WorldWideScience

Sample records for extremely high optical

  1. Quantifying imaging performance bounds of extreme dipole illumination in high NA optical lithography

    Science.gov (United States)

    Lee, Myungjun; Smith, Mark D.; Biafore, John; Graves, Trey; Levy, Ady

    2016-10-01

    We present a framework to analyze the performance of optical imaging in a hyper numerical aperture (NA) immersion lithography scanner. We investigate the method to quantify imaging performance by computing upperand lower-bounds on the threshold normalized image log-slope (NILS) and the depth of focus (DOF) in conjunction with the traditional image quality metrics such as the mask error enhancement factor (MEEF) and the linearity for various different pitches and line to space (LS) duty cycles. The effects of the interaction between the light illumination and the feature size are extensively characterized based on the aerial image (AI) behavior in particular for the extreme dipole illumination that is one of the commonly used off-axis illuminations for sub-100nm logic and memory devices, providing resolution near the physical limit of an optical single patterning step. The proposed aerial imaging-based DOF bounds are compared to the results obtained from an experimentally calibrated resist model, and we observed good agreement. In general, the extreme dipole illumination is only optimal for a single particular pitch, therefore understanding the through-pitch imaging performance bound, which depends on the illumination shape, pattern size, and process conditions, is critically important. We find that overall imaging performance varies depending upon the number of diffracted beams passing through the scanner optics. An even number of beams provides very different trends compared to the results from an odd-number of beams. This significant non-linear behavior occurs in certain pitch regions corresponding to 3 beam interference imaging. In this region the imaging performance and the pattern printability become extremely sensitive to the LS duty cycle. In addition, there is a notable tradeoff between the DOF and the NILS that is observed in the problematic 3-beam region and this tradeoff eventually affects the achievable process window (PW). Given the practical real

  2. GTC optical imaging of extremely red 5C radio galaxies at high redshift

    CERN Document Server

    Humphrey, A; Lagos, P

    2015-01-01

    We investigate the nature of seven unusual radio galaxies from the 5C catalogue that were previously known to have extremely red R-K colours, and for which emission lines were previously found to be weak or absent in their optical spectra. We present and discuss u, g, or r images of these radio galaxies, obtained using the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) at the Gran Telescopio Canarias (GTC). We have detected all seven targets in our g-band imaging. Their optical emission is extended, and we tentatively detect a radio-optical alignment effect in this sample. A subset of our sample (three sources) shows broad-band spectral energy distributions that flatten out near the wavelength range of the g-band, implying a dominant contribution there due to young stars and/or scattered or reprocessed radiation from the active nucleus.

  3. The Sedentary Survey of Extreme High Energy Peaked BL Lacs III. Results from Optical Spectroscopy

    CERN Document Server

    Piranomonte, S; Giommi, P; Landt, H; Padovani, P

    2007-01-01

    The multi-frequency Sedentary Survey is a flux limited, statistically well-defined sample of highly X-ray dominated BL Lacertae objects (HBLs) which includes 150 sources. In this paper, the third of the series, we report the results of a dedicated optical spectroscopy campaign that, together with results from other independent optical follow up programs, led to the spectroscopic identification of all sources in the sample. We carried out a systematic spectroscopic campaign for the observation of all unidentified objects of the sample using the ESO 3.6m, the KPNO 4m, and the TNG optical telescopes. We present new identifications and optical spectra for 76 sources, 50 of which are new BL Lac objects, 18 are sources previously referred as BL Lacs but for which no redshift information was available, and 8 are broad emission lines AGNs. We find that the multi-frequency selection technique used to build the survey is highly efficient (about 90%) in selecting BL Lacs objects. We present positional and spectroscopic ...

  4. Radiation Hardened High Speed Fiber Optic Transceivers for Extreme Environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This program develops fiber optic transceivers that offer wide bandwidth (1 Mbps to 10 Gbps) and operate in space environments targeted by NASA for robotic...

  5. Optical to extreme ultraviolet reddening curves for normal AGN dust and for dust associated with high-velocity outflows

    Science.gov (United States)

    Singh, Japneet; Gaskell, Martin; Gill, Jake

    2017-01-01

    We use mid-IR (WIRE), optical (SDSS), and ultraviolet (GALEX) photometry of over 80,000 AGNs to derive mean attenuation curves from the optical to the rest frame extreme ultraviolet (EUV) for (i) “normal” AGN dust dominating the optical reddening of AGNs and (ii) “BAL dust” - the dust causing the additional extinction in AGNs observed to have broad absorption lines (BALs). Our method confirms that the attenuation curve of “normal” AGN dust is flat in the ultraviolet, as found by Gaskell et al. (2004). In striking contrast to this, the attenuation curve for BAL dust is well fit by a steeply-rising, SMC-like curve. We confirm the shape of the theoretical Weingartner & Draine (2001) SMC curve out to 700 Angstroms but the drop in attenuation to still shorter wavelengths (400 Angstroms) seems to be less than predicted. We find identical attenuation curves for high-ionization and low-ionization BALQSOs. We suggest that attenuation curves appearing to be steeper than the SMC are due to differences in underlying spectra and partial covering by BAL dust. This work was This work was performed under the auspices of the Science Internship Program (SIP) of the University of California at Santa Cruz performed under the auspices of the Science Internship Program (SIP) of the University of California at Santa Cruz.

  6. The Subaru Coronagraphic Extreme Adaptive Optics system: enabling high-contrast imaging on solar-system scales

    CERN Document Server

    Jovanovic, N; Guyon, O; Clergeon, C; Singh, G; Kudo, T; Garrel, V; Newman, K; Doughty, D; Lozi, J; Males, J; Minowa, Y; Hayano, Y; Takato, N; Morino, J; Kuhn, J; Serabyn, E; Norris, B; Tuthill, P; Schworer, G; Stewart, P; Close, L; Huby, E; Perrin, G; Lacour, S; Gauchet, L; Vievard, S; Murakami, N; Oshiyama, F; Baba, N; Matsuo, T; Nishikawa, J; Tamura, M; Lai, O; Marchis, F; Duchene, G; Kotani, T; Woillez, J

    2015-01-01

    The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is a multipurpose high-contrast imaging platform designed for the discovery and detailed characterization of exoplanetary systems and serves as a testbed for high-contrast imaging technologies for ELTs. It is a multi-band instrument which makes use of light from 600 to 2500nm allowing for coronagraphic direct exoplanet imaging of the inner 3 lambda/D from the stellar host. Wavefront sensing and control are key to the operation of SCExAO. A partial correction of low-order modes is provided by Subaru's facility adaptive optics system with the final correction, including high-order modes, implemented downstream by a combination of a visible pyramid wavefront sensor and a 2000-element deformable mirror. The well corrected NIR (y-K bands) wavefronts can then be injected into any of the available coronagraphs, including but not limited to the phase induced amplitude apodization and the vector vortex coronagraphs, both of which offer an inner worki...

  7. Robust, Thin Optical Films for Extreme Environments

    Science.gov (United States)

    2006-01-01

    The environment of space presents scientists and engineers with the challenges of a harsh, unforgiving laboratory in which to conduct their scientific research. Solar astronomy and X-ray astronomy are two of the more challenging areas into which NASA scientists delve, as the optics for this high-tech work must be extremely sensitive and accurate, yet also be able to withstand the battering dished out by radiation, extreme temperature swings, and flying debris. Recent NASA work on this rugged equipment has led to the development of a strong, thin film for both space and laboratory use.

  8. Extreme nonlinear optics and laser damage

    Science.gov (United States)

    Maldutis, Evaldas

    2010-11-01

    The study of laser induced damage threshold caused by series of identical laser pulses (LID-T-N) on gamma radiation resistant glasses and their analogs is performed applying know-how ultra stable laser radiation. The presented results and analysis of earlier received results show that nonlinear optical phenomena in extreme conditions of interaction are different from the traditional nonlinear optical processes, because they depend not only on intensity of electromagnetic field of laser radiation, but also on the pulse number in series of identical laser pulses. This range of laser intensities is not wide; it is different for each material and determines the range of Extreme Nonlinear Optics. The dependence of LID-T-N on pulse number N for different kinds of high quality transparent glasses was observed. The study of dynamics of these processes (i.e. the study of dependence on N) at different intensities in series of incident laser pulses provides new information about properties of the materials useful for studying laser damage fundamentals and their application. The expectation that gamma radiation resistant glasses could give useful information for technology of resistant optics for high power lasers has not proved. The received results well correspond with the earlier proposed model of laser damage.

  9. Extreme Silica Optical Fibre Gratings

    Directory of Open Access Journals (Sweden)

    Kevin Cook

    2008-10-01

    Full Text Available A regenerated optical fibre Bragg grating that survives temperature cycling up to 1,295°C is demonstrated. A model based on seeded crystallisation or amorphisation is proposed.

  10. Adaptive multilayer optics for extreme ultraviolet wavelengths

    NARCIS (Netherlands)

    Bayraktar, Muharrem

    2015-01-01

    In this thesis we describe the development of a new class of optical components to enhance the imaging performance by enabling adaptations of the optics. When used at extreme ultraviolet (EUV) wavelengths, such ‘adaptive optics’ offers the potential to achieve the highest spatial resolution in imagi

  11. Extreme Adaptive Optics Planet Imager: XAOPI

    Energy Technology Data Exchange (ETDEWEB)

    Macintosh, B A; Graham, J; Poyneer, L; Sommargren, G; Wilhelmsen, J; Gavel, D; Jones, S; Kalas, P; Lloyd, J; Makidon, R; Olivier, S; Palmer, D; Patience, J; Perrin, M; Severson, S; Sheinis, A; Sivaramakrishnan, A; Troy, M; Wallace, K

    2003-09-17

    Ground based adaptive optics is a potentially powerful technique for direct imaging detection of extrasolar planets. Turbulence in the Earth's atmosphere imposes some fundamental limits, but the large size of ground-based telescopes compared to spacecraft can work to mitigate this. We are carrying out a design study for a dedicated ultra-high-contrast system, the eXtreme Adaptive Optics Planet Imager (XAOPI), which could be deployed on an 8-10m telescope in 2007. With a 4096-actuator MEMS deformable mirror it should achieve Strehl >0.9 in the near-IR. Using an innovative spatially filtered wavefront sensor, the system will be optimized to control scattered light over a large radius and suppress artifacts caused by static errors. We predict that it will achieve contrast levels of 10{sup 7}-10{sup 8} at angular separations of 0.2-0.8 inches around a large sample of stars (R<7-10), sufficient to detect Jupiter-like planets through their near-IR emission over a wide range of ages and masses. We are constructing a high-contrast AO testbed to verify key concepts of our system, and present preliminary results here, showing an RMS wavefront error of <1.3 nm with a flat mirror.

  12. A robotic, compact, and extremely high resolution optical spectrograph for a close-in super-Earth survey

    Science.gov (United States)

    Ge, Jian; Powell, Scott; Zhao, Bo; Varosi, Frank; Ma, Bo; Sithajan, Sirinrat; Liu, Jian; Li, Rui; Grieves, Nolan; Schofield, Sidney; Avner, Louis; Jakeman, Hali; Yoder, William A.; Gittelmacher, Jakob A.; Singer, Michael A.; Muterspaugh, Matthew; Williamson, Michael; Maxwell, J. E.

    2014-08-01

    One of the most astonishing results from the HARPS and Kepler planet surveys is the recent discovery of close-in super-Earths orbiting more than half of FGKM dwarfs. This new population of exoplanets represents the most dominant class of planetary systems known to date, is totally unpredicted by the classical core-accretion disk planet formation model. High cadence and high precision Doppler spectroscopy is the key to characterize properties of this new population and constrain planet formation models. A new robotic, compact high resolution optical spectrograph, called TOU (formerly called EXPERT-III), was commissioned at the Automatic Spectroscopic Telescope (AST) at Fairborn Observatory in Arizona in July 2013 and has produced a spectral resolution of about 100,000 and simultaneous wavelength coverage of 0.38-0.9 μm with a 4kx4k back-illuminated Fairchild CCD detector. The instrument holds a very high vacuum of 1 micro torr and about 2 mK temperature stability over a month. The early on-sky RV measurements show that this instrument is approaching a Doppler precision of 1 m/s (rms) for bright reference stars (such as Tau Ceti) with 5 min exposures and better than 3 m/s (P-V, RMS~1 m/s) daily RV stability before calibration exposures are applied. A pilot survey of 20 Vsuper-Earth systems and known RV stable stars, is being launched and every star will be observed ~100 times over ~300 days time window between this summer and next spring, following up with a full survey of ~150 V< 10 FGKM dwarfs in 2015-2017.

  13. Feasibility of Extreme Ultraviolet Active Optical Clock

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Wei; CHEN Jing-Biao

    2011-01-01

    @@ We propose an experimental scheme of vacuum ultraviolet(VUV)and extreme ultraviolet(XUV)optical fre-quency standards with noble gas atoms.Considering metastable state 3P2 noble atoms pumped by a conventional discharging method,the atomic beam is collimated with transverse laser cooling at the metastable state and en-ters into the laser cavity in the proposed setup.Due to stimulated emission from the metasable state to the ground state inside the laser cavity consisting of VUV reflection coating mirrors,our calculations show that with enough population inversion to compensate for the cavity loss,an active optical frequency standard at VUV and XUV is feasible.

  14. Extreme non-linear elasticity and transformation optics

    DEFF Research Database (Denmark)

    Gersborg, Allan Roulund; Sigmund, Ole

    2010-01-01

    Transformation optics is a powerful concept for designing novel optical components such as high transmission waveguides and cloaking devices. The selection of specific transformations is a non-unique problem. Here we reveal that transformations which allow for all dielectric and broadband optical...... realizations correspond to minimizers of elastic energy potentials for extreme values of the mechanical Poisson's ratio ν . For TE (Hz) polarized light an incompressible transformation ν = 1/2 is ideal and for TM (E z) polarized light one should use a compressible transformation with negative Poissons's ratio...... ν = -1. For the TM polarization the mechanical analogy corresponds to a modified Liao functional known from the transformation optics literature. Finally, the analogy between ideal transformations and solid mechanical material models automates and broadens the concept of transformation optics...

  15. High-order nonlinear optical processes in ablated carbon-containing materials: Recent approaches in development of the nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range

    Science.gov (United States)

    Ganeev, R. A.

    2017-08-01

    The nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range became a versatile tool for the analysis of the optical, structural and morphological properties of matter. The carbon-contained materials have shown the advanced properties among other studied species, which allowed both the definition of the role of structural properties on the nonlinear optical response and the analysis of the fundamental features of carbon as the attractive material for generation of coherent short-wavelength radiation. We review the studies of the high-order harmonic generation by focusing ultrashort pulses into the plasmas produced during laser ablation of various organic compounds. We discuss the role of ionic transitions of ablated carbon-containing molecules on the harmonic yield. We also show the similarities and distinctions of the harmonic and plasma spectra of organic compounds and graphite. We discuss the studies of the generation of harmonics up to the 27th order (λ = 29.9 nm) of 806 nm radiation in the boron carbide plasma and analyze the advantages and disadvantages of this target compared with the ingredients comprising B4C (solid boron and graphite) by comparing plasma emission and harmonic spectra from three species. We also show that the coincidence of harmonic and plasma emission wavelengths in most cases does not cause the enhancement or decrease of the conversion efficiency of this harmonic.

  16. Wavefront Control for Extreme Adaptive Optics

    Energy Technology Data Exchange (ETDEWEB)

    Poyneer, L A

    2003-07-16

    Current plans for Extreme Adaptive Optics systems place challenging requirements on wave-front control. This paper focuses on control system dynamics, wave-front sensing and wave-front correction device characteristics. It may be necessary to run an ExAO system after a slower, low-order AO system. Running two independent systems can result in very good temporal performance, provided specific design constraints are followed. The spatially-filtered wave-front sensor, which prevents aliasing and improves PSF sensitivity, is summarized. Different models of continuous and segmented deformable mirrors are studied. In a noise-free case, a piston-tip-tilt segmented MEMS device can achieve nearly equivalent performance to a continuous-sheet DM in compensating for a static phase aberration with use of spatial filtering.

  17. eXtreme Adaptive Optics Planet Imager: overview and status

    Science.gov (United States)

    Macintosh, Bruce A.; Bauman, Brian; Wilhelmsen Evans, Julia; Graham, James R.; Lockwood, Christopher; Poyneer, Lisa; Dillon, Daren; Gavel, Don T.; Green, Joseph J.; Lloyd, James P.; Makidon, Russell B.; Olivier, Scot; Palmer, Dave; Perrin, Marshall D.; Severson, Scott; Sheinis, Andrew I.; Sivaramakrishnan, Anand; Sommargren, Gary; Soummer, Remi; Troy, Mitchell; Wallace, J. Kent; Wishnow, Edward

    2004-10-01

    As adaptive optics (AO) matures, it becomes possible to envision AO systems oriented towards specific important scientific goals rather than general-purpose systems. One such goal for the next decade is the direct imaging detection of extrasolar planets. An "extreme" adaptive optics (ExAO) system optimized for extrasolar planet detection will have very high actuator counts and rapid update rates - designed for observations of bright stars - and will require exquisite internal calibration at the nanometer level. In addition to extrasolar planet detection, such a system will be capable of characterizing dust disks around young or mature stars, outflows from evolved stars, and high Strehl ratio imaging even at visible wavelengths. The NSF Center for Adaptive Optics has carried out a detailed conceptual design study for such an instrument, dubbed the eXtreme Adaptive Optics Planet Imager or XAOPI. XAOPI is a 4096-actuator AO system, notionally for the Keck telescope, capable of achieving contrast ratios >107 at angular separations of 0.2-1". ExAO system performance analysis is quite different than conventional AO systems - the spatial and temporal frequency content of wavefront error sources is as critical as their magnitude. We present here an overview of the XAOPI project, and an error budget highlighting the key areas determining achievable contrast. The most challenging requirement is for residual static errors to be less than 2 nm over the controlled range of spatial frequencies. If this can be achieved, direct imaging of extrasolar planets will be feasible within this decade.

  18. Optical Design for Extremely Large Telescope Adaptive Optics Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, B J

    2003-11-26

    Designing an adaptive optics (AO) system for extremely large telescopes (ELT's) will present new optical engineering challenges. Several of these challenges are addressed in this work, including first-order design of multi-conjugate adaptive optics (MCAO) systems, pyramid wavefront sensors (PWFS's), and laser guide star (LGS) spot elongation. MCAO systems need to be designed in consideration of various constraints, including deformable mirror size and correction height. The y,{bar y} method of first-order optical design is a graphical technique that uses a plot with marginal and chief ray heights as coordinates; the optical system is represented as a segmented line. This method is shown to be a powerful tool in designing MCAO systems. From these analyses, important conclusions about configurations are derived. PWFS's, which offer an alternative to Shack-Hartmann (SH) wavefront sensors (WFS's), are envisioned as the workhorse of layer-oriented adaptive optics. Current approaches use a 4-faceted glass pyramid to create a WFS analogous to a quad-cell SH WFS. PWFS's and SH WFS's are compared and some newly-considered similarities and PWFS advantages are presented. Techniques to extend PWFS's are offered: First, PWFS's can be extended to more pixels in the image by tiling pyramids contiguously. Second, pyramids, which are difficult to manufacture, can be replaced by less expensive lenslet arrays. An approach is outlined to convert existing SH WFS's to PWFS's for easy evaluation of PWFS's. Also, a demonstration of PWFS's in sensing varying amounts of an aberration is presented. For ELT's, the finite altitude and finite thickness of LGS's means that the LGS will appear elongated from the viewpoint of subapertures not directly under the telescope. Two techniques for dealing with LGS spot elongation in SH WFS's are presented. One method assumes that the laser will be pulsed and uses a segmented micro

  19. Method for the protection of extreme ultraviolet lithography optics

    Science.gov (United States)

    Grunow, Philip A.; Clift, Wayne M.; Klebanoff, Leonard E.

    2010-06-22

    A coating for the protection of optical surfaces exposed to a high energy erosive plasma. A gas that can be decomposed by the high energy plasma, such as the xenon plasma used for extreme ultraviolet lithography (EUVL), is injected into the EUVL machine. The decomposition products coat the optical surfaces with a protective coating maintained at less than about 100 .ANG. thick by periodic injections of the gas. Gases that can be used include hydrocarbon gases, particularly methane, PH.sub.3 and H.sub.2S. The use of PH.sub.3 and H.sub.2S is particularly advantageous since films of the plasma-induced decomposition products S and P cannot grow to greater than 10 .ANG. thick in a vacuum atmosphere such as found in an EUVL machine.

  20. Extreme Spectroscopy: In situ nuclear materials behavior from optical data

    Energy Technology Data Exchange (ETDEWEB)

    Guimbretiere, G.; Canizares, A.; Raimboux, N.; Omnee, R.; Duval, F.; Ammar, M.R.; Simon, P. [CNRS - UPR3079 CEMHTI, Universite d' Orleans, 45071Orleans cedex 2 (France); Desgranges, L.; Mohun, R. [CEA, DEN, DEC, F-13108 Saint-Paul-Lez-Durance (France); Jegou, C.; Magnin, M. [CEA/DTCD/SECM/LMPA, Marcoule 30207 Bagnols Sur Ceze (France); Clavier, N.; Dacheux, N. [ICSM-UMR5257 CEA/CNRS/UM2/ENSCM, Marcoule, BP17171, 30207 Bagnols sur Ceze (France)

    2015-07-01

    In the nuclear industry, materials are regularly exposed to high temperature or/and irradiation and a better knowledge and understanding of their behavior under such extreme conditions is a key-point for improvements and further developments. Nowadays, Raman spectroscopy begins to be well known as a promising technique in the post mortem and remote characterization of nuclear materials exposed to extreme conditions. On this topic, at ANIMMA 2013 conference, we have presented some results about its implementation in the study of model or real nuclear fuel. However, the strength of Raman spectroscopy as in situ characterization tool is mainly its ability to be implemented remotely through optical fibers. Aware of this, implementation of other optical techniques can be considered in order to gain information not only on the structural dynamics of materials but also on the electronic charge carrier populations. In this paper, we propose to present our last advances in Raman characterization of nuclear materials and enlarge to the in situ use of complementary optical spectroscopies. Emphasis will be made on the information that can be gained to the behavior of the model fuel depleted UO{sub 2} under extreme conditions of high temperature and ionic irradiation: - In Situ Raman identification of the radiolysis alteration products of UO{sub 2} in contact with water under ionic irradiation. - In Situ Raman recording of the damaged dynamic of UO{sub 2} under inert atmosphere. - In Situ Raman and photo-luminescence study of virgin and damaged UO2 at high temperature. - In Situ study of electronic charge carriers' behavior in U{sub x}Th{sub 1-x}O{sub 2} solid solutions by mean of Iono- and Thermo- luminescence under and post- ionic irradiation. (authors)

  1. Extremely strong bipolar optical interactions in paired graphene nanoribbons.

    Science.gov (United States)

    Lu, Wanli; Chen, Huajin; Liu, Shiyang; Zi, Jian; Lin, Zhifang

    2016-03-28

    Graphene is an excellent multi-functional platform for electrons, photons, and phonons due to exceptional electronic, photonic, and thermal properties. When combining its extraordinary mechanical characteristics with optical properties, graphene-based nanostructures can serve as an appealing platform for optomechanical applications at the nanoscale. Here, we demonstrate, using full-wave simulations, the emergence of extremely strong bipolar optical forces, or, optical binding and anti-binding, between a pair of coupled graphene nanoribbons, due to the remarkable confinement and enhancement of optical fields arising from the large effective mode indices. In particular, the binding and anti-binding forces, which are about two orders of magnitude stronger than that in metamaterials and high-Q resonators, can be tailored by selective excitation of either the even or the odd optical modes, achievable by tuning the relative phase of the lightwaves propagating along the two ribbons. Based on the coupled mode theory, we derive analytical formulae for the bipolar optical forces, which agree well with the numerical results. The attractive optical binding force F(y)(b) and the repulsive anti-binding force F(y)(a) exhibit a remarkably different dependence on the gap distance g between the nanoribbons and the Fermi energy E(F), in the forms of F(y)(b) ∝ 1/√(g³E(F)) and F(y)(a) ∝ 1/E(F)(2). With E(F) dynamically tunable by bias voltage, the bipolar forces may provide a flexible handle for active control of the nanoscale optomechanical effects, and also, might be significant for optoelectronic and optothermal applications as well.

  2. Enhancing stellar spectroscopy with extreme adaptive optics and photonics

    CERN Document Server

    Jovanovic, Nemanja; Cvetojevic, Nick; Guyon, Olivier; Martinache, Frantz

    2016-01-01

    Extreme adaptive optics systems are now in operation across the globe. These systems, capable of high order wavefront correction, deliver Strehl ratios of 90% in the near-infrared. Originally intended for the direct imaging of exoplanets, these systems are often equipped with advanced coronagraphs that suppress the on-axis-star, interferometers to calibrate wavefront errors, and low order wavefront sensors to stabilize any tip/tilt residuals to a degree never seen before. Such systems are well positioned to facilitate the detailed spectroscopic characterization of faint substellar companions at small angular separations from the host star. Additionally, the increased light concentration of the point-spread function and the unprecedented stability create opportunities in other fields of astronomy as well, including spectroscopy. With such Strehl ratios, efficient injection into single-mode fibers or photonic lanterns becomes possible. With diffraction-limited components feeding the instrument, calibrating a sp...

  3. Characterization of Polarizing Splitter Optics in Extreme Environments

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Ryand; Olson, Matthew; Morelli, Gregg

    2013-01-04

    Development of laser systems capable of surviving extreme conditions experienced in military applications requires mounts and components that are able to survive these conditions. The characterization of mounted and/or bonded optical assemblies in harsh environments is critical for the development of laser and optical systems for functionality in these extreme conditions. Customized mounts, bonding assemblies and packaging strategies are utilized to develop and field reliable and robust optical subassemblies. Thin film polarizers operating at 45o and polarizing beam splitter cubes were chosen for initial testing based on past experiences, advancements in optical coating and construction technologies and material properties. Shock, vibration, shear strength, tensile strength and temperature testing are performed on mounted polarizing beam splitter cubes and thin film polarizers from two manufacturers. Previous testing showed that polarizing beam splitter cubes constructed using epoxy would become damaged in the laser resonator. The cubes being tested in this report are constructed using epoxy- free direct optical contact bonding. Thin film polarizers operating at 45o are chosen opposed to Brewster’s angle thin film polarizers to reduce the size and simplify design and construction since an optical wedge is not required. The components and mounts are each environmentally tested beyond the manufacturers’ specifications for shock, vibration, and temperature. Component functionality is monitored during and after the environmental testing. Experimental results from the testing will be discussed as will the impact on future laser resonator designs.

  4. Qualification of Fiber Optic Cables for Martian Extreme Temperature Environments

    Science.gov (United States)

    Ramesham, Rajeshuni; Lindensmith, Christian A.; Roberts, William T.; Rainen, Richard A.

    2011-01-01

    Means have been developed for enabling fiber optic cables of the Laser Induced Breakdown Spectrometer instrument to survive ground operations plus the nominal 670 Martian conditions that include Martian summer and winter seasons. The purpose of this development was to validate the use of the rover external fiber optic cabling of ChemCam for space applications under the extreme thermal environments to be encountered during the Mars Science Laboratory (MSL) mission. Flight-representative fiber optic cables were subjected to extreme temperature thermal cycling of the same diurnal depth (or delta T) as expected in flight, but for three times the expected number of in-flight thermal cycles. The survivability of fiber optic cables was tested for 600 cumulative thermal cycles from -130 to +15 C to cover the winter season, and another 1,410 cumulative cycles from -105 to +40 C to cover the summer season. This test satisfies the required 3 times the design margin that is a total of 2,010 thermal cycles (670 x 3). This development test included functional optical transmission tests during the course of the test. Transmission of the fiber optic cables was performed prior to and after 1,288 thermal cycles and 2,010 thermal cycles. No significant changes in transmission were observed on either of the two representative fiber cables subject through the 3X MSL mission life that is 2,010 thermal cycles.

  5. Highly Sensitive Optical Receivers

    CERN Document Server

    Schneider, Kerstin

    2006-01-01

    Highly Sensitive Optical Receivers primarily treats the circuit design of optical receivers with external photodiodes. Continuous-mode and burst-mode receivers are compared. The monograph first summarizes the basics of III/V photodetectors, transistor and noise models, bit-error rate, sensitivity and analog circuit design, thus enabling readers to understand the circuits described in the main part of the book. In order to cover the topic comprehensively, detailed descriptions of receivers for optical data communication in general and, in particular, optical burst-mode receivers in deep-sub-µm CMOS are presented. Numerous detailed and elaborate illustrations facilitate better understanding.

  6. Challenges in optics for Extremely Large Telescope instrumentation

    CERN Document Server

    Span`o, P; Norrie, C J; Cunningham, C R; Strassmeier, K G; Bianco, A; Blanche, P A; Bougoin, M; Ghigo, M; Hartmann, P; Zago, L; Atad-Ettedgui, E; Delabre, B; Dekker, H; Melozzi, M; Snyders, B; Takke, R; Walker, D D

    2006-01-01

    We describe and summarize the optical challenges for future instrumentation for Extremely Large Telescopes (ELTs). Knowing the complex instrumental requirements is crucial for the successful design of 30-60m aperture telescopes. After all, the success of ELTs will heavily rely on its instrumentation and this, in turn, will depend on the ability to produce large and ultra-precise optical components like light-weight mirrors, aspheric lenses, segmented filters, and large gratings. New materials and manufacturing processes are currently under study, both at research institutes and in industry. In the present paper, we report on its progress with particular emphasize on volume-phase-holographic gratings, photochromic materials, sintered silicon-carbide mirrors, ion-beam figuring, ultra-precision surfaces, and free-form optics. All are promising technologies opening new degrees of freedom to optical designers. New optronic-mechanical systems will enable efficient use of the very large focal planes. We also provide...

  7. Enhancing Stellar Spectroscopy with Extreme Adaptive Optics and Photonics

    Science.gov (United States)

    Jovanovic, N.; Schwab, C.; Cvetojevic, N.; Guyon, O.; Martinache, F.

    2016-12-01

    Extreme adaptive optics (AO) systems are now in operation across the globe. These systems, capable of high order wavefront correction, deliver Strehl ratios of ∼ 90 % in the near-infrared. Originally intended for the direct imaging of exoplanets, these systems are often equipped with advanced coronagraphs that suppress the on-axis-star, interferometers to calibrate wavefront errors, and low order wavefront sensors to stabilize any tip/tilt residuals to a degree never seen before. Such systems are well positioned to facilitate the detailed spectroscopic characterization of faint substellar companions at small angular separations from the host star. Additionally, the increased light concentration of the point-spread function and the unprecedented stability create opportunities in other fields of astronomy as well, including spectroscopy. With such Strehl ratios, efficient injection into single-mode fibers (SMFs) or photonic lanterns becomes possible. With diffraction-limited components feeding the instrument, calibrating a spectrograph’s line profile becomes considerably easier, as modal noise or imperfect scrambling of the fiber output are no longer an issue. It also opens up the possibility of exploiting photonic technologies for their advanced functionalities, inherent replicability, and small, lightweight footprint to design and build future instrumentation. In this work, we outline how extreme AO systems will enable advanced photonic and diffraction-limited technologies to be exploited in spectrograph design and the impact it will have on spectroscopy. We illustrate that the precision of an instrument based on these technologies, with light injected from an efficient SMF feed would be entirely limited by the spectral content and stellar noise alone on cool stars and would be capable of achieving a radial velocity precision of several m/s; the level required for detecting an exo-Earth in the habitable zone of a nearby M-dwarf.

  8. Stabilization of a high-order harmonic generation seeded extreme ultraviolet free electron laser by time-synchronization control with electro-optic sampling

    Institute of Scientific and Technical Information of China (English)

    H.Tomizawa; T.Sato; K.Ogawa; K.Togawa; T.Tanaka; T.Hara; M.Yabashi; H.Tanaka; T.Ishikawa; T.Togashi; S.Matsubara; Y.Okayasu; T.Watanabe; E.J.Takahashi; K.Midorikawa; M.Aoyama; K.Yamakawa; S.Owada; A.Iwasaki; K.Yamanouchi

    2015-01-01

    A fully coherent free electron laser(FEL) seeded with a higher-order harmonic(HH) pulse from high-order harmonic generation(HHG) is successfully operated for a sufficiently prolonged time in pilot user experiments by using a timing drift feedback. For HHG-seeded FELs, the seeding laser pulses have to be synchronized with electron bunches. Despite seeded FELs being non-chaotic light sources in principle, external laser-seeded FELs are often unstable in practice because of a timing jitter and a drift between the seeding laser pulses and the accelerated electron bunches. Accordingly,we constructed a relative arrival-timing monitor based on non-invasive electro-optic sampling(EOS). The EOS monitor made uninterrupted shot-to-shot monitoring possible even during the seeded FEL operation. The EOS system was then used for arrival-timing feedback with an adjustability of 100 fs for continual operation of the HHG-seeded FEL. Using the EOS-based beam drift controlling system, the HHG-seeded FEL was operated over half a day with an effective hit rate of 20%–30%. The output pulse energy was 20 μJ at the 61.2 nm wavelength. Towards seeded FELs in the water window region, we investigated our upgrade plan to seed high-power FELs with HH photon energy of 30–100 e V and lase at shorter wavelengths of up to 2 nm through high-gain harmonic generation(HGHG) at the energy-upgraded SPring-8Compact SASE Source(SCSS) accelerator. We studied a benefit as well as the feasibility of the next HHG-seeded FEL machine with single-stage HGHG with tunability of a lasing wavelength.

  9. Properites of ultrathin films appropriate for optics capping layers in extreme ultraviolet lithography (EUVL)

    Energy Technology Data Exchange (ETDEWEB)

    Bajt, S; Edwards, N V; Madey, T E

    2007-06-25

    The contamination of optical surfaces by irradiation shortens optics lifetime and is one of the main concerns for optics used in conjunction with intense light sources, such as high power lasers, 3rd and 4th generation synchrotron sources or plasma sources used in extreme ultraviolet lithography (EUVL) tools. This paper focuses on properties and surface chemistry of different materials, which as thin layers, could be used as capping layers to protect and extend EUVL optics lifetime. The most promising candidates include single element materials such as ruthenium and rhodium, and oxides such as TiO{sub 2} and ZrO{sub 2}.

  10. High speed optical networks

    Science.gov (United States)

    Frankel, Michael Y.; Livas, Jeff

    2005-02-01

    This overview will discuss core network technology and cost trade-offs inherent in choosing between "analog" architectures with high optical transparency, and ones heavily dependent on frequent "digital" signal regeneration. The exact balance will be related to the specific technology choices in each area outlined above, as well as the network needs such as node geographic spread, physical connectivity patterns, and demand loading. Over the course of a decade, optical networks have evolved from simple single-channel SONET regenerator-based links to multi-span multi-channel optically amplified ultra-long haul systems, fueled by high demand for bandwidth at reduced cost. In general, the cost of a well-designed high capacity system is dominated by the number of optical to electrical (OE) and electrical to optical (EO) conversions required. As the reach and channel capacity of the transport systems continued to increase, it became necessary to improve the granularity of the demand connections by introducing (optical add/drop multiplexers) OADMs. Thus, if a node requires only small demand connectivity, most of the optical channels are expressed through without regeneration (OEO). The network costs are correspondingly reduced, partially balanced by the increased cost of the OADM nodes. Lately, the industry has been aggressively pursuing a natural extension of this philosophy towards all-optical "analog" core networks, with each demand touching electrical digital circuitry only at the in/egress nodes. This is expected to produce a substantial elimination of OEO costs, increase in network capacity, and a notionally simpler operation and service turn-up. At the same time, such optical "analog" network requires a large amount of complicated hardware and software for monitoring and manipulating high bit rate optical signals. New and more complex modulation formats that provide resiliency to both optical noise and nonlinear propagation effects are important for extended

  11. Focusing adaptive-optics for neutron spectroscopy at extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Simeoni, G. G., E-mail: ggsimeoni@outlook.com [Heinz Maier-Leibnitz Zentrum (MLZ), FRM II, Technical University of Munich, D-85748 Garching (Germany); Physics Department E13, Technical University of Munich, D-85748 Garching (Germany); Valicu, R. G. [Heinz Maier-Leibnitz Zentrum (MLZ), FRM II, Technical University of Munich, D-85748 Garching (Germany); Physics Department E13, Technical University of Munich, D-85748 Garching (Germany); Physics Department E21, Technical University of Munich, D-85748 Garching (Germany); Borchert, G. [Heinz Maier-Leibnitz Zentrum (MLZ), FRM II, Technical University of Munich, D-85748 Garching (Germany); Böni, P. [Physics Department E21, Technical University of Munich, D-85748 Garching (Germany); Rasmussen, N. G. [Nanoscience Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen (Denmark); Yang, F.; Kordel, T.; Holland-Moritz, D.; Kargl, F.; Meyer, A. [Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt, D-51170 Köln (Germany)

    2015-12-14

    Neutron Spectroscopy employing extreme-conditions sample environments is nowadays a crucial tool for the understanding of fundamental scientific questions as well as for the investigation of materials and chemical-physical properties. For all these kinds of studies, an increased neutron flux over a small sample area is needed. The prototype of a focusing neutron guide component, developed and produced completely at the neutron source FRM II in Garching (Germany), has been installed at the time-of-flight (TOF) disc-chopper neutron spectrometer TOFTOF and came into routine-operation. The design is based on the compressed Archimedes' mirror concept for finite-size divergent sources. It represents a unique device combining the supermirror technology with Adaptive Optics, suitable for broad-bandwidth thermal-cold TOF neutron spectroscopy (here optimized for 1.4–10 Å). It is able to squeeze the beam cross section down to a square centimeter, with a more than doubled signal-to-background ratio, increased efficiency at high scattering angles, and improved symmetry of the elastic resolution function. We present a comparison between the simulated and measured beam cross sections, as well as the performance of the instrument within real experiments. This work intends to show the unprecedented opportunities achievable at already existing instruments, along with useful guidelines for the design and construction of next-generation neutron spectrometers.

  12. Challenges in optics for Extremely Large Telescope instrumentation

    Science.gov (United States)

    Spanò, P.; Zerbi, F. M.; Norrie, C. J.; Cunningham, C. R.; Strassmeier, K. G.; Bianco, A.; Blanche, P. A.; Bougoin, M.; Ghigo, M.; Hartmann, P.; Zago, L.; Atad-Ettedgui, E.; Delabre, B.; Dekker, H.; Melozzi, M.; Snÿders, B.; Takke, R.

    2006-08-01

    We describe and summarize the optical challenges for future instrumentation for Extremely Large Telescopes (ELTs). Knowing the complex instrumental requirements is crucial for the successful design of 30-60 m aperture telescopes. After all, the success of ELTs will heavily rely on its instrumentation and this, in turn, will depend on the ability to produce large and ultra-precise optical components like light-weight mirrors, aspheric lenses, segmented filters, and large gratings. New materials and manufacturing processes are currently under study, both at research institutes and in industry. In the present paper, we report on its progress with particular emphasize on volume-phase-holographic gratings, photochromic materials, sintered silicon-carbide mirrors, ion-beam figuring, ultra-precision surfaces, and free-form optics. All are promising technologies opening new degrees of freedom to optical designers. New optronic-mechanical systems will enable efficient use of the very large focal planes. We also provide exploratory descriptions of ``old'' and ``new'' optical technologies together with suggestions to instrument designers to overcome some of the challenges placed by ELT instrumentation.

  13. Extremely violent optical microvariability in blazars: fact or fiction?

    CERN Document Server

    Cellone, S A; Araudo, A T; Cellone, Sergio A.; Romero, Gustavo E.; Araudo, Anabella T.

    2006-01-01

    Variability amplitudes larger than 1 magnitude over time-scales of a few tens of minutes have recently been reported in the optical light-curves of several blazars. In order to independently verify the real occurrence of such extremely violent events, we undertook an observational study of a selected sample of three blazars: PKS 0048-097, PKS 0754+100, and PKS 1510-089. Possible systematic error sources during data acquisition and reduction were carefully evaluated. We indeed found flux variability at intra-night time-scales in all three sources, although no extremely violent behaviour, as reported by other authors, was detected. We show that an incorrect choice of the stars used for differential photometry will, under fairly normal conditions, lead to spurious variability with large amplitudes on short time-scales. Wrong results of this kind can be avoided with the use of simple error-control techniques.

  14. MEMS-based extreme adaptive optics for planet detection

    Energy Technology Data Exchange (ETDEWEB)

    Macintosh, B A; Graham, J R; Oppenheimer, B; Poyneer, L; Sivaramakrishnan, A; Veran, J

    2005-11-18

    The next major step in the study of extrasolar planets will be the direct detection, resolved from their parent star, of a significant sample of Jupiter-like extrasolar giant planets. Such detection will open up new parts of the extrasolar planet distribution and allow spectroscopic characterization of the planets themselves. Detecting Jovian planets at 5-50 AU scale orbiting nearby stars requires adaptive optics systems and coronagraphs an order of magnitude more powerful than those available today--the realm of ''Extreme'' adaptive optics. We present the basic requirements and design for such a system, the Gemini Planet Imager (GPI.) GPI will require a MEMS-based deformable mirror with good surface quality, 2-4 micron stroke (operated in tandem with a conventional low-order ''woofer'' mirror), and a fully-functional 48-actuator-diameter aperture.

  15. Characteristics of extreme ultraviolet emission from high-Z plasmas

    Science.gov (United States)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-03-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics.

  16. Extremely nonlocal optical nonlinearities in atoms trapped near a waveguide

    CERN Document Server

    Shahmoon, Ephraim; Stimming, Hans Peter; Mazets, Igor; Kurizki, Gershon

    2014-01-01

    Nonlinear optical phenomena are typically local. Here we predict the possibility of highly nonlocal optical nonlinearities for light propagating in atomic media trapped near a nano-waveguide, where long-range interactions between the atoms can be tailored. When the atoms are in an electromagnetically-induced transparency configuration, the atomic interactions are translated to long-range interactions between photons and thus to highly nonlocal optical nonlinearities. We derive and analyze the governing nonlinear propagation equation, finding a roton-like excitation spectrum for light and the emergence of long-range order in its output intensity. These predictions open the door to studies of unexplored wave dynamics and many-body physics with highly-nonlocal interactions of optical fields in one dimension.

  17. Relativistic QED Plasma at Extremely High Temperature

    CERN Document Server

    Masood, Samina S

    2016-01-01

    Renormalization scheme of QED (Quantum Electrodynamics) at high temperatures is used to calculate the effective parameters of relativistic plasma in the early universe. Renormalization constants of QED play role of effective parameters of the theory and can be used to determine the collective behavior of the medium. We explicitly show that the dielectric constant, magnetic reluctivity, Debye length and the plasma frequency depend on temperature in the early universe. Propagation speed, refractive index, plasma frequency and Debye shielding length of a QED plasma are computed at extremely high temperatures in the early universe. We also found the favorable conditions for the relativistic plasma from this calculations.

  18. Networking of optical fiber sensors for extreme environments

    Science.gov (United States)

    Peters, Kara

    2016-04-01

    One of the major benefits of optical fiber sensors for applications to structural health monitoring and other structural measurements is their inherent multiplexing capabilities, meaning that a large number of sensing locations can be achieved with a single optical fiber. It has been well demonstrated that point wise sensors can be multiplexed to form sensor networks or optical fibers integrated with distributed sensing techniques. The spacing between sensing locations can also be tuned to match different length scales of interest. This article presents an overview of directions to adapt optical fiber sensor networking techniques into new applications where limitations such as available power or requirements for high data acquisition speeds are a driving factor. In particular, the trade-off between high fidelity sensor information vs. rapid signal processing or data acquisition is discussed.

  19. Extreme Transients in the High Energy Universe

    Science.gov (United States)

    Kouveliotou, Chryssa

    2013-01-01

    The High Energy Universe is rich in diverse populations of objects spanning the entire cosmological (time)scale, from our own present-day Milky Way to the re-ionization epoch. Several of these are associated with extreme conditions irreproducible in laboratories on Earth. Their study thus sheds light on the behavior of matter under extreme conditions, such as super-strong magnetic fields (in excess of 10^14 G), high gravitational potentials (e.g., Super Massive Black Holes), very energetic collimated explosions resulting in relativistic jet flows (e.g., Gamma Ray Bursts, exceeding 10^53 ergs). In the last thirty years, my work has been mostly focused on two apparently different but potentially linked populations of such transients: magnetars (highly magnetized neutron stars) and Gamma Ray Bursts (strongly beamed emission from relativistic jets), two populations that constitute unique astrophysical laboratories, while also giving us the tools to probe matter conditions in the Universe to redshifts beyond z=10, when the first stars and galaxies were assembled. I did not make this journey alone I have either led or participated in several international collaborations studying these phenomena in multi-wavelength observations; solitary perfection is not sufficient anymore in the world of High Energy Astrophysics. I will describe this journey, present crucial observational breakthroughs, discuss key results and muse on the future of this field.

  20. Extremely high frequency RF effects on electronics.

    Energy Technology Data Exchange (ETDEWEB)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  1. Extremely compliant and highly stretchable patterned graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Shuze; Huang, Yinjun; Li, Teng, E-mail: LiT@umd.edu [Department of Mechanical Engineering and Maryland NanoCenter, University of Maryland, College Park, Maryland 20742 (United States)

    2014-04-28

    Graphene is intrinsically ultra-stiff in its plane. Its huge mechanical mismatch when interfacing with ultra-compliant biological tissues and elastomers (7–9 orders of magnitude difference in stiffness) poses significant challenge in its application to functional devices such as epidermal electronics and sensing prosthesis. We offer a feasible and promising solution to this significant challenge by suitably patterning graphene into a nanomesh. Through systematic coarse-grained simulations, we show that graphene nanomesh can be made extremely compliant with nearly zero stiffness up to about 20% elongation and then remain highly compliant up to about 50% elongation.

  2. Extreme Precipitation and High-Impact Landslides

    Science.gov (United States)

    Kirschbaum, Dalia; Adler, Robert; Huffman, George; Peters-Lidard, Christa

    2012-01-01

    It is well known that extreme or prolonged rainfall is the dominant trigger of landslides; however, there remain large uncertainties in characterizing the distribution of these hazards and meteorological triggers at the global scale. Researchers have evaluated the spatiotemporal distribution of extreme rainfall and landslides at local and regional scale primarily using in situ data, yet few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This research uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from Tropical Rainfall Measuring Mission (TRMM) data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurence of precipitation and rainfall-triggered landslides globally. The GLC, available from 2007 to the present, contains information on reported rainfall-triggered landslide events around the world using online media reports, disaster databases, etc. When evaluating this database, we observed that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This research also considers the sources for this extreme rainfall, citing

  3. Non-Gaussian statistics and extreme waves in a nonlinear optical cavity.

    Science.gov (United States)

    Montina, A; Bortolozzo, U; Residori, S; Arecchi, F T

    2009-10-23

    A unidirectional optical oscillator is built by using a liquid crystal light valve that couples a pump beam with the modes of a nearly spherical cavity. For sufficiently high pump intensity, the cavity field presents complex spatiotemporal dynamics, accompanied by the emission of extreme waves and large deviations from the Gaussian statistics. We identify a mechanism of spatial symmetry breaking, due to a hypercycle-type amplification through the nonlocal coupling of the cavity field.

  4. Roadmap on optical rogue waves and extreme events

    Science.gov (United States)

    Akhmediev, Nail; Kibler, Bertrand; Baronio, Fabio; Belić, Milivoj; Zhong, Wei-Ping; Zhang, Yiqi; Chang, Wonkeun; Soto-Crespo, Jose M.; Vouzas, Peter; Grelu, Philippe; Lecaplain, Caroline; Hammani, K.; Rica, S.; Picozzi, A.; Tlidi, Mustapha; Panajotov, Krassimir; Mussot, Arnaud; Bendahmane, Abdelkrim; Szriftgiser, Pascal; Genty, Goery; Dudley, John; Kudlinski, Alexandre; Demircan, Ayhan; Morgner, Uwe; Amiraranashvili, Shalva; Bree, Carsten; Steinmeyer, Günter; Masoller, C.; Broderick, Neil G. R.; Runge, Antoine F. J.; Erkintalo, Miro; Residori, S.; Bortolozzo, U.; Arecchi, F. T.; Wabnitz, Stefan; Tiofack, C. G.; Coulibaly, S.; Taki, M.

    2016-06-01

    The pioneering paper ‘Optical rogue waves’ by Solli et al (2007 Nature 450 1054) started the new subfield in optics. This work launched a great deal of activity on this novel subject. As a result, the initial concept has expanded and has been enriched by new ideas. Various approaches have been suggested since then. A fresh look at the older results and new discoveries has been undertaken, stimulated by the concept of ‘optical rogue waves’. Presently, there may not by a unique view on how this new scientific term should be used and developed. There is nothing surprising when the opinion of the experts diverge in any new field of research. After all, rogue waves may appear for a multiplicity of reasons and not necessarily only in optical fibers and not only in the process of supercontinuum generation. We know by now that rogue waves may be generated by lasers, appear in wide aperture cavities, in plasmas and in a variety of other optical systems. Theorists, in turn, have suggested many other situations when rogue waves may be observed. The strict definition of a rogue wave is still an open question. For example, it has been suggested that it is defined as ‘an optical pulse whose amplitude or intensity is much higher than that of the surrounding pulses’. This definition (as suggested by a peer reviewer) is clear at the intuitive level and can be easily extended to the case of spatial beams although additional clarifications are still needed. An extended definition has been presented earlier by N Akhmediev and E Pelinovsky (2010 Eur. Phys. J. Spec. Top. 185 1-4). Discussions along these lines are always useful and all new approaches stimulate research and encourage discoveries of new phenomena. Despite the potentially existing disagreements, the scientific terms ‘optical rogue waves’ and ‘extreme events’ do exist. Therefore coordination of our efforts in either unifying the concept or in introducing alternative definitions must be continued. From

  5. New challenges for Adaptive Optics Extremely Large Telescopes

    CERN Document Server

    Le Louarn, M; Sarazin, M; Tokovinin, A

    2000-01-01

    The performance of an adaptive optics (AO) system on a 100m diameter ground based telescope working in the visible range of the spectrum is computed using an analytical approach. The target Strehl ratio of 60% is achieved at 0.5um with a limiting magnitude of the AO guide source near R~10, at the cost of an extremely low sky coverage. To alleviate this problem, the concept of tomographic wavefront sensing in a wider field of view using either natural guide stars (NGS) or laser guide stars (LGS) is investigated. These methods use 3 or 4 reference sources and up to 3 deformable mirrors, which increase up to 8-fold the corrected field size (up to 60\\arcsec at 0.5 um). Operation with multiple NGS is limited to the infrared (in the J band this approach yields a sky coverage of 50% with a Strehl ratio of 0.2). The option of open-loop wavefront correction in the visible using several bright NGS is discussed. The LGS approach involves the use of a faint (R ~22) NGS for low-order correction, which results in a sky cov...

  6. Extreme Environment High Temperature Communication Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop and demonstrate a communications system capable of operation at extreme temperatures and pressures in hostile and corrosive...

  7. Plasmonic hole arrays with extreme optical chirality in linear and nonlinear regimes

    Science.gov (United States)

    Gorkunov, Maxim V.; Kondratov, Alexei V.; Darinskii, Alexander N.; Artemov, Vladimir V.; Rogov, Oleg Y.; Gainutdinov, Radmir V.

    2016-04-01

    Metamaterials with high optical activity (OA) and circular dichroism (CD) are desired for various prospective applications ranging from circular light polarizing to enhanced chiral sensing and biosensing. Modern techniques allow fabricating subwavelength arrays of holes of complex chiral shapes that exhibit extreme optical chirality: their OA and CD take the whole range of possible values in the visible. In order to understand the nature of extreme chirality, we performed the electromagnetic finite difference time domain simulations for the hole shapes resolved by atomic force microscopy. The analysis of the simulation data allowed us to develop an analytical chiral coupled-mode model that nicely fits the results and explains the extreme chirality as determined by the Fano-type transmission resonance due to the interference of a weak background channel and a resonant plasmon channel. The model shows critical importance of the dissipation losses, the hole shape symmetry and chirality. In a planar 2D-chiral hole array, the mirror asymmetry can be induced by the difference of dielectric materials adjacent to the array sides and even their weak deviation results in remarkably strong OA and CD. We note that such deviations can arise due to the dielectric nonlinearity and discuss how 2D-chiral metamaterials in symmetric environment can acquire optical chirality due to the nonlinear symmetry breaking.

  8. Reflective optical imaging system for extreme ultraviolet wavelengths

    Science.gov (United States)

    Viswanathan, V.K.; Newnam, B.E.

    1993-05-18

    A projection reflection optical system has two mirrors in a coaxial, four reflection configuration to reproduce the image of an object. The mirrors have spherical reflection surfaces to provide a very high resolution of object feature wavelengths less than 200 [mu]m, and preferably less than 100 [mu]m. An image resolution of features less than 0.05-0.1 [mu]m, is obtained over a large area field; i.e., 25.4 mm [times] 25.4 mm, with a distortion less than 0.1 of the resolution over the image field.

  9. Multilayer coatings for optics in the extreme ultraviolet

    Science.gov (United States)

    Larruquert, Juan I.; Vidal-Dasilva, Manuela; García-Cortés, Sergio; Rodríguez-de Marcos, Luis; Fernández-Perea, Mónica; Aznárez, José A.; Méndez, José A.

    2011-02-01

    The strong absorption of materials in the extreme ultraviolet (EUV) above ~50 nm has precluded the development of efficient coatings. The development of novel coatings with improved EUV performance is presented. An extensive research was performed on the search and characterization of new materials with low absorption or high reflectance. Lanthanide series was found to be a source of materials with relatively low absorption in this range, where most materials in nature present a strong absorption. Other materials, such as SiO and B, have been found to have interesting properties for applications on EUV coatings. As a result, novel multilayers based on Yb, Al, and SiO have been developed with narrowband performance in the 50-92 nm range. In some cases, the difficulty of developing narrowband coatings in the EUV can be overcome by designing multilayers that address specific purposes, such as maximizing and/or minimizing the reflectance at two or more wavelengths or bands. In this direction, we are working towards the development of coatings that combine a relatively high reflectance in a desired EUV band with a low reflectance in another band, for applications in which the presence of the latter radiation may mask a weak EUV radiation source.

  10. Extreme Adaptive Optics for the Thirty Meter Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Macintosh, B; al., e

    2006-05-02

    Direct detection of extrasolar Jovian planets is a major scientific motivation for the construction of future extremely large telescopes such as the Thirty Meter Telescope (TMT). Such detection will require dedicated high-contrast AO systems. Since the properties of Jovian planets and their parent stars vary enormously between different populations, the instrument must be designed to meet specific scientific needs rather than a simple metric such as maximum Strehl ratio. We present a design for such an instrument, the Planet Formation Imager (PFI) for TMT. It has four key science missions. The first is the study of newly-formed planets on 5-10 AU scales in regions such as Taurus and Ophiucus--this requires very small inner working distances that are only possible with a 30m or larger telescope. The second is a robust census of extrasolar giant planets orbiting mature nearby stars. The third is detailed spectral characterization of the brightest extrasolar planets. The final targets are circumstellar dust disks, including Zodiacal light analogs in the inner parts of other solar systems. To achieve these, PFI combines advanced wavefront sensors, high-order MEMS deformable mirrors, a coronagraph optimized for a finely-segmented primary mirror, and an integral field spectrograph.

  11. Optical studies of crystalline organic superconductors under extreme conditions

    CERN Document Server

    McDonald, R D

    2001-01-01

    the aim being to make an optical measurement of the pressure dependence of the charge carrier effective mass. Chapter 4 concentrates on the vibrational modes of kappa-(BEDT-TTF) sub 2 Cu(SCN) sub 2. This chapter reports the first Raman scattering experiments on an organic superconductor at high pressure. Comparison of the infrared reflectance and Raman scattering measurements are used to elucidate the role of electron-phonon coupling in this material's superconductivity. Chapter 5 reports the first non-resonant measurements of the GHz conductivity of an organic molecular superconductor. These experiments probe the unconventional metallic properties of an organic superconductor during the onset of superconductivity. This thesis reports experiments which involve the interaction of light and matter to probe the properties of crystalline organic superconductors. The organic superconductors of the BEDT-TTF family are prototypical correlated electron systems; their low-temperature ground states are dominated by man...

  12. Extreme temperature sensing using brillouin scattering in optical fibers

    CERN Document Server

    Fellay, Alexandre

    Stimulated Brillouin scattering in silica-based optical fibers may be considered from two different and complementary standpoints. For a physicist, this interaction of light and pressure wave in a material, or equivalently in quantum theory terms between photons and phonons, gives some glimpses of the atomic structure of the solid and of its vibration modes. For an applied engineer, the same phenomenon may be put to good use as a sensing mechanism for distributed measurements, thanks to the dependence of the scattered light on external parameters such as the temperature, the pressure or the strain applied to the fiber. As far as temperature measurements are concerned, Brillouin-based distributed sensors have progressively gained wide recognition as efficient systems, even if their rather high cost still restricts the number of their applications. Yet they are generally used in a relatively narrow temperature range around the usual ambient temperature; in this domain, the frequency of the scattered light incre...

  13. Extremely high-intensity laser interactions with fundamental quantum systems

    CERN Document Server

    Di Piazza, A; Hatsagortsyan, K Z; Keitel, C H

    2011-01-01

    The field of laser-matter interaction traditionally deals with the response of atoms, molecules and plasmas to an external light wave. However, the recent sustained technological progress is opening the possibility of employing intense laser radiation to prompt or substantially influence physical processes beyond atomic-physics energy scales. Available optical laser intensities exceeding $10^{22}\\;\\text{W/cm$^2$}$ can push the fundamental light-electron interaction to the extreme limit where radiation-reaction effects dominate the electron dynamics, can shed light on the structure of the quantum vacuum and can prime the creation of particles like electrons, muons and pions and the corresponding antiparticles. Also, novel sources of intense coherent high-energy photons and laser-based particle colliders can pave the way to nuclear quantum optics and can even allow for potential discovery of new particles beyond the Standard Model. These are the main topics of the present article, which is devoted to a review o...

  14. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    Science.gov (United States)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  15. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    Science.gov (United States)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  16. Visualizing the local optical response to extreme-ultraviolet radiation with a resolution of λ/380

    Science.gov (United States)

    Tamasaku, Kenji; Sawada, Kei; Nishibori, Eiji; Ishikawa, Tetsuya

    2011-09-01

    Scientists have continually tried to improve the spatial resolution of imaging ever since the invention of the optical microscope in around 1610 by Galileo. Recently, a spatial resolution near λ/10 was achieved in a near-field scheme by using surface plasmon polaritons. However, further improvement in this direction is hindered by the size of metallic nanostructures. Here we show that atom-scale resolution is achievable in the extreme-ultraviolet region by using X-ray parametric down-conversion, which detaches the achievable resolution from the wavelength of the probe light. We visualize three-dimensionally the local optical response of diamond at wavelengths between 103 and 206Å with a resolution as fine as 0.54Å. This corresponds to a resolution from λ/190 to λ/380, an order of magnitude better than ever achieved. Although the present study focuses on the relatively high-energy optical regions, our method could be extended into the visible region using advanced X-ray sources, and would open a new window into the optical properties of solids.

  17. Extreme optical confinement in a slotted photonic crystal waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Caër, Charles; Le Roux, Xavier; Cassan, Eric, E-mail: eric.cassan@u-psud.fr [Institut d' Électronique Fondamentale, Université Paris-Sud CNRS UMR 8622 Bat. 220, Centre scientifique d' Orsay, 91405 Orsay (France); Combrié, Sylvain, E-mail: sylvain.combrie@thalesgroup.com; De Rossi, Alfredo [Thales Research and Technology, 1 Av. Augustin Fresnel, 91767 Palaiseau (France)

    2014-09-22

    Using Optical Coherence Tomography, we measure the attenuation of slow light modes in slotted photonic crystal waveguides. When the group index is close to 20, the attenuation is below 300 dB cm{sup −1}. Here, the optical confinement in the empty slot is very strong, corresponding to an ultra-small effective cross section of 0.02 μm{sup 2}. This is nearly 10 times below the diffraction limit at λ = 1.5 μm, and it enables an effective interaction with a very small volume of functionalized matter.

  18. Common lower extremity injuries in female high school soccer ...

    African Journals Online (AJOL)

    Common lower extremity injuries in female high school soccer players in ... and fitness and not wearing shin guards are risk factors for injury in female soccer ... do not differ from the studies done in male adolescent and adult soccer players.

  19. Advanced Extremely High Frequency Satellite (AEHF)

    Science.gov (United States)

    2015-12-01

    High Frequency Satellite (AEHF) is a joint service satellite communications system that provides global , survivable, secure, protected, and jam...three satellites fully integrated into the Milstar constellation. October 2014: On October 16, 2014, the program received PEO certification for the...Combined Orbital Operation, Logistics Sustainment ( COOLS ) contract, it will be completed and coordinated in CY 2016. The AEHF system being sustained

  20. Extremely high Q-factor toroidal metamaterials

    CERN Document Server

    Basharin, Alexey A; Volsky, Nikita; Kafesaki, Maria; Economou, Eleftherios N; Ustinov, Alexey V

    2016-01-01

    We demonstrate that, owing to the unique topology of the toroidal dipolar mode, its electric/magnetic field can be spatially confined within subwavelength, externally accessible regions of the metamolecules, which makes the toroidal planar metamaterials a viable platform for high Q-factor resonators due to interfering toroidal and other dipolar modes in metamolecules.

  1. Workshop on extremely high energy density plasmas and their diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Shozo (ed.)

    2001-09-01

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  2. Nonlinear optical field sensors in extreme electromagnetic and acoustic environments

    Science.gov (United States)

    Garzarella, Anthony; Wu, Dong Ho

    2014-03-01

    Sensors based on electro-optic (EO) and magneto-optic (MO) crystals measure external electric and magnetic fields through changes in birefringence which the fields induce on the nonlinear crystals. Due to their small size and all-dielectric structure, EO and MO sensors are ideal in environments involving very large electromagnetic powers. Conventional antennas and metallic probes not only present safety hazards, due to their metallic structure and the presence of large currents, but they can also perturb the very fields they intend to measure. In the case of railguns, the large electromagnetic signals are also accompanied by tremendous acoustic noise, which presents a noise background that the sensors must overcome. In this presentation, we describe extensive data obtained from fiber optic EO and MO sensors used in the railgun of the Naval Research Laboratory. Along with the field measurements obtained, we will describe the interactions between the acoustic noise and the nonlinear crystals (most notably, photoelastic effects), the noise equivalent fields they produce, and methods they could be suppressed through the optical and geometrical configurations of the sensor so that the signal to noise ratio can be maximized.

  3. High resolution spectroscopy of six new extreme helium stars

    Science.gov (United States)

    Heber, U.; Jones, G.; Drilling, J. S.

    1986-01-01

    High resolution spectra of six newly discovered extreme helium stars are presented. LSS 5121 is shown to be a spectroscopical twin of the hot extreme helium star HD 160641. A preliminary LTE analysis of LSS 3184 yielded an effective temperature of 22,000 K and a surface gravity of log g = 3.2. Four stars form a new subgroup, classified by sharp-lined He I spectra and pronounced O II spectra, and it is conjectured that these lie close to the Eddington limit. The whole group of extreme helium stars apparently is inhomogeneous with respect to luminosity to mass ratio and chemical composition.

  4. Carbon coatings for extreme-ultraviolet high-order laser harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Coraggia, S.; Frassetto, F. [CNR-Institute of Photonics and Nanotechnologies, Laboratory for UV and X-Ray Optical Research, via Trasea 7, 35131 Padova (Italy); Aznarez, J.A.; Larruquert, J.I.; Mendez, J.A. [GOLD-Instituto de Optica-Consejo Superior de Investigaciones Cientificas, Serrano 144, 28006 Madrid (Spain); Negro, M.; Stagira, S.; Vozzi, C. [Department of Physics-Politecnico of Milano and CNR-Institute of Photonics and Nanotechnologies, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Poletto, L., E-mail: poletto@dei.unipd.i [CNR-Institute of Photonics and Nanotechnologies, Laboratory for UV and X-Ray Optical Research, via Trasea 7, 35131 Padova (Italy)

    2011-04-11

    The experimental study of the optical properties of thin carbon films to be used as grazing-incidence coatings for extreme-ultraviolet high-order harmonics is presented. The carbon samples were deposited on plane glass substrates by the electron beam evaporation technique. The optical constants (real and imaginary parts of the refraction index) have been calculated through reflectivity measurements. The results are in good agreement with what reported in the literature, and confirm that carbon-coated optics operated at grazing incidence have a remarkable gain over conventional metallic coatings in the extreme ultraviolet. Since the harmonics co-propagate with the intense infrared laser generating beam, the carbon damage threshold when exposed to ultrashort infrared laser pulses has been measured.

  5. Features of hyperbolic metamaterials with extremal optical characteristics

    Science.gov (United States)

    Kurilkina, S. N.; Binhussain, M. A.; Belyi, V. N.; Kazak, N. S.

    2016-08-01

    The possibility is shown and conditions are found for the realization of the type I or II epsilon-near-zero (ENZ) metamaterials based on a multilayer metal-dielectric structure. It is found that, for both propagating and evanescent extraordinary waves, diffraction-free energy transportation occurs with low losses within narrow channels inside the type I ENZ metamaterial on the basis of such a structure. The research presents the possibility of forming the type II ENZ metamaterial inside the two kinds of propagating light waves for which the amplitude decays from the boundary and the phase fronts move away from and towards the boundary of the metamaterial, respectively. The interaction between Gaussian light beams and metamaterials with extremal characteristics is theoretically investigated. The prospect of the practical application of these media is considered.

  6. Soft X ray/extreme ultraviolet images of the solar atmosphere with normal incidence multilayer optics

    Science.gov (United States)

    Lindblom, Joakim Fredrik

    The first high resolution Soft X-Ray/Extreme Ultraviolet (XUV) images of the Sun with normal incidence multilayer optics were obtained by the Standford/MSFC Rocket X-Ray Spectroheliograph on 23 Oct. 1987. Numerous images at selected wavelengths from 8 to 256 A were obtained simultaneously by the diverse array of telescopes flown on-board the experiment. These telescopes included single reflection normal incidence multilayer systems (Herschelian), double reflection multilayer systems (Cassegrain), a grazing incidence mirror system (Wolter-Schwarzschild), and hybrid systems using normal incidence multilayer optics in conjunction with the grazing incidence primary (Wolter-Cassegrain). Filters comprised of approximately 1700 A thick aluminum supported on a nickel mesh were used to transmit the soft x ray/EUV radiation while preventing the intense visible light emission of the Sun from fogging the sensitive experimental T-grain photographic emulsions. These systems yielded high resolution soft x ray/EUV images of the solar corona and transition region, which reveal magnetically confined loops of hot solar plasma, coronal plumes, polar coronal holes, supergranulation, and features associated with overlying cool prominences. The development, testing, and operation of the experiments, and the results from the flight are described. The development of a second generation experiment, the Multi-Spectral Solar Telescope Array, which is scheduled to fly in the summer of 1990, and a recently approved Space Station experiment, the Ultra-High Resolution XUV Spectroheliograph, which is scheduled to fly in 1996 are also described.

  7. Extremely Red Quasars from SDSS, BOSS and WISE: Classification of Optical Spectra

    CERN Document Server

    Ross, Nicholas P; Zakamska, Nadia L; Richards, Gordon T; Villforth, Carolin; Strauss, Michael A; Greene, Jenny E; Alexandroff, Rachael; Brandt, W Niel; Liu, Guilin; Myers, Adam D; Paris, Isabelle; Schneider, Donald P

    2014-01-01

    Quasars with extremely red colours are an interesting population that can test ideas about quasar evolution as well as orientation and geometric effects in the so-called AGN unified model. To identify such a population we search the quasar catalogs of the Sloan Digital Sky Survey (SDSS), the Baryon Oscillation Spectroscopic Survey (BOSS) and the Wide-Field Infrared Survey Explorer (WISE) for quasars with extremely high infrared-to-optical ratios. We identify 65 objects with r(AB)-W4(Vega)>14 mag (i.e., F_nu(22um)/F_nu(r) > ~1000). This sample spans a redshift range of 0.282.6 objects that are detected in the W4-band but not W1 or W2 (i.e., "W1W2-dropouts"). The SDSS/BOSS spectra show that the majority of the objects are reddened Type 1 quasars, Type 2 quasars (both at low and high redshift) or objects with deep low-ionization broad absorption lines (BALs) that suppress the observed r-band flux. In addition, we identify a class of Type 1 permitted broad-emission line objects at z~2-3 which are characterized by...

  8. GSMT Education: Teaching about Adaptive Optics and Site Selection Using Extremely Large Telescopes

    Science.gov (United States)

    Sparks, R. T.; Pompea, S. M.

    2010-08-01

    Giant Segmented Mirror Telescopes (GSMT) represents the next generation of extremely large telescopes (ELT). Currently there are three active ELT projects, all established as international partnerships to build telescopes of greater than 20 meters aperture. Two of these have major participation by U.S. institutions: the Giant Magellan Telescope and the Thirty Meter Telescope. The ESO-ELT is under development by the European Southern Observatory and other European institutions. We have developed educational activities to accompany the design phase of these projects. The current activities focus on challenges faced in the design and site selection of a large telescope. The first module is on site selection. This online module is based on the successful Astronomy Village program model. Students evaluate several potential sites to decide where to build the GSMT. They must consider factors such as weather, light pollution, seeing, logistics, and geography. The second project has developed adaptive optics teaching units suitable for high school.

  9. Adaptive optics sky coverage modeling for extremely large telescopes.

    Science.gov (United States)

    Clare, Richard M; Ellerbroek, Brent L; Herriot, Glen; Véran, Jean-Pierre

    2006-12-10

    A Monte Carlo sky coverage model for laser guide star adaptive optics systems was proposed by Clare and Ellerbroek [J. Opt. Soc. Am. A 23, 418 (2006)]. We refine the model to include (i) natural guide star (NGS) statistics using published star count models, (ii) noise on the NGS measurements, (iii) the effect of telescope wind shake, (iv) a model for how the Strehl and hence NGS wavefront sensor measurement noise varies across the field, (v) the focus error due to imperfectly tracking the range to the sodium layer, (vi) the mechanical bandwidths of the tip-tilt (TT) stage and deformable mirror actuators, and (vii) temporal filtering of the NGS measurements to balance errors due to noise and servo lag. From this model, we are able to generate a TT error budget for the Thirty Meter Telescope facility narrow-field infrared adaptive optics system (NFIRAOS) and perform several design trade studies. With the current NFIRAOS design, the median TT error at the galactic pole with median seeing is calculated to be 65 nm or 1.8 mas rms.

  10. Extreme states of matter high energy density physics

    CERN Document Server

    Fortov, Vladimir E

    2016-01-01

    With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams,electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures.Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.

  11. Extreme optical activity and circular dichroism of chiral metal hole arrays

    CERN Document Server

    Gorkunov, M V; Artemov, V V; Rogov, O Y; Yudin, S G

    2014-01-01

    We report extremely strong optical activity and circular dichroism exhibited by subwavelength arrays of four-start-screw holes fabricated with one-pass focused ion beam milling of freely suspended silver films. Having the fourth order rotational symmetry, the structures exhibit the polarization rotation up to 90 degrees and peaks of full circular dichroism and operate as circular polarizers within certain ranges of wavelengths in the visible. We discuss the observations on the basis of general principles (symmetry, reciprocity and reversibility) and conclude that the extreme optical chirality is determined by the chiral localized plasmonic resonances.

  12. Extreme Environment Silicon Carbide Hybrid Temperature & Pressure Optical Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Nabeel Riza

    2010-09-01

    This final report contains the main results from a 3-year program to further investigate the merits of SiC-based hybrid sensor designs for extreme environment measurements in gas turbines. The study is divided in three parts. Part 1 studies the material properties of SiC such as temporal response, refractive index change with temperature, and material thermal response reversibility. Sensor data from a combustion rig-test using this SiC sensor technology is analyzed and a robust distributed sensor network design is proposed. Part 2 of the study focuses on introducing redundancy in the sensor signal processing to provide improved temperature measurement robustness. In this regard, two distinct measurement methods emerge. A first method uses laser wavelength sensitivity of the SiC refractive index behavior and a second method that engages the Black-Body (BB) radiation of the SiC package. Part 3 of the program investigates a new way to measure pressure via a distance measurement technique that applies to hot objects including corrosive fluids.

  13. Understanding extreme quasar optical variability with CRTS - I. Major AGN flares

    Science.gov (United States)

    Graham, Matthew J.; Djorgovski, S. G.; Drake, Andrew J.; Stern, Daniel; Mahabal, Ashish A.; Glikman, Eilat; Larson, Steve; Christensen, Eric

    2017-10-01

    There is a large degree of variety in the optical variability of quasars and it is unclear whether this is all attributable to a single (set of) physical mechanism(s). We present the results of a systematic search for major flares in active galactic nucleus (AGN) in the Catalina Real-time Transient Survey as part of a broader study into extreme quasar variability. Such flares are defined in a quantitative manner as being atop of the normal, stochastic variability of quasars. We have identified 51 events from over 900 000 known quasars and high-probability quasar candidates, typically lasting 900 d and with a median peak amplitude of Δm = 1.25 mag. Characterizing the flare profile with a Weibull distribution, we find that nine of the sources are well described by a single-point single-lens model. This supports the proposal by Lawrence et al. that microlensing is a plausible physical mechanism for extreme variability. However, we attribute the majority of our events to explosive stellar-related activity in the accretion disc: superluminous supernovae, tidal disruption events and mergers of stellar mass black holes.

  14. Extreme temperature robust optical sensor designs and fault-tolerant signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Riza, Nabeel Agha (Oviedo, FL); Perez, Frank (Tujunga, CA)

    2012-01-17

    Silicon Carbide (SiC) probe designs for extreme temperature and pressure sensing uses a single crystal SiC optical chip encased in a sintered SiC material probe. The SiC chip may be protected for high temperature only use or exposed for both temperature and pressure sensing. Hybrid signal processing techniques allow fault-tolerant extreme temperature sensing. Wavelength peak-to-peak (or null-to-null) collective spectrum spread measurement to detect wavelength peak/null shift measurement forms a coarse-fine temperature measurement using broadband spectrum monitoring. The SiC probe frontend acts as a stable emissivity Black-body radiator and monitoring the shift in radiation spectrum enables a pyrometer. This application combines all-SiC pyrometry with thick SiC etalon laser interferometry within a free-spectral range to form a coarse-fine temperature measurement sensor. RF notch filtering techniques improve the sensitivity of the temperature measurement where fine spectral shift or spectrum measurements are needed to deduce temperature.

  15. Extremely High Q-factor metamaterials due to Anapole Excitation

    CERN Document Server

    Basharin, Alexey A; Volsky, Nikita; Kafesaki, Maria; Economou, Eleftherios N

    2016-01-01

    We demonstrate that ideal anapole metamaterials have infinite Q-factor. We have designed and fabricated a metamaterial consisting of planar metamolecules which exhibit anapole behavior in the sense that the electric dipole radiation is almost cancelled by the toroidal dipole one, producing thus an extremely high Q-factor at the resonance frequency. The size of the system, at the mm range, and the parasitic magnetic quadrupole radiation are the factors limiting the size of the Q-factor. In spite of the very low radiation losses the local fields at the metamolecules are extremely high, of the order of higher than the external incoming field.

  16. High-Temperature Optical Sensor

    Science.gov (United States)

    Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.

    2010-01-01

    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.

  17. Peculiarities of the propagation of multidimensional extremely short optical pulses in germanene

    Science.gov (United States)

    Zhukov, Alexander V.; Bouffanais, Roland; Konobeeva, Natalia N.; Belonenko, Mikhail B.

    2016-09-01

    In this Letter, we study the propagation characteristics of both two-dimensional and three-dimensional extremely short optical pulses in germanene. A distinguishing feature of germanene-in comparison with other graphene-like structures-is the presence of a significant spin-orbit interaction. The account of this interaction has a significant impact on the evolution of extremely short pulses in such systems. Specifically, extremely short optical pulses, consisting of two electric field oscillations, cause the appearance of a tail associated with the excitation of nonlinear waves. Due to the large spin-orbit interaction in germanene, this tail behind the main pulse is much smaller in germanene-based samples as compared to graphene-based ones, thereby making germanene a preferred material for the stable propagation of pulses along the sample.

  18. Is Extremely High Life Satisfaction during Adolescence Advantageous?

    Science.gov (United States)

    Suldo, Shannon M.; Huebner, E. Scott

    2006-01-01

    This study examined whether extremely high life satisfaction was associated with adaptive functioning or maladaptive functioning. Six hundred ninety-eight secondary level students completed the Students' Life Satisfaction Scale [Huebner, 1991a, School Psychology International, 12, pp. 231-240], Youth Self-Report of the Child Behavior Checklist…

  19. common lower extremity injuries in female high school soccer ...

    African Journals Online (AJOL)

    studies on soccer concentrate on male soccer players.5-7 Although participation ... the prevalence and injury profile of lower extremity injuries in female high school ... An extended duration of skills (p=0.0001) and fitness (p=0.02) training in this .... The results (Table V) show that shin guards were associated with a reduced ...

  20. Extreme high-head portables provide more pumping options

    Energy Technology Data Exchange (ETDEWEB)

    Fiscor, S.

    2006-10-15

    Three years ago, Godwin Pumps, one of the largest manufacturers of portable pumps, introduced its Extreme Duty High Lift (HL) series of pumps and more mines are finding unique applications for these pumps. The Extreme HL series is a range single-stage Dri-Prime pumps with heads up to 600 feet and flows up to 5,000 gallons per minute. The American Coal Co.'s Galatia mine, an underground longwall mine in southern Illinois, used an HL 160 to replace a multiple-staged centrifugal pump. It provided Galatia with 1,500 gpm at 465 ft. 3 photos.

  1. Phase Quantization Study of Spatial Light Modulator for Extreme High contrast Imaging

    CERN Document Server

    Dou, Jiangpei

    2016-01-01

    Direct imaging of exoplanets by reflected starlight is extremely challenging due to the large luminosity ratio to the primary star. Wave front control is a critical technique to attenuate the speckle noise in order to achieve an extreme high contrast. We present the phase quantization study of spatial light modulator for wave front control to meet the contrast requirement of detection of a terrestrial planet in the habitable zone of a solar-type star. We perform the numerical simulation by employing the SLM with different phase accuracy and actuator numbers, which are related to the achievable contrast. We use an optimization algorithm to solve the quantization problems that is matched to the controllable phase step of the SLM. Two optical configurations are discussed with the SLM located before and after the coronagraph focal plane mask, respectively. The simulation result has constrained the specification for phase accuracy of SLM in above two optical configurations. Finally, we have demonstrated that the S...

  2. High resolution modelling of extreme precipitation events in urban areas

    Science.gov (United States)

    Siemerink, Martijn; Volp, Nicolette; Schuurmans, Wytze; Deckers, Dave

    2015-04-01

    The present day society needs to adjust to the effects of climate change. More extreme weather conditions are expected, which can lead to longer periods of drought, but also to more extreme precipitation events. Urban water systems are not designed for such extreme events. Most sewer systems are not able to drain the excessive storm water, causing urban flooding. This leads to high economic damage. In order to take appropriate measures against extreme urban storms, detailed knowledge about the behaviour of the urban water system above and below the streets is required. To investigate the behaviour of urban water systems during extreme precipitation events new assessment tools are necessary. These tools should provide a detailed and integral description of the flow in the full domain of overland runoff, sewer flow, surface water flow and groundwater flow. We developed a new assessment tool, called 3Di, which provides detailed insight in the urban water system. This tool is based on a new numerical methodology that can accurately deal with the interaction between overland runoff, sewer flow and surface water flow. A one-dimensional model for the sewer system and open channel flow is fully coupled to a two-dimensional depth-averaged model that simulates the overland flow. The tool uses a subgrid-based approach in order to take high resolution information of the sewer system and of the terrain into account [1, 2]. The combination of using the high resolution information and the subgrid based approach results in an accurate and efficient modelling tool. It is now possible to simulate entire urban water systems using extreme high resolution (0.5m x 0.5m) terrain data in combination with a detailed sewer and surface water network representation. The new tool has been tested in several Dutch cities, such as Rotterdam, Amsterdam and The Hague. We will present the results of an extreme precipitation event in the city of Schiedam (The Netherlands). This city deals with

  3. Optics assembly for high power laser tools

    Science.gov (United States)

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  4. Optics assembly for high power laser tools

    Energy Technology Data Exchange (ETDEWEB)

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  5. Extremely high Q -factor metamaterials due to anapole excitation

    Science.gov (United States)

    Basharin, Alexey A.; Chuguevsky, Vitaly; Volsky, Nikita; Kafesaki, Maria; Economou, Eleftherios N.

    2017-01-01

    We have designed and fabricated a metamaterial consisting of planar metamolecules which exhibit unusual, almost perfect anapole behavior in the sense that the electric dipole radiation is almost canceled by the toroidal dipole one, producing thus an extremely high Q -factor at the resonance frequency. Thus we have demonstrated theoretically and experimentally that metamaterials approaching ideal anapole behavior have very high Q -factor. The size of the system, at the millimeter range, and the parasitic magnetic quadrupole radiation are the factors limiting the size of the Q -factor. In spite of the very low radiation losses the estimated local fields at the metamolecules are extremely high, of the order of 104 higher than the external incoming field.

  6. High pressure optical combustion probe

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, S.D.; Richards, G.A.

    1995-06-01

    The Department of Energy`s Morgantown Energy Technology Center has developed a combustion probe for monitoring flame presence and heat release. The technology involved is a compact optical detector of the OH radical`s UV fluorescence. The OH Monitor/Probe is designed to determine the flame presence and provide a qualitative signal proportional to the flame intensity. The probe can be adjusted to monitor a specific volume in the combustion zone to track spatial fluctuations in the flame. The probe is capable of nanosecond time response and is usually slowed electronically to fit the flame characteristics. The probe is a sapphire rod in a stainless steel tube which may be inserted into the combustion chamber and pointed at the flame zone. The end of the sapphire rod is retracted into the SS tube to define a narrow optical collection cone. The collection cone may be adjusted to fit the experiment. The fluorescence signal is collected by the sapphire rod and transmitted through a UV transmitting, fused silica, fiber optic to the detector assembly. The detector is a side window photomultiplier (PMT) with a 310 run line filter. A Hamamatsu photomultiplier base combined with a integral high voltage power supply permits this to be a low voltage device. Electronic connections include: a power lead from a modular DC power supply for 15 VDC; a control lead for 0-1 volts to control the high voltage level (and therefore gain); and a lead out for the actual signal. All low voltage connections make this a safe and easy to use device while still delivering the sensitivity required.

  7. The path to visible extreme adaptive optics with MagAO-2K and MagAO-X

    Science.gov (United States)

    Males, Jared R.; Close, Laird M.; Guyon, Olivier; Morzinski, Katie M.; Hinz, Philip; Esposito, Simone; Pinna, Enrico; Xompero, Marco; Briguglio, Runa; Riccardi, Armando; Puglisi, Alfio; Mazin, Ben; Ireland, Michael J.; Weinberger, Alycia; Conrad, Al; Kenworthy, Matthew; Snik, Frans; Otten, Gilles; Jovanovic, Nemanja; Lozi, Julien

    2016-07-01

    The next generation of extremely large telescopes (ELTs) have the potential to image habitable rocky planets, if suitably optimized. This will require the development of fast high order "extreme" adaptive optics systems for the ELTs. Located near the excellent site of the future GMT, the Magellan AO system (MagAO) is an ideal on-sky testbed for high contrast imaging development. Here we discuss planned upgrades to MagAO. These include improvements in WFS sampling (enabling correction of more modes) and an increase in speed to 2000 Hz, as well as an H2RG detector upgrade for the Clio infrared camera. This NSF funded project, MagAO-2K, is planned to be on-sky in November 2016 and will significantly improve the performance of MagAO at short wavelengths. Finally, we describe MagAO-X, a visible-wavelength extreme-AO "afterburner" system under development. MagAO-X will deliver Strehl ratios of over 80% in the optical and is optimized for visible light coronagraphy.

  8. Towards Extremely Sensitive Ultraviolet-Light Sensors Employing Photochromic Optical Microfiber

    Directory of Open Access Journals (Sweden)

    George Y. Chen

    2015-01-01

    Full Text Available We propose an extremely responsive ultraviolet-light sensor (−1.39 × 106 dB/(W/cm2 based on photochromic optical microfiber. A densely packed planar coil of ZBLAN optical microfiber is doped with photochromic dyes. Under ultraviolet radiation, the photochromic microfiber experiences temporary photodarkening, and the change in the transmission of the probe light provides a measure of the incident ultraviolet light. This novel design grants an enhancement in sensitivity (3.13 nW/cm2 by at least one order of magnitude compared to traditional electrical counterparts.

  9. Frontiers of Optical Spectroscopy Investigating Extreme Physical Conditions with Advanced Optical Techniques

    CERN Document Server

    Bartolo, Baldassare

    2005-01-01

    Advanced spectroscopic techniques allow the probing of very small systems and very fast phenomena, conditions that can be considered "extreme" at the present status of our experimentation and knowledge. Quantum dots, nanocrystals and single molecules are examples of the former and events on the femtosecond scale examples of the latter. The purpose of this book is to examine the realm of phenomena of such extreme type and the techniques that permit their investigations. Each author has developed a coherent section of the program starting at a somewhat fundamental level and ultimately reaching the frontier of knowledge in the field in a systematic and didactic fashion. The formal lectures are complemented by additional seminars.

  10. Extremely High Current, High-Brightness Energy Recovery Linac

    CERN Document Server

    Ben-Zvi, Ilan; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Burger, Al; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Favale, Anthony; Gassner, David M; Grimes, Jacob T; Hahn, Harald; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Lambiase, Robert; Litvinenko, Vladimir N; McIntyre, Gary; Meng, Wuzheng; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Segalov, Zvi; Smith, Kevin T; Todd, Alan M M; Warren-Funk, L; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Yip, Kin; Zaltsman, Alex; Zhao, Yongxiang

    2005-01-01

    Next generation ERL light-sources, high-energy electron coolers, high-power Free-Electron Lasers, powerful Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL's Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.

  11. Extremely Lightweight Segmented Membrane Optical Shell Fabrication Technology for Future IR to Optical Telescope Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose that the Membrane Optical Shell Technology (MOST) substrate fabrication approach be extended with a specific focus on advanced off-axis very light weight,...

  12. Solidification at the High and Low Rate Extreme

    Energy Technology Data Exchange (ETDEWEB)

    Meco, Halim [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    The microstructures formed upon solidification are strongly influenced by the imposed growth rates on an alloy system. Depending on the characteristics of the solidification process, a wide range of growth rates is accessible. The prevailing solidification mechanisms, and thus the final microstructure of the alloy, are governed by these imposed growth rates. At the high rate extreme, for instance, one can have access to novel microstructures that are unattainable at low growth rates. While the low growth rates can be utilized for the study of the intrinsic growth behavior of a certain phase growing from the melt. Although the length scales associated with certain processes, such as capillarity, and the diffusion of heat and solute, are different at low and high rate extremes, the phenomena that govern the selection of a certain microstructural length scale or a growth mode are the same. Consequently, one can analyze the solidification phenomena at both high and low rates by using the same governing principles. In this study, we examined the microstructural control at both low and high extremes. For the high rate extreme, the formation of crystalline products and factors that control the microstructure during rapid solidification by free-jet melt spinning are examined in Fe-Si-B system. Particular attention was given to the behavior of the melt pool at different quench-wheel speeds. Since the solidification process takes place within the melt-pool that forms on the rotating quench-wheel, we examined the influence of melt-pool dynamics on nucleation and growth of crystalline solidification products and glass formation. High-speed imaging of the melt-pool, analysis of ribbon microstructure, and measurement of ribbon geometry and surface character all indicate upper and lower limits for melt-spinning rates for which nucleation can be avoided, and fully amorphous ribbons can be achieved. Comparison of the relevant time scales reveals that surface-controlled melt

  13. High-power optics lasers and applications

    CERN Document Server

    Apollonov, Victor V

    2015-01-01

    This book covers the basics, realization and materials for high power laser systems and high power radiation interaction with  matter. The physical and technical fundamentals of high intensity laser optics and adaptive optics and the related physical processes in high intensity laser systems are explained. A main question discussed is: What is power optics? In what way is it different from ordinary optics widely used in cameras, motion-picture projectors, i.e., for everyday use? An undesirable consequence of the thermal deformation of optical elements and surfaces was discovered during studies of the interaction with powerful incident laser radiation. The requirements to the fabrication, performance and quality of optical elements employed within systems for most practical applications are also covered. The high-power laser performance is generally governed by the following: (i) the absorption of incident optical radiation (governed primarily by various absorption mechanisms), (ii) followed by a temperature ...

  14. SAXO: the extreme adaptive optics system of SPHERE (I) system overview and global laboratory performance

    Science.gov (United States)

    Sauvage, Jean-Francois; Fusco, Thierry; Petit, Cyril; Costille, Anne; Mouillet, David; Beuzit, Jean-Luc; Dohlen, Kjetil; Kasper, Markus; Suarez, Marcos; Soenke, Christian; Baruffolo, Andrea; Salasnich, Bernardo; Rochat, Sylvain; Fedrigo, Enrico; Baudoz, Pierre; Hugot, Emmanuel; Sevin, Arnaud; Perret, Denis; Wildi, Francois; Downing, Mark; Feautrier, Philippe; Puget, Pascal; Vigan, Arthur; O'Neal, Jared; Girard, Julien; Mawet, Dimitri; Schmid, Hans Martin; Roelfsema, Ronald

    2016-04-01

    The direct imaging of exoplanet is a leading field of today's astronomy. The photons coming from the planet carry precious information on the chemical composition of its atmosphere. The second-generation instrument, Spectro-Polarimetric High contrast Exoplanet Research (SPHERE), dedicated to detection, photometry and spectral characterization of Jovian-like planets, is now in operation on the European very large telescope. This instrument relies on an extreme adaptive optics (XAO) system to compensate for atmospheric turbulence as well as for internal errors with an unprecedented accuracy. We demonstrate the high level of performance reached by the SPHERE XAO system (SAXO) during the assembly integration and test (AIT) period. In order to fully characterize the instrument quality, two AIT periods have been mandatory. In the first phase at Observatoire de Paris, the performance of SAXO itself was assessed. In the second phase at IPAG Grenoble Observatory, the operation of SAXO in interaction with the overall instrument has been optimized. In addition to the first two phases, a final check has been performed after the reintegration of the instrument at Paranal Observatory, in the New Integration Hall before integration at the telescope focus. The final performance aimed by the SPHERE instrument with the help of SAXO is among the highest Strehl ratio pretended for an operational instrument (90% in H band, 43% in V band in a realistic turbulence r0, and wind speed condition), a limit R magnitude for loop closure at 15, and a robustness to high wind speeds. The full-width at half-maximum reached by the instrument is 40 mas for infrared in H band and unprecedented 18.5 mas in V band.

  15. Forecasting extreme wave events in moderate and high sea states

    Science.gov (United States)

    Magnusson, Anne Karin; Reistad, Magnar; Bitner-Gregersen, Elzbieta Maria

    2013-04-01

    Empirical studies on measurements have not yet come to conclusive relations between occurrence of rogue waves and - parameters which could be forecasted . Theoretical and tank experiments have demonstrated that high spectral peakedness and low spectral width combined (high Benjamin-Feir instability index, Onorato et al., 2006) give higher probability of rogue wave occurrence. Directional spread seems to reduce the probability of occurrence of rogue waves in these studies. Many years of experience with forecasting and discussions with people working in ocean environment indicate that rogue waves may as well occur in crossing seas. This was also indicated in a study in the Maxwave project (Toffoli et al., 2003) and the EXTREME SEAS project (Toffoli et al., 2011). We have here experimented with some indexes describing both high BFI and crossing seas and run the WAM model for some North Sea storm cases. Wave distributions measured at Ekofisk are analysed in the different cases. References • Onorato, M., Osborne, A., Serio, M., Cavaleri, L., Brandini, C., and Stansberg, C.: Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves,Europ. J. Mech. B/Fluids, 25, 586-601, 2006. • Toffoli, A., Lefevre, J.M., Monbaliu, J., Savina, H., and Bitner-Gregersen, E., "Freak Waves:Clues for Prediction in Ship Accidents?", Proc. ISOPE'2003 Conf. Hawai, USA, 2003. • Toffoli A., Bitner-Gregersen E. M., Osborne A. R., Serio M. Monbaliu J., Onorato M. (2011) Extreme Waves in Random Crossing Seas: Laboratory Experiments and Numerical Simulations. Geophys. Res. Lett., Vol. 38, L06605, 5 pp. doi: 10.1029/2011.

  16. Ultra-high accuracy optical testing: creating diffraction-limitedshort-wavelength optical systems

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman,Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli,Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-08-03

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-{angstrom} and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date.

  17. Formation and erasure of population difference gratings in the coherent interaction of a resonant medium with extremely short optical pulses

    Science.gov (United States)

    Arkhipov, R. M.; Arkhipov, M. V.; Babushkin, I.; Rosanov, N. N.

    2016-11-01

    In the regime of coherent interaction of short optical pulses with a resonant medium, which is implemented with a pulse duration shorter than the relaxation times in the medium, the formation of population gratings can occur without overlapping the pulses therein. In this case, there are new possibilities for controlling optical pulses, which are especially pronounced for extremely short pulses. It is shown that, with the proper choice of the parameters of a sequence of extremely short optical pulses, not only the formation of population gratings, but also their erasure are possible. It is demonstrated that this effect can be used for the creation of an ultrahigh-speed optical deflector.

  18. Peculiarities of the propagation of multidimensional extremely short optical pulses in germanene

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, Alexander V., E-mail: alex_zhukov@sutd.edu.sg [Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore (Singapore); Bouffanais, Roland [Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore (Singapore); Konobeeva, Natalia N. [Volgograd State University, 400062 Volgograd (Russian Federation); Belonenko, Mikhail B. [Laboratory of Nanotechnology, Volgograd Institute of Business, 400048 Volgograd (Russian Federation); Volgograd State University, 400062 Volgograd (Russian Federation)

    2016-09-07

    Highlights: • Established dynamics of ultra-short pulses in germanene. • Studied balance between dispersive and nonlinear effects in germanene. • Spin–orbit interaction effect onto pulse propagation. - Abstract: In this Letter, we study the propagation characteristics of both two-dimensional and three-dimensional extremely short optical pulses in germanene. A distinguishing feature of germanene—in comparison with other graphene-like structures—is the presence of a significant spin–orbit interaction. The account of this interaction has a significant impact on the evolution of extremely short pulses in such systems. Specifically, extremely short optical pulses, consisting of two electric field oscillations, cause the appearance of a tail associated with the excitation of nonlinear waves. Due to the large spin–orbit interaction in germanene, this tail behind the main pulse is much smaller in germanene-based samples as compared to graphene-based ones, thereby making germanene a preferred material for the stable propagation of pulses along the sample.

  19. High-energy nuclear optics of polarized particles

    CERN Document Server

    Baryshevsky, Vladimir G

    2012-01-01

    The various phenomena caused by refraction and diffraction of polarized elementary particles in matter have opened up a new research area in the particle physics: nuclear optics of polarized particles. Effects similar to the well-known optical phenomena such as birefringence and Faraday effects, exist also in particle physics, though the particle wavelength is much less than the distance between atoms of matter. Current knowledge of the quasi-optical effects, which exist for all particles in any wavelength range (and energies from low to extremely high), will enable us to investigate different properties of interacting particles (nuclei) in a new aspect. This pioneering book will provide detailed accounts of quasi-optical phenomena in the particle polarization, and will interest physicists and professionals in experimental particle physics.

  20. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  1. 25-Gbit/s burst-mode optical receiver using high-speed avalanche photodiode for 100-Gbit/s optical packet switching.

    Science.gov (United States)

    Nada, Masahiro; Nakamura, Makoto; Matsuzaki, Hideaki

    2014-01-13

    25-Gbit/s error-free operation of an optical receiver is successfully demonstrated against burst-mode optical input signals without preambles. The receiver, with a high-sensitivity avalanche photodiode and burst-mode transimpedance amplifier, exhibits sufficient receiver sensitivity and an extremely quick response suitable for burst-mode operation in 100-Gbit/s optical packet switching.

  2. Development of extreme ultraviolet and soft x-ray multilayer optics for scientific studies with femtosecond/attosecond sources

    Energy Technology Data Exchange (ETDEWEB)

    Aquila, Andrew Lee [Univ. of California, Berkeley, CA (United States)

    2009-05-21

    The development of multilayer optics for extreme ultraviolet (EUV) radiation has led to advancements in many areas of science and technology, including materials studies, EUV lithography, water window microscopy, plasma imaging, and orbiting solar physics imaging. Recent developments in femtosecond and attosecond EUV pulse generation from sources such as high harmonic generation lasers, combined with the elemental and chemical specificity provided by EUV radiation, are opening new opportunities to study fundamental dynamic processes in materials. Critical to these efforts is the design and fabrication of multilayer optics to transport, focus, shape and image these ultra-fast pulses This thesis describes the design, fabrication, characterization, and application of multilayer optics for EUV femtosecond and attosecond scientific studies. Multilayer mirrors for bandwidth control, pulse shaping and compression, tri-material multilayers, and multilayers for polarization control are described. Characterization of multilayer optics, including measurement of material optical constants, reflectivity of multilayer mirrors, and metrology of reflected phases of the multilayer, which is critical to maintaining pulse size and shape, were performed. Two applications of these multilayer mirrors are detailed in the thesis. In the first application, broad bandwidth multilayers were used to characterize and measure sub-100 attosecond pulses from a high harmonic generation source and was performed in collaboration with the Max-Planck institute for Quantum Optics and Ludwig- Maximilians University in Garching, Germany, with Professors Krausz and Kleineberg. In the second application, multilayer mirrors with polarization control are useful to study femtosecond spin dynamics in an ongoing collaboration with the T-REX group of Professor Parmigiani at Elettra in Trieste, Italy. As new ultrafast x-ray sources become available, for example free electron lasers, the multilayer designs

  3. Microscopic investigations of the terahertz and the extreme nonlinear optical response of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Golde, Daniel

    2010-06-22

    In the major part of this Thesis, we discuss the linear THz response of semiconductor nanostructures based on a microscopic theory. Here, two different problems are investigated: intersubband transitions in optically excited quantum wells and the THz plasma response of two-dimensional systems. In the latter case, we analyze the response of correlated electron and electron-hole plasmas. Extracting the plasma frequency from the linear response, we find significant deviations from the commonly accepted two-dimensional plasma frequency. Besides analyzing the pure plasma response, we also consider an intermediate regime where the response of the electron-hole plasma consists of a mixture of plasma contributions and excitonic transitions. A quantitative experiment-theory comparison provides novel insights into the behavior of the system at the transition from one regime to the other. The discussion of the intersubband transitions mainly focuses on the coherent superposition of the responses from true THz transitions and the ponderomotively accelerated carriers. We present a simple method to directly identify ponderomotive effects in the linear THz response. Apart from that, the excitonic contributions to intersubband transitions are investigated. The last part of the present Thesis deals with a completely different regime. Here, the extreme nonlinear optical response of low-dimensional semiconductor structures is discussed. Formally, extreme nonlinear optics describes the regime of light-matter interaction where the exciting field is strong enough such that the Rabi frequency is comparable to or larger than the characteristic transition frequency of the investigated system. Here, the Rabi frequency is given by the product of the electrical field strength and the dipole-matrix element of the respective transition. Theoretical investigations have predicted a large number of novel nonlinear effects arising for such strong excitations. Some of them have been observed in

  4. Exploring the active galactic nuclei population with extreme X-ray-to-optical flux ratios (fx/fo > 50)

    Science.gov (United States)

    Della Ceca, R.; Carrera, F. J.; Caccianiga, A.; Severgnini, P.; Ballo, L.; Braito, V.; Corral, A.; Del Moro, A.; Mateos, S.; Ruiz, A.; Watson, M. G.

    2015-03-01

    The cosmic history of the growth of supermassive black holes in galactic centres parallels that of star formation in the Universe. However, an important fraction of this growth occurs inconspicuously in obscured objects, where ultraviolet/optical/near-infrared emission is heavily obscured by dust. Since the X-ray flux is less attenuated, a high X-ray-to-optical flux ratio (fx/fo) is expected to be an efficient tool to find out these obscured accreting sources. We explore here via optical spectroscopy, X-ray spectroscopy and infrared photometry the most extreme cases of this population (those with fx/fo > 50, EXO50 sources hereafter), using a well-defined sample of seven X-ray sources extracted from the 2XMM catalogue. Five EXO50 sources (˜70 per cent of the sample) in the bright flux regime explored by our survey (f(2-10 keV) ≥ 1.5 × 10-13 erg cm-2 s-1) are associated with obscured AGN (NH > 1022 cm-2), spanning a redshift range between 0.75 and 1 and characterized by 2-10 keV intrinsic luminosities in the QSO regime (e.g. well in excess to 1044 erg s-1). We did not find compelling evidence of Compton thick active galacic nuclei (AGN). Overall, the EXO50 type 2 QSOs do not seem to be different from standard X-ray-selected type 2 QSOs in terms of nuclear absorption; a very high AGN/host galaxy ratio seems to play a major role in explaining their extreme properties. Interestingly, three out of five EXO50 type 2 QSO objects can be classified as extreme dust-obscured galaxies (EDOGs, f24 μm/fR ≥ 2000), suggesting that a very high AGN/host ratios (along with the large amount of dust absorption) could be the natural explanation also for a part of the EDOG population. The remaining two EXO50 sources are classified as BL Lac objects, having rather extreme properties, and which are good candidates for TeV emission.

  5. Treatment algorithms for high-energy traumas of lower extremities

    Directory of Open Access Journals (Sweden)

    Jovanović Mladen

    2002-01-01

    Full Text Available Introduction High-energy traumas are open or closed injuries caused by force (missile, traffic injuries, crush or blust injuries, falling from heights, affecting the body surface and transferring high amount of kinetic energy inducing great damage to the tissue. Management of such lower extremity injuries has evolved over past several decades, but still remains a difficult task for every surgical team. Specific anatomic and functional characteristics combined with extensive injuries demands specific treatment protocols. Multiple injuries In a multiple injured patient the first priority is management of life-threatening trauma. Despite other injuries, surgical treatment of limb-threatening injuries must start as soon as life-threatening condition has been managed. Treatment algorithms Algorithms are especially beneficial in management of severely injured, but salvageable extremities and in making decision on amputation. Insight into mechanisms of injury, as well as systematic examination of the affected limb, should help us understand the extensiveness of trauma and make an adequate management plan. Prevention of infection and surgical approach Prevention of wound infection and surgical approach to high- energy limb trauma, which includes wound extension, wound excision, skeletal stabilization and if necessary muscle compartment release, should be done in the first 6 hours after injury. Methods of soft tissue reconstruction Commonly used methods for soft tissue defects must provide wound coverage in less than five days following injury. Rehabilitation Early passive and active mobilization and verticalization of patients is very important for successful treatment. Conclusion Good and timely evaluation of the injured and collaboration between plastic and orthopedic surgeons from the beginning of treatment, are crucial for final outcome.

  6. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    2000-01-01

    Semiconductor optical amplifiers are useful building blocks for all-optical gates as wavelength converters and OTDM demultiplexers. The paper reviews the progress from simple gates using cross-gain modulation and four-wave mixing to the integrated interferometric gates using cross-phase modulation....... These gates are very efficient for high-speed signal processing and open up interesting new areas, such as all-optical regeneration and high-speed all-optical logic functions...

  7. Ptychographic hyperspectral spectromicroscopy with an extreme ultraviolet high harmonic comb

    CERN Document Server

    Zhang, Bosheng; Seaberg, Matthew H; Shanblatt, Elisabeth R; Porter, Christina L; Karl,, Robert; Mancuso, Christopher A; Kapteyn, Henry C; Murnane, Margaret M; Adams, Daniel E

    2016-01-01

    We demonstrate a new scheme of spectromicroscopy in the extreme ultraviolet (EUV) spectral range, where the spectral response of the sample at different wavelengths is imaged simultaneously. It is enabled by applying ptychographical information multiplexing (PIM) to a tabletop EUV source based on high harmonic generation, where four spectrally narrow harmonics near 30 nm form a spectral comb structure. Extending PIM from previously demonstrated visible wavelengths to the EUV/X-ray wavelengths promises much higher spatial resolution and more powerful spectral contrast mechanism, making PIM an attractive spectromicroscopy method in both the microscopy and the spectroscopy aspects. Besides the sample, the multicolor EUV beam is also imaged in situ, making our method a powerful beam characterization technique. No hardware is used to separate or narrow down the wavelengths, leading to efficient use of the EUV radiation.

  8. Comb-based radio-frequency photonic filters: rounts to nanosecond tuning speed and extremely high stopband attenuation

    CERN Document Server

    Supradeepa, V R; Wu, Rui; Ferdous, Fahmida; Hamidi, Ehsan; Leaird, Daniel E; Weiner, Andrew M

    2011-01-01

    Photonic technologies have received considerable attention for enhancement of radio-frequency (RF) electrical systems, including high-frequency analog signal transmission, control of phased arrays, analog-to-digital conversion, and signal processing. Although the potential of radio-frequency photonics for implementation of tunable electrical filters over broad RF bandwidths has been much discussed, realization of programmable filters with highly selective filter lineshapes has faced significant challenges. In this paper we show that a new approach based on optical frequency combs enables dramatic progress. A novel comb generation scheme employing tailored electro-optic modulation and cascaded four-wave mixing results in approximately Gaussian RF filter lineshapes with extremely high (>60 dB) out-of-band suppression. A modification of our approach provides RF filter tuning through optical delay variation and decouples filter tuning and lineshape control. By exploiting a dual-comb scheme, the optical delay and ...

  9. Lifetime Calculations on Collector Optics from Laser Plasma Extreme Ultraviolet Sources with Minimum Mass

    Institute of Scientific and Technical Information of China (English)

    WU Tao; WANG Xin-Bing

    2011-01-01

    An ion flux and its kinetic energy spectrum are obtained using a self similar spherically symmetric fluid model of expansion of a collisionless plasma into vacuum. According to the ion flux and energy distribution, the collector optical lifetime is estimated by knowledge of the sputtering yield of conventional Mo/Si multilayer coatings for the CO2 and Nd:YAG pulsed-laser produced plasmas based on the minimum mass tin droplet target without debris mitigation. The results show that the longer wavelength of the CO2 laser produced plasma light source is more suitable for extreme ultraviolet lithography than Nd:YAG laser in respect of fast ion debris induced sputtering damage to the collector mirror.%@@ An ion flux and its kinetic energy spectrum are obtained using a self similar spherically symmetric fluid model of expansion of a collisionless plasma into vacuum.According to the ion flux and energy distribution,the collector optical lifetime is estimated by knowledge of the sputtering yield of conventional Mo/Si multilayer coatings for the CO2 and Nd:YAG pulsed-laser produced plasmas based on the minimum mass tin droplet target without debris mitigation.The results show that the longer wavelength of the CO2 laser produced plasma light source is more suitable for extreme ultraviolet lithography than Nd:YAG laser in respect of fast ion debris induced sputtering damage to the collector mirror.

  10. Metamaterial Demonstrates Both a High Refractive Index and Extremely Low Reflection in the 0.3-THz Band

    Science.gov (United States)

    Ishihara, Koki; Suzuki, Takehito

    2017-07-01

    Communication and imaging in the terahertz waveband have advanced rapidly in offering industrial applications. However, optical elements such as collimated lenses in the terahertz waveband are bulky compared with the wavelength due to the lack of naturally occurring substances with a high refractive index and low loss. It is essential to miniaturize optical elements in the terahertz waveband for industrial application. Metamaterials consisting of subwavelength structures can arbitrarily control permittivity and permeability and provide a range of refractive indices. Here, we demonstrate a metamaterial with both a high refractive index and extremely low reflection consisting of symmetrically aligned paired cut metal wires with 18,800 units on the front and back surfaces of a dielectric substrate. Measurements by terahertz time-domain spectroscopy (THz-TDS) confirm a high effective refractive index of 6.66 + j0.123, extremely low reflection power of 1.16%, and the unprecedented high figure of merit (FOM = |n real/n imag|) of above 300 in the 0.3-THz band. Components with such specifications would enable miniature, high-performance optical elements in the terahertz waveband such as ultrathin flat antennas with high directivity. Further, the concept of the metamaterial with both a high refractive index and extremely low reflection potentially offers a wide range of attractive applications such as solid immersion lenses and cloaking devices.

  11. Metamaterial Demonstrates Both a High Refractive Index and Extremely Low Reflection in the 0.3-THz Band

    Science.gov (United States)

    Ishihara, Koki; Suzuki, Takehito

    2017-09-01

    Communication and imaging in the terahertz waveband have advanced rapidly in offering industrial applications. However, optical elements such as collimated lenses in the terahertz waveband are bulky compared with the wavelength due to the lack of naturally occurring substances with a high refractive index and low loss. It is essential to miniaturize optical elements in the terahertz waveband for industrial application. Metamaterials consisting of subwavelength structures can arbitrarily control permittivity and permeability and provide a range of refractive indices. Here, we demonstrate a metamaterial with both a high refractive index and extremely low reflection consisting of symmetrically aligned paired cut metal wires with 18,800 units on the front and back surfaces of a dielectric substrate. Measurements by terahertz time-domain spectroscopy (THz-TDS) confirm a high effective refractive index of 6.66 + j0.123, extremely low reflection power of 1.16%, and the unprecedented high figure of merit (FOM = | n real/ n imag|) of above 300 in the 0.3-THz band. Components with such specifications would enable miniature, high-performance optical elements in the terahertz waveband such as ultrathin flat antennas with high directivity. Further, the concept of the metamaterial with both a high refractive index and extremely low reflection potentially offers a wide range of attractive applications such as solid immersion lenses and cloaking devices.

  12. An optical fan for light beams for high-precision optical measurements and optical switching

    CERN Document Server

    Zhou, Zhi-Yuan; Ding, Dong-Sheng; Jiang, Yun-Kun; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2014-01-01

    The polarization and orbital angular momentum properties of light are of great importance in optical science and technology in the fields of high precision optical measurements and high capacity and high speed optical communications. Here we show, a totally new method, based on a combination of these two properties and using the thermal dispersion and electro-optical effect of birefringent crystals, the construction of a simple and robust scheme to rotate a light beam like a fan. Using a computer-based digital image processing technique, we determine the temperature and the thermal dispersion difference of the crystal with high resolution. We also use the rotation phenomenon to realize thermo-optic and electro-optic switches. The basic operating principles for measurement and switching processes are presented in detail. The methods developed here will have wide practical applicability in various fields, including remote sensing, materials science and optical communication networks.

  13. High photon flux table-top coherent extreme ultraviolet source

    CERN Document Server

    Hädrich, Steffen; Rothhardt, Jan; Krebs, Manuel; Hoffmann, Armin; Pronin, Oleg; Pervak, Vladimir; Limpert, Jens; Tünnermann, Andreas

    2014-01-01

    High harmonic generation (HHG) enables extreme ultraviolet radiation with table-top setups. Its exceptional properties, such as coherence and (sub)-femtosecond pulse durations, have led to a diversity of applications. Some of these require a high photon flux and megahertz repetition rates, e.g. to avoid space charge effects in photoelectron spectroscopy. To date this has only been achieved with enhancement cavities. Here, we establish a novel route towards powerful HHG sources. By achieving phase-matched HHG of a megahertz fibre laser we generate a broad plateau (25 eV - 40 eV) of strong harmonics, each containing more than $10^{12}$ photons/s, which constitutes an increase by more than one order of magnitude in that wavelength range. The strongest harmonic (H25, 30 eV) has an average power of 143 $\\mu$W ($3\\cdot10^{13}$ photons/s). This concept will greatly advance and facilitate applications in photoelectron or coincidence spectroscopy, coherent diffractive imaging or (multidimensional) surface science.

  14. Small-scale characteristics of extremely high latitude aurora

    Directory of Open Access Journals (Sweden)

    J. A. Cumnock

    2009-09-01

    Full Text Available We examine 14 cases of an interesting type of extremely high latitude aurora as identified in the precipitating particles measured by the DMSP F13 satellite. In particular we investigate structures within large-scale arcs for which the particle signatures are made up of a group of multiple distinct thin arcs. These cases are chosen without regard to IMF orientation and are part of a group of 87 events where DMSP F13 SSJ/4 measures emissions which occur near the noon-midnight meridian and are spatially separated from both the dawnside and duskside auroral ovals by wide regions with precipitating particles typical of the polar cap. For 73 of these events the high-latitude aurora consists of a continuous region of precipitating particles. We focus on the remaining 14 of these events where the particle signatures show multiple distinct thin arcs. These events occur during northward or weakly southward IMF conditions and follow a change in IMF By. Correlations are seen between the field-aligned currents and plasma flows associated with the arcs, implying local closure of the FACs. Strong correlations are seen only in the sunlit hemisphere. The convection associated with the multiple thin arcs is localized and has little influence on the large-scale convection. This also implies that the sunward flow along the arcs is unrelated to the overall ionospheric convection.

  15. Extremely high-frequency micro-Doppler measurements of humans

    Science.gov (United States)

    Hedden, Abigail S.; Silvious, Jerry L.; Dietlein, Charles R.; Green, Jeremy A.; Wikner, David A.

    2014-05-01

    The development of sensors that are capable of penetrating smoke, dust, fog, clouds, and rain is critical for maintaining situational awareness in degraded visual environments and for providing support to the Warfighter. Atmospheric penetration properties, the ability to form high-resolution imagery with modest apertures, and available source power make the extremely high-frequency (EHF) portion of the spectrum promising for the development of radio frequency (RF) sensors capable of penetrating visual obscurants. Comprehensive phenomenology studies including polarization and backscatter properties of relevant targets are lacking at these frequencies. The Army Research Laboratory (ARL) is developing a fully-polarimetric frequency-modulated continuous-wave (FMCW) instrumentation radar to explore polarization and backscatter properties of in-situ rain, scattering from natural and man-made surfaces, and the radar cross section and micro-Doppler signatures of humans at EHF frequencies, specifically, around the 220 GHz atmospheric window. This work presents an overview of the design and construction of the radar system, hardware performance, data acquisition software, and initial results including an analysis of human micro-Doppler signatures.

  16. Exploring the Active Galactic Nuclei population with extreme X-ray to optical flux ratios (Fx/Fo >50)

    CERN Document Server

    Della Ceca, R; Caccianiga, A; Severgnini, P; Ballo, L; Braito, V; Corral, A; Del Moro, A; Mateos, S; Ruiz, A; Watson, M G

    2015-01-01

    The cosmic history of the growth of supermassive black holes in galactic centers parallels that of star-formation in the Universe. However, an important fraction of this growth occurs inconspicuously in obscured objects, where ultraviolet/optical/near-infrared emission is heavily obscured by dust. Since the X-ray flux is less attenuated, a high X-ray-to-optical flux ratio (Fx/Fo) is expected to be an efficient tool to find out these obscured accreting sources. We explore here via optical spectroscopy, X-ray spectroscopy and infrared photometry the most extreme cases of this population (those with Fx/Fo >50, EXO50 sources hereafter), using a well defined sample of seven X-ray sources extracted from the 2XMM catalogue. Five EXO50 sources (about 70 percent of the sample) in the bright flux regime explored by our survey (f(2-10 keV) > 1.5E-13 cgs) are associated with obscured AGN (Nh > 1.0E22 cm-2), spanning a redshift range between 0.75 and 1 and characterised by 2-10 keV intrinsic luminosities in the QSO regime...

  17. The extreme nonlinear optics of gases and femtosecond optical/plasma filamentation

    Science.gov (United States)

    Milchberg, Howard

    2013-10-01

    Under certain conditions, powerful ultrashort laser pulses can form greatly extended filaments of concentrated high intensity in gases, leaving behind a very long trail of plasma. Such filaments can be much longer than the longitudinal scale over which a laser beam typically diverges by diffraction. Applications range from laser-guided electrical discharges to remote sensing. Air is a medium of particular interest for applications, and as a mostly molecular gas it is interesting from a physics perspective as well. I will work through the fundamentals of filamentation and give an overview of the field. Understanding in detail the microscopic processes leading to filamentation requires fundamental measurements of the strong field nonlinear response of gas phase atoms and molecules with unprecedented precision in space and time. This includes absolute, ultrafast measurements of nonlinear laser-induced polarization and high field ionization. I will describe how such measurements are done and show how they can be applied to propagation experiments. Work supported by the Air Force Office of Scientific Research, the Office of Naval Research, the National Science Foundation, and the US Dept. of Energy.

  18. KR Aur - extremely high variations in optical bands

    Science.gov (United States)

    Boeva, S.; Latev, G.; Nikolov, Y.; Nikolov, P.; Nikolov, G.; Spassov, B.; Petrov, B.; Damljanovic, G.; Sekulic, M.; Zamanov, R.

    2017-03-01

    Since 2008, the cataclysmic variable star KR Aur is in deep minimum state with a short brightening in 2010. We performed photometric monitoring in 12 nights during the period August 2016 - February 2017 with the telescopes of Rozhen (Bulgaria), Belogradchik (Bulgaria) and Vidojevica (Serbia).

  19. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo

    2010-01-12

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  20. Synoptic conditions leading to extremely high temperatures in Madrid

    Directory of Open Access Journals (Sweden)

    R. García

    Full Text Available Extremely hot days (EHD in Madrid have been analysed to determine the synoptic patterns that produce EHDs during the period of 1955–1998. An EHD is defined as a day with maximum temperature higher than 36.5°C, a value which is the threshold for the intense effects on mortatility and it coincides with the 95 percentile of the series. Two different situations have been detected as being responsible for an EHD occurrence, one more dynamical, produced by southern fluxes, and another associated with a stagnation situation over Iberia of a longer duration. Both account for 92% of the total number of days, thus providing an efficient classification framework. A circulation index has been derived to characterise and forecast an EHD occurrence. This paper shows that EHD occur in Madrid during short duration events, and no long heat waves, like those recorded in other cities, are present. Additionally, no clear pattern can be detected in the EHD frequency; the occurrence is tied to changes in the summer location of the Azores high.

    Key words. Meteorology and atmospheric dynamics (Climatology; synoptic-scale meteorology; general or miscellaneous

  1. Synoptic conditions leading to extremely high temperatures in Madrid

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, R.; Prieto, L.; Hernandez, E.; Teso, T. del [Dept. Fisica de la Tierra II, Fac. CC. Fisicas, Univ. Camplutense de Madrid (Spain); Diaz, J. [Centro Universitario de Salud Publica, Univ. Autonoma de Madrid (Spain)

    2002-02-01

    Extremely hot days (EHD) in Madrid have been analysed to determine the synoptic patterns that produce EHDs during the period of 1955-1998. An EHD is defined as a day with maximum temperature higher than 36.5 C, a value which is the threshold for the intense effects on mortatility and it coincides with the 95 percentile of the series. Two different situations have been detected as being responsible for an EHD occurrence, one more dynamical, produced by southern fluxes, and another associated with a stagnation situation over Iberia of a longer duration. Both account for 92% of the total number of days, thus providing an efficient classification framework. A circulation index has been derived to characterise and forecast an EHD occurrence. This paper shows that EHD occur in Madrid during short duration events, and no long heat waves, like those recorded in other cities, are present. Additionally, no clear pattern can be detected in the EHD frequency; the occurrence is tied to changes in the summer location of the Azores high. (orig.)

  2. Comparison of different technologies for high-quality optical coatings

    Science.gov (United States)

    Flory, Francois

    1990-08-01

    Modern optical systems require still higher quality optical coatings. Conventional production techniques are not able to give such high quality layers. One of the main defaults comes from the relatively porous structure of the thin films; as a consequence the sensitiveness of the materials to the moisture gives noticeably unstable properties versus time. In this work, after a very short review of the different techniques nowaday used to perform high quality optical thin films, we will be especially interested in oxide layer production (Si02, Ta2O5, Ti02). To give a good comparison of the performances obtained with techniques such as TAD and ion plating we need extremely powerful characterization means: - In vacuo measurements of optical properties allowing the study of spontaneous water adsorption during air entrance; - Absorption measurement with photothermal deflection spectroscopy; - Scattering losses measurements and consequently determination of the grain size of the microstructure. Refractive index measurements, and optical anisotropy determined by guided mode study. Finally some views from electron microscopy justify the validity of the model used with our characterization techniques. To end, we will show the interest of ion plating technique when we are looking for very uniform deposition on large surfaces.

  3. High speed sub-micrometric microscopy using optical polymer microlens

    Institute of Scientific and Technical Information of China (English)

    X.H.Zeng; J.Plain; S.Jradi; P.Renaud Goud; R.Deturche; P.Royer; R.Bachelot

    2009-01-01

    We report the high speed scanning submicronic microscopy (SSM) using a low cost polymer microlens integrated at the extremity of an optical fiber.These microlenses are fabricated by a free-radical photopolymerization method.Using a polymer microlens with a radius of curvature of 250 nm,a sub-micrometric gold pattern is imaged experimentally by SSM.Different distances between the tip and the sample are used with a high scanning speed of 200 cm/s.In particular,metallic absorption contrasts are described with an optical spatial resolution of 250 nm at the wavelength of 532 nm.Moreover,finite-difference time-domain (FDTD) simulations concerning the focal lengths of microlenses with different geometries and heights support the experimental data.

  4. Fabrication of diffractive optical components for an extreme ultraviolet shearing interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Spector, S.J. (Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794 (United States)); Tennant, D.M. (AT T Bell Laboratories, Holmdel, New Jersey 07733 (United States)); Tan, Z. (AT T Bell Laboratories, 510E Brookhaven National Laboratory, Upton, New York 11973 (United States)); Bjorkholm, J.E. (AT T Bell Laboratories, Holmdel, New Jersey 07733 (United States))

    1994-11-01

    We have constructed four optical components for use in an extreme ultraviolet shearing interferometer which will operate at a wavelength of 13.4 nm. The components that have been constructed include transmission diffractive optical components such as a Fresnel zone plate, angled gratings, and two-frequency gratings, as well as pinhole apertures. All the components are fabricated in 110 nm of Ge, which is supported by a 0.5--0.7-[mu]m-thick membrane of Si. The patterns were fabricated by first evaporating Ge and then spinning 100 nm polymethylmethacrylate (PMMA) onto the Si membranes. The desired patterns were exposed in the PMMA resist using electron beam lithography. Custom interative computer programs generated the patterns used to control the exposure. After developing the PMMA resist the Ge layer was etched using a reactive ion etching technique. Electron microscopy of the finished components show that the smallest features in our components are cleanly constructed, and the linewidths and placement of the features meet the desired accuracy.

  5. Monte Carlo modelling of multi-object adaptive optics performance on the European Extremely Large Telescope

    Science.gov (United States)

    Basden, A. G.; Morris, T. J.

    2016-12-01

    The performance of a wide-field adaptive optics (AO) system depends on input design parameters. Here we investigate the performance of a multi-object AO system design for the European Extremely Large Telescope, using an end-to-end Monte Carlo AO simulation tool, Durham adaptive optics simulation platform, with relevance for proposed instruments such as MOSAIC. We consider parameters such as the number of laser guide stars, sodium layer depth, wavefront sensor pixel scale, actuator pitch and natural guide star availability. We provide potential areas where costs savings can be made, and investigate trade-offs between performance and cost, and provide solutions that would enable such an instrument to be built with currently available technology. Our key recommendations include a trade-off for laser guide star wavefront sensor pixel scale of about 0.7 arcsec per pixel, and a field of view of at least 7 arcsec, that electron multiplying CCD technology should be used for natural guide star wavefront sensors even if reduced frame rate is necessary, and that sky coverage can be improved by a slight reduction in natural guide star sub-aperture count without significantly affecting tomographic performance. We find that AO correction can be maintained across a wide field of view, up to 7 arcmin in diameter. We also recommend the use of at least four laser guide stars, and include ground-layer and multi-object AO performance estimates.

  6. High-resolution Sonographic Measurements of Lower Extremity Bursae in Chinese Healthy Young Men

    Directory of Open Access Journals (Sweden)

    Yong-Yan Gao

    2016-01-01

    Conclusions: Using HR-US imaging, we were able to analyze lower extremity bursae with high detection rates in healthy young men. The normal ranges of lower extremity bursa dimensions in healthy young men measured by HR-US in this study could be used as reference values for evaluation of bursa abnormalities in the lower extremity.

  7. High resolution simulations of extreme weather event in south Sardinia

    Science.gov (United States)

    Dessy, C.

    2010-05-01

    In the last decade, like most region of Mediterranean Europe, Sardinia has experienced severe precipitation events generating flash floods resulting in loss of lives and large economic damage. A numerical meteorological operational set-up is applied in the local weather service with the aim to improve the operational short range weather forecast of the Service with particular attention to intense, mostly rare and potentially severe, events. On the early hours of 22 October 2008 an intense and almost stationary mesoscale convective system interested particularly the south of Sardinia, heavy precipitation caused a flash flood with fatalities and numerous property damages. The event was particularly intense: about 400 mm of rain in 12 hours (a peak of 150 mm in an hour) were misured by the regional network of weather stations and these values appear extremely meaningfulls since those are about seven times the climatological monthly rainfall for that area and nearly the climatological annual rainfall. With the aim to improve significantly quantitative precipitation forecasting, it was evaluated a different set-up of a high resolution convection resolving model (MM5) initialised with different initial and boundary conditions (ECMWF and NCAR). In this paper it is discussed the meteorological system related to the mentioned event by using different numerical weather models (GCM and LAM) combined with conventional data, radar Doppler and Meteosat images. Preliminary results say that a different set-up of a non hydrostatic model can forecast severe convection events in advance of about one day and produce more realistic rainfall than that current operational and also improve the weather forecasts to respect the ECMWF-GCM. So it could drive an operational alert system in order to limit the risks associated with heavy precipitation events.

  8. An extremely high altitude plume seen at Mars morning terminator

    Science.gov (United States)

    Sanchez-Lavega, Agustin; Garcia-Muñoz, Antonio; Garcia-Melendo, Enrique; Perez-Hoyos, Santiago; Gomez-Forrellad, Josep M.; Pellier, Christophe; Delcroix, Marc; Lopez-Valverde, Miguel Angel; Gonzalez-Galindo, Francisco; Jaeschke, Wayne; Parker, Donald C.; Phillips, James H.; Peach, Damian

    2014-11-01

    We report the occurrence in March and April 2012 of two bright very high altitude plumes at the Martian terminator at 250 km or more above the surface, thus well into the ionosphere and bordering on the exosphere. They were located at about 195 deg West longitude and -45 deg latitude (at Terra Cimmeria) and lasted for about 10 days. The features showed day-to-day variability, and were seen at the morning terminator but not at the evening limb, which indicates rapid evolution in less than 10 hours and a cyclic behavior. Photometric measurements are used to explore two possible scenarios to explain their nature. If the phenomenon is due to suspended particles (dust, CO2 or H2O ice clouds) reflecting solar radiation, the mean size is about 0.1 microns with a nadir optical depth > 0.06. Alternatively, the plume could be auroral emission above a region with a strong magnetic anomaly and where aurora has previously been detected. Importantly, both explanations defy our current understanding of the Mars upper atmosphere.AcknowledgementsThis work was supported by the Spanish MINECO projects AYA2012-36666 with FEDER support, CONSOLIDER program ASTROMOL CSD2009-00038 and AYA2011-30613-CO2-1. Grupos Gobierno Vasco IT765-13 and UPV/EHU UFI11/55.

  9. Optical technologies for extreme-ultraviolet and soft X-ray coherent sources

    Energy Technology Data Exchange (ETDEWEB)

    Canova, Federico [Amplitude Technologies, Evry (France); Poletto, Luca (ed.) [National Research Council, Padova (Italy). Inst. of Photonics and Nanotechnology

    2015-07-01

    The book reviews the most recent achievements in optical technologies for XUV and X-ray coherent sources. Particular attention is given to free-electron-laser facilities, but also to other sources available at present, such as synchrotrons, high-order laser harmonics and X-ray lasers. The optical technologies relevant to each type of source are discussed. In addition, the main technologies used for photon handling and conditioning, namely multilayer mirrors, adaptive optics, crystals and gratings are explained. Experiments using coherent light received during the last decades a lot of attention for the X-ray regime. Strong efforts were taken for the realization of almost fully coherent sources, e.g. the free-electron lasers, both as independent sources in the femtosecond and attosecond regimes and as seeding sources for free-electron-lasers and X-ray gas lasers. In parallel to the development of sources, optical technologies for photon handling and conditioning of such coherent and intense X-ray beams advanced. New problems were faced for the realization of optical components of beamlines demanding to manage coherent X-ray photons, e.g. the preservation of coherence and time structure of ultra short pulses.

  10. The Sedentary Survey of Extreme High Energy Peaked BL Lacs. II. The Catalog and Spectral Properties

    CERN Document Server

    Giommi, P; Perri, M; Padovani, P

    2004-01-01

    The multi-frequency `Sedentary Survey' is a deep, statistically complete, radio flux limited sample comprising 150 BL Lacertae objects distinguished by their extremely high X-ray to radio flux ratio, ranging from five hundred to over five thousand times that of typical BL Lacs discovered in radio surveys. This paper presents the final, 100% identified, catalog together with the optical, X-ray and broad-band SEDs constructed combining literature multi-frequency data with non-simultaneous optical observations and BeppoSAX X-ray data, when available. The SEDs confirm that the peak of the synchrotron power in these objects is located at very high energies. BeppoSAX wide band X-ray observations show that, in most cases, the X-ray spectra are convex and well described by a logarithmic parabola model peaking (in a E f(E) vs E representation) between 0.02 to several keV. Owing to the high synchrotron energies involved most of the sources in the catalog are likely to be TeV emitters, with the closest and brightest one...

  11. High Spectral Density Optical Communication Technologies

    CERN Document Server

    Nakazawa, Masataka; Miyazaki, Tetsuya

    2010-01-01

    The latest hot topics of high-spectral density optical communication systems using digital coherent optical fibre communication technologies are covered by this book. History and meaning of a "renaissance" of the technology, requirements to the Peta-bit/s class "new generation network" are also covered in the first part of this book. The main topics treated are electronic and optical devices, digital signal processing including forward error correction, modulation formats as well as transmission and application systems. The book serves as a reference to researchers and engineers.

  12. High speed digital phonoscopy of selected extreme vocalization (Conference Presentation)

    Science.gov (United States)

    Izdebski, Krzysztof; Blanco, Matthew; Di Lorenzo, Enrico; Yan, Yuling

    2017-02-01

    We used HSDP (KayPENTAX Model 9710, NJ, USA) to capture the kinematics of vocal folds in the production of extreme vocalization used by heavy metal performers. The vibrations of the VF were captured at 4000 f/s using transoral rigid scope. Growl, scream and inhalatory phonations were recoded. Results showed that these extreme sounds are produced predominantly by supraglottic tissues rather than by the true vocal folds, which explains while these sounds do not injure the mucosa of the true vocal folds. In addition, the HSDI were processed using custom software (Vocalizer®) that clearly demonstrated the contribution of each vocal fold to the generation of the sound.

  13. Optics of high-performance electron microscopes*

    OpenAIRE

    H H Rose

    2016-01-01

    During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by...

  14. High-speed signal processing using highly nonlinear optical fibres

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen

    2009-01-01

    relying on the phase of the optical field. Topics covered include all-optical switching of 640 Gbit/s and 1.28 Tbit/s serial data, wavelength conversion at 640 Gbit/s, optical amplitude regeneration of differential phase shift keying (DPSK) signals, as well as midspan spectral inversion for differential 8......We review recent progress in all-optical signal processing techniques making use of conventional silica-based highly nonlinear fibres. In particular, we focus on recent demonstrations of ultra-fast processing at 640 Gbit/s and above, as well as on signal processing of novel modulation formats...

  15. Inelastic X-ray scattering experiments at extreme conditions: high temperatures and high pressures

    Directory of Open Access Journals (Sweden)

    S.Hosokawa

    2008-03-01

    Full Text Available In this article, we review the present status of experimental techniques under extreme conditions of high temperature and high pressure used for inelastic X-ray scattering (IXS experiments of liquid metals, semiconductors, molten salts, molecular liquids, and supercritical water and methanol. For high temperature experiments, some types of single-crystal sapphire cells were designed depending on the temperature of interest and the sample thickness for the X-ray transmission. Single-crystal diamond X-ray windows attached to the externally heated high-pressure vessel were used for the IXS experiment of supercritical water and methanol. Some typical experimental results are also given, and the perspective of IXS technique under extreme conditions is discussed.

  16. Technology Development for High Efficiency Optical Communications

    Science.gov (United States)

    Farr, William H.

    2012-01-01

    Deep space optical communications is a significantly more challenging operational domain than near Earth space optical communications, primarily due to effects resulting from the vastly increased range between transmitter and receiver. The NASA Game Changing Development Program Deep Space Optical Communications Project is developing four key technologies for the implementation of a high efficiency telecommunications system that will enable greater than 10X the data rate of a state-of-the-art deep space RF system (Ka-band) for similar transceiver mass and power burden on the spacecraft. These technologies are a low mass spacecraft disturbance isolation assembly, a flight qualified photon counting detector array, a high efficiency flight laser amplifier and a high efficiency photon counting detector array for the ground-based receiver.

  17. Optically transparent high temperature shape memory polymers.

    Science.gov (United States)

    Xiao, Xinli; Qiu, Xueying; Kong, Deyan; Zhang, Wenbo; Liu, Yanju; Leng, Jinsong

    2016-03-21

    Optically transparent shape memory polymers (SMPs) have potential in advanced optoelectronic and other common shape memory applications, and here optically transparent shape memory polyimide is reported for the first time. The polyimide possesses a glass transition temperature (Tg) of 171 °C, higher than the Tg of other transparent SMPs reported, and the influence of molecular structure on Tg is discussed. The 120 μm thick polyimide film exhibits transmittance higher than 81% in 450-800 nm, and the possible mechanism of its high transparency is analyzed, which will benefit further research on other transparent high temperature SMPs. The transparent polyimide showed excellent thermomechanical properties and shape memory performances, and retained high optical transparency after many shape memory cycles.

  18. Optical technologies for extreme-ultraviolet and soft X-ray coherent sources

    CERN Document Server

    Poletto, Luca

    2015-01-01

    The book reviews the most recent achievements in optical technologies for XUV and X-ray coherent sources. Particular attention is given to free-electron-laser facilities, but also to other sources available at present, such as synchrotrons, high-order laser harmonics and X-ray lasers. The optical technologies relevant to each type of source are discussed. In addition, the main technologies used for photon handling and conditioning, namely multilayer mirrors, adaptive optics, crystals and gratings are explained. Experiments using coherent light received during the last decades a lot of attention for the X-ray regime. Strong efforts were taken for the realization of almost fully coherent sources, e.g. the free-electron lasers, both as independent sources in the femtosecond and attosecond regimes and as seeding sources for free-electron-lasers and X-ray gas lasers. In parallel to the development of sources, optical technologies for photon handling and conditioning of such coherent and intense X-ray beams advance...

  19. High Optical Access Trap 2.0.

    Energy Technology Data Exchange (ETDEWEB)

    Maunz, Peter Lukas Wilhelm [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-26

    The High Optical Access (HOA) trap was designed in collaboration with the Modular Universal Scalable Ion-trap Quantum Computer (MUSIQC) team, funded along with Sandia National Laboratories through IARPA's Multi Qubit Coherent Operations (MQCO) program. The design of version 1 of the HOA trap was completed in September 2012 and initial devices were completed and packaged in February 2013. The second version of the High Optical Access Trap (HOA-2) was completed in September 2014 and is available at IARPA's disposal.

  20. Extreme nonlinear terahertz electro-optics in diamond for ultrafast pulse switching

    Science.gov (United States)

    Shalaby, Mostafa; Vicario, Carlo; Hauri, Christoph P.

    2017-03-01

    Polarization switching of picosecond laser pulses is a fundamental concept in signal processing [C. Chen and G. Liu, Annu. Rev. Mater. Sci. 16, 203 (1986); V. R. Almeida et al., Nature 431, 1081 (2004); and A. A. P. Pohl et al., Photonics Sens. 3, 1 (2013)]. Conventional switching devices rely on the electro-optical Pockels effect and work at radio frequencies. The ensuing gating time of several nanoseconds is a bottleneck for faster switches which is set by the performance of state-of-the-art high-voltage electronics. Here we show that by substituting the electric field of several kV/cm provided by modern electronics by the MV/cm field of a single-cycle THz laser pulse, the electro-optical gating process can be driven orders of magnitude faster, at THz frequencies. In this context, we introduce diamond as an exceptional electro-optical material and demonstrate a pulse gating time as fast as 100 fs using sub-cycle THz-induced Kerr nonlinearity. We show that THz-induced switching in the insulator diamond is fully governed by the THz pulse shape. The presented THz-based electro-optical approach overcomes the bandwidth and switching speed limits of conventional MHz/GHz electronics and establishes the ultrafast electro-optical gating technology for the first time in the THz frequency range. We finally show that the presented THz polarization gating technique is applicable for advanced beam diagnostics. As a first example, we demonstrate tomographic reconstruction of a THz pulse in three dimensions.

  1. Extreme nonlinear terahertz electro-optics in diamond for ultrafast pulse switching

    Directory of Open Access Journals (Sweden)

    Mostafa Shalaby

    2017-03-01

    Full Text Available Polarization switching of picosecond laser pulses is a fundamental concept in signal processing [C. Chen and G. Liu, Annu. Rev. Mater. Sci. 16, 203 (1986; V. R. Almeida et al., Nature 431, 1081 (2004; and A. A. P. Pohl et al., Photonics Sens. 3, 1 (2013]. Conventional switching devices rely on the electro-optical Pockels effect and work at radio frequencies. The ensuing gating time of several nanoseconds is a bottleneck for faster switches which is set by the performance of state-of-the-art high-voltage electronics. Here we show that by substituting the electric field of several kV/cm provided by modern electronics by the MV/cm field of a single-cycle THz laser pulse, the electro-optical gating process can be driven orders of magnitude faster, at THz frequencies. In this context, we introduce diamond as an exceptional electro-optical material and demonstrate a pulse gating time as fast as 100 fs using sub-cycle THz-induced Kerr nonlinearity. We show that THz-induced switching in the insulator diamond is fully governed by the THz pulse shape. The presented THz-based electro-optical approach overcomes the bandwidth and switching speed limits of conventional MHz/GHz electronics and establishes the ultrafast electro-optical gating technology for the first time in the THz frequency range. We finally show that the presented THz polarization gating technique is applicable for advanced beam diagnostics. As a first example, we demonstrate tomographic reconstruction of a THz pulse in three dimensions.

  2. Advanced Functionalities for Highly Reliable Optical Networks

    DEFF Research Database (Denmark)

    An, Yi

    This thesis covers two research topics concerning optical solutions for networks e.g. avionic systems. One is to identify the applications for silicon photonic devices for cost-effective solutions in short-range optical networks. The other one is to realise advanced functionalities in order to in......) using two exclusive OR (XOR) gates realised by four-wave mixing (FWM) in semiconductor optical amplifiers (SOAs) is experimentally demonstrated and very low (~ 1 dB) total operation penalty is achieved....... to increase the availability of highly reliable optical networks. A cost-effective transmitter based on a directly modulated laser (DML) using a silicon micro-ring resonator (MRR) to enhance its modulation speed is proposed, analysed and experimentally demonstrated. A modulation speed enhancement from 10 Gbit...... interconnects and network-on-chips. A novel concept of all-optical protection switching scheme is proposed, where fault detection and protection trigger are all implemented in the optical domain. This scheme can provide ultra-fast establishment of the protection path resulting in a minimum loss of data...

  3. High performance fluoride optical coatings for DUV optics

    Science.gov (United States)

    Zhang, Lichao; Cai, Xikun

    2014-08-01

    In deep ultraviolet region that typical applications are used on the ArF wavelength, coated optics should meet stringent requirements of optical systems. To meet these requirements, systematical researches are carried out on fabrication and characterization methods of fluoride coatings. First, by optimizing of deposition processes, dense coatings with the refractive index of ~1.7 for LaF3 and ~1.4 for MgF2, together with extinction coefficients of ~2×10-4 on 193nm were realized. The transmission of AR coating for 193nm achieved by using optimized deposition techniques is 99.8%. Second, a method of designing shadowing masks was developed to solve the problem of correcting coating thickness distributions for complex DUV systems. By using the method, the thickness distribution error specification of 3% PV has been achieved on substrates with ~300mm diameters and large curvatures. Finally, the laser calorimetry method is used to evaluate the laser radiation stability of fluoride coatings. It is turned out that the damage coefficients of fluoride coatings, which are defined as the values of unrecoverable increase of the absorption during the laser irradiation process, are much lower than that of fused silica substrates. The above progresses could further support the realization of high performance DUV optical systems.

  4. Extreme ultraviolet (EUV) source and ultra-high vacuum chamber for studying EUV-induced processes

    NARCIS (Netherlands)

    Dolgov, A.; Yakushev, O.; Abrikosov, A.; Snegirev, E.; Krivtsun, V.M.; Lee, C.J.; Bijkerk, F.

    2015-01-01

    An experimental setup that directly reproduces extreme ultraviolet (EUV) lithography relevant conditions for detailed component exposure tests is described. The EUV setup includes a pulsed plasma radiation source, operating at 13.5 nm; a debris mitigation system; collection and filtering optics; and

  5. High capacity optical links for datacentre connectivity

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Usuga, Mario; Vegas Olmos, Juan José

    There is a timely and growing demand for high capacity optical data transport solutions to provide connectivity inside data centres and between data centres located at different geographical locations. The requirements for reach are in the order of 2 km for intra-datacentre and up to 100 km for i...

  6. High sensitivity optically pumped quantum magnetometer.

    Science.gov (United States)

    Tiporlini, Valentina; Alameh, Kamal

    2013-01-01

    Quantum magnetometers based on optical pumping can achieve sensitivity as high as what SQUID-based devices can attain. In this paper, we discuss the principle of operation and the optimal design of an optically pumped quantum magnetometer. The ultimate intrinsic sensitivity is calculated showing that optimal performance of the magnetometer is attained with an optical pump power of 20 μW and an operation temperature of 48°C. Results show that the ultimate intrinsic sensitivity of the quantum magnetometer that can be achieved is 327 fT/Hz(½) over a bandwidth of 26 Hz and that this sensitivity drops to 130 pT/Hz(½) in the presence of environmental noise. The quantum magnetometer is shown to be capable of detecting a sinusoidal magnetic field of amplitude as low as 15 pT oscillating at 25 Hz.

  7. Optical high-performance computing: introduction to the JOSA A and Applied Optics feature.

    Science.gov (United States)

    Caulfield, H John; Dolev, Shlomi; Green, William M J

    2009-08-01

    The feature issues in both Applied Optics and the Journal of the Optical Society of America A focus on topics of immediate relevance to the community working in the area of optical high-performance computing.

  8. Highly Sensitive Electro-Optic Modulators

    Energy Technology Data Exchange (ETDEWEB)

    DeVore, Peter S [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    There are very important diagnostic and communication applications that receive faint electrical signals to be transmitted over long distances for capture. Optical links reduce bandwidth and distance restrictions of metal transmission lines; however, such signals are only weakly imprinted onto the optical carrier, resulting in low fidelity transmission. Increasing signal fidelity often necessitates insertion of radio-frequency (RF) amplifiers before the electro-optic modulator, but (especially at high frequencies) RF amplification results in large irreversible distortions. We have investigated the feasibility of a Sensitive and Linear Modulation by Optical Nonlinearity (SALMON) modulator to supersede RF-amplified modulators. SALMON uses cross-phase modulation, a manifestation of the Kerr effect, to enhance the modulation depth of an RF-modulated optical wave. This ultrafast process has the potential to result in less irreversible distortions as compared to a RF-amplified modulator due to the broadband nature of the Kerr effect. Here, we prove that a SALMON modulator is a feasible alternative to an RFamplified modulator, by demonstrating a sensitivity enhancement factor greater than 20 and significantly reduced distortion.

  9. Optical signal processing for enabling high-speed, highly spectrally efficient and high capacity optical systems

    Science.gov (United States)

    Fazal, Muhammad Irfan

    The unabated demand for more capacity due to the ever-increasing internet traffic dictates that the boundaries of the state of the art maybe pushed to send more data through the network. Traditionally, this need has been satisfied by multiple wavelengths (wavelength division multiplexing), higher order modulation formats and coherent communication (either individually or combined together). WDM has the ability to reduce cost by using multiple channels within the same physical fiber, and with EDFA amplifiers, the need for O-E-O regenerators is eliminated. Moreover the availability of multiple colors allows for wavelength-based routing and network planning. Higher order modulation formats increases the capacity of the link by their ability to encode data in both the phase and amplitude of light, thereby increasing the bits/sec/Hz as compared to simple on-off keyed format. Coherent communications has also emerged as a primary means of transmitting and receiving optical data due to its support of formats that utilize both phase and amplitude to further increase the spectral efficiency of the optical channel, including quadrature amplitude modulation (QAM) and quadrature phase shift keying (QPSK). Polarization multiplexing of channels can double capacity by allowing two channels to share the same wavelength by propagating on orthogonal polarization axis and is easily supported in coherent systems where the polarization tracking can be performed in the digital domain. Furthermore, the forthcoming IEEE 100 Gbit/s Ethernet Standard, 802.3ba, provides greater bandwidth, higher data rates, and supports a mixture of modulation formats. In particular, Pol-MUX QPSK is increasingly becoming the industry's format of choice as the high spectral efficiency allows for 100 Gbit/s transmission while still occupying the current 50 GHz/channel allocation of current 10 Gbit/s OOK fiber systems. In this manner, 100 Gbit/s transfer speeds using current fiber links, amplifiers, and filters

  10. A photonic-crystal optical antenna for extremely large local-field enhancement.

    Science.gov (United States)

    Chang, Hyun-Joo; Kim, Se-Heon; Lee, Yong-Hee; Kartalov, Emil P; Scherer, Axel

    2010-11-08

    We propose a novel design of an all-dielectric optical antenna based on photonic-band-gap confinement. Specifically, we have engineered the photonic-crystal dipole mode to have broad spectral response (Q~70) and well-directed vertical-radiation by introducing a plane mirror below the cavity. Considerably large local electric-field intensity enhancement~4,500 is expected from the proposed design for a normally incident planewave. Furthermore, an analytic model developed based on coupled-mode theory predicts that the electric-field intensity enhancement can easily be over 100,000 by employing reasonably high-Q (~10,000) resonators.

  11. Creep strength of iridium at extremely high temperatures; Zeitstandfestigkeit von Iridium bei extrem hohen Temperaturen

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, B. [Fachhochschule Jena (Germany). Fachbereich Werkstofftechnik; Lupton, D. [Heraeus (W.C.) GmbH, Hanau (Germany). Produktbereich Materialtechnik; Braun, F. [Heraeus (W.C.) GmbH, Hanau (Germany). Produktbereich Materialtechnik; Merker, J. [Jena Univ. (Germany). Technisches Inst.; Helmich, R. [Jena Univ. (Germany). Technisches Inst.

    1994-12-31

    On iridium in the initial state and after carrying out creep tests, apart from metallographic and fractographic work, investigations on the distribution of trace impurities were done by means of secondary ion mass spectroscopy and investigations of the crystal structure were carried out with the aid of Kossel technique, a special field of X-ray bending. Although iridium of high purity was used for the investigations, enrichment of hydrogen, carbon, sodium, potassium, calcium, magnesium, silicon, iron, nickel and chromium was proved by means of secondary ion mass spectroscopy at the grain boundaries, where the average contents in iridium were only about 1 {mu}g/g. In the creep test, creep fracture lines were found in the range of 1800 to 2300 C and about 0.5 to 12 hours on iridium samples with a square cross section of 1 mm. It follows from the results that this noble metal has a considerable resistance to heat at these temperatures, which makes its use up to 2300 C possible. (orig./RHM) [Deutsch] Es erfolgten am Iridium im Ausgangszustand und nach Durchfuehrung der Zeitstandversuche neben metallographischen und fraktographischen Arbeiten Untersuchungen zur Verteilung der Spurenverunreinigungen mittels Sekundaerionen-Massenspektroskopie sowie Untersuchungen der Kristallstruktur mit Hilfe der Kossel-Technik, einem Spezialgebiet der Roentgenbeugung. Obwohl fuer die Untersuchungen hochreines Iridium verwendet wurde, konnten mittels Sekundaerionen-Massenspektroskopie in den Korngrenzen Anreicherungen von Wasserstoff, Kohlenstoff, Natrium, Kalium, Calcium, Magnesium, Silizium, Eisen, Nickel und Chrom nachgewiesen werden, wobei die durchschnittlichen Gehalte in Iridium nur um 1 {mu}g/g lagen. Im Zeitstandversuch wurden an Iridiumproben mit 1 mm Vierkantquerschnitt Zeitbruchlinien im Bereich von 1800 bis 2300 C und etwa 0,5 bis 12 Stunden aufgenommen. Aus den Ergebnissen folgt, dass das Edelmetall bei diesen Temperaturen noch eine beachtliche Warmfestigkeit besitzt, die

  12. Rad-Tolerant, Thermally Stable, High-Speed Fiber-Optic Network for Harsh Environments

    Science.gov (United States)

    Leftwich, Matt; Hull, Tony; Leary, Michael; Leftwich, Marcus

    2013-01-01

    Future NASA destinations will be challenging to get to, have extreme environmental conditions, and may present difficulty in retrieving a spacecraft or its data. Space Photonics is developing a radiation-tolerant (rad-tolerant), high-speed, multi-channel fiber-optic transceiver, associated reconfigurable intelligent node communications architecture, and supporting hardware for intravehicular and ground-based optical networking applications. Data rates approaching 3.2 Gbps per channel will be achieved.

  13. Optical design of the NASA-NSF extreme precision Doppler spectrograph concept "WISDOM"

    Science.gov (United States)

    Barnes, Stuart I.; Fżrész, Gábor; Simcoe, Robert A.; Shectman, Stephen A.; Woods, Deborah F.

    2016-08-01

    The WISDOM instrument concept was developed at MIT as part of a NASA-NSF funded study to equip the 3.5m WIYN telescope with an extremely precise radial velocity spectrometer. The spectrograph employs an asymmetric white pupil optical design, where the instrument is split into two nearly identical "Short" (380 to 750 nm) and "Long"" (750 to 1300 nm) wavelength channels. The echelle grating and beam sizes are R3.75/125mm and R6/80mm in the short and long channels respectively. Together with the pupil slicer, and octagonal to rectangular fibre coupling, this permits resolving powers over R = 120k with a 1.2" diameter fibre on the sky. A factor of two reduction in the focal length between the main collimator OAP and the transfer collimator ensures a very compact instrument, with a small white pupil footprint, thereby enabling small cross-dispersing and camera elements. A dichroic is used near the white pupil to split each of the long and short channels into two, so that the final spectrograph has 4 channels; namely "Blue," "Green," "Red" and "NIR." Each of these channels has an anamorphic VPH grism for cross-dispersion, and a fully dioptric all-spherical camera objective. The spectral footprints cover 4k×4k and 6k×6k CCDs with 15 µm pixels in the short "Blue" and "Green" wavelength channels, respectively. A 4k×4k CCD with 15 μm pixels is used in the long "Red" channel, with a HgCdTe 1.7 μm cutoff 4k×4k detector with 10um pixels is to be used in the long "NIR" channel. The white pupil relay includes a Mangin mirror very close to the intermediate focus to correct the white pupil relay Petzval curvature before it is swept into a cylinder by the cross-dispersers. This design decision allows each of the dioptric cameras to be fully optimised and tested independently of the rest of the spectrograph. The baseline design for the cameras also ensures that the highest possible (diffraction limited) image quality is achieved across all wavelengths, while also ensuring

  14. Extremely short duration high intensity interval training substantially improves insulin action in young healthy males

    DEFF Research Database (Denmark)

    Babraj, John A; Vollaard, Niels B J; Keast, Cameron

    2009-01-01

    BACKGROUND: Traditional high volume aerobic exercise training reduces cardiovascular and metabolic disease risk but involves a substantial time commitment. Extremely low volume high-intensity interval training (HIT) has recently been demonstrated to produce improvements to aerobic function, but i...

  15. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies.

    Science.gov (United States)

    Balal, Nezah; Pinhasi, Gad A; Pinhasi, Yosef

    2016-05-23

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide "chirped" Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution.

  16. Smart freeform optics solution for an extremely thin direct-lit application

    Science.gov (United States)

    Leiner, Claude; Nemitz, Wolfgang; Schweitzer, Susanne; Wenzl, Franz P.; Kuna, Ladislav; Reil, Frank; Hartmann, Paul; Sommer, Christian

    2016-09-01

    Common direct-lit systems for general lighting applications are using LEDs as light sources, which are placed in a certain distance in a regularly arranged array. In order to achieve a homogenous light distribution a diffuser sheet has to be placed on the out-coupling side in a certain height above the LED array. The position of the diffuser sheet is strongly correlated to the distance between the LEDs and is responsible for the positional homogenization of the LED spots, while the rough side of the diffuser averages the angular light distribution. In order to maintain the uniformity of the luminance the distance of the LEDs compared to the height of the diffuser sheet placement (DHR ratio) is of relevance. DHR values of 1 are hardly achievable. To overcome this limitation additional optical elements like freeform lenses are necessary. In this contribution we discuss a smart design concept for an extremely flat direct-lit lighting system. It is characterized by an improved distance (LEDs) to height (diffuser sheet) ratio compared to diffuser sheet only-approaches and a smaller thickness compared to common freeform approaches. For this demand we designed very thin freeform lenses with a maximal height of 75 μm that allow to maintain a uniform illumination in a flat direct-lit backlight using an LEDarray with a comparably large distance between the individual LEDs. The concept emphasizes the use of maskless laser direct write lithography for the cost-effective fabrication of the thin freeform micro-lens array.

  17. Spectral Clustering for Unsupervised Segmentation of Lower Extremity Wound Beds Using Optical Images.

    Science.gov (United States)

    Dhane, Dhiraj Manohar; Krishna, Vishal; Achar, Arun; Bar, Chittaranjan; Sanyal, Kunal; Chakraborty, Chandan

    2016-09-01

    Chronic lower extremity wound is a complicated disease condition of localized injury to skin and its tissues which have plagued many elders worldwide. The ulcer assessment and management is expensive and is burden on health establishment. Currently accurate wound evaluation remains a tedious task as it rely on visual inspection. This paper propose a new method for wound-area detection, using images digitally captured by a hand-held, optical camera. The strategy proposed involves spectral approach for clustering, based on the affinity matrix. The spectral clustering (SC) involves construction of similarity matrix of Laplacian based on Ng-Jorden-Weiss algorithm. Starting with a quadratic method, wound photographs were pre-processed for color homogenization. The first-order statistics filter was then applied to extract spurious regions. The filter was selected based on the performance, evaluated on four quality metrics. Then, the spectral method was used on the filtered images for effective segmentation. The segmented regions were post-processed using morphological operators. The performance of spectral segmentation was confirmed by ground-truth pictures labeled by dermatologists. The SC results were additionally compared with the results of k-means and Fuzzy C-Means (FCM) clustering algorithms. The SC approach on a set of 105 images, effectively delineated targeted wound beds yielding a segmentation accuracy of 86.73 %, positive predictive values of 91.80 %, and a sensitivity of 89.54 %. This approach shows the robustness of tool for ulcer perimeter measurement and healing progression. The article elucidates its potential to be incorporated in patient facing medical systems targeting a rapid clinical assistance.

  18. Hybrid optical antenna with high directivity gain.

    Science.gov (United States)

    Bonakdar, Alireza; Mohseni, Hooman

    2013-08-01

    Coupling of a far-field optical mode to electronic states of a quantum absorber or emitter is a crucial process in many applications, including infrared sensors, single molecule spectroscopy, and quantum metrology. In particular, achieving high quantum efficiency for a system with a deep subwavelength quantum absorber/emitter has remained desirable. In this Letter, a hybrid optical antenna based on coupling of a photonic nanojet to a metallo-dielectric antenna is proposed, which allows such efficient coupling. A quantum efficiency of about 50% is predicted for a semiconductor with volume of ~λ³/170. Despite the weak optical absorption coefficient of 2000 cm(-1) in the long infrared wavelength of ~8 μm, very strong far-field coupling has been achieved, as evidenced by an axial directivity gain of 16 dB, which is only 3 dB below of theoretical limit. Unlike the common phased array antenna, this structure does not require coherent sources to achieve a high directivity. The quantum efficiency and directivity gain are more than an order of magnitude higher than existing metallic, dielectric, or metallo-dielectric optical antenna.

  19. Solid Nitrogen at Extreme Conditions of High Pressure and Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, A; Gregoryanz, E

    2004-04-05

    We review the phase diagram of nitrogen in a wide pressure and temperature range. Recent optical and x-ray diffraction studies at pressures up to 300 GPa and temperatures in excess of 1000 K have provided a wealth of information on the transformation of molecular nitrogen to a nonmolecular (polymeric) semiconducting and two new molecular phases. These newly found phases have very large stability (metastability) range. Moreover, two new molecular phases have considerably different orientational order from the previously known phases. In the iota phase (unlike most of other known molecular phases), N{sub 2} molecules are orientationally equivalent. The nitrogen molecules in the theta phase might be associated into larger aggregates, which is in line with theoretical predictions on polyatomic nitrogen.

  20. Optical multichannel analyzer techniques for high resolution optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chao, J.L.

    1980-06-01

    The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.

  1. LOLAS: an optical turbulence profiler in the atmospheric boundary layer with extreme altitude-resolution

    CERN Document Server

    Avila, R; Wilson, R W; Chun, M; Butterley, T; Carrasco, E

    2008-01-01

    We report the development and first results of an instrument called Low Layer Scidar (LOLAS) which is aimed at the measurement of optical-turbulence profiles in the atmospheric boundary layer with high altitude-resolution. The method is based on the Generalized Scidar (GS) concept, but unlike the GS instruments which need a 1- m or larger telescope, LOLAS is implemented on a dedicated 40-cm telescope, making it an independent instrument. The system is designed for widely separated double-star targets, which enables the high altitude-resolution. Using a 20000-separation double- star, we have obtained turbulence profiles with unprecedented 12-m resolution. The system incorporates necessary novel algorithms for autoguiding, autofocus and image stabilisation. The results presented here were obtained at Mauna Kea Observatory. They show LOLAS capabilities but cannot be considered as representative of the site. A forthcoming paper will be devoted to the site characterisation. The instrument was built as part of the ...

  2. THE HIGH-RESOLUTION EXTREME-ULTRAVIOLET SPECTRUM OF N{sub 2} BY ELECTRON IMPACT

    Energy Technology Data Exchange (ETDEWEB)

    Heays, A. N. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Ajello, J. M.; Aguilar, A. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Lewis, B. R.; Gibson, S. T., E-mail: heays@strw.leidenuniv.nl [Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

    2014-04-01

    We have analyzed high-resolution (FWHM = 0.2 Å) extreme-ultraviolet (EUV, 800-1350 Å) laboratory emission spectra of molecular nitrogen excited by an electron impact at 20 and 100 eV under (mostly) optically thin, single-scattering experimental conditions. A total of 491 emission features were observed from N{sub 2} electronic-vibrational transitions and atomic N I and N II multiplets and their emission cross sections were measured. Molecular emission was observed at vibrationally excited ground-state levels as high as v'' = 17, from the a {sup 1}Π {sub g} , b {sup 1}Π {sub u} , and b'{sup 1}Σ {sub u} {sup +} excited valence states and the Rydberg series c'{sub n} {sub +1} {sup 1}Σ {sub u} {sup +}, c{sub n} {sup 1}Π {sub u} , and o{sub n} {sup 1}Π {sub u} for n between 3 and 9. The frequently blended molecular emission bands were disentangled with the aid of a sophisticated and predictive quantum-mechanical model of excited states that includes the strong coupling between valence and Rydberg electronic states and the effects of predissociation. Improved model parameters describing electronic transition moments were obtained from the experiment and allowed for a reliable prediction of the vibrationally summed electronic emission cross section, including an extrapolation to unobserved emission bands and those that are optically thick in the experimental spectra. Vibrationally dependent electronic excitation functions were inferred from a comparison of emission features following 20 and 100 eV electron-impact collisional excitation. The electron-impact-induced fluorescence measurements are compared with Cassini Ultraviolet Imaging Spectrograph observations of emissions from Titan's upper atmosphere.

  3. Towards green high capacity optical networks

    Science.gov (United States)

    Glesk, I.; Mohd Warip, M. N.; Idris, S. K.; Osadola, T. B.; Andonovic, I.

    2012-02-01

    The demand for fast, secure, energy efficient high capacity networks is growing. It is fuelled by transmission bandwidth needs which will support among other things the rapid penetration of multimedia applications empowering smart consumer electronics and E-businesses. All the above trigger unparallel needs for networking solutions which must offer not only high-speed low-cost "on demand" mobile connectivity but should be ecologically friendly and have low carbon footprint. The first answer to address the bandwidth needs was deployment of fibre optic technologies into transport networks. After this it became quickly obvious that the inferior electronic bandwidth (if compared to optical fiber) will further keep its upper hand on maximum implementable serial data rates. A new solution was found by introducing parallelism into data transport in the form of Wavelength Division Multiplexing (WDM) which has helped dramatically to improve aggregate throughput of optical networks. However with these advancements a new bottleneck has emerged at fibre endpoints where data routers must process the incoming and outgoing traffic. Here, even with the massive and power hungry electronic parallelism routers today (still relying upon bandwidth limiting electronics) do not offer needed processing speeds networks demands. In this paper we will discuss some novel unconventional approaches to address network scalability leading to energy savings via advance optical signal processing. We will also investigate energy savings based on advanced network management through nodes hibernation proposed for Optical IP networks. The hibernation reduces the network overall power consumption by forming virtual network reconfigurations through selective nodes groupings and by links segmentations and partitionings.

  4. Bidirectional all-optical switches based on highly nonlinear optical fibers

    Science.gov (United States)

    Liu, Wenjun; Yang, Chunyu; Liu, Mengli; Yu, Weitian; Zhang, Yujia; Lei, Ming; Wei, Zhiyi

    2017-05-01

    All-optical switches have become one of the research focuses of nonlinear optics due to their fast switching speed. They have been applied in such fields as ultrafast optics, all-optical communication and all-optical networks. In this paper, based on symbolic computation, bidirectional all-optical switches are presented using analytic two-soliton solutions. Various types of soliton interactions are analyzed through choosing the different parameters of high-order dispersion and nonlinearity. Results indicate that bidirectional all-optical switches can be effectively achieved using highly nonlinear optical fibers.

  5. Regional aerosol optical properties and radiative impact of the extreme smoke event in the European Arctic in spring 2006

    Directory of Open Access Journals (Sweden)

    C. Lund Myhre

    2007-11-01

    Full Text Available In spring 2006 a special meteorological situation occurred in the European Arctic region giving record high levels of air pollution. The synoptic situation resulted in extensive transport of pollution predominantly from agricultural fires in Eastern Europe into the Arctic region and record high air-pollution levels were measured at the Zeppelin observatory at Ny-Ålesund (78°54' N, 11°53' E in the period from 25 April to 12 May. In the present study we investigate the optical properties of the aerosols from this extreme event and we estimate the radiative forcing of this episode.

    We examine the aerosol optical properties from the source region and into the European Arctic and explore the evolution of the episode and the changes in the optical properties. A number of sites in Eastern Europe, Northern Scandinavia and Svalbard are included in the study. The observations show that the maximum AOD was from 2–3 May at all sites and varies from 0.52 to 0.87, and the corresponding Ångstrøm exponent was relatively large. Lidar measurements from Minsk, ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research at Andenes and Ny-Ålesund show that the aerosol layer was below 3 km at all sites the height is decreasing from the source region and into the Arctic. For the AERONET sites included (Minsk, Toravere, Hornsund we have further studied the evolution of the aerosol size. The single scattering albedo at Svalbard is provided for two sites; Ny-Ålesund and Hornsund. Importantly the calculated single scattering albedo based on the aerosol chemical composition and size distribution from Ny-Ålesund and the AERONET measurements at Hornsund are consistent. We have found strong agreement between the satellite daily MODIS AOD and the ground-based AOD observations. This agreement is crucial for accurate radiative forcing calculations. We calculate a strong negative radiative forcing for the most polluted days employing the analysed

  6. Efficient method for the determination of extreme-ultraviolet optical constants in reactive materials: application to scandium and titanium.

    Science.gov (United States)

    Uspenskii, Yu A; Seely, John E; Popov, N L; Vinogradov, A V; Pershin, Yu P; Kondratenko, V V

    2004-02-01

    The chemical reaction of a sample with atmospheric gases causes a significant error in the determinantion of the complex refractive index n = 1 - delta + ibeta in the extreme-ultraviolet region. The protection of samples removes this effect but hampers the interpretation of measurements. To overcome this difficulty, we derive the exact dependences on film thickness of the reflectivity and transmissivity of a protected film. These dependences greatly simplify the determination of delta and beta when the spectra of several films with different thickness and identical protection are measured. They also allow the verification of the delta(omega) obtained from the Kramers-Kronig relation and even make the Kramers-Kronig method unnecessary in many cases. As a practical application, the optical constants of Sc and Ti are determined at h omega = 18-70 eV and 18-99 eV, respectively. The essential feature of our experimental technique is deposition of a film sample directly on a silicon photodiode that allows easy operation with both thin (approximately 10-nm) and thick (approximately 100-nm) films. The comparison of calculated reflectivities of Si-Sc multilayers with the measured values shows the high accuracy of the determined delta(omega) and beta(omega).

  7. The age of extremely red and massive galaxies at very high redshift

    CERN Document Server

    Castro-Rodriguez, N

    2011-01-01

    Aims. We present a determination of the intrinsic colors and ages of galaxies at very high redshift, in particular old galaxies (OGs) within extremely red objects (EROs). To date, the definition of EROs has been restricted to objects with z2.5). We therefore, refer to these objects as very high-redshift EROs (Z-EROS, herein). Methods. We analyze 63,550 galaxies selected in the XMM-LSS field. To obtain a reasonably sized sample of EROs, it is essential to consider a very wide area surveys. We identify targets within an area of 0.77 square degrees for which optical to mid-infrared data are available from SUBARU, UKIDSS, and Spitzer. We select Z-EROs based on their colors, and then perform a selection of only OGs. One of our novel innovations is to adapt the traditional method of EROs selection based on the filters I and K, to higher redshifts. Using our method, we identify 20 objects that satisfy the conditions required to be Z-EROs/OGs at redshifts 2.5~4.7. After including additional galaxies with z<2.5 ana...

  8. Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator

    DEFF Research Database (Denmark)

    Ding, Yunhong; Zhu, Xiaolong; Xiao, Sanshui

    2015-01-01

    comprehensively study the interaction between graphene and a microring resonator, and its influence on the optical modulation depth. We demonstrate graphene-silicon microring devices showing a high modulation depth of 12.5 dB with a relatively low bias voltage of 8.8 V. On-off electro-optical switching......Graphene opens up for novel optoelectronic applications thanks to its high carrier mobility, ultra-large absorption bandwidth, and extremely fast material response. In particular, the opportunity to control optoelectronic properties through tuning of the Fermi level enables electro-optical...... modulation, optical-optical switching, and other optoelectronics applications. However, achieving a high modulation depth remains a challenge because of the modest graphene-light interaction in the graphene-silicon devices, typically, utilizing only a monolayer or few layers of graphene. Here, we...

  9. Design of high-capacity fiber-optic transport systems

    Science.gov (United States)

    Liao, Zhi Ming

    2001-08-01

    We study the design of fiber-optic transport systems and the behavior of fiber amplifiers/lasers with the aim of achieving higher capacities with larger amplifier spacing. Solitons are natural candidates for transmitting short pulses for high-capacity fiber-optic networks because of its innate ability to use two of fiber's main defects, fiber dispersion and fiber nonlinearity to balance each other. In order for solitons to retain its dynamic nature, amplifiers must be placed periodically to restore powers to compensate for fiber loss. Variational analysis is used to study the long-term stability of a periodical- amplifier system. A new regime of operation is identified which allows the use of a much longer amplifier spacing. If optical fibers are the blood vessels of an optical communication system, then the optical amplifier based on erbium-doped fiber is the heart. Optical communication systems can avoid the use of costly electrical regenerators to maintain system performance by being able to optically amplify the weakened signals. The length of amplifier spacing is largely determined by the gain excursion experienced by the solitons. We propose, model, and demonstrate a distributed erbium-doped fiber amplifier which can drastically reduce the amount of gain excursion experienced by the solitons, therefore allowing a much longer amplifier spacing and superior stability. Dispersion management techniques have become extremely valuable tools in the design of fiber-optic communication systems. We have studied in depth the advantage of different arnplification schemes (lumped and distributed) for various dispersion compensation techniques. We measure the system performance through the Q factor to evaluate the added advantage of effective noise figure and smaller gain excursion. An erbium-doped fiber laser has been constructed and characterized in an effort to develop a test bed to study transmission systems. The presence of mode-partition noise in an erbium

  10. High-resolution CT of lesions of the optic nerve

    Energy Technology Data Exchange (ETDEWEB)

    Peyster, R.G.; Hoover, E.D.; Hershey, B.L.; Haskin, M.E.

    1983-05-01

    The optic nerves are well demonstrated by high-resolution computed tomography. Involvement of the optic nerve by optic gliomas and optic nerve sheath meningiomas is well known. However, nonneoplastic processes such as increased intracranial pressure, optic neuritis, Grave ophthalmopathy, and orbital pseudotumor may also alter the appearance of the optic nerve/sheath on computed tomography. Certain clinical and computed tomographic features permit distinction of these nonneoplastic tumefactions from tumors.

  11. Suppression of long wavelength reflection from extreme-UV multilayer optics

    Science.gov (United States)

    Huang, Q.; van den Boogaard, A. J. R.; van de Kruijs, R.; Zoethout, E.; Medvedev, V. V.; Louis, E.; Bijkerk, F.

    2013-09-01

    Plasma based radiation sources optimized to emit 13.5 nm Extreme UV radiation also produce a significant amount of light at longer wavelengths. This so called out-of-band (OoB) radiation is detrimental for the imaging capabilities of an EUV lithographic imaging system, particularly the deep ultraviolet (DUV) and ultraviolet (UV) parts of the light (λ=100-400 nm). To suppress these wavelengths while maintaining the high efficiency of the mirror for EUV light, several methods have been developed, including phase-shift gratings (PsG) and anti-reflection layers (SPE layer). PsG's use the diffraction properties of a quarter-wavelength high multilayer grating to filter out the DUV/UV light, while the SPE layer works as an anti-reflection coating. Both methods have achieved a suppression factor of 10 - 30 around the target wavelength. To achieve a full band suppression effect, a new scheme based on surface pyramid structures was developed. An average suppression ofmore than 10 times can be achieved with a relative EUV efficiency of 89% (compared to standard multilayer (ML)) in theory. Different methods were discussed and their results are presented.

  12. Extremely High Suction Performance Inducers for Space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced pump inducer design technology that uses high inlet diffusion blades, operates at a very low flow coefficient, and employs a cavitation control and...

  13. HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS

    Energy Technology Data Exchange (ETDEWEB)

    Baranec, Christoph [Institute for Astronomy, University of Hawai' i at Mānoa, Hilo, HI, NZ 96720-2700 (United States); Riddle, Reed; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Dekany, Richard; Kulkarni, Shrinivas [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Ramaprakash, A. N.; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Punnadi, Sujit, E-mail: baranec@hawaii.edu [Inter-University Centre for Astronomy and Astrophysics, Ganeshkhind, Pune 411007 (India)

    2014-07-20

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  14. Optics of high-performance electron microscopes.

    Science.gov (United States)

    Rose, H H

    2008-01-01

    During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by multipole fields and to a discussion of the most advanced design that take advantage of these techniques. The theory of electron mirrors is developed and it is shown how this can be used to correct aberrations and to design energy filters. Finally, different types of energy filters are described.

  15. High-sensitivity fiber optic acoustic sensors

    Science.gov (United States)

    Lu, Ping; Liu, Deming; Liao, Hao

    2016-11-01

    Due to the overwhelming advantages compared with traditional electronicsensors, fiber-optic acoustic sensors have arisen enormous interest in multiple disciplines. In this paper we present the recent research achievements of our group on fiber-optic acoustic sensors. The main point of our research is high sensitivity interferometric acoustic sensors, including Michelson, Sagnac, and Fabry-Pérot interferometers. In addition, some advanced technologies have been proposed for acoustic or acoustic pressure sensing such as single-mode/multimode fiber coupler, dual FBGs and multi-longitudinal mode fiber laser based acoustic sensors. Moreover, our attention we have also been paid on signal demodulation schemes. The intensity-based quadrature point (Q-point) demodulation, two-wavelength quadrature demodulation and symmetric 3×3 coupler methodare discussed and compared in this paper.

  16. High-efficiency Autonomous Laser Adaptive Optics

    CERN Document Server

    Baranec, Christoph; Law, Nicholas M; Ramaprakash, A N; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Dekany, Richard; Kulkarni, Shrinivas; Punnadi, Sujit

    2014-01-01

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limits their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  17. Effect of low-intensity extremely high frequency radiation on reproductive function in wistar rats.

    Science.gov (United States)

    Subbotina, T I; Tereshkina, O V; Khadartsev, A A; Yashin, A A

    2006-08-01

    The exposure to low-intensity extremely high frequency electromagnetic radiation during spermatogenesis was accompanied by pathological changes, which resulted in degeneration and polymorphism of spermatozoa. The number of newborn rats increased in the progeny of irradiated animals.

  18. Extreme Environment Circuit Blocks for Spacecraft Power & Propulsion System & Other High Reliability Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Chronos Technology (DIv of FMI, Inc.) proposes to design, fabricate, and deliver a performance proven, and commercially available set of extreme high operating...

  19. Extremely high-power tongue projection in plethodontid salamanders

    NARCIS (Netherlands)

    Deban, S.M.; O'Reilly, J.C.; Dicke, U.; Leeuwen, van J.L.

    2007-01-01

    Many plethodontid salamanders project their tongues ballistically at high speed and for relatively great distances. Capturing evasive prey relies on the tongue reaching the target in minimum time, therefore it is expected that power production, or the rate of energy release, is maximized during tong

  20. Ionized sputter deposition using an extremely high plasma density pulsed magnetron discharge

    Energy Technology Data Exchange (ETDEWEB)

    Macak, Karol [Department of Physics, Linkoeping University, SE-581 83 Linkoeping, (Sweden); Kouznetsov, Vladimir [Department of Physics, Linkoeping University, SE-581 83 Linkoeping, (Sweden); Schneider, Jochen [Department of Physics, Linkoeping University, SE-581 83 Linkoeping, (Sweden); Helmersson, Ulf [Department of Physics, Linkoeping University, SE-581 83 Linkoeping, (Sweden); Petrov, Ivan [Materials Science Department and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)

    2000-07-01

    Time resolved plasma probe measurements of a novel high power density pulsed plasma discharge are presented. Extreme peak power densities in the pulse (on the order of several kW cm{sup -2}) result in a very dense plasma with substrate ionic flux densities of up to 1 A cm{sup -2} at source-to-substrate distances of several cm and at a pressure of 0.13 Pa (1 mTorr). The pulse duration was {approx}100 {mu}s with a pulse repetition frequency of 50 Hz. The plasma consists of metallic and inert gas ions, as determined from time resolved Langmuir probe measurements and in situ optical emission spectroscopy data. It was found that the plasma composition at the beginning of the pulse was dominated by Ar ions. As time elapsed metal ions were detected and finally dominated the ion composition. The effect of the process parameters on the temporal development of the ionic fluxes is discussed. The ionized portion of the sputtered metal flux was found to have an average velocity of 2500 m s{sup -1} at 6 cm distance from the source, which conforms to the collisional cascade sputtering theory. The degree of ionization of the sputtered metal flux at a pressure of 0.13 Pa was found to be 40%{+-}20% by comparing the total flux of deposited atoms with the charge measured for the metal ions in the pulse. (c) 2000 American Vacuum Society.

  1. Fabrication and tolerances of optics for high concentration photovoltaics

    OpenAIRE

    Benitez Gimenez, Pablo; Miñano Dominguez, Juan Carlos; Ahmadpanaih, Hamed; Mendes Lopes, Joao; Zamora Herranz, Pablo

    2014-01-01

    High Concentration Photovoltaics (HCPV) require an optical system with high efficiency, low cost and large tolerance. We describe the particularities of the HCPV applications, which constrain the optics design and the manufacturing techonologies.

  2. High Energy Ion Acceleration by Extreme Laser Radiation Pressure

    Science.gov (United States)

    2017-03-14

    was used instead. This code makes the assumption that the background ion and electron behaviour can be approximated with a fluid model whilst...electron behaviour occurring from this aperture was also published in High Power Laser Science and Engineering [4]. A significant breakthrough was also...acceleration to transparency. This was published in Physics of Plasmas [12]. Through one- dimensional modelling of the interaction, it was also

  3. The extremely high stability of carbofuran pesticide in acidic media

    Directory of Open Access Journals (Sweden)

    Tomašević Anđelka V.

    2007-01-01

    Full Text Available Environment friendly iron catalysts were applied in the decomposition reactions of some toxic compounds like phenol, methomyl and corbofuran pesticide. The applied catalytic processes belong to photo-Fenton reactions. Heterogeneous iron catalysts showed significant activity in phenol and methomyl conversion, however, these catalysts were completely inactive in destruction of carbofuran molecule, even in the catalytic reaction promoted with UV light at high temperature.

  4. Adaptation potential of naturally ventilated barns to high temperature extremes: The OptiBarn project

    Science.gov (United States)

    Menz, Christoph

    2016-04-01

    Climate change interferes with various aspects of the socio-economic system. One important aspect is its influence on animal husbandry, especially dairy faming. Dairy cows are usually kept in naturally ventilated barns (NVBs) which are particular vulnerable to extreme events due to their low adaptation capabilities. An effective adaptation to high outdoor temperatures for example, is only possible under certain wind and humidity conditions. High temperature extremes are expected to increase in number and strength under climate change. To assess the impact of this change on NVBs and dairy cows also the changes in wind and humidity needs to be considered. Hence we need to consider the multivariate structure of future temperature extremes. The OptiBarn project aims to develop sustainable adaptation strategies for dairy housings under climate change for Europe, by considering the multivariate structure of high temperature extremes. In a first step we identify various multivariate high temperature extremes for three core regions in Europe. With respect to dairy cows in NVBs we will focus on the wind and humidity field during high temperature events. In a second step we will use the CORDEX-EUR-11 ensemble to evaluate the capability of the RCMs to model such events and assess their future change potential. By transferring the outdoor conditions to indoor climate and animal wellbeing the results of this assessment can be used to develop technical, architectural and animal specific adaptation strategies for high temperature extremes.

  5. High data rate optical transceiver terminal

    Science.gov (United States)

    Clarke, E. S.

    1973-01-01

    The objectives of this study were: (1) to design a 400 Mbps optical transceiver terminal to operate from a high-altitude balloon-borne platform in order to permit the quantitative evaluation of a space-qualifiable optical communications system design, (2) to design an atmospheric propagation experiment to operate in conjunction with the terminal to measure the degrading effects of the atmosphere on the links, and (3) to design typical optical communications experiments for space-borne laboratories in the 1980-1990 time frame. As a result of the study, a transceiver package has been configured for demonstration flights during late 1974. The transceiver contains a 400 Mbps transmitter, a 400 Mbps receiver, and acquisition and tracking receivers. The transmitter is a Nd:YAG, 200 Mhz, mode-locked, CW, diode-pumped laser operating at 1.06 um requiring 50 mW for 6 db margin. It will be designed to implement Pulse Quaternary Modulation (PQM). The 400 Mbps receiver utilizes a Dynamic Crossed-Field Photomultiplier (DCFP) detector. The acquisition receiver is a Quadrant Photomultiplier Tube (QPMT) and receives a 400 Mbps signal chopped at 0.1 Mhz.

  6. Silicon carbide high performance optics: a cost-effective, flexible fabrication process

    Science.gov (United States)

    Casstevens, John M.; Rashed, Abuagela; Plummer, Ronald; Bray, Don; Gates, Rob L.; Lara-Curzio, Edgar; Ferber, Matt K.; Kirkland, Tim

    2001-12-01

    Silicon carbide may well be the best known material for the manufacture of high performance optical components. This material offers many advantages over glasses and metals that have historically been used in high performance optical systems. A combination of extremely high specific stiffness (E/r), high thermal conductivity and outstanding dimensional stability make silicon carbide superior overall to beryllium and low-expansion glass ceramics. A major impediment to wide use of silicon carbide in optical systems has been the cost associated with preliminary shaping and final finishing of silicon carbide. Because silicon carbide is an extremely hard and strong material, precision machining can only be done with expensive diamond tooling on very stiff high quality machine tools. Near-net-shape slip casting of silicon carbide can greatly reduce the cost of silicon carbide mirror substrates but this process still requires significant diamond grinding of the cast components. The process described here begins by machining the component from all special type of graphite. This graphite can rapidly be machined with conventional multi-axis CNC machine tools to achieve any level of complexity and lightweighting required. The graphite is then directly converted completely to silicon carbide with very small and very predictable dimensional change. After conversion to silicon carbide the optical surface is coated with very fine grain CVD silicon carbide which is easily polished to extreme smoothness. Details of the fabrication process are described and photos and performance specifications of an eight-inch elliptical demonstration mirror are provided.

  7. Current Trends of High capacity Optical Interconnection Data Link in High Performance Optical Communication Systems

    Directory of Open Access Journals (Sweden)

    Ahmed Nabih Zaki Rashed

    2013-02-01

    Full Text Available Optical technologies are ubiquitous in telecommunications networks and systems, providing multiple wavelength channels of transport at 2.5 Gbit/sec to 40 Gbit/sec data rates over single fiber optic cables. Market pressures continue to drive the number of wavelength channels per fiber and the data rate per channel. This trend will continue for many years to come as electronic commerce grows and enterprises demand higher and reliable bandwidth over long distances. Electronic commerce, in turn, is driving the growth curves for single processor and multiprocessor performance in data base transaction and Web based servers. Ironically, the insatiable taste for enterprise network bandwidth, which has driven up the volume and pushed down the price of optical components for telecommunications, is simultaneously stressing computer system bandwidth increasing the need for new interconnection schemes and providing for the first time commercial opportunities for optical components in computer systems. The evolution of integrated circuit technology is causing system designs to move towards communication based architectures. We have presented the current tends of high performance system capacity of optical interconnection data transmission link in high performance optical communication and computing systems over wide range of the affecting parameters.

  8. Embedded optical probes for simultaneous pressure and temperature measurement of materials in extreme conditions

    Science.gov (United States)

    Sandberg, R. L.; Rodriguez, G.; Gibson, L. L.; Dattelbaum, D. M.; Stevens, G. D.; Grover, M.; Lalone, B. M.; Udd, E.

    2014-05-01

    We present recent efforts at Los Alamos National Laboratory (LANL) to develop sensors for simultaneous, in situ pressure and temperature measurements under dynamic conditions by using an all-optical fiber-based approach. While similar tests have been done previously in deflagration-to-detonation tests (DDT), where pressure and temperature were measured to 82 kbar and 400°C simultaneously, here we demonstrate the use of embedded fiber grating sensors to obtain high temporal resolution, in situ pressure measurements in inert materials. We present two experimental demonstrations of pressure measurements: (1) under precise shock loading from a gas-gun driven plate impact and (2) under high explosive driven shock in a water filled vessel. The system capitalizes on existing telecom components and fast transient digitizing recording technology. It operates as a relatively inexpensive embedded probe (single-mode 1550 nm fiber-based Bragg grating) that provides a continuous fast pressure record during shock and/or detonation. By applying well-controlled shock wave pressure profiles to these inert materials, we study the dynamic pressure response of embedded fiber Bragg gratings to extract pressure amplitude of the shock wave and compare our results with particle velocity wave profiles measured simultaneously.

  9. High Performance Multivariate Visual Data Exploration for Extremely Large Data

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, Oliver; Wu, Kesheng; Childs, Hank; Meredith, Jeremy; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Ahern, Sean; Weber, Gunther H.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes; Prabhat,

    2008-08-22

    One of the central challenges in modern science is the need to quickly derive knowledge and understanding from large, complex collections of data. We present a new approach that deals with this challenge by combining and extending techniques from high performance visual data analysis and scientific data management. This approach is demonstrated within the context of gaining insight from complex, time-varying datasets produced by a laser wakefield accelerator simulation. Our approach leverages histogram-based parallel coordinates for both visual information display as well as a vehicle for guiding a data mining operation. Data extraction and subsetting are implemented with state-of-the-art index/query technology. This approach, while applied here to accelerator science, is generally applicable to a broad set of science applications, and is implemented in a production-quality visual data analysis infrastructure. We conduct a detailed performance analysis and demonstrate good scalability on a distributed memory Cray XT4 system.

  10. Symbolic modeling of high energy beam optics

    CERN Document Server

    Autin, Bruno

    1999-01-01

    A classical problem of computational physics consists of finding the minimum of a chi /sup 2/ like function of many variables. Powerful optimization algorithms have been developed but do not guarantee convergence towards an absolute minimum. Analytical methods can improve the insight into a physical problem but calculations quickly exceed the power of a human brain. There comes the interest of optical design of high energy particle accelerators. The physics background is sketched and emphasis is put on the methodology. In practice, algebraic models may not be precise enough but they usually provide excellent initial conditions for a final numerical optimization. (4 refs).

  11. Optical characterization of high speed microscanners based on static slit profiling method

    Science.gov (United States)

    Alaa Elhady, A.; Sabry, Yasser M.; Khalil, Diaa

    2017-01-01

    Optical characterization of high-speed microscanners is a challenging task that usually requires special high speed, extremely expensive camera systems. This paper presents a novel simple method to characterize the scanned beam spot profile and size in high-speed optical scanners under operation. It allows measuring the beam profile and the spot sizes at different scanning angles. The method is analyzed theoretically and applied experimentally on the characterization of a Micro Electro Mechanical MEMS scanner operating at 2.6 kHz. The variation of the spot size versus the scanning angle, up to ±15°, is extracted and the dynamic bending curvature effect of the micromirror is predicted.

  12. An Extremely Low Power Quantum Optical Communication Link for Autonomous Robotic Explorers

    Science.gov (United States)

    Lekki, John; Nguyen, Quang-Viet; Bizon, Tom; Nguyen, Binh; Kojima, Jun

    2007-01-01

    One concept for planetary exploration involves using many small robotic landers that can cover more ground than a single conventional lander. In addressing this vision, NASA has been challenged in the National Nanotechnology Initiative to research the development of miniature robots built from nano-sized components. These robots have very significant challenges, such as mobility and communication, given the small size and limited power generation capability. The research presented here has been focused on developing a communications system that has the potential for providing ultra-low power communications for robots such as these. In this paper an optical communications technique that is based on transmitting recognizable sets of photons is presented. Previously pairs of photons that have an entangled quantum state have been shown to be recognizable in ambient light. The main drawback to utilizing entangled photons is that they can only be generated through a very energy inefficient nonlinear process. In this paper a new technique that generates sets of photons from pulsed sources is described and an experimental system demonstrating this technique is presented. This technique of generating photon sets from pulsed sources has the distinct advantage in that it is much more flexible and energy efficient, and is well suited to take advantage of the very high energy efficiencies that are possible when using nano scale sources. For these reasons the communication system presented in this paper is well suited for use in very small, low power landers and rovers. In this paper a very low power optical communications system for miniature robots, as small as 1 cu cm is addressed. The communication system is a variant of photon counting communications. Instead of counting individual photons the system only counts the arrival of time coincident sets of photons. Using sets of photons significantly decreases the bit error rate because they are highly identifiable in the

  13. Monte-Carlo modelling of multi-object adaptive optics performance on the European Extremely Large Telescope

    Science.gov (United States)

    Basden, A. G.; Morris, T. J.

    2016-09-01

    The performance of a wide-field adaptive optics system depends on input design parameters. Here we investigate the performance of a multi-object adaptive optics system design for the European Extremely Large Telescope, using an end-to-end Monte-Carlo adaptive optics simulation tool, DASP, with relevance for proposed instruments such as MOSAIC. We consider parameters such as the number of laser guide stars, sodium layer depth, wavefront sensor pixel scale, actuator pitch and natural guide star availability. We provide potential areas where costs savings can be made, and investigate trade-offs between performance and cost, and provide solutions that would enable such an instrument to be built with currently available technology. Our key recommendations include a trade-off for laser guide star wavefront sensor pixel scale of about 0.7 arcseconds per pixel, and a field of view of at least 7 arcseconds, that EMCCD technology should be used for natural guide star wavefront sensors even if reduced frame rate is necessary, and that sky coverage can be improved by a slight reduction in natural guide star sub-aperture count without significantly affecting tomographic performance. We find that adaptive optics correction can be maintained across a wide field of view, up to 7 arcminutes in diameter. We also recommend the use of at least 4 laser guide stars, and include ground-layer and multi-object adaptive optics performance estimates.

  14. Spin-resolved photoelectron spectroscopy using femtosecond extreme ultraviolet light pulses from high-order harmonic generation

    Science.gov (United States)

    Plötzing, M.; Adam, R.; Weier, C.; Plucinski, L.; Eich, S.; Emmerich, S.; Rollinger, M.; Aeschlimann, M.; Mathias, S.; Schneider, C. M.

    2016-04-01

    The fundamental mechanism responsible for optically induced magnetization dynamics in ferromagnetic thin films has been under intense debate since almost two decades. Currently, numerous competing theoretical models are in strong need for a decisive experimental confirmation such as monitoring the triggered changes in the spin-dependent band structure on ultrashort time scales. Our approach explores the possibility of observing femtosecond band structure dynamics by giving access to extended parts of the Brillouin zone in a simultaneously time-, energy- and spin-resolved photoemission experiment. For this purpose, our setup uses a state-of-the-art, highly efficient spin detector and ultrashort, extreme ultraviolet light pulses created by laser-based high-order harmonic generation. In this paper, we present the setup and first spin-resolved spectra obtained with our experiment within an acquisition time short enough to allow pump-probe studies. Further, we characterize the influence of the excitation with femtosecond extreme ultraviolet pulses by comparing the results with data acquired using a continuous wave light source with similar photon energy. In addition, changes in the spectra induced by vacuum space-charge effects due to both the extreme ultraviolet probe- and near-infrared pump-pulses are studied by analyzing the resulting spectral distortions. The combination of energy resolution and electron count rate achieved in our setup confirms its suitability for spin-resolved studies of the band structure on ultrashort time scales.

  15. Optical alignment of high resolution Fourier transform spectrometers

    Science.gov (United States)

    Breckinridge, J. B.; Ocallaghan, F. G.; Cassie, A. G.

    1980-01-01

    Remote sensing, high resolution FTS instruments often contain three primary optical subsystems: Fore-Optics, Interferometer Optics, and Post, or Detector Optics. We discuss the alignment of a double-pass FTS containing a cat's-eye retro-reflector. Also, the alignment of fore-optics containing confocal paraboloids with a reflecting field stop which relays a field image onto a camera is discussed.

  16. Discovery of An Extremely Metal--Poor Galaxy Optical Spectroscopy of UGCA 292

    CERN Document Server

    Van Zee, L

    2000-01-01

    The results of optical spectroscopy of two HII regions in UGCA 292 (CVn I dwA) are presented. UGCA 292 is a nearby (D=3.1 Mpc) gas-rich dwarf irregular galaxy (M_H/L_B ~ 6.9) which was first discovered in a blind HI survey. The derived oxygen abundance is the third lowest of known star-forming galaxies [12 + log(O/H) = 7.30 +/- 0.05], making UGCA 292 one of the nearest metal-poor galaxies known. The derived N/O ratio is similar to that found in other low metallicity galaxies [log(N/O) = -1.47 +/- 0.10], and is indicative of a primary origin for nitrogen. The derived oxygen abundance is consistent with closed-box chemical evolution for this low mass galaxy. The observed blue colors, high gas mass fraction, and low metallicity suggest that UGCA 292 is relatively unevolved. The possibility that future blind HI surveys may yield similar low metallicity galaxies is discussed.

  17. Changes in column aerosol optical properties during extreme haze-fog episodes in January 2013 over urban Beijing.

    Science.gov (United States)

    Yu, Xingna; Kumar, K Raghavendra; Lü, Rui; Ma, Jia

    2016-03-01

    Several dense haze-fog (HF) episodes were occurred in the North China Plain (NCP), especially over Beijing in January 2013 characterized by a long duration, a large influential region, and an extremely high PM2.5 values (>500 μg m(-3)). In this study, we present the characteristics of aerosol optical properties and radiative forcing using Cimel sun-sky radiometer measurements during HF and no haze-fog (NHF) episodes occurred over Beijing during 1-31 January, 2013. The respective maximum values of daily mean aerosol optical depth at 440 nm (AOD440) were observed to be 1.21, 1.43, 1.52, and 2.21 occurred on 12, 14 19, and 28 January. It was found that the Ångström exponent (AE) values were almost higher than 1.0 during all the days with its maximum on 26 January (1.53), suggests the dominance of fine-mode particles. The maximum (minimum) aerosol volume size distributions occurred during dense HF (NHF) days with larger particle volumes of fine-mode. The single scattering albedo, asymmetry parameter, and complex refractive index values during HF events suggest the abundance of fine-mode particles from anthropogenic (absorbing) activities mixed with scattering dust particles. The average shortwave direct aerosol radiative forcing (DARF) values at the bottom-of-atmosphere (BOA) during HF and NHF days were estimated to be 112.29 ± 42.18 W m(-2) and -58.61 ± 13.09 W m(-2), while at the top-of-atmosphere (TOA) the forcing values were -45.78 ± 22.17 W m(-2) and -18.64 ± 5.84 W m(-2), with the corresponding heating rate of 1.61 ± 0.48 K day(-1) and 1.12 ± 0.31 K day(-1), respectively. The DARF values retrieved from the AERONET were in good agreement with the SBDART computed both at the TOA (r = 0.95) and the BOA (r = 0.97) over Beijing in January 2013.

  18. Highly stable piezoelectrically tunable optical cavities

    CERN Document Server

    Möhle, Katharina; Döringshoff, Klaus; Nagel, Moritz; Peters, Achim

    2013-01-01

    We have implemented highly stable and tunable frequency references using optical high finesse cavities which incorporate a piezo actuator. As piezo material we used ceramic PZT, crystalline quartz, or PZN-PT single crystals. Lasers locked to these cavities show a relative frequency stability better than 1 x 10^{-14}, which is most likely not limited by the piezo actuators. The piezo cavities can be electrically tuned over more than one free spectral range (> 1.5 GHz) with only a minor decrease in frequency stability. Furthermore, we present a novel cavity design, where the piezo actuator is prestressed between the cavity spacer components. This design features a hermetically sealable intra cavity volume suitable for, e.g., cavity enhanced spectroscopy.

  19. Numerical simulation of extremely chirped pulse formation with an optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Tamitake; Nishimura, Akihiko; Tei, Kazuyoku; Matoba, Tohru; Takuma, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yamashita, Mikio; Morita, Ryuji

    1998-03-01

    A nonlinear propagation code which used a symmetric split-step Fourier method as an algorithm was improved to simulate a propagation behavior of extremely chirped pulse in a long fiber. The performances of pulse propagation in noble gases cored hollow fibers and a pulse stretcher using a nonlinear and normal silicate fibers have been simulated by the code. The calculation results in the case of the hollow fiber are consistent with their experimental results. We estimated that this pulse stretcher could give a extremely chirped pulse whose spectral width was 84.2 nm and temporal duration was 1.5 ns. (author)

  20. Prospects of hydroacoustic detection of ultra-high and extremely high energy cosmic neutrinos

    Science.gov (United States)

    Dedenko, L. G.; Karlik, Ya. S.; Learned, J. G.; Svet, V. D.; Zheleznykh, I. M.

    2001-07-01

    The prospects of construction of deep underwater neutrino telescopes in the world's oceans for the goals of ultra-high and super-high energy neutrino astrophysics (astronomy) using acoustic technologies are reviewed. The effective detection volume of the acoustic neutrino telescopes can be far greater than a cubic kilometer for extreme energies. In recent years, it was proposed that an existing hydroacoustic array of 2400 hydrophones in the Pacific Ocean near Kamchatka Peninsula could be used as a test base for an acoustic neutrino telescope SADCO (Sea-based Acoustic Detector of Cosmic Objects) which should be capable of detecting acoustic signals produced in water by the cosmic neutrinos with energies 1019-21 eV (e.g., topological defect neutrinos). We report on simulations of super-high energy electron-hadron and electron-photon cascades with the Landau-Pomeranchuk-Migdal effect taken into account. Acoustic signals emitted by neutrino-induced cascades with energies 1020-21 eV were calculated. The possibilities of using a converted hydroacoustic station MG-10 (MG-10M) of 132 hydrophones as a basic module for a deep water acoustic neutrino detector with the threshold detection energy 1015 eV in the Mediterranean Sea are analyzed (with the aim of searching for neutrinos with energies 1015-16 eV from Active Galactic Nuclei). .

  1. Three-dimensional extremely-short optical pulses in carbon nanotube arrays in the presence of an external magnetic field

    Science.gov (United States)

    Zhukov, Alexander V.; Bouffanais, Roland; Belonenko, Mikhail B.; Galkina, Elena N.

    2016-12-01

    In this paper, we study the behavior of three-dimensional extremely-short optical pulses propagating in a system made of carbon nanotubes in the presence of an external magnetic field applied perpendicular both to the nanotube axis and to the direction of propagation of the pulse. The evolution of the electromagnetic field is classically derived on the basis of the Maxwell’s equations. The electronic system of carbon nanotubes is considered in the low-temperature approximation. Our analysis reveals the novel and unique ability of controlling the shape of propagating short optical pulses by tuning the intensity of the applied magnetic field. This effect paves the way for the possible development of innovative applications in optoelectronics.

  2. Method for high-speed Manchester encoded optical signal generation

    DEFF Research Database (Denmark)

    Zhang, Jianfeng; Chi, Nan; Holm-Nielsen, Pablo Villanueva

    2004-01-01

    A method for high-speed Manchester encoded optical signal generation is proposed and demonstrated with a specially configured electro-optical modulator. A 10 Gb/s Manchester encoded optical signal was generated, and its bit-error-ratio (BER) performance was evaluated.......A method for high-speed Manchester encoded optical signal generation is proposed and demonstrated with a specially configured electro-optical modulator. A 10 Gb/s Manchester encoded optical signal was generated, and its bit-error-ratio (BER) performance was evaluated....

  3. Suppression of long wavelength reflection from extreme-UV multilayer optics

    NARCIS (Netherlands)

    Huang, Qiushi; van den Boogaard, A.J.R.; van den Boogaard, Toine; van de Kruijs, Robbert Wilhelmus Elisabeth; Zoethout, E.; Zoethout, E.; Medvedev, Viacheslav; Louis, Eric; Bijkerk, Frederik; Khounsary, A.; Goto, S.; Morawe, C.

    2013-01-01

    Plasma based radiation sources optimized to emit 13.5 nm Extreme UV radiation also produce a significant amount of light at longer wavelengths. This so called out-of-band (OoB) radiation is detrimental for the imaging capabilities of an EUV lithographic imaging system, particularly the deep

  4. High pressure fiber optic sensor system

    Science.gov (United States)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  5. A High Fraction of Ly-alpha-Emitters Among Galaxies with Extreme Emission Line Ratios at z ~ 2

    CERN Document Server

    Erb, Dawn K; Steidel, Charles C; Strom, Allison L; Rudie, Gwen C; Trainor, Ryan F; Shapley, Alice E; Reddy, Naveen A

    2016-01-01

    Star-forming galaxies form a sequence in the [OIII]/H-beta vs. [NII]/H-alpha diagnostic diagram, with low metallicity, highly ionized galaxies falling in the upper left corner. Drawing from a large sample of UV-selected star-forming galaxies at z~2 with rest-frame optical nebular emission line measurements from Keck-MOSFIRE, we select the extreme ~5% of the galaxies lying in this upper left corner, requiring log([NII]/H-alpha) = 0.75. These cuts identify galaxies with 12 + log(O/H) 20 A. We compare the equivalent width distribution of a sample of 522 UV-selected galaxies at 2.0optical line ratios; this sample has mean (median) Ly-alpha equivalent width -1 (-4) A, and only 9% of these galaxies qualify as LAEs. The extreme galaxies typically have lower attenuation at Ly-alpha than those in the comparison sample, and have ~50% lower median oxygen abundances. Both factors are likely to facilitate the escape of Ly-alpha: in less dusty galaxies Ly-alpha photons are l...

  6. Discovery of extreme [O III] λ5007 Å outflows in high-redshift red quasars

    Science.gov (United States)

    Zakamska, Nadia L.; Hamann, Fred; Pâris, Isabelle; Brandt, W. N.; Greene, Jenny E.; Strauss, Michael A.; Villforth, Carolin; Wylezalek, Dominika; Alexandroff, Rachael M.; Ross, Nicholas P.

    2016-07-01

    Black hole feedback is now a standard component of galaxy formation models. These models predict that the impact of black hole activity on its host galaxy likely peaked at z = 2-3, the epoch of strongest star formation activity and black hole accretion activity in the Universe. We used XSHOOTER on the Very Large Telescope to measure rest-frame optical spectra of four z ˜ 2.5 extremely red quasars with infrared luminosities ˜1047 erg s-1. We present the discovery of very broad (full width at half max = 2600-5000 km s-1), strongly blueshifted (by up to 1500 km s-1) [O III] λ5007 Å emission lines in these objects. In a large sample of type 2 and red quasars, [O III] kinematics are positively correlated with infrared luminosity, and the four objects in our sample are on the extreme end in both [O III] kinematics and infrared luminosity. We estimate that at least 3 per cent of the bolometric luminosity in these objects is being converted into the kinetic power of the observed wind. Photo-ionization estimates suggest that the [O III] emission might be extended on a few kpc scales, which would suggest that the extreme outflow is affecting the entire host galaxy of the quasar. These sources may be the signposts of the most extreme form of quasar feedback at the peak epoch of galaxy formation, and may represent an active `blow-out' phase of quasar evolution.

  7. Comparison of coronagraphs for high contrast imaging in the context of Extremely Large Telescopes

    CERN Document Server

    Martínez, P; Kasper, M; Cavarroc, C; Yaitskova, N; Fusco, T; Verinaud, C

    2008-01-01

    We compare coronagraph concepts and investigate their behavior and suitability for planet finder projects with Extremely Large Telescopes (ELTs, 30-42 meters class telescopes). For this task, we analyze the impact of major error sources that occur in a coronagraphic telescope (central obscuration, secondary support, low-order segment aberrations, segment reflectivity variations, pointing errors) for phase, amplitude and interferometric type coronagraphs. This analysis is performed at two different levels of the detection process: under residual phase left uncorrected by an eXtreme Adaptive Optics system (XAO) for a large range of Strehl ratio and after a general and simple model of speckle calibration, assuming common phase aberrations between the XAO and the coronagraph (static phase aberrations of the instrument) and non-common phase aberrations downstream of the coronagraph (differential aberrations provided by the calibration unit). We derive critical parameters that each concept will have to cope with by...

  8. High nonlinear optical anisotropy of urea nanofibers

    Science.gov (United States)

    Isakov, D.; de Matos Gomes, E.; Belsley, M.; Almeida, B.; Martins, A.; Neves, N.; Reis, R.

    2010-07-01

    Nanofibers consisting of the optically nonlinear organic molecule urea embedded in both poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA) polymers were produced by the electrospinning technique. The second-harmonic generation produced by aligned fiber mats of these materials displays a strong dependence on the polarization of the incident light. In PVA-urea nanofibers the effectiveness in generating of the second-harmonic light is as high as that of a pure urea powder with an average grain size of 110 μm. The results suggest that single crystalline urea nanofibers were achieved with a long-range crystalline order extending into the range of 2-4 μm with PVA as the host polymer.

  9. Roles of Thin Film Stress in Making Extremely Lightweight X-Ray Optics

    Science.gov (United States)

    Zhang, William W.

    2010-01-01

    X-ray optics typically must be coated with one of the noble metals, gold, platinum, or iridium, to enhance their photon collection area. In general, iridium is preferred to the other two because it generates the highest X-ray reflectivity in the I to 10 keV band. Unfortunately, iridium films typically have also the highest stress that can severely degrade the optical figure of the mirror substrate, resulting in a poorer image quality. In this paper we will report our work in understanding this stress and our method to counterbalance it. In particular we will also report on potential ways of using this stress to improve the substrate's optical figure, turning a bug into a desirable feature. This work is done in the context of developing an enabling technology for the International X-ray Observatory which is a collaborative mission of NASA, ESA, and JAXA, and expected to be launched into an L2 orbit in 2021.

  10. Damage of multilayer optics with varying capping layers induced by focused extreme ultraviolet beam

    Energy Technology Data Exchange (ETDEWEB)

    Jody Corso, Alain; Nicolosi, Piergiorgio; Nardello, Marco; Guglielmina Pelizzo, Maria [National Research Council of Italy, Institute for Photonics and Nanotechnology, via Trasea 7, 35131 Padova (Italy); Department of Information Engineering, University of Padova, via Gradenigo 6/B, 35131 Padova (Italy); Zuppella, Paola [National Research Council of Italy, Institute for Photonics and Nanotechnology, via Trasea 7, 35131 Padova (Italy); Barkusky, Frank [Laser-Laboratorium Goettingen e.V, Goettingen (Germany); KLA-Tencor, 5 Technology Dr., Milpitas, California 95035 (United States); Mann, Klaus; Mueller, Matthias [Laser-Laboratorium Goettingen e.V, Goettingen (Germany)

    2013-05-28

    Extreme ultraviolet Mo/Si multilayers protected by capping layers of different materials were exposed to 13.5 nm plasma source radiation generated with a table-top laser to study the irradiation damage mechanism. Morphology of single-shot damaged areas has been analyzed by means of atomic force microscopy. Threshold fluences were evaluated for each type of sample in order to determine the capability of the capping layer to protect the structure underneath.

  11. How extreme are extremes?

    Science.gov (United States)

    Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro

    2016-04-01

    High temperatures have an impact on the energy balance of any living organism and on the operational capabilities of critical infrastructures. Heat-wave indicators have been mainly developed with the aim of capturing the potential impacts on specific sectors (agriculture, health, wildfires, transport, power generation and distribution). However, the ability to capture the occurrence of extreme temperature events is an essential property of a multi-hazard extreme climate indicator. Aim of this study is to develop a standardized heat-wave indicator, that can be combined with other indices in order to describe multiple hazards in a single indicator. The proposed approach can be used in order to have a quantified indicator of the strenght of a certain extreme. As a matter of fact, extremes are usually distributed in exponential or exponential-exponential functions and it is difficult to quickly asses how strong was an extreme events considering only its magnitude. The proposed approach simplify the quantitative and qualitative communication of extreme magnitude

  12. Generation of bright circularly-polarized extreme ultraviolet high harmonics for magnetic circular dichroism spectroscopy

    CERN Document Server

    Kfir, Ofer; Turgut, Emrah; Knut, Ronny; Zusin, Dmitriy; Popmintchev, Dimitar; Popmintchev, Tenio; Nembach, Hans; Shaw, Justin M; Fleicher, Avner; Kapteyn, Henry; Murnane, Margaret; Cohen, Oren

    2014-01-01

    Circularly-polarized extreme UV and X-ray radiation provides valuable access to the structural, electronic and magnetic properties of materials. To date, such experiments have been possible only using large-scale free-electron lasers or synchrotrons. Here we demonstrate the first bright extreme UV circularly-polarized high harmonics and use this new light source for magnetic circular dichroism measurements at the M-shell absorption edges of cobalt. This work paves the way towards element-specific imaging and spectroscopy of multiple elements simultaneously in magnetic and other chiral media with very high spatio-temporal resolution, all on a tabletop.

  13. All-Optical Temporal Differentiator Using a High Resolution Optical Arbitrary Waveform Shaper

    Institute of Scientific and Technical Information of China (English)

    DONG Jian-Ji; LUO Bo-Wen; ZHANG Yin; LEI Lei; HUANG De-Xiu; ZHANG Xin-Liang

    2012-01-01

    We experimentally demonstrate an all-optical temporal differentiator using a high resolution optical arbitrary waveform shaper, which is based on liquid crystal on silicon switching elements, and both amplitude and phase of the spectrum are programmable. By designing specific transfer functions with the optical waveform shaper, we obtain first-, second-, and third-order differentiators for periodic pulses with small average errors. We also theoretically analyze the bandwidth limitation of optical waveform shaper on the differentiator.%We experimentally demonstrate an all-optical temporal differentiator using a high resolution optical arbitrary waveform shaper,which is based on liquid crystal on silicon switching elements,and both amplitude and phase of the spectrum are programmable.By designing specific transfer functions with the optical waveform shaper,we obtain first-,second-,and third-order differentiators for periodic pulses with small average errors.We also theoretically analyze the bandwidth limitation of optical waveform shaper on the differentiator.

  14. High aspect ratio tungsten grating on ultrathin Si membranes for extreme UV lithography

    Science.gov (United States)

    Peng, Xinsheng; Ying, Yulong

    2016-09-01

    Extreme ultraviolet lithography is one of the modern lithography tools for high-volume manufacturing with 22 nm resolution and beyond. But critical challenges exist to the design and fabrication of large-scale and highly efficient diffraction transmission gratings, significantly reducing the feature sizes down to 22 nm and beyond. To achieve such a grating, the surface flatness, the line edge roughness, the transmission efficiency and aspect ratio should be improved significantly. Delachat et al (2015 Nanotechnology 26 108262) develop a full process to fabricate a tungsten diffraction grating on an ultrathin silicon membrane with higher aspect ratio up to 8.75 that met all the aforementioned requirements for extreme ultraviolet lithography. This process is fully compatible with standard industrial extreme ultraviolet lithography.

  15. High aspect ratio tungsten grating on ultrathin Si membranes for extreme UV lithography.

    Science.gov (United States)

    Peng, Xinsheng; Ying, Yulong

    2016-09-02

    Extreme ultraviolet lithography is one of the modern lithography tools for high-volume manufacturing with 22 nm resolution and beyond. But critical challenges exist to the design and fabrication of large-scale and highly efficient diffraction transmission gratings, significantly reducing the feature sizes down to 22 nm and beyond. To achieve such a grating, the surface flatness, the line edge roughness, the transmission efficiency and aspect ratio should be improved significantly. Delachat et al (2015 Nanotechnology 26 108262) develop a full process to fabricate a tungsten diffraction grating on an ultrathin silicon membrane with higher aspect ratio up to 8.75 that met all the aforementioned requirements for extreme ultraviolet lithography. This process is fully compatible with standard industrial extreme ultraviolet lithography.

  16. Probability modeling of high flow extremes in Yingluoxia watershed, the upper reaches of Heihe River basin

    Science.gov (United States)

    Li, Zhanling; Li, Zhanjie; Li, Chengcheng

    2014-05-01

    Probability modeling of hydrological extremes is one of the major research areas in hydrological science. Most basins in humid and semi-humid south and east of China are concerned for probability modeling analysis of high flow extremes. While, for the inland river basin which occupies about 35% of the country area, there is a limited presence of such studies partly due to the limited data availability and a relatively low mean annual flow. The objective of this study is to carry out probability modeling of high flow extremes in the upper reach of Heihe River basin, the second largest inland river basin in China, by using the peak over threshold (POT) method and Generalized Pareto Distribution (GPD), in which the selection of threshold and inherent assumptions for POT series are elaborated in details. For comparison, other widely used probability distributions including generalized extreme value (GEV), Lognormal, Log-logistic and Gamma are employed as well. Maximum likelihood estimate is used for parameter estimations. Daily flow data at Yingluoxia station from 1978 to 2008 are used. Results show that, synthesizing the approaches of mean excess plot, stability features of model parameters, return level plot and the inherent independence assumption of POT series, an optimum threshold of 340m3/s is finally determined for high flow extremes in Yingluoxia watershed. The resulting POT series is proved to be stationary and independent based on Mann-Kendall test, Pettitt test and autocorrelation test. In terms of Kolmogorov-Smirnov test, Anderson-Darling test and several graphical diagnostics such as quantile and cumulative density function plots, GPD provides the best fit to high flow extremes in the study area. The estimated high flows for long return periods demonstrate that, as the return period increasing, the return level estimates are probably more uncertain. The frequency of high flow extremes exhibits a very slight but not significant decreasing trend from 1978 to

  17. A genome-wide analysis of putative functional and exonic variation associated with extremely high intelligence.

    Science.gov (United States)

    Spain, S L; Pedroso, I; Kadeva, N; Miller, M B; Iacono, W G; McGue, M; Stergiakouli, E; Smith, G D; Putallaz, M; Lubinski, D; Meaburn, E L; Plomin, R; Simpson, M A

    2016-08-01

    Although individual differences in intelligence (general cognitive ability) are highly heritable, molecular genetic analyses to date have had limited success in identifying specific loci responsible for its heritability. This study is the first to investigate exome variation in individuals of extremely high intelligence. Under the quantitative genetic model, sampling from the high extreme of the distribution should provide increased power to detect associations. We therefore performed a case-control association analysis with 1409 individuals drawn from the top 0.0003 (IQ >170) of the population distribution of intelligence and 3253 unselected population-based controls. Our analysis focused on putative functional exonic variants assayed on the Illumina HumanExome BeadChip. We did not observe any individual protein-altering variants that are reproducibly associated with extremely high intelligence and within the entire distribution of intelligence. Moreover, no significant associations were found for multiple rare alleles within individual genes. However, analyses using genome-wide similarity between unrelated individuals (genome-wide complex trait analysis) indicate that the genotyped functional protein-altering variation yields a heritability estimate of 17.4% (s.e. 1.7%) based on a liability model. In addition, investigation of nominally significant associations revealed fewer rare alleles associated with extremely high intelligence than would be expected under the null hypothesis. This observation is consistent with the hypothesis that rare functional alleles are more frequently detrimental than beneficial to intelligence.

  18. Extremely Nonlinear Optics Using Shaped Pulses Spectrally Broadened in an Argon- or Sulfur Hexafluoride-Filled Hollow-Core Fiber

    OpenAIRE

    Andreas Hoffmann; Michael Zürch; Christian Spielmann

    2015-01-01

    In this contribution we present a comparison of the performance of spectrally broadened ultrashort pulses using a hollow-core fiber either filled with argon or sulfur hexafluoride (SF6) for demanding pulse-shaping experiments. The benefits of both gases for pulse-shaping are studied in the highly nonlinear process of high-harmonic generation. In this setup, temporally shaping the driving laser pulse leads to spectrally shaping of the output extreme ultraviolet (XUV) spectrum, where total yie...

  19. Monte-Carlo modelling of multi-object adaptive optics performance on the European Extremely Large Telescope

    CERN Document Server

    Basden, Alastair

    2016-01-01

    The performance of a wide-field adaptive optics system depends on input design parameters. Here we investigate the performance of a multi-object adaptive optics system design for the European Extremely Large Telescope, using an end-to-end Monte-Carlo adaptive optics simulation tool, DASP, with relevance for proposed instruments such as MOSAIC. We consider parameters such as the number of laser guide stars, sodium layer depth, wavefront sensor pixel scale, actuator pitch and natural guide star availability. We provide potential areas where costs savings can be made, and investigate trade-offs between performance and cost, and provide solutions that would enable such an instrument to be built with currently available technology. Our key recommendations include a trade-off for laser guide star wavefront sensor pixel scale of about 0.7 arcseconds per pixel, and a field of view of at least 7 arcseconds, that EMCCD technology should be used for natural guide star wavefront sensors even if reduced frame rate is nece...

  20. The design of space optical communications terminal with high efficient

    Science.gov (United States)

    Deng, Xiaoguo; Li, Gang; Jiang, Bo; Yang, Xiaoxu; Yan, Peipei

    2015-02-01

    In order to improve high-speed laser space optical communications terminal receive energy and emission energy, meet the demand of mini-type and light-type for space-based bear platform, based on multiple-reflect coaxial optical receiving antenna structure, while considering the installation difficulty, a high-efficient optical system had been designed, which aperture is off-axial, both signal-receiving sub-optical system and emission sub-optical system share a same primary optical path. By the separating light lens behind the primary optical path, the received light with little energy will be filtered and shaped and then transmitted to each detector, at the same time, by the coupling element, the high-power laser will be coupling into optical antenna, and then emitted to outside. Applied the power-detected optical system evaluate principle, the optimized off-axial optical system's efficiency had been compared with the coaxial optical system. While, analyzed the Gauss beam energy distribution by numerical theory, discussed that whether off-axis optical system can be an emission terminal, verify the feasibility of the theory of the design of the system.

  1. Optical Transmitter Terminal for Selective RF High Frequency Bans Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposal work is to investigate the highly innovative conceptual design of an optical communication selective frequency transmitter terminal...

  2. Discovery of extreme [OIII]5007A outflows in high-redshift red quasars

    CERN Document Server

    Zakamska, Nadia L; Pâris, Isabelle; Brandt, W N; Greene, Jenny E; Strauss, Michael A; Villforth, Carolin; Wylezalek, Dominika; Alexandroff, Rachael M; Ross, Nicholas P

    2015-01-01

    Black hole feedback is now a standard component of galaxy formation models. These models predict that the impact of black hole activity on its host galaxy likely peaked at z=2-3, the epoch of strongest star formation activity and black hole accretion activity in the Universe. We used XShooter on the Very Large Telescope to measure rest-frame optical spectra of four z~2.5 extremely red quasars with infrared luminosities ~10^47 erg/sec. We present the discovery of very broad (full width at half max= 2600-5000 km/sec), strongly blue-shifted (by up to 1500 km/sec) [OIII]5007A emission lines in these objects. In a large sample of obscured and red quasars, [OIII] kinematics are positively correlated with infrared luminosity, and the four objects in our sample are on the extreme end both in [OIII] kinematics and infrared luminosity. We estimate that ~3% of the bolometric luminosity in these objects is being converted into the kinetic power of the observed wind. These sources may be the signposts of the most extreme ...

  3. High-resolution analysis of 1 day extreme precipitation in Sicily

    Science.gov (United States)

    Maugeri, M.; Brunetti, M.; Garzoglio, M.; Simolo, C.

    2015-04-01

    Sicily, the major Mediterranean island, experienced several exceptional precipitation episodes and floods during the last century, with dramatic consequences on human life and environment. A long term, rational planning of urban development is mandatory for protecting population and avoiding huge economic losses in the future. This requires a deep knowledge of the distributional features of extreme precipitation over the complex territory of Sicily. In the present study, we address this issue, and attempt a detailed investigation of observed 1-day precipitation extremes and their frequency distribution, based on a dense data-set of high-quality, homogenized station records in 1921-2005. We extrapolate very high quantiles (return levels) corresponding to 10-, 50- and 100-year return periods, as predicted by a generalized extreme value distribution. Return level estimates are produced on a regular high-resolution grid (30 arcsec) using a variant of regional frequency analysis combined with regression techniques. Results clearly reflect the complexity of this region, and make evident the high vulnerability of its eastern and northeastern parts as those prone to the most intense and potentially damaging events. This analysis thus provides an operational tool for extreme precipitation risk assessment and, at the same time, is an useful basis for validation and downscaling of regional climate models.

  4. Design of a high-performance optical tweezer for nanoparticle trapping

    Science.gov (United States)

    Conteduca, D.; Dell'Olio, F.; Ciminelli, C.; Krauss, T. F.; Armenise, M. N.

    2016-04-01

    Integrated optical nanotweezers offer a novel paradigm for optical trapping, as their ability to confine light at the nanoscale leads to extremely high gradient forces. To date, nanotweezers have been realized either as photonic crystal or as plasmonic nanocavities. Here, we propose a nanotweezer device based on a hybrid photonic/plasmonic cavity with the goal of achieving a very high quality factor-to-mode volume ( Q/ V) ratio. The structure includes a 1D photonic crystal dielectric cavity vertically coupled to a bowtie nanoantenna. A very high Q/ V ~ 107 (λ/n)-3 with a resonance transmission T = 29 % at λ R = 1381.1 nm has been calculated by 3D finite element method, affording strong light-matter interaction and making the hybrid cavity suitable for optical trapping. A maximum optical force F = -4.4 pN, high values of stability S = 30 and optical stiffness k = 90 pN/nm W have been obtained with an input power P in = 1 mW, for a polystyrene nanoparticle with a diameter of 40 nm. This performance confirms the high efficiency of the optical nanotweezer and its potential for trapping living matter at the nanoscale, such as viruses, proteins and small bacteria.

  5. TOCUSO: Test of Conceptual Understanding on High School Optics Topics

    Science.gov (United States)

    Akarsu, Bayram

    2012-01-01

    Physics educators around the world often need reliable diagnostic materials to measure students' understanding of physics concept in high school. The purpose of this study is to evaluate a new diagnostic tool on High School Optics concept. Test of Conceptual Understanding on High School Optics (TOCUSO) consists of 25 conceptual items that…

  6. Laboratory comparison of coronagraphic concepts under dynamical seeing and high-order adaptive optics correction

    CERN Document Server

    Martinez, P; Kasper, M; Boccaletti, A; Dorrer, C; Baudrand, J

    2011-01-01

    The exoplanetary science through direct imaging and spectroscopy will largely expand with the forthcoming development of new instruments at the VLT (SPHERE), Gemini (GPI), Subaru (HiCIAO), and Palomar (Project 1640) observatories. All these ground-based adaptive optics instruments combine extremely high performance adaptive optics (XAO) systems correcting for the atmospheric turbulence with advanced starlight-cancellation techniques such as coronagraphy to deliver contrast ratios of about 10-6 to 10-7. While the past fifteen years have seen intensive research and the development of high-contrast coronagraph concepts, very few concepts have been tested under dynamical seeing conditions (either during sky observation or in a realistic laboratory environment). In this paper, we discuss the results obtained with four different coronagraphs -- phase and amplitude types -- on the High-Order Testbench (HOT), the adaptive optics facility developed at ESO. This facility emphasizes realistic conditions encountered at a...

  7. Fabrication of high aspect ratio tungsten nanostructures on ultrathin c-Si membranes for extreme UV applications.

    Science.gov (United States)

    Delachat, F; Le Drogoff, B; Constancias, C; Delprat, S; Gautier, E; Chaker, M; Margot, J

    2016-01-15

    In this work, we demonstrate a full process for fabricating high aspect ratio diffraction optics for extreme ultraviolet lithography. The transmissive optics consists in nanometer scale tungsten patterns standing on flat, ultrathin (100 nm) and highly transparent (>85% at 13.5 nm) silicon membranes (diameter of 1 mm). These tungsten patterns were achieved using an innovative pseudo-Bosch etching process based on an inductively coupled plasma ignited in a mixture of SF6 and C4F8. Circular ultra-thin Si membranes were fabricated through a state-of-the-art method using direct-bonding with thermal difference. The silicon membranes were sputter-coated with a few hundred nanometers (100-300 nm) of stress-controlled tungsten and a very thin layer of chromium. Nanoscale features were written in a thin resist layer by electron beam lithography and transferred onto tungsten by plasma etching of both the chromium hard mask and the tungsten layer. This etching process results in highly anisotropic tungsten features at room temperature. The homogeneity and the aspect ratio of the advanced pattern transfer on the membranes were characterized with scanning electron microscopy after focus ion beam milling. An aspect ratio of about 6 for 35 nm size pattern is successfully obtained on a 1 mm diameter 100 nm thick Si membrane. The whole fabrication process is fully compatible with standard industrial semiconductor technology.

  8. Extreme deformations and clusterization at high spin in the A ~ 40 mass region

    Science.gov (United States)

    Ray, Debisree; Afanasjev, Anatoli

    2015-10-01

    Recent revival of the interest to the study of superdeformation and clusterization in light nuclei has motivated us to undertake the study of extreme deformations in the A ~ 32 - 50 N ~ Z nuclei. Unfortunately, at spin zero the predicted structures with extreme deformation are located at high excitation energies which prevents their experimental observation. On the other hand, the rotation brings such structures closer to the yrast line and, in principle, makes their observation possible with future generation of facilities such as GRETA. Thus, the systematic study of the extremely deformed structures and clusterization has been performed in the framework of cranked relativistic mean field theory. The major features of such structures, the spins at which they become yrast and the possiblities of their experimental observation will be discussed in this presentation. This work has been supported by the U.S. Department of Energy under the Grant DE-FG02-07ER41459.

  9. High Speed Fibre Optic Backbone LAN

    Science.gov (United States)

    Tanimoto, Masaaki; Hara, Shingo; Kajita, Yuji; Kashu, Fumitoshi; Ikeuchi, Masaru; Hagihara, Satoshi; Tsuzuki, Shinji

    1987-09-01

    Our firm has developed the SUMINET-4100 series, a fibre optic local area network (LAN), to serve the communications system trunk line needs for facilities, such as steel refineries, automobile plants and university campuses, that require large transmission capacity, and for the backbone networks used in intelligent building systems. The SUMINET-4100 series is already in service in various fields of application. Of the networks available in this series, the SUMINET-4150 has a trunk line speed of 128 Mbps and the multiplexer used for time division multiplexing (TDM) was enabled by designing an ECL-TTL gate array (3000 gates) based custom LSI. The synchronous, full-duplex V.24 and V.3.5 interfaces (SUMINET-2100) are provided for use with general purpose lines. And the IBM token ring network, the SUMINET-3200, designed for heterogeneous PCs and the Ethernet can all be connected to sub loops. Further, the IBM 3270 TCA and 5080 CADAM can be connected in the local mode. Interfaces are also provided for the NTT high-speed digital service, the digital PBX systems, and the Video CODEC system. The built-in loop monitor (LM) and network supervisory processor (NSP) provide management of loop utilization and send loop status signals to the host CPU's network configuration and control facility (NCCF). These built-in functions allow both the computer system and LAN to be managed from a single source at the host. This paper outlines features of the SUMINET-4150 and provides an example of its installation.

  10. Application of portable optical laboratory in high schools and colleges

    Science.gov (United States)

    Altshuler, Gregory B.; Belashenkov, Nickolai R.; Ermolaev, Vladimir S.; Inochkin, Mickle V.; Karasev, Vyatcheslav B.

    1995-10-01

    The present paper describes the experience of application of portable optical laboratory in optical practicum developed directly for training and demonstrations of basic optical laws and phenomena in high-schools, colleges and nontechnical universities all over Russia. The laboratory includes the portable optical platform with built-in laser and lamp sources, kit of optical components and software. These accessories provide the attractive and smart teaching in general optics during lectures, lessons and practice at schools and colleges. The portable optical laboratory provides 28 basic lab works and demonstrations in reflection, refraction, absorption and dispersion of light, interference, diffraction, polarization of light, image formation and waveguide propagation of light in optical fibers. Due to their interdependence one can teach and learn a whole course of general optics. The individual work of students and school children with optical kit stimulates and develops their creative abilities and experimental skills, as well increases the effectiveness of education. The kit is provided with optional elements for a number of extra experiments with holography, polarizing light propagation, simple optical devices etc. These extensions allow to modify the education process according to teacher's point of view. The conception of optical class-room based on portable optical laboratories is discussed. The effectiveness of individual and small-group training is analyzed.

  11. Extremely high thermal conductivity anisotropy of double-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Zhaoji Ma

    2017-06-01

    Full Text Available Based on molecular dynamics simulations, we reveal that double-walled carbon nanotubes can possess an extremely high anisotropy ratio of radial to axial thermal conductivities. The mechanism is basically the same as that for the high thermal conductivity anisotropy of graphene layers - the in-plane strong sp2 bonds lead to a very high intralayer thermal conductivity while the weak van der Waals interactions to a very low interlayer thermal conductivity. However, different from flat graphene layers, the tubular structures of carbon nanotubes result in a diameter dependent thermal conductivity. The smaller the diameter, the larger the axial thermal conductivity but the smaller the radial thermal conductivity. As a result, a DWCNT with a small diameter may have an anisotropy ratio of thermal conductivity significantly higher than that for graphene layers. The extremely high thermal conductivity anisotropy allows DWCNTs to be a promising candidate for thermal management materials.

  12. Extremely high thermal conductivity anisotropy of double-walled carbon nanotubes

    Science.gov (United States)

    Ma, Zhaoji; Guo, Zhengrong; Zhang, Hongwei; Chang, Tienchong

    2017-06-01

    Based on molecular dynamics simulations, we reveal that double-walled carbon nanotubes can possess an extremely high anisotropy ratio of radial to axial thermal conductivities. The mechanism is basically the same as that for the high thermal conductivity anisotropy of graphene layers - the in-plane strong sp2 bonds lead to a very high intralayer thermal conductivity while the weak van der Waals interactions to a very low interlayer thermal conductivity. However, different from flat graphene layers, the tubular structures of carbon nanotubes result in a diameter dependent thermal conductivity. The smaller the diameter, the larger the axial thermal conductivity but the smaller the radial thermal conductivity. As a result, a DWCNT with a small diameter may have an anisotropy ratio of thermal conductivity significantly higher than that for graphene layers. The extremely high thermal conductivity anisotropy allows DWCNTs to be a promising candidate for thermal management materials.

  13. Extremely asymmetric diffraction as a method of determining magneto-optical constants for X-rays near absorption edges

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, M. A., E-mail: Mandreeva1@yandex.ru [Moscow State University (Russian Federation); Repchenko, Yu. L., E-mail: kent160@mail.ru [Voronezh State University (Russian Federation); Smekhova, A. G. [Moscow State University (Russian Federation); Dumesnil, K. [University of Lorraine, Institut Jean Lamour (UMR CNRS 7198) (France); Wilhelm, F.; Rogalev, A. [European Synchrotron Radiation Facility (France)

    2015-06-15

    The spectral dependence of the Bragg peak position under conditions of extremely asymmetric diffraction has been analyzed in the kinematical and dynamical approximations of the diffraction theory. Simulations have been performed for the L{sub 3} absorption edge of yttrium in a single-crystal YFe{sub 2} film; they have shown that the magneto-optical constants (or, equivalently, the dispersion corrections to the atomic scattering factor) for hard X-rays can be determined from this dependence. Comparison with the experimental data obtained for a Nb(4 nm)/YFe{sub 2}(40 nm〈110〉)/Fe(1.5 nm)/Nb(50 nm)/sapphire sample at the European Synchrotron Radiation Facility has been made.

  14. High-speed optical correlation-domain reflectometry without using acousto-optic modulator

    CERN Document Server

    Shizuka, Makoto; Hayashi, Neisei; Mizuno, Yosuke; Nakamura, Kentaro

    2015-01-01

    To achieve a distributed reflectivity measurement along an optical fiber, we develop a simplified cost-effective configuration of optical correlation- (or coherence-) domain reflectometry based on a synthesized optical coherence function by sinusoidal modulation. By excluding conventional optical heterodyne detection (practically, without using an acousto-optic modulator) and by exploiting the foot of the Fresnel reflection spectrum, the electrical bandwidth required for signal processing is lowered down to several megahertz. We evaluate the basic system performance and demonstrate its high-speed operation (10 ms for one scan) by tracking a moving reflection point in real time.

  15. Miniaturized High Performance Optical Gyroscope Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a new approach for to the design and fabrication of miniaturized Interferometric Fiber Optical Gyroscope (FOG) that enables the production of smaller IRU...

  16. Highly selective etching of SnO2 absorber in binary mask structure for extreme ultra-violet lithography.

    Science.gov (United States)

    Lee, Soo Jin; Jung, Chang Yong; Park, Sung Jin; Hwangbo, Chang Kweun; Seo, Hwan Seok; Kim, Sung Soo; Lee, Nae-Eung

    2012-04-01

    Among the core EUVL (extreme ultra-violet lithography) technologies for nanoscale patterning below the 30 nm node for Si chip manufacturing, new materials and fabrication processes for high-performance EUVL masks are of considerable importance due to the use of new reflective optics. In this work, the selective etching of SnO2 (tin oxide) as a new absorber material, with high EUV absorbance due to its large extinction coefficient, for the binary mask structure of SnO2 (absorber layer)/Ru (capping/etch stop layer)/Mo-Si multilayer (reflective layer)/Si (substrate), was investigated. Because infinitely high selectivity of the SnO2 layer to the Ru ESL is required due to the ultrathin nature of the Ru layer, various etch parameters were assessed in the inductively coupled Cl2/Ar plasmas in order to find the process window required for infinitely high etch selectivity of the SnO2 layer. The results showed that the gas flow ratio and V(dc) value play an important role in determining the process window for the infinitely high etch selectivity of SnO2 to Ru ESL. The high EUV-absorbance SnO2 layer, patternable by a dry process, allows a smaller absorber thickness, which can mitigate the geometric shadowing effects observed for high-performance binary EUVL masks.

  17. Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics

    DEFF Research Database (Denmark)

    Philipp, Hugh T.; Andersen, Karin Nordström; Svendsen, Winnie Edith

    2004-01-01

    Amorphous silicon rich silicon nitride optical waveguides clad in silica are presented as a high-index contrast platform for high density integrated optics. Performance of different cross-sectional geometries have been measured and are presented with regards to bending loss and insertion loss...

  18. Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics

    DEFF Research Database (Denmark)

    Philipp, Hugh T.; Andersen, Karin Nordström; Svendsen, Winnie Edith

    2004-01-01

    Amorphous silicon rich silicon nitride optical waveguides clad in silica are presented as a high-index contrast platform for high density integrated optics. Performance of different cross-sectional geometries have been measured and are presented with regards to bending loss and insertion loss....... A sample double ring add-drop filter is presented....

  19. Detection and Attribution of Simulated Climatic Extreme Events and Impacts: High Sensitivity to Bias Correction

    Science.gov (United States)

    Sippel, S.; Otto, F. E. L.; Forkel, M.; Allen, M. R.; Guillod, B. P.; Heimann, M.; Reichstein, M.; Seneviratne, S. I.; Kirsten, T.; Mahecha, M. D.

    2015-12-01

    Understanding, quantifying and attributing the impacts of climatic extreme events and variability is crucial for societal adaptation in a changing climate. However, climate model simulations generated for this purpose typically exhibit pronounced biases in their output that hinders any straightforward assessment of impacts. To overcome this issue, various bias correction strategies are routinely used to alleviate climate model deficiencies most of which have been criticized for physical inconsistency and the non-preservation of the multivariate correlation structure. We assess how biases and their correction affect the quantification and attribution of simulated extremes and variability in i) climatological variables and ii) impacts on ecosystem functioning as simulated by a terrestrial biosphere model. Our study demonstrates that assessments of simulated climatic extreme events and impacts in the terrestrial biosphere are highly sensitive to bias correction schemes with major implications for the detection and attribution of these events. We introduce a novel ensemble-based resampling scheme based on a large regional climate model ensemble generated by the distributed weather@home setup[1], which fully preserves the physical consistency and multivariate correlation structure of the model output. We use extreme value statistics to show that this procedure considerably improves the representation of climatic extremes and variability. Subsequently, biosphere-atmosphere carbon fluxes are simulated using a terrestrial ecosystem model (LPJ-GSI) to further demonstrate the sensitivity of ecosystem impacts to the methodology of bias correcting climate model output. We find that uncertainties arising from bias correction schemes are comparable in magnitude to model structural and parameter uncertainties. The present study consists of a first attempt to alleviate climate model biases in a physically consistent way and demonstrates that this yields improved simulations of

  20. Physical Exam Risk Factors for Lower Extremity Injury in High School Athletes: A Systematic Review.

    Science.gov (United States)

    Onate, James A; Everhart, Joshua S; Clifton, Daniel R; Best, Thomas M; Borchers, James R; Chaudhari, Ajit M W

    2016-11-01

    A stated goal of the preparticipation physical evaluation (PPE) is to reduce musculoskeletal injury, yet the musculoskeletal portion of the PPE is reportedly of questionable use in assessing lower extremity injury risk in high school-aged athletes. The objectives of this study are: (1) identify clinical assessment tools demonstrated to effectively determine lower extremity injury risk in a prospective setting, and (2) critically assess the methodological quality of prospective lower extremity risk assessment studies that use these tools. A systematic search was performed in PubMed, CINAHL, UptoDate, Google Scholar, Cochrane Reviews, and SportDiscus. Inclusion criteria were prospective injury risk assessment studies involving athletes primarily ages 13 to 19 that used screening methods that did not require highly specialized equipment. Methodological quality was evaluated with a modified physiotherapy evidence database (PEDro) scale. Nine studies were included. The mean modified PEDro score was 6.0/10 (SD, 1.5). Multidirectional balance (odds ratio [OR], 3.0; CI, 1.5-6.1; P < 0.05) and physical maturation status (P < 0.05) were predictive of overall injury risk, knee hyperextension was predictive of anterior cruciate ligament injury (OR, 5.0; CI, 1.2-18.4; P < 0.05), hip external:internal rotator strength ratio of patellofemoral pain syndrome (P = 0.02), and foot posture index of ankle sprain (r = -0.339, P = 0.008). Minimal prospective evidence supports or refutes the use of the functional musculoskeletal exam portion of the current PPE to assess lower extremity injury risk in high school athletes. Limited evidence does support inclusion of multidirectional balance assessment and physical maturation status in a musculoskeletal exam as both are generalizable risk factors for lower extremity injury.

  1. Physical Exam Risk Factors for Lower Extremity Injury in High School Athletes: A Systematic Review

    Science.gov (United States)

    Onate, James A.; Everhart, Joshua S.; Clifton, Daniel R.; Best, Thomas M.; Borchers, James R.; Chaudhari, Ajit M.W.

    2016-01-01

    Objective A stated goal of the preparticipation physical evaluation (PPE) is to reduce musculoskeletal injury, yet the musculoskeletal portion of the PPE is reportedly of questionable use in assessing lower extremity injury risk in high school-aged athletes. The objectives of this study are: (1) identify clinical assessment tools demonstrated to effectively determine lower extremity injury risk in a prospective setting, and (2) critically assess the methodological quality of prospective lower extremity risk assessment studies that use these tools. Data Sources A systematic search was performed in PubMed, CINAHL, UptoDate, Google Scholar, Cochrane Reviews, and SportDiscus. Inclusion criteria were prospective injury risk assessment studies involving athletes primarily ages 13 to 19 that used screening methods that did not require highly specialized equipment. Methodological quality was evaluated with a modified physiotherapy evidence database (PEDro) scale. Main Results Nine studies were included. The mean modified PEDro score was 6.0/10 (SD, 1.5). Multidirectional balance (odds ratio [OR], 3.0; CI, 1.5–6.1; P anterior cruciate ligament injury (OR, 5.0; CI, 1.2–18.4; P < 0.05), hip external: internal rotator strength ratio of patellofemoral pain syndrome (P = 0.02), and foot posture index of ankle sprain (r = −0.339, P = 0.008). Conclusions Minimal prospective evidence supports or refutes the use of the functional musculoskeletal exam portion of the current PPE to assess lower extremity injury risk in high school athletes. Limited evidence does support inclusion of multidirectional balance assessment and physical maturation status in a musculoskeletal exam as both are generalizable risk factors for lower extremity injury. PMID:26978166

  2. The field stabilization and adaptive optics mirrors for the European Extremely Large Telescope

    Science.gov (United States)

    Vernet, Elise; Jochum, Lieselotte; La Penna, Paolo; Hubin, Norbert; Muradore, Riccardo; Casalta, Joan Manel; Kjelberg, Ivar; Sinquin, Jean-Christophe; Locre, Frédéric; Morin, Pierre; Cousty, Raphaël; Lurçon, Jean-Marie; Roland, Jean-Jacques; Crepy, Bruno; Gabriel, Eric; Biasi, Roberto; Andrighettoni, Mario; Angerer, Gerald; Gallieni, Daniele; Mantegazza, Marco; Tintori, Matteo; Molinari, Emilio; Tresoldi, Daniela; Toso, Giorgio; Spanó, Paolo; Riva, Marco; Crimi, Giuseppe; Riccardi, Armando; Marque, Gilles; Carel, Jean-Louis; Ruch, Eric

    2008-07-01

    A 42 meters telescope does require adaptive optics to provide few milli arcseconds resolution images. In the current design of the E-ELT, M4 provides adaptive correction while M5 is the field stabilization mirror. Both mirrors have an essential role in the E-ELT telescope strategy since they do not only correct for atmospheric turbulence but have also to cancel part of telescope wind shaking and static aberrations. Both mirrors specifications have been defined to avoid requesting over constrained requirements in term of stroke, speed and guide stars magnitude. Technical specifications and technological issues are discussed in this article. Critical aspects and roadmap to assess the feasibility of such mirrors are outlined.

  3. Fast optical signal processing in high bit rate OTDM systems

    DEFF Research Database (Denmark)

    Poulsen, Henrik Nørskov; Jepsen, Kim Stokholm; Clausen, Anders;

    1998-01-01

    As all-optical signal processing is maturing, optical time division multiplexing (OTDM) has also gained interest for simple networking in high capacity backbone networks. As an example of a network scenario we show an OTDM bus interconnecting another OTDM bus, a single high capacity user...

  4. Discharge-produced plasma extreme ultraviolet (EUV) source and ultra high vacuum chamber for studying EUV-induced processes

    CERN Document Server

    Dolgov, A; Abrikosov, A; Snegirev, E; Krivtsun, V M; Lee, C J; Bijkerk, F

    2014-01-01

    An experimental setup that directly reproduces Extreme UV-lithography relevant conditions for detailed component exposure tests is described. The EUV setup includes a pulsed plasma radiation source, operating at 13.5 nm; a debris mitigation system; collection and filtering optics; and an UHV experimental chamber, equipped with optical and plasma diagnostics. The first results, identifying the physical parameters and evolution of EUV-induced plasmas are presented. Finally, the applicability and accuracy of the in situ diagnostics is briefly discussed.

  5. APE: the Active Phasing Experiment to test new control system and phasing technology for a European Extremely Large Optical Telescope

    Science.gov (United States)

    Gonte, F.; Yaitskova, N.; Derie, F.; Constanza, A.; Brast, R.; Buzzoni, B.; Delabre, B.; Dierickx, P.; Dupuy, C.; Esteves, R.; Frank, C.; Guisard, S.; Karban, R.; Koenig, E.; Kolb, J.; Nylund, M.; Noethe, L.; Surdej, I.; Courteville, A.; Wilhelm, R.; Montoya, L.; Reyes, M.; Esposito, S.; Pinna, E.; Dohlen, K.; Ferrari, M.; Langlois, M.

    2005-08-01

    The future European Extremely Large Telescope will be composed of one or two giant segmented mirrors (up to 100 m of diameter) and of several large monolithic mirrors (up to 8 m in diameter). To limit the aberrations due to misalignments and defective surface quality it is necessary to have a proper active optics system. This active optics system must include a phasing system to limit the degradation of the PSF due to misphasing of the segmented mirrors. We will present the lastest design and development of the Active Phasing Experiment that will be tested in laboratory and on-sky connected to a VLT at Paranal in Chile. It includes an active segmented mirror, a static piston plate to simulate a secondary segmented mirror and of four phasing wavefront sensors to measure the piston, tip and tilt of the segments and the aberrations of the VLT. The four phasing sensors are the Diffraction Image Phase Sensing Instrument developed by Instituto de Astrofisica de Canarias, the Pyramid Phasing Sensor developed by Arcetri Astrophysical Observatory, the Shack-Hartmann Phasing Sensor developed by the European Southern Observatory and the Zernike Unit for Segment phasing developed by Laboratoire d'Astrophysique de Marseille. A reference measurement of the segmented mirror is made by an internal metrology developed by Fogale Nanotech. The control system of Active Phasing Experiment will perform the phasing of the segments, the guiding of the VLT and the active optics of the VLT. These activities are included in the Framework Programme 6 of the European Union.

  6. High Precision Astrometry with MICADO at the European Extremely Large Telescope

    CERN Document Server

    Trippe, S; Eisenhauer, F; Förster-Schreiber, N M; Fritz, T K; Genzel, R

    2009-01-01

    In this article we identify and discuss various statistical and systematic effects influencing the astrometric accuracy achievable with MICADO, the near-infrared imaging camera proposed for the 42-metre European Extremely Large Telescope (E-ELT). These effects are instrumental (e.g. geometric distortion), atmospheric (e.g. chromatic differential refraction), and astronomical (reference source selection). We find that there are several phenomena having impact on ~100 micro-arcsec scales, meaning they can be substantially larger than the theoretical statistical astrometric accuracy of an optical/NIR 42m-telescope. Depending on type, these effects need to be controlled via dedicated instrumental design properties or via dedicated calibration procedures. We conclude that if this is done properly, astrometric accuracies of 40 micro-arcsec or better - with 40 micro-arcsec/year in proper motions corresponding to ~20 km/s at 100 kpc distance - can be achieved in one epoch of actual observations

  7. Nonlinear optical signal processing for high-speed, spectrally efficient fiber optic systems and networks

    Science.gov (United States)

    Zhang, Bo

    The past decade has witnessed astounding boom in telecommunication network traffic. With the emergence of multimedia over Internet, the high-capacity optical transport systems have started to shift focus from the core network towards the end users. This trend leads to diverse optical networks with transparency and reconfigurability requirement. As single channel data rate continues to increase and channel spacing continues to shrink for high capacity, high spectral efficiency, the workload on conventional electronic signal processing elements in the router nodes continues to build up. Performing signal processing functions in the optical domain can potentially alleviate the speed bottleneck if the unique optical properties are efficiently leveraged to assist electronic processing methodologies. Ultra-high bandwidth capability along with the promise for multi-channel and format-transparent operation make optical signal processing an attractive technology which is expected to have great impact on future optical networks. For optical signal processing applications in fiber-optic network and systems, a laudable goal would be to explore the unique nonlinear optical processes in novel photonic devices. This dissertation investigates novel optical signal processing techniques through simulations and experimental demonstrations, analyzes limitations of these nonlinear processing elements and proposes techniques to enhance the system performance or designs for functional photonic modules. Two key signal-processing building blocks for future optical networks, namely slow-light-based tunable optical delay lines and SOA-based high-speed wavelength converters, are presented in the first part of the dissertation. Phase preserving and spectrally efficient slow light are experimentally demonstrated using advanced modulation formats. Functional and novel photonic modules, such as multi-channel synchronizer and variable-bit-rate optical time division multiplexer are designed and

  8. High-Speed Non-Volatile Optical Memory: Achievements and Challenges

    Directory of Open Access Journals (Sweden)

    Vadym Zayets

    2017-01-01

    Full Text Available We have proposed, fabricated, and studied a new design of a high-speed optical non-volatile memory. The recoding mechanism of the proposed memory utilizes a magnetization reversal of a nanomagnet by a spin-polarized photocurrent. It was shown experimentally that the operational speed of this memory may be extremely fast above 1 TBit/s. The challenges to realize both a high-speed recording and a high-speed reading are discussed. The memory is compact, integratable, and compatible with present semiconductor technology. If realized, it will advance data processing and computing technology towards a faster operation speed.

  9. An inexpensive high-temperature optical fiber thermometer

    Science.gov (United States)

    Moore, Travis J.; Jones, Matthew R.; Tree, Dale R.; Allred, David D.

    2017-01-01

    An optical fiber thermometer consists of an optical fiber whose tip is coated with a highly conductive, opaque material. When heated, this sensing tip becomes an isothermal cavity that emits like a blackbody. This emission is used to predict the sensing tip temperature. In this work, analytical and experimental research has been conducted to further advance the development of optical fiber thermometry. An inexpensive optical fiber thermometer is developed by applying a thin coating of a high-temperature cement onto the tip of a silica optical fiber. An FTIR spectrometer is used to detect the spectral radiance exiting the fiber. A rigorous mathematical model of the irradiation incident on the detection system is developed. The optical fiber thermometer is calibrated using a blackbody radiator and inverse methods are used to predict the sensing tip temperature when exposed to various heat sources.

  10. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    Science.gov (United States)

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  11. High energy laser optics manufacturing: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Baird, E.D.

    1980-07-01

    This report presents concepts and methods, major conclusions, and major recommendations concerning the fabrication of high energy laser optics (HELO) that are to be machined by the Large Optics Diamond Turning Machine (LODTM) at the Lawrence Livermore National Laboratory (LLNL). Detailed discussions of concepts and methods proposed for metrological operations, polishing of reflective surfaces, mounting of optical components, construction of mirror substrates, and applications of coatings are included.

  12. The high education of optical engineering in East China

    Science.gov (United States)

    Liu, Xu; Liu, Xiangdong; Wang, Xiaoping; Bai, Jian; Liu, Yuling

    2014-07-01

    The history and the development of the high education in the field of optical engineering in the area of East China will be presented in the paper. The overall situation of research and human resource training in optics and photonics will also be reviewed, it shows that China needs lots of talents and experts in this field to support the world optical industry in East China.

  13. Large Differences in Bacterial Community Composition among Three Nearby Extreme Waterbodies of the High Andean Plateau.

    Science.gov (United States)

    Aguilar, Pablo; Acosta, Eduardo; Dorador, Cristina; Sommaruga, Ruben

    2016-01-01

    The high Andean plateau or Altiplano contains different waterbodies that are subjected to extreme fluctuations in abiotic conditions on a daily and an annual scale. The bacterial diversity and community composition of those shallow waterbodies is largely unexplored, particularly, of the ponds embedded within the peatland landscape (i.e., Bofedales). Here we compare the small-scale spatial variability (Altiplano peatland ponds represent a hitherto unknown source of microbial diversity.

  14. B-2 Extremely High Frequency SATCOM and Computer Increment 1 (B-2 EHF Inc 1)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-224 B-2 Extremely High Frequency SATCOM and Computer Increment 1 (B-2 EHF Inc 1) As of FY...10 Track to Budget 11 Cost and Funding 13 Low Rate Initial Production 19 Foreign Military Sales 20 Nuclear Costs 20 Unit Cost...Document CLIN - Contract Line Item Number CPD - Capability Production Document CY - Calendar Year DAB - Defense Acquisition Board DAE - Defense

  15. Environmental Assessment for the Advanced Extremely High Frequency Satellite Beddown and Deployment Program

    Science.gov (United States)

    2010-07-01

    Fish and Wildlife Service Advanced Extremely High Frequency Satellite Final Environmental Assessment v VIF Vehicle Integration Facility WMO World...Vehicle Mate Operations Upon arrival on CCAFS, the transporter would take the encapsulated payload to the Vehicle Integration Facility ( VIF ), which...is located just south of LC-41 (Figure 2-2). At the VIF , the encapsulated payload would be mated to the Atlas V Launch Vehicle (LV) using a mobile

  16. High-speed optical frequency-domain imaging

    OpenAIRE

    Yun, S. H.; Tearney, G. J.; Boer; Iftimia, N. V.; Bouma, B. E.

    2003-01-01

    We demonstrate high-speed, high-sensitivity, high-resolution optical imaging based on optical frequency-domain interferometry using a rapidly-tuned wavelength-swept laser. We derive and show experimentally that frequency-domain ranging provides a superior signal-to-noise ratio compared with conventional time-domain ranging as used in optical coherence tomography. A high sensitivity of −110 dB was obtained with a 6 mW source at an axial resolution of 13.5 µm and an A-line rate of 15.7 kHz, rep...

  17. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment

    Science.gov (United States)

    Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.

    2015-12-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.

  18. [Membranotropic effects of electromagnetic radiation of extremely high frequency on Escherichia coli].

    Science.gov (United States)

    Trchunian, A; Ogandzhanian, E; Sarkisian, E; Gonian, S; Oganesian, A; Oganesian, S

    2001-01-01

    It was found that "sound" electromagnetic radiations of extremely high frequencies (53.5-68 GHz) or millimeter waves (wavelength range of 4.2-5.6 mm) of low intensity (power density 0.01 mW) have a bactericidal effect on Escherichia coli bacteria. It was shown that exposure to irradiation of extremely high frequencies increases the electrokinetic potential and surface change density of bacteria and decreases of membrane potential. The total secretion of hydrogen ions was suppressed, the H+ flux from the cytoplasm to medium decreased, and the flux of N,N'-dicyclohexylcarbodiimide-sensitive potassium ions increased, which was accompanied by changes in the stoichiometry of these fluxes and an increase in the sensitivity of H+ ions to N,N'-dicyclohexylcarbodiimide. The effects depended on duration of exposure: as the time of exposure increased, the bactericidal effect increased, whereas the membranotropic effects decreased. The effects also depended on growth phase of bacteria: the irradiation affected the cells in the stationary but not in the logarithmic phase. It is assumed that the H(+)-ATPase complex F0F1 is involved in membranotropic effects of electromagnetic radiation of extremely high frequencies. Presumably, there are some compensatory mechanisms that eliminate the membranotropic effects.

  19. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment.

    Science.gov (United States)

    Schoepf, Verena; Stat, Michael; Falter, James L; McCulloch, Malcolm T

    2015-12-02

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.

  20. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events.

    Science.gov (United States)

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A Mark; Press, Malcolm C; Phoenix, Gareth K

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem (15)N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g Nm(-2)yr(-1), applied as (15)NH4(15)NO3 in Svalbard (79(°)N), during the summer. Separate applications of (15)NO3(-) and (15)NH4(+) were also made to determine the importance of N form in their retention. More than 95% of the total (15)N applied was recovered after one growing season (~90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants>vascular plants>organic soil>litter>mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of (15)N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater (15)NO3(-) than (15)NH4(+), suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication.

  1. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Sonal, E-mail: S.Choudhary@sheffield.ac.uk [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Management School, University of Sheffield, Conduit Road, Sheffield S10 1FL (United Kingdom); Blaud, Aimeric [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Osborn, A. Mark [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); School of Applied Sciences, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Press, Malcolm C. [School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Manchester Metropolitan University, Manchester, M15 6BH (United Kingdom); Phoenix, Gareth K. [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem {sup 15}N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g N m{sup −2} yr{sup −1}, applied as {sup 15}NH{sub 4}{sup 15}NO{sub 3} in Svalbard (79{sup °}N), during the summer. Separate applications of {sup 15}NO{sub 3}{sup −} and {sup 15}NH{sub 4}{sup +} were also made to determine the importance of N form in their retention. More than 95% of the total {sup 15}N applied was recovered after one growing season (~ 90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants > vascular plants > organic soil > litter > mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of {sup 15}N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater {sup 15}NO{sub 3}{sup −} than {sup 15}NH{sub 4}{sup +}, suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events

  2. High-resolution projections of mean and extreme precipitations over China through PRECIS under RCPs

    Science.gov (United States)

    Zhu, Jinxin; Huang, Gordon; Wang, Xiuquan; Cheng, Guanhui; Wu, Yinghui

    2017-08-01

    The impact of global warming on the characteristics of mean and extreme precipitations over China is investigated by using the Providing REgional Climate Impacts for Studies (PRECIS) model. The PRECIS model was driven by the Hadley Centre Global Environment Model version 2 with Earth System components and coupling (HadGEM2-ES). The results of both models are analyzed in terms of mean precipitation and indices of precipitation extremes (R95p, R99p, SDII, WDF, and CWD) over China at the resolution of 25 km under the Representative Concentration Pathways 4.5 and 8.5 (RCP4.5 and RCP8.5) scenarios for the baseline period (1976-2005) and two future periods (2036-2065 and 2070-2099). With improved resolution, the PRECIS model is able to better represent the fine-scale physical process than HadGEM2-ES. It can provide reliable spatial patterns of precipitation and its related extremes with high correlations to observations. Moreover, there is a notable improvement in temporal patterns simulation through the PRECIS model. The PRECIS model better reproduces the regional annual cycle and frequencies of daily precipitation intensity than its driving GCM. Under RCP4.5 and RCP8.5, both the HadGEM2-ES and the precis project increasing annual precipitation over the entire country for two future periods. Precipitation increase in winter is greater than the increase in summer. The results suggest that increased radiative forcing from RCP4.5 to RCP8.5 would further intensify the magnitude of projected precipitation changes by both PRECIS and HadGEM2-ES. For example, some parts of south China with decreased precipitation under RCP4.5 would expect even less precipitation under RCP8.5; regions (northwest, northcentral and northeast China) with increased precipitation under RCP4.5 would expect more precipitation under RCP8.5. Apart from the projected increase in annual total precipitation, the results also suggest that there will be an increase in the days with precipitation higher than

  3. Large-area, high-intensity PV arrays for systems using dish concentrating optics

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.S.; Duda, A.; Zweibel, K.; Coutts, T.J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    In this paper, the authors report on efforts to fabricate monolithic interconnected modules (MIMs) using III-V semiconductors with bandgaps appropriate for the terrestrial solar spectrum. The small size of the component cells comprising the MIM allows for operation at extremely high flux densities and relaxes the requirement for a small spot size to be generated by the optics. This makes possible a PV option for the large dish concentrator systems that have been developed by the solar thermal community for use with Stirling engines. Additionally, the highly effective back-surface reflector integrated into the MIM design is an effective tool for thermal management of the array. Development of this technology would radically alter the projections for PV manufacturing capacity because of the potential for extremely high power generation per unit area of semiconductor material.

  4. Optical diffraction into thick slab waveguides: a finite-beam RCWA approach to solve extremely asymmetrical scattering-EAS in slanted holographic gratings

    Science.gov (United States)

    Pietralunga, Silvia M.; Geroldi, Alessandro; Serafini, Mirko

    2012-06-01

    We have implemented a Finite-Beam Rigorous Coupled-Wave Approach (FB-RCWA) to solve for guided-optics propagation in the presence of holographic slanted Bragg gratings, embedded in the core of slab waveguides and operated in Extreme Asymmetrical Scattering (EAS) configuration. In EAS a resonance condition can be established, as proceeding from the design parameters. Diffraction efficiency can be evaluated as the ratio of the flux of diffracted power P1, on a suitably defined cross-section along the propagation of diffracted beam, and input power P0. By FBRCWA, no limitation in the depth of grating modulation is assumed. The first-order diffracted field in resonant Bragg condition propagates along the waveguide. EAS in thick waveguides operating in highly multimodal regime can be investigated, as well as macroscopic volumes and widely extended illuminated regions up to a few millimeters. In thick slabs, η > 90% is demonstrated, for input illuminated apertures of length L >= Lc, where Lc is the optimum coupling length. The effects of detuning from Bragg condition, both in distribution and amplitude of the diffracted field, are quantified. Diffraction efficiency, i.e. optical coupling, bandwidth is evaluated.

  5. Multiplex APLP System for High-Resolution Haplogrouping of Extremely Degraded East-Asian Mitochondrial DNAs

    Science.gov (United States)

    Kakuda, Tsuneo; Shojo, Hideki; Tanaka, Mayumi; Nambiar, Phrabhakaran; Minaguchi, Kiyoshi; Umetsu, Kazuo; Adachi, Noboru

    2016-01-01

    Mitochondrial DNA (mtDNA) serves as a powerful tool for exploring matrilineal phylogeographic ancestry, as well as for analyzing highly degraded samples, because of its polymorphic nature and high copy numbers per cell. The recent advent of complete mitochondrial genome sequencing has led to improved techniques for phylogenetic analyses based on mtDNA, and many multiplex genotyping methods have been developed for the hierarchical analysis of phylogenetically important mutations. However, few high-resolution multiplex genotyping systems for analyzing East-Asian mtDNA can be applied to extremely degraded samples. Here, we present a multiplex system for analyzing mitochondrial single nucleotide polymorphisms (mtSNPs), which relies on a novel amplified product-length polymorphisms (APLP) method that uses inosine-flapped primers and is specifically designed for the detailed haplogrouping of extremely degraded East-Asian mtDNAs. We used fourteen 6-plex polymerase chain reactions (PCRs) and subsequent electrophoresis to examine 81 haplogroup-defining SNPs and 3 insertion/deletion sites, and we were able to securely assign the studied mtDNAs to relevant haplogroups. Our system requires only 1×10−13 g (100 fg) of crude DNA to obtain a full profile. Owing to its small amplicon size (<110 bp), this new APLP system was successfully applied to extremely degraded samples for which direct sequencing of hypervariable segments using mini-primer sets was unsuccessful, and proved to be more robust than conventional APLP analysis. Thus, our new APLP system is effective for retrieving reliable data from extremely degraded East-Asian mtDNAs. PMID:27355212

  6. Stereo-SCIDAR: Optical turbulence profiling with high sensitivity using a modified SCIDAR instrument

    CERN Document Server

    Shepherd, H W; Wilson, R W; Butterley, T; Avila, R; Dhillon, V S; Morris, T J

    2013-01-01

    The next generation of adaptive optics (AO) systems will require tomographic reconstruction techniques to map the optical refractive index fluctuations, generated by the atmospheric turbulence, along the line of sight to the astronomical target. These systems can be enhanced with data from an external atmospheric profiler. This is important for Extremely Large Telescope scale tomography. Here we propose a new instrument which utilises the generalised SCIntillation Detection And Ranging (SCIDAR) technique to allow high sensitivity vertical profiles of the atmospheric optical turbulence and wind velocity profile above astronomical observatories. The new approach, which we refer to as 'Stereo-SCIDAR', uses a stereoscopic system with the scintillation pattern from each star of a double-star target incident on a separate detector. Separating the pupil images for each star has several advantages including: increased magnitude difference tolerance for the target stars; negating the need for re-calibration due to the...

  7. Impact of the extreme 2009 wildfire Victoria the wettability of naturally highly water repellent soils

    Science.gov (United States)

    Doerr, Stefan H.; Shakesby, Richard A.; Sheridan, Gary J.; Lane, Patrick Nj; Smith, Hugh G.; Bell, Tina; Blake, William H.

    2010-05-01

    The recent catastrophic wildfires near Melbourne, which peaked on Feb. 7 2009, burned ca 400,000 ha and caused the tragic loss of 173 people. They occurred during unprecedented extreme fire weather where dry northerly winds gusting up to 100 km/h coincided with the highest temperatures ever recorded in this region. These conditions, combined with the very high biomass of mature eucalypt forests, very low fuel moisture conditions and steep slopes, generated extreme burning conditions. A rapid response project was launched under the NERC Urgency Scheme aimed at determining the effects of this extreme event on soil properties. Three replicate sites each were sampled for extremely high burn severity, high burn severity and unburnt control terrain, within mature mixed-species eucalypt forests near Marysville in April 2009. Ash and surface soil (0-2.5 cm and 2.5-5 cm) were collected at 20 sample grid points at each site. Here we report on outcomes from Water Drop Penetration Time (WDPT) tests carried out on soil samples to determine the impact of this extreme event on the wettability of a naturally highly water repellent soil. Field assessment suggested that the impact of this extreme wildfire on the soil was less than might be supposed given the extreme burn severity (indicated by the complete elimination of the ground vegetation). This was confirmed by the laboratory results. No major difference in WDPT was detected between (i) burned and control samples, and (ii) between surface and subsurface WDPT patterns, indicating that soil temperatures in the top 0-2.5 cm did not exceed ~200° C. Seedling germination in burned soil was reduced by at least 2/3 compared to the control samples, however, this reduction is indicative an only modest heat input into the soil. The limited heat input into the soil stands in stark contrast to the extreme burn severity (based on vegetation destruction parameters). We speculate that limited soil heating resulted perhaps from the unusually

  8. High-accurate optical vector analysis based on optical single-sideband modulation

    Science.gov (United States)

    Xue, Min; Pan, Shilong

    2016-11-01

    Most of the efforts devoted to the area of optical communications were on the improvement of the optical spectral efficiency. Varies innovative optical devices are thus developed to finely manipulate the optical spectrum. Knowing the spectral responses of these devices, including the magnitude, phase and polarization responses, is of great importance for their fabrication and application. To achieve high-resolution characterization, optical vector analyzers (OVAs) based on optical single-sideband (OSSB) modulation have been proposed and developed. Benefiting from the mature and highresolution microwave technologies, the OSSB-based OVA can potentially achieve a resolution of sub-Hz. However, the accuracy is restricted by the measurement errors induced by the unwanted first-order sideband and the high-order sidebands in the OSSB signal, since electrical-to-optical conversion and optical-to-electrical conversion are essentially required to achieve high-resolution frequency sweeping and extract the magnitude and phase information in the electrical domain. Recently, great efforts have been devoted to improve the accuracy of the OSSB-based OVA. In this paper, the influence of the unwanted-sideband induced measurement errors and techniques for implementing high-accurate OSSB-based OVAs are discussed.

  9. Optical glass with tightest refractive index and dispersion tolerances for high-end optical designs

    Science.gov (United States)

    Jedamzik, R.; Reichel, S.; Hartmann, P.

    2014-03-01

    In high end optical designs the quality of the optical system not only depends on the chosen optical glasses but also on the available refractive index and Abbe number tolerances. The primary optical design is based on datasheet values of the refractive index and Abbe number. In general the optical position of the delivered glass will deviate from the catalog values by given tolerances due to production tolerances. Therefore in many cases the final optical design needs to be modified based on real glass data. Tighter refractive index and Abbe number tolerances can greatly reduce this additional amount of work. The refractive index and Abbe number of an optical glass is a function of the chemical composition and the annealing process. Tight refractive index tolerances require not only a close control and high reliability of the melting and fine annealing process but also best possible material data. These data rely on high accuracy measurement and accurate control during mass production. Modern melting and annealing procedure do not only enable tight index tolerances but also a high homogeneity of the optical properties. Recently SCHOTT was able to introduce the tightest available refractive index and Abbe number tolerance available in the market: step 0.5 meaning a refractive index tolerance of +/- 0.0001 and an Abbe number tolerance of +/- 0.1%. This presentation describes how the refractive index depends on the glass composition and annealing process and describes the requirements to get to this tightest refractive index and Abbe number tolerance.

  10. Alternative high-resolution lithographic technologies for optical applications

    Science.gov (United States)

    Zeitner, Uwe D.; Weichelt, Tina; Bourgin, Yannick; Kinder, Robert

    2016-03-01

    Modern optical applications have special demands on the lithographic fabrication technologies. This relates to the lateral shape of the structures as well as to their three dimensional surface profile. On the other hand optical nano-structures are often periodic which allows for the use of dedicated lithographic exposure principles. The paper briefly reviews actual developments in the field of optical nano-structure generation. Special emphasis will be given to two technologies: electron-beam lithography based on a flexible cell-projection method and the actual developments in diffractive mask aligner lithography. Both offer a cost effective fabrication alternative for high resolution structures or three-dimensional optical surface profiles.

  11. Recent Advances in Ultra-High-Speed Optical Signal Processing

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Palushani, Evarist; Hu, Hao;

    2012-01-01

    We review recent advances in the optical signal processing of ultra-high-speed serial data signals up to 1.28 Tbit/s, with focus on applications of time-domain optical Fourier transformation. Experimental methods for the generation of symbol rates up to 1.28 Tbaud are also described....

  12. Improved optical performance monitoring technique based on nonlinear optics for high-speed WDM Nyquist systems

    Science.gov (United States)

    Guesmi, Latifa; Menif, Mourad

    2016-04-01

    The field of fiber optics nonlinearity is more discussed last years due to such remarkable enhancement in the nonlinear processes efficiency. In this paper, and for optical performance monitoring (OPM), a new achievement of nonlinear effects has been investigated. The use of cross-phase modulation (XPM) and four-wave mixing (FWM) effects between input optical signal and inserted continuous-wave probe has proposed for impairments monitoring. Indeed, transmitting a multi-channels phase modulated signal at high data rate (1 Tbps WDM Nyquist NRZ- DP-QPSK) improves the sensitivity and the dynamic range monitoring. It was observed by simulation results that various optical parameters including optical power, wavelength, chromatic dispersion (CD), polarization mode dispersion (PMD), optical signal-to-noise ratio (OSNR), Q-factor and so on, can be monitored. Also, the effect of increasing the channel spacing between WDM signals is studied and proved its use for FWM power monitoring.

  13. Optical Processing of High Dimensionality Signals

    DEFF Research Database (Denmark)

    Da Ros, Francesco

    signal processing, including wavelength conversion, optical phase conjugation (OPC), and signal regeneration. This project focuses precisely on the applications of OPAs for all-optical signal processing with a two-fold focus: on the one hand, processing the advanced modulation formats required......) waveguides, are investigated. The limits of parametric amplification for 16-quadrature amplitude modulation (QAM) signals are first characterized. The acquired knowledge is then applied to the design of a black-box OPC-device used to provide Kerr nonlinearity compensation for a 5-channel polarization......-division multiplexing (PDM) 16-QAM signal at 1.12 Tbps with significant improvements in received signal quality. Furthermore, the first demonstration of phase regeneration for binary phase-shift keying (BPSK) signals using the silicon platform is presented. The silicon-based OPA relies on a novel design where a reverse...

  14. Extreme risk taker who wants to continue taking part in high risk sports after serious injury.

    Science.gov (United States)

    Pain, M; Kerr, J H

    2004-06-01

    The case is reported of a 40 year old male high risk sport athlete who had seriously injured himself several times and as a result was partially physically disabled and had trouble with mental tasks requiring concentration such as spelling, reading numbers, and writing. The athlete was referred to a sports psychologist. In consultations, it became clear that he was having difficulty reconciling the difference between his life as it used to be and as it would be in the future. Part of his difficulty was dealing with the frustration and anger "outbursts" which resulted from not being able to perform straightforward everyday motor skills. In spite of his injuries and disability, the patient badly wanted to continue participating in extreme sports. Reversal theory is used in the discussion to provide theoretical explanations of the motivation for his extreme risk taking behaviour.

  15. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    Science.gov (United States)

    Hansen, Brage B.; Isaksen, Ketil; Benestad, Rasmus E.; Kohler, Jack; Pedersen, Åshild Ø.; Loe, Leif E.; Coulson, Stephen J.; Larsen, Jan Otto; Varpe, Øystein

    2014-11-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January-February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (˜5-20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties.

  16. Design and performance of ultra-high-density optical fiber cable with rollable optical fiber ribbons

    Science.gov (United States)

    Hogari, Kazuo; Yamada, Yusuke; Toge, Kunihiro

    2010-08-01

    This paper proposes a novel ultra-high-density optical fiber cable that employs rollable optical fiber ribbons. The cable has great advantages in terms of cable weight and diameter, and fiber splicing workability. Moreover, it will be easy to install in a small space in underground ducts and on residential and business premises. The structural design of the rollable optical fiber ribbon is evaluated theoretically and experimentally, and an optimum adhesion pitch P in the longitudinal direction is obtained. In addition, we examined the performance of ultra-high-density cables with a small diameter that employ rollable optical fiber ribbons and bending-loss insensitive optical fibers. The transmission, mechanical and mid-span access performance of these cables was confirmed to be excellent.

  17. Compact high-resolution spectrographs for large and extremely large telescopes: using the diffraction limit

    Science.gov (United States)

    Robertson, J. Gordon; Bland-Hawthorn, Joss

    2012-09-01

    As telescopes get larger, the size of a seeing-limited spectrograph for a given resolving power becomes larger also, and for ELTs the size will be so great that high resolution instruments of simple design will be infeasible. Solutions include adaptive optics (but not providing full correction for short wavelengths) or image slicers (which give feasible but still large instruments). Here we develop the solution proposed by Bland-Hawthorn and Horton: the use of diffraction-limited spectrographs which are compact even for high resolving power. Their use is made possible by the photonic lantern, which splits a multi-mode optical fiber into a number of single-mode fibers. We describe preliminary designs for such spectrographs, at a resolving power of R ~ 50,000. While they are small and use relatively simple optics, the challenges are to accommodate the longest possible fiber slit (hence maximum number of single-mode fibers in one spectrograph) and to accept the beam from each fiber at a focal ratio considerably faster than for most spectrograph collimators, while maintaining diffraction-limited imaging quality. It is possible to obtain excellent performance despite these challenges. We also briefly consider the number of such spectrographs required, which can be reduced by full or partial adaptive optics correction, and/or moving towards longer wavelengths.

  18. The development of an optically accessible, high-power combustion test rig.

    Science.gov (United States)

    Slabaugh, Carson D; Pratt, Andrew C; Lucht, Robert P; Meyer, Scott E; Benjamin, Michael; Lyle, Kent; Kelsey, Mark

    2014-03-01

    This work summarizes the development of a gas turbine combustion experiment which will allow advanced optical measurements to be made at realistic engine conditions. Facility requirements are addressed, including instrumentation and control needs for remote operation when working with high energy flows. The methodology employed in the design of the optically accessible combustion chamber is elucidated, including window considerations and thermal management of the experimental hardware under extremely high heat loads. Experimental uncertainties are also quantified. The stable operation of the experiment is validated using multiple techniques and the boundary conditions are verified. The successful prediction of operating conditions by the design analysis is documented and preliminary data are shown to demonstrate the capability of the experiment to produce high-fidelity datasets for advanced combustion research.

  19. High-order adaptive optics requirements for direct detection of extrasolar planets: Application to the SPHERE instrument.

    Science.gov (United States)

    Fusco, T; Rousset, G; Sauvage, J-F; Petit, C; Beuzit, J-L; Dohlen, K; Mouillet, D; Charton, J; Nicolle, M; Kasper, M; Baudoz, P; Puget, P

    2006-08-21

    The detection of extrasolar planets implies an extremely high-contrast, long-exposure imaging capability at near infrared and probably visible wavelengths. We present here the core of any Planet Finder instrument, that is, the extreme adaptive optics (XAO) subsystem. The level of AO correction directly impacts the exposure time required for planet detection. In addition, the capacity of the AO system to calibrate all the instrument static defects ultimately limits detectivity. Hence, the extreme AO system has to adjust for the perturbations induced by the atmospheric turbulence, as well as for the internal aberrations of the instrument itself. We propose a feasibility study for an extreme AO system in the frame of the SPHERE (Spectro-Polarimetry High-contrast Exoplanet Research) instrument, which is currently under design and should equip one of the four VLT 8-m telescopes in 2010.

  20. Lower Extremity Function following Partial Calcanectomy in High-Risk Limb Salvage Patients

    Directory of Open Access Journals (Sweden)

    Noah G. Oliver

    2015-01-01

    Full Text Available Partial calcanectomy (PC is an established limb salvage procedure for treatment of deep heel ulceration with concomitant calcaneal osteomyelitis. The purpose of this study is to determine if a relationship exists between the amount of calcaneus removed during PC and the resulting lower extremity function and limb salvage outcomes. Consecutive PC patients were retrospectively divided into two cohorts defined by the amount of calcaneus resected before wound closure: patients in cohort 1 retained = 50% of calcaneus, while patients in cohort 2 underwent resection of >50% of the calcaneus. The Lower Extremity Function Scale (LEFS was used to assess postoperative lower extremity function. The average amount of calcaneus resected was 13% ± 9.2 (1–39% and 74% ± 19.5 (51–100 in cohorts 1 and 2, respectively (P<0.0001. Below knee amputation was performed in 7 (28% and 5 (29% of subjects in cohorts 1 and 2, respectively (P=1.0. The average LEFS score was 33.9 ± 15.0 for subjects in cohort 1 and 36.2 ± 19.9 for the subjects cohort 2 (P=0.8257 which correlates to “moderate to quite a bit of difficulty.” Our study suggests that regardless of the amount of calcaneus resected, PC provides a viable treatment option for high-risk patients with calcaneal osteomyelitis.

  1. Performance of High Temperature Operational Amplifier, Type LM2904WH, under Extreme Temperatures

    Science.gov (United States)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Operation of electronic parts and circuits under extreme temperatures is anticipated in NASA space exploration missions as well as terrestrial applications. Exposure of electronics to extreme temperatures and wide-range thermal swings greatly affects their performance via induced changes in the semiconductor material properties, packaging and interconnects, or due to incompatibility issues between interfaces that result from thermal expansion/contraction mismatch. Electronics that are designed to withstand operation and perform efficiently in extreme temperatures would mitigate risks for failure due to thermal stresses and, therefore, improve system reliability. In addition, they contribute to reducing system size and weight, simplifying its design, and reducing development cost through the elimination of otherwise required thermal control elements for proper ambient operation. A large DC voltage gain (100 dB) operational amplifier with a maximum junction temperature of 150 C was recently introduced by STMicroelectronics [1]. This LM2904WH chip comes in a plastic package and is designed specifically for automotive and industrial control systems. It operates from a single power supply over a wide range of voltages, and it consists of two independent, high gain, internally frequency compensated operational amplifiers. Table I shows some of the device manufacturer s specifications.

  2. Depth profilometry via multiplexed optical high-coherence interferometry

    National Research Council Canada - National Science Library

    Kazemzadeh, Farnoud; Wong, Alexander; Behr, Bradford B; Hajian, Arsen R

    2015-01-01

    ... such as defect detection, corrosion assessment, and dental assessment to name a few. In this study, we investigate the feasibility of depth profilometry using an Multiplexed Optical High-coherence Interferometry MOHI instrument...

  3. Rest-frame ultraviolet-to-optical spectral characteristics of extremely metal-poor and metal-free galaxies

    CERN Document Server

    Inoue, Akio K

    2011-01-01

    Finding the first generation of galaxies in the early Universe is the greatest step forward for understanding galaxy formation and evolution. For strategic survey of such galaxies and interpretation of the obtained data, this paper presents an ultraviolet-to-optical spectral model of galaxies with a great care of the nebular emission. In particular, we present a machine-readable table of intensities of 119 nebular emission lines from Ly$\\alpha$ to the rest-frame 1 $\\mu$m as a function of metallicity from zero to the Solar one. Based on the spectral model, we present criteria of broad-band colours and equivalent widths of Ly$\\alpha$, He {\\sc ii} $\\lambda1640$, H$\\alpha$, H$\\beta$, [O {\\sc iii}] $\\lambda5007$ to select extremely metal-poor and metal-free galaxies although these criteria have uncertainty caused by the Lyman continuum escape fraction and the star formation duration. The criteria of broad-band colours will be useful to select candidates for spectroscopic follow-up from drop-out galaxies. We propos...

  4. Enhanced defect detection capability using learning system for extreme ultraviolet lithography mask inspection tool with projection electron microscope optics

    Science.gov (United States)

    Hirano, Ryoichi; Hatakeyama, Masahiro; Terao, Kenji; Watanabe, Hidehiro

    2016-04-01

    Extreme ultraviolet lithography (EUVL) patterned mask defect detection is a major issue that must be addressed to realize EUVL-based device fabrication. We have designed projection electron microscope (PEM) optics for integration into a mask inspection system, and the resulting PEM system performs well in half-pitch (hp) 16-nm-node EUVL patterned mask inspection applications. A learning system has been used in this PEM patterned mask inspection tool. The PEM identifies defects using the "defectivity" parameter that is derived from the acquired image characteristics. The learning system has been developed to reduce the labor and the costs associated with adjustment of the PEM's detection capabilities to cope with newly defined mask defects. The concepts behind this learning system and the parameter optimization flow are presented here. The learning system for the PEM is based on a library of registered defects. The learning system then optimizes the detection capability by reconciling previously registered defects with newly registered defects. Functional verification of the learning system is also described, and the system's detection capability is demonstrated by applying it to the inspection of hp 11-nm EUV masks. We can thus provide a user-friendly mask inspection system with reduced cost of ownership.

  5. A Stable, Extreme Temperature, High Radiation, Compact. Low Power Clock Oscillator for Space, Geothermal, Down-Hole & other High Reliability Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Efficient and stable clock signal generation requirements at extreme temperatures and high radiation are not met with the current solutions. Chronos Technology...

  6. Decay of high order optical vortices in anisotropic nonlinear optical media

    DEFF Research Database (Denmark)

    Mamaev, A.V.; Saffman, M.; Zozulya, A.A.

    1997-01-01

    We present an experimental and theoretical study of the decay of high order optical vortices in media with an anisotropic nonlocal nonlinearity. Vortices with charge n decay into an aligned array of n vortices of unit charge.......We present an experimental and theoretical study of the decay of high order optical vortices in media with an anisotropic nonlocal nonlinearity. Vortices with charge n decay into an aligned array of n vortices of unit charge....

  7. Magneto-optical system for high speed real time imaging

    Science.gov (United States)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  8. Application of Beyond Bound Decoding for High Speed Optical Communications

    DEFF Research Database (Denmark)

    Li, Bomin; Larsen, Knud J.; Vegas Olmos, Juan José;

    2013-01-01

    This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB.......This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB....

  9. High-speed optical signal processing using time lenses

    DEFF Research Database (Denmark)

    Galili, Michael; Hu, Hao; Guan, Pengyu;

    2015-01-01

    This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle.......This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle....

  10. Fabrication of surfaces with extremely high contact angle hysteresis from polyelectrolyte multilayer.

    Science.gov (United States)

    Wang, Liming; Wei, Jingjing; Su, Zhaohui

    2011-12-20

    High contact angle hysteresis on polyelectrolyte multilayers (PEMs) ion-paired with hydrophobic perfluorooctanoate anions is reported. Both the bilayer number of PEMs and the ionic strength of deposition solutions have significant influence on contact angle hysteresis: higher ionic strength and greater bilayer number cause increased contact angle hysteresis values. The hysteresis values of ~100° were observed on smooth PEMs and pinning of the receding contact line on hydrophilic defects is implicated as the cause of hysteresis. Surface roughness can be used to further tune the contact angle hysteresis on the PEMs. A surface with extremely high contact angle hysteresis of 156° was fabricated when a PEM was deposited on a rough substrate coated with submicrometer scale silica spheres. It was demonstrated that this extremely high value of contact angle hysteresis resulted from the penetration of water into the rough asperities on the substrate. The same substrate hydrophobized by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltriethoxysilane exhibits high advancing contact angle and low hysteresis.

  11. New Architecture of Optical Interconnect for High-Speed Optical Computerized Data Networks (Nonlinear Response

    Directory of Open Access Journals (Sweden)

    El-Sayed A. El-Badawy

    2008-02-01

    Full Text Available Although research into the use of optics in computers has increased in the last and current decades, the fact remains that electronics is still superior to optics in almost every way. Research into the use of optics at this stage mirrors the research into electronics after the 2nd World War. The advantages of using fiber optics over wiring are the same as the argument for using optics over electronics in computers. Even through totally optical computers are now a reality, computers that combine both electronics and optics, electro-optic hybrids, have been in use for some time. In the present paper, architecture of optical interconnect is built up on the bases of four Vertical-Cavity Surface- Emitting Laser Diodes (VCSELD and two optical links where thermal effects of both the diodes and the links are included. Nonlinear relations are correlated to investigate the power-current and the voltage-current dependences of the four devices. The good performance (high speed of the interconnect is deeply and parametrically investigated under wide ranges of the affecting parameters. The high speed performance is processed through three different effects, namely the device 3-dB bandwidth, the link dispersion characteristics, and the transmitted bit rate (soliton. Eight combinations are investigated; each possesses its own characteristics. The best architecture is the one composed of VCSELD that operates at 850 nm and the silica fiber whatever the operating set of causes. This combination possesses the largest device 3-dB bandwidth, the largest link bandwidth and the largest soliton transmitted bit rate. The increase of the ambient temperature reduces the high-speed performance of the interconnect

  12. New Architecture of Optical Interconnect for High-Speed Optical Computerized Data Networks (Nonlinear Response

    Directory of Open Access Journals (Sweden)

    El-Sayed A. El-Badawy

    2008-02-01

    Full Text Available Although research into the use of optics in computers has increased in the last and current decades, the fact remains that electronics is still superior to optics in almost every way. Research into the use of optics at this stage mirrors the research into electronics after the 2nd World War. The advantages of using fiber optics over wiring are the same as the argument for using optics over electronics in computers. Even through totally optical computers are now a reality, computers that combine both electronics and optics, electro-optic hybrids, have been in use for some time. In the present paper, architecture of optical interconnect is built up on the bases of four Vertical-Cavity Surface- Emitting Laser Diodes (VCSELD and two optical links where thermal effects of both the diodes and the links are included. Nonlinear relations are correlated to investigate the power-current and the voltage-current dependences of the four devices. The good performance (high speed of the interconnect is deeply and parametrically investigated under wide ranges of the affecting parameters. The high speed performance is processed through three different effects, namely the device 3-dB bandwidth, the link dispersion characteristics, and the transmitted bit rate (soliton. Eight combinations are investigated; each possesses its own characteristics. The best architecture is the one composed of VCSELD that operates at 850 nm and the silica fiber whatever the operating set of causes. This combination possesses the largest device 3-dB bandwidth, the largest link bandwidth and the largest soliton transmitted bit rate. The increase of the ambient temperature reduces the high-speed performance of the interconnect

  13. In situ observation and measurement of composites subjected to extremely high temperature

    Science.gov (United States)

    Fang, Xufei; Yu, Helong; Zhang, Guobing; Su, Hengqiang; Tang, Hongxiang; Feng, Xue

    2014-03-01

    In this work, we develop an instrument to study the ablation and oxidation process of materials such as C/SiC (carbon fiber reinforced silicon carbide composites) and ultra-high temperature ceramic in extremely high temperature environment. The instrument is integrated with high speed cameras with filtering lens, infrared thermometers and water vapor generator for image capture, temperature measurement, and humid atmosphere, respectively. The ablation process and thermal shock as well as the temperature on both sides of the specimen can be in situ monitored. The results show clearly the dynamic ablation and liquid oxide flowing. In addition, we develop an algorithm for the post-processing of the captured images to obtain the deformation of the specimens, in order to better understand the behavior of the specimen subjected to high temperature.

  14. Foundations of high-energy-density physics physical processes of matter at extreme conditions

    CERN Document Server

    Larsen, Jon

    2017-01-01

    High-energy-density physics explores the dynamics of matter at extreme conditions. This encompasses temperatures and densities far greater than we experience on Earth. It applies to normal stars, exploding stars, active galaxies, and planetary interiors. High-energy-density matter is found on Earth in the explosion of nuclear weapons and in laboratories with high-powered lasers or pulsed-power machines. The physics explored in this book is the basis for large-scale simulation codes needed to interpret experimental results whether from astrophysical observations or laboratory-scale experiments. The key elements of high-energy-density physics covered are gas dynamics, ionization, thermal energy transport, and radiation transfer, intense electromagnetic waves, and their dynamical coupling. Implicit in this is a fundamental understanding of hydrodynamics, plasma physics, atomic physics, quantum mechanics, and electromagnetic theory. Beginning with a summary of the topics and exploring the major ones in depth, thi...

  15. Poly(acrylamide-MWNTs hybrid hydrogel with extremely high mechanical strength

    Directory of Open Access Journals (Sweden)

    Feng Huanhuan

    2016-01-01

    Full Text Available Poly(acrylamide-multiwalled carbon nanotubes (PAAm-MWNTs hybrid hydrogels were prepared through the radiation-induced polymerization and crosslinking of the aqueous solution of acrylamide and well-dispersed MWNTs for the first time. The PAAm gels obtained by the radiation-induced polymerization and cosslinking showed very high mechanical strengths, and the PAAm-MWNTs hybrid hydrogels had improved mechanical properties compared with the PAAm gels, and hence the PAAm-MWNTs hybrid hydrogels showed extremely high compressive and tensile strengths. The hybrid hydrogels with water contents more than 80 wt.% usually did not fracture even at compressive strengths close to or even more than 60 MPa and strains more than 97%. And the hybrid hydrogels had very high elongations (more than 2000% in some cases, especially when the water content was high. The tensile strengths were in sub-MPa. The hybrid PAAm-MWNTs hydrogel is one of the strongest hydrogel even made.

  16. Table-Top Milliwatt-Class Extreme Ultraviolet High Harmonic Light Source

    CERN Document Server

    Klas, Robert; Tschernajew, Maxim; Hädrich, Steffen; Shamir, Yariv; Tünnermann, Andreas; Rothhardt, Jan; Limpert, Jens

    2016-01-01

    Extreme ultraviolet (XUV) lasers are essential for the investigation of fundamental physics. Especially high repetition rate, high photon flux sources are of major interest for reducing acquisition times and improving signal to noise ratios in a plethora of applications. Here, an XUV source based on cascaded frequency conversion is presented, which delivers due to the drastic better single atom response for short wavelength drivers, an average output power of (832 +- 204) {\\mu}W at 21.7 eV. This is the highest average power produced by any HHG source in this spectral range surpassing precious demonstrations by more than a factor of four. Furthermore, a narrow-band harmonic at 26.6 eV with a relative energy bandwidth of only {\\Delta}E/E= 1.8 x 10E-3 has been generated, which is of high interest for high precision spectroscopy experiments.

  17. EEE - Extreme Energy Events: an astroparticle physics experiment in Italian High Schools

    Science.gov (United States)

    Abbrescia, M.; Avanzini, C.; Baldini, L.; Baldini Ferroli, R.; Batignani, G.; Bencivenni, G.; Bossini, E.; Bressan, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; Corvaglia, A.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Fattibene, E.; Ferrarov, A.; Forster, R.; Frolov, V.; Galeotti, P.; Garbini, M.; Gemme, G.; Gnesi, I.; Grazzi, S.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Maggiora, A.; Maron, G.; Mazziotta, M. N.; Miozzi, S.; Noferini, F.; Nozzoli, F.; Panareo, M.; Panetta, M. P.; Paoletti, R.; Perasso, L.; Pilo, F.; Piragino, G.; Riggi, F.; Righini, G. C.; Rodriguez Rodriguez, A.; Sartorelli, G.; Scapparone, E.; Schioppa, M.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Squarcia, S.; Taiuti, M.; Terreni, G.; Vistoli, M. C.; Votano, L.; Williams, M. C. S.; Zani, S.; Zichichi, A.; Zuyeuski, R.

    2016-05-01

    The Extreme Energy Events project (EEE) is aimed to study Extensive Air Showers (EAS) from primary cosmic rays of more than 1018 eV energy detecting the ground secondary muon component using an array of telescopes with high spatial and time resolution. The second goal of the EEE project is to involve High School teachers and students in this advanced research work and to initiate them in scientific culture: to reach both purposes the telescopes are located inside High School buildings and the detector construction, assembling and monitoring - together with data taking and analysis - are done by researchers from scientific institutions in close collaboration with them. At present there are 42 telescopes in just as many High Schools scattered all over Italy, islands included, plus two at CERN and three in INFN units. We report here some preliminary physics results from the first two common data taking periods together with the outreach impact of the project.

  18. Image-based motion compensation for high-resolution extremities cone-beam CT

    Science.gov (United States)

    Sisniega, A.; Stayman, J. W.; Cao, Q.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2016-03-01

    Purpose: Cone-beam CT (CBCT) of the extremities provides high spatial resolution, but its quantitative accuracy may be challenged by involuntary sub-mm patient motion that cannot be eliminated with simple means of external immobilization. We investigate a two-step iterative motion compensation based on a multi-component metric of image sharpness. Methods: Motion is considered with respect to locally rigid motion within a particular region of interest, and the method supports application to multiple locally rigid regions. Motion is estimated by maximizing a cost function with three components: a gradient metric encouraging image sharpness, an entropy term that favors high contrast and penalizes streaks, and a penalty term encouraging smooth motion. Motion compensation involved initial coarse estimation of gross motion followed by estimation of fine-scale displacements using high resolution reconstructions. The method was evaluated in simulations with synthetic motion (1-4 mm) applied to a wrist volume obtained on a CMOS-based CBCT testbench. Structural similarity index (SSIM) quantified the agreement between motion-compensated and static data. The algorithm was also tested on a motion contaminated patient scan from dedicated extremities CBCT. Results: Excellent correction was achieved for the investigated range of displacements, indicated by good visual agreement with the static data. 10-15% improvement in SSIM was attained for 2-4 mm motions. The compensation was robust against increasing motion (4% decrease in SSIM across the investigated range, compared to 14% with no compensation). Consistent performance was achieved across a range of noise levels. Significant mitigation of artifacts was shown in patient data. Conclusion: The results indicate feasibility of image-based motion correction in extremities CBCT without the need for a priori motion models, external trackers, or fiducials.

  19. High yield simultaneous hydrogen and ethanol production under extreme-thermophilic (70 C) mixed culture environment

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chenxi [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby (Denmark); O-Thong, Sompong [Department of Biology, Faculty of Science, Thaksin University, Patthalung 93110 (Thailand); Karakashev, Dimitar; Angelidaki, Irini [Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby (Denmark); Lu, Wenjing; Wang, Hongtao [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2009-07-15

    The effect of pH and medium composition on extreme-thermophilic (70 C) dark fermentative simultaneous hydrogen and ethanol production (process performance and microbial ecology) was investigated. Hydrogen and ethanol yields were optimized with respect to glucose, peptone, FeSO{sub 4}, NaHCO{sub 3}, yeast extract, trace mineral salts, vitamins, and phosphate buffer concentrations as well as initial pH as independent variables. A combination of low levels of both glucose ({<=}2 g/L) and vitamin solutions ({<=}1 mL/L) and high levels of initial pH ({>=}7), mineral salts solution ({>=}5 mL/L) and FeSO{sub 4} ({>=}100 mg/L) stimulated the hydrogen production, while high level of glucose ({>=}5 g/L) and low levels of both initial pH ({<=}5.5) and mineral salts solution ({<=}1 mL/L) enhanced the ethanol production. High yield of simultaneous hydrogen and ethanol production (1.58 mol H{sub 2}/mol glucose combined with an ethanol yield of 0.90 mol ethanol/mol glucose) was achieved under extreme-thermophilic mixed culture environment. Results obtained showed that the shift of the metabolic pathways favouring either hydrogen or ethanol production was affected by the change in cultivation conditions (pH and medium composition). The mixed culture in this study demonstrated flexible ability for simultaneous hydrogen and ethanol production, depending on pH and nutrients formulation. The microorganisms involved could be regarded as simultaneous hydrogen/ethanol producers, as hydrogen and ethanol fermentation under all conditions was carried out by a group of extreme-thermophilic bacterial species related to Thermoanaerobacter, Thermoanaerobacterium and Caldanaerobacter. (author)

  20. Extremely Nonlinear Optics Using Shaped Pulses Spectrally Broadened in an Argon- or Sulfur Hexafluoride-Filled Hollow-Core Fiber

    Directory of Open Access Journals (Sweden)

    Andreas Hoffmann

    2015-11-01

    Full Text Available In this contribution we present a comparison of the performance of spectrally broadened ultrashort pulses using a hollow-core fiber either filled with argon or sulfur hexafluoride (SF6 for demanding pulse-shaping experiments. The benefits of both gases for pulse-shaping are studied in the highly nonlinear process of high-harmonic generation. In this setup, temporally shaping the driving laser pulse leads to spectrally shaping of the output extreme ultraviolet (XUV spectrum, where total yield and spectral selectivity in the XUV are the targets of the optimization approach. The effect of using sulfur hexafluoride for pulse-shaping the XUV yield can be doubled compared to pulse compression and pulse-shaping using argon and the spectral range for selective optimization of a single harmonic can be extended. The obtained results are of interest for extending the range of ultrafast science applications drawing on tailored XUV fields.

  1. Prospects of extreme ultraviolet radiation sources based on microwave discharge for high-resolution lithography

    Science.gov (United States)

    Abramov, I. S.; Gospodchikov, E. D.; Shalashov, A. G.

    2017-07-01

    In this paper, inspired by the success of recent experiments, we discuss a new possible type of sources of extreme ultraviolet radiation for the semiconductor industry, based on the radiating plasma with multiply charged ions supported in a mirror magnetic trap by high-power microwaves. We propose a simple theory that describes the main features of such source, perform modeling for a wide range of plasma parameters and magnetic configurations, compare the results to the existing experimental data, and study the prospects of the new scheme in present technological circumstances.

  2. Extremely high reflection of solar wind protons as neutral hydrogen atoms from regolith in space

    CERN Document Server

    Wieser, Martin; Futaana, Yoshifumi; Holmström, Mats; Bhardwaj, Anil; Sridharan, R; Dhanya, MB; Wurz, Peter; Schaufelberger, Audrey; Asamura, Kazushi; 10.1016/j.pss.2009.09.012

    2010-01-01

    We report on measurements of extremely high reflection rates of solar wind particles from regolith-covered lunar surfaces. Measurements by the Sub-keV Atom Reflecting Analyzer (SARA) instrument on the Indian Chandrayaan-1 spacecraft in orbit around the Moon show that up to 20% of the impinging solar wind protons are reflected from the lunar surface back to space as neutral hydrogen atoms. This finding, generally applicable to regolith-covered atmosphereless bodies, invalidates the widely accepted assumption that regolith almost completely absorbs the impinging solar wind.

  3. LDRD ER Final Report: Recreating Planetary Cores in the Laboratory: New Techniques to Extremely High Density States

    Energy Technology Data Exchange (ETDEWEB)

    Collins, G; Celliers, P; Hicks, D; Cauble, R; Bradley, D; MacKinnon, A; Moon, S; Young, D; Chau, R; Eggert, J; Willi, P; Pasley, J; Jeanloz, R; Lee, K; Bennedetti, R; Koenig, M; Benuzzi-Mounaix, A; Batani, D; Loubeyre, P; Hubbard, W

    2003-02-07

    An accurate equation of state (EOS) for planetary constituents at extreme conditions is the key to any credible model of planets or low mass stars. However, very few materials have their high pressure (>few Mbar) EOS experimentally validated, and even then, only on the principal Hugoniot. For planetary and stellar interiors, compression occurs from gravitational force so that material states follow a line of isotropic compression (ignoring phase separation) to ultra-high densities. An example of the hydrogen phase space composing Jupiter and one particular Brown Dwarf is shown. At extreme densities, material states are predicted to have quite unearthly properties such as high temperature superconductivity and low temperature fusion. High density experiments on Earth are achieved with either static compression techniques (i.e. diamond anvil cells) or dynamic compression techniques using large laser facilities, gas guns, or explosives. The ultimate goal of this multi-directorate and multi-institutional proposal was to develop techniques that will enable us to understand material states that previously only existed at the core of giant planets, stars, or speculative theories. Our effort was a complete success, meeting all of the objectives set out in our proposals. First we focused on developing accurate Hugoniot techniques to be used for constraining the equation of state at high pressure/temperature. We mapped out an accurate water EOS and measured that the ionic->electronic conduction transition occurs at lower pressures than models predict. These data and their impact are fully described in the first enclosed paper ''The Equation of State and Optical Properties of Water Compressed by Strong Shock Waves.'' Currently models used to construct planetary isentropes are constrained by only the planet radius, outer atmospheric spectroscopy, and space probe gravitational moment and magnetic field data. Thus these data, which provide rigid constraints

  4. Influence of load by high power on the optical coupler

    Science.gov (United States)

    Bednarek, Lukas; Poboril, Radek; Vanderka, Ales; Hajek, Lukas; Nedoma, Jan; Vasinek, Vladimir

    2016-12-01

    Nowadays, aging of the optical components is a very current topic. Therefore, some investigations are focused on this area, so that the aging of the optical components is accelerated by thermal, high power and gamma load. This paper deals by findings of the influence of the load by laser with high optical power on the transmission parameters of the optical coupler. The investigated coupler has one input and eight outputs (1x8). Load by laser with high optical power is realized using a fiber laser with a cascade configuration EDFA amplifiers. The output power of the amplifier is approximately 250 mW. Duration of the load is moving from 104 hours to 139 hours. After each load, input power and output powers of all branches are measured. Following parameters of the optical coupler are calculated using formulas: the insertion losses of the individual branches, split ratio, total losses, homogeneity of the losses and cross-talk between different branches. All measurements are performed at wavelengths 1310 nm and 1550 nm. Individual optical powers are measured 20 times, due to the exclusion of statistical error of the measurement. After measuring, the coupler is connected to the amplifier for next cycle of the load. The paper contains an evaluation of the results of the coupler before and after four cycles of the burden.

  5. Ultra-high-speed Optical Signal Processing using Silicon Photonics

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Ji, Hua; Jensen, Asger Sellerup

    on silicon photonics. In particular we use nano-engineered silicon waveguides (nanowires) [1] enabling efficient phasematched four-wave mixing (FWM), cross-phase modulation (XPM) or self-phase modulation (SPM) for ultra-high-speed optical signal processing of ultra-high bit rate serial data signals. We show......— In supercomputers, the optical inter-connects are getting closer and closer to the processing cores. Today, a single supercomputer system has as many optical links as the whole worldwide web together, and it is envisaged that future computing chips will contain multiple electronic processor cores...... with a photonic layer on top to interconnect them. For such systems, silicon is an attractive candidate enabling both electronic and photonic control. For some network scenarios, it may be beneficial to use optical on-chip packet switching, and for high data-density environments one may take advantage...

  6. Real-time turbulence profiling with a pair of laser guide star Shack-Hartmann wavefront sensors for wide-field adaptive optics systems on large to extremely large telescopes.

    Science.gov (United States)

    Gilles, L; Ellerbroek, B L

    2010-11-01

    Real-time turbulence profiling is necessary to tune tomographic wavefront reconstruction algorithms for wide-field adaptive optics (AO) systems on large to extremely large telescopes, and to perform a variety of image post-processing tasks involving point-spread function reconstruction. This paper describes a computationally efficient and accurate numerical technique inspired by the slope detection and ranging (SLODAR) method to perform this task in real time from properly selected Shack-Hartmann wavefront sensor measurements accumulated over a few hundred frames from a pair of laser guide stars, thus eliminating the need for an additional instrument. The algorithm is introduced, followed by a theoretical influence function analysis illustrating its impulse response to high-resolution turbulence profiles. Finally, its performance is assessed in the context of the Thirty Meter Telescope multi-conjugate adaptive optics system via end-to-end wave optics Monte Carlo simulations.

  7. All-optical high performance graphene-photonic crystal switch

    Science.gov (United States)

    Hoseini, Mehrdad; Malekmohammad, Mohammad

    2017-01-01

    The all-optical switch is realized based on nonlinear transmission changes in Fano resonance of 2D photonic crystals (PhC) which enhances the light intensity on the graphene in PhC; and in this study, the graphene layer is used as the nonlinear material. The refractive index change of graphene layer leads to a shift in the Fano resonance frequency due to the input light intensity through the Kerr nonlinear effect. Through finite-difference time-domain simulation, it is found that the high performance of all-optical switching can be achieved by the designed structure with a threshold pump intensity as low as MW/cm2. This structure is featured by optical bistability. The obtained results are applicable in micro optical integrated circuits for modulators, switches and logic elements for optical computation.

  8. Ultra-high Frequency Linear Fiber Optic Systems

    CERN Document Server

    Lau, Kam

    2011-01-01

    This book provides an in-depth treatment of both linear fiber-optic systems and their key enabling devices. It presents a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers. To the second edition of this book important new aspects of linear fiber-optic transmission technologies are added, such as high level system architectural issues, algorithms for deriving the optimal frequency assignment, directly modulated or externally modulated laser t...

  9. CLASH: Extreme Emission Line Galaxies and Their Implication on Selection of High-Redshift Galaxies

    CERN Document Server

    Huang, Xingxing; Wang, Junxian; Ford, Holland; Lemze, Doron; Moustakas, John; Shu, Xinwen; Van der Wel, Arjen; Zitrin, Adi; Frye, Brenda L; Postman, Marc; Bartelmann, Matthias; Benitez, Narciso; Bradley, Larry; Broadhurst, Tom; Coe, Dan; Donahue, Megan; Infante, Leopoldo; Kelson, Daniel; Koekemoer, Anton; Lahav, Ofer; Medezinski, Elinor; Moustakas, Leonidas; Rosati, Piero; Seitz, Stella; Umetsu, Keiichi

    2014-01-01

    We utilize the CLASH (Cluster Lensing And Supernova survey with Hubble) observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y105) and F125W (J125), as the flux of the central bands could be enhanced by the presence of [O III] 4959, 5007 at redshift of about 0.93-1.14 and 1.57-1.79, respectively. The multi-band observations help to constrain the equivalent widths of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-frame [O III] 4959,5007 equivalent width of about 3737 angstrom. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high equivalent width can be only found in such faint galaxies. These EELGs can mimic the dropout feature similar to that of high redshift galaxies and contaminate the color-color selection of high redshift galaxies when the S/N ratio is limited ...

  10. CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xingxing; Wang, Junxian; Shu, Xinwen [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, Wei; Ford, Holland; Lemze, Doron [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States); Van der Wel, Arjen [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg (Germany); Zitrin, Adi [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Frye, Brenda L. [Steward Observatory/Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Postman, Marc; Bradley, Larry; Coe, Dan [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Bartelmann, Matthias [Leiden Observatory, Leiden University, P. O. Box 9513, 2300 RA Leiden (Netherlands); Benítez, Narciso [Instituto de Astrofísica de Andalucía (CSIC), C/Camino Bajo de Huétor 24, Granada E-18008 (Spain); Broadhurst, Tom [Department of Theoretical Physics, University of Basque Country UPV/EHU E-Bilbao (Spain); Donahue, Megan [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Infante, Leopoldo, E-mail: hxx@mail.ustc.edu.cn [Departamento de Astronoía y Astrofísica, Pontificia Universidad Católica de Chile, V. Mackenna 4860 Santiago 22 (Chile); and others

    2015-03-01

    We utilize the Cluster Lensing And Supernova survey with Hubble observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y {sub 105}) and F125W (J {sub 125}), as the flux of the central bands could be enhanced by the presence of [O III] λλ4959, 5007 at redshifts of ∼0.93-1.14 and 1.57-1.79, respectively. The multiband observations help to constrain the equivalent widths (EWs) of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-frame [O III] λλ4959, 5007 EW of ≅ 3700 Å. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high EW can only be found in such faint galaxies. These EELGs can mimic a dropout feature similar to that of high-redshift galaxies and contaminate the color-color selection of high-redshift galaxies when the signal-to-noise ratio is limited or the band coverage is incomplete.

  11. Laboratory measurements of materials in extreme conditions; The use of high energy radiation sources for high pressure studies

    Energy Technology Data Exchange (ETDEWEB)

    Cauble, R.; Remington, B.A.

    1998-06-01

    High energy lasers can be used to study material conditions that are appropriate fort inertial confinement fusion: that is, materials at high densities, temperatures, and pressures. Pulsed power devices can offer similar opportunities. The National Ignition Facility (NIF) will be a high energy multi-beam laser designed to achieve the thermonuclear ignition of a mm-scale DT-filled target in the laboratory. At the same time, NE will provide the physics community with a unique tool for the study of high energy density matter at states unreachable by any other laboratory technique. Here we describe how these lasers and pulsed power tools can contribute to investigations of high energy density matter in the areas of material properties and equations of state, extend present laboratory shock techniques such as high-speed jets to new regimes, and allow study of extreme conditions found in astrophysical phenomena.

  12. HELIOS—A laboratory based on high-order harmonic generation of extreme ultraviolet photons for time-resolved spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Plogmaker, S., E-mail: Stefan.Plogmaker@physics.uu.se, E-mail: Joachim.Terschluesen@physics.uu.se, E-mail: Johan.Soderstrom@physics.uu.se; Terschlüsen, J. A., E-mail: Stefan.Plogmaker@physics.uu.se, E-mail: Joachim.Terschluesen@physics.uu.se, E-mail: Johan.Soderstrom@physics.uu.se; Krebs, N.; Svanqvist, M.; Forsberg, J.; Cappel, U. B.; Rubensson, J.-E.; Siegbahn, H.; Söderström, J., E-mail: Stefan.Plogmaker@physics.uu.se, E-mail: Joachim.Terschluesen@physics.uu.se, E-mail: Johan.Soderstrom@physics.uu.se [Department of Physics and Astronomy, Molecular and Condensed Matter Physics, Uppsala University, P.O. Box 516, 75120 Uppsala (Sweden)

    2015-12-15

    In this paper, we present the HELIOS (High Energy Laser Induced Overtone Source) laboratory, an in-house high-order harmonic generation facility which generates extreme ultraviolet (XUV) photon pulses in the range of 15-70 eV with monochromatized XUV pulse lengths below 35 fs. HELIOS is a source for time-resolved pump-probe/two-color spectroscopy in the sub-50 fs range, which can be operated at 5 kHz or 10 kHz. An optical parametric amplifier is available for pump-probe experiments with wavelengths ranging from 240 nm to 20 000 nm. The produced XUV radiation is monochromatized by a grating in the so-called off-plane mount. Together with overall design parameters, first monochromatized spectra are shown with an intensity of 2 ⋅ 10{sup 10} photons/s (at 5 kHz) in the 29th harmonic, after the monochromator. The XUV pulse duration is measured to be <25 fs after monochromatization.

  13. HELIOS—A laboratory based on high-order harmonic generation of extreme ultraviolet photons for time-resolved spectroscopy

    Science.gov (United States)

    Plogmaker, S.; Terschlüsen, J. A.; Krebs, N.; Svanqvist, M.; Forsberg, J.; Cappel, U. B.; Rubensson, J.-E.; Siegbahn, H.; Söderström, J.

    2015-12-01

    In this paper, we present the HELIOS (High Energy Laser Induced Overtone Source) laboratory, an in-house high-order harmonic generation facility which generates extreme ultraviolet (XUV) photon pulses in the range of 15-70 eV with monochromatized XUV pulse lengths below 35 fs. HELIOS is a source for time-resolved pump-probe/two-color spectroscopy in the sub-50 fs range, which can be operated at 5 kHz or 10 kHz. An optical parametric amplifier is available for pump-probe experiments with wavelengths ranging from 240 nm to 20 000 nm. The produced XUV radiation is monochromatized by a grating in the so-called off-plane mount. Together with overall design parameters, first monochromatized spectra are shown with an intensity of 2 ṡ 1010 photons/s (at 5 kHz) in the 29th harmonic, after the monochromator. The XUV pulse duration is measured to be <25 fs after monochromatization.

  14. HELIOS--A laboratory based on high-order harmonic generation of extreme ultraviolet photons for time-resolved spectroscopy.

    Science.gov (United States)

    Plogmaker, S; Terschlüsen, J A; Krebs, N; Svanqvist, M; Forsberg, J; Cappel, U B; Rubensson, J-E; Siegbahn, H; Söderström, J

    2015-12-01

    In this paper, we present the HELIOS (High Energy Laser Induced Overtone Source) laboratory, an in-house high-order harmonic generation facility which generates extreme ultraviolet (XUV) photon pulses in the range of 15-70 eV with monochromatized XUV pulse lengths below 35 fs. HELIOS is a source for time-resolved pump-probe/two-color spectroscopy in the sub-50 fs range, which can be operated at 5 kHz or 10 kHz. An optical parametric amplifier is available for pump-probe experiments with wavelengths ranging from 240 nm to 20,000 nm. The produced XUV radiation is monochromatized by a grating in the so-called off-plane mount. Together with overall design parameters, first monochromatized spectra are shown with an intensity of 2 ⋅ 10(10) photons/s (at 5 kHz) in the 29th harmonic, after the monochromator. The XUV pulse duration is measured to be <25 fs after monochromatization.

  15. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    Science.gov (United States)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  16. Optical communications and a comparison of optical technologies for a high data rate return link from Mars

    Science.gov (United States)

    Spence, Rodney L.

    1993-01-01

    The important principles of direct- and heterodyne-detection optical free-space communications are reviewed. Signal-to-noise-ratio (SNR) and bit-error-rate (BER) expressions are derived for both the direct-detection and heterodyne-detection optical receivers. For the heterodyne system, performance degradation resulting from received-signal and local oscillator-beam misalignment and laser phase noise is analyzed. Determination of interfering background power from local and extended background sources is discussed. The BER performance of direct- and heterodyne-detection optical links in the presence of Rayleigh-distributed random pointing and tracking errors is described. Finally, several optical systems employing Nd:YAG, GaAs, and CO2 laser sources are evaluated and compared to assess their feasibility in providing high-data-rate (10- to 1000-Mbps) Mars-to-Earth communications. It is shown that the root mean square (rms) pointing and tracking accuracy is a critical factor in defining the system transmitting laser-power requirements and telescope size and that, for a given rms error, there is an optimum telescope aperture size that minimizes the required power. The results of the analysis conducted indicate that, barring the achievement of extremely small rms pointing and tracking errors (less than 0.2 microrad), the two most promising types of optical systems are those that use an Nd:YAG laser (lambda = 1.064 microns) and high-order pulse position modulator (PPM) and direct detection, and those that use a CO2 laser (lambda = 10.6 microns) and phase shifting keying homodyne modulation and coherent detection. For example, for a PPM order of M = 64 and an rms pointing accuracy of 0.4 microrad, an Nd:YAG system can be used to implement a 100-Mbps Mars link with a 40-cm transmitting telescope, a 20-W laser, and a 10-m receiving photon bucket. Under the same conditions, a CO2 system would require 3-m transmitting and receiving telescopes and a 32-W laser to implement such

  17. Recent progress on high-speed optical transmission

    Directory of Open Access Journals (Sweden)

    Jianjun Yu

    2016-05-01

    Full Text Available The recently reported high spectral efficiency (SE and high-baud-rate signal transmission are all based on digital coherent optical communications and digital signal processing (DSP. DSP simplifies the reception of advanced modulation formats and also enables the major electrical and optical impairments to be processed and compensated in the digital domain, at the transmitter or receiver side. In this paper, we summarize the research progress on high-speed signal generation and detection and also show the progress on DSP for high-speed signal detection. We also report the latest progress on multi-core and multi-mode multiplexing.

  18. Compact high-resolution spectrographs for large and extremely large telescopes: using the diffraction limit

    CERN Document Server

    Robertson, J Gordon

    2012-01-01

    As telescopes get larger, the size of a seeing-limited spectrograph for a given resolving power becomes larger also, and for ELTs the size will be so great that high resolution instruments of simple design will be infeasible. Solutions include adaptive optics (but not providing full correction for short wavelengths) or image slicers (which give feasible but still large instruments). Here we develop the solution proposed by Bland-Hawthorn and Horton: the use of diffraction-limited spectrographs which are compact even for high resolving power. Their use is made possible by the photonic lantern, which splits a multi-mode optical fiber into a number of single-mode fibers. We describe preliminary designs for such spectrographs, at a resolving power of R ~ 50,000. While they are small and use relatively simple optics, the challenges are to accommodate the longest possible fiber slit (hence maximum number of single-mode fibers in one spectrograph) and to accept the beam from each fiber at a focal ratio considerably ...

  19. Optical sensing in high voltage transmission lines using power over fiber and free space optics

    Science.gov (United States)

    Rosolem, João Batista; Bassan, Fabio Renato; Penze, Rivael Strobel; Leonardi, Ariovaldo Antonio; Fracarolli, João Paulo Vicentini; Floridia, Claudio

    2015-12-01

    In this work we propose the use of power over fiber (PoF) and free space optics (FSO) techniques to powering and receive signals from an electrical current sensor placed at high voltage potential using a pair of optical collimators. The technique evaluation was performed in a laboratorial prototype using 62.5/125 μm multimode fiber to study the sensitivity of the optical alignment and the influence of the collimation process in the sensing system wavelengths: data communication (1310 nm) and powering (830 nm). The collimators were installed in a rigid electric insulator in order to maintain the stability of transmission.

  20. High-throughput proteomics : optical approaches.

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, George S.

    2008-09-01

    Realistic cell models could greatly accelerate our ability to engineer biochemical pathways and the production of valuable organic products, which would be of great use in the development of biofuels, pharmaceuticals, and the crops for the next green revolution. However, this level of engineering will require a great deal more knowledge about the mechanisms of life than is currently available. In particular, we need to understand the interactome (which proteins interact) as it is situated in the three dimensional geometry of the cell (i.e., a situated interactome), and the regulation/dynamics of these interactions. Methods for optical proteomics have become available that allow the monitoring and even disruption/control of interacting proteins in living cells. Here, a range of these methods is reviewed with respect to their role in elucidating the interactome and the relevant spatial localizations. Development of these technologies and their integration into the core competencies of research organizations can position whole institutions and teams of researchers to lead in both the fundamental science and the engineering applications of cellular biology. That leadership could be particularly important with respect to problems of national urgency centered around security, biofuels, and healthcare.

  1. Exploring the origin of high optical absorption in conjugated polymers

    KAUST Repository

    Vezie, Michelle S.

    2016-05-16

    The specific optical absorption of an organic semiconductor is critical to the performance of organic optoelectronic devices. For example, higher light-harvesting efficiency can lead to higher photocurrent in solar cells that are limited by sub-optimal electrical transport. Here, we compare over 40 conjugated polymers, and find that many different chemical structures share an apparent maximum in their extinction coefficients. However, a diketopyrrolopyrrole-thienothiophene copolymer shows remarkably high optical absorption at relatively low photon energies. By investigating its backbone structure and conformation with measurements and quantum chemical calculations, we find that the high optical absorption can be explained by the high persistence length of the polymer. Accordingly, we demonstrate high absorption in other polymers with high theoretical persistence length. Visible light harvesting may be enhanced in other conjugated polymers through judicious design of the structure.

  2. Magneto-Optical Activity in High Index Dielectric Nanoantennas

    CERN Document Server

    de Sousa, N; Sáenz, J J; García-Martín, A

    2016-01-01

    The magneto-optical activity, namely the polarization conversion capabilities of high-index, non-absorbing, core-shell dielectric nanospheres is theoretically analyzed. We show that, in analogy with their plasmonic counterparts, the polarization conversion in resonant dielectric particles is linked to the amount of electromagnetic field probing the magneto-optical material in the system. However, in strong contrast with plasmon nanoparticles, due to the peculiar distribution of the internal fields in resonant dielectric spheres, the magneto-optical response is fully governed by the magnetic (dipolar and quadrupolar) resonances with little effect of the electric ones.

  3. Optical levitation of high purity nanodiamonds in vacuum without heating

    CERN Document Server

    Frangeskou, A C; Gines, L; Mandal, S; Williams, O A; Barker, P F; Morley, G W

    2016-01-01

    Levitated nanodiamonds containing nitrogen vacancy centres in high vacuum are a potential test bed for numerous phenomena in fundamental physics. However, experiments so far have been limited to low vacuum due to heating arising from optical absorption of the trapping laser. We show that milling pure diamond creates nanodiamonds that do not heat up as the optical intensity is raised above 700 GW/m$^2$ below 5 mbar of pressure. This advance now means that the level of attainable vacuum for nanodiamonds in optical dipole traps is no longer temperature limited.

  4. Research of high speed optical switch based on compound semiconductor

    Institute of Scientific and Technical Information of China (English)

    WANG MingHua; QI Wei; YU Hui; JIANG XiaoQing; YANG JianYi

    2009-01-01

    High-speed optical switch and its array are the crucial components of all-optical switching system. This paper presents the analytical model of a total-internal-reflection (TIR) optical switch. By employing the carrier injection effect in GaAs and the GaAs/AlGaAs double heterojunction structure, the X-junction TIR switch and the Mach-Zehnder interference (MZI) switch are demonstrated at 1.55 IJm. The measured results show that the extinction ratio of both switches exceeds 20 dB. The switching speed reaches the scale of 10 ns.

  5. High-speed image matching with coaxial holographic optical correlator

    Science.gov (United States)

    Ikeda, Kanami; Watanabe, Eriko

    2016-09-01

    A computation speed of more than 100 Gbps is experimentally demonstrated using our developed ultrahigh-speed optical correlator. To verify this high computation speed practically, the computation speeds of our optical correlator and conventional digital image matching are quantitatively compared. We use a population count function that achieves the fastest calculation speed when calculating binary matching by a central processing unit (CPU). The calculation speed of the optical correlator is dramatically faster than that using a CPU (2.40 GHz × 4) and 16 GB of random access memory, especially when the calculation data are large-scale.

  6. Design, performance, and early results from extremely high Doppler precision instruments in a global network

    Science.gov (United States)

    Ge, Jian; Zhao, Bo; Groot, John; Chang, Liang; Varosi, Frank; Wan, Xiaoke; Powell, Scott; Jiang, Peng; Hanna, Kevin; Wang, Ji; Pais, Rohan; Liu, Jian; Dou, Liming; Schofield, Sidney; McDowell, Shaun; Costello, Erin; Delgado-Navarro, Adriana; Fleming, Scott; Lee, Brian; Bollampally, Sandeep R.; Bosman, Troy; Jakeman, Hali; Fletcher, Adam; Marquez, Gabriel

    2010-07-01

    We report design, performance and early results from two of the Extremely High Precision Extrasolar Planet Tracker Instruments (EXPERT) as part of a global network for hunting for low mass planets in the next decade. EXPERT is a combination of a thermally compensated monolithic Michelson interferometer and a cross-dispersed echelle spectrograph for extremely high precision Doppler measurements for nearby bright stars (e.g., 1m/s for a V=8 solar type star in 15 min exposure). It has R=18,000 with a 72 micron slit and a simultaneous coverage of 390-694 nm. The commissioning results show that the instrument has already produced a Doppler precision of about 1 m/s for a solar type star with S/N~100 per pixel. The instrument has reached ~4 mK (P-V) temperature stability, ~1 mpsi pressure stability over a week and a total instrument throughput of ~30% at 550 nm from the fiber input to the detector. EXPERT also has a direct cross-dispersed echelle spectroscopy mode fed with 50 micron fibers. It has spectral resolution of R=27,000 and a simultaneous wavelength coverage of 390-1000 nm.

  7. Soliton-based ultra-high speed optical communications

    Indian Academy of Sciences (India)

    Akira Hasegawa

    2001-11-01

    Multi-terabit/s, ultra-high speed optical transmissions over several thousands kilometers on fibers are becoming a reality. Most use RZ (Return to Zero) format in dispersion-managed fibers. This format is the only stable waveform in the presence of fiber Kerr nonlinearity and dispersion in all optical transmission lines with loss compensated by periodic amplifications. The nonlinear Schrödinger equation assisted by the split step numerical solutions is commonly used as the master equation to describe the information transfer in optical fibers. All these facts are the outcome of research on optical solitons in fibers in spite of the fact that the commonly used RZ format is not always called a soliton format. The overview presented here attempts to incorporate the role of soliton-based communications research in present day ultra-high speed communications.

  8. High-Order Modulation for Optical Fiber Transmission

    CERN Document Server

    Seimetz, Matthias

    2009-01-01

    Catering to the current interest in increasing the spectral efficiency of optical fiber networks by the deployment of high-order modulation formats, this monograph describes transmitters, receivers and performance of optical systems with high-order phase and quadrature amplitude modulation. In the first part of the book, the author discusses various transmitter implementation options as well as several receiver concepts based on direct and coherent detection, including designs of new structures. Hereby, both optical and electrical parts are considered, allowing the assessment of practicability and complexity. In the second part, a detailed characterization of optical fiber transmission systems is presented, regarding a wide range of modulation formats. It provides insight in the fundamental behavior of different formats with respect to relevant performance degradation effects and identifies the major trends in system performance.

  9. Synthesis of high purity metal oxide nanoparticles for optical applications

    Science.gov (United States)

    Baker, C.; Kim, W.; Friebele, E. J.; Villalobos, G.; Frantz, J.; Shaw, L. B.; Sadowski, B.; Fontana, J.; Dubinskii, M.; Zhang, J.; Sanghera, J.

    2014-09-01

    In this paper we present our recent research results in synthesizing various metal oxide nanoparticles for use as laser gain media (solid state as well as fiber lasers) and transparent ceramic windows via two separate techniques, co-precipitation and flame spray pyrolysis. The nanoparticles were pressed into ceramic discs that exhibited optical transmission approaching the theoretical limit and showed very high optical-to-optical lasing slope efficiency. We have also synthesized sesquioxide nanoparticles using a Flame Spray Pyrolysis (FSP) technique that leads to the synthesis of a metastable phase of sesquioxide which allows fabricating excellent optical quality transparent windows with very fine grain sizes. Finally, we present our research in the synthesis of rare earth doped boehmite nanoparticles where the rareearth ion is encased in a cage of aluminum and oxygen to prevent ion-ion proximity and energy transfer. The preforms have been drawn into fibers exhibiting long lifetimes and high laser efficiencies.

  10. High speed nonlinear optical components for next-generation optical communications

    OpenAIRE

    Cleary, Ciaran Sean

    2013-01-01

    Electronic signal processing systems currently employed at core internet routers require huge amounts of power to operate and they may be unable to continue to satisfy consumer demand for more bandwidth without an inordinate increase in cost, size and/or energy consumption. Optical signal processing techniques may be deployed in next-generation optical networks for simple tasks such as wavelength conversion, demultiplexing and format conversion at high speed (≥100Gb.s-1) to alleviate the pres...

  11. High directivity optical antenna substrates for surface enhanced Raman scattering.

    Science.gov (United States)

    Wang, Dongxing; Zhu, Wenqi; Chu, Yizhuo; Crozier, Kenneth B

    2012-08-22

    A two-dimensional array of gold optical antennas integrated with a one-dimensional array of gold strips and mirrors is introduced and fabricated. The experimental results show that this design achieves average surface-enhanced Raman scattering (SERS) enhancement factors as high as 1.2 × 10(10) , which is more than two orders of magnitude larger than optical antennas without the gold strips and gold mirror.

  12. Electrophoretic High Molecular Weight DNA Purification Enables Optical Mapping

    OpenAIRE

    Maydan, Jason; THOMAS, Matthew; Tabanfar, Leyla; Mai, Laura; Poon, Hau-Ling; Pe, Joel; HAHN, KRISTEN; Goji, Noriko; Amoako, Kingsley; Marziali, Andre; Hanson, Dan

    2013-01-01

    Optical mapping generates an ordered restriction map from single, long DNA molecules. By overlapping restriction maps from multiple molecules, a physical map of entire chromosomes and genomes is constructed, greatly facilitating genome assembly in next generation sequencing projects, comparative genomics and strain typing. However, optical mapping relies on a method of preparing high quality DNA >250 kb in length, which can be challenging from some organisms and sample types. Here we demonstr...

  13. TOPICAL REVIEW: Optics of high-performance electron microscopes

    OpenAIRE

    H H Rose

    2008-01-01

    During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by...

  14. Modeling of the blood flow in the lower extremities for dynamic diffuse optical tomography of peripheral artery disease

    Science.gov (United States)

    Marone, A.; Hoi, J. W.; Khalil, M. A.; Kim, H. K.; Shrikhande, G.; Dayal, R.; Hielscher, A. H.

    2015-07-01

    Peripheral Arterial Disease (PAD) is caused by a reduction of the internal diameters of the arteries in the upper or lower extremities mainly due to atherosclerosis. If not treated, its worsening may led to a complete occlusion, causing the death of the cells lacking proper blood supply, followed by gangrene that may require chirurgical amputation. We have recently performed a clinical study in which good sensitivities and specificities were achieved with dynamic diffuse optical tomography. To gain a better understanding of the physiological foundations of many of the observed effects, we started to develop a mathematical model for PAD. The model presented in this work is based on a multi-compartment Windkessel model, where the vasculature in the leg and foot is represented by resistors and capacitors, the blood pressure with a voltage drop, and the blood flow with a current. Unlike existing models, the dynamics induced by a thigh-pressure-cuff inflation and deflation during the measurements are taken into consideration. This is achieved by dynamically varying the resistances of the large veins and arteries. By including the effects of the thigh-pressure cuff, we were able to explain many of the effects observed during our dynamic DOT measurements, including the hemodynamics of oxy- and deoxy-hemoglobin concentration changes. The model was implemented in MATLAB and the simulations were normalized and compared with the blood perfusion obtained from healthy, PAD and diabetic patients. Our preliminary results show that in unhealthy patients the total system resistance is sensibly higher than in healthy patients.

  15. High Average Power Optical FEL Amplifiers

    CERN Document Server

    Ben-Zvi, I; Litvinenko, V

    2005-01-01

    Historically, the first demonstration of the FEL was in an amplifier configuration at Stanford University. There were other notable instances of amplifying a seed laser, such as the LLNL amplifier and the BNL ATF High-Gain Harmonic Generation FEL. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance a 100 kW average power FEL. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting energy recovery linacs combine well with the high-gain FEL amplifier to produce unprecedented average power FELs with some advantages. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Li...

  16. Global Distribution of Extreme Precipitation and High-Impact Landslides in 2010 Relative to Previous Years

    Science.gov (United States)

    Kirschbaum, Dalia; Adler, Robert; Adler, David; Peters-Lidard, Christa; Huffman, George

    2012-01-01

    It is well known that extreme or prolonged rainfall is the dominant trigger of landslides worldwide. While research has evaluated the spatiotemporal distribution of extreme rainfall and landslides at local or regional scales using in situ data, few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This study uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from TRMM data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurrence of precipitation and landslides globally. Evaluation of the GLC indicates that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This study characterizes the variability of satellite precipitation data and reported landslide activity at the globally scale in order to improve landslide cataloging, forecasting and quantify potential triggering sources at daily, monthly and yearly time scales.

  17. Extreme Learning Machines on High Dimensional and Large Data Applications: A Survey

    Directory of Open Access Journals (Sweden)

    Jiuwen Cao

    2015-01-01

    Full Text Available Extreme learning machine (ELM has been developed for single hidden layer feedforward neural networks (SLFNs. In ELM algorithm, the connections between the input layer and the hidden neurons are randomly assigned and remain unchanged during the learning process. The output connections are then tuned via minimizing the cost function through a linear system. The computational burden of ELM has been significantly reduced as the only cost is solving a linear system. The low computational complexity attracted a great deal of attention from the research community, especially for high dimensional and large data applications. This paper provides an up-to-date survey on the recent developments of ELM and its applications in high dimensional and large data. Comprehensive reviews on image processing, video processing, medical signal processing, and other popular large data applications with ELM are presented in the paper.

  18. Extreme ultraviolet spectroscopy and atomic models of highly charged heavy ions in the Large Helical Device

    Science.gov (United States)

    Suzuki, C.; Murakami, I.; Koike, F.; Tamura, N.; Sakaue, H. A.; Morita, S.; Goto, M.; Kato, D.; Ohashi, H.; Higashiguchi, T.; Sudo, S.; O'Sullivan, G.

    2017-01-01

    We report recent results of extreme ultraviolet (EUV) spectroscopy of highly charged heavy ions in plasmas produced in the Large Helical Device (LHD). The LHD is an ideal source of experimental databases of EUV spectra because of high brightness and low opacity, combined with the availability of pellet injection systems and reliable diagnostic tools. The measured heavy elements include tungsten, tin, lanthanides and bismuth, which are motivated by ITER as well as a variety of plasma applications such as EUV lithography and biological microscopy. The observed spectral features drastically change between quasicontinuum and discrete depending on the plasma temperature, which leads to some new experimental identifications of spectral lines. We have developed collisional-radiative models for some of these ions based on the measurements. The atomic number dependence of the spectral feature is also discussed.

  19. Extreme Energy Events Project: Construction of the detectors and installation in Italian High Schools

    CERN Document Server

    Abbrescia, M; An, S; Antolini, R; Badalà, A; Baldini Ferroli, R; Bencivenni, G; Blanco, F; Bressan, E; Chiavassa, A; Chiri, C; Cifarelli, L; Cindolo, F; Coccia, E; De Pasquale, S; Di Giovanni, A; D’Incecco, M; Fabbri, F L; Frolov, V; Garbini, M; Gustavino, C; Hatzifotiadou, D; Imponente, G; Kim, J; La Rocca, P; Librizzi, F; Maggiora, A; Menghetti, H; Miozzi, S; Moro, R; Panareo, M; Pappalardo, G S; Piragino, G; Riggi, F; Romano, F; Sartorelli, G; Sbarra, C; Selvi, M; Serci, S; Williams, C; Zuyeuski, R

    2008-01-01

    The EEE Project, conceived by its leader Antonino Zichichi, aims to detect Extreme Energy Events of cosmic rays with an array of muon telescopes distributed over the Italian territory. The Project involves Italian High Schools in order to introduce young people to Physics, also countervailing the recent crisis of university scientific classes inscriptions. The detectors for the EEE telescopes are Multigap Resistive Plate Chambers (MRPC) and have been constructed by teams of High School students who went in shift at the CERN laboratories. The mechanics and the electronics were developed by groups of researchers from CERN, the Italian Centro Fermi and INFN. The first group of schools of the EEE Project has inaugurated their telescopes recently. A status report of the Project and the preliminary results are presented.

  20. The physiology of extremes: Ancel Keys and the International High Altitude Expedition of 1935.

    Science.gov (United States)

    Tracy, Sarah W

    2012-01-01

    This article examines the International High Altitude Expedition of 1935 and its significance in the life and science of Ancel Keys. Both the expedition and Keys's story afford excellent opportunities to explore the growing reach of interwar physiology into extreme climates-whether built or natural. As IHAE scientists assessed human performance and adaptation to hypoxia, low barometric pressure, and cold, they not only illuminated the physiological and psychological processes of high altitude acclimatization, but they also drew borderlines between the normal and the pathological, paved the way for the neocolonial exploitation of natural and human resources in Latin America, and pioneered field methods in physiology that were adapted and adopted by the Allied Forces during the Second World War. This case study in the physiology of place reveals the power and persistence of environmental determinism within biomedicine well into the twentieth century.

  1. Feasibility of High-Repetition, Task-Specific Training for Individuals With Upper-Extremity Paresis

    Science.gov (United States)

    Waddell, Kimberly J.; Birkenmeier, Rebecca L.; Moore, Jennifer L.; Hornby, T. George

    2014-01-01

    OBJECTIVE. We investigated the feasibility of delivering an individualized, progressive, high-repetition upper-extremity (UE) task-specific training protocol for people with stroke in the inpatient rehabilitation setting. METHOD. Fifteen patients with UE paresis participated in this study. Task-specific UE training was scheduled for 60 min/day, 4 days/wk, during occupational therapy for the duration of a participant’s inpatient stay. During each session, participants were challenged to complete ≥300 repetitions of various tasks. RESULTS. Participants averaged 289 repetitions/session, spending 47 of 60 min in active training. Participants improved on impairment and activity level outcome measures. CONCLUSION. People with stroke in an inpatient setting can achieve hundreds of repetitions of task-specific training in 1-hr sessions. As expected, all participants improved on functional outcome measures. Future studies are needed to determine whether this high-repetition training program results in better outcomes than current UE interventions. PMID:25005508

  2. Beyond Extreme Ultra Violet (BEUV) Radiation from Spherically symmetrical High-Z plasmas

    Science.gov (United States)

    Yoshida, Kensuke; Fujioka, Shinsuke; Higashiguchi, Takeshi; Ugomori, Teruyuki; Tanaka, Nozomi; Kawasaki, Masato; Suzuki, Yuhei; Suzuki, Chihiro; Tomita, Kentaro; Hirose, Ryouichi; Eshima, Takeo; Ohashi, Hayato; Nishikino, Masaharu; Scally, Enda; Nshimura, Hiroaki; Azechi, Hiroshi; O'Sullivan, Gerard

    2016-03-01

    Photo-lithography is a key technology for volume manufacture of high performance and compact semiconductor devices. Smaller and more complex structures can be fabricated by using shorter wavelength light in the photolithography. One of the most critical issues in development of the next generation photo-lithography is to increase energy conversion efficiency (CE) from laser to shorter wavelength light. Experimental database of beyond extreme ultraviolet (BEUV) radiation was obtained by using spherically symmetrical high-Z plasmas generated with spherically allocated laser beams. Absolute energy and spectra of BEUV light emitted from Tb, Gd, and Mo plasmas were measured with a absolutely calibrated BEUV calorimeter and a transmission grating spectrometer. 1.0 x 1012 W/cm2 is the optimal laser intensity to produced efficient BEUV light source plasmas with Tb and Gd targets. Maximum CE is achieved at 0.8% that is two times higher than the published CEs obtained with planar targets.

  3. Mode profiling of optical fibers at high laser powers

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Pedersen, David Bue; Simonsen, R.B.

    2008-01-01

    This paper describes the development of a measuring equipment capable of analysing the beam profile at high optical powers emitted by delivery fibers used in manufacturing processes. Together with the optical delivery system, the output beam quality from the delivery fiber and the shape...... of the focused spot can be determined. The analyser is based on the principle of a rotating wire being swept though the laser beam, while the reflected signal is recorded [1]. By changing the incident angle of the rotating rod from 0° to 360° in relation to the fiber, the full profile of the laser beam...... is obtained. Choosing a highly reflective rod material and a sufficiently high rotation speed, these measurements can be done with high laser powers, without any additional optical elements between the fiber and analyzer. The performance of the analyzer was evaluated by coupling laser light into different...

  4. Relaxation mechanisms affecting magneto-optical resonances in an extremely thin cell: experiment and theory for the cesium D$_1$ line

    CERN Document Server

    Auzinsh, M; Ferber, R; Gahbauer, F; Kalnins, U; Kalvans, L; Rundans, R; Sarkisyan, D

    2014-01-01

    We have measured magneto-optical signals obtained by exciting the $D_1$ line of cesium atoms confined to an extremely thin cell (ETC), whose walls are separated by less than one micrometer, and developed an improved theoretical model to describe these signals with experimental precision. The theoretical model was based on the optical Bloch equations and included all neighboring hyperfine transitions, the mixing of the magnetic sublevels in an external magnetic field, and the Doppler effect, as in previous studies. However, in order to model the extreme conditions in the ETC more realistically, the model was extended to include a unified treatment of transit relaxation and wall collisions with relaxation rates that were obtained directly from the thermal velocities of the atoms and the length scales involved. Furthermore, the interaction of the atoms with different regions of the laser beam were modeled separately to account for the varying laser beam intensity over the beam profile as well as saturation effec...

  5. Strength of metals in liquid and solid states at extremely high tension produced by femtosecond laser heating

    Science.gov (United States)

    Ashitkov, Sergey I.; Inogamov, Nail A.; Komarov, Pavel S.; Zhakhovsky, Vasily V.; Oleynik, Ivan I.; Agranat, Mikhail B.; Kanel, Gennady I.; Fortov, Vladimir E.

    2012-07-01

    We will discuss results of combined experimental and theoretical investigations of ablation and laser-driven shock-wave phenomena in metal films irradiated by femtosecond laser pulses. The femtosecond interferometric microscopy technique was used to make time-resolved measurements of optical properties as well as record the deformation dynamics at both the rear and frontal surfaces during initial two-temperature electron-ion relaxation and subsequent hydrodynamic expansion. In conjunction with experiment, the formation and propagation of strong tensile and compression waves were investigated by a combination of two-temperature hydrodynamic modeling and molecular dynamics simulations. The experimental tensile strengths of aluminum and nickel in solid and liquid states at extremely high strain rates in range 108÷109s-1 were obtained from the time evolution of rear and frontal surface velocities. Theoretical tensile strengths calculated by atomistic simulations of ablation and spallation using micron-sized films agree well with experiment. Elastic-plastic response of metallic films to shock compression investigated by both experiment and theory/modeling will also be discussed.

  6. Strength of metals in liquid and solid states at extremely high tension produced by femtosecond laser heating

    Energy Technology Data Exchange (ETDEWEB)

    Ashitkov, Sergey I.; Inogamov, Nail A.; Komarov, Pavel S.; Zhakhovsky, Vasily V.; Oleynik, Ivan I.; Agranat, Mikhail B.; Kanel, Gennady I.; Fortov, Vladimir E. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412 (Russian Federation); L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, Chernogolovka, 142432 (Russian Federation); Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412 (Russian Federation); Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412 (Russian Federation)

    2012-07-30

    We will discuss results of combined experimental and theoretical investigations of ablation and laser-driven shock-wave phenomena in metal films irradiated by femtosecond laser pulses. The femtosecond interferometric microscopy technique was used to make time-resolved measurements of optical properties as well as record the deformation dynamics at both the rear and frontal surfaces during initial two-temperature electron-ion relaxation and subsequent hydrodynamic expansion. In conjunction with experiment, the formation and propagation of strong tensile and compression waves were investigated by a combination of two-temperature hydrodynamic modeling and molecular dynamics simulations. The experimental tensile strengths of aluminum and nickel in solid and liquid states at extremely high strain rates in range 10{sup 8} Division-Sign 10{sup 9}s{sup -1} were obtained from the time evolution of rear and frontal surface velocities. Theoretical tensile strengths calculated by atomistic simulations of ablation and spallation using micron-sized films agree well with experiment. Elastic-plastic response of metallic films to shock compression investigated by both experiment and theory/modeling will also be discussed.

  7. A highly sensitive optical detector for use in deep underwater.

    Science.gov (United States)

    Hanada, H.; Hayashino, T.; Ito, M.; Iwasaki, A.; Kawamorita, K.; Kawamoto, H.; Matsumoto, T.; Narita, S.; Takayama, T.; Tanaka, S.; Yamaguchi, A.; Aoki, T.; Mitsui, K.; Ohashi, Y.; Okada, A.; Fukawa, M.; Uehara, S.; Bolesta, J. W.; Gorham, P. W.; Kondo, S.; Learned, J. G.; Matsuno, S.; Mignard, M.; Mitiguy, R.; O'Connor, D. J.; Peterson, V. Z.; Roberts, A.; Rosen, M.; Stenger, V. J.; Takemori, D.; Wilkins, G.; Grieder, P. K. F.; Minkowski, P.; Kitamura, T.; Camerini, U.; Grogan, W.; Jaworski, M.; March, R.; Narita, T.; Nicklaus, D.

    1998-05-01

    The authors have developed an optical detector module for use in deep underwater experiments that will search for high-energy neutrinos from cosmic rays and astronomical sources. This module is sensitive to single photons, is operable under high pressure, functions automatically and is remotely controlled.

  8. Phthalocyanine dye as an extremely photostable and highly fluorescent near-infrared labeling reagent

    Science.gov (United States)

    Peng, Xinzhan; Draney, Daniel R.; Volcheck, William M.; Bashford, Gregory R.; Lamb, Donald T.; Grone, Daniel L.; Zhang, Yonghong; Johnson, Craig M.

    2006-02-01

    Current organic fluorophores used as labeling reagents for biomolecule conjugation have significant limitations in photostability. This compromises their performance in applications that require a photostable fluorescent reporting group. For example, in molecular imaging and single molecule microscopy, photostable fluorescent labels are important for observing and tracking individual molecular events over extended period of time. We report in this paper an extremely photostable and highly fluorescent phthalocyanine dye, IRDye TM 700DX, as a near-infrared fluorescence labeling reagent to conjugate with biomolecules. This novel water-soluble silicon phthalocyanine dye has an isomericly pure chemical structure. The dye is about 45 to 128 times more photostable than current near-IR fluorophores, e.g. Alexa Fluor"R"680, Cy TM 5.5, Cy TM 7 and IRDye TM 800CW dyes; and about 27 times more photostable than tetramethylrhodamine (TMR), one of the most photostable organic dyes. This dye also meets all the other stringent requirements as an ideal fluorophore for biomolecules labeling such as excellent water solubility, no aggregation in high ionic strength buffer, large extinction coefficient and high fluorescent quantum yield. Antibodies conjugated with IRDye TM 700DX at high D/P ratio exist as monomeric species in high ionic buffer and have bright fluorescence. The IRDye TM 700DX conjugated antibodies generate sensitive, highly specific detection with very low background in Western blot and cytoblot assays.

  9. Design of a high-quality optical conjugate structure in optical tweezers.

    Science.gov (United States)

    Hu, Chunguang; An, Ran; Zhang, Chengwei; Lei, Hai; Hu, Xiaodong; Li, Hongbin; Hu, Xiaotang

    2015-02-20

    We propose an approach to realize a high-quality optical conjugate of a piezo-driven mirror (PM) in optical tweezers. Misalignments between the optical beam and the steering center of the PM are analyzed mathematically. The decentrations in different directions cause different changes, either a position change of the conjugate plane or a spot variation of the beam during PM steering. On the other hand, these misalignment-introduced problems provide the information to check the assembling errors. Thus a wanted conjugate plane of the PM can be effectively and precisely achieved according to the detection signals. This approach is also available to deal with multifactor coupling error. At the end, the procedure for error analysis is given by testing homebuilt optical tweezers.

  10. Graphene Embedded Modulator with Extremely Small Footprint and High Modulation Efficiency

    Directory of Open Access Journals (Sweden)

    Ran Hao

    2014-01-01

    Full Text Available By embedding graphene sheet in the silicon waveguide, the overall effective mode index displays unexpected symmetry and the electrorefraction effect has been significantly enhanced near the epsilon-near-zero point. An eight-layer graphene embedded Mach-Zehnder Modulator has been theoretically demonstrated with the advantage of ultracompact footprint (4 × 2 μm2, high modulation efficiency (1.316 V·μm, ultrafast modulation speed, and large extinction ratio. Our results may promote various on-chip active components, boosting the utilization of graphene in optical applications.

  11. Electrophoretic High Molecular Weight DNA Purification Enables Optical Mapping

    Science.gov (United States)

    Maydan, Jason; Thomas, Matthew; Tabanfar, Leyla; Mai, Laura; Poon, Hau-Ling; Pe, Joel; Hahn, Kristen; Goji, Noriko; Amoako, Kingsley; Marziali, Andre; Hanson, Dan

    2013-01-01

    Optical mapping generates an ordered restriction map from single, long DNA molecules. By overlapping restriction maps from multiple molecules, a physical map of entire chromosomes and genomes is constructed, greatly facilitating genome assembly in next generation sequencing projects, comparative genomics and strain typing. However, optical mapping relies on a method of preparing high quality DNA >250 kb in length, which can be challenging from some organisms and sample types. Here we demonstrate the ability of Boreal Genomics' Aurora instrument to provide pure, high molecular weight (HMW) DNA 250-1,100 kb in length, ideally suited for optical mapping. The Aurora performs electrophoretic DNA purification within an agarose gel in reusable cartridges, protecting long DNA molecules from shearing forces associated with liquid handling steps common to other purification methods. DNA can be purified directly from intact cells embedded and lysed within an agarose gel, preserving the highest molecular weight DNA possible while achieving exceptional levels of purity. The Aurora delivers DNA in a buffer solution, where DNA can be condensed and protected from shearing during recovery with a pipette. DNA is then returned to its regular coiled state by simple dilution prior to optical mapping. Here we present images showing HMW DNA purification taking place in the Aurora and subsequent images of single DNA molecules on OpGen's Argus® Optical Mapping System. Future work will focus on further optimizing Aurora HMW DNA purification to bias DNA recovery in favor of only the longest molecules in a sample, maximizing the benefits of optical mapping.

  12. Fiber Optic Component Tests In High Speed Data Bus Applications

    Science.gov (United States)

    Creswell, R.; Drake, M. D.; Husbands, C. R.

    1982-12-01

    A series of tests was performed to evaluate off-the-shelf components for the design of a fiber optic channel for the Nascom System Improvements Project in support of the NASA Goddard Space Flight Center. This paper describes the results of this series of tests, establishing operational performance of active and passive fiber optic components at data rates up to 150 Mb/s. These tests determine the transmission characteristics of the fiber optic transmitters and receivers and the effects of data rate, bit pattern sensitivity, and vestigial optical energy on the performance of these devices. Tests were also performed to evaluate the capability of fused biconical couplers to Function properly at these high data rates.

  13. High Stability Optical Mount for Space Laser Applications

    Science.gov (United States)

    Mosciarello, P.; Di Carmine, E.

    2014-06-01

    In the frame of Atmospheric Lidar (ATLID) project, one of the active instruments foreseen to be boarded on the EarthCARE satellite, a high stability optical mount has been designed, developed and tested in order to fulfil the tight program requirements.A description of the design solution developed, manufactured and qualified for the most critical optical mount inside the PLH, located on the Laser Master Oscillator Plate (the laser resonance cavity), is presented. In order to minimize optical mount mass and envelope, the developed solution foresees a glued interface (I/F) between the mechanical support and the mirror.A collection of stability results obtained on the optical mount breadboards is also presented, including a description of environmental tests performed and the way to assess the mirror stability after each environmental test, as well as the acceptance criteria derived in order to establish the flight worthiness of the manufactured and assembled hardware.

  14. Thermal lensing compensation for AIGO high optical power test facility

    Science.gov (United States)

    Degallaix, Jérôme; Zhao, Chunnong; Ju, Li; Blair, David

    2004-03-01

    We present finite element modelling of thermal lensing occurring in an interferometer test mass. Our simulations include the thermo-optic effect and mechanical expansion of the optics. For the High Optical Power Test Facility (HOPTF) operated by the Australian International Gravitational Observatory (AIGO), the optical path length measured across the laser beam radius is 45 nm for 1.2 W absorbed power for the input sapphire test mass. The AIGO thermal lens is much stronger than the one in Advanced LIGO and will degrade the interferometer performance. Direct thermal compensation and the use of an external compensation plate were investigated to minimize thermal lensing consequences in the interferometer. For the AIGO situation, a fused silica external plate is the most practical solution to correct thermally induced wavefront distortions. The compensation plate requires lower thermal power than direct compensation and does not increase the test mass temperature.

  15. Thermal lensing compensation for AIGO high optical power test facility

    Energy Technology Data Exchange (ETDEWEB)

    Degallaix, Jerome [School of Physics, University of Western Australia, Stirling Highway, Crawley, WA 6009 (Australia); Zhao Chunnong [Computer and Information Science, Edith Cowan University, Mount Lawley, WA 6050 (Australia); Ju Li [School of Physics, University of Western Australia, Stirling Highway, Crawley, WA 6009 (Australia); Blair, David [School of Physics, University of Western Australia, Stirling Highway, Crawley, WA 6009 (Australia)

    2004-03-07

    We present finite element modelling of thermal lensing occurring in an interferometer test mass. Our simulations include the thermo-optic effect and mechanical expansion of the optics. For the High Optical Power Test Facility (HOPTF) operated by the Australian International Gravitational Observatory (AIGO), the optical path length measured across the laser beam radius is 45 nm for 1.2 W absorbed power for the input sapphire test mass. The AIGO thermal lens is much stronger than the one in Advanced LIGO and will degrade the interferometer performance. Direct thermal compensation and the use of an external compensation plate were investigated to minimize thermal lensing consequences in the interferometer. For the AIGO situation, a fused silica external plate is the most practical solution to correct thermally induced wavefront distortions. The compensation plate requires lower thermal power than direct compensation and does not increase the test mass temperature.

  16. Environmental extremes versus ecological extremes: impact of a massive iceberg on the population dynamics of a high-level Antarctic marine predator†

    Science.gov (United States)

    Chambert, Thierry; Rotella, Jay J.; Garrott, Robert A.

    2012-01-01

    Extreme events have been suggested to play a disproportionate role in shaping ecological processes, but our understanding of the types of environmental conditions that elicit extreme consequences in natural ecosystems is limited. Here, we investigated the impact of a massive iceberg on the dynamics of a population of Weddell seals. Reproductive rates of females were reduced, but survival appeared unaffected. We also found suggestive evidence for a prolonged shift towards higher variability in reproductive rates. The annual number of females attending colonies showed unusual swings during the iceberg period, a pattern that was apparently the consequence of changes in sea-ice conditions. In contrast to the dramatic effects that were recorded in nearby populations of emperor penguins, our results suggest that this unusual environmental event did not have an extreme impact on the population of seals in the short-term, as they managed to avoid survival costs and were able to rapidly re-achieve high levels of reproduction by the end of the perturbation. Nevertheless, population projections suggest that even this modest impact on reproductive rates could negatively affect the population in the long run if such events were to occur more frequently, as is predicted by models of climate change. PMID:23015628

  17. Novel method for high accuracy figure measurement of optical flat

    Science.gov (United States)

    E, Kewei; Li, Dahai; Yang, Lijie; Guo, Guangrao; Li, Mengyang; Wang, Xuemin; Zhang, Tao; Xiong, Zhao

    2017-01-01

    Phase Measuring Deflectometry (PMD) is a non-contact, high dynamic-range and full-field metrology which becomes a serious competitor to interferometry. However, the accuracy of deflectometry metrology is strongly influenced by the level of the calibrations, including test geometry, imaging pin-hole camera and digital display. In this paper, we propose a novel method that can measure optical flat surface figure to a high accuracy. We first calibrate the camera using a checker pattern shown on a LCD display at six different orientations, and the last orientation is aligned at the same position as the test optical flat. By using this method, lens distortions and the mapping relationship between the CCD pixels and the subaperture coordinates on the test optical flat can be determined at the same time. To further reduce the influence of the calibration errors on measurements, a reference optical flat with a high quality surface is measured, and then the system errors in our PMD setup can be eliminated by subtracting the figure of the reference flat from the figure of the test flat. Although any expensive coordinates measuring machine, such as laser tracker and coordinates measuring machine are not applied in our measurement, our experimental results of optical flat figure from low to high order aberrations still show a good agreement with that from the Fizeau interferometer.

  18. An extremely optically dim tidal feature in the gas-rich interacting galaxy group NGC 871/NGC 876/NGC 877

    CERN Document Server

    Lee-Waddell, K; Cuillandre, J -C; Cannon, J; Haynes, M P; Sick, J; Chandra, P; Patra, N; Stierwalt, S; Giovanelli, R

    2014-01-01

    We present GMRT HI observations and deep CFHT MegaCam optical images of the gas-rich interacting galaxy group NGC 871/NGC 876/NGC 877 (hereafter NGC 871/6/7). Our high-resolution data sets provide a census of the HI and stellar properties of the detected gas-rich group members. In addition to a handful of spiral, irregular and dwarf galaxies, this group harbours an intriguing HI feature, AGC 749170, that has a gas mass of ~10^9.3 M_sol, a dynamical-to-gas mass ratio of ~1 (assuming the cloud is rotating and in dynamical equilibrium) and no optical counterpart in previous imaging. Our observations have revealed a faint feature in the CFHT g'- and r'-bands; if it is physically associated with AGC 749170, the latter has M/L_g > 1000 M_sol/L_sol as well as a higher metallicity (estimated using photometric colours) and a significantly younger stellar population than the other low-mass gas-rich group members. These properties, as well as its spectral and spatial location with respect to its suspected parent galaxie...

  19. Measurements and identifications of extreme ultraviolet spectra of highly-charged Sm and Er

    CERN Document Server

    Podpaly, Y A; Reader, J; Ralchenko, Yu

    2014-01-01

    We report spectroscopic measurements of highly charged samarium and erbium performed at the National Institute of Standards and Technology (NIST) Electron Beam Ion Trap (EBIT). These measurements are in the extreme ultraviolet (EUV) range, and span electron beam energies from 0.98 keV to 3.00 keV. We observed 71 lines from Kr-like Sm$^{26+}$ to Ni-like Sm$^{34+}$, connecting 83 energy levels, and 64 lines from Rb-like Er$^{32+}$ to Ni-like Er$^{40+}$, connecting 78 energy levels. Of these lines, 64 in Sm and 60 in Er are new. Line identifications are performed using collisional-radiative modeling of the EBIT plasma. All spectral lines are assigned individual uncertainties, most in the $\\sim$0.001 nm range. Energy levels are derived from the wavelength measurements.

  20. High-Resolution Spectroscopy of G191-B2B in the Extreme Ultraviolet

    CERN Document Server

    Cruddace, R G; Yentis, D J; Brown, C M; Gursky, H; Barstow, M A; Bannister, N P; Fraser, G W; Spragg, J E; Lapington, J S; Tandy, J A; Sanderson, B; Culhane, J L; Barbee, T W; Kordas, J F; Goldstein, W H; Fritz, G G

    2001-01-01

    We report a high-resolution (R=3000-4000) spectroscopic observation of the DA white dwarf G191-B2B in the extreme ultraviolet band 220-245 A. A low- density ionised He component is clearly present along the line-of-sight, which if completely interstellar implies a He ionisation fraction considerably higher than is typical of the local interstellar medium. However, some of this material may be associated with circumstellar gas, which has been detected by analysis of the C IV absorption line doublet in an HST STIS spectrum. A stellar atmosphere model assuming a uniform element distribution yields a best fit to the data which includes a significant abundance of photospheric He. The 99-percent confidence contour for the fit parameters excludes solutions in which photospheric He is absent, but this result needs to be tested using models allowing abundance gradients.

  1. Nano-materials for adhesive-free adsorbers for bakable extreme high vacuum cryopump surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stutzman, Marcy; Jordan, Kevin; Whitney, Roy R.

    2016-10-11

    A cryosorber panel having nanomaterials used for the cryosorption material, with nanomaterial either grown directly on the cryopanel or freestanding nanomaterials attached to the cryopanel mechanically without the use of adhesives. Such nanomaterial cryosorber materials can be used in place of conventional charcoals that are attached to cryosorber panels with special low outgassing, low temperature capable adhesives. Carbon nanotubes and other nanomaterials could serve the same purpose as conventional charcoal cryosorbers, providing a large surface area for cryosorption without the need for adhesive since the nanomaterials can be grown directly on a metallic substrate or mechanically attached. The nanomaterials would be capable of being fully baked by heating above 100.degree. C., thereby eliminating water vapor from the system, eliminating adhesives from the system, and allowing a full bake of the system to reduce hydrogen outgassing, with the goal of obtaining extreme high vacuum where the pump can produce pressures below 1.times.10.sup.-12 Torr.

  2. First search for extremely high energy cosmogenic neutrinos with the IceCube Neutrino Observatory

    Science.gov (United States)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Knops, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Lehmann, R.; Lennarz, D.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; IceCube Collaboration

    2010-10-01

    We report on the results of the search for extremely-high energy neutrinos with energies above 107GeV obtained with the partially (˜30%) constructed IceCube in 2007. From the absence of signal events in the sample of 242.1 days of effective live time, we derive a 90% C.L. model independent differential upper limit based on the number of signal events per energy decade at E2ϕνe+νμ+ντ≃1.4×10-6GeVcm-2sec⁡-1sr-1 for neutrinos in the energy range from 3×107 to 3×109GeV.

  3. Acclimation to extremely high ammonia levels in continuous biomethanation process and the associated microbial community dynamics

    DEFF Research Database (Denmark)

    Tian, Hailin; Fotidis, Ioannis; Mancini, Enrico

    2017-01-01

    Acclimatized anaerobic communities to high ammonia levels can offer a solution to the ammonia toxicity problem in biogas reactors. In the current study, a stepwise acclimation strategy up to 10 g NH4+-N L−1, was performed in mesophilic (37 ± 1 °C) continuously stirred tank reactors. The reactors...... were co-digesting (20/80 based on volatile solid) cattle slurry and microalgae, a protein-rich, 3rd generation biomass. Throughout the acclimation period, methane production was stable with more than 95% of the uninhibited yield. Next generation 16S rRNA gene sequencing revealed a dramatic microbiome...... change throughout the ammonia acclimation process. Clostridium ultunense, a syntrophic acetate oxidizing bacteria, increased significantly alongside with hydrogenotrophic methanogen Methanoculleus spp., indicating strong hydrogenotrophic methanogenic activity at extreme ammonia levels (>7 g NH4+-N L−1...

  4. New high performance Si for optical devices

    Science.gov (United States)

    Tenma, T.; Matsuzaka, M.; Sako, R.; Takase, K.; Chiba, K.

    2016-05-01

    Against the backdrop of a growing demand in the areas of smart buildings, security, vehicle installation, and other applications, the market for far infrared cameras is expected to grow significantly in the future. However, since germanium (Ge) and chalcogenide glass, which have been used as the lens materials of far infrared cameras, are very expensive or highly toxic, there are some problems supporting the growing demand. We have therefore focused attention on silicon, which is inexpensive and less toxic. Although silicon has been used as a lens material of far infrared cameras, there are some problems remaining to be solved: Cz silicon is inexpensive but delivers low transmittance, and Fz silicon delivers sufficient transmittance but is expensive. We have developed New Cz silicon, which delivers high transmittance as Fz silicon does, and is inexpensive as conventional Cz silicon is. We have already started its sample work at both companies in Japan and overseas and have obtained excellent performance results. Mass production is scheduled to start in this fiscal year.

  5. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region.

    Science.gov (United States)

    Hirano, Y; Kiyama, S; Fujiwara, Y; Koguchi, H; Sakakita, H

    2015-11-01

    A high current density (≈3 mA/cm(2)) hydrogen ion beam source operating in an extremely low-energy region (E(ib) ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E(ib) is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  6. Modeling, fabrication and high power optical characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Lysenko, Oleg

    2015-01-01

    This paper describes modeling, fabrication and high power optical characterization of thin gold films embedded in silicon dioxide. The propagation vector of surface plasmon polaritons has been calculated by the effective index method for the wavelength range of 750-1700 nm and film thickness of 15......, 30 and 45 nm. The fabrication process of such plasmonic waveguides with width in the range of 1-100 μm and their quality inspection are described. The results of optical characterization of plasmonic waveguides using a high power laser with the peak power wavelength 1064 nm show significant deviation...

  7. High-resolution second harmonic optical coherence tomography

    Science.gov (United States)

    Jiang, Yi; Tomov, Ivan V.; Wang, Yimin; Chen, Zhongping

    2005-04-01

    A high-resolution Second Harmonic Optical Coherence Tomography (SH-OCT) system is demonstrated using a spectrum broadened femtosecond Ti:sapphire laser. An axial resolution of 4.2 μm at the second harmonic wave center wavelength of 400 nm has been achieved. Because the SH-OCT system uses the second harmonic generation signals that strongly depend on the orientation, polarization and local symmetry properties of chiral molecules, this technique provides unique contrast enhancement to conventional optical coherence tomography. The system is applied to image biological tissues like the rat-tail tendon. Images of highly organized collagen fibrils in the rat-tail tendon have been demonstrated.

  8. Multiresolution iterative reconstruction in high-resolution extremity cone-beam CT

    Science.gov (United States)

    Cao, Qian; Zbijewski, Wojciech; Sisniega, Alejandro; Yorkston, John; Siewerdsen, Jeffrey H.; Webster Stayman, J.

    2016-10-01

    Application of model-based iterative reconstruction (MBIR) to high resolution cone-beam CT (CBCT) is computationally challenging because of the very fine discretization (voxel size  <100 µm) of the reconstructed volume. Moreover, standard MBIR techniques require that the complete transaxial support for the acquired projections is reconstructed, thus precluding acceleration by restricting the reconstruction to a region-of-interest. To reduce the computational burden of high resolution MBIR, we propose a multiresolution penalized-weighted least squares (PWLS) algorithm, where the volume is parameterized as a union of fine and coarse voxel grids as well as selective binning of detector pixels. We introduce a penalty function designed to regularize across the boundaries between the two grids. The algorithm was evaluated in simulation studies emulating an extremity CBCT system and in a physical study on a test-bench. Artifacts arising from the mismatched discretization of the fine and coarse sub-volumes were investigated. The fine grid region was parameterized using 0.15 mm voxels and the voxel size in the coarse grid region was varied by changing a downsampling factor. No significant artifacts were found in either of the regions for downsampling factors of up to 4×. For a typical extremities CBCT volume size, this downsampling corresponds to an acceleration of the reconstruction that is more than five times faster than a brute force solution that applies fine voxel parameterization to the entire volume. For certain configurations of the coarse and fine grid regions, in particular when the boundary between the regions does not cross high attenuation gradients, downsampling factors as high as 10×  can be used without introducing artifacts, yielding a ~50×  speedup in PWLS. The proposed multiresolution algorithm significantly reduces the computational burden of high resolution iterative CBCT reconstruction and can be extended to other applications of

  9. Droplet-based, high-brightness extreme ultraviolet laser plasma source for metrology

    Science.gov (United States)

    Vinokhodov, A. Yu.; Krivokorytov, M. S.; Sidelnikov, Yu. V.; Krivtsun, V. M.; Medvedev, V. V.; Koshelev, K. N.

    2016-10-01

    We report on the development of a high brightness source of extreme ultraviolet radiation (EUV) with a working wavelength of 13.5 nm. The source is based on a laser-produced plasma driven by pulsed radiation of a Nd:YAG laser system. Liquid droplets of Sn-In eutectic alloy were used as the source fuel. The droplets were created by a droplet generator operating in the jet break-up regime. The EUV emission properties of the plasma, including the emission spectrum, time profile, and conversion efficiency of laser radiation into useful 13.5 nm photons, have been characterized. Using the shadowgraphy technique, we demonstrated the production of corpuscular debris by the plasma source and the influence of the plasma on the neighboring droplet targets. The high-frequency laser operation was simulated by usage of the dual pulse regime. Based on the experimental results, we discuss the physical phenomena that could affect the source operation at high repetition rates. Finally, we estimate that an average source brightness of 1.2 kW/mm2 sr is feasible at a high repetition rate.

  10. Benchmark analysis on diabetics at high risk for lower extremity amputation.

    Science.gov (United States)

    Pinzur, M S; Stuck, R; Sage, R; Pocius, L; Trout, B; Wolf, B; Vrbos, L

    1996-11-01

    After the 1990 establishment of a multidisciplinary foot salvage clinic, 1346 diabetic patients, at high risk for the development of foot ulcers and eventual lower limb amputation, were followed for 4 years. Of the 224 high-risk patients admitted to the hospital, 74 amputations (5.5%) of all or part of a lower limb were performed. Patients undergoing amputation were younger, more severely ill, and required more frequent hospitalizations because of greater organ system involvement. They were also more likely to be institutionalized after discharge. Overall, patients with long-standing adult-onset diabetes, identified as at high risk for foot ulcer development, have a substantially increased risk for lower limb amputation, multiple organ system failure, hospitalization, and institutionalization than do diabetic patients as a whole. Clinical benchmarking facilitates the identification and reduction of unnecessary variations in patient care practices. Here, a formal benchmark analysis provides the current outcome expectations for amputation rates and co-morbidities in patients with diabetes who are classified as at high risk for lower extremity amputation. Management of these patients in a structured, multidisciplinary foot salvage clinic, augmentation of baseline services, and preliminary benchmark data may provide a standard for the measurement of therapeutic interventions that improve patient care.

  11. Reliability of high power laser diodes with external optical feedback

    Science.gov (United States)

    Bonsendorf, Dennis; Schneider, Stephan; Meinschien, Jens; Tomm, Jens W.

    2016-03-01

    Direct diode laser systems gain importance in the fields of material processing and solid-state laser pumping. With increased output power, also the influence of strong optical feedback has to be considered. Uncontrolled optical feedback is known for its spectral and power fluctuation effects, as well as potential emitter damage. We found that even intended feedback by use of volume Bragg gratings (VBG) for spectral stabilization may result in emitter lifetime reduction. To provide stable and reliable laser systems design, guidelines and maximum feedback ratings have to be found. We present a model to estimate the optical feedback power coupled back into the laser diode waveguide. It includes several origins of optical feedback and wide range of optical elements. The failure thresholds of InGaAs and AlGaAs bars have been determined not only at standard operation mode but at various working points. The influence of several feedback levels to laser diode lifetime is investigated up to 4000h. The analysis of the semiconductor itself leads to a better understanding of the degradation process by defect spread. Facet microscopy, LBIC- and electroluminescence measurements deliver detailed information about semiconductor defects before and after aging tests. Laser diode protection systems can monitor optical feedback. With this improved understanding, the emergency shutdown threshold can be set low enough to ensure laser diode reliability but also high enough to provide better machine usability avoiding false alarms.

  12. Optics of High-Energy Beams

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, Owen

    1960-05-01

    Many of the experiments now being conducted on high-energy accelerators requires the use of beams of charged secondary particles. It is worth while at this time to attempt to summarize information about some of the most useful methods of setting up such beams. We are not concerned here with the primary beam of the accelerator. Rather, they assume that a target is struck by the primary beam and that it is desired to form a beam from the secondary charged particles that emerge from collisions within the target. The simplest system of forming this beam of secondary particles involves the use of magnetic fields only. In most cases it is desirable to obtain a beam of particles of known magnetic rigidity, or momentum. The bulk of this article is addressed to this problem. Some comments are also made about the use of electric fields in conjunction with magnetic fields. The inclusion of electric fields allows the separation of a beam of known momentum into its various components according to the velocities of the particles, hence according to the masses of the particles. These are referred to as ''separated beams''.

  13. High-fidelity angle-modulated analog optical link.

    Science.gov (United States)

    Che, Di; Yuan, Feng; Shieh, William

    2016-07-25

    There has long existed a debate over whether analog or digital optical link is more suitable for wireless convergence applications. Digital link achieves the highest fidelity, with the sacrifice of huge bandwidth due to the high resolution of digitization, and large power consumption due to the exhaustive digital data recovery. Analog link avoids these drawbacks, but it inevitably suffers from the SNR degradation. In this paper, we propose the angle modulation for analog optical link, which successfully breaks the SNR ceiling of amplitude modulation, and achieves ultrahigh link fidelity. Using the digital link (CPRI) equivalent bandwidth, angle modulation exhibits around 30-dB SNR advantage over the conventional amplitude modulation. Combined with its high tolerance on link nonlinearity, angle modulation has great potential in the future SNR-hungry analog optical applications.

  14. A novel optical burst switching architecture for high speed networks

    Institute of Scientific and Technical Information of China (English)

    Amit Kumar Garg; R. S. Kaler

    2008-01-01

    A novel optical burst switching (OBS) high speed network architecture has been proposed. To verify its feasibility and evaluate its performance, just-enough-time (JET) signaling has been considered as a high performance protocol. In the proposed architecture, to avoid burst losses, firstly, a short-priorconfirrnation-packet (SPCP) is sent over the control channel that simulates the events that the actual packet will experience. Once SPCP detects a drop at any of the intermediate nodes, the actual packet is not sent but the process repeats. In order to increase network utilization, cost effectiveness and to overcome some limitations of conventional OBS, inherent codes (e.g., orthogonal optical codes (OOC)),which are codified only in intensity, has been used. Through simulations, it shows that a decrease in burst loss probability, cost effectiveness and a gain in processing time are obtained when optical label processing is used as compared with electronic processing.

  15. High diversity and suggested endemicity of culturable Actinobacteria in an extremely oligotrophic desert oasis

    Directory of Open Access Journals (Sweden)

    Hector Fernando Arocha-Garza

    2017-05-01

    shows that our isolation effort produced 38 unique OTUs in six new monophyletic clades. This high biodiversity and uniqueness of Actinobacteria in an extreme oligotrophic environment, which has previously been reported for its diversity and endemicity, is a suggestive sign of microbial biogeography of Actinobacteria and it also represents an invaluable source of biological material for future ecological and bioprospecting studies.

  16. High diversity and suggested endemicity of culturable Actinobacteria in an extremely oligotrophic desert oasis.

    Science.gov (United States)

    Arocha-Garza, Hector Fernando; Canales-Del Castillo, Ricardo; Eguiarte, Luis E; Souza, Valeria; De la Torre-Zavala, Susana

    2017-01-01

    isolation effort produced 38 unique OTUs in six new monophyletic clades. This high biodiversity and uniqueness of Actinobacteria in an extreme oligotrophic environment, which has previously been reported for its diversity and endemicity, is a suggestive sign of microbial biogeography of Actinobacteria and it also represents an invaluable source of biological material for future ecological and bioprospecting studies.

  17. Integrating seasonal optical and thermal infrared spectra to characterize urban impervious surfaces with extreme spectral complexity: a Shanghai case study

    Science.gov (United States)

    Wang, Wei; Yao, Xinfeng; Ji, Minhe

    2016-01-01

    Despite recent rapid advancement in remote sensing technology, accurate mapping of the urban landscape in China still faces a great challenge due to unusually high spectral complexity in many big cities. Much of this complication comes from severe spectral confusion of impervious surfaces with polluted water bodies and bright bare soils. This paper proposes a two-step land cover decomposition method, which combines optical and thermal spectra from different seasons to cope with the issue of urban spectral complexity. First, a linear spectral mixture analysis was employed to generate fraction images for three preliminary endmembers (high albedo, low albedo, and vegetation). Seasonal change analysis on land surface temperature induced from thermal infrared spectra and coarse component fractions obtained from the first step was then used to reduce the confusion between impervious surfaces and nonimpervious materials. This method was tested with two-date Landsat multispectral data in Shanghai, one of China's megacities. The results showed that the method was capable of consistently estimating impervious surfaces in highly complex urban environments with an accuracy of R2 greater than 0.70 and both root mean square error and mean average error less than 0.20 for all test sites. This strategy seemed very promising for landscape mapping of complex urban areas.

  18. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus

    Science.gov (United States)

    Hawkes, L.A.; Balachandran, S.; Batbayar, N.; Butler, P.J.; Chua, B.; Douglas, D.C.; Frappell, P.B.; Hou, Y.; Milsom, W.K.; Newman, S.H.; Prosser, D.J.; Sathiyaselvam, P.; Scott, G.R.; Takekawa, John Y.; Natsagdorj, T.; Wikelski, M.; Witt, M.J.; Yan, B.; Bishop, C.M.

    2012-01-01

    Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world's tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima.

  19. A method of batch-purifying microalgae with multiple antibiotics at extremely high concentrations

    Science.gov (United States)

    Han, Jichang; Wang, Song; Zhang, Lin; Yang, Guanpin; Zhao, Lu; Pan, Kehou

    2016-01-01

    Axenic microalgal strains are highly valued in diverse microalgal studies and applications. Antibiotics, alone or in combination, are often used to avoid bacterial contamination during microalgal isolation and culture. In our preliminary trials, we found that many microalgae ceased growing in antibiotics at extremely high concentrations but could resume growth quickly when returned to an antibiotics-free liquid medium and formed colonies when spread on a solid medium. We developed a simple and highly efficient method of obtaining axenic microalgal cultures based on this observation. First, microalgal strains of different species or strains were treated with a mixture of ampicillin, gentamycin sulfate, kanamycin, neomycin and streptomycin (each at a concentration of 600 mg/L) for 3 days; they were then transferred to antibiotics-free medium for 5 days; and finally they were spread on solid f/2 media to allow algal colonies to form. With this method, five strains of Nannochloropsis sp. (Eustigmatophyceae), two strains of Cylindrotheca sp. (Bacillariophyceae), two strains of Tetraselmis sp. (Chlorodendrophyceae) and one strain of Amphikrikos sp. (Trebouxiophyceae) were purified successfully. The method shows promise for batch-purifying microalgal cultures.

  20. A Novel Gravity Compensation Method for High Precision Free-INS Based on "Extreme Learning Machine".

    Science.gov (United States)

    Zhou, Xiao; Yang, Gongliu; Cai, Qingzhong; Wang, Jing

    2016-11-29

    In recent years, with the emergency of high precision inertial sensors (accelerometers and gyros), gravity compensation has become a major source influencing the navigation accuracy in inertial navigation systems (INS), especially for high-precision INS. This paper presents preliminary results concerning the effect of gravity disturbance on INS. Meanwhile, this paper proposes a novel gravity compensation method for high-precision INS, which estimates the gravity disturbance on the track using the extreme learning machine (ELM) method based on measured gravity data on the geoid and processes the gravity disturbance to the height where INS has an upward continuation, then compensates the obtained gravity disturbance into the error equations of INS to restrain the INS error propagation. The estimation accuracy of the gravity disturbance data is verified by numerical tests. The root mean square error (RMSE) of the ELM estimation method can be improved by 23% and 44% compared with the bilinear interpolation method in plain and mountain areas, respectively. To further validate the proposed gravity compensation method, field experiments with an experimental vehicle were carried out in two regions. Test 1 was carried out in a plain area and Test 2 in a mountain area. The field experiment results also prove that the proposed gravity compensation method can significantly improve the positioning accuracy. During the 2-h field experiments, the positioning accuracy can be improved by 13% and 29% respectively, in Tests 1 and 2, when the navigation scheme is compensated by the proposed gravity compensation method.

  1. High-power fiber optic cable with integrated active sensors for live process monitoring

    Science.gov (United States)

    Blomster, Ola; Blomqvist, Mats; Bergstrand, Hans; Pålsson, Magnus

    2012-03-01

    In industrial applications using high-brilliance lasers at power levels up to and exceeding 20 kW and similarly direct diode lasers of 10 kW, there is an increasing demand to continuously monitor component status even in passive components such as fiber-optic cables. With fiber-optic cables designed according to the European Automotive Industry fiber standard interface there is room for integrating active sensors inside the connectors. In this paper we present the integrated active sensors in the new Optoskand QD fiber-optic cable designed to handle extreme levels of power losses, and how these sensors can be employed in industrial manufacturing. The sensors include photo diodes for detection of scattered light inside the fiber connector, absolute temperature of the fiber connector, difference in temperature of incoming and outgoing cooling water, and humidity measurement inside the fiber connector. All these sensors are connected to the fiber interlock system, where interlock break enable functions can be activated when measured signals are higher than threshold levels. It is a very fast interlock break system as the control of the signals is integrated in the electronics inside the fiber connector. Also, since all signals can be logged it is possible to evaluate what happened inside the connector before the interlock break instance. The communication to the fiber-optic connectors is via a CAN interface. Thus it is straightforward to develop the existing laser host control to also control the CAN-messages from the QD sensors.

  2. ASIC-enabled High Resolution Optical Time Domain Reflectometer

    Science.gov (United States)

    Skendzic, Sandra

    Fiber optics has become the preferred technology in communication systems because of what it has to offer: high data transmission rates, immunity to electromagnetic interference, and lightweight, flexible cables. An optical time domain reflectometer (OTDR) provides a convenient method of locating and diagnosing faults (e.g. break in a fiber) along a fiber that can obstruct crucial optical pathways. Both the ability to resolve the precise location of the fault and distinguish between two discrete, closely spaced faults are figures of merit. This thesis presents an implementation of a high resolution OTDR through the use of a compact and programmable ASIC (application specific integrated circuit). The integration of many essential OTDR functions on a single chip is advantageous over existing commercial instruments because it enables small, lightweight packaging, and offers low power and cost efficiency. Furthermore, its compactness presents the option of placing multiple ASICs in parallel, which can conceivably ease the characterization of densely populated fiber optic networks. The OTDR ASIC consists of a tunable clock, pattern generator, precise timer, electrical receiver, and signal sampling circuit. During OTDR operation, the chip generates narrow electrical pulse, which can then be converted to optical format when coupled with an external laser diode driver. The ASIC also works with an external photodetector to measure the timing and amplitude of optical reflections in a fiber. It has a 1 cm sampling resolution, which allows for a 2 cm spatial resolution. While this OTDR ASIC has been previously demonstrated for multimode fiber fault diagnostics, this thesis focuses on extending its functionality to single mode fiber. To validate this novel approach to OTDR, this thesis is divided into five chapters: (1) introduction, (2) implementation, (3), performance of ASIC-based OTDR, (4) exploration in optical pre-amplification with a semiconductor optical amplifier, and

  3. Tunable High Harmonic Generation driven by a Visible Optical Parametric Amplifier

    Science.gov (United States)

    Cirmi, G.; Lai, C.-J.; Huang, S.-W.; Granados, E.; Sell, A.; Moses, J.; Hong, K.-H.; Keathley, P.; Kärtner, F. X.

    2013-03-01

    We studied high-harmonic generation (HHG) in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA) in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 μJ energy at 1-kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping energy, duration and beam size constant, we experimentally studied the scaling law of conversion efficiency and cut-off energy with the driver wavelength in argon and helium respectively. Our measurements show a λ-5.9±0.9 wavelength dependence of the conversion efficiency and a λ1.7±0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source and changing the gas, the high order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ~25 eV and ~100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.

  4. Tunable High Harmonic Generation driven by a Visible Optical Parametric Amplifier

    Directory of Open Access Journals (Sweden)

    Keathley P.

    2013-03-01

    Full Text Available We studied high-harmonic generation (HHG in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 μJ energy at 1-kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping energy, duration and beam size constant, we experimentally studied the scaling law of conversion efficiency and cut-off energy with the driver wavelength in argon and helium respectively. Our measurements show a λ−5.9±0.9 wavelength dependence of the conversion efficiency and a λ1.7±0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source and changing the gas, the high order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ~25 eV and ~100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.

  5. Optical Illusions: A Presentation for High School Mathematics Students.

    Science.gov (United States)

    Brandes, Louis Grant

    1983-01-01

    Optical illusions are assumed to be of interest to high school mathematics students. The article indicates how a topic can be both educational and entertaining. Readers are invited to try to construct some illusions on their own, and to see if they can classify them. (MP)

  6. Modeling, fabrication and high power optical characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Lysenko, Oleg

    2015-01-01

    This paper describes modeling, fabrication and high power optical characterization of thin gold films embedded in silicon dioxide. The propagation vector of surface plasmon polaritons has been calculated by the effective index method for the wavelength range of 750-1700 nm and film thickness of 1...

  7. Design of Optical System for Solar Extreme-Ultraviolet Imaging Spectrometer%太阳极紫外成像光谱仪光学系统设计

    Institute of Scientific and Technical Information of China (English)

    刘壮; 巩岩

    2012-01-01

    Hyper-spectral imaging observation of the sun in the EUV region is an important method of research for solar's upper transition region, corona and plasma's physical property. Based on the application objective of solar extreme ultraviolet imaging spectrometer(SEUlS), combined with the current states of domestic and foreign extreme ultraviolet imaging spectrometer, a few of parameters for SEUIS design were drew up in the present paper. The advantages and disadvantages of all kinds of optical configurations were discussed,and the configuration of combination of telescope and spectrometer was chosen. The available main components were also described, off-axis parabolic mirror was chosen for telescope, and a high density uniform-line-space toroidal grating for dispersion device. The optical system which satisfies the performance parameters was designed The design process, detailed parameters and results were presented in the end. The working wavelength of the optics system is 17. 0~21. 0 nm, the field of view is 1 228"×1 024", the spatial resolution is 0. 8 arc sec ? Pixel-1, the spectral resolution is about 0. 00198 nm ? Pixel-1, and the total length of system is about 2.8m.%在极紫外波段对太阳进行超光谱成像观测是研究太阳上层大气,日冕中等离子物理特性的重要手段.依据太阳极紫外成像光谱仪的应用,结合国内外极紫外成像光谱仪发展现状,制定了太阳极紫外成像光谱仪的性能指标.通过比较各种光学结构的优缺点,选择望远镜与光谱仪组合的结构.讨论并选择了可用的基本元器件,望远系统采用离轴抛物面反射镜,分光器件为高密度超环面等间距光栅.设计出符合指标的光学系统.最后给出了太阳极紫外成像光谱仪的设计过程、详细参数与结果.光学系统的工作波段为17.0~21.0nm,视场是1228″×1024″,空间分辨率达到0.8 arcsec·pixel-1,光谱分辨率约为0.001 98 nm·pixel-1,系统总长度约为2.8m.

  8. Scaling and Intensification of Extreme Precipitation in High-Resolution Climate Change Simulations

    Science.gov (United States)

    Ban, Nikolina; Leutwyler, David; Lüthi, Daniel; Schär, Christoph

    2017-04-01

    Climate change projections of extreme precipitation are of great interest due to hydrological impacts such as droughts, floods, erosion, landslides and debris flows. Despite the trend towards dryer conditions over Europe, many climate simulations project increases of heavy precipitation events, while some theoretical studies have raised the possibility of dramatic increases in hourly events (by up to 14% per degree warming). However, conventional climate models are not suited to assess short-term heavy events due to the need to parameterize deep convection. High-resolution climate models with kilometer-scale grid spacing at which parameterization of convection can be switched off, significantly improve the simulation of heavy precipitation and can alter the climate change signal (e.g., Ban et al., 2015). Here we present decade-long high-resolution climate change simulations at horizontal resolution of 2.2 km over Europe on a computational domain with 1536x1536x60 grid points. These simulations have become feasible with a new version of the COSMO model that runs entirely on Graphics Processing Units. We compare a present-day climate simulation, driven by ERA-Interim reanalysis (Leutwyler at al., 2016), with a Pseudo-Global Warming (PGW) simulation The PGW simulation is driven by the slowly evolving mean seasonal cycle of the climate changes (derived from the CMIP5 model), superimposed on the ERA-Interim reanalysis. With this approach, the resulting changes are due to large scale warming of the atmosphere and due to slow-varying circulation changes. We will present the differences in climate change signal between conventional and high-resolution climate models, and discuss the thermodynamic effects on intensification of extreme precipitation. Ban N., J. Schmidli and C. Schär, 2015: Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophys. Res. Lett., 42 (4), 1165-1172 Leutwyler, D., D. Lüthi, N. Ban, O. Fuhrer and C

  9. Characterizing the Chemical Stability of High Temperature Materials for Application in Extreme Environments

    Science.gov (United States)

    Opila, Elizabeth

    2005-01-01

    The chemical stability of high temperature materials must be known for use in the extreme environments of combustion applications. The characterization techniques available at NASA Glenn Research Center vary from fundamental thermodynamic property determination to material durability testing in actual engine environments. In this paper some of the unique techniques and facilities available at NASA Glenn will be reviewed. Multiple cell Knudsen effusion mass spectrometry is used to determine thermodynamic data by sampling gas species formed by reaction or equilibration in a Knudsen cell held in a vacuum. The transpiration technique can also be used to determine thermodynamic data of volatile species but at atmospheric pressures. Thermodynamic data in the Si-O-H(g) system were determined with this technique. Free Jet Sampling Mass Spectrometry can be used to study gas-solid interactions at a pressure of one atmosphere. Volatile Si(OH)4(g) was identified by this mass spectrometry technique. A High Pressure Burner Rig is used to expose high temperature materials in hydrocarbon-fueled combustion environments. Silicon carbide (SiC) volatility rates were measured in the burner rig as a function of total pressure, gas velocity and temperature. Finally, the Research Combustion Lab Rocket Test Cell is used to expose high temperature materials in hydrogen/oxygen rocket engine environments to assess material durability. SiC recession due to rocket engine exposures was measured as a function of oxidant/fuel ratio, temperature, and total pressure. The emphasis of the discussion for all techniques will be placed on experimental factors that must be controlled for accurate acquisition of results and reliable prediction of high temperature material chemical stability.

  10. A highly efficient thermo-optic microring modulator assisted by graphene

    Science.gov (United States)

    Gan, Sheng; Cheng, Chuantong; Zhan, Yaohui; Huang, Beiju; Gan, Xuetao; Li, Shaojuan; Lin, Shenghuang; Li, Xiaofeng; Zhao, Jianlin; Chen, Hongda; Bao, Qiaoliang

    2015-11-01

    Graphene's remarkable electrical and optical properties afford great potential for constructing various optoelectronic devices, including modulators, photodetectors and pulse lasers. In particular, graphene-based optical modulators were demonstrated to be featured with a broadband response, small footprint, ultrafast speed and CMOS-compatibility, which may provide an alternative architecture for light-modulation in integrated photonic circuits. While on-chip graphene modulators have been studied in various structures, most of them are based on a capacitance-like configuration subjected to complicated fabrication processes and providing a low yield of working devices. Here, we experimentally demonstrate a new type of graphene modulator by employing graphene's electrical and thermal properties, which can be achieved with a simple fabrication flow. On a graphene-coated microring resonator with a small active area of 10 μm2, we have obtained an effective optical modulation via thermal energy electrically generated in a graphene layer. The resonant wavelength of the ring resonator shifts by 2.9 nm under an electrical power of 28 mW, which enables a large modulation depth of 7 dB and a broad operating wavelength range of 6.2 nm with 3 dB modulation. Due to the extremely high electrical and thermal conductivity in graphene, the graphene thermo-optical modulator operates at a very fast switching rate compared with the conventional silicon thermo-optic modulator, i.e. 10%-90% rise (90%-10% fall) time of 750 ns (800 ns). The results promise a novel architecture for massive on-chip modulation of optical interconnects compatible with CMOS technology.

  11. Development and Performance Evaluation of Optical Sensors for High Temperature Engine Applications

    Science.gov (United States)

    Adamovsky, G.; Varga, D.; Floyd, B.

    2011-01-01

    This paper discusses fiber optic sensors designed and constructed to withstand extreme temperatures of aircraft engine. The paper describes development and performance evaluation of fiber optic Bragg grating based sensors. It also describes the design and presents test results of packaged sensors subjected to temperatures up to 1000 C for prolonged periods of time.

  12. Development of fluorides for high power laser optics

    Energy Technology Data Exchange (ETDEWEB)

    Ready, J.F.; Vora, H.

    1980-07-01

    The laser-assisted thermonuclear fusion program has significant needs for improved optical materials with high transmission in the ultraviolet, and with low values of nonlinear index of refraction. Lithium fluoride (LiF) possesses a combination of optical properties which are of potential use. Single-crystalline LiF is limited by low mechanical strength. In this program, we investigated the technique of press-forging to increase the mechanical strength. LiF single crystals were press-forged over the temperature range 300 to 600/sup 0/C to produce fine-grained polycrystalline material.

  13. Quantification of climate change effects on extreme precipitation used for high resolution hydrologic design

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten

    2012-01-01

    Design of urban drainage structures should include the climatic changes anticipated over the technical lifetime of the system. In Northern Europe climate changes implies increasing occurrences of extreme rainfall. Three approaches to quantify the impact of climate changes on extreme rainfall are ...

  14. Ultra-High Temperature Sensors Based on Optical Property

    Energy Technology Data Exchange (ETDEWEB)

    Nabeel Riza

    2008-09-30

    In this program, Nuonics, Inc. has studied the fundamentals of a new Silicon Carbide (SiC) materials-based optical sensor technology suited for extreme environments of coal-fired engines in power production. The program explored how SiC could be used for sensing temperature, pressure, and potential gas species in a gas turbine environment. The program successfully demonstrated the optical designs, signal processing and experimental data for enabling both temperature and pressure sensing using SiC materials. The program via its sub-contractors also explored gas species sensing using SiC, in this case, no clear commercially deployable method was proven. Extensive temperature and pressure measurement data using the proposed SiC sensors was acquired to 1000 deg-C and 40 atms, respectively. Importantly, a first time packaged all-SiC probe design was successfully operated in a Siemens industrial turbine rig facility with the probe surviving the harsh chemical, pressure, and temperature environment during 28 days of test operations. The probe also survived a 1600 deg-C thermal shock test using an industrial flame.

  15. Ultra-High Temperature Sensors Based on Optical Property

    Energy Technology Data Exchange (ETDEWEB)

    Nabeel Riza

    2008-09-30

    In this program, Nuonics, Inc. has studied the fundamentals of a new Silicon Carbide (SiC) materials-based optical sensor technology suited for extreme environments of coal-fired engines in power production. The program explored how SiC could be used for sensing temperature, pressure, and potential gas species in a gas turbine environment. The program successfully demonstrated the optical designs, signal processing and experimental data for enabling both temperature and pressure sensing using SiC materials. The program via its sub-contractors also explored gas species sensing using SiC, in this case, no clear commercially deployable method was proven. Extensive temperature and pressure measurement data using the proposed SiC sensors was acquired to 1000 deg-C and 40 atms, respectively. Importantly, a first time packaged all-SiC probe design was successfully operated in a Siemens industrial turbine rig facility with the probe surviving the harsh chemical, pressure, and temperature environment during 28 days of test operations. The probe also survived a 1600 deg-C thermal shock test using an industrial flame.

  16. High-Resolution Mammography Detector Employing Optical Switching Readout

    Science.gov (United States)

    Irisawa, Kaku; Kaneko, Yasuhisa; Yamane, Katsutoshi; Sendai, Tomonari; Hosoi, Yuichi

    Conceiving a new detector structure, FUJIFILM Corporation has successfully put its invention of an X-ray detector employing "Optical Switching" into practical use. Since Optical Switching Technology allows an electrode structure to be easily designed, both high resolution of pixel pitch and low electrical noise readout have been achieved, which have consequently realized the world's smallest pixel size of 50×50 μm2 from a Direct-conversion FPD system as well as high DQE. The digital mammography system equipped with this detector enables to acquire high definition images while maintaining granularity. Its outstanding feature is to be able to acquire high-precision images of microcalcifications which is an important index in breast examination.

  17. Towards optical intensity interferometry for high angular resolution stellar astrophysics

    CERN Document Server

    Nunez, Paul D

    2012-01-01

    Most neighboring stars are still detected as point sources and are beyond the angular resolution reach of current observatories. Methods to improve our understanding of stars at high angular resolution are investigated. Air Cherenkov telescopes (ACTs), primarily used for Gamma-ray astronomy, enable us to increase our understanding of the circumstellar environment of a particular system. When used as optical intensity interferometers, future ACT arrays will allow us to detect stars as extended objects and image their surfaces at high angular resolution. Optical stellar intensity interferometry (SII) with ACT arrays, composed of nearly 100 telescopes, will provide means to measure fundamental stellar parameters and also open the possibility of model-independent imaging. A data analysis algorithm is developed and permits the reconstruction of high angular resolution images from simulated SII data. The capabilities and limitations of future ACT arrays used for high angular resolution imaging are investigated via ...

  18. High throughput optoelectronic smart pixel systems using diffractive optics

    Science.gov (United States)

    Chen, Chih-Hao

    1999-12-01

    Recent developments in digital video, multimedia technology and data networks have greatly increased the demand for high bandwidth communication channels and high throughput data processing. Electronics is particularly suited for switching, amplification and logic functions, while optics is more suitable for interconnections and communications with lower energy and crosstalk. In this research, we present the design, testing, integration and demonstration of several optoelectronic smart pixel devices and system architectures. These systems integrate electronic switching/processing capability with parallel optical interconnections to provide high throughput network communication and pipeline data processing. The Smart Pixel Array Cellular Logic processor (SPARCL) is designed in 0.8 m m CMOS and hybrid integrated with Multiple-Quantum-Well (MQW) devices for pipeline image processing. The Smart Pixel Network Interface (SAPIENT) is designed in 0.6 m m GaAs and monolithically integrated with LEDs to implement a highly parallel optical interconnection network. The Translucent Smart Pixel Array (TRANSPAR) design is implemented in two different versions. The first version, TRANSPAR-MQW, is designed in 0.5 m m CMOS and flip-chip integrated with MQW devices to provide 2-D pipeline processing and translucent networking using the Carrier- Sense-MultipleAccess/Collision-Detection (CSMA/CD) protocol. The other version, TRANSPAR-VM, is designed in 1.2 m m CMOS and discretely integrated with VCSEL-MSM (Vertical-Cavity-Surface- Emitting-Laser and Metal-Semiconductor-Metal detectors) chips and driver/receiver chips on a printed circuit board. The TRANSPAR-VM provides an option of using the token ring network protocol in addition to the embedded functions of TRANSPAR-MQW. These optoelectronic smart pixel systems also require micro-optics devices to provide high resolution, high quality optical interconnections and external source arrays. In this research, we describe an innovative

  19. The use of bone allografts for limb salvage in high-grade extremity osteosarcoma.

    Science.gov (United States)

    Gebhardt, M C; Flugstad, D I; Springfield, D S; Mankin, H J

    1991-09-01

    Limb preservation is increasingly being employed in the local treatment of high-grade extremity osteosarcoma. Bone allografts used to reconstruct the bony defects following tumor resection offer many advantages, including joint reconstruction and incorporation of the graft to the host bone in these relatively young patients. The results of 53 patients 30 years of age or younger were assessed to determine functional outcome. Fresh-frozen allografts were employed as osteoarticular grafts, allograft-arthrodeses, allograft-prosthesis composites, or intercalary grafts. Follow-up intervals averaged 25 months (range, two to 63 months). Life-table analysis showed that the probability of a satisfactory functional result was 73% if local tumor recurrences were excluded. Complications included 16 infections, six fractures, 12 nonunions, and six unstable joints. There were five local recurrences. Eighteen grafts ultimately failed, and in six patients, this resulted in an above-knee amputation. An additional five received a second graft. The functional "end results" of the 38 patients with two or more years of follow-up examinations were 70% satisfactory in those without a local recurrence. There was no statistically significant difference in functional outcome or local or distant relapse in those patients receiving preoperative chemotherapy. The authors conclude that allografts can be used for limb reconstruction in patients with high-grade osteosarcoma who receive aggressive adjuvant chemotherapy. The functional results are comparable to other methods of reconstruction, and once incorporated by the host, offer the advantage of longevity, compared with metallic implants.

  20. Microsystem for remote sensing of high energy radiation with associated extremely low photon flux densities

    Science.gov (United States)

    Otten, A.; Jain, V. K.

    2015-08-01

    This paper presents a microsystem for remote sensing of high energy radiation in extremely low flux density conditions. With wide deployment in mind, potential applications range from nuclear non-proliferation, to hospital radiation-safety. The daunting challenge is the low level of photon flux densities - emerging from a Scintillation Crystal (SC) on to a ~1 mm-square detector, which are a factor of 10000 or so lower than those acceptable to recently reported photonic chips (including `single-photon detection' chips), due to a combination of low Lux, small detector size, and short duration SC output pulses - on the order of 1 μs. These challenges are attempted to be overcome by the design of an innovative `System on a Chip' type microchip, with high detector sensitivity, and effective coupling from the SC to the photodetector. The microchip houses a tiny n+ diff p-epi photodiode (PD) as well as the associated analog amplification and other related circuitry, all fabricated in 0.5micron, 3-metal 2-poly CMOS technology. The amplification, together with pulse-shaping of the photocurrent-induced voltage signal, is achieved through a tandem of two capacitively coupled, double-cascode amplifiers. Included in the paper are theoretical estimates and experimental results.

  1. Significant mobility enhancement in extremely thin highly doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Look, David C., E-mail: david.look@wright.edu [Semiconductor Research Center, Wright State University, 3640 Colonel Glenn Hwy., Dayton, Ohio 45435 (United States); Wyle Laboratories, Inc., 2601 Mission Point Blvd., Dayton, Ohio 45431 (United States); Air Force Research Laboratory Sensors Directorate, 2241 Avionics Circle, Wright-Patterson AFB, Ohio 45433 (United States); Heller, Eric R. [Air Force Research Laboratory Materials and Manufacturing Directorate, 3005 Hobson Way, Wright-Patterson AFB, Ohio 45433 (United States); Yao, Yu-Feng; Yang, C. C., E-mail: ccycc@ntu.edu.tw [Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (China)

    2015-04-13

    Highly Ga-doped ZnO (GZO) films of thicknesses d = 5, 25, 50, and 300 nm, grown on 160-nm ZnO buffer layers by molecular beam epitaxy, had 294-K Hall-effect mobilities μ{sub H} of 64.1, 43.4, 37.0, and 34.2 cm{sup 2}/V-s, respectively. This extremely unusual ordering of μ{sub H} vs d is explained by the existence of a very high-mobility Debye tail in the ZnO, arising from the large Fermi-level mismatch between the GZO and the ZnO. Scattering theory in conjunction with Poisson analysis predicts a Debye-tail mobility of 206 cm{sup 2}/V-s at the interface (z = d), falling to 58 cm{sup 2}/V-s at z = d + 2 nm. Excellent fits to μ{sub H} vs d and sheet concentration n{sub s} vs d are obtained with no adjustable parameters.

  2. Potential therapeutic mechanism of extremely low-frequency high-voltage electric fields in cells.

    Science.gov (United States)

    Kim, Ka-Eun; Park, Soon-Kwon; Nam, Sang-Yun; Han, Tae-Jong; Cho, Il-Young

    2016-05-18

    The aim of this survey was to provide background theory based on previous research to elucidate the potential pathway by which medical devices using extremely low-frequency high-voltage electric fields (ELF-HVEF) exert therapeutic effects on the human body, and to increase understanding of the AC high-voltage electrotherapeutic apparatus for consumers and suppliers of the relevant devices. Our review revealed that an ELF field as weak as 1-10 μ V/m can induce diverse alterations of membrane proteins such as transporters and channel proteins, including changes in Ca + + binding to a specific site of the cell surface, changes in ion (e.g., Ca + + ) influx or efflux, and alterations in the ligand-receptor interaction. These alterations then induce cytoplasmic responses within cells (Ca + + , cAMP, kinases, etc.) that can have impacts on cell growth, differentiation, and other functional properties by promoting the synthesis of macromolecules. Moreover, increased cytoplasmic Ca + + involves calmodulin-dependent signaling and consequent Ca + + /calmodulin-dependent stimulation of nitric oxide synthesis. This event in turn induces the nitric oxide-cGMP-protein kinase G pathway, which may be an essential factor in the observed physiological and therapeutic responses.

  3. User characteristics and effect profile of Butane Hash Oil: An extremely high-potency cannabis concentrate.

    Science.gov (United States)

    Chan, Gary C K; Hall, Wayne; Freeman, Tom P; Ferris, Jason; Kelly, Adrian B; Winstock, Adam

    2017-09-01

    Recent reports suggest an increase in use of extremely potent cannabis concentrates such as Butane Hash Oil (BHO) in some developed countries. The aims of this study were to examine the characteristics of BHO users and the effect profiles of BHO. Anonymous online survey in over 20 countries in 2014 and 2015. Participants aged 18 years or older were recruited through onward promotion and online social networks. The overall sample size was 181,870. In this sample, 46% (N=83,867) reported using some form of cannabis in the past year, and 3% reported BHO use (n=5922). Participants reported their use of 7 types of cannabis in the past 12 months, the source of their cannabis, reasons for use, use of other illegal substances, and lifetime diagnosis for depression, anxiety and psychosis. Participants were asked to rate subjective effects of BHO and high potency herbal cannabis. Participants who reported a lifetime diagnosis of depression (OR=1.15, p=0.003), anxiety (OR=1.72, pcannabis. BHO users also reported stronger negative effects and less positive effects when using BHO than high potency herbal cannabis (pcannabis. Copyright © 2017. Published by Elsevier B.V.

  4. Optical studies of high-temperature superconducting cuprates

    Science.gov (United States)

    Tajima, Setsuko

    2016-09-01

    The optical studies of high-temperature superconducting cuprates (HTSC) are reviewed. From the doping dependence of room temperature spectra, a dramatic change of the electronic state from a Mott (charge transfer) insulator to a Fermi liquid has been revealed. Additionally, the unusual 2D nature of the electronic state has been found. The temperature dependence of the optical spectra provided a rich source of information on the pseudogap, superconducting gap, Josephson plasmon, transverse Josephson plasma mode and precursory superconductivity. Among these issues, Josephson plasmons and transverse Josephson plasma mode were experimentally discovered by optical measurements, and thus are unique to HTSC. The effect of the spin/charge stripe order is also unique to HTSC, reflecting the conducting nature of the stripe order in this system. The pair-breaking due to the stripe order seems stronger in the out-of-plane direction than in the in-plane one.

  5. High-speed analog fiber optic links for satellite communication

    Science.gov (United States)

    Daryoush, A. S.; Herczfeld, P. R.; Kunath, R. R.

    1988-01-01

    Large-aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging. Array elements are comprised of active transmit/receive (T/R) modules which are linked to the central processing unit through a high-speed fiberoptic network. This paper demonstrates optical control of active modules for satellite communication at 24 GHz. An approach called T/R level data mixing, which utilizes fiberoptic transmission of a data signal to individual T/R modules to be upconverted by an optically synchronized local oscillator, is demonstrated at 24 GHz. A free-running HEMT oscillator, used as local oscillator at 24 GHz, is synchronized using indirect subharmonic optical injection locking over a locking range of 14 MHz. Results of data link performance over 500-1000 MHz is also reported in terms of gain-bandwidth, linearity and third-order intercept, sensitivity, and dynamic range.

  6. Propagation of Optical Pulses in Polarization Maintaining Highly Birefringent Fibers

    Science.gov (United States)

    Leiva, Ariel; Olivares, Ricardo

    2008-04-01

    The propagation of Gaussian optical pulses through optical PM-HiBi (Polarization Maintaining Highly Birefringent) fibers is analyzed and simulated. Based upon a model of propagation as described by Marcuse, et al., [1] and Sunnerud, et al., [2], and the use of PMD (Polarization Mode Dispersion) compensators and emulators used by Kogelnik, et al. [2], [3] and Lima, et al. [4], we construct a simple model that allows graphical representation of the distortion experienced by optical pulses when propagating in a PM-HiBi fiber for different initial polarizations. The results of our analysis have the benefit of being identical to the more elaborate models of [1], [2], while also providing the additional advantage of simple graphical representation.

  7. Bendable X-ray Optics for High Resolution Imaging

    Science.gov (United States)

    Gubarev, M.; Ramsey, B.; Kilaru, K.; Atkins, C.; Broadway, D.

    2014-01-01

    Current state-of the-art for x-ray optics fabrication calls for either the polishing of massive substrates into high-angular-resolution mirrors or the replication of thin, lower-resolution, mirrors from perfectly figured mandrels. Future X-ray Missions will require a change in this optics fabrication paradigm in order to achieve sub-arcsecond resolution in light-weight optics. One possible approach to this is to start with perfectly flat, light-weight surface, bend it into a perfect cone, form the desired mirror figure by material deposition, and insert the resulting mirror into a telescope structure. Such an approach is currently being investigated at MSFC, and a status report will be presented detailing the results of finite element analyses, bending tests and differential deposition experiments.

  8. Recent developments in high-resolution optical diagnostics of repetitively pulsed laser-target effects

    Science.gov (United States)

    Hugenschmidt, Manfred; Althaus, Marion

    1995-05-01

    High energy densities, as required both in research and in industry, are achieved by the use of lasers. Extremely highpower densities are obtained in the pulsed mode with short microsecond(s) -, ns-, or even ultrashort ps- to fs- pulses. The interaction of such powerful laser pulses with any type of solid state, liquid or gaseous materials is then causing rapidly developing, nonstationary, optically nonlinear processes. Experimental investigations of these effects are therefore requiring special measuring techniques with high spatial and temporal resolution. Optical and optronical methods have proven to be particularly useful. Methods based on laser diagnostics, including high speed photography, cinematography, speckle techniques, holography, videography, infrared techniques or arbitrary combinations of these, are therefore considered to be important tools in these laser effect studies. The investigations reported in the present paper are referring to carbon dioxide-laser effects in intensity ranges which are useful for many industrial applications, such as for example in the field of material processing. Basic interest is actually in pulsed, plasma sustained laser target interaction phenomena which occur above critical threshold power densities, specific for each type of material. Surface induced, highly ionized absorption waves are then determining the energy transfer from the coherent laser radiation field towards the targets. The experiments at ISL were aimed at investigating plasma parameters and their influence on the energy transfer rates, by fast optical, electrical and optronical techniques, such as mentioned above. The results to be discussed refer to target effects, basically observed on optically transparent materials, subject to high average power pulsed carbon dioxide-laser radiation, with repetition rates of several tens to hundred pps at multi-MW/cm2 to GW/cm2 peak power densities and average power densities in the multi-kW/cm2-range.

  9. Ultra-high-speed serial optical communications: Enabling technologies

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Mulvad, Hans Christian Hansen

    2008-01-01

    This paper will present recently identified and demonstrated key technologies for ultra-high-speed serial communications. Certain key components such as stabilised highly non-linear fibre switches, periodically poled Lithium Niobate devices and semiconductor optical amplifiers will be described...... with demonstrations of 640 Gb/s transmission, clock recovery, demultiplexing, add/drop, wavelength conversion and channel identification. Timing jitter tolerance is addressed through techniques to create flat-top pulses....

  10. Traceability of high focal length cameras with diffractive optical elements

    Science.gov (United States)

    Lages Martins, L.; Silva Ribeiro, A.; Sousa, J. Alves e.

    2016-11-01

    This paper describes the use of diffractive optical elements (DOEs) for metrological traceable geometrical testing of high focal length cameras applied in the observation of large- scale structures. DOEs and related mathematical models are briefly explained. Laboratorial activities and results are described for the case of a high focal length camera used for longdistance displacement measurement of a long-span (2278 m) suspension bridge.

  11. Fluctuating nanomechanical systems in a high finesse optical microcavity

    CERN Document Server

    Favero, I; Hunger, D; Paulitschke, P; Reichel, J; Lorenz, H; Weig, E M; Karrai, K

    2009-01-01

    Confining a laser field between two high reflectivity mirrors of a high-finesse cavity can increase the probability of a given cavity photon to be scattered by an atom traversing the confined photon mode. This enhanced coupling between light and atoms is successfully employed in cavity quantum electrodynamics experiments and led to a very prolific research in quantum optics. The idea of extending such experiments to sub-wavelength sized nanomechanical systems has been recently proposed in the context of optical cavity cooling. Here we present an experiment involving a single nanorod consisting of about 10^9 atoms precisely positioned to plunge into the confined mode of a miniature high finesse Fabry-Perot cavity. We show that the optical transmission of the cavity is affected not only by the static position of the nanorod but also by its vibrational fluctuation. While an imprint of the vibration dynamics is directly detected in the optical transmission, back-action of the light field is also anticipated to qu...

  12. Yolk-shelled cathode materials with extremely high electrochemical performances prepared by spray pyrolysis

    Science.gov (United States)

    Choi, Seung Ho; Hong, Young Jun; Kang, Yun Chan

    2013-08-01

    A facile, continuous preparation process of yolk-shell-structured lithium-metal oxide powders without a template for use as cathode materials in lithium ion batteries is introduced for the first time. Single and double-shelled LiNi0.5Mn1.5O4 yolk-shell powders as the first target materials are prepared directly by spray pyrolysis from a spray solution with sucrose, at a short residence time of 4 s. Fast combustion and contraction of a carbon-mixed oxide composite intermediate, formed from a micro-sized droplet inside a hot wall reactor maintained at 700 °C, produces the yolk-shell powders. The yolk-shell structure of the precursor powders directly prepared by spray pyrolysis is well maintained even at a high post-treatment temperature of 750 °C. The yolk-shell LiNi0.5Mn1.5O4 powders delivered a 1000th high discharge capacity of 108 mA h g-1 at 10 C. The discharge capacities are as high as 103, 95, and 91 mA h g-1 at extremely high discharge rates of 100, 200, and 300 C and the corresponding specific energy densities are 420, 370, and 328 W h kg-1. The capacity retention at a constant discharge rate of 200 C is 90% after 500 cycles.A facile, continuous preparation process of yolk-shell-structured lithium-metal oxide powders without a template for use as cathode materials in lithium ion batteries is introduced for the first time. Single and double-shelled LiNi0.5Mn1.5O4 yolk-shell powders as the first target materials are prepared directly by spray pyrolysis from a spray solution with sucrose, at a short residence time of 4 s. Fast combustion and contraction of a carbon-mixed oxide composite intermediate, formed from a micro-sized droplet inside a hot wall reactor maintained at 700 °C, produces the yolk-shell powders. The yolk-shell structure of the precursor powders directly prepared by spray pyrolysis is well maintained even at a high post-treatment temperature of 750 °C. The yolk-shell LiNi0.5Mn1.5O4 powders delivered a 1000th high discharge capacity of 108 m

  13. Coherent DWDM technology for high speed optical communications

    Science.gov (United States)

    Saunders, Ross

    2011-10-01

    The introduction of coherent digital optical transmission enables a new generation of high speed optical data transport and fiber impairment mitigation. An initial implementation of 40 Gb/s coherent systems using Dual Polarization Quadrature Phase Shift Keying (DP-QPSK) is already being installed in carrier networks. New systems running at 100 Gb/s DP-QPSK data rate are in development and early technology lab and field trial phase. Significant investment in the 100 Gb/s ecosystem (optical components, ASICs, transponders and systems) bodes well for commercial application in 2012 and beyond. Following in the footsteps of other telecommunications fields such as wireless and DSL, we can expect coherent optical transmission to evolve from QPSK to higher order modulations schemes such as Mary PSK and/or QAM. This will be an interesting area of research in coming years and poses significant challenges in terms of electro-optic, DSP, ADC/DAC design and fiber nonlinearity mitigation to reach practical implementation ready for real network deployments.

  14. High-resolution optical tweezers for single-molecule manipulation.

    Science.gov (United States)

    Zhang, Xinming; Ma, Lu; Zhang, Yongli

    2013-09-01

    Forces hold everything together and determine its structure and dynamics. In particular, tiny forces of 1-100 piconewtons govern the structures and dynamics of biomacromolecules. These forces enable folding, assembly, conformational fluctuations, or directional movements of biomacromolecules over sub-nanometer to micron distances. Optical tweezers have become a revolutionary tool to probe the forces, structures, and dynamics associated with biomacromolecules at a single-molecule level with unprecedented resolution. In this review, we introduce the basic principles of optical tweezers and their latest applications in studies of protein folding and molecular motors. We describe the folding dynamics of two strong coiled coil proteins, the GCN4-derived protein pIL and the SNARE complex. Both complexes show multiple folding intermediates and pathways. ATP-dependent chromatin remodeling complexes translocate DNA to remodel chromatin structures. The detailed DNA translocation properties of such molecular motors have recently been characterized by optical tweezers, which are reviewed here. Finally, several future developments and applications of optical tweezers are discussed. These past and future applications demonstrate the unique advantages of high-resolution optical tweezers in quantitatively characterizing complex multi-scale dynamics of biomacromolecules.

  15. Design method for automotive high-beam LED optics

    Science.gov (United States)

    Byzov, Egor V.; Moiseev, Mikhail A.; Doskolovich, Leonid L.; Kazanskiy, Nikolay L.

    2015-09-01

    New analytical method for the calculation of the LED secondary optics for automotive high-beam lamps is presented. Automotive headlamps should illuminate the road and the curb at the distance of 100-150 meters and create a bright, flat, relatively powerful light beam. To generate intensity distribution of this kind we propose to use TIR optical element (collimator working on the total internal reflection principle) with array of microlenses (optical corrector) on the upper surface. TIR part of the optical element enables reflection of the side rays to the front direction and provides a collimated beam which incidents on the microrelief. Microrelief, in its turn, dissipates the light flux in horizontal direction to meet the requirements of the Regulations 112, 113 and to provide well-illuminated area across the road in the far field. As an example, we computed and simulated the optical element with the diameter of 33 millimeters and the height of 22 millimeters. Simulation data shows that three illuminating modules including Cree XP-G2 LED and lens allow generating an appropriate intensity distribution for the class D of UNECE Regulations.

  16. High numerical aperture imaging by using multimode fibers with micro-fabricated optics

    KAUST Repository

    Bianchi, Silvio

    2014-01-01

    Controlling light propagation into multimode optical fibers through spatial light modulators provides highly miniaturized endoscopes and optical micromanipulation probes. We increase the numerical aperture up to nearly 1 by micro-optics fabricated on the fiber-end.

  17. High-Speed Photography and Digital Optical Measurement Techniques for Geomaterials: Fundamentals and Applications

    Science.gov (United States)

    Xing, H. Z.; Zhang, Q. B.; Braithwaite, C. H.; Pan, B.; Zhao, J.

    2017-06-01

    Geomaterials (i.e. rock, sand, soil and concrete) are increasingly being encountered and used in extreme environments, in terms of the pressure magnitude and the loading rate. Advancing the understanding of the mechanical response of materials to impact loading relies heavily on having suitable high-speed diagnostics. One such diagnostic is high-speed photography, which combined with a variety of digital optical measurement techniques can provide detailed insights into phenomena including fracture, impact, fragmentation and penetration in geological materials. This review begins with a brief history of high-speed imaging. Section 2 discusses of the current state of the art of high-speed cameras, which includes a comparison between charge-coupled device and complementary metal-oxide semiconductor sensors. The application of high-speed photography to geomechanical experiments is summarized in Sect. 3. Section 4 is concerned with digital optical measurement techniques including photoelastic coating, Moiré, caustics, holographic interferometry, particle image velocimetry, digital image correlation and infrared thermography, in combination with high-speed photography to capture transient phenomena. The last section provides a brief summary and discussion of future directions in the field.

  18. Physical Properties and Behaviour of Highly Bi-Substituted Magneto-Optic Garnets for Applications in Integrated Optics and Photonics

    Directory of Open Access Journals (Sweden)

    Mohammad Nur-E-Alam

    2011-01-01

    Full Text Available Rare-earth and Bi-substituted iron garnet thin film materials exhibit strong potential for application in various fields of science and frontier optical technologies. Bi-substituted iron garnets possess extraordinary optical and MO properties and are still considered as the best MO functional materials for various emerging integrated optics and photonics applications. However, these MO garnet materials are rarely seen in practical photonics use due to their high optical losses in the visible spectral region. In this paper, we report on the physical properties and magneto-optic behaviour of high-performance RF sputtered highly bismuth-substituted iron garnet and garnet-oxide nanocomposite films of generic composition type (Bi, Dy/Lu3(Fe, Ga/Al5O12. Our newly synthesized garnet materials form high-quality nanocrystalline thin film layers which demonstrate excellent optical and MO properties suitable for a wide range of applications in integrated optics and photonics.

  19. All-Optical Ultra-High-Speed OFDM to Nyquist-WDM Conversion Based on Complete Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen

    2016-01-01

    We propose a novel all-optical ultra-high-speed orthogonal frequency-division multiplexing (OFDM) to Nyquist wavelength-division multiplexing (Nyquist-WDM) conversion scheme, achieved by exchanging the temporal and spectral profiles using a complete optical Fourier transformation (OFT). This scheme...... enables high-speed OFDM to Nyquist-WDM conversion without complex optical/electrical/optical conversion. The all-optical OFDM transmitter is based on the generation of OFDM symbols with a low duty cycle by rectangular temporal gating, which in combination with optical time-division multiplexing yields...... a higher symbol-rate OFDM signal. In the receiver, the converted Nyquist-WDM super-channel is WDM demultiplexed into individual Nyquist-WDM channels using a rectangular optical bandpass filter, followed by optical sampling at the intersymbol-interference free point. In the experimental demonstration...

  20. Future Projection of Summer Extreme Precipitation from High Resolution Multi-RCMs over East Asia

    Science.gov (United States)

    Kim, Gayoung; Park, Changyong; Cha, Dong-Hyun; Lee, Dong-Kyou; Suh, Myoung-Seok; Ahn, Joong-Bae; Min, Seung-Ki; Hong, Song-You; Kang, Hyun-Suk

    2017-04-01

    Recently, the frequency and intensity of natural hazards have been increasing due to human-induced climate change. Because most damages of natural hazards over East Asia have been related to extreme precipitation events, it is important to estimate future change in extreme precipitation characteristics caused by climate change. We investigate future changes in extremal values of summer precipitation simulated by five regional climate models participating in the CORDEX-East Asia project (i.e., HadGEM3-RA, RegCM4, MM5, WRF, and GRIMs) over East Asia. 100-year return value calculated from the generalized extreme value (GEV) parameters is analysed as an indicator of extreme intensity. In the future climate, the mean values as well as the extreme values of daily precipitation tend to increase over land region. The increase of 100-year return value can be significantly associated with the changes in the location (intensity) and scale (variability) GEV parameters for extreme precipitation. It is expected that the results of this study can be used as fruitful references when making the policy of disaster management. Acknowledgements The research was supported by the Ministry of Public Safety and Security of Korean government and Development program under grant MPSS-NH-2013-63 and the National Research Foundation of Korea Grant funded by the Ministry of Science, ICT and Future Planning of Korea (NRF-2016M3C4A7952637) for its support and assistant in completion of the study.

  1. High-irradiance reactors with unfolded aplanatic optics.

    Science.gov (United States)

    Feuermann, Daniel; Gordon, Jeffrey M

    2008-11-01

    Reconstituting the intense irradiance of short-arc discharge lamps at a remote target, at high radiative efficiency, represents a central challenge in the design of high-temperature chemical reactors, heightened by the need for high numerical aperture at both the target and the source. Separating the optical system from both the source and the reactor allows pragmatic operation, monitoring, and control. We explore near-field unfolded aplanats as feasible solutions and report measurements for a prototype that constitutes a double-ellipsoid mirror. We also propose compound unfolded aplanats that collect lamp emission over all angles (in lieu of light recycling optics) and irradiate the reactor over nearly its full circumference.

  2. Compact and high-resolution optical orbital angular momentum sorter

    Directory of Open Access Journals (Sweden)

    Chenhao Wan

    2017-03-01

    Full Text Available A compact and high-resolution optical orbital angular momentum (OAM sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.

  3. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.

    Science.gov (United States)

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A H

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal.

  4. Extremely short duration high intensity interval training substantially improves insulin action in young healthy males

    Directory of Open Access Journals (Sweden)

    Cottrell Greg

    2009-01-01

    Full Text Available Abstract Background Traditional high volume aerobic exercise training reduces cardiovascular and metabolic disease risk but involves a substantial time commitment. Extremely low volume high-intensity interval training (HIT has recently been demonstrated to produce improvements to aerobic function, but it is unknown whether HIT has the capacity to improve insulin action and hence glycemic control. Methods Sixteen young men (age: 21 ± 2 y; BMI: 23.7 ± 3.1 kg·m-2; VO2peak: 48 ± 9 ml·kg-1·min-1 performed 2 weeks of supervised HIT comprising of a total of 15 min of exercise (6 sessions; 4–6 × 30-s cycle sprints per session. Aerobic performance (250-kJ self-paced cycling time trial, and glucose, insulin and NEFA responses to a 75-g oral glucose load (oral glucose tolerance test; OGTT were determined before and after training. Results Following 2 weeks of HIT, the area under the plasma glucose, insulin and NEFA concentration-time curves were all reduced (12%, 37%, 26% respectively, all P -1, P = 0.058. Insulin sensitivity, as measured by the Cederholm index, was improved by 23% (P Conclusion The efficacy of a high intensity exercise protocol, involving only ~250 kcal of work each week, to substantially improve insulin action in young sedentary subjects is remarkable. This novel time-efficient training paradigm can be used as a strategy to reduce metabolic risk factors in young and middle aged sedentary populations who otherwise would not adhere to time consuming traditional aerobic exercise regimes.

  5. High performance fiber-based optical coherent detection

    Science.gov (United States)

    Chen, Youming

    The sensitivity of signal detection is of major interest for optical high speed communication systems and LIght Detection And Ranging (lidar) systems. Sensitive receivers in fiber-optical networks can reduce transmitter power or amplifier amplification requirements and extend link spans. High receiver sensitivity allows links to be established over long distances in deep space satellite communication systems and large atmospheric attenuation to be overcome in terrestrial free space communications. For lidar systems, the sensitivity of signal detection determines how far and how accurately the lidar can detect the remote objects. Optical receivers employ either coherent or direct detection. In addition to amplitude, coherent detection extracts frequency and phase information from received signals, whereas direct detection extracts the received pulse amplitude only. In theory, coherent detection should yield the highest receiver sensitivity. Another possible technique to improve detection sensitivity is to employ a fiber preamplifier. This technique has been successfully demonstrated in direct detection systems but not in the coherent detection systems. Due to the existence of amplified spontaneous emission (ASE) inside the amplifier, the sensitivity of coherent detection varies with the data rate or pulse rate. For this reason, optically preamplified coherent detection is not used in applications as commonly as optically preamplified direct detection. We investigate the performance of coherent detection employing a fiber amplifier and time-domain-filter. The fiber amplifier is used as the optical preamplifier of the coherent detection system. To reduce the noise induced by the preamplifier to a maximum extent, we investigate the noise properties for both a single pass amplifier and a double pass amplifier. The relative intensity noise and linewidth broadening caused by ASE have been experimentally characterized. The results show that the double pass amplifier has

  6. High precision optical finishing of lightweight silicon carbide aspheric mirror

    Science.gov (United States)

    Kong, John; Young, Kevin

    2010-10-01

    Critical to the deployment of large surveillance optics into the space environment is the generation of high quality optics. Traditionally, aluminum, glass and beryllium have been used; however, silicon carbide becomes of increasing interest and availability due to its high strength. With the hardness of silicon carbide being similar to diamond, traditional polishing methods suffer from slow material removal rates, difficulty in achieving the desired figure and inherent risk of causing catastrophic damage to the lightweight structure. Rather than increasing structural capacity and mass of the substrate, our proprietary sub-aperture aspheric surface forming technology offers higher material removal rates (comparable to that of Zerodur or Fused Silica), a deterministic approach to achieving the desired figure while minimizing contact area and the resulting load on the optical structure. The technology performed on computer-controlled machines with motion control software providing precise and quick convergence of surface figure, as demonstrated by optically finishing lightweight silicon carbide aspheres. At the same time, it also offers the advantage of ideal pitch finish of low surface micro-roughness and low mid-spatial frequency error. This method provides a solution applicable to all common silicon carbide substrate materials, including substrates with CVD silicon carbide cladding, offered by major silicon carbide material suppliers. This paper discusses a demonstration mirror we polished using this novel technology. The mirror is a lightweight silicon carbide substrate with CVD silicon carbide cladding. It is a convex hyperbolic secondary mirror with 104mm diameter and approximately 20 microns aspheric departure from best-fit sphere. The mirror has been finished with surface irregularity of better than 1/50 wave RMS @632.8 nm and surface micro-roughness of under 2 angstroms RMS. The technology has the potential to be scaled up for manufacturing capabilities of

  7. Extremely high frequency electromagnetic radiation enforces bacterial effects of inhibitors and antibiotics.

    Science.gov (United States)

    Tadevosyan, Hasmik; Kalantaryan, Vitaly; Trchounian, Armen

    2008-01-01

    The coherent electromagnetic radiation (EMR) of the frequency of 51.8 and 53 GHz with low intensity (the power flux density of 0.06 mW/cm(2)) affected the growth of Escherichia coli K12(lambda) under fermentation conditions: the lowering of the growth specific rate was considerably (approximately 2-fold) increased with exposure duration of 30-60 min; a significant decrease in the number of viable cells was also shown. Moreover, the enforced effects of the N,N'-dicyclohexylcarbodiimide (DCCD), inhibitor of H(+)-transporting F(0)F(1)-ATPase, on energy-dependent H(+) efflux by whole cells and of antibiotics like tetracycline and chloramphenicol on the following bacterial growth and survival were also determined after radiation. In addition, the lowering in DCCD-inhibited ATPase activity of membrane vesicles from exposed cells was defined. The results confirmed the input of membranous changes in bacterial action of low intensity extremely high frequency EMR, when the F(0)F(1)-ATPase is probably playing a key role. The radiation of bacteria might lead to changed metabolic pathways and to antibiotic resistance. It may also give bacteria with a specific role in biosphere.

  8. The fire-walker's high: affect and physiological responses in an extreme collective ritual.

    Science.gov (United States)

    Fischer, Ronald; Xygalatas, Dimitris; Mitkidis, Panagiotis; Reddish, Paul; Tok, Penny; Konvalinka, Ivana; Bulbulia, Joseph

    2014-01-01

    How do people feel during extreme collective rituals? Despite longstanding speculation, few studies have attempted to quantify ritual experiences. Using a novel pre/post design, we quantified physiological fluctuations (heart rates) and self-reported affective states from a collective fire-walking ritual in a Mauritian Hindu community. Specifically, we compared changes in levels of happiness, fatigue, and heart rate reactivity among high-ordeal participants (fire-walkers), low-ordeal participants (non-fire-walking participants with familial bonds to fire-walkers) and spectators (unrelated/unknown to the fire-walkers). We observed that fire-walkers experienced the highest increase in heart rate and reported greater happiness post-ritual compared to low-ordeal participants and spectators. Low-ordeal participants reported increased fatigue after the ritual compared to both fire-walkers and spectators, suggesting empathetic identification effects. Thus, witnessing the ritualistic suffering of loved ones may be more exhausting than experiencing suffering oneself. The findings demonstrate that the level of ritual involvement is important for shaping affective responses to collective rituals. Enduring a ritual ordeal is associated with greater happiness, whereas observing a loved-one endure a ritual ordeal is associated with greater fatigue post-ritual.

  9. The fire-walker's high: affect and physiological responses in an extreme collective ritual.

    Directory of Open Access Journals (Sweden)

    Ronald Fischer

    Full Text Available How do people feel during extreme collective rituals? Despite longstanding speculation, few studies have attempted to quantify ritual experiences. Using a novel pre/post design, we quantified physiological fluctuations (heart rates and self-reported affective states from a collective fire-walking ritual in a Mauritian Hindu community. Specifically, we compared changes in levels of happiness, fatigue, and heart rate reactivity among high-ordeal participants (fire-walkers, low-ordeal participants (non-fire-walking participants with familial bonds to fire-walkers and spectators (unrelated/unknown to the fire-walkers. We observed that fire-walkers experienced the highest increase in heart rate and reported greater happiness post-ritual compared to low-ordeal participants and spectators. Low-ordeal participants reported increased fatigue after the ritual compared to both fire-walkers and spectators, suggesting empathetic identification effects. Thus, witnessing the ritualistic suffering of loved ones may be more exhausting than experiencing suffering oneself. The findings demonstrate that the level of ritual involvement is important for shaping affective responses to collective rituals. Enduring a ritual ordeal is associated with greater happiness, whereas observing a loved-one endure a ritual ordeal is associated with greater fatigue post-ritual.

  10. European Extremely Large Telescope Site Characterization II: High angular resolution parameters

    CERN Document Server

    Ramió, Héctor Vázquez; Muñoz-Tuñón, Casiana; Sarazin, Marc; Varela, Antonia M; Trinquet, Hervé; Delgado, José Miguel; Fuensalida, Jesús J; Reyes, Marcos; Benhida, Abdelmajid; Benkhaldoun, Zouhair; Lambas, Diego García; Hach, Youssef; Lazrek, M; Lombardi, Gianluca; Navarrete, Julio; Recabarren, Pablo; Renzi, Victor; Sabil, Mohammed; Vrech, Rubén

    2012-01-01

    This is the second article of a series devoted to European Extremely Large Telescope (E-ELT) site characterization. In this article we present the main properties of the parameters involved in high angular resolution observations from the data collected in the site testing campaign of the E-ELT during the Design Study (DS) phase. Observations were made in 2008 and 2009, in the four sites selected to shelter the future E-ELT (characterized under the ELT-DS contract): Aklim mountain in Morocco, Observatorio del Roque de los Muchachos (ORM) in Spain, Mac\\'on range in Argentina, and Cerro Ventarrones in Chile. The same techniques, instruments and acquisition procedures were taken on each site. A Multiple Aperture Scintillation Sensor (MASS) and a Differential Image Motion Monitor (DIMM) were installed at each site. Global statistics of the integrated seeing, the free atmosphere seeing, the boundary layer seeing and the isoplanatic angle were studied for each site, and the results are presented here. In order to e...

  11. European Extremely Large Telescope Site Characterization. II. High Angular Resolution Parameters

    Science.gov (United States)

    Vázquez Ramió, Héctor; Vernin, Jean; Muñoz-Tuñón, Casiana; Sarazin, Marc; Varela, Antonia M.; Trinquet, Hervé; Delgado, José Miguel; Fuensalida, Jesús J.; Reyes, Marcos; Benhida, Abdelmajid; Benkhaldoun, Zouhair; García Lambas, Diego; Hach, Youssef; Lazrek, M.; Lombardi, Gianluca; Navarrete, Julio; Recabarren, Pablo; Renzi, Victor; Sabil, Mohammed; Vrech, Rubén

    2012-08-01

    This is the second article of a series devoted to European Extremely Large Telescope (E-ELT) site characterization. In this article we present the main properties of the parameters involved in high angular resolution observations from the data collected in the site testing campaign of the E-ELT during the design study (DS) phase. Observations were made in 2008 and 2009, in the four sites selected to shelter the future E-ELT (characterized under the ELT-DS contract): Aklim mountain in Morocco, Observatorio del Roque de los Muchachos (ORM) in Spain, Macón range in Argentina, and Cerro Ventarrones in Chile. The same techniques, instruments, and acquisition procedures were taken on each site. A multiple aperture scintillation sensor (MASS) and a differential image motion monitor (DIMM) were installed at each site. Global statistics of the integrated seeing, the free atmosphere seeing, the boundary layer seeing, and the isoplanatic angle were studied for each site, and the results are presented here. In order to estimate other important parameters, such as the coherence time of the wavefront and the overall parameter “coherence étendue,” additional information of vertical profiles of the wind speed was needed. Data were retrieved from the National Oceanic and Atmospheric Administration (NOAA) archive. Ground wind speed was measured by automatic weather stations (AWS). More aspects of the turbulence parameters, such as their seasonal trend, their nightly evolution, and their temporal stability, were also obtained and analyzed.

  12. Probing neutrino dark energy with extremely high-energy cosmic neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, A.; Schrempp, L.

    2006-06-15

    Recently, a new non-Standard Model neutrino interaction mediated by a light scalar field was proposed, which renders the big-bang relic neutrinos of the cosmic neutrino background a natural dark energy candidate, the so-called Neutrino Dark Energy. As a further consequence of this interaction, the neutrino masses become functions of the neutrino energy densities and are thus promoted to dynamical, time/redshift dependent quantities. Such a possible neutrino mass variation introduces a redshift dependence into the resonance energies associated with the annihilation of extremely high-energy cosmic neutrinos on relic anti-neutrinos and vice versa into Z-bosons. In general, this annihilation process is expected to lead to sizeable absorption dips in the spectra to be observed on earth by neutrino observatories operating in the relevant energy region above 10{sup 13} GeV. In our analysis, we contrast the characteristic absorption features produced by constant and varying neutrino masses, including all thermal background effects caused by the relic neutrino motion. We firstly consider neutrinos from astrophysical sources and secondly neutrinos originating from the decomposition of topological defects using the appropriate fragmentation functions. On the one hand, independent of the nature of neutrino masses, our results illustrate the discovery potential for the cosmic neutrino background by means of relic neutrino absorption spectroscopy. On the other hand, they allow to estimate the prospects for testing its possible interpretation as source of Neutrino Dark Energy within the next decade by the neutrino observatories ANITA and LOFAR. (Orig.)

  13. Stable droplet generator for a high brightness laser produced plasma extreme ultraviolet source

    Science.gov (United States)

    Vinokhodov, A.; Krivokorytov, M.; Sidelnikov, Yu.; Krivtsun, V.; Medvedev, V.; Bushuev, V.; Koshelev, K.; Glushkov, D.; Ellwi, S.

    2016-10-01

    We present the results of the low-melting liquid metal droplets generation based on excited Rayleigh jet breakup. We discuss on the operation of the industrial and in-house designed and manufactured dispensing devices for the droplets generation. Droplet diameter can be varied in the range of 30-90 μm. The working frequency of the droplets, velocity, and the operating temperature were in the ranges of 20-150 kHz, 4-15 m/s, and up to 250 °C, respectively. The standard deviations for the droplet center of mass position both their diameter σ < 1 μm at the distance of 45 mm from the nozzle. Stable operation in the long-term (over 1.5 h) was demonstrated for a wide range of the droplet parameters: diameters, frequencies, and velocities. Physical factors affecting the stability of the generator operation have been identified. The technique for droplet synchronization, allowing using the droplet as a target for laser produced plasma, has been created; in particular, the generator has been successfully used in a high brightness extreme ultraviolet (EUV) light source. The operation with frequency up to 8 kHz was demonstrated as a result of the experimental simulation, which can provide an average brightness of the EUV source up to ˜1.2 kW/mm2 sr.

  14. Cry me a river: identifying the behavioral consequences of extremely high-stakes interpersonal deception.

    Science.gov (United States)

    Ten Brinke, Leanne; Porter, Stephen

    2012-12-01

    Deception evolved as a fundamental aspect of human social interaction. Numerous studies have examined behavioral cues to deception, but most have involved inconsequential lies and unmotivated liars in a laboratory context. We conducted the most comprehensive study to date of the behavioral consequences of extremely high-stakes, real-life deception--relative to comparable real-life sincere displays--via 3 communication channels: speech, body language, and emotional facial expressions. Televised footage of a large international sample of individuals (N = 78) emotionally pleading to the public for the return of a missing relative was meticulously coded frame-by-frame (30 frames/s for a total of 74,731 frames). About half of the pleaders eventually were convicted of killing the missing person on the basis of overwhelming evidence. Failed attempts to simulate sadness and leakage of happiness revealed deceptive pleaders' covert emotions. Liars used fewer words but more tentative words than truth-tellers, likely relating to increased cognitive load and psychological distancing. Further, each of these cues explained unique variance in predicting pleader sincerity.

  15. Identification and Plasma Diagnostics Study of Extreme Ultraviolet Transitions in Highly Charged Yttrium

    Directory of Open Access Journals (Sweden)

    Roshani Silwal

    2017-09-01

    Full Text Available Extreme ultraviolet spectra of the L-shell ions of highly charged yttrium (Y 26 + –Y 36 + were observed in the electron beam ion trap of the National Institute of Standards and Technology using a flat-field grazing-incidence spectrometer in the wavelength range of 4 nm-20 nm. The electron beam energy was systematically varied from 2.3 keV–6.0 keV to selectively produce different ionization stages. Fifty-nine spectral lines corresponding to Δ n = 0 transitions within the n = 2 and n = 3 shells have been identified using detailed collisional-radiative (CR modeling of the non-Maxwellian plasma. The uncertainties of the wavelength determinations ranged between 0.0004 nm and 0.0020 nm. Li-like resonance lines, 2s– 2 p 1 / 2 and 2s–2 p 3 / 2 , and the Na-like D lines, 3s– 3 p 1 / 2 and 3s– 3 p 3 / 2 , have been measured and compared with previous measurements and calculations. Forbidden magnetic dipole (M1 transitions were identified and analyzed for their potential applicability in plasma diagnostics using large-scale CR calculations including approximately 1.5 million transitions. Several line ratios were found to show strong dependence on electron density and, hence, may be implemented in the diagnostics of hot plasmas, in particular in fusion devices.

  16. Mesoscale high-resolution modeling of extreme wind speeds over western water areas of the Russian Arctic

    Science.gov (United States)

    Platonov, Vladimir S.; Kislov, Alexander V.

    2016-11-01

    A statistical analysis of extreme weather events over coastal areas of the Russian Arctic based on observational data has revealed many interesting features of wind velocity distributions. It has been shown that the extremes contain data belonging to two different statistical populations. Each of them is reliably described by a Weibull distribution. According to the standard terminology, these sets of extremes are named ‘black swans’ and ‘dragons’. The ‘dragons’ are responsible for most extremes, surpassing the ‘black swans’ by 10 - 30 %. Since the data of the global climate model INM-CM4 do not contain ‘dragons’, the wind speed extremes are investigated on the mesoscale using the COSMO-CLM model. The modelling results reveal no differences between the ‘swans’ and ‘dragons’ situations. It could be associated with the poor sample data used. However, according to many case studies and modeling results we assume that it is caused by a rare superposition of large-scale synoptic factors and many local meso- and microscale factors (surface, coastline configuration, etc.). Further studies of extreme wind speeds in the Arctic, such as ‘black swans’ and ‘dragons’, are necessary to focus on non-hydrostatic high-resolution atmospheric modelling using downscaling techniques.

  17. Free-fillet flap harvested in 'severe, high-energy landmine explosion' injuries of lower extremity: a case report.

    Science.gov (United States)

    Keklikçi, Kenan; Uygur, Fatih; Cengiz Bayram, Fazli; Cilli, Feridun

    2010-01-01

    Fillet flaps harvested from the non-replantable or unsalvageable amputated segment can be used to cover tissue defects. We discuss the case of a patient who had suffered a severe high-energy landmine injury, including severe leg damage, resulting in a below-knee amputation and soft-tissue defect around the forearm region. We successfully harvested the fillet from the amputated part of the extremity to the forearm region. We conclude that harvesting of a fillet flap from severely injured lower extremity, resulting from a high-energy landmine explosion, is technically feasible.

  18. Probing the origin of cosmic-rays with extremely high energy neutrinos using the IceCube Observatory

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.

    2013-01-01

    We have searched for extremely high energy neutrinos using data taken with the IceCube detector between May 2010 andMay 2012. Two neutrino-induced particle shower events with energies around 1 PeV were observed, as reported previously. In this work, we investigate whether these events could...... originate from cosmogenic neutrinos produced in the interactions of ultrahigh energy cosmic rays with ambient photons while propagating through intergalactic space. Exploiting IceCube’s large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out...

  19. HIGH RESOLUTION OPTICAL AND NIR SPECTRA OF HBC 722

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-Eun; Park, Sunkyung [School of Space Research, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Green, Joel D.; Cochran, William D. [Department of Astronomy, University of Texas at Austin, TX (United States); Kang, Wonseok; Lee, Sang-Gak [National Youth Space Center, 200 Deokheungyangjjok-gil, Dongil-myeon, Goheung-gun, Jeollanam-do 548-951 (Korea, Republic of); Sung, Hyun-Il, E-mail: jeongeun.lee@khu.ac.kr, E-mail: sunkyung@khu.ac.kr, E-mail: joel@astro.as.utexas.edu, E-mail: wdc@astro.as.utexas.edu, E-mail: wskang@kywa.or.kr, E-mail: sanggak@kywa.or.kr, E-mail: hisung@kasi.re.kr [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 305-348 (Korea, Republic of)

    2015-07-01

    We present the results of high resolution (R ≥ 30,000) optical and near-IR spectroscopic monitoring observations of HBC 722, a recent FU Orionis object that underwent an accretion burst in 2010. We observed HBC 722 in the optical/near-IR with the Bohyunsan Optical Echelle Spectrograph, Hobby–Eberly Telescope-HRS, and Immersion Grating Infrared Spectrograph, at various points in the outburst. We found atomic lines with strongly blueshifted absorption features or P Cygni profiles, both evidence of a wind driven by the accretion. Some lines show a broad double-peaked absorption feature, evidence of disk rotation. However, the wind-driven and disk-driven spectroscopic features are anti-correlated in time; the disk features became strong as the wind features disappeared. This anti-correlation might indicate that the rebuilding of the inner disk was interrupted by the wind pressure during the first 2 years. The half-width at half-depth of the double-peaked profiles decreases with wavelength, indicative of the Keplerian rotation; the optical spectra with the disk feature are fitted by a G5 template stellar spectrum convolved with a rotation velocity of 70 km s{sup −1} while the near-IR disk features are fitted by a K5 template stellar spectrum convolved with a rotation velocity of 50 km s{sup −1}. Therefore, the optical and near-IR spectra seem to trace the disk at 39 and 76 R{sub ⊙}, respectively. We fit a power-law temperature distribution in the disk, finding an index of 0.8, comparable to optically thick accretion disk models.

  20. Multi-scenario-based hazard analysis of high temperature extremes experienced in China during 1951-2010

    Institute of Scientific and Technical Information of China (English)

    YIN Zhan'e; YIN Jie; ZHANG Xiaowei

    2013-01-01

    China is physically and socio-economically susceptible to global warming-derived high temperature extremes because of its vast area and high urban population density.This article presents a scenario-based analysis method for high temperature extremes aimed at illustrating the latter's hazardous potential and exposure across China.Based on probability analysis,high temperature extreme scenarios with return periods of 5,10,20,and 50 years were designed,with a high temperature hazard index calculated by integrating two differentially-weighted extreme temperature indices (maximum temperature and high temperature days).To perform the exposure analysis,a land use map was employed to determine the spatial distribution of susceptible human activities under the different scenarios.The results indicate that there are two heat-prone regions and a sub-hotspot occupying a relatively small land area.However,the societal and economic consequences of such an environmental impact upon the North China Plain and middle/lower Yangtze River Basin would be substantial due to the concentration of human activities in these areas.

  1. Adaptive optics with pupil tracking for high resolution retinal imaging.

    Science.gov (United States)

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-02-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  2. GFOC Project results: High Temperature / High Pressure, Hydrogen Tolerant Optical Fiber

    Energy Technology Data Exchange (ETDEWEB)

    E. Burov; A. Pastouret; E. Aldea; B. Overton; F. Gooijer; A. Bergonzo

    2012-02-12

    Tests results are given for exposure of multimode optical fiber to high temperatures (300 deg. C) and high partial pressure (15 bar) hydrogen. These results demonstrate that fluorine down doped optical fibers are much more hydrogen tolerant than traditional germanium doped multimode optical fibers. Also demonstrated is the similar hydrogen tolerance of carbon coated and non-carbon coated fibers. Model for reversible H2 impact in fiber versus T{sup o}C and H2 pressure is given. These results have significant impact for the longevity of use for distributed temperature sensing applications in harsh environments such as geothermal wells.

  3. High-speed Light Peak optical link for high energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, F.X. [Academia Sinica, Taipei, Taiwan (China); Chiang, F. [FOCI Fiber Optic Comm., Inc., Hsinchu, Taiwan (China); Deng, B. [Hubei Polytechnic University, Huangshi, Hubei (China); Southern Methodist University, Dallas, TX (United States); Hou, J. [FOCI Fiber Optic Comm., Inc., Hsinchu, Taiwan (China); Hou, S., E-mail: suen@gate.sinica.edu.tw [Academia Sinica, Taipei, Taiwan (China); Liu, C.; Liu, T. [Southern Methodist University, Dallas, TX (United States); Teng, P.K. [Academia Sinica, Taipei, Taiwan (China); Wang, C.H. [National United University, Miaoli, Taiwan (China); Xu, T. [Shandong University, Ji' nan (China); Southern Methodist University, Dallas, TX (United States); Ye, J. [Southern Methodist University, Dallas, TX (United States)

    2014-11-21

    Optical links provide high speed data transmission with low mass fibers favorable for applications in high energy experiments. We report investigation of a compact Light Peak optical engine designed for data transmission at 4.8 Gbps. The module is assembled with bare die VCSEL, PIN diodes and a control IC aligned within a prism receptacle for light coupling to fiber ferrule. Radiation damage in the receptacle was examined with {sup 60}Co gamma ray. Radiation induced single event effects in the optical engine were studied with protons, neutrons and X-ray tests.

  4. High-resolution proton scattering off {sup 70}Zn under extreme forward angles

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Andreas; Martin, Dirk; Neumann-Cosel, Peter von; Pietralla, Norbert [Technische Univ. Darmstadt (Germany). Inst. fuer Kernphysik; Tamii, Atsushi [Research Center for Nuclear Physics, Osaka (Japan); Collaboration: E377-Collaboration

    2013-07-01

    A high-resolution scattering experiment was performed with a 295 MeV proton beam at the Research Center of Nuclear Physics in Osaka, Japan. The nucleus {sup 70}Zn has been measured under scattering angles of 0 {sup circle}, 3 {sup circle} and 4.5 {sup circle}. From the angular distributions it is possible to distinguish spin-M1 and E1 response. The spin-M1 response is assumed to be affected by the shell evolution due to the tensor force towards the exotic neutron-rich doubly magic nuclei {sup 78}Ni. The experiments will also provide important information on the evolution of the pygmy dipole resonance with neutron excess by comparison with unstable neutron-rich isotones {sup 68}Ni discovered recently at GSI. During the analysis procedure, ion optical correction methods, drift time to distance conversion, high-resolution corrections and an energy calibration are applied. After the background subtraction, double differential cross sections can be extracted.

  5. Radiation-damped profiles of extremely high column density neutral hydrogen: implications of cosmic reionization

    Science.gov (United States)

    Bach, Kiehunn

    2017-01-01

    Incorporating the time-dependent second-order perturbation theory for the Lyman scattering cross-section, we investigate the intergalactic absorption profiles of extremely high column density systems near the end of cosmic reionization. Assuming a representative set of the redshift distribution of neutral hydrogen, we quantitatively examined the impact of inhomogeneous density on the intrinsic absorption profiles. The cumulative absorption by neutral patches in the line of sight mainly affects the far off-centre region of the red damping wing, but the effect is not significant. The shape of the line centre can be modified by the near-zone distribution due to high opacities of the near-resonance scattering. On the other hand, the HWHM (half width at half-maximum) as an effective line width is relatively less sensitive to the local inhomogeneity. Specifically, when the two local damping wings of Lyα and Lyβ are close in spectra of the strongly damped systems, accurate profiles of both lines are required. In the case of N_{H I}≲ 10^{21} { cm^{-2}}, the two-level approximation is marginally applicable for the damping wing fit within 5 - 7 per cent errors. However, as the local column density reaches N_{H I}˜ 10^{22.3} { cm^{-2}}, this classical approximation yields a relative error of a 10 per cent overestimation in the red wing and a 20 per cent underestimation in the blue wing of Lyα. If severe extinction by the Lyα forests is carefully subtracted, the intrinsic absorption profile will provide a better constraint on the local ionized states. For practical applications, an analytic fitting function for the Lyβ scattering is derived.

  6. Parasitic slow extraction of extremely weak beam from a high-intensity proton rapid cycling synchrotron

    Science.gov (United States)

    Zou, Ye; Tang, Jingyu; Yang, Zheng; Jing, Hantao

    2014-02-01

    This paper proposes a novel method to extract extremely weak beam from a high-intensity proton rapid cycling synchrotron (RCS) in the parasitic mode, while maintaining the normal fast extraction. The usual slow extraction method from a synchrotron by employing third-order resonance cannot be applied in a high-intensity RCS due to a very short flat-top at the extraction energy and the strict control on beam loss. The proposed parasitic slow extraction method moves the beam to scrape a scattering foil prior to the fast beam extraction by employing either a local orbit bump or momentum deviation or their combination, so that the halo part of the beam will be scattered. A part of the scattered particles will be extracted from the RCS and guided to the experimental area. The slow extraction process can last about a few milliseconds before the beam is extracted by the fast extraction system. The method has been applied to the RCS of China Spallation Neutron Source. With 1.6 GeV in the extraction energy, 62.5 μA in the average current and 25 Hz in the repetition rate for the RCS, the proton intensity by the slow extraction method can be up to 2×104 protons per cycle or 5×105 protons per second. The extracted beam has also a good time structure of approximately uniform in a spill which is required for many applications such as detector tests. Detailed studies including the scattering effect in the foil, the local orbit bump by the bump magnets and dispersive orbit bump by modifying the RF pattern, the multi-particle simulations by ORBIT and TURTLE codes, and some technical features for the extraction magnets are presented.

  7. Radiation Damped Profiles of Extremely High Column Density Neutral Hydrogen : Implications of Cosmic Reionization

    Science.gov (United States)

    Bach, Kiehunn

    2016-09-01

    Incorporating the time-dependent second-order perturbation theory for the Lyman scattering cross-section, we investigate the intergalactic absorption profiles of extremely high column density systems near the end of cosmic reionization. Assuming a representative set of the redshift distribution of neutral hydrogen, we quantitatively examined the impact of inhomogeneous density on the intrinsic absorption profiles. The cumulative absorption by neutral patches in the line-of-sight mainly affects the far off-center region of the red damping wing, but the effect is not significant. The shape of the line-center can be modified by the near-zone distribution due to high opacities of the near-resonance scattering. On the other hand, the HWHM (half width at half maximum) as an effective line-width is relatively less sensitive to the local inhomogeneity. Specifically, when the two local damping wings of Lyα and Lyβ are close in spectra of the strongly damped systems, accurate profiles of both lines are required. In the case of N HI ≲ 1021 cm-2, the two-level approximation is marginally applicable for the damping wing fit within 5 - 7% errors. However, as the local column density reaches N HI ˜ 1022.3 cm-2, this classical approximation yields a relative error of a 10% overestimation in the red wing and a 20% underestimation in the blue wing of Lyα. If severe extinction by the Lyα forests is carefully subtracted, the intrinsic absorption profile will provide a better constraint on the local ionized states. For practical applications, an analytic fitting function for the Lyβ scattering is derived.

  8. Crossing historical and sedimentary archives to reconstruct an extreme flood event calendar in high alpine areas

    Science.gov (United States)

    Wilhelm, B.; Giguet-Covex, C.; Arnaud, F.; Allignol, F.; Legaz, A.; Melo, A.

    2010-09-01

    to reconstruct a high-resolution flood calendar to assess a reliable frequency of extreme flood events which can be compared with precise climatic parameters as the instrumental and reconstructed temperature. Finally it was equally possible to compare the recorded intensity of flood events between the both archives and thus estimate the hazard perception and vulnerability of local people throughout the last three centuries.

  9. In vivo skin elastography with high-definition optical videos.

    Science.gov (United States)

    Zhang, Yong; Brodell, Robert T; Mostow, Eliot N; Vinyard, Christopher J; Marie, Hazel

    2009-08-01

    Continuous measurements of biomechanical properties of skin provide potentially valuable information to dermatologists for both clinical diagnosis and quantitative assessment of therapy. This paper presents an experimental study on in vivo imaging of skin elastic properties using high-definition optical videos. The objective is to (i) investigate whether skin property abnormalities can be detected in the computed strain elastograms, (ii) quantify property abnormalities with a Relative Strain Index (RSI), so that an objective rating system can be established, (iii) determine whether certain skin diseases are more amenable to optical elastography and (iv) identify factors that may have an adverse impact on the quality of strain elastograms. There are three steps in optical skin elastography: (i) skin deformations are recorded in a video sequence using a high-definition camcorder, (ii) a dense motion field between two adjacent video frames is obtained using a robust optical flow algorithm, with which a cumulative motion field between two frames of a larger interval is derived and (iii) a strain elastogram is computed by applying two weighted gradient filters to the cumulative motion data. Experiments were carried out using videos of 25 patients. In the three cases presented in this article (hypertrophic lichen planus, seborrheic keratosis and psoriasis vulgaris), abnormal tissues associated with the skin diseases were successfully identified in the elastograms. There exists a good correspondence between the shape of property abnormalities and the area of diseased skin. The computed RSI gives a quantitative measure of the magnitude of property abnormalities that is consistent with the skin stiffness observed on clinical examinations. Optical elastography is a promising imaging modality that is capable of capturing disease-induced property changes. Its main advantage is that an elastogram presents a continuous description of the spatial variation of skin properties on

  10. Ultra-high-speed optical and electronic distributed devices

    Energy Technology Data Exchange (ETDEWEB)

    Hietala, V.M.; Plut, T.A.; Kravitz, S.H.; Vawter, G.A.; Wendt, J.R.; Armendariz, M.G.

    1995-08-01

    This report summarizes work on the development of ultra-high-speed semiconductor optical and electronic devices. High-speed operation is achieved by velocity matching the input stimulus to the output signal along the device`s length. Electronic devices such as field-effect transistors (FET`s), should experience significant speed increases by velocity matching the electrical input and output signals along the device. Likewise, optical devices, which are typically large, can obtain significant bandwidths by velocity matching the light being generated, detected or modulated with the electrical signal on the device`s electrodes. The devices discussed in this report utilize truly distributed electrical design based on slow-wave propagation to achieve velocity matching.

  11. Ultra-High Temperature Sensors Based on Optical Property Modulation and Vibration-Tolerant Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Nabeel A. Riza

    2006-09-30

    The goals of the Year 2006 Continuation Phase 2 three months period (April 1 to Sept. 30) of this project were to (a) conduct a probe elements industrial environment feasibility study and (b) fabricate embedded optical phase or microstructured SiC chips for individual gas species sensing. Specifically, SiC chips for temperature and pressure probe industrial applications were batch fabricated. Next, these chips were subject to a quality test for use in the probe sensor. A batch of the best chips for probe design were selected and subject to further tests that included sensor performance based on corrosive chemical exposure, power plant soot exposure, light polarization variations, and extreme temperature soaking. Experimental data were investigated in detail to analyze these mentioned industrial parameters relevant to a power plant. Probe design was provided to overcome mechanical vibrations. All these goals have been achieved and are described in detail in the report. The other main focus of the reported work is to modify the SiC chip by fabricating an embedded optical phase or microstructures within the chip to enable gas species sensing under high temperature and pressure. This has been done in the Kar UCF Lab. using a laser-based system whose design and operation is explained. Experimental data from the embedded optical phase-based chip for changing temperatures is provided and shown to be isolated from gas pressure and species. These design and experimentation results are summarized to give positive conclusions on the proposed high temperature high pressure gas species detection optical sensor technology.

  12. Optical Variability Properties of High Luminosity AGN Classes

    Indian Academy of Sciences (India)

    C. S. Stalin; Gopal-Krishna; Ram Sagar; Paul J. Wiita

    2004-03-01

    We present the results of a comparative study of the intra-night optical variability (INOV) characteristics of radio-loud and radio-quiet quasars, which involves a systematic intra-night optical monitoring of seven sets of high luminosity AGNs covering the redshift range ≃ 0.2 to ≃ 2.2. The sample, matched in the optical luminosity – redshift (-) plane, consists of seven radio-quiet quasars (RQQs), eight radio lobe-dominated quasars (LDQs), five radio core-dominated quasars (CDQs) and six BL Lac objects (BLs). Systematic CCD observations, aided by a careful data analysis procedure, have allowed us to detect INOV with amplitudes as low as about 1%. Present observations cover a total of 113 nights (720 hours) with only a single qusar monitored as continuously as possible on a given night. Considering the cases of only unambiguous detections of INOV we have estimated duty cycles (DCs) of 17%, 12%, 20% and 61% for RQQs, LDQs, CDQs, and BLs, respectively. The much lower amplitude and DC of INOV shown by RQQs compared to BLs may be understood in terms of their having optical synchrotron jets which are modestly misdirected from us. From our fairly extensive dataset, no general trend of a correlation between the INOVamplitude and the apparent optical brightness of the quasar is noticed. This suggests that the physical mechanisms of INOV and long term optical variability (LTOV) do not have a one-to-one relationship and different factors are involved. Also, the absence of a clear negative correlation between the INOV and LTOV characteristics of blazars of our sample points toward an inconspicuous contribution of accretion disk fluctuations to the observed INOV. The INOV duty cycle of the AGNs observed in this program suggests that INOV is associated predominantly with the highly polarized optical emission components. We also report new VLA imaging of two RQQs (1029 + 329 & 1252 + 020) in our sample which has yielded a 5 GHz detection in one of them (1252 + 020; 5GHz

  13. Weak-Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-Line Regions?

    CERN Document Server

    Shemmer, Ohad; Anderson, Scott F; Brandt, W N; Diamond-Stanic, Aleksandar M; Fan, Xiaohui; Lira, Paulina; Netzer, Hagai; Plotkin, Richard M; Richards, Gordon T; Schneider, Donald P; Strauss, Michael A

    2010-01-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z=3.55 and SDSS J123743.08+630144.9 at z=3.49. In both sources we detect an unusually weak broad H_beta line and we place tight upper limits on the strengths of their [O III] lines. Virial, H_beta-based black-hole mass determinations indicate normalized accretion rates of L/L_Edd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Gamma=1.91^{+0.24}_{-0.22} which supports the virial L/L_Edd determination in this source. Our results suggest that the weakness of the broad-emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad-emission line region proper...

  14. High field optical nonlinearity and the Kramers-Kronig relations.

    Science.gov (United States)

    Wahlstrand, J K; Cheng, Y-H; Milchberg, H M

    2012-09-14

    The nonlinear optical response to high fields is absolutely measured for the noble gas atoms He, Ne, Ar, Kr, and Xe. We find that the response is quadratic in the laser field magnitude up to the ionization threshold of each gas. Its size and quadratic dependence are well predicted by a Kramers-Kronig analysis employing known ionization probabilities, and the results are consistent with calculations using the time-dependent Schrödinger equation.

  15. Köhler illumination in high-resolution optical metrology

    Science.gov (United States)

    Sohn, Yeung Joon; Barnes, Brian M.; Howard, Lowell; Silver, Richard M.; Attota, Ravikiran; Stocker, Michael T.

    2006-03-01

    Accurate preparation of illumination is critical for high-resolution optical metrology applications such as linewidth and overlay measurements. To improve the detailed evaluation and alignment of the illumination optics, we have separated Koehler illumination into three components. The three Koehler illumination components are defined as full field spatial intensity variation (Koehler factor 1), angular intensity homogeneity (Koehler factor 2), and wavefront phase/intensity homogeneity (Koehler factor 3). We have also proposed a field aperture pattern transfer method to analyze the illumination properties with respect to systematic variations, such as the shape of the source, the intensity distribution at the back focal plane, and the displacements of elements along and off the optical axis. These factors were investigated in both ideal and practical illumination systems. In particular, any angular asymmetry in the illumination proves to have a detrimental effect upon the distribution of light that illuminates the target. Wavefront asymmetry is also studied in the context of an optical system with a coherent or partially coherent light source.

  16. Characterization of the optical parameters of high aspect ratio polymer micro-optical components

    Science.gov (United States)

    Krajewski, Rafal; Van Erps, Jurgen; Wissmann, Markus; Kujawinska, Malgorzata; Parriaux, Olivier; Tonchev, S.; Mohr, Jurgen; Thienpont, Hugo

    2008-04-01

    Over the last decades the significant grow of interest of photonics devices is observed in various fields of applications. Due to the market demands, the current research studies are focused on the technologies providing miniaturized, reliable low-cost micro-optical systems, particularly the ones featuring the fabrication of high aspect ratio structures. A high potential of these technologies comes from the fact that fabrication process is not limited to single optical components, but entire systems integrating sets of elements could be fabricated. This could in turn result in a significant saving on the assembly and packaging costs. We present a brief overview of the most common high aspect ratio fabrication technologies for micro-optical components followed by some characterization studies of these techniques. The sidewall quality and internal homogeneity will be considered as the most crucial parameters, having an impact on the wavefront propagation in the fabricated components. We show the characterization procedure and measurement results for components prototyped with Deep Proton Writing and glass micromachining technology replicated with Hot Embossing and Elastomeric Mould Vacuum Casting technology. We discuss the pros and cons for using these technologies for the production of miniaturized interferometers blocks. In this paper we present the status of our research on the new technology chain and we show the concept of microinterferometers to be fabricated within presented technology chain.

  17. Adaptive optics for high resolution spectroscopy: A direct application with the future NIRPS spectrograph

    CERN Document Server

    Conod, Uriel; Wildi, François; Pepe, Francesco

    2016-01-01

    Radial velocity instruments require high spectral resolution and extreme thermo-mecanical stability, even more difficult to achieve in near-infra red (NIR) where the spectrograph has to be cooled down. For a seeing-limited spectrograph, the price of high spectral resolution is an increased instrument volume, proportional to the diameter of the primary mirror. A way to control the size, cost, and stability of radial velocity spectrographs is to reduce the beam optical etendue thanks to an Adaptive Optics (AO) system. While AO has revolutionized the field of high angular resolution and high contrast imaging during the last 20 years, it has not yet been (successfully) used as a way to control spectrographs size, especially in the field of radial velocities. In this work we present the AO module of the future NIRPS spectrograph for the ESO 3.6 m telescope, that will be feed with multi-mode fibers. We converge to an AO system using a Shack-Hartmann wavefront sensor with 14x14 subapertures, able to feed 50% of the ...

  18. SMART composite high pressure vessels with integrated optical fiber sensors

    Science.gov (United States)

    Blazejewski, Wojciech; Czulak, Andrzej; Gasior, Pawel; Kaleta, Jerzy; Mech, Rafal

    2010-04-01

    In this paper application of integrated Optical Fiber Sensors for strain state monitoring of composite high pressure vessels is presented. The composite tanks find broad application in areas such as: automotive industry, aeronautics, rescue services, etc. In automotive application they are mainly used for gaseous fuels storage (like CNG or compressed Hydrogen). In comparison with standard steel vessels, composite ones have many advantages (i.e. high mechanical strength, significant weight reduction, etc). In the present work a novel technique of vessel manufacturing, according to this construction, was applied. It is called braiding technique, and can be used as an alternative to the winding method. During braiding process, between GFRC layers, two types of optical fiber sensors were installed: point sensors in the form of FBGs as well as interferometric sensors with long measuring arms (SOFO®). Integrated optical fiber sensors create the nervous system of the pressure vessel and are used for its structural health monitoring. OFS register deformation areas and detect construction damages in their early stage (ensure a high safety level for users). Applied sensor system also ensured a possibility of strain state monitoring even during the vessel manufacturing process. However the main application of OFS based monitoring system is to detect defects in the composite structure. An idea of such a SMART vessel with integrated sensor system as well as an algorithm of defect detection was presented.

  19. Optical constants of refractory oxides at high temperatures

    CERN Document Server

    Zeidler, Simon; Mutschke, Harald; 10.1051/0004-6361/201220459

    2013-01-01

    Many cosmic dust species, among them refractory oxides, form at temperatures higher than 300 K. Nevertheless, most astrophysical studies are based on the room-temperature optical constants of solids, such as corundum and spinel. A more realistic approach is needed for these materials, especially in the context of modeling late-type stars. We aimed at deriving sets of optical constants of selected, astrophysically relevant oxide dust species with high melting points. A high-temperature-high-pressure-cell and a Fourier-transform spectrometer were used to measure reflectance spectra of polished samples. For corundum (alpha-Al$_2$O$_3$), spinel (MgAl$_2$O$_4$), and alpha-quartz (SiO$_2$), temperature-dependent optical constants were measured from 300 K up to more than 900 K. Small particle spectra were also calculated from these data. All three examined oxides show a significant temperature dependence of their mid-IR bands. For the case of corundum, we find that the 13$\\mu$m emission feature - seen in the IR spec...

  20. High-accuracy calibration of an adaptive optics system using a phase shifting diffraction interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, B J; Campbell, E W; Olivier, S S; Sweider, D R

    1999-06-23

    A phase-shifting diffraction interferometer (PSDI) has been integrated into an adaptive optics (AO) system developed by LLNL for use on the three meter Shane telescope at Lick Observatory. The interferometer is an all fiber optic design, which is extremely compact. It is useful for calibrating the control sensors, measuring the aberrations of the entire AO optical train, and measuring the influence functions of the individual actuators on the deformable mirror. The PSDI is particularly well suited for this application because it measures converging, quasi-spherical wavefronts, such as are produced by an AO imaging system. Thus, a PSDI can be used to measure the aberrations of the entire AO system, in-situ and without errors introduced by auxiliary optics. This provides an extremely accurate measurement ({approximately} 5 nm RMS) of the optical properties of the AO system.

  1. MAD Adaptive Optics Imaging of High Luminosity Quasars: A Pilot Project

    CERN Document Server

    Liuzzo, E; Paiano, S; Treves, A; Uslenghi, M; Arcidiacono, C; Baruffolo, A; Diolaiti, E; Farinato, J; Lombini, M; Moretti, A; Ragazzoni, R; Brast, R; Donaldson, R; Kolb, J; Marchetti, E; Tordo, S

    2016-01-01

    We present near-IR images of five luminous quasars at z~2 and one at z~4 obtained with an experimental adaptive optics instrument at the ESO Very Large Telescope. The observations are part of a program aimed at demonstrating the capabilities of multi-conjugated adaptive optics imaging combined with the use of natural guide stars for high spatial resolution studies on large telescopes. The observations were mostly obtained under poor seeing conditions but in two cases. In spite of these non optimal conditions, the resulting images of point sources have cores of FWHM ~0.2 arcsec. We are able to characterize the host galaxy properties for 2 sources and set stringent upper limits to the galaxy luminosity for the others. We also report on the expected capabilities for investigating the host galaxies of distant quasars with adaptive optics systems coupled with future Extremely Large Telescopes. Detailed simulations show that it will be possible to characterize compact (2-3 kpc) quasar host galaxies for QSOs at z = ...

  2. Effect of extremely low frequency electromagnetic field exposure on sleep quality in high voltage substations.

    Science.gov (United States)

    Barsam, Tayebeh; Monazzam, Mohammad Reza; Haghdoost, Ali Akbar; Ghotbi, Mohammad Reza; Dehghan, Somayeh Farhang

    2012-11-30

    This study aims to investigate the effect of extremely low frequency electromagnetic fields exposure on sleep quality in high voltage substations (132, 230 and 400 KV) in Kerman city and the suburbs. For this purpose, the electric field intensity and magnetic flux density were measured in different parts of substations, and then the occupational exposure was estimated by averaging electric field intensity and magnetic flux density in a shift work. The cases comprised 67 workers who had been exposed to electromagnetic fields in age range of 24-57 and the controls were 110 persons the age ranged 24-50 years. Sleep quality of both groups was evaluated by the Pittsburgh Sleep Quality Index questionnaire (PSQI). Finally, these data were subjected to statistical analysis. The results indicated that 90.5% of cases and 85.3% of controls had the poor quality sleep according to PSQI (P-value=0.615). Total sleep quality score mean for the case and control groups were 10.22 ± 3.4 and 9.74 ± 3.62 (P-value=0.415) ,respectively. Meantime to fall asleep for cases(35.68 ± 26.25 min) was significantly higher than for controls (28.89 ± 20.18 min) (P-value=0.002). Cases had average sleep duration of 5.49 ± 1.31 hours, which was lower ascompared with control subjects (5.90 ± 1.67hours). Although there was a higher percentage for the case group with poor sleep quality than the control group, but no statistically significant difference was observed.

  3. Effect of extremely low frequency electromagnetic field exposure on sleep quality in high voltage substations

    Directory of Open Access Journals (Sweden)

    Barsam Tayebeh

    2012-11-01

    Full Text Available Abstract This study aims to investigate the effect of extremely low frequency electromagnetic fields exposure on sleep quality in high voltage substations (132, 230 and 400 KV in Kerman city and the suburbs. For this purpose, the electric field intensity and magnetic flux density were measured in different parts of substations, and then the occupational exposure was estimated by averaging electric field intensity and magnetic flux density in a shift work. The cases comprised 67 workers who had been exposed to electromagnetic fields in age range of 24–57 and the controls were 110 persons the age ranged 24–50 years. Sleep quality of both groups was evaluated by the Pittsburgh Sleep Quality Index questionnaire (PSQI. Finally, these data were subjected to statistical analysis. The results indicated that 90.5% of cases and 85.3% of controls had the poor quality sleep according to PSQI (P-value=0.615. Total sleep quality score mean for the case and control groups were 10.22 ± 3.4 and 9.74 ± 3.62 (P-value=0.415 ,respectively. Meantime to fall asleep for cases(35.68 ± 26.25 min was significantly higher than for controls (28.89 ± 20.18 min (P-value=0.002. Cases had average sleep duration of 5.49 ± 1.31 hours, which was lower ascompared with control subjects (5.90 ± 1.67hours. Although there was a higher percentage for the case group with poor sleep quality than the control group, but no statistically significant difference was observed.

  4. Extremely high ferritin level after an acute myocardial infarction in an end stage renal disease patient.

    Science.gov (United States)

    Sandhu, Gagangeet; Mankal, Pavan; Gupta, Isha; Tagani, Adrian; Ranade, Aditi; Jones, James; Bansal, Anip

    2014-07-01

    We present here a case of an asymptomatic end-stage renal disease (ESRD) patient, who had an unexplained persistent mild leukocytosis in the setting of an extremely high ferritin level (8,997 ng/ml; reference range: 12 - 300 ng/ml) 3 weeks after she suffered from a myocardial infarction (MI). Infection as the cause of these laboratory abnormalities was ruled out. A week later, the patient was noted to have asymptomatic hypotension (100/60 mmHg; her baseline blood pressure was 120/70 mmHg) during a maintenance hemodialysis session. An echocardiography revealed an interval development of moderate pericardial effusion when compared to her previous echocardiography 4 weeks before. In the setting of a recent MI with other laboratory markers suggesting an ongoing inflammatory process, a tentative diagnosis of Dressler's syndrome was made. A pericardial tap yielded exudative (bloody) fluid, thus, confirming our suspicion. Dressler's syndrome results from an inflammation of the pericardium as a consequence of an underlying autoimmune process few weeks to months after a myocardial infarction or post-cardiac surgery. Although it typically presents with pleuritic chest pain, fever, leukocytosis, and a friction rub; our case illustrates that the initial presentation may be asymptomatic in ESRD patients. For the same reason, it is likely an under-recognized entity in such patients. An unexplained elevated ferritin in an ESRD patient with recent history of MI should prompt an investigation for Dressler's syndrome. In those with associated significant pericardial effusion, daily HD should be initiated and anticoagulation should be avoided. Unlike other ESRD associated pericarditis, steroids and NSAIDs should be avoided in Dressler's syndrome as they may hamper cardiac remodeling in the immediate post-MI period. Colchicine may offer some benefit in patients with associated chest pain. For those failing medical management or manifesting overt signs of tamponade, surgical drainage

  5. Extreme climatic events: impacts of drought and high temperature on physiological processes in agronomically important plants

    Directory of Open Access Journals (Sweden)

    Urs eFeller

    2014-10-01

    Full Text Available Climate models predict more frequent and more severe extreme events (e.g. heat waves, extended drought periods, flooding in many regions for the next decades. The impact of adverse environmental conditions on crop plants is ecologically and economically relevant. This review is focused on drought and heat effects on physiological status and productivity of agronomically important plants. Stomatal opening represents an important regulatory mechanism during drought and heat stress since it influences simultaneously water loss via transpiration and CO2 diffusion into the leaf apoplast which further is utilized in photosynthesis. Along with the reversible short-term control of stomatal opening, stomata and leaf epidermis may produce waxy deposits and irreversibly down-regulate the stomatal conductance and non-stomatal transpiration. As a consequence photosynthesis will be negatively affected. Rubisco activase - a key enzyme in keeping the Calvin cycle functional – is heat-sensitive and may become a limiting factor at elevated temperature. The accumulated reactive oxygen species during stress represent an additional challenge under unfavorable conditions. Drought and heat cause accumulation of free amino acids which are partially converted into compatible solutes such as proline. This is accompanied by lower rates of both nitrate reduction and de novo amino acid biosynthesis. Protective proteins (e.g. dehydrins, chaperones, antioxidant enzymes or the key enzyme for proline biosynthesis play an important role in leaves and may be present at higher levels under water deprivation or high temperatures. On the whole plant level, effects on long-distance translocation of solutes via xylem and phloem and on leaf senescence (e.g. anticipated, accelerated or delayed senescence are important. The factors mentioned above are relevant for the overall performance of crops under drought and heat and must be considered for genotype selection and breeding programs.

  6. Continuous and discrete extreme climatic events affecting the dynamics of a high-arctic reindeer population.

    Science.gov (United States)

    Chan, Kung-Sik; Mysterud, Atle; Øritsland, Nils Are; Severinsen, Torbjørn; Stenseth, Nils Chr

    2005-10-01

    Climate at northern latitudes are currently changing both with regard to the mean and the temporal variability at any given site, increasing the frequency of extreme events such as cold and warm spells. Here we use a conceptually new modelling approach with two different dynamic terms of the climatic effects on a Svalbard reindeer population (the Brøggerhalvøya population) which underwent an extreme icing event ("locked pastures") with 80% reduction in population size during one winter (1993/94). One term captures the continuous and linear effect depending upon the Arctic Oscillation and another the discrete (rare) "event" process. The introduction of an "event" parameter describing the discrete extreme winter resulted in a more parsimonious model. Such an approach may be useful in strongly age-structured ungulate populations, with young and very old individuals being particularly prone to mortality factors during adverse conditions (resulting in a population structure that differs before and after extreme climatic events). A simulation study demonstrates that our approach is able to properly detect the ecological effects of such extreme climate events.

  7. Frequency Analysis of High Flow Extremes in the Yingluoxia Watershed in Northwest China

    Directory of Open Access Journals (Sweden)

    Zhanling Li

    2016-05-01

    Full Text Available Statistical modeling of hydrological extremes is significant to the construction of hydraulic engineering. This paper, taking the Yingluoxia watershed as the study area, compares the annual maximum (AM series and the peaks over a threshold (POT series in order to study the hydrological extremes, examines the stationarity and independence assumptions for the two series, and discusses the estimations and uncertainties of return levels from the two series using the Generalized Extreme Value (GEV and Generalized Pareto distribution (GPD models. For comparison, the return levels from all threshold excesses with considering the extremal index are also estimated. For the POT series, the threshold is selected by examining the mean excess plot and the stability of the parameter estimates and by using common-sense. The serial correlation is reduced by filtering out a set of dependent threshold excesses. Results show that both series are approximately stationary and independent. The GEV model fits the AM series well and the GPD model fits the POT series well. The estimated return levels are fairly comparable for the AM series, the POT series, and all threshold excesses with considering the extremal index, with the difference being less than 10% for return periods longer than 10 years. The uncertainties of the estimated return levels are the highest for the AM series, and next for the POT series and then for all threshold excesses series in turn.

  8. Engineering of high purity ultra-long optical needle field through reversing the electric dipole array radiation.

    Science.gov (United States)

    Wang, Jiming; Chen, Weibin; Zhan, Qiwen

    2010-10-11

    We report a new method to create high purity longitudinally polarized field with extremely long depth of focus in the focal volume of a high numerical aperture (NA) objective lens. Through reversing the radiated field from an electric dipole array situated near the focus of the high-NA lens, the required incident field distribution in the pupil plane for the creation of an ultra-long optical needle field can be found. Numerical examples demonstrate that an optical needle field with a depth of focus up to 8λ is obtainable. Throughout the depth of focus, this engineered focal field maintains a diffraction limited transverse spot size (<0.43λ) with high longitudinal polarization purity. From the calculated pupil plane distribution, a simplified discrete complex pupil filter can be designed and significant improvements over the previously reported complex filters are clearly demonstrated.

  9. Fluorescent Organic Planar pn Heterojunction Light-Emitting Diodes with Simplified Structure, Extremely Low Driving Voltage, and High Efficiency.

    Science.gov (United States)

    Chen, Dongcheng; Xie, Gaozhan; Cai, Xinyi; Liu, Ming; Cao, Yong; Su, Shi-Jian

    2016-01-13

    Fluorescent organic light-emitting diodes capable of radiative utilization of both singlet and triplet excitons are achieved via a simple double-layer planar pn hetero-junction configuration without a conventional emission layer, leading to high external quantum efficiency above 10% and extremely low driving voltages close to the theoretical minima.

  10. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    Energy Technology Data Exchange (ETDEWEB)

    Wang, He [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Xu, Yiming [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Ulonska, Stefan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Robinson, Joseph S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Ranitovic, Predrag [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Kaindl, Robert A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division

    2015-06-11

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. In this article, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s-1 is generated at 22.3 eV, with 5 × 10-5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Finally, spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications.

  11. Fiber optic chemical sensors: The evolution of high- density fiber-optic DNA microarrays

    Science.gov (United States)

    Ferguson, Jane A.

    2001-06-01

    Sensors were developed for multianalyte monitoring, fermentation monitoring, lactate analysis, remote oxygen detection for use in bioremediation monitoring and in a fuel spill clean-up project, heavy metal analysis, and high density DNA microarrays. The major focus of this thesis involved creating and improving high-density DNA gene arrays. Fiber optic sensors are created using fluorescent indicators, polymeric supports, and optical fiber substrates. The fluorescent indicator is entrapped in a polymer layer and attached to the tip of the optical fiber. The tip of the fiber bearing the sensing layer (the distal end) is placed in the sample of interest while the other end of the fiber (the proximal end) is connected to an analysis system. Any length of fiber can be used without compromising the integrity or sensitivity of the system. A fiber optic oxygen sensor was designed incorporating an oxygen sensitive fluorescent dye and a gas permeable polymer attached to an optical fiber. The construction simplicity and ruggedness of the sensor enabled its deployment for in situ chemical oxidation and bioremediation studies. Optical fibers were also used as the substrate to detect biomolecules in solution. To monitor bioprocesses, the production of the analyte of interest must be coupled with a species that is optically measurable. For example, oxygen is consumed in many metabolic functions. The fiber optic oxygen sensor is equipped with an additional sensing layer. Upon contact with a specific biochemical in the sample, a reaction occurs in the additional sensing layer that either consumes or produces oxygen. This dual layer system was used to monitor the presence of lactate, an important metabolite for clinical and bioprocess analysis. In many biological and environmental systems, the generation of one species occurs coincidentally with the generation or consumption of another species. A multianalyte sensor was prepared that can monitor the simultaneous activity of pH, CO2

  12. Precision glass molding of high-resolution diffractive optical elements

    Science.gov (United States)

    Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans P.; Plöger, Sven; Hermerschmidt, Andreas

    2016-04-01

    The demand of high resolution diffractive optical elements (DOE) is growing. Smaller critical dimensions allow higher deflection angles and can fulfill more demanding requirements, which can only be met by using electron-beam lithography. Replication techniques are more economical, since the high cost of the master can be distributed among a larger number of replicas. The lack of a suitable mold material for precision glass molding has so far prevented an industrial use. Glassy Carbon (GC) offers a high mechanical strength and high thermal strength. No anti-adhesion coatings are required in molding processes. This is clearly an advantage for high resolution, high aspect ratio microstructures, where a coating with a thickness between 10 nm and 200 nm would cause a noticeable rounding of the features. Electron-beam lithography was used to fabricate GC molds with highest precision and feature sizes from 250 nm to 2 μm. The master stamps were used for precision glass molding of a low Tg glass L-BAL42 from OHARA. The profile of the replicated glass is compared to the mold with the help of SEM images. This allows discussion of the max. aspect-ratio and min. feature size. To characterize optical performances, beamsplitting elements are fabricated and their characteristics were investigated, which are in excellent agreement to theory.

  13. Coverage Options for a Low cost, High Resolution Optical Constellation

    OpenAIRE

    Price, M E; Levett, W.; Graham, K.

    2003-01-01

    This paper presents the range of coverage options available to TopSat like small satellites, both singly and in a small constellation. TopSat is a low-cost, high resolution and image quality, optical small satellite, due for launch in October 2004. In particular, the paper considers the use of tuned, repeat ground track orbits to improve coverage for selected ground targets, at the expense of global coverage. TopSat is designed to demonstrate the capabilities of small satellites for high valu...

  14. Applications of nonimaging optics for very high solar concentrations

    Energy Technology Data Exchange (ETDEWEB)

    O`Gallagher, J.; Winston, R.

    1997-12-31

    Using the principles and techniques of nonimaging optics, solar concentrations that approach the theoretical maximum can be achieved. This has applications in solar energy collection wherever concentration is desired. In this paper, we survey recent progress in attaining and using high and ultrahigh solar fluxes. We review a number of potential applications for highly concentrated solar energy and the current status of the associated technology. By making possible new and unique applications for intense solar flux, these techniques have opened a whole new frontier for research and development of potentially economic uses of solar energy.

  15. High-speed digital fiber optic links for satellite traffic

    Science.gov (United States)

    Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.

    1989-09-01

    Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.

  16. Workshop on high heat load x-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    A workshop on High Heat Load X-Ray Optics'' was held at Argonne National Laboratory on August 3--5, 1989. The object of this workshop was to discuss recent advances in the art of cooling x-ray optics subject to high heat loads from synchrotron beams. The cooling of the first optical element in the intense photon beams that will be produced in the next generation of synchrotron sources is recognized as one of the major challenges that must be faced before one will be able to use these very intense beams in future synchrotron experiments. Considerable advances have been made in this art during the last few years, but much work remains to be done before the heating problem can be said to be completely solved. Special emphasis was placed on recent cooling experiments and detailed finite element'' and finite difference'' calculations comparing experiment with theory and extending theory to optimize performance.

  17. K2-66b and K2-106b: Two Extremely Hot Sub-Neptune-size Planets with High Densities

    Science.gov (United States)

    Sinukoff, Evan; Howard, Andrew W.; Petigura, Erik A.; Fulton, Benjamin J.; Crossfield, Ian J. M.; Isaacson, Howard; Gonzales, Erica; Crepp, Justin R.; Brewer, John M.; Hirsch, Lea; Weiss, Lauren M.; Ciardi, David R.; Schlieder, Joshua E.; Benneke, Bjoern; Christiansen, Jessie L.; Dressing, Courtney D.; Hansen, Brad M. S.; Knutson, Heather A.; Kosiarek, Molly; Livingston, John H.; Greene, Thomas P.; Rogers, Leslie A.; Lépine, Sébastien

    2017-06-01

    We report precise mass and density measurements of two extremely hot sub-Neptune-size planets from the K2 mission using radial velocities, K2 photometry, and adaptive optics imaging. K2-66 harbors a close-in sub-Neptune-sized ({2.49}-0.24+0.34 {R}\\oplus ) planet (K2-66b) with a mass of 21.3+/- 3.6 {M}\\oplus . Because the star is evolving up the subgiant branch, K2-66b receives a high level of irradiation, roughly twice the main-sequence value. K2-66b may reside within the so-called “photoevaporation desert,” a domain of planet size and incident flux that is almost completely devoid of planets. Its mass and radius imply that K2-66b has, at most, a meager envelope fraction (radiation environments. Their high densities reflect the challenge of retaining a substantial gas envelope in such extreme environments.

  18. Improving acousto-optical interaction by high aspect ratio electrodes

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    In recent years experiments have shown that optical waves in waveguides can be modulated by mechanical stresses from surface acoustic waves (SAW), which have most of their energy density concentrated at the surface. In these experiments the SAWs are generated in piezoelectric materials...... by conventional interdigital transducers consisting of thin electrodes deposited at the surface. In this work the finite element method is employed to investigate if the acousto-optical interaction can be enhanced by generating the SAWs by interdigital transducers consisting of high aspect ratio electrodes....... With a periodic model it is first shown that these tall electrodes introduce several new confined SAW modes with slow phase velocities because of mechanical energy storage in the electrodes. The periodic model is then extended to a finite model by using perfectly matched layers at the substrate borders...

  19. Optical fiber transmission of high power excimer laser radiation.

    Science.gov (United States)

    Pini, R; Salimbeni, R; Vannini, M

    1987-10-01

    An experimental investigation of optical fiber transmission of high power excimer laser radiation is presented. Different types of commercially available UV fiber have been tested, measuring energy handling capabilities and transmission losses of short samples at the XeCl (308-nm) and KrF (249-nm) wavelengths by using a standard excimer laser. A power density dependent damage process has been observed over 1 GW/cm(2). Fiber losses due to different radii of curvature are also reported. Experimental results have been examined to evaluate the effectiveness of excimer laser transmission through optical fibers for such medical uses as laser angioplasty, including also a comparison between the use of KrF or XeCl emission lines for this purpose. Finally, optimum excimer laser characteristics to increase the energy coupling in fibers are discussed.

  20. Classically entangled optical beams for high-speed kinematic sensing

    CERN Document Server

    Berg-Johansen, Stefan; Stiller, Birgit; Banzer, Peter; Ornigotti, Marco; Giacobino, Elisabeth; Leuchs, Gerd; Aiello, Andrea; Marquardt, Christoph

    2015-01-01

    Tracking the kinematics of fast-moving objects is an important diagnostic tool for science and engineering. Existing optical methods include high-speed CCD/CMOS imaging, streak cameras, lidar, serial time-encoded imaging and sequentially timed all-optical mapping. Here, we demonstrate an entirely new approach to positional and directional sensing based on the concept of classical entanglement in vector beams of light. The measurement principle relies on the intrinsic correlations existing in such beams between transverse spatial modes and polarization. The latter can be determined from intensity measurements with only a few fast photodiodes, greatly outperforming the bandwidth of current CCD/CMOS devices. In this way, our setup enables two-dimensional real-time sensing with temporal resolution in the GHz range. We expect the concept to open up new directions in photonics-based metrology and sensing.

  1. High-performance quantitative robust switching control for optical telescopes

    Science.gov (United States)

    Lounsbury, William P.; Garcia-Sanz, Mario

    2014-07-01

    This paper introduces an innovative robust and nonlinear control design methodology for high-performance servosystems in optical telescopes. The dynamics of optical telescopes typically vary according to azimuth and altitude angles, temperature, friction, speed and acceleration, leading to nonlinearities and plant parameter uncertainty. The methodology proposed in this paper combines robust Quantitative Feedback Theory (QFT) techniques with nonlinear switching strategies that achieve simultaneously the best characteristics of a set of very active (fast) robust QFT controllers and very stable (slow) robust QFT controllers. A general dynamic model and a variety of specifications from several different commercially available amateur Newtonian telescopes are used for the controller design as well as the simulation and validation. It is also proven that the nonlinear/switching controller is stable for any switching strategy and switching velocity, according to described frequency conditions based on common quadratic Lyapunov functions (CQLF) and the circle criterion.

  2. TOPICAL REVIEW: Optics of high-performance electron microscopes

    Directory of Open Access Journals (Sweden)

    H H Rose

    2008-01-01

    Full Text Available During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by multipole fields and to a discussion of the most advanced design that take advantage of these techniques. The theory of electron mirrors is developed and it is shown how this can be used to correct aberrations and to design energy filters. Finally, different types of energy filters are described

  3. Extreme Nonlinear Optics of High Intensity Laser Pulse Filamentation in Gases

    Science.gov (United States)

    2016-05-12

    applicable. On classified documents, enter the title classification in parentheses. 5a. CONTRACT NUMBER. Enter all contract numbers as they appear...accordance with security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on...our diagnostics ( spectral interferometry) used for these measurements enabled absolute measurements of the instantaneous and rovibrational

  4. Radiation Hardened High Speed Fiber Optic Transceivers for Extreme Environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of transceiver offering wide bandwidth (1 Mbps to 10 Gbps) that operates in space environments targeted by NASA for robotic exploration....

  5. Removal mechanisms for extremely high-level fluoroquinolone antibiotics in pharmaceutical wastewater treatment plants.

    Science.gov (United States)

    Guo, Xinyan; Yan, Zheng; Zhang, Yi; Kong, Xiangji; Kong, Deyang; Shan, Zhengjun; Wang, Na

    2017-03-01

    Pharmaceutical wastewater treatment plants (PWWTPs) receive industrial effluents from the plant that contain extremely high levels of antibiotics and are regarded as one of the major sources of antibiotics in the environment. Two PWWTPs have been selected in Zhejiang Province, China, to assess the removal mechanisms of fluoroquinolone antibiotics (FQs). PWWTP A uses activated sludge with biocarriers in a moving bed biofilm reactor in anoxic and aerobic units, and PWWTP B uses biological units under anaerobic, aerobic, and anoxic conditions. The wastewater samples and solid samples (sludge and suspended solid matter) were analyzed using solid-phase extraction and ultra-performance liquid chromatography-mass spectrometry. Ofloxacin (OFX) was detected in each stage of PWWTP A, and enrofloxacin and ciprofloxacin were detected in PWWTP B. The concentrations of FQs ranged from 0.32 μg/L to 5.7 mg/L. Although the FQs were largely removed in the biological units (94.5 to 99.9%), large amounts were still discharged in the final effluent (up to 88.0 ± 7.0 μg/L) and dewatered sludge (up to 0.85 ± 0.24 mg/kg). Mass balance analyses of samples from PWWTP A indicated that biodegradation (93.8%) was the major mechanism responsible for the removal of OFX, whereas the contribution of sorption by sludge (0.79%) was less significant, deviating from the findings of most similar studies. Using linear analysis and correlation analysis, we found that the log10 values of the FQ concentration in the sludge were positively related with the log10 values of the equilibrium concentration in water (C w ). These relationships can be described by a Freundlich-like equation. However, these relationships were negative when the C w values were high. Our preliminary explanation is that the equilibrium C w plays an important role in controlling the sorption behavior of FQs in activated sludge.

  6. Study on a transient optical fiber high temperature measurement system

    Science.gov (United States)

    Cai, Lulu; Liu, Yusha; Wang, Yutian

    2009-07-01

    High temperature is one of the most important parameters in the fields of scientific research and industrial production. At present, thermocouple, thermo resistive and radiance thermometer are already technologically mature which can be adopted to measure the general temperature, but when it comes to the transient high temperature that changes pretty quickly in wretched conditions, those traditional pyrometers can not meet the requirements any more. In this paper, we designed a transient optical high temperature measurement system. First, design of the temperature measurement probe. The system took blackbody cavity sensor together with optical fiber to receive the measured signal, here, the integrated emissivity model of the blackbody cavity was established and the optimum structure parameters were confirmed. Secondly, design of the entire temperature measurement system. A contact-noncontact measurement method was applied, which is to make the blackbody cavity and the measured high-temperature source contact, the fiber probe and the blackbody cavity noncontact, as a result, the error caused by contact measurement is overcame and the precision is guaranteed at the same time. In addition, a fiber grating was introduced as the wavelength filter device which can realize the dynamic filter of narrow-band signals and reduce the impact of background light. Thirdly, signal processing. In this part, we applied labVIEW software and wavelet analysis method. All of the signal acquisition and processing were realized in the labVIEW environment. Through calling matlab in labVIEW, the signals from optical fiber detector were wavelet denoised and decomposed, thus the temperature information was extracted, and the temperature value was obtained. On basis of wavelet transformation, the paper adopted the 4dB wavelet with horizontal scale of 5 to realize the feature extraction and noise removal, parts of the signals before and after the wavelet noise removal were given and analyzed

  7. Number of Black Children in Extreme Poverty Hits Record High. Analysis Background.

    Science.gov (United States)

    Children's Defense Fund, Washington, DC.

    To examine the experiences of black children and poverty, researchers conducted a computer analysis of data from the U.S. Census Bureau's Current Population Survey, the source of official government poverty statistics. The data are through 2001. Results indicated that nearly 1 million black children were living in extreme poverty, with after-tax…

  8. Extreme Weight-Control Behaviors and Suicide Risk among High School Students

    Science.gov (United States)

    Johnson, Emily R.; Weiler, Robert M.; Barnett, Tracey E.; Pealer, Lisa N.

    2016-01-01

    Background: Suicide is the third leading cause of death for people ages 15-19. Research has established an association across numerous risk factors and suicide, including depression, substance abuse, bullying victimization, and feelings of alienation. However, the connection between disordered eating as manifested in extreme weight-control…

  9. Further Evidence on the "Costs of Privilege": Perfectionism in High-Achieving Youth at Socioeconomic Extremes

    Science.gov (United States)

    Lyman, Emily L.; Luthar, Suniya S.

    2014-01-01

    This study involved two academically-gifted samples of 11th and 12th grade youth at the socioeconomic status (SES) extremes; one from an exclusive private, affluent school, and the other from a magnet school with low-income students. Negative and positive adjustment outcomes were examined in relation to multiple dimensions of perfectionism…

  10. Extreme Weight-Control Behaviors and Suicide Risk among High School Students

    Science.gov (United States)

    Johnson, Emily R.; Weiler, Robert M.; Barnett, Tracey E.; Pealer, Lisa N.

    2016-01-01

    Background: Suicide is the third leading cause of death for people ages 15-19. Research has established an association across numerous risk factors and suicide, including depression, substance abuse, bullying victimization, and feelings of alienation. However, the connection between disordered eating as manifested in extreme weight-control…

  11. Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotaga elfii

    NARCIS (Netherlands)

    Niel, van E.W.J.; Budde, M.A.W.; Haas, de G.G.; Wal, van der F.J.; Claassen, P.A.M.; Stams, A.J.M.

    2002-01-01

    Growth and hydrogen production by two extreme thermophiles during sugar fermentation was investigated. In cultures of Caldicellulosiruptor saccharolyticus grown on sucrose and Thermotoga elfii grown on glucose stoichiometries of 3.3 mol of hydrogen and 2 mol of acetate per mol C6-sugar unit were obt

  12. High-Performance Airborne Optical Carbon Dioxide Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental species measurement on airborne atmospheric research craft is a demanding application for optical sensing techniques. Yet optical techniques offer many...

  13. High-Performance Airborne Optical Carbon Dioxide Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental species measurement on airborne atmospheric research craft is a demanding application for optical sensing techniques. Yet optical techniques offer...

  14. Improvement of PCR-free NGS Library Preparation to Obtain Uniform Read Coverage of Genome with Extremely High AT Content

    OpenAIRE

    Williams, A.; Storton, D.; Buckles, J.; Llinas, M.; Wang, Wei

    2012-01-01

    PCR amplification is commonly used in generating libraries for Next-Generation Sequencing (NGS) to efficiently enrich and amplify sequenceable DNA fragments. However, it introduces bias in the representation of the original complex template DNA. Such artifact has devastating effects in sequencing genomes with highly unbalanced base composition: regions of extremely high or low GC content, which are a substantial fraction of such genomes, are often covered with zero or near-zero read depth. PC...

  15. High Speed and High Spatial Density Parameter Measurement Using Fiber Optic Sensing Technology

    Science.gov (United States)

    Parker, Allen R. Jr. (Inventor); Chan, Hon Man (Inventor); Richards, William Lance (Inventor); Piazza, Anthony (Inventor); Hamory, Philip J (Inventor)

    2017-01-01

    The present invention is an improved fiber optic sensing system (FOSS) having the ability to provide both high spatial resolution and high frequency strain measurements. The inventive hybrid FOSS fiber combines sensors from high acquisition speed and low spatial resolution Wavelength-Division Multiplexing (WDM) systems and from low acquisition speed and high spatial resolution Optical Frequency Domain Reflection (OFDR) systems. Two unique light sources utilizing different wavelengths are coupled with the hybrid FOSS fiber to generate reflected data from both the WDM sensors and OFDR sensors operating on a single fiber optic cable without incurring interference from one another. The two data sets are then de-multiplexed for analysis, optionally with conventionally-available WDM and OFDR system analyzers.

  16. A high average power electro-optic switch using KTP

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, C.A.; Cook, W.M.; Velsko, S.P.

    1994-04-01

    High damage threshold, high thermal conductivity, and small thermo-optic coefficients make KTiOPO{sub 4} (KTP) an attractive material for use in a high average power Q-switch. However, electro-chromic damage and refractive index homogeneity have prevented the utilization of KTP in such a device in the past. This work shows that electro-chromic damage is effectively suppressed using capacitive coupling, and a KTP crystal can be Q-switched for 1.5 {times} 10{sup 9} shots without any detectable electro-chromic damage. In addition, KTP with the high uniformity and large aperture size needed for a KTP electro-optic Q-switch can be obtained from flux crystals grown at constant temperature. A thermally compensated, dual crystal KTP Q-switch, which successfully produced 50 mJ pulses with a pulse width of 8 ns (FWHM), has been constructed. In addition, in off-line testing the Q-switch showed less than 7% depolarization at an average power loading of 3.2 kW/cm{sup 2}.

  17. Optical monitoring of high power direct diode laser cladding

    Science.gov (United States)

    Liu, Shuang; Farahmand, Parisa; Kovacevic, Radovan

    2014-12-01

    Laser cladding is one of the most advanced surface modification techniques which can be used to build and repair high-value components. High power direct diode laser (HPDDL) offers unique quality and cost advantages over other lasers (CO2, Nd:YAG). Especially its rectangular laser beam with top-hat intensity distribution makes HPDDL an ideal tool for large area cladding. In order to utilize this technique successfully, the development of on-line monitoring and process control is necessary. In this study, an optical monitoring system consisting of a high-speed CCD camera, a pyrometer, and an infrared camera was used to analyze the mass- and heat-transfer in the cladding process. The particle transport in flight was viewed by a high-speed CCD camera; the interaction between powder flow and laser beam was observed by an infrared camera; and the thermal behavior of the molten pool was recorded by the pyrometer and the infrared camera. The effects of the processing parameters on the laser attenuation, particle heating and clad properties were investigated based on the obtained signals. The optical monitoring method improved the understanding about mutual interrelated phenomena in the cladding process.

  18. High Resolution Modeling in Mountainous Terrain for Water Resource Management: AN Extreme Precipitation Event Case Study

    Science.gov (United States)

    Masarik, M. T.; Watson, K. A.; Flores, A. N.; Anderson, K.; Tangen, S.

    2016-12-01

    The water resources infrastructure of the Western US is designed to deliver reliable water supply to users and provide recreational opportunities for the public, as well as afford flood control for communities by buffering variability in precipitation and snow storage. Thus water resource management is a balancing act of meeting multiple objectives while trying to anticipate and mitigate natural variability of water supply. Currently, the forecast guidance available to personnel managing resources in mountainous terrain is lacking in two ways: the spatial resolution is too coarse, and there is a gap in the intermediate time range (10-30 days). To address this need we examine the effectiveness of using the Weather Research and Forecasting (WRF) model, a state of the art, regional, numerical weather prediction model, as a means to generate high-resolution weather guidance in the intermediate time range. This presentation will focus on a reanalysis and hindcasting case study of the extreme precipitation and flooding event in the Payette River Basin of Idaho during the period of June 2nd-4th, 2010. For the reanalysis exercise we use NCEP's Climate Forecast System Reanalysis (CFSR) and the North American Regional Reanalysis (NARR) data sets as input boundary conditions to WRF. The model configuration includes a horizontal spatial resolution of 3km in the outer nest, and 1 km in the inner nest, with output temporal resolution of 3 hrs and 1 hr, respectively. The hindcast simulations, which are currently underway, will make use of the NCEP Climate Forecast System Reforecast (CFSRR) data. The current state of these runs will be discussed. Preparations for the second of two components in this project, weekly WRF forecasts during the intense portion of the water year, will be briefly described. These forecasts will use the NCEP Climate Forecast System version 2 (CFSv2) operational forecast data as boundary conditions to provide forecast guidance geared towards water resource

  19. Solar cosmic rays during the extremely high ground level enhancement on 23 February 1956

    Directory of Open Access Journals (Sweden)

    A. Belov

    2005-09-01

    Full Text Available The 23 February 1956 ground level enhancement of the solar cosmic ray intensity (GLE05 is the most famous among the proton events observed since 1942. But we do not have a great deal of information on this event due to the absence of solar wind and interplanetary magnetic field measurements at that time. Furthermore, there were no X-Ray or gamma observations and the information on the associated flare is limited. Cosmic ray data was obtained exclusively by ground level detectors of small size and in some cases of a non-standard design. In the present work all available data from neutron monitors operating in 1956 were analyzed, in order to develop a model of the solar cosmic ray behavior during the event. The time-dependent characteristics of the cosmic ray energy spectrum, cosmic ray anisotropy, and differential and integral fluxes have been evaluated utilizing different isotropic and anisotropic models. It is shown that the most outstanding features of this proton enhancement were a narrow and extremely intense beam of ultra-relativistic particles arriving at Earth just after the onset and the unusually high maximum solar particle energy. However, the contribution of this beam to the overall solar particle density and fluency was not significant because of its very short duration and small width. Our estimate of the integral flux for particles with energies over 100 MeV places this event above all subsequent. Perhaps the number of accelerated low energy particles was closer to a record value, but these particles passed mainly to the west of Earth.

    Many features of this GLE are apparently explained by the peculiarity of the particle interplanetary propagation from a remote (near the limb source. The quality of the available neutron monitor data does not allow us to be certain of some details; these may be cleared up by the incorporation into the analysis of data from muonic telescopes and ionization chambers

  20. Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds.

    Science.gov (United States)

    Ding, YanFen; Cheng, HongYan; Song, SongQuan

    2008-09-01

    Sacred lotus (Nelumbo nucifera Gaertn. 'Tielian') seed is long-lived and extremely tolerant of high temperature. Water content of lotus and maize seeds was 0.103 and 0.129 g H2O [g DW](-1), respectively. Water content, germination percentage and fresh weight of seedlings produced by surviving seeds gradually decreased with increasing treatment time at 100 degrees C. Germination percentage of maize (Zea mays L. 'Huangbaogu') seeds was zero after they were treated at 100 degrees C for 15 min and that of lotus seeds was 13.5% following the treatment at 100 degrees C for 24 h. The time in which 50% of lotus and maize seeds were killed by 100 degrees C was about 14.5 h and 6 min, respectively. With increasing treatment time at 100 degrees C, relative electrolyte leakage of lotus axes increased significantly, and total chlorophyll content of lotus axes markedly decreased. When treatment time at 100 degrees C was less than 12 h, subcellular structure of lotus hypocotyls remained fully intact. When treatment time at 100 degrees C was more than 12 h, plasmolysis gradually occurred, endoplasmic reticulum became unclear, nuclei and nucleoli broke down, most of mitochondria swelled, lipid granules accumulated at the cell periphery, and organelles and plasmolemma collapsed. Malondialdehyde (MDA) content of lotus axes and cotyledons decreased during 0 -12 h of the treatment at 100 degrees C and then increased. By contrast, the MDA content of maize embryos and endosperms increased during 5-10 min of the treatment at 100 degrees C and then decreased slightly. For lotus seeds: (1) activities of superoxide dismutase (SOD) and glutathione reductase (GR) of axes and cotyledons and of catalase (CAT) of axes increased during the early phase of treatment at 100 degrees C and then decreased; and (2) activities of ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) of axes and cotyledons and of CAT of cotyledons gradually decreased with increasing treatment time at 100 degrees