in the amygdala. Our data indicate lasting consequences in social behavior and pain sensitivity following peer-rejection in adolescent female rats. These behavioral impairments are accompanied by persistent alterations in CB1 receptor signaling. Finally, we provide a novel translational approach to characterize neurobiological processes underlying social peer-rejection in adolescence.

  9. The major brain endocannabinoid 2-AG controls neuropathic pain and mechanical hyperalgesia in patients with neuromyelitis optica.

    Hannah L Pellkofer

    Full Text Available Recurrent myelitis is one of the predominant characteristics in patients with neuromyelitis optica (NMO. While paresis, visual loss, sensory deficits, and bladder dysfunction are well known symptoms in NMO patients, pain has been recognized only recently as another key symptom of the disease. Although spinal cord inflammation is a defining aspect of neuromyelitis, there is an almost complete lack of data on altered somatosensory function, including pain. Therefore, eleven consecutive patients with NMO were investigated regarding the presence and clinical characteristics of pain. All patients were examined clinically as well as by Quantitative Sensory Testing (QST following the protocol of the German Research Network on Neuropathic Pain (DFNS. Additionally, plasma endocannabinoid levels and signs of chronic stress and depression were determined. Almost all patients (10/11 suffered from NMO-associated neuropathic pain for the last three months, and 8 out of 11 patients indicated relevant pain at the time of examination. Symptoms of neuropathic pain were reported in the vast majority of patients with NMO. Psychological testing revealed signs of marked depression. Compared to age and gender-matched healthy controls, QST revealed pronounced mechanical and thermal sensory loss, strongly correlated to ongoing pain suggesting the presence of deafferentation-induced neuropathic pain. Thermal hyperalgesia correlated to MRI-verified signs of spinal cord lesion. Heat hyperalgesia was highly correlated to the time since last relapse of NMO. Patients with NMO exhibited significant mechanical and thermal dysesthesia, namely dynamic mechanical allodynia and paradoxical heat sensation. Moreover, they presented frequently with either abnormal mechanical hypoalgesia or hyperalgesia, which depended significantly on plasma levels of the endogenous cannabinoid 2-arachidonoylglycerole (2-AG. These data emphasize the high prevalence of neuropathic pain and hyperalgesia

  10. Distinct roles of the endocannabinoids anandamide and 2-arachidonoylglycerol in social behavior and emotionality at different developmental ages in rats.

    Manduca, Antonia; Morena, Maria; Campolongo, Patrizia; Servadio, Michela; Palmery, Maura; Trabace, Luigia; Hill, Matthew N; Vanderschuren, Louk J M J; Cuomo, Vincenzo; Trezza, Viviana

    2015-08-01

    To date, our understanding of the relative contribution and potential overlapping roles of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in the regulation of brain function and behavior is still limited. To address this issue, we investigated the effects of systemic administration of JZL195, that simultaneously increases AEA and 2-AG signaling by inhibiting their hydrolysis, in the regulation of socio-emotional behavior in adolescent and adult rats. JZL195, administered at the dose of 0.01mg/kg, increased social play behavior, that is the most characteristic social activity displayed by adolescent rats, and increased social interaction in adult animals. At both ages, these behavioral effects were antagonized by the CB1 cannabinoid receptor antagonist SR141716A and were associated with increased brain levels of 2-AG, but not AEA. Conversely, at the dose of 1mg/kg, JZL195 decreased general social exploration in adolescent rats without affecting social play behavior, and induced anxiogenic-like effects in the elevated plus-maze test both in adolescent and adult animals. These effects, mediated by activation of CB1 cannabinoid receptors, were paralleled by simultaneous increase in AEA and 2-AG levels in adolescent rats, and by an increase of only 2-AG levels in adult animals. These findings provide the first evidence for a role of 2-AG in social behavior, highlight the different contributions of AEA and 2-AG in the modulation of emotionality at different developmental ages and suggest that pharmacological inhibition of AEA and 2-AG hydrolysis is a useful approach to investigate the role of these endocannabinoids in neurobehavioral processes. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  11. Disruption of social cognition in the sub-chronic PCP rat model of schizophrenia: Possible involvement of the endocannabinoid system.

    Seillier, Alexandre; Giuffrida, Andrea

    2016-02-01

    Previous studies have shown that social withdrawal in the phencyclidine (PCP) rat model of schizophrenia results from deficient endocannabinoid-induced activation of CB1 receptors. To understand the underlying cognitive mechanisms of the social deficit in PCP-treated rats, we examined the impact of pharmacological manipulation of the endocannabinoid system on sociability (i.e. social approach) and social novelty preference (which relies on social recognition). Control rats showed a clear preference for a "social" cage (i.e. unfamiliar stimulus rat placed under a wire mesh cage) versus an "empty" cage, and spent more time exploring a "novel" cage (i.e. new stimulus rat) versus a "familiar" cage. In contrast, rats receiving PCP (5 mg/kg, b.i.d. for 7 days, followed by a 7 day-washout period) showed intact sociability, but lacked social novelty preference. This PCP-induced deficit was due to increased activity at CB1 receptors as it was reversed by systemic administration of the CB1 antagonist AM251 (1 mg/kg). In agreement with this hypothesis, the cannabinoid agonist CP55,940 (0.003-0.03 mg/kg) dose-dependently suppressed social novelty preference in control animals without affecting sociability. Taken together, these data suggest that PCP-treated rats have a deficit in social cognition, possibly induced by increased stimulation of CB1 receptors. This deficit, however, is distinct from the social withdrawal previously observed in these animals, as the latter is due to deficient, rather than increased, CB1 stimulation. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  12. Levels of oxylipins, endocannabinoids and related lipids in plasma before and after low-level exposure to acrolein in healthy individuals and individuals with chemical intolerance.

    Claeson, Anna-Sara; Gouveia-Figueira, Sandra; Häggström, Jenny; Fowler, Christopher J; Nording, Malin L

    2017-06-01

    Oxylipins and endocannabinoids play important biological roles, including effects upon inflammation. It is not known whether the circulating levels of these lipids are affected by inhalation of the environmental pollutant acrolein. In the present study, we have investigated the consequences of low-level exposure to acrolein on oxylipin, endocannabinoid and related lipid levels in the plasma of healthy individuals and individuals with chemical intolerance (CI), an affliction with a suggested inflammatory origin. Participants were exposed twice (60min) to heptane and a mixture of heptane and acrolein. Blood samples were collected before exposure, after and 24h post-exposure. There were no overt effects of acrolein exposure on the oxylipin lipidome or endocannibinoids detectable in the bloodstream at the time points investigated. No relationship between basal levels or levels after exposure to acrolein and CI could be identified. This implicates a minor role of inflammatory mediators on the systemic level in CI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The Endocannabinoid System, Aggression, and the Violence of Synthetic Cannabinoid Use, Borderline Personality Disorder, Antisocial Personality Disorder, and Other Psychiatric Disorders.

    Kolla, Nathan J; Mishra, Achal

    2018-01-01

    Endogenous and exogenous cannabinoids bind to central cannabinoid receptors to control a multitude of behavioral functions, including aggression. The first main objective of this review is to dissect components of the endocannabinoid system, including cannabinoid 1 and cannabinoid 2 receptors; the endogenous cannabinoids anandamide and 2-arachidonoylglycerol; and the indirect cannabinoid modulators fatty acid amide hydrolase and monoacylglycerol lipase; that have shown abnormalities in basic research studies investigating mechanisms of aggression. While most human research has concluded that the active ingredient of marijuana, Δ9-tetrahydrocannabinol, tends to dampen rather than provoke aggression in acute doses, recent evidence supports a relationship between the ingestion of synthetic cannabinoids and emergence of violent or aggressive behavior. Thus, another objective is to evaluate the emerging clinical data. This paper also discusses the relationship between prenatal and perinatal exposure to cannabis as well as use of cannabis in adolescence on aggressive outcomes. A final objective of the paper is to discuss endocannabinoid abnormalities in psychotic and affective disorders, as well as clinically aggressive populations, such as borderline personality disorder and antisocial personality disorder. With regard to the former condition, decreased anandamide metabolites have been reported in the cerebrospinal fluid, while some preliminary evidence suggests that fatty acid amide hydrolase genetic polymorphisms are linked to antisocial personality disorder and impulsive-antisocial psychopathic traits. To summarize, this paper will draw upon basic and clinical research to explain how the endocannabinoid system may contribute to the genesis of aggressive behavior.

  14. The Endocannabinoid System, Aggression, and the Violence of Synthetic Cannabinoid Use, Borderline Personality Disorder, Antisocial Personality Disorder, and Other Psychiatric Disorders

    Nathan J. Kolla

    2018-03-01

    Full Text Available Endogenous and exogenous cannabinoids bind to central cannabinoid receptors to control a multitude of behavioral functions, including aggression. The first main objective of this review is to dissect components of the endocannabinoid system, including cannabinoid 1 and cannabinoid 2 receptors; the endogenous cannabinoids anandamide and 2-arachidonoylglycerol; and the indirect cannabinoid modulators fatty acid amide hydrolase and monoacylglycerol lipase; that have shown abnormalities in basic research studies investigating mechanisms of aggression. While most human research has concluded that the active ingredient of marijuana, Δ9-tetrahydrocannabinol, tends to dampen rather than provoke aggression in acute doses, recent evidence supports a relationship between the ingestion of synthetic cannabinoids and emergence of violent or aggressive behavior. Thus, another objective is to evaluate the emerging clinical data. This paper also discusses the relationship between prenatal and perinatal exposure to cannabis as well as use of cannabis in adolescence on aggressive outcomes. A final objective of the paper is to discuss endocannabinoid abnormalities in psychotic and affective disorders, as well as clinically aggressive populations, such as borderline personality disorder and antisocial personality disorder. With regard to the former condition, decreased anandamide metabolites have been reported in the cerebrospinal fluid, while some preliminary evidence suggests that fatty acid amide hydrolase genetic polymorphisms are linked to antisocial personality disorder and impulsive-antisocial psychopathic traits. To summarize, this paper will draw upon basic and clinical research to explain how the endocannabinoid system may contribute to the genesis of aggressive behavior.

  15. Blood levels of the endocannabinoid anandamide are increased in anorexia nervosa and in binge-eating disorder, but not in bulimia nervosa.

    Monteleone, Palmiero; Matias, Isabelle; Martiadis, Vassilis; De Petrocellis, Luciano; Maj, Mario; Di Marzo, Vincenzo

    2005-06-01

    The endocannabinoid system, consisting of two cannabinoid receptors (CB1 and CB2) and the endogenous ligands anandamide (arachidonoylethanolamide (AEA)) and 2-arachidonoylglycerol (2-AG), has been shown to control food intake in both animals and humans, modulating either rewarding or quantitative aspects of the eating behavior. Moreover, hypothalamic endocannabinoids seem to be part of neural circuitry involved in the modulating effects of leptin on energy homeostasis. Therefore, alterations of the endocannabinoid system could be involved in the pathophysiology of eating disorders, where a deranged leptin signalling has been also reported. In order to verify this hypothesis, we measured plasma levels of AEA, 2-AG, and leptin in 15 women with anorexia nervosa (AN), 12 women with bulimia nervosa (BN), 11 women with binge-eating disorder (BED), and 15 healthy women. Plasma levels of AEA resulted significantly enhanced in both anorexic and BED women, but not in bulimic patients. No significant change occurred in the plasma levels of 2-AG in all the patients' groups. Moreover, circulating AEA levels were significantly and inversely correlated with plasma leptin concentrations in both healthy controls and anorexic women. These findings show for the first time a derangement in the production of the endogenous cannabinoid AEA in drug-free symptomatic women with AN or with BED. Although the pathophysiological significance of this alteration awaits further studies to be clarified, it suggests a possible involvement of AEA in the mediation of the rewarding aspects of the aberrant eating behaviors occurring in AN and BED.

  16. Endocannabinoids in Alzheimer's disease and their impact on normative cognitive performance: a case-control and cohort study

    Christen Erica

    2009-01-01

    Full Text Available Abstract Background Neuropathological, animal, and cell culture studies point to a role for the body's own endogenous cannabinoids (eCBs system in Alzheimer's disease (AD pathology and treatment. To date, no published studies have investigated the potential utility of circulating eCBs as diagnostic biomarkers for AD or the impact of central eCBs on cognition. Results In comparison with healthy controls, there were no significant differences in measured eCB concentrations in plasma samples from patients with AD. Detectable eCBs in cerebrospinal fluid (CSF had no relationship to cognitive performance in healthy controls at risk for AD. In pooled plasma samples, an inverse correlation was observed between plasma levels of the eCB 2-AG (2-arachidonoylglycerol and TNF-α (r = -0.41, p Conclusion These results suggest that circulating endocannabinoids do not have utility as diagnostic biomarkers for AD and do not have a robust correlation with cognitive performance. Circulating levels of 2-AG may downregulate TNF-α production.

  17. Anticipatory and consummatory effects of (hedonic) chocolate intake are associated with increased circulating levels of the orexigenic peptide ghrelin and endocannabinoids in obese adults

    Rigamonti, Antonello E.; Piscitelli, Fabiana; Aveta, Teresa; Agosti, Fiorenza; De Col, Alessandra; Bini, Silvia; Cella, Silvano G.; Di Marzo, Vincenzo; Sartorio, Alessandro

    2015-01-01

    Background Hedonic hunger refers to consumption of food just for pleasure and not to maintain energy homeostasis. Recently, consumption of food for pleasure was reported to be associated with increased circulating levels of both the orexigenic peptide ghrelin and the endocannabinoid 2-arachidonoyl-glycerol (2-AG) in normal-weight subjects. To date, the effects of hedonic hunger, and in particular of chocolate craving, on these mediators in obese subjects are still unknown. Methods To explore the role of some gastrointestinal orexigenic and anorexigenic peptides and endocannabinoids (and some related congeners) in chocolate consumption, we measured changes in circulating levels of ghrelin, glucagon-like peptide 1 (GLP-1), peptide YY (PYY), anandamide (AEA), 2-AG, palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) in 10 satiated severely obese subjects after consumption of chocolate and, on a separate day, of a non-palatable isocaloric food with the same bromatologic composition. Evaluation of hunger and satiety was also performed by visual analogic scale. Results The anticipatory phase and the consumption of food for pleasure were associated with increased circulating levels of ghrelin, AEA, 2-AG, and OEA. In contrast, the levels of GLP-1, PYY, and PEA did not differ before and after the exposure/ingestion of either chocolate or non-palatable foods. Hunger and satiety were higher and lower, respectively, in the hedonic session than in the non-palatable one. Conclusions When motivation to eat is generated by exposure to, and consumption of, chocolate a peripheral activation of specific endogenous rewarding chemical signals, including ghrelin, AEA, and 2-AG, is observed in obese subjects. Although preliminary, these findings predict the effectiveness of ghrelin and endocannabinoid antagonists in the treatment of obesity. PMID:26546790

  18. Anticipatory and consummatory effects of (hedonic) chocolate intake are associated with increased circulating levels of the orexigenic peptide ghrelin and endocannabinoids in obese adults.

    Rigamonti, Antonello E; Piscitelli, Fabiana; Aveta, Teresa; Agosti, Fiorenza; De Col, Alessandra; Bini, Silvia; Cella, Silvano G; Di Marzo, Vincenzo; Sartorio, Alessandro

    2015-01-01

    Hedonic hunger refers to consumption of food just for pleasure and not to maintain energy homeostasis. Recently, consumption of food for pleasure was reported to be associated with increased circulating levels of both the orexigenic peptide ghrelin and the endocannabinoid 2-arachidonoyl-glycerol (2-AG) in normal-weight subjects. To date, the effects of hedonic hunger, and in particular of chocolate craving, on these mediators in obese subjects are still unknown. To explore the role of some gastrointestinal orexigenic and anorexigenic peptides and endocannabinoids (and some related congeners) in chocolate consumption, we measured changes in circulating levels of ghrelin, glucagon-like peptide 1 (GLP-1), peptide YY (PYY), anandamide (AEA), 2-AG, palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) in 10 satiated severely obese subjects after consumption of chocolate and, on a separate day, of a non-palatable isocaloric food with the same bromatologic composition. Evaluation of hunger and satiety was also performed by visual analogic scale. The anticipatory phase and the consumption of food for pleasure were associated with increased circulating levels of ghrelin, AEA, 2-AG, and OEA. In contrast, the levels of GLP-1, PYY, and PEA did not differ before and after the exposure/ingestion of either chocolate or non-palatable foods. Hunger and satiety were higher and lower, respectively, in the hedonic session than in the non-palatable one. When motivation to eat is generated by exposure to, and consumption of, chocolate a peripheral activation of specific endogenous rewarding chemical signals, including ghrelin, AEA, and 2-AG, is observed in obese subjects. Although preliminary, these findings predict the effectiveness of ghrelin and endocannabinoid antagonists in the treatment of obesity.

  19. Anticipatory and consummatory effects of (hedonic chocolate intake are associated with increased circulating levels of the orexigenic peptide ghrelin and endocannabinoids in obese adults

    Antonello E. Rigamonti

    2015-11-01

    Full Text Available Background: Hedonic hunger refers to consumption of food just for pleasure and not to maintain energy homeostasis. Recently, consumption of food for pleasure was reported to be associated with increased circulating levels of both the orexigenic peptide ghrelin and the endocannabinoid 2-arachidonoyl-glycerol (2-AG in normal-weight subjects. To date, the effects of hedonic hunger, and in particular of chocolate craving, on these mediators in obese subjects are still unknown. Methods: To explore the role of some gastrointestinal orexigenic and anorexigenic peptides and endocannabinoids (and some related congeners in chocolate consumption, we measured changes in circulating levels of ghrelin, glucagon-like peptide 1 (GLP-1, peptide YY (PYY, anandamide (AEA, 2-AG, palmitoylethanolamide (PEA, and oleoylethanolamide (OEA in 10 satiated severely obese subjects after consumption of chocolate and, on a separate day, of a non-palatable isocaloric food with the same bromatologic composition. Evaluation of hunger and satiety was also performed by visual analogic scale. Results: The anticipatory phase and the consumption of food for pleasure were associated with increased circulating levels of ghrelin, AEA, 2-AG, and OEA. In contrast, the levels of GLP-1, PYY, and PEA did not differ before and after the exposure/ingestion of either chocolate or non-palatable foods. Hunger and satiety were higher and lower, respectively, in the hedonic session than in the non-palatable one. Conclusions: When motivation to eat is generated by exposure to, and consumption of, chocolate a peripheral activation of specific endogenous rewarding chemical signals, including ghrelin, AEA, and 2-AG, is observed in obese subjects. Although preliminary, these findings predict the effectiveness of ghrelin and endocannabinoid antagonists in the treatment of obesity.

  20. Circulating levels of endocannabinoids respond acutely to voluntary exercise, are altered in mice selectively bred for high voluntary wheel running, and differ between the sexes.

    Thompson, Zoe; Argueta, Donovan; Garland, Theodore; DiPatrizio, Nicholas

    2017-03-01

    The endocannabinoid system serves many physiological roles, including in the regulation of energy balance, food reward, and voluntary locomotion. Signaling at the cannabinoid type 1 receptor has been specifically implicated in motivation for rodent voluntary exercise on wheels. We studied four replicate lines of high runner (HR) mice that have been selectively bred for 81 generations based on average number of wheel revolutions on days five and six of a six-day period of wheel access. Four additional replicate lines are bred without regard to wheel running, and serve as controls (C) for random genetic effects that may cause divergence among lines. On average, mice from HR lines voluntarily run on wheels three times more than C mice on a daily basis. We tested the general hypothesis that circulating levels of endocannabinoids (i.e., 2-arachidonoylglycerol [2-AG] and anandamide [AEA]) differ between HR and C mice in a sex-specific manner. Fifty male and 50 female mice were allowed access to wheels for six days, while another 50 males and 50 females were kept without access to wheels (half HR, half C for all groups). Blood was collected by cardiac puncture during the time of peak running on the sixth night of wheel access or no wheel access, and later analyzed for 2-AG and AEA content by ultra-performance liquid chromatography coupled to tandem mass spectrometry. We observed a significant three-way interaction among sex, linetype, and wheel access for 2-AG concentrations, with females generally having lower levels than males and wheel access lowering 2-AG levels in some but not all subgroups. The number of wheel revolutions in the minutes or hours immediately prior to sampling did not quantitatively predict plasma 2-AG levels within groups. We also observed a trend for a linetype-by-wheel access interaction for AEA levels, with wheel access lowering plasma concentrations of AEA in HR mice, while raising them in C mice. In addition, females tended to have higher AEA

  1. Repeated homotypic stress elevates 2-arachidonoylglycerol levels and enhances short-term endocannabinoid signaling at inhibitory synapses in basolateral amygdala.

    Patel, Sachin; Kingsley, Philip J; Mackie, Ken; Marnett, Lawrence J; Winder, Danny G

    2009-12-01

    Psychosocial stress is a risk factor for development and exacerbation of neuropsychiatric illness. Repeated stress causes biochemical adaptations in endocannabinoid (eCB) signaling that contribute to stress-response habituation, however, the synaptic correlates of these adaptations have not been examined. Here, we show that the synthetic enzyme for the eCB 2-arachidonoylglycerol (2-AG), diacylglycerol (DAG) lipase alpha, is heterogeneously expressed in the amygdala, and that levels of 2-AG and precursor DAGs are increased in the basolateral amygdala (BLA) after 10 days, but not 1 day, of restraint stress. In contrast, arachidonic acid was decreased after both 1 and 10 days of restraint stress. To examine the synaptic correlates of these alterations in 2-AG metabolism, we used whole-cell electrophysiology to determine the effects of restraint stress on depolarization-induced suppression of inhibition (DSI) in the BLA. A single restraint stress exposure did not alter DSI compared with control mice. However, after 10 days of restraint stress, DSI duration, but not magnitude, was significantly prolonged. Inhibition of 2-AG degradation with MAFP also prolonged DSI duration; the effects of repeated restraint stress and MAFP were mutually occlusive. These data indicate that exposure to repeated, but not acute, stress produces neuroadaptations that confer BLA neurons with an enhanced capacity to elevate 2-AG content and engage in 2-AG-mediated short-term retrograde synaptic signaling. We suggest stress-induced enhancement of eCB-mediated suppression of inhibitory transmission in the BLA could contribute to affective dysregulation associated with chronic stress.

  2. Genes and Gene Therapy

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  3. Effects of mood inductions by meal ambiance and moderate alcohol consumption on endocannabinoids and N-acylethanolamines in humans: a randomized crossover trial.

    Ilse C Schrieks

    Full Text Available The endocannabinoid system is suggested to play a regulatory role in mood. However, the response of circulating endocannabinoids (ECs to mood changes has never been tested in humans. In the present study, we examined the effects of mood changes induced by ambiance and moderate alcohol consumption on plasma ECs 2-arachidonoylglycerol (2-AG, anandamide (AEA, and some N-acylethanolamine (NAE congeners in humans.Healthy women (n = 28 participated in a randomized cross-over study. They consumed sparkling white wine (340 mL; 30 g alcohol or alcohol-free sparkling white wine (340 mL; <2 g alcohol as part of a standard evening meal in a room with either a pleasant or an unpleasant ambiance.Plasma concentrations of palmitoylethanolamide (PEA and stearoylethanolamide (SEA increased after 30 min in the unpleasant ambiance, while they decreased in the pleasant ambiance. Changes in ECs and their NAE congeners correlated with mood states, such as happiness and fatigue, but in the pleasant ambiance without alcohol only. ECs and their NAE congeners were correlated with serum free fatty acids and cortisol.This is the first human study to demonstrate that plasma NAEs are responsive to an unpleasant meal ambiance. Furthermore, associations between mood states and ECs and their NAE congeners were observed.Clinicaltrials.gov NCT01426022.

  4. Phytoestrogens Enhance the Vascular Actions of the Endocannabinoid Anandamide in Mesenteric Beds of Female Rats

    Roxana N. Peroni

    2012-01-01

    Full Text Available In rat isolated mesenteric beds that were contracted with NA as an in vitro model of the vascular adrenergic hyperactivity that usually precedes the onset of primary hypertension, the oral administration (3 daily doses of either 10 mg/kg genistein or 20 mg/kg daidzein potentiated the anandamide-induced reduction of contractility to NA in female but not in male rats. Oral treatment with phytoestrogens also restored the vascular effects of anandamide as well as the mesenteric content of calcitonin gene-related peptide (CGRP that were reduced after ovariectomy. The enhancement of anandamide effects caused by phytoestrogens was prevented by the concomitant administration of the estrogen receptor antagonist fulvestrant (2.5 mg/kg, s.c., 3 daily doses. It is concluded that, in the vasculature of female rats, phytoestrogens produced an estrogen-receptor-dependent enhancement of the anandamide-vascular actions that involves the modulation of CGRP levels and appears to be relevant whenever an adrenergic hyperactivity occurs.

  5. Variants in the CNR1 gene predispose to headache with nausea in the presence of life stress.

    Juhasz, G; Csepany, E; Magyar, M; Edes, A E; Eszlari, N; Hullam, G; Antal, P; Kokonyei, G; Anderson, I M; Deakin, J F W; Bagdy, G

    2017-03-01

    One of the main effects of the endocannabinoid system in the brain is stress adaptation with presynaptic endocannabinoid receptor 1 (CB1 receptors) playing a major role. In the present study, we investigated whether the effect of the CB1 receptor coding CNR1 gene on migraine and its symptoms is conditional on life stress. In a cross-sectional European population (n = 2426), recruited from Manchester and Budapest, we used the ID-Migraine questionnaire for migraine screening, the Life Threatening Experiences questionnaire to measure recent negative life events (RLE), and covered the CNR1 gene with 11 SNPs. The main genetic effects and the CNR1 × RLE interaction with age and sex as covariates were tested. None of the SNPs showed main genetic effects on possible migraine or its symptoms, but 5 SNPs showed nominally significant interaction with RLE on headache with nausea using logistic regression models. The effect of rs806366 remained significant after correction for multiple testing and replicated in the subpopulations. This effect was independent from depression- and anxiety-related phenotypes. In addition, a Bayesian systems-based analysis demonstrated that in the development of headache with nausea all SNPs were more relevant with higher a posteriori probability in those who experienced recent life stress. In summary, the CNR1 gene in interaction with life stress increased the risk of headache with nausea suggesting a specific pathological mechanism to develop migraine, and indicating that a subgroup of migraine patients, who suffer from life stress triggered migraine with frequent nausea, may benefit from therapies that increase the endocannabinoid tone. © 2016 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  6. Putative Epigenetic Involvement of the Endocannabinoid System in Anxiety- and Depression-Related Behaviors Caused by Nicotine as a Stressor.

    Tamaki Hayase

    Full Text Available Like various stressors, the addictive use of nicotine (NC is associated with emotional symptoms such as anxiety and depression, although the underlying mechanisms have not yet been fully elucidated due to the complicated involvement of target neurotransmitter systems. In the elicitation of these emotional symptoms, the fundamental involvement of epigenetic mechanisms such as histone acetylation has recently been suggested. Furthermore, among the interacting neurotransmitter systems implicated in the effects of NC and stressors, the endocannabinoid (ECB system is considered to contribute indispensably to anxiety and depression. In the present study, the epigenetic involvement of histone acetylation induced by histone deacetylase (HDAC inhibitors was investigated in anxiety- and depression-related behavioral alterations caused by NC and/or immobilization stress (IM. Moreover, based on the contributing roles of the ECB system, the interacting influence of ECB ligands on the effects of HDAC inhibitors was evaluated in order to examine epigenetic therapeutic interventions. Anxiety-like (elevated plus-maze test and depression-like (forced swimming test behaviors, which were observed in mice treated with repeated (4 days NC (subcutaneous 0.8 mg/kg and/or IM (10 min, were blocked by the HDAC inhibitors sodium butyrate (SB and valproic acid (VA. The cannabinoid type 1 (CB1 agonist ACPA (arachidonylcyclopropylamide; AC also antagonized these behaviors. Conversely, the CB1 antagonist SR 141716A (SR, which counteracted the effects of AC, attenuated the anxiolytic-like effects of the HDAC inhibitors commonly in the NC and/or IM groups. SR also attenuated the antidepressant-like effects of the HDAC inhibitors, most notably in the IM group. From these results, the combined involvement of histone acetylation and ECB system was shown in anxiety- and depression-related behaviors. In the NC treatment groups, the limited influence of SR against the HDAC inhibitor

  7. Effects of Adolescent Intermittent Alcohol Exposure on the Expression of Endocannabinoid Signaling-Related Proteins in the Spleen of Young Adult Rats

    Vázquez, Mariam; Sánchez, Laura; Rivera, Patricia; Gavito, Ana; Mela, Virginia; Alén, Francisco; Decara, Juan; Suárez, Juan; Giné, Elena; López-Moreno, José Antonio; Chowen, Julie; Rodríguez-de-Fonseca, Fernando; Serrano, Antonia; Viveros, María Paz

    2016-01-01

    Intermittent alcohol exposure is a common pattern of alcohol consumption among adolescents and alcohol is known to modulate the expression of the endocannabinoid system (ECS), which is involved in metabolism and inflammation. However, it is unknown whether this pattern may have short-term consequences on the ECS in the spleen. To address this question, we examined the plasma concentrations of metabolic and inflammatory signals and the splenic ECS in early adult rats exposed to alcohol during adolescence. A 4-day drinking in the dark (DID) procedure for 4 weeks was used as a model of intermittent forced-alcohol administration (20%, v/v) in female and male Wistar rats, which were sacrificed 2 weeks after the last DID session. First, there was no liver damage or alterations in plasma metabolic parameters. However, certain plasma inflammatory signals were altered according to sex and alcohol exposition. Whereas fractalkine [chemokine (C-X3-C motif) ligand 1] was only affected by sex with lower concentration in male rats, there was an interaction between sex and alcohol exposure in the TNF-α and interleukin-6 concentrations and only female rats displayed changes. Regarding the mRNA and protein expression of the ECS, the receptors and endocannabinoid-synthesizing enzymes were found to be altered with area-specific expression patterns in the spleen. Overall, whereas the expression of the cannabinoid receptor CB1 and the nuclear peroxisome proliferator-activated receptor PPARα were lower in alcohol-exposed rats compared to control rats, the CB2 expression was higher. Additionally, the N-acyl-phosphatidylethanolamine-specific phospholipase D expression was high in female alcohol-exposed rats and low in male alcohol-exposed rats. In conclusion, intermittent alcohol consumption during adolescence may be sufficient to induce short-term changes in the expression of splenic endocannabinoid signaling-related proteins and plasma pro-inflammatory cytokines in young adult rats

  8. Effects of Adolescent Intermittent Alcohol Exposure on the Expression of Endocannabinoid Signaling-Related Proteins in the Spleen of Young Adult Rats.

    Francisco Javier Pavón

    Full Text Available Intermittent alcohol exposure is a common pattern of alcohol consumption among adolescents and alcohol is known to modulate the expression of the endocannabinoid system (ECS, which is involved in metabolism and inflammation. However, it is unknown whether this pattern may have short-term consequences on the ECS in the spleen. To address this question, we examined the plasma concentrations of metabolic and inflammatory signals and the splenic ECS in early adult rats exposed to alcohol during adolescence. A 4-day drinking in the dark (DID procedure for 4 weeks was used as a model of intermittent forced-alcohol administration (20%, v/v in female and male Wistar rats, which were sacrificed 2 weeks after the last DID session. First, there was no liver damage or alterations in plasma metabolic parameters. However, certain plasma inflammatory signals were altered according to sex and alcohol exposition. Whereas fractalkine [chemokine (C-X3-C motif ligand 1] was only affected by sex with lower concentration in male rats, there was an interaction between sex and alcohol exposure in the TNF-α and interleukin-6 concentrations and only female rats displayed changes. Regarding the mRNA and protein expression of the ECS, the receptors and endocannabinoid-synthesizing enzymes were found to be altered with area-specific expression patterns in the spleen. Overall, whereas the expression of the cannabinoid receptor CB1 and the nuclear peroxisome proliferator-activated receptor PPARα were lower in alcohol-exposed rats compared to control rats, the CB2 expression was higher. Additionally, the N-acyl-phosphatidylethanolamine-specific phospholipase D expression was high in female alcohol-exposed rats and low in male alcohol-exposed rats. In conclusion, intermittent alcohol consumption during adolescence may be sufficient to induce short-term changes in the expression of splenic endocannabinoid signaling-related proteins and plasma pro-inflammatory cytokines in

  9. Association of genetic variation in cannabinoid mechanisms and gastric motor functions and satiation in overweight and obesity.

    Vazquez-Roque, M I; Camilleri, M; Vella, A; Carlson, P; Laugen, J; Zinsmeister, A R

    2011-07-01

    The endocannabinoid system is associated with food intake. We hypothesized that genes regulating cannabinoids are associated with obesity. Genetic variations in fatty acid amide hydroxylase (FAAH) and cannabinoid receptor 1 (CNR1) are associated with satiation and gastric motor function. In 62 overweight or obese adults of European ancestry, single nucleotide polymorphisms of rs806378 (nearest gene CNR1) and rs324420 (nearest gene FAAH) were genotyped and the associations with gastric emptying (GE) of solids and liquids, gastric volume (GV), and satiation [maximum tolerated volume (MTV) and symptoms after Ensure(®) nutrient drink test] were explored using a dominant genetic model, with gender and BMI as covariates. rs806378 CC genotype was associated with reduced fasting GV (210.2±11.0mL for CC group compared to 242.5±11.3mL for CT/TT group, P=0.031) and a modest, non-significant association with GE of solids (P=0.17). rs324420 genotype was not associated with alterations in gastric motor functions; however, there was a difference in the Ensure(®) MTV (1174.6±37.2mL for CC group compared to 1395.0±123.1mL for CA/AA group, P=0.046) suggesting higher satiation with CC genotype. Our data suggest that CNR1 and FAAH are associated with altered gastric functions or satiation that may predispose to obesity. © 2011 Blackwell Publishing Ltd.

  10. Uncoupling of sarcoplasmic reticulum Ca²⁺-ATPase by N-arachidonoyl dopamine. Members of the endocannabinoid family as thermogenic drugs

    Mahmmoud, Yasser Ahmed; Gaster, Michel

    2013-01-01

    BACKGROUND AND PURPOSE: The sarcoplasmic reticulum Ca²⁺-ATPase (SERCA) plays a role in thermogenesis. The exogenous compound capsaicin increased SERCA-mediated ATP hydrolysis not coupled to Ca²⁺ transport. Here, we have sought to identify endogenous compounds that may function as SERCA uncoupling...... agents. EXPERIMENTAL APPROACH: Using isolated SR vesicles from rabbits, we have screened for endogenous compounds that uncouple SERCA. We have also studied their ability to deplete cytoplasmic ATP from human skeletal muscle cells in culture. KEY RESULTS: Studies on SR vesicles showed that the endogenous......, regardless of the presence of glucose. CONCLUSIONS AND IMPLICATIONS: NADA is an endogenous molecule that may function as SERCA uncoupling agent in vivo. Members of the endocannabinoid family exert concerted actions on several Ca²⁺-handling proteins. Uncoupling of SERCA by exogenous compounds could be a novel...

  11. Prior stimulation of the endocannabinoid system prevents methamphetamine-induced dopaminergic neurotoxicity in the striatum through activation of CB2 receptors

    Nader, Joëlle; Rapino, Cinzia; Gennequin, Benjamin; Chavant, Francois; Francheteau, Maureen; Makriyannis, Alexandros; Duranti, Andrea; Maccarrone, Mauro; Solinas, Marcello; Thiriet, Nathalie

    2016-01-01

    Methamphetamine toxicity is associated with cell death and loss of dopamine neuron terminals in the striatum similar to what is found in some neurodegenerative diseases. Conversely, the endocannabinoid system (ECS) has been suggested to be neuroprotective in the brain, and new pharmacological tools have been developed to increase their endogenous tone. In this study, we evaluated whether ECS stimulation could reduce the neurotoxicity of high doses of methamphetamine on the dopamine system. We found that methamphetamine alters the levels of the major endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) in the striatum, suggesting that the ECS participates in the brain responses to methamphetamine. Δ9-tetrahydrocannabinol (THC), a cannabis-derived agonist of both CB1 and CB2 cannabinoid receptors, or inhibitors of the main enzymes responsible for the degradation of AEA and 2-AG (URB597 and JZL184, respectively), blunted the decrease in striatal protein levels of tyrosine hydroxylase induced by methamphetamine. In addition, antagonists of CB2, but not of CB1, blocked the preventive effects of URB597 and JZL184, suggesting that only the former receptor subtype is engaged in neuroprotection exerted by ECS stimulation. Finally, we found that methamphetamine increases striatal levels of the cytokine tumor necrosis factor alpha, an effect that was blocked by ECS stimulation. Altogether, our results indicate that stimulation of ECS prior to the administration of an overdose of meth-amphetamine considerably reduces the neurotoxicity of the drug through CB2 receptor activation and highlight a protective function for the ECS against the toxicity induced by drugs and other external insults to the brain. This article is part of the Special Issue entitled ‘CNS Stimulants’. PMID:24709540

  12. The endocannabinoid anandamide regulates the peristaltic reflex by reducing neuro-neuronal and neuro-muscular neurotransmission in ascending myenteric reflex pathways in rats.

    Sibaev, Andrei; Yuece, Birol; Allescher, Hans Dieter; Saur, Dieter; Storr, Martin; Kurjak, Manfred

    2014-04-01

    Endocannabinoids (EC) and the cannabinoid-1 (CB1) receptor are involved in the regulation of motility in the gastrointestinal (GI) tract. However, the underlying physiological mechanisms are not completely resolved. The purpose of this work was to study the physiological influence of the endocannabinoid anandamide, the putative endogenous CB1 active cannabinoid, and of the CB1 receptor on ascending peristaltic activity and to identify the involved neuro-neuronal, neuro-muscular and electrophysiological mechanisms. The effects of anandamide and the CB1 receptor antagonist SR141716A were investigated on contractions of the circular smooth muscle of rat ileum and in longitudinal rat ileum segments where the ascending myenteric part of the peristaltic reflex was studied in a newly designed organ bath. Additionally intracellular recordings were performed in ileum and colon. Anandamide significantly reduced cholinergic twitch contractions of ileum smooth muscle whereas SR141716A caused an increase. Anandamide reduced the ascending peristaltic contraction by affecting neuro-neuronal and neuro-muscular neurotransmission. SR141716A showed opposite effects and all anandamide effects were antagonized by SR141716A (1 μM). Anandamide reduced excitatory junction potentials (EJP) and inhibitory junction potentials (IJP), whereas intestinal slow waves were not affected. CB1 receptors regulate force and timing of the intestinal peristaltic reflex and these actions involve interneurons and motor-neurons. The endogenous cannabinoid anandamide mediates these effects by activation of CB1 receptors. The endogenous cannabinoid system is permanently active, suggesting the CB1 receptor being a possible target for the treatment of motility related disorders. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  13. Leptin, ghrelin, and endocannabinoids

    Støving, René Klinkby; Andries, Alin; Brixen, Kim

    2008-01-01

    Anorexia nervosa (AN) has the highest mortality rate between psychiatric disorders, and evidence for managing it is still very limited. So far, pharmacological treatment has focused on a narrow range of drugs and only a few controlled studies have been performed. Furthermore, the studies have been...

  14. Exposure to a highly caloric palatable diet during pregestational and gestational periods affects hypothalamic and hippocampal endocannabinoid levels at birth and induces adiposity and anxiety-like behaviors in male rat offspring

    Maria Teresa eRamírez-López

    2016-01-01

    Full Text Available Exposure to unbalanced diets during pre-gestational and gestational periods may result in long-term alterations in metabolism and behavior. The contribution of the endocannabinoid system to these long-term adaptive responses is unknown. In the present study, we investigated the impact of female rat exposure to a hypercaloric-hypoproteic palatable diet during pre-gestational, gestational and lactational periods on the development of male offspring. In addition, the hypothalamic and hippocampal endocannabinoid contents at birth and the behavioral performance in adulthood were investigated. Exposure to a palatable diet resulted in low weight offspring who exhibited low hypothalamic contents of arachidonic acid and the two major endocannabinoids (anandamide and 2-arachidonoylglycerol at birth. Palmitoylethanolamide, but not oleoylethanolamide, also decreased. Additionally, pups from palatable diet-fed dams displayed lower levels of anandamide and palmitoylethanolamide in the hippocampus. The low-weight male offspring, born from palatable diet exposed mothers, gained less weight during lactation and, although they recovered weight during the post-weaning period, they developed abdominal adiposity in adulthood. These animals exhibited anxiety-like behavior in the elevated plus-maze and open field test and a low preference for a chocolate diet in a food preference test, indicating that maternal exposure to a hypercaloric diet induces long-term behavioral alterations in male offspring. These results suggest that maternal diet alterations in the function of the endogenous cannabinoid system can mediate the observed phenotype of the offspring, since both hypothalamic and hippocampal endocannabinoids regulate feeding, metabolic adaptions to caloric diets, learning, memory and emotions.

  15. Increased Cortical Inhibition in Autism-Linked Neuroligin-3R451C Mice Is Due in Part to Loss of Endocannabinoid Signaling.

    Speed, Haley E; Masiulis, Irene; Gibson, Jay R; Powell, Craig M

    2015-01-01

    A single, maternally inherited, X-linked point mutation leading to an arginine to cysteine substitution at amino acid 451 (R451C) of Neuroligin 3 (NLGN3R451C) is a likely cause of autism in two brothers. Knockin mice expressing the Nlgn3R451C mutation in place of wild-type Nlgn3 demonstrate increased inhibitory synaptic strength in somatosensory cortex, resulting in an excitatory/inhibitory (E/I) imbalance that is potentially relevant for autism-associated behavioral deficits characteristic of these mice. We have replicated the increase in evoked inhibitory postsynaptic currents (eIPSCs) onto layer II/III cortical pyramidal neurons. We also find that increased frequency of spontaneous mIPSCs in Nlgn3R451C mice occurs in the absence of action potential-driven transmission. This suggests the E/I imbalance is due to changes at the synapse level, as opposed to the network level. Next, we use paired whole-cell recordings in an attempt to identify specific interneuron subtypes affected by the Nlgn3R451C mutation. Curiously, we observe no change in the amplitude of cell-to-cell, unitary IPSCs (uIPSCs) from parvalbumin-positive (PV) or somatostatin-positive (SOM) interneurons onto pyramidal neurons. We also observe no change in the number or density of PV and SOM interneurons in LII/III of somatosensory cortex. This effectively rules out a role for these particular interneurons in the increased inhibitory synaptic transmission, pointing to perhaps alternative interneuron subtypes. Lastly, impaired endocannabinoid signaling has been implicated in hippocampal synaptic dysfunction in Nlgn3R451C mice, but has not been investigated at cortical synapses. We find that bath application of the CB1 antagonist, AM 251 in WT mice eliminates the Nlgn3R451C increase in eIPSC amplitude and mIPSC frequency, indicating that increased inhibitory transmission in mutant mice is due, at least in part, to a loss of endocannabinoid signaling through CB1 receptors likely acting at interneurons

  16. Increased Cortical Inhibition in Autism-Linked Neuroligin-3R451C Mice Is Due in Part to Loss of Endocannabinoid Signaling.

    Haley E Speed

    Full Text Available A single, maternally inherited, X-linked point mutation leading to an arginine to cysteine substitution at amino acid 451 (R451C of Neuroligin 3 (NLGN3R451C is a likely cause of autism in two brothers. Knockin mice expressing the Nlgn3R451C mutation in place of wild-type Nlgn3 demonstrate increased inhibitory synaptic strength in somatosensory cortex, resulting in an excitatory/inhibitory (E/I imbalance that is potentially relevant for autism-associated behavioral deficits characteristic of these mice. We have replicated the increase in evoked inhibitory postsynaptic currents (eIPSCs onto layer II/III cortical pyramidal neurons. We also find that increased frequency of spontaneous mIPSCs in Nlgn3R451C mice occurs in the absence of action potential-driven transmission. This suggests the E/I imbalance is due to changes at the synapse level, as opposed to the network level. Next, we use paired whole-cell recordings in an attempt to identify specific interneuron subtypes affected by the Nlgn3R451C mutation. Curiously, we observe no change in the amplitude of cell-to-cell, unitary IPSCs (uIPSCs from parvalbumin-positive (PV or somatostatin-positive (SOM interneurons onto pyramidal neurons. We also observe no change in the number or density of PV and SOM interneurons in LII/III of somatosensory cortex. This effectively rules out a role for these particular interneurons in the increased inhibitory synaptic transmission, pointing to perhaps alternative interneuron subtypes. Lastly, impaired endocannabinoid signaling has been implicated in hippocampal synaptic dysfunction in Nlgn3R451C mice, but has not been investigated at cortical synapses. We find that bath application of the CB1 antagonist, AM 251 in WT mice eliminates the Nlgn3R451C increase in eIPSC amplitude and mIPSC frequency, indicating that increased inhibitory transmission in mutant mice is due, at least in part, to a loss of endocannabinoid signaling through CB1 receptors likely acting at

  17. Ghrelin decreases firing activity of gonadotropin-releasing hormone (GnRH neurons in an estrous cycle and endocannabinoid signaling dependent manner.

    Imre Farkas

    Full Text Available The orexigenic peptide, ghrelin is known to influence function of GnRH neurons, however, the direct effects of the hormone upon these neurons have not been explored, yet. The present study was undertaken to reveal expression of growth hormone secretagogue receptor (GHS-R in GnRH neurons and elucidate the mechanisms of ghrelin actions upon them. Ca(2+-imaging revealed a ghrelin-triggered increase of the Ca(2+-content in GT1-7 neurons kept in a steroid-free medium, which was abolished by GHS-R-antagonist JMV2959 (10 µM suggesting direct action of ghrelin. Estradiol (1nM eliminated the ghrelin-evoked rise of Ca(2+-content, indicating the estradiol dependency of the process. Expression of GHS-R mRNA was then confirmed in GnRH-GFP neurons of transgenic mice by single cell RT-PCR. Firing rate and burst frequency of GnRH-GFP neurons were lower in metestrous than proestrous mice. Ghrelin (40 nM-4 μM administration resulted in a decreased firing rate and burst frequency of GnRH neurons in metestrous, but not in proestrous mice. Ghrelin also decreased the firing rate of GnRH neurons in males. The ghrelin-evoked alterations of the firing parameters were prevented by JMV2959, supporting the receptor-specific actions of ghrelin on GnRH neurons. In metestrous mice, ghrelin decreased the frequency of GABAergic mPSCs in GnRH neurons. Effects of ghrelin were abolished by the cannabinoid receptor type-1 (CB1 antagonist AM251 (1µM and the intracellularly applied DAG-lipase inhibitor THL (10 µM, indicating the involvement of retrograde endocannabinoid signaling. These findings demonstrate that ghrelin exerts direct regulatory effects on GnRH neurons via GHS-R, and modulates the firing of GnRH neurons in an ovarian-cycle and endocannabinoid dependent manner.

  18. Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice.

    Walentiny, D Matthew; Vann, Robert E; Wiley, Jenny L

    2015-06-01

    A number of studies have examined the ability of the endogenous cannabinoid anandamide to elicit Δ(9)-tetrahydrocannabinol (THC)-like subjective effects, as modeled through the THC discrimination paradigm. In the present study, we compared transgenic mice lacking fatty acid amide hydrolase (FAAH), the enzyme primarily responsible for anandamide catabolism, to wildtype counterparts in a THC discrimination procedure. THC (5.6 mg/kg) served as a discriminative stimulus in both genotypes, with similar THC dose-response curves between groups. Anandamide fully substituted for THC in FAAH knockout, but not wildtype, mice. Conversely, the metabolically stable anandamide analog O-1812 fully substituted in both groups, but was more potent in knockouts. The CB1 receptor antagonist rimonabant dose-dependently attenuated THC generalization in both groups and anandamide substitution in FAAH knockouts. Pharmacological inhibition of monoacylglycerol lipase (MAGL), the primary catabolic enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG), with JZL184 resulted in full substitution for THC in FAAH knockout mice and nearly full substitution in wildtypes. Quantification of brain endocannabinoid levels revealed expected elevations in anandamide in FAAH knockout mice compared to wildtypes and equipotent dose-dependent elevations in 2-AG following JZL184 administration. Dual inhibition of FAAH and MAGL with JZL195 resulted in roughly equipotent increases in THC-appropriate responding in both groups. While the notable similarity in THC's discriminative stimulus effects across genotype suggests that the increased baseline brain anandamide levels (as seen in FAAH knockout mice) do not alter THC's subjective effects, FAAH knockout mice are more sensitive to the THC-like effects of pharmacologically induced increases in anandamide and MAGL inhibition (e.g., JZL184). Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Gene Therapy

    Gene therapy Overview Gene therapy involves altering the genes inside your body's cells in an effort to treat or stop disease. Genes contain your ... that don't work properly can cause disease. Gene therapy replaces a faulty gene or adds a new ...

  20. The non-psychoactive plant cannabinoid, cannabidiol affects cholesterol metabolism-related genes in microglial cells.

    Rimmerman, Neta; Juknat, Ana; Kozela, Ewa; Levy, Rivka; Bradshaw, Heather B; Vogel, Zvi

    2011-08-01

    Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that is clinically used in a 1:1 mixture with the psychoactive cannabinoid Δ(9)-tetrahydrocannabinol (THC) for the treatment of neuropathic pain and spasticity in multiple sclerosis. Our group previously reported that CBD exerts anti-inflammatory effects on microglial cells. In addition, we found that CBD treatment increases the accumulation of the endocannabinoid N-arachidonoyl ethanolamine (AEA), thus enhancing endocannabinoid signaling. Here we proceeded to investigate the effects of CBD on the modulation of lipid-related genes in microglial cells. Cell viability was tested using FACS analysis, AEA levels were measured using LC/MS/MS, gene array analysis was validated with real-time qPCR, and cytokine release was measured using ELISA. We report that CBD significantly upregulated the mRNAs of the enzymes sterol-O-acyl transferase (Soat2), which synthesizes cholesteryl esters, and of sterol 27-hydroxylase (Cyp27a1). In addition, CBD increased the mRNA of the lipid droplet-associated protein, perilipin2 (Plin2). Moreover, we found that pretreatment of the cells with the cholesterol chelating agent, methyl-β-cyclodextrin (MBCD), reversed the CBD-induced increase in Soat2 mRNA but not in Plin2 mRNA. Incubation with AEA increased the level of Plin2, but not of Soat2 mRNA. Furthermore, MBCD treatment did not affect the reduction by CBD of the LPS-induced release of the proinflammatory cytokine IL-1β. CBD treatment modulates cholesterol homeostasis in microglial cells, and pretreatment with MBCD reverses this effect without interfering with CBD's anti-inflammatory effects. The effects of the CBD-induced increase in AEA accumulation on lipid-gene expression are discussed.

  1. Preventive Effects of Resveratrol on Endocannabinoid System and Synaptic Protein Modifications in Rat Cerebral Cortex Challenged by Bilateral Common Carotid Artery Occlusion and Reperfusion

    Gianfranca Carta

    2018-01-01

    Full Text Available This study aims to evaluate the putative roles of a single acute dose of resveratrol (RVT in preventing cerebral oxidative stress induced by bilateral common carotid artery occlusion, followed by reperfusion (BCCAO/R and to investigate RVT’s ability to preserve the neuronal structural integrity. Frontal and temporal-occipital cortices were examined in two groups of adult Wistar rats, sham-operated and submitted to BCCAO/R. In both groups, 6 h before surgery, half the rats were gavage-fed with a single dose of RVT (40 mg/per rat in 300 µL of sunflower oil as the vehicle, while the second half received the vehicle alone. In the frontal cortex, RVT pre-treatment prevented the BCCAO/R-induced increase of lipoperoxides, augmented concentrations of palmitoylethanolamide and docosahexaenoic acid, increased relative levels of the cannabinoid receptors type 1 (CB1 and 2 (CB2, and peroxisome-proliferator-activated-receptor (PPAR-α proteins. Increased expression of CB1/CB2 receptors mirrored that of synaptophysin and post-synaptic density-95 protein. No BCCAO/R-induced changes occurred in the temporal-occipital cortex. Collectively, our results demonstrate that, in the frontal cortex, RVT pre-treatment prevents the BCCAO/R-induced oxidative stress and modulates the endocannabinoid and PPAR-α systems. The increased expression of synaptic structural proteins further suggests the possible efficacy of RVT as a dietary supplement to preserve the nervous tissue metabolism and control the physiological response to the hypoperfusion/reperfusion challenge.

  2. Distinct neuronal activation patterns are associated with PCP-induced social withdrawal and its reversal by the endocannabinoid-enhancing drug URB597.

    Matricon, Julien; Seillier, Alexandre; Giuffrida, Andrea

    2016-09-01

    The fatty acid amide hydrolase inhibitor, URB597, an endocannabinoid enhancing drug, reverses social withdrawal in the sub-chronic PCP rat model of schizophrenia, but reduces social interaction (SI) in controls. To identify the anatomical substrates associated with PCP-induced social withdrawal and the contrasting effects of URB597 on SI in PCP- versus saline-treated rats, we analyzed SI-induced c-Fos expression in 28 brain areas relevant to schizophrenia and/or social behavior following vehicle or URB597 administration. In saline-treated rats, SI was accompanied by changes in c-Fos expression in the infralimbic and orbitofrontal cortices, dorsomedial caudate putamen, ventrolateral nucleus of the septum, dorsolateral periaqueductal gray (dlPAG) and central amygdala. Except for the dlPAG, these changes were not observed in PCP-treated rats or in saline-treated rats receiving URB597. In the dorsomedial part of the bed nucleus of the stria terminalis (dmBNST), SI-induced c-Fos expression was observed only in PCP-treated rats. Interestingly, URB597 in PCP-treated rats restored a similar c-Fos expression pattern as observed in saline-treated rats: activation of the orbitofrontal cortex, inhibition of the central amygdala and suppression of activation of the dmBNST. These data suggest that orbitofrontal cortex, central amygdala and dmBNST play a critical role in the reversal of PCP-induced social withdrawal by URB597. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  3. CA1 Pyramidal Cell Theta-Burst Firing Triggers Endocannabinoid-Mediated Long-Term Depression at Both Somatic and Dendritic Inhibitory Synapses

    Younts, Thomas J.; Chevaleyre, Vivien

    2013-01-01

    Endocannabinoids (eCBs) are retrograde lipid messengers that, by targeting presynaptic type 1 cannabinoid receptors (CB1Rs), mediate short- and long-term synaptic depression of neurotransmitter release throughout the brain. Short-term depression is typically triggered by postsynaptic, depolarization-induced calcium rises, whereas long-term depression is induced by synaptic activation of Gq/11 protein-coupled receptors. Here we report that a physiologically relevant pattern of postsynaptic activity, in the form of theta-burst firing (TBF) of hippocampal CA1 pyramidal neurons, can trigger long-term depression of inhibitory transmission (iLTD) in rat hippocampal slices. Paired recordings between CA1 interneurons and pyramidal cells, followed by post hoc morphological reconstructions of the interneurons' axon, revealed that somatic and dendritic inhibitory synaptic inputs equally expressed TBF-induced iLTD. Simultaneous recordings from neighboring pyramidal cells demonstrated that eCB signaling triggered by TBF was highly restricted to only a single, active cell. Furthermore, pairing submaximal endogenous activation of metabotropic glutamate or muscarinic acetylcholine receptors with submaximal TBF unmasked associative iLTD. Although CB1Rs are also expressed at Schaffer-collateral excitatory terminals, long-term plasticity under various recording conditions was spared at these synapses. Consistent with this observation, TBF also shifted the balance of excitation and inhibition in favor of excitatory throughput, thereby altering information flow through the CA1 circuit. Given the near ubiquity of burst-firing activity patterns and CB1R expression in the brain, the properties described here may be a general means by which neurons fine tune the strength of their inputs in a cell-wide and cell-specific manner. PMID:23966696

  4. Human bone marrow mesenchymal stem cells secrete endocannabinoids that stimulate in vitro hematopoietic stem cell migration effectively comparable to beta-adrenergic stimulation.

    Köse, Sevil; Aerts-Kaya, Fatima; Köprü, Çağla Zübeyde; Nemutlu, Emirhan; Kuşkonmaz, Barış; Karaosmanoğlu, Beren; Taşkıran, Ekim Zihni; Altun, Belgin; Uçkan Çetinkaya, Duygu; Korkusuz, Petek

    2018-01-01

    Granulocyte colony-stimulating factor (G-CSF) is a well-known hematopoietic stem cell (HSC)-mobilizing agent used in both allogeneic and autologous transplantation. However, a proportion of patients or healthy donors fail to mobilize a sufficient number of cells. New mobilization agents are therefore needed. Endocannabinoids (eCBs) are endogenous lipid mediators generated in the brain and peripheral tissues and activate the cannabinoid receptors CB1 and CB2. We suggest that eCBs may act as mobilizers of HSCs from the bone marrow (BM) under stress conditions as beta-adrenergic receptors (Adrβ). This study demonstrates that BM mesenchymal stem cells (MSCs) secrete anandamide (AEA) and 2-arachidonylglycerol (2-AG) and the peripheral blood (PB) and BM microenvironment contain AEA and 2-AG. 2-AG levels are significantly higher in PB of the G-CSF-treated group compared with BM plasma. BM mononuclear cells (MNCs) and CD34 + HSCs express CB1, CB2, and Adrβ subtypes. CD34 + HSCs had higher CB1 and CB2 receptor expression in G-CSF-untreated and G-CSF-treated groups compared with MSCs. MNCs but not MSCs expressed CB1 and CB2 receptors based on qRT-PCR and flow cytometry. AEA- and 2-AG-stimulated HSC migration was blocked by eCB receptor antagonists in an in vitro migration assay. In conclusion, components of the eCB system and their interaction with Adrβ subtypes were demonstrated on HSCs and MSCs of G-CSF-treated and G-CSF-untreated healthy donors in vitro, revealing that eCBs might be potential candidates to enhance or facilitate G-CSF-mediated HSC migration under stress conditions in a clinical setting. Copyright © 2018 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  5. Fatty acid-binding proteins (FABPs) are intracellular carriers for Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD).

    Elmes, Matthew W; Kaczocha, Martin; Berger, William T; Leung, KwanNok; Ralph, Brian P; Wang, Liqun; Sweeney, Joseph M; Miyauchi, Jeremy T; Tsirka, Stella E; Ojima, Iwao; Deutsch, Dale G

    2015-04-03

    Δ(9)-Tetrahydrocannabinol (THC) and cannabidiol (CBD) occur naturally in marijuana (Cannabis) and may be formulated, individually or in combination in pharmaceuticals such as Marinol or Sativex. Although it is known that these hydrophobic compounds can be transported in blood by albumin or lipoproteins, the intracellular carrier has not been identified. Recent reports suggest that CBD and THC elevate the levels of the endocannabinoid anandamide (AEA) when administered to humans, suggesting that phytocannabinoids target cellular proteins involved in endocannabinoid clearance. Fatty acid-binding proteins (FABPs) are intracellular proteins that mediate AEA transport to its catabolic enzyme fatty acid amide hydrolase (FAAH). By computational analysis and ligand displacement assays, we show that at least three human FABPs bind THC and CBD and demonstrate that THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs. Furthermore, we show that in contrast to rodent FAAH, CBD does not inhibit the enzymatic actions of human FAAH, and thus FAAH inhibition cannot account for the observed increase in circulating AEA in humans following CBD consumption. Using computational molecular docking and site-directed mutagenesis we identify key residues within the active site of FAAH that confer the species-specific sensitivity to inhibition by CBD. Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids. These data shed light on the mechanism of action of CBD in modulating the endocannabinoid tone in vivo and may explain, in part, its reported efficacy toward epilepsy and other neurological disorders. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. ENDOCANNABINOID 2-ARACHIDONOYLGLYCEROL SELF-ADMINISTRATION BY SPRAGUE-DAWLEY RATS AND STIMULATION OF IN VIVO DOPAMINE TRANSMISSION IN THE NUCLEUS ACCUMBENS SHELL

    Maria Antonietta eDe Luca

    2014-10-01

    Full Text Available 2-Arachidonoylglycerol (2-AG is the most potent endogenous ligand of brain cannabinoid CB1 receptors and is synthesized on demand from 2-arachidonate-containing phosphoinositides by the action of diacyglycerol lipase in response to increased intracellular calcium. Several studies indicate that the endocannabinoid (eCB system is involved in the mechanism of reward and that diverse drugs of abuse increase brain eCB levels. In addition, eCB are self-administered (SA by squirrel monkeys, and anandamide increases nucleus accumbens (NAc shell dopamine (DA in rats. To date, there is no evidence on the reinforcing effects of 2-AG and its effects on DA transmission in rodents. In order to fill this gap, we studied intravenous 2-AG SA and monitored the effect of 2-AG on extracellular DA in the NAc shell and core via microdialysis in male Sprague-Dawley rats. Rats were implanted with jugular catheters and trained to self-administer 2-AG (25g/kg/inf iv in single daily 1h sessions for 5 weeks under initial Fixed Ratio (FR 1 schedule. The ratio was subsequently increased to FR2. Active nose-poking increased from the 6th SA session (acquisition phase but no significant increase of nose-pokes was observed after FR2. When 2-AG was substituted for vehicle (25th SA session, extinction phase, rate responding, as well as number of injections, slowly decreased. When vehicle was replaced with 2-AG, SA behavior immediately recovered (reacquisition phase. The reinforcing effects of 2-AG in SA behavior were fully blocked by the CB1 receptor inverse agonist/antagonist rimonabant (1 mg/kg ip, 30 min before SA session. In the microdialysis studies, we observed that 2-AG (0.1-1.0 mg/kg iv preferentially stimulates NAc shell as compared to the NAc core. NAc shell DA increased by about 25% over basal value at the highest doses tested (0.5 and 1.0 mg/kg iv. The results obtained suggest that the eCB system, via 2-AG, plays an important role in reward.

  7. Reductions in Circulating Endocannabinoid Levels in Individuals with Post-Traumatic Stress Disorder Following Exposure to the World Trade Center Attacks

    Hill, Matthew N.; Bierer, Linda M.; Makotkine, Iouri; Golier, Julia A.; Galea, Sandro; McEwen, Bruce S.; Hillard, Cecilia J.; Yehuda, Rachel

    2013-01-01

    Endocannabinoid (eCB) signaling has been identified as a modulator of adaptation to stress, and is integral to basal and stress-induced glucocorticoid regulation. Furthermore, interactions between eCBs and glucocorticoids have been shown to be necessary for the regulation of emotional memories, suggesting that eCB function may relate to the development of post-traumatic stress disorder (PTSD). To examine this, plasma eCBs were measured in a sample (n=46) drawn from a population-based cohort selected for physical proximity to the World Trade Center (WTC) at the time of the 9/11 attacks. Participants received a structured diagnostic interview and were grouped according to whether they met diagnostic criteria for PTSD (no PTSD, n=22; lifetime diagnosis of PTSD = 24). eCB content (2-arachidonoylglycerol (2-AG) and anandamide (AEA)) and cortisol were measured from 8 a.m. plasma samples. Circulating 2-AG content was significantly reduced among individuals meeting diagnostic criteria for PTSD. The effect of reduced 2-AG content in PTSD remained significant after controlling for the stress of exposure to the WTC collapse, gender, depression and alcohol abuse. There were no significant group differences for AEA or cortisol levels; however, across the whole sample AEA levels positively correlated with circulating cortisol, and AEA levels exhibited a negative relationship with the degree of intrusive symptoms within the PTSD sample. This report shows that PTSD is associated with a reduction in circulating levels of the eCB 2-AG. Given the role of 2-AG in the regulation of the stress response, these data support the hypothesis that deficient eCB signaling may be a component of the glucocorticoid dysregulation associated with PTSD. The negative association between AEA levels and intrusive symptoms is consistent with animal data indicating that reductions in AEA promote retention of aversive emotional memories. Future work will aim to replicate these findings and extend their

  8. Effect of biliary cirrhosis on nonadrenergic noncholinergic-mediated relaxation of rat corpus cavernosum: Role of nitric oxide pathway and endocannabinoid system

    Dehpour A.R.

    2008-06-01

    Full Text Available Background: Relaxation of the corpus cavernosum plays a major role in penile erection. Nitric oxide (NO is known to be the most important factor mediating relaxation of corpus cavernosum, which is mainly derived from nonadrenergic noncholinergic (NANC nerves. The aim of the present study was to investigate the effect of biliary cirrhosis on nonadrenergic noncholinergic (NANC-mediated relaxation of rat corpus cavernosum as well as the possible relevant roles of endocannabinoid and nitric oxide systems.Methods: Corporal strips from sham-operated and biliary cirrhotic rats were mounted under tension in a standard oxygenated organ bath with guanethidine sulfate (5 µM and atropine (1 µM to induce adrenergic and cholinergic blockade. The strips were precontracted with phenylephrine hydrochloride (7.5 µM and electrical field stimulation was applied at different frequencies (2, 5, 10, 15 Hz to obtain NANC-mediated relaxation. In separate precontracted strips of the sham and cirrhotic groups, the concentration-dependent relaxant responses to sodium nitroprusside (10 nM-1mM, as an NO donor, were assessed.  Results: The NANC-mediated relaxation was significantly enhanced in cirrhotic animals (P<0.01. Anandamide potentiated the relaxations in both groups (P<0.05. The cannabinoid CB1 receptor antagonist AM251 (10 µM and the vanilloid receptor antagonist capsazepine (10 µM each significantly prevented the enhanced relaxations in cirrhotic rats (P<0.01. The CB2 receptor antagonist AM630 had no effect on relaxations in the cirrhotic group. In a concentration-dependent manner, L-NAME (30-1000 nM inhibited relaxations in both the sham and cirrhotic groups, although cirrhotic groups were more resistant to the inhibitory effects of L-NAME. The degree of relaxation induced by sodium nitroprusside (10 nM-1 mM was similar in the two groups.Conclusions: Biliary cirrhosis enhances the neurogenic relaxation in rat corpus cavernosum probably via the NO pathway and

  9. Pain and beyond: fatty acid amides and fatty acid amide hydrolase inhibitors in cardiovascular and metabolic diseases.

    Pillarisetti, Sivaram; Alexander, Christopher W; Khanna, Ish

    2009-12-01

    Fatty acid amide hydrolase (FAAH) is responsible for the hydrolysis of several important endogenous fatty acid amides (FAAs), including anandamide, oleoylethanolamide and palmitoylethanolamide. Because specific FAAs interact with cannabinoid and vanilloid receptors, they are often referred to as 'endocannabinoids' or 'endovanilloids'. Initial interest in this area, therefore, has focused on developing FAAH inhibitors to augment the actions of FAAs and reduce pain. However, recent literature has shown that these FAAs - through interactions with unique receptors (extracellular and intracellular) - can induce a diverse array of effects that include appetite suppression, modulation of lipid and glucose metabolism, vasodilation, cardiac function and inflammation. This review gives an overview of FAAs and diverse FAAH inhibitors and their potential therapeutic utility in pain and non-pain indications.

  10. Gene expression

    Hildebrand, C.E.; Crawford, B.D.; Walters, R.A.; Enger, M.D.

    1983-01-01

    We prepared probes for isolating functional pieces of the metallothionein locus. The probes enabled a variety of experiments, eventually revealing two mechanisms for metallothionein gene expression, the order of the DNA coding units at the locus, and the location of the gene site in its chromosome. Once the switch regulating metallothionein synthesis was located, it could be joined by recombinant DNA methods to other, unrelated genes, then reintroduced into cells by gene-transfer techniques. The expression of these recombinant genes could then be induced by exposing the cells to Zn 2+ or Cd 2+ . We would thus take advantage of the clearly defined switching properties of the metallothionein gene to manipulate the expression of other, perhaps normally constitutive, genes. Already, despite an incomplete understanding of how the regulatory switch of the metallothionein locus operates, such experiments have been performed successfully

  11. Fatty acid amide hydrolase inhibition heightens anandamide signaling without producing reinforcing effects in primates

    Justinova, Zuzana; Mangieri, Regina A.; Bortolato, Marco; Chefer, Svetlana I.; Mukhin, Alexey G.; Clapper, Jason R.; King, Alvin R.; Redhi, Godfrey H.; Yasar, Sevil; Piomelli, Daniele; Goldberg, Steven R.

    2008-01-01

    Background CB1 cannabinoid receptors in the brain are known to participate in the regulation of reward-based behaviors, however, the contribution of each of the endocannabinoid transmitters, anandamide and 2-arachidonoylglycerol (2-AG), to these behaviors remains undefined. To address this question, we assessed the effects of URB597, a selective anandamide deactivation inhibitor, as a reinforcer of drug-seeking and drug-taking behavior in squirrel monkeys. Methods We investigated the reinforcing effects of the fatty acid amide hydrolase (FAAH) inhibitor URB597 in monkeys trained to intravenously self-administer Δ9-tetrahydrocannabinol (THC), anandamide or cocaine, and quantified brain endocannabinoid levels using liquid chromatography/mass spectrometry. We measured brain FAAH activity using an ex vivo enzyme assay. Results URB597 (0.3 mg/kg, intravenous) blocked FAAH activity and increased anandamide levels throughout the monkey brain. This effect was accompanied by a marked compensatory decrease in 2-AG levels. Monkeys did not self-administer URB597 and the drug did not promote reinstatement of extinguished drug-seeking behavior previously maintained by THC, anandamide, or cocaine. Pretreatment with URB597 did not modify self-administration of THC or cocaine even though, as expected, it significantly potentiated anandamide self-administration. Conclusions In the monkey brain, the FAAH inhibitor URB597 increases anandamide levels while causing a compensatory down-regulation in 2-AG levels. These effects are accompanied by a striking lack of reinforcing properties, which distinguishes URB597 from direct-acting cannabinoid agonists such as THC. Our results reveal an unexpected functional heterogeneity within the endocannabinoid signaling system, and suggest that FAAH inhibitors might be used therapeutically without risk of abuse or triggering of relapse to drug abuse. PMID:18814866

  12. Targeting fatty acid amide hydrolase and transient receptor potential vanilloid-1 simultaneously to modulate colonic motility and visceral sensation in the mouse: A pharmacological intervention with N-arachidonoyl-serotonin (AA-5-HT).

    Bashashati, M; Fichna, J; Piscitelli, F; Capasso, R; Izzo, A A; Sibaev, A; Timmermans, J-P; Cenac, N; Vergnolle, N; Di Marzo, V; Storr, M

    2017-12-01

    Endocannabinoid anandamide (AEA) inhibits intestinal motility and visceral pain, but it may also be proalgesic through transient receptor potential vanilloid-1 (TRPV1). AEA is degraded by fatty acid amide hydrolase (FAAH). This study explored whether dual inhibition of FAAH and TRPV1 reduces diarrhea and abdominal pain. Immunostaining was performed on myenteric plexus of the mouse colon. The effects of the dual FAAH/TRPV1 inhibitor AA-5-HT on electrically induced contractility, excitatory junction potential (EJP) and fast (f) and slow (s) inhibitory junction potentials (IJP) in the mouse colon, colonic propulsion and visceromotor response (VMR) to rectal distension were studied. The colonic levels of endocannabinoids and fatty acid amides were measured. CB1-positive neurons exhibited TRPV1; only some TRPV1 positive neurons did not express CB1. CB1 and FAAH did not colocalize. AA-5-HT (100 nM-10 μM) decreased colonic contractility by ~60%; this effect was abolished by TRPV1 antagonist 5'-IRTX, but not by CB1 antagonist, SR141716. AA-5-HT (1 μM-10 μM) inhibited EJP by ~30% and IJPs by ~50%. The effects of AA-5-HT on junction potentials were reversed by SR141716 and 5`-IRTX. AA-5-HT (20 mg/kg; i.p.) inhibited colonic propulsion by ~30%; SR141716 but not 5`-IRTX reversed this effect. AA-5-HT decreased VMR by ~50%-60%; these effects were not blocked by SR141716 or 5`-IRTX. AA-5-HT increased AEA in the colon. The effects of AA-5-HT on visceral sensation and colonic motility are differentially mediated by CB1, TRPV1 and non-CB1/TRPV1 mechanisms, possibly reflecting the distinct neuromodulatory roles of endocannabinoid and endovanilloid FAAH substrates in the mouse intestine. © 2017 John Wiley & Sons Ltd.

  13. The Endocannabinoid Anandamide : Metabolism & Neuroprotection

    Stelt, Marcelis van der

    2002-01-01

    Marijuana is an extract of the Cannabis sativa and is the most used illegal drug in the world. Public debate centres upon the possible legalization of marijuana for recreational and therapeutic uses. DELTA-exp.9-Tetrahydrocannabinol (THC), the main psychoactive compound in marijuana, exerts its

  14. Restored Plasma Anandamide and Endometrial Expression of Fatty Acid Amide Hydrolase in Women With Polycystic Ovary Syndrome by the Combination Use of Diane-35 and Metformin.

    Cui, Na; Feng, Xiaoye; Zhao, Zhiming; Zhang, Jie; Xu, Yueming; Wang, Luning; Hao, Guimin

    2017-04-01

    Polycystic ovary syndrome (PCOS) is a metabolic and endocrinal disorder affecting a number of women of reproductive age. We aimed to reveal the correlation between the endocannabinoid system and PCOS, which may provide a new therapeutic target for PCOS treatment. Serum levels of anandamide and 2-arachidonoylglycerol andexpression of cannabinoid receptors and fatty acid amide hydrolase (FAAH) in the endometrium were compared between women with PCOS and infertile women without PCOS, as well as women with PCOS before and after treatment with Diane-35 and metformin. Cannabinoid receptors and FAAH in the endometrium were stained using the immunohistochemical method. Results were analyzed by calculating integrated optical density. Plasma anandamide was increased significantly in women with PCOS compared with infertile women without PCOS. Treatment with Diane-35 and metformin reversed this increase in women with PCOS. No significant difference in 2-arachidonoylglycerol was observed between the infertile women with or without PCOS. The women with PCOS had lower endometrial expression of FAAH compared with infertile women without PCOS, whereas no significant difference in endometrial expression of cannabinoid receptors was observed between the women with PCOS and infertile women without PCOS. We found that after treatment with Diane-35 and metformin, FAAH expression tended toward a significant increase compared with women before the treatment. Endocannabinoid system may be involved in the progression of PCOS, and serum anandamide could serve as a potential biomarker of clinical diagnosis of PCOS. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.

  15. Cannabinoid Type-1 Receptor Gene Polymorphisms Are Associated with Central Obesity in a Southern Brazilian Population

    Janaína P. Jaeger

    2008-01-01

    Full Text Available The CB1 cannabinoid receptor and its endogenous ligands, the endocannabinoids, are involved in energy balance control, stimulating appetite and increasing body weight in wasting syndromes. Different studies have investigated the relationship between polymorphisms of the cannabinoid receptor 1 (CNR1 gene and obesity with conflicting results. In the present study, we investigated the 1359G/A (rs1049353, 3813A/G (rs12720071 and 4895A/G (rs806368 polymorphisms in the CNR1 gene in a Brazilian population of European descent. To verify the association between these variants and obesity-related traits in this population, 756 individuals were genotyped by PCR-RFLP methods. The 4895G allele was associated with waist to hip ratio (WHR (P = 0.014; P = 0.042 after Bonferroni correction. An additive effect with the GAA haplotype was associated with WHR (P = 0.028, although this statistical significance disappeared after Bonferroni correction (P = 0.084. No significant association was observed between the genotypes of the 1359G/A and 3813A/G polymorphisms and any of the quantitative variables investigated. Our findings suggest that CNR1 gene polymorphism is associated with central obesity in this Brazilian population of European ancestry.

  16. Trichoderma genes

    Foreman, Pamela [Los Altos, CA; Goedegebuur, Frits [Vlaardingen, NL; Van Solingen, Pieter [Naaldwijk, NL; Ward, Michael [San Francisco, CA

    2012-06-19

    Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry.

  17. The endocannabinoid system and its role in schizophrenia: a systematic review of the literature O sistema endocanabinoide e seu papel na esquizofrenia: uma revisão sistemática da literatura

    Rodrigo Ferretjans

    2012-10-01

    Full Text Available OBJECTIVE: Schizophrenia is a psychiatric disorder whose mechanisms have remained only partially elucidated. The current proposals regarding its biological basis, such as the dopaminergic hypothesis, do not fully explain the diversity of its symptoms, indicating that other processes may be involved. This paper aims to review evidence supporting the involvement of the endocannabinoid system (ECS, a neurotransmitter group that is the target of Cannabis sativa compounds, in this disorder. METHODS: A systematic review of original papers, published in English, indexed in PubMed up to April, 2012. RESULTS: Most studies employed genetics and histological, neuroimaging or neurochemical methods - either in vivo or post-mortem - to investigate whether components of the ECS are compromised in patients. Overall, the data show changes in cannabinoid receptors in certain brain regions as well as altered levels in endocannabinoid levels in cerebrospinal fluid and/or blood. CONCLUSIONS: Although a dysfunction of the ECS has been described, results are not entirely consistent across studies. Further data are warrant to better define a role of this system in schizophrenia.OBJETIVO: A esquizofrenia é um transtorno psiquiátrico cujos mecanismos permanecem apenas parcialmente elucidados. As atuais propostas relativas à base biológica, tais como a hipótese dopaminérgica, não explicam por completo a diversidade de seus sintomas, o que indica que outros processos podem estar envolvidos. Este artigo tem como objetivo revisar indícios que sustentem o envolvimento do sistema endocanabinoide (SECB, um grupo de neurotransmissoresalvo dos compostos da Cannabis sativa, nesse transtorno. MÉTODOS: Revisão sistemática dos artigos originais, publicados em inglês e indexados no PubMed até abril de 2012. RESULTADOS: A maioria dos estudos empregou métodos neuroquímicos ou de neuroimagem genéticos e histológicos - tanto in vivo quanto post-mortem - para investigar se

  18. Receptor-heteromer mediated regulation of endocannabinoid signaling in activated microglia. Role of CB1 and CB2 receptors and relevance for Alzheimer's disease and levodopa-induced dyskinesia.

    Navarro, Gemma; Borroto-Escuela, Dasiel; Angelats, Edgar; Etayo, Íñigo; Reyes-Resina, Irene; Pulido-Salgado, Marta; Rodríguez-Pérez, Ana I; Canela, Enric I; Saura, Josep; Lanciego, José Luis; Labandeira-García, José Luis; Saura, Carlos A; Fuxe, Kjell; Franco, Rafael

    2018-01-01

    Endocannabinoids are important regulators of neurotransmission and, acting on activated microglia, they are postulated as neuroprotective agents. Endocannabinoid action is mediated by CB 1 and CB 2 receptors, which may form heteromeric complexes (CB 1 -CB 2 Hets) with unknown function in microglia. We aimed at establishing the expression and signaling properties of cannabinoid receptors in resting and LPS/IFN-γ-activated microglia. In activated microglia mRNA transcripts increased (2 fold for CB 1 and circa 20 fold for CB 2 ), whereas receptor levels were similar for CB 1 and markedly upregulated for CB 2 ; CB 1 -CB 2 Hets were also upregulated. Unlike in resting cells, CB 2 receptors became robustly coupled to G i in activated cells, in which CB 1 -CB 2 Hets mediated a potentiation effect. Hence, resting cells were refractory while activated cells were highly responsive to cannabinoids. Interestingly, similar results were obtained in cultures treated with ß-amyloid (Aß 1-42 ). Microglial activation markers were detected in the striatum of a Parkinson's disease (PD) model and, remarkably, in primary microglia cultures from the hippocampus of mutant β-amyloid precursor protein (APP Sw,Ind ) mice, a transgenic Alzheimer's disease (AD) model. Also of note was the similar cannabinoid receptor signaling found in primary cultures of microglia from APP Sw,Ind and in cells from control animals activated using LPS plus IFN-γ. Expression of CB 1 -CB 2 Hets was increased in the striatum from rats rendered dyskinetic by chronic levodopa treatment. In summary, our results showed sensitivity of activated microglial cells to cannabinoids, increased CB 1 -CB 2 Het expression in activated microglia and in microglia from the hippocampus of an AD model, and a correlation between levodopa-induced dyskinesia and striatal microglial activation in a PD model. Cannabinoid receptors and the CB 1 -CB 2 heteroreceptor complex in activated microglia have potential as targets in the

  19. Ageing genes

    Rattan, Suresh

    2018-01-01

    The idea of gerontogenes is in line with the evolutionary explanation of ageing as being an emergent phenomenon as a result of the imperfect maintenance and repair systems. Although evolutionary processes did not select for any specific ageing genes that restrict and determine the lifespan...... of an individual, the term ‘gerontogenes’ primarily refers to any genes that may seem to influence ageing and longevity, without being specifically selected for that role. Such genes can also be called ‘virtual gerontogenes’ by virtue of their indirect influence on the rate and process of ageing. More than 1000...... virtual gerontogenes have been associated with ageing and longevity in model organisms and humans. The ‘real’ genes, which do influence the essential lifespan of a species, and have been selected for in accordance with the evolutionary life history of the species, are known as the longevity assurance...

  20. Exploração farmacológica do sistema endocanabinoide: novas perspectivas para o tratamento de transtornos de ansiedade e depressão? Pharmacological exploitation of the endocannabinoid system: new perspectives for the treatment of depression and anxiety disorders?

    Viviane M. Saito

    2010-05-01

    Full Text Available OBJETIVO: Este artigo revisa o sistema endocanabinoide e as respectivas estratégias de intervenções farmacológicas. MÉTODO: Realizou-se uma revisão da literatura sobre o sistema endocanabinoide e a sua farmacologia, considerando-se artigos originais ou de revisão escritos em inglês. DISCUSSÃO: Canabinoides são um grupo de compostos presentes na Cannabis Sativa (maconha, a exemplo do Δ9-tetraidrocanabinol e seus análogos sintéticos. Estudos sobre o seu perfil farmacológico levaram à descoberta do sistema endocanabinoide do cérebro de mamíferos. Este sistema é composto por pelo menos dois receptores acoplados a uma proteína G, CB1 e CB2, pelos seus ligantes endógenos (endocanabinoides; a exemplo da anandamida e do 2-araquidonoil glicerol e pelas enzimas responsáveis por sintetizá-los e metabolizá-los. Os endocanabinoides representam uma classe de mensageiros neurais que são sintetizados sob demanda e liberados de neurônios pós-sinápticos para restringir a liberação de neurotransmissores clássicos de terminais pré-sinápticos. Esta sinalização retrógrada modula uma diversidade de funções cerebrais, incluindo ansiedade, medo e humor, em que a ativação de receptores CB1 pode exercer efeitos dos tipos ansiolítico e antidepressivo em estudos préclínicos. CONCLUSÃO: Experimentos com modelos animais sugerem que drogas que facilitam a ação dos endocanabinoides podem representar uma nova estratégia para o tratamento de transtornos de ansiedade e depressão.OBJECTIVE: The present review provides a brief introduction into the endocannabinoid system and discusses main strategies of pharmacological interventions. METHOD: We have reviewed the literature relating to the endocannabinoid system and its pharmacology; both original and review articles written in English were considered. DISCUSSION: Cannabinoids are a group of compounds present in Cannabis Sativa (hemp, such as Δ9-tetrahydrocannabinol, and their synthetic

  1. Upregulation of CB2 receptors in reactive astrocytes in canine degenerative myelopathy, a disease model of amyotrophic lateral sclerosis

    Fernández-Trapero, María; Espejo-Porras, Francisco; Rodríguez-Cueto, Carmen; Coates, Joan R.; Pérez-Díaz, Carmen; de Lago, Eva; Fernández-Ruiz, Javier

    2017-01-01

    ABSTRACT Targeting of the CB2 receptor results in neuroprotection in the SOD1G93A mutant mouse model of amyotrophic lateral sclerosis (ALS). The neuroprotective effects of CB2 receptors are facilitated by their upregulation in the spinal cord of the mutant mice. Here, we investigated whether similar CB2 receptor upregulation, as well as parallel changes in other endocannabinoid elements, is evident in the spinal cord of dogs with degenerative myelopathy (DM), caused by mutations in the superoxide dismutase 1 gene (SOD1). We used well-characterized post-mortem spinal cords from unaffected and DM-affected dogs. Tissues were used first to confirm the loss of motor neurons using Nissl staining, which was accompanied by glial reactivity (elevated GFAP and Iba-1 immunoreactivity). Next, we investigated possible differences in the expression of endocannabinoid genes measured by qPCR between DM-affected and control dogs. We found no changes in expression of the CB1 receptor (confirmed with CB1 receptor immunostaining) or NAPE-PLD, DAGL, FAAH and MAGL enzymes. In contrast, CB2 receptor levels were significantly elevated in DM-affected dogs determined by qPCR and western blotting, which was confirmed in the grey matter using CB2 receptor immunostaining. Using double-labelling immunofluorescence, CB2 receptor immunolabelling colocalized with GFAP but not Iba-1, indicating upregulation of CB2 receptors on astrocytes in DM-affected dogs. Our results demonstrate a marked upregulation of CB2 receptors in the spinal cord in canine DM, which is concentrated in activated astrocytes. Such receptors could be used as a potential target to enhance the neuroprotective effects exerted by these glial cells. PMID:28069688

  2. Upregulation of CB2 receptors in reactive astrocytes in canine degenerative myelopathy, a disease model of amyotrophic lateral sclerosis

    María Fernández-Trapero

    2017-05-01

    Full Text Available Targeting of the CB2 receptor results in neuroprotection in the SOD1G93A mutant mouse model of amyotrophic lateral sclerosis (ALS. The neuroprotective effects of CB2 receptors are facilitated by their upregulation in the spinal cord of the mutant mice. Here, we investigated whether similar CB2 receptor upregulation, as well as parallel changes in other endocannabinoid elements, is evident in the spinal cord of dogs with degenerative myelopathy (DM, caused by mutations in the superoxide dismutase 1 gene (SOD1. We used well-characterized post-mortem spinal cords from unaffected and DM-affected dogs. Tissues were used first to confirm the loss of motor neurons using Nissl staining, which was accompanied by glial reactivity (elevated GFAP and Iba-1 immunoreactivity. Next, we investigated possible differences in the expression of endocannabinoid genes measured by qPCR between DM-affected and control dogs. We found no changes in expression of the CB1 receptor (confirmed with CB1 receptor immunostaining or NAPE-PLD, DAGL, FAAH and MAGL enzymes. In contrast, CB2 receptor levels were significantly elevated in DM-affected dogs determined by qPCR and western blotting, which was confirmed in the grey matter using CB2 receptor immunostaining. Using double-labelling immunofluorescence, CB2 receptor immunolabelling colocalized with GFAP but not Iba-1, indicating upregulation of CB2 receptors on astrocytes in DM-affected dogs. Our results demonstrate a marked upregulation of CB2 receptors in the spinal cord in canine DM, which is concentrated in activated astrocytes. Such receptors could be used as a potential target to enhance the neuroprotective effects exerted by these glial cells.

  3. Gene doping.

    Haisma, H J; de Hon, O

    2006-04-01

    Together with the rapidly increasing knowledge on genetic therapies as a promising new branch of regular medicine, the issue has arisen whether these techniques might be abused in the field of sports. Previous experiences have shown that drugs that are still in the experimental phases of research may find their way into the athletic world. Both the World Anti-Doping Agency (WADA) and the International Olympic Committee (IOC) have expressed concerns about this possibility. As a result, the method of gene doping has been included in the list of prohibited classes of substances and prohibited methods. This review addresses the possible ways in which knowledge gained in the field of genetic therapies may be misused in elite sports. Many genes are readily available which may potentially have an effect on athletic performance. The sporting world will eventually be faced with the phenomena of gene doping to improve athletic performance. A combination of developing detection methods based on gene arrays or proteomics and a clear education program on the associated risks seems to be the most promising preventive method to counteract the possible application of gene doping.

  4. Gene Locater

    Anwar, Muhammad Zohaib; Sehar, Anoosha; Rehman, Inayat-Ur

    2012-01-01

    software's for calculating recombination frequency is mostly limited to the range and flexibility of this type of analysis. GENE LOCATER is a fully customizable program for calculating recombination frequency, written in JAVA. Through an easy-to-use interface, GENE LOCATOR allows users a high degree...... of flexibility in calculating genetic linkage and displaying linkage group. Among other features, this software enables user to identify linkage groups with output visualized graphically. The program calculates interference and coefficient of coincidence with elevated accuracy in sample datasets. AVAILABILITY...

  5. Gene Ontology

    Gaston K. Mazandu

    2012-01-01

    Full Text Available The wide coverage and biological relevance of the Gene Ontology (GO, confirmed through its successful use in protein function prediction, have led to the growth in its popularity. In order to exploit the extent of biological knowledge that GO offers in describing genes or groups of genes, there is a need for an efficient, scalable similarity measure for GO terms and GO-annotated proteins. While several GO similarity measures exist, none adequately addresses all issues surrounding the design and usage of the ontology. We introduce a new metric for measuring the distance between two GO terms using the intrinsic topology of the GO-DAG, thus enabling the measurement of functional similarities between proteins based on their GO annotations. We assess the performance of this metric using a ROC analysis on human protein-protein interaction datasets and correlation coefficient analysis on the selected set of protein pairs from the CESSM online tool. This metric achieves good performance compared to the existing annotation-based GO measures. We used this new metric to assess functional similarity between orthologues, and show that it is effective at determining whether orthologues are annotated with similar functions and identifying cases where annotation is inconsistent between orthologues.

  6. Gene doping: gene delivery for olympic victory

    Gould, David

    2012-01-01

    With one recently recommended gene therapy in Europe and a number of other gene therapy treatments now proving effective in clinical trials it is feasible that the same technologies will soon be adopted in the world of sport by unscrupulous athletes and their trainers in so called ‘gene doping’. In this article an overview of the successful gene therapy clinical trials is provided and the potential targets for gene doping are highlighted. Depending on whether a doping gene product is secreted...

  7. Genes and Hearing Loss

    ... ENTCareers Marketplace Find an ENT Doctor Near You Genes and Hearing Loss Genes and Hearing Loss Patient ... mutation may only have dystopia canthorum. How Do Genes Work? Genes are a road map for the ...

  8. Synthesis and preclinical evaluation of [11C-carbonyl]PF-04457845 for neuroimaging of fatty acid amide hydrolase

    Hicks, Justin W.; Parkes, Jun; Sadovski, Oleg; Tong, Junchao; Houle, Sylvain; Vasdev, Neil; Wilson, Alan A.

    2013-01-01

    Introduction: Fatty acid amide hydrolase (FAAH) has a significant role in regulating endocannabinoid signaling in the central nervous system. As such, FAAH inhibitors are being actively sought for pain, addiction, and other indications. This has led to the recent pursuit of positron emission tomography (PET) radiotracers targeting FAAH. We report herein the preparation and preclinical evaluation of [ 11 C-carbonyl]PF-04457845, an isotopologue of the potent irreversible FAAH inhibitor. Methods: PF-04457845 was radiolabeled at the carbonyl position via automated [ 11 C]CO 2 -fixation. Ex vivo brain biodistribution of [ 11 C-carbonyl]PF-04457845 was carried out in conscious rats. Specificity was determined by pre-administration of PF-04457845 or URB597 prior to [ 11 C-carbonyl]PF-04457845. In a separate experiment, rats injected with the title radiotracer had whole brains excised, homogenized and extracted to examine irreversible binding to brain parenchyma. Results: The title compound was prepared in 5 ± 1% (n = 4) isolated radiochemical yield based on starting [ 11 C]CO 2 (decay uncorrected) within 25 min from end-of-bombardment in > 98% radiochemical purity and a specific activity of 73.5 ± 8.2 GBq/μmol at end-of-synthesis. Uptake of [ 11 C-carbonyl]PF-04457845 into the rat brain was high (range of 1.2–4.4 SUV), heterogeneous, and in accordance with reported FAAH distribution. Saturable binding was demonstrated by a dose-dependent reduction in brain radioactivity uptake following pre-treatment with PF-04457845. Pre-treatment with the prototypical FAAH inhibitor, URB597, reduced the brain radiotracer uptake in all regions by 71–81%, demonstrating specificity for FAAH. The binding of [ 11 C-carbonyl]PF-04457845 to FAAH at 40 min post injection was irreversible as 98% of the radioactivity in the brain could not be extracted. Conclusions: [ 11 C-carbonyl]PF-04457845 was rapidly synthesized via an automated radiosynthesis. Ex vivo biodistribution studies in

  9. Potential upstream regulators of cannabinoid receptor 1 signaling in prostate cancer: a Bayesian network analysis of data from a tissue microarray.

    Häggström, Jenny; Cipriano, Mariateresa; Forshell, Linus Plym; Persson, Emma; Hammarsten, Peter; Stella, Nephi; Fowler, Christopher J

    2014-08-01

    The endocannabinoid system regulates cancer cell proliferation, and in prostate cancer a high cannabinoid CB1 receptor expression is associated with a poor prognosis. Down-stream mediators of CB1 receptor signaling in prostate cancer are known, but information on potential upstream regulators is lacking. Data from a well-characterized tumor tissue microarray were used for a Bayesian network analysis using the max-min hill-climbing method. In non-malignant tissue samples, a directionality of pEGFR (the phosphorylated form of the epidermal growth factor receptor) → CB1 receptors were found regardless as to whether the endocannabinoid metabolizing enzyme fatty acid amide hydrolase (FAAH) was included as a parameter. A similar result was found in the tumor tissue, but only when FAAH was included in the analysis. A second regulatory pathway, from the growth factor receptor ErbB2 → FAAH was also identified in the tumor samples. Transfection of AT1 prostate cancer cells with CB1 receptors induced a sensitivity to the growth-inhibiting effects of the CB receptor agonist CP55,940. The sensitivity was not dependent upon the level of receptor expression. Thus a high CB1 receptor expression alone does not drive the cells towards a survival phenotype in the presence of a CB receptor agonist. The data identify two potential regulators of the endocannabinoid system in prostate cancer and allow the construction of a model of a dysregulated endocannabinoid signaling network in this tumor. Further studies should be designed to test the veracity of the predictions of the network analysis in prostate cancer and other solid tumors. © 2014 The Authors. The Prostate published by Wiley Periodicals, Inc.

  10. Gene expression and gene therapy imaging

    Rome, Claire; Couillaud, Franck; Moonen, Chrit T.W.

    2007-01-01

    The fast growing field of molecular imaging has achieved major advances in imaging gene expression, an important element of gene therapy. Gene expression imaging is based on specific probes or contrast agents that allow either direct or indirect spatio-temporal evaluation of gene expression. Direct evaluation is possible with, for example, contrast agents that bind directly to a specific target (e.g., receptor). Indirect evaluation may be achieved by using specific substrate probes for a target enzyme. The use of marker genes, also called reporter genes, is an essential element of MI approaches for gene expression in gene therapy. The marker gene may not have a therapeutic role itself, but by coupling the marker gene to a therapeutic gene, expression of the marker gene reports on the expression of the therapeutic gene. Nuclear medicine and optical approaches are highly sensitive (detection of probes in the picomolar range), whereas MRI and ultrasound imaging are less sensitive and require amplification techniques and/or accumulation of contrast agents in enlarged contrast particles. Recently developed MI techniques are particularly relevant for gene therapy. Amongst these are the possibility to track gene therapy vectors such as stem cells, and the techniques that allow spatiotemporal control of gene expression by non-invasive heating (with MRI guided focused ultrasound) and the use of temperature sensitive promoters. (orig.)

  11. A variant on promoter of the cannabinoid receptor 1 gene (CNR1) moderates the effect of valence on working memory.

    Fairfield, Beth; Mammarella, Nicola; Franzago, Marica; Di Domenico, Alberto; Stuppia, Liborio; Gatta, Valentina

    2018-02-01

    Cannabinoid receptor 1 gene (CNR1) variants have been related to affective information processing and, in particular, to stress release. Here, we aimed to examine whether the endocannabinoid system via CNR1 signaling modulates affective working memory, the memory system that transiently maintains and manipulates emotionally charged material. We focused on rs2180619 (A > G) polymorphism and examined genotype data collected from 231 healthy females. Analyses showed how a general positivity bias in working memory (i.e., better memory for positive words) emerged as task strings lengthened only in carriers of the major allele (AA/AG). Differently, GG carriers showed better memory for affective items in general (i.e., positive and negative words). These findings are some of the first to directly highlight the role of variant on promoter of the CNR1 gene in affective working memory and to evidence a differentiation among CNR1 genotypes in terms of larger difficulties in disengaging from negative stimuli in GG carriers.

  12. Imaging reporter gene for monitoring gene therapy

    Beco, V. de; Baillet, G.; Tamgac, F.; Tofighi, M.; Weinmann, P.; Vergote, J.; Moretti, J.L.; Tamgac, G.

    2002-01-01

    Scintigraphic images can be obtained to document gene function at cellular level. This approach is presented here and the use of a reporter gene to monitor gene therapy is described. Two main ways are presented: either the use of a reporter gene coding for an enzyme the action of which will be monitored by radiolabeled pro-drug, or a cellular receptor gene, the action of which is documented by a radio labeled cognate receptor ligand. (author)

  13. Affected pathways and transcriptional regulators in gene expression response to an ultra-marathon trail: Global and independent activity approaches.

    Maria Maqueda

    Full Text Available Gene expression (GE analyses on blood samples from marathon and half-marathon runners have reported significant impacts on the immune and inflammatory systems. An ultra-marathon trail (UMT represents a greater effort due to its more testing conditions. For the first time, we report the genome-wide GE profiling in a group of 16 runners participating in an 82 km UMT competition. We quantified their differential GE profile before and after the race using HuGene2.0st microarrays (Affymetrix Inc., California, US. The results obtained were decomposed by means of an independent component analysis (ICA targeting independent expression modes. We observed significant differences in the expression levels of 5,084 protein coding genes resulting in an overrepresentation of 14% of the human biological pathways from the Kyoto Encyclopedia of Genes and Genomes database. These were mainly clustered on terms related with protein synthesis repression, altered immune system and infectious diseases related mechanisms. In a second analysis, 27 out of the 196 transcriptional regulators (TRs included in the Open Regulatory Annotation database were overrepresented. Among these TRs, we identified transcription factors from the hypoxia-inducible factors (HIF family EPAS1 (p< 0.01 and HIF1A (p<0.001, and others jointly described in the gluconeogenesis program such as HNF4 (p< 0.001, EGR1 (p<0.001, CEBPA (p< 0.001 and a highly specific TR, YY1 (p<0.01. The five independent components, obtained from ICA, further revealed a down-regulation of 10 genes distributed in the complex I, III and V from the electron transport chain. This mitochondrial activity reduction is compatible with HIF-1 system activation. The vascular endothelial growth factor (VEGF pathway, known to be regulated by HIF, also emerged (p<0.05. Additionally, and related to the brain rewarding circuit, the endocannabinoid signalling pathway was overrepresented (p<0.05.

  14. Genetic background can result in a marked or minimal effect of gene knockout (GPR55 and CB2 receptor in experimental autoimmune encephalomyelitis models of multiple sclerosis.

    Sofia Sisay

    Full Text Available Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1 receptor and the orphan G protein receptor fifty-five (GPR55. Studies using C57BL/10 and C57BL/6 (Cnr2 (tm1Zim CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 (Dgen receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 (tm1Zim mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational

  15. Imaging gene expression in gene therapy

    Wiebe, Leonard I.

    1997-01-01

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on 'suicide gene therapy' of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k + ) has been use for 'suicide' in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k + gene expression where the H S V-1 t k + gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([ 18 F]F H P G; [ 18 F]-A C V), and pyrimidine- ([ 123 / 131 I]I V R F U; [ 124 / 131I ]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [ 123 / 131I ]I V R F U imaging with the H S V-1 t k + reporter gene will be presented

  16. Imaging gene expression in gene therapy

    Wiebe, Leonard I. [Alberta Univ., Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-12-31

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on `suicide gene therapy` of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k{sup +}) has been use for `suicide` in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k{sup +} gene expression where the H S V-1 t k{sup +} gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([{sup 18} F]F H P G; [{sup 18} F]-A C V), and pyrimidine- ([{sup 123}/{sup 131} I]I V R F U; [{sup 124}/{sup 131I}]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [{sup 123}/{sup 131I}]I V R F U imaging with the H S V-1 t k{sup +} reporter gene will be presented

  17. Gene doping: gene delivery for olympic victory.

    Gould, David

    2013-08-01

    With one recently recommended gene therapy in Europe and a number of other gene therapy treatments now proving effective in clinical trials it is feasible that the same technologies will soon be adopted in the world of sport by unscrupulous athletes and their trainers in so called 'gene doping'. In this article an overview of the successful gene therapy clinical trials is provided and the potential targets for gene doping are highlighted. Depending on whether a doping gene product is secreted from the engineered cells or is retained locally to, or inside engineered cells will, to some extent, determine the likelihood of detection. It is clear that effective gene delivery technologies now exist and it is important that detection and prevention plans are in place. © 2012 The Author. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  18. Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors.

    Melis, Miriam; Pillolla, Giuliano; Luchicchi, Antonio; Muntoni, Anna Lisa; Yasar, Sevil; Goldberg, Steven R; Pistis, Marco

    2008-12-17

    Nicotine stimulates the activity of mesolimbic dopamine neurons, which is believed to mediate the rewarding and addictive properties of tobacco use. Accumulating evidence suggests that the endocannabinoid system might play a major role in neuronal mechanisms underlying the rewarding properties of drugs of abuse, including nicotine. Here, we investigated the modulation of nicotine effects by the endocannabinoid system on dopamine neurons in the ventral tegmental area with electrophysiological techniques in vivo and in vitro. We discovered that pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme that catabolizes fatty acid ethanolamides, among which the endocannabinoid anandamide (AEA) is the best known, suppressed nicotine-induced excitation of dopamine cells. Importantly, this effect was mimicked by the administration of the FAAH substrates oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), but not methanandamide, the hydrolysis resistant analog of AEA. OEA and PEA are naturally occurring lipid signaling molecules structurally related to AEA, but devoid of affinity for cannabinoid receptors. They blocked the effects of nicotine by activation of the peroxisome proliferator-activated receptor-alpha (PPAR-alpha), a nuclear receptor transcription factor involved in several aspects of lipid metabolism and energy balance. Activation of PPAR-alpha triggered a nongenomic stimulation of tyrosine kinases, which might lead to phosphorylation and negative regulation of neuronal nicotinic acetylcholine receptors. These data indicate for the first time that the anorexic lipids OEA and PEA possess neuromodulatory properties as endogenous ligands of PPAR-alpha in the brain and provide a potential new target for the treatment of nicotine addiction.

  19. Evolution of homeobox genes.

    Holland, Peter W H

    2013-01-01

    Many homeobox genes encode transcription factors with regulatory roles in animal and plant development. Homeobox genes are found in almost all eukaryotes, and have diversified into 11 gene classes and over 100 gene families in animal evolution, and 10 to 14 gene classes in plants. The largest group in animals is the ANTP class which includes the well-known Hox genes, plus other genes implicated in development including ParaHox (Cdx, Xlox, Gsx), Evx, Dlx, En, NK4, NK3, Msx, and Nanog. Genomic data suggest that the ANTP class diversified by extensive tandem duplication to generate a large array of genes, including an NK gene cluster and a hypothetical ProtoHox gene cluster that duplicated to generate Hox and ParaHox genes. Expression and functional data suggest that NK, Hox, and ParaHox gene clusters acquired distinct roles in patterning the mesoderm, nervous system, and gut. The PRD class is also diverse and includes Pax2/5/8, Pax3/7, Pax4/6, Gsc, Hesx, Otx, Otp, and Pitx genes. PRD genes are not generally arranged in ancient genomic clusters, although the Dux, Obox, and Rhox gene clusters arose in mammalian evolution as did several non-clustered PRD genes. Tandem duplication and genome duplication expanded the number of homeobox genes, possibly contributing to the evolution of developmental complexity, but homeobox gene loss must not be ignored. Evolutionary changes to homeobox gene expression have also been documented, including Hox gene expression patterns shifting in concert with segmental diversification in vertebrates and crustaceans, and deletion of a Pitx1 gene enhancer in pelvic-reduced sticklebacks. WIREs Dev Biol 2013, 2:31-45. doi: 10.1002/wdev.78 For further resources related to this article, please visit the WIREs website. The author declares that he has no conflicts of interest. Copyright © 2012 Wiley Periodicals, Inc.

  20. Gene cluster statistics with gene families.

    Raghupathy, Narayanan; Durand, Dannie

    2009-05-01

    Identifying genomic regions that descended from a common ancestor is important for understanding the function and evolution of genomes. In distantly related genomes, clusters of homologous gene pairs are evidence of candidate homologous regions. Demonstrating the statistical significance of such "gene clusters" is an essential component of comparative genomic analyses. However, currently there are no practical statistical tests for gene clusters that model the influence of the number of homologs in each gene family on cluster significance. In this work, we demonstrate empirically that failure to incorporate gene family size in gene cluster statistics results in overestimation of significance, leading to incorrect conclusions. We further present novel analytical methods for estimating gene cluster significance that take gene family size into account. Our methods do not require complete genome data and are suitable for testing individual clusters found in local regions, such as contigs in an unfinished assembly. We consider pairs of regions drawn from the same genome (paralogous clusters), as well as regions drawn from two different genomes (orthologous clusters). Determining cluster significance under general models of gene family size is computationally intractable. By assuming that all gene families are of equal size, we obtain analytical expressions that allow fast approximation of cluster probabilities. We evaluate the accuracy of this approximation by comparing the resulting gene cluster probabilities with cluster probabilities obtained by simulating a realistic, power-law distributed model of gene family size, with parameters inferred from genomic data. Surprisingly, despite the simplicity of the underlying assumption, our method accurately approximates the true cluster probabilities. It slightly overestimates these probabilities, yielding a conservative test. We present additional simulation results indicating the best choice of parameter values for data

  1. Carboxylesterase 1 genes

    Rasmussen, Henrik Berg; Madsen, Majbritt Busk

    2018-01-01

    The carboxylesterase 1 gene (CES1) encodes a hydrolase that metabolizes commonly used drugs. The CES1-related pseudogene, carboxylesterase 1 pseudogene 1 (CES1P1), has been implicated in gene exchange with CES1 and in the formation of hybrid genes including the carboxylesterase 1A2 gene (CES1A2...

  2. Cross-validated stable-isotope dilution GC-MS and LC-MS/MS assays for monoacylglycerol lipase (MAGL) activity by measuring arachidonic acid released from the endocannabinoid 2-arachidonoyl glycerol.

    Kayacelebi, Arslan Arinc; Schauerte, Celina; Kling, Katharina; Herbers, Jan; Beckmann, Bibiana; Engeli, Stefan; Jordan, Jens; Zoerner, Alexander A; Tsikas, Dimitrios

    2017-03-15

    2-Arachidonoyl glycerol (2AG) is an endocannabinoid that activates cannabinoid (CB) receptors CB1 and CB2. Monoacylglycerol lipase (MAGL) inactivates 2AG through hydrolysis to arachidonic acid (AA) and glycerol, thus modulating the activity at CB receptors. In the brain, AA released from 2AG by the action of MAGL serves as a substrate for cyclooxygenases which produce pro-inflammatory prostaglandins. Here we report stable-isotope GC-MS and LC-MS/MS assays for the reliable measurement of MAGL activity. The assays utilize deuterium-labeled 2AG (d 8 -2AG; 10μM) as the MAGL substrate and measure deuterium-labeled AA (d 8 -AA; range 0-1μM) as the MAGL product. Unlabelled AA (d 0 -AA, 1μM) serves as the internal standard. d 8 -AA and d 0 -AA are extracted from the aqueous buffered incubation mixtures by ethyl acetate. Upon solvent evaporation the residue is reconstituted in the mobile phase prior to LC-MS/MS analysis or in anhydrous acetonitrile for GC-MS analysis. LC-MS/MS analysis is performed in the negative electrospray ionization mode by selected-reaction monitoring the mass transitions [M-H] - →[M-H - CO 2 ] - , i.e., m/z 311→m/z 267 for d 8 -AA and m/z 303→m/z 259 for d 0 -AA. Prior to GC-MS analysis d 8 -AA and d 0 -AA were converted to their pentafluorobenzyl (PFB) esters by means of PFB-Br. GC-MS analysis is performed in the electron-capture negative-ion chemical ionization mode by selected-ion monitoring the ions [M-PFB] - , i.e., m/z 311 for d 8 -AA and m/z 303 for d 0 -AA. The GC-MS and LC-MS/MS assays were cross-validated. Linear regression analysis between the concentration (range, 0-1μM) of d 8 -AA measured by LC-MS/MS (y) and that by GC-MS (x) revealed a straight line (r 2 =0.9848) with the regression equation y=0.003+0.898x, indicating a good agreement. In dog liver, we detected MAGL activity that was inhibitable by the MAGL inhibitor JZL-184. Exogenous eicosatetraynoic acid is suitable as internal standard for the quantitative determination

  3. Performance in working memory and attentional control is associated with the rs2180619 SNP in the CNR1 gene.

    Ruiz-Contreras, A E; Carrillo-Sánchez, K; Ortega-Mora, I; Barrera-Tlapa, M A; Román-López, T V; Rosas-Escobar, C B; Flores-Barrera, L; Caballero-Sánchez, U; Muñoz-Torres, Z; Romero-Hidalgo, S; Hernández-Morales, S; González-Barrios, J A; Vadillo-Ortega, F; Méndez-Díaz, M; Aguilar-Roblero, R; Prospéro-García, O

    2014-02-01

    Individual differences in cognitive performance are partly dependent, on genetic polymporhisms. One of the single-nucleotide polymorphisms (SNP) of the CNR1 gene, which codes for cannabinoid receptor 1 (CB1R), is the rs2180619, located in a regulatory region of this gene (6q14-q15). The alleles of the rs2180619 are A > G; the G allele has been associated with addiction and high levels of anxiety (when the G allele interacts with the SS genotype of the 5-HTTLPR gene). However, GG genotype is observed also in healthy subjects. Considering G allele as risk for 'psychopathological conditions', it is possible that GG healthy subjects do not be addicted or anxious, but would have reduced performance, compared to AA subjects, in attentional control and working memory processing. One hundred and sixty-four healthy young Mexican-Mestizo subjects (100 women and 64, men; mean age: 22.86 years, SD=2.72) participated in this study, solving a task where attentional control and working memory were required. GG subjects, compared to AA subjects showed: (1) a general lower performance in the task (P = 0.02); (2) lower performance only when a high load of information was held in working memory (P = 0.02); and (3) a higher vulnerability to distractors (P = 0.03). Our results suggest that, although the performance of GG subjects was at normal levels, a lower efficiency of the endocannabinoid system, probably due to a lowered expression of CB1R, produced a reduction in the performance of these subjects when attentional control and working memory processing is challenged. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  4. Gene doping in sports.

    Unal, Mehmet; Ozer Unal, Durisehvar

    2004-01-01

    Gene or cell doping is defined by the World Anti-Doping Agency (WADA) as "the non-therapeutic use of genes, genetic elements and/or cells that have the capacity to enhance athletic performance". New research in genetics and genomics will be used not only to diagnose and treat disease, but also to attempt to enhance human performance. In recent years, gene therapy has shown progress and positive results that have highlighted the potential misuse of this technology and the debate of 'gene doping'. Gene therapies developed for the treatment of diseases such as anaemia (the gene for erythropoietin), muscular dystrophy (the gene for insulin-like growth factor-1) and peripheral vascular diseases (the gene for vascular endothelial growth factor) are potential doping methods. With progress in gene technology, many other genes with this potential will be discovered. For this reason, it is important to develop timely legal regulations and to research the field of gene doping in order to develop methods of detection. To protect the health of athletes and to ensure equal competitive conditions, the International Olympic Committee, WADA and International Sports Federations have accepted performance-enhancing substances and methods as being doping, and have forbidden them. Nevertheless, the desire to win causes athletes to misuse these drugs and methods. This paper reviews the current status of gene doping and candidate performance enhancement genes, and also the use of gene therapy in sports medicine and ethics of genetic enhancement. Copyright 2004 Adis Data Information BV

  5. Human Gene Therapy: Genes without Frontiers?

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  6. Tumor targeted gene therapy

    Kang, Joo Hyun

    2006-01-01

    Knowledge of molecular mechanisms governing malignant transformation brings new opportunities for therapeutic intervention against cancer using novel approaches. One of them is gene therapy based on the transfer of genetic material to an organism with the aim of correcting a disease. The application of gene therapy to the cancer treatment had led to the development of new experimental approaches such as suicidal gene therapy, inhibition of oncogenes and restoration of tumor-suppressor genes. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a prodrug into a toxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1-tk) and cytosine deaminase (CD). Especially, physicians and scientists of nuclear medicine field take an interest in suicidal gene therapy because they can monitor the location and magnitude, and duration of expression of HSV1-tk and CD by PET scanner

  7. Essential Bacillus subtilis genes

    Kobayashi, K.; Ehrlich, S.D.; Albertini, A.

    2003-01-01

    To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among approximate to4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were...... predicted to be essential. The vast majority of essential genes were categorized in relatively few domains of cell metabolism, with about half involved in information processing, one-fifth involved in the synthesis of cell envelope and the determination of cell shape and division, and one-tenth related...... to cell energetics. Only 4% of essential genes encode unknown functions. Most essential genes are present throughout a wide range of Bacteria, and almost 70% can also be found in Archaea and Eucarya. However, essential genes related to cell envelope, shape, division, and respiration tend to be lost from...

  8. Radiotechnologies and gene therapy

    Xia Jinsong

    2001-01-01

    Gene therapy is an exciting frontier in medicine today. Radiologist will make an uniquely contribution to these exciting new technologies at every level by choosing sites for targeting therapy, perfecting and establishing routes of delivery, developing imaging strategies to monitor therapy and assess gene expression, developing radiotherapeutic used of gene therapy

  9. Discovering genes underlying QTL

    Vanavichit, Apichart [Kasetsart University, Kamphaengsaen, Nakorn Pathom (Thailand)

    2002-02-01

    A map-based approach has allowed scientists to discover few genes at a time. In addition, the reproductive barrier between cultivated rice and wild relatives has prevented us from utilizing the germ plasm by a map-based approach. Most genetic traits important to agriculture or human diseases are manifested as observable, quantitative phenotypes called Quantitative Trait Loci (QTL). In many instances, the complexity of the phenotype/genotype interaction and the general lack of clearly identifiable gene products render the direct molecular cloning approach ineffective, thus additional strategies like genome mapping are required to identify the QTL in question. Genome mapping requires no prior knowledge of the gene function, but utilizes statistical methods to identify the most likely gene location. To completely characterize genes of interest, the initially mapped region of a gene location will have to be narrowed down to a size that is suitable for cloning and sequencing. Strategies for gene identification within the critical region have to be applied after the sequencing of a potentially large clone or set of clones that contains this gene(s). Tremendous success of positional cloning has been shown for cloning many genes responsible for human diseases, including cystic fibrosis and muscular dystrophy as well as plant disease resistance genes. Genome and QTL mapping, positional cloning: the pre-genomics era, comparative approaches to gene identification, and positional cloning: the genomics era are discussed in the report. (M. Suetake)

  10. Gene therapy: An overview

    Sudip Indu

    2013-01-01

    Full Text Available Gene therapy "the use of genes as medicine" involves the transfer of a therapeutic or working copy of a gene into specific cells of an individual in order to repair a faulty gene copy. The technique may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. The objective of gene therapy is to introduce new genetic material into target cells while causing no damage to the surrounding healthy cells and tissues, hence the treatment related morbidity is decreased. The delivery system includes a vector that delivers a therapeutic gene into the patient′s target cell. Functional proteins are created from the therapeutic gene causing the cell to return to a normal stage. The vectors used in gene therapy can be viral and non-viral. Gene therapy, an emerging field of biomedicine, is still at infancy and much research remains to be done before this approach to the treatment of condition will realize its full potential.

  11. Gene therapy in periodontics.

    Chatterjee, Anirban; Singh, Nidhi; Saluja, Mini

    2013-03-01

    GENES are made of DNA - the code of life. They are made up of two types of base pair from different number of hydrogen bonds AT, GC which can be turned into instruction. Everyone inherits genes from their parents and passes them on in turn to their children. Every person's genes are different, and the changes in sequence determine the inherited differences between each of us. Some changes, usually in a single gene, may cause serious diseases. Gene therapy is 'the use of genes as medicine'. It involves the transfer of a therapeutic or working gene copy into specific cells of an individual in order to repair a faulty gene copy. Thus it may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. It has a promising era in the field of periodontics. Gene therapy has been used as a mode of tissue engineering in periodontics. The tissue engineering approach reconstructs the natural target tissue by combining four elements namely: Scaffold, signaling molecules, cells and blood supply and thus can help in the reconstruction of damaged periodontium including cementum, gingival, periodontal ligament and bone.

  12. The CB1 receptor antagonist AM251 impairs reconsolidation of pavlovian fear memory in the rat basolateral amygdala.

    Ratano, Patrizia; Everitt, Barry J; Milton, Amy L

    2014-10-01

    We have investigated the requirement for signaling at CB1 receptors in the reconsolidation of a previously consolidated auditory fear memory, by infusing the CB1 receptor antagonist AM251, or the FAAH inhibitor URB597, directly into the basolateral amygdala (BLA) in conjunction with memory reactivation. AM251 disrupted memory restabilization, but only when administered after reactivation. URB597 produced a small, transient enhancement of memory restabilization when administered after reactivation. The amnestic effect of AM251 was rescued by coadministration of the GABAA receptor antagonist bicuculline at reactivation, indicating that the disruption of reconsolidation was mediated by altered GABAergic transmission in the BLA. These data show that the endocannabinoid system in the BLA is an important modulator of fear memory reconsolidation and that its effects on memory are mediated by an interaction with the GABAergic system. Thus, targeting the endocannabinoid system may have therapeutic potential to reduce the impact of maladaptive memories in neuropsychiatric disorders such as posttraumatic stress disorder.

  13. Primetime for Learning Genes.

    Keifer, Joyce

    2017-02-11

    Learning genes in mature neurons are uniquely suited to respond rapidly to specific environmental stimuli. Expression of individual learning genes, therefore, requires regulatory mechanisms that have the flexibility to respond with transcriptional activation or repression to select appropriate physiological and behavioral responses. Among the mechanisms that equip genes to respond adaptively are bivalent domains. These are specific histone modifications localized to gene promoters that are characteristic of both gene activation and repression, and have been studied primarily for developmental genes in embryonic stem cells. In this review, studies of the epigenetic regulation of learning genes in neurons, particularly the brain-derived neurotrophic factor gene ( BDNF ), by methylation/demethylation and chromatin modifications in the context of learning and memory will be highlighted. Because of the unique function of learning genes in the mature brain, it is proposed that bivalent domains are a characteristic feature of the chromatin landscape surrounding their promoters. This allows them to be "poised" for rapid response to activate or repress gene expression depending on environmental stimuli.

  14. Genes and Social Behavior

    Robinson, Gene E.; Fernald, Russell D.; Clayton, David F.

    2008-01-01

    What specific genes and regulatory sequences contribute to the organization and functioning of brain circuits that support social behavior? How does social experience interact with information in the genome to modulate these brain circuits? Here we address these questions by highlighting progress that has been made in identifying and understanding two key “vectors of influence” that link genes, brain, and social behavior: 1) social information alters gene readout in the brain to influence beh...

  15. History of gene therapy.

    Wirth, Thomas; Parker, Nigel; Ylä-Herttuala, Seppo

    2013-08-10

    Two decades after the initial gene therapy trials and more than 1700 approved clinical trials worldwide we not only have gained much new information and knowledge regarding gene therapy in general, but also learned to understand the concern that has persisted in society. Despite the setbacks gene therapy has faced, success stories have increasingly emerged. Examples for these are the positive recommendation for a gene therapy product (Glybera) by the EMA for approval in the European Union and the positive trials for the treatment of ADA deficiency, SCID-X1 and adrenoleukodystrophy. Nevertheless, our knowledge continues to grow and during the course of time more safety data has become available that helps us to develop better gene therapy approaches. Also, with the increased understanding of molecular medicine, we have been able to develop more specific and efficient gene transfer vectors which are now producing clinical results. In this review, we will take a historical view and highlight some of the milestones that had an important impact on the development of gene therapy. We will also discuss briefly the safety and ethical aspects of gene therapy and address some concerns that have been connected with gene therapy as an important therapeutic modality. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Refining discordant gene trees.

    Górecki, Pawel; Eulenstein, Oliver

    2014-01-01

    Evolutionary studies are complicated by discordance between gene trees and the species tree in which they evolved. Dealing with discordant trees often relies on comparison costs between gene and species trees, including the well-established Robinson-Foulds, gene duplication, and deep coalescence costs. While these costs have provided credible results for binary rooted gene trees, corresponding cost definitions for non-binary unrooted gene trees, which are frequently occurring in practice, are challenged by biological realism. We propose a natural extension of the well-established costs for comparing unrooted and non-binary gene trees with rooted binary species trees using a binary refinement model. For the duplication cost we describe an efficient algorithm that is based on a linear time reduction and also computes an optimal rooted binary refinement of the given gene tree. Finally, we show that similar reductions lead to solutions for computing the deep coalescence and the Robinson-Foulds costs. Our binary refinement of Robinson-Foulds, gene duplication, and deep coalescence costs for unrooted and non-binary gene trees together with the linear time reductions provided here for computing these costs significantly extends the range of trees that can be incorporated into approaches dealing with discordance.

  17. Chromatin loops, gene positioning, and gene expression

    Holwerda, S.; de Laat, W.

    2012-01-01

    Technological developments and intense research over the last years have led to a better understanding of the 3D structure of the genome and its influence on genome function inside the cell nucleus. We will summarize topological studies performed on four model gene loci: the alpha- and beta-globin

  18. Your Genes, Your Choices

    Table of Contents Your Genes, Your Choices describes the Human Genome Project, the science behind it, and the ethical, legal, and social issues that are ... Nothing could be further from the truth. Your Genes, Your Choices points out how the progress of ...

  19. DNA repair genes

    Morimyo, Mitsuoki

    1995-01-01

    Fission yeast S. pombe is assumed to be a good model for cloning of human DNA repair genes, because human gene is normally expressed in S. pombe and has a very similar protein sequence to yeast protein. We have tried to elucidate the DNA repair mechanisms of S. pombe as a model system for those of mammals. (J.P.N.)

  20. Antisense gene silencing

    Nielsen, Troels T; Nielsen, Jørgen E

    2013-01-01

    Since the first reports that double-stranded RNAs can efficiently silence gene expression in C. elegans, the technology of RNA interference (RNAi) has been intensively exploited as an experimental tool to study gene function. With the subsequent discovery that RNAi could also be applied...

  1. Radionuclide reporter gene imaging

    Min, Jung Joon

    2004-01-01

    Recent progress in the development of non-invasive imaging technologies continues to strengthen the role of molecular imaging biological research. These tools have been validated recently in variety of research models, and have been shown to provide continuous quantitative monitoring of the location(s), magnitude, and time-variation of gene expression. This article reviews the principles, characteristics, categories and the use of radionuclide reporter gene imaging technologies as they have been used in imaging cell trafficking, imaging gene therapy, imaging endogenous gene expression and imaging molecular interactions. The studies published to date demonstrate that reporter gene imaging technologies will help to accelerate model validation as well as allow for clinical monitoring of human diseases

  2. Radionuclide reporter gene imaging

    Min, Jung Joon [School of Medicine, Chonnam National Univ., Gwangju (Korea, Republic of)

    2004-04-01

    Recent progress in the development of non-invasive imaging technologies continues to strengthen the role of molecular imaging biological research. These tools have been validated recently in variety of research models, and have been shown to provide continuous quantitative monitoring of the location(s), magnitude, and time-variation of gene expression. This article reviews the principles, characteristics, categories and the use of radionuclide reporter gene imaging technologies as they have been used in imaging cell trafficking, imaging gene therapy, imaging endogenous gene expression and imaging molecular interactions. The studies published to date demonstrate that reporter gene imaging technologies will help to accelerate model validation as well as allow for clinical monitoring of human diseases.

  3. Dysfunction in fatty acid amide hydrolase is associated with depressive-like behavior in Wistar Kyoto rats.

    Vinod, K Yaragudri; Xie, Shan; Psychoyos, Delphine; Hungund, Basalingappa L; Cooper, Thomas B; Tejani-Butt, Shanaz M

    2012-01-01

    While the etiology of depression is not clearly understood at the present time, this mental disorder is thought be a complex and multifactorial trait with important genetic and environmental contributing factors. The role of the endocannabinoid (eCB) system in depressive behavior was examined in Wistar Kyoto (WKY) rat strain, a genetic model of depression. Our findings revealed selective abnormalities in the eCB system in the brains of WKY rats compared to Wistar (WIS) rats. Immunoblot analysis indicated significantly higher levels of fatty acid amide hydrolase (FAAH) in frontal cortex and hippocampus of WKY rats with no alteration in the level of N-arachidonyl phosphatidyl ethanolamine specific phospholipase-D (NAPE-PLD). Significantly higher levels of CB1 receptor-mediated G-protein coupling and lower levels of anandamide (AEA) were found in frontal cortex and hippocampus of WKY rats. While the levels of brain derived neurotropic factor (BDNF) were significantly lower in frontal cortex and hippocampus of WKY rats compared to WIS rats, pharmacological inhibition of FAAH elevated BDNF levels in WKY rats. Inhibition of FAAH enzyme also significantly increased sucrose consumption and decreased immobility in the forced swim test in WKY rats. These findings suggest a critical role for the eCB system and BDNF in the genetic predisposition to depressive-like behavior in WKY rats and point to the potential therapeutic utility of eCB enhancing agents in depressive disorder.

  4. Dysfunction in fatty acid amide hydrolase is associated with depressive-like behavior in Wistar Kyoto rats.

    K Yaragudri Vinod

    Full Text Available BACKGROUND: While the etiology of depression is not clearly understood at the present time, this mental disorder is thought be a complex and multifactorial trait with important genetic and environmental contributing factors. METHODOLOGY/PRINCIPAL FINDINGS: The role of the endocannabinoid (eCB system in depressive behavior was examined in Wistar Kyoto (WKY rat strain, a genetic model of depression. Our findings revealed selective abnormalities in the eCB system in the brains of WKY rats compared to Wistar (WIS rats. Immunoblot analysis indicated significantly higher levels of fatty acid amide hydrolase (FAAH in frontal cortex and hippocampus of WKY rats with no alteration in the level of N-arachidonyl phosphatidyl ethanolamine specific phospholipase-D (NAPE-PLD. Significantly higher levels of CB1 receptor-mediated G-protein coupling and lower levels of anandamide (AEA were found in frontal cortex and hippocampus of WKY rats. While the levels of brain derived neurotropic factor (BDNF were significantly lower in frontal cortex and hippocampus of WKY rats compared to WIS rats, pharmacological inhibition of FAAH elevated BDNF levels in WKY rats. Inhibition of FAAH enzyme also significantly increased sucrose consumption and decreased immobility in the forced swim test in WKY rats. CONCLUSIONS/SIGNIFICANCE: These findings suggest a critical role for the eCB system and BDNF in the genetic predisposition to depressive-like behavior in WKY rats and point to the potential therapeutic utility of eCB enhancing agents in depressive disorder.

  5. Gene amplification in carcinogenesis

    Lucimari Bizari

    2006-01-01

    Full Text Available Gene amplification increases the number of genes in a genome and can give rise to karyotype abnormalities called double minutes (DM and homogeneously staining regions (HSR, both of which have been widely observed in human tumors but are also known to play a major role during embryonic development due to the fact that they are responsible for the programmed increase of gene expression. The etiology of gene amplification during carcinogenesis is not yet completely understood but can be considered a result of genetic instability. Gene amplification leads to an increase in protein expression and provides a selective advantage during cell growth. Oncogenes such as CCND1, c-MET, c-MYC, ERBB2, EGFR and MDM2 are amplified in human tumors and can be associated with increased expression of their respective proteins or not. In general, gene amplification is associated with more aggressive tumors, metastases, resistance to chemotherapy and a decrease in the period during which the patient stays free of the disease. This review discusses the major role of gene amplification in the progression of carcinomas, formation of genetic markers and as possible therapeutic targets for the development of drugs for the treatment of some types of tumors.

  6. Methanogenesis and methane genes

    Reeve, J.N.; Shref, B.A.

    1991-01-01

    An overview of the pathways leading to methane biosynthesis is presented. The steps investigated to date by gene cloning and DNA sequencing procedures are identified and discussed. The primary structures of component C of methyl coenzyme M reductase encoded by mcr operons in different methanogens are compared. Experiments to detect the primary structure of the genes encoding F420 reducing hydrogenase (frhABG) and methyl hydrogen reducing hydrogenase (mvhDGA) in methanobacterium thermoautotrophicum strain H are compared with each other and with eubacterial hydrogenase encoding genes. A biotechnological use for hydrogenases from hypermorphillic archaebacteria is suggested. (author)

  7. Inhibition of fatty acid binding proteins elevates brain anandamide levels and produces analgesia.

    Martin Kaczocha

    Full Text Available The endocannabinoid anandamide (AEA is an antinociceptive lipid that is inactivated through cellular uptake and subsequent catabolism by fatty acid amide hydrolase (FAAH. Fatty acid binding proteins (FABPs are intracellular carriers that deliver AEA and related N-acylethanolamines (NAEs to FAAH for hydrolysis. The mammalian brain expresses three FABP subtypes: FABP3, FABP5, and FABP7. Recent work from our group has revealed that pharmacological inhibition of FABPs reduces inflammatory pain in mice. The goal of the current work was to explore the effects of FABP inhibition upon nociception in diverse models of pain. We developed inhibitors with differential affinities for FABPs to elucidate the subtype(s that contributes to the antinociceptive effects of FABP inhibitors. Inhibition of FABPs reduced nociception associated with inflammatory, visceral, and neuropathic pain. The antinociceptive effects of FABP inhibitors mirrored their affinities for FABP5, while binding to FABP3 and FABP7 was not a predictor of in vivo efficacy. The antinociceptive effects of FABP inhibitors were mediated by cannabinoid receptor 1 (CB1 and peroxisome proliferator-activated receptor alpha (PPARα and FABP inhibition elevated brain levels of AEA, providing the first direct evidence that FABPs regulate brain endocannabinoid tone. These results highlight FABPs as novel targets for the development of analgesic and anti-inflammatory therapeutics.

  8. Gene Expression Omnibus (GEO)

    U.S. Department of Health & Human Services — Gene Expression Omnibus is a public functional genomics data repository supporting MIAME-compliant submissions of array- and sequence-based data. Tools are provided...

  9. Finding Genes for Schizophrenia

    Åberg, Karolina

    2005-01-01

    Schizophrenia is one of our most common psychiatric diseases. It severely affects all aspects of psychological functions and results in loss of contact with reality. No cure exists and the treatments available today produce only partial relief for disease symptoms. The aim of this work is to better understand the etiology of schizophrenia by identification of candidate genes and gene pathways involved in the development of the disease. In a preliminarily study, the effects of medication and g...

  10. Epigenetics: beyond genes

    Fossey, A

    2009-06-01

    Full Text Available in forestry breeding. Keywords Gene regulation; chromatin; histone code hyporthesis; RNA silencing; post transcriptional gene silencing; forestry. Introduction to epigenetic phenomena Most living organisms share a vast amount of genetic information... (Rapp and Wendel, 2005). Epigenetic phenomena pervade all aspects of cell proliferation and plant development and are often in conflict with Mendelian models of genetics (Grant-Downton and Dickinson, 2005). A key element in many epigenetic effects...

  11. Gene-Gene and Gene-Environment Interactions in the Etiology of Breast Cancer

    Adegoke, Olufemi

    2003-01-01

    The objective of this CDA is to evaluate the gene-gene and gene-environment interactions in the etiology of breast cancer in two ongoing case-control studies, the Shanghai Breast Cancer Study (SBCS...

  12. Radiosensitivity and genes

    Qiyue, Hu; Mingyue, Lun [Suzhou Medical Coll., JS (China)

    1995-07-01

    Reported effects of some oncogenes, tumour suppressor genes and DNA repair genes on sensitivity of cells to ionizing radiation are reviewed. The role of oncogenes in cellular response to irradiation is discussed, especially the extensively studied oncogenes such as the ras gene family. For tumour suppressor genes, mainly the p53, which is increasingly implicated as a gene affecting radiosensitivity, is reviewed. It is considered that there is a cell cycle checkpoint determinant which is postulated to be able to arrest the irradiated cells in G{sub 1} phase to allow them to repair damage before they undergo DNA synthesis. So far there are six DNA repair genes which have been cloned in mammalian cells, but only one, XRCC1, appears to be involved in repair of human X-ray damage. XRCC1 can correct high sisterchromatid exchange levels when transferred into EM{sub 9} cells, but its expression seems to have no correlation with radiosensitivity of human neck and head tumour cells. Radiosensitivity is an intricate issue which may involve many factors. A scheme of cellular reactions after exposure to irradiation is proposed to indicate a possible sequence of events initiated by ionizing radiation.

  13. Radiosensitivity and genes

    Hu Qiyue; Lun Mingyue

    1995-07-01

    Reported effects of some oncogenes, tumour suppressor genes and DNA repair genes on sensitivity of cells to ionizing radiation are reviewed. The role of oncogenes in cellular response to irradiation is discussed, especially the extensively studied oncogenes such as the ras gene family. For tumour suppressor genes, mainly the p53, which is increasingly implicated as a gene affecting radiosensitivity, is reviewed. It is considered that there is a cell cycle checkpoint determinant which is postulated to be able to arrest the irradiated cells in G 1 phase to allow them to repair damage before they undergo DNA synthesis. So far there are six DNA repair genes which have been cloned in mammalian cells, but only one, XRCC1, appears to be involved in repair of human X-ray damage. XRCC1 can correct high sisterchromatid exchange levels when transferred into EM 9 cells, but its expression seems to have no correlation with radiosensitivity of human neck and head tumour cells. Radiosensitivity is an intricate issue which may involve many factors. A scheme of cellular reactions after exposure to irradiation is proposed to indicate a possible sequence of events initiated by ionizing radiation

  14. Evidence for homosexuality gene

    Pool, R.

    1993-07-16

    A genetic analysis of 40 pairs of homosexual brothers has uncovered a region on the X chromosome that appears to contain a gene or genes for homosexuality. When analyzing the pedigrees of homosexual males, the researcheres found evidence that the trait has a higher likelihood of being passed through maternal genes. This led them to search the X chromosome for genes predisposing to homosexuality. The researchers examined the X chromosomes of pairs of homosexual brothers for regions of DNA that most or all had in common. Of the 40 sets of brothers, 33 shared a set of five markers in the q28 region of the long arm of the X chromosome. The linkage has a LOD score of 4.0, which translates into a 99.5% certainty that there is a gene or genes in this area that predispose males to homosexuality. The chief researcher warns, however, that this one site cannot explain all instances of homosexuality, since there were some cases where the trait seemed to be passed paternally. And even among those brothers where there was no evidence that the trait was passed paternally, seven sets of brothers did not share the Xq28 markers. It seems likely that homosexuality arises from a variety of causes.

  15. Molecular Understanding of the Activation of CB1 and Blockade of TRPV1 Receptors: Implications for Novel Treatment Strategies in Osteoarthritis

    Jakub Mlost

    2018-01-01

    Full Text Available Osteoarthritis (OA is a joint disease in which cartilage degenerates as a result of mechanical and biochemical changes. The main OA symptom is chronic pain involving both peripheral and central mechanisms of nociceptive processing. Our previous studies have implicated the benefits of dual- over single-acting compounds interacting with the endocannabinoid system (ECS in OA treatment. In the present study, we focused on the specific molecular alterations associated with pharmacological treatment. OA was induced in Wistar rats by intra-articular injection of 3 mg of monoiodoacetate (MIA. Single target compounds (URB597, an FAAH inhibitor, and SB366791, a TRPV1 antagonist and a dual-acting compound OMDM198 (FAAH inhibitor/TRPV1 antagonist were used in the present study. At day 21 post-MIA injection, rats were sacrificed 1 h after i.p. treatment, and changes in mRNA expression were evaluated in the lumbar spinal cord by RT-qPCR. Following MIA administration, we observed 2-4-fold increase in mRNA expression of targeted receptors (Cnr1, Cnr2, and Trpv1, endocannabinoid degradation enzymes (Faah, Ptgs2, and Alox12, and TRPV1 sensitizing kinases (Mapk3, Mapk14, Prkcg, and Prkaca. OMDM198 treatment reversed some of the MIA effects on the spinal cord towards intact levels (Alox12, Mapk14, and Prkcg. Apparent regulation of ECS and TRPV1 in response to pharmacological intervention is a strong justification for novel ECS-based multi-target drug treatment in OA.

  16. The Mycoplasma hominis vaa gene displays a mosaic gene structure

    Boesen, Thomas; Emmersen, Jeppe M. G.; Jensen, Lise T.

    1998-01-01

    Mycoplasma hominis contains a variable adherence-associated (vaa) gene. To classify variants of the vaa genes, we examined 42 M. hominis isolated by PCR, DNA sequencing and immunoblotting. This uncovered the existence of five gene categories. Comparison of the gene types revealed a modular...

  17. FunGene: the functional gene pipeline and repository.

    Fish, Jordan A; Chai, Benli; Wang, Qiong; Sun, Yanni; Brown, C Titus; Tiedje, James M; Cole, James R

    2013-01-01

    Ribosomal RNA genes have become the standard molecular markers for microbial community analysis for good reasons, including universal occurrence in cellular organisms, availability of large databases, and ease of rRNA gene region amplification and analysis. As markers, however, rRNA genes have some significant limitations. The rRNA genes are often present in multiple copies, unlike most protein-coding genes. The slow rate of change in rRNA genes means that multiple species sometimes share identical 16S rRNA gene sequences, while many more species share identical sequences in the short 16S rRNA regions commonly analyzed. In addition, the genes involved in many important processes are not distributed in a phylogenetically coherent manner, potentially due to gene loss or horizontal gene transfer. While rRNA genes remain the most commonly used markers, key genes in ecologically important pathways, e.g., those involved in carbon and nitrogen cycling, can provide important insights into community composition and function not obtainable through rRNA analysis. However, working with ecofunctional gene data requires some tools beyond those required for rRNA analysis. To address this, our Functional Gene Pipeline and Repository (FunGene; http://fungene.cme.msu.edu/) offers databases of many common ecofunctional genes and proteins, as well as integrated tools that allow researchers to browse these collections and choose subsets for further analysis, build phylogenetic trees, test primers and probes for coverage, and download aligned sequences. Additional FunGene tools are specialized to process coding gene amplicon data. For example, FrameBot produces frameshift-corrected protein and DNA sequences from raw reads while finding the most closely related protein reference sequence. These tools can help provide better insight into microbial communities by directly studying key genes involved in important ecological processes.

  18. FunGene: the Functional Gene Pipeline and Repository

    Jordan A. Fish

    2013-10-01

    Full Text Available Ribosomal RNA genes have become the standard molecular markers for microbial community analysis for good reasons, including universal occurrence in cellular organisms, availability of large databases, and ease of rRNA gene region amplification and analysis. As markers, however, rRNA genes have some significant limitations. The rRNA genes are often present in multiple copies, unlike most protein-coding genes. The slow rate of change in rRNA genes means that multiple species sometimes share identical 16S rRNA gene sequences, while many more species share identical sequences in the short 16S rRNA regions commonly analyzed. In addition, the genes involved in many important processes are not distributed in a phylogenetically coherent manner, potentially due to gene loss or horizontal gene transfer.While rRNA genes remain the most commonly used markers, key genes in ecologically important pathways, e.g., those involved in carbon and nitrogen cycling, can provide important insights into community composition and function not obtainable through rRNA analysis. However, working with ecofunctional gene data requires some tools beyond those required for rRNA analysis. To address this, our Functional Gene Pipeline and Repository (FunGene; http://fungene.cme.msu.edu/ offers databases of many common ecofunctional genes and proteins, as well as integrated tools that allow researchers to browse these collections and choose subsets for further analysis, build phylogenetic trees, test primers and probes for coverage, and download aligned sequences. Additional FunGene tools are specialized to process coding gene amplicon data. For example, FrameBot produces frameshift-corrected protein and DNA sequences from raw reads while finding the most closely related protein reference sequence. These tools can help provide better insight into microbial communities by directly studying key genes involved in important ecological processes.

  19. Gene therapy prospects--intranasal delivery of therapeutic genes.

    Podolska, Karolina; Stachurska, Anna; Hajdukiewicz, Karolina; Małecki, Maciej

    2012-01-01

    Gene therapy is recognized to be a novel method for the treatment of various disorders. Gene therapy strategies involve gene manipulation on broad biological processes responsible for the spreading of diseases. Cancer, monogenic diseases, vascular and infectious diseases are the main targets of gene therapy. In order to obtain valuable experimental and clinical results, sufficient gene transfer methods are required. Therapeutic genes can be administered into target tissues via gene carriers commonly defined as vectors. The retroviral, adenoviral and adeno-associated virus based vectors are most frequently used in the clinic. So far, gene preparations may be administered directly into target organs or by intravenous, intramuscular, intratumor or intranasal injections. It is common knowledge that the number of gene therapy clinical trials has rapidly increased. However, some limitations such as transfection efficiency and stable and long-term gene expression are still not resolved. Consequently, great effort is focused on the evaluation of new strategies of gene delivery. There are many expectations associated with intranasal delivery of gene preparations for the treatment of diseases. Intranasal delivery of therapeutic genes is regarded as one of the most promising forms of pulmonary gene therapy research. Gene therapy based on inhalation of gene preparations offers an alternative way for the treatment of patients suffering from such lung diseases as cystic fibrosis, alpha-1-antitrypsin defect, or cancer. Experimental and first clinical trials based on plasmid vectors or recombinant viruses have revealed that gene preparations can effectively deliver therapeutic or marker genes to the cells of the respiratory tract. The noninvasive intranasal delivery of gene preparations or conventional drugs seems to be very encouraging, although basic scientific research still has to continue.

  20. Radionuclide reporter gene imaging for cardiac gene therapy

    Inubushi, Masayuki; Tamaki, Nagara

    2007-01-01

    In the field of cardiac gene therapy, angiogenic gene therapy has been most extensively investigated. The first clinical trial of cardiac angiogenic gene therapy was reported in 1998, and at the peak, more than 20 clinical trial protocols were under evaluation. However, most trials have ceased owing to the lack of decisive proof of therapeutic effects and the potential risks of viral vectors. In order to further advance cardiac angiogenic gene therapy, remaining open issues need to be resolved: there needs to be improvement of gene transfer methods, regulation of gene expression, development of much safer vectors and optimisation of therapeutic genes. For these purposes, imaging of gene expression in living organisms is of great importance. In radionuclide reporter gene imaging, ''reporter genes'' transferred into cell nuclei encode for a protein that retains a complementary ''reporter probe'' of a positron or single-photon emitter; thus expression of the reporter genes can be imaged with positron emission tomography or single-photon emission computed tomography. Accordingly, in the setting of gene therapy, the location, magnitude and duration of the therapeutic gene co-expression with the reporter genes can be monitored non-invasively. In the near future, gene therapy may evolve into combination therapy with stem/progenitor cell transplantation, so-called cell-based gene therapy or gene-modified cell therapy. Radionuclide reporter gene imaging is now expected to contribute in providing evidence on the usefulness of this novel therapeutic approach, as well as in investigating the molecular mechanisms underlying neovascularisation and safety issues relevant to further progress in conventional gene therapy. (orig.)

  1. GoGene: gene annotation in the fast lane.

    Plake, Conrad; Royer, Loic; Winnenburg, Rainer; Hakenberg, Jörg; Schroeder, Michael

    2009-07-01

    High-throughput screens such as microarrays and RNAi screens produce huge amounts of data. They typically result in hundreds of genes, which are often further explored and clustered via enriched GeneOntology terms. The strength of such analyses is that they build on high-quality manual annotations provided with the GeneOntology. However, the weakness is that annotations are restricted to process, function and location and that they do not cover all known genes in model organisms. GoGene addresses this weakness by complementing high-quality manual annotation with high-throughput text mining extracting co-occurrences of genes and ontology terms from literature. GoGene contains over 4,000,000 associations between genes and gene-related terms for 10 model organisms extracted from more than 18,000,000 PubMed entries. It does not cover only process, function and location of genes, but also biomedical categories such as diseases, compounds, techniques and mutations. By bringing it all together, GoGene provides the most recent and most complete facts about genes and can rank them according to novelty and importance. GoGene accepts keywords, gene lists, gene sequences and protein sequences as input and supports search for genes in PubMed, EntrezGene and via BLAST. Since all associations of genes to terms are supported by evidence in the literature, the results are transparent and can be verified by the user. GoGene is available at http://gopubmed.org/gogene.

  2. Full Fatty Acid Amide Hydrolase Inhibition Combined with Partial Monoacylglycerol Lipase Inhibition: Augmented and Sustained Antinociceptive Effects with Reduced Cannabimimetic Side Effects in Mice.

    Ghosh, Sudeshna; Kinsey, Steven G; Liu, Qing-Song; Hruba, Lenka; McMahon, Lance R; Grim, Travis W; Merritt, Christina R; Wise, Laura E; Abdullah, Rehab A; Selley, Dana E; Sim-Selley, Laura J; Cravatt, Benjamin F; Lichtman, Aron H

    2015-08-01

    Inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), the primary hydrolytic enzymes for the respective endocannabinoids N-arachidonoylethanolamine (AEA) and 2-arachidonylglycerol (2-AG), produces antinociception but with minimal cannabimimetic side effects. Although selective inhibitors of either enzyme often show partial efficacy in various nociceptive models, their combined blockade elicits augmented antinociceptive effects, but side effects emerge. Moreover, complete and prolonged MAGL blockade leads to cannabinoid receptor type 1 (CB1) receptor functional tolerance, which represents another challenge in this potential therapeutic strategy. Therefore, the present study tested whether full FAAH inhibition combined with partial MAGL inhibition would produce sustained antinociceptive effects with minimal cannabimimetic side effects. Accordingly, we tested a high dose of the FAAH inhibitor PF-3845 (N-​3-​pyridinyl-​4-​[[3-​[[5-​(trifluoromethyl)-​2-​pyridinyl]oxy]phenyl]methyl]-​1-​piperidinecarboxamide; 10 mg/kg) given in combination with a low dose of the MAGL inhibitor JZL184 [4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate] (4 mg/kg) in mouse models of inflammatory and neuropathic pain. This combination of inhibitors elicited profound increases in brain AEA levels (>10-fold) but only 2- to 3-fold increases in brain 2-AG levels. This combination produced significantly greater antinociceptive effects than single enzyme inhibition and did not elicit common cannabimimetic effects (e.g., catalepsy, hypomotility, hypothermia, and substitution for Δ(9)-tetrahydrocannabinol in the drug-discrimination assay), although these side effects emerged with high-dose JZL184 (i.e., 100 mg/kg). Finally, repeated administration of this combination did not lead to tolerance to its antiallodynic actions in the carrageenan assay or CB1 receptor functional tolerance. Thus, full FAAH inhibition

  3. Genes and inheritance.

    Middelton, L A; Peters, K F

    2001-10-01

    The information gained from the Human Genome Project and related genetic research will undoubtedly create significant changes in healthcare practice. It is becoming increasingly clear that nurses in all areas of clinical practice will require a fundamental understanding of basic genetics. This article provides the oncology nurse with an overview of basic genetic concepts, including inheritance patterns of single gene conditions, pedigree construction, chromosome aberrations, and the multifactorial basis underlying the common diseases of adulthood. Normal gene structure and function are introduced and the biochemistry of genetic errors is described.

  4. Neighboring Genes Show Correlated Evolution in Gene Expression

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  5. Norrie disease gene is distinct from the monoamine oxidase genes

    Sims, Katherine B.; Ozelius, Laurie; Corey, Timothy; Rinehart, William B.; Liberfarb, Ruth; Haines, Jonathan; Chen, Wei Jane; Norio, Reijo; Sankila, Eeva; de la Chapelle, Albert; Murphy, Dennis L.; Gusella, James; Breakefield, Xandra O.

    1989-01-01

    The genes for MAO-A and MAO-B appear to be very close to the Norrie disease gene, on the basis of loss and /or disruption of the MAO genes and activities in atypical Norrie disease patients deleted for the DXS7 locus; linkage among the MAO genes, the Norrie disease gene, and the DXS7 locus; and mapping of all these loci to the chromosomal region Xp11. The present study provides evidence that the MAO genes are not disrupted in “classic” Norrie disease patients. Genomic DNA from these “nondelet...

  6. Hidden genes in birds

    Hron, Tomáš; Pajer, Petr; Pačes, Jan; Bartůněk, Petr; Elleder, Daniel

    2015-01-01

    Roč. 16, August 18 (2015) ISSN 1465-6906 R&D Projects: GA MŠk(CZ) LK11215; GA MŠk LO1419 Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:68378050 Keywords : REPETITIVE SEQUENCES * G/C stretches * avian genes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 11.313, year: 2015

  7. Rhabdovirus accessory genes.

    Walker, Peter J; Dietzgen, Ralf G; Joubert, D Albert; Blasdell, Kim R

    2011-12-01

    The Rhabdoviridae is one of the most ecologically diverse families of RNA viruses with members infecting a wide range of organisms including placental mammals, marsupials, birds, reptiles, fish, insects and plants. The availability of complete nucleotide sequences for an increasing number of rhabdoviruses has revealed that their ecological diversity is reflected in the diversity and complexity of their genomes. The five canonical rhabdovirus structural protein genes (N, P, M, G and L) that are shared by all rhabdoviruses are overprinted, overlapped and interspersed with a multitude of novel and diverse accessory genes. Although not essential for replication in cell culture, several of these genes have been shown to have roles associated with pathogenesis and apoptosis in animals, and cell-to-cell movement in plants. Others appear to be secreted or have the characteristics of membrane-anchored glycoproteins or viroporins. However, most encode proteins of unknown function that are unrelated to any other known proteins. Understanding the roles of these accessory genes and the strategies by which rhabdoviruses use them to engage, divert and re-direct cellular processes will not only present opportunities to develop new anti-viral therapies but may also reveal aspects of cellar function that have broader significance in biology, agriculture and medicine. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  8. Targeting fumonisin biosynthetic genes

    The fungus Fusarium is an agricultural problem because it can cause disease on most crop plants and can contaminate crops with mycotoxins. There is considerable variation in the presence/absence and genomic location of gene clusters responsible for synthesis of mycotoxins and other secondary metabol...

  9. Radio-induced genes

    Rigaud, O.; Kazmaier, M.

    2000-01-01

    The monitoring system of the DNA integrity of an irradiated cell does not satisfy oneself to recruit the enzymes allowing the repair of detected damages. It sends an alarm signal whom transmission leads to the activation of specific genes in charge of stopping the cell cycle, the time to make the repair works, or to lead to the elimination of a too much damaged cell. Among the numerous genes participating to the monitoring of cell response to irradiation, the target genes of the mammalian P53 protein are particularly studied. Caretaker of the genome, this protein play a central part in the cell response to ionizing radiations. this response is less studied among plants. A way to tackle it is to be interested in the radioinduced genes identification in the vegetal cell, while taking advantage of knowledge got in the animal field. The knowledge of the complete genome of the arabette (arabidopsis thaliana), the model plant and the arising of new techniques allow to lead this research at a previously unknown rhythm in vegetal biology. (N.C.)

  10. The Gene Guessing Game

    Dunham, Ian

    2000-01-01

    A recent flurry of publications and media attention has revived interest in the question of how many genes exist in the human genome. Here, I review the estimates and use genomic sequence data from human chromosomes 21 and 22 to establish my own prediction.

  11. Targeting trichothecene biosynthetic genes

    Wei, Songhong; Lee, van der Theo; Verstappen, Els; Gent, van Marga; Waalwijk, Cees

    2017-01-01

    Biosynthesis of trichothecenes requires the involvement of at least 15 genes, most of which have been targeted for PCR. Qualitative PCRs are used to assign chemotypes to individual isolates, e.g., the capacity to produce type A and/or type B trichothecenes. Many regions in the core cluster

  12. Silence of the Genes

    Srimath

    a gene in the opposite orientation in a cultured plant cell line and observed that the ..... started emerging in early 1990s from the work carried out by the. It is believed that ... cause human diseases such as cervical cancer, hepatitis, measles.

  13. Silence of the Genes

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 4. Silence of the Genes - 2006 Nobel Prize in Physiology or Medicine. Utpal Nath Saumitra Das. General Article Volume 12 Issue 4 April 2007 pp 6-18. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Suicide genes or p53 gene and p53 target genes as targets for cancer gene therapy by ionizing radiation

    Liu Bing; Chinese Academy of Sciences, Beijing; Zhang Hong

    2005-01-01

    Radiotherapy has some disadvantages due to the severe side-effect on the normal tissues at a curative dose of ionizing radiation (IR). Similarly, as a new developing approach, gene therapy also has some disadvantages, such as lack of specificity for tumors, limited expression of therapeutic gene, potential biological risk. To certain extent, above problems would be solved by the suicide genes or p53 gene and its target genes therapies targeted by ionizing radiation. This strategy not only makes up the disadvantage from radiotherapy or gene therapy alone, but also promotes success rate on the base of lower dose. By present, there have been several vectors measuring up to be reaching clinical trials. This review focused on the development of the cancer gene therapy through suicide genes or p53 and its target genes mediated by IR. (authors)

  15. Genes2FANs: connecting genes through functional association networks

    2012-01-01

    Background Protein-protein, cell signaling, metabolic, and transcriptional interaction networks are useful for identifying connections between lists of experimentally identified genes/proteins. However, besides physical or co-expression interactions there are many ways in which pairs of genes, or their protein products, can be associated. By systematically incorporating knowledge on shared properties of genes from diverse sources to build functional association networks (FANs), researchers may be able to identify additional functional interactions between groups of genes that are not readily apparent. Results Genes2FANs is a web based tool and a database that utilizes 14 carefully constructed FANs and a large-scale protein-protein interaction (PPI) network to build subnetworks that connect lists of human and mouse genes. The FANs are created from mammalian gene set libraries where mouse genes are converted to their human orthologs. The tool takes as input a list of human or mouse Entrez gene symbols to produce a subnetwork and a ranked list of intermediate genes that are used to connect the query input list. In addition, users can enter any PubMed search term and then the system automatically converts the returned results to gene lists using GeneRIF. This gene list is then used as input to generate a subnetwork from the user’s PubMed query. As a case study, we applied Genes2FANs to connect disease genes from 90 well-studied disorders. We find an inverse correlation between the counts of links connecting disease genes through PPI and links connecting diseases genes through FANs, separating diseases into two categories. Conclusions Genes2FANs is a useful tool for interpreting the relationships between gene/protein lists in the context of their various functions and networks. Combining functional association interactions with physical PPIs can be useful for revealing new biology and help form hypotheses for further experimentation. Our finding that disease genes in

  16. Industrial scale gene synthesis.

    Notka, Frank; Liss, Michael; Wagner, Ralf

    2011-01-01

    The most recent developments in the area of deep DNA sequencing and downstream quantitative and functional analysis are rapidly adding a new dimension to understanding biochemical pathways and metabolic interdependencies. These increasing insights pave the way to designing new strategies that address public needs, including environmental applications and therapeutic inventions, or novel cell factories for sustainable and reconcilable energy or chemicals sources. Adding yet another level is building upon nonnaturally occurring networks and pathways. Recent developments in synthetic biology have created economic and reliable options for designing and synthesizing genes, operons, and eventually complete genomes. Meanwhile, high-throughput design and synthesis of extremely comprehensive DNA sequences have evolved into an enabling technology already indispensable in various life science sectors today. Here, we describe the industrial perspective of modern gene synthesis and its relationship with synthetic biology. Gene synthesis contributed significantly to the emergence of synthetic biology by not only providing the genetic material in high quality and quantity but also enabling its assembly, according to engineering design principles, in a standardized format. Synthetic biology on the other hand, added the need for assembling complex circuits and large complexes, thus fostering the development of appropriate methods and expanding the scope of applications. Synthetic biology has also stimulated interdisciplinary collaboration as well as integration of the broader public by addressing socioeconomic, philosophical, ethical, political, and legal opportunities and concerns. The demand-driven technological achievements of gene synthesis and the implemented processes are exemplified by an industrial setting of large-scale gene synthesis, describing production from order to delivery. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Genes contributing to prion pathogenesis

    Tamgüney, Gültekin; Giles, Kurt; Glidden, David V

    2008-01-01

    incubation times, indicating that the conversion reaction may be influenced by other gene products. To identify genes that contribute to prion pathogenesis, we analysed incubation times of prions in mice in which the gene product was inactivated, knocked out or overexpressed. We tested 20 candidate genes...... show that many genes previously implicated in prion replication have no discernible effect on the pathogenesis of prion disease. While most genes tested did not significantly affect survival times, ablation of the amyloid beta (A4) precursor protein (App) or interleukin-1 receptor, type I (Il1r1...

  18. Using gene expression noise to understand gene regulation

    Munsky, B.; Neuert, G.; van Oudenaarden, A.

    2012-01-01

    Phenotypic variation is ubiquitous in biology and is often traceable to underlying genetic and environmental variation. However, even genetically identical cells in identical environments display variable phenotypes. Stochastic gene expression, or gene expression "noise," has been suggested as a

  19. Patenting human genes: Chinese academic articles' portrayal of gene patents.

    Du, Li

    2018-04-24

    The patenting of human genes has been the subject of debate for decades. While China has gradually come to play an important role in the global genomics-based testing and treatment market, little is known about Chinese scholars' perspectives on patent protection for human genes. A content analysis of academic literature was conducted to identify Chinese scholars' concerns regarding gene patents, including benefits and risks of patenting human genes, attitudes that researchers hold towards gene patenting, and any legal and policy recommendations offered for the gene patent regime in China. 57.2% of articles were written by law professors, but scholars from health sciences, liberal arts, and ethics also participated in discussions on gene patent issues. While discussions of benefits and risks were relatively balanced in the articles, 63.5% of the articles favored gene patenting in general and, of the articles (n = 41) that explored gene patents in the Chinese context, 90.2% supported patent protections for human genes in China. The patentability of human genes was discussed in 33 articles, and 75.8% of these articles reached the conclusion that human genes are patentable. Chinese scholars view the patent regime as an important legal tool to protect the interests of inventors and inventions as well as the genetic resources of China. As such, many scholars support a gene patent system in China. These attitudes towards gene patents remain unchanged following the court ruling in the Myriad case in 2013, but arguments have been raised about the scope of gene patents, in particular that the increasing numbers of gene patents may negatively impact public health in China.

  20. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  1. Genes, stress, and depression.

    Wurtman, Richard J

    2005-05-01

    A relationship between genetic makeup and susceptibility to major depressive disorder (MDD) has long been suspected on the basis of family and twin studies. A metaanalysis of reports on the basis of twin studies has estimated MDD's degree of heritability to be 0.33 (confidence interval, 0.26-0.39). Among families exhibiting an increased prevalence of MDD, risk of developing the illness was enhanced in members exposed to a highly stressful environment. Aberrant genes can predispose to depression in a number of ways, for example, by diminishing production of growth factors that act during brain development. An aberrant gene could also increase or decrease a neurotransmitter's release into synapses, its actions, or its duration of activity. The gene products of greatest interest at present are those involved in the synthesis and actions of serotonin; among them, the serotonin-uptake protein localized within the terminals and dendrites of serotonin-releasing neurons. It has been found that the Vmax of platelet serotonin uptake is low in some patients with MDD; also, Vmax is highly correlated in twins. Antidepressant drugs such as the selective serotonin reuptake inhibitors act on this uptake protein. The specific genetic locus causing serotonin uptake to be lower in some patients with major depression involves a polymorphic region (5-HTTLPR) in the promoter region of the gene for the uptake protein. The gene itself exists as several alleles, the short "S" allele and the long "L" allele. The S variant is associated with less, and the L variant with more, of the uptake protein. The effect of stressful life events on depressive symptoms in young adults was found to be significantly stronger among SS or SL subjects than among LL subjects. Neuroimaging studies showed that people with the SS or SL alleles exhibited a greater activation of the amygdala in response to fearful stimuli than those with LL. It has been reported recently that mutations in the gene that controls

  2. Vertebrate gene predictions and the problem of large genes

    Wang, Jun; Li, ShengTing; Zhang, Yong

    2003-01-01

    To find unknown protein-coding genes, annotation pipelines use a combination of ab initio gene prediction and similarity to experimentally confirmed genes or proteins. Here, we show that although the ab initio predictions have an intrinsically high false-positive rate, they also have a consistent...

  3. Plant gene technology: social considerations

    Administrator

    The genetic modification of plants by gene technology is of immense potential benefits, but there may be possible risks. ... As a new endeavour, however, people have a mixed ... reality by gene biotechnology (Watson, 1997). Industrial ...

  4. Brains, Genes and Primates

    Belmonte, Juan Carlos Izpisua; Callaway, Edward M.; Churchland, Patricia; Caddick, Sarah J.; Feng, Guoping; Homanics, Gregg E.; Lee, Kuo-Fen; Leopold, David A.; Miller, Cory T.; Mitchell, Jude F.; Mitalipov, Shoukhrat; Moutri, Alysson R.; Movshon, J. Anthony; Okano, Hideyuki; Reynolds, John H.; Ringach, Dario; Sejnowski, Terrence J.; Silva, Afonso C.; Strick, Peter L.; Wu, Jun; Zhang, Feng

    2015-01-01

    One of the great strengths of the mouse model is the wide array of genetic tools that have been developed. Striking examples include methods for directed modification of the genome, and for regulated expression or inactivation of genes. Within neuroscience, it is now routine to express reporter genes, neuronal activity indicators and opsins in specific neuronal types in the mouse. However, there are considerable anatomical, physiological, cognitive and behavioral differences between the mouse and the human that, in some areas of inquiry, limit the degree to which insights derived from the mouse can be applied to understanding human neurobiology. Several recent advances have now brought into reach the goal of applying these tools to understanding the primate brain. Here we describe these advances, consider their potential to advance our understanding of the human brain and brain disorders, discuss bioethical considerations, and describe what will be needed to move forward. PMID:25950631

  5. Redox system and phospholipid metabolism in the kidney of hypertensive rats after FAAH inhibitor URB597 administration

    Michał Biernacki

    2018-05-01

    In conclusion, because URB597 disturbed the kidney redox system and phospholipid ROS-dependent and enzymatic-dependent metabolism, the administration of this inhibitor may enhance kidney disorders depending on model of hypertension, but may also cause kidney disturbances in control rats. Therefore, further studies are warranted.

  6. Gene Porter Bridwell

    1994-01-01

    Gene Porter Bridwell served as the director of the Marshall Space Flight Center from January 6, 1994 until February 3, 1996, when he retired from NASA after thirty-four years service. Bridwell, a Marshall employee since 1962, had been Marshall's Space Shuttle Projects Office Director and Space Station Redesign Team deputy manager. Under Bridwell, Marshall worked to develop its role as a Center of Excellence for propulsion and for providing access to space.

  7. Mutant genes in pea breeding

    Swiecicki, W.K.

    1990-01-01

    Full text: Mutations of genes Dpo (dehiscing pods) and A (anthocyanin synthesis) played a role in pea domestication. A number of other genes were important in cultivar development for 3 types of usage (dry seeds, green vegetable types, fodder), e.g. fn, fna, le, p, v, fas and af. New genes (induced and spontaneous), are important for present ideotypes and are registered by the Pisum Genetics Association (PGA). Comparison of a pea variety ideotype with the variation available in gene banks shows that breeders need 'new' features. In mutation induction experiments, genotype, mutagen and method of treatment (e.g. combined or fractionated doses) are varied for broadening the mutation spectrum and selecting more genes of agronomic value. New genes are genetically analysed. In Poland, some mutant varieties with the gene afila were registered, controlling lodging by a shorter stem and a higher number of internodes. Really non-lodging pea varieties could strongly increase seed yield. But the probability of detecting a major gene for lodging resistance is low. Therefore, mutant genes with smaller influence on plant architecture are sought, to combine their effect by crossing. Promising seem to be the genes rogue, reductus and arthritic as well as a number of mutant genes not yet genetically identified. The gene det for terminal inflorescence - similarly to Vicia faba - changes plant development. Utilisation of assimilates and ripening should be better. Improvement of harvest index should give higher seed yield. A number of genes controlling disease resistance are well known (eg. Fw, Fnw, En, mo and sbm). Important in mass screening of resistance are closely linked gene markers. Pea gene banks collect respective lines, but mutants induced in highly productive cultivars would be better. Inducing gene markers sometimes seems to be easier than transfer by crossing. Mutation induction in pea breeding is probably more important because a high number of monogenic features are

  8. Gene doping in modern sport.

    MAREK SAWCZUK; AGNIESZKA MACIEJEWSKA; PAWEL CIESZCZYK,

    2009-01-01

    Background: The subject of this paper is gene doping, which should be understood as "he non-therapeutic use of cells, genes, genetic elements, or of the modulation of gene expression, having the capacity to improve athletic performance". The authors of this work, based on the review of literature and previous research, make an attempt at wider characterization of gene doping and the discussion of related potential threats.Methods: This is a comprehensive survey of literature on the latest app...

  9. Regulation of eucaryotic gene expression

    Brent, R.; Ptashne, M.S

    1989-05-23

    This patent describes a method of regulating the expression of a gene in a eucaryotic cell. The method consists of: providing in the eucaryotic cell, a peptide, derived from or substantially similar to a peptide of a procaryotic cell able to bind to DNA upstream from or within the gene, the amount of the peptide being sufficient to bind to the gene and thereby control expression of the gene.

  10. Genealogy and gene trees.

    Rasmuson, Marianne

    2008-02-01

    Heredity can be followed in persons or in genes. Persons can be identified only a few generations back, but simplified models indicate that universal ancestors to all now living persons have occurred in the past. Genetic variability can be characterized as variants of DNA sequences. Data are available only from living persons, but from the pattern of variation gene trees can be inferred by means of coalescence models. The merging of lines backwards in time leads to a MRCA (most recent common ancestor). The time and place of living for this inferred person can give insights in human evolutionary history. Demographic processes are incorporated in the model, but since culture and customs are known to influence demography the models used ought to be tested against available genealogy. The Icelandic data base offers a possibility to do so and points to some discrepancies. Mitochondrial DNA and Y chromosome patterns give a rather consistent view of human evolutionary history during the latest 100 000 years but the earlier epochs of human evolution demand gene trees with longer branches. The results of such studies reveal as yet unsolved problems about the sources of our genome.

  11. Gene therapy of cancer and development of therapeutic target gene

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene.

  12. Gene therapy of cancer and development of therapeutic target gene

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene

  13. Gene electrotransfer in clinical trials

    Gehl, Julie

    2014-01-01

    Electroporation is increasingly being used for delivery of chemotherapy to tumors. Likewise, gene delivery by electroporation is rapidly gaining momentum for both vaccination purposes and for delivery of genes coding for other therapeutic molecules, such as chronic diseases or cancer. This chapter...... describes how gene therapy may be performed using electric pulses to enhance uptake and expression....

  14. Gene probes: principles and protocols

    Aquino de Muro, Marilena; Rapley, Ralph

    2002-01-01

    ... of labeled DNA has allowed genes to be mapped to single chromosomes and in many cases to a single chromosome band, promoting significant advance in human genome mapping. Gene Probes: Principles and Protocols presents the principles for gene probe design, labeling, detection, target format, and hybridization conditions together with detailed protocols, accom...

  15. Compositional gradients in Gramineae genes

    Wong, Gane Ka-Shu; Wang, Jun; Tao, Lin

    2002-01-01

    In this study, we describe a property of Gramineae genes, and perhaps all monocot genes, that is not observed in eudicot genes. Along the direction of transcription, beginning at the junction of the 5'-UTR and the coding region, there are gradients in GC content, codon usage, and amino-acid usage...

  16. Independent Gene Discovery and Testing

    Palsule, Vrushalee; Coric, Dijana; Delancy, Russell; Dunham, Heather; Melancon, Caleb; Thompson, Dennis; Toms, Jamie; White, Ashley; Shultz, Jeffry

    2010-01-01

    A clear understanding of basic gene structure is critical when teaching molecular genetics, the central dogma and the biological sciences. We sought to create a gene-based teaching project to improve students' understanding of gene structure and to integrate this into a research project that can be implemented by instructors at the secondary level…

  17. Gene function prediction based on Gene Ontology Hierarchy Preserving Hashing.

    Zhao, Yingwen; Fu, Guangyuan; Wang, Jun; Guo, Maozu; Yu, Guoxian

    2018-02-23

    Gene Ontology (GO) uses structured vocabularies (or terms) to describe the molecular functions, biological roles, and cellular locations of gene products in a hierarchical ontology. GO annotations associate genes with GO terms and indicate the given gene products carrying out the biological functions described by the relevant terms. However, predicting correct GO annotations for genes from a massive set of GO terms as defined by GO is a difficult challenge. To combat with this challenge, we introduce a Gene Ontology Hierarchy Preserving Hashing (HPHash) based semantic method for gene function prediction. HPHash firstly measures the taxonomic similarity between GO terms. It then uses a hierarchy preserving hashing technique to keep the hierarchical order between GO terms, and to optimize a series of hashing functions to encode massive GO terms via compact binary codes. After that, HPHash utilizes these hashing functions to project the gene-term association matrix into a low-dimensional one and performs semantic similarity based gene function prediction in the low-dimensional space. Experimental results on three model species (Homo sapiens, Mus musculus and Rattus norvegicus) for interspecies gene function prediction show that HPHash performs better than other related approaches and it is robust to the number of hash functions. In addition, we also take HPHash as a plugin for BLAST based gene function prediction. From the experimental results, HPHash again significantly improves the prediction performance. The codes of HPHash are available at: http://mlda.swu.edu.cn/codes.php?name=HPHash. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Prefrontal activity during working memory is modulated by the interaction of variation in CB1 and COX2 coding genes and correlates with frequency of cannabis use.

    Taurisano, Paolo; Antonucci, Linda A; Fazio, Leonardo; Rampino, Antonio; Romano, Raffaella; Porcelli, Annamaria; Masellis, Rita; Colizzi, Marco; Quarto, Tiziana; Torretta, Silvia; Di Giorgio, Annabella; Pergola, Giulio; Bertolino, Alessandro; Blasi, Giuseppe

    2016-08-01

    The CB1 cannabinoid receptor is targeted in the brain by endocannabinoids under physiological conditions as well as by delta9-tetrahydrocannabinol under cannabis use. Furthermore, its signaling appears to affect brain cognitive processing. Recent findings highlight a crucial role of cyclooxygenase-2 (COX-2) in the mechanism of intraneuronal CB1 signaling transduction, while others indicate that two single nucleotide polymorphisms (SNPs) (rs1406977 and rs20417) modulate expression of CB1 (CNR1) and COX-2 (PTGS2) coding genes, respectively. Here, our aim was to use fMRI to investigate in healthy humans whether these SNPs interact in modulating prefrontal activity during working memory processing and if this modulation is linked with cannabis use. We recruited 242 healthy subjects genotyped for CNR1 rs1406977 and PTGS2 rs20417 that performed the N-back working memory task during fMRI and were interviewed using the Cannabis Experience Questionnaire (CEQ). We found that the interaction between CNR1 rs1406977 and PTGS2 rs20417 is associated with dorsolateral prefrontal cortex (DLPFC) activity such that specific genotype configurations (CNR1 C carriers/PTGS2 C carriers and CNR1 TT/PTGS2 GG) predict lower cortical response versus others in spite of similar behavioral accuracy. Furthermore, DLPFC activity in the cluster associated with the CNR1 by PTGS2 interaction was negatively correlated with behavioral efficiency and positively correlated with frequency of cannabis use in cannabis users. These results suggest that a genetically modulated balancing of signaling within the CB1-COX-2 pathway may reflect on more or less efficient patterns of prefrontal activity during working memory. Frequency of cannabis use may be a factor for further modulation of CNR1/PTGS2-mediated cortical processing associated with this cognitive process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The ethics of gene therapy.

    Chan, Sarah; Harris, John

    2006-10-01

    Recent developments have progressed in areas of science that pertain to gene therapy and its ethical implications. This review discusses the current state of therapeutic gene technologies, including stem cell therapies and genetic modification, and identifies ethical issues of concern in relation to the science of gene therapy and its application, including the ethics of embryonic stem cell research and therapeutic cloning, the risks associated with gene therapy, and the ethics of clinical research in developing new therapeutic technologies. Additionally, ethical issues relating to genetic modification itself are considered: the significance of the human genome, the distinction between therapy and enhancement, and concerns regarding gene therapy as a eugenic practice.

  20. Radiopharmaceuticals to monitor gene transfer

    Wiebe, L. I.; Morin, K. W.; Knaus, E. E.

    1997-01-01

    Advances in genetic engineering and molecular biology have opened the door to disease treatment by transferring genes to cells that are responsible for the pathological condition being addressed. These genes can serve to supplement or introduce the function of indigenous genes that are either inadequately expressed or that are congenitally absent in the patient. They can introduce new functions such as drug sensitization to provide a unique therapeutic target. Gene transfer is readily monitored in vitro using a range of histochemical and biochemical tests that are ''built in'' to the therapeutic gene cassette. In vivo, in situ monitoring of the gene transfer and gene expression processes can be achieved with these tests only if biopsy is possible. Scintigraphic imaging can offer unique information on both the extent and location of gene expression, provided that an appropriate reporter gene is included in the therapeutic cassette. This overview includes a brief orientation to gene transfer therapy and is followed by a review of current approaches to gene therapy imaging. The concluding section deals with imaging based on radiolabelled nucleoside substrates for herpes simplex type-1 thymidine kinase, with emphasis on IVFRU, a stable potent and selective HSV-1 TK substrate developed in their laboratories

  1. Gene Circuit Analysis of the Terminal Gap Gene huckebein

    Ashyraliyev, Maksat; Siggens, Ken; Janssens, Hilde; Blom, Joke; Akam, Michael; Jaeger, Johannes

    2009-01-01

    The early embryo of Drosophila melanogaster provides a powerful model system to study the role of genes in pattern formation. The gap gene network constitutes the first zygotic regulatory tier in the hierarchy of the segmentation genes involved in specifying the position of body segments. Here, we use an integrative, systems-level approach to investigate the regulatory effect of the terminal gap gene huckebein (hkb) on gap gene expression. We present quantitative expression data for the Hkb protein, which enable us to include hkb in gap gene circuit models. Gap gene circuits are mathematical models of gene networks used as computational tools to extract regulatory information from spatial expression data. This is achieved by fitting the model to gap gene expression patterns, in order to obtain estimates for regulatory parameters which predict a specific network topology. We show how considering variability in the data combined with analysis of parameter determinability significantly improves the biological relevance and consistency of the approach. Our models are in agreement with earlier results, which they extend in two important respects: First, we show that Hkb is involved in the regulation of the posterior hunchback (hb) domain, but does not have any other essential function. Specifically, Hkb is required for the anterior shift in the posterior border of this domain, which is now reproduced correctly in our models. Second, gap gene circuits presented here are able to reproduce mutants of terminal gap genes, while previously published models were unable to reproduce any null mutants correctly. As a consequence, our models now capture the expression dynamics of all posterior gap genes and some variational properties of the system correctly. This is an important step towards a better, quantitative understanding of the developmental and evolutionary dynamics of the gap gene network. PMID:19876378

  2. The Caenorhabditis chemoreceptor gene families

    Robertson Hugh M

    2008-10-01

    Full Text Available Abstract Background Chemoreceptor proteins mediate the first step in the transduction of environmental chemical stimuli, defining the breadth of detection and conferring stimulus specificity. Animal genomes contain families of genes encoding chemoreceptors that mediate taste, olfaction, and pheromone responses. The size and diversity of these families reflect the biology of chemoperception in specific species. Results Based on manual curation and sequence comparisons among putative G-protein-coupled chemoreceptor genes in the nematode Caenorhabditis elegans, we identified approximately 1300 genes and 400 pseudogenes in the 19 largest gene families, most of which fall into larger superfamilies. In the related species C. briggsae and C. remanei, we identified most or all genes in each of the 19 families. For most families, C. elegans has the largest number of genes and C. briggsae the smallest number, suggesting changes in the importance of chemoperception among the species. Protein trees reveal family-specific and species-specific patterns of gene duplication and gene loss. The frequency of strict orthologs varies among the families, from just over 50% in two families to less than 5% in three families. Several families include large species-specific expansions, mostly in C. elegans and C. remanei. Conclusion Chemoreceptor gene families in Caenorhabditis species are large and evolutionarily dynamic as a result of gene duplication and gene loss. These dynamics shape the chemoreceptor gene complements in Caenorhabditis species and define the receptor space available for chemosensory responses. To explain these patterns, we propose the gray pawn hypothesis: individual genes are of little significance, but the aggregate of a large number of diverse genes is required to cover a large phenotype space.

  3. The Caenorhabditis chemoreceptor gene families.

    Thomas, James H; Robertson, Hugh M

    2008-10-06

    Chemoreceptor proteins mediate the first step in the transduction of environmental chemical stimuli, defining the breadth of detection and conferring stimulus specificity. Animal genomes contain families of genes encoding chemoreceptors that mediate taste, olfaction, and pheromone responses. The size and diversity of these families reflect the biology of chemoperception in specific species. Based on manual curation and sequence comparisons among putative G-protein-coupled chemoreceptor genes in the nematode Caenorhabditis elegans, we identified approximately 1300 genes and 400 pseudogenes in the 19 largest gene families, most of which fall into larger superfamilies. In the related species C. briggsae and C. remanei, we identified most or all genes in each of the 19 families. For most families, C. elegans has the largest number of genes and C. briggsae the smallest number, suggesting changes in the importance of chemoperception among the species. Protein trees reveal family-specific and species-specific patterns of gene duplication and gene loss. The frequency of strict orthologs varies among the families, from just over 50% in two families to less than 5% in three families. Several families include large species-specific expansions, mostly in C. elegans and C. remanei. Chemoreceptor gene families in Caenorhabditis species are large and evolutionarily dynamic as a result of gene duplication and gene loss. These dynamics shape the chemoreceptor gene complements in Caenorhabditis species and define the receptor space available for chemosensory responses. To explain these patterns, we propose the gray pawn hypothesis: individual genes are of little significance, but the aggregate of a large number of diverse genes is required to cover a large phenotype space.

  4. Maximum Gene-Support Tree

    Yunfeng Shan

    2008-01-01

    Full Text Available Genomes and genes diversify during evolution; however, it is unclear to what extent genes still retain the relationship among species. Model species for molecular phylogenetic studies include yeasts and viruses whose genomes were sequenced as well as plants that have the fossil-supported true phylogenetic trees available. In this study, we generated single gene trees of seven yeast species as well as single gene trees of nine baculovirus species using all the orthologous genes among the species compared. Homologous genes among seven known plants were used for validation of the finding. Four algorithms—maximum parsimony (MP, minimum evolution (ME, maximum likelihood (ML, and neighbor-joining (NJ—were used. Trees were reconstructed before and after weighting the DNA and protein sequence lengths among genes. Rarely a gene can always generate the “true tree” by all the four algorithms. However, the most frequent gene tree, termed “maximum gene-support tree” (MGS tree, or WMGS tree for the weighted one, in yeasts, baculoviruses, or plants was consistently found to be the “true tree” among the species. The results provide insights into the overall degree of divergence of orthologous genes of the genomes analyzed and suggest the following: 1 The true tree relationship among the species studied is still maintained by the largest group of orthologous genes; 2 There are usually more orthologous genes with higher similarities between genetically closer species than between genetically more distant ones; and 3 The maximum gene-support tree reflects the phylogenetic relationship among species in comparison.

  5. MUTATIONS IN CALMODULIN GENES

    2013-01-01

    The present invention relates to an isolated polynucleotide encoding at least a part of calmodulin and an isolated polypeptide comprising at least a part of a calmodulin protein, wherein the polynucleotide and the polypeptide comprise at least one mutation associated with a cardiac disorder. The ...... the binding of calmodulin to ryanodine receptor 2 and use of such compound in a treatment of an individual having a cardiac disorder. The invention further provides a kit that can be used to detect specific mutations in calmodulin encoding genes....

  6. Genes and Disease: Prader-Willi Syndrome

    ... MD): National Center for Biotechnology Information (US); 1998-. Genes and Disease [Internet]. Show details National Center for ... 45K) PDF version of this title (3.8M) Gene sequence Genome view see gene locations Entrez Gene ...

  7. Gene Therapy and Children (For Parents)

    ... Staying Safe Videos for Educators Search English Español Gene Therapy and Children KidsHealth / For Parents / Gene Therapy ... that don't respond to conventional therapies. About Genes Our genes help make us unique. Inherited from ...

  8. The fatty acid amide hydrolase inhibitor URB597 exerts anti-inflammatory effects in hippocampus of aged rats and restores an age-related deficit in long-term potentiation

    Murphy Niamh

    2012-04-01

    Full Text Available Abstract Background Several factors contribute to the deterioration in synaptic plasticity which accompanies age and one of these is neuroinflammation. This is characterized by increased microglial activation associated with increased production of proinflammatory cytokines like interleukin-1β (IL-1β. In aged rats these neuroinflammatory changes are associated with a decreased ability of animals to sustain long-term potentiation (LTP in the dentate gyrus. Importantly, treatment of aged rats with agents which possess anti-inflammatory properties to decrease microglial activation, improves LTP. It is known that endocannabinoids, such as anandamide (AEA, have anti-inflammatory properties and therefore have the potential to decrease the age-related microglial activation. However, endocannabinoids are extremely labile and are hydrolyzed quickly after production. Here we investigated the possibility that inhibiting the degradation of endocannabinoids with the fatty acid amide hydrolase (FAAH inhibitor, URB597, could ameliorate age-related increases in microglial activation and the associated decrease in LTP. Methods Young and aged rats received subcutaneous injections of the FAAH inhibitor URB597 every second day and controls which received subcutaneous injections of 30% DMSO-saline every second day for 28 days. Long-term potentiation was recorded on day 28 and the animals were sacrificed. Brain tissue was analyzed for markers of microglial activation by PCR and for levels of endocannabinoids by liquid chromatography coupled to tandem mass spectrometry. Results The data indicate that expression of markers of microglial activation, MHCII, and CD68 mRNA, were increased in the hippocampus of aged, compared with young, rats and that these changes were associated with increased expression of the proinflammatory cytokines interleukin (IL-1β and tumor necrosis factor-α (TNFα which were attenuated by treatment with URB597. Coupled with these changes, we

  9. Mapping of repair genes

    Hori, Tadaaki

    1985-01-01

    Chromosome mapping of repair genes involved in U.V. sensitivity is reported. Twenty-three of 25 hybrid cells were resistant to U.V. light. Survival curves of 2 U.V.-resistant cell strains, which possessed mouse chromosomes and human chromosome No.7 - 16, were similar to those of wild strain (L5178Y). On the other hand, survival curves of U.V.-sensitive hybrid cells was analogous to those of Q31. There was a definitive difference in the frequency of inducible chromosome aberrations between U.V. resistant and sensitive mouse-human hybrid cells. U.V.-resistant cell strains possessed the ability of excision repair. Analysis of karyotype in hybrid cells showed that the difference in U.V. sensitivity is dependent upon whether or not human chromosome No.13 is present. Synteny test on esterase D-determining locus confirmed that there is an agreement between the presence of chromosome No.13 and the presence of human esterase D activity. These results led to a conclusion that human genes which compensate recessive character of U.V.-sensitive mutant strain, Q31, with mouse-human hybrid cells are located on the locus of chromosome No.13. (Namekawa, K.)

  10. Gene therapy for ocular diseases.

    Liu, Melissa M; Tuo, Jingsheng; Chan, Chi-Chao

    2011-05-01

    The eye is an easily accessible, highly compartmentalised and immune-privileged organ that offers unique advantages as a gene therapy target. Significant advancements have been made in understanding the genetic pathogenesis of ocular diseases, and gene replacement and gene silencing have been implicated as potentially efficacious therapies. Recent improvements have been made in the safety and specificity of vector-based ocular gene transfer methods. Proof-of-concept for vector-based gene therapies has also been established in several experimental models of human ocular diseases. After nearly two decades of ocular gene therapy research, preliminary successes are now being reported in phase 1 clinical trials for the treatment of Leber congenital amaurosis. This review describes current developments and future prospects for ocular gene therapy. Novel methods are being developed to enhance the performance and regulation of recombinant adeno-associated virus- and lentivirus-mediated ocular gene transfer. Gene therapy prospects have advanced for a variety of retinal disorders, including retinitis pigmentosa, retinoschisis, Stargardt disease and age-related macular degeneration. Advances have also been made using experimental models for non-retinal diseases, such as uveitis and glaucoma. These methodological advancements are critical for the implementation of additional gene-based therapies for human ocular diseases in the near future.

  11. Evolving chromosomes and gene regulatory networks

    Aswin

    Genes under H NS control can be. (a) regulated by H NS. (b) regulated by H NS and StpA. Because backup by StpA is partial. Page 19. Gene expression level. H NS regulated xenogenes. Other genes. Page 20 ... recollect: H&NS silences highl transcribable genes. Gene expression level unilateral. Other genes epistatic ...

  12. Bayesian assignment of gene ontology terms to gene expression experiments.

    Sykacek, P

    2012-09-15

    Gene expression assays allow for genome scale analyses of molecular biological mechanisms. State-of-the-art data analysis provides lists of involved genes, either by calculating significance levels of mRNA abundance or by Bayesian assessments of gene activity. A common problem of such approaches is the difficulty of interpreting the biological implication of the resulting gene lists. This lead to an increased interest in methods for inferring high-level biological information. A common approach for representing high level information is by inferring gene ontology (GO) terms which may be attributed to the expression data experiment. This article proposes a probabilistic model for GO term inference. Modelling assumes that gene annotations to GO terms are available and gene involvement in an experiment is represented by a posterior probabilities over gene-specific indicator variables. Such probability measures result from many Bayesian approaches for expression data analysis. The proposed model combines these indicator probabilities in a probabilistic fashion and provides a probabilistic GO term assignment as a result. Experiments on synthetic and microarray data suggest that advantages of the proposed probabilistic GO term inference over statistical test-based approaches are in particular evident for sparsely annotated GO terms and in situations of large uncertainty about gene activity. Provided that appropriate annotations exist, the proposed approach is easily applied to inferring other high level assignments like pathways. Source code under GPL license is available from the author. peter.sykacek@boku.ac.at.

  13. Bayesian assignment of gene ontology terms to gene expression experiments

    Sykacek, P.

    2012-01-01

    Motivation: Gene expression assays allow for genome scale analyses of molecular biological mechanisms. State-of-the-art data analysis provides lists of involved genes, either by calculating significance levels of mRNA abundance or by Bayesian assessments of gene activity. A common problem of such approaches is the difficulty of interpreting the biological implication of the resulting gene lists. This lead to an increased interest in methods for inferring high-level biological information. A common approach for representing high level information is by inferring gene ontology (GO) terms which may be attributed to the expression data experiment. Results: This article proposes a probabilistic model for GO term inference. Modelling assumes that gene annotations to GO terms are available and gene involvement in an experiment is represented by a posterior probabilities over gene-specific indicator variables. Such probability measures result from many Bayesian approaches for expression data analysis. The proposed model combines these indicator probabilities in a probabilistic fashion and provides a probabilistic GO term assignment as a result. Experiments on synthetic and microarray data suggest that advantages of the proposed probabilistic GO term inference over statistical test-based approaches are in particular evident for sparsely annotated GO terms and in situations of large uncertainty about gene activity. Provided that appropriate annotations exist, the proposed approach is easily applied to inferring other high level assignments like pathways. Availability: Source code under GPL license is available from the author. Contact: peter.sykacek@boku.ac.at PMID:22962488

  14. Differential Gene Expression and Aging

    Laurent Seroude

    2002-01-01

    Full Text Available It has been established that an intricate program of gene expression controls progression through the different stages in development. The equally complex biological phenomenon known as aging is genetically determined and environmentally modulated. This review focuses on the genetic component of aging, with a special emphasis on differential gene expression. At least two genetic pathways regulating organism longevity act by modifying gene expression. Many genes are also subjected to age-dependent transcriptional regulation. Some age-related gene expression changes are prevented by caloric restriction, the most robust intervention that slows down the aging process. Manipulating the expression of some age-regulated genes can extend an organism's life span. Remarkably, the activity of many transcription regulatory elements is linked to physiological age as opposed to chronological age, indicating that orderly and tightly controlled regulatory pathways are active during aging.

  15. Generalist genes and learning disabilities.

    Plomin, Robert; Kovas, Yulia

    2005-07-01

    The authors reviewed recent quantitative genetic research on learning disabilities that led to the conclusion that genetic diagnoses differ from traditional diagnoses in that the effects of relevant genes are largely general rather than specific. This research suggests that most genes associated with common learning disabilities--language impairment, reading disability, and mathematics disability--are generalists in 3 ways. First, genes that affect common learning disabilities are largely the same genes responsible for normal variation in learning abilities. Second, genes that affect any aspect of a learning disability affect other aspects of the disability. Third, genes that affect one learning disability are also likely to affect other learning disabilities. These quantitative genetic findings have far-reaching implications for molecular genetics and neuroscience as well as psychology. Copyright 2005 APA, all rights reserved.

  16. Gene-gene interactions and gene polymorphisms of VEGFA and EG-VEGF gene systems in recurrent pregnancy loss.

    Su, Mei-Tsz; Lin, Sheng-Hsiang; Chen, Yi-Chi; Kuo, Pao-Lin

    2014-06-01

    Both vascular endothelial growth factor A (VEGFA) and endocrine gland-derived vascular endothelial growth factor (EG-VEGF) systems play major roles in angiogenesis. A body of evidence suggests VEGFs regulate critical processes during pregnancy and have been associated with recurrent pregnancy loss (RPL). However, little information is available regarding the interaction of these two major major angiogenesis-related systems in early human pregnancy. This study was conducted to investigate the association of gene polymorphisms and gene-gene interaction among genes in VEGFA and EG-VEGF systems and idiopathic RPL. A total of 98 women with history of idiopathic RPL and 142 controls were included, and 5 functional SNPs selected from VEGFA, KDR, EG-VEGF (PROK1), PROKR1 and PROKR2 were genotyped. We used multifactor dimensionality reduction (MDR) analysis to choose a best model and evaluate gene-gene interactions. Ingenuity pathways analysis (IPA) was introduced to explore possible complex interactions. Two receptor gene polymorphisms [KDR (Q472H) and PROKR2 (V331M)] were significantly associated with idiopathic RPL (P<0.01). The MDR test revealed that the KDR (Q472H) polymorphism was the best loci to be associated with RPL (P=0.02). IPA revealed EG-VEGF and VEGFA systems shared several canonical signaling pathways that may contribute to gene-gene interactions, including the Akt, IL-8, EGFR, MAPK, SRC, VHL, HIF-1A and STAT3 signaling pathways. Two receptor gene polymorphisms [KDR (Q472H) and PROKR2 (V331M)] were significantly associated with idiopathic RPL. EG-VEGF and VEGFA systems shared several canonical signaling pathways that may contribute to gene-gene interactions, including the Akt, IL-8, EGFR, MAPK, SRC, VHL, HIF-1A and STAT3.

  17. A genetic ensemble approach for gene-gene interaction identification

    Ho Joshua WK

    2010-10-01

    Full Text Available Abstract Background It has now become clear that gene-gene interactions and gene-environment interactions are ubiquitous and fundamental mechanisms for the development of complex diseases. Though a considerable effort has been put into developing statistical models and algorithmic strategies for identifying such interactions, the accurate identification of those genetic interactions has been proven to be very challenging. Methods In this paper, we propose a new approach for identifying such gene-gene and gene-environment interactions underlying complex diseases. This is a hybrid algorithm and it combines genetic algorithm (GA and an ensemble of classifiers (called genetic ensemble. Using this approach, the original problem of SNP interaction identification is converted into a data mining problem of combinatorial feature selection. By collecting various single nucleotide polymorphisms (SNP subsets as well as environmental factors generated in multiple GA runs, patterns of gene-gene and gene-environment interactions can be extracted using a simple combinatorial ranking method. Also considered in this study is the idea of combining identification results obtained from multiple algorithms. A novel formula based on pairwise double fault is designed to quantify the degree of complementarity. Conclusions Our simulation study demonstrates that the proposed genetic ensemble algorithm has comparable identification power to Multifactor Dimensionality Reduction (MDR and is slightly better than Polymorphism Interaction Analysis (PIA, which are the two most popular methods for gene-gene interaction identification. More importantly, the identification results generated by using our genetic ensemble algorithm are highly complementary to those obtained by PIA and MDR. Experimental results from our simulation studies and real world data application also confirm the effectiveness of the proposed genetic ensemble algorithm, as well as the potential benefits of

  18. Introduction: Cancer Gene Networks.

    Clarke, Robert

    2017-01-01

    Constructing, evaluating, and interpreting gene networks generally sits within the broader field of systems biology, which continues to emerge rapidly, particular with respect to its application to understanding the complexity of signaling in the context of cancer biology. For the purposes of this volume, we take a broad definition of systems biology. Considering an organism or disease within an organism as a system, systems biology is the study of the integrated and coordinated interactions of the network(s) of genes, their variants both natural and mutated (e.g., polymorphisms, rearrangements, alternate splicing, mutations), their proteins and isoforms, and the organic and inorganic molecules with which they interact, to execute the biochemical reactions (e.g., as enzymes, substrates, products) that reflect the function of that system. Central to systems biology, and perhaps the only approach that can effectively manage the complexity of such systems, is the building of quantitative multiscale predictive models. The predictions of the models can vary substantially depending on the nature of the model and its inputoutput relationships. For example, a model may predict the outcome of a specific molecular reaction(s), a cellular phenotype (e.g., alive, dead, growth arrest, proliferation, and motility), a change in the respective prevalence of cell or subpopulations, a patient or patient subgroup outcome(s). Such models necessarily require computers. Computational modeling can be thought of as using machine learning and related tools to integrate the very high dimensional data generated from modern, high throughput omics technologies including genomics (next generation sequencing), transcriptomics (gene expression microarrays; RNAseq), metabolomics and proteomics (ultra high performance liquid chromatography, mass spectrometry), and "subomic" technologies to study the kinome, methylome, and others. Mathematical modeling can be thought of as the use of ordinary

  19. Genes, evolution and intelligence.

    Bouchard, Thomas J

    2014-11-01

    I argue that the g factor meets the fundamental criteria of a scientific construct more fully than any other conception of intelligence. I briefly discuss the evidence regarding the relationship of brain size to intelligence. A review of a large body of evidence demonstrates that there is a g factor in a wide range of species and that, in the species studied, it relates to brain size and is heritable. These findings suggest that many species have evolved a general-purpose mechanism (a general biological intelligence) for dealing with the environments in which they evolved. In spite of numerous studies with considerable statistical power, we know of very few genes that influence g and the effects are very small. Nevertheless, g appears to be highly polygenic. Given the complexity of the human brain, it is not surprising that that one of its primary faculties-intelligence-is best explained by the near infinitesimal model of quantitative genetics.

  20. Gene therapy for hemophilia

    Rogers, Geoffrey L.; Herzog, Roland W.

    2015-01-01

    Hemophilia is an X-linked inherited bleeding disorder consisting of two classifications, hemophilia A and hemophilia B, depending on the underlying mutation. Although the disease is currently treatable with intravenous delivery of replacement recombinant clotting factor, this approach represents a significant cost both monetarily and in terms of quality of life. Gene therapy is an attractive alternative approach to the treatment of hemophilia that would ideally provide life-long correction of clotting activity with a single injection. In this review, we will discuss the multitude of approaches that have been explored for the treatment of both hemophilia A and B, including both in vivo and ex vivo approaches with viral and nonviral delivery vectors. PMID:25553466

  1. Gene therapy and reproductive medicine.

    Stribley, John M; Rehman, Khurram S; Niu, Hairong; Christman, Gregory M

    2002-04-01

    To review the literature on the principles of gene therapy and its potential application in reproductive medicine. Literature review. Gene therapy involves transfer of genetic material to target cells using a delivery system, or vector. Attention has primarily focused on viral vectors. Significant problems remain to be overcome including low efficacy of gene transfer, the transient expression of some vectors, safety issues with modified adenoviruses and retroviruses, and ethical concerns. If these issues can be resolved, gene therapy will be applicable to an increasing spectrum of single and multiple gene disorders, as the Human Genome Project data are analyzed, and the genetic component of human disease becomes better understood. Gynecologic gene therapy has advanced to human clinical trials for ovarian carcinoma, and shows potential for the treatment of uterine leiomyomata. Obstetric applications of gene therapy, including fetal gene therapy, remain more distant goals. Concerns about the safety of human gene therapy research are being actively addressed, and remarkable progress in improving DNA transfer has been made. The first treatment success for a genetic disease (severe combined immunodeficiency disease) has been achieved, and ongoing research efforts will eventually yield clinical applications in many spheres of reproductive medicine.

  2. Synthetic sustained gene delivery systems.

    Agarwal, Ankit; Mallapragada, Surya K

    2008-01-01

    Gene therapy today is hampered by the need of a safe and efficient gene delivery system that can provide a sustained therapeutic effect without cytotoxicity or unwanted immune responses. Bolus gene delivery in solution results in the loss of delivered factors via lymphatic system and may cause undesired effects by the escape of bioactive molecules to distant sites. Controlled gene delivery systems, acting as localized depot of genes, provide an extended sustained release of genes, giving prolonged maintenance of the therapeutic level of encoded proteins. They also limit the DNA degradation in the nuclease rich extra-cellular environment. While attempts have been made to adapt existing controlled drug delivery technologies, more novel approaches are being investigated for controlled gene delivery. DNA encapsulated in nano/micro spheres of polymers have been administered systemically/orally to be taken up by the targeted tissues and provide sustained release once internalized. Alternatively, DNA entrapped in hydrogels or scaffolds have been injected/implanted in tissues/cavities as platforms for gene delivery. The present review examines these different modalities for sustained delivery of viral and non-viral gene-delivery vectors. Design parameters and release mechanisms of different systems made with synthetic or natural polymers are presented along with their prospective applications and opportunities for continuous development.

  3. Evaluation of suitable reference genes for gene expression studies ...

    2011-12-14

    Dec 14, 2011 ... MADS family of TFs control floral organ identity within each whorl of the flower by activating downstream genes. Measuring gene expression in different tissue types and developmental stages is of fundamental importance in TFs functional research. In last few years, quantitative real-time. PCR (qRT-PCR) ...

  4. Are TMEM genes potential candidate genes for panic disorder?

    NO, Gregersen; Buttenschøn, Henriette Nørmølle; Hedemand, Anne

    2014-01-01

    We analysed single nucleotide polymorphisms in two transmembrane genes (TMEM98 and TMEM132E) in panic disorder (PD) patients and control individuals from the Faroe Islands, Denmark and Germany. The genes encode single-pass membrane proteins and are located within chromosome 17q11.2-q12...

  5. Classifying genes to the correct Gene Ontology Slim term in Saccharomyces cerevisiae using neighbouring genes with classification learning

    Tsatsoulis Costas

    2010-05-01

    Full Text Available Abstract Background There is increasing evidence that gene location and surrounding genes influence the functionality of genes in the eukaryotic genome. Knowing the Gene Ontology Slim terms associated with a gene gives us insight into a gene's functionality by informing us how its gene product behaves in a cellular context using three different ontologies: molecular function, biological process, and cellular component. In this study, we analyzed if we could classify a gene in Saccharomyces cerevisiae to its correct Gene Ontology Slim term using information about its location in the genome and information from its nearest-neighbouring genes using classification learning. Results We performed experiments to establish that the MultiBoostAB algorithm using the J48 classifier could correctly classify Gene Ontology Slim terms of a gene given information regarding the gene's location and information from its nearest-neighbouring genes for training. Different neighbourhood sizes were examined to determine how many nearest neighbours should be included around each gene to provide better classification rules. Our results show that by just incorporating neighbour information from each gene's two-nearest neighbours, the percentage of correctly classified genes to their correct Gene Ontology Slim term for each ontology reaches over 80% with high accuracy (reflected in F-measures over 0.80 of the classification rules produced. Conclusions We confirmed that in classifying genes to their correct Gene Ontology Slim term, the inclusion of neighbour information from those genes is beneficial. Knowing the location of a gene and the Gene Ontology Slim information from neighbouring genes gives us insight into that gene's functionality. This benefit is seen by just including information from a gene's two-nearest neighbouring genes.

  6. Gene doping: possibilities and practicalities.

    Wells, Dominic J

    2009-01-01

    Our ever-increasing understanding of the genetic control of cardiovascular and musculoskeletal function together with recent technical improvements in genetic manipulation generates mounting concern over the possibility of such technology being abused by athletes in their quest for improved performance. Genetic manipulation in the context of athletic performance is commonly referred to as gene doping. A review of the literature was performed to identify the genes and methodologies most likely to be used for gene doping and the technologies that might be used to identify such doping. A large number of candidate performance-enhancing genes have been identified from animal studies, many of them using transgenic mice. Only a limited number have been shown to be effective following gene transfer into adults. Those that seem most likely to be abused are genes that exert their effects locally and leave little, if any, trace in blood or urine. There is currently no evidence that gene doping has yet been undertaken in competitive athletes but the anti-doping authorities will need to remain vigilant in reviewing this rapidly emerging technology. The detection of gene doping involves some different challenges from other agents and a number of promising approaches are currently being explored. 2009 S. Karger AG, Basel

  7. Determining Semantically Related Significant Genes.

    Taha, Kamal

    2014-01-01

    GO relation embodies some aspects of existence dependency. If GO term xis existence-dependent on GO term y, the presence of y implies the presence of x. Therefore, the genes annotated with the function of the GO term y are usually functionally and semantically related to the genes annotated with the function of the GO term x. A large number of gene set enrichment analysis methods have been developed in recent years for analyzing gene sets enrichment. However, most of these methods overlook the structural dependencies between GO terms in GO graph by not considering the concept of existence dependency. We propose in this paper a biological search engine called RSGSearch that identifies enriched sets of genes annotated with different functions using the concept of existence dependency. We observe that GO term xcannot be existence-dependent on GO term y, if x- and y- have the same specificity (biological characteristics). After encoding into a numeric format the contributions of GO terms annotating target genes to the semantics of their lowest common ancestors (LCAs), RSGSearch uses microarray experiment to identify the most significant LCA that annotates the result genes. We evaluated RSGSearch experimentally and compared it with five gene set enrichment systems. Results showed marked improvement.

  8. Gene set analysis for GWAS

    Debrabant, Birgit; Soerensen, Mette

    2014-01-01

    Abstract We discuss the use of modified Kolmogorov-Smirnov (KS) statistics in the context of gene set analysis and review corresponding null and alternative hypotheses. Especially, we show that, when enhancing the impact of highly significant genes in the calculation of the test statistic, the co...

  9. On meme--gene coevolution.

    Bull, L; Holland, O; Blackmore, S

    2000-01-01

    In this article we examine the effects of the emergence of a new replicator, memes, on the evolution of a pre-existing replicator, genes. Using a version of the NKCS model we examine the effects of increasing the rate of meme evolution in relation to the rate of gene evolution, for various degrees of interdependence between the two replicators. That is, the effects of memes' (suggested) more rapid rate of evolution in comparison to that of genes is investigated using a tunable model of coevolution. It is found that, for almost any degree of interdependence between the two replicators, as the rate of meme evolution increases, a phase transition-like dynamic occurs under which memes have a significantly detrimental effect on the evolution of genes, quickly resulting in the cessation of effective gene evolution. Conversely, the memes experience a sharp increase in benefit from increasing their rate of evolution. We then examine the effects of enabling genes to reduce the percentage of gene-detrimental evolutionary steps taken by memes. Here a critical region emerges as the comparative rate of meme evolution increases, such that if genes cannot effectively select memes a high percentage of the time, they suffer from meme evolution as if they had almost no selective capability.

  10. Susceptibility Genes in Thyroid Autoimmunity

    Yoshiyuki Ban

    2005-01-01

    Full Text Available The autoimmune thyroid diseases (AITD are complex diseases which are caused by an interaction between susceptibility genes and environmental triggers. Genetic susceptibility in combination with external factors (e.g. dietary iodine is believed to initiate the autoimmune response to thyroid antigens. Abundant epidemiological data, including family and twin studies, point to a strong genetic influence on the development of AITD. Various techniques have been employed to identify the genes contributing to the etiology of AITD, including candidate gene analysis and whole genome screening. These studies have enabled the identification of several loci (genetic regions that are linked with AITD, and in some of these loci, putative AITD susceptibility genes have been identified. Some of these genes/loci are unique to Graves' disease (GD and Hashimoto's thyroiditis (HT and some are common to both the diseases, indicating that there is a shared genetic susceptibility to GD and HT. The putative GD and HT susceptibility genes include both immune modifying genes (e.g. HLA, CTLA-4 and thyroid specific genes (e.g. TSHR, Tg. Most likely, these loci interact and their interactions may influence disease phenotype and severity.

  11. Gene polymorphisms in chronic periodontitis

    Laine, M.L.; Loos, B.G.; Crielaard, W.

    2010-01-01

    We aimed to conduct a review of the literature for gene polymorphisms associated with chronic periodontitis (CP) susceptibility. A comprehensive search of the literature in English was performed using the keywords: periodontitis, periodontal disease, combined with the words genes, mutation, or

  12. Imaging after vascular gene therapy

    Manninen, Hannu I.; Yang, Xiaoming

    2005-01-01

    Targets for cardiovascular gene therapy currently include limiting restenosis after balloon angioplasty and stent placement, inhibiting vein bypass graft intimal hyperplasia/stenosis, therapeutic angiogenesis for cardiac and lower-limb ischemia, and prevention of thrombus formation. While catheter angiography is still standard method to follow-up vascular gene transfer, other modern imaging techniques, especially intravascular ultrasound (IVUS), magnetic resonance (MR), and positron emission tomography (PET) imaging provide complementary information about the therapeutic effect of vascular gene transfer in humans. Although molecular imaging of therapeutic gene expression in the vasculatures is still in its technical development phase, it has already offered basic medical science an extremely useful in vivo evaluation tool for non- or minimally invasive imaging of vascular gene therapy

  13. Function analysis of unknown genes

    Rogowska-Wrzesinska, A.

    2002-01-01

      This thesis entitled "Function analysis of unknown genes" presents the use of proteome analysis for the characterisation of yeast (Saccharomyces cerevisiae) genes and their products (proteins especially those of unknown function). This study illustrates that proteome analysis can be used...... to describe different aspects of molecular biology of the cell, to study changes that occur in the cell due to overexpression or deletion of a gene and to identify various protein modifications. The biological questions and the results of the described studies show the diversity of the information that can...... genes and proteins. It reports the first global proteome database collecting 36 yeast single gene deletion mutants and selecting over 650 differences between analysed mutants and the wild type strain. The obtained results show that two-dimensional gel electrophoresis and mass spectrometry based proteome...

  14. Reference Gene Screening for Analyzing Gene Expression Across Goat Tissue

    Yu Zhang

    2013-12-01

    Full Text Available Real-time quantitative PCR (qRT-PCR is one of the important methods for investigating the changes in mRNA expression levels in cells and tissues. Selection of the proper reference genes is very important when calibrating the results of real-time quantitative PCR. Studies on the selection of reference genes in goat tissues are limited, despite the economic importance of their meat and dairy products. We used real-time quantitative PCR to detect the expression levels of eight reference gene candidates (18S, TBP, HMBS, YWHAZ, ACTB, HPRT1, GAPDH and EEF1A2 in ten tissues types sourced from Boer goats. The optimal reference gene combination was selected according to the results determined by geNorm, NormFinder and Bestkeeper software packages. The analyses showed that tissue is an important variability factor in genes expression stability. When all tissues were considered, 18S, TBP and HMBS is the optimal reference combination for calibrating quantitative PCR analysis of gene expression from goat tissues. Dividing data set by tissues, ACTB was the most stable in stomach, small intestine and ovary, 18S in heart and spleen, HMBS in uterus and lung, TBP in liver, HPRT1 in kidney and GAPDH in muscle. Overall, this study provided valuable information about the goat reference genes that can be used in order to perform a proper normalisation when relative quantification by qRT-PCR studies is undertaken.

  15. Therapeutic genes for anti-HIV/AIDS gene therapy.

    Bovolenta, Chiara; Porcellini, Simona; Alberici, Luca

    2013-01-01

    The multiple therapeutic approaches developed so far to cope HIV-1 infection, such as anti-retroviral drugs, germicides and several attempts of therapeutic vaccination have provided significant amelioration in terms of life-quality and survival rate of AIDS patients. Nevertheless, no approach has demonstrated efficacy in eradicating this lethal, if untreated, infection. The curative power of gene therapy has been proven for the treatment of monogenic immunodeficiensies, where permanent gene modification of host cells is sufficient to correct the defect for life-time. No doubt, a similar concept is not applicable for gene therapy of infectious immunodeficiensies as AIDS, where there is not a single gene to be corrected; rather engineered cells must gain immunotherapeutic or antiviral features to grant either short- or long-term efficacy mostly by acquisition of antiviral genes or payloads. Anti-HIV/AIDS gene therapy is one of the most promising strategy, although challenging, to eradicate HIV-1 infection. In fact, genetic modification of hematopoietic stem cells with one or multiple therapeutic genes is expected to originate blood cell progenies resistant to viral infection and thereby able to prevail on infected unprotected cells. Ultimately, protected cells will re-establish a functional immune system able to control HIV-1 replication. More than hundred gene therapy clinical trials against AIDS employing different viral vectors and transgenes have been approved or are currently ongoing worldwide. This review will overview anti-HIV-1 infection gene therapy field evaluating strength and weakness of the transgenes and payloads used in the past and of those potentially exploitable in the future.

  16. GENES IN SPORT AND DOPING

    Andrzej Pokrywka

    2013-06-01

    Full Text Available Genes control biological processes such as muscle production of energy, mitochondria biogenesis, bone formation erythropoiesis, angiogenesis, vasodilation, neurogenesis, etc. DNA profiling for athletes reveals genetic variations that may be associated with endurance ability, muscle performance and power exercise, tendon susceptibility to injuries and psychological aptitude. Already, over 200 genes relating to physical performance have been identified by several research groups. Athletes’ genotyping is developing as a tool for the formulation of personalized training and nutritional programmes to optimize sport training as well as for the prediction of exercise-related injuries. On the other hand, development of molecular technology and gene therapy creates a risk of non-therapeutic use of cells, genes and genetic elements to improve athletic performance. Therefore, the World Anti-Doping Agency decided to include prohibition of gene doping within their World Anti-Doping Code in 2003. In this review article, we will provide a current overview of genes for use in athletes’ genotyping and gene doping possibilities, including their development and detection techniques.

  17. [Gene doping: gene transfer and possible molecular detection].

    Argüelles, Carlos Francisco; Hernández-Zamora, Edgar

    2007-01-01

    The use of illegal substances in sports to enhance athletic performance during competition has caused international sports organizations such as the COI and WADA to take anti doping measures. A new doping method know as gene doping is defined as "the non-therapeutic use of genes, genetic elements and/or cells that have the capacity to enhance athletic performance". However, gene doping in sports is not easily identified and can cause serious consequences. Molecular biology techniques are needed in order to distinguish the difference between a "normal" and an "altered" genome. Further, we need to develop new analytic methods and biological molecular techniques in anti-doping laboratories, and design programs that avoid the non therapeutic use of genes.

  18. Delimiting Coalescence Genes (C-Genes) in Phylogenomic Data Sets.

    Springer, Mark S; Gatesy, John

    2018-02-26

    coalescence methods have emerged as a popular alternative for inferring species trees with large genomic datasets, because these methods explicitly account for incomplete lineage sorting. However, statistical consistency of summary coalescence methods is not guaranteed unless several model assumptions are true, including the critical assumption that recombination occurs freely among but not within coalescence genes (c-genes), which are the fundamental units of analysis for these methods. Each c-gene has a single branching history, and large sets of these independent gene histories should be the input for genome-scale coalescence estimates of phylogeny. By contrast, numerous studies have reported the results of coalescence analyses in which complete protein-coding sequences are treated as c-genes even though exons for these loci can span more than a megabase of DNA. Empirical estimates of recombination breakpoints suggest that c-genes may be much shorter, especially when large clades with many species are the focus of analysis. Although this idea has been challenged recently in the literature, the inverse relationship between c-gene size and increased taxon sampling in a dataset-the 'recombination ratchet'-is a fundamental property of c-genes. For taxonomic groups characterized by genes with long intron sequences, complete protein-coding sequences are likely not valid c-genes and are inappropriate units of analysis for summary coalescence methods unless they occur in recombination deserts that are devoid of incomplete lineage sorting (ILS). Finally, it has been argued that coalescence methods are robust when the no-recombination within loci assumption is violated, but recombination must matter at some scale because ILS, a by-product of recombination, is the raison d'etre for coalescence methods. That is, extensive recombination is required to yield the large number of independently segregating c-genes used to infer a species tree. If coalescent methods are powerful

  19. Gene therapy of cancer by vaccines carrying inserted immunostimulatory genes

    Bubeník, Jan

    2007-01-01

    Roč. 53, č. 3 (2007), s. 71-73 ISSN 0015-5500 Grant - others:EU-FP6 NoE Clinigene(XE) 018933; Liga proti rakovině, Praha(CZ) XX Institutional research plan: CEZ:AV0Z50520514 Keywords : gene therapy * immunostimulatory genes * vaccine Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.596, year: 2007

  20. Cloning and selection of reference genes for gene expression ...

    Full length mRNA sequences of Ac-β-actin and Ac-gapdh, and partial mRNA sequences of Ac-18SrRNA and Ac-ubiquitin were cloned from pineapple in this study. The four genes were tested as housekeeping genes in three experimental sets. GeNorm and NormFinder analysis revealed that β-actin was the most ...

  1. The hunt for gene dopers.

    Mansour, Mai M H; Azzazy, Hassan M E

    2009-07-01

    Gene doping, the abuse of gene therapy for illicit athletic enhancement, is perceived as a coming threat and is a prime concern to the anti-doping community. This doping technique represents a significant ethical challenge and there are concerns regarding its safety for athletes. This article presents the basics of gene doping, potential strategies for its detection and the role of promising new technologies in aiding detection efforts. These include the use of lab-on-a-chip techniques as well as nanoparticles to enhance the performance of current analytical methods and to develop new doping detection strategies.

  2. Gene Therapy Approaches to Hemoglobinopathies.

    Ferrari, Giuliana; Cavazzana, Marina; Mavilio, Fulvio

    2017-10-01

    Gene therapy for hemoglobinopathies is currently based on transplantation of autologous hematopoietic stem cells genetically modified with a lentiviral vector expressing a globin gene under the control of globin transcriptional regulatory elements. Preclinical and early clinical studies showed the safety and potential efficacy of this therapeutic approach as well as the hurdles still limiting its general application. In addition, for both beta-thalassemia and sickle cell disease, an altered bone marrow microenvironment reduces the efficiency of stem cell harvesting as well as engraftment. These hurdles need be addressed for gene therapy for hemoglobinopathies to become a clinical reality. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Gene expression in colorectal cancer

    Birkenkamp-Demtroder, Karin; Christensen, Lise Lotte; Olesen, Sanne Harder

    2002-01-01

    Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each...... pool) of total RNA from left-sided sporadic colorectal carcinomas. We compared normal tissue to carcinoma tissue from Dukes' stages A-D (noninvasive to distant metastasis) and identified 908 known genes and 4,155 ESTs that changed remarkably from normal to tumor tissue. Based on intensive filtering 226...

  4. Correction of gene expression data

    Darbani Shirvanehdeh, Behrooz; Stewart, C. Neal, Jr.; Noeparvar, Shahin

    2014-01-01

    This report investigates for the first time the potential inter-treatment bias source of cell number for gene expression studies. Cell-number bias can affect gene expression analysis when comparing samples with unequal total cellular RNA content or with different RNA extraction efficiencies....... For maximal reliability of analysis, therefore, comparisons should be performed at the cellular level. This could be accomplished using an appropriate correction method that can detect and remove the inter-treatment bias for cell-number. Based on inter-treatment variations of reference genes, we introduce...

  5. American Society of Gene & Cell Therapy

    ... Gene & Cell Therapy Defined Gene therapy and cell therapy are overlapping fields of biomedical research that aim to repair the direct cause of genetic diseases. Read More Gene & Cell Therapy FAQ's Read the most common questions raised by ...

  6. Basics on Genes and Genetic Disorders

    ... for Educators Search English Español The Basics on Genes and Genetic Disorders KidsHealth / For Teens / The Basics ... such as treating health problems. What Is a Gene? To understand how genes work, let's review some ...

  7. Norrie disease gene is distinct from the monoamine oxidase genes.

    Sims, K B; Ozelius, L; Corey, T; Rinehart, W B; Liberfarb, R; Haines, J; Chen, W J; Norio, R; Sankila, E; de la Chapelle, A

    1989-09-01

    The genes for MAO-A and MAO-B appear to be very close to the Norrie disease gene, on the basis of loss and/or disruption of the MAO genes and activities in atypical Norrie disease patients deleted for the DXS7 locus; linkage among the MAO genes, the Norrie disease gene, and the DXS7 locus; and mapping of all these loci to the chromosomal region Xp11. The present study provides evidence that the MAO genes are not disrupted in "classic" Norrie disease patients. Genomic DNA from these "nondeletion" Norrie disease patients did not show rearrangements at the MAOA or DXS7 loci. Normal levels of MAO-A activities, as well as normal amounts and size of the MAO-A mRNA, were observed in cultured skin fibroblasts from these patients, and MAO-B activity in their platelets was normal. Catecholamine metabolites evaluated in plasma and urine were in the control range. Thus, although some atypical Norrie disease patients lack both MAO-A and MAO-B activities, MAO does not appear to be an etiologic factor in classic Norrie disease.

  8. Cannabinoid Receptor 1 Gene Polymorphisms and Marijuana Misuse Interactions On White Matter and Cognitive Deficits in Schizophrenia

    Ho, Beng-Choon; Wassink, Thomas H.; Ziebell, Steven; Andreasen, Nancy C.

    2011-01-01

    Marijuana exposure during the critical period of adolescent brain maturation may disrupt neuro-modulatory influences of endocannabinoids and increase schizophrenia susceptibility. Cannabinoid receptor 1 (CB1/CNR1) is the principal brain receptor mediating marijuana effects. No study to-date has systematically investigated the impact of CNR1 on quantitative phenotypic features in schizophrenia and inter-relationships with marijuana misuse. We genotyped 235 schizophrenia patients using 12 tag s...

  9. Endocannabinoids and the Endocrine System in Health and Disease.

    Hillard, Cecilia J

    2015-01-01

    Some of the earliest reports of the effects of cannabis consumption on humans were related to endocrine system changes. In this review, the effects of cannabinoids and the role of the CB1 cannabinoid receptor in the regulation of the following endocrine systems are discussed: the hypothalamic-pituitary-gonadal axis, prolactin and oxytocin, thyroid hormone and growth hormone, and the hypothalamic-pituitary-adrenal axis. Preclinical and human study results are presented.

  10. Circulating endocannabinoids during hematopoietic stem cell transplantation: A pilot study

    Jennifer M. Knight

    2015-01-01

    Conclusions: The eCB signaling system may have alternative sources and regulatory mechanisms in addition to the immune system. Given the significant associations with inflammatory molecules and depressive symptoms in the peri-transplant period, it is important to better understand this system and its potential implications in the setting of complex and stressful medical procedures such as HCT.

  11. Marijuana, the Endocannabinoid System and the Female Reproductive System

    Brents, Lisa K.

    2016-01-01

    Marijuana use among women is highly prevalent, but the societal conversation on marijuana rarely focuses on how marijuana affects female reproduction and endocrinology. This article reviews the current scientific literature regarding marijuana use and hypothalamic-pituitary-ovarian (HPO) axis regulation, ovarian hormone production, the menstrual cycle, and fertility. Evidence suggests that marijuana can reduce female fertility by disrupting hypothalamic release of gonadotropin releasing hormo...

  12. Information-processing genes

    Tahir Shah, K.

    1995-01-01

    There are an estimated 100,000 genes in the human genome of which 97% is non-coding. On the other hand, bacteria have little or no non-coding DNA. Non-coding region includes introns, ALU sequences, satellite DNA, and other segments not expressed as proteins. Why it exists? Why nature has kept non-coding during the long evolutionary period if it has no role in the development of complex life forms? Does complexity of a species somehow correlated to the existence of apparently useless sequences? What kind of capability is encoded within such nucleotide sequences that is a necessary, but not a sufficient condition for the evolution of complex life forms, keeping in mind the C-value paradox and the omnipresence of non-coding segments in higher eurkaryotes and also in many archea and prokaryotes. The physico-chemical description of biological processes is hardware oriented and does not highlight algorithmic or information processing aspect. However, an algorithm without its hardware implementation is useless as much as hardware without its capability to run an algorithm. The nature and type of computation an information-processing hardware can perform depends only on its algorithm and the architecture that reflects the algorithm. Given that enormously difficult tasks such as high fidelity replication, transcription, editing and regulation are all achieved within a long linear sequence, it is natural to think that some parts of a genome are involved is these tasks. If some complex algorithms are encoded with these parts, then it is natural to think that non-coding regions contain processing-information algorithms. A comparison between well-known automatic sequences and sequences constructed out of motifs is found in all species proves the point: noncoding regions are a sort of ''hardwired'' programs, i.e., they are linear representations of information-processing machines. Thus in our model, a noncoding region, e.g., an intron contains a program (or equivalently, it is

  13. Gene Therapy for Parkinson's Disease

    Rachel Denyer

    2012-01-01

    Full Text Available Current pharmacological and surgical treatments for Parkinson's disease offer symptomatic improvements to those suffering from this incurable degenerative neurological disorder, but none of these has convincingly shown effects on disease progression. Novel approaches based on gene therapy have several potential advantages over conventional treatment modalities. These could be used to provide more consistent dopamine supplementation, potentially providing superior symptomatic relief with fewer side effects. More radically, gene therapy could be used to correct the imbalances in basal ganglia circuitry associated with the symptoms of Parkinson's disease, or to preserve or restore dopaminergic neurons lost during the disease process itself. The latter neuroprotective approach is the most exciting, as it could theoretically be disease modifying rather than simply symptom alleviating. Gene therapy agents using these approaches are currently making the transition from the laboratory to the bedside. This paper summarises the theoretical approaches to gene therapy for Parkinson's disease and the findings of clinical trials in this rapidly changing field.

  14. [Obesity studies in candidate genes].

    Ochoa, María del Carmen; Martí, Amelia; Martínez, J Alfredo

    2004-04-17

    There are more than 430 chromosomic regions with gene variants involved in body weight regulation and obesity development. Polymorphisms in genes related to energy expenditure--uncoupling proteins (UCPs), related to adipogenesis and insulin resistance--hormone-sensitive lipase (HLS), peroxisome proliferator-activated receptor gamma (PPAR gamma), beta adrenergic receptors (ADRB2,3), and alfa tumor necrosis factor (TNF-alpha), and related to food intake--ghrelin (GHRL)--appear to be associated with obesity phenotypes. Obesity risk depends on two factors: a) genetic variants in candidate genes, and b) biographical exposure to environmental risk factors. It is necessary to perform new studies, with appropriate control groups and designs, in order to reach relevant conclusions with regard to gene/environmental (diet, lifestyle) interactions.

  15. Novel genes in LDL metabolism

    Christoffersen, Mette; Tybjærg-Hansen, Anne

    2015-01-01

    PURPOSE OF REVIEW: To summarize recent findings from genome-wide association studies (GWAS), whole-exome sequencing of patients with familial hypercholesterolemia and 'exome chip' studies pointing to novel genes in LDL metabolism. RECENT FINDINGS: The genetic loci for ATP-binding cassette......-exome sequencing and 'exome chip' studies have additionally suggested several novel genes in LDL metabolism including insulin-induced gene 2, signal transducing adaptor family member 1, lysosomal acid lipase A, patatin-like phospholipase domain-containing protein 5 and transmembrane 6 superfamily member 2. Most...... of these findings still require independent replications and/or functional studies to confirm the exact role in LDL metabolism and the clinical implications for human health. SUMMARY: GWAS, exome sequencing studies, and recently 'exome chip' studies have suggested several novel genes with effects on LDL cholesterol...

  16. Gene discovery in Triatoma infestans

    de Burgos Nelia

    2011-03-01

    Full Text Available Abstract Background Triatoma infestans is the most relevant vector of Chagas disease in the southern cone of South America. Since its genome has not yet been studied, sequencing of Expressed Sequence Tags (ESTs is one of the most powerful tools for efficiently identifying large numbers of expressed genes in this insect vector. Results In this work, we generated 826 ESTs, resulting in an increase of 47% in the number of ESTs available for T. infestans. These ESTs were assembled in 471 unique sequences, 151 of which represent 136 new genes for the Reduviidae family. Conclusions Among the putative new genes for the Reduviidae family, we identified and described an interesting subset of genes involved in development and reproduction, which constitute potential targets for insecticide development.

  17. Gene therapy of thyroid carcinoma

    Zheng Wei; Tan Jian

    2007-01-01

    Normally, differentiated thyroid carcinoma(DTC) is a disease of good prognosis, but about 30% of the tumors are dedifferentiate, which are inaccessible to standard therapeutic procedures such as 'operation, 131 I therapy and thyroid hormone'. Both internal and abroad experts are researching a new therapy of dedifferentiated thyroid carcinoma--gene therapy. Many of them utilize methods of it, but follow different strategies: (1) transduction of the thyroid sodium/iodide transporter gene to make tissues that do not accumulate iodide treatable by 131 I therapy; (2) strengthening of the anti-tumor immune response; (3) suicide gene therapy; (4) depression the generation of tumor cells; (5) gene therapy of anti- vascularization. (authors)

  18. MADS-box gene evolution - structure and transcription patterns

    Johansen, Bo; Pedersen, Louise Buchholt; Skipper, Martin

    2002-01-01

    Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs......Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs...

  19. Endocrine aspects of cancer gene therapy.

    Barzon, Luisa; Boscaro, Marco; Palù, Giorgio

    2004-02-01

    The field of cancer gene therapy is in continuous expansion, and technology is quickly moving ahead as far as gene targeting and regulation of gene expression are concerned. This review focuses on the endocrine aspects of gene therapy, including the possibility to exploit hormone and hormone receptor functions for regulating therapeutic gene expression, the use of endocrine-specific genes as new therapeutic tools, the effects of viral vector delivery and transgene expression on the endocrine system, and the endocrine response to viral vector delivery. Present ethical concerns of gene therapy and the risk of germ cell transduction are also discussed, along with potential lines of innovation to improve cell and gene targeting.

  20. Gene Therapy in Cardiac Arrhythmias

    Praveen, S.V; Francis, Johnson; Venugopal, K

    2006-01-01

    Gene therapy has progressed from a dream to a bedside reality in quite a few human diseases. From its first application in adenosine deaminase deficiency, through the years, its application has evolved to vascular angiogenesis and cardiac arrhythmias. Gene based biological pacemakers using viral vectors or mesenchymal cells tested in animal models hold much promise. Induction of pacemaker activity within the left bundle branch can provide stable heart rates. Genetic modification of the AV...

  1. Transgenic Arabidopsis Gene Expression System

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  2. Decoding Gene Patents in Australia

    Denley, Adam; Cherry, James

    2015-01-01

    Patents directed to naturally occurring genetic material, such as DNA, RNA, chromosomes, and genes, in an isolated or purified form have been granted in Australia for many years. This review provides scientists with a summary of the gene patent debate from an Australian perspective and specifically reviews how the various levels of the legal system as they apply to patents—the Australian Patent Office, Australian courts, and Australian government—have dealt with the issue of whether genetic m...

  3. Gene-gene, gene-environment, gene-nutrient interactions and single nucleotide polymorphisms of inflammatory cytokines.

    Nadeem, Amina; Mumtaz, Sadaf; Naveed, Abdul Khaliq; Aslam, Muhammad; Siddiqui, Arif; Lodhi, Ghulam Mustafa; Ahmad, Tausif

    2015-05-15

    Inflammation plays a significant role in the etiology of type 2 diabetes mellitus (T2DM). The rise in the pro-inflammatory cytokines is the essential step in glucotoxicity and lipotoxicity induced mitochondrial injury, oxidative stress and beta cell apoptosis in T2DM. Among the recognized markers are interleukin (IL)-6, IL-1, IL-10, IL-18, tissue necrosis factor-alpha (TNF-α), C-reactive protein, resistin, adiponectin, tissue plasminogen activator, fibrinogen and heptoglobins. Diabetes mellitus has firm genetic and very strong environmental influence; exhibiting a polygenic mode of inheritance. Many single nucleotide polymorphisms (SNPs) in various genes including those of pro and anti-inflammatory cytokines have been reported as a risk for T2DM. Not all the SNPs have been confirmed by unifying results in different studies and wide variations have been reported in various ethnic groups. The inter-ethnic variations can be explained by the fact that gene expression may be regulated by gene-gene, gene-environment and gene-nutrient interactions. This review highlights the impact of these interactions on determining the role of single nucleotide polymorphism of IL-6, TNF-α, resistin and adiponectin in pathogenesis of T2DM.

  4. Cationic Bolaamphiphiles for Gene Delivery

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad

    2014-05-01

    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  5. BEEF CATTLE MUSCULARITY CANDIDATE GENES

    Irida Novianti

    2010-04-01

    Full Text Available Muscularity is a potential indicator for the selection of more productive cattle. Mapping quantitative trait loci (QTL for traits related to muscularity is useful to identify the genomic regions where the genes affecting muscularity reside. QTL analysis from a Limousin-Jersey double backcross herd was conducted using QTL Express software with cohort and breed as the fixed effects. Nine QTL suggested to have an association with muscularity were identified on cattle chromosomes BTA 1, 2, 3, 4, 5, 8, 12, 14 and 17. The myostatin gene is located at the centromeric end of chromosome 2 and not surprisingly, the Limousin myostatin F94L variant accounted for the QTL on BTA2. However, when the myostatin F94L genotype was included as an additional fixed effect, the QTL on BTA17 was also no longer significant. This result suggests that there may be gene(s that have epistatic effects with myostatin located on cattle chromosome 17. Based on the position of the QTL in base pairs, all the genes that reside in the region were determined using the Ensembl data base (www.ensembl.org. There were two potential candidate genes residing within these QTL regions were selected. They were Smad nuclear interacting protein 1 (SNIP1 and similar to follistatin-like 5 (FSTL5. (JIIPB 2010 Vol 20 No 1: 1-10

  6. Cloning human DNA repair genes

    Jeggo, P.A.; Carr, A.M.; Lehmann, A.R.

    1994-01-01

    Many human genes involved in the repair of UV damage have been cloned using different procedures and they have been of great value in assisting the understanding of the mechanism of nucleotide excision-repair. Genes involved in repair of ionizing radiation damage have proved more difficult to isolate. Positional cloning has localized the XRCC5 gene to a small region of chromosome 2q33-35, and a series of yeast artificial chromosomes covering this region have been isolated. Very recent work has shown that the XRCC5 gene encodes the 80 kDa subunit of the Ku DNA-binding protein. The Ku80 gene also maps to this region. Studies with fission yeast have shown that radiation sensitivity can result not only from defective DNA repair but also from abnormal cell cycle control following DNA damage. Several genes involved in this 'check-point' control in fission yeast have been isolated and characterized in detail. It is likely that a similar checkpoint control mechanism exists in human cells. (author)

  7. Homology-dependent Gene Silencing in Paramecium

    Ruiz, Françoise; Vayssié, Laurence; Klotz, Catherine; Sperling, Linda; Madeddu, Luisa

    1998-01-01

    Microinjection at high copy number of plasmids containing only the coding region of a gene into the Paramecium somatic macronucleus led to a marked reduction in the expression of the corresponding endogenous gene(s). The silencing effect, which is stably maintained throughout vegetative growth, has been observed for all Paramecium genes examined so far: a single-copy gene (ND7), as well as members of multigene families (centrin genes and trichocyst matrix protein genes) in which all closely related paralogous genes appeared to be affected. This phenomenon may be related to posttranscriptional gene silencing in transgenic plants and quelling in Neurospora and allows the efficient creation of specific mutant phenotypes thus providing a potentially powerful tool to study gene function in Paramecium. For the two multigene families that encode proteins that coassemble to build up complex subcellular structures the analysis presented herein provides the first experimental evidence that the members of these gene families are not functionally redundant. PMID:9529389

  8. New Gene Evolution: Little Did We Know

    Long, Manyuan; VanKuren, Nicholas W.; Chen, Sidi; Vibranovski, Maria D.

    2014-01-01

    Genes are perpetually added to and deleted from genomes during evolution. Thus, it is important to understand how new genes are formed and evolve as critical components of the genetic systems determining the biological diversity of life. Two decades of effort have shed light on the process of new gene origination, and have contributed to an emerging comprehensive picture of how new genes are added to genomes, ranging from the mechanisms that generate new gene structures to the presence of new genes in different organisms to the rates and patterns of new gene origination and the roles of new genes in phenotypic evolution. We review each of these aspects of new gene evolution, summarizing the main evidence for the origination and importance of new genes in evolution. We highlight findings showing that new genes rapidly change existing genetic systems that govern various molecular, cellular and phenotypic functions. PMID:24050177

  9. Advances in study of reporter gene imaging for monitoring gene therapy

    Mu Chuanjie; Zhou Jiwen

    2003-01-01

    To evaluate the efficiency of gene therapy, it is requisite to monitor localization and expression of the therapeutic gene in vivo. Monitoring expression of reporter gene using radionuclide reporter gene technique is the best method. Adenoviral vectors expressing reporter gene are constructed using gene fusion, bicistronic, double promoter or bidirectional transcriptional recombination techniques, and transferred into target cells and t