WorldWideScience

Sample records for extruded 24s-t aluminum

  1. Effects of Cyclic Loading on Mechanical Behavior of 24S-T4 and 75S-T6 Aluminum Alloys and SAE 4130 Steel

    Science.gov (United States)

    Macgregor, C W; Grossman, N

    1952-01-01

    An investigation was conducted to determine the effects of cyclic loading on the mechanical behavior of 24S-T4 and 75S-T6 aluminum alloys and SAE 4130 steel. Specimens of the three materials were subjected to various numbers of prior fatigue cycles both below and above the fatigue limits. Special slow-bend tests were employed to show the effects of prior cycles of fatigue stressing on the transition temperature to brittle fracture for SAE 4130 steel and on the energy-absorption capacity of the aluminum alloys. Micrographic studies were made to observe and measure crack formation and propagation and additional special tests were conducted to supplement the results of the slow-bend tests. These included Charpy impact tests, mirohardness surveys, tension tests, and fretting-corrosion studies.

  2. Efficient Welding Fabrication of Extruded Aluminum Mat Panels

    Science.gov (United States)

    1991-09-01

    aged to produce the needle structure. This is confirmed by Enjo (Ref. 41) for 6063 - T5 alloy. However, as was shown by Dumolt (Ref. 38), increase in...According to Ref. 1, extrudability of 6061 alloy is rated as 60% of that of the standard 6063 alloy. The various combinations of properties and economics of...extrudability 2-17 TABLE 2-1. ExtrudabUilty of AI-Mg-SI Alloys A.A. Designation Grading Characteristics 6063 Low Strength Good finish, high extrusion

  3. A characterization for the flow behavior of as-extruded 7075 aluminum alloy by the improved Arrhenius model with variable parameters

    National Research Council Canada - National Science Library

    Quan, Guo-zheng; Li, Gui-sheng; Wang, Yang; Lv, Wen-quan; Yu, Chun-tang; Zhou, Jie

    2013-01-01

    In order to perform the numerical simulations of forging response and establish the processing parameters for as-extruded 7075 aluminum alloy, the compressive deformation behavior of as-extruded 7075...

  4. Analysis of the cyclic behavior and fatigue damage of extruded AA2017 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    May, A., E-mail: abdelghani1980@yahoo.fr [INSA/GPM, CNRS UMR 6634, BP 08 avenue de l' université, 76801 Saint Etienne du Rouvray Cedex (France); Laboratoire Génie des Matériaux, Ecole Militaire Polytechnique, BP 17 Bordj El-Bahri Algiers (Algeria); Taleb, L., E-mail: lakhdar.taleb@insa-rouen.fr [INSA/GPM, CNRS UMR 6634, BP 08 avenue de l' université, 76801 Saint Etienne du Rouvray Cedex (France); Belouchrani, M.A., E-mail: nbelouch@yahoo.fr [Laboratoire Génie des Matériaux, Ecole Militaire Polytechnique, BP 17 Bordj El-Bahri Algiers (Algeria)

    2013-06-01

    The present work is devoted to study the anisotropic behavior of an extruded aluminum alloy under cyclic loading in axial and shear directions. In first, we have studied its elastoplastic behavior through the evolution of stress–strain loops, isotropic and kinematic hardening and we have associated this behavior with the evolution of its elastic adaptation (shakedown). In second, we have studied the behavior of the material in fatigue damage using the evolution of stiffness. Finally, microstructural investigations were performed on fractured surfaces using scanning electron microscope (SEM) in order to understand the evolution of fatigue damage during cyclic loading.

  5. A Through Process Model for Extruded AA3xxx Aluminum Alloys

    Science.gov (United States)

    Poole, W. J.; Wells, M. A.; Parson, N. C.

    The application of extruded AA3xxx aluminum tubing in automotive heat exchanger systems is a growth area. This work involves the development of a series of linked mathematical models which describe microstructure evolution as a function of processing conditions including homogenization, hot extrusion and the final brazing heat treatment. It is necessary to link the processes and track microstructure through the processes in order to predict final microstructure and properties of the aluminum in heat exchanger applications. For example, the homogenization step is critical to control the morphology, shape and spatial distribution of second phase particles, i.e. dispersoids and constituent particles. The results of i) a chemistry dependent finite difference model for homogenization, ii)a finite element based hot extrusion model and iii) a model for cold work and annealing model will be described with emphasis on the successes of the model but the challenges for future work will also be addressed.

  6. Modeling the Hot Deformation Behaviors of As-Extruded 7075 Aluminum Alloy by an Artificial Neural Network with Back-Propagation Algorithm

    Science.gov (United States)

    Quan, Guo-zheng; Zou, Zhen-yu; Wang, Tong; Liu, Bo; Li, Jun-chao

    2017-01-01

    In order to investigate the hot deformation behaviors of as-extruded 7075 aluminum alloy, the isothermal compressive tests were conducted at the temperatures of 573, 623, 673 and 723 K and the strain rates of 0.01, 0.1, 1 and 10 s-1 on a Gleeble 1500 thermo-mechanical simulator. The flow behaviors showing complex characteristics are sensitive to strain, strain rate and temperature. The effects of strain, temperature and strain rate on flow stress were analyzed and dynamic recrystallization (DRX)-type softening characteristics of the flow behaviors with single peak were identified. An artificial neural network (ANN) with back-propagation (BP) algorithm was developed to deal with the complex deformation behavior characteristics based on the experimental data. The performance of ANN model has been evaluated in terms of correlation coefficient (R) and average absolute relative error (AARE). A comparative study on Arrhenius-type constitutive equation and ANN model for as-extruded 7075 aluminum alloy was conducted. Finally, the ANN model was successfully applied to the development of processing map and implanted into finite element simulation. The results have sufficiently articulated that the well-trained ANN model with BP algorithm has excellent capability to deal with the complex flow behaviors of as-extruded 7075 aluminum alloy and has great application potentiality in hot deformation processes.

  7. Effect of Low Feed Rate FSP on Microstructure and Mechanical Properties of Extruded Cast 2285 Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Friction stir processing (FSP), a variation of FSW (friction stir welding) is an emerging surface engineering technology that can locally eliminate casting defects and refine microstructures, thereby improving the mechanical properties of material. FSP can also produce fine grained microstructures through the thickness to impart superplasticity. The technology involves plunging a rapidly rotating, non consumable tool, comprising a profiled pin and larger diameter shoulder, into the surface and then traversing the tool across the surface. The pin and the shoulder friction heat the surface which alters the grain structure in the processed area thereby improving the mechanical properties. This paper presents the effects of FSP on microstructure and mechanical properties of extruded cast 2285 aluminum alloy at three different feed rates viz. 10, 12 and 15 mm/min. With the increase in the feed speed the material was observed to have increased impact strength. FSP also increased the tensile and yield strengths with increases in hardness and ductility values also. The observation has been listed in detail and pictorially represented.

  8. Sound Radiation Characteristics of Extruded Aluminum%中空挤压铝型材振动声辐射特性

    Institute of Scientific and Technical Information of China (English)

    吴健; 周信; 肖新标; 金学松

    2014-01-01

    Extruded aluminum panel is widely used for weight reduction in high-speed train. However, the sound radiation of the panel is one of the main sources of the interior noise. In this paper, the hybrid FE-SEA model and the SEA model are used to predict the sound radiation of the extruded aluminum under the excitations of pink noise spectrum and wheel-rail excitation spectrum respectively. The influence of different geometry factors of the extruded aluminum and train speeds on sound and vibration is investigated. The results show that when the extruded aluminum is excited by pink noise spectrum, the bottom plates have the greatest impact on the sound radiation. The difference of the sound radiation in comparison with the referenced section aluminum is more than 1 dB. When the extruded aluminum is excited by wheel-rail excitation spectrum, the main frequency of sound radiation ranges from 400 Hz to 1 600 Hz. The results may provide a theoretical guidance for the design of the extruded aluminum.%随着高速列车车体结构轻量化的发展,中空挤压铝型材结构的车体在高速列车上得到广泛应用,而车体的振动声辐射是高速列车车内噪声的主要来源之一。基于FE-SEA混合法和统计能量分析(SEA)分别建立了高速列车车体铝型材振动声辐射的中频和高频预测模型,计算了在粉红噪声谱激励下和实测轮轨激励下铝型材辐射至半空间的声功率,探索了铝型材几何特征因素和不同速度实测轮轨激励对振动声辐射特性的影响。计算结果表明,在粉红噪声谱激励下,下板对铝型材振动声辐射影响最大,与参考铝型材相比相差大于1 dB。铝型材在实测轮轨激励下,辐射声功率的主要贡献频段为400 Hz~1600 Hz,速度增大加剧了铝型材在400 Hz以上中高频频段的振动声辐射。相关计算结果将为高速列车车体铝型材的设计提供理论参考。

  9. Intelligent Extruder

    Energy Technology Data Exchange (ETDEWEB)

    AlperEker; Mark Giammattia; Paul Houpt; Aditya Kumar; Oscar Montero; Minesh Shah; Norberto Silvi; Timothy Cribbs

    2003-04-24

    ''Intelligent Extruder'' described in this report is a software system and associated support services for monitoring and control of compounding extruders to improve material quality, reduce waste and energy use, with minimal addition of new sensors or changes to the factory floor system components. Emphasis is on process improvements to the mixing, melting and de-volatilization of base resins, fillers, pigments, fire retardants and other additives in the :finishing'' stage of high value added engineering polymer materials. While GE Plastics materials were used for experimental studies throughout the program, the concepts and principles are broadly applicable to other manufacturers materials. The project involved a joint collaboration among GE Global Research, GE Industrial Systems and Coperion Werner & Pleiderer, USA, a major manufacturer of compounding equipment. Scope of the program included development of a algorithms for monitoring process material viscosity without rheological sensors or generating waste streams, a novel detection scheme for rapid detection of process upsets and an adaptive feedback control system to compensate for process upsets where at line adjustments are feasible. Software algorithms were implemented and tested on a laboratory scale extruder (50 lb/hr) at GE Global Research and data from a production scale system (2000 lb/hr) at GE Plastics was used to validate the monitoring and detection software. Although not evaluated experimentally, a new concept for extruder process monitoring through estimation of high frequency drive torque without strain gauges is developed and demonstrated in simulation. A plan to commercialize the software system is outlined, but commercialization has not been completed.

  10. Design, fabrication and test of a hydrogen heat pipe. [extruding and grooving 6063-T6 aluminum tubes for cryogenic heat pipes

    Science.gov (United States)

    Alario, J.

    1979-01-01

    Re-entrant groove technology was extended to hydrogen heat pipes. Parametric analyses are presented which optimize the theoretical design while considering the limitations of state-of-the-art extrusion technology. The 6063-T6 aluminum extrusion is 14.6 mm OD with a wall thickness of 1.66 mm and contains 20 axial grooves which surround a central 9.3 mm diameter vapor core. Each axial groove is 0.775 mm diameter with a 0.33 mm opening. An excess vapor reservoir is provided at the evaporator to minimize the pressure containment hazard during ambient storage. Modifications to the basic re-entrant groove profile resulted in improved overall performance. While the maximum heat transport capacity decreased slightly to 103 w-m the static wicking height increased markedly to 4.5 cm. The heat pipe became operational between 20 and 30 K after a cooldown from 77 K without any difficulty. Steady state performance data taken over a 19 to 23 K temperature range indicated: (1) maximum heat transport capacity of 5.4 w-m; (2) static wicking height of 1.42 cm; and (3) overall heat pipe conductance of 1.7 watts/deg C.

  11. Hot Extrusion of Aluminum Chips

    Science.gov (United States)

    Tekkaya, A. Erman; Güley, Volkan; Haase, Matthias; Jäger, Andreas

    The process of hot extrusion is a promising approach for the direct recycling of aluminum machining chips to aluminum profiles. The presented technology is capable of saving energy, as remelting of aluminum chips can be avoided. Depending on the deformation route and process parameters, the chip-based aluminum extradates showed mechanical properties comparable or superior to cast aluminum billets extruded under the same conditions. Using different metal flow schemes utilizing different extrusion dies the mechanical properties of the profiles extruded from chips can be improved. The energy absorption capacity of the profiles the rectangular hollow profiles extruded from chips and as-cast billets were analyzed using the drop hammer test set-up. The formability of the profiles extruded from chips and as-cast material were compared using tube bending tests in a three-roller-bending machine.

  12. Physical properties of extrudates containing distillers grains extruded in a twin screw extruder

    Science.gov (United States)

    Extrusion trials were conducted with varying levels of distillers dried grains with solubles (DDGS) along with soy flour, corn flour, fish meal, vitamin mix, mineral mix and net protein content adjusted to 28% using a Wenger TX-52 twin screw extruder. The properties of extrudates obtained with exper...

  13. The aluminum smelting process.

    Science.gov (United States)

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.

  14. Optimal Parameters Multicomponent Mixtures Extruding

    Directory of Open Access Journals (Sweden)

    Ramil F. Sagitov

    2013-01-01

    Full Text Available Experimental research of multicomponent mixtures extruding from production wastes are carried out, unit for production of composites from different types of waste is presented. Having analyzed dependence of multicomponent mixtures extruding energy requirements on die length and components content at three values of angular rate of screw rotation, we received the values of energy requirements at optimal length of the die, angular speed and percent of binding additives.

  15. Aluminum Alloy 7050 Extrusions.

    Science.gov (United States)

    1977-03-01

    Artificial Aging Conditions 250 A-l Fatigue Crack Growth Data for C5A Extruded Panel, 7050-T7351X, L-T Orientation, R=0.1 254 A-2 Fatigue...cooldd aluminum and steel bottom blocks (Figure 2) were fabricated for use with this tooling. Metal was melted in a 10,000-lb capacity open- hearth ...time factor, effects of heating through this temperature range to the maximum artificial agirg temperature are additive. The solution of the

  16. RDX/Sylgard extrudable explosive development

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, A.G.; Schmitz, G.T.; Stallings, T.L.; West, G.T.; Ashcraft, R.W.

    1977-10-01

    Formulation procedures for X-0208, an 80 percent RDX/20 percent Sylgard extrudable, have been developed. The extrudable explosive, made from a mixture of micronized RDX and Class E RDX, will sustain detonation in a 1.65 mm channel and can be mechanically extruded into ribbon-type configurations.

  17. Filter-extruded liposomes revisited

    DEFF Research Database (Denmark)

    Hinna, Askell; Steiniger, Frank; Hupfeld, Stefan;

    2016-01-01

    Filter-extrusion is a widely used technique for down-sizing of phospholipid vesicles. In order to gain a detailed insight into size and size distributions of filter-extruded vesicles composed of egg phosphatidyl-choline (with varying fractions of cholesterol) – in relation to extrusionparameters...

  18. Twin-Screw Extruders in Ceramic Extrusion

    Science.gov (United States)

    Wiedmann, Werner; Hölzel, Maria

    The machines mainly used for compounding plastics, chemicals and food are co-rotating, closely intermeshing twin-screw extruders. Some 30 000 such extruders are in use worldwide, about 1/3 are ZSKs from Coperion Werner & Pfleiderer, Stuttgart. In the chemical industry more and more batch mixers are being replaced by continuous twin-screw kneaders.

  19. Properties of extruded expandable breadfruit products

    Science.gov (United States)

    Dried breadfruit was extruded with a twin screw extruder to develop a value-added expanded fruit product. This research studied the effects of barrel temperature (120-160°C), moisture content (13-25%), feeding rate (13-25 kg/h) and screw speed (115-175rpm) on physicochemical properties (bulk densit...

  20. Extrudate Expansion Modelling through Dimensional Analysis Method

    DEFF Research Database (Denmark)

    A new model framework is proposed to correlate extrudate expansion and extrusion operation parameters for a food extrusion cooking process through dimensional analysis principle, i.e. Buckingham pi theorem. Three dimensionless groups, i.e. energy, water content and temperature, are suggested...... to describe the extrudates expansion. From the three dimensionless groups, an equation with three experimentally determined parameters is derived to express the extrudate expansion. The model is evaluated with whole wheat flour and aquatic feed extrusion experimental data. The average deviations...

  1. Extruded plastic scintillator for MINERvA

    Energy Technology Data Exchange (ETDEWEB)

    Pla-Dalmau, Anna; Bross, Alan D.; /Fermilab; Rykalin, Victor V.; Wood, Brian M.; /NICADD, DeKalb

    2005-11-01

    An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. A new experiment at Fermilab is pursuing the use of extruded plastic scintillator. A new plastic scintillator strip is being tested and its properties characterized. The initial results are presented here.

  2. TEXTURE ANALYSIS OF EXTRUDED APPLE POMACE - WHEAT SEMOLINA BLENDS

    Directory of Open Access Journals (Sweden)

    Ivan Bakalov

    2016-03-01

    Full Text Available Apple pomace - wheat semolina blends were extruded in a laboratory single screw extruder (Brabender 20 DN, Germany. Effects apple pomace content, moisture content, screw speed, and temperature of final cooking zone on texture of extrudates were studied applying response surface methodology. The texture characteristics of the extrudates were measured using a TA.XT Plus Texture Analyser, Stable Micro Systems.

  3. Experimental Study on Extruded Beer Adjunct Used for Brewing Beer

    Institute of Scientific and Technical Information of China (English)

    SHEN De-chao

    2004-01-01

    The properties of saccharified and boiled worts between extruded and traditional non-extruded beer adjuncts were studied at the laboratory and a small beer brewing equipment( 100 L) in this paper. Test results indicate that the main saccharification indices and filtration speeds of worts between extruded and traditional non-extruded beer adjuncts are similar basically. The collected rate of extracted material of worts of extruded beer adjuncts is 8%more than that of traditional non-extruded beer adjuncts. Fermentation time of worts of extruded beer adjuncts is 10 %less than that of traditional non-extruded beer adjuncts. The energy consumption of extruded beer adjuncts in saccharification process is 13 % less than that of traditional non-extruded beer adjuncts.

  4. Method of winning aluminum metal from aluminous ore

    Science.gov (United States)

    Loutfy, Raouf O.; Keller, Rudolf; Yao, Neng-Ping

    1981-01-01

    Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (AlS) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

  5. Extruded Soybean Samples for Mechnical Oil Expression

    Institute of Scientific and Technical Information of China (English)

    JiaFu-go; WuFeng-zhi; 等

    1999-01-01

    Soybean is generally recognized as a source of edible and the deoiled meal is seen as a source of protein in animal feed.In recent years.However,more interest has been directed toward using soy meal as a protein souce for human consumption.Extrusion-expelling of soybean provides an opportunity in this direction.The main focus of this study was to maximize the oil recovery from extruded soybean processed using three different kinds of extrudates and processing conditions.These extruded samples were later pressed uniaxially in a specifically designed test-cell and the oil recovery was recorded over time.The effects of process variables,including applied pressure,pressing temperature and sample height,were investigated.Results indicated that over 90% of the available oil could be recovered from pressing of extruded soy samples.The information generated is likedly to be useful in interpreting the effect of precess variables and extruding equipment for pretreatment of soybean for subsequent mechanical oil expression.

  6. Extruded Soybean Samples for Mechnical Oil Expression

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Soybean is generally recognized as a source of edible and the deoiled meal is seen as a source of protein in animal feed. In recent years. However,more interest has been directed toward using soy meal as a protein souce for human consumption. Extrusion-expelling of soybean provides an opportunity in this direction. The main focus of this study was to maximize the oil recovery from extruded soybean processed using three differ- ent kinds of extrudates and processing conditions. These extruded samples were later pressed uniaxially in a specifically designed test-cell and the oil recovery was recorded over time. The effects of process variables ,in- cluding applied pressure, pressing temperature and sample height, were investigated. Results indicated that over90% of the available oil could be recovered from pressing of extruded soy samples. The information gen- erated is likedly to be useful in interpreting the effect of precess variables and extruding equipment for pre- treatment of soybean for subsequent mechanical oil expression.

  7. Screw Extruder for Pellet Injection System

    Directory of Open Access Journals (Sweden)

    Sharadkumar K. Chhantbar

    2014-05-01

    Full Text Available Solid hydrogenic pellets are used as fuel for fusion energy reactor. A technique for continuous production of solid hydrogen and its isotopes by a screw extruder is suggested for the production of an unlimited number of pellets. The idea was developed and patented by PELIN laboratories, Inc. (Canada. A Gifford McMahon cryocooler is used for the generation of solid hydrogenic fluid pellets. Requirements of the pellets is depends upon the energy to be produced by tokamak. This review paper focuses on the model for the screw extruder for solidification of hydrogen ice having high injection reliability.

  8. Investigation of melting in a modular intermeshing co-rotating twin screw extruder

    Science.gov (United States)

    Jung, Ho-Chul

    Since the first patent regarding the co-rotating twin screw extruder was published in 1869, the co-rotating twin screw extruder has evolved into a high performance extruder, having self wiping capability, modular screw configuration, starved feed zone, kneading disc block elements, and special mixing devices. For this device, flow studies began in the mid 1960's but melting studies started in the early 1990's. Former researchers have insisted on their own melting mechanisms because they found different melting mechanisms under their limited and unsystematic experimental conditions. In this dissertation, melting mechanisms were studied systemically to determine when they occur according to the various process operating conditions. This melting study was carried out using an amorphous polymer: polystyrene (PS), two semi-crystalline polymers: linear low density polyethylene (LLDPE) and polypropylene (PP), one powder type LLDPE, and four LLDPE compounds with aluminum flake or calcium carbonate, which were used to provide differences in filler size or content. We observed the screw melting initiation and melting propagation first and categorized melting regimes such as screw melting initiation (SM) internal melting initiation (IM) and barrel melting initiation (BM) as melting initiation mechanisms, and screw melting propagation internal melting propagation barrel melting propagation and bed instability (BI) as melting propagation mechanisms. We translated these melting initiation mechanisms and melting propagation mechanisms into mathematical models. Then we integrated these models into user friendly commercial software, Akro-Co-Twin ScrewR, developed previously at our laboratories. We simulated several homopolymers at various operating conditions using the Akro-Co-Twin ScrewR. The simulation results were compared with the experimental results and were found to be in good agreement within the range of simulation. Using this software, twin screw extruder process

  9. A correlation for heat transfer coefficients in food extruders.

    Science.gov (United States)

    Levine, L; Rockwood, J

    1986-06-01

    A dimensionless correlation of heat transfer coefficient for heat flow between the extruder barrel wall and extrudate is presented. The standard error of estimate of the correlation is 12.4%. The correlation is useful for the design and scale-up of food extruders and the design of associated temperature control systems.

  10. Properties of extruded teff-oat composites

    Science.gov (United States)

    Teff is an ancient grain that is becoming more popular since it is gluten-free and a good source of vitamins, minerals and protein. Relatively little is known about the properties of extruded teff, although the high insoluble fiber and protein contents have been shown to limit expansion. The health ...

  11. RHEOLOGY OF EXTRUDED WHEY PROTEIN ISOLATE

    Science.gov (United States)

    Whey protein isolate (WPI), a high-quality protein used to fortify a number of foods, may be texturized with a twin-screw extruder. Since extrusion of food is commonly performed above 70°C, which causes whey protein to denature, cold extrusion below 70°C was investigated to determine the effects on...

  12. A phenomenological study on twin screw extruders

    NARCIS (Netherlands)

    Janssen, L.P.B.M.

    1976-01-01

    Although more and more twin screw extruders are being used in the polymer industry, the theoretical background is relatively undeveloped. The literature abounds in contradictions and often informs the reader that all extrusion problems can be solved if a certain new design is considered. The develop

  13. Interface Properties in Extruded FRC-Materials

    DEFF Research Database (Denmark)

    Stang, Henrik

    1997-01-01

    In a research and development project recently carried out at Department of Structural Engineering and Materials, Technical University of Denmark a new extrusion process for HPFRCC-materials was demonstrated.It is shown that superior interfacial properties are obtained in a polypropylene fiber...... reinforced cementitious material extruded by the developed process. It is further more shown that the fiber-matrix bond is highly dependent on the relative slip at the interface and a bond-slip relationship is suggested for the extruded material. The observed very high fiber-matrix bond is explained...... by the densification of the interfacial matrix material which has taken place during the consolidation process and which can be observed in the thin-section analysis....

  14. Description of Extrudate Swell for Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    Kejian Wang

    2010-01-01

    Full Text Available Extrudate swell is often observed to be weakened in nanocomposites compared to the pure polymer matrix. A theory quantifying this would be significant either for optimum processing or for understanding their viscoelasticity. A unified extrudate swell correlation with material properties and capillary parameters was suggested for polymer melt and their nanocomposites when considering the reservoir entry effect. More importantly, it was the first to find that the composite swell ratio can be the matrix swell ratio multiplied by the concentration shift factor, which is similar to the dynamic moduli expression for composites. The factor is a function of the shear field (stress or shear rate, filler content, filler internal structure and the surface state as well as the matrix properties. Several sets of swell data for nanocomposites were chosen from publications to test the new theories. The proposed quantitative model displayed good fit for the five kinds of nanocomposites, which verified the rationality of the swell theory for nanocomposites.

  15. EXTRUDED POLYSTYRENE FOAM IN FLAT ROOFS

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2014-09-01

    Full Text Available In our article we prove the necessity of applying thermal insulation with low water absorption and resistance and preserving mechanical and thermophysical properties in corrosive environment in flat roofs, where there is always a danger of penetrating condensed moisture into the structure. As such material we offered extruded polystyrene foam - heat-insulating polymer material with uniformly distributed closed cells. The products are used in the form of slab insulation and special items - for forming slopes and venting.

  16. Direct compression properties of melt-extruded isomalt.

    Science.gov (United States)

    Ndindayino, F; Henrist, D; Kiekens, F; Van den Mooter, G; Vervaet, C; Remon, J P

    2002-03-20

    Isomalt, a sugar alcohol, was melt-extruded prior to compression in order to improve its tabletting properties. After fusion, crystalline isomalt was transformed into an amorphous form as shown by X-ray diffraction and differential scanning calorimetry (DSC). The tabletting properties of amorphous isomalt were dramatically improved. Mixtures formulated with paracetamol (50%) and extruded isomalt yielded hard tablets. However, extruded isomalt powder showed agglomeration problems due to recrystallization of the amorphous phase into a stable crystalline form in the presence of atmospheric moisture. The evolution of the moisture content correlated well with the compressibility data. The tablets made of extruded isomalt powder had a lower friability in comparison to the tablets formulated with non-extruded isomalt powder. Their disintegration was fast and a rapid dissolution rate was recorded. Extruded isomalt displayed excellent tabletting properties; however, further experiments should be conducted to delay or even prevent recrystallization of amorphous isomalt.

  17. A whole life assessment of extruded double base propellants

    OpenAIRE

    Tucker, J.

    2013-01-01

    The manufacturing process for solventless extruded double base propellants involves a number of rolling and reworking stages. Throughout these processes a decrease in weight average molecular weight was observed, this was attributed to denitration. Differential scanning calorimetery data indicated that the reworking stages of extruded double base propellant manufacture were crucial to the homogenisation of the propellant mixture. To determine the homogeneity of the final extruded product, a s...

  18. [Insect pests dissemination by extruded starch packages].

    Science.gov (United States)

    Fraga, Felipe B; Alencar, Isabel D C C; Tavares, Marcelo T

    2009-01-01

    We observed the viability of extruded starch products used as impact protector for fragile packing as a food source of the following stored grains pests: Cryptolestes ferrugineus (Stephens), Lasioderma serricorne (Fabr.), Oryzaephilus surinamensis (L.), Sitophilus oryzae (L.), Tribolium castaneum (Herbst) (Coleoptera) and Plodia interpunctella (Hübner) (Lepidoptera). Cryptolestes ferrugineus, L. serricorne and T. castaneum were found in these products, which are used by them as shelter and food. Under experimentation, we observed the development of O. surinamensis, S. oryzae and P. interpunctella feeding on this food source. Thus, it is recorded the viability of such material to be a potential dispersal vehicle to spread insect pests.

  19. The counter-rotating twin screw extruder as a polymerization reactor

    NARCIS (Netherlands)

    Ganzeveld, Klaassien Jakoba

    1992-01-01

    The goal of the research was to examine the possibilities of this type of extruder as a polymerization reactor, and to develop models of the extruder reactor which accurately describe the reaction progress in the extruder. See summary

  20. Effect of thermomechanical treatments on the aging response of centrifugally cast silicon carbide/aluminum composites

    OpenAIRE

    May, Christopher William

    1992-01-01

    Approved for public release; distribution is unlimited Differential scanning calorimetry was conducted using centrifugally cast monolithic A3356 aluminum material and 26 volume present silicon carbide (SiC) particle reinforced A356 aluminum matrix composite material in as-cast, cast and rolled, and cast and extruded conditions. Electrical resistivity and matrix micro-hardness measurements during isothermal aging treatments were also conducted. The effects of thermo-mechanical processing ...

  1. Effect of thermomechanical treatments on the aging response of centrifugally cast silicon carbide/aluminum composites

    OpenAIRE

    May, Christopher William

    1992-01-01

    Approved for public release; distribution is unlimited Differential scanning calorimetry was conducted using centrifugally cast monolithic A3356 aluminum material and 26 volume present silicon carbide (SiC) particle reinforced A356 aluminum matrix composite material in as-cast, cast and rolled, and cast and extruded conditions. Electrical resistivity and matrix micro-hardness measurements during isothermal aging treatments were also conducted. The effects of thermo-mechanical processing ...

  2. Processing and mechanical properties of 2024 aluminum matrix composites containing Tungsten and Tantalum prepared by PM

    Institute of Scientific and Technical Information of China (English)

    LIAN Youyun; YANG Zhimin; YANG Jian; MAO Changhui

    2006-01-01

    The 2024 Al composites containing W, Ta were fabricated by powder metallurgy for their potential use as shielding material.W, Ta powders and gas-atomized 2024 Al aluminum powders were mixed by a ball mixer.The mixtures were consolidated by cold isostatic pressing (CIP) and then hot-extruded into full-density bars.The extruded bars were heat treated in T6 conditions.The microstructure and its relationship with the mechanical properties were investigated by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD).The results show that the particles of nonuniform size and irregular shape randomly disperse in the 2024 aluminum alloy matrix.The tensile tests show that an increase of tensile strength and decrease of elongation to failure of the heat treated composites compared with the extruded composites.

  3. Thermal and Microstructural Property of Extruded Snack: An Overview

    Directory of Open Access Journals (Sweden)

    Mahuya Hom Choudhury,

    2014-02-01

    Full Text Available Rice and Chapra (Fenneropenaeus indicus mixture were extruded using a co rotating fully intermeshing twin-screw extruder to prepare carbohydrate protein based snack. The aim of the present work is to study the glass transition temperature and microstructural behaviour of carbohydrate-protein extrudate snack. Parkin Elmer Differential Scanning Calorimeter method was used for studying phase transition behaviour of complex carbohydrate-protein extrudate at a heating rate of 5ºC/min and in the temperature range - 80ºC to 180ºC. On the other hand, Scanning Electron Microscope (SEM was used to study the microstructural behavior of multicomponent extrudate at an accelerating voltage of 20 kV and at 1000 X magnification. State diagram indicated phase separation of carbohydrate-protein complex food system at macromolecular level. The glass transition temperature of protein dictated the texture of the mixed system. At room temperature, extrudate with 15% moisture is glassy while extrudates obtained <15% moisture shows rubbery texture and higher moisture profile shows burnt texture. Microstructural analysis performed by SEM shows typical network like structure at 150C and 15% moisture.

  4. Aluminum alloy

    Science.gov (United States)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  5. Modeling dissolution in aluminum alloys

    Science.gov (United States)

    Durbin, Tracie Lee

    2005-07-01

    Aluminum and its alloys are used in many aspects of modern life, from soda cans and household foil to the automobiles and aircraft in which we travel. Aluminum alloy systems are characterized by good workability that enables these alloys to be economically rolled, extruded, or forged into useful shapes. Mechanical properties such as strength are altered significantly with cold working, annealing, precipitation-hardening, and/or heat-treatments. Heat-treatable aluminum alloys contain one or more soluble constituents such as copper, lithium, magnesium, silicon and zinc that individually, or with other elements, can form phases that strengthen the alloy. Microstructure development is highly dependent on all of the processing steps the alloy experiences. Ultimately, the macroscopic properties of the alloy depend strongly on the microstructure. Therefore, a quantitative understanding of the microstructural changes that occur during thermal and mechanical processing is fundamental to predicting alloy properties. In particular, the microstructure becomes more homogeneous and secondary phases are dissolved during thermal treatments. Robust physical models for the kinetics of particle dissolution are necessary to predict the most efficient thermal treatment. A general dissolution model for multi-component alloys has been developed using the front-tracking method to study the dissolution of precipitates in an aluminum alloy matrix. This technique is applicable to any alloy system, provided thermodynamic and diffusion data are available. Treatment of the precipitate interface is explored using two techniques: the immersed-boundary method and a new technique, termed here the "sharp-interface" method. The sharp-interface technique is based on a variation of the ghost fluid method and eliminates the need for corrective source terms in the characteristic equations. In addition, the sharp-interface method is shown to predict the dissolution behavior of precipitates in aluminum

  6. Simplified models for estimating isothermal operating characteristics of food extruders.

    Science.gov (United States)

    Levine, L; Rockwood, J

    1985-09-01

    A model of isothermal food extruder performance is described. Inferences about alternative extruder screw designs and their performance are drawn from the model. The model suggests that thread depth or diameter compression screws are superior in performance to a pitch compression screw. The advantage gained from using diameter compression screws is paid for with significantly higher rates of energy dissipation. The use of the model to characterize screws having both a compression zone and metering zone is described.

  7. Bio rapid prototyping by extruding/aspirating/refilling thermoreversible hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Iwami, K; Noda, T; Ishida, K; Umeda, N [Department of Mechanical Systems and Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588 (Japan); Morishima, K [Department of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588 (Japan); Nakamura, M, E-mail: k_iwami@cc.tuat.ac.j [Department of Life Sciences and Bioengineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555 (Japan)

    2010-03-15

    This paper reports a method for rapid prototyping of cell tissues, which is based on a system that extrudes, aspirates and refills a mixture of cells and thermoreversible hydrogel as a scaffold. In the extruding mode, a cell-mixed scaffold solution in the sol state is extruded from a cooled micronozzle into a temperature-controlled substrate, which keeps the scaffold in the gel state. In the aspiration mode, the opposite process is performed by Bernoulli suction. In the refilling mode, the solution is extruded into a groove created in the aspiration mode. The minimum width of extruded hydrogel pattern is 114 +- 15 mum by employing a nozzle of diameter 100 mum, and that of aspirated groove was 355 +- 10 mum using a 500 mum-diameter nozzle. Gum arabic is mixed with the scaffold solution to avoid peeling-off of the gel pattern from the substrate. Patterning of Sf-9 cell tissue is demonstrated, and the stability of the patterned cell is investigated. This system offers a procedure for rapid prototyping and local modification of cell scaffolds for tissue engineering.

  8. Extruder system and method for treatment of a gaseous medium

    Science.gov (United States)

    Silvi, Norberto; Perry, Robert James; Singh, Surinder Prabhjot; Balch, Gary Stephen; Westendorf, Tiffany Elizabeth Pinard

    2016-04-05

    A system for treatment of a gaseous medium, comprises an extruder having a barrel. The extruder further comprises a first inlet port, a second inlet port, and a plurality of outlet ports coupled to the barrel. The first inlet port is configured for feeding a lean sorbent, the second inlet port is configured for feeding a gaseous medium, and the plurality of outlet ports are configured for releasing a plurality of components removed from the gaseous medium. Further, the extruder comprises a plurality of helical elements coupled to a plurality of kneading elements, mounted on a shaft, and disposed within the barrel. The barrel and the plurality of helical and kneading elements together form an absorption unit and a desorption unit. The first and second inlet ports are formed in the absorption unit and the plurality of outlet ports are formed in the absorption and desorption units.

  9. Extruder system and method for treatment of a gaseous medium

    Energy Technology Data Exchange (ETDEWEB)

    Silvi, Norberto; Perry, Robert James; Singh, Surinder Prabhjot; Balch, Gary Stephen; Westendorf, Tiffany Elizabeth Pinard

    2016-04-05

    A system for treatment of a gaseous medium, comprises an extruder having a barrel. The extruder further comprises a first inlet port, a second inlet port, and a plurality of outlet ports coupled to the barrel. The first inlet port is configured for feeding a lean sorbent, the second inlet port is configured for feeding a gaseous medium, and the plurality of outlet ports are configured for releasing a plurality of components removed from the gaseous medium. Further, the extruder comprises a plurality of helical elements coupled to a plurality of kneading elements, mounted on a shaft, and disposed within the barrel. The barrel and the plurality of helical and kneading elements together form an absorption unit and a desorption unit. The first and second inlet ports are formed in the absorption unit and the plurality of outlet ports are formed in the absorption and desorption units.

  10. Quality improvement of melt extruded laminar systems using mixture design.

    Science.gov (United States)

    Hasa, D; Perissutti, B; Campisi, B; Grassi, M; Grabnar, I; Golob, S; Mian, M; Voinovich, D

    2015-07-30

    This study investigates the application of melt extrusion for the development of an oral retard formulation with a precise drug release over time. Since adjusting the formulation appears to be of the utmost importance in achieving the desired drug release patterns, different formulations of laminar extrudates were prepared according to the principles of Experimental Design, using a design for mixtures to assess the influence of formulation composition on the in vitro drug release from the extrudates after 1h and after 8h. The effect of each component on the two response variables was also studied. Ternary mixtures of theophylline (model drug), monohydrate lactose and microcrystalline wax (as thermoplastic binder) were extruded in a lab scale vertical ram extruder in absence of solvents at a temperature below the melting point of the binder (so that the crystalline state of the drug could be maintained), through a rectangular die to obtain suitable laminar systems. Thanks to the desirability approach and a reliability study for ensuring the quality of the formulation, a very restricted optimal zone was defined within the experimental domain. Among the mixture components, the variation of microcrystalline wax content played the most significant role in overall influence on the in vitro drug release. The formulation theophylline:lactose:wax, 57:14:29 (by weight), selected based on the desirability zone, was subsequently used for in vivo studies. The plasma profile, obtained after oral administration of the laminar extruded system in hard gelatine capsules, revealed the typical trend of an oral retard formulation. The application of the mixture experimental design associated to a desirability function permitted to optimize the extruded system and to determine the composition space that ensures final product quality.

  11. Quantitative analyses of extrudate swell for polymer nanocomposites

    Science.gov (United States)

    Wang, Kejian; Sun, Chongxiao

    2009-07-01

    The quantitative theory of extrudate swell for nanocomposite and pure polymer is significant either for optimum processing or for understanding their viscoelasticity. Based on Song's die swell theory for entangled polymers, one extrudate swell correlation with material properties and capillary parameters was developed for polymer melt and their nanocomposites when compensating reservoir entry effect. It was the first to find that the composite swell ratio can be the matrix swell ratio multiplied by the concentration shift factor. The factor is the functions of the shear field, filler content, filler internal structure and the surface state as well as the matrix properties. The quantitative model was well fitful for the five kinds of nanoomposites.

  12. Super High Strength Aluminum Alloy Processed by Mechanical Alloying and Hot Extrusion

    Science.gov (United States)

    Zheng, Ruixiao; Yang, Han; Wang, Zengjie; Wen, Shizhen; Liu, Tong; Ma, Chaoli

    Nanostructure strengthened aluminum alloy was prepared by powder metallurgic technology. The rapid solidification Al-Cu-Mg alloy powder was used in this study. To obtain nanostructure, the commercial powder was intensely milled under certain ball milling conditions. The milled powder was compacted first by cold isostatic pressing (CIP) at a compressive pressure of 300MPa, and then extruded at selected temperature for several times to obtain near full density material. Microstructure and mechanical properties of the extruded alloy were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and mechanical tests. It is revealed that the compressive strength of extruded alloy is higher than 800MPa. The strengthening mechanism associated with the nanostructure is discussed.

  13. The modelling of counter-rotating twin screw extruders as reactors for single-component reactions

    NARCIS (Netherlands)

    Ganzeveld, K.J.; Capel, J.E.; Wal, D.J. van der; Janssen, L.P.B.M.

    1994-01-01

    Numerical models are useful to study the behaviour of the extruder as a polymerization reactor. With a correct numerical model a theoretical analysis of the influence of several reaction and extruder parameters can be made, the limitations of the use of the extruder reactor can be determined and the

  14. 78 FR 58520 - Extruded Rubber Thread From Malaysia; Notice of Amended Final Results of Antidumping Duty...

    Science.gov (United States)

    2013-09-24

    ... unliquidated entries of certain extruded rubber thread from Malaysia produced and/or exported by Heveafil, and... International Trade Administration Extruded Rubber Thread From Malaysia; Notice of Amended Final Results of... review of the antidumping duty order on extruded rubber thread from Malaysia.\\1\\ The period of review...

  15. The modelling of counter-rotating twin screw extruders as reactors for single-component reactions

    NARCIS (Netherlands)

    Ganzeveld, K.J.; Capel, J.E.; Wal, D.J. van der; Janssen, L.P.B.M.

    1994-01-01

    Numerical models are useful to study the behaviour of the extruder as a polymerization reactor. With a correct numerical model a theoretical analysis of the influence of several reaction and extruder parameters can be made, the limitations of the use of the extruder reactor can be determined and the

  16. Residence time distribution in twin-screw extruders.

    NARCIS (Netherlands)

    Jager, T.

    1992-01-01

    For the twin-screw extruders used in the food industry at short time high temperature processes the knowledge of their reactor properties is incomplete for mass- and heat flow. Therefore each process change such as: scale-up or product development requires a great number of measurements before an ac

  17. Residence time distribution in twin-screw extruders

    NARCIS (Netherlands)

    Jager, T.

    1992-01-01

    For the twin-screw extruders used in the food industry at short time high temperature processes the knowledge of their reactor properties is incomplete for mass- and heat flow. Therefore each process change such as: scale-up or product development requires a great number of measurements

  18. A consolidation based extruder model to explore GAME process configurations

    NARCIS (Netherlands)

    Willems, P.; Kuipers, N.J.M.; de Haan, A.B.

    2009-01-01

    A mathematical model from literature was adapted to predict the pressure profile and oil yield for canola in a lab-scale extruder. Changing the description of the expression process from filtration to consolidation significantly improved the performance and physical meaning of the model. The model

  19. Buckling of a beam extruded into highly viscous fluid

    Science.gov (United States)

    Gosselin, F. P.; Neetzow, P.; Paak, M.

    2014-11-01

    Inspired by microscopic Paramecia which use trichocyst extrusion to propel themselves away from thermal aggression, we propose a macroscopic experiment to study the stability of a slender beam extruded in a highly viscous fluid. Piano wires were extruded axially at constant speed in a tank filled with corn syrup. The force necessary to extrude the wire was measured to increase linearly at first until the compressive viscous force causes the wire to buckle. A numerical model, coupling a lengthening elastica formulation with resistive-force theory, predicts a similar behavior. The model is used to study the dynamics at large time when the beam is highly deformed. It is found that at large time, a large deformation regime exists in which the force necessary to extrude the beam at constant speed becomes constant and length independent. With a proper dimensional analysis, the beam can be shown to buckle at a critical length based on the extrusion speed, the bending rigidity, and the dynamic viscosity of the fluid. Hypothesizing that the trichocysts of Paramecia must be sized to maximize their thrust per unit volume as well as avoid buckling instabilities, we predict that their bending rigidity must be about 3 ×10-9N μ m2 . The verification of this prediction is left for future work.

  20. Studies on positive conveying in helically channeled single screw extruders

    Directory of Open Access Journals (Sweden)

    L. Pan

    2012-07-01

    Full Text Available A solids conveying theory called double-flight driving theory was proposed for helically channeled single screw extruders. In the extruder, screw channel rotates against static barrel channel, which behaves as cooperative embedded twin-screws for the positive conveying. They turn as two parallel arc plates, between which an arc-plate solid-plug was assumed. By analyzing the forces on the solid-plug in the barrel channel and screw channel, the boundary conditions when the solid-plug is waived of being cut off on barrel wall, were found to have the capacity of the positive conveying. Experimental data were obtained using a specially designed extruder with a helically channeled barrel in the feeding zone and a pressure-adjustable die. The effects of the barrel channel geometry and friction coefficients on the conveying mechanism were presented and compared with the experimental results. The simulations showed that the positive conveying could be achieved after optimizing extruder designs. Compared with the traditional design with the friction-drag conveying, the throughput is higher while screw torque and energy consumption are decreased. Besides, the design criteria of the barrel channel were also discussed.

  1. 99. 99% Al/ 6063 Alloy Co-extruded beam chamber

    Energy Technology Data Exchange (ETDEWEB)

    Ishimaru, H.; Narushima, K.; Kanazawa, K.

    1988-09-30

    In an electron storage ring, synchrotron radiation causes stimulated gas desorption from the vacuum chamber wall. It raises the operating pressure far above the ultrahigh vacuum range needed for long beam lifetimes. In order to determine an ideal material for low dynamic gas desorption we have studied the properties of co-extruded 99.99%Al/ 6063 alloy. (AIP)

  2. The influence of plasticizer on extruded thermoplastic starch

    NARCIS (Netherlands)

    VanderBurgt, M.C.; VanderWoude, M.E.; Janssen, L.P.B.M.; Burgt, M.C. van der; Woude, M.E. van der

    1996-01-01

    This paper describes the use of an extruder for the plastification process of potato starch with glycerol and water as plasticizers. The influence of both plasticizers is expressed in the water absorption index (WAI) and water solubility index (WSI). The amount of water added prior to extrusion is a

  3. Processing and characterization of extruded zein-based biodegradable films

    Science.gov (United States)

    Wang, Ying

    The objectives of this study were to prepare biodegradable zein films by extrusion processing and to evaluate relevant physical properties of resulting films with respect to their potential as packaging materials. The manufacture of protein-based packaging films by extrusion has remained a challenge. In this study, a zein resin was prepared by combining zein and oleic acid. This resin was formed into films by blown extrusion at the bench-top scale. Resin moisture content and extruder barrel temperature profile were identified as major parameters controlling the process. The optimum temperature of the blowing head was determined to be 40--45°C, while optimum moisture at film collection was 14--15%. Physico-chemical properties of the extruded products were characterized. Extruded products exhibited plastic behavior and ductility. Morphology characterization by SEM showed micro voids in extruded zein sheets, caused by entrapped air bubbles or water droplets. DSC characterization showed that zein was effectively plasticized by oleic acid as evidenced by the lowered glass transition temperature of zein films. X-ray scattering was used to investigate changes in zein molecular aggregation during processing. It was observed that higher mechanical energy treatment progressively disrupted zein molecular aggregates, resulting in a more uniform distribution of individual zein molecules. With the incorporation of oleic acid as plasticizer and monoglycerides as emulsifier, zein formed structures with long-range periodicity which varied depending on the formulation and processing methods. Processing methods for film formation affected the binding of oleic acid to zein with higher mechanical energy treatment resulting in better interaction between the two components. The moisture sorption capacity of extruded zein films was reduced due to the compact morphology caused by extrusion. Plasticization with oleic acid further reduced moisture sorption of zein films. The overall

  4. The Process Improvement and Extruding Die Design of Aluminium-Alloy Parts%铝合金制件工艺改进与挤压模设计

    Institute of Scientific and Technical Information of China (English)

    罗国军

    2012-01-01

    通过分析梅花形铝合金制件工艺,采用合理的坯料、坯料加热与模具结构,证明可以完成一次挤压成形,简化工序流程和节省材料成本。%Through analyzing the process of plum-shape aluminum alloy parts, adopted reasonable raw material design, raw material heating and die structure, make sure that the extruded part can be done once, simplify the processes procedures and saving the cost of raw materials.

  5. Investigation on grain size effect in high strain rate ductility of 1100 pure aluminum

    Science.gov (United States)

    Bonora, N.; Bourne, N.; Ruggiero, A.; Iannitti, G.; Testa, G.

    2017-01-01

    The effect of the initial grain size on the material ductility at high strain rates in 1100 pure aluminum was investigated. Dynamic tensile extrusion (DTE) tests, at different impact velocities, were performed. Samples have been annealed at 350°C for different exposure times to induce grain growth. Extruded fragments were soft-recovered and the overall length of the extruded jets was used as a measure of material ductility at high strain rates. Numerical simulation of DTE test at different velocity was performed using the modified Rusinek-Klepaczko constitutive model. Results indicates that, as reported for pure copper, the overall ductility of the aluminum increases when grain size decreases. Numerical simulation results were in quite good agreement with experimental data.

  6. A materials compatibility study in FM-1, a liquid component of a paste extrudable explosive

    Energy Technology Data Exchange (ETDEWEB)

    Goods, S.H.; Shepodd, T.J.; Mills, B.E. [Sandia National Labs., Livermore, CA (United States); Foster, P. [Mason and Hanger-Silas Mason Co., Inc., Amarillo, TX (United States). Pantex Plant

    1993-09-01

    The chemical compatibility of various metallic and organic containment materials with a constituent of a paste extrudable explosive (PEX) has been examined through a series of long-term exposures. Corrosion coupons and mechanical test specimens (polymers only) were exposed to FM-1, a principal liquid component of PEX, at 74{degree}C. RX-08-FK is the LLNL designator for this formulation. Compatibility was determined by measuring changes in weight, physical dimensions, and mechanical properties, by examining the coupons for discoloration, surface attack, and corrosion products, and by analyzing for dissolved metals in the FM-1. Of the metals and alloys examined, none of the 300 series stainless steels exhibited adequate corrosion resistance after 74 days of exposure. Copper showed evidence of severe uniform surface attack. Monel 400 also exhibited signs of chemical attack. Nickel and tantalum showed less evidence of attack, although neither, was immune to the liquid. Gold coupons developed a ``tarnish`` film. The gold along with an aluminum alloy, 6061 (in the T6 condition) performed the most satisfactorily. A wide range of polymers were tested for 61 days at 74{degree}C. The materials that exhibited the most favorable response in terms of weight change, dimensional stability, and mechanical properties were Kalrez, PTFE Teflon, and polyethylene.

  7. Evaluation of roll-extruded Alloy 718 tubing

    Energy Technology Data Exchange (ETDEWEB)

    Smolik, G R; Korth, G E

    1978-05-01

    A sample of roll-extruded Alloy 718 tubing, a product identified for use in the Clinch River Breeder Reactor, was evaluated. The tubing satisfied AMS 5589 requirements for seamless tubing, and had tensile and fatigue properties comparable to plate for the conventional 955/sup 0/C (1750/sup 0/F) heat treatment. Recrystallization was retarded in this product and bands of very small grains resulted from the conventional heat treatment. Both as-roll-extruded and directly aged material showed the results of thermomechanical processing in high strengths and reductions in area. It is recommended that work continue toward realizing improved fatigue and stress rupture properties in this product by means of ''Minigrain'' and thermomechanical processing. 10 figures, 6 tables.

  8. A Novel cooked extruded lentils analog: physical and chemical properties.

    Science.gov (United States)

    Abu-Ghoush, Mahmoud; Alavi, Sajid; Al-Shathri, Abdulaziz

    2015-07-01

    Developing an extruded lentil analog is our aim. Lentil analog with six formulations were produced using a pilot-scale single (SS) and twin screw (TS) extruders. Texture analysis of lentil analogs prepared for consumption revealed that the products formulated with 60:40 and 70:30 soy: wheat ratios exhibited a significantly higher hardness, adhesiveness and lower springiness as compared to all other treatments. Differential Scanning Calorimeter (DSC) results indicated that all starches in dry blend are completely 100 % gelatinized by extrusion for all treatments at 100 °C. The maximum peak of viscosity for TS was formed after 5.58 min. from the run at 89.9 °C for the best treatment. However, this lentil analog product can provide a high quality lentil which can be used as a substitute for regular lentils.

  9. Aluminum extraction from aluminum industrial wastes

    Science.gov (United States)

    Amer, A. M.

    2010-05-01

    Aluminum dross tailings, an industrial waste from the Egyptian Aluminum Company (Egyptalum), was used to produce two types of alums: aluminum sulfate alum (Al2(SO4)3·12H2O) and ammonium aluminum alum {(NH4)2SO4AL2 (SO4)3·24H2O}. This was carried out in two processes. The first involves leaching the impurities using diluted H2SO4 with different solid/liquid ratios at different temperatures to dissolve the impurities present in the starting material in the form of aluminum sulfates. The second process is the extraction of aluminum (as aluminum sulfate) from the purified aluminum dross tailings thus produced. This was carried out in an autoclave. The effects of temperature, time of reaction, and acid concentration on pressure leaching and extraction processes were studied in order to specify the optimum conditions to be applied in the bench scale production as well as the kinetics of leaching process.

  10. Early-age volume changes of extrudable reactive powder concrete

    Directory of Open Access Journals (Sweden)

    De Noirfontaine M.N.

    2010-06-01

    Full Text Available This article presents a study on the early-age autogenous deformations of Extrudable Reactive Powder Concretes (ERPCs, especially designed for the making of concrete pipes by extrusion. Different ERPC mixtures, with variable amounts of polycarboxylate superplasticizer (SP, have been investigated. Results on 28-day mechanical properties, early-age hydration rate, autogenous shrinkage and premature cracking risk are analyzed and discussed in relation with the ERPC mix parameters.

  11. Early-age volume changes of extrudable reactive powder concrete

    Science.gov (United States)

    Cherkaoui, K.; Courtial, M.; Dunstetter, F.; Khelidj, A.; Mounanga, P.; de Noirfontaine, M. N.

    2010-06-01

    This article presents a study on the early-age autogenous deformations of Extrudable Reactive Powder Concretes (ERPCs), especially designed for the making of concrete pipes by extrusion. Different ERPC mixtures, with variable amounts of polycarboxylate superplasticizer (SP), have been investigated. Results on 28-day mechanical properties, early-age hydration rate, autogenous shrinkage and premature cracking risk are analyzed and discussed in relation with the ERPC mix parameters.

  12. Early-age volume changes of extrudable reactive powder concrete

    OpenAIRE

    De Noirfontaine M.N.; Mounanga P.; Khelidj A.; Dunstetter F.; Cherkaoui K.; Courtial M.

    2010-01-01

    This article presents a study on the early-age autogenous deformations of Extrudable Reactive Powder Concretes (ERPCs), especially designed for the making of concrete pipes by extrusion. Different ERPC mixtures, with variable amounts of polycarboxylate superplasticizer (SP), have been investigated. Results on 28-day mechanical properties, early-age hydration rate, autogenous shrinkage and premature cracking risk are analyzed and discussed in relation with the ERPC mix parameters.

  13. Essential fatty acids in extruded and raw dog foods

    OpenAIRE

    Karlsen, Juni S.

    2015-01-01

    This thesis is divided into two sections: section 1 explaining the theory about fat and fatty acids functions, health effects and sources, section 2 includes a study of commercial extruded and raw dog foods. Fat is the most energy dens nutrient and functions as energy, structural components in cell membranes, source of essential fatty acids (EFA), precursor to biological active substrates and carrier of fat-soluble vitamins. EFA cannot be synthesized by the animal, and needs to be added ...

  14. Enrichment of extruded snack products with whey protein

    OpenAIRE

    Mladen Brnčić; Sven Karlović; Tomislav Bosiljkov; Branko Tripalo; Damir Ježek; Ivana Cugelj; Valentina Obradović

    2008-01-01

    Highest share in products with whey proteins addition belongs to aromatised drinks, aromatised protein bars and various dietetic preparations. In the last few years, there is increased use of the extrusion process for production of food products. This process is, besides other things, used for obtaining directly expanded products, which are immediately packed and sent on market after mechanical and thermal treatment in extruder, or after drying for a short time. One of these food products is ...

  15. Mechanical Properties of Solid-State Recycled 4xxx Aluminum Alloy Chips

    Science.gov (United States)

    Tokarski, Tomasz

    2016-08-01

    The direct production of aluminum from bauxite ores is known to be a very energetic-intensive operation compared to other metallurgical processes. Due to energy issues and the rapid increase in aluminum demand, new kinds of aluminum production processes are required. Aluminum waste recycling, which has an advantage of lowering the cost of electric power consumption, is considered to be an alternative route for material manufacturing. In this work, the way of reusing aluminum EN-AC 44000 alloy scraps by hot extrusion was presented. Metal chips of different sizes and morphology were cold compacted into billet form and then hot extruded. Mechanical properties investigations combined with microstructure observations were performed. Mechanical anisotropy behavior of material was evaluated on the base of tensile test experiments performed on samples machined at 0°, 45°, and 90°, respectively, to the extrusion direction. It was found that the initial size of the chips has an influence on the mechanical properties of the received profiles. Samples produced from fine chips revealed higher tensile strength in comparison to larger chips, which can be attributed to a refined microstructure containing fine, hard Si particles and Fe-rich intermetallic phases. Finally, it was found that anisotropic behavior of chip-based profiles is similar to conventionally cast and extruded materials which prove good bonding quality between chips.

  16. Extrudability and Consolidation of Blends between CGM and DDGS

    Directory of Open Access Journals (Sweden)

    C. J. R. Verbeek

    2016-01-01

    Full Text Available During the last decade, the global biofuels industry has experienced exponential growth. By-products such as high protein corn gluten meal (CGM and high fibre distillers dried grains with solubles (DDGS have grown in parallel. CGM has been shown to be suitable as a biopolymer; the high fibre content of DDGS reduces its effectiveness, although it is considerably cheaper. In this study, the processing behaviour of CGM and DDGS blends was evaluated and resulting extrudate properties were determined. Prior to processing, urea was used as a denaturant. DDGS : CGM ratios of 0, 33, 50, 66, and 100% were processed in a single screw extruder, which solely used dissipative heating. Blends containing DDGS were less uniformly consolidated and resulted in more dissipative heating. Blends showed multiple glass transitions, which is characteristic of mechanically compatible blends. Transmission electron microscopy revealed phase separation on a microscale, although distinct CGM or DDGS phases could not be identified. On a macroscale, optical microscopy suggested that CGM-rich blends were better consolidated, supported by visual observations of a more continuous extrudate formed during extrusion. Future work should aim to also characterize the mechanical properties of these blends to assess their suitability as either bioplastic feedstock or pelletized livestock feed.

  17. Enrichment of extruded snack products with whey protein

    Directory of Open Access Journals (Sweden)

    Mladen Brnčić

    2008-08-01

    Full Text Available Highest share in products with whey proteins addition belongs to aromatised drinks, aromatised protein bars and various dietetic preparations. In the last few years, there is increased use of the extrusion process for production of food products. This process is, besides other things, used for obtaining directly expanded products, which are immediately packed and sent on market after mechanical and thermal treatment in extruder, or after drying for a short time. One of these food products is “snack” food. Snack food is made with twin corotating screw extruders, in which raw materials are submitted to high temperatures and short time, with intensive expansion and rapid pressure drop. For the production of this category of food products, basic ingredients like corn, wheat, rye and rice, with the maximum of 9 % of proteins, are used. With the development of extrusion technology, special attention is focused on the enrichment of extruded products with different types of proteins, including proteins. In this paper, review of the newest research and achievements in embedding various types of whey concentrates in snack food will be represented. This category of food products for direct consummation is constantly increasing, and addition of whey protein concentrate adds better nutritional value and increased functionality.

  18. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  19. Wear resistance analysis of the aluminum 7075 alloy and the nanostructured aluminum 7075 - silver nanoparticles composites

    Directory of Open Access Journals (Sweden)

    Estrada-Ruiz R.H.

    2016-01-01

    Full Text Available Nanostructured composites of the aluminum 7075 alloy and carbon-coated silver nanoparticles were synthetized by the mechanical milling technique using a high-energy mill SPEX 8000M; the powders generated were compacted, sintered and hot-extruded to produce 1 cm-diameter bars. The composites were then subjected to a wear test using a pin-on-disc device to validate the hypothesis that second phase-ductile nanometric particles homogenously distributed throughout the metalmatrix improve the wear resistance of the material. It was found that silver nanoparticles prevent the wear of the material by acting as an obstacle to dislocations movement during the plastic deformation of the contact surface, as well as a solid lubricant when these are separated from the metal-matrix.

  20. Production and characterization of cornstarch/cellulose acetate/silver sulfadiazine extrudate matrices.

    Science.gov (United States)

    Zepon, Karine Modolon; Petronilho, Fabricia; Soldi, Valdir; Salmoria, Gean Vitor; Kanis, Luiz Alberto

    2014-11-01

    The production and evaluation of cornstarch/cellulose acetate/silver sulfadiazine extrudate matrices are reported herein. The matrices were melt extruded under nine different conditions, altering the temperature and the screw speed values. The surface morphology of the matrices was examined by scanning electron microscopy. The micrographs revealed the presence of non-melted silver sulfadiazine microparticles in the matrices extruded at lower temperature and screw speed values. The thermal properties were evaluated and the results for both the biopolymer and the drug indicated no thermal degradation during the melt extrusion process. The differential scanning analysis of the extrudate matrices showed a shift to lower temperatures for the silver sulfadiazine melting point compared with the non-extruded drug. The starch/cellulose acetate matrices containing silver sulfadiazine demonstrated significant inhibition of the growth of Pseudomonas aeruginosa and Staphylococcus aureus. In vivo inflammatory response tests showed that the extrudate matrices, with or without silver sulfadiazine, did not trigger chronic inflammatory processes.

  1. Material wear and failure mode analysis of breakfast cereal extruder barrels and screw elements

    Science.gov (United States)

    Mastio, Michael Joseph, Jr.

    2005-11-01

    Nearly seventy-five years ago, the single screw extruder was introduced as a means to produce metal products. Shortly after that, the extruder found its way into the plastics industry. Today much of the world's polymer industry utilizes extruders to produce items such as soda bottles, PVC piping, and toy figurines. Given the significant economical advantages of extruders over conventional batch flow systems, extruders have also migrated into the food industry. Food applications include the meat, pet food, and cereal industries to name just a few. Cereal manufacturers utilize extruders to produce various forms of Ready-to-Eat (RTE) cereals. These cereals are made from grains such as rice, oats, wheat, and corn. The food industry has been incorrectly viewed as an extruder application requiring only minimal energy control and performance capability. This misconception has resulted in very little research in the area of material wear and failure mode analysis of breakfast cereal extruders. Breakfast cereal extruder barrels and individual screw elements are subjected to the extreme pressures and temperatures required to shear and cook the cereal ingredients, resulting in excessive material wear and catastrophic failure of these components. Therefore, this project focuses on the material wear and failure mode analysis of breakfast cereal extruder barrels and screw elements, modeled as a Discrete Time Markov Chain (DTMC) process in which historical data is used to predict future failures. Such predictive analysis will yield cost savings opportunities by providing insight into extruder maintenance scheduling and interchangeability of screw elements. In this DTMC wear analysis, four states of wear are defined and a probability transition matrix is determined based upon 24,041 hours of operational data. This probability transition matrix is used to predict when an extruder component will move to the next state of wear and/or failure. This information can be used to determine

  2. Development of flaxseed fortified rice - corn flour blend based extruded product by response surface methodology.

    Science.gov (United States)

    Ganorkar, P M; Jain, R K

    2015-08-01

    Flaxseed imparted the evidence of health benefits in human being. Response surface methodology (RSM) was employed to develop flaxseed fortified rice - corn flour blend based extruded product using twin screw extruder. The effect of roasted flaxseed flour (RFF) fortification (15-25 %), moisture content of feed (12-16 %, wb), extruder barrel temperature (120-140 °C) and screw speed (300-330 RPM) on expansion ratio (ER), breaking strength (BS), bulk density (BD) and overall acceptability (OAA) score of extrudates were investigated using central composite rotatable design (CCRD). Increased RFF level decreased the ER and OAA score significantly while increased BS and BD of extrudates (p extruder feed was positively related to ER (p Extruder barrel temperature was found to be negatively related to ER and OAA (p rice flour, 16 % moisture content (wb) of extruder feed, 120 °C extruder barrel temperature and 330 RPM of screw speed gave an optimized product of high desirability with corresponding responses as 3.08 ER, 0.53 kgf BS, 0.106 g.cm(-3) BD and 7.86 OAA.

  3. Development of a Twin-Screw D-2 Extruder for the ITER Pellet Injection System

    Energy Technology Data Exchange (ETDEWEB)

    Meitner, Steven J [ORNL; Baylor, Larry R [ORNL; Carbajo, Juan J [ORNL; Combs, Stephen Kirk [ORNL; Fehling, Dan T [ORNL; Foust, Charles R [ORNL; McFee, Marshall T [ORNL; McGill, James M [ORNL; Rasmussen, David A [ORNL; Sitterson, R G [ORNL; Sparks, Dennis O [ORNL; Qualls, A L [ORNL

    2009-07-01

    A twin-screw extruder for the ITER pellet injection system is under development at the Oak Ridge National Laboratory. The extruder will provide a stream of solid hydrogen isotopes to a secondary section, where pellets are cut and accelerated with single-stage gas gun into the plasma. A one-fifth ITER scale prototype extruder has been built to produce a continuous solid deuterium extrusion. Deuterium gas is precooled and liquefied before being introduced into the extruder. The precooler consists of a copper vessel containing liquid nitrogen surrounded by a deuterium gas filled copper coil. The liquefier is comprised of a copper cylinder connected to a Cryomech AL330 cryocooler, which is surrounded by a copper coil that the precooled deuterium flows through. The lower extruder barrel is connected to a Cryomech GB-37 cryocooler to solidify the deuterium (at approximate to 15 K) before it is forced through the extruder nozzle. A viewport located below the extruder nozzle provides a direct view of the extrusion. A camera is used to document the extrusion quality and duration. A data acquisition system records the extruder temperatures, torque, and speed, upstream, and downstream pressures. This paper will describe the prototype twin-screw extruder and initial extrusion results.

  4. Extruded contents of colloid cysts after endoscopic removal.

    Science.gov (United States)

    Abdel Latif, Assem M; Souweidane, Mark M

    2016-09-01

    OBJECTIVE Mineralized or desiccated colloid cysts pose some unique challenges to endoscopic removal. The extrusion of the solid matrix into the intraventricular compartment has not been previously reported and, as such, no guidance exists regarding its predilection, prevention, and fate. METHODS Postoperative imaging studies in a registry of patients undergoing endoscopic removal of colloid cyst were reviewed to detect any solid matrix within the ventricular compartment. Preoperative images and operative notes were used to determine if any features were predictive. Serial postoperative images and clinical notes were used to characterize the implications of these findings. RESULTS From a review of 94 patients, 10 (10.6%) patients had evidence of an extruded intraventricular solid fragment (median follow-up 4 months; range 0.5-115 months). Of the evaluable patients, 7 of 9 patients had T1-weighted hyperintense and T2-weighted hypointense cysts on preoperative scans. Seventy-eight percent of the extrusions were on the same side as the endoscopic entry. Three patients demonstrated early fragment migration, but not after 8 months of radiological follow-up. All evaluable patients demonstrated improvement in their hydrocephalus, and none suffered a complication attributable to the intraventricular extruded fragments. CONCLUSIONS Intraventricular extruded colloid fragments can occur after endoscopic resection, with the possible risk demonstrated as cyst hypointensity on preoperative T2-weighted images. The finding does not seem to result in any clinical morbidity, and radiographic involution is the rule. Migratory capacity, however, does exist and justifies a more frequent imaging surveillance schedule and consideration for removal.

  5. Development of an extruder-feeder biomass direct liquefaction process

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Wolf, D. (Arizona Univ., Tucson, AZ (United States). Dept. of Chemical Engineering)

    1991-10-01

    As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE's Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt % wood flour in wood oil derived vacuum bottoms at pressures up to 3,000 psi. By comparison, conventional pumping systems are capable of pumping slurries containing only 10--20 wt % wood flour in wood oil under similar conditions. The extruder-feeder has been integrated with a unique reactor to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a 3,000 psi pressure reactor in the biomass liquefaction process. An experimental facility was constructed during 1983--84. Following shakedown operations, wood crude oil was produced by mid-1985. During the period January 1985 through July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3,000 psi and temperatures from 350{degrees}C to 430{degrees}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt % residual oxygen were produced. 43 refs., 81 figs., 52 tabs.

  6. Extrude Hone deburring with X-base media

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1973-09-01

    Small precision mechanisms must have burr-free, sharp-edged parts to operate well. Controlling the size of burrs can lower burr removal costs and improve edge repeatability. Study results indicated that with conventional tooling approaches, Extrude Hone deburring with x-base media removes more material from the hole than desired and is less repeatable than required on precision miniature parts. With this media, the process is most applicable to precision miniature parts with burrs less than 25.4 ..mu..m thick, allowable hole size changes equal to burr thickness, and allowable hole size repeatability of +-0.2 times the actual average hole size change.

  7. Extruded single ring hollow core optical fibers for Raman sensing

    Science.gov (United States)

    Tsiminis, G.; Rowland, K. J.; Ebendorff-Heidepriem, H.; Spooner, N. A.; Monro, T. M.

    2014-05-01

    In this work we report the fabrication of the first extruded hollow core optical fiber with a single ring of cladding holes. A lead-silicate glass billet is used to produce a preform through glass extrusion to create a larger-scale version of the final structure that is subsequently drawn to an optical fiber. The simple single suspended ring structure allows antiresonance reflection guiding. The resulting fibers were used to perform Raman sensing of liquid samples filling the length of the fiber, demonstrating its potential for fiber sensing applications.

  8. Aspects of aluminum toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, C.D.; Savory, J.; Wills, M.R. (Univ. of Virginia Health Sciences Center, Charlottesville (USA))

    1990-06-01

    Aluminum is the most abundant metal in the earth's crust. The widespread occurrence of aluminum, both in the environment and in foodstuffs, makes it virtually impossible for man to avoid exposure to this metal ion. Attention was first drawn to the potential role of aluminum as a toxic metal over 50 years ago, but was dismissed as a toxic agent as recently as 15 years ago. The accumulation of aluminum, in some patients with chronic renal failure, is associated with the development of toxic phenomena; dialysis encephalopathy, osteomalacic dialysis osteodystrophy, and an anemia. Aluminum accumulation also occurs in patients who are not on dialysis, predominantly infants and children with immature or impaired renal function. Aluminum has also been implicated as a toxic agent in the etiology of Alzheimer's disease, Guamiam amyotrophic lateral sclerosis, and parkinsonism-dementia. 119 references.

  9. Effect of Equal Channel Angular Pressing on the Surface Roughness of Solid State Recycled Aluminum Alloy 6061 Chips

    Directory of Open Access Journals (Sweden)

    Adel Taha Abbas

    2017-01-01

    Full Text Available Solid state recycling through hot extrusion is a promising technique to recycle machining chips without remelting. Furthermore, equal channel angular pressing (ECAP technique coupled with the extruded recycled billet is introduced to enhance the mechanical properties of recycled samples. In this paper, the surface roughness of solid state recycled aluminum alloy 6061 turning chips was investigated. Aluminum chips were cold compacted and hot extruded under an extrusion ratio (ER of 5.2 at an extrusion temperature (ET of 425°C. In order to improve the properties of the extruded samples, they were subjected to ECAP up to three passes at room temperature using an ECAP die with a channel die angle (Φ of 90°. Surface roughness (Ra and Rz of the processed recycled billets machined by turning was investigated. Box-Behnken experimental design was used to investigate the effect of three machining parameters (cutting speed, feed rate, and depth of cut on the surface roughness of the machined specimens for four materials conditions, namely, extruded billet and postextrusion ECAP processed billets to one, two, and three passes. Quadratic models were developed to relate the machining parameters to surface roughness, and a multiobjective optimization scheme was conducted to maximize material removal rate while maintaining the roughness below a preset practical value.

  10. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  11. Encapsulation of liquids using a counter rotating twin screw extruder.

    Science.gov (United States)

    Tackenberg, Markus W; Krauss, Ralph; Marmann, Andreas; Thommes, Markus; Schuchmann, Heike P; Kleinebudde, Peter

    2015-01-01

    Until now extrusion is not applied for pharmaceutical encapsulation processes, whereas extrusion is widely used for encapsulation of flavours within food applications. Based on previous mixing studies, a hot melt counter-rotating extrusion process for encapsulation of liquid active pharmaceutical ingredients (APIs) was investigated. The mixing ratio of maltodextrin to sucrose as matrix material was adapted in first extrusion trials. Then the number of die holes was investigated to decrease expansion and agglutination of extrudates to a minimum. At a screw speed of 180 min(-1) the product temperature was decreased below 142 °C, resulting in extrudates of cylindrical shape with a crystalline content of 9-16%. Volatile orange terpenes and the nonvolatile α-tocopherol were chosen as model APIs. Design of experiments were performed to investigate the influences of barrel temperature, powder feed rate, and API content on the API retentions. A maximum of 9.2% α-tocopherol was encapsulated, while the orange terpene encapsulation rate decreased to 6.0% due to evaporation after leaving the die. During 12 weeks of storage re-crystallization of sucrose occurred; however, the encapsulated orange terpene amount remained unchanged.

  12. EUCALYPTUS CELLULOSE MICRO/NANOFIBRILS IN EXTRUDED FIBERCEMENT COMPOSITES

    Directory of Open Access Journals (Sweden)

    Camila Soares Fonseca

    2016-03-01

    Full Text Available Extrusion is an alternative process for fiber-cement production and allows many advantages such as different geometries for the extruded products and the low initial investment for industrial production. In this context the aim of this study was to produce cellulose micro/nanofibrils from Eucalyptus pulp and evaluate the properties of cementitious composites made with different contents of cellulose micro/nanofibrils. Cellulose micro/ nanofibrils were produced using a mechanical defibrillator, and characterized for their morphology. Extruded composites were produced with 0.5 to 1.0% (by mass of micro/ nanofibrils and compared to unreinforced composites. Composites reinforced with 1.0% of micro/nanofibrils presented higher water absorption and apparent porosity than their counter parts. No significant differences were observed for modulus of rupture (MOR, limit of proportionality (LOP and final specific deformation, between the composites reinforced with 0.5% and 1.0% of micro/nanofibrils and those with no reinforcement. The static elastic modulus (MOE increased and specific energy decreased with the inclusion of 1.0% of micro/nanofibrils. Dynamic elastic modulus (E of the composites increased with the increase of micro/nanofibrils content and of weathering exposition. This study indicates that fiber-cements are sensitive to changes in structural composition and time of ageing (135 days. This information can be useful for developing of new products based on cellulose micro/nanofibrils.

  13. Energy consumption analysis for a single screw extruder

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Jing; Harkin-Jones, Eileen; Price, Mark; Karnachi, Nayeem [Queen' s Univ., Belfast (United Kingdom). School of Mechanical and Aerospace Engineering; Li, Kang [Queen' s Univ., Belfast (United Kingdom). School of Electronics, Electrical Engineering and Computer Science; Fei, Minrui [Shanghai Univ. (China). School of Mechatronic Engineering and Automation

    2013-07-01

    Polymer extrusion is regarded as an energy intensive production process, the real-time monitoring of both thermal energy and motor drive energy consumption becomes necessary for the development of energy efficient management system. The use of power meter is a simple and easy way to achieve this, however the cost sometimes can be high. Mathematical models based on the process settings provide an affordable alternative, but the resultant models cannot be easily extended to other extruders with different geometry. In this paper, simple and accurate energy real-time monitoring methods are developed for the analysis of energy consumption of the thermal heating and motor drive respectively. This is achieved by looking inside the controller, and use the control variables to calculate the power consumption. The developed methods are then adopted to study the effects of operating settings on the energy efficiency. These include the barrel heating temperature, water cooling temperature, and screw speed. The experimental results on Killion KTS-100 extruder show that the barrel heating temperature has a negative effect on energy efficiency, while the water cooling setting affects the energy efficiency positively but insignificantly. Undoubtedly, screw speed has the most significant effect on energy efficiency.

  14. Structure/property relations of aluminum under varying rates and stress states

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Matthew T [Los Alamos National Laboratory; Horstemeyer, Mark F [MISSISSIPPI STATE UNIV; Whittington, Wilburn R [MISSISSIPPI STATE UNIV; Solanki, Kiran N [MISSISSIPPI STATE UNIV.

    2010-11-19

    In this work we analyze the plasticity, damage, and fracture characteristics of three different processed aluminum alloys (rolled 5083-H13, cast A356-T6, and extruded 6061-T6) under varying stress states (tension, compression, and torsion) and strain rates (0.001/, 1/s., and 1000/s). The stress state difference had more of a flow stress effect than the applied strain rates for those given in this study (0.001/sec up to 1000/sec). The stress state and strain rate also had a profound effect on the damage evolution of each aluminum alloy. Tension and torsional straining gave much greater damage nucleation rates than compression. Although the damage of all three alloys was found to be void nucleation dominated, the A356-T6 and 5083-H131 aluminum alloys incurred void damage via micron scale particles where the 6061-T6 aluminum alloy incurred void damage from two scales, micron-scale particles and nanoscale precipitates. Having two length scales of particles that participated in the damage evolution made the 6061-T6 incur a strain rate sensitive damage rate that was different than the other two aluminum alloys. Under tension, as the strain rate increased, the 6061-T6 aluminum alloy's void nucleation rate decreased, but the A356-T6 and 5083-H131 aluminum alloys void nucleation rate increased.

  15. Is the Aluminum Hypothesis Dead?

    OpenAIRE

    Lidsky, Theodore I.

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed w...

  16. High energy density aluminum battery

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  17. High energy density aluminum battery

    Science.gov (United States)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  18. THE GRAFTING OF MALEIC-ANHYDRIDE ON HIGH-DENSITY POLYETHYLENE IN AN EXTRUDER

    NARCIS (Netherlands)

    GANZEVELD, KJ; JANSSEN, LPBM

    The grafting of maleic anhydride (MAH) on high density polyethylene in a counter-rotating twin screw extruder has been studied. As the reaction kinetics appear to be affected by mass transfer, good micro mixing in the extruder is important. Due to the competing mechanisms of increasing mixing and

  19. THE GRAFTING OF MALEIC-ANHYDRIDE ON HIGH-DENSITY POLYETHYLENE IN AN EXTRUDER

    NARCIS (Netherlands)

    GANZEVELD, KJ; JANSSEN, LPBM

    1992-01-01

    The grafting of maleic anhydride (MAH) on high density polyethylene in a counter-rotating twin screw extruder has been studied. As the reaction kinetics appear to be affected by mass transfer, good micro mixing in the extruder is important. Due to the competing mechanisms of increasing mixing and de

  20. Production and characterization of cornstarch/cellulose acetate/silver sulfadiazine extrudate matrices

    Energy Technology Data Exchange (ETDEWEB)

    Zepon, Karine Modolon [CIMJECT, Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); TECFARMA, Universidade do Sul de Santa Catarina, 88704-900 Tubarão, SC (Brazil); Petronilho, Fabricia [FICEXP, Universidade do Sul de Santa Catarina, 88704-900 Tubarão, SC (Brazil); Soldi, Valdir [POLIMAT, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Salmoria, Gean Vitor [CIMJECT, Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Kanis, Luiz Alberto, E-mail: luiz.kanis@unisul.br [TECFARMA, Universidade do Sul de Santa Catarina, 88704-900 Tubarão, SC (Brazil)

    2014-11-01

    The production and evaluation of cornstarch/cellulose acetate/silver sulfadiazine extrudate matrices are reported herein. The matrices were melt extruded under nine different conditions, altering the temperature and the screw speed values. The surface morphology of the matrices was examined by scanning electron microscopy. The micrographs revealed the presence of non-melted silver sulfadiazine microparticles in the matrices extruded at lower temperature and screw speed values. The thermal properties were evaluated and the results for both the biopolymer and the drug indicated no thermal degradation during the melt extrusion process. The differential scanning analysis of the extrudate matrices showed a shift to lower temperatures for the silver sulfadiazine melting point compared with the non-extruded drug. The starch/cellulose acetate matrices containing silver sulfadiazine demonstrated significant inhibition of the growth of Pseudomonas aeruginosa and Staphylococcus aureus. In vivo inflammatory response tests showed that the extrudate matrices, with or without silver sulfadiazine, did not trigger chronic inflammatory processes. - Highlights: • Melt extruded bio-based matrices containing silver sulfadiazine was produced. • The silver sulfadiazine is stable during melt-extrusion. • The extrudate matrices shown bacterial growth inhibition. • The matrices obtained have potential to development wound healing membranes.

  1. Тhe effectiveness of extruding the poly-cereal mixtures

    Directory of Open Access Journals (Sweden)

    A. A. Ospanov

    2012-01-01

    Full Text Available The article presents the results of studies about the effectiveness of extruding the floury polycereal mixtures; obtained dependence of the operating parameters of the process on the variable rotation frequency of extruder’ auger and humidity value of extruded poly-cereal mixture. The obtained results have practical significance in the construction of the technological scheme of food production of high readiness.

  2. Effect of feed composition, moisture content and extrusion temperature on extrudate characteristics of yam-corn-rice based snack food

    National Research Council Canada - National Science Library

    Seth, Dibyakanta; Badwaik, Laxmikant S; Ganapathy, Vijayalakshmi

    2015-01-01

    ... %), feed moisture content (12-24 %) and extruder barrel temperature (100-140 °C) on the characteristics of the dried extrudates was investigated using a statistical technique response surface methodology (RSM...

  3. Is the Aluminum Hypothesis dead?

    Science.gov (United States)

    Lidsky, Theodore I

    2014-05-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust.

  4. Effect of Extrusion Variables on the Hardness of Lentil Semolina Extrudates

    Science.gov (United States)

    Petrova, Todorka; Ruskova, Milena; Tzonev, Panayot; Zsivanovits, Gabor; Penov, Nikolay

    2010-01-01

    Lentil semolina was extruded in a laboratory single screw extruder (Brabender 20 DN, Germany) with screw diameter 19 mm and die diameter 5 mm. Effects of moisture content, barrel temperature, metering zone temperature, screw speed, and screw compression ratio on hardness of the extruded products were studied. Response surface methodology with combinations of moisture content (18, 22, 25, 28, 32%), metering zone temperature (136, 150, 160, 170, 184° C), barrel temperature (136, 150, 160, 170, 184° C), screw speed (132, 160, 180, 200, 228 rpm), and screw compression ratio (1:1, 2:1, 3:1, 4:1, 5:1) was applied. Feed screw speed was fixed at 70 rpm. Feed zone temperature was kept constant at 150° C. The hardness of the extrudates was measured with a TA.XT Plus Texture Analyser, Stable Micro Systems. The textural profiles of the extrudates showed that feed moisture had the highest effect on the hardness.

  5. Anodizing Aluminum with Frills.

    Science.gov (United States)

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are…

  6. Reimplantation of an Extruded Femoral Segment After Gamma Sterilization in A Type IIIA Supracondylar Femur Fracture: A Case Report

    Directory of Open Access Journals (Sweden)

    Aizah N

    2014-07-01

    Full Text Available Extruded bone is a rare complication of high energy open fractures, and there is only a handful of literature on reimplantation of the extruded segment. No clear guidelines exist regarding timing of reimplantation, stabilization of extruded bone segments, and also bone disinfection and sterilization techniques. Previous reports describe sterilization using thermal or chemical methods. We present a case of successful reimplantation of an extruded metaphyseal segment of femur after gamma sterilization in a fourteen- year old boy.

  7. 40 CFR 428.60 - Applicability; description of the medium-sized general molded, extruded, and fabricated rubber...

    Science.gov (United States)

    2010-07-01

    ... medium-sized general molded, extruded, and fabricated rubber plants subcategory. 428.60 Section 428.60... RUBBER MANUFACTURING POINT SOURCE CATEGORY Medium-Sized General Molded, Extruded, and Fabricated Rubber Plants Subcategory § 428.60 Applicability; description of the medium-sized general molded, extruded, and...

  8. THE MODELING OF COUNTER-ROTATING TWIN-SCREW EXTRUDERS AS REACTORS FOR SINGLE-COMPONENT REACTIONS

    NARCIS (Netherlands)

    GANZEVELD, KJ; CAPEL, JE; VANDERWAL, DJ; JANSSEN, LPBM

    1994-01-01

    Numerical models are useful to study the behaviour of the extruder as a polymerization reactor. With a correct numerical model a theoretical analysis of the influence of several reaction and extruder parameters can be made, the limitations of the use of the extruder reactor can be determined and the

  9. THE MODELING OF COUNTER-ROTATING TWIN-SCREW EXTRUDERS AS REACTORS FOR SINGLE-COMPONENT REACTIONS

    NARCIS (Netherlands)

    GANZEVELD, KJ; CAPEL, JE; VANDERWAL, DJ; JANSSEN, LPBM

    Numerical models are useful to study the behaviour of the extruder as a polymerization reactor. With a correct numerical model a theoretical analysis of the influence of several reaction and extruder parameters can be made, the limitations of the use of the extruder reactor can be determined and the

  10. An advanced extruder-feeder biomass liquefaction reactor system

    Science.gov (United States)

    White, Don H.; Wolf, D.; Davenport, G.; Mathews, S.; Porter, M.; Zhao, Y.

    1987-11-01

    A unique method of pumping concentrated, viscous biomass slurries that are characteristic of biomass direct liquefaction systems was developed. A modified single-screw extruder was shown to be capable of pumping solid slurries as high as 60 weight percent wood flour in wood oil derived vacuum bottoms, as compared to only 10 to 20 weight percent wood flour in wood oil in conventional systems. During the period August, 1985 to April, 1987, a total of 18 experimental continuous biomass liquefaction runs were made using white birch feedstock. Good operability with feed rates up to 30 lb/hr covering a range of carbon monoxide, sodium carbonate catalyst, pressures from 800 to 3000 psi and temperatures from 350 C to 430 C was achieved. Crude wood oils containing 6 to 10 weight percent residual oxygen were obtained. Other wood oil characteristics are reported.

  11. Shear flow analyses for polymer melt extruding under superimposed vibration

    Institute of Scientific and Technical Information of China (English)

    LIU Yue-jun; FAN Shu-hong; SHI Pu

    2005-01-01

    The introduction of a vibration force field has a profound influence on the polymer formation process.However, its formation mechanism has not been explored until now. With the application of experimental equipment designed by the authors named "Constant Velocity Type Dynamic Rheometer of Capillary" or (CVDRC),we were able to analyze in detail the whole extrusion process of a polymer melt. We did this after superimposing a sine vibration of small amplitude parallel to the extruding direction of the polymer melt. Then, we created a calculation model to determine the shear stress at the wall of the capillary using a superimposed vibration. We also determined the calculation steps needed to establish the afore-mentioned shear stress. Through measurement and analysis, the instantaneous entry pressure of the capillary, the pressure gradient, and the shear stress of the polymer melt within the capillary under vibration force field can be calculated.

  12. THE OPTIMIZATION OF FLOW RATES OF AN EXTRUDER

    Directory of Open Access Journals (Sweden)

    I.O. Popoola

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The article addresses how the flow rates of an extruder can be optimized. It mentions the plastic recycling industry as an example, which is only one of many solid waste recycling industries. The literature on flow rates is reviewed to demonstrate a gap that the current study aims to fills, in the hope that it will stimulate further research in a fertile area.

    AFRIKAANSE OPSOMMING: Die artikel adresseer die vraagstuk van vloeitempo van ‘n ekstrusieproses. Dit handel met ‘n voorbeeld van ‘n plastiekherwinningsproses wat spruit uit soliede afvalverwerking. ‘n Literatuurstudie toon hoedat die navorsing verdere areas wat braak lê, aanspreek in die hoop dat verdere studie gestimuleer sal word.

  13. Fire resistance of extruded hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    2017-01-01

    Purpose – Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60 and 120 min found...... in most national building regulations. The paper aims to present a detailed analysis of the mechanisms responsible for the loss of loadbearing capacity of hollow-core slabs when exposed to fire. Design/methodology/approach – Furthermore, it compares theoretica calculation and assessment according...... to the structural codes with data derived from a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Findings – Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. Originality...

  14. Fire resistance of extruded hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Giuliani, Luisa; Sørensen, Lars Schiøtt

    2016-01-01

    Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60- and 120 minutes found in most...... national building regulations. The paper presents a detailed analysis of the mechanisms responsible for the loss of load-bearing capacity of hollow-core slabs when exposed to fire. Furthermore, it compares theoretical calculation and assessment according to the structural codes with data derived from...... a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. For the first time the mechanisms responsible for loss of load...

  15. Autocalibrating Tiled Projectors on Piecewise Smooth Vertically Extruded Surfaces.

    Science.gov (United States)

    Sajadi, Behzad; Majumder, Aditi

    2011-09-01

    In this paper, we present a novel technique to calibrate multiple casually aligned projectors on fiducial-free piecewise smooth vertically extruded surfaces using a single camera. Such surfaces include cylindrical displays and CAVEs, common in immersive virtual reality systems. We impose two priors to the display surface. We assume the surface is a piecewise smooth vertically extruded surface for which the aspect ratio of the rectangle formed by the four corners of the surface is known and the boundary is visible and segmentable. Using these priors, we can estimate the display's 3D geometry and camera extrinsic parameters using a nonlinear optimization technique from a single image without any explicit display to camera correspondences. Using the estimated camera and display properties, the intrinsic and extrinsic parameters of each projector are recovered using a single projected pattern seen by the camera. This in turn is used to register the images on the display from any arbitrary viewpoint making it appropriate for virtual reality systems. The fast convergence and robustness of this method is achieved via a novel dimension reduction technique for camera parameter estimation and a novel deterministic technique for projector property estimation. This simplicity, efficiency, and robustness of our method enable several coveted features for nonplanar projection-based displays. First, it allows fast recalibration in the face of projector, display or camera movements and even change in display shape. Second, this opens up, for the first time, the possibility of allowing multiple projectors to overlap on the corners of the CAVE-a popular immersive VR display system. Finally, this opens up the possibility of easily deploying multiprojector displays on aesthetic novel shapes for edutainment and digital signage applications.

  16. Aligning carbon fibers in micro-extruded composite ink

    Science.gov (United States)

    Mahajan, Chaitanya G.

    Direct write processes include a wide range of additive manufacturing techniques with the ability to fabricate structures directly onto planar and non-planar surfaces. Most additive manufacturing techniques use unreinforced polymers to produce parts. By adding carbon fiber as a reinforcing material, properties such as mechanical strength, electrical conductivity, and thermal conductivity can be enhanced. Carbon fibers can be long and continuous, or short and discontinuous. The strength of carbon fiber composite parts is greatly increased when the fibers are preferentially aligned. This research focuses on increasing the strength of additively manufactured parts reinforced using discontinuous carbon fibers that have been aligned during the micro extrusion process. A design of experiments (DOE) approach was used to identify significant process parameters affecting fiber alignment. Factors such as the length of carbon fibers, nozzle diameter, fiber loading fraction, air pressure, translational speed and standoff distance were considered. A two dimensional Fast Fourier Transform (2D FFT) was used to quantify the degree of fiber alignment in the extruded composite inks. ImageJ software supported by an oval profile plugin was used with micrographs of printed samples to obtain the carbon fiber alignment values. The optimal value for the factors was derived by identifying the significant main and interaction effects. Based on the results of the DOE, tensile test samples were printed with fibers aligned parallel and perpendicular to the tensile axis. A standard test method for tensile properties of plastic revealed that the extruded parts with fibers aligned along the tensile axis were better in tensile strength and modulus.

  17. Experimental and Numerical Study on the Strength of Aluminum Extrusion Welding

    Directory of Open Access Journals (Sweden)

    Sedat Bingöl

    2015-07-01

    Full Text Available The quality of extrusion welding in the extruded hollow shapes is influenced significantly by the pressure and effective stress under which the material is being joined inside the welding chamber. However, extrusion welding was not accounted for in the past by the developers of finite element software packages. In this study, the strength of hollow extrusion profile with seam weld produced at different ram speeds was investigated experimentally and numerically. The experiments were performed on an extruded hollow aluminum profile which was suitable to obtain the tensile tests specimens from its seam weld’s region at both parallel to extrusion direction and perpendicular to extrusion direction. A new numerical modeling approach, which was recently proposed in literature, was used for numerical analyses of the study. The simulation results performed at different ram speeds were compared with the experimental results, and a good agreement was obtained.

  18. Clinical biochemistry of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    King, S.W.; Savory, J.; Wills, M.R.

    1981-05-01

    Aluminum toxicity has been implicated in the pathogenesis of a number of clinical disorders in patients with chronic renal failure on long-term intermittent hemodialysis treatment. The predominant disorders have been those involving either bone (osteomalacic dialysis osteodystrophy) or brain (dialysis encephalopathy). In nonuremic patients, an increased brain aluminum concentration has been implicated as a neurotoxic agent in the pathogenesis of Alzheimer's disease and was associated with experimental neurofibrillary degeneration in animals. The brain aluminum concentrations of patients dying with the syndrome of dialysis encephalopathy (dialysis dementia) are significantly higher than in dialyzed patients without the syndrome and in nondialyzed patients. Two potential sources for the increased tissue content of aluminum in patients on hemodialysis have been proposed: (1) intestinal absorption from aluminum containing phosphate-binding gels, and (2) transfer across the dialysis membrane from aluminum in the water used to prepare the dialysate. These findings, coupled with our everyday exposure to the ubiquitous occurrence of aluminum in nature, have created concerns over the potential toxicity of this metal.

  19. Advances in aluminum pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Sudour, Michel; Maintier, Philippe [PPG Industries France, 3 Z.A.E. Les Dix Muids, B.P. 89, F-59583 Marly (France); Simpson, Mark [PPG Industries Inc., 1200 Piedmont Troy, Michigan 48083 (United States); Quaglia, Paolo [PPG Industries Italia, Via Garavelli 21, I-15028 Quattordio (Italy)

    2004-07-01

    As automotive manufacturers continue to look for ways to reduce vehicle weight, aluminum is finding more utility as a body panel component. The substitution of cold-rolled steel and zinc-coated substrates with aluminum has led to new challenges in vehicle pretreatment. As a result, changes to traditional pretreatment chemistries and operating practices are necessary in order to produce an acceptable coating on aluminum body panels. These changes result in increased sludging and other undesirable characteristics. In addition to the chemistry changes, there are also process-related problems to consider. Many existing automotive pretreatment lines simply were not designed to handle aluminum and its increased demands on filtration and circulation equipment. To retrofit such a system is capital intensive and in addition to requiring a significant amount of downtime, may not be totally effective. Thus, the complexities of pre-treating aluminum body panels have actually had a negative effect on efforts to introduce more aluminum into new vehicle design programs. Recent research into ways of reducing the negative effects has led to a new understanding of the nature of zinc phosphate bath -aluminum interactions. Many of the issues associated with the pretreatment of aluminum have been identified and can be mitigated with only minor changes to the zinc phosphate bath chemistry. The use of low levels of soluble Fe ions, together with free fluoride, has been shown to dramatically improve the efficiency of a zinc phosphate system processing aluminum. Appearance of zinc phosphate coatings, coating weights and sludge are all benefited by this chemistry change. (authors)

  20. The Effects of CO2 Injection and Barrel Temperatures on the Physiochemical and Antioxidant Properties of Extruded Cereals.

    Science.gov (United States)

    Thin, Thazin; Myat, Lin; Ryu, Gi-Hyung

    2016-09-01

    The effects of CO2 injection and barrel temperatures on the physiochemical and antioxidant properties of extruded cereals (sorghum, barley, oats, and millet) were studied. Extrusion was carried out using a twin-screw extruder at different barrel temperatures (80, 110, and 140°C), CO2 injection (0 and 500 mL/min), screw speed of 200 rpm, and moisture content of 25%. Extrusion significantly increased the total flavonoid content (TFC) of extruded oats, and β-glucan and protein digestibility (PD) of extruded barley and oats. In contrast, there were significant reductions in 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, PD of extruded sorghum and millet, as well as resistant starch (RS) of extruded sorghum and barley, and total phenolic content (TPC) of all extrudates, except extruded millet. At a barrel temperature of 140°C, TPC in extruded barley was significantly increased, and there was also an increase in DPPH and PD in extruded millet with or without CO2 injection. In contrast, at a barrel temperature of 140°C, the TPC of extruded sorghum decreased, TFC of extruded oats decreased, and at a barrel temperature of 110°C, PD of extruded sorghum without CO2 decreased. Some physical properties [expansion ratio (ER), specific length, piece density, color, and water absorption index] of the extrudates were significantly affected by the increase in barrel temperature. The CO2 injection significantly affected some physical properties (ER, specific length, piece density, water solubility index, and water absorption index), TPC, DPPH, β-glucan, and PD. In conclusion, extruded barley and millet had higher potential for making value added cereal-based foods than the other cereals.

  1. The Effects of CO2 Injection and Barrel Temperatures on the Physiochemical and Antioxidant Properties of Extruded Cereals

    Science.gov (United States)

    Thin, Thazin; Myat, Lin; Ryu, Gi-Hyung

    2016-01-01

    The effects of CO2 injection and barrel temperatures on the physiochemical and antioxidant properties of extruded cereals (sorghum, barley, oats, and millet) were studied. Extrusion was carried out using a twin-screw extruder at different barrel temperatures (80, 110, and 140°C), CO2 injection (0 and 500 mL/min), screw speed of 200 rpm, and moisture content of 25%. Extrusion significantly increased the total flavonoid content (TFC) of extruded oats, and β-glucan and protein digestibility (PD) of extruded barley and oats. In contrast, there were significant reductions in 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, PD of extruded sorghum and millet, as well as resistant starch (RS) of extruded sorghum and barley, and total phenolic content (TPC) of all extrudates, except extruded millet. At a barrel temperature of 140°C, TPC in extruded barley was significantly increased, and there was also an increase in DPPH and PD in extruded millet with or without CO2 injection. In contrast, at a barrel temperature of 140°C, the TPC of extruded sorghum decreased, TFC of extruded oats decreased, and at a barrel temperature of 110°C, PD of extruded sorghum without CO2 decreased. Some physical properties [expansion ratio (ER), specific length, piece density, color, and water absorption index] of the extrudates were significantly affected by the increase in barrel temperature. The CO2 injection significantly affected some physical properties (ER, specific length, piece density, water solubility index, and water absorption index), TPC, DPPH, β-glucan, and PD. In conclusion, extruded barley and millet had higher potential for making value added cereal-based foods than the other cereals. PMID:27752504

  2. Defatted flaxseed meal incorporated corn-rice flour blend based extruded product by response surface methodology.

    Science.gov (United States)

    Ganorkar, Pravin M; Patel, Jhanvi M; Shah, Vrushti; Rangrej, Vihang V

    2016-04-01

    Considering the evidence of flaxseed and its defatted flaxseed meal (DFM) for human health benefits, response surface methodology (RSM) based on three level four factor central composite rotatable design (CCRD) was employed for the development of DFM incorporated corn - rice flour blend based extruded snack. The effect of DFM fortification (7.5-20 %), moisture content of feed (14-20 %, wb), extruder barrel temperature (115-135 °C) and screw speed (300-330 RPM) on expansion ratio (ER), breaking strength (BS), overall acceptability (OAA) score and water solubility index (WSI) of extrudates were investigated using central composite rotatable design (CCRD). Significant regression models explained the effect of considered variables on all responses. DFM incorporation level was found to be most significant independent variable affecting on extrudates characteristics followed by extruder barrel temperature and then screw rpm. Feed moisture content did not affect extrudates characteristics. As DFM level increased (7.5 % to 20 %), ER and OAA value decreased. However, BS and WSI values were found to increase with increase in DFM level. Based on the defined criteria for numerical optimization, the combination for the production of DFM incorporated extruded snack with desired sensory attributes was achieved by incorporating 10 % DFM (replacing rice flour in flour blend) and by keeping 20 % moisture content, 312 screw rpm and 125 °C barrel temperature.

  3. Twin-screw extruded lipid implants containing TRP2 peptide for tumour therapy.

    Science.gov (United States)

    Even, Marie-Paule; Bobbala, Sharan; Gibson, Blake; Hook, Sarah; Winter, Gerhard; Engert, Julia

    2017-01-16

    Much effort has been put in the development of specific anti-tumour immunotherapies over the last few years, and several studies report on the use of liposomal carriers for tumour-associated antigens. In this work, the use of lipid implants, prepared using two different extruders, was investigated for sustained delivery in tumour therapy. The implants consisted of cholesterol, soybean lecithin, Dynasan 114, trehalose, ovalbumin (OVA) or a TRP2 peptide, and Quil-A. Implants were first produced on a Haake Minilab extruder, and then a scale-down to minimal quantities of material on a small scale ZE mini extruder was performed. All formulations were characterised in terms of extrudability, implant properties and in vitro release behaviour of the model antigen ovalbumin. The type of extruder used to produce the implants had a major influence on implant properties and the release behaviour, demonstrating that extrusion parameters and lipid formulations have to be individually adapted to each extrusion device. Subsequently, lipid implants containing TRP-2 peptide were extruded on the ZE mini extruder and investigated in vitro and in vivo. The in vivo study showed that mice having received TRP2 loaded implants had delayed tumour growth for 3days compared to groups having received no TRP2.

  4. Effect of Some Extrusion Variables on Rheological Properties and Physicochemical Changes of Cornmeal Extruded by Twin Screw Extruder

    Directory of Open Access Journals (Sweden)

    Chang Y.K.

    1998-01-01

    Full Text Available The effect of extrusion variables, such as barrel temperature (100 to 170ºC, feed rate (100 to 500 g/min, feed moisture (20 to 40 g/100 g wet basis, screw speed rate (from 100 to 500 rpm, and slit die rheometer configuration (0.15 and 0.30 cm height were studied using a co-rotating intermeshing twin-screw extruder coupled to a slit die rheometer on the rheological properties of yellow cornmeal. An increase in feed rate decreased WAI and WSI, but increased the viscosity values. The temperature interacts strongly with screw speed in affecting the WSI. The most important factor in starch degradation was the screw speed. Increasing the screw speed completely modifies the organised structure of starch (crystalline region.

  5. Successful reimplantation of extruded long bone segments in open fractures of lower limb--a report of 3 cases.

    Science.gov (United States)

    Shanmuganathan, Rajasekaran; Chandra Mohan, Arun Kamal; Agraharam, Devendra; Perumal, Ramesh; Jayaramaraju, Dheenadhayalan; Kulkarni, Sunil

    2015-07-01

    Extruded bone segments are rare complication of high energy open fractures. Routinely these fractures are treated by debridement followed by bone loss management in the form of either bone transport or free fibula transfer. There are very few reports in the literature about reimplantation of extruded segments of bone and there are no clear guidelines regarding timing of reimplantation, bone stabilisation and sterilisation techniques. Reimplantation of extruded bone is a risky procedure due to high chances of infection which determines the final outcome and can result in secondary amputations. We present two cases of successful reimplantation of extruded diaphyseal segment of femur and one case of reimplantation of extruded segment of tibia.

  6. Corn types with different nutritional profiles, extruded or not, on piglets (6 to 15 kg) feeding

    OpenAIRE

    Gisele Cristina de Oliveira; Ivan Moreira; Antonio Claudio Furlan; Liliane Maria Piano; Juliana Beatriz Toledo; Lina Maria Peñuela Sierra

    2011-01-01

    Two experiments were carried out to determine the nutritional value and verify piglets' performance in the nursery phase fed with diets containing common corn (CC), extruded common corn (ECC), high-lysine corn (HLC), extruded high-lysine corn (EHLC), high-oil corn (HOC) and extruded high-oil corn (EHOC). In the total digestibility trial 14 barrows averaging 6.49 ± 0.16 kg initial body weight were allotted in metabolism cages, distributed in a randomized design with seven diets, six replicates...

  7. Development of flaxseed fortified rice – corn flour blend based extruded product by response surface methodology

    OpenAIRE

    Ganorkar, P. M.; Jain, R. K.

    2014-01-01

    Flaxseed imparted the evidence of health benefits in human being. Response surface methodology (RSM) was employed to develop flaxseed fortified rice – corn flour blend based extruded product using twin screw extruder. The effect of roasted flaxseed flour (RFF) fortification (15–25 %), moisture content of feed (12–16 %, wb), extruder barrel temperature (120–140 °C) and screw speed (300–330 RPM) on expansion ratio (ER), breaking strength (BS), bulk density (BD) and overall acceptability (OAA) s...

  8. The use of twin screw extruders for feeding coal against pressures of up to 1500 PSI

    Science.gov (United States)

    Wiedmann, W.; Mack, W. A.

    1977-01-01

    Recent tests with a twin-screw, co-rotating extruder which was successfully used to convey and feed coal against pressures of up to 1500 psi are described. Intermeshing and self-wiping, co-rotating twin-screws give greatly improved conveying and pressure built-up capabilities and avoid hangup and eventual decomposition of coal particles in the screw flights. The conveying action of intermeshing, self-wiping, co-rotating extruder systems approaches that of a positive displacement pump. With this feature, it is possible to maintain very accurate control over all aspects of product conveyance in the extruder, i.e., intake, conveyance and pressure buildup.

  9. Experimental Study and Finite Element Polycrystal Model Simulation of the Cold Rolling Textures in a Powder Metallurgy Processed Pure Aluminum Plate

    Institute of Scientific and Technical Information of China (English)

    Liqing CHEN; Naoyuki Kanetake

    2005-01-01

    Ingot metallurgy (IM) aluminum has long been the subject and attracted the attention of many metallurgists and textural researchers of materials. Due to the introduction of large amounts of ex situ interfaces, however, the textures in powder metallurgy (PM) processed aluminum has been rarely reported. In this article, a pure aluminum plate was prepared via PM route. The starting billet was first produced with uni-axially cold compaction and flat hot-extrusion and then followed by cold rolling processes. The hot-extruded and cold rolling deformation textures of the pure PM aluminum at 50%, 80% and 90% cold rolling reductions were studied by orientation distribution functions (ODFs) analysis. The finite element polycrystal model (FEPM) was finally utilized to simulate the cold rolling textural evolution at various stages of cold rolling. In FEPM simulation, the initial hot-extruded textures were taken into account as inputs. The results showed that typical β-fiber texture formed in pure PM aluminum with the cold rolling reduction increased till 80%, and there was not much change after excessive cold rolling deformation.Homogeneous slip is not the only deformation mode in PM processed pure aluminum plate at over 80% cold rolling reduction. The experimental results were qualitatively in good agreement with the simulated ones.

  10. Corrosion Inhibitors for Aluminum.

    Science.gov (United States)

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  11. Advances in aluminum anodizing

    Science.gov (United States)

    Dale, K. H.

    1969-01-01

    White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.

  12. Evaluations of Flow and Mixing Efficiency in the Kneading Disks of a Novel Tri-Screw Extruder

    Directory of Open Access Journals (Sweden)

    X. Z. Zhu

    2016-01-01

    Full Text Available The forward or backward stagger angles of the kneading disks have great effects on configures of the special center region along axial length in a novel tri-screw extruder. In this paper, the flow and mixing of a nonNewtonian polyethylene in kneading disks of a tri-screw extruder were simulated using three-dimensional finite element modeling based on mesh superposition technique. Three types of kneading disks, neutral stagger, staggered 30° forward and staggered 30° reverse were considered for the tri-screw extruder. The effects of stagger angles of kneading disks on the flow pattern in the tri-screw extruder were investigated. Moreover, at different stagger angles, the dispersive and distributive mixing efficiencies in the kneading disks of the tri-screw extruder and the twin-screw extruder were calculated and compared by means of mean shear rate, stretching rates, maximal stress magnitudes, mixing index, residence time distribution (RTD and logarithm of area stretch. It is found that increasing the stagger angles decreases the axial velocities of polymer melt in the center region for the tri-screw extruder. The staggered 30° reverse is relatively reasonable for the tri-screw extruder and neutral stagger for the twin-screw extruder for the mixing efficiency. In comparison, the kneading disks in the tri-screw extruder have higher distributive and dispersive mixing efficiencies than those in the twin-screw extruder with the same stagger angles.

  13. CORROSION PROTECTION OF ALUMINUM

    Science.gov (United States)

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  14. Investigation of the extruded products based on lupins, lentils and sublimated meat hydrophilic properties

    Directory of Open Access Journals (Sweden)

    A. N. Ostrikov

    2013-01-01

    Full Text Available Using the calorimetric method have been studied the swelling kinetics of developed vegetable-meat mixture on the basis of lentils, lupine and sublimated meat to create extruded functionality products.

  15. Effect of Different Levels of Extruded Soybean and Avizyme Enzyme on Broiler Performance

    Directory of Open Access Journals (Sweden)

    H Nasiri Mogadam

    2012-01-01

    Full Text Available An experiment was conducted to examine the effect of different levels of extruded soybean and enzyme on broiler performance. In a completely randomized design with 2×3 factorial arrangement, 480 one day-old, Ross broiler chickens were divided into 40 groups, 12 chicks per pen. Treatments were consisting of combination of four levels of extruded soybean (0.0, 5.0, 10.0 and 15.0 % and two levels of enzyme (0.0 and 500 g per ton. Different levels of extruded soybean and enzyme had no significant effect on blood factors such as cholesterol, triglyceride and the weight of liver and heart. The usage of extruded soybean and enzyme showed significantly higher weight gain and better feed conversion (p

  16. Lysine reactivity and starch gelatinization in extruded and pelleted canine diets

    NARCIS (Netherlands)

    Tran, Q.D.; Lin, van C.G.J.M.; Hendriks, W.H.; Poel, van der A.F.B.

    2007-01-01

    Fifteen dry adult canine diets (i.e., dinners, extrudates, pellets) were collected from retailers in Wageningen, The Netherlands, and chemically and physically characterized. Quality measurements were lysine O-methylisourea (OMIU) reactivity and starch gelatinization degree (SGD). In general,

  17. Aluminum, parathyroid hormone, and osteomalacia

    Energy Technology Data Exchange (ETDEWEB)

    Burnatowska-Hledin, M.A.; Kaiser, L.; Mayor, G.H.

    1983-01-01

    Aluminum exposure in man is unavoidable. The occurrence of dialysis dementia, vitamin D-resistant osteomalacia, and hypochromic microcytic anemia in dialysis patients underscores the potential for aluminum toxicity. Although exposure via dialysate and hyperalimentation leads to significant tissue aluminum accumulation, the ubiquitous occurrence of aluminum and the severe pathology associated with large aluminum burdens suggest that smaller exposures via the gastrointestinal tract and lungs could represent an important, though largely unrecognized, public health problem. It is clear that some aluminum absorption occurs with the ingestion of small amounts of aluminum in the diet and medicines, and even greater aluminum absorption is seen in individuals consuming large amounts of aluminum present in antacids. Aluminum absorption is enhanced in the presence of elevated circulating parathyroid hormone. In addition, elevated PTH leads to the preferential deposition of aluminum in brain and bone. Consequently, PTH is likely to be involved in the pathogenesis of toxicities in those organs. PTH excess also seems to lead to the deposition of aluminum in the parathyroid gland. The in vitro demonstration that aluminum inhibits parathyroid hormone release is consistent with the findings of a euparathyroid state in dialysis patients with aluminum related vitamin D-resistant osteomalacia. Nevertheless, it seems likely that hyperparathyroidism is at least initially involved in the pathogenesis of aluminum neurotoxicity and osteomalacia; the increases in tissue aluminum stores are followed by suppression of parathyroid hormone release, which is required for the evolution of osteomalacia. Impaired renal function is not a prerequisite for increased tissue aluminum burdens, nor for aluminum-related organ toxicity. Consequently, it is likely that these diseases will be observed in populations other than those with chronic renal disease.

  18. Insensitive explosive composition and method of fracturing rock using an extrudable form of the composition

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Lloyd L.

    2015-07-28

    Insensitive explosive compositions were prepared by reacting di-isocyanate and/or poly-isocyanate monomers with an explosive diamine monomer. Prior to a final cure, the compositions are extrudable. The di-isocyanate monomers tend to produce tough, rubbery materials while polyfunctional monomers (i.e. having more than two isocyanate groups) tend to form rigid products. The extrudable form of the composition may be used in a variety of applications including rock fracturing.

  19. Calibration of a Numerical Model for Heat Transfer and Fluid Flow in an Extruder

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Nielsen, Jakob Skov

    2016-01-01

    This paper discusses experiments performed in order to validate simulations on a fused deposition modelling (FDM) extruder. The nozzle has been simulated in terms of heat transfer and fluid flow. In order to calibrate and validate these simulations, experiments were performed giving a significant...... dynamical parameters. This research sets the foundation for further research within melted extrusion based additive manufacturing. The heating process of the extruder will be described and a note on the material feeding will be given....

  20. Conformal optimal design and processing of extruding die cavity

    Institute of Scientific and Technical Information of China (English)

    齐红元; 陈科山; 杜凤山

    2008-01-01

    Aimed at the optimal analysis and processing technology of die cavity of special-shaped products extrusion, by numerical analysis of trigonometric interpolation and Conformal Mapping theory, on the non-circle cross-section of special-shaped products, the conformal mapping function can be set up to translate the cross-section region into unit dish region, over numerical finite interpolation points between even and odd. Products extrusion forming can be turned into two-dimension problem, and plastic stream function can be deduced, as well as the mathematical model of the die cavity surface is established based on deferent kinds of vertical curve. By applying Upper-bound Principle, the vertical curves and related parameters of die cavity are optimized. Combining with electrical discharge machining (EDM) process and numerical control (NC) milling machine technology, the optimal processing of die cavity can be realized. Taking ellipse-shaped products as an instance, the optimal analysis and processing of die cavity including extruding experiment are carried out.

  1. Differences in time-dependent mechanical properties between extruded and molded hydrogels

    Science.gov (United States)

    Ersumo, N; Witherel, CE; Spiller, KL

    2016-01-01

    The mechanical properties of hydrogels used in biomaterials and tissue engineering applications are critical determinants of their functionality. Despite the recent rise of additive manufacturing, and specifically extrusion-based bioprinting, as a prominent biofabrication method, comprehensive studies investigating the mechanical behavior of extruded constructs remain lacking. To address this gap in knowledge, we compared the mechanical properties and swelling properties of crosslinked gelatin-based hydrogels prepared by conventional molding techniques or by 3D bioprinting using a BioBots Beta pneumatic extruder. A preliminary characterization of the impact of bioprinting parameters on construct properties revealed that both Young's modulus and optimal extruding pressure increased with polymer content, and that printing resolution increased with both printing speed and nozzle gauge. High viability (>95%) of encapsulated NIH 3T3 fibroblasts confirmed the cytocompatibility of the construct preparation process. Interestingly, the Young's moduli of extruded and molded constructs were not different, but extruded constructs did show increases in both the rate and extent of time-dependent mechanical behavior observed in creep. Despite similar polymer densities, extruded hydrogels showed greater swelling over time compared to molded hydrogels, suggesting that differences in creep behavior derived from differences in microstructure and fluid flow. Because of the crucial roles of time-dependent mechanical properties, fluid flow, and swelling properties on tissue and cell behavior, these findings highlight the need for greater consideration of the effects of the extrusion process on hydrogel properties. PMID:27550945

  2. Estimated glycemic index and dietary fiber content of cookies elaborated with extruded wheat bran.

    Science.gov (United States)

    Reyes-Pérez, Faviola; Salazar-García, María Guadalupe; Romero-Baranzini, Ana Lourdes; Islas-Rubio, Alma Rosa; Ramírez-Wong, Benjamín

    2013-03-01

    The increasing demand for high-fiber products has favored the design of numerous bakery products rich in fiber such as bread, cookies, and cakes. The objective of this study was to evaluate the dietary fiber and estimated glycemic index of cookies containing extruded wheat bran. Wheat bran was subjected to extrusion process under three temperature profiles: TP1;(60, 75, 85 and 100 °C), TP2;(60, 80, 100 and 120 °C), and TP3;(60, 80, 110 and 140 °C) and three moisture contents: (15, 23, and 31 %). Cookies were elaborated using extruded wheat bran (30 %), separated into two fractions (coarse and fine). The dietary fiber content of cookies elaborated with extruded wheat bran was higher than the controls; C0 (100 % wheat flour) and C1 (30 % of no extruded bran coarse fraction) and C2 (30 % of no extruded bran fine fraction). The higher values of dietary fiber were observed on cookies from treatments 5 (TP1, 31 % moisture content and coarse fraction) and 11 (TP2, 31 % moisture content and coarse fraction). The estimated glycemic index of cookies ranged from 68.54 to 80.16. The dietary fiber content of cookies was increased and the lowest glycemic index corresponded to the cookies elaborated with extruded wheat bran. Cookie made with the treatment 11 had a better dietary fiber content and lower estimated glycemic index.

  3. Comparison of the effect of various irrigants on apically extruded debris after root canal preparation.

    Science.gov (United States)

    Parirokh, Masoud; Jalali, Shahrzad; Haghdoost, Ali Akbar; Abbott, Paul Vincent

    2012-02-01

    Several factors can influence the amount of apically extruded debris. The aim was to quantitatively compare the amount of debris extruded apically from root canals when 3 different irrigants were used during canal preparation with rotary instruments. Ninety-one extracted single-rooted human mandibular premolar teeth with straight root canals were used. The teeth were randomly divided into 1 control group (group 1, n = 4) and 3 experimental groups of 29 teeth each. Hero 642 instruments were used for root canal preparation in all teeth, and 3 different irrigants were used (group 2, 2% chlorhexidine; group 3, 5.25% sodium hypochlorite; group 4, 2.5% sodium hypochlorite). Seven Eppendorf tubes served as a second control group. Debris extruded from the apical foramen during root canal preparation was collected into preweighed Eppendorf tubes. The weight of the dry extruded debris was established by subtracting the preinstrumentation and postinstrumentation weight of the Eppendorf tubes for each group. The data obtained were analyzed by using one-way analysis of variance and Tukey honestly significant difference. Group 3 (sodium hypochlorite 5.25%) had the highest amount of extruded debris, which was significantly different from the other groups (P irrigant used can affect the amount of apically extruded debris. The 5.25% solution of sodium hypochlorite had the greatest amount of debris. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Hot Deformation Mechanisms in AZ31 Magnesium Alloy Extruded at Different Temperatures: Impact of Texture

    Directory of Open Access Journals (Sweden)

    Karl Ulrich Kainer

    2012-08-01

    Full Text Available The hot deformation characteristics of AZ31 magnesium alloy rod extruded at temperatures of 300 °C, 350 °C and 450 °C have been studied in compression. The extruded material had a fiber texture with  parallel to the extrusion axis. When extruded at 450 °C, the texture was less intense and the  direction moved away from the extrusion axis. The processing maps for the material extruded at 300 °C and 350 °C are qualitatively similar to the material with near-random texture (cast-homogenized and exhibited three dynamic recrystallization (DRX domains. In domains #1 and #2, prismatic slip is the dominant process and DRX is controlled by lattice self-diffusion and grain boundary self-diffusion, respectively. In domain #3, pyramidal slip occurs extensively and DRX is controlled by cross-slip on pyramidal slip systems. The material extruded at 450 °C exhibited two domains similar to #1 and #2 above, which moved to higher temperatures, but domain #3 is absent. The results are interpreted in terms of the changes in  fiber texture with extrusion temperature. Highly intense  texture, as in the rod extruded at 350 °C, will enhance the occurrence of prismatic slip in domains #1 and #2 and promotes pyramidal slip at temperatures >450 °C (domain #3.

  5. Nanostructure Characterization of Bismuth Telluride-Based Powders and Extruded Alloys by Various Experimental Methods

    Science.gov (United States)

    Vasilevskiy, D.; Bourbia, O.; Gosselin, S.; Turenne, S.; Masut, R. A.

    2011-05-01

    High-resolution transmission electron microscopy (HRTEM) observations of mechanically alloyed powders and bulk extruded alloys give experimental evidence of nanosized grains in bismuth telluride-based materials. In this study we combine HRTEM observations and x-ray diffraction (XRD) measurements, of both mechanically alloyed powders and extruded samples, with mechanical spectroscopy (MS) of extruded rods. Both HRTEM and XRD show that nanostructures with an average grain size near 25 nm can be achieved within 2 h of mechanical alloying from pure elements in an attritor-type milling machine. Residual strain orthogonal to the c-axis of powder nanoparticles has been evaluated at about 1.2% by XRD peak broadening. In contrast, XRD has been found unreliable for evaluation of grain size in highly textured extruded materials for which diffraction conditions are similar to those of single crystals, while MS appears promising for study of bulk extruded samples. Nanostructured extruded alloys at room temperature exhibit an internal friction (IF) background that is one order of magnitude higher than that of conventional zone-melted material with a grain size of several millimeters. IF as a function of sample temperature gives activation energies that are also different between bulk materials having nano- and millimeter-size grains, a result that is attributed to different creep mechanisms. Nanograin size, as well as orientation and volumetric proportion, provide valuable information for optimization of technological parameters of thermoelectric alloys and should be carefully cross-examined by various independent methods.

  6. Fabrication of aluminum foam from aluminum scrap Hamza

    Directory of Open Access Journals (Sweden)

    O. A. Osman1 ,

    2015-02-01

    Full Text Available In this study the optimum parameters affecting the preparation of aluminum foam from recycled aluminum were studied, these parameters are: temperature, CaCO3 to aluminum scrap wt. ratio as foaming agent, Al2O3 to aluminum scrap wt. ratio as thickening agent, and stirring time. The results show that, the optimum parameters are the temperature ranged from 800 to 850oC, CaCO3 to aluminum scrap wt. ratio was 5%, Al2O3 to aluminum scrap wt. ratio was 3% and stirring time was 45 second with stirring speed 1200 rpm. The produced foam apparent densities ranged from 0.40-0.60 g/cm3. The microstructure of aluminum foam was examined by using SEM, EDX and XRD, the results show that, the aluminum pores were uniformly distributed along the all matrices and the cell walls covered by thin oxide film.

  7. China’s Aluminum Resources

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> The aluminum industry makes one of the keyindustries in China’s industrial and agriculturalmodernization and features a high degree ofrelevance with all industries.Of all the 124existing industries in China,113 use aluminum,representing an industrial relevance rate of91%.The consumption of aluminum is also ofhigh relevance with China’s GDP.

  8. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  9. Continuously graded extruded polymer composites for energetic applications fabricated using twin-screw extrusion processing technology

    Science.gov (United States)

    Gallant, Frederick M.

    A novel method of fabricating functionally graded extruded composite materials is proposed for propellant applications using the technology of continuous processing with a Twin-Screw Extruder. The method is applied to the manufacturing of grains for solid rocket motors in an end-burning configuration with an axial gradient in ammonium perchlorate volume fraction and relative coarse/fine particle size distributions. The fabrication of functionally graded extruded polymer composites with either inert or energetic ingredients has yet to be investigated. The lack of knowledge concerning the processing of these novel materials has necessitated that a number of research issues be addressed. Of primary concern is characterizing and modeling the relationship between the extruder screw geometry, transient processing conditions, and the gradient architecture that evolves in the extruder. Recent interpretations of the Residence Time Distributions (RTDs) and Residence Volume Distributions (RVDs) for polymer composites in the TSE are used to develop new process models for predicting gradient architectures in the direction of extrusion. An approach is developed for characterizing the sections of the extrudate using optical, mechanical, and compositional analysis to determine the gradient architectures. The effects of processing on the burning rate properties of extruded energetic polymer composites are characterized for homogeneous formulations over a range of compositions to determine realistic gradient architectures for solid rocket motor applications. The new process models and burning rate properties that have been characterized in this research effort will be the basis for an inverse design procedure that is capable of determining gradient architectures for grains in solid rocket motors that possess tailored burning rate distributions that conform to user-defined performance specifications.

  10. Apically extruded debris with three contemporary Ni-Ti instrumentation systems: An ex vivo comparative study

    Directory of Open Access Journals (Sweden)

    Logani Ajay

    2008-01-01

    Full Text Available Aim: To comparatively evaluate the amount of apically extruded debris when ProTaper hand, ProTaper rotary and ProFile systems were used for the instrumentation of root canals. Materials and Methods: Thirty minimally curved, mature, human mandibular premolars with single canals were randomly divided into three groups of ten teeth each. Each group was instrumented using one of the three instrumentation systems: ProTaper hand, ProTaper rotary and ProFile. Five milliliters of sterile water were used as an irrigant. Debris extruded was collected in preweighed polyethylene vials and the extruded irrigant was evaporated. The weight of the dry extruded debris was established by comparing the pre- and postinstrumentation weight of polyethylene vials for each group. Statistical Analysis: The Kruskal-Wallis nonparametric test and Mann-Whitney U test were applied to determine if significant differences existed among the groups ( P < 0.05. Results: All instruments tested produced a measurable amount of debris. No statistically significant difference was observed between ProTaper hand and ProFile system ( P > 0.05. Although ProTaper rotary extruded a relatively higher amount of debris, no statistically significant difference was observed between this type and the ProTaper hand instruments ( P > 0.05. The ProTaper rotary extruded significantly more amount of debris compared to the ProFile system ( P < 0.05. Conclusion: Within the limitations of this study, it can be concluded that all instruments tested produced apical extrusion of debris. The ProTaper rotary extruded a significantly higher amount of debris than the ProFile.

  11. Fatigue behavior of 6063 aluminum alloy extrusions for wind-turbine applications

    Energy Technology Data Exchange (ETDEWEB)

    Warren, A.S.

    1990-01-01

    The fatigue behavior of a 6063 aluminum alloy used in the Vertical Axis Wind Turbine (VAWT) blade extrusions was investigated under a variety of cyclic loading conditions and with different specimen geometries in order to examine the mechanisms of fatigue crack initiation and crack growth, and to provide fatigue data for use in life prediction models. The effect of open holes on fatigue crack initiation and crack growth, and on the S-N curves were investigated with plate bending. Fatigue life in plane bending was controlled by crack propagation. Hole preparation by drilling, or drilling and reaming were found to produce equivalent crack initiation behavior, and overall fatigue lives. Fatigue crack growth rates, including near-threshold behavior, were measured under LEFM conditions with compact tension specimens as a function of: heat treatment, crack plane orientation with respect to the extrusion direction, and R ratio. Low-cycle fatigue behavior and cyclic material properties were examined, and compared on the basis of material condition for extruded VAWT blade material, re-heat treated blade material and commercial 6063-T5 extruded rod. Low cyclic ductility values were observed in the extruded blade material.

  12. Evaluation of Waste from Aluminum Industry as Filler in Polypropylene Composites

    Science.gov (United States)

    Samat, N.; Sabaruddin, F. A.; Meor Yusoff, M. S.; Dayang Habibah, A. I. H.

    2017-01-01

    White aluminum (Al) dross is the waste or by-product generated from the smelting of Al. Improper disposal of this waste will affect the sustainability of the environment. This study was aimed at investigating the feasibility of Al dross as a thermoplastic filler. Various content of Al dross (10-40 wt.%) was blended with polypropylene (PP) using an extruder. An improvement in thermal and flame resistance properties was evident, which was associated with the presence of aluminum hydroxide elements in Al dross as revealed from x-ray diffraction analysis. It was shown that the higher Al dross content in PP did cause the composites to possess high stiffness and low crystallinity. An advantage in wear properties further showed that the Al dross can be used as a filler for thermoplastics.

  13. Evaluation of Waste from Aluminum Industry as Filler in Polypropylene Composites

    Science.gov (United States)

    Samat, N.; Sabaruddin, F. A.; Meor Yusoff, M. S.; Dayang Habibah, A. I. H.

    2017-04-01

    White aluminum (Al) dross is the waste or by-product generated from the smelting of Al. Improper disposal of this waste will affect the sustainability of the environment. This study was aimed at investigating the feasibility of Al dross as a thermoplastic filler. Various content of Al dross (10-40 wt.%) was blended with polypropylene (PP) using an extruder. An improvement in thermal and flame resistance properties was evident, which was associated with the presence of aluminum hydroxide elements in Al dross as revealed from x-ray diffraction analysis. It was shown that the higher Al dross content in PP did cause the composites to possess high stiffness and low crystallinity. An advantage in wear properties further showed that the Al dross can be used as a filler for thermoplastics.

  14. Invisible Display in Aluminum

    DEFF Research Database (Denmark)

    Prichystal, Jan Phuklin; Hansen, Hans Nørgaard; Bladt, Henrik Henriksen

    2005-01-01

    for an integrated display in a metal surface is often ruled by design and functionality of a product. The integration of displays in metal surfaces requires metal removal in order to clear the area of the display to some extent. The idea behind an invisible display in Aluminum concerns the processing of a metal...

  15. Aluminum for Plasmonics

    Science.gov (United States)

    2014-01-01

    in plasmon-enhanced light harvesting,14 photocatalysis ,511 surface- enhanced spectroscopies,1216 optics-based sensing,1722 nonlinear optics,2326...optical response of Al nanoparticles has appeared inconsistent relative to calculated spectra, even forwell-characterized geometries. Some studies have...model- ing their optical response. These results pro- vide a method for estimating the metallic purity of aluminum nanoparticles directly from their

  16. UBET analysis of process of extruding aluminum alloy ribbed thin-wall pipes through a porthole die

    Institute of Scientific and Technical Information of China (English)

    谢建新; 裴强; 刘静安

    2002-01-01

    Using the upper bound element technique (UBET), a numerical model was proposed for analyzing the metal deformation behavior in the extrusion process of ribbed thin-wall pipes through a porthole die. Optimization parameters were contained in the numerical model and determined through minimizing the total work of metal deformation. Taking the extrusion process of thin-wall pipe with one rib as an example, the calculated results using the proposed model are as follows: the extrusion pressure p is linearly related to the extrusion ratio R by p = a+bR 0.683, where a =14.13, b =0.911. When the length of the billet remaining in container is shorter than a quarter of the container diameter, the plastic region extends over the whole of the remained billet and the extrusion process reaches the state of funnel deformation. There exists an optimum depth of welding chamber in respect of the extrusion pressure, and to the calculated example the optimum depth is about 10% of the circumscribed diameter of portholes. To obtain more equitable metal flow in welding chamber, it is required to make the dividing planes in container to be consistent with corresponding welding planes in the chamber ( θ max i = θ′ max i ) through choosing different entering area for each of the portholes.

  17. Properties of whey protein isolates extruded under acidic and alkaline conditions.

    Science.gov (United States)

    Onwulata, C I; Isobe, S; Tomasula, P M; Cooke, P H

    2006-01-01

    Whey proteins have wide acceptance and use in many products due to their beneficial nutritional properties. To further increase the amount of whey protein isolates (WPI) that may be added to products such as extruded snacks and meats, texturization of WPI is necessary. Texturization changes the folding of globular proteins to improve interaction with other ingredients and create new functional ingredients. In this study, WPI pastes (60% solids) were extruded in a twin-screw extruder at 100 degrees C with 4 pH-adjusted water streams: acidic (pH 2.0 +/- 0.2) and alkaline (pH 12.4 +/- 0.4) streams from 2 N HCl and 2 N NaOH, respectively, and acidic (pH 2.5 +/- 0.2) and alkaline (pH 11.5 +/- 0.4) electrolyzed water streams; these were compared with WPI extruded with deionized water. The effects of water acidity on WPI solubility at pH 7, color, microstructure, Rapid Visco Analyzer pasting properties, and physical structure were determined. Alkaline conditions increased insolubility caused yellowing and increased pasting properties significantly. Acidic conditions increased solubility and decreased WPI pasting properties. Subtle structural changes occurred under acidic conditions, but were more pronounced under alkaline conditions. Overall, alkaline conditions increased denaturation in the extruded WPI resulting in stringy texturized WPI products, which could be used in meat applications.

  18. Multilayer laminar co-extrudate as a novel controlled release dosage form.

    Science.gov (United States)

    Müllers, Katrin C; Wahl, Martin A; Pinto, João F

    2013-07-16

    Design of a new dosage form manufactured by laminar extrusion for oral administration of drugs. Different mixtures of materials (microcrystalline cellulose [MCC], hydroxypropyl methylcellulose [HPMC], lactose [LAC], dicalcium phosphate [DCP], coumarin [COU], propranolol hydrochloride [PRO], water [W]) were prepared prior to laminar extrusion. Mono, bi and tri layer extrudates were manufactured and evaluated for extrudability, drying, water uptake and swelling ability and in vitro characterization of the drug release. Good quality extrudates were manufactured with higher HPMC molecular weight and fraction in formulation at an extrusion rate of 400 mm/min and slow drying (forced air stream), otherwise surface roughness, thickness in-homogeneity, bending and shark skin were present in the extrudates. Swelling of extrudates was dependent on HPMC fraction and molecular weight (60% up to 90% weight gain for low and high polymer chains, respectively) and the presence of either MCC or DCP. The release of drug was dependent on its solubility (PRO>COU), the fraction of HPMC (low>high fractions), the type of diluent (DCP>MCC) and number of layers (1>2>3 layers). By designing the number and type of layers, dosage forms with well-defined release-kinetics can be tailored. The study has shown the ability of the technology of extrusion to manufacture a controlled release dosage form in a continuous fashion.

  19. Quality evaluation of millet-soy blended extrudates formulated through linear programming.

    Science.gov (United States)

    Balasubramanian, S; Singh, K K; Patil, R T; Onkar, Kolhe K

    2012-08-01

    Whole pearl millet, finger millet and decorticated soy bean blended (millet soy) extrudates formulations were designed using a linear programming (LP) model to minimize the total cost of the finished product. LP formulated composite flour was extruded through twin screw food extruder at different feed rate (6.5-13.5 kg/h), screw speed (200-350 rpm, constant feed moisture (14% wb), barrel temperature (120 °C) and cutter speed (15 rpm). The physical, functional, textural and pasting characteristics of extrudates were examined and their responses were studied. Expansion index (2.31) and sectional expansion index (5.39) was found to be was found maximum for feed rate and screw speed combination 9.5 kg/h and 250 rpm. However, density (0.25 × 10(-3) g/mm(3)) was maximum for 9.5 kg/h and 300 rpm combination. Maximum color change (10.32) was found for 9.5 kg/h feed rate and 200 rpm screw speed. The lower hardness was obtained for the samples extruded at lowest feed rate (6.5 kg/h) for all screw speed and feed rate at 9.5 kg/h for 300-350 rpm screw speed. Peak viscosity decreases with all screw speed of 9.5 kg/h feed rate.

  20. Effect of extruded wheat flour as a fat replacer on batter characteristics and cake quality.

    Science.gov (United States)

    Román, Laura; Santos, Isabel; Martínez, Mario M; Gómez, Manuel

    2015-12-01

    The effects of three levels of fat replacement (1/3, 2/3, and 3/3) by extruded flour paste and the effects of the presence of emulsifier on layer cake batter characteristics and final cake quality were studied. Replacement of oil by extruded flour paste modified the batter density and microscopy, reducing the number of air bubbles and increasing their size, while emulsifier incorporation facilitated air entrapment in batter. Emulsifier addition also increased the elastic and viscous moduli of the batter, while oil reduction resulted in a less structured batter. Emulsifier incorporation leads to good quality cakes, minimizing the negative effect of oil reduction, maintaining the volume and reducing the hardness of cakes. Furthermore, consumer acceptability of the reduced fat cakes was improved by the addition of emulsifier. Thus, the results confirmed the positive effect of partial oil substitution (up to 2/3) by extruded flour paste on the quality of reduced fat cakes when emulsifier was incorporated.

  1. Calibration of a Numerical Model for Heat Transfer and Fluid Flow in an Extruder

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Nielsen, Jakob Skov;

    2016-01-01

    This paper discusses experiments performed in order to validate simulations on a fused deposition modelling (FDM) extruder. The nozzle has been simulated in terms of heat transfer and fluid flow. In order to calibrate and validate these simulations, experiments were performed giving a significant...... look into the physical behaviour of the nozzle, heating and cooling systems. Experiments on the model were performed at different sub-mm diameters of the extruder. Physical parameters of the model – especially temperature dependent parameters – were set into analytical relationships in order to receive...... dynamical parameters. This research sets the foundation for further research within melted extrusion based additive manufacturing. The heating process of the extruder will be described and a note on the material feeding will be given....

  2. Aluminum microstructures on anodic alumina for aluminum wiring boards.

    Science.gov (United States)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2010-03-01

    The paper demonstrates simple methods for the fabrication of aluminum microstructures on the anodic oxide film of aluminum. The aluminum sheets were first engraved (patterned) either by laser beam or by embossing to form deep grooves on the surface. One side of the sheet was then anodized, blocking the other side by using polymer mask to form the anodic alumina. Because of the lower thickness at the bottom part of the grooves, the part was completely anodized before the complete oxidation of the other parts. Such selectively complete anodizing resulted in the patterns of metallic aluminum on anodic alumina. Using the technique, we fabricated microstructures such as line patterns and a simple wiring circuit-board-like structure on the anodic alumina. The aluminum microstructures fabricated by the techniques were embedded in anodic alumina/aluminum sheet, and this technique is promising for applications in electronic packaging and devices.

  3. Modelling extrudate expansion in a twin-screw food extrusion cooking process through dimensional analysis methodology

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Friis, Alan

    2010-01-01

    A new phenomenological model is proposed to correlate extrudate expansion and extruder operation parameters in a twin-screw food extrusion cooking process. Buckingham's pi dimensional analysis method is applied to establish the model. Three dimensionless groups, i.e. pump efficiency, water content...... and temperature, are formed to model the extrusion process from dimensional analysis. The model is evaluated with experimental data for extrusion of whole wheat flour and fish feed. The average deviations of the model correlations are 5.9% and 9% based on experimental data for the whole wheat flour and fish feed...

  4. Hot deformation mechanisms and microstructural control in high-temperature extruded AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Y.V.R.K.; Rao, K.P. [Department of Manufacturing Engineering and Engineering Management, City University of Hong Kong, Tat Chee Avenue, Kowloon (China)

    2007-07-15

    A Processing map has been developed for Magnesium alloy AZ31 extruded at 450 C which revealed that the extruded rods may be further processed into components industrially at 400 C and at a strain rate of 10 s{sup -1}. If processed at lower strain rates in the vicinity of 0.1 s{sup -1}, unusual grain size variations with temperature and strain rate are observed, suggesting that grain size control will be difficult. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  5. 40 CFR 428.70 - Applicability; description of the large-sized general molded, extruded, and fabricated rubber...

    Science.gov (United States)

    2010-07-01

    ... large-sized general molded, extruded, and fabricated rubber plants subcategory. 428.70 Section 428.70... RUBBER MANUFACTURING POINT SOURCE CATEGORY Large-Sized General Molded, Extruded, and Fabricated Rubber... fabricated rubber plants subcategory. The following provisions of this subpart are applicable to...

  6. 40 CFR 428.50 - Applicability; description of the small-sized general molded, extruded, and fabricated rubber...

    Science.gov (United States)

    2010-07-01

    ... small-sized general molded, extruded, and fabricated rubber plants subcategory. 428.50 Section 428.50... RUBBER MANUFACTURING POINT SOURCE CATEGORY Small-Sized General Molded, Extruded, and Fabricated Rubber... fabricated rubber plants subcategory. The following provisions of this subpart are applicable to...

  7. Aluminum Carbothermic Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Marshall J.

    2005-03-31

    This report documents the non-proprietary research and development conducted on the Aluminum Carbothermic Technology (ACT) project from contract inception on July 01, 2000 to termination on December 31, 2004. The objectives of the program were to demonstrate the technical and economic feasibility of a new carbothermic process for producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). The scope of the program ranged from fundamental research through small scale laboratory experiments (65 kW power input) to larger scale test modules at up to 1600 kW power input. The tasks included work on four components of the process, Stages 1 and 2 of the reactor, vapor recovery and metal alloy decarbonization; development of computer models; and economic analyses of capital and operating costs. Justification for developing a new, carbothermic route to aluminum production is defined by the potential benefits in reduced energy, lower costs and more favorable environmental characteristics than the conventional Hall-Heroult process presently used by the industry. The estimated metrics for these advantages include energy rates at approximately 10 kWh/kg Al (versus over 13 kWh/kg Al for Hall-Heroult), capital costs as low as $1250 per MTY (versus 4,000 per MTY for Hall-Heroult), operating cost reductions of over 10%, and up to 37% reduction in CO2 emissions for fossil-fuel power plants. Realization of these benefits would be critical to sustaining the US aluminum industries position as a global leader in primary aluminum production. One very attractive incentive for ARP is its perceived ability to cost effectively produce metal over a range of smelter sizes, not feasible for Hall-Heroult plants which must be large, 240,000 TPY or more, to be economical. Lower capacity stand alone carbothermic smelters could be utilized to supply molten metal at fabrication facilities similar to the mini-mill concept employed by the steel industry

  8. Extracting aluminum from dross tailings

    Science.gov (United States)

    Amer, A. M.

    2002-11-01

    Aluminum dross tailings, an industrial waste, from the Egyptian Aluminium Company (Egyptalum) was used to produce two types of alums: aluminum-sulfate alum [itAl2(SO4)3.12H2O] and ammonium-aluminum alum [ (NH 4)2SO4AL2(SO4)3.24H2O]. This was carried out in two processes. The first process is leaching the impurities using diluted H2SO4 with different solid/liquid ratios at different temperatures to dissolve the impurities present in the starting material in the form of solute sulfates. The second process is the extraction of aluminum (as aluminum sulfate) from the purifi ed aluminum dross tailings thus produced. The effects of temperature, time of reaction, and acid concentration on leaching and extraction processes were studied. The product alums were analyzed using x-ray diffraction and thermal analysis techniques.

  9. Laser assisted foaming of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Kathuria, Y.P. [Laser X Co. Ltd., Aichi (Japan)

    2001-09-01

    Recently aluminum foams have evoked considerable interest as an alternative material owing to their wide range of applications ranging from microelectronics, through automobiles to aerospace industries. The manufacturing techniques and characterization methods for aluminum foams require further development to achieve effective and economical use of this material. In this communication the authors demonstrate the feasibility of unidirectional and localized expansion of the aluminum foam using the Nd-YAG/CO{sub 2} laser and powder metallurgy. (orig.)

  10. Composition and flavor of milk and butter from cows fed fish oil, extruded soybeans, or their combination.

    Science.gov (United States)

    Ramaswamy, N; Baer, R J; Schingoethe, D J; Hippen, A R; Kasperson, K M; Whitlock, L A

    2001-10-01

    Milk was collected from eight multiparous Holstein and four multiparous Brown Swiss cows that were distributed into four groups and arranged in a randomized complete block design with four 4-wk periods. The four treatments included a control diet of a 50:50 ratio of forage-to-concentrate; a fish oil diet of the control diet with 2% (on dry matter basis) added fat from menhaden fish oil; a fish oil with extruded soybean diet of the control diet with 1% (on dry matter basis) added fat from menhaden fish oil and 1% (on dry matter basis) added fat from extruded soybeans; and an extruded soybean diet of the control diet with 2% (on dry matter basis) added fat from extruded soybeans. Milk from cows fed control, fish oil, fish oil with extruded soybean, and extruded soybean diets contained 3.31, 2.58, 2.94, and 3.47% fat, respectively. Concentrations of conjugated linoleic acid in milk were highest in the fish oil (2.30 g/100 g of fatty acids) and fish oil with extruded soybean (2.17 g/100 g of fatty acids) diets compared with the control (0.56 g/100 g fatty acids) diet. Milk, cream, butter, and buttermilk from the fish oil, fish oil with extruded soybean, and extruded soybean diets had higher concentrations of transvaccenic acid and unsaturated fatty acids compared with the controls. Butter made from the extruded soybean diet was softest compared with all treatments. An experienced sensory panel found no flavor differences in milks or butters.

  11. Aluminum R&D for Automotive Uses and the Department of Energy's Role

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, S.W.

    2000-03-24

    . Aluminum sheet of the proper alloy is still too expensive to penetrate significantly except for components where lower weight has extra value (e.g., large hoods or deck lids). The cost of auto body sheet averages above $1.30/lb, 30% above what the auto industry has said is required for economic competitiveness. Further research is needed to either lower the cost of the alloys currently used for body sheet, or to develop methods to use less expensive alloys. Joining technologies need to be improved to lower their cost while improving quality. Extruded components have potential but will make the most significant contribution if spaceframe designs are developed for high-volume automobile markets. Aluminum has the potential to significantly reduce the weight of vehicles, improving fuel efficiency while maintaining other desirable attributes. Federally funded research contributes to this goal.

  12. Mathematical modeling of the drying of extruded fish feed and its experimental demonstration

    DEFF Research Database (Denmark)

    Haubjerg, Anders Fjeldbo; Simonsen, B.; Løvgreen, S.

    This paper present a mathematical model for the drying of extruded fish feed pellets. The model relies on conservation balances for moisture and energy. Sorption isotherms from literature are used together with diffusion and transfer coefficients obtained from dual parameter regression analysis...

  13. Effect of twin-screw extrusion parameters on mechanical hardness of direct-expanded extrudates

    Indian Academy of Sciences (India)

    M Brnčić; B Tripalo; D Ježek; D Semenski; N Drvar; M Ukrainczyk

    2006-10-01

    Mechanical properties of cereal (starch-based) extrudates are perceived by the final consumer as criteria of quality. We investigate one of the important characteristics of extrudates, mechanical hardness, which is one of the main texture parameters. Texture quality has an influence on taste sensory evaluation, and thus on the acceptability of the product. Characteristics that have great influence on acceptability are crispness, elasticity, hardness and softness. These attributes are narrowly related to, and affected by, the process parameters. A 2-level–4-factor factorial experimental design was used to investigate the influence of temperature of expansion, screw speed, feed moisture content and feed rate, and their interactions, on the mechanical hardness of extrudates. Feed moisture content, screw speed and temperature are found to influence, while feed rate does not have significant effect on extrudate hardness. Mechanical properties of specimens were measured by means of compression testing, based on the concept of nominal stress, using a universal testing machine and special grips that were constructed for this purpose.

  14. Extrusion Conditions and Amylose Content Affect Physicochemical Properties of Extrudates Obtained from Brown Rice Grains.

    Science.gov (United States)

    González, Rolando José; Pastor Cavada, Elena; Vioque Peña, Javier; Torres, Roberto Luis; De Greef, Dardo Mario; Drago, Silvina Rosa

    2013-01-01

    The utilization of whole grains in food formulations is nowadays recommended. Extrusion cooking allows obtaining precooked cereal products and a wide range of ready-to-eat foods. Two rice varieties having different amylose content (Fortuna 16% and Paso 144, 27%) were extruded using a Brabender single screw extruder. Factorial experimental design was used to study the effects of extrusion temperature (160, 175, and 190°C) and grits moisture content (14%, 16.5%, and 19%) on extrudate properties. Specific mechanical energy consumption (SMEC), radial expansion (E), specific volume (SV), water absorption (WA), and solubility (S) were determined on each extrudate sample. In general, Fortuna variety showed higher values of SMEC and S (703-409 versus 637-407 J/g; 33.0-21.0 versus 20.1-11.0%, resp.) than those of Paso 144; on the contrary SV (8.64-3.47 versus 8.27-4.53 mL/g) and WA tended to be lower (7.7-5.1 versus 8.4-6.6 mL/g). Both varieties showed similar values of expansion rate (3.60-2.18). Physical characteristics depended on extrusion conditions and rice variety used. The degree of cooking reached by Paso rice samples was lower than that obtained for Fortuna. It is suggested that the presence of germ and bran interfered with the cooking process, decreasing friction level and broadening residence time distribution.

  15. Wheat gluten in extruded fish feed: Effects on morphology and on physical and functional properties

    NARCIS (Netherlands)

    Draganovic, V.; Goot, van der A.J.; Boom, R.M.; Jonkers, J.

    2013-01-01

    This article focuses on understanding the role of vital wheat gluten on the structural parameters of extruded fish feed and its correlation to the physical and functional properties. Gluten–soy protein concentrate blends with five gluten concentrations (0–200 g kg-1) were produced. An abrupt

  16. Calibration of a Numerical Model for Heat Transfer and Fluid Flow in an Extruder

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Nielsen, Jakob Skov

    2016-01-01

    This paper discusses experiments performed in order to validate simulations on a fused deposition modelling (FDM) extruder. The nozzle has been simulated in terms of heat transfer and fluid flow. In order to calibrate and validate these simulations, experiments were performed giving a significant...

  17. Twin screw extruders as polymerization reactors for a free radical homo polymerization

    NARCIS (Netherlands)

    Ganzeveld, K.J.; Janssen, L.P.B.M.

    1993-01-01

    The bulk polymerization of n-butylmethacrylate was investigated in a counter-rotating twin screw extruder. It appeared that the gel effect, occurring with bulk polymerizations, affected the polymerization progress very strongly. Due to this effect the conversion of the reaction is independent of the

  18. Effect of Starch Sources and Protein Content on Extruded Aquaculture Feed Containing DDGS

    Science.gov (United States)

    A 3x3 completely randomized design was used to investigate the extrusion cooking and product characteristics of DDGS, protein levels, and various starch sources in a laboratory scale single screw extruder. Cassava, corn, and potato starches with varying levels of DDGS (20, 30, and 40% wb) were extru...

  19. Extrusion trials with a TSK045 twin screw extruder (Poster presentation)

    NARCIS (Netherlands)

    Sabel, H.W.R.; Schonewille, E.

    1998-01-01

    In 1994 a 45mm twin screw extruder was introduced at the Prins Maurits Laboratory of TNO for the processing of energetic materials. Initial safety experiments were carried out by using inert compositions with small amounts of different energetic components and micro encapsulated chemical sensors to

  20. Characterisation and potential application of pineapple pomace in an extruded product for fibre enhancement.

    Science.gov (United States)

    Selani, Miriam Mabel; Brazaca, Solange Guidolin Canniatti; Dos Santos Dias, Carlos Tadeu; Ratnayake, Wajira S; Flores, Rolando A; Bianchini, Andreia

    2014-11-15

    This study characterised pineapple pomace (PP) and evaluated its application in extrusion to enhance fibre content of the final product. The pomace had low fat (0.61%) and high dietary fibre (45.22%), showing its potential for fibre enrichment of nutritionally poor products, as some extruded snacks. Results also showed low microbiological counts, water activity, and pH indicating good microbiological quality and low risk of physicochemical deterioration. During extrusion, pomace (0%, 10.5% and 21%), moisture (14%, 15% and 16%) and temperature (140 and 160°C) were evaluated. The PP addition decreased expansion and luminosity; while increasing redness of the extrudates compared to the control (0% pomace/14% moisture/140°C). When hardness, yellowness, water absorption, and bulk density were compared to the control, there was no effect (p>0.05) of 10.5% PP addition on the extrudates, indicating that, at this level, PP could be added without affecting the properties of the final extruded product.

  1. Physical and mechanical properties of extruded poly(lactic acid)-based Paulownia elongata biocomposites

    Science.gov (United States)

    Paulownia wood flour (PWF), a byproduct of milling lumber, was tested as bio-filler with polylactic acid (PLA). Paulownia wood (PW) shavings were milled and separated into particle fractions and then blended with PLA with a single screw extruder. Mechanical and thermal properties were tested. Dif...

  2. Ethanol Production from Extruded Thermoplastic Maize Meal by High Gravity Fermentation with Zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    Mayeli Peralta-Contreras

    2014-01-01

    Full Text Available A comparative study of extruded and ground maize meals as raw materials for the production of regular (12°P and high gravity (20°P worts was devised. Extruded water solubility index (WSI was higher (9.8 percentage units and crude fat was lower (2.64 percentage units compared to ground maize. Free-amino nitrogen compounds (FAN, pH, and glucose were evaluated in regular and high gravity worts produced from ground or extruded maize. Extrusion improved glucose content and ethanol yield. In 20°P mashes, extrusion is enhanced by 2.14% initial glucose compared with regular ground mashes. The 12°P and 20°P extruded treatments averaged 12.2% and 8.4% higher ethanol, respectively, compared to the uncooked counterpart. The 20°P worts fermented with Zymomonas mobilis produced 9.56% more ethanol than the 12°P counterpart. The results show that the combination of extrusion and fermentation of 20°P worts improved ethanol yield per kg flour until 20.93%. This pretreatment stimulates Z. mobilis fermentation efficiency.

  3. Extrusion trials with a TSK045 twin screw extruder (Poster presentation)

    NARCIS (Netherlands)

    Sabel, H.W.R.; Schonewille, E.

    1998-01-01

    In 1994 a 45mm twin screw extruder was introduced at the Prins Maurits Laboratory of TNO for the processing of energetic materials. Initial safety experiments were carried out by using inert compositions with small amounts of different energetic components and micro encapsulated chemical sensors to

  4. Dissolving cellulose with twin-screw extruder in a NaOH complex aqueous solution

    Science.gov (United States)

    Yang, Y. P.; Zhang, Y.; Dawelbeit, A.; Yu, M. H.

    2016-07-01

    Novel cellulose dissolution method with twin-screw extruder was developed in order to improve the dissolution property, to simplify production procedure and to produce cellulose spinning dope which is stable and which has a higher concentration of cellulose. Therefore, the extrusion conditions on the cellulose dissolution in NaOH/thiourea/urea were extensively studied in this work. The resulted extrudates of twin-screw extruder dissolution method were characterized by polarized optical microscope image, the solubility experiment and the apparent viscosity. The results revealed that the screw revolution speed of such process could improve the solubility value (S a) of cellulose, and the solubility of cellulose reached a maximum value of 7.5 wt% at higher revolutions 450 rpm. On the other hand, the cellulose solutions were more transparent and balanced with its apparent viscosity values lower and more stable compare to stirring method, which indicated dissolving cellulose with twin-screw extruder was reliable. Moreover, the whole dissolving time is quite short, and the process is simple. The soluble effect of twin screw extrusion was far superior to traditional stirring, and the most suitable temperature was -2°C.

  5. Functional properties of plantain, cowpea flours and oat fiber in extruded products

    Science.gov (United States)

    Drying effect on functional properties of two plantain and cowpea varieties and suitability of their flour blends in extruded snacks was determined. The functional and rheological behaviors of (plantain: cowpea): 90:10, 80:20, 70:30, 60:40 and 50:50 blends were evaluated. The extrusion product melt ...

  6. Characterization of Peptides Found in Unprocessed and Extruded Amaranth (Amaranthus hypochondriacus Pepsin/Pancreatin Hydrolysates

    Directory of Open Access Journals (Sweden)

    Alvaro Montoya-Rodríguez

    2015-04-01

    Full Text Available The objectives of this study were to characterize peptides found in unprocessed amaranth hydrolysates (UAH and extruded amaranth hydrolysates (EAH and to determine the effect of the hydrolysis time on the profile of peptides produced. Amaranth grain was extruded in a single screw extruder at 125 °C of extrusion temperature and 130 rpm of screw speed. Unprocessed and extruded amaranth flour were hydrolyzed with pepsin/pancreatin enzymes following a kinetic at 10, 25, 60, 90, 120 and 180 min for each enzyme. After 180 min of pepsin hydrolysis, aliquots were taken at each time during pancreatin hydrolysis to characterize the hydrolysates by MALDI-TOF/MS-MS. Molecular masses (MM (527, 567, 802, 984, 1295, 1545, 2034 and 2064 Da of peptides appeared consistently during hydrolysis, showing high intensity at 10 min (2064 Da, 120 min (802 Da and 180 min (567 Da in UAH. EAH showed high intensity at 10 min (2034 Da and 120 min (984, 1295 and 1545 Da. Extrusion produced more peptides with MM lower than 1000 Da immediately after 10 min of hydrolysis. Hydrolysis time impacted on the peptide profile, as longer the time lower the MM in both amaranth hydrolysates. Sequences obtained were analyzed for their biological activity at BIOPEP, showing important inhibitory activities related to chronic diseases. These peptides could be used as a food ingredient/supplement in a healthy diet to prevent the risk to develop chronic diseases.

  7. Wheat gluten in extruded fish feed: Effects on morphology and on physical and functional properties

    NARCIS (Netherlands)

    Draganovic, V.; Goot, van der A.J.; Boom, R.M.; Jonkers, J.

    2013-01-01

    This article focuses on understanding the role of vital wheat gluten on the structural parameters of extruded fish feed and its correlation to the physical and functional properties. Gluten–soy protein concentrate blends with five gluten concentrations (0–200 g kg-1) were produced. An abrupt reducti

  8. 99.99% Al/ 6063 Alloy Co-extruded beam chamber

    Science.gov (United States)

    Ishimaru, H.; Narushima, K.; Kanazawa, K.

    1988-09-01

    In an electron storage ring, synchrotron radiation causes stimulated gas desorption from the vacuum chamber wall. It raises the operating pressure far above the ultrahigh vacuum range needed for long beam lifetimes. In order to determine an ideal material for low dynamic gas desorption we have studied the properties of co-extruded 99.99%Al/ 6063 alloy. (AIP)

  9. Flow characteristics of screws and special mixing enhancers in a co-rotating twin screw extruder

    NARCIS (Netherlands)

    Brouwer, T.; Todd, D.B.; Janssen, L.P.B.M.

    2002-01-01

    The flow behavior of a Newtonian fluid through special mixing enhancers in a modular intermeshing co-rotating twin screw extruder has been examined. The mixing enhancers are slotted screws and gear mixing elements. Particular attention has been directed to drag and pressure flow characteristics and

  10. Dynamic Property of Aluminum Foam

    Directory of Open Access Journals (Sweden)

    S Irie

    2016-09-01

    Full Text Available Aluminum in the foam of metallic foam is in the early stage of industrialization. It has various beneficial characteristics such as being lightweight, heat resistance, and an electromagnetic radiation shield. Therefore, the use of aluminum foam is expected to reduce the weight of equipment for transportation such as the car, trains, and aircraft. The use as energy absorption material is examined. Moreover aluminum foam can absorb the shock wave, and decrease the shock of the blast. Many researchers have reported about aluminum foam, but only a little information is available for high strain rates (103 s-1 or more. Therefore, the aluminum foam at high strain rates hasn't been not characterized yet. The purpose in this research is to evaluate the behavior of the aluminum form in the high-strain rate. In this paper, the collision test on high strain rate of the aluminum foam is investigated. After experiment, the numerical analysis model will be made. In this experiment, a powder gun was used to generate the high strain rate in aluminum foam. In-situ PVDF gauges were used for measuring pressure and the length of effectiveness that acts on the aluminum foam. The aluminum foam was accelerated to about 400 m/s from deflagration of single component powder and the foam were made to collide with the PVDF gauge. The high strain rate deformation of the aluminum form was measured at two collision speeds. As for the result, pressure was observed to go up rapidly when about 70% was compressed. From this result, it is understood that complete crush of the cell is caused when the relative volume is about 70%. In the next stage, this data will be compared with the numerical analysis.

  11. Neurofibrillary pathology and aluminum in Alzheimer's disease

    OpenAIRE

    Shin, R. W.; Lee, V.M.Y.; Trojanowski, J.Q.

    1995-01-01

    Since the first reports of aluminum-induced neurofibrillary degeneration in experimental animals, extensive studies have been performed to clarify the role played by aluminum in the pathogenesis of Alzheimer's disease (AD). Additional evidence implicating aluminum in AD includes elevated levels of aluminum in the AD brain, epidemiological data linking aluminum exposure to AD, and interactions between aluminum and protein components in the pathological lesions o...

  12. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  13. Cyclic Deformation Behavior of a Rare-Earth Containing Extruded Magnesium Alloy: Effect of Heat Treatment

    Science.gov (United States)

    Mirza, F. A.; Chen, D. L.; Li, D. J.; Zeng, X. Q.

    2015-03-01

    The present study was aimed at evaluating strain-controlled cyclic deformation behavior of a rare-earth (RE) element containing Mg-10Gd-3Y-0.5Zr (GW103K) alloy in different states (as-extruded, peak-aged (T5), and solution-treated and peak-aged (T6)). The addition of RE elements led to an effective grain refinement and weak texture in the as-extruded alloy. While heat treatment resulted in a grain growth modestly in the T5 state and significantly in the T6 state, a high density of nano-sized and bamboo-leaf/plate-shaped β' (Mg7(Gd,Y)) precipitates was observed to distribute uniformly in the α-Mg matrix. The yield strength and ultimate tensile strength, as well as the maximum and minimum peak stresses during cyclic deformation in the T5 and T6 states were significantly higher than those in the as-extruded state. Unlike RE-free extruded Mg alloys, symmetrical hysteresis loops in tension and compression and cyclic stabilization were present in the GW103K alloy in different states. The fatigue life of this alloy in the three conditions, which could be well described by the Coffin-Manson law and Basquin's equation, was equivalent within the experimental scatter and was longer than that of RE-free extruded Mg alloys. This was predominantly attributed to the presence of the relatively weak texture and the suppression of twinning activities stemming from the fine grain sizes and especially RE-containing β' precipitates. Fatigue crack was observed to initiate from the specimen surface in all the three alloy states and the initiation site contained some cleavage-like facets after T6 heat treatment. Crack propagation was characterized mainly by the characteristic fatigue striations.

  14. Corn types with different nutritional profiles, extruded or not, on piglets (6 to 15 kg feeding

    Directory of Open Access Journals (Sweden)

    Gisele Cristina de Oliveira

    2011-11-01

    Full Text Available Two experiments were carried out to determine the nutritional value and verify piglets' performance in the nursery phase fed with diets containing common corn (CC, extruded common corn (ECC, high-lysine corn (HLC, extruded high-lysine corn (EHLC, high-oil corn (HOC and extruded high-oil corn (EHOC. In the total digestibility trial 14 barrows averaging 6.49 ± 0.16 kg initial body weight were allotted in metabolism cages, distributed in a randomized design with seven diets, six replicates, and one piglet per experimental unit. The values of digestible energy (DE, as well as metabolizable energy (ME as-fed basis for CC, ECC, HLC, EHLC, HOC and EHOC were: 3,428 and 3,327 kcal/kg; 3,439 and 3,355 kcal/kg; 3,533 and 3,414 kcal/kg; 3,515 and 3,427 kcal/kg; 3,483 and 3,377 kcal/kg; 3,585 and 3,482 kcal/kg, respectively. In the performance experiment, 84 piglets, weaned at 21 days old, initial live weight of 6.06 ± 0.54 kg were used. Animals were allotted in a completely randomized design in a 3 × 2 factorial arrangement, using three types of corn (CC, HLC and HOC, two forms of processing (processed or not by extrusion, seven replicates and two piglets per experimental unit. Six diets containing CC, ECC, HLC, EHLC, HOC and EHOC were studied. There were no advantages in the digestibility and performance by extruding the types of corn with different nutritional profiles, for their use in commercial diets for piglets. The results of the two experiments emphasize the importance of segregating the types of corn, extruded or not, in their real chemical and energetic composition as well as the values of true digestible amino acids for the formulation of piglet diets in the nursery phase.

  15. Development of protein, dietary fiber, and micronutrient enriched extruded corn snacks.

    Science.gov (United States)

    Shah, Faiz-Ul-Hassan; Sharif, Mian Kamran; Butt, Masood Sadiq; Shahid, Muhammad

    2017-06-01

    The study was aimed to develop protein, dietary fiber, and micronutrient enriched corn snacks through extrusion processing. Corn snacks supplemented with chickpea, defatted soy flour (20-40/100 g) and guar gum (7/100 g) were prepared through extrusion processing. Micronutrients (iron, zinc, iodine, and vitamins A, C, and folic acid) at recommended daily values were added in all formulations. Extruded corn snacks were analyzed for physical, textural, and sensory attributes. Results showed that piece density (0.34-0.44 g/cm(3) ), moisture (3.40-5.25%), water activity (0.203-0.361), hardness (64.4-133.2 N), and cohesiveness (0.25-0.44) was increased Whereas, expansion ratio (3.72-2.64), springiness (0.82-0.69), chewiness (1.63-0.42), and resilience (1.37-0.14) was decreased as supplementation with soy and chickpea flour increased from 20 to 40/100 g. Overall corn snack supplemented with 15/100 g of soy and 15/100 g of chickpea flour got the highest acceptance from the sensory panelists. The article focuses on physical, textural, and sensory attributes of extruded corn snacks enriched with protein, dietary fiber, and micronutrients Awareness about the importance of healthy snacks has grown among the consumers during the last decade. Extruded snacks developed using nutrient rich ingredients with good textural and sensory properties has always remained a challenge for the snack industry. Texture of the extruded snacks varies a lot with high levels of protein and dietary fiber. This study is helpful for the development of healthy snacks especially in developing countries lacking storage infrastructure or tropical environment. Nutrient rich extruded snacks can also be used to alleviate malnutrition by incorporating in school lunch programs. © 2016 Wiley Periodicals, Inc.

  16. Low temperature aluminum soldering analysis

    Energy Technology Data Exchange (ETDEWEB)

    Peterkort, W.G.

    1976-09-01

    The investigation of low temperature aluminum soldering included the collection of spread factor and dihedral angle data for several solder alloys and a study of flux effects on aluminum. Selected solders were subjected to environmental tests and evaluated on the basis of tensile strength, joint resistance, visual appearance, and metallurgical analysis. A production line method for determining adequate flux removal was developed.

  17. Ballistic Evaluation of 2060 Aluminum

    Science.gov (United States)

    2016-05-24

    experiments in Experimental Facilities (EFs) 108 and 106, as well as John Hogan of ARL/AMB, Hugh Walter of Bowhead Science and Technology, and David Handshoe...new aluminum (Al)-based monocoque armored-vehicle hulls such as those of the M2 Bradley Infantry Fighting Vehicles. Also in 2012 the Aluminum

  18. Aluminum Nanoholes for Optical Biosensing

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2015-07-01

    Full Text Available Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (biosensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (biosensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.

  19. Wettability of Aluminum on Alumina

    Science.gov (United States)

    Bao, Sarina; Tang, Kai; Kvithyld, Anne; Tangstad, Merete; Engh, Thorvald Abel

    2011-12-01

    The wettability of molten aluminum on solid alumina substrate has been investigated by the sessile drop technique in a 10-8 bar vacuum or under argon atmosphere in the temperature range from 1273 K to 1673 K (1000 °C to 1400 °C). It is shown that the reduction of oxide skin on molten aluminum is slow under normal pressures even with ultralow oxygen potential, but it is enhanced in high vacuum. To describe the wetting behavior of the Al-Al2O3 system at lower temperatures, a semiempirical calculation was employed. The calculated contact angle at 973 K (700 °C) is approximately 97 deg, which indicates that aluminum does not wet alumina at aluminum casting temperatures. Thus, a priming height is required for aluminum to infiltrate a filter. Wetting in the Al-Al2O3 system increases with temperature.

  20. Study on Topology of Gradient Heating for New Aluminum Alloy Induction Heating Power%新型铝合金感应加热电源梯度加热的拓扑研究

    Institute of Scientific and Technical Information of China (English)

    耿程飞; 赵飞; 张永亮

    2013-01-01

    在铝合金挤压成形生产过程中,通过铝合金的等温挤压实现出口温度恒定是保证力学性能和组织结构稳定性的关键技术.提出了一种新型的感应加热拓扑结构,将LLC谐振结构应用于铝合金感应加热电源中,对感应加热逆变器单独控制,实现对LLC负载恒频调功,完成铝合金锭坯的梯度加热.实验和仿真结果表明,系统可以满足铝合金型材在挤压机出口处的温度稳定.%In the process of production extruding aluminum alloy, through isothermal extrusion of aluminum alloy, to realize outlet temperature constant is the key technologies to ensure mechanical properties and structure stability. A new induction heating topology was introduced, the LLC resonant structure is applied to the aluminum alloy induction heating power supply, inverter for induction heating is controlled individually, to achieve LLC load constant frequency power adjustment and realize the gradient heating of aluminum billets. Experiment and simulation results show that the system can meet the temperature stability of the aluminum profiles at extruder outlet.

  1. Hualu Aluminum Will Construct Large Coal-Power-Aluminum Aluminum Processing Industrial Chain

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The reporter learned from relevant departments of Baiyin City that in order to further push forward industrial upgrading,fulfill expansion and consolidation of the enterprise,Gansu Hualu Aluminum Co.,Ltd(Hualu Aluminum)will implement Out-Of-City-Into-Park project,

  2. Integration of β-glucan fibre rich fractions from barley and mushrooms to form healthy extruded snacks.

    Science.gov (United States)

    Brennan, Margaret A; Derbyshire, Emma; Tiwari, Brijesh K; Brennan, Charles S

    2013-03-01

    β-glucan is a commonly researched plant cell wall component that when incorporated into food products has been associated with cholesterol and glycaemic response reductions. This study focusses on β-glucan rich fractions from barley and mushroom used in the production of extruded ready to eat snacks. Inclusion of barley β-glucan rich fractions and mushroom β-glucan fractions at 10 % levels increased the total dietary fibre content of extrudates compared to the control (P industry to manipulate the glycaemic response of extruded snack products.

  3. Drug release from extruded solid lipid matrices: theoretical predictions and independent experiments.

    Science.gov (United States)

    Güres, Sinan; Siepmann, Florence; Siepmann, Juergen; Kleinebudde, Peter

    2012-01-01

    The aim of this study was to use a mechanistically realistic mathematical model based on Fick's second law to quantitatively predict the release profiles from solid lipid extrudates consisting of a ternary matrix. Diprophylline was studied as a freely water-soluble model drug, glycerol tristearate as a matrix former and polyethylene glycol or crospovidone as a pore former (blend ratio: 50:45:5%w/w/w). The choice of these ratios is based on former studies. Strains with a diameter of 0.6, 1, 1.5, 2.7 and 3.5mm were prepared using a twin-screw extruder at 65 °C and cut into cylinders of varying lengths. Drug release in demineralised water was measured using the USP 32 basket apparatus. Based on SEM pictures of extrudates before and after exposure to the release medium as well as on DSC measurements and visual observations, an analytical solution of Fick's second law of diffusion was identified in order to quantify the resulting diprophylline release kinetics from the systems. Fitting the model to one set of experimentally determined diprophylline release kinetics from PEG containing extrudates allowed determining the apparent diffusion coefficient of this drug (or water) in this lipid matrix. Knowing this value, the impact of the dimensions of the cylinders on drug release could be quantitatively predicted. Importantly, these theoretical predictions could be confirmed by independent experimental results. Thus, diffusion is the dominant mass transport mechanism controlling drug release in this type of advanced drug delivery systems. In contrast, theoretical predictions of the impact of the device dimensions in the case of crospovidone containing extrudates significantly underestimated the real diprophylline release rates. This could be attributed to the disintegration of this type of dosage forms when exceeding a specific minimal device diameter. Thus, mathematical modelling can potentially significantly speed up the development of solid lipid extrudates, but care has

  4. Spray Rolling Aluminum Strip

    Energy Technology Data Exchange (ETDEWEB)

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  5. Subsurface Aluminum Nitride Formation in Iron-Aluminum Alloys

    Science.gov (United States)

    Bott, June H.

    Transformation-induced plasticity (TRIP) steels containing higher amounts of aluminum than conventional steels are ideal for structural automotive parts due to their mechanical properties. However, the aluminum tends to react with any processing environment at high temperatures and therefore presents significant challenges during manufacturing. One such challenge occurs during secondary cooling, reheating, and hot-rolling and is caused by a reaction with nitrogen-rich atmospheres wherein subsurface aluminum nitride forms in addition to internal and external oxides. The nitrides are detrimental to mechanical properties and cause surface cracks. It is important to understand how these nitrides and oxides form and their consequences for the quality of steel products. This study looks at model iron-aluminum (up to 8 wt.% aluminum) alloys and uses confocal laser scanning microscopy, x-ray diffraction, scanning electron microscopy with energy dispersive x-ray spectrometry, and transmission electron microscopy to study the effect of various conditions on the growth and development of these precipitates in a subsurface oxygen-depleted region. By using model alloys and controlling the experimental atmosphere, this study is able to understand some of the more fundamental materials science behind aluminum nitride formation in aluminum-rich iron alloys and the relationship between internal nitride and oxide precipitation and external oxide scale morphology and composition. The iron-aluminum alloys were heated in N2 atmospheres containing oxygen impurities. It was found that nitrides formed when bulk aluminum content was below 8 wt.% when oxygen was sufficiently depleted due to the internal oxidation. In the samples containing 1 wt.% aluminum, the depth of the internal oxide and nitride zones were in agreement with a diffusion-based model. Increasing aluminum content to 3 and 5 wt% had the effects of modifying the surface-oxide scale composition and increasing its continuity

  6. Rapidly solidified aluminum alloy powder

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S.S.; Chun, B.S.; Won, C.W.; Lee, B.S.; Kim, H.K.; Ryu, M. [Chungnam National Univ., Taejon (Korea, Republic of); Antolovich, S.D. [Washington State Univ., Pullman, WA (United States)

    1997-01-01

    Miniaturization and weight reduction are becoming increasingly important in the fabrication of vehicles. In particular, aluminum-silicon alloys are the logical choice for automotive parts such as pistons and cylinders liners because of their excellent wear resistance and low coefficient of thermal expansion. However, it is difficult to produce aluminum-silicon alloys with silicon contents greater than 20 wt% via ingot metallurgy, because strength is drastically reduced by the coarsening of primary silicon particles. This article describes an investigation of rapid solidification powder metallurgy techniques developed in an effort to prevent coarsening of the primary silicon particles in aluminum-silicon alloys.

  7. The Effect of Fire Retardants on the Flammability, Mechanical Properties, and Wettability of Co-Extruded PP-Based Wood-Plastic Composites

    Directory of Open Access Journals (Sweden)

    Irina Turku

    2014-01-01

    Full Text Available In this work, fire retardants (FRs such as aluminum trihydroxide (ATH, zinc borate (ZB, melamine, graphite, and titanium oxide (TiO2 were loaded into the shell layer of a co-extruded polypropylene (PP-based wood-plastic composite (WPC. The incorporated retardants reduced the peak of the heat release rate by 8 to 22%, depending on the type of FR. Other studied parameters, such as ignition time and mass loss rate, were improved after the FR loading. The total heat release decreased slightly (except for the graphite-WPC. The effective heat of combustion was independent of the presence of the FR or, in the case of graphite, slightly increased. Carbon monoxide production increased (ZB, graphite or was not changed significantly (ATH, melamine, and TiO2. It was also observed that the tensile strength improved after the FR loading; however, the tensile modulus decreased, except for the graphite-WPC. The impact strength improved or was independent of the FR loading, as in the case of the sample with ATH. The wettability of the composites decreased with filler loading, except for ZB, which showed the highest water absorption value among the studied composites.

  8. Color of single-screw extruded blends of soy-sweet potato flour --a response surface analysis.

    Science.gov (United States)

    Iwe, M O; van Zuilichem, D J; Ngoddy, P O

    2000-01-01

    Blends of defatted soy flour and sweet potato flour were extruded in a single-screw extruder run at varying pre-set rotational speeds. Die diameter of the extruder was also varied. A central composite, rotatable nearly orthogonal response surface design was used in studying the interactive effects of extrusion variables on color of the extrudates. Color of raw and processed samples was determined on a DRLANGE Tricolor LFM3 instrument. Measurements were made in duplicates to obtain the CIELAB L*a*b* values. Results showed that whiteness (L*) decreased with increase in sweet potato in the blends during extrusion. Reduction in whiteness (darkening) evidenced in decreased L* values of samples was only affected by increase in sweet potatoes in the blends. Redness (a*) significantly increased as sweet potatoes content increased, which confirmed the decrease in whiteness. Yellowness (b*) also increased considerably, but as a result of the die diameter.

  9. The heat insulating properties of potato starch extruded with addition of chosen by- products of food industry

    Directory of Open Access Journals (Sweden)

    Zdybel Ewa

    2014-12-01

    Full Text Available The study was aimed at determination of time of heat transition through the layer of quince, apple, linen, rose pomace and potato pulp, as well as layer of potato starch and potato starch extruded with addition of above mentioned by-products. Additionally the attempt of creation a heat insulating barrier from researched raw material was made. The heat conductivity of researched materials was dependent on the type of material and its humidity. Extruded potato starch is characterized by smaller heat conductivity than potato starch extruded with addition of pomace. The obtained rigid extruded starch moulders were characterized by higher heat insulating properties than the loose beads. It is possible to use starch and by-products of food industry for production of heat insulating materials.

  10. Extruded soybean and flaxseed enhance fat composition of milk for Parmigiano-Reggiano cheese

    Directory of Open Access Journals (Sweden)

    Andrea Formigoni

    2010-01-01

    Full Text Available Twenty Friesian dairy cows were used in an experimental trial to study the effects of extruded full-fat soybean and flaxseed dietary supplementation, at the level authorized by Consorzio of Parmigiano-Reggiano cheese(CPRC feeding guidelines (1.0 and 0.4 kg/cow/day, on milk production and fatty acid composition. Diet was typically based on alfalfa and mixed hays and cereals. Compared with the concentrations before trial start, CLA and DHA were significantly increased by dietary treatment. These results confirm that the inclusion of extruded full-fat soybean and flaxseed, in the amount authorized by CPRC rules, in the diet of dairy cows is a possible strategy to enhance milk fat composition.

  11. Diffusion Bonding and Post-Weld Heat Treatment of Extruded AZ91 Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Fei LIN

    2015-11-01

    Full Text Available The grain size of as-extruded AZ91 magnesium alloys was refined to 12.31 μm from 21.41 μm by recrystallization annealing. The vacuum diffusion welding of as-annealed AZ91 magnesium alloys was researched. The results showed that the maximum shear strength of joints reached 64.70 MPa in the situation of 10 MPa bonding pressure, 18 Pa vacuum degree, 470 °C bonding temperature and 90 min bonding time; both bonding temperature and time are the main influence factors on as-extruded AZ91 magnesium alloys diffusion welding. Then the diffusion welded specimens were annealed, and the shear strength of joints was further improved to 76.93 MPa.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9699

  12. Tailored sPP/Silica Nanocomposite for Ecofriendly Insulation of Extruded HVDC Cable

    Directory of Open Access Journals (Sweden)

    Bin Dang

    2015-01-01

    Full Text Available Cross-linked polyethylene (XLPE is a thermosetting material that cannot be recycled at the end of its lifetime. This study investigated the potential of syndiotactic polypropylene (sPP/silica as an ecofriendly extruded insulation system for HVDC cables. We investigated the morphology, Fourier transform infrared, and thermal, thermomechanical, and electrical behaviors of sPP modified with 0.5–3% nanosilica. We found that the silica/sPP nanocomposite without cross-linking offered a suitable mechanical modulus at room temperature and sufficient intensity at high temperatures, and adding nanosilica modified by a silane coupling agent to the sPP resulted in significant DC resistivity and space charge improvement. The optimal nanosilica content in the sPP was determined by balancing the mechanical and thermomechanical characteristics and the DC resistivity. The sPP/silica nanocomposite reported here shows great potential as a candidate insulation material for future ecofriendly extruded HVDC cables.

  13. Extrusion of blends of cassava leaves and cassava flour: physical characteristics of extrudates

    Directory of Open Access Journals (Sweden)

    Cristiane da Cunha Salata

    2014-09-01

    Full Text Available A cassava-based puffed snack was produced using a single screw extruder to determine the effect of the raw material composition (cassava leaf flour and moisture and the process parameters (extrusion temperature and screw speed on the physical characteristics of an extruded-expanded snack. A central composite rotational design, including four factors with 30 treatments, was used with the following as dependent variables: expansion index, specific volume, water solubility index, water absorption index, color (L*, a*, b*, and hardness. Under conditions of low moisture content (12 to 14%, low percentage of cassava leaf flour (2 to 4%, and intermediate conditions of extrusion temperature (100°C and screw speed (230rpm, it was possible to obtain puffed snack products with desirable characteristics.

  14. Filament Winding of Co-Extruded Polypropylene Tapes for Fully Recyclable All-Polypropylene Composite Products

    Science.gov (United States)

    Cabrera, N. O.; Alcock, B.; Klompen, E. T. J.; Peijs, T.

    2008-01-01

    The creation of high-strength co-extruded polypropylene (PP) tapes allows the production of recyclable “all-polypropylene” (all-PP) composite products, with a large temperature processing window and a high fibre volume fraction. Available technologies for all-PP composites are mostly based on manufacturing processes such as thermoforming of pre-consolidated sheets. The objective of this research is to assess the potential of filament winding as a manufacturing process for all-PP composites made directly from co-extruded tapes or woven fabric. Filament wound pipes or rings were tested either by the split-disk method or a hydrostatic pressure test in order to determine the hoop properties, while an optical strain mapping system was used to measure the deformation of the pipe surfaces.

  15. Cassava and turmeric flour blends as new raw materials to extruded snacks

    Directory of Open Access Journals (Sweden)

    Alessandra Mussato Spinello

    2014-02-01

    Full Text Available Short cooking time and ability to blend varieties of food ingredients have made extrusion cooking a medium for low-cost and nutritionally improved food products. The effect of moisture, extrusion temperature and amount of turmeric flour mixed with cassava flour on physical characteristic of puffed snacks was evaluated in this work. Extrusion process was carried out using a single-screw extruder in a factorial central composite design with four factors. Results showed effect of extrusion parameters on dependents variables. High expansion, low browning, low water solubility index, intermediate water absorption index and high crispness desirable characteristics to puffed snacks are obtained in conditions of 12% moisture, 5% turmeric flour, 105º C of temperature and 250 rpm of screw speed. These paper point to the potential still unexplored of the use of flours of cassava and turmeric as raw materials in the development of extruded puffed snacks.

  16. Enzymatic hydrolysis of steam exploded corncob residues after pretreatment in a twin-screw extruder

    Directory of Open Access Journals (Sweden)

    Jun Zheng

    2014-09-01

    Full Text Available A modified twin-screw extruder incorporated with a filtration device was used as a liquid/solid separator for xylose removal from steam exploded corncobs. A face centered central composite design was used to study the combined effects of various enzymatic hydrolysis process variables (enzyme loading, surfactant addition, and hydrolysis time with two differently extruded corncobs (7% xylose removal, 80% xylose removal on glucose conversion. The results showed that the extrusion process led to an increase in cellulose crystallinity, while structural changes could also be observed via SEM. A quadratic polynomial model was developed for predicting the glucose conversion and the fitted model provided an adequate approximation of the true response as verified by the analysis of variance (ANOVA.

  17. Effects of extruded corn on milk yield and composition and blood parameters in lactating dairy cows

    Directory of Open Access Journals (Sweden)

    Igino Andrighetto

    2010-01-01

    Full Text Available According to a 2x2 cross over design, fourteen Holstein dairy cows at 99±55 DIM were fed two diets containing 21.5% DM of either ground corn (GC or extruded corn (EC. Performance and metabolic profile were detected during the third week of each experimental period. DMI and milk yield were not affected by dietary treatments. Milk fat and protein percentage of EC diet were significantly (P<0.10 lower than those of GC diet. Probably the higher rumen degradability of starch from EC thesis modified the synthesis of specific fatty acids leading to a milk fat depression event. Diets did not influence blood parameters, except for lower values of total protein and glucose content in EC diet-fed cows. Results suggested that the dietary inclusion of extruded corn should not be used at the tested level of substitution.

  18. Strengthening mechanisms of indirect-extruded Mg–Sn based alloys at room temperature

    Directory of Open Access Journals (Sweden)

    Wei Li Cheng

    2014-12-01

    Full Text Available The strength of a material is dependent on how dislocations in its crystal lattice can be easily propagated. These dislocations create stress fields within the material depending on their intrinsic character. Generally, the following strengthening mechanisms are relevant in wrought magnesium materials tested at room temperature: fine-grain strengthening, precipitate strengthening and solid solution strengthening as well as texture strengthening. The indirect-extruded Mg–8Sn (T8 and Mg–8Sn–1Al–1Zn (TAZ811 alloys present superior tensile properties compared to the commercial AZ31 alloy extruded in the same condition. The contributions to the strengthen of Mg–Sn based alloys made by four strengthening mechanisms were calculated quantitatively based on the microstructure characteristics, physical characteristics, thermomechanical analysis and interactions of alloying elements using AZ31 alloy as benchmark.

  19. Comparison of Maize Silage-based Diets for Dairy Cows Containing Extruded Rapeseed Cake or Extruded Full-fat Soybean as Major Protein Sources

    Directory of Open Access Journals (Sweden)

    Jiří Třináctý

    2016-01-01

    Full Text Available The trial was carried out on four Holstein cows with initial milk yield of 27.3 ± 1.7 kg.day−1. Cows were divided into two groups – the first was fed a diet based on extruded rapeseed cake (D-ERC, the second one was fed a diet based on extruded full-fat soybean (D-EFFS, both diets contained maize silage and meadow hay. The experiment was divided into 4 periods of 42 days. Intake of dry matter, crude protein and NEL was not affected by the treatment (P > 0.05 while the intake of PDIA, PDIN and PDIE was lower in D-ERC than in D-EFFS (P < 0.05. Milk yield in D-ERC (22.6 kg.d−1 was lower than in D-EFFS (24.7 kg.d−1, P < 0.001 while concentration of milk fat and protein were reverse (P < 0.05. Smaller portion of essential AADI in crude protein intake (CPI in D-ERC resulted in lower efficiency of CPI utilization for milk protein synthesis in comparison to D-EFFS being 313 and 327 g.kg−1, respectively (P < 0.01. Concentration of AA in blood plasma was not affected by the type of diet except of His and Ile that were higher in D-EFFS (P < 0.01.

  20. APPLICATION OF OAT, WHEAT AND RYE BRAN TO MODIFY NUTRITIONAL PROPERTIES, PHYSICAL AND SENSORY CHARACTERISTICS OF EXTRUDED CORN SNACKS

    Directory of Open Access Journals (Sweden)

    Agnieszka Makowska

    2015-12-01

    Full Text Available Background. Cereal products constitute the basis of the diet pyramid. While the consumption of such prod- ucts as bread decreases, the group of food which popularity increase is cereal snacks. Unfortunately, the dietary value of this group of foodstuffs is limited. Thus, different types of cereal bran may be added to the produced snacks to enhance their nutritive value. However, an addition of bran may have an adverse effect on quality attributes of products. Material and methods. Corn grits enriched with 20 and 40% oat, wheat and rye bran was extruded. Basic parameters determining the nutritive value, physical characteristics and sensory attributes of the six produced types of extrudates were measured and compared. Moreover, the effect of additives applied on viscosity of aqueous suspensions of the raw materials and extrudates under controlled conditions was measured using RVA. Results. The dietary value of snacks containing bran depends on the type and quantitative shares of the additives. The content of dietary fibre in produced extrudates ranged from 6.5 to 15.8%, including soluble dietary fibre at 2.1 to 3.7%. With an increase of bran content in extrudates, their expansion decreased, density increased and the colour of extrudates changed (reduced brightness, increased a*, decreased b*. In sensory evaluation the highest acceptability was given to extrudates with a 20% addition of oat bran, while the lowest was given for those with 40% wheat bran. Based on PCA results positive correlations were found between overall desirability and crispiness, porosity, taste, colour and expansion. Negative correlations between desir- ability and hardness and density of extrudates were observed. The additives and their level also had an effect on changes in viscosity of aqueous suspensions measured using RVA. However, no correlation was found between quality features of extrudates and values of attributes measured in the analysis of viscosity. Conclusion

  1. Microstructure and mechanical properties of 7075 aluminum alloy nanostructured composites processed by mechanical milling and indirect hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Campos, R., E-mail: ruben.flores@itesm.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No. 120, CP 31109, Chihuahua, Chih., Mexico (Mexico); Tecnologico de Monterrey Campus Saltillo, Departamento de Ingenieria, Prol. Juan de la Barrera No. 1241 Ote., Col. Cumbres, CP 25270, Saltillo, Coah., Mexico (Mexico); Estrada-Guel, I., E-mail: ivanovich.estrada@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No. 120, CP 31109, Chihuahua, Chih., Mexico (Mexico); Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No. 120, CP 31109, Chihuahua, Chih., Mexico (Mexico); Martinez-Sanchez, R., E-mail: roberto.martinez@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No. 120, CP 31109, Chihuahua, Chih., Mexico (Mexico); Herrera-Ramirez, J.M., E-mail: martin.herrera@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No. 120, CP 31109, Chihuahua, Chih., Mexico (Mexico)

    2012-01-15

    Nanostructured composites of 7075 aluminum alloy and carbon coated silver nanoparticles were produced by mechanical milling and indirect hot extrusion. The milling products were obtained in a high energy SPEX ball mill, and then were compacted by uniaxial load and pressure-less sintered under argon atmosphere. Finally, the sintered product was hot extruded. Carbon coated silver nanoparticles were well distributed in the matrix of the extruded material. Tensile tests were carried out to corroborate the hypothesis that second phase particles, well dispersed in the matrix, improve the strength of the material. High resolution transmission electron microscopy was employed to locate and make sure that the silver nanoparticles were homogeneously and finely dispersed. Highlights: Black-Right-Pointing-Pointer 7075 Al nanostructured composites can be produced by mechanical milling. Black-Right-Pointing-Pointer Carbon coated silver nanoparticles are well dispersed into aluminum matrix. Black-Right-Pointing-Pointer Ductile Ag-C NP's improve the mechanical properties of the 7075 Al-alloy. Black-Right-Pointing-Pointer Ag-C NP's content has an important effect in the particle and crystallite size. Black-Right-Pointing-Pointer Ag-C NP's keep their morphology after milling and conformation processes.

  2. Understanding External Plasticization of Melt Extruded PHBV-Wheat Straw Fibers Biodegradable Composites for Food Packaging

    OpenAIRE

    Martino, Lucrezia; Berthet, Marie-Alix; Gontard, Nathalie

    2015-01-01

    The objective of this work is to get further knowledge on the external plasticization mechanisms of melt extruded polyhydroxyl-3-butyrate-co-3-valerate (PHBV) when combined with wheat straw fibers (WSF). Different types of biodegradable substances, all authorized for food contact according to the European regulation, i.e., acetyltributyl citrate (ATBC), glycerol triacetate (GTA) and (PEG) at different molecular weights, were tested at different percentages (5, 10 and 20 wt %). Thermal and mec...

  3. Melt extruded helical waxy matrices as a new sustained drug delivery system.

    Science.gov (United States)

    Hasa, Dritan; Perissutti, Beatrice; Grassi, Mario; Zacchigna, Marina; Pagotto, Milva; Lenaz, Davide; Kleinebudde, Peter; Voinovich, Dario

    2011-11-01

    The aim of this research was to prepare helical and cylindrical extrudates by melt extrusion and to evaluate their potential as sustained release dosage form. The systems contained theophylline as water-soluble model drug and microcrystalline wax as thermoplastic binder. The temperature suitable to ensure a successful extrusion process of formulations containing the wax in three different percentages was found to be below the melting point of the excipient. After the production of the extrudates in three different helical shapes (having 2, 3 and 4 blades) and a classical cylindrical shape, the systems were studied by means of X-ray powder diffraction and differential scanning calorimetry to check possible variations of the solid state of the drug during the thermal process. The morphology and chemical composition of the surface of the extrudates were examined by Scanning Electron Microscopy/Energy Dispersive X-ray Microanalysis to evaluate the presence of the drug on the surface of the extrudates and to monitor changes on the aspect of the waxy matrix during dissolution. Then, the different systems were analysed from the in vitro dissolution point of view to study the influence of the shape and of the composition on the drug release. An in vivo pilot study on the best performing system (helix with 3 blades) was carried out on five healthy volunteers and monitoring the intestinal transit by X-ray images. The resulting plasma profiles were analysed by means of a suitable pharmacokinetic analysis. Finally, an ad hoc mathematical model was developed to perform an accurate description of the in vitro release and in vivo performance of the 3-blades helical system.

  4. Two phase residence time distribution in a modified twin screw extruder

    OpenAIRE

    1999-01-01

    Biomass fractionation is performed with a modified Clextral twin-screw extruder used as a thermo-mechano-chemical reactor. This new process is firstly analyzed. Visual observations, residence time distributions, and global mass balances are used to obtain information about the process phenomena and their coupling. Residence time distributions (RTD) classical models are adopted to represent the experimental plots. The influence of continuous and discrete process parameters upon the RTD of the ...

  5. Development of a pilot-scale kinetic extruder feeder system and test program. Phase I report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-03-01

    This report describes the work done under Phase I, the moisture tolerance testing of the Kinetic Extruder. The following coals were used in the test program: Western Bituminous (Utah), Eastern Bituminous (Pennsylvania), North Dakota Lignite, Sub-Bituminous (Montana), and Eastern Bituminous coal mixed with 20-percent Limestone. The coals were initially tested at the as-received moisture level and subsequently tested after surface moisture was added by water spray. Test results and recommendations for future research and development work are presented.

  6. Physical and functional evaluation of extruded flours obtained from different rice genotypes

    Directory of Open Access Journals (Sweden)

    Fernanda Salamoni Becker

    2014-08-01

    Full Text Available The transformation of broken grains into native flours modified by extrusion is an alternative to add value to these co-products from the paddy rice processing. This study aimed to analyze the process of extrusion cooking on the physical and functional characteristics of extruded flours obtained from different rice genotypes (IRGA-417, BRS-Primavera and CNA-8502. The experimental design was completely randomized (3x2 factorial with four original replicates and analysis of variance to assess particle size, instrumental color parameters (L*, a* and b*, water absorption index (WAI, milk absorption index (MAI, oil absorption index (OAI, water solubility index (WSI and milk solubility index (MSI of rice flour. The extrusion process promoted changes in all physical and functional properties of rice flour, but only WSI and color parameters were influenced by genotype and by the industrial processing. Rice flours become darker, tending to a more reddish and yellow coloration after extrusion. Native and extruded rice flours of genotypes IRGA-417, BRS-Primavera and extruded rice flour of genotype CNA-8502 showed finer particles, while native flour of genotype CNA-8502 showed coarser particles. The extruded flours of IRGA-417 genotype obtained higher expansion and luminosity, and lower values of chroma a*, chroma b* and water solubility, while the BRS-Primavera higher values of chroma a* and b*, and lower luminosity and expansion, and CAN-8502 higher water solubility and lower expansion and value of chroma a*. The extrusion process led to flours with high water and milk absorption and solubility, low oil absorption and with potential for application in instant products, regardless of genotype.

  7. Extruded Flaxseed Meal Enhances the Nutritional Quality of Cereal-based Products

    OpenAIRE

    Giacomino, S.; Peñas, Elena; Ferreyra, V.; Pellegrino, N.; Fournier, M.; Apro, Nicolás; Olivera Carrión, Margarita; Frías, Juana

    2013-01-01

    Human consumption of flaxseed is increasing due to its health benefit properties and extrusion processes can enhance its nutritional quality. Extruded flaxseed meal (EFM) obtained in a pilot plant was characterized and incorporated in flour mixes and cereal-based bars to demonstrate its nutritious usefulness. Amino acid content was not affected by extrusion and, despite lysine was the limitating amino acid, the chemical score (CS) was 83 %. Thiamin and riboflavin decreased slightly as consequ...

  8. Extrusion Conditions and Amylose Content Affect Physicochemical Properties of Extrudates Obtained from Brown Rice Grains

    Science.gov (United States)

    González, Rolando José; Pastor Cavada, Elena; Vioque Peña, Javier; Torres, Roberto Luis; De Greef, Dardo Mario; Drago, Silvina Rosa

    2013-01-01

    The utilization of whole grains in food formulations is nowadays recommended. Extrusion cooking allows obtaining precooked cereal products and a wide range of ready-to-eat foods. Two rice varieties having different amylose content (Fortuna 16% and Paso 144, 27%) were extruded using a Brabender single screw extruder. Factorial experimental design was used to study the effects of extrusion temperature (160, 175, and 190°C) and grits moisture content (14%, 16.5%, and 19%) on extrudate properties. Specific mechanical energy consumption (SMEC), radial expansion (E), specific volume (SV), water absorption (WA), and solubility (S) were determined on each extrudate sample. In general, Fortuna variety showed higher values of SMEC and S (703–409 versus 637–407 J/g; 33.0–21.0 versus 20.1–11.0%, resp.) than those of Paso 144; on the contrary SV (8.64–3.47 versus 8.27–4.53 mL/g) and WA tended to be lower (7.7–5.1 versus 8.4–6.6 mL/g). Both varieties showed similar values of expansion rate (3.60–2.18). Physical characteristics depended on extrusion conditions and rice variety used. The degree of cooking reached by Paso rice samples was lower than that obtained for Fortuna. It is suggested that the presence of germ and bran interfered with the cooking process, decreasing friction level and broadening residence time distribution. PMID:26904605

  9. Sustained release from hot-melt extruded matrices based on ethylene vinyl acetate and polyethylene oxide.

    Science.gov (United States)

    Almeida, A; Brabant, L; Siepmann, F; De Beer, T; Bouquet, W; Van Hoorebeke, L; Siepmann, J; Remon, J P; Vervaet, C

    2012-11-01

    The aim of the present study was to evaluate the importance of matrix flexibility of hot-melt extruded (HME) ethylene vinyl acetate (EVA) matrices (with vinyl acetate (VA) contents of 9%, 15%, 28% and 40%), through the addition of hydrophilic polymers with distinct swelling capacity. Polyethylene oxide (PEO 100K, 1M and 7M) was used as swelling agent and metoprolol tartrate (MPT) as model drug. The processability via HME and drug release profiles of EVA/MPT/PEO formulations were assessed. Solid state characteristics, porosity and polymer miscibility of EVA/PEO matrices were evaluated by means of DSC, X-ray tomography and Raman spectroscopy. The processability via HME varied according to the VA content: EVA 40 and 28 were extruded at 90°C, whereas higher viscosity EVA grades (EVA 15 and 9) required a minimum extrusion temperature of 110°C to obtain high-quality extrudates. Drug release from EVA matrices depended on the VA content, PEO molecular weight and PEO content, matrix porosity as well as pore size distribution. Interestingly, the interplay of PEO leaching, matrix swelling, water influx and changes in matrix porosity influenced drug release: EVA 40- and 28-based matrices extruded with PEO of higher MW accelerated drug release, whereas for EVA 15- and 9-based matrices, drug release slowed down. These differences were related to the distinct polymer flexibility imposed by the VA content (lower VA content presents higher crystallinity and less free movement of the amorphous segments resulting in a higher rigidity). In all cases, diffusional mass transport seems to play a major role, as demonstrated by mathematical modeling using an analytical solution of Fick's second law. The bioavailability of EVA 40 and 28 matrices in dogs was not significantly different, independent of PEO 7M concentration.

  10. Extrusion Conditions and Amylose Content Affect Physicochemical Properties of Extrudates Obtained from Brown Rice Grains

    Directory of Open Access Journals (Sweden)

    Rolando José González

    2013-01-01

    Full Text Available The utilization of whole grains in food formulations is nowadays recommended. Extrusion cooking allows obtaining precooked cereal products and a wide range of ready-to-eat foods. Two rice varieties having different amylose content (Fortuna 16% and Paso 144, 27% were extruded using a Brabender single screw extruder. Factorial experimental design was used to study the effects of extrusion temperature (160, 175, and 190°C and grits moisture content (14%, 16.5%, and 19% on extrudate properties. Specific mechanical energy consumption (SMEC, radial expansion (E, specific volume (SV, water absorption (WA, and solubility (S were determined on each extrudate sample. In general, Fortuna variety showed higher values of SMEC and S (703–409 versus 637–407 J/g; 33.0–21.0 versus 20.1–11.0%, resp. than those of Paso 144; on the contrary SV (8.64–3.47 versus 8.27–4.53 mL/g and WA tended to be lower (7.7–5.1 versus 8.4–6.6 mL/g. Both varieties showed similar values of expansion rate (3.60–2.18. Physical characteristics depended on extrusion conditions and rice variety used. The degree of cooking reached by Paso rice samples was lower than that obtained for Fortuna. It is suggested that the presence of germ and bran interfered with the cooking process, decreasing friction level and broadening residence time distribution.

  11. Microstructures, mechanical and corrosion properties and biocompatibility of as extruded Mg–Mn–Zn–Nd alloys for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ying-Long, E-mail: ylzhou@fosu.edu.cn [Department of Mechatronics Engineering, Foshan University, Foshan 528000, Guangdong (China); Li, Yuncang [Institute for Frontier Materials, Deakin University, Victoria 3217 (Australia); Luo, Dong-Mei [Department of Civil Engineering, Foshan University, Foshan 528000, Guangdong (China); Ding, Yunfei; Hodgson, Peter [Institute for Frontier Materials, Deakin University, Victoria 3217 (Australia)

    2015-04-01

    Extruded Mg–1Mn–2Zn–xNd alloys (x = 0.5, 1.0, 1.5 mass %) have been developed for their potential use as biomaterials. The extrusion on the alloys was performed at temperature of 623 K with an extrusion ratio of 14.7 under an average extrusion speed of 4 mm/s. The microstructure, mechanical property, corrosion behavior and biocompatibility of the extruded Mg–Mn–Zn–Nd alloys have been investigated in this study. The microstructure was examined using X-ray diffraction analysis and optical microscopy. The mechanical properties were determined from uniaxial tensile and compressive tests. The corrosion behavior was investigated using electrochemical measurement. The biocompatibility was evaluated using osteoblast-like SaOS2 cells. The experimental results indicate that all extruded Mg–1Mn–2Zn–xNd alloys are composed of both α phase of Mg and a compound of Mg{sub 7}Zn{sub 3} with very fine microstructures, and show good ductility and much higher mechanical strength than that of cast pure Mg and natural bone. The tensile strength and elongation of the extruded alloys increase with an increase in neodymium content. Their compressive strength does not change significantly with an increase in neodymium content. The extruded alloys show good biocompatibility and much higher corrosion resistance than that of cast pure Mg. The extruded Mg–1Mn–2Zn–1.0Nd alloy shows a great potential for biomedical applications due to the combination of enhanced mechanical properties, high corrosion resistance and good biocompatibility. - Highlights: • Extruded Mg–1Mn–2Zn–xNd alloys exhibit very fine microstructures. • Extrusion greatly improves the tensile property and corrosion behavior of alloys. • Tensile strength and ductility of the extruded alloys increase with Nd content. • Increase of Nd does not significantly alter the corrosion resistance. • Mg–1Mn–2Zn–1Nd alloy shows a great potential for biomedical applications.

  12. Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys.

    Science.gov (United States)

    Zhao, Chaoyong; Pan, Fusheng; Zhang, Lei; Pan, Hucheng; Song, Kai; Tang, Aitao

    2017-01-01

    In this study, as-extruded Mg-Sr alloys were studied for orthopedic application, and the microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys were investigated by optical microscopy, scanning electron microscopy with an energy dispersive X-ray spectroscopy, X-ray diffraction, tensile and compressive tests, immersion test, electrochemical test and cytotoxicity test. The results showed that as-extruded Mg-Sr alloys were composed of α-Mg and Mg17Sr2 phases, and the content of Mg17Sr2 phases increased with increasing Sr content. As-extruded Mg-Sr alloy with 0.5wt.% Sr was equiaxed grains, while the one with a higher Sr content was long elongated grains and the grain size of the long elongated grains decreased with increasing Sr content. Tensile and compressive tests showed an increase of both tensile and compressive strength and a decrease of elongation with increasing Sr content. Immersion and electrochemical tests showed that as-extruded Mg-0.5Sr alloy exhibited the best anti-corrosion property, and the anti-corrosion property of as-extruded Mg-Sr alloys deteriorated with increasing Sr content, which was greatly associated with galvanic couple effect. The cytotoxicity test revealed that as-extruded Mg-0.5Sr alloy did not induce toxicity to cells. These results indicated that as-extruded Mg-0.5Sr alloy with suitable mechanical properties, corrosion resistance and good cytocompatibility was potential as a biodegradable implant for orthopedic application. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Physical Simulation Method for the Investigation of Weld Seam Formation During the Extrusion of Aluminum Alloys

    Science.gov (United States)

    Fang, Gang; Nguyen, Duc-Thien; Zhou, Jie

    2016-12-01

    Extrusion through the porthole die is a predominant forming process used in the production of hollow aluminum alloy profiles across the aluminum extrusion industry. Longitudinal weld seams formed during the process may negatively influence the quality of extruded profiles. It is therefore of great importance to understand the formation of weld seams inside the welding chamber during extrusion, as affected by extrusion process variables and die design. Previously developed physical simulation methods could not fully reproduce the thermomechanical conditions inside the welding chamber of porthole die. In this research, a novel physical simulation method for the investigation of weld seam formation during extrusion was developed. With a tailor-designed tooling set mounted on a universal testing machine, the effects of temperature, speed, and strain on the weld seam quality of the 6063 alloy were investigated. The strains inside the welding chamber were found to be of paramount importance for the bonding of metal streams, accompanied by microstructural changes, i.e., recovery or recrystallization, depending on the local deformation condition. The method was shown to be able to provide guidelines for the design of porthole dies and choice of extrusion process variables, thereby reducing the scrap rate of aluminum extrusion operation.

  14. Direct compression and moulding properties of co-extruded isomalt/drug mixtures.

    Science.gov (United States)

    Ndindayino, F; Vervaet, C; Van den Mooter, G; Remon, J P

    2002-03-20

    Isomalt, a disaccharide alcohol was co-extruded with paracetamol or hydrochlorothiazide (HCT) in order to improve its tabletting properties. After extrusion, isomalt was transformed into an amorphous form, while paracetamol remained crystalline. Hot stage microscopy showed that HCT was amorphous in the isomalt carrier up to a concentration of 1% (w/w). Direct compression of mixtures formulated with co-extruded isomalt/paracetamol powders yielded harder tablets compared with physical mixtures and no powder agglomeration was observed. Direct moulding of isomalt co-extruded with either paracetamol or HCT was feasible, yielding hard tablets. A fast dissolution rate was seen for both the compressed and the moulded tablets (>80% paracetamol and 60% HCT released within 20 min). The compressed tablets showed a dramatic decrease in tensile strength during storage at 85% RH, while the tensile strength of the moulded tablets remained above 0.80 MPa after 6 months storage at the same conditions. Co-extrusion of isomalt with paracetamol and HCT dramatically improved the tabletting properties of the mixtures (compared with physical mixtures of drug and isomalt). Direct moulding proved to be a suitable technique to produce isomalt based tablets.

  15. Study on Hardware-in-loop Simulation of Twin-screw Extruder Experiment System

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>In order to facilitate the teaching of industrial processes and experiments on the twin-screw extruder control debugging,and be closer to the actual testing,to reduce the debugging costs and the risk of debugging process,the paper designs a hardware-in-loop simulation of twin-screw extruder experiment system which is closer to scene,low cost and high safety.The system through the establishment of twin-screw extruder’s mathematical model on computer to simulate the realistic system and there is hardware practicality in the computer simulation loop.The hardware based on C8051F020 can operate in the simulation loop in real time.In computer software design, we desigh man-machine interface that is intuitive and easy to operate,can reflect twin-screw extruder main operation information vividly.Finally,twin-screw extruder’s 3 heater temperature mathematical model and PID incremental control algorithm are presented.

  16. Starch-guar gum extrudates: microstructure, physicochemical properties and in-vitro digestion.

    Science.gov (United States)

    von Borries-Medrano, Erich; Jaime-Fonseca, Mónica R; Aguilar-Méndez, Miguel A

    2016-03-01

    Starch-guar gum mixtures were obtained by extrusion using a three-variable Box-Behnken statistic design. Morphology, expansion index, viscosity, crystallinity and digestion in vitro of the extruded samples were analyzed through response surface methodology (RSM). The extrusion temperature and the moisture content were the factors that significantly affected the physicochemical properties of the samples. Starch-guar gum samples showed expansion index and viscosity up to 1.55 and 1400mPas, respectively. The crystallinity of the samples was modified by adding guar gum to the extrudates, showing correlation between long-range order (X-ray diffraction) and short-range order (FTIR spectroscopy). Guar induced microstructural changes and its role in gelatinization-melting processes was significant. The rate of glucose release decreased from 0.47 to 0.43mM/min when the extrusion temperature decreased. However, adding guar gum to starch had no significant effect on glucose release. Overall, the extrusion temperature and the moisture content were the factors that significantly affected the physicochemical properties of the extruded samples.

  17. Analysis of Extruded Polystyrene Short-Term Compression Dependence on Exposure Time

    Directory of Open Access Journals (Sweden)

    Saulius VAITKUS

    2013-12-01

    Full Text Available Extruded polystyrene is extensively used in many applications such as thermal insulation, packaging, structural use and buoyancy. In order to an effective use of this material it is essential to know its behavior under compression. The research in this work was carried out by using extruded polystyrene boards (F200, F300, F400, F500 and F700 which were produced by Lithuanian and Finland manufacturers. The changes of extruded polystyrene ultimate compressive stress σcr, ultimate strain, initial modulus of elasticity and thickness were determined right away after production and after a certain exposure time of specimens. It was noticed significant changes in strength characteristics after 45 days. Compression tests and conditioning of specimens were conducted at 23 °C ±2 °C ambient temperature and 50 % ±5 % relative humidity. Regression dependences of ultimate compressive stress σcr and ultimate strain on exposure time (from 10 to 326 days were presented. DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2582

  18. Direct Forming of All-Polypropylene Composites Products from Fabrics made of Co-Extruded Tapes

    Science.gov (United States)

    Alcock, B.; Cabrera, N. O.; Barkoula, N. M.; Peijs, T.

    2009-04-01

    Many technologies presented in literature for the forming of self-reinforced or all-polymer composites are based on manufacturing processes involving thermoforming of pre-consolidated sheets. This paper describes novel direct forming routes to manufacture simple geometries of self-reinforced, all-polypropylene (all-PP) composites, by moulding fabrics of woven co-extruded polypropylene tapes directly into composite products, without the need for pre-consolidated sheet. High strength co-extruded PP tapes have potential processing advantages over mono-extruded fibres or tapes as they allow for a larger temperature processing window for consolidation. This enlarged temperature processing window makes direct forming routes feasible, without the need for an intermediate pre-consolidated sheet product. Thermoforming studies show that direct forming is an interesting alternative to stamping of pre-consolidated sheets, as it eliminates an expensive belt-pressing step which is normally needed for the manufacturing of semi-finished sheets products. Moreover, results from forming studies shows that only half the energy was required to directly form a simple dome geometry from a stack of fabrics compared to stamping the same shape from a pre-consolidated sheet.

  19. The effect of extrusion processing on the physiochemical properties of extruded orange pomace.

    Science.gov (United States)

    Huang, Ya-Ling; Ma, Ya-Sheng

    2016-02-01

    Soluble dietary fibre (SDF) is considered the most effective fraction of dietary fibre (DF) for human health. In this study, extrusion technology was applied to enhance the SDF obtained from orange pomace, a byproduct of juice extraction containing a high level of DF. The pomace was processed in a single-screw extruder at various barrel temperatures (X1; 115-135 °C), feed moistures (X2; 10-18 g/100g), and screw speeds (X3; 230-350 rpm). Based on response surface methodology, the optimum extrusion conditions, which produced a maximum SDF value of 30.36%, were as follows: barrel temperature, 129 °C; feed moisture, 15%; and screw speed, 299 rpm. Compared with unextruded pomace, SDF fraction in extrudate had a higher level of uronic acid. Furthermore, the extrusion process improved the physicochemical properties of extrudate, increasing the water-holding capacity, swelling, water solubility index, and cation-exchange capacity and decreasing the oil-holding capacity.

  20. Microstructural transformation of quasicrystalline AlFeCrTi extruded bars upon long thermal treatments

    Energy Technology Data Exchange (ETDEWEB)

    García-Escorial, A., E-mail: age@cenim.csic.es [CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Natale, E.; Cremaschi, V.J. [Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, Buenos Aires (Argentina); Todd, I. [Dept. of Materials Science and Engineering Materials, University of Sheffield, Mappin St., Sheffield S1 3JD (United Kingdom); Lieblich, M. [CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain)

    2015-09-15

    Highlight: • Evolution upon heating of quasicrystalline AlFeCrTi alloy in bulk sample. • Warm extrusion of gas atomised powder particles. • Microstructural evolution of QC-AlFeCrTi extruded bars. - Abstract: Bulk Al{sub 93}Fe{sub 3}Cr{sub 2}Ti{sub 2} bars extruded from gas atomised powder particles present a microstructure of an aluminium matrix reinforced with a spherical nanoquasicrystalline phase. In this work the evolution of the microstructure of Al{sub 93}Fe{sub 3}Cr{sub 2}Ti{sub 2} extruded bars upon heating at 400 °C for up to 1000 h is investigated by means of X-ray diffraction, differential scanning calorimetry, scanning electron microscopy and transmission electron microscopy. According to our observations we propose that the quasicrystalline alloy evolves in two steps: a first step consists in the decomposition of the supersaturated solid solution of the matrix and the quasicrystals, and a second step in the transformation of the quasicrystals into the equilibrium phases.

  1. Flow of Chemically Reactive non-Newtonian Fluids in Twin-Screw Extruders

    Science.gov (United States)

    Zhu, Weimin; Jaluria, Yogesh

    1998-11-01

    Many applications of twin-screw extruders are found in the processing of food, plastics, pharmaceutical materials and other highly viscous materials. In reactive extrusion, complex interactions in which the flow pattern, and the heat and mass transfer are affected by viscous dissipation, reaction energy, convection, residence time distribution and rheology of the materials may occur. The fluid flow, heat transfer and chemical reactions in a fully intermeshing, corotating and self wiping twin screw extruder were investigated numerically by using the finite volume method. The screw channel of a twin screw extruder are approximated as translation (parabolic) domain and intermeshing (elliptic) domain. The full governing equations were solved to determine the velocity components in the three coordinate directions. The energy equation is coupled with the equations of motion through viscosity. The Residence Time Distribution (RTD), was obtained by using a particle tracking method. The flow field, temperature field, pressure as well as RTD and chemical conversion were obtained by numerical simulation and the results yielded agreement with experimental measurements and expected physical characteristic of the process.

  2. Microstructure and mechanical properties of hot-extruded AZ31 powders

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, K.; Hatsuakno, K.; Hanada, K.; Shimizu, T. [National Inst. of Advanced Industrial and Science Technology(AIST), Tsukuba (Japan); Sano, T. [Chiba Inst. of Tech., Narashino (Japan)

    2003-07-01

    AZ31 alloy powder was prepared by gas-atomization and consolidated into a round bar by hot extrusion at temperatures of 573 K and 623 K with extrusion ratios of 1:10 and 1:20. The extruded AZ31 alloy powders consist of fine grain with an average grain size of 10 {mu} m and show a high tensile strength of 340 MPa with an elongation of about 18% at room temperature. The compression test at elevated temperatures reveals that the sample extruded with extrusion ratio of 1:20 was easily deformed to a forming degree of 0.6 without fracture at temperatures above 423 K and have a good formability. On the contrast, the extruded sample with an extrusion ratio of 1:10 shows cracks after deformation. The extrusion ratio plays an important role on the formability. It is said that the powder metallurgical processing is useful to produce a high strength Mg alloys with a good formability at temperatures above 423 K. (orig.)

  3. Microstructural Changes in High-Protein Nutrition Bars Formulated with Extruded or Toasted Milk Protein Concentrate.

    Science.gov (United States)

    Banach, J C; Clark, S; Lamsal, B P

    2016-02-01

    Milk protein concentrates with more than 80% protein (that is, MPC80) are underutilized as the primary protein source in high-protein nutrition bars as they impart crumbliness and cause hardening during storage. High-protein nutrition bar texture changes are often associated with internal protein aggregations and macronutrient phase separation. These changes were investigated in model high-protein nutrition bars formulated with MPC80 and physically modified MPC80s. High-protein nutrition bars formulated with extruded MPC80s hardened slower than those formulated with toasted or unmodified MPC80. Extruded MPC80 had reduced free sulfhydryl group exposure, whereas measurable increases were seen in the toasted MPC80. High-protein nutrition bar textural performance may be related to the number of exposed free sulfhydryl groups in MPC80. Protein aggregations resulting from ingredient modification and high-protein nutrition bar storage were studied with sodium dodecyl sulfate polyacrylamide gel electrophoresis. Disulfide-based protein aggregations and changes in free sulfhydryl concentration were not consistently relatable to high-protein nutrition bar texture change. However, the high-protein nutrition bars formulated with extruded MPC80 were less prone to phase separations, as depicted by confocal laser scanning microscopy, and underwent less texture change during storage than those formulated with toasted or unmodified MPC80.

  4. Investigation into mixing capability and solid dispersion preparation using the DSM Xplore Pharma Micro Extruder.

    Science.gov (United States)

    Sakai, Toshiro; Thommes, Markus

    2014-02-01

    The goal of this investigation was to qualify the DSM Xplore Pharma Micro Extruder as a formulation screening tool for early-stage hot-melt extrusion. Dispersive and distributive mixing was investigated using soluplus, copovidone or basic butylated methacrylate copolymer with sodium chloride (NaCl) in a batch size of 5 g. Eleven types of solid dispersions were prepared using various drugs and carriers in batches of 5 g in accordance with the literature. The dispersive mixing was a function of screw speed and recirculation time and the particle size was remarkably reduced after 1 min of processing, regardless of the polymers. An inverse relationship between the particle size and specific mechanical energy (SME) was also found. The SME values were higher than those in large-scale extruders. After 1 min recirculation at 200 rpm, the uniformity of NaCl content met the criteria of the European Pharmacopoeia, indicating that distributive mixing was achieved in this time. For the solid dispersions preparations, the results from different scanning calorimetry, powder X-ray diffractometry and in-vitro dissolution tests confirmed that all solid-dispersion systems were successfully prepared. These findings demonstrated that the extruder is a useful tool to screen solid-dispersion formulations and their material properties on a small scale. © 2013 Royal Pharmaceutical Society.

  5. Rumen fermentation and nutrient flow to the omasum in Holstein cows fed extruded canola seeds treated with or without lignosulfonate

    Directory of Open Access Journals (Sweden)

    Wallacy Barbacena Rosa dos Santos

    2012-07-01

    Full Text Available Four multiparous Holstein cows averaging 548 kg of body weight and 74 d in lactation were used in a Latin square design with four 21-d experimental periods to determine effects of feeding extruded versus non-extruded canola seed, with or without 50 g/kg lignosulfonate on rumen fermentation, nutrient flow to the omasum, and degradability of dry matter (DM and N of each diet. The DM effective degradability increased with extrusion and lignosulfonate treatment had no effect. The effective degradability of N was similar between diets. Lignosulfonate treatment of extruded versus non-extruded canola seeds decreased ruminal and total tract apparent digestibility of organic matter. The lowest apparent ruminal and highest intestinal digestibilities of protein, expressed as a percentage of N intake were observed for cows fed extruded canola seeds without lignosulfonate. Lignosulfonate treatment and extrusion had no effect on pH and concentrations of ammonia N and volatile fatty acids in the rumen. Results suggest that extruded canola seed untreated with formaldehyde may stimulate efficiency of microbial protein synthesis and is an effective means of increasing the availability of protein in the small intestine without affecting the total tract apparent digestibility of protein.

  6. Solid lipid extrudates as sustained-release matrices: the effect of surface structure on drug release properties.

    Science.gov (United States)

    Reitz, Claudia; Strachan, Clare; Kleinebudde, Peter

    2008-11-15

    The study focused on the structural characterization of sustained-release lipid matrices prepared by solid lipid extrusion. Drug-containing lipid extrudates were locally analyzed in order to identify differences between the chemical and structural composition of surface and core elements. Independent of the lipid the dissolution from the outer extrudate surfaces was slower compared with dissolution from surfaces prepared by cutting the extrudate. The burst effect was higher for the cross-sections indicating more drug was exposed on these surfaces. The release from glycerol trimyristate (Dynasan 114) extrudates was slower compared with glycerol palmitostearate (Precirol ATO 5) extrudates. By solid-state analysis using DSC, ATR-FTIR and SEM measurements the differences between surface material and core material could be attributed mainly to morphological differences. Chemical differences between the core and the outer surface were not relevant. The differences between the surfaces might be explained by the friction induced temperature increase during extrusion in the die plate. The obtained results and a proposed scheme were used to explain the influence of different formulation/processing parameters, such as drug particle size and milling on the drug dissolution behaviour. Small drug particles and intact extrudates are a means of minimizing the burst release.

  7. Numerical Simulation of Temperature and Mixing Performances of Tri-screw Extruders with Non-isothermal Modeling

    Directory of Open Access Journals (Sweden)

    X.Z. Zhu

    2013-04-01

    Full Text Available Tri-screw extruders are new extrusion equipments for food and polymer processing. Especially, there is one special circumfluence exists in center region only at cross section. In this study, the 2D transient and non-isothermal modeling of a tri-screw extruder is established by using Finite Element Method (FEM with particle tracking technology to reduce the axial effects. The transient temperature and flow fields are calculated with a commercial code, Polyflow. Moreover, the effect of temperature rise due to viscous heating on the flow and mixing characteristics such as mixing index, segregation scale, mean and instantaneous time-averaged efficiency of mixing for the tri-screw extruder are carried out. The results show that in the special center region, the velocity and mixing index is small and viscosity and temperature are relatively big, indicating the poor mixing efficiency. When the heat transfers due to self-heating is considered, the dispersive mixing of the tri-screw extruder decreases, but the distributive mixing and stretching mixing efficiency all increase for the tri-screw extruder. In particular, the stretching effect of the fluid particles in the tri-screw extruder decreases due to the decrease of viscous dissipation when the non-isothermal model is employed.

  8. Effects of forage type and extruded linseed supplementation on methane production and milk fatty acid composition of lactating dairy cows.

    Science.gov (United States)

    Livingstone, K M; Humphries, D J; Kirton, P; Kliem, K E; Givens, D I; Reynolds, C K

    2015-06-01

    Replacing dietary grass silage (GS) with maize silage (MS) and dietary fat supplements may reduce milk concentration of specific saturated fatty acids (SFA) and can reduce methane production by dairy cows. The present study investigated the effect of feeding an extruded linseed supplement on milk fatty acid (FA) composition and methane production of lactating dairy cows, and whether basal forage type, in diets formulated for similar neutral detergent fiber and starch, altered the response to the extruded linseed supplement. Four mid-lactation Holstein-Friesian cows were fed diets as total mixed rations, containing either high proportions of MS or GS, both with or without extruded linseed supplement, in a 4×4 Latin square design experiment with 28-d periods. Diets contained 500 g of forage/kg of dry matter (DM) containing MS and GS in proportions (DM basis) of either 75:25 or 25:75 for high MS or high GS diets, respectively. Extruded linseed supplement (275 g/kg ether extract, DM basis) was included in treatment diets at 50 g/kg of DM. Milk yields, DM intake, milk composition, and methane production were measured at the end of each experimental period when cows were housed in respiration chambers. Whereas DM intake was higher for the MS-based diet, forage type and extruded linseed had no significant effect on milk yield, milk fat, protein, or lactose concentration, methane production, or methane per kilogram of DM intake or milk yield. Total milk fat SFA concentrations were lower with MS compared with GS-based diets (65.4 vs. 68.4 g/100 g of FA, respectively) and with extruded linseed compared with no extruded linseed (65.2 vs. 68.6 g/100 g of FA, respectively), and these effects were additive. Concentrations of total trans FA were higher with MS compared with GS-based diets (7.0 vs. 5.4 g/100 g of FA, respectively) and when extruded linseed was fed (6.8 vs. 5. 6g/100 g of FA, respectively). Total n-3 FA were higher when extruded linseed was fed compared with no

  9. Influence of heat treatment on microstructure of hot extruded AZ31

    Energy Technology Data Exchange (ETDEWEB)

    Dzwonczyk, J.; Bohlen, J.; Hort, N.; Kainer, K.U. [Inst. for Materials Research, Center for Magnesium Technology, GKSS Research Center (Germany)

    2003-07-01

    In the last years magnesium alloys have been increasingly considered as attractive materials for the transportation industry. Extruded magnesium alloys have been found in the centre of interest combining their lightweight, surface quality with the wide range of possible achievable geometries. In the present study the alloy AZ31 has been chosen for investigation as one of the most common commercial magnesium wrought alloys. Round bars have been obtained through hot direct extrusion. After primary microstructural characterisation and mechanical testing in the as-extruded condition the specimens have been subjected to heat treatment consisting of different times (1, 2 and 4 hours) at different temperatures (200 C, 300 C, 400 C and 500 C) followed by cooling in air. Subsequently the specimens have been subjected to microstructural characterisation using light optical microscopy. Average grain size and grain size distribution have been determined using dedicated software. The microstructural analysis has been supported by microhardness testing on selected specimens. Additionally, the specimens have been subjected to tensile tests at room temperature applying a deformation rate of 1.3 x 10{sup -4} s{sup -1} as used for the material in as-extruded conditions. The obtained results have shown that heat treatment has no substantial influence on the microstructure characteristics of AZ31 up to 400 C. However, specimens treated at 500 C for one hour revealed a course grain, homogeneous structure with a substantial increase in grain size from 8 {mu}m in as-extruded condition to 18 {mu}m. This change in microstructure slightly reduced the strain-hardening exponent from 0.2 to 0.16. The remaining mechanical properties did not vary extensively when compared to the untreated, as-extruded material. It is assumed that the average grain size and grain size distribution have been influenced by complex thermomechanical treatments, which occurred during extrusion process as well as

  10. Invisible Display in Aluminum

    DEFF Research Database (Denmark)

    Prichystal, Jan Phuklin; Hansen, Hans Nørgaard; Bladt, Henrik Henriksen

    2005-01-01

    Bang & Olufsen a/s has been working with ideas for invisible integration of displays in metal surfaces. Invisible integration of information displays traditionally has been possible by placing displays behind transparent or semitransparent materials such as plastic or glass. The wish for an integ...... be obtained by shining light from the backside of the workpiece. When there is no light from the backside, the front surface seems totally untouched. This was achieved by laser ablation with ultra-short pulses.......Bang & Olufsen a/s has been working with ideas for invisible integration of displays in metal surfaces. Invisible integration of information displays traditionally has been possible by placing displays behind transparent or semitransparent materials such as plastic or glass. The wish...... for an integrated display in a metal surface is often ruled by design and functionality of a product. The integration of displays in metal surfaces requires metal removal in order to clear the area of the display to some extent. The idea behind an invisible display in Aluminum concerns the processing of a metal...

  11. Anodized aluminum on LDEF

    Science.gov (United States)

    Golden, Johnny L.

    1993-01-01

    A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.

  12. [Process and mechanism of plants in overcoming acid soil aluminum stress].

    Science.gov (United States)

    Zhao, Tian-Long; Xie, Guang-Ning; Zhang, Xiao-Xia; Qiu, Lin-Quan; Wang, Na; Zhang, Su-Zhi

    2013-10-01

    Aluminum (Al) stress is one of the most important factors affecting the plant growth on acid soil. Currently, global soil acidification further intensifies the Al stress. Plants can detoxify Al via the chelation of ionic Al and organic acids to store the ionic Al in vacuoles and extrude it from roots. The Al extrusion is mainly performed by the membrane-localized anion channel proteins Al(3+)-activated malate transporter (ALMT) and multi-drug and toxin extrusion (MATE). The genes encoding ABC transporter and zinc-finger protein conferred plant Al tolerance have also been found. The identification of these Al-resistant genes makes it possible to increase the Al resistance of crop plants and enhance their production by the biological methods such as gene transformation and mark-associated breeding. The key problems needed to be solved and the possible directions in the researches of plant Al stress resistance were proposed.

  13. Quantitative Microstructural Characterization of Thick Aluminum Plates Heavily Deformed Using Equal Channel Angular Extrusion

    DEFF Research Database (Denmark)

    Mishin, Oleg; Segal, V.M.; Ferrasse, S.

    2012-01-01

    deg rotations about the longitudinal axis. Statistically robust data were obtained in this work using gallium enhanced microscopy and EBSD mapping of large sample areas. For the plate processed using route A, the fraction of high-angle boundaries was found to strongly depend on the inspection plane......A detailed quantitative analysis of the microstructure has been performed in three orthogonal planes of 15-mm-thick aluminum plates heavily deformed via two equal channel angular extrusion (ECAE) routes. One route was a conventional route A with no rotation between passes. Another route involved...... sequential 90 deg rotations about the normal direction (ND) between passes. The microstructure in the center of these plates, and especially the extent of microstructural heterogeneity, has been characterized quantitatively and compared with that in bar samples extruded via either route A or route Bc with 90...

  14. Structure optimization of porthole die based on aluminum profile extrusion process numerical simulation

    Institute of Scientific and Technical Information of China (English)

    WU Xiang-hong; ZHAO Guo-qun; LUAN Yi-guo; LOU Shu-mei; MA Xin-wu

    2006-01-01

    Porthole die extrusion method is used to produce hollow aluminum profile. Due to the complexity of the porthole die structure and the material flow, it is very difficult to get ideal profile products with the firstly designed die structure. Finite volume numerical simulation was used to analyze the extrusion process of a hollow profile with porthole die and the problem of non-uniform material flow was found. Optimization was made to the originally designed die to solve the problem. Lower load, reasonable seaming location and even extruded forepart with uniform material flow in the optimized die extrusion were obtained. Guidelines to porthole die design were given and it is also concluded that finite volume method with Eulerian description avoids mesh regeneration and is suitable to numerical simulation of severe deformation processes, such as profile extrusion.

  15. Numerical Simulation of the Roll Forming Process of Aluminum Folded Micro-channel Tube

    Science.gov (United States)

    Zou, Tianxia; Zhou, Ning; Peng, Yinghong; Tang, Ding; Li, Dayong

    2016-08-01

    Micro-channel tube is the most important component of flat tube heat exchangers. The folded microchannel tube is made of clad aluminum sheet through roll forming process, and has great advantage in the aspect of corrosion resistance over extruded tube. The folded tube's sub-millimeter channel size as well as tight dimensional precision requirement brings great challenge to roll forming process design. In this paper, the finite element model of the whole roll forming process of a ten-channel tube is established by using ABAQUS/Explicit. The deformation at different forming stands are investigated and compared with experiment. The hydraulic pressure test is carried out on the developed tube and its pressure bearing capacity is evaluated.

  16. Effect of Process Variables on the Formation of Streak Defects on Anodized Aluminum Extrusions: An Overview

    Science.gov (United States)

    Zhu, Hanliang; Couper, Malcolm J.; Dahle, Arne K.

    2012-04-01

    Streak defects are often present on anodized extrusions of 6xxx series aluminum alloys, increasing the fabrication cost of these products. Moreover, streaking often only becomes visible after etching and anodizing treatments, rather than in the as-extruded condition, making it difficult to identify the original causes and influencing factors of these defects. In this paper, various process variables that influence the formation of streak defects on anodized aluminium extrusions are reviewed on the basis of a literature review, industrial practice and experimental results. The influencing factors involved in various processing steps such as billet quality, extrusion process, die design and etching process are considered. Effective measures for preventing the formation of streak defects in industrial extrusion products are discussed.

  17. Correlation between microstructural features and tensile strength for friction welded joints of AA-7005 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Seyyed Mostafa Tahsini; Ayyub Halvaee; Hamed Khosravi

    2016-01-01

    Similar friction welded joints of AA-7005 aluminum rods were fabricated using different combinations of process parameters such as friction pressure (1.0, 1.5 and 2.0 MPa) and friction time (10, 15 and 20 s). Interfacial microstructure and formation of intermetallic compounds at the joint interface were evaluated via scanning electron microscopy (SEM) equipped with energy dispersive spectrum (EDS), and optical microscopy (OM). Microstructural observations reveal the formation of intermetallic phases during the welding process which cannot be extruded from the interface. Theses phases influence the tensile strength of the resultant joints. From the tensile characteristics viewpoint, the greatest tensile strength value of 365 MPa is obtained at 1.5 MPa and 15 s. Finally, the role of microstructural features on tensile strength of resultant joints is discussed.

  18. Optimization of Process for Rice Noodle Direct Extruded by Twin-Screw Extruder%直接挤出制备米粉(线)工艺的优化

    Institute of Scientific and Technical Information of China (English)

    安红周; 范运乾; 豆洪启; 杨波涛; 张瑞莉; 李盘欣

    2012-01-01

    为了获得直接挤压制备米粉(线)的最适工艺参数,采用响应面(RSM)方法设计试验方案,对挤压机挤压制作米粉的工艺参数进行优化分析.研究原料含水量、机筒温度、螺杆转速对米粉糊化度的影响.结果表明:3个因素对糊化度影响大小依次为机筒Ⅲ区温度>螺杆转速>原料含水量.通过响应面分析得出挤压米粉最佳工艺:原料含水量35.1%,Ⅲ区温度102℃,螺杆转速117r/min.在此条件下,米粉糊化度为92.1.与3种市售产品对比,自制米粉在硬度、糊化度、咀嚼性和感官品质方面达到了市售产品平均水平.%Optimized process for direct extruded rice noodles which designed by the Response Surface Methodology (RSM) was studied by evaluate effect of extrusion process parameters (feed moisture content, barrel temperature, and screw speed) on gelatinization degree and sensory scoring of rice extrudate. The result indicated that the effect order of four factors on gelatinization degree was as follows: barrel temperature, screw speed, feed moisture content. The canonical analysis revealed that optimal conditions for processing of direct extruded rice noodles were: feed moisture content 35.1% ,barrel temperature 102℃,screw speed 117r/min. Under optimal conditions, the gelatinization degree of rice noodles was 92. 1. Compared with 3 varieties of commercial products, trial product has the similar hardness, gelatinization, chewiness and sensory evaluation.

  19. Standardized ileal amino acid digestibility in dry-extruded expelled soybean meal, extruded canola seed-pea, feather meal, and poultry by-product meal for broiler chickens.

    Science.gov (United States)

    Bandegan, A; Kiarie, E; Payne, R L; Crow, G H; Guenter, W; Nyachoti, C M

    2010-12-01

    Ileal digestibility of amino acids (AA) in dry-extruded expelled soybean meal (DESBM), co-extruded canola seed-pea blend (ECSP, 50:50 wt/wt basis), poultry by-product meal (PBPM), and feather meal (FM) were determined in broiler chicks. For each ingredient, 5 samples each collected on different occasions were evaluated. Birds (n = 180 for each sample) were fed a commercial starter diet from d 1 to 15 of age followed by the test diets from d 15 to 21. Dry-extruded expelled soybean meal, ECSP, PBPM, and FM were included in the test diets at 95.3, 95.3, 38.4, and 28.4%, respectively, as the sole source of AA and balanced for minerals and vitamins. Chromic oxide (0.3%) was included in all diets as a digestibility marker. Each diet (5 per ingredient) was randomly assigned to 6 replicate cages, each with 6 birds. On d 21, birds were killed to collect ileal digesta for determining the apparent ileal AA digestibility on cage basis. The standardized ileal digestibility (SID) values were calculated using ileal endogenous AA losses previously determined in our laboratory. The apparent ileal digestibility of AA ranged from 78 to 91%, 68 to 83%, 51 to 81%, and 39 to 74% for DESBM, ECSP, PBPM, and FM, respectively. The respective ranges for SID values were 83 to 96%, 72 to 85%, 58 to 86%, and 42 to 78%. Among the indispensable AA, the lowest SID was observed for Thr in all test ingredients, whereas the highest SID was observed for Phe except in ECSP in which Arg had the highest SID. The SID of Lys (CV) were 91% (2.8%), 79% (2.0%), 78% (7.4%), and 60% (10%) for DESBM, ECSP, PBPM, and FM, respectively, whereas the SID of TSAA (CV) were 88% (4.5%), 77% (2.4%), 74% (9.0%), and 55% (18%), respectively. These SID AA data will help nutritionists to formulate broiler diets that more closely match the birds' requirements and minimize nutrient excess.

  20. Gas evolution behavior of aluminum in mortar

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-10-01

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs.

  1. Newly formulated, protein quality-enhanced, extruded sorghum-, cowpea-, corn-, soya-, sugar- and oil-containing fortified-blended foods lead to adequate vitamin A and iron outcomes and improved growth compared with non-extruded CSB+ in rats.

    Science.gov (United States)

    Delimont, Nicole M; Fiorentino, Nicole M; Opoku-Acheampong, Alexander B; Joseph, Michael V; Guo, Qingbin; Alavi, Sajid; Lindshield, Brian L

    2017-01-01

    Corn and soyabean micronutrient-fortified-blended foods (FBF) are commonly used for food aid. Sorghum and cowpeas have been suggested as alternative commodities because they are drought tolerant, can be grown in many localities, and are not genetically modified. Change in formulation of blends may improve protein quality, vitamin A and Fe availability of FBF. The primary objective of this study was to compare protein efficiency, Fe and vitamin A availability of newly formulated extruded sorghum-, cowpea-, soya- and corn-based FBF, along with a current, non-extruded United States Agency for International Development (USAID) corn and soya blend FBF (CSB+). A second objective was to compare protein efficiency of whey protein concentrate (WPC) and soya protein isolate (SPI) containing FBF to determine whether WPC inclusion improved outcomes. Eight groups of growing rats (n 10) consumed two white and one red sorghum-cowpea (WSC1 + WPC, WSC2 + WPC, RSC + WPC), white sorghum-soya (WSS + WPC) and corn-soya (CSB14 + WPC) extruded WPC-containing FBF, an extruded white sorghum-cowpea with SPI (WSC1 + SPI), non-extruded CSB+, and American Institute of Nutrition (AIN)-93G, a weanling rat diet, for 4 weeks. There were no significant differences in protein efficiency, Fe or vitamin A outcomes between WPC FBF groups. The CSB+ group consumed significantly less food, gained significantly less weight, and had significantly lower energy efficiency, protein efficiency and length, compared with all other groups. Compared with WSC1 + WPC, the WSC1 + SPI FBF group had significantly lower energy efficiency, protein efficiency and weight gain. These results suggest that a variety of commodities can be used in the formulation of FBF, and that newly formulated extruded FBF are of better nutritional quality than non-extruded CSB+.

  2. Low-aluminum content iron-aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J. [and others

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  3. Fatigue crack growth from narrow-band Gaussian spectrum loading in 6063 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Veers, P.S.; Van Den Avyle, J.A.

    1990-01-01

    Constant amplitude and narrow-band Gaussian loadings are applied to extruded 6063 aluminum crack-growth specimens in an effort to characterize the effective stress intensity levels during random loading. Crack-growth rates are determined for constant amplitude loadings at stress ratios (R) of 0.09, 0.3 and 0.5, and for a variable amplitude loading simulated to match a narrow-band Gaussian spectrum. Crack-opening stress levels measured by the compliance method during the constant amplitude loading are found to differ substantially for -T5 and -T6 heat treatments due to a change from intergranular to transgranular crack growth. Crack-opening load ratios correlate well with the maximum applied stress intensity factor, K{sub max}, for the -T5 material. The K{sub max} dependence leads to an effective halving of the crack-growth exponent. Calculated variable amplitude lives are much shorter when this correlation is taken into account (an acceleration effect) and show a greater difference between loading blocks condensed by racetrack filtering at threshold levels of two and four standard deviations, similar to what was observed in the tests. Crack-opening-load measurements in one specimen with the narrow-band Gaussian (variable amplitude) loading failed to detect any closure. A substantial difference in the closure behavior of nominally identical R = .3 tests indicates that closure may occur irregularly in the extruded aluminum. Calculated crack-growth lives, assuming no closure in the variable amplitude tests, are much shorter than the test results. Including closure in the variable amplitude loadings greatly improves the predictions. 14 refs., 16 figs.

  4. Strain Mapping and Nanocrystallite Size Determination by Neutron Diffraction in an Aluminum Alloy (AA5083 Severely Plastically Deformed through Equal Channel Angular Pressing

    Directory of Open Access Journals (Sweden)

    P. A. González Crespo

    2013-01-01

    Full Text Available Six specimens of an aluminum alloy (AA-5083 extruded by Equal Channel Angular Pressing following two different routes plus a blank sample were examined with a neutron radiation of 1.5448 Å. Macrostrain maps from the (311 reflection were obtained. A clear difference about accumulated macrostrain with the extrusion cycles between the two routes is shown. The diffraction data of annealed specimens did permit to estimate crystallite sizes that range between 89 nm and 115 nm depending on the routes.

  5. Scaleable Clean Aluminum Melting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Das, S.K. (Secat, Inc.)

    2008-02-15

    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

  6. Effect of Processing Steps on the Mechanical Properties and Surface Appearance of 6063 Aluminium Extruded Products

    National Research Council Canada - National Science Library

    Juan Asensio-Lozano; Beatriz Suarez-Peña; George F Vander Voort

    2014-01-01

      6063 aluminum anodized extrusions may exhibit a common surface defect known as streaking, characterized by the formation of narrow bands with a surface gloss different from the surrounding material...

  7. Temporal analysis of the effect of extruded flaxseed on the swine gut microbiota.

    Science.gov (United States)

    Holman, Devin B; Baurhoo, Bushansingh; Chénier, Martin R

    2014-10-01

    Flaxseed is a rich source of α-linolenic acid, an essential ω-3 fatty acid reported to have beneficial health effects in humans. Feeding swine a diet supplemented with flaxseed has been found to enrich pork products with ω-3 fatty acids. However, the effect of flaxseed supplementation on the swine gut microbiota has not been assessed to date. The purpose of this study was to investigate if extruded flaxseed has any impact on the bacterial and archaeal microbiota in the feces of growing-finishing pigs over a 51-day period, using denaturing gradient gel electrophoresis (DGGE) and real-time PCR. Bacterial DGGE profile analysis revealed major temporal shifts in the bacterial microbiota with only minor ones related to diet. The archaeal microbiota was significantly less diverse than that of Bacteria. The majority of bacterial DGGE bands sequenced belonged to the Firmicutes phylum while the archaeal DGGE bands were found to consist of only 2 species, Methanobrevibacter smithii and Methanosphaera stadtmanae. The abundance of Bacteroidetes decreased significantly from day 0 to day 21 in all diet groups while the abundance of Firmicutes was relatively stable across all diet cohorts and sampling times. There was also no significant correlation between pig mass and the ratio of Firmicutes to Bacteroidetes. While the addition of extruded flaxseed to the feed of growing-finishing pigs was beneficial for improving ω-3 fatty acid content of pork, it had no detectable impact on the fecal bacterial and archaeal microbiota, suggesting that extruded flaxseed may be used to improve meat quality without adverse effect on the swine gut microbiota or animal performance.

  8. Enhancing anaerobic digestion of high-pressure extruded food waste by inoculum optimization.

    Science.gov (United States)

    Kong, Xin; Xu, Shuang; Liu, Jianguo; Li, Huan; Zhao, Ke; He, Liang

    2016-01-15

    The inoculation for extruded food waste anaerobic digestion (AD) was optimized to improve methane (CH4) yield. The inoculum of acclimated anaerobic sludge resulted in high biodegradability, producing CH4 yields from 580 mLCH4 g(-1)·VSadded to 605 mLCH4 g(-1)·VSadded, with corresponding BDCH4 ranging from 90% to 94%. We also investigated inoculum to substrate ratios (ISRs). With regards to digested slurry as inoculum, we found that a decrease in ISR improved CH4 yield, while a lower ISR prolonged the lag time of the initial AD stage due to lipid inhibition caused by excessive food waste. These results demonstrate that minimal inocula are required to start the AD system for high-pressure extruded food waste because it is easily biodegraded. High ammonia concentration had a negative effect on CH4 production (i.e., when free ammonia nitrogen [FAN] increased from 20 to 30 mg L(-1) to 120-140 mg L(-1), the CH4 yield decreased by 25%), suggesting that FAN was a significant inhibitor in CH4 yield reduction. In terms of CH4 yield and lag time of the AD process, the optimal inoculation of digested slurry for the extruded food waste had an ISR of 0.33 with CH4 yield of 505 mLCH4 g(-1)VSadded, which was 20% higher than what was found for higher ISR controls of 2, 1 and 0.5.

  9. Hot Extruded Polycrystalline Mg2Si with Embedded XS2 Nano-particles (X: Mo, W)

    Science.gov (United States)

    Bercegol, A.; Christophe, V.; Keshavarz, M. K.; Vasilevskiy, D.; Turenne, S.; Masut, R. A.

    2016-08-01

    Due to their abundant, inexpensive and non-toxic constituent elements, magnesium silicide and related alloys are attractive for large-scale thermoelectric (TE) applications in the 500-800 K temperature range, in particular for energy conversion. In this work, we propose a hot extrusion method favorable for large-scale production, where the starting materials (Mg2Si and XS2, X: W, Mo) are milled together in a sealed vial. The MoS2 nano-particles (0.5-2 at.%) act as solid lubricant during the extrusion process, thus facilitating material densification, as confirmed by density measurements based on Archimedes' method. Scanning electron microscopy images of bulk extruded specimens show a wide distribution of grain size, covering the range from 0.1 μm to 10 μm, and energy dispersive spectroscopy shows oxygen preferentially distributed at the grain boundaries. X-ray diffraction analysis shows that the major phase is the expected cubic structure of Mg2Si. The TE properties of these extruded alloys have been measured by the Harman method between 300 K and 700 K. Resistivity values at 700 K vary between 370 μΩ m and 530 μΩ m. The ZT value reaches a maximum of 0.26 for a sample with 2 at.% MoS2. Heat conductivity is reduced for extruded samples containing MoS2, which most likely behave as scattering centers for phonons. The reason why the WS2 particles do not bring any enhancement, for either densification or heat transfer reduction, might be linked to their tendency to agglomerate. These results open the way for further investigation to optimize the processing parameters for this family of TE alloys.

  10. Environmental Control over the Primary Aluminum Industry

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> To strengthen environmental control over theprimary aluminum industry,the State Environ-mental Protection Administration of China hasrecently issued a notice addressing the follow-ing points:Strengthening environmental control over theexisting primary aluminum companies

  11. Decreasing residual aluminum level in drinking water

    Institute of Scientific and Technical Information of China (English)

    王志红; 崔福义

    2004-01-01

    The relativity of coagulant dosage, residual turbidity, temperature, pH etc. with residual aluminum concentration were investigated, and several important conclusions were achieved. Firstly, dosage of alum-coagulant or PAC1 influences residual aluminum concentration greatly. There is an optimal-dosage-to-aluminum, a bit less than the optimal-dosage-to-turbidity. Secondly, it proposes that decreasing residual aluminum concentration can be theoretically divided into two methods, either decreasing (even removing) the concentration of particulate aluminum component, or decreasing dissolved aluminum. In these tests there is an optimal value of residual turbidity of postprecipitation at 7.0 NTU. Thirdly, residual aluminum level will increase while water temperature goes higher. At the last, optimal pH value corresponds a minimum dissolved aluminum at a given turbidity. Data shows the optimal pH value decreases with water temperature's increasing.

  12. 21 CFR 172.310 - Aluminum nicotinate.

    Science.gov (United States)

    2010-04-01

    ... Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be safely... additive, expressed as niacin, shall appear on the label of the food additive container or on that of...

  13. Gastrointestinal transit of extruded or pelletized diets in pacu fed distinct inclusion levels of lipid and carbohydrate

    Directory of Open Access Journals (Sweden)

    Claucia Aparecida Honorato

    2014-11-01

    Full Text Available The objective of this work was to evaluate the effect of pelletized or extruded diets, with different levels of carbohydrate and lipid, on the gastrointestinal transit time (GITT and its modulation in pacu (Piaractus mesopotamicus. One hundred and eighty pacu juveniles were fed with eight isonitrogenous diets containing two carbohydrate levels (40 and 50% and two lipid levels (4 and 8%. Four diets were pelletized and four were extruded. Carbohydrate and lipid experimental levels caused no changes to the bolus transit time. However, the bolus permanence time was related to diet processing. Fish fed pelletized diets exhibited the highest gastrointestinal transit time. Regression analysis of bolus behavior for pelletized and extruded diets with 4% lipid depicted different fits. GITT regression analysis of fish fed 8% lipid was fitted to a cubic equation and displayed adjustments of food permanence, with enhanced utilization of the diets, either with extruded or pelletized diets. GITT of fish fed extruded diets with 4% lipid was adjusted to a linear equation. The GITT of pacu depends on the diet processing and is affected by dietary levels of lipid and carbohydrate.

  14. Effects of selected process parameters in extrusion of yam flour (Dioscorea rotundata) on physicochemical properties of the extrudates.

    Science.gov (United States)

    Sebio, L; Chang, Y K

    2000-04-01

    Raw yam (Dioscorea rotundata) flour was cooked and extruded in a Brabender single-screw laboratory scale extruder. Response surface methodology using an incomplete factorial design was applied with various combinations of barrel temperature [100, 125, 150 degrees C], feed moisture content [18, 22, 26%] and screw speed [100, 150, 200 rpm]. Initial viscosity at 30 degrees C, water solubility index, expansion and hardness were determined. The highest values of initial viscosity were at the highest barrel temperatures and the highest moisture contents. At high feed moisture content and high barrel temperatures the yam extrudate flour showed the greatest values of water solubility index. The physical properties of the extruded product showed that at high temperature the lower the moisture content the greater the expansion index. Hardness was influenced directly by moisture content and inversely by extrusion temperature. The extrusion of yam flour led to the production of snacks and pre-gelatinized flours of diverse properties. Also extruded yam flour can be successfully used in the preparation of 'futu' (pre-cooked compact dough), a yam-based food, popular in Western Africa.

  15. Physicochemical Changes and Resistant-Starch Content of Extruded Cornstarch with and without Storage at Refrigerator Temperatures

    Directory of Open Access Journals (Sweden)

    David Neder-Suárez

    2016-08-01

    Full Text Available Effects of extrusion cooking and low-temperature storage on the physicochemical changes and resistant starch (RS content in cornstarch were evaluated. The cornstarch was conditioned at 20%–40% moisture contents and extruded in the range 90–130 °C and at screw speeds in the range 200–360 rpm. The extrudates were stored at 4 °C for 120 h and then at room temperature. The water absorption, solubility index, RS content, viscoelastic, thermal, and microstructural properties of the extrudates were evaluated before and after storage. The extrusion temperature and moisture content significantly affected the physicochemical properties of the extrudates before and after storage. The RS content increased with increasing moisture content and extrusion temperature, and the viscoelastic and thermal properties showed related behaviors. Microscopic analysis showed that extrusion cooking damaged the native starch structure, producing gelatinization and retrogradation and forming RS. The starch containing 35% moisture and extruded at 120 °C and 320 rpm produced the most RS (1.13 g/100 g after to storage at low temperature. Although the RS formation was low, the results suggest that extrusion cooking could be advantageous for RS production and application in the food industry since it is a pollution less, continuous process requiring only a short residence time.

  16. The effect of extrusion on the functional components and in vitro lycopene bioaccessibility of tomato pulp added corn extrudates.

    Science.gov (United States)

    Tonyali, Bade; Sensoy, Ilkay; Karakaya, Sibel

    2016-02-01

    The effect of processing on functional ingredients and their in vitro bioaccessibility should be investigated to develop better food products. Tomato pulp was added as a functional ingredient to extrudates. The effects of extrusion on the functional properties of the extrudates and the in vitro bioaccessibility of lycopene were investigated. Two different temperature sets were applied during extrusion: 80 °C, 90 °C, 100 °C and 130 °C and 80 °C, 100 °C, 130 °C and 160 °C. Screw speed and feed rate were kept constant at 225 rpm and 36 ± 1 g min(-1), respectively. The feed moisture content was adjusted to 30 ± 1% by mixing the tomato pulp to the corn grit. Antioxidant activity and the total phenolic content decreased after the extrusion process. High performance liquid chromatography (HPLC) analysis indicated that the lycopene content decreased after the extrusion process when feed and extrudates were compared. In vitro bioaccessibility of lycopene for the extruded samples with 160 °C last zone treatment temperature was higher than the feed and extruded samples with 130 °C last zone treatment temperature. The results indicate that extrusion affects the food matrix and the release of functional components.

  17. Mechanical properties and microstructure of as-cast and extruded Mg-(Ce, Nd)-Zn-Zr alloys

    Institute of Scientific and Technical Information of China (English)

    YU Kun; LI Wen-xian; WANG Ri-chu

    2005-01-01

    Studies on the mechanical properties and microstructures of as-cast and extruded Mg-Ce-Zn-Zr and Mg-Nd-Zn-Zr alloys have been made before and after heat treatment. The results show that the mechanical properties of as-cast Mg-Ce and Mg-Nd alloys are as good as those of typical die cast AZ91 alloy and the heat resistant WE43 alloy. In Nd-containing alloys, the precipitated phase Mg12Nd contributes significantly to age hardening. The mechanical properties of extruded alloys are improved obviously compared with those of as-cast alloys. The ultimate strength is 257.8 MPa for extruded Mg-Ce alloy and 265.6 MPa for extruded Mg-Nd alloy. Extrusion is a useful method to improve both the strengths and elongations of the two experimental alloys at both ambient and elevated temperatures. The grain refinement and precipitation strengthening are the main strengthening mechanisms in the alloys. Tensile fracture surfaces show a dimple pattern after extruding and therefore reflect an improved elongation.

  18. Instrumental and Sensory Texture Attributes of High-Protein Nutrition Bars Formulated with Extruded Milk Protein Concentrate.

    Science.gov (United States)

    Banach, J C; Clark, S; Lamsal, B P

    2016-05-01

    Previous instrumental study of high-protein nutrition (HPN) bars formulated with extruded milk protein concentrate (MPC) indicated slower hardening compared to bars formulated with unmodified MPC. However, hardness, and its change during storage, insufficiently characterizes HPN bar texture. In this study, MPC80 was extruded at 2 different conditions and model HPN bars were prepared. A trained sensory panel and instrumental techniques were used to measure HPN bar firmness, crumbliness, fracturability, hardness, cohesiveness, and other attributes to characterize texture change during storage. Extrusion modification, storage temperature, and storage time significantly affected the instrumental and sensory panel measured texture attributes. The HPN bars became firmer and less cohesive during storage. When evaluated at the same storage conditions, the texture attributes of the HPN bars formulated with the different extrudates did not differ significantly from each other. However, textural differences were noted most of the time between the control and the HPN bars formulated with extruded MPC80. An adapted HPN bar crumbliness measurement technique produced results that were correlated with sensory panel measured crumbliness (r = 0.85) and cohesiveness (r = -0.84). Overall, the HPN bars formulated with extruded MPC80 were significantly softer, less crumbly, and more cohesive than the control during storage.

  19. Effect of storage on oxidative quality and stability of extruded astaxanthin-coated fish feed pellets

    DEFF Research Database (Denmark)

    Dethlefsen, Markus Wied; Hjermitslev, Niels Harthøj; Frosch, Stina

    2016-01-01

    This study examined the stability of extruded and astaxanthin-coated fish feed pellets during storage in a light box at 28°C and 620lx. Seven groups of fish feed pellets were vacuum coated with fish oil that contained levels of astaxanthin ranging from 0 to 100ppm. To equalize differences...... collected at storage day 8, 15, 22, 92 and 183 for chemical determination of the astaxanthin concentration. The degradation of astaxanthin was shown to primarily be affected by light and limited to occur at the surface of the fish feed pellets, whereas the astaxanthin embedded in the core of the pellets...

  20. Effect of neodymium on the as-extruded ZK20 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    赵亚忠; 潘复生; 彭建; 王维青; 罗素琴

    2010-01-01

    The effect of Nd addition on the microstructure and mechanical properties of ZK20 magnesium alloy was investigated by room tensile test, optical microscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) in order to develop a magnesium alloy with higher ductility. Results showed that the crystal grains of as-extruded ZK20+0.5%Nd magnesium alloy were effectively refined, and the alloy exhibited higher strength and ductility, with the UTS of 237 MPa and the elongation of 32.8%, increasing by 5...

  1. SELECTED PHYSICAL PROPERTIES OF EXTRUDED COMPOSITES TYPE OF POROUS PVC-METAL

    Directory of Open Access Journals (Sweden)

    Aneta Tor-Świątek

    2014-09-01

    Full Text Available The article presents studies of selected physical and mechanical properties of hybrid materials type of polymer-metal. In the frame of this work modification of PVC with the iron and copper powder in amount of 0, 1.5 and 3% and blowing agent in amount of 0, 0.5, 1% was done. Extrudates in a form of pipe were tested to determine density, porosity, maximum tensile stress, stress at break, modulus of elasticity and elongation with break. The samples were also observed in a microscope. The studies have shown significant influence of the added components on the properties tested.

  2. Rheology of Steel Fibre Containing Alumina-Magnesia-Extruded Graphite Pellets Self-Flowing Castables

    Institute of Scientific and Technical Information of China (English)

    K.Balamurugan; K.Sankaranarayanane; ZHOU Xianxin; Michel Riguad

    2007-01-01

    The influences of adding steel fibres of different lengths up to 3 volume percentages,on the rheological behaviour of an alumina-magnesia-extruded graphite pellet containing castables have been studied using a rheometer.Free-flow measurements have shown that the flow is severely affected by increasing the length of steel fibres.The calculated values of rheological constants indicate that 19 mm and 25 mm fibre up to 2 volume percentage is permitted while one volume percentage of 50 mm fibres severely degrades the rheology of the castable.

  3. Surface quality of extruding metal special-shape products and frictional behavior in optimized die cavity

    Institute of Scientific and Technical Information of China (English)

    QI Hong-yuan; ZHU Heng-jun

    2004-01-01

    With the help of Complex Function Mapping theory, the complicated three-dimensional deformation problems are transferred into two-dimensional problems, and the function of strain ratio field is analyzed in the metal plastic extruding deformation. Taking the strain-hardening effect of metal deformation into account, the relationship between friction behavior and optimized mathematical model is analyzed by the numerical analysis friction energy dissipation function. As a result, the method of lowering the material hardening and decreasing the reduction ratio over multi-procedures can be used to improve the surface quality of metal special-shape extrusion products.

  4. Plastification of polymers in twin-screw-extruders: New visualization technic using high-speed imaging

    Energy Technology Data Exchange (ETDEWEB)

    Knieper, A., E-mail: Alexander.Knieper@lbf.fraunhofer.de, E-mail: Christian.Beinert@lbf.fraunhofer.de; Beinert, C., E-mail: Alexander.Knieper@lbf.fraunhofer.de, E-mail: Christian.Beinert@lbf.fraunhofer.de [Group Polymer Processing, Division Plastics, Fraunhofer-Institute LBF (Germany)

    2014-05-15

    The initial melting of the first granules through plastic energy dissipation (PED) at the beginning of the melting zone, in the co-rotating twin-screw extruder is visualized in this work. The visualization was created through the use of a high speed camera in the cross section of the melting zone. The parameters screw speed, granule-temperature, temperature-profile, type of polymer and back pressure were examined. It was shown that the screw speed and the temperature-profile have significant influence on the rate of initial melting.

  5. The effect of zinc on the aluminum anode of the aluminum-air battery

    Science.gov (United States)

    Tang, Yougen; Lu, Lingbin; Roesky, Herbert W.; Wang, Laiwen; Huang, Baiyun

    Aluminum is an ideal material for batteries, due to its excellent electrochemical performance. Herein, the effect of zinc on the aluminum anode of the aluminum-air battery, as an additive for aluminum alloy and electrolytes, has been studied. The results show that zinc can decrease the anodic polarization, restrain the hydrogen evolution and increase the anodic utilization rate.

  6. OPTIMIZING AN ALUMINUM EXTRUSION PROCESS

    Directory of Open Access Journals (Sweden)

    Mohammed Ali Hajeeh

    2013-01-01

    Full Text Available Minimizing the amount of scrap generated in an aluminum extrusion process. An optimizing model is constructed in order to select the best cutting patterns of aluminum logs and billets of various sizes and shapes. The model applied to real data obtained from an existing extrusion factory in Kuwait. Results from using the suggested model provided substantial reductions in the amount of scrap generated. Using sound mathematical approaches contribute significantly in reducing waste and savings when compared to the existing non scientific techniques.

  7. Electrochemical Behavior of Aluminum in Nitric Acid

    Institute of Scientific and Technical Information of China (English)

    CHEN; Hui; ZHU; Li-yang; LIN; Ru-shan; TAN; Hong-bin; HE; Hui

    2013-01-01

    Aluminum is one of cladding materials for nuclear fuel,it is important to investigate the electrolytic dissolution of aluminum in nitric acid.The electrochemical impedance spectroscopy,polarization curve and cyclic voltammetry cure of anodic aluminum electrode in nitric acid under various conditions were collected(Fig.1).It turns out,under steady state,the thickness of the passivated film of aluminum

  8. Guangxi Aluminum Giant Made Investment in Changfeng

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>A aluminum processing and supporting project (450,000 tons) of Hefei Guangyin Aluminum Company kicked off in Xiatang Town of Changfeng County recently. It is a project jointly invested by Guangxi Investment Group and Guangxi Baise Guangyin Aluminum in Xiatang Town of Changfeng County.

  9. Recovering aluminum from aluminum dross in a DC electric-arc rotary furnace

    Science.gov (United States)

    Tzonev, Tz.; Lucheva, B.

    2007-11-01

    The recycling of aluminum scrap and dross yields significant economic and energy savings, as well environmental benefits. The recovery of aluminum depends on many factors. The aim of this work is to experimentally investigate aluminum recovery under different conditions. In this study, aluminum dross was processed in a direct-current electric-arc rotary furnace. The presence of crushing refractory bodies during processing was found to increase the degree of aluminum recovery by about ten percent.

  10. Optimization of barrel temperature and kidney bean flour percentage based on various physical properties of extruded snacks.

    Science.gov (United States)

    Agathian, G; Semwal, A D; Sharma, G K

    2015-07-01

    The aim of the experiment was to optimize barrel temperature (122 to 178 ± 0.5 °C) and red kidney bean flour percentage (KBF) (12 to 68 ± 0.5 %) based on physical properties of extrudates like flash off percentage, water absorption index (WAI), water solubility index (WSI), bulk density (BD), radial expansion ratio (RER) and overall acceptability (OAA) using single screw extruder. The study was carried out by central composite rotatable design (CCRD) using Response surface methodology (RSM) and moisture content of feed was kept as constant 16.0 ± 0.5 % throughout experiments. Mathematical models for various responses were found to fit significantly (P Extruded snack prepared with rice flour (80 %) and kidney bean flour (20 %) at optimized conditions was accepted by the taste panellists and above 20 % KB incorporation was found to decrease overall acceptability score.

  11. Nutritional value of raw soybeans, extruded soybeans, roasted soybeans and tallow as fat sources in early lactating dairy cows.

    Science.gov (United States)

    Amanlou, H; Maheri-Sis, N; Bassiri, S; Mirza-Aghazadeh, A; Salamatdust, R; Moosavi, A; Karimi, V

    2012-01-01

    Thirty multiparous Holstein cows (29.8 ± 4.01days in milk; 671.6 ± 31.47 kg of body weight) were used in a completely randomized design to compare nutritional value of four fat sources including tallow, raw soybeans, extruded soybeans and roasted soybeans for 8 weeks. Experimental diets were a control containing 27.4 % alfalfa silage, 22.5% corn silage, and 50.1% concentrate, and four diets with either tallow, raw soybean, extruded soybean, or roasted soybean added to provide 1.93% supplemental fat. Dry matter and NEL intakes were similar among treatments, while cows fed fat diets had significantly (Ptallow or full fat soybeans increased milk production (1.89-2.45 kg/d; Ptallow and raw soybean oil. In the Current study, there was no statistical significance among nutritional values of oil from extruded soybeans and roasted soybeans.

  12. Luminescent properties of aluminum hydride

    Energy Technology Data Exchange (ETDEWEB)

    Baraban, A.P.; Gabis, I.E.; Dmitriev, V.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Dobrotvorskii, M.A., E-mail: mstislavd@gmail.com [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Kuznetsov, V.G. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Matveeva, O.P. [National Mineral Resources University, Saint Petersburg 199106 (Russian Federation); Titov, S.A. [Petersburg State University of Railway Transport, Saint-Petersburg 190031 (Russian Federation); Voyt, A.P.; Elets, D.I. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation)

    2015-10-15

    We studied cathodoluminescence and photoluminescence of α-AlH{sub 3}– a likely candidate for use as possible hydrogen carrier in hydrogen-fueled vehicles. Luminescence properties of original α-AlH{sub 3} and α-AlH{sub 3} irradiated with ultraviolet were compared. The latter procedure leads to activation of thermal decomposition of α-AlH{sub 3} and thus has a practical implementation. We showed that the original and UV-modified aluminum hydride contain luminescence centers ‐ structural defects of the same type, presumably hydrogen vacancies, characterized by a single set of characteristic bands of radiation. The observed luminescence is the result of radiative intracenter relaxation of the luminescence center (hydrogen vacancy) excited by electrons or photons, and its intensity is defined by the concentration of vacancies, and the area of their possible excitation. UV-activation of the dehydrogenation process of aluminum hydride leads to changes in the spatial distribution of the luminescence centers. For short times of exposure their concentration increases mainly in the surface regions of the crystals. At high exposures, this process extends to the bulk of the aluminum hydride and ends with a decrease in concentration of luminescence centers in the surface region. - Highlights: • Aluminum hydride contains hydrogen vacancies which serve as luminescence centers. • The luminescence is the result of radiative relaxation of excited centers. • Hydride UV-irradiation alters distribution and concentration of luminescence centers.

  13. Aluminum break-point contacts

    NARCIS (Netherlands)

    Heinemann, Martina; Groot, R.A. de

    1997-01-01

    Ab initio molecular dynamics is used to study the contribution of a single Al atom to an aluminum breakpoint contact during the final stages of breaking and the initial stages of the formation of such a contact. A hysteresis effect is found in excellent agreement with experiment and the form of the

  14. Determination of Processing Quality Tests of Full Fat Soybean Extruded at Three Temperatures and Correlation with Growth

    Directory of Open Access Journals (Sweden)

    S.A. Mirghelenj

    2012-10-01

    Full Text Available Two studies were conducted to evaluate the correlation between growth performance of chicks fed full fat soybean (FFSB extruded at 145, 155 and o 165 and laboratory quality tests. In biological study, one hundred and forty four d-old male broiler chicks were divided into 12 groups including 3 treatments with 4 replicates of 12 chicks each and fed three diets containing 15 % FFSB extruded at 145, 155 and 165 o C from 0 to 21 d of age. Feed intake (FI, weight gain (WG and feed conversion ratio (FCR of chicks were not affected with increasing FFSB extrusion temperatures during 0-21 d of age. For evaluation the quality tests, the urea activity index (UA was obtained as 0.11, 0.09 and 0.05 for FFSB extruded at 145, 155 and 165 °C, respectively. The correlation between UA with WG and FCR of chicks were 88 and 85 percent, respectively. The protein solubility in KOH (PSKOH of FFSB extruded at 145, 155 and 165 °C, were 80.2, 78.1 and 72.4, respectively. The correlation between PSKOH with WG and FCR of chicks were 81and 88 percent, respectively. The protein dispersibility index (PDI were 21.5, 20.8 and 16.5 for FFSB extruded at 145, 155 and 165 °C, respectively. The correlation of PDI with WG and FCR of chicks were 92 and 89 percent, respectively. It is concluded that the laboratory quality tests of FFSB were extruded at 145, 155 and 165 °C were in optimum range for broiler nutrition. Also the PDI had higher correlation with growth rate of chickens as compared to UA and PSKOH and could be the best quality index for estimating the growth rate of broiler chickens fed EFFSB.

  15. Superplastic behavior of hot extruded gamma TiAl (Mo, Si) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, J.A.; Carsi, M.; Ruano, O.A. [Dept. of Physical Metallurgy, Centro Nacional de Investigaciones Metalurgicas, C.S.I.C., Madrid (Spain); Frommeyer, G.; Knippscher, S. [Dept. of Materials Engineering, Max Planck Inst. fuer Eisenforschung, Duesseldorf (Germany); Wittig, J. [Dept. of Materials Science and Engineering, Vanderbilt Univ., Nashville (United States)

    2003-07-01

    Superplastic behavior of hot extruded intermetallic Ti-46Al-1.7(Mo,Si) (at%) alloys was studied by stress change tests in compression and tensile tests at temperatures ranging from 700 to 1050 C. The material produced by arc melting exhibited a structure of coarse lamellar grains in the as-cast condition that transforms to an equiaxic near {gamma} microstructure after processing by hot extrusion at 1250 C. This microstructure consists of zones of {gamma} grains finer than 1 {mu}m and band like regions with coarser grains, ranging from 5 to 20 {mu}m. In addition to {gamma} grains, a volume fraction of more than 20 vol% of {alpha}{sub 2}-Ti{sub 3}Al particles finely dispersed are also present in the fine-grained zones. Compression tests of the extruded material at stresses ranging from 4 to 825 MPa showed values of the strain-rate-sensitivity exponent near 0.5 at low stresses and/or high temperatures. The microstructure in the fine-grained areas remains essentially constant during deformation. TEM analysis of deformed samples in this regime leads to relate grain boundary sliding as the mechanism controlling the deformation process. High elongation to failure, characteristic of superplasticity, was achieved at 975 and 1050 C at an initial strain rate of 4.6 x 10{sup -4} and 4.6 x 10{sup -3} s{sup -1}. (orig.)

  16. Changes in physical properties of extruded sour cassava starch and quinoa flour blend snacks

    Directory of Open Access Journals (Sweden)

    Lívia Giolo Taverna

    2012-12-01

    Full Text Available Given the broad acceptance of sour cassava starch biscuits in Brazil and the nutritional quality of quinoa flour, this study aimed to evaluate the effect of extrusion temperature, screw speed, moisture, and amount of quinoa flour on the physical properties of puffed snacks. Extrusion process was carried out using a single-screw extruder in a factorial central composite design with four factors. Effects of moisture and amount of quinoa flour on the expansion index and specific volume of snacks were observed. There was a pronounced increase in water solubility index of blends with the extrusion process with significant effects of all process parameters on the WSI. Higher water absorption index (WAI was observed under high temperature, low moisture, and lower quinoa flour amount. Temperature and amount of quinoa flour influenced the color of the snacks. A positive quadratic effect of quinoa flour on hardness of products was observed. Blends of sour cassava starch and quinoa flour have good potential for use as raw material in production of extruded snacks with good physical properties.

  17. Effect of cysteine and cystine addition on sensory profile and potent odorants of extruded potato snacks.

    Science.gov (United States)

    Majcher, Małgorzata A; Jeleń, Henryk H

    2007-07-11

    Aromas generated in extruded potato snacks without and with addition of 0.25, 0.5, and 1% (w/w) of flavor precursors, cysteine and cystine, were compared and evaluated by descriptive sensory profiling. The results showed that high addition of cysteine (0.5 and 1%) resulted in the formation of undesirable odor and taste described as mercaptanic/sulfur, onion-like, and bitter; on the contrary, addition of cystine even at high concentration gave product with pleasant odor and taste, slightly changed into breadlike notes. GC/O analysis showed cysteine to be a much more reactive flavor precursor than cystine, stimulating formation of 12 compounds with garlic, sulfury, burnt, pungent/beer, cabbage/mold, meatlike, roasted, and popcorn odor notes. Further analysis performed by the AEDA technique identified 2-methyl-3-furanthiol (FD 2048) as a most potent odorant of extruded potato snacks with 1% addition of cysteine. Other identified compounds with high FD were butanal, 3-methyl-2-butenethiol, 2-methylthiazole, methional, 2-acetyl-1-pyrroline, and 3-hydroxy-4,5-dimethyl-2(5H)-furanone. In the case of cystine addition (1%) the highest FD factors were calculated for butanal, 2-acetyl-1-pyrroline, benzenemethanethiol, methional, phenylacetaldehyde, dimethyltrisulfide, 1-octen-3-ol, 1,5-octadien-3-one, and 2-acetylpyrazine.

  18. Evolution of microstructure and tensile properties of extruded Mg-4Zn-1Y alloy

    Institute of Scientific and Technical Information of China (English)

    李吉宝; 王峰; 毛萍莉; 刘正

    2014-01-01

    In order to investigate the effect of extrusion on Mg-4Zn-1Y alloy, microstructure and mechanical properties were analyzed by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), en-ergy dispersive spectrum (EDS) and tensile testing. The results indicated that the microstructure was obviously refined by extrusion and dynamic recrystallization. The second phases were dynamic precipitated and distributed more dispersively through extrusion. W-Phases (Mg3Zn3Y2) were twisted and broken, while I-Phases (Mg3Zn6Y) were spheroidized by deformation. Twin bands were formed to achieve the large deformation and hinder the slip of dislocations effectively to improve tensile properties. The tensile strength and elon-gation of extruded Mg-4Zn-1Y alloy were 254.94 MPa and 17.9%respectively which were improved greatly compared with those of as-cast alloy. The strengthening mechanisms of the extruded alloy were mainly fine-grain strengthening and distortion strengthening.

  19. Effect of Mn on microstructure and corrosion properties of extruded Mg-1%Zn alloy

    Science.gov (United States)

    Zhang, Z. M.; Ma, Y.; Xi, Z. Z.; Xu, C. J.; Lv, Z. L.

    2017-03-01

    The microstructure of the extruded Mg-1Zn alloy doped with different content of manganese was analyzed by optical microscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy and X-ray diffractometry. The mass-loss immersion method and electrochemical test were used to evaluate the corrosion properties. The results show that the microstructure of the extruded Mg-1%Zn-x%Mn (mass fraction, x=0.4, 0.8, 1.2) alloys consists of α-Mg and α-Mn, the grain size of α-Mg decreases with increasing Mn content. Electrochemical corrosion behavior of the alloys is similar. Mn has considerable effect on the corrosion rate, the corrosion process is exacerbated by the galvanic corrosion occurred at interface between α-Mg and α-Mn. The corrosion rate increases as the Mn content increases. Mg-1%Zn-0.4% Mn alloy exhibits the best corrosion resistance between the Mg-1%Zn-x%Mn alloys

  20. Extruded Bread Classification on the Basis of Acoustic Emission Signal With Application of Artificial Neural Networks

    Science.gov (United States)

    Świetlicka, Izabela; Muszyński, Siemowit; Marzec, Agata

    2015-04-01

    The presented work covers the problem of developing a method of extruded bread classification with the application of artificial neural networks. Extruded flat graham, corn, and rye breads differening in water activity were used. The breads were subjected to the compression test with simultaneous registration of acoustic signal. The amplitude-time records were analyzed both in time and frequency domains. Acoustic emission signal parameters: single energy, counts, amplitude, and duration acoustic emission were determined for the breads in four water activities: initial (0.362 for rye, 0.377 for corn, and 0.371 for graham bread), 0.432, 0.529, and 0.648. For classification and the clustering process, radial basis function, and self-organizing maps (Kohonen network) were used. Artificial neural networks were examined with respect to their ability to classify or to cluster samples according to the bread type, water activity value, and both of them. The best examination results were achieved by the radial basis function network in classification according to water activity (88%), while the self-organizing maps network yielded 81% during bread type clustering.

  1. Microstructures and mechanical properties of double hot-extruded AZ80+xSr wrought alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effects of Sr addition on microstructures and tensile properties of the as-cast and hot-extruded AZ80 alloys were studied by OM, SEM, EDS, XRD, DSC and Instron tester. The results show that the microstructures of as-cast alloys consist of α-Mg and β-Mg17Al12 phase. Sr gathers on the boundaries, and dissolves into β-Mg17Al12 phase or forms Mg17Sr2 phase. The grains of as-cast alloys are refined and discontinuous net-shaped structure is formed. The compound phases on the boundaries become thicker with increasing Sr content. The ultimate tensile stress(UTS) and elongation are improved compared with the corresponding Sr-free alloy. After preliminary hot-extruding, the UTS is up to 308-320 MPa and elongation reaches 8.0%-13.5%. After double hot-extrusion, the dynamic recrystallization completes totally, and the UTS is up to 310-355 MPa, but the elongation does not change apparently. The alloy with 0.02%Sr (mass fraction) obtains the best comprehensive performance with the UTS of 355 MPa and elongation of 13.2%. The SEM morphology of fracture surface shows that the alloys with Sr present good ductility after double hot-extrusion.

  2. Low temperature calcium hydroxide treatment enhances anaerobic methane production from (extruded) biomass.

    Science.gov (United States)

    Khor, Way Cern; Rabaey, Korneel; Vervaeren, Han

    2015-01-01

    Ca(OH)2 treatment was applied to enhance methane yield. Different alkali concentration, incubation temperature and duration were evaluated for their effect on methane production and COD conversion efficiency from (non-)extruded biomass during mesophilic anaerobic digestion at lab-scale. An optimum Ca(OH)2 pretreatment for grass is found at 7.5% lime loading at 10°C for 20h (37.3% surplus), while mild (50°C) and high temperatures perform sub-optimal. Ca(OH)2 post-treatment after fast extrusion gives an additional surplus compared to extruded material of 15.2% (grass), 11.2% (maize straw) and 8.2% (sprout stem) regarding methane production. COD conversion improves accordingly, with additional improvements of 10.3% (grass), 9.0% (maize straw) and 6.8% (sprout stem) by Ca(OH)2 post-treatment. Therefore, Ca(OH)2 pretreatment and post-treatment at low temperature generate an additional effect regarding methane production and COD conversion efficiency. Fast extrusion gives a higher energy efficiency ratio compared to slow extrusion.

  3. NUMERICAL INVESTIGATION ON EXTRUDATE SWELL FOR VISCOELASTIC FLUID:USING MAXWELL MODEL

    Institute of Scientific and Technical Information of China (English)

    HUANG Shu-xin; LU Chuan-jing; JIANG Ti-qian

    2004-01-01

    The numerical investigation on extrudate swell through capillary die for viscoelastic fluid characteried by integral-type Maxwell constitutive equation was conducted by employing the finite element method with the calculation of viscoelastic extra stress in the conventional finite element. The method of avoiding singularity was also adopted by integrating the strain history of the Gauss points for each element near the wall and the free surface. The convergence solutions at high Weissenberg number can be obtained by using the appropriate methods to reduce errors and improve the speed of convergence of the calculation, which include adding a relaxation factor of velocity in iteration process, or enlarging the reference viscosity, or reducing the elapsed time. The highest Weissenberg number obtained here is up to 3.8, while the solution at the Weissenberg number of 3.75 was given in the previous work with similar extrudate swell ratio and the exit pressure drop by using differential Maxwell model with Elastic-Viscous Stress Split (EVSS) combined with Streamline Upwind Petrov-Galerkin (SUPG) scheme. The calculations indicated that the method of dealing with integral consti- tutive equation introduced in this paper is suitable in simulating viscoelastic flow characterized by integral constitutive equation at high elastic level.

  4. Effect of extruding full-fat soy flakes on trans fat content.

    Science.gov (United States)

    Feng, Hongxia; Sui, Xiaonan; Chang, Yunhe; Qi, Baokun; Zhang, Yan; Li, Yang; Jiang, Lianzhou

    2014-01-01

    To evaluate the effects of extrusion process on the trans fatty acids (TFAs) formation in soybean crude oils, three different extrusion parameters, namely, extrusion temperature (80-160 °C), feed moisture (10-26%), and screw speed (100-500 rpm), were carried out. It was found that only five different types of TFAs were detected out using gas chromatography-mass spectrometry. Before the extrusion started, the initial amount of total TFAs was 3.04 g/100 g. However, after extruding under every level of any variable, the total amounts of TFAs were significantly higher than those in the control sample (P trans fatty acid (TTFA) was 1.62 times the amount of that in the control sample, whereas the lowest amount of TTFA was 1.54 times the amount of that in the control sample. Importantly, it was observed that the amounts of every type of trans fatty acid were not continuously increasing with the increase of the level of any extrusion variable. This phenomenon demonstrated that the formation and diversification were intricate during extruding process and need to be further studied.

  5. Effect of Extruding Full-Fat Soy Flakes on Trans Fat Content

    Directory of Open Access Journals (Sweden)

    Hongxia Feng

    2014-01-01

    Full Text Available To evaluate the effects of extrusion process on the trans fatty acids (TFAs formation in soybean crude oils, three different extrusion parameters, namely, extrusion temperature (80–160°C, feed moisture (10–26%, and screw speed (100–500 rpm, were carried out. It was found that only five different types of TFAs were detected out using gas chromatography-mass spectrometry. Before the extrusion started, the initial amount of total TFAs was 3.04 g/100 g. However, after extruding under every level of any variable, the total amounts of TFAs were significantly higher than those in the control sample (P<0.05. For example, taking the effect of extrusion temperature into account, we can find that the highest amount of total of trans fatty acid (TTFA was 1.62 times the amount of that in the control sample, whereas the lowest amount of TTFA was 1.54 times the amount of that in the control sample. Importantly, it was observed that the amounts of every type of trans fatty acid were not continuously increasing with the increase of the level of any extrusion variable. This phenomenon demonstrated that the formation and diversification were intricate during extruding process and need to be further studied.

  6. Twin-Screw Extruder and Pellet Accelerator Integration Developments for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Meitner, Steven J [ORNL; Baylor, Larry R [ORNL; Combs, Stephen Kirk [ORNL; Fehling, Dan T [ORNL; Foust, Charles R [ORNL; McGill, James M [ORNL; Rasmussen, David A [ORNL; Maruyama, So [ITER Organization, Cadarache, France

    2011-01-01

    The ITER pellet injection system consisting of a twinscrew frozen hydrogen isotope extruder, coupled to a combination solenoid actuated pellet cutter and pneumatic pellet accelerator, is under development at the Oak Ridge National Laboratory. A prototype extruder has been built to produce a continuous solid deuterium extrusion and will be integrated with a secondary section, where pellets are cut, chambered, and launched with a single-stage pneumatic accelerator into the plasma through a guide tube. This integrated pellet injection system is designed to provide 5 mm fueling pellets, injected at a rate up to 10 Hz, or 3 mm edge localized mode (ELM) triggering pellets, injected at higher rates up to 20 Hz. The pellet cutter, chamber mechanism, and the solenoid operated pneumatic valve for the accelerator are optimized to provide pellet velocities between 200-300 m/s to ensure high pellet survivability while traversing the inner wall fueling guide tubes, and outer wall ELMpacing guide tubes. This paper outlines the current twin-screwextruder design, pellet accelerator design, and the integrationrequired for both fueling and ELM pacing pellets.

  7. Microstructure and properties of hot extruded AZ31-0.25%Sb Mg-alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effects of hot extrusion treatment on the microstructure and mechanical properties of AZ31-0.25%Sb Mg alloy were mvestlgated by means of mechanical properties measurement and microstructure observation.The results show that the (UTS) and yield tensile strength(YTS) of the alloy are obviously enhanced by hot extrusion treatment,and the enhanced extent of UTS and YTS increases with the decrease of hot extrusion temperature,moreover,the YTS value of the alloy at RT,after extruded at 220℃,increases up to 131.4%,which attributes to the finer grains resulted from the dynamic recrystallization occurred during hot extrusion.As not extrusion goes on,the slipping and concentration of dislocations continue to occur within the finer grains,which promotes the formation of the subgrains in the alloy.The deformation features of the extruded alloy during tensile deformation at RT are the twinning deformation and dislocation slipping in the twinning regions.Moreover,the deformation mechanisms of the alloy are a dislocation activation on the basal plane and a+c dislocation activation on the pyramidal planes.

  8. Extruded flaxseed meal enhances the nutritional quality of cereal-based products.

    Science.gov (United States)

    Giacomino, S; Peñas, E; Ferreyra, V; Pellegrino, N; Fournier, M; Apro, N; Carrión, M Olivera; Frias, J

    2013-06-01

    Human consumption of flaxseed is increasing due to its health benefit properties and extrusion processes can enhance its nutritional quality. Extruded flaxseed meal (EFM) obtained in a pilot plant was characterized and incorporated in flour mixes and cereal-based bars to demonstrate its nutritious usefulness. Amino acid content was not affected by extrusion and, despite lysine was the limitating amino acid, the chemical score (CS) was 83 %. Thiamin and riboflavin decreased slightly as consequence of extrusion, phytic acid did not change and trypsin inhibitor activity was undetectable. Proximate composition and nutritional quality determined by biological and chemical indexes were compared among EFM, flour mixes (FM) and cereal bars (CB). They presented high protein levels (26, 20 and 17 %, respectively), good biological value (BV) (80, 79 and 65, respectively), acceptable true protein digestibility (TD) (73, 79 and 78, respectively), and high dietary fiber (33, 20.5 and 18 %, respectively). The ratio of ω6:ω3 for CB was within the WHO/FAO recommendations. These results open a new venue for the usefulsess of nutritious/healthy extruded flaxseed flours into ready-to-eat cereal-based products with improved nutritional quality.

  9. Impact of screw elements on continuous granulation with a twin-screw extruder.

    Science.gov (United States)

    Djuric, Dejan; Kleinebudde, Peter

    2008-11-01

    The influence of different screw element types on wet granulation process with a twin-screw extruder was investigated. Lactose granules were prepared with different screw configurations such as conveying, combing mixer and kneading elements. The use of kneading blocks led to an almost complete agglomeration of lactose, whereas kneading and combing mixer elements resulted in smaller granules in comparison. Granule porosity varied between 17.4% and 50.6%. Granule friability values ranged from 1.2% to 38.5%. Conveying elements led to the most porous and friable granules, whereas kneading blocks produced the densest and least friable granules. Combing mixer elements produced granules with median properties. A linear correlation between granule porosity and the natural logarithm of granule friability was detected. Flowability of granules was also influenced by the element type. Compressed granules with higher granule porosities resulted in tablets with higher tensile strength values and vice versa. Twin-screw extruders proved to be a versatile tool for wet granulation. By the choice of a suitable screw element granule and tablet characteristics were influenced.

  10. Validation of a continuous granulation process using a twin-screw extruder.

    Science.gov (United States)

    Van Melkebeke, B; Vervaet, C; Remon, J P

    2008-05-22

    Using twin-screw granulation as particle size enlargement technique, the effect of modifying the screw configuration (number of mixing zones, configuration of kneading block) on granule quality, tablet properties and mixing efficiency was investigated. The amount of oversized agglomerates and yield was significantly influenced by the presence of an extra conveying element at the screw end. Changing the staggering angle of the kneading block significantly affected yield and granule friability. The 90 degrees configuration resulted in a lower yield and granule friability. Disintegration time was the only tablet property significantly influenced by the screw configuration as disintegration was significantly faster when an extra conveying element was placed at the screw end. The influence of tracer addition method (wet vs. dry) on mixing efficiency inside the extruder barrel was investigated by means of different tracers: riboflavin (0.05%) suspended in the granulation liquid and hydrochlorothiazide (2.5%) added separately as powder. Mixing efficiency in function of time and granule size (above and below 1400 microm) was tested using riboflavine sodium phosphate (0.05%) dissolved in the granulation liquid. Since a good mixing efficiency was obtained independent of tracer addition method, tracer solubility, granulation time and granule size, continuous granulation using a twin-screw extruder was identified as a robust process.

  11. Mechanistic studies on the release of lysozyme from twin-screw extruded lipid implants.

    Science.gov (United States)

    Sax, Gerhard; Winter, Gerhard

    2012-10-28

    The influence of lipid melting on the in-vitro release of lysozyme from twin-screw extruded lipid implants was investigated. Triglyceride based implants were prepared by admixing of glycerol tristearin and various low melting lipids and subsequent twin-screw extrusion (tsc-extrusion) of these mixtures at moderate temperatures. Lysozyme was embedded as model protein and PEG 4000 or PEG 6000 was used as pore-forming excipient. By decreasing the amount of pore-forming agent from 40% to 0% lysozyme release became more sustained and the release kinetics changed from a matrix-type release profile to a linear release profile. Differential scanning calorimetry, X-ray diffraction and scanning electron microscopy measurements showed a change in implant structure upon long-term release (240 days) at 37 °C which was explained by partial matrix melting. In addition, partial melting of the implants was found to facilitate complete drug release at 37 °C whereas at 20 °C without partial melting 20% to 90% of the incorporated protein remained trapped in the implant matrix. In conclusion, partial melting of the implants during in-vitro release was found to be a major factor for the control of protein release from extruded implants and can be useful to trigger release, achieve in-vivo biodegradability and complete long-term protein release.

  12. HIGH-DENSITY, BIO-COMPATIBLE, AND HERMETIC ELECTRICAL FEEDTHROUGHS USING EXTRUDED METAL VIAS

    Energy Technology Data Exchange (ETDEWEB)

    Tooker, A; Shah, K; Tolosa, V; Sheth, H; Felix, S; Delima, T; Pannu, S

    2012-03-29

    Implanted medical devices such as pacemakers and neural prosthetics require that the electronic components that power these devices are protected from the harsh chemical and biological environment of the body. Typically, the electronics are hermetically sealed inside a bio-compatible package containing feedthroughs that transmit electrical signals, while being impermeable to particles or moisture. We present a novel approach for fabricating one of the highest densities of biocompatible hermetic feedthroughs in alumina (Al{sub 2}O{sub 3}). Alumina substrates with laser machined vias of 200 {mu}m pitch were conformally metallized and lithographically patterned. Hermetic electrical feedthroughs were formed by extruding metal studbumps partially through the vias. Hermeticity testing showed leak rates better than 9x10{sup -10} torr-l/s. Based on our preliminary results and process optimization, this extruded metal via approach is a high-density, low temperature, cost-effective, and robust method of miniaturizing electrical feedthroughs for a wide range of implantable bio-medical device applications.

  13. HIGH-DENSITY, BIO-COMPATIBLE, AND HERMETIC ELECTRICAL FEEDTHROUGHS USING EXTRUDED METAL VIAS

    Energy Technology Data Exchange (ETDEWEB)

    Shah, K G; Delima, T; Felix, S; Sheth, H; Tolosa, V; Tooker, A; Pannu, S S

    2012-03-28

    Implanted medical devices such as pacemakers and neural prosthetics require that the electronic components that power these devices are protected from the harsh chemical and biological environment of the body. Typically, the electronics are hermetically sealed inside a bio-compatible package containing feedthroughs that transmit electrical signals, while being impermeable to particles or moisture. We present a novel approach for fabricating one of the highest densities of biocompatible hermetic feedthroughs in alumina (Al{sub 2}O{sub 3}). Alumina substrates with laser machined vias of 200 {micro}m pitch were conformally metallized and lithographically patterned. Hermetic electrical feedthroughs were formed by extruding metal stud-bumps partially through the vias. Hermeticity testing showed leak rates better than 9 x 10{sup -10} torr-l/s. Based on our preliminary results and process optimization, this extruded metal via approach is a high-density, low temperature, cost-effective, and robust method of miniaturizing electrical feedthroughs for a wide range of implantable bio-medical device applications.

  14. Effect of annealing temperatures on the secondary re-crystallization of extruded PM2000 steel bar.

    Science.gov (United States)

    Chen, C-L; Tatlock, G J; Jones, A R

    2009-03-01

    The ferritic oxide dispersion-strengthened alloy PM2000 is an ideal candidate for high-temperature applications as it contains uniform nano-oxide dispersoids, which act as pinning points to obstruct dislocation and grain boundary motion and therefore impart excellent creep resistance. The development of the microstructure during re-crystallization of oxide dispersion-strengthened alloys has been discussed by a number of authors, but the precise mechanism of secondary re-crystallization still remains uncertain. Hence, this work is aimed at investigating the re-crystallization behaviour of extruded PM2000 bar for different annealing temperatures, using electron backscatter diffraction, in particular, to determine grain orientations, grain boundary misorientation angles, etc. The results show that the as-extruded bar microstructure comprises both low-angle grain boundaries pinned by oxide particles and high-angle boundaries that will have inherent boundary mobility to allow boundary migration. In addition, dynamical re-crystallization was found in the outer region of the non-heat-treated PM2000 bar, which suggested that deformation heterogeneities can be introduced during thermo-mechanical processing that enhance the nucleation of re-crystallization. Subsequent heat treatments promote and stimulate secondary re-crystallization, giving rise to large grains with few sub-grain boundaries.

  15. TECHNICAL MEANS FOR OBTAINING INTERMEDIATE PRODUCTS OF THE CASING AND TOPPINGS FOR EXTRUDED FOOD PRODUCTS

    Directory of Open Access Journals (Sweden)

    A. N. Pal’chikov

    2015-01-01

    Full Text Available The following article is devoted to the new technical facilities for food production, which technological chain of production process includes computer hardware as a part of the equipment used for body of semi-processed food preparation, blancher for hydrobionts and abrasive blender. For the whole group of the necessary equipment the principal schemes are designed, and the abrasive blender was tested during the experimental approbation to reveal the optimal design. The culinary fish pastes have already been produced in the enterprises in many countries for many years and they are particularly popular in Japan, Germany, Scandinavian and other country. In Poland the mixtures of fish pasted have become widely spread, and are used for production of portioned meals. These pastes may be blended into larger or smaller pieces. The aromatization process of such pastes is conducted with adding the liquid smoke, natural or synthetic fragrances. There is an increasing popularization of the use of flaxseed as a source of alpha-linoleic acid, high-quality protein, phenolics, fiber and minerals. Products with flax meal can be recommended for inclusion in the diet to make up for the deficit of polyunsaturated fatty acids, dietary fiber. In this regard, it is appropriate to use the semi-finished product formulations for the respective housings extruded snack food. The results of the conducted research could be used in the production of domestic extruded snacks, which have the form of the cushions with vitaminized dough body and hydrobionts stuffing if setting the special extrusion modes.

  16. Aluminum-induced granulomas in a tattoo

    Energy Technology Data Exchange (ETDEWEB)

    McFadden, N.; Lyberg, T.; Hensten-Pettersen, A.

    1989-05-01

    A patient who developed localized, granulomatous reactions in a tattoo is described. With the use of scanning electron microscopy and energy dispersive x-ray microanalysis, both aluminum and titanium particles were found in the involved skin sections. Intradermal provocation testing with separate suspensions of aluminum and titanium induced a positive response only in the case of aluminum. Examination by scanning electron microscopy and energy dispersive x-ray microanalysis of the provoked response established aluminum as the only nonorganic element present in the test site tissue. This is the first report of confirmed aluminum-induced, delayed-hypersensitivity granulomas in a tattoo.

  17. Some functional characteristics of extruded blends of fiber from sugarcane bagasse, whey protein concentrate, and corn starch

    OpenAIRE

    2011-01-01

    Blends of fiber from sugar cane bagasse, corn starch, and whey protein concentrate were extruded. A single screw extruder, equipped with a screw at a constant compression ratio of 1:1 and a die diameter of 3 mm, was used. The best processing conditions were determined according to a central composite rotatable design (α = 1.41) with 5 central points, which gives a total of 13 tests. During the extrusion process the content of insoluble fiber decreased and that of soluble fiber increased....

  18. Novel method of measuring polymer melt viscosity using a short length of single screw extruder at the closed discharge state

    Science.gov (United States)

    Kim, Myung-Ho; Kim, Bo-Kyung; Kang, Seok-Jin; Kim, Moon Sung; Choi, Sunwoong

    2016-03-01

    Theory of single screw extruders has been used for analyzing the processing characteristics of various polymeric fabricated such material as plastics, rubber, and food products. Recently this theory extended to measuring the polymer melt viscosity using the closed discharging state of the short single screw extruder. The batch wise operation of the closed discharged state change the complex extrusion characteristic equation into simple calculation form of shear rate and viscosity equation, which related between the geometrical factors and the screw speed and the axial pressure generation, respectively.

  19. 40 CFR 428.100 - Applicability; description of the latex-dipped, latex-extruded, and latex-molded rubber subcategory.

    Science.gov (United States)

    2010-07-01

    ... latex-dipped, latex-extruded, and latex-molded rubber subcategory. 428.100 Section 428.100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Latex-Dipped, Latex-Extruded, and Latex-Molded Rubber Subcategory §...

  20. Aluminum Stabilized NbTi Conductor Test Coil Design, Fabrication, and Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, N.; Chlachidze, G.; Evbota, D.; Kashikhin, V.S.; Lamm, M.; Makarov, A.; Tartaglia, M.; /Fermilab; Nakamoto, T.; Ogitsu, T.; Tanaka, K.; Yamamoto, A.; /KEK, Tsukuba

    2011-09-01

    A new generation of precision muon conversion experiments is planned at both Fermilab and KEK. These experiments will depend upon a complex set of solenoid magnets for the production, momentum selection and transport of a muon beam to a stopping target, and for tracking detector momentum analysis of candidate conversion electrons from the target. Baseline designs for the production and detector solenoids use NbTi cable that is heavily stabilized by an extruded high RRR aluminum jacket. A U.S.-Japan research collaboration has begun whose goal is to advance the development of optimized Al-NbTi conductors, gain experience with the technology of winding coils from this material, and test the conductor performance as modest length samples become available. For this purpose, a 'conductor test' solenoid with three coils was designed and built at Fermilab. A sample of the RIKEN Al-NbTi conductor from KEK was wound into a 'test' coil; this was sandwiched between two 'field' coils wound from doubled SSC cable, to increase the peak field on the RIKEN test coil. All three solenoid coils were epoxy impregnated, and utilized aluminum outer bandage rings to apply preload to the coils when cold. The design and fabrication details, and results of the magnet quench performance tests are presented and discussed.

  1. Multilayer Clad Plate of Stainless Steel/Aluminum/Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    YUAN Jiawei; PANG Yuhua; LI Ting

    2011-01-01

    The 3, 5, 20 layer clad plate from austenitic stainless steel, pure aluminum and aluminum alloy sheets were fabricated in different ways. The stretch and interface properties were measured. The result shows that 20 layer clad plate is better than the others. Well-bonded clad plate was successfully obtained in the following procedure: Basic clad sheet from 18 layer A11060/A13003sheets was firstly obtained with an initial rolling reduction of 44% at 450 ℃, followed by annealing at 300 ℃, and then with reduction of 50% at 550 ℃ from STS304 on each side. The best 20 layer clad plate was of 129 MPa bonding strength and 225 MPa stretch strength.

  2. Electrodeposition of aluminum on aluminum surface from molten salt

    Institute of Scientific and Technical Information of China (English)

    Wenmao HUANG; Xiangyu XIA; Bin LIU; Yu LIU; Haowei WANG; Naiheng MA

    2011-01-01

    The surface morphology,microstructure and composition of the aluminum coating of the electrodeposition plates in AlC13-NaC1-KC1 molten salt with a mass ratio of 8:1:1 were investigated by SEM and EDS.The binding force was measured by splat-cooling method and bending method.The results indicate that the coatings with average thicknesses of 12 and 9 μm for both plates treated by simple grinding and phosphating are compacted,continuous and well adhered respectively. Tetramethylammonium chloride (TMAC) can effectively prevent the growth of dendritic crystal,and the anode activation may improve the adhesion of the coating. Binding force analysis shows that both aluminum coatings are strongly adhered to the substrates.

  3. The Effect of Impurities on the Processing of Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zi-Kui Liu; Shengjun Zhang; Qingyou Han; Vinod Sikka

    2007-04-23

    database developed in this project, thermodynamic simulations were carried out to investigate the effect of sodium on the HTE of Al-Mg alloys. The simulation results indicated that the liquid miscibility gap resulting from the dissolved sodium in the molten material plays an important role in HTE. A liquid phase forms from the solid face-centered cubic (fcc) phase (most likely at grain boundaries) during cooling, resulting in the occurrence of HTE. Comparison of the thermodynamic simulation results with experimental measurements on the high-temperature ductility of an Al-5Mg-Na alloy shows that HTE occurs in the temperature range at which the liquid phase exists. Based on this fundamental understanding of the HTE mechanism during processing of aluminum alloy, an HTE sensitive zone and a hot-rolling safe zone of the Al-Mg-Na alloys are defined as functions of processing temperature and alloy composition. The tendency of HTE was evaluated based on thermodynamic simulations of the fraction of the intergranular sodium-rich liquid phase. Methods of avoiding HTE during rolling/extrusion of Al-Mg-based alloys were suggested. Energy and environmental benefits from the results of this project could occur through a number of avenues: (1) energy benefits accruing from reduced rejection rates of the aluminum sheet and bar, (2) reduced dross formation during the remelting of the aluminum rejects, and (3) reduced CO2 emission related to the energy savings. The sheet and extruded bar quantities produced in the United States during 2000 were 10,822 and 4,546 million pounds, respectively. It is assumed that 50% of the sheet and 10% of the bar will be affected by implementing the results of this project. With the current process, the rejection rate of sheet and bar is estimated at 5%. Assuming that at least half of the 5% rejection of sheet and bar will be eliminated by using the results of this project and that 4% of the aluminum will be lost through dross (Al2O3) during remelting of the

  4. The Effect of Impurities on the Processing of Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zi-Kui Liu; Shengjun Zhang; Qingyou Han; Vinod Sikka

    2007-04-23

    database developed in this project, thermodynamic simulations were carried out to investigate the effect of sodium on the HTE of Al-Mg alloys. The simulation results indicated that the liquid miscibility gap resulting from the dissolved sodium in the molten material plays an important role in HTE. A liquid phase forms from the solid face-centered cubic (fcc) phase (most likely at grain boundaries) during cooling, resulting in the occurrence of HTE. Comparison of the thermodynamic simulation results with experimental measurements on the high-temperature ductility of an Al-5Mg-Na alloy shows that HTE occurs in the temperature range at which the liquid phase exists. Based on this fundamental understanding of the HTE mechanism during processing of aluminum alloy, an HTE sensitive zone and a hot-rolling safe zone of the Al-Mg-Na alloys are defined as functions of processing temperature and alloy composition. The tendency of HTE was evaluated based on thermodynamic simulations of the fraction of the intergranular sodium-rich liquid phase. Methods of avoiding HTE during rolling/extrusion of Al-Mg-based alloys were suggested. Energy and environmental benefits from the results of this project could occur through a number of avenues: (1) energy benefits accruing from reduced rejection rates of the aluminum sheet and bar, (2) reduced dross formation during the remelting of the aluminum rejects, and (3) reduced CO2 emission related to the energy savings. The sheet and extruded bar quantities produced in the United States during 2000 were 10,822 and 4,546 million pounds, respectively. It is assumed that 50% of the sheet and 10% of the bar will be affected by implementing the results of this project. With the current process, the rejection rate of sheet and bar is estimated at 5%. Assuming that at least half of the 5% rejection of sheet and bar will be eliminated by using the results of this project and that 4% of the aluminum will be lost through dross (Al2O3) during remelting of the

  5. Characterization of hot-melt extruded drug delivery systems for onychomycosis.

    Science.gov (United States)

    Mididoddi, Praveen K; Repka, Michael A

    2007-04-01

    The objectives of this investigation were to study the physico-chemical properties of hot-melt extruded (HME) films for onychomycosis and to determine the stability of the model antifungal drug incorporated within these films. The influence of etching and instrument variables on the bioadhesion of these drug delivery systems for the human nail was also studied. Six 250 g batches (F1-F6) of hydroxypropyl cellulose (HPC) and/or poly(ethylene oxide) films containing ketoconazole (20%) were extruded using a Killion extruder (Model KLB-100). The thermal properties of HME films were investigated using differential scanning calorimetry (DSC). Scanning electron microscopy (SEM) was used to examine the surface morphology of the films and X-ray diffraction (XRD) was used to investigate the crystalline properties of the drugs, physical mixtures as well as the HME films. Stability studies were performed on the films stored at 25 degrees C/60%RH. The bioadhesive properties of these films were investigated on the human nail (ex vivo) using a Texture Analyzer. The nail samples tested were either non-treated (control) or treated with an etching gel. The parameters measured were peak adhesion force (PAF) and area under the curve (AUC). The Hansen solubility parameter was calculated using a combination of Hoy and Hoftyzer/Van Krevelen methods to estimate the likelihood of drug-polymer miscibility. SEM provided direct physical evidence of the physical state of the drug within the films. The theoretical post-extrusion content of ketoconazole remaining in the six film batches ranged from 90.3% (+/-2.2) to 102.4% (+/-9.0) for up to 6 months and from 83.9% (+/-3.6) to 91.6% (+/-3.0) for up to 12 months. Bioadhesion studies of HPC film tested on 'etched' nails recorded significantly higher PAF and AUC than that of the non-treated 'control' nails. Ketoconazole was found to be relatively stable during the extrusion process. Melting points corresponding to the crystalline drugs were not

  6. Prediction of digestible energy value of extruded dog food: comparison of methods.

    Science.gov (United States)

    Hervera, M; Baucells, M D; Torre, C; Buj, A; Castrillo, C

    2008-06-01

    The proposal of National Research Council (NRC), based on the use of modified Atwater factors, is nowadays the widely used method to estimate digestible energy (DE) content of pet foods. Recently, alternative methods have been suggested for predicting energy content of commercial canine dry food. Factorial equations including food fibre content as estimator, in vitro digestions methods or near-infrared spectroscopy (NIRS) techniques have been considered as good approaches to predict the energy content of dog foods. The aim of this study was to compare the accuracy of some of those estimation methods. Seventeen samples of commercial extruded dog food were used to validate and compare some estimation methods of energy digestibility (Ed, %) and DE value [MJ/kg dry matter (DM)]. The apparent Ed and DE of each food were previously determined by in vivo trials. In vivo Ed and DE of foods ranged from 79.30% to 91.05% and from 16.25 to 21.82 MJ/kg DM, respectively, and their crude fibre (CF) content ranged from 0.72% to 3.28% (in DM base). The % Ed of each sample was estimated by the factorial equation (% Ed = 91.2 - 1.43 x CF %) and by the in vitro digestion method [% Ed(in vitro) = -2.45 + 0.98 organic matter (OM) disappearance(in vitro)%]. The set of samples also was analysed by NIRS, using a calibration equation developed from a set of 69 samples of commercial extruded dog food (0.76 and 0.89 cross-validation r(2) and 2.33 and 0.61 cross-validation SE for Ed and DE respectively). The in vitro method gave better estimations of Ed in vivo than NIRS and factorial methods, although all the methods assessed showed a very good and similar accuracy in the prediction of DE value. These three methods showed a slight better accuracy than that previously proposed by the NRC. To consider constant digestibility values of nutrient content of food can result in bias and error in the estimated energy values. The alternative prediction methods used in this study take into account

  7. Diffusion-bonded beryllium aluminum optical structures

    Science.gov (United States)

    Grapes, Thomas F.

    2003-12-01

    Beryllium aluminum material can present significant advantages for optical support structures. A likely advantage of beryllium aluminum compared to aluminum or titanium for such structures is its higher specific stiffness. However, beryllium aluminum material is significantly more expensive than most competing materials. The cost problem with beryllium aluminum is exacerbated if fabrication methods that result in near net shape parts are not used. Near net shape methods result in the least amount of material "thrown away" in the fabrication process. Casting is a primary example of near net shape manufacturing that is appropriate for some optical support structures. Casting aluminum, and other materials as well, is common. Casting of beryllium aluminum is very difficult, however, and has not had significant success. Diffusion bonding - a different approach for achieving near net shape beryllium aluminum optical support structures, was pursued and accomplished. Diffusion bonding is a term used to describe the joining of solid metal pieces under high temperature and pressure, but without melting. Three different optical support structures were designed and built of beryllium aluminum using diffusion bonding. Relatively small solid beryllium aluminum pieces were arranged together and then joined under hot isostatic pressure conditions. The resulting relatively large pressure bonded part was then machined to achieve the final product. Significant cost savings as compared to machining the part from a solid block were realized. Difficulties achieving diffusion bonds in complex joints were experienced and addressed.

  8. Effects of some extrusion variables on physicochemical characteristics of extruded corn starch-passion fruit pulp (Passiflora edulis) snacks.

    Science.gov (United States)

    Cortés, R Nallely Falfán; Guzmán, Iñigo Verdalet; Martínez-Bustos, Fernando

    2014-12-01

    The aim of this work was to study the effect of the addition of passion fruit pulp (PFP: 0-7%), the variation of barrel temperature in the third zone extruder (BT: 80-140 °C) and feed moisture (FM:16-30%) in a blend of corn starch and passion fruit pulp on different physicochemical characteristics of directly expanded snacks by extrusion technology. Single-screw laboratory extruder and a central, composite, rotatable experimental design were used. Expansion index of extrudates ranged between 1.0 and 1.8. Decreasing of feed moisture (18%), passion fruit pulp concentration (1.42%) and the increasing of barrel temperature (127 °C) resulted in higher expansion index. The increasing of feed moisture and passion fruit pulp concentration resulted in higher penetration force values of extrudates. The passion fruit pulp concentration showed a highly significant effect (p ≤ 0.01) on the L *, a * and b * parameters. Passion fruit pulp has a reasonable source of β-carotene, proteins and dietary fibers that can be added to expanded snacks.

  9. Three-Dimensional Flow Modeling of a Self-wiping Corotating Twin-Screw Extruder. Part II : The Kneading Section

    NARCIS (Netherlands)

    Wal, D.J. van der; Goffart, D.; Klomp, E.M.; Hoogstraten, H.W.; Janssen, L.P.B.M.

    1996-01-01

    Three-dimensional flow simulations of kneading elements in an intermeshing corotating twin-screw extruder are performed by solving the Navier Stokes equations with a finite element package, Sepran. Instead of using the whole geometry of the 8-shaped barrel a simplified geometry is used, representing

  10. THE SELF-WIPING CO-ROTATING TWIN-SCREW EXTRUDER AS A POLYMERIZATION REACTOR FOR METHACRYLATES

    NARCIS (Netherlands)

    Jongbloed, H.A.; Kiewiet, J.A.; van Dijk, J.H.; Janssen, L.P.B.M.

    1995-01-01

    The self-wiping co-rotating twin-screw extruder was studied as a reactor for two polymerizations in bulk: the homopolymerization of n-butylmethacrylate and the copolymerization of n-butylmethacrylate with 2-hydroxypropylmethacrylate. The influence of the extrusion parameters on the product was analy

  11. Physical, textural, and antioxidant properties of extruded waxy wheat flour snack supplemented with several varieties of bran

    Science.gov (United States)

    Wheat represents a ubiquitous commodity and while industries valorize 10% of wheat bran, most of this antioxidant-rich byproduct gets discarded. The objective of this study was to incorporate wheat bran into an extruded snack. Bran varieties from hard red spring, white club Bruehl, and purple whea...

  12. 全自动粉丝挤出机的设计%Design of Full-automatic Vermicelli Extruder

    Institute of Scientific and Technical Information of China (English)

    李坤; 丁美锋; 张建中

    2013-01-01

    全自动粉丝挤出机是依据龙口2万吨的粉丝生产流水线要求专门设计的自熟挤出粉丝机;本机是在对现有机型存在的缺点进行分析的基础上,结合自动化设计的要求;首先对粉丝挤出机进行机械结构上的改进,增添部分自动控制元件,设计出全自动粉丝挤出机。经过企业经济分析,全自动粉丝机能带来很高的经济效益。%Automatic vermicelli extruder is based on 20000 tons of Longkou fans production lines require specially designed the extruding vermicelli machine;the machine is analyzed based on the existing models exist shortcomings,combined with the design requirements;the vermicelli extruder was improved structure on the mechanical structure,add the automatic control part,design of automatic vermicelli extruder.Through the eco-nomic analysis,automatic fans can bring high economic benefit.

  13. Influence of dried Hokkaido pumpkin and ascorbic acid addition on chemical properties and colour of corn extrudates.

    Science.gov (United States)

    Obradović, Valentina; Babić, Jurislav; Šubarić, Drago; Jozinović, Antun; Ačkar, Đurđica; Klarić, Ilija

    2015-09-15

    The influence of Hokkaido pumpkin powder (PP) addition to corn grits at levels 4%, 6%, and 8% and ascorbic acid (AA) addition at levels 0.5% and 1% was evaluated. Extrusion was done using a single-screw extruder at two temperature regimes: 135/170/170°C (E1) and 100/150/150°C (E2). Mathematical models that describe the influence of additives on the colour of extrudates were determined. Raw extrusion mixtures as well as obtained extrudates were tested for ascorbic acid, polyphenol, proteins, fat, crude fibre, ash and carotenoids content, and antioxidant activity. E1 extrusion regime acted favourably on polyphenols, crude fibre content, and antioxidant activity. It also caused higher fat degradation than E2 extrusion. Xanthophylls (lutein and zeaxanthin) were less sensitive to extrusion than carotenes (α-carotene, 9-cis-β-carotene and 13-cis-β-carotene). Ascorbic acid was more sensitive to higher extrusion temperatures (49-76% degradation). It provided protection to carotenoids and consequently the colour of the extrudates.

  14. Linear relationship between increasing amounts of extruded linseed in dairy cow diet and milk fatty acid composition and butter properties.

    Science.gov (United States)

    Hurtaud, C; Faucon, F; Couvreur, S; Peyraud, J-L

    2010-04-01

    The aim of this experiment was to compare the effects of increasing amounts of extruded linseed in dairy cow diet on milk fat yield, milk fatty acid (FA) composition, milk fat globule size, and butter properties. Thirty-six Prim'Holstein cows at 104 d in milk were sorted into 3 groups by milk production and milk fat globule size. Three diets were assigned: a total mixed ration (control) consisting of corn silage (70%) and concentrate (30%), or a supplemented ration based on the control ration but where part of the concentrate energy was replaced on a dry matter basis by 2.1% (LIN1) or 4.3% (LIN2) extruded linseed. The increased amounts of extruded linseed linearly decreased milk fat content and milk fat globule size and linearly increased the percentage of milk unsaturated FA, specifically alpha-linolenic acid and trans FA. Extruded linseed had no significant effect on butter color or on the sensory properties of butters, with only butter texture in the mouth improved. The LIN2 treatment induced a net improvement of milk nutritional properties but also created problems with transforming the cream into butter. The butters obtained were highly spreadable and melt-in-the-mouth, with no pronounced deficiency in taste. The LIN1 treatment appeared to offer a good tradeoff of improved milk FA profile and little effect on butter-making while still offering butters with improved functional properties.

  15. COST ESTIMATES OF TWIN SCREW EXTRUDED PRODUCTS: TEXTURIZED WHEY PROTEIN SNACKS AND CORN-SOY BLEND USED FOR EMERGENCY FEEDING

    Science.gov (United States)

    The operating costs associated with twin screw extrusion cooking of various foods are fixed for a given size and production capacity for any class of products; the greater percentage of costs arise from the choice of ingredients and the product end use. For example, extruder texturized whey proteins...

  16. EVALUATION OF PULP AND PAPER MAKING CHARACTERISTICS OF RICE STEM FIBERS PREPARED BY TWIN-SCREW EXTRUDER PULPING

    Directory of Open Access Journals (Sweden)

    Alireza Talebizadeh

    2010-06-01

    Full Text Available Twin-screw extrusion pulping is a new approach to the manufacture of pulp for paper production, designed for non-wood feedstocks. In this research, the production of pulp from rice stem with a newly fabricated twin-screw extruder was investigated. Extrusion pulping of rice stem was conducted following a central composite design using a two-level factorial plan involving three process variables (pretreatment NaOH concentration: 0.4, 0.8, 1.2%; extrusion temperature: 40, 60, 80 oC; and extruder rotational speed: 55, 70, 85 rpm. Responses of pulp and handsheets properties to the process variables were analyzed using statistical software (MINITAB 15. As the results show, pulping of rice stem fiber can be done at a relatively short pretreatment time about 4 hours and a low NaOH concentration about 0.8% by twin-screw extruder with limit extrusion temperature of about 80 oC and extruder rotational speed about 85 rpm. The effect of pretreatment solvent, NaOH, is greatly enhanced by increases in the extrusion temperature. Analysis of the results revealed that this process has suitable potential to be used to obtain a pulp with yields approximately equivalent to neutral sulfite semi-chemical pulping at fixed kappa number, which is applicable for fluting paper and linerboard production.

  17. Electrically Conductive Anodized Aluminum Surfaces

    Science.gov (United States)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic, electrostaticdischarge- suppressing finishes: examples include silver impregnated anodized, black electroless nickel, black chrome, and black copper. In

  18. Aluminum/air electrochemical cells

    OpenAIRE

    Wang, Lei; 王雷

    2014-01-01

    Aluminum (Al) is a very promising energy carrier given its high capacity and energy density, low cost, earth abundance and environmental benignity. The Al/air battery as a kind of metal/air electrochemical cell attracts tremendous attention. Traditional Al/air batteries suffer from the self-corrosion and related safety problems. In this work, three new approaches were investigated to tackle these challenges and to develop high-performance Al/air cells: (1) incorporate an additional hydrogen/a...

  19. Purification technology of molten aluminum

    Institute of Scientific and Technical Information of China (English)

    孙宝德; 丁文江; 疏达; 周尧和

    2004-01-01

    Various purification methods were explored to eliminate the dissolved hydrogen and nonmetallic inclusions from molten aluminum alloys. A novel rotating impeller head with self-oscillation nozzles or an electromagnetic valve in the gas circuit was used to produce pulse gas currents for the rotary impeller degassing method. Water simulation results show that the size of gas bubbles can be decreased by 10%-20% as compared with the constant gas current mode. By coating ceramic filters or particles with active flux or enamels, composite filters were used to filter the scrap A356 alloy and pure aluminum. Experimental results demonstrate that better filtration efficiency and operation performance can be obtained. Based on numerical calculations, the separation efficiency of inclusions by high frequency magnetic field can be significantly improved by using a hollow cylinder-like separator or utilizing the effects of secondary flow of the melt in a square separator. A multi-stage and multi-media purification platform based on these methods was designed and applied in on-line processing of molten aluminum alloys. Mechanical properties of the processed scrap A356 alloy are greatly improved by the composite purification.

  20. Microbial corrosion of aluminum alloy.

    Science.gov (United States)

    Yang, S S; Chen, C Y; Wei, C B; Lin, Y T

    1996-11-01

    Several microbes were isolated from the contaminated fuel-oil in Taiwan and the microbial corrosion of aluminum alloy A356-T6 was tested by MIL-STD-810E test method. Penicillium sp. AM-F5 and Cladosporium resinac ATCC 22712 had significant adsorption and pitting on the surface of aluminum alloy, Pseudomonas acruginosa AM-B5 had weak adsorption and some precipitation in the bottom, and Candida sp. AM-Y1 had the less adsorption and few cavities formation on the surface. pH of the aqueous phase decreased 0.3 to 0.7 unit for 4 months of incubation. The corrosion of aluminum alloy was very significant in the cultures of Penicillium sp. AM-F2, Penicillium sp. AM-F5 and C. resinac ATCC 22712. The major metabolites in the aqueous phase with the inoculation of C. resinac were citric acid and oxalic acid, while succinic acid and fumaric acid were the minors.

  1. Processing map for hot working of as extruded AZ31B magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    HUANG Guang-sheng; HUANG Guang-jie; WANG Ling-yun; PAN Fu-sheng

    2005-01-01

    The deformation behavior of AZ31B magnesium alloy as extruded under hot compression conditions was characterized in the temperature range of 200 - 400 ℃ and strain rate range of 0. 001 - 1 s-1. The processing maps were obtained at different strains. The results show that the map exhibits flow instabilities as two domains. The domain at beyond 300 ℃ and strain rate of 1 s-1 appears with a peak efficiency of power dissipation about 56% occurring. This domain is expected to happen in a hot process, such as hot rolling, hot extrusion and hot forging. There is high efficiency of power dissipation at temperature beyond 350 ℃ and strain rate 0. 001 s-1. Such domains suggest the occurrence of superplastic deformation.

  2. A versatile single-screw-extruder system designed for magnetic resonance imaging measurements

    Science.gov (United States)

    Amin, M. H. G.; Hanlon, A. D.; Hall, L. D.; Marriott, C.; Ablett, S.; Wang, W.; Frith, W. J.

    2003-10-01

    A versatile system has been developed for magnetic resonance imaging (MRI) measurements, in which a ceramic barrel/outer cylinder (0.04 m internal diameter) can be configured either as a single-screw extruder (polyetheretherketone (PEEK), length to diameter ratio 4.575, root diameter 0.03 m), or as a concentric-cylinder Couette device (PEEK, length 0.156 m, inner cylinder diameter 0.03 m). A second channel in the sample inlet allows two streams of fluid to be pumped simultaneously through the system for mixing. The shaft rotation speed can be set between 5 and 1200 revolutions per minute (rpm); the barrel and sample feeder can be separately thermostatted to +/-0.2 °C in the range of -10 to +60 °C via coolant jacket systems; samples with viscosity up to 10 Pa s can be pumped at rates up to 36 l h-1. This enables studies to be conducted with the system configured as a Couette device to provide knowledge of the rheological properties of complex fluids before more complicated studies of their flow and mixing with the system configured as a single-screw extruder. Bench and MRI measurements have been carried out to test the thermostat function of the system. The bench tests showed that the internal volume of the device reached thermal equilibrium after 1 h of running and could be maintained at constant temperature (within +/-0.2 °C) for periods of over 6 h. The MRI tests were conducted with the device configured in a Couette geometry for measurements of the flow velocities of pure glycerol and 1% aqueous sodium carboxymethylcellulose (CMC) in the range of 10-60 °C, and at various rotation speeds. Results showed that although the azimuthal velocity distributions versus the radius (v(r)) were independent of temperature for glycerol, there was strong temperature dependence for the CMC solution. On the latter the power-law index (n) from MRI data agreed well with the literature values for the same concentrations and temperatures, and showed n values increasing with

  3. Texture evaluation in warm deformation of an extruded Mg–6Al–3Zn alloy

    Directory of Open Access Journals (Sweden)

    M. Kavyani

    2016-06-01

    Full Text Available To assess the effect of strain and strain rate on texture evolution of an extruded Mg–6Al–3Zn alloy, compression tests were carried out. Samples were prepared in the extrusion direction (ED and normal direction (ND. The compression tests were performed at 250 °C and with different strain rates of 0.01 sec−1 and 1 sec−1 and different strains. Microstructural observation and texture investigation show that at early stages of deformation, extension twins lead to the development of strong basal texture intensity along rolling direction (RD in ED samples and contraction twins result in texture evolution along transverse direction (TD in ND samples. Also, microstructural investigation at high strains reveals that dynamic recrystallization occurs in both samples and consequently the basal texture intensity has been decreased.

  4. Fine Extruding Deformation and Modeling Optimization of Die Cavityin Special-Shaped Products

    Institute of Scientific and Technical Information of China (English)

    Qi Hongyuan; Zhu Hengjun

    2004-01-01

    On the basis of Conformal Mapping theory, using approaches of numerical trigonometric interpolation and vector normal convergence, region function of three-dimension deforming, surface function of die cavity, and mapping function between the plastic flow model and the axis-symmetry model were set up respectively for fine extruding special-shaped products with different arc radius ri. Then the stream function and both fields of velocity and strain ratio are inferred for special-shaped plastic deformation; meanwhile, with the help of Upper-Bound principle, the parameter of die cavity gets optimized. Taking square-shaped and hexagon-shaped products with different arc radius ri as examples,the velocity field gets analyzed, the parameter of die cavity is optimized and the die cavity gets depicted as well. Consequently, above study provides theoretical support for achieving the technical goal of CAD/CAM integration in die cavity of fine extrusion.

  5. Results of the CESI-CPRI research on extruded cables under DC voltage

    Energy Technology Data Exchange (ETDEWEB)

    Mosca, W.

    1988-10-01

    This paper describes extensive feasibility studies (involving power frequency withstand, partial discharge, short and long duration stress, lighting impulse and polarity reversal tests) on the the use of extruded DC cables for HVDC links. The results indicate that: either XLPe or EPr insulated cables, although not optimized for DC, show dielectric performances under DC stress that may be considered satisfactory (a mean working stress of around 25 kV/mm appears a realistic figure to be attained with proper materials and manufacturing technology); the behaviour under transient stress seems satisfactory (a fundamental role is played by the absence of defects and by the quality of the interfaces between inner/outer semiconductive screen and main insulation); a suitable protection to prevent moisture penetration in the insulation must be provided in order to avoid a significant reduction in cable dielectric performances (the use of a laminated protective covering could be in an interesting solution).

  6. Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria

    Science.gov (United States)

    Alsteens, David; Trabelsi, Heykel; Soumillion, Patrice; Dufrêne, Yves F.

    2013-12-01

    Force-distance (FD) curve-based atomic force microscopy is a valuable tool to simultaneously image the structure and map the biophysical properties of biological samples at the nanoscale. Traditionally, FD-based atomic force microscopy has been severely limited by its poor temporal and lateral resolutions. Here we report the use of advanced FD-based technology combined with biochemically sensitive tips to image filamentous bacteriophages extruding from living bacteria at unprecedented speed and resolution. Directly correlated multiparametric images of the structure, adhesion and elasticity of infected bacteria demonstrate that the sites of assembly and extrusion localize at the bacterial septum in the form of soft nanodomains surrounded by stiff cell wall material. The quantitative nano-bio-imaging method presented here offers a wealth of opportunities for mapping the physical properties and molecular interactions of complex biosystems, from viruses to tissues.

  7. Cyclic deformation of extruded AM30 magnesium alloy in the transverse direction

    Science.gov (United States)

    Chen, D. L.; Emami, A. R.; Luo, A. A.

    2010-07-01

    Cyclic deformation characteristics of a recently developed AM30 Mg extrusion alloy in the transverse direction were evaluated under strain-controlled tests at different strain amplitudes. The alloy exhibited strong cyclic hardening especially at higher strain amplitudes. While the initial tensile Young's modulus was essentially the same in both transverse and longitudinal directions, the hysteresis loops were asymmetric in the longitudinal direction, but nearly symmetric in the transverse direction. This tension-compression asymmetry was associated with the presence of strong texture in the extruded Mg alloy. With increasing strain amplitude the mid-life hysteresis loops showed a clockwise rotation which was related to nonlinear or pseudoelastic deformation behavior. Fatigue crack initiation occurred at the specimen surface, and multiple initiation sites were observed at higher strain amplitudes. Crack propagation was basically characterized by the formation of characteristic fatigue striations.

  8. Magnetization reversal processes in hot-extruded τ-MnAl-C

    Science.gov (United States)

    Thielsch, J.; Bittner, F.; Woodcock, T. G.

    2017-03-01

    The magnetic domain structure of hot-extruded bulk τ-Mn53Al45C2 was studied by Kerr microscopy under application of a magnetic field in-situ. The microstructure consists of recrystallized, fine-grained regions and large non-recrystallized grains which contain a high density of twins. Within these large polytwinned grains, a clear pinning interaction of magnetic domain walls at twin boundaries was observed but with a rather small pinning force. The smaller, recrystallized grains show a higher resistance to magnetization reversal. The critical single domain particle size of this material was estimated at 773 nm and the fine, recrystallized grains are in the range of this size. Demagnetizing the sample following saturation using a 3 T field pulse revealed that individual fine grains reverse independently from their neighbours.

  9. Effect of Deforming Temperature and Strain on Abnormal Grain Growth of Extruded FGH96 Superalloy

    Directory of Open Access Journals (Sweden)

    WANG Chaoyuan

    2016-10-01

    Full Text Available Based on the experiments of isothermal forging wedge-shaped samples, Deform-3D numerical simulation software was used to confirm the strain distribution in the wedge-shaped samples. The effect of deforming temperature and strain on abnormal grain growth(AGG in extruded FGH96 superalloy was examined. It is found that when the forging speed is 0.04 mm/s,the critical AGG occurring temperature is 1100℃,and the critical strain is 2%.AGG does not occur within 1000-1070℃,but still shows the feature of ‘critical strain’,and the region with strain of 5%-10% has the largest average grain size.AGG can be avoided and the uniform fine grains can be gained when the strain is not less than 15%.

  10. Development of self-adjusting hydraulic machine for combination forming of upsetting and extruding

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In the paper a self-adjusting hydraulic machine for combination forming of upsetting and extruding is systematacially presented in terms of mechanical principle, design principle, machine construction, design of the key components and working routine. The machine is designed with the following features: The lower movable beam is adjusted by the ejecting cylinder, the upper upsetting beam is reset by the backstroke slide rods, and the upsetting cylinders communicate with the gas-liquid accumulators. These features make the machine conformation compact, save both the backstroke cylinder of the upper upsetting beam and the upsetting cylinder of the lower movable beam, and simplify the hydraulic system. Furthermore, the machine can resolve such problems as incomplete filling at the addendum position, microcracks at the dedendum position, greater force and lower die life during precision forging of spur gears.

  11. Effects of RE on Microstructures and Mechanical Properties of Hot-Extruded AZ31 Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    刘英; 陈维平; 张卫文; 张大童; 李元元

    2004-01-01

    Effects of rare earth (RE) additions on microstructure and mechanical properties of the wrought AZ31 magnesium alloy were investigated. The results show that, by adding 0.3%, 0.6% and 1.0% RE elements, the as-cast microstructure can be refined, and the as-cast alloys′ elongation and tensile strength can be improved. After extrusion, the alloy with 0.3% and 0.6% RE additions obtain a finer microstructure and the best mechanical properties, but the alloy with 1.0% RE addition has the coarse Al-RE compound particles in grain boundaries which decreased elongation and tensile properties. Usually, Rare earth (RE) elements were used to improve the creep properties of aluminium-containing magnesium pressure die cast alloys at elevated temperatures. In this paper, it is also found that the high temperature strength of extruded materials can be increased by RE elements additions.

  12. New class of additives to inhibit tree growth in solid extruded cable insulation

    Energy Technology Data Exchange (ETDEWEB)

    Devins, J C; Rzad, S J; Reed, C W; Bartosh, D K; Stines, T W

    1976-03-01

    There is now substantial evidence that in many dielectric failures of solid polyolefinic and other polymeric materials the final disruption may be preceded by the long-time progressive development of a three-dimensional pattern of irregular, sometimes (though not always) carbonized hollow channels diverging from a central stem, and that the ultimate failure follows one of these channels. These minute channels are referred to as ''trees'' and the phenomenon as ''treeing.'' Research conducted from May to Sept. 1975 on techniques for evaluating tree growth and on the development of additives to inhibit tree growth in solid extruded polymeric insulation for electric cables is reported. (LCL)

  13. Effect of gelatinized-retrograded and extruded starches on characteristics of cookies, muffins and noodles.

    Science.gov (United States)

    Sharma, Shagun; Singh, Narpinder; Katyal, Mehak

    2016-05-01

    The effect of substitution of wheat flour with gelatinized-retrograded starch (GRS) and extruded starch (ES) at 10 and 20 % levels on characteristics of cookies, muffins and noodles was evaluated. Cookies made by substitution of flour with GRS or ES were lighter in color, showed higher spread ratio and resistant starch (RS) content. Muffins made by substitution of flour with GRS or ES were lighter in color, showed less height, specific volume and gas cells and higher RS content. Muffins containing GRS were less firm while those made by incorporating ES showed higher firmness than those made without substitution. Noodles made with substitution of flour with GRS or ES showed higher RS content and reduced water uptake, gruel solid loss, hardness and adhesiveness. Cookies and noodles prepared with and without substitution of flour with GRS or ES did not show any significant differences in terms of overall acceptability scores.

  14. Screw extrude steam explosion: a promising pretreatment of corn stover to enhance enzymatic hydrolysis.

    Science.gov (United States)

    Chen, Jingwen; Zhang, Wengui; Zhang, Hongman; Zhang, Qiuxiang; Huang, He

    2014-06-01

    A screw extrude steam explosion (SESE) apparatus was designed and introduced to pretreat corn stover continuously for its following enzymatic hydrolysis. SESE parameters temperature (100, 120, 150°C) and residence time (1, 2, 3min) were investigated. The enzymatic hydrolysis of corn stover pretreated by SESE and steam explosion (SE) process was carried out and analyzed systematically. A serial of analysis methods were established, and the corn stover before/after the pretreatment were characterized by scanning electron microscope (SEM), X-ray Diffraction (XRD) and Thermal Gravity/Derivative Thermal Gravity Analysis (TG/DTG). After treated by SESE pretreatment at the optimum condition (150°C, 2min), the pretreated corn stover exhibited highest enzymatic hydrolysis yield (89%), and rare fermentation inhibitors formed. Characterization results indicated that the highest yield could be attributed to the effective removal of lignin/hemicellulose and destruction of cellulose structure by SESE pretreatment.

  15. Effect of Processing Variables and Enzymatic Activity on Wheat Flour Dough Extruded Under Different Operating Conditions

    Directory of Open Access Journals (Sweden)

    Roma Giuliani

    2009-01-01

    Full Text Available Low processing temperatures are required to improve the texture of products when enzymes are directly added to the extruder. Interaction among processing variables and enzymatic activity can occur during extrusion. In this research, the influence of some extrusion parameters (barrel temperature, dough moisture and screw speed on the activity of two commercial enzymes (Grindamyl Amylase 1000 and Grindamyl Protease 41 has been studied. Wheat flour was used as a model system, and macromolecular degradation was determined by water solubility index (WSI. Moreover, gelatinization degree and die pressure were evaluated. Results showed that barrel temperature affected enzyme activity. High values of WSI were obtained at high barrel temperature using Grindamyl Protease 41. When Grindamyl Amylase 1000 was used, low values of starch gelatinization were obtained. The activity of both enzymes was negatively affected by high values of dough moisture.

  16. Design, development and performance evaluation of chapati press cum vermicelli extruder.

    Science.gov (United States)

    Gurushree, M N; Nandini, C R; Pratheeksha, K; Prabhasankar, P; Hosamane, Gangadharappa Gundabhakthara

    2011-04-01

    Portable and manually operated chapati press cum vermicelli extruder device was designed and fabricated for the preparation of chapatis and vermicelli. Sensory evaluation overall quality scores of 50.15 and 48.4 for pressed chapatis and rolled chapatis respectively showed that quality of chapatis was not adversely affected as a result of mechanical pressing. The difference in chapati making time by manual rolling and machine pressing was 17 s per chapati and was statistically significant (p  0.05) between 2 mm and 3 mm diameter vermicelli. Cooked weight (72.8 g) and water absorption (191.2%) of 2 mm diameter vermicelli was more compared to 3 mm diameter vermicelli (51.75 g, 107%). This machine can also be used as a laboratory model as products of consistent thickness and diameter were obtained.

  17. Numerical simulation of upsetting-extruding process of dispersion strengthened copper welding electrode

    Institute of Scientific and Technical Information of China (English)

    WANG Meng-jun; ZHANG Ying-chun; HUANG Dian-yuan; LIU Xin-yu

    2007-01-01

    The simulation of the upsetting-extruding process of dispersion strengthened copper welding electrode was carried out using Deform-2D finite element analysis software, and the characteristics of metal flow and the effect of different friction factors were analysed. The results show that the whole forming process consists of a forward extrusion and a backward extrusion. When the friction factor of the female die is 0.4, it is advantageous to the forward extrusion forming of the electrode work nose part, while the friction factor of the male die is only 0.1, it would be benefit to the backward extrusion forming of the electrode fit-up hole part. Addition of a scoop channel with 1.5 mm in depth and 4 mm in diameter at the bottom of the female die can avoid folds at the work nose. The rise in temperature is about 60 ℃ during the forming process.

  18. Morphological and thermal properties of PLA/OMMT nanocomposites prepared via vane extruder

    Science.gov (United States)

    Luo, Y.; Liu, H. Y.; Zhang, G. Z.; Qu, J. P.

    2017-06-01

    Polylactide/Organo-Montmorillonite (PLA/OMMT) Nanocomposites were prepared by melting extrusion using a novel vane extruder (VE), which can induce global elongational flow. In the study, the influence of different concentrations of the OMMT on the morphological and thermal properties were investigated. The morphology and structure of the nanocomposites were evaluated using Fourier Transform Infrared Spectroscopy (FTIR), the X-ray diffraction (XRD) and transmission electron microscopy (TEM) respectively, whereas the thermal behaviors and thermal stabilities were characterized using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) respectively. The results illustrate that PLA/OMMT nanocomposites displayed clear intercalation and/or exfoliation structures. Interestingly, increasing the clay content did not lead to the agglomeration of OMMT layers. Moreover, the presence of nanoclay decreased the enthalpy of crystallization of PLA/OMMT composites. Also, the melting temperatures of the nanocomposites were reduced by the addition of nanoclay.

  19. Highly birefringent extruded elliptical-hole photonic crystal fibers with single defect and double defects

    Institute of Scientific and Technical Information of China (English)

    Zhongjiao He

    2009-01-01

    Highly birefringent elliptical-hole photonic crystal fibers(PCFs)with single defect and double defects are proposed,which are suppoosed to be achieved by extruding normal circular-hole PCFs based on a triangular lattice photonic crystal structure.Comparative research on the birefringence and the confinement loss of the proposed PCFs with single defect and double defects is presented.Simulation results show that the proposed PCFs with single defect and double defects can be with high birefringence(even up to the order of 10-2).The confinement loss increases when the ellipticity of the air hole of the PCFs increases,which nevertheless can be overconle by increasing the ring number or the area of the air holes in the fiber cladding.

  20. MICROSTRUCTURES AND PROPERTIES OF RECIPROCATINGLY EXTRUDED Mg-6.4Zn-1.IY ALLOYS

    Institute of Scientific and Technical Information of China (English)

    Z.M. Zhang; C.J. Xu; X.F. Guo

    2008-01-01

    An icosahedral Mg3 YZn6 quasicrystalline phase can be produced in Mg-Zn-Y system alloys when a proper amount of Zn and Y is contained, and it is feasible to prepare the quasicrystal phase-reinforced low-density magnesium alloy. In this article, phase constituents and the effect of reciprocating extrusion on microstructures and properties of the as-cast Mg-6.4Zn-1.1 Y alloy are analyzed. The microstructure of the as-cast Mg-6.4Zn-1.1 Y alloy consists of the a-Mg solid solution, icosahedral Mg3 YZn6 quasicrystal, and Mg3 Y2Zn3 and MgZn2 compounds. After the alloy was reciprocatingly extruded for four passes, grains were refined, Mg3 Y2 Zn3 and MgZn2 phases dissolved into the matrix, whereas, Mg3YZn6 precipitated and distributed uniformly. The alloy possesses the best performance at this state; the tensile strength, yield strength, and elongation are 323.4 MPa, 258.2 MPa, and 19.7%, respectively. In comparison with that of the as-cast alloy, the tensile strength, yield strength, and elongation of the reciprocatingly extruded alloy increase by 258.3%, 397.5%, and 18 times, respectively. It is concluded that reciprocating extrusion can substantially improve the properties of the as-cast Mg-6.4Zn-1.1 Y alloy, particularly for elongation. The high performance of the Mg-6.4Zn-1.1 Y alloy after reciprocating extrusion can be attributed to dispersion strengthening and grain-refined microstructures.

  1. Development of an improved extruded dielectric cable rated 230 kV

    Energy Technology Data Exchange (ETDEWEB)

    Blais, L D; Traut, R T; Bolden, G N

    1977-05-01

    Work performed on developing an improved 230 kV extruded solid dielectric cable, the techniques of jointing such cables and the testing of terminations suitable for operation at that voltage level are described. Difficulties were encountered during manufacture in applying the semi-conducting extruded conductor shield. A new higher melt point compound solved the problem. A joint capable of operating at the 230 kV level was developed but showed a deficiency under voltage impulse testing while the conductor was at elevated temperature. A reduction in contract scope terminated this effort. Two terminals rated for 230 kV were found to be commercially available from domestic manufacturers. The limited testing performed showed them to be compatible with the cable cross-linked polyethylene insulation and electrically sound under 60 Hertz testing. No direct voltage or impulse voltage testing was performed on the terminations. A sample circuit, consisting of cable and joint, was subjected to impulse voltages at both room temperature and normal conductor operating temperature of 90/sup 0/C. While the cable only was able to withstand voltage impulses in excess of the Basic Impulse Level (BIL) at room temperature, it failed at BIL while conductor was heated to 90/sup 0/C. In like manner, a cable and joint circuit was assembled. Similar voltages were impressed at room temperature without incident. The joint failed at 90/sup 0/C conductor temperature. Cable, joint and termination were assembled in a simulated circuit and subjected to conductor loading to elevate temperature while 60 Hz voltages in excess of normal operating levels were continuously applied.

  2. The Impact of Novel Fermented Products Containing Extruded Wheat Material on the Quality of Wheat Bread

    Directory of Open Access Journals (Sweden)

    Lina Vaiciulyte-Funk

    2011-01-01

    Full Text Available Lactobacillus sakei MI806, Pediococcus pentosaceus MI810 and Pediococcus acidilactici MI807, able to produce bacteriocin-like inhibitory substances, were originally isolated from Lithuanian spontaneous rye sourdough and adapted in the novel fermentation medium containing extruded wheat material. The novel fermented products (50 and 65 % moisture content were stored at the temperatures used in bakeries (15 days at 30–35 °C in the summer period or 20 days under refrigeration conditions at 0–6 °C. The number of lactic acid bacteria (LAB was determined during the storage of fermented products for 15–20 days. Furthermore, the effect of novel fermented products stored under different conditions on wheat bread quality was examined. Extruded wheat material was found to have a higher positive effect on LAB growth compared to the control medium by lowering the reduction of LAB populations in fermented products with the extension of storage time and increase of temperature. During storage, lower variation and lower decrease in LAB count were measured in the novel fermented products with a moisture content of 65 % compared to those with 50 %. Furthermore, this humidity allows for the production of a product with higher moisture content in continuous production processes. The addition of the new fermented products with 65 % humidity to the wheat bread recipe (10 % of the quantity of flour had a significant effect on bread quality: it increased the acidity of the crumb and specific volume of the bread, and decreased the fractal dimension of the crumb pores and crumb firmness. Based on the microbiological investigations of fermented products during storage and baking tests, the conditions of LAB cultivation in novel fermentation media were optimized (time of cultivation approx. 20 days at 0–6 °C and approx. 10 days at 30–35 °C.

  3. Nutritional properties of quality protein maize and chickpea extruded based weaning food.

    Science.gov (United States)

    Milán-Carrillo, J; Valdéz-Alarcón, C; Gutiérrez-Dorado, R; Cárdenas-Valenzuela, O G; Mora-Escobedo, R; Garzón-Tiznado, J A; Reyes-Moreno, C

    2007-03-01

    Malnutrition is one of the major causes of morbidity and mortality among young children in most of the developing countries. To minimize the adversities of malnutrition, low-cost infant supplementary foods have been developed and are being supplied to the needy through state-sponsored nutrition intervention programmers. The present study had two objectives: to determine the best combination of nixtamalized extruded quality protein maize (NEMF) and extruded chickpea (ECF) flours for producing a weaning food, and to evaluate the nutritional properties of the optimized NEMF/ECF mixture and the weaning food. The NEMF and ECF were produced applying combinations of extrusion temperature/screw speed of 79.4 degrees C/73.5 rpm, and 150.5 degrees C/190.5 rpm, respectively. Response surface methodology was applied to determine the optimum combination NEMF/ECF; the experimental design generated 11 assays. Mixtures from each assay were evaluated for true protein (TP) and available lysine (AL). Each one of 11 mixtures were used for preparing 11 weaning foods which were sensory evaluated for acceptability (A). The best combination of NEMF/ECF for producing a weaning food was NEMF = 21.2%/ ECF = 78.8 %. This mixture had a global desirability (D) of 0.93; it contained 20.07% proteins (DM), 5.70% lipids (DM), and 71.14% carbohydrates (DM); its essential amino acids (EAA) profile satisfactorily covered the EAA requirements for children 2-5 years old, except for Trp. The weaning food prepared with the optimized mixture had high protein quality and digestibility and could be used to support the growth of infants.

  4. Design for low-cost gas metal arc weld-based aluminum 3-D printing

    Science.gov (United States)

    Haselhuhn, Amberlee S.

    Additive manufacturing, commonly known as 3-D printing, has the potential to change the state of manufacturing across the globe. Parts are made, or printed, layer by layer using only the materials required to form the part, resulting in much less waste than traditional manufacturing methods. Additive manufacturing has been implemented in a wide variety of industries including aerospace, medical, consumer products, and fashion, using metals, ceramics, polymers, composites, and even organic tissues. However, traditional 3-D printing technologies, particularly those used to print metals, can be prohibitively expensive for small enterprises and the average consumer. A low-cost open-source metal 3-D printer has been developed based upon gas metal arc weld (GMAW) technology. Using this technology, substrate release mechanisms have been developed, allowing the user to remove a printed metal part from a metal substrate by hand. The mechanical and microstructural properties of commercially available weld alloys were characterized and used to guide alloy development in 4000 series aluminum-silicon alloys. Wedge casting experiments were performed to screen magnesium, strontium, and titanium boride alloying additions in hypoeutectic aluminum-silicon alloys for their properties and the ease with which they could be printed. Finally, the top performing alloys, which were approximately 11.6% Si modified with strontium and titanium boride were cast, extruded, and drawn into wire. These wires were printed and the mechanical and microstructural properties were compared with those of commercially available alloys. This work resulted in an easier-to-print aluminum-silicon-strontium alloy that exhibited lower porosity, equivalent yield and tensile strengths, yet nearly twice the ductility compared to commercial alloys.

  5. Effect of feed composition, moisture content and extrusion temperature on extrudate characteristics of yam-corn-rice based snack food.

    Science.gov (United States)

    Seth, Dibyakanta; Badwaik, Laxmikant S; Ganapathy, Vijayalakshmi

    2015-03-01

    Blends of yam, rice and corn flour were processed in a twin-screw extruder. Effects of yam flour (10-40 %), feed moisture content (12-24 %) and extruder barrel temperature (100-140 °C) on the characteristics of the dried extrudates was investigated using a statistical technique response surface methodology (RSM). Radial expansion ratio differed significantly (p ≤ 0.05) with change in all the independent variables. Highest expansion (3.97) was found at lowest moisture content (12 %) and highest barrel temperature (140 °C). Increased yam flour level decreased the expansion ratio significantly. Water absorption index (WAI) increased significantly with increase of all variables. However, water solubility index (WSI) did not change with change in yam flour percent. Hardness of extrudates that varied from 3.86 to 6.94 N was positively correlated with yam flour level and feed moisture content, however it decreased significantly (p ≤ 0.001) with increase of barrel temperature. Yam percent of 15.75 with feed moisture and barrel temperature at 12.00 % and 140 °C respectively gave an optimized product of high desirability (> 0.90) with optimum responses of 3.29 expansion ratio, 5.64 g/g dry solid water absorption index, 30.39 % water solubility index and 3.86 N hardness. The predicted values registered non-significant (p < 0.10) differences from the experimental results. Further study would include the sensory properties enhancement of extruded snacks and little emphasis on the chemistry of interaction between different components.

  6. In-situ deformation studies of an aluminum metal-matrix composite in a scanning electron microscope

    Science.gov (United States)

    Manoharan, M.; Lewandowski, J. J.

    1989-01-01

    Tensile specimens made of a metal-matrix composite (cast and extruded aluminum alloy-based matrix reinforced with Al2O3 particulate) were tested in situ in a scanning electron microscope equipped with a deformation stage, to directly monitor the crack propagation phenomenon. The in situ SEM observations revealed the presence of microcracks both ahead of and near the crack-tip region. The microcracks were primarily associated with cracks in the alumina particles. The results suggest that a region of intense deformation exists ahead of the crack and corresponds to the region of microcracking. As the crack progresses, a region of plastically deformed material and associated microcracks remains in the wake of the crack.

  7. Optical Transmittance of Anodically Oxidized Aluminum Alloy

    Science.gov (United States)

    Saito, Mitsunori; Shiga, Yasunori; Miyagi, Mitsunobu; Wada, Kenji; Ono, Sachiko

    1995-06-01

    Optical transmittance and anisotropy of anodic oxide films that were made from pure aluminum and an aluminum alloy (A5052) were studied. The alloy oxide film exhibits an enhanced polarization function, particularly when anodization is carried out at a large current density. It was revealed by chemical analysis that the alloy oxide film contains a larger amount of unoxidized aluminum than the pure-aluminum oxide film. The polarization function can be elucidated by considering unoxidized aluminum particles that are arranged in the columnar structure of the alumina film. Electron microscope observation showed that many holes exist in the alloy oxide film, around which columnar cells are arranged irregularly. Such holes and irregular cell arrangement cause the increase in the amount of unoxidized aluminum, and consequently induces scattering loss.

  8. [Link between aluminum neurotoxicity and neurodegenerative disorders].

    Science.gov (United States)

    Kawahara, Masahiro

    2016-07-01

    Aluminum is an old element that has been known for a long time, but some of its properties are only now being discovered. Although environmentally abundant, aluminum is not essential for life; in fact, because of its specific chemical properties, aluminum inhibits more than 200 biologically important functions and exerts various adverse effects in plants, animals, and humans. Aluminum is a widely recognized neurotoxin. It has been suggested that there is a relationship between exposure to aluminum and neurodegenerative diseases, including dialysis encephalopathy, amyotrophic lateral sclerosis and parkinsonism dementia in the Kii Peninsula and Guam, as well as Alzheimer' s disease: however, this claim remains to be verified. In this chapter, we review the detailed characteristics of aluminum neurotoxicity and the link between Alzheimer' s disease and other neurodegenerative diseases, based on recent findings on metal-metal interactions and the functions of metalloproteins in synapses.

  9. COMPARATIVE ANALYSIS OF STEEL AND ALUMINUM STRUCTURES

    Directory of Open Access Journals (Sweden)

    Josip Peko

    2016-12-01

    Full Text Available This study examined steel and aluminum variants of modern exhibition structures in which the main design requirements include low weight (increased span/depth ratio, transportation, and construction and durability (resistance to corrosion. This included a design situation in which the structural application of aluminum alloys provided an extremely convenient and practical solution. Viability of an aluminum structure depends on several factors and requires a detailed analysis. The overall conclusion of the study indicated that aluminum can be used as a structural material and as a viable alternative to steel for Croatian snow and wind load values and evidently in cases in which positive properties of aluminum are required for structural design. Furthermore, a structural fire analysis was conducted for an aluminum variant structure by using a zone model for realistic fire analysis. The results suggested that passive fire protection for the main structural members was not required in the event of areal fire with duration of 60 min.

  10. Structure of Liquid Aluminum and Hydrogen Absorption

    Institute of Scientific and Technical Information of China (English)

    LIU Yang; DAI Yongbing; WANG Jun; SHU Da; SUN Baode

    2011-01-01

    The hydrogen content in aluminum melts at different temperature was detected. The structure in aluminum melts was investigated by molecular dynamics simulation. The first peak position of pair correlation function, atomic coordination number and viscosity of aluminum melts were calculated and they changed abnormally in the same temperature range. The mechanism of hydrogen absorption has been discussed. From molecular dynamics calculations, the interdependence between melt structural properties and hydrogen absorption were obtained.

  11. Prospecting sugarcane genes involved in aluminum tolerance.

    OpenAIRE

    Drummond Rodrigo D.; Guimarães Claudia T.; Felix Juliana; Ninamango-Cárdenas Fernando E.; Carneiro Newton P.; Paiva Edilson; Menossi Marcelo

    2006-01-01

    Aluminum is one of the major factors that affect plant development in acid soils, causing a substantial reduction in yield in many crops. In South America, about 66% of the land surface is made up of acid soils where high aluminum saturation is one of the main limiting factors for agriculture. The biochemical and molecular basis of aluminum tolerance in plants is far from being completely understood despite a growing number of studies, and in the specific case of sugarcane there are virtually...

  12. Effect of process and machine parameters on physical properties of extrudate during extrusion cooking of sorghum, horse gram and defatted soy flour blends.

    Science.gov (United States)

    Basediya, A L; Pandey, Sheela; Shrivastava, S P; Khan, Khursheed Alam; Nema, Anura

    2013-02-01

    Extrusion cooking of sorghum (Sorghum vulgaris), horse gram (Dolichos biflorus) and defatted soy (Glycine max) flour blends was done to prepare snacks by using a Brabender single-screw laboratory extruder. The combined effect of moisture content, blend ratio of feed, barrel temperature and screw speed of extruder on physical parameters of extrudate was studied. It was observed that 15% moisture content of feed, 80:10:10 (sorghum flour: horse gram flour: defatted soy flour) of blend ratio, 130 °C barrel temperature and 130 rpm of screw speed gave the highest sectional expansion index and longitudinal expansion index of extrudate, while 12% moisture content, 75:15:10 of blend ratio of feed, 135 °C of barrel temperature and 135 rpm of screw speed gave lowest bulk density of extrudate. A central composite rotable design (CCRD) of response surface methodology was used to develop prediction model. Second order quadratic regression model fitted adequately in the variation. The significance was established at p ≤ 0.05. It was also observed that increasing feed moisture content results in a higher density and lower expansion of extrudate. Increasing barrel temperature and screw speed reduced density but increased expansion of extrudate.

  13. The Comparison of Water Absorption Analysis between Counterrotating and Corotating Twin-Screw Extruders with Different Antioxidants Content in Wood Plastic Composites

    Directory of Open Access Journals (Sweden)

    Mohd Hafizuddin Ab Ghani

    2011-01-01

    Full Text Available Water absorption is a major concern for natural fibers as reinforcement in wood plastic composites (WPCs. This paper presents a study on the comparison analysis of water absorption between two types of twin-screw extruders, namely, counterrotating and corotating with presence of variable antioxidants content. Composites of mixed fibres between rice husk and saw dust with recycled high-density polyethylene (rHDPE were prepared with two different extruder machines, namely, counterrotating and corotating twin screw, respectively. The contents of matrix (30 wt% and fibres (62 wt% were mixed with additives (8 wt% and compounded using compounder before extruded using both of the machines. Samples were immersed in distilled water according to ASTM D 570-98. From the study, results indicated a significant difference among samples extruded by counterrotating and corotating twin-screw extruders. The counterrotating twin-screw extruder gives the smallest value of water absorption compared to corotating twin-screw extruder. This indicates that the types of screw play an important role in water uptake by improving the adhesion between natural fillers and the polymer matrix.

  14. Aluminum-stabilized NB3SN superconductor

    Science.gov (United States)

    Scanlan, Ronald M.

    1988-01-01

    An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  15. The Aluminum Deep Processing Project of North United Aluminum Landed in Qijiang

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>On April 10,North United Aluminum Company respectively signed investment cooperation agreements with Qijiang Industrial Park and Qineng Electricity&Aluminum Co.,Ltd,signifying the landing of North United Aluminum’s aluminum deep processing project in Qijiang.

  16. Silicon reduces aluminum accumulation in rats: relevance to the aluminum hypothesis of Alzheimer disease.

    Science.gov (United States)

    Bellés, M; Sánchez, D J; Gómez, M; Corbella, J; Domingo, J L

    1998-06-01

    In recent years, a possible relation between the aluminum and silicon levels in drinking water and the risk of Alzheimer disease (AD) has been established. It has been suggested that silicon may have a protective effect in limiting oral aluminum absorption. The present study was undertaken to examine the influence of supplementing silicon in the diet to prevent tissue aluminum retention in rats exposed to oral aluminum. Three groups of adult male rats were given by gavage 450 mg/kg/day of aluminum nitrate nonahydrate 5 days a week for 5 weeks. Concurrently, animals received silicon in the drinking water at 0 (positive control), 59, and 118 mg Si/L. A fourth group (-Al, - Si) was designated as a negative control group. At the end of the period of aluminum and silicon administration, urines were collected for 4 consecutive days, and the urinary aluminum levels were determined. The aluminum concentrations in the brain (various regions), liver, bone, spleen, and kidney were also measured. For all tissues, aluminum levels were significantly lower in the groups exposed to 59 and 118 mg Si/L than in the positive control group; significant reductions in the urinary aluminum levels of the same groups were also found. The current results corroborate that silicon effectively prevents gastrointestinal aluminum absorption, which may be of concern in protecting against the neurotoxic effects of aluminum.

  17. Controlling of Grain Size in 6061 Aluminum Extruded Rod%6061挤压铝棒晶粒度的控制研究

    Institute of Scientific and Technical Information of China (English)

    成卫兵; 房继业

    2013-01-01

    6061铝合金在挤压过程中,不同的挤压工艺条件对粗晶组织产生不同的影响,通过合理调整6061铝合金挤压温度、挤压系数以及挤压速度可以控制粗晶的产生.

  18. Effect of Thermal Treatment on the Mechanical and Toughness Properties of Extruded Sic sub w/Aluminum 6061 Metal Matrix Composite.

    Science.gov (United States)

    1987-01-31

    to ASTM E399 proceduresi/ except the specimens were not fatigue precracked. Data from a separate study on the effect of notch acuity18 was used to...ET AL 31 JAN 87 UNCLASSIFIED NSidC/TR-86-72 F/G 11/4 N 10 1 *25 11114 *. NSWC TR 86-72 AD- A193 207 EFFECT OF THERMAL TREATMENT ON THE MECHANICAL AND...properties include high specific modulus, high creep strength, 1hjgh fatigue resistance, low thermal expansion, and good thermal stability. -’ The SiC/Al

  19. 发达国家新型食品双螺杆挤出机的发展及其应用%The Progress and Application of New Food Twin Screw Extruder in Developed Countries

    Institute of Scientific and Technical Information of China (English)

    张平亮

    2011-01-01

    介绍了国外新型食品双螺杆挤出机,如:PCM型双螺杆挤出机双轴挤出机;异速SCPD型双螺杆挤出机、ZSKMEGA双螺杆挤出机、ZSK60MAXX双螺杆挤出机的原理、性能和应用,提出今后食品双螺杆挤出机的前景和发展方向。%The works and results of new screw extruder at abroad were introduced. The construction, property and application of new screw extruder such as PCM twin screw extruder, SCPD twin screw extruder, ZSK MEGA twin screw extruder, ZSK60MAXX twin screw extruder were described, progress and development of the twin screw extruder of food in future were proposed.

  20. Physicochemical, Phytochemical and Nutrimental Impact of Fortified Cereal Based Extrudate Snacks: Effect of Jackfruit Seed Flour Addition and Extrusion Cooking

    Directory of Open Access Journals (Sweden)

    Yogesh Gat

    2015-05-01

    Full Text Available Aim of present study was to estimate quantitative changes in nutrimental, physicochemical and phytochemical properties of rice-jackfruit seed flour blend extrudates. Rice-jackfruit seed flour blend was prepared at 70:30 proportions and was subjected to extrusion cooking. Effect of barrel temperature (140-180°C and screw speed (100-300 rpm on nutrimental, physicochemical (expansion, density, WSI, WAI and hardness and phytochemical (TPC and TFC properties were studied. Rice flour extrudate was found to have 6.63% protein and 0.17% fiber which were further increased to about 8.44 and 0.8%, respectively after addition of jackfruit seed flour at 180°C with 300 rpm. Extrusion cooking at lower barrel temperature resulted in increase in TPC and TFC. Rice-jackfruit seed flour blend extrudate at 180°C with 100 rpm resulted in highest antioxidant capacity and reducing power (208.56 µmol of TE/g and 0.26 mg of AAE/g of dry powder respectively. Practical applications: Although there is increased use of extrusion processing, but still there is no fully developed theory to predict the effects of process variables on various raw materials and their mixtures. Any change in feed composition and process variables can influence extrusion performance as well as product quality. Therefore, it is crucial to study the effect of extrusion process parameters (barrel temperature and screw speed on extrudate characteristics. Also, the researchers, so far, tried lots of combinations for nutraceutical enrichment of extrudate snacks. To the best of our knowledge, this is first report on extrusion cooking of RF fortified with JFSF. In future, this data could be useful for food processing industries. Originality of this study demonstrates the feasibility of developing value added extrudates with improved nutrimental and nutraceutical appeal. Present study shows potential for utilization of jackfruit seed which is part of the waste generated in large quantities when the

  1. Laboratory Powder Metallurgy Makes Tough Aluminum Sheet

    Science.gov (United States)

    Royster, D. M.; Thomas, J. R.; Singleton, O. R.

    1993-01-01

    Aluminum alloy sheet exhibits high tensile and Kahn tear strengths. Rapid solidification of aluminum alloys in powder form and subsequent consolidation and fabrication processes used to tailor parts made of these alloys to satisfy such specific aerospace design requirements as high strength and toughness.

  2. Aluminum extrusion with a deformable die

    NARCIS (Netherlands)

    Assaad, W.

    2010-01-01

    Aluminum extrusion process is one of metal forming processes. In aluminum extrusion, a work-piece (billet) is pressed through a die with an opening that closely resembles a desired shape of a profile. By this process, long profiles with an enormous variety of cross-sections can be produced to

  3. Sanmenxia strives to create aluminum industrial base

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>Contradiction between rich alumina resource and relatively weak electrolytic aluminum production capacity is the "bottleneck" inhibiting development of aluminum industry in San-menxia. During the period of "11th Five-Year Development", Sanmenxia will relay on its

  4. Wilson's disease; increased aluminum in liver.

    Science.gov (United States)

    Yasui, M; Yoshimasu, F; Yase, Y; Uebayashi, Y

    1979-01-01

    Interaction of trace metal metabolism was studied in a patient with Wilson's dease. Atomic absorption analysis showed markedly increased urinary excretion of copper and aluminum and an increased aluminum content was found in the biopsied liver by neutron activation analysis. These findings suggest a complicated pathogenetic mechanism involving other metals besides copper in the Wilson's disease.

  5. Aluminum honeycomb impact limiter study

    Energy Technology Data Exchange (ETDEWEB)

    Yaksh, M.C.; Thompson, T.C. (Nuclear Assurance Corp., Norcross, GA (United States)); Nickell, R.E. (Applied Science and Technology, Inc., Poway, CA (United States))

    1991-07-01

    Design requirements for a cask transporting radioactive materials must include the condition of the 30-foot free fall of the cask onto an unyielding surface. To reduce the deceleration loads to a tolerable level for all the components of the cask, a component (impact limiter) is designed to absorb the kinetic energy. The material, shape, and method of attachment of the impact limiter to the cask body comprises the design of the impact limiter. The impact limiter material of interest is honeycomb aluminum, and the particular design examined was for the NAC Legal Weight Truck cask (NAC-LWT) for spent fuel from light water reactors. The NAC-LWT has a design weight of 52,000 pounds, and it has a nominal length of 200 inches. The report describes the numerical calculations embodied in the FADE program to determine the accelerations and crush strain resulting from an arbitrary height and angle of orientation. Since the program serves as a design tool, static tests are performed to assess the effect of the shell containing the honeycomb aluminum. The static tests and their results are contained in the study. The static tests are used to demonstrate for licensing purposes the level of accelerations imposed on the cask during a 30-foot drop. 3 refs., 41 figs., 15 tabs.

  6. Recrystallization in Commercially Pure Aluminum

    DEFF Research Database (Denmark)

    Bay, Bent; Hansen, Niels

    1984-01-01

    Recrystallization behavior in commercial aluminum with a purity of 99.4 pct was studied by techniques such as high voltage electron microscopy, 100 kV transmission electron microscopy, and light microscopy. Sample parameters were the initial grain size (290 and 24 microns) and the degree of defor......Recrystallization behavior in commercial aluminum with a purity of 99.4 pct was studied by techniques such as high voltage electron microscopy, 100 kV transmission electron microscopy, and light microscopy. Sample parameters were the initial grain size (290 and 24 microns) and the degree...... (FeAl3), which start to become operative when the degree of deformation is raised from 15 to 30 pct. The temperature of nucleation and of recrystallization decreases when the degree of deformation is increased and the initial grain size is decreased. The recrystallized grain size follows the same...... trend and it is observed that the refinement of the recrystallized grain size caused by an increasing degree of deformation and decreasing initial grain size is enhanced by the FeAl3 particles (when the degree of deformation is raised from 15 to 30 pct). Finally, the structural and kinetic observations...

  7. Aluminum corrosion product release kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Matt, E-mail: Matthew.Edwards@cnl.ca; Semmler, Jaleh; Guzonas, Dave; Chen, Hui Qun; Toor, Arshad; Hoendermis, Seanna

    2015-07-15

    Highlights: • Release of Al corrosion product was measured in simulated post-LOCA sump solutions. • Increased boron was found to enhance Al release kinetics at similar pH. • Models of Al release as functions of time, temperature, and pH were developed. - Abstract: The kinetics of aluminum corrosion product release was examined in solutions representative of post-LOCA sump water for both pressurized water and pressurized heavy-water reactors. Coupons of AA 6061 T6 were exposed to solutions in the pH 7–11 range at 40, 60, 90 and 130 °C. Solution samples were analyzed by inductively coupled plasma atomic emission spectroscopy, and coupon samples were analyzed by secondary ion mass spectrometry. The results show a distinct “boron effect” on the release kinetics, expected to be caused by an increase in the solubility of the aluminum corrosion products. New models were developed to describe both sets of data as functions of temperature, time, and pH (where applicable)

  8. Nutritive value of extruded or multi-enzyme supplemented cold-pressed soybean cake for pigs.

    Science.gov (United States)

    Woyengo, T A; Patterson, R; Levesque, C L

    2016-12-01

    The objectives were to determine the standardized ileal digestibility (SID) of AA and NE value of cold-pressed soybean cake (CP-SBC), and the effect of extrusion or adding multi-enzyme to CP-SBC diet for growing pigs. Eight ileal-cannulated pigs (initial BW = 79.7 ± 3.97 kg) were fed 4 diets in a replicated 4 × 4 Latin square design to give 8 replicates per diet. Diets included a cornstarch-based diet with CP-SBC, extruded CP-SBC, and SBC plus multi-enzyme (1,200 U of xylanase, 150 U of glucanase, 500 U of cellulase, 60 U of mannanase, 700 U of invertase, 5,000 U of protease, and 12,000 U of amylase/kilogram of diet; Superzyme-CS, 0.5 g/kg); and a N-free diet. The CP-SBC was the sole source of protein in the CP-SBC-containing diets. The ratio of cornstarch to sugar and soybean oil in CP-SBC-containing diets was identical to the N-free diet to allow calculation of energy digestibility of CP-SBC by the difference method. The evaluated CP-SBC had been produced by heating the soybean seed at 105°C for 60 min followed by pressing of the heated soybean seeds at less than 42°C (barrel temperature). On a DM basis, CP-SBC and extruded CP-SBC contained 47.8 and 47.1% CP, 15.6 and 10.5% ADF, 7.23 and 8.85% ether extract, 3.11 and 3.08% Lys, and 2.25 and 3.70 trypsin inhibitor units per mg, respectively. Extrusion increased ( value of the CP-SBC from 2,743 to 2,853 kcal/kg of DM. Supplementation of CP-SBC diet with the multi-enzyme increased ( value of CP-SBC. In conclusion, the CP-SBC evaluated in the present study could be an alternative source of AA and energy in swine diets, and its nutritive value can be increased by extrusion following cold-pressing. The multi-enzyme used in this study improved the digestibility of some AA, but had limited effect on energy digestibility and hence NE value of the CP-SBC.

  9. Aluminum-based metal-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  10. Gating of Permanent Molds for ALuminum Casting

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-03-30

    This report summarizes a two-year project, DE-FC07-01ID13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings.

  11. Gelling nature of aluminum soaps in oils.

    Science.gov (United States)

    Wang, Xiaorong; Rackaitis, Mindaugas

    2009-03-15

    Aluminum soaps are notable for their ability to form soap-hydrocarbon gels of high viscosity. For more than half a century, it has been believed that the gelling mechanism is due to a formation of polymeric chains of aluminum molecules with the aluminum atoms linking along the axis and with the fatty acid chain extended sideways. Here we report results from an investigation using high-resolution electron microscopy and rheology measurements that clearly resolve the ambiguity. Our results reveal that the gelling mechanism stems from the formation of spherical nano-sized micelles from aluminum soap molecules, and those colloidal micelle particles then aggregate into networks of highly fractal and jammed structures. The earlier proposed polymer chain-like structure is definitely incorrect. The discovery of aluminum soap particles could expand application of these materials to new technologies.

  12. Proposal of recycling system for waste aluminum

    Directory of Open Access Journals (Sweden)

    Š. Valenčík

    2008-04-01

    Full Text Available Introduced work is focused on waste aluminum recycling process with objective to propose complex production system for recovering of aluminum and some aluminum alloys. Solution is supported by extended analysis concerning purpose, basis and system sequences for recyclation. Based on that, sources, possibilities and conditions for recycling are formed. This has been used in proposal of manufacturing system. The principle is the structural proposal of manufacturing system, which does not only differentiate the stage of aluminum melting process, but also related stages as gross separation, sizing, containerisation and batching, palletisation, stacking and some related operations. Production system respects technological specifications, requirements for rationalisation of manufacturing systems, technical and economical feasibility conditions and is considered in lower automation level. However production system solves complex problem of recycling of some types of aluminum, it improves flexibility, production, quality (melting by high enforcements and in protective atmosphere and extention of production (final products production.

  13. Trends in the global aluminum fabrication industry

    Science.gov (United States)

    Das, Subodh; Yin, Weimin

    2007-02-01

    The aluminum fabrication industry has become more vital to the global economy as international aluminum consumption has grown steadily in the past decades. Using innovation, value, and sustainability, the aluminum industry is strengthening its position not only in traditional packaging and construction applications but also in the automotive and aerospace markets to become more competitive and to face challenges from other industries and higher industrial standards. The aluminum fabrication industry has experienced a significant geographical shift caused by rapid growth in emerging markets in countries such as Brazil, Russia, India, and China. Market growth and distribution will vary with different patterns of geography and social development; the aluminum industry must be part of the transformation and keep pace with market developments to benefit.

  14. Aluminum phosphate shows more adjuvanticity than Aluminum hydroxide in recombinant hepatitis –B vaccine formulation

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Background: Although a number of investigation have been carried out to find alternative adjuvants to aluminum salts in vaccine formulations, they are still extensively used due to their good track record of safety, low cost and proper adjuvanticity with a variety of antigens. Adsorption of antigens onto aluminum compounds depends heavily on electrostatic forces between adjuvant and antigen. Commercial recombinant protein hepatitis B vaccines containing aluminum hydroxide as adjuvant is facing low induction of immunity in some sections of the vaccinated population. To follow the current global efforts in finding more potent hepatitis B vaccine formulation, adjuvanticity of aluminum phosphate has been compared to aluminum hydroxide. Materials and methods: The adjuvant properties of aluminum hydroxide and aluminum phosphate in a vaccine formulation containing a locally manufactured hepatitis B (HBs surface antigen was evaluated in Balb/C mice. The formulations were administered intra peritoneally (i.p. and the titers of antibody which was induced after 28 days were determined using ELISA technique. The geometric mean of antibody titer (GMT, seroconversion and seroprotection rates, ED50 and relative potency of different formulations were determined. Results: All the adjuvanicity markers obtained in aluminum phosphate formulation were significantly higher than aluminum hydroxide. The geometric mean of antibody titer of aluminum phosphate was approximately three folds more than aluminum hydroxide. Conclusion: Aluminum phosphate showed more adjuvanticity than aluminum hydroxide in hepatitis B vaccine. Therefore the use of aluminum phosphate as adjuvant in this vaccine may lead to higher immunity with longer duration of effects in vaccinated groups.

  15. Aluminum recovery as a product with high added value using aluminum hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    David, E., E-mail: david@icsi.ro [National Institute for Research and Development for Cryogenic and Isotopic Technologies, Street Uzinei, No. 4, P.O. Râureni, P.O. Box 7, 240050 Rm. Vâlcea (Romania); Kopac, J. [Faculty of Mechanical Engineering, University of Ljubljana, Askerceva 6, SI-1000 Ljubljana (Slovenia)

    2013-10-15

    Highlights: • Granular and compact aluminum dross were physically and chemically characterized. • A relationship between density, porosity and metal content from dross was established. • Chemical reactions involving aluminum in landfill and negative consequences are shown. • A processing method for aluminum recovering from aluminum dross was developed. • Aluminum was recovered as an value product with high grade purity such as alumina. -- Abstract: The samples of hazardous aluminum solid waste such as dross were physically and chemically characterized. A relationship between density, porosity and metal content of dross was established. The paper also examines the chemical reactions involving aluminum dross in landfill and the negative consequences. To avoid environmental problems and to recovery the aluminum, a processing method was developed and aluminum was recovered as an added value product such as alumina. This method refers to a process at low temperature, in more stages: acid leaching, purification, precipitation and calcination. At the end of this process aluminum was extracted, first as Al{sup 3+} soluble ions and final as alumina product. The composition of the aluminum dross and alumina powder obtained were measured by applying the leaching tests, using atomic absorption spectrometry (AAS) and chemical analysis. The mineralogical composition of aluminum dross samples and alumina product were determined by X-ray diffraction (XRD) and the morphological characterization was performed by scanning electron microscopy (SEM). The method presented in this work allows the use of hazardous aluminum solid waste as raw material to recover an important fraction from soluble aluminum content as an added value product, alumina, with high grade purity (99.28%)

  16. Coupled extruder-headspace, a new method for analysis of the essential oil components of Coriandrum sativum fruits.

    Science.gov (United States)

    Sriti, Jazia; Msaada, Kamel; Talou, Thierry; Faye, Mamadou; Vilarem, Gerard; Marzouk, Brahim

    2012-10-15

    A new method involving concurrent single screw extruder combined with continuous headspace dynamic for the extraction and identification of the essential oil of Coriandrum sativum L. fruit was developed. The effect of six different nozzle diameters (5, 6, 7, 8, 9 and 10 mm) on the content and chemical composition of the essential oil of coriander fruit was studied. The oils from fruit samples were obtained by OMEGA 20 extruder. The result showed that the highest yield (0.53%) was obtained by the diameter of the nozzle was 8mm. Twenty-nine components were determined in essential oils, which were mostly hydrocarbons and alcohol monoterpenes. The main components linalool, α-pinene, γ-terpinene, p-cymene and limonene showed significant variations with drying trials.

  17. Characterization of aluminum surfaces: Sorption and etching

    Science.gov (United States)

    Polkinghorne, Jeannette Clera

    Aluminum, due to its low density and low cost, is a key material for future lightweight applications. However, like other structural materials, aluminum is subject to various forms of corrosion damage that annually costs the United States approximately 5% of its GNP [1]. The main goal is to investigate the effects of various solution anions on aluminum surfaces, and specifically probe pit initiation and inhibition. Using surface analysis techniques including X-ray photoelectron spectroscopy, Auger electron spectroscopy, and scanning electron microscopy, results have been correlated with those obtained from electrochemical methods and a radiolabeling technique developed in the Wieckowski laboratory. Analysis of data has indicated that important variables include type of anion, solution pH, and applied electrode potential. While aggressive anions such as chloride are usually studied to elucidate corrosion processes to work ultimately toward inhibition, its corrosive properties can be successfully utilized in the drive for higher energy and smaller-scale storage devices. Fundamental information gained regarding anion interaction with the aluminum surface can be applied to tailor etch processes. Standard electrochemical techniques and SEM are respectively used to etch and analyze the aluminum substrate. Aluminum electrolytic capacitors are comprised of aluminum anode foil covered by an anodically grown aluminum oxide dielectric film, electrolytic paper impregnated with electrolyte, and aluminum cathode foil. Two main processes are involved in the fabrication of aluminum electrolytic capacitors, namely etching and anodic oxide formation. Etching of the anode foil results in a higher surface area (up to 20 times area enlargement compared to unetched foil) that translates into a higher capacitance gain, permitting more compact and lighter capacitor manufacture. Anodic oxide formation on the anode, creates the required dielectric to withstand high voltage operation. A

  18. Rheological evaluation of clays used for extruded refractory products; Avaliacao reologica de argilas para produtos refratarios extrudados

    Energy Technology Data Exchange (ETDEWEB)

    Pagliosa Neto, Carlos; Diniz, Claudia Villa [Ceramica Safran, Betim, MG (Brazil). Dept. de Pesquisa e Desenvolvimento; Pandolfelli, Victor Carlos [Sao Carlos Univ., SP (Brazil). Dept. de Engenharia de Materiais

    1995-12-31

    This paper correlates the rheological properties of different lots of clays from the same extractive area, with their performances to conceive extruded refractories. So as to explain the different rheological behaviours, physical and chemical evaluation was carried out, in addition to an investigation on the particle mineralogy. The technique and the study of clay viscosimetry proved to be a suitable tool to select and control raw materials for the extrusion process. (author) 4 figs., 2 tabs.

  19. Nutritional value of raw soybeans, extruded soybeans, roasted soybeans and tallow as fat sources in early lactating dairy cows

    Directory of Open Access Journals (Sweden)

    A. Moosavi

    2012-09-01

    Full Text Available Thirty multiparous Holstein cows (29.8 ± 4.01days in milk; 671.6 ± 31.47 kg of body weight were used in a completely randomized design to compare nutritional value of four fat sources including tallow, raw soybeans, extruded soybeans and roasted soybeans for 8 weeks. Experimental diets were a control containing 27.4 % alfalfa silage, 22.5% corn silage, and 50.1% concentrate, and four diets with either tallow, raw soybean, extruded soybean, or roasted soybean added to provide 1.93% supplemental fat. Dry matter and NEL intakes were similar among treatments, while cows fed fat diets had significantly (P<0.05 high NEL intakes when compared to control with no fat. Supplemental fat, whether tallow or full fat soybeans increased milk production (1.89-2.45 kg/d; P<0.01 and FCM production (1.05-2.79; P<0.01. Milk fat yield and percentage of cows fed fat-supplemented diets were significantly (P<0.01 and P<0.05 respectively higher than control. Between fat-supplemented diets, roasted soybean caused highest milk fat yield and extruded soybean caused lowest milk fat yield. There was no significant effect of supplemental fat on the milk protein and lactose content and yield. Feed efficiency of fat-supplemented diets was significantly (P<0.01 higher than control. Body weight, body weight change and BCS (body condition score of cows, as well as energy balance and energy efficiency were similar between treatments. In conclusion, while there was no significant effect of fat sources on production response of cows, fat originating from heat-treated soybean help to minimize imported RUP (rumen undegradable protein sources level as fish meal in comparison with tallow and raw soybean oil. In the Current study, there was no statistical significance among nutritional values of oil from extruded soybeans and roasted soybeans.

  20. A one dimensional model for the prediction of extraction yields in a two phases modified twin-screw extruder

    OpenAIRE

    2002-01-01

    Solid/liquid extraction is performed on raw plant substrate with a modified twin-screw extruder (TSE) used as a thermo-mecanochemical reactor. Visual observations and experimental residence time distributions (RTD) are used to develop a solid transport model based on classical chemical engineering method. Modeled and experimental residence times are compared. The transport model is then coupled with a reactive extraction model in order to predict extraction yields.

  1. The influence of Li on the tensile properties of extruded in situ Al-15%Mg{sub 2}Si composite

    Energy Technology Data Exchange (ETDEWEB)

    Razaghian, A., E-mail: razaghian_ahmad@ikiu.ac.ir [Imam Khomeini International University, Qazvin (Iran, Islamic Republic of); Bahrami, A. [Imam Khomeini International University, Qazvin (Iran, Islamic Republic of); Emamy, M. [School of Metallurgy and Materials, University of Tehran, 11365-4563 (Iran, Islamic Republic of)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Effect of Li contents on the microstructure of homogenized and extruded Al-15%Mg{sub 2}Si. The optimum concentration of Li was found to be 0.5 wt.%. Black-Right-Pointing-Pointer The highest UTS and %El. values were 280 MPa and 16 for Al-15%Mg{sub 2}Si-0.5%Li MMC. Black-Right-Pointing-Pointer Li addition changed the fracture behavior of the composite from brittle to ductile. - Abstract: This work was carried out to investigate the effect of different Li concentrations (0.15, 0.3, 0.5 and 0.7) as a modifying agent on the microstructure and tensile properties of an in situ Al-15%Mg{sub 2}Si composite. Cast, modified and homogenized small ingots were extruded at 480 Degree-Sign C at extrusion ratio of 18:1 and ram speed of 1 mm/s. Various techniques including metallography, tensile testing and scanning electron microscopy (SEM) were used to characterize the mechanical behavior, microstructural observations and fracture mechanisms of this composite. The results showed that 0.5%Li addition and homogenizing treatment were highly effective in modifying Mg{sub 2}Si particles. The results also exhibited that the addition of Li up to 0.5 wt.% increases both ultimate tensile strength (UTS) and tensile elongation values. However, the tensile results slightly decrease with the addition of more Li (>0.5 wt.%). The highest UTS and elongation values were found to be 280 MPa and 16% for homogenized and extruded Al-15%Mg{sub 2}Si-0.5%Li composite, respectively. Fracture surface examinations revealed a transition from brittle fracture mode in as-cast composite to ductile fracture in homogenized and extruded specimens. This can be attributed to the changes in size and morphology of Mg{sub 2}Si intermetallic and porosity content.

  2. Effect of heat treatment on tensile and fatigue deformation behavior of extruded Al-12 wt%Si alloy

    Science.gov (United States)

    Ham, Gi-Su; Baek, Min-Seok; Kim, Jong-Ho; Lee, Si-Woo; Lee, Kee-Ahn

    2017-01-01

    This study investigated the effect of heat treatment on tensile and high-cycle fatigue deformation behavior of extruded Al-12 wt%Si alloy. The material used in this study was extruded at a ratio of 17.7: 1 through extrusion process. To identify the effects of heat treatment, T6 heat treatment (515 °C/1 h, water quenching, and then 175 °C/10 h) was performed. Microstructural observation identified Si phases aligned in the extrusion direction in both extruded alloy (F) and heat treated alloy (T6). The average grain size of F alloy was 8.15 °C, and that of T6 alloy was 8.22 °C. Both alloys were composed of Al matrix, Si, Al2Cu, Al3Ni and AlFeSi phases. As T6 heat treatment was applied, Al2Cu phases became more finely and evenly distributed. Tensile results confirmed that yield strength increased from 119.0 MPa to 329.0 MPa, ultimate tensile strength increased from 226.8 MPa to 391.4 MPa, and the elongation decreased from 16.1% to 5.0% as T6 heat treatment was applied. High-cycle fatigue results represented F alloy's fatigue limit as 185 MPa and T6 alloy's fatigue limit as 275 MPa, indicating that high-cycle fatigue properties increased significantly as heat treatment was conducted. Through tensile and fatigue fracture surface analysis, this study considered the deformation behaviors of extruded and heat treated Al-Si alloys in relation to their microstructures.

  3. Development of a pilot-scale kinetic extruder feeder system and test program. Phase II. Verification testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-12

    This report describes the work done under Phase II, the verification testing of the Kinetic Extruder. The main objective of the test program was to determine failure modes and wear rates. Only minor auxiliary equipment malfunctions were encountered. Wear rates indicate useful life expectancy of from 1 to 5 years for wear-exposed components. Recommendations are made for adapting the equipment for pilot plant and commercial applications. 3 references, 20 figures, 12 tables.

  4. Development of micronutrients rich homemade extruded food products with the incorporation of processed foxtail millet, wheat and chickpea

    Directory of Open Access Journals (Sweden)

    L Gautam

    2014-12-01

    Full Text Available Background: Food based approaches are recognized as an essential part of an urgently needed more comprehensive strategy for improving nutrition by increasing the availability and consumption to combat iron and other micronutrient deficiencies. Aims & Objective: The specific objective of the study was utilization of Foxtail millet (Setariaitalica along with other flour for production of micronutrients rich ready-to-eat snack products using homemade extrusion cooking. Material and methods: Methods Composite flour were prepared using processed Foxtail millet flour (FMF and other processed flours namely; wheat flour (WF, and chick pea flour (CPF. Nutritional properties of the blends were analyzed by using standard procedure. Two homemade extruded products namely; namkeensev, seviyan were prepared with four treatments T0, T1, T2, & T3. The commonly consumed recipes were developed by incorporating 50%, 75% and 100% of best result malted composite flour (FMF+CPF+WF. Results: The organoleptic qualities of these extruded samples were analyzed by panelists on a 9 point hedonic scale. The result indicate that the processed composite flour (FMF+CPF+WF based products were significantly accepted at the level of p<0.05 50% incorporation followed by 75% and 100% respectively. Conclusions: The present study conclude that, processed composite flour (Foxtail millet; wheat; chickpea in the ratios of (50:50 could be used to produce nutritive quality of homemade extrudates with acceptable sensory properties as they deliver vehicles for malnourished children.

  5. Effects of Ca addition on tensile properties and microstructures of hot-extruded AZ91 alloy tube

    Institute of Scientific and Technical Information of China (English)

    WANG Feng; LIU Zheng; YU Bao-yi; ZHANG Kui

    2006-01-01

    As-cast AZ91+XCa (X=0, 0.5%, 1.0%, 1.5%, mass fraction) magnesium alloys were extruded into tube at 380℃ with an extrusion ratio of 6:1. The tensile properties and microstructures of extruded AZ91+XCa alloy tubes were investigated. The microstructural observation indicates that Ca can obviously refine both α-Mg grains and Mg17Al12 phase of AZ91 magnesium alloy. XRD analysis shows that the microstructure of AZ91+0.5Ca alloy consists of α-Mg solid solution and Mg17Al12 phase, while AZ91+1.5Ca alloy contains additionally Al2Ca phase. The tensile experimental results show that for the AZ91 alloy, the addition of Ca has little influence on the ambient temperature tensile properties but can improve the elevated temperature tensile properties. For the extruded AZ91+XCa alloys, the elevated temperature tensile strength decreases, and elongation increases with increasing the Ca content. The improvement in elevated temperature tensile strength of the alloy can be attributed to the presence of a Ca-containing phase, which can increase the microstructural stability of the alloy at elevated temperature.

  6. Application of response surface methodology for studying the product characteristics of extruded rice-cowpea-groundnut blends.

    Science.gov (United States)

    Asare, Emmanuel Kwasi; Sefa-Dedeh, Samuel; Sakyi-Dawson, Esther; Afoakwa, Emmanuel Ohene

    2004-08-01

    Response surface methodology (with central composite rotatable design for k=3) was used to investigate the product properties of extruded rice-cowpea-groundnut blends in a single screw extruder. The combined effect of cowpea (0-20%), groundnut (0-10%), and feed moisture (14-48%) levels were used for formulation of the products. The product moisture, expansion ratio, bulk density and total colour change were studied using standard analytical methods. Well-expanded rice-legume blend extrudates of less bulk density and lower moisture content were produced at low feed moisture. Increasing legume addition affected the various shades of colour in the product. Models developed for the indices gave R(2) values ranging from 52.8% (for the b-value) to 86.5% (for bulk density). The models developed suggested that the optimal process variables for the production of a puffed snack with an enhanced nutrition and spongy structure from a rice-cowpea-groundnut blend are low feed moisture of 14-20% and maximum additions of 20% cowpea and 10% groundnut. A lack-of-fit test showed no significance, indicating that the models adequately fitted the data.

  7. Comparison of apically extruded debris associated with several nickel-titanium systems after determining working length by apex locator

    Science.gov (United States)

    Çiçek, Ersan; Akkocan, Oguzhan; Furuncuoglu, Fatma

    2016-01-01

    Background/Aim: To compare apically extruded debris using ProTaper Universal (PTU), ProTaper Next (PTN), WaveOne (WO), Twisted File (TF), M-Two (MT), and Revo-S (RS) after determining the working length (WL) with root ZX. Materials and Methods: Seventy-two teeth were selected. The WL determination was performed with root ZX. The teeth were divided into six experimental groups, randomly. In groups, root canals were prepared with PTU to size F4/0.06, with PTN to size X4/0.06, with WO to size 40/0.08, with TF to size 40/0.04, with MT to size 40/0.06, and with RS to size AS40/0.06. After preparations were completed, final irrigation was performed with 2 mL distilled water, and a total of 10 mL of distilled water was used in each tooth. Tubes were stored in an incubator at 68°C for 5 days to evaporate the distilled water before weighing the dry debris. Data were analyzed by the Mann–Whitney U-test. Results: The RS group led to the highest amount of extruded debris, however, WO led to the least amount of extruded debris. There was no statistically difference among the groups (P > 0.05). Conclusions: The authors conclude that the results obtained might depend on the apex locator used to determine the WL. PMID:26957797

  8. The Effect of Ti on Mechanical Properties of Extruded In-Situ Al-15 pct Mg2Si Composite

    Science.gov (United States)

    Soltani, Niloofar; Bahrami, Amin; Pech-Canul, Martin Ignacio

    2013-09-01

    This work was carried out to investigate the effect of different Ti concentrations as a modifying agent on the microstructure and tensile properties of an in-situ Al-15 pctMg2Si composite. Cast, modified, and homogenized small ingots were extruded at 753 K (480 °C) at the extrusion ratio of 18:1 and ram speed of 1 mm/s. Various techniques including metallography, tensile testing, and scanning electron microscopy were used to characterize the mechanical behavior, microstructural observations, and fracture mechanisms of this composite. The results showed that 0.5 pctTi addition and homogenizing treatment were highly effective in modifying Mg2Si particles. The results also exhibited that the addition of Ti up to 0.5 pct increases both ultimate tensile strength (UTS) and tensile elongation values. The highest UTS and elongation values were found to be 245 MPa and 9.5 pct for homogenized and extruded Al-15 pctMg2Si-0.5 pctTi composite, respectively. Fracture surface examinations revealed a transition from brittle fracture mode in the as-cast composite to ductile fracture in homogenized and extruded specimens. This can be attributed to the changes in size and morphology of Mg2Si intermetallic and porosity content.

  9. Effect of Amaranth addition on the nutritional composition and consumer acceptability of extruded provitamin A-biofortified maize snacks

    Directory of Open Access Journals (Sweden)

    Daniso BESWA

    2016-01-01

    Full Text Available The objective of this study was to determine the effect of adding Amaranth leaf powder on the nutrient content and consumer acceptability of extruded provitamin A-biofortified (PVA maize snacks. Flours of four varieties of PVA maize were composited with Amaranth leaf powder at 0, 1 and 3% (w/w substitution of, respectively, and extruded into snacks. The ash content of the snacks increased from 0.53 g/100 g-0.58 g/100 g to 0.650 g/100g-89 g/100 g and protein content increased from 9.12 g/100 g-10.94 g/100 g when Amaranth was increased from 0% to 3%. Similarly, lysine content increased from 0.10 g/100 g to 0.17 g/100 g, whilst methionine increased from 0.14 g/100 g to 0.19 g/100 g. The provitamin A content of the snacks ranged from 1.29 µg/g to 1.40 µg/g at 0% Amaranth and 1.54 µg/g to 1.78 µg/g at 3% Amaranth. The acceptability of the snacks decreased with increasing Amaranth concentration, only a very small proportion (2-8% of the panel liked the snacks extremely. PVA maize with added Amaranth leaf powder has a potential for use in nutritious and healthy extruded snacks, but the consumer acceptability of the snacks should be improved.

  10. Improvement in the traditional processing method and nutritional quality of traditional extruded cassava-based snack (modified Ajogun)

    Science.gov (United States)

    Obadina, Adewale O; Oyewole, Olusola B; Williams, Oluwasolabomi E

    2013-01-01

    This study was carried out to investigate and improve the traditional processing method and nutritional quality of the traditional cassava snack (Ajogun). Cassava root (Manihot esculenta Crantz L.) of TME 419 variety was processed into mash (40% moisture content). The cassava mash was mixed into different blends to produce fried traditional “Ajogun”, fried and baked extrudates (modified Ajogun) as snacks. These products were analyzed to determine the proximate composition including carbohydrate, fat, protein, fiber, ash, and moisture contents and functional properties such as bulk density. The results obtained for the moisture, fat, protein, and ash contents showed significant difference (P extrudates. However, there was no significant difference (P > 0.05) in the carbohydrate and fiber contents between the three samples. There was no significant difference (P > 0.05) in the bulk density of the snacks. Also, sensory evaluation was carried out on the cassava-based snacks using the 9-point hedonic scale to determine the degree of acceptability. Results obtained showed significant difference (P extrudates and control sample in terms of appearance, taste, flavor, color, aroma, texture, and overall acceptability. The highest acceptability level of the product was at 8.04 for the control sample (traditional Ajogun). This study has shown that “Ajogun”, which is a lesser known cassava product, is rich in protein and fat. PMID:24804039

  11. The effect of extrusion conditions on the acidic polysaccharide, ginsenoside contents and antioxidant properties of extruded Korean red ginseng

    Science.gov (United States)

    Gui, Ying; Ryu, Gi Hyung

    2013-01-01

    This study was conducted to investigate the effect of extrusion conditions (moisture content 20% and 30%, screw speed 200 and 250 rpm, barrel temperature 115℃ and 130℃) on the acidic polysaccharide, ginsenoside contents and antioxidant properties of extruded Korean red ginseng (KRG). Extruded KRGs showed relatively higher amounts of acidic polysaccharide (6.80% to 9.34%) than nonextruded KRG (4.34%). Increased barrel temperature and screw speed significantly increased the content of acidic polysaccharide. The major ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, Rg2s, Rg3s, Rh1, and Rg3r) of KRG increased through extrusion, while the ginsenoside (Rg1) decreased. The EX8 (moisture 30%, screw speed 250 rpm, and temperature 130℃) had more total phenolics and had a better scavenging effect on 2,2-diphenyl-1-picrylhydrazyl radicals than those of extruded KRG samples. The extrusion cooking showed a significant increase (6.8% to 20.9%) in reducing power. Increased barrel temperature significantly increased the values of reducing power, the highest value was 1.152 obtained from EX4 (feed moisture 20%, screw speed 250 rpm, and temperature 130℃). These results suggest that extrusion conditions can be optimized to retain the health promoting compounds in KRG products. PMID:23717175

  12. Enhanced Homogeneities of Microstructure and Property in Al-Zn-Mg-Cu Extruded Product by Cooling Rate After Homogenization Treatment

    Science.gov (United States)

    Zhang, Zhihao; Xue, Jie; Jiang, Yanbin

    2017-07-01

    A method to improve the homogeneities of microstructure and mechanical property in an Al-Zn-Mg-Cu extruded product, which changes cooling rate after homogenization treatment to obtain the different distribution characteristics of the precipitates, was proposed and the microstructure evolution and mechanical properties of the alloy were investigated. The results show that the precipitates in the water-quenched billet are of mainly coarse particles with the content of about 2.0%, while a large number of needle-shaped precipitates are dispersively distributed in the furnace-cooled billet with the content of about 9.8%. Numerous precipitates distributed dispersively can improve the homogeneities of microstructure and mechanical property of the alloy during extrusion. For example, when the water-quenched billets are extruded at 390 and 430 °C followed by solution-aging treatment, the average grain sizes of the two bars are 3.4 and 8.1 μm, and the elongations to failure are 7.0 and 9.2%, respectively. When the furnace-cooled billets are extruded at 390 and 430 °C followed by solution-aging treatment, the average grain sizes of the two bars are 3.1 and 3.5 μm, respectively, and the elongations are basically the same, indicating the better microstructure homogeneity and mechanical properties.

  13. Effects of extrusion conditions on physical and nutritional properties of extruded whole grain red sorghum (sorghum spp).

    Science.gov (United States)

    Llopart, Emilce Elina; Drago, Silvina Rosa; De Greef, Dardo Mario; Torres, Roberto Luis; González, Rolando José

    2014-02-01

    In order to analyze the effects of extrusion temperature (T: 164, 182, 200 °C) and grits moisture content (g/100 g sample) (%M: 14, 16.5, 19) on textural and physicochemical properties of red sorghum extrudates, whole grain flour was extruded according to a factorial experimental design. The higher values for specific mechanical energy consumption (1006.98 J/g) and expansion (3.36) were obtained at 164 °C-14%M and for sensorial hardness at 164 °C-19%M. While for specific volume, the highest value (10.41 cm³/g) was obtained at 200 °C-14%M. Water solubility and water absorption were directly related with T and inversely with M. Microscopic observation of the samples indicates that the greatest cooking degree was obtained at 200 °C-4%M and the lowest at 164 °C-19%M. Extrusion at 182 °C-14%M allows obtaining an expanded product with good properties. Proximal composition did not show statistically significant differences with raw sample. Extruded sample showed a 25.4% reduction of available lysine and a 31% increase in protein digestibility.

  14. Effect of Malting and Nixtamalization Processes on the Physicochemical Properties of Instant Extruded Corn Flour and Tortilla Quality.

    Science.gov (United States)

    Rodríguez-Martínez, Nicolás Alberto; Salazar-García, María Guadalupe; Ramírez-Wong, Benjamín; Islas-Rubio, Alma Rosa; Platt-Lucero, Luis Carlos; Morales-Rosas, Ignacio; Marquez-Melendez, Rubén; Martínez-Bustos, Fernando

    2015-09-01

    This research aimed to prepare instant flour from malted and raw (un-malted) corn flours nixtamalized by the extrusion process and evaluate the effect on the physicochemical properties of tortillas prepared using these flours. White maize was malted for 24 h, dried at 50 ± 1 °C, and ground. Subsequently, 0.3 % lime and 25 or 30 % water were added to ground malted or un-malted corn, and the mixture was refrigerated (4 °C) for 12 h. These samples were nixtamalized by an extrusion process in a single screw extruder at two temperature profiles within four heating zones, TP1 (60, 60, 70, and 80 °C) and TP2 (60, 70, 80, and 90 °C), to obtain corn flour. Water was added to the extruded corn flours to make a dough, or masa, and the masa was then molded and baked to obtain tortillas. The corn flours were characterized according to their ability to absorb water and viscosity profile (RVA). The firmness and rollability after 2 and 24 h of storage were determined, and a sensory evaluation was conducted. The malted corn flour extruded with a 25 % moisture content and TP2 temperature profile yielded tortillas with the best firmness and rollability. In conclusion, the changes during the malting of corn grain and the nixtamalization by the extrusion process improved the water absorption capacity of flours and textural properties of the tortilla and produced a product with acceptable sensory properties.

  15. Effect of binders on the release rates of direct molded verapamil tablets using twin-screw extruder in melt granulation.

    Science.gov (United States)

    Tan, David Cheng Thiam; Chin, William Wei Lim; Tan, En Hui; Hong, Shiqi; Gu, Wei; Gokhale, Rajeev

    2014-03-10

    Conventional manufacturing of pharmaceutical tablets often involves single processes such as blending, granulation, milling and direct compression. A process that minimizes and incorporates all these in a single continuous step is desirable. The concept of omitting milling step followed by direct-molding of tablets utilizing a twin-screw extruder in a melt granulation process using thermoplastic binders was explored. The objective of this study was to investigate the effect of combining hydrophilic binder (HPMC K4M, PEO 1M), and hydrophobic binder (Compritol® ATO 888, Precirol® ATO 5) on the release profiles of direct-molded tablets and direct-compressed tablets from milled extrudates using a quality-by-design approach. It was identified that hydrophilic binder type and process significantly affects (p=0.005) the release profiles of verapamil. Moreover, two-way interaction analysis demonstrated that the combination of process with type of hydrophilic polymer (p=0.028) and the type of hydrophilic polymer with polymer ratio (p=0.033) significantly affected the release profiles. The formulation release kinetics correlated to Higuchi release model and the mechanism correlated to a non-Fickian release mechanism. The results of the present study indicated that direct-molded tablets with different release profiles can be manufactured without milling process and through a continuous melt granulation using twin-screw extruder with appropriate thermoplastic binder ratio.

  16. Expansion and functional properties of extruded snacks enriched with nutrition sources from food processing by-products.

    Science.gov (United States)

    Korkerd, Sopida; Wanlapa, Sorada; Puttanlek, Chureerat; Uttapap, Dudsadee; Rungsardthong, Vilai

    2016-01-01

    Rich sources of protein and dietary fiber from food processing by-products, defatted soybean meal, germinated brown rice meal, and mango peel fiber, were added to corn grit at 20 % (w/w) to produce fortified extruded snacks. Increase of total dietary fiber from 4.82 % (wb) to 5.92-17.80 % (wb) and protein from 5.03 % (wb) to 5.46-13.34 % were observed. The product indicated high expansion and good acceptance tested by sensory panels. There were 22.33-33.53 and 5.30-11.53 fold increase in the phenolics and antioxidant activity in the enriched snack products. The effects of feed moisture content, screw speed, and barrel temperature on expansion and nutritional properties of the extruded products were investigated by using response surface methodology. Regression equations describing the effect of each variable on the product responses were obtained. The snacks extruded with feed moisture 13-15 % (wb) and extrusion temperature at 160-180 °C indicated the products with high preference in terms of expansion ratio between insoluble dietary fiber and soluble dietary fiber balance. The results showed that the by-products could be successfully used for nutritional supplemented expanded snacks.

  17. Comparison of apically extruded debris associated with several nickel-titanium systems after determining working length by apex locator

    Directory of Open Access Journals (Sweden)

    Ersan Çiçek

    2016-01-01

    Full Text Available Background/Aim: To compare apically extruded debris using ProTaper Universal (PTU, ProTaper Next (PTN, WaveOne (WO, Twisted File (TF, M-Two (MT, and Revo-S (RS after determining the working length (WL with root ZX. Materials and Methods: Seventy-two teeth were selected. The WL determination was performed with root ZX. The teeth were divided into six experimental groups, randomly. In groups, root canals were prepared with PTU to size F4/0.06, with PTN to size X4/0.06, with WO to size 40/0.08, with TF to size 40/0.04, with MT to size 40/0.06, and with RS to size AS40/0.06. After preparations were completed, final irrigation was performed with 2 mL distilled water, and a total of 10 mL of distilled water was used in each tooth. Tubes were stored in an incubator at 68°C for 5 days to evaporate the distilled water before weighing the dry debris. Data were analyzed by the Mann-Whitney U-test. Results: The RS group led to the highest amount of extruded debris, however, WO led to the least amount of extruded debris. There was no statistically difference among the groups (P > 0.05. Conclusions: The authors conclude that the results obtained might depend on the apex locator used to determine the WL.

  18. Microstructural and mechanical properties analysis of extruded Sn–0.7Cu solder alloy

    Directory of Open Access Journals (Sweden)

    Abdoul-Aziz Bogno

    2015-01-01

    Full Text Available The properties and performance of lead-free solder alloys such as fluidity and wettability are defined by the alloy composition and solidification microstructure. Rapid solidification of metallic alloys is known to result in refined microstructures with reduced microsegregation and improved mechanical properties of the final products as compared to normal castings. The rapidly solidified Sn-based solders by melt spinning were shown to be suitable for soldering with low temperature and short soldering duration. In the present study, rapidly solidified Sn–0.7 wt.%Cu droplets generated by impulse atomization (IA were achieved as well as directional solidification under transient conditions at lower cooling rate. This paper reports on a comparative study of the rapidly solidified and the directionally solidified samples. Different but complementary characterization techniques were used to fully analyze the solidification microstructures of the samples obtained under the two cooling regimes. These include X-ray diffractometry (XRD and scanning electron microscopy (SEM. In order to compare the tensile strength and elongation to fracture of the directionally solidified ingot and strip castings with the atomized droplet, compaction and extrusion of the latter were carried out. It was shown that more balanced and superior tensile mechanical properties are available for the hot extruded samples from compacted as-atomized Sn–0.7 wt.%Cu droplets. Further, elongation-to-fracture was 2–3× higher than that obtained for the directionally solidified samples.

  19. Using geographical information system for spatial evaluation of canine extruded disc herniation

    Directory of Open Access Journals (Sweden)

    Constantin Daraban

    2014-11-01

    Full Text Available Disc herniation is one of the most common pathologies of the vertebral column in dogs. The aim of this study was to develop a geographical information system (GIS-based vertebral canal (VC map useful for spatial evaluation of extruded disc herniation (EDH in dogs. ArcGIS® was used to create two-dimensional and three-dimensional maps, in which the VC surface is divided into polygons by lines representing latitude and longitude. Actual locations and directions of the herniated disc material were assessed by a series of 142 computer tomographies of dogs collected between 2005 and 2013. Most EDHs were located on the cervical and transitional regions (thoraco-lumbar and lumbo-sacral and shown at the level of the ven- tro-cranial and ventro-central polygons created. Choropleth maps, highlighting the distribution and the location/direction patterns of the EDHs throughout the VC, were produced based on the frequency of the ailment. GIS proved to be a valuable tool in analysing EDH in dogs. Further studies are required for biomechanical analysis of EDH patterns.

  20. Physicochemical properties of extrudates from white yam and bambara nut blends

    Science.gov (United States)

    Oluwole, O. B.; Olapade, A. A.; Awonorin, S. O.; Henshaw, F. O.

    2013-01-01

    This study was conducted to investigate effects of extrusion conditions on physicochemical properties of blend of yam and bambara nut flours. A blend of white yam grit (750 μm) and Bambara nut flour (500 μm) in a ratio of 4:1, respectively was extrusion cooked at varying screw speeds 50-70 r.p.m., feed moisture 12.5-17.5% (dry basis) and barrel temperatures 130-150°C. The extrusion variables employed included barrel temperature, screw speed, and feed moisture content, while the physicochemical properties of the extrudates investigated were the expansion ratio, bulk density, and trypsin inhibition activity. The results revealed that all the extrusion variables had significant effects (p<0.05) on the product properties considered in this study. The expansion ratio values ranged 1.55-2.06, bulk density values ranged 0.76-0.94 g cm-3, while trypsin inhibition activities were 1.01-8.08 mg 100 g-1 sample.

  1. Alcohol dose dumping: The influence of ethanol on hot-melt extruded pellets comprising solid lipids.

    Science.gov (United States)

    Jedinger, N; Schrank, S; Mohr, S; Feichtinger, A; Khinast, J; Roblegg, E

    2015-05-01

    The objective of the present study was to investigate interactions between alcohol and hot-melt extruded pellets and the resulting drug release behavior. The pellets were composed of vegetable calcium stearate as matrix carrier and paracetamol or codeine phosphate as model drugs. Two solid lipids (Compritol® and Precirol®) were incorporated into the matrix to form robust/compact pellets. The drug release characteristics were a strong function of the API solubility, the addition of solid lipids, the dissolution media composition (i.e., alcohol concentration) and correspondingly, the pellet wettability. Pellets comprising paracetamol, which is highly soluble in ethanol, showed alcohol dose dumping regardless of the matrix composition. The wettability increased with increasing ethanol concentrations due to higher paracetamol solubilities yielding increased dissolution rates. For pellets containing codeine phosphate, which has a lower solubility in ethanol than in acidic media, the wettability was a function of the matrix composition. Dose dumping occurred for formulations comprising solid lipids as they showed increased wettabilities with increasing ethanol concentrations. In contrast, pellets comprising calcium stearate as single matrix component showed robustness in alcoholic media due to wettabilities that were not affected by the addition of ethanol. The results clearly indicate that the physico-chemical properties of the drug and the matrix systems are crucial for the design of ethanol-resistant dosage forms. Moreover, hydrophobic calcium stearate can be considered a suitable matrix system that minimizes the risk of ethanol-induced dose dumping for certain API's.

  2. Aqueous film coating to reduce recrystallization of guaifenesin from hot-melt extruded acrylic matrices.

    Science.gov (United States)

    Bruce, Caroline D; Fegely, Kurt A; Rajabi-Siahboomi, Ali R; McGinity, James W

    2010-02-01

    This study investigated the effect of aqueous film coating on the recrystallization of guaifenesin from acrylic, hot-melt extruded matrix tablets. After hot-melt extrusion, matrix tablets were film-coated with either hypromellose or ethylcellulose. The effects of the coating polymer, curing and storage conditions, polymer weight gain, and core guaifenesin concentration on guaifenesin recrystallization were investigated. The presence of either film coating on the guaifenesin-containing tablets was found to prolong the onset time of drug crystallization. The coating polymer was the most important factor determining the delay in the onset of crystallization, with the more hydrophilic polymer, hypromellose, having a higher solubilization potential for the guaifenesin and delaying crystallization for longer period (3 or 6 months in tablets stored at 40 degrees C or 25 degrees C, respectively) than the more hydrophobic ethylcellulose, which displayed a lower solubilization potential for guaifenesin (crystal growth on tablets cured for 2 hours at 60 degrees C occurred within 3 weeks, whereas uncoated tablets displayed surface crystal growth after 30 minutes). Crystal morphology was also affected by the film coating. Elevated temperatures during both curing and storage, incomplete film coalescence, and high core drug concentrations all contributed to an earlier onset of crystal growth.

  3. Use of ground and extruded canola seeds in feed for 15-30 kg piglets

    Directory of Open Access Journals (Sweden)

    Carina Scherer

    2015-01-01

    Full Text Available Objective. Determine the nutritional values of ground (SCI or extruded (SCE canola seed and evaluate its use in the performance of piglets from 15 to 30 kg. Materials and methods. Two experimental diets with canola seed were evaluated in a digestibility trial. We used 15 barrows with an initial weight of 19.79±1.43kg, distributed in a completely randomized design. In the performance, four experimental diets were evaluated consisting of a diet with soybean oil added (RAS, one with the of addition of canola oil (RAC and two oil-free; one with 11% SCI included and one with 6% SCE (RSCE included. 40 commercial hybrid piglets were used that had 15.25±1.5kg initial body weight, randomly distributed, in four treatments and five replicates; two animals per experimental unit. Results. The digestible energy values for SCI and SCE were 4.197 kcal/kg and 5.234 kcal/kg, respectively. The extrusion process improved the digestibility coefficients. Piglets fed with RSCI showed less daily weight gain (DWG and F:G ratio. Conclusion. Results suggest that SCE can be included in diets of piglets from 15 to 30 kg until 6% without negatively affecting performance.

  4. Nutritional value of raw and extruded chickpeas (Cicer arietinum L.) for growing chickens

    Energy Technology Data Exchange (ETDEWEB)

    Brenes, A.; Viveros, A.; Centeno, C.; Arija, I.; Marzo, F.

    2008-07-01

    The effects of the inclusion of different concentrations (0, 100, 200 and 300 g kg-1) of raw and extruded chickpeas on performance, digestive organ sizes, and protein and fat digestibilities were studied in one experiment with growing broiler chickens (0 to 21 days of age). Data were analyzed as a 3 x 2 factorial arrangement with three levels of chickpea with or without extrusion. A corn-soybean based diet was used as a positive control. Increasing chickpea content in the diet did not affect weight gain, feed consumption and feed to gain ratio. Relative pancreas and liver weights, and relative lengths of duodenum, jejunum and ceca were significantly (P<0.05) increased in response to increasing chickpea concentration in the diet. The inclusion of graded concentrations of chickpea increased (P<0.05) the apparent ileal digestibility (AID) of crude protein (CP) and apparent excreta digestibility (AED) of crude fat (CF) only in the case of the intermediate level of chickpea used (200 g kg-1). Extrusion improved weight gain and lowered relative pancreas weight (P< 0.05) respect to birds fed raw chickpea-based diets. AID of CP and AED of CF were improved (P<0.001) by extrusion. We concluded that the inclusion of up to 300 g kg-1 chickpea in chicken diets did not affect performance, and caused a negative effect on the relative weight of some digestive organs. (Author) 45 refs.

  5. Pre-conceptual Development and characterization of an extruded graphite composite fuel for the TREAT Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Erik; Rooyen, Isabella van; Leckie, Rafael; Papin, Pallas; Nelson, Andrew; Hunter, James

    2015-03-01

    In an effort to explore fuel systems that are more robust under accident scenarios, the DOE-NE has identified the need to resume transient testing. The Transient Reactor Test (TREAT) facility has been identified as the preferred option for the resumption of transient testing of nuclear fuel in the United States. In parallel, NNSA’s Global Threat Reduction Initiative (GTRI) Convert program is exploring the needs to replace the existing highly enriched uranium (HEU) core with low enriched uranium (LEU) core. In order to construct a new LEU core, materials and fabrication processes similar to those used in the initial core fabrication must be identified, developed and characterized. In this research, graphite matrix fuel blocks were extruded and materials properties of were measured. Initially the extrusion process followed the historic route; however, the project was expanded to explore methods to increase the graphite content of the fuel blocks and explore modern resins. Materials properties relevant to fuel performance including density, heat capacity and thermal diffusivity were measured. The relationship between process defects and materials properties will be discussed.

  6. A comparative study of ground tire rubber devulcanization using twin screw extruder and internal mixer

    Science.gov (United States)

    Ujianto, O.; Putri, D. B.; Jayatin; AWinarto, D.

    2017-07-01

    Devulcanization of ground tire rubber (GTR) was done using twin screw extruder (TSE) and internal mixer (IM). Processing parameters were varied to analyze its effect on gel content. Fourier Transform Infrared Spectroscopy (FTIR) analysis was performed as qualitative technique to confirm structural change. The devulcanized rubbers with the least gel content percentage produced in both TSE and IM were then used as filler in natural rubber (NR)/coconut coir (CC) composite preparation. Effects of gel content percentage on NR/CC composite tensile strength and elongation at break were analyzed. The results show that the gel content decreased by 41% for sample processed in TSE and 50% in IM compared to control sample. Overall, the devulcanization is influenced by high energy generated by thermal or thermo-mechanical process. FTIR spectra show chemically structural changes of GTR as C=C, CH2, CH3 with higher intensity for IM sample than its counterpart indicated devulcanization. The replacement of GTR to DGTR on NR/CC/GTR composites provided less network structures and resulted better tensile strength and elongation at break.

  7. Flow Behavior and Hot Workability of Pre-Extruded AZ80 Magnesium Alloy

    Science.gov (United States)

    Gao, Lei; Luo, Alan A.; Wang, Shiyi; Zeng, Xiaoqin

    The hot deformation behavior of pre-extruded AZ80 magnesium alloy has been studied using the processing map technique. Compression tests using Gleeble-3800 thermal simulator were performed in the temperature range of 250-450°C and the strain rate range of 0.001-10 s-1. The flow stress data were used to develop processing maps at true strains of -0.1 to -0.8 according to the well-known dynamic material model and instability criterion. A single dynamic recrystallization (DRX) domain occurs in the range of 420-450°C and 0.1-1.0 s-1, which are the optimum forming conditions for the hot working of this alloy. There are two flow instability regimes occurring at 250-450°C and 0.004-10 s-1 and 433-450°C and 0.002-0.014 s-1. The former occurs at low temperatures and/or high strain rates and is associated with adiabatic shear bands or cracks, flow localization, and deformation twinning, while the latter at higher temperatures and lower strain rates is due to abnormal grain growth and wedge cracking.

  8. Parameters affecting enzyme-assisted aqueous extraction of extruded sunflower meal.

    Science.gov (United States)

    Campbell, Kerry A; Vaca-Medina, Guadalupe; Glatz, Charles E; Pontalier, Pierre-Yves

    2016-10-01

    Microscopic observation of sunflower meal before and after extraction indicated that extensive cellular disruption was achieved by extrusion, but that unextracted oil remained sequestered as coalesced oil within the void spaces of disrupted cotyledon cells. A full factorial design experiment was defined to develop aqueous extraction processing (AEP) with and without enzymes to improve vegetable oil extraction yields of extruded sunflower meal. This experimental design studied the influence of four parameters, agitation, liquid/solid (L/S) ratio, and cellulase and protease addition, on extraction yield of lipid and protein. Agitation and addition of cellulases increased oil extraction yield, indicating that emulsification of oil and alteration of the geometry of the confining cellular matrix were important mechanisms for improving yields. Protease and liquid-solid ratio of the extraction mixture did not have significant effects, indicating key differences with previously established soy oil extraction mechanisms. Maximum yields attained for oil and protein extraction were 39% and 90%, respectively, with the aid of a surfactant.

  9. Effect of storage time on the retrogradation of banana starch extrudate.

    Science.gov (United States)

    Bello-Pérez, L A; Ottenhof, M-A; Agama-Acevedo, E; Farhat, I A

    2005-02-23

    Starch was isolated from banana starch and the retrogradation phenomenon was studied using diverse techniques, including an enzymatic measurement. Wide-angle X-ray scattering (WAXS) showed that the sample stored for 7 h presented small peaks and when the storage time increased the peaks increased in intensity. The type of diffraction pattern found in banana extrudates is typical of the A-type crystal polymorph. The crystallinity index from the diffractograms, showed a plateau after approximately 20 h of storage. The short-range order measurement with Fourier transform infrared (FTIR) spectroscopy showed that banana starch retrogradation reached a maximum value at approximately 11 h of storage, a value that agrees with the results obtained with differential scanning calorimetry (DSC), because the maximum enthalpy value (approximately 5 J/g) was calculated in the stored sample for 8 h, without changes in the stored samples for more time. Retrograded resistant starch values did not change after 12 h of storage, obtaining the maximum starch retrogradation level. FTIR, DSC, and the enzymatic technique showed the changes at the molecular level in starch during storage; in the case of WAXS, they determine the long-range order that explains the differences found in the starch retrogradation pattern measurement in banana starch.

  10. Using geographical information system for spatial evaluation of canine extruded disc herniation.

    Science.gov (United States)

    Daraban, Constantin; Murino, Carla; Marzatico, Giuseppe; Mennonna, Giuseppina; Fatone, Gerardo; Auletta, Luigi; Miceli, Fabiana; Vulpe, Vasile; Meomartino, Leonardo

    2014-11-01

    Disc herniation is one of the most common pathologies of the vertebral column in dogs. The aim of this study was to develop a geographical information system (GIS)-based vertebral canal (VC) map useful for spatial evaluation of extruded disc herniation (EDH) in dogs. ArcGIS® was used to create two-dimensional and three-dimensional maps, in which the VC surface is divided into polygons by lines representing latitude and longitude. Actual locations and directions of the herniated disc material were assessed by a series of 142 computer tomographies of dogs collected between 2005 and 2013. Most EDHs were located on the cervical and transitional regions (thoraco-lumbar and lumbo-sacral) and shown at the level of the ventro- cranial and ventro-central polygons created. Choropleth maps, highlighting the distribution and the location/direction patterns of the EDHs throughout the VC, were produced based on the frequency of the ailment. GIS proved to be a valuable tool in analysing EDH in dogs. Further studies are required for biomechanical analysis of EDH patterns.

  11. Thermal inactivation of foot and mouth disease virus in extruded pet food.

    Science.gov (United States)

    Gubbins, S; Forster, J; Clive, S; Schley, D; Zuber, S; Schaaff, J; Corley, D

    2016-12-01

    The risk of importing foot and mouth disease, a highly contagious viral disease of livestock, severely restricts trade and investment opportunities in many developing countries where the virus is present. This study was designed to investigate the inactivation of foot and mouth disease virus (FMDV) by heat treatments used in extruded commercial pet food manufacture. If extrusion could be shown to reliably inactivate the virus, this could potentially facilitate trade for FMDV-endemic countries. The authors found that there was no detectable virus following: i) treatment of FMDVspiked meat slurry at 68°C for 300 s; ii) treatment of FMDV-spiked slurry and meal mix at 79°C for 10 or 30 s, or iii) treatment of homogenised bovine tongue epithelium, taken from an FMDV-infected animal, at 79°C for 10 s. This corresponds to an estimated 8 log10 reduction in titre (95% credible interval: 6 log10 -13 log10). Furthermore, the authors found that the pH of the slurry and meal mix was sufficient to inactivate FMDV in the absence of heat treatment. This demonstrates that heat treatments used in commercial pet food manufacture are able to substantially reduce the titre of FMDV in infected raw materials. © OIE (World Organisation for Animal Health), 2016.

  12. Economic feasibility of hay enriched extruded production as a complete diet for equine

    Directory of Open Access Journals (Sweden)

    Kátia Feltre

    2016-04-01

    Full Text Available The present study aimed to evaluate the economic feasibility of production and commercialization project of Hay Enriched Extruded (HEE as a complete diet for horses. The study was based on survey data and quotation activities involving price from the land preparation (repair, planting and fertilization to the processing of the product at the factory (extrusion and marketing. Transportation costs and taxes were also considered. Discounted Cash Flow (30 years was used to calculate the profitability indicator and the Profit and Loss Statement (PLS. Calculations were developed using Microsoft Office Excel® spreadsheets. Three production scenarios were simulated with different consumer prices: Scenario 1 - equivalent to the complete diet, where the ingredients are supplied together, but purchased separately; Scenario 2 - Considering a value 10% higher than the complete diet; Scenario 3 - Considering a value 20% higher than the complete diet. We observed that the project was economically viable in the three suggested scenarios with positive Net Present Value, Internal Rate of Return greater than 9.4% and payback of 11 to 2 years. The results enable us to conclude that the product may be a promising investment for both product quality and ease of use as the rapid return on invested capital.

  13. Microstructural development of the hot extruded magnesium alloy AZ31 under cyclic testing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Huppmann, Michael; Stark, Sebastian; Reimers, Walter [Technische Univ. Berlin (Germany). Dept. Metallic Materials

    2010-11-15

    A study of the internal strain (stress) evolution during uni-axial cyclic deformation along the prior extrusion axis with fully reversed total constant strain amplitudes {epsilon}{sub A} (0.5% < {epsilon}{sub A} < 5%) was investigated by using in-situ high energy synchrotron X-ray diffraction. The deformation is dominated by {l_brace}10 anti 12{r_brace} left angle 10 anti 11 right angle twinning and detwinning mechanisms within the textured hot extruded magnesium alloy AZ31. The results show a strong load partitioning between the internal stresses of (10 anti 10) and (11 anti 20) parent grains and of the (0002) twinned daughter grains that are relaxed. Following the evolution of the twinning/detwinning behavior and the hkil dependent microstresses as a function of cycling numbers, two different regimes were observed whereby it was found that the transition between these regimes is marked by an applied strain amplitude of {epsilon}{sub A} = 0.625%. (orig.)

  14. Mechanistic modeling of modular co-rotating twin-screw extruders.

    Science.gov (United States)

    Eitzlmayr, Andreas; Koscher, Gerold; Reynolds, Gavin; Huang, Zhenyu; Booth, Jonathan; Shering, Philip; Khinast, Johannes

    2014-10-20

    In this study, we present a one-dimensional (1D) model of the metering zone of a modular, co-rotating twin-screw extruder for pharmaceutical hot melt extrusion (HME). The model accounts for filling ratio, pressure, melt temperature in screw channels and gaps, driving power, torque and the residence time distribution (RTD). It requires two empirical parameters for each screw element to be determined experimentally or numerically using computational fluid dynamics (CFD). The required Nusselt correlation for the heat transfer to the barrel was determined from experimental data. We present results for a fluid with a constant viscosity in comparison to literature data obtained from CFD simulations. Moreover, we show how to incorporate the rheology of a typical, non-Newtonian polymer melt, and present results in comparison to measurements. For both cases, we achieved excellent agreement. Furthermore, we present results for the RTD, based on experimental data from the literature, and found good agreement with simulations, in which the entire HME process was approximated with the metering model, assuming a constant viscosity for the polymer melt.

  15. Artificial neural network modelling of continuous wet granulation using a twin-screw extruder.

    Science.gov (United States)

    Shirazian, Saeed; Kuhs, Manuel; Darwish, Shaza; Croker, Denise; Walker, Gavin M

    2017-04-15

    Computational modelling of twin-screw granulation was conducted by using an artificial neural network (ANN) approach. Various ANN configurations were considered with changing hidden layers, nodes and activation functions to determine the optimum model for the prediction of the process. The neural networks were trained using experimental data obtained for granulation of pure microcrystalline cellulose using a 12mm twin-screw extruder. The experimental data were obtained for various liquid binder (water) to solid ratios, screw speeds, material throughputs, and screw configurations. The granulate particle size distribution, represented by d-values (d10, d50, d90) were considered the response in the experiments and the ANN model. Linear and non-linear activation functions were taken into account in the simulations and more accurate results were obtained for non-linear function in terms of prediction. Moreover, 2 hidden layers with 2 nodes per layer and 3-Fold cross-validation method gave the most accurate simulation. The results revealed that the developed ANN model is capable of predicting granule size distribution in high-shear twin-screw granulation with a high accuracy in different conditions, and can be used for implementation of model predictive control in continuous pharmaceutical manufacturing.

  16. Characterization of Volatile Flavor Compounds in Chinese Rice Wine Fermented from Enzymatic Extruded Rice.

    Science.gov (United States)

    Xu, Enbo; Long, Jie; Wu, Zhengzong; Li, Hongyan; Wang, Fang; Xu, Xueming; Jin, Zhengyu; Jiao, Aiquan

    2015-07-01

    Enzymatic extrusion, instead of traditional steam cooking, to treat rice is an efficient and alternative pretreatment for Chinese rice wine fermentation. In order to determine the formation of volatiles in enzymatic extrusion-processed rice wine (EE), and to confirm its characteristic flavor compounds, headspace solid-phase micro-extraction followed by GC-MS was used. A total of 66 volatile compounds were identified in EE. During fermentation, most volatiles generated from enzymatic extruded rice had the similar trends with those from steam-cooked rice, but the differences in the concentration of volatiles indicated a changed balance of flavors release caused by enzymatic extrusion. Besides, the concentrations and sorts of volatiles in EEs fermented from different rice particle sizes, were not dramatically different. By principal component analysis, EE could be distinctly separated from other traditional Chinese rice wines according to its characteristic volatiles, namely, 2-heptanol, 1-octen-3-ol, ethyl 4-hydroxybenzoate, methylpentyl 2-propenoate, γ-hexalactone, and 4-vinylguaiacol. Enzymatic extrusion liquefaction has been a popular thermal treatment for cereals, and gradually being applied in fermentation and liquor-making industry all over the world. The characterization of volatile flavor compounds in Chinese rice wine processed by enzymatic extrusion liquefaction pretreatment, might be made use not only for a better understanding of this new-type rice wine, but for the further utilization of enzymatic extrusion in other wine or alcohol production as well. © 2015 Institute of Food Technologists®

  17. Setup of Extruded Cementitious Hollow Tubes as Containing/Releasing Devices in Self-Healing Systems.

    Science.gov (United States)

    Formia, Alessandra; Terranova, Salvatore; Antonaci, Paola; Pugno, Nicola Maria; Tulliani, Jean Marc

    2015-04-21

    The aim of this research is to produce self-healing cementitious composites based on the use of cylindrical capsules containing a repairing agent. Cementitious hollow tubes (CHT) having two different internal diameters (of 2 mm and 7.5 mm) were produced by extrusion and used as containers and releasing devices for cement paste/mortar healing agents. Based on the results of preliminary mechanical tests, sodium silicate was selected as the healing agent. The morphological features of several mix designs used to manufacture the extruded hollow tubes, as well as the coatings applied to increase the durability of both core and shell materials are discussed. Three-point bending tests were performed on samples produced with the addition of the above-mentioned cementitious hollow tubes to verify the self-healing effectiveness of the proposed solution. Promising results were achieved, in particular when tubes with a bigger diameter were used. In this case, a substantial strength and stiffness recovery was observed, even in specimens presenting large cracks (>1 mm). The method is inexpensive and simple to scale up; however, further research is needed in view of a final optimization.

  18. Setup of Extruded Cementitious Hollow Tubes as Containing/Releasing Devices in Self-Healing Systems

    Directory of Open Access Journals (Sweden)

    Alessandra Formia

    2015-04-01

    Full Text Available The aim of this research is to produce self-healing cementitious composites based on the use of cylindrical capsules containing a repairing agent. Cementitious hollow tubes (CHT having two different internal diameters (of 2 mm and 7.5 mm were produced by extrusion and used as containers and releasing devices for cement paste/mortar healing agents. Based on the results of preliminary mechanical tests, sodium silicate was selected as the healing agent. The morphological features of several mix designs used to manufacture the extruded hollow tubes, as well as the coatings applied to increase the durability of both core and shell materials are discussed. Three-point bending tests were performed on samples produced with the addition of the above-mentioned cementitious hollow tubes to verify the self-healing effectiveness of the proposed solution. Promising results were achieved, in particular when tubes with a bigger diameter were used. In this case, a substantial strength and stiffness recovery was observed, even in specimens presenting large cracks (>1 mm. The method is inexpensive and simple to scale up; however, further research is needed in view of a final optimization.

  19. Carpathian Shear Corridor - A strike-slip boundary of an extruded crustal segment

    Science.gov (United States)

    Marko, František; Andriessen, Paul A. M.; Tomek, Čestmír; Bezák, Vladimír; Fojtíková, Lucia; Bošanský, Marián; Piovarči, Milan; Reichwalder, Peter

    2017-04-01

    The Carpathian Shear Corridor (CSC), a morphostructurally distinctive ENE-WSW brittle shear zone, is a prominent dynamic interface of crustal fragments shifted during an oblique collision process combined with lateral extrusions in the Late stages of the Western Carpathians tectonic evolution. This tectonics was due to convection in the upper mantle, driven mainly by slab-pull forces related to a subductional process in front of prograding Carpathians. The CSC separates the marginal segment of the Western Carpathians, already firmly attached to the European plate, from the southern still eastwardly moving block. This process led to structural transpositions, anomalous rotation of small blocks and tilting and uplift/subsidence events, resulting in a tectonic style of horst and intramountaine basin alternations within the corridor. Preliminary paleomagnetic data indicate anomalous CCW block rotations within this corridor, and AFT ages indicate Early and Late Miocene (ca 24-22 Ma and ca 10-7 Ma) fault controlled exhumation events triggered by increased shear zone activity. Deep seismic sections, magnetotelluric and gravity data show that CSC follows a frontal ramp of the Western Carpathians thrust over the foreland. The CSC remains an active strike-slip shear zone, and therefore the most important earthquake risk-zone in the Slovakian portion of the Western Carpathians. It presents a lateral ramp transform boundary of eastwardly extruding crustal segment during the Miocene and up to the recent time.

  20. Physical-mechanical, moisture absorption and bioadhesive properties of hydroxypropylcellulose hot-melt extruded films.

    Science.gov (United States)

    Repka, M A; McGinity, J W

    2000-07-01

    The objective of this study was to investigate the moisture absorption, physical-mechanical and bioadhesive properties of hot-melt extruded hydroxypropylcellulose (HPC) films containing polymer additives. These additives included polyethylene glycol (PEG) 5%, polycarbophil 5%, carbomer 5%, Eudragit E-100 5%, and sodium starch glycolate (SSG) 5%. Relative humidity (RH) and temperature parameters of the films studied included 25 degree C at 0, 50, 80 and 100% RH, and 40 degrees C at 0 and 100% RH, stored for 2 weeks. Tensile strength and percent elongation were determined on an Instron according to the ASTM standards. The bioadhesive properties of the HPC/PEG 3350 5% film and the polycarbophil 5% containing films, with and without PEG, were investigated in vivo on the human epidermis. Although all films studied exhibited an increase in percent water content as the percent RH increased, the SSG containing film exhibited an almost three-fold increase in percent water content compared to that of the HPC/PEG film. The temperature storage condition of 40 degrees C/100% RH (versus 25 degrees C/100% RH) increased the percent water content of the SSG containing film. Percent elongation was highest for films containing polycarbophil 5% (without PEG). In addition, the HPC film containing polycarbophil 5% exhibited a greater force of adhesion and elongation at adhesive failure in vivo, and a lower modulus of adhesion when compared to the HPC/PEG film. A novel approach to determine bioadhesion of films to the human epidermis is presented.

  1. Mechanical properties and corrosion resistance of hot extruded Mg–2.5Zn–1Ca alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dexue, E-mail: dexeliu@hotmail.com [State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093-0411 (United States); Guo, Chenggong; Chai, Liqiang [State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); Sherman, Vincent R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093-0411 (United States); Qin, Xiaoqiong; Ding, Yutian [State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); Meyers, Marc A. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093-0411 (United States)

    2015-05-15

    Highlights: • MgZnCa alloy was extruded into precise microtube for resorbable stent applications. • Interconnection between micro-structure and corrosion properties was revealed. • Both strength and ductility were simultaneously improved by processing sequence. • Better corrosion resistance in PBS solution was achieved after grain refining. - Abstract: It is demonstrated that the mechanical properties and corrosion resistance of Mg–2.5 wt%Zn–1 wt%Ca alloy are enhanced by the microstructural changes imparted by hot extrusion. A processing procedure is developed to form hollow tubes with an outer diameter of ∼2.0 mm and wall thickness of ∼0.1 mm, which is well suited for subsequent stent manufacturing. The influence of thermal and mechanical processing on corrosion and plasticity was found to be associated with grain-size reduction and the redistribution of intermetallic particles within the microstructure, providing significant improvement of performance over the cast alloy. Observation of the fracture surfaces reveals a mode transition from brittle (cast) to ductile (processed). Enhanced mechanical properties and decreased resorption rate represent significantly improved performance of this alloy after the novel processing sequence. Based on the improved properties, the produced Mg alloy is more suitable for practical in vivo applications.

  2. Development of Alcoa aluminum foam products

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, J.D.; Crowley, M.D.; Wang, W.; Wilhelmy, D.M.; Hunter, D.E. [Alcoa Technical Center, Alcoa Center, PA (United States)

    2007-07-01

    A new lightweight aluminum foam product was described. The foam was made through the controlled decomposition of carbonate powders within molten aluminum and was able to resist both coalescence and drainage. The fine-celled aluminum foam derived its physical and mechanical properties from the properties of the aluminum alloy matrix from which they were produced. The rheology of the molten aluminum was modified to provide a superior mesostructure. Stabilization was achieved by creating a solid-gas-liquid suspension initiated by the addition of carbonates into an aluminum alloy melt. A cascade of chemical reactions then occurred within the melt to create a foamable suspension. Carbon monoxide (CO) was generated to initiate an additional sequence of chemical reactions which resulted in the formation of solid particles within the liquid metal. CO reacted with liquid Al to form graphite. The graphite then reacted with Al to form aluminum carbide (Al{sub 4}C{sub 3}). The microstructural, mesostructural, and mechanical character of the foams produced under different processing conditions were examined. Details of experimental test procedures were also described. It was concluded that the specific crush energy absorption was as high as 20 kJ/kg. The foam exhibited a bending stiffness that was approximately 20 to 30 times higher than balsa and polymer foams. 14 refs., 2 tabs., 7 figs.

  3. Evaluating the aluminum content of pressed dross

    Science.gov (United States)

    Kevorkijan, V.

    2002-02-01

    Pressing of skimmed hot drosses in a press is a very popular technology for cooling hot dross and obtaining the maximum in-house recovery of aluminum alloy. As a result of the pressing action, part of the molten aluminum alloy is squeezed out, while the rest of the free metal remains in the pressed skulls. Thus, pressed skulls are a valuable waste product, consisting of 30 70 wt.% free aluminum. Other constituents are aluminum oxide and oxides of alloying metals. Pressed skulls are generally valued on a free-metal recovery basis, which necessarily involves practical determination of their free aluminum content. Because most analytical methods are limited to the laboratory level and representative sub-samples, there is a practical interest in developing a routine, cost-effective, and non-destructive method to predict the free aluminum content in entire pressed skulls, based on their density. To develop such a method, a relation between the bulk density, porosity, and free aluminum content of pressed skulls was established. This article offers a review of those experiments and an analysis of their results.

  4. Lead exposure from aluminum cookware in Cameroon

    Energy Technology Data Exchange (ETDEWEB)

    Weidenhamer, Jeffrey D.; Kobunski, Peter A. [Department of Chemistry, Geology and Physics, 401 College Ave., Ashland University, Ashland, OH 44805 (United States); Kuepouo, Gilbert [Research and Education Centre for Development (CREPD), Yaounde (Cameroon); Corbin, Rebecca W. [Department of Chemistry, Geology and Physics, 401 College Ave., Ashland University, Ashland, OH 44805 (United States); Gottesfeld, Perry, E-mail: pgottesfeld@okinternational.org [Occupational Knowledge International, San Francisco, CA (United States)

    2014-10-15

    Blood lead levels have decreased following the removal of lead from gasoline in most of the world. However, numerous recent studies provide evidence that elevated blood lead levels persist in many low and middle-income countries around the world at much higher prevalence than in the more developed countries. One potential source of lead exposure that has not been widely investigated is the leaching of lead from artisanal aluminum cookware, which is commonly used in the developing world. Twenty-nine samples of aluminum cookware and utensils manufactured by local artisans in Cameroon were collected and analyzed for their potential to release lead during cooking. Source materials for this cookware included scrap metal such as engine parts, radiators, cans, and construction materials. The lead content of this cookware is relatively low (< 1000 ppm by X-ray fluorescence), however significant amounts of lead, as well as aluminum and cadmium were released from many of the samples using dilute acetic acid extractions at boiling and ambient temperatures. Potential exposures to lead per serving were estimated to be as high as 260 μg, indicating that such cookware can pose a serious health hazard. We conclude that lead, aluminum and cadmium can migrate from this aluminum cookware during cooking and enter food at levels exceeding recommended public health guidelines. Our results support the need to regulate lead content of materials used to manufacture these pots. Artisanal aluminum cookware may be a major contributor to lead poisoning throughout the developing world. Testing of aluminum cookware in other developing countries is warranted. - Highlights: • Cookware is manufactured in Cameroon from scrap aluminum including car parts. • Twenty-nine cookware samples were evaluated for their potential to leach lead. • Boiling extractions to simulate the effects of cooking released significant lead. • Potential lead exposures per serving are estimated as high as 260 μg.

  5. Intracellular Acid-extruding regulators and the effect of lipopolysaccharide in cultured human renal artery smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Shih-Hurng Loh

    Full Text Available Homeostasis of the intracellular pH (pHi in mammalian cells plays a pivotal role in maintaining cell function. Thus far, the housekeeping Na(+-H(+ exchanger (NHE and the Na(+-HCO3(- co-transporter (NBC have been confirmed in many mammalian cells as major acid extruders. However, the role of acid-extruding regulators in human renal artery smooth muscle cells (HRASMCs remains unclear. It has been demonstrated that lipopolysaccharide (LPS-induced vascular occlusion is associated with the apoptosis, activating calpain and increased [Ca(2+]i that are related to NHE1 activity in endothelia cells. This study determines the acid-extruding mechanisms and the effect of LPS on the resting pHi and active acid extruders in cultured HRASMCs. The mechanism of pHi recovery from intracellular acidosis (induced by NH4Cl-prepulse is determined using BCECF-fluorescence in cultured HRASMCs. It is seen that (a the resting pHi is 7.19 ± 0.03 and 7.10 ± 0.02 for HEPES- and CO2/HCO3(-- buffered solution, respectively; (b apart from the housekeeping NHE1, another Na(+-coupled HCO3(- transporter i.e. NBC, functionally co-exists to achieve acid-equivalent extrusion; (c three different isoforms of NBC: NBCn1 (SLC4A7; electroneutral, NBCe1 (SLC4A4; electrogenic and NBCe2 (SLC4A5, are detected in protein/mRNA level; and (d pHi and NHE protein expression/activity are significantly increased by LPS, in both a dose- and time- dependent manner, but NBCs protein expression is not. In conclusion, it is demonstrated, for the first time, that four pHi acid-extruding regulators: NHE1, NBCn1, NBCe1 and NBCe2, co-exist in cultured HRASMCs. LPS also increases cellular growth, pHi and NHE in a dose- and time-dependent manner.

  6. The Impact of Rendered Protein Meal Oxidation Level on Shelf-Life, Sensory Characteristics, and Acceptability in Extruded Pet Food

    Science.gov (United States)

    Chanadang, Sirichat; Koppel, Kadri; Aldrich, Greg

    2016-01-01

    Simple Summary Sensory analysis was used to determine the changes due to the storage time on extruded pet food prepared from two different rendered protein meals: (i) beef meat and bone meal (BMBM); (ii) chicken byproduct meal (CPBM). Extrusion is a process where feed is pressed through a die in order to create shapes and increase digestibility. Descriptive sensory analysis using a human panel found an increase in undesirable sensory attributes (e.g., oxidized oil, rancid) in extruded pet food over storage time, especially the one prepared from chicken by product meal without antioxidants. The small increase in oxidized and rancid aromas of BMBM samples did not affect pet owners’ acceptability of the products. CPBM samples without antioxidants showed a notable increase in oxidized and rancid aroma over storage time and, thus, affected product acceptability negatively. This finding indicated that human sensory analysis can be used as a tool to track the changes of pet food characteristics due to storage, as well as estimate the shelf-life of the products. Abstract Pet foods are expected to have a shelf-life for 12 months or more. Sensory analysis can be used to determine changes in products and to estimate products’ shelf-life. The objectives of this study were to (1) investigate how increasing levels of oxidation in rendered protein meals used to produce extruded pet food affected the sensory properties and (2) determine the effect of shelf-life on pet owners’ acceptability of extruded pet food diet formulated without the use of preservative. Pet food diets contained beef meat bone meal (BMBM) and chicken byproduct meal (CBPM) in which the oxidation was retarded with ethoxyquin, mixed tocopherols, or none at all, and then extruded into dry pet foods. These samples represented low, medium, and high oxidation levels, respectively. Samples were stored for 0, 3, 6, 9, and 12 months at ambient temperature. Each time point, samples were evaluated by six highly

  7. Explosive welding technique for joining aluminum and steel tubes

    Science.gov (United States)

    Wakefield, M. E.

    1975-01-01

    Silver sheet is wrapped around aluminum portion of joint. Mylar powder box is wrapped over silver sheet. Explosion welds silver to aluminum. Stainless-steel tube is placed over silver-aluminum interface. Mylar powder box, covered with Mylar tape, is wrapped around steel member. Explosion welds steel to silver-aluminum interface.

  8. Nanshan Aluminum Reached Strategic Cooperation with CSR Corporation Limited

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    As a key supplier of aluminum profiles and aluminum plate,sheet and trip products for CSR Corporation Limited,Nanshan Aluminum will join hands with CSR Corporation Limited to reach strategic cooperation.On January 5,Nanshan Aluminum signed strategic cooperation agreement with CSR Sifang Locomotive&Rolling; Stock Co.,Ltd,both

  9. Changes in porosity of foamed aluminum during solidification

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to control the porosity of foamed aluminum, the changes in the porosity of foamed aluminum melt in the processes of foaming and solidification, the distribution of the porosity of foamed aluminum, and the relationship between them were studied. The results indicated that the porosity of foamed aluminum coincides well with the foaming time.

  10. Formulation and method for preparing gels comprising hydrous aluminum oxide

    Science.gov (United States)

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  11. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido

    2005-12-01

    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  12. SEMI-SOLID MICROSTRUCTURE AND ITS EVOLUTION OF WROUGHT ALUMINUM ALLOY BY DIRECTLY HEATING-ISOTHERMAL TREATMENT

    Institute of Scientific and Technical Information of China (English)

    X.T. Liu; J.Z. Cui

    2004-01-01

    Microstructure evolution of wrought aluminum alloy extruded rods and the mechanism of liquid phase formation during reheating were investigated. And the relation between the volume fraction of liquid phase and the recrystallization microstructure was proposed. The results show that increase in reheating temperature and time can augment the volume fraction of liquid phase and accelerate the grain spheroidization, as a result of which the requirement of semi-solid forming can be satisfied. Due to the higher aberration energy of grain boundary, the melting point is lowered as a result of the easy diffusion of atoms. At higher reheating temperature the grain boundary melts, the growth of the recrystallized grain is inhibited and the grain is refined. The composition of the low melt-point phase along the recrystallized grains was determined using EDS. It can be seen from the experimental results that when the extrusion rod of the wrought aluminum alloy is reheated at 610℃ for 20min, perfect fine equiaxial grains can be obtained, the average grain size is about 66.34μm and the volume fraction of solid phase is about 68%.

  13. Microstructure analysis of aluminum extrusion: grain size distribution in AA6060, AA6082 and AA7075 alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schikorra, M.; Tekkaya, A. E. [Institute of Forming Technology and Lightweight Construction, Dortmund (Germany); Donate, L.; Iomesani, L. [University of Bologna, Bologna (Italy)

    2007-10-15

    Microstructure and material flow of aluminum alloys have a significant influence on the mechanical properties and surface quality. In extrusion of aluminum billets at high temperatures the microstructure is dependent on the alloy and the forming and temperature history. A prediction of grain size and precipitation is of increasing importance in order to design the process by adjustment of parameters such as punch speed, temperatures, and quenching. To give references for microstructure prediction based on material flow, and with it strain and strain rate history, this paper deals with the microstructure during the extrusion process of AA6060, AA6082, and AA7075 alloys. Billets have been partly extruded to axisymmetric round profiles and the microstructure of the press rests consisting of the billet rests in container and die has been considered. Furthermore, these rests have been analyzed to show the material flow, dynamic and static recrystallization based on macro etchings and visible microstructure under different conditions, e.g. as in the area of high strain rate near the container wall, or in dead zones. To allow an accurate simulation of the extrusion process, punch force and temperature conditions during the tests have been measured and are presented in this paper, too.

  14. Coordination Structure of Aluminum in Magnesium Aluminum Hydroxide Studied by 27Al NMR

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The coordination structure of aluminum in magnesium aluminum hydroxide was studiedby 27Al NMR. The result showed that tetrahedral aluminum (AlⅣ) existed in magnesiumaluminum hydroxide, and the contents of AlⅣ increased with the increase of the ratio of Al/Mg andwith the peptizing temperature. AlⅣ originated from the so-called Al13 polymer with the structureof one Al tetrahedron surrounded by twelve Al octahedrons.

  15. Elevated temperature crack growth in advanced powder metallurgy aluminum alloys

    Science.gov (United States)

    Porr, William C., Jr.; Gangloff, Richard P.

    1990-01-01

    Rapidly solidified Al-Fe-V-Si powder metallurgy alloy FVS0812 is among the most promising of the elevated temperature aluminum alloys developed in recent years. The ultra fine grain size and high volume fraction of thermally stable dispersoids enable the alloy to maintain tensile properties at elevated temperatures. In contrast, this alloy displays complex and potentially deleterious damage tolerant and time dependent fracture behavior that varies with temperature. J-Integral fracture mechanics were used to determine fracture toughness (K sub IC) and crack growth resistance (tearing modulus, T) of extruded FVS0812 as a function of temperature. The alloy exhibits high fracture properties at room temperature when tested in the LT orientation, due to extensive delamination of prior ribbon particle boundaries perpendicular to the crack front. Delamination results in a loss of through thickness constraint along the crack front, raising the critical stress intensity necessary for precrack initiation. The fracture toughness and tensile ductility of this alloy decrease with increasing temperature, with minima observed at 200 C. This behavior results from minima in the intrinsic toughness of the material, due to dynamic strain aging, and in the extent of prior particle boundary delaminations. At 200 C FVS0812 fails at K levels that are insufficient to cause through thickness delamination. As temperature increases beyond the minimum, strain aging is reduced and delamination returns. For the TL orientation, K (sub IC) decreased and T increased slightly with increasing temperature from 25 to 316 C. Fracture in the TL orientation is governed by prior particle boundary toughness; increased strain localization at these boundaries may result in lower toughness with increasing temperature. Preliminary results demonstrate a complex effect of loading rate on K (sub IC) and T at 175 C, and indicate that the combined effects of time dependent deformation, environment, and strain aging

  16. South West Aluminum: Next year The Capacity of Auto-use Aluminum Sheet will Reach 5000 Tonnes

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Following supplying supporting aluminum products for"Shenzhou"spacecraft,"Long March"rocket,Boeing and Airbus,South West Aluminum again tapped new economic growth points,i.e.automobile-use aluminum products.According to what the reporter has learned from South West Aluminum Group recently,this group has finished early stage

  17. Southwest Aluminum Increase Two Production Lines and May Become the Largest Aluminum Fabricator In the World

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Recently,Wu Bing,Director of Chongqing Economic Committee,announced at the"Industrial Economy Meeting"that the city will"facilitate the technical upgrade and capacity expansion of the existing production lines at Southwest Aluminum with great efforts on the construction of one additional hot continuous rolling line and one cold continuous rolling line so as to have a comprehensive production ca- pacity of 1.2 million tons on aluminum processing profiles for the achievement of building Southwest Aluminum into the world largest aluminum processing enterprise".

  18. Preliminary Study on Aluminum Content of Foods and Aluminum Intake of Residents in Tianjin

    Institute of Scientific and Technical Information of China (English)

    XUGe-Sheng; JINRng-Pei; 等

    1993-01-01

    Aluminum contents of 64 kinds of foods in Tianjin were detrmined.The results showed that the aluminum levels in diffeent kinds of foods varied greatly,and most foodstuffs from natural sources(including contamination from food processing)contained less than 10mg/kg,Aluminum contents were higher in foodstuffs of plant origin,especiallydry beans containing large amounts of aluminum naturally.Lower concentration of aluminum seemed to be present in foodstuffs of animal origin.It was estimated that the potential daily intake of aluminum per person from natural dietary sources in Tianjin was about 3.79 mg.This estimated figure of dietary aluminum intake was very close to the measured data from 24 daily diets of college students.which was 4.86±1.72mg.Considering all the potential sources of natural aluminum in foods.water and the individual habitual food,it would apear that most residents in Tianjin would consume 3-10mg aluminum daily from natural dietary sources.

  19. Aluminum recovery as a product with high added value using aluminum hazardous waste.

    Science.gov (United States)

    David, E; Kopac, J

    2013-10-15

    The samples of hazardous aluminum solid waste such as dross were physically and chemically characterized. A relationship between density, porosity and metal content of dross was established. The paper also examines the chemical reactions involving aluminum dross in landfill and the negative consequences. To avoid environmental problems and to recovery the aluminum, a processing method was developed and aluminum was recovered as an added value product such as alumina. This method refers to a process at low temperature, in more stages: acid leaching, purification, precipitation and calcination. At the end of this process aluminum was extracted, first as Al(3+) soluble ions and final as alumina product. The composition of the aluminum dross and alumina powder obtained were measured by applying the leaching tests, using atomic absorption spectrometry (AAS) and chemical analysis. The mineralogical composition of aluminum dross samples and alumina product were determined by X-ray diffraction (XRD) and the morphological characterization was performed by scanning electron microscopy (SEM). The method presented in this work allows the use of hazardous aluminum solid waste as raw material to recover an important fraction from soluble aluminum content as an added value product, alumina, with high grade purity (99.28%). Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Experimental Design for Evaluation of Co-extruded Refractory Metal/Nickel Base Superalloy Joints

    Energy Technology Data Exchange (ETDEWEB)

    ME Petrichek

    2005-12-16

    a critical thickness (0.0005 in.). A diffusion barrier that exceeded this thickness would likely fail. The joint fabrication method must therefore mechanically bond the two materials causing little or no interdiffusion upon formation. Co-extrusion fits this description since it forms a mechanical joint between two materials by using heat and pressure. The two materials to be extruded are first assembled and sealed within a co-extrusion billet which is subsequently heated and then extruded through a die. For a production application, once the joint is formed, it is dejacketed to remove the outer canister. The remaining piece consists of two materials bonded together with a thin diffusion barrier. Therefore, the long-term stability of the joint is determined primarily by the kinetics of interdiffusion reaction between the two materials. An experimental design for co-extrusion of refractory metals and nickel-based superalloys was developed to evaluate this joining process and determine the long-term stability of the joints.

  1. Over-heated Investment in Aluminum Hub Industry

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>Aluminum hub is one of typical products with the comparative advantages.China’s aluminum hub industry is very competitive.In recent years,the value of export for the aluminum hub soared,increasing from USD130 millions in 1999 up to nearly USD1 billion in 2004.The main exporter are Wanfeng Auto Holding Group,Shanghai Fervent Alloy Wheel MFG Co.,Ltd.,Nanhai Zhongnan Aluminum Co., Ltd.,Taian Huatai Aluminum Hub Co.,Ltd.

  2. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Shor, Lauren; Gueceri, Selcuk; Chang, Robert; Sun Wei [Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA (United States); Gordon, Jennifer; Kang Qian; Hartsock, Langdon; An Yuehuei [Department of Orthopedic Surgery, Medical University of South Carolina, Charleston, SC (United States)], E-mail: st963bya@drexel.edu, E-mail: guceri@drexel.edu, E-mail: rcc34@drexel.edu, E-mail: sunwei@drexel.edu, E-mail: kangqk@musc.edu, E-mail: hartsock@musc.edu, E-mail: any@musc.edu

    2009-03-01

    Bone tissue engineering is an emerging field providing viable substitutes for bone regeneration. Recent advances have allowed scientists and engineers to develop scaffolds for guided bone growth. However, success requires scaffolds to have specific macroscopic geometries and internal architectures conducive to biological and biophysical functions. Freeform fabrication provides an effective process tool to manufacture three-dimensional porous scaffolds with complex shapes and designed properties. A novel precision extruding deposition (PED) technique was developed to fabricate polycaprolactone (PCL) scaffolds. It was possible to manufacture scaffolds with a controlled pore size of 350 {mu}m with designed structural orientations using this method. The scaffold morphology, internal micro-architecture and mechanical properties were evaluated using scanning electron microscopy (SEM), micro-computed tomography (micro-CT) and mechanical testing, respectively. An in vitro cell-scaffold interaction study was carried out using primary fetal bovine osteoblasts. Specifically, the cell proliferation and differentiation was evaluated by Alamar Blue assay for cell metabolic activity, alkaline phosphatase activity and osteoblast production of calcium. An in vivo study was performed on nude mice to determine the capability of osteoblast-seeded PCL to induce osteogenesis. Each scaffold was implanted subcutaneously in nude mice and, following sacrifice, was explanted at one of a series of time intervals. The explants were then evaluated histologically for possible areas of osseointegration. Microscopy and radiological examination showed multiple areas of osseous ingrowth suggesting that the osteoblast-seeded PCL scaffolds evoke osteogenesis in vivo. These studies demonstrated the viability of the PED process to fabricate PCL scaffolds having the necessary mechanical properties, structural integrity, and controlled pore size and interconnectivity desired for bone tissue engineering.

  3. Strain-hardening and warm deformation behaviors of extruded Mg–Sn–Yb alloy sheet

    Directory of Open Access Journals (Sweden)

    Jing Jiang

    2014-06-01

    Full Text Available Strain-hardening and warm deformation behaviors of extruded Mg–2Sn–0.5Yb alloy (at.% sheet were investigated in uniaxial tensile test at temperatures of 25–250 °C and strain rates of 1 × 10−3 s−1–0.1 s−1. The data fit with the Kocks–Mecking type plots were used to show different stages of strain hardening. Besides III-stage and IV-stage, the absence of the II-stage strain hardening at room temperature should be related to the sufficient dynamic recrystallization during extrusion. The decrease of strain hardening ability of the alloy after yielding was attributed to the reduction of dislocation density with increasing testing temperature. Strain rate sensitivity (SRS was significantly enhanced with increasing temperature, and the corresponding m-value was calculated as 0.07–0.12, which indicated that the deformation mechanism was dominated by the climb-controlled dislocation creep at 200 °C. Furthermore, the grain boundary sliding (GBS was activated at 250 °C, which contributed to the higher SRS. The activation energy was calculated as 213.67 kJ mol−1, which was higher than that of lattice diffusion or grain boundary self-diffusion. In addition, the alloy exhibited a quasi superplasticity at 250 °C with a strain rate of 1 × 10−3 s−1, which was mainly related to the fine microstructure and the presence of the Mg2Sn and Mg2(Sn,Yb particles.

  4. Enhanced superplasticity in an extruded high strength Mg–Gd–Y–Zr alloy with Ag addition

    Energy Technology Data Exchange (ETDEWEB)

    Movahedi-Rad, A. [School of Metallurgical and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Mahmudi, R., E-mail: mahmudi@ut.ac.ir [School of Metallurgical and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Wu, G.H.; Jafari Nodooshan, H.R. [National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-03-25

    Highlights: • Addition of 2% Ag to the base alloy refined the microstructure and increased m-value. • Volume fractions of both high angle grain boundaries and particles increased after Ag addition. • Ag-containing alloy had an m-value of 0.51, typical of superplastic materials. • Grain boundary sliding accommodated by lattice diffusion was the dominant deformation mechanism. - Abstract: The effect of 2 wt% Ag addition on the superplastic behavior of an extruded Mg–8.5Gd–2.5Y–0.5Zr (wt%) alloy was investigated by impression testing in the temperature range of 523–598 K. The average sizes of the dynamically recrystallized grains of the Ag-free and Ag-containing alloys were about 8 and 3 μm, respectively. Analysis of electron backscattered diffraction (EBSD) data confirmed the higher fractions of high-angle grain boundaries (HAGBs) in the Ag-containing alloy. The deformation response of this alloy in proper temperature range conforms to regions I, II and III, typical of superplastic deformation behavior. The addition of Ag to the base alloys led to enhanced superplasticity in region II by increasing the strain rate sensitivity (SRS) indices (m-values) from 0.25 to 0.51 and 0.36 to 0.46 at 573 and 598 K, respectively. These high m-values together with the activation energy of 181 kJ/mol suggest that the major mechanism involved in superplastic deformation is grain boundary sliding (GBS) accommodated by lattice diffusion at temperatures above 573 K.

  5. Comparison of clinical parameters in captive Cracidae fed traditional and extruded diets.

    Science.gov (United States)

    Candido, Marcus Vinicius; Silva, Louise C C; Moura, Joelma; Bona, Tania D M M; Montiani-Ferreira, Fabiano; Santin, Elizabeth

    2011-09-01

    The Cracidae family of neotropical birds is regarded as one of the most severely threatened in the world. They traditionally have been extensively hunted, and, thus, ex situ efforts for their conservation are recommended and involve the optimization of their care in captivity. Nutrition is a fundamental aspect of husbandry, which influences survival and reproduction in captivity. In this study, a total of 29 animals, including 3 species (Penelope obscura, Penelope superciliaris, and Aburria jacutinga), were subjected to monthly physical examination and blood sampling before and after dietary conversion from the traditional diet of broiler feed, fruits, and vegetables to a nutritionally balanced commercial diet specifically designed for wild Galliformes. The diet change produced differences in several parameters tested, including an increase (P cell volume, and body weight were observed in P. obscura, with a concomitant decrease in the standard deviation for such parameters that show improved uniformity. Globulins and lipase also were reduced (P < 0.05) in P. obscura. Although leukocyte count was lowered and eosinophils were increased in all 3 species after dietary conversion, only these 2 changes were significant (P < 0.05) in P. superciliaris. A. jacutinga had higher (P < 0.05) blood glucose concentrations than the other species, but diet had no effect on this parameter. Blood uric acid concentrations were higher (P < 0.05) after conversion to the commercial diet in P superciliaris. The provision of a commercial extruded diet as a single food source was beneficial, which led to a general improvement in clinical aspects and group uniformity in these 3 species of Cracidae.

  6. Soybean oil and beef tallow in dry extruded diets for adult dogs.

    Science.gov (United States)

    Marx, Fábio Ritter; Trevizan, Luciano; Ahlstrøm, Øystein; Kessler, Alexandre de Mello

    2015-01-01

    The aim of the study was to determine the effects of two different fat sources (soybean oil (SO) and beef tallow (BT)) in dry extruded dog diets on the intake of food and metabolizable energy (ME), on faecal characteristics and apparent total tract digestibility (ATTD) of nutrients and energy. Ten adult dogs of different breeds were used in a Latin square design. Five experimental diets were designed from a basal diet. A Control diet was coated with 1% SO and four other diets were obtained by coating the basal diet with 6.5% and 13% of SO or BT. The Control, 6.5% and 13% coated diets contained approximately 8.5%, 15% and 20% fat, respectively. The dogs had similar dry matter (DM) intakes and, consequently, higher ME intakes with an increased fat content for both sources (p < 0.05). Fat digestibility was highest for Diet SO13% (p < 0.05). The ATTD of DM and organic matter was highest (p < 0.05) for Diets SO13% and BT13%. Fat coating improved the faecal score, especially for Diet BT13%. The dietary ratios of protein:fat:carbohydrate [% of ME] were close to AAFCO's estimates. For SO a higher ATTD (99.1%) and ME content (38.88 MJ/kg) was estimated than for BT (ATTD 92.9% and 36.37 MJ ME/kg). Both SO and BT can comprise up to 13% of the diet. However, SO was more susceptible to leaking from the kibbles with the coating method applied.

  7. Electrical and Thermal Properties of Twin-Screw Extruded Multiwalled Carbon Nanotube/Epoxy Composites

    Science.gov (United States)

    Karippal, Jeena Jose; Narasimha Murthy, H. N.; Rai, K. S.; Krishna, M.; Sreejith, M.

    2010-11-01

    This paper presents the experimental results of dispersing multiwalled carbon nanotubes (MWNTs) into epoxy (space grade structural adhesive) nanocomposites using co-rotating twin screw extrusion process. Two sets of specimens were prepared; set 1 with ultrasonication for predispersing MWNT before extrusion and set 2 direct dispersion of MWNT in the extruder. MWNT was loaded up to 8 vol.% in both the sets. The specimens were characterized for room temperature volume and surface resistivities as per ASTM D257 using Keithley Model 6517 and for thermal conductivity in the temperature range -50 to 150 °C as per ASTM E 1530 using Thermal Conductivity Instrument (TCI) 2022 SX211. The volume resistivity of sets 1 and 2 decreased to an extent of 1011 and 109 respectively. The surface resistivity drop was of the order of 109 for both the sets. These drops corresponded to the maximum MWNT loading of 8 vol.%. Electrical conductivity values of the specimens were fitted into the Power Law Model to evaluate the critical exponent. Both sets 1 and 2 showed increase in thermal conductivity with increase in temperature in the testing range. Thermal conductivity increased with increase in filler loading and the maximum increase was 60% at 150 °C in case of 8 vol.% MWNT nanocomposites for set 1. The corresponding value for the set 2 was 25%. Thermal conductivity values were predicted using Lewis Nielson model. DSC of the specimens showed increase in glass transition temperature with increase in filler loading. The dispersion of the nanofillers was studied using SEM and the surface morphology using AFM.

  8. Effect of an extruded pea or rice diet on postprandial insulin and cardiovascular responses in dogs.

    Science.gov (United States)

    Adolphe, J L; Drew, M D; Silver, T I; Fouhse, J; Childs, H; Weber, L P

    2015-08-01

    Peas are increasing in popularity as a source of carbohydrate, protein and fibre in extruded canine diets. The aim of this study was to test the health effects of two canine diets with identical macronutrient profiles, but containing either yellow field peas or white rice as the carbohydrate source on metabolism, cardiovascular outcomes and adiposity. First, the acute glycemic, insulinemic and cardiovascular responses to the pea- or rice-based diets were determined in normal weight beagles (n = 7 dogs). The glycemic index did not differ between the pea diet (56 ± 12) and rice diet (63 ± 9). Next, obese beagles (n = 9) were fed the yellow field pea diet or white rice diet ad libitum for 12 weeks in a crossover study. Adiposity (measured using computed tomography), metabolic (oral glucose tolerance test, plasma leptin, adiponectin, C-reactive protein) and cardiovascular assessments (echocardiography and blood pressure) were performed before and after each crossover study period. After 12 weeks on each diet, peak insulin (p = 0.05) and area under the curve (AUC) for insulin after a 10 g oral glucose tolerance test (p = 0.05) were lower with the pea than the rice diet. Diet did not show a significant effect on body weight, fat distribution, cardiovascular variables, adiponectin or leptin. In conclusion, a diet containing yellow field peas reduced the postprandial insulin response after glucose challenge in dogs despite continued obesity, indicating improved metabolic health.

  9. Destruction behavior of hexabromocyclododecanes during incineration of solid waste containing expanded and extruded polystyrene insulation foams.

    Science.gov (United States)

    Takigami, Hidetaka; Watanabe, Mafumi; Kajiwara, Natsuko

    2014-12-01

    Hexabromocyclododecanes (HBCDs) have been used for flame retardation mainly in expanded polystyrene (EPS) and extruded polystyrene (XPS) insulation foams. Controlled incineration experiments with solid wastes containing each of EPS and XPS were conducted using a pilot-scale incinerator to investigate the destruction behavior of HBCDs and their influence on the formation of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/DFs). EPS and XPS materials were respectively blended with refuse derived fuel (RDF) as input wastes for incineration. Concentrations of HBCDs contained in the EPS- and XPS-added RDFs, were 140 and 1100 mg kg(-1), respectively. In which γ-HBCD was dominant (68% of the total HBCD content) in EPS-added RDF and α-HBCD accounted for 73% of the total HBCDs in XPS-added RDF. During the incineration experiments with EPS and XPS, primary and secondary combustion zones were maintained at temperatures of 840 °C and 900 °C. The residence times of waste in the primary combustion zone and flue gas in the secondary combustion zone was 30 min and three seconds, respectively. HBCDs were steadily degraded in the combustion chambers and α-, β-, and γ-HBCD behaved similarly. Concentration levels of the total HBCDs in the bag filter exit gas for the two experiments with EPS and XPS were 0.7 and 0.6ngmN(-3), respectively. HBCDs were also not detected (polystyrene is increased in the input wastes just to make sure of formation prevention and emission control of PBDD/DFs. The concentrations and congener patterns of PCDD/DFs and dl-PCBs in the samples during the three experiments were not affected by an addition of HBCDs.

  10. Twin Screw Extruders as Continuous Mixers for Thermal Processing: a Technical and Historical Perspective.

    Science.gov (United States)

    Martin, Charlie

    2016-02-01

    Developed approximately 100 years ago for natural rubber/plastics applications, processes via twin screw extrusion (TSE) now generate some of the most cutting-edge drug delivery systems available. After 25 or so years of usage in pharmaceutical environments, it has become evident why TSE processing offers significant advantages as compared to other manufacturing techniques. The well-characterized nature of the TSE process lends itself to ease of scale-up and process optimization while also affording the benefits of continuous manufacturing. Interestingly, the evolution of twin screw extrusion for pharmaceutical products has followed a similar path as previously trodden by plastics processing pioneers. Almost every plastic has been processed at some stage in the manufacturing train on a twin screw extruder, which is utilized to mix materials together to impart desired properties into a final part. The evolution of processing via TSEs since the early/mid 1900s is recounted for plastics and also for pharmaceuticals from the late 1980s until today. The similarities are apparent. The basic theory and development of continuous mixing via corotating and counterrotating TSEs for plastics and drug is also described. The similarities between plastics and pharmaceutical applications are striking. The superior mixing characteristics inherent with a TSE have allowed this device to dominate other continuous mixers and spurred intensive development efforts and experimentation that spawned highly engineered formulations for the commodity and high-tech plastic products we use every day. Today, twin screw extrusion is a battle hardened, well-proven, manufacturing process that has been validated in 24-h/day industrial settings. The same thing is happening today with new extrusion technologies being applied to advanced drug delivery systems to facilitate commodity, targeted, and alternative delivery systems. It seems that the "extrusion evolution" will continue for wide

  11. China Aluminum Processing Industry Development Report 2011

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>In 2011,China’s aluminum processing industry maintained a high growth rate,with the aluminum output reaching 23,456,000tons,up 20.6% y-o-y.Overshadowed by complicated situation both at home and abroad,China’seconomy slowed down and declined by2.2% y-o-y.In 2011,China’s aluminum processing industry showed a downward tendency,that is,it grew at a high speed before the3rd quarter,but suffered from a shortage of orders in the remaining time of the year and the growth rate fell increasingly.Between January and August,China’s aluminum output rose by 26% y-o-y;

  12. Small-scale explosive welding of aluminum

    Science.gov (United States)

    Bement, L. J.

    1972-01-01

    Welding technique uses very small quantities of explosive ribbon to accomplish small-scale lap-welding of aluminum plates. Technique can perform small controlled welding with no length limitations and requires minimal protective shielding.

  13. Shock wave compression behavior of aluminum foam

    Institute of Scientific and Technical Information of China (English)

    程和法; 黄笑梅; 薛国宪; 韩福生

    2003-01-01

    The shock wave compression behavior of the open cell aluminum foam with relative density of 0. 396 was studied through planar impact experiments. Using polyvinylidene fluoride(PVDF) piezoelectric gauge technique, the stress histories and propagation velocities of shock wave in the aluminum foam were measured and analyzed. The results show that the amplitude of shock wave attenuates rapidly with increasing the propagation distance in the aluminum foam, and an exponential equation of the normalized peak stress vs propagation distance of shock wave is established, the attenuation factor in the equation is 0. 286. Furthermore, the Hugoniot relation, νs = 516.85+ 1.27νp,for the aluminum foam is determined by empirical fit to the experimental Hugoniot data.

  14. Dry lubricant films for aluminum forming.

    Energy Technology Data Exchange (ETDEWEB)

    Wei, J.; Erdemir, A.; Fenske, G. R.

    1999-03-30

    During metal forming process, lubricants are crucial to prevent direct contact, adhesion, transfer and scuffing of workpiece materials and tools. Boric acid films can be firmly adhered to the clean aluminum surfaces by spraying their methanol solutions and provide extremely low friction coefficient (about 0.04). The cohesion strengths of the bonded films vary with the types of aluminum alloys (6061, 6111 and 5754). The sheet metal forming tests indicate that boric acid films and the combined films of boric acid and mineral oil can create larger strains than the commercial liquid and solid lubricants, showing that they possess excellent lubricities for aluminum forming. SEM analyses indicate that boric acid dry films separate the workpiece and die materials, and prevent their direct contact and preserve their surface qualities. Since boric acid is non-toxic and easily removed by water, it can be expected that boric acid films are environmentally friendly, cost effective and very efficient lubricants for sheet aluminum cold forming.

  15. Masking of aluminum surface against anodizing

    Science.gov (United States)

    Crawford, G. B.; Thompson, R. E.

    1969-01-01

    Masking material and a thickening agent preserve limited unanodized areas when aluminum surfaces are anodized with chromic acid. For protection of large areas it combines well with a certain self-adhesive plastic tape.

  16. Aluminum plasmonic multicolor meta-hologram.

    Science.gov (United States)

    Huang, Yao-Wei; Chen, Wei Ting; Tsai, Wei-Yi; Wu, Pin Chieh; Wang, Chih-Ming; Sun, Greg; Tsai, Din Ping

    2015-05-13

    We report a phase-modulated multicolor meta-hologram (MCMH) that is polarization-dependent and capable of producing images in three primary colors. The MCMH structure is made of aluminum nanorods that are arranged in a two-dimensional array of pixels with surface plasmon resonances in red, green, and blue. The aluminum nanorod array is patterned on a 30 nm thick SiO2 spacer layer sputtered on top of a 130 nm thick aluminum mirror. With proper design of the structure, we obtain resonances of narrow bandwidths to allow for implementation of the multicolor scheme. Taking into account of the wavelength dependence of the diffraction angle, we can project images to specific locations with predetermined size and order. With tuning of aluminum nanorod size, we demonstrate that the image color can be continuously varied across the visible spectrum.

  17. Inhibition of aluminum corrosion using Opuntia extract

    Energy Technology Data Exchange (ETDEWEB)

    El-Etre, A.Y

    2003-11-01

    The inhibitive action of the mucilage extracted from the modified stems of prickly pears, toward acid corrosion of aluminum, is tested using weight loss, thermometry, hydrogen evolution and polarization techniques. It was found that the extract acts as a good corrosion inhibitor for aluminum corrosion in 2.0 M HCl solution. The inhibition action of the extract was discussed in view of Langmuir adsorption isotherm. It was found that the adsorption of the extract on aluminum surface is a spontaneous process. The inhibition efficiency (IE) increases as the extract concentration is increased. The effect of temperature on the IE was studied. It was found that the presence of extract increases the activation energy of the corrosion reaction. Moreover, the thermodynamic parameters of the adsorption process were calculated. It was found also that the Opuntia extract provides a good protection to aluminum against pitting corrosion in chloride ion containing solutions.

  18. Profit of Aluminum Industry Dropped Sharply

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>On August 2nd,the Ministry of Industry and Information Technology published the performance of nonferrous metal industry in the first half of 2011.Relevant data showed that due to cost increase,aluminum smelting enter

  19. Aluminum-CNF Lightweight Radiator Components Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal relates to a new materials concept for an aluminum-carbon nanofiber composite, high thermal conductivity ultra lightweight material that will form the...

  20. Dynamic rupture and crushing of an extruded tube using artificial neural network (ANN) approximation method

    Institute of Scientific and Technical Information of China (English)

    Javad Marzbanrad; Behrooz Mashadi; Amir Afkar; Mostafa Pahlavani

    2016-01-01

    A numerical study of the crushing of thin-walled circular aluminum tubes has been carried out to investigate the crashworthiness behaviors under axial impact loading. These kinds of tubes are usually used in automobile and train structures to absorb the impact energy. Previous researches show that thin-walled circular tube has the highest energy absorption under axial impact amongst different structures. In this work, the crushing between two rigid flat plates and the tube rupture by 4 and 6 blades cutting tools is modeled with the help of ductile failure criterion using the numerical method. The tube material is aluminum EN AW-7108 T6 and its length and diameter are 300 mm and 50 mm, respectively. Using the artificial neural network (ANN), the most important surfaces of energy absorption parameters, including the maximum displacement of the striker, the maximum axial force, the specific energy absorption and the crushing force efficiency in terms of impact velocity and tube thickness are obtained and compared to each other. The analyses show that the tube rupture by the 6 blades cutting tool has more energy absorption in comparison with others. Furthermore, the results demonstrate that tube cutting with the help of multi-blades cutting tools is more stable, controllable and predictable than tube folding.

  1. Transfer and transport of aluminum in filtration unit

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Aluminum salt coagulants were used prevalently in various water works. In this article, the effects of filtration on residual aluminum concentration and species distribution were researched by determining the concentration of different Aluminum species before and after single layer filter, double layer filter, and membrane filtration units. In the research, size exclusion chromatography (SEC) was used to separate colloidal and soluble aluminum, ion exchange chromatography (IEC) was used to separate organic and inorganic aluminum, and inductivity coupled plasma-atomic emission spectrometry (ICP-AES) was used to determine the aluminum concentration. The results showed that the rapid filtration process had the ability of removing residual aluminum from coagulant effluent water, and that double layer filtration was more effective in residual aluminum removal than single layer filtration, while Nano filtration was more effective than micro filtration. It was found that when the residual aluminum concentration was below 1mg/L in sediment effluent, the residual aluminum concentration in treated water was above 0.2 mg/L. The direct rapid filtration process mainly removed the suspended aluminum. The removal of soluble and colloidal aluminum was always less than 10% and the natural small particles that adsorbed the amount of soluble or small particles aluminum on their surface were difficult to be removed in this process. Micro filtration and nano filtration were good technologies for removing aluminum; the residual aluminum concentration in the effluent was less than 0.05 mg/L.

  2. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T(e and N(e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T(e and N(e for the aluminum in aluminum alloys using an optical fiber probe.

  3. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T e and N e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T e and N e for aluminum in aluminum alloys as a marker for the correct alloying using an optical fiber probe.

  4. Advanced powder metallurgy aluminum alloys and composites

    Science.gov (United States)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  5. Effect of Fe on Microstructure and Properties of 8xxx Aluminum Conductor Alloys

    Science.gov (United States)

    Pan, Lei; Liu, Kun; Breton, Francis; -Grant Chen, X.

    2016-12-01

    The effect of Fe contents (0.3-0.7 wt.%) on the microstructure, electrical conductivity, mechanical and creep properties of 8xxx aluminum conductor alloys was investigated. Results revealed that the as-cast microstructure of 8xxx alloys was consisted of equiaxed α-Al grains and secondary Fe-rich intermetallics distributed in the interdendritic region. The extruded microstructure showed partially recrystallized structure for 0.3% Fe alloy but only dynamically recovered structures for 0.5 and 0.7% Fe alloys. With increasing Fe contents, the ultimate tensile strength and yield strength were remarkably improved, while the electrical conductivity was slightly decreased. Moreover, the creep resistance was greatly improved, which is attributed to the larger volume fraction of fine intermetallic particles and smaller subgrain size in the higher Fe-containing alloys. The creep threshold stress was found to increase from 24.6 to 33.9 MPa with increasing Fe contents from 0.3 to 0.7%, respectively. The true stress exponent values were close to 3 for all three experimental alloys, indicating that the creep mechanism of 8xxx alloys was controlled by dislocation glide.

  6. Using B4C Nanoparticles to Enhance Thermal and Mechanical Response of Aluminum

    Directory of Open Access Journals (Sweden)

    Fareeha Ubaid

    2017-06-01

    Full Text Available In this work, Al-B4C nanocomposites were produced by microwave sintering and followed by hot extrusion processes. The influence of ceramic reinforcement (B4C nanoparticles on the physical, microstructural, mechanical, and thermal characteristics of the extruded Al-B4C nanocomposites was investigated. It was observed that the density decreased and porosity increased with an increase in B4C content in aluminum matrix. The porosity of the composites increased whereas density decreased with increasing B4C content. Electron microscopy analysis reveals the uniform distribution of B4C nanoparticles in the Al matrix. Mechanical characterization results revealed that hardness, elastic modulus, compression, and tensile strengths increased whereas ductility decreases with increasing B4C content. Al-1.0 vol. % B4C nanocomposite exhibited best hardness (135.56 Hv, Young’s modulus (88.63 GPa, and compression/tensile strength (524.67/194.41 MPa among the materials investigated. Further, coefficient of thermal expansion (CTE of composites gradually decreased with an increase in B4C content.

  7. Plasma ARC keyhole welding of aluminum

    Science.gov (United States)

    Fostervoll, H.

    1993-02-01

    An increasing and more advanced use of aluminum as a construction material make higher demands to the effectiveness and quality in aluminum joining. Furthermore, if the advantages of aluminum shall be exploited in the best possible way, it is necessary to use the best processes available for the certain application. Today, the most widely used processes of aluminum welding are gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW). Plasma arc welding (PAW) is another interesting process, which is rather newly adopted for aluminum welding. However, up to now the use is limited and most of the users are within the space industry in USA (NASA); also the new space industry in Europe has adopted the process. The reason for the great interest for PAW in the space industry is, according to NASA, higher weld quality and less repair costs, less heat distortion, and less groove preparations costs. Of these reasons, PAW should also be of interest for the aluminum industry in Scandinavia. The aim of the project is to focus on the possibilities and to some extent testing the PAW process.

  8. Studies of aluminum in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using /sup 14/C autoradiography to measure the uptake of /sup 14/C 2-deoxy-D-glucose (/sup 14/C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-..mu..m resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The /sup 14/C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of /sup 14/C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10/sup 9/ Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab.

  9. 操作参数对双螺杆挤压机挤压效果影响的研究%Study on Operation Parameters of Extruding Grain Mixes by a Twin-Screw Extruder

    Institute of Scientific and Technical Information of China (English)

    杨绮云; 李德溥; 徐克非

    2001-01-01

    通过实验研究了荞麦、黑米、薏米三种谷物的混合物料为原料时,双螺杆挤压机的螺杆转速、物料湿度、机筒温度三种操作参数对双螺杆挤压机的挤压膨化效果(以糊化度衡量)的影响。依据可旋转中心组合实验设计及实验数据建立了相关的统计模型,通过对响应面和等高线的分析,得出了三种操作参数的最佳取值范围。本实验研究对于开发谷物膨化食品、探索双螺杆挤压机加工谷物原料的挤压机理具有重要的现实意义。%Abstract The effects of varying screw speed, barrel temperatureand moisture content on extrusion quality(expressed as degree of dextrinization)of materials comprised of buckwheat, melan-rice and coix were studied by using a co-rotating twin-screw extruder. The statistical model was established by using a rotate central composite design and response surface methodology. The operation parameters were conducted by triaxial contour map and isohypsic analysis. The experiment results showed great significance of exploitation of grist extrudate and the mechanism of the twin-screw extruder.

  10. Biodiscovery of aluminum binding peptides

    Science.gov (United States)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra

    2013-05-01

    Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.

  11. Nanostructures Using Anodic Aluminum Oxide

    Science.gov (United States)

    Valmianski, Ilya; Monton, Carlos M.; Pereiro, Juan; Basaran, Ali C.; Schuller, Ivan K.

    2013-03-01

    We present two fabrication methods for asymmetric mesoscopic dot arrays over macroscopic areas using anodic aluminum oxide templates. In the first approach, metal is deposited at 45o to the template axis to partially close the pores and produce an elliptical shadow-mask. In the second approach, now underway, nanoimprint lithography on a polymer intermediary layer is followed by reactive ion etching to generate asymmetric pore seeds. Both these techniques are quantified by an analysis of the lateral morphology and lattice of the pores or dots using scanning electron microscopy and a newly developed MATLAB based code (available for free download at http://ischuller.ucsd.edu). The code automatically provides a segmentation of the measured area and the statistics of morphological properties such as area, diameter, and eccentricity, as well as the lattice properties such as number of nearest neighbors, and unbiased angular and radial two point correlation functions. Furthermore, novel user defined statistics can be easily obtained. We will additionally present several applications of these methods to superconducting, ferromagnetic, and organic nanostructures. This work is supported by AFOSR FA9550-10-1-0409

  12. Effects of different cooling rates during two casting processes on the microstructures and mechanical properties of extruded Mg-Al-Ca-Mn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S.W., E-mail: xushiwei@stn.nagaokaut.ac.jp [Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka 940-2188 (Japan); Oh-ishi, K.; Kamado, S.; Takahashi, H.; Homma, T. [Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka 940-2188 (Japan)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer Ordered monolayer GP zone was formed by increasing cooling rate. Black-Right-Pointing-Pointer Finer extruded microstructure was obtained by increasing cooling rate. Black-Right-Pointing-Pointer Higher number density precipitates was obtained by increasing cooling rate. Black-Right-Pointing-Pointer Tensile 0.2% proof stress was increased by 105 MPa by increasing cooling rate. Black-Right-Pointing-Pointer Extruded DC-cast alloy shows higher tensile 0.2% proof stress of 409 MPa. - Abstract: In this study, Mg-3.6Al-3.4Ca-0.3Mn (wt.%) (which is denoted AXM4303) alloy ingots were prepared by two casting processes with different cooling rates: permanent mold (PM) casting, which has a lower cooling rate of 10-20 Degree-Sign C/s and direct chill (DC) casting, which has a higher cooling rate of 100-110 Degree-Sign C/s. Then, these two types of AXM4303 alloy ingots were hot extruded at 400 Degree-Sign C under the same conditions. The microstructures of the as-cast and extruded alloy samples were systematically investigated by field-emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM) and electron backscattered diffraction (EBSD) systems. The effects of the different cooling rates during the casting process on the microstructures and mechanical properties of the extruded AXM4303 alloy samples were evaluated. The results show that the strength of the extruded Mg-Al-Ca-Mn alloy can be substantially increased by microstructural control during the casting process. Because the cooling rate of the DC casting process is much faster than the cooling rate of PM casting, the DC-cast AXM4303 has the following properties: (i) the lamellar eutectic structure and dendrite cell size are significantly refined, (ii) the ordered monolayer GP zones enriched with Al and Ca nucleate with no growth, and (iii) most of the Mn remains in solution in the matrix. Thus, after hot extrusion, the DC-cast AXM4303 has finer

  13. Feasibility of Continuous Frying System to Improve the Quality Indices of Palm Olein for the Production of Extruded Product.

    Science.gov (United States)

    Ahmad Tarmizi, Azmil Haizam; Ahmad, Karimah

    2015-01-01

    Comparative frying studies on the processing of extruded product were conducted under intermittent and continuous frying conditions using two separate frying systems, i.e batch and pilot scale continuous fryers, respectively. Thermal resistance of palm olein were assessed for a total of 5 days of frying operation at 155°C - the unconventional frying temperature gave the product moisture content of 3% after intermittent and continuous frying for 2.5 min and 2 min, respectively. The formation of free fatty acid in palm olein in the case of intermittent frying was more than 2-fold higher compared to its counterpart (0.66%). Smoke point inversely evolved with oil acidity: the value dropped progressively from 215 to 177°C and from 219 to 188°C when extruded product was intermittently and continuously fried, respectively. In the light of induction period, repeated frying exhibited a gradual decrease in the value after 5 days of frying (12.2 h). Interestingly, continuous frying gave somewhat similar induction period, as demonstrated by fresh palm olein, across frying time. Frying at lower temperature, to some extent, provides opportunity for palm olein to retain 74% of its initial vitamin E during continuous frying. This benefit, however, is somehow denied when extruded product was processed under intermittent frying conditions--only 27% of vitamin E was remained at the end of frying session. Regardless of frying protocols, transient in polar compounds was minimal and hence comparable. The colour in the case of continuous frying appeared to be darker due to higher degree of oil utilisation for frying. The data obtained will provide useful information for food processors on how palm olein behaves when frying is undertaken under different frying protocols.

  14. The Impact of Rendered Protein Meal Oxidation Level on Shelf-Life, Sensory Characteristics, and Acceptability in Extruded Pet Food.

    Science.gov (United States)

    Chanadang, Sirichat; Koppel, Kadri; Aldrich, Greg

    2016-07-28

    Pet foods are expected to have a shelf-life for 12 months or more. Sensory analysis can be used to determine changes in products and to estimate products' shelf-life. The objectives of this study were to (1) investigate how increasing levels of oxidation in rendered protein meals used to produce extruded pet food affected the sensory properties and (2) determine the effect of shelf-life on pet owners' acceptability of extruded pet food diet formulated without the use of preservative. Pet food diets contained beef meat bone meal (BMBM) and chicken byproduct meal (CBPM) in which the oxidation was retarded with ethoxyquin, mixed tocopherols, or none at all, and then extruded into dry pet foods. These samples represented low, medium, and high oxidation levels, respectively. Samples were stored for 0, 3, 6, 9, and 12 months at ambient temperature. Each time point, samples were evaluated by six highly trained descriptive panelists for sensory attributes related to oxidation. Samples without preservatives were chosen for the acceptability test, since the differences in sensory characteristics over storage time were more distinguishable in those samples. Pet owners evaluated samples for aroma, appearance and overall liking. Descriptive sensory analysis detected significant changes in oxidized-related sensory characteristics over storage time. However, the differences for CBPM samples were more pronounced and directional. The consumer study showed no differences in pet owners' acceptability for BMBM samples. However, the noticeable increase in aroma characteristics (rancid aroma 0.33-4.21) in CBPM samples over storage time did have a negative effect on consumer's liking (overall liking 5.52-4.95).

  15. Preparation of sustained release co-extrudates by hot-melt extrusion and mathematical modelling of in vitro/in vivo drug release profiles.

    Science.gov (United States)

    Quintavalle, U; Voinovich, D; Perissutti, B; Serdoz, F; Grassi, G; Dal Col, A; Grassi, M

    2008-03-01

    Aim of this work was to develop a cylindrical co-extrudate characterised by an in vivo sustained release profile by means of a hot-melt extrusion process. Co-extrudate was made up of two concentric extruded matrices: an inner one having a hydrophilic character, based on polyethylene glycol, and an outer one with lipophilic character, based on microcrystalline wax. Both segments contained theophylline as a model drug. A screening between several devices differing for dimensions (diameter and length) and relative proportions of the inner and outer part was carried out on the basis of their in vitro drug release and the release mechanism was studied by means of a mathematical model. The co-extrudate exhibiting the desired sustained release was selected for in vivo bioavailability studies. In vivo studies confirmed the achievement of the purpose of the research, demonstrating the desired release of theophylline on four healthy volunteers. Accordingly, hot-melt extrusion process is a viable method to produce in a single step co-extrudates showing a sustained release. In addition, the developed mathematical model proved to be a reliable descriptor of the both in vitro and in vivo experimental data.

  16. Iron, zinc and calcium dialyzability from extruded product based on whole grain amaranth (Amaranthus caudatus and Amaranthus cruentus) and amaranth/Zea mays blends.

    Science.gov (United States)

    Galan, María Gimena; Drago, Silvina Rosa; Armada, Margarita; José, Rolando González

    2013-06-01

    Amaranth is a Native American grain appreciated for its high nutritional properties including high mineral content. The aim of this study was to evaluate the availability of Fe, Zn and Ca from extruded products made with two varieties of amaranth and their mixtures with maize at two levels of replacement. Mineral availability was estimated using dialyzability method. The contents of Fe (64.0-84.0 mg/kg), Ca (1977.5-2348.8 mg/kg) and Zn (30.0-32.1 mg/kg) were higher in amaranth than in maize products (6.2, 19.1, 9.7 mg/kg, respectively). Mineral availability was in the range of (2.0-3.6%), (3.3-11.1%) and (1.6-11.4%) for Fe, Ca and Zn, respectively. Extruded amaranth and amaranth/maize products provide higher amount of Fe and Ca than extruded maize. Extruded amaranth products and amaranth addition to maize could be an interesting way to increase nutritional value of extruded products.

  17. Effect of Dynamic Center Region on the Flow and Mixing Efficiency in a New Tri-Screw Extruder Using 3D Finite Element Modeling

    Directory of Open Access Journals (Sweden)

    X. Z. Zhu

    2013-01-01

    Full Text Available Three-dimensional finite element modeling of polymer melt flowing in a new co-rotating tri-screw extruder was established with mesh superposition technique. Based on the particle tracking technology, three typical particle trajectories in the tri-screw extruder were calculated using a 4th-order-Runge-Kutta method to study the dynamic motions of the particles. Then the flow visualizations in the local center region were carried out. Moreover, the dispersive, distributive and stretching mixing efficiencies of the tri-screw and twin-screw extruders were compared, respectively. The results show that when the particles move from one screw to another, there are great abrupt changes in the velocities and displacements, which induce the abrupt change in the stress magnitude. Most of particles, which are initially distributed in the inlet plane of the center region, fast flow out the outlet and don’t pass through any screw. This special phenomenon induces a series of new characteristics in the residence time distribution (RTD, flow number, segregation scale and time averaged efficiency. In comparison with the twin-screw extruder, the tri-screw extruder has better mixing efficiency.

  18. Deposition of aluminum-magnesium alloys from electrolytes containing organo-aluminum complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lehmkuhl, H.; Mehler, K.; Bongard, H.; Tesche, B. [Max-Planck-Inst. fuer Kohlenforschung, Muelheim an der Ruhr (Germany); Reinhold, B. [Audi AG Technische Entwicklung, Ingolstadt (Germany)

    2001-06-01

    Organo-aluminum compounds have been used for many years as electrolytes in the coating industry. In this communication the development of a galvanic process for generating aluminum-magnesium coatings from organometallic electrolyte systems is reported as well as results on physical properties like adhesion, ductility and corrosion resistance. (orig.)

  19. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    Science.gov (United States)

    Golden, Johnny L.

    1992-01-01

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far.

  20. Supplementing enzymes to extruded, soybean based diet improves breakdown of non-starch polysaccharides in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Dalsgaard, Anne Johanne Tang; Knudsen, Knud Erik Bach; Verlhac, Viviane

    2016-01-01

    presumably by assisting in the breakdown of NSP. This study examined the effects on NSP degradation when supplementing β-glucanase, xylanase, protease or a mix of the three enzymes to an extruded, juvenile rainbow trout (Oncorhynchus mykiss) diet containing 344 g kg−1 de-hulled, solvent-extracted soybean...... meal (SBM). The NSP content in the non-supplemented control diet and in faecal samples from the dietary treatment groups was analysed to determine the recovery/apparent digestibility of cellulose and total non-cellulosic polysaccharide (T-NCP) sugar monomers. The enzymes had significant, positive...