Sample records for extraterrestrial organic compounds

  1. Extraterrestrial Organic Compounds in Meteorites (United States)

    Botta, Oliver; Bada, Jeffrey L.; Meyer, Michael (Technical Monitor)


    Many organic compounds or their precursors found in meteorites originated in the interstellar or circumstellar medium and were later incorporated into planetesimals during the formation of the solar system. There they either survived intact or underwent further processing to synthesize secondary products on the meteorite parent body. The most distinct feature of CI and CM carbonaceous chondrites, two types of stony meteorites, is their high carbon content (up to 3% of weight), either in the form of carbonates or of organic compounds. The bulk of the organic carbon consists of an insoluble macromolecular material with a complex structure. Also present is a soluble organic fraction, which has been analyzed by several separation and analytical procedures. Low detection limits can be achieved by derivatization of the organic molecules with reagents that allow for analysis by gas chromatography/mass spectroscopy and high performance liquid chromatography. The CM meteorite Murchison has been found to contain more than 70 extraterrestrial amino acids and several other classes of compounds including carboxylic acids, hydroxy carboxylic acids, sulphonic and phosphonic acids, aliphatic, aromatic and polar hydrocarbons, fullerenes, heterocycles as well as carbonyl compounds, alcohols, amines and amides. The organic matter was found to be enriched in deuterium, and distinct organic compounds show isotopic enrichments of carbon and nitrogen relative to terrestrial matter.

  2. Flash pyrolysis of adsorbed aromatic organic acids on carbonate minerals: Assessing the impact of mineralogy for the identification of organic compounds in extraterrestrial bodies (United States)

    Zafar, R.


    The relationship between minerals and organics is an essential factor in comprehending the origin of life on extraterrestrial bodies. So far organic molecules have been detected on meteorites, comets, interstellar medium and interplanetary dust particles. While on Mars, organic molecules may also be present as indicated by the Sample Analysis at Mars (SAM) instrument suite on the Curiosity Rover in Martian sediments. Minerals including hydrated phyllosilicate, carbonate, and sulfate minerals have been confirmed in carbonaceous chondrites. The presence of phyllosilicate minerals on Mars has been indicated by in situ elemental analysis by the Viking Landers, remote sensing infrared observations and the presence of smectites in meteorites. Likewise, the presence of carbonate minerals on the surface of Mars has been indicated by both Phoenix Lander and Spirit Rover. Considering the fact that both mineral and organic matter are present on the surface of extraterrestrial bodies including Mars, a comprehensive work is required to understand the interaction of minerals with specific organic compounds. The adsorption of the organic molecule at water/mineral surface is a key process of concentrating organic molecules on the surface of minerals. Carboxylic acids are abundantly observed in extraterrestrial material such as meteorites and interstellar space. It is highly suspected that carboxylic acids are also present on Mars due to the average organic carbon infall rate of 108 kg/yr. Further aromatic organic acids have also been observed in carbonaceous chondrite meteorites. This work presents the adsorption of an aromatic carboxylic acid at the water/calcite interface and characterization of the products formed after adsorption via on-line pyrolysis. Adsorption and online pyrolysis results are used to gain insight into adsorbed aromatic organic acid-calcite interaction. Adsorption and online pyrolysis results are related to the interpretation of organic compounds identified

  3. Duties to Extraterrestrial Microscopic Organisms (United States)

    Cockell, C. S.

    Formulating a normative axiology for the treatment of extraterrestrial microscopic organisms, should they ever be found, requires an extension of environmental ethics to beyond the Earth. Using an ethical framework for the treatment of terrestrial micro-organisms, this paper elaborates a similar ethic for the treatment of extraterrestrial microscopic organisms. An ethic of `teloempathy' allows for the moral considerability of any organism that has `interests', based on rudimentary qualities of conativism, and therefore allows for an identical treatment of all life, related or not related to life on Earth. Although, according to this ethic, individual extraterrestrial microscopic organisms have a good of their own and even `rights', at this level the ethic can only be theoretical, allowing for the inevitable destruction of many individual organisms during the course of human exploratory missions, similarly to the daily destruction of microbes by humans on Earth. A holistic teloempathy, an operative ethic, not only provides a framework for human exploration, but it also has important implications for planetary protection and proposals to implement planetary-scale atmospheric alterations on other bodies. Even prior to the discovery of extraterrestrial life, or the discovery of a complete absence of such life, this exercise yields important insights into the moral philosophy that guides our treatment of terrestrial micro-organisms.

  4. Organic compounds in the Murchison meteorite. (United States)

    Ponnamperuma, C.


    Impressive supporting evidence for the concept of the chemical evolution of life has appeared in the discovery of biologically important compounds in extraterrestrial samples. The approaches pursued to detect extraterrestrial organic compounds include the study of interstellar space by radioastronomy, the evaluation of the Apollo lunar samples, and the analysis of meteorites, both ancient and recent. It has been found that the clouds of gas in the interstellar medium contain a wide variety of molecules, most of which are organic in nature. The carbonaceous chondrites contain polymeric organic matter. Amino acids have been detected in the Murchison meteorite.

  5. Compound specific stable isotopes as probes for distinguishing the sources of biomolecules in terrestrial and extraterrestrial materials (United States)

    Engel, M. H.; Macko, S. A.


    Life on Earth consists of orderly arrangements of several key types of organic compounds (amino acids, sugars, fatty acids, nucleic bases) that are the building blocks of proteins, carbohydrates, lipids and nucleotides. Subsequent to death, macromolecules are commonly broken down to their molecular constituents or other similar scale components. Thus, in ancient terrestrial and extraterrestrial materials, it is far more likely to expect the presence of simple compounds such as amino acids rather than the proteins from which they were possibly derived. Given that amino acids, for example, are common components of all extinct and extant organisms, the challenge has been to develop methods for distinguishing their sources. Stable isotopes are powerful probes for determining the origins of organic matter. Amino acid constituents of all organisms on Earth exhibit characteristic stable isotope compositions owing to fractionations associated with their biosynthesis. These fractionations are distinct from those observed for amino acids formed by abiotic processes. Thus it should be possible to use isotopes as probes for determining whether amino acids in ancient rocks on Earth are biotic or abiotic, based on their relative isotopic compositions. Also, owing to differences in the isotope compositions of precursors, amino acids in extraterrestrial materials such as carbonaceous meteorites are moderately to substantially enriched in the heavy isotopes of C, N and H relative to terrestrial amino acids. Assuming that the isotope compositions of the gaseous components of, for example, the Martian atmosphere were distinct from Earth at such time when organic molecules may have formed, it should be possible to distinguish these components from terrestrial contaminants by determining their isotope compositions and/or those of their respective enantiomers. Also, if life as we know it existed on another planet such as Mars, fractionations characteristic of biosynthesis should be

  6. Atmospheric Chemistry of Micrometeoritic Organic Compounds (United States)

    Kress, M. E.; Belle, C. L.; Pevyhouse, A. R.; Iraci, L. T.


    Micrometeorites approx.100 m in diameter deliver most of the Earth s annual accumulation of extraterrestrial material. These small particles are so strongly heated upon atmospheric entry that most of their volatile content is vaporized. Here we present preliminary results from two sets of experiments to investigate the fate of the organic fraction of micrometeorites. In the first set of experiments, 300 m particles of a CM carbonaceous chondrite were subject to flash pyrolysis, simulating atmospheric entry. In addition to CO and CO2, many organic compounds were released, including functionalized benzenes, hydrocarbons, and small polycyclic aromatic hydrocarbons. In the second set of experiments, we subjected two of these compounds to conditions that simulate the heterogeneous chemistry of Earth s upper atmosphere. We find evidence that meteor-derived compounds can follow reaction pathways leading to the formation of more complex organic compounds.

  7. Organic Matter in Extraterrestrial Water-Bearing Salt Crystals (United States)

    Chan, Q. H. S.; Zolensky, M. E.; Kebukwa, Y.; Fries, M.; Steele, A.


    Introduction: Direct samples of early Solar System fluids are present in two thermally-metamorphosed ordinary chondrite regolith breccias (Monahans (1998) [H5] and Zag [H3-6]), which were found to contain brine-bearing halite (NaCl) crystals that have been added to the regolith of an S-type asteroid following asteroidal metamorphism [1, 2]. The brine-bearing halite grains were proposed to be formed on an icy C-type asteroids (possibly Ceres), and transferred to an S-type asteroid via cryovolcanic event(s) [3]. A unique aspect of these halites is that they contain abundant organic rich solid inclusions hosted within the halites alongside the water inclusions. Methods: We analyzed in detail the compositions of the organic solids and the amino acid content of the halite crystals with two-step laser desorption/laser ionization mass spectrometry (L(sup 2) MS), Raman spectroscopy, X-ray absorption near edge structure (XANES), nanoscale secondary ion mass spectrometry (NanoSIMS), and ultra-performance liquid chromatography fluorescence detection and quadrupole time of flight hybrid mass spectrometry (UPLC-FD/QToF-MS). Results and Discussion: The L(sup 2) MS results show signatures of low-mass polyaromatic hydro-carbons (PAHs) indicated by sequences of peaks separated by 14 atomic mass units (amu) due to successive addition of methylene (CH2) groups to the PAH skeletons [4]. Raman spectra of the micron-sized solid inclusions of the halites indicate the presence of abundant and highly variable organic matter that include a mixture of short-chain aliphatic compounds and macromolecular carbon. C-XANES analysis identified C-rich areas with peaks at 285.0 eV (aromatic C=C) and 286.6 eV (vinyl-keto C=O). However, there is no 1s-sigma* exciton peak (291.7 eV) that is indicative of the development of graphene structure [5], which suggests the organics were synthesized cold. Na-noSIMS analyses show C-rich and N-rich areas that exhibit similar isotopic values with that of the IOM in

  8. Extraterrestrial Organic Chemistry: From the Interstellar Medium to the Origins of Life (United States)

    Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)


    Extraterrestrially delivered organics in the origin of cellular life. Various processes leading to the emergence of cellular life from organics delivered from space to earth or other planetary bodies in the solar system will be reviewed. The focus will be on: (1) self-assembly of amphiphilic material to vesicles and other structures, such as micelles and multilayers, and its role in creating environments suitable for chemical catalysis, (2) a possible role of extraterrestrial delivery of organics in the formation of the simplest bioenergetics (3) mechanisms leading from amino acids or their precursors to simple peptides and, subsequently, to the evolution of metabolism. These issues will be discussed from two opposite points of view: (1) Which molecules could have been particularly useful in the protobiological evolution; this may provide focus for searching for these molecules in interstellar media. (2) Assuming that a considerable part of the inventory of organic matter on the early earth was delivered extraterrestrially, what does relative abundance of different organics in space tell us about the scenario leading to the origin of life.

  9. Chloric organic compound

    International Nuclear Information System (INIS)

    Moalem, F.


    Since many years ago, hazardous and toxic refuses which are results of human activities has been carelessly without any Biological and Engineering facts and knowledge discharged into our land and water. The effects of discharging those materials in environment are different. Some of refuse materials shows short and other has long-time adverse effects in our environment, Among hazardous organic chemical materials, chlorine, consider, to be the main element. Organic materials with chlorine is called chlorine hydrocarbon as a hazardous compound. This paper discuss the hazardous materials especially chloric organic compound and their misuse effects in environment and human being

  10. Fluid-induced organic synthesis in the solar nebula recorded in extraterrestrial dust from meteorites. (United States)

    Vollmer, Christian; Kepaptsoglou, Demie; Leitner, Jan; Busemann, Henner; Spring, Nicole H; Ramasse, Quentin M; Hoppe, Peter; Nittler, Larry R


    Isotopically anomalous carbonaceous grains in extraterrestrial samples represent the most pristine organics that were delivered to the early Earth. Here we report on gentle aberration-corrected scanning transmission electron microscopy investigations of eight (15)N-rich or D-rich organic grains within two carbonaceous Renazzo-type (CR) chondrites and two interplanetary dust particles (IDPs) originating from comets. Organic matter in the IDP samples is less aromatic than that in the CR chondrites, and its functional group chemistry is mainly characterized by C-O bonding and aliphatic C. Organic grains in CR chondrites are associated with carbonates and elemental Ca, which originate either from aqueous fluids or possibly an indigenous organic source. One distinct grain from the CR chondrite NWA 852 exhibits a rim structure only visible in chemical maps. The outer part is nanoglobular in shape, highly aromatic, and enriched in anomalous nitrogen. Functional group chemistry of the inner part is similar to spectra from IDP organic grains and less aromatic with nitrogen below the detection limit. The boundary between these two areas is very sharp. The direct association of both IDP-like organic matter with dominant C-O bonding environments and nanoglobular organics with dominant aromatic and C-N functionality within one unique grain provides for the first time to our knowledge strong evidence for organic synthesis in the early solar system activated by an anomalous nitrogen-containing parent body fluid.

  11. Volatile organic compounds

    International Nuclear Information System (INIS)

    Silseth, May Liss


    The goal is: Not more emission of volatile organic compounds (VOCs) than necessary. The items discussed in this presentation are the VOCs, how to calculate emission of VOCs, how to reduce or avoid them, and different recovery processes. The largest source of Norwegian emissions of non methane VOCs (NMVOCs) is offshore loading of raw petroleum. Emissions of VOCs should be reduced mainly for two reasons: (1) on sunny days NMVOCs may react with NOx to form ozon and smog close to the surface, (2) ozone and smog close to the surface may be harmful to plants and animals, and they are hazardous to human health. As for the calculation of VOC emissions, the VOCON project will release the calculation program HCGASS in 1999. This project is a cooperative project headed by SINTEF/Marintek

  12. New Extraterrestrial Signature of the Insoluble Organic Matter of the Orgueil, Murchison and Tagish Lake Meteorites as Revealed by Electron Paramagnetic Resonance (United States)

    Binet, L.; Gourier, D.; Derenne, S.; Robert, F.; Ciofini, I.


    EPR of the insoluble organic matter (IOM) of three chondrites revealed heterogeneously spread radicals including diradicaloids. These features not observed in terrestrial kerogens appear as an extraterrestrial signature of the chondritic IOM.

  13. Radiolysis of other organic compounds

    International Nuclear Information System (INIS)

    Pikaev, A.K.


    Peculiarities of radiolysis of organic halogen, phosphorus, sulfur and nitrogen (including amines, amides, nitriles et al.) compounds in liquid phase are discussed. Intermediate and stable finish products of radiolysis of the given compounds, properties and radiochemical yields of these products are considered

  14. Students' Categorizations of Organic Compounds (United States)

    Domin, Daniel S.; Al-Masum, Mohammad; Mensah, John


    Categorization is a fundamental psychological ability necessary for problem solving and many other higher-level cognitive tasks. In organic chemistry, students must establish groupings of different chemical compounds in order not only to solve problems, but also to understand course content. Classic models of categorization emphasize similarity as…

  15. Instrument for Analysis of Organic Compounds on Other Planets (United States)

    Daulton, Riley M.; Hintze, Paul E.


    The goal of this project is to develop the Instrument for Solvent Extraction and Analysis of Extraterrestrial Bodies using In Situ Resources (ISEE). Specifically, ISEE will extract and characterize organic compounds from regolith which is found on the surface of other planets or asteroids. The techniques this instrument will use are supercritical fluid extraction (SFE) and supercritical fluid chromatography (SFC). ISEE aligns with NASA's goal to expand the frontiers of knowledge, capability, and opportunities in space in addition to supporting NASA's aim to search for life elsewhere by characterizing organic compounds. The outcome of this project will be conceptual designs of 2 components of the ISEE instrument as well as the completion of proof-of-concept extraction experiments to demonstrate the capabilities of SFE. The first conceptual design is a pressure vessel to be used for the extraction of the organic compounds from the regolith. This includes a comparison of different materials, geometry's, and a proposition of how to insert the regolith into the vessel. The second conceptual design identifies commercially available fluid pumps based on the requirements needed to generate supercritical CO2. The proof-of-concept extraction results show the percent mass lost during standard solvent extractions of regolith with organic compounds. This data will be compared to SFE results to demonstrate the capabilities of ISEE's approach.

  16. Extraterrestrial Life (United States)

    Klein, M. J.


    Extraterrestrial Intelligence is intelligent life that developed somewhere other than the earth. Such life has not yet been discovered. However, scientific research, including astronomy, biology, planetary science and studies of fossils here on earth have led many scientists to conclude that such life may exist on planets orbiting at least some of the hundreds of billions of stars in our Milky Way Galaxy. Today, some researchers are trying to find evidence for extraterrestrial intelligence. This effort is often called SETI, which stands for Search for Extraterrestrial Intelligence. SETI researchers decided that looking for evidence of their technology might be the best way to discover other intelligent life in the Galaxy. They decided to use large radio telescopes to search the sky over a wide range of radio frequencies...

  17. Genetic effects of organic mercury compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramel, C


    Studies on the genetic and developmental effects of organic mercury compounds on lilies, drosophila, and ice were carried out. It was found that chromosomal and developmental abnormalities were correlated with the administration of mercury compounds.

  18. Extraterrestrial seismology

    CERN Document Server

    Tong, Vincent C H


    Seismology is a highly effective tool for investigating the internal structure of the Earth. Similar techniques have also successfully been used to study other planetary bodies (planetary seismology), the Sun (helioseismology), and other stars (asteroseismology). Despite obvious differences between stars and planetary bodies, these disciplines share many similarities and together form a coherent field of scientific research. This unique book takes a transdisciplinary approach to seismology and seismic imaging, reviewing the most recent developments in these extraterrestrial contexts. With contributions from leading scientists, this timely volume systematically outlines the techniques used in observation, data processing, and modelling for asteroseismology, helioseismology, and planetary seismology, drawing comparisons with seismic methods used in geophysics. Important recent discoveries in each discipline are presented. With an emphasis on transcending the traditional boundaries of astronomy, solar, planetary...

  19. Xenobiotic organic compounds in wastewater

    DEFF Research Database (Denmark)

    Eriksson, Eva; Baun, Anders; Henze, Mogens


    hundred of XOCs, among them mainly originating from hygiene products: chlorophenols, detergents and phthalates. Several compounds not deriving from hygiene products were also identified e.g. flame-retardants and drugs. A environmental hazard identification showed that a large number of compounds with high...

  20. using stereochemistry models in teaching organic compounds

    African Journals Online (AJOL)

    Preferred Customer

    The purpose of the study was to find out the effect of stereochemistry models on students' ... consistent with the names given to organic compounds. Some of ... Considering class level, what is the performance of the students in naming organic.

  1. Organic halogen compounds in the environment

    International Nuclear Information System (INIS)


    There are 20 research reports on selected problems concerning the analysis, the occurence, and the behaviour of a wide spectrum of organic halogen compounds. The work was carried out in the framework of the project 'Organic Halogen Compounds in the Environment', financed by the BMFT, between 1975 and 1978. (orig.) [de

  2. The Enantiomeric Ratios of Meteoritic Organic Compounds: Their Possible Roles in the Origin of Life (United States)

    Cooper, George


    This talk will give an overview of the enantiomer (mirror-image) ratios of organic compounds in meteorites and also describe the results of the present work in my lab. The primary focus will be on sugar derivatives (sugar acids) of carbonaceous meteorites. Our work begins to address questions associated with chirality, i.e., the origins of homochirality. On Earth, biological monomers (amino acids, sugars, etc.) are usually found with one of the enantiomers more abundant than the other. However, biological polymers (proteins, nucleic acids, etc.) are only composed of one enantiomer i.e., they are homochiral. There are hints in meteorites that some organic molecules may also exist in homochiral forms. The talk will address questions such as: did extraterrestrial sources aid in the beginning of this homochirality? Do the increasing size and apparent enantiomer excesses of some meteoritic compounds also extend to larger meteoritic compounds and polymers?

  3. Liquid Chromatography-Mass Spectrometry Interface for Detection of Extraterrestrial Organics (United States)

    Southard, Adrian E.; Getty, Stephanie A.; Balvin, Manuel; Cook, Jamie E.; Espiritu, Ana Mellina; Kotecki, Carl; Towner, Deborah W.; Dworkin, J. P.; Glavin, Daniel P.; Mahaffy, Paul R.; hide


    The OASIS (Organics Analyzer for Sampling Icy surfaces) microchip enables electrospray or thermospray of analyte for subsequent analysis by the OASIS time-of-flight mass spectrometer. Electrospray of buffer solution containing the nucleobase adenine was performed using the microchip and detected by a commercial time-of-flight mass spectrometer. Future testing of thermospray and electrospray capability will be performed using a test fixture and vacuum chamber developed especially for optimization of ion spray at atmosphere and in low pressure environments.

  4. Alkylation of organic aromatic compounds (United States)

    Smith, Jr., Lawrence A.


    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of C. to C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  5. Alkylation of organic aromatic compounds (United States)

    Smith, L.A. Jr.


    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  6. Organic electronic devices using phthalimide compounds (United States)

    Hassan, Azad M.; Thompson, Mark E.


    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  7. Extraterrestrial organic chemistry: from the interstellar medium to the origins of life. Part 2: complex organic chemistry in the environment of planets and satellites. (United States)

    Raulin, F; Kobayashi, K


    During COSPAR'00 in Warsaw, Poland, in the frame of Sub-Commission F.3 events (Planetary Biology and Origins of Life), part of COSPAR Commission F (Life Sciences as Related to Space), and Commission B events (Space Studies of the Earth-Moon System, Planets, and Small Bodies of the Solar System) a large joint symposium (F.3.4/B0.8) was held on extraterrestrial organic chemistry. Part 2 of this symposium was devoted to complex organic chemistry in the environment of planets and satellites. The aim of this event was to cover and review new data which have been recently obtained and to give new insights on data which are expected in the near future to increase our knowledge of the complex organic chemistry occurring in several planets and satellites of the Solar System, outside the earth, and their implications for exobiology and life in the universe. The event was composed of two main parts. The first part was mainly devoted to the inner planets and Europa and the search for signatures of life or organics in those environments. The second part was related to the study of the outer solar system.

  8. How likely is extraterrestrial life?

    CERN Document Server

    Halley, J Woods


    What does existing scientific knowledge about physics, chemistry, meteorology and biology tell us about the likelihood of extraterrestrial life and civilizations? And what does the fact that there is currently no credible scientific evidence for the existence of extraterrestrial biospheres or civilizations teach  us? This book reviews the various scientific issues that arise in considering the question of how common extraterrestrial life is likely to be in our galaxy and whether humans are likely to detect it. The book stands out because of its very systematic organization and relatively unbiased treatment of the main open question. It covers all relevant aspects of many disciplines required to present the different   possible answers. It has and will provide undergraduates with a stimulating introduction to many of these fields at an early stage in their university careers, when they are still choosing a specialty. The difficulties and the range of possible answers to the title question are carefully addr...

  9. Genetic effects of organic mercury compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramel, C


    Organic mercury compounds have a c-mitotic effect on plant cells that cause polyploidi. Studies were performed on Allium root cells. These investigations involved methyl mercury dicyandiamide, methyl mercury hydroxide, and phenyl mercury hydroxide. The lowest concentration necessary for a cytologically observable effect was about 0.05 ppM Hg for the methyl compounds. For the phenyl compound, the value was lower. Experiments were performed on Drosophila melanogaster. The question was whether the mercury would reach the gonads. Experimental data with mercury treated larvae indicated a chromosome disjunction. Data indicated a preferential segregation at the meiotic division might be involved. Experiments are being performed on mice inbred (CBA) in order to investigate teratogenic effects and dominant lethality caused by organic mercury compounds. The mutagenic effects of these compounds are studied on Neurospora Drosophila. No conclusive data is now available.

  10. Air sparging of organic compounds in groundwater

    International Nuclear Information System (INIS)

    Hicks, P.M.


    Soils and aquifers containing organic compounds have been traditionally treated by excavation and disposal of the soil and/or pumping and treating the groundwater. These remedial options are often not practical or cost effective solutions. A more favorable alternative for removal of the adsorbed/dissolved organic compounds would be an in situ technology. Air sparging will remove volatile organic compounds from both the adsorbed and dissolved phases in the saturated zone. This technology effectively creates a crude air stripper below the aquifer where the soil acts as the ''packing''. The air stream that contacts dissolved/adsorbed phase organics in the aquifer induces volatilization. A case history illustrates the effectiveness of air sparging as a remedial technology for addressing organic compounds in soil and groundwater. The site is an operating heavy equipment manufacturing facility in central Florida. The soil and groundwater below a large building at the facility was found to contain primarily diesel type petroleum hydrocarbons during removal of underground storage tanks. The organic compounds identified in the groundwater were Benzene, Xylenes, Ethylbenzene and Toluenes (BTEX), Methyl tert-Butyl Ether (MTBE) and naphthalenes in concentrations related to diesel fuel

  11. Reflectance spectroscopy of organic compounds: 1. Alkanes (United States)

    Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.


    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  12. Integrated modelling of two xenobiotic organic compounds

    DEFF Research Database (Denmark)

    Lindblom, Erik Ulfson; Gernaey, K.V.; Henze, Mogens


    This paper presents a dynamic mathematical model that describes the fate and transport of two selected xenobiotic organic compounds (XOCs) in a simplified representation. of an integrated urban wastewater system. A simulation study, where the xenobiotics bisphenol A and pyrene are used as reference...... compounds, is carried out. Sorption and specific biological degradation processes are integrated with standardised water process models to model the fate of both compounds. Simulated mass flows of the two compounds during one dry weather day and one wet weather day are compared for realistic influent flow...... rate and concentration profiles. The wet weather day induces resuspension of stored sediments, which increases the pollutant load on the downstream system. The potential of the model to elucidate important phenomena related to origin and fate of the model compounds is demonstrated....

  13. Organic astatine compounds, their preparation and properties

    Energy Technology Data Exchange (ETDEWEB)

    Vasaros, L; Berei, K


    Aromatic astatine compounds of possible medical application were prepared by high energy substitutions, by astatine-halogen, and by electrophil astatine-hydrogen substitutions at the Joint Institute of Nuclear Researches, Dubna. Physico-chemical properties of organic astatine compounds such as boiling point and evaporation heat, and the refraction and dissociation energy of carbon-astatine bonds were determined experimentally by gas chromatography. The results are compared with extrapolated data. (V.N.). 41 refs.; 7 figs.; 5 tables.

  14. Behaviour of organic sulfur compounds in HPLC

    International Nuclear Information System (INIS)

    Freyholdt, T.


    The retention behaviour of organic sulfur compounds in the reverse-bonded-phase chromatography is characterized by determining the retention indices according to Kovats. The results of these studies show that the solubility of organic compounds in the eluting agent and the molar sorption surfaces of the solutes are the main factors determining the retention behaviour. Knowledge of the retention indices of above-mentioned compounds allows a quick interpretation of chromatograms obtained through a product analysis of γ-irradiated aqueous solutions of organic sulfur compounds. Dithia compounds of the type CH 3 -S-(CH 2 )sub(n)-S-Ch 3 (1 1. 2,4-Dithiapentane (n = 1) however will yield primarily monothio-S-methyl formate as a stable end product. The formation of oxygenic reaction products proceeds via sulfur-centred radical kations. Spin trapping experiments with nitroxyl radicals show that it is possible to trap radiation-chemically produced radicals of sulfurous substrates, but the thus obtained adducts with half-life periods of 4-5 min. cannot be identified by means of NMR, IR or mass spectroscopy. (orig.) [de

  15. Semivolatile organic compounds in indoor environments

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Nazaroff, W.W.


    Semivolatile organic compounds (SVOCs) are ubiquitous in indoor environments, redistributing from their original sources to all indoor surfaces. Exposures resulting from their indoor presence contribute to detectable body burdens of diverse SVOCs, including pesticides, plasticizers, and flame ret...... remarkably well with levels measured in dermal hand wipes for SVOCs possessing a wide range of octanol-air partition coefficients....

  16. Degradation of air polluted by organic compounds

    International Nuclear Information System (INIS)

    Santoyo O, E.L.; Lizama S, B.E.; Vazquez A, O.; Luna C, P.C.; Arredondo H, S.


    According to the Mexican standard NOM-010-STPS-1994 it has been established concentrations of maximum permissible levels in workable air for styrene in the range 420-1710 mg/m 3 and for xylene between 218-870 mg/m 3 . In this work it is studied a biological treatment (bio filtration) for air polluted by xylene and styrene where the microorganisms are adhered at synthetic fiber, these degrade to the organic compounds that across in gaseous state and they are mineralized toward CO 2 and H 2 O. The characteristics of temperature, p H, concentration of organic compound and mineral parameters, as well as, the biomass quantity have been optimized for that bio filters efficiency were greater than those reported in other works. (Author)

  17. The Role of Extraterrestrial Materials in the Origin of Life (United States)

    Sandford, Scott A.


    It has been well established for some time now that C-rich organic materials are relatively common in a number of environments in space. This is known through the telescopic detection of these materials using spectroscopy techniques in the infrared and sub-millimeter wavelength ranges and through the identification of organics in extraterrestrial materials. Extraterrestrial materials in which organics have been found include collected meteorites and interplanetary dust particles, and samples returned by NASA spacecraft from comets. These organics are produced by a variety of astrochemical processes. Despite their abiotic origins, these organic materials of are considerable interest to astrobiology for several reasons. First, organic materials of any composition are important as a means of delivering the elements C, H, O, and N to the surfaces of newly formed planets, and these elements are likely critical to the origin and subsequent evolution of life (certainly for life as we know it). In addition, it is clear that at least a portion of the organics found in space are in the form of molecules that play important roles in modern biology - for example, molecules like amino acids, amphiphiles, quinones, etc. Thus, the delivery of extraterrestrial organics to planetary surfaces brings not only bulk C, H, O, and N, but also molecular complexity in forms that are potentially useful for the origin and early evolution of life. This suggests that the production and delivery of cosmic organic compounds may have played key roles in the origin of life on Earth and, by extension, on other planets in the universe.

  18. Extraterrestrial Nucleobases in Carbonaceous Chondrites (United States)

    Martins, Z.; Botta, O.; Fogel, M.; Sephton, M.; Glavin, D.; Watson, J.; Dworkin, J.; Schwartz, A.; Ehrenfreund, P.

    . Our stable carbon isotope measurements clearly demonstrate that the nucleobases in the Murchison meteorite are indigenous to the meteorite, and clearly differ from the values determined for the terrestrial nucleobases measured in the soil collected at the impact site. These results support the hypothesis that nucleobases were exogenously delivered to the early Earth, and may have been important for the prebiotic chemistry on our young planet. With regard to the detection of traces of life on other planets such as Mars it is essential to characterize organic materials that have been exogenously delivered to the early planets. The analysis of the composition and isotopic fractionation of extraterrestrial material using complementary techniques can provide crucial insights into the formation of our Solar System, extraterrestrial delivery processes and subsequent addition and incorporation into the carbonaceous material available on the young planets. Ultimately, these parameters form an essential reference point for interpreting biosignatures that may be left in the ancient rock record on a planetary body. References: [1] Hayatsu R. et al. 1975. Geochimica et Cosmochimica Acta 39: 471- 488. [2] Folsome C. E. et al. 1971. Nature 232: 108-109. [3] Stoks P. G. & Schwartz A. W. 1979. Nature 282: 709-710. [4] Stoks P.G. & Schwartz A. W. 1981. Geochimica et Cosmochimica Acta 45: 563-569. [5] Shimoyama A. et al. 1990. Geochemical Journal 24: 343-348. [6] Martins Z. et al. 2004. Meteoritics & Planetary Science 39: A5145. 2

  19. Sono-catalytic degradation of organic compounds

    International Nuclear Information System (INIS)

    Navarro, N.


    Unlike aqueous effluents from the PUREX process, aqueous effluents from advanced separation processes developed to separate the minor actinides (Am, Cm) contain organic reagents in large amounts. To minimize the impact of these organic compounds on the next steps of the process, and to respect standard discharges, it is necessary to develop new techniques of degradation of organic compounds. Sono-chemistry appears as a very promising solution to eliminate organic species in aqueous nuclear effluents. Indeed, the propagation of an ultrasonic wave in a liquid medium induces the appearance of cavitation bubbles which will quickly grow and implode, causing local conditions and extreme temperatures and pressures. Each cavitation bubble can then be considered as a microreactor at high temperature and high pressure able to destroy organic molecules without the addition of specific reagents. The first studies on the effect of ultrasonic frequency on sono-luminescence and sono-lysis of formic acid have shown that the degradation of formic acid occurs at the bubble/liquid interface. The most striking difference between low-frequency and high-frequency ultrasound is that the sono-lysis of HCOOH at high ultrasonic frequencies initiates secondary reactions not observed at 20 kHz. However, despite a much higher sono-chemical activity at high frequency, highly concentrated carboxylic acids in the aqueous effluents from advanced separation processes cannot be destroyed by ultrasound alone. To increase the efficiency of sono-chemical reactions, the addition of supported platinum catalysts has been studied. In these conditions, an increase of the kinetics of destruction of carboxylic acids such as oxalic acid is observed. (author) [fr

  20. The fight against Volatile Organic Compounds (VOC)

    International Nuclear Information System (INIS)



    This paper strikes the balance of the fight against organic volatile compounds emissions in France and in Europe. The first part describes the influence of VOC on production of Ozone in troposphere and gives numerical data on permissive emission values in atmosphere. The second part describes french and european policy and regulations. The third part gives the principle methods and devices for COV measurement in the atmosphere. In the last part, effluents treatment is given: thermal incineration, catalytic incineration, adsorption on active carbon, biologic purification, condensation and separative processes on membrane

  1. Biogenic volatile organic compounds - small is beautiful (United States)

    Owen, S. M.; Asensio, D.; Li, Q.; Penuelas, J.


    While canopy and regional scale flux measurements of biogenic volatile organic compounds (bVOCs) are essential to obtain an integrated picture of total compound reaching the atmosphere, many fascinating and important emission details are waiting to be discovered at smaller scales, in different ecological and functional compartments. We concentrate on bVOCs below ground to plant species, and can be extracted from decaying litter. Naturally occurring monoterpenes in the rhizosphere provide a specialised carbon source for micro-organisms, helping to define the micro-organism community structure, and impacting on nutrient cycles which are partly controlled by microorganisms. Naturally occurring monoterpenes in the soil system could also affect the aboveground structure of ecosystems because of their role in plant defence strategies and as mediating chemicals in allelopathy. A gradient of monoterpene concentration was found in soil around Pinus sylvestris and Pinus halepensis, decreasing with distance from the tree. Some compounds (α-pinene, sabinene, humulene and caryophyllene) in mineral soil were linearly correlated with the total amount of each compound in the overlying litter, indicating that litter might be the dominant source of these compounds. However, α-pinene did not fall within the correlation, indicating a source other than litter, probably root exudates. We also show that rhizosphere bVOCs can be a carbon source for soil microbes. In a horizontal gradient from Populus tremula trees, microbes closest to the tree trunk were better enzymatically equipped to metabolise labeled monoterpene substrate. Monoterpenes can also increase the degradation rate in soil of the persistant organic pollutants, likely acting as analogues for the cometabo-lism of polychlorinated biphenyls (PCBs) Flowers of a ginger species (Alpinia kwangsiensis) and a fig species (Ficus hispida) showed different bVOC signals pre- and post pollination. For Ficus hispida, there are three

  2. Special syntheses of certain organic iodine compounds

    International Nuclear Information System (INIS)

    Henry, R.; Debuchy, D.; Junod, E.


    The technical difficulties encountered in working on radioactive products force us to choose the simplest methods of chemical synthesis possible. For iodine compounds, two special methods have been chosen: - by using fission recoil, we can prepare simple iodine compounds such as iodobenzene or methyl iodide in high yields and having a good degree of purity. The method consists in the irradiation of mixtures of uranium oxide and benzoic acid or ammonium acetate. The iodised product is separated by distillation, after dissolving the recoil medium in a solvent. - by isotopic exchange between the inorganic iodine of different valencies and complex molecules such as Bengal pink, and diodone, it is also possible to obtain satisfactory labelling yields. These reactions have been adapted so as to give a minimum time for isotopic exchange. In the case of Bengal pink, we have found a yield of 90 per cent after 60 minutes by exchange between Nal and the organic molecule in aqueous solution in presence of hydrogen peroxide. For diodone the method proposed by Liebster has been modified so as to reduce losses during purification. The analytical methods adopted for these different compounds are described. (author) [fr

  3. Toxic organic compounds from energy production

    Energy Technology Data Exchange (ETDEWEB)

    Hites, R.A.


    The US Department of Energy's Office of Health and Environmental Research (OHER) has supported work in our laboratory since 1977. The general theme of this program has been the identification of potentially toxic organic compounds associated with various combustion effluents, following the fates of these compounds in the environment, and improving the analytical methodology for making these measurements. The projects currently investigation include: an improved sampler for semi-volatile compounds in the atmosphere; the wet and dry deposition of dioxins and furans from the atmosphere; the photodegradation and mobile sources of dioxins and furans; and the bioaccumulation of PAH by tree bark. These projects are all responsive to OHER's interest in the pathways and mechanisms by which energy-related agents move through and are modified by the atmosphere''. The projects on gas chromatographic and liquid chromatographic tandem mass spectrometry are both responsive to OHER's interest in new and more sensitive technologies for chemical measurements''. 35 refs., 9 figs.

  4. Nitrate radicals and biogenic volatile organic compounds ... (United States)

    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in

  5. Using portable Raman spectrometers for the identification of organic compounds at low temperatures and high altitudes: exobiological applications. (United States)

    Jehlicka, J; Edwards, H G M; Culka, A


    Organic minerals, organic acids and NH-containing organic molecules represent important target molecules for astrobiology. Here, we present the results of the evaluation of a portable hand-held Raman spectrometer to detect these organic compounds outdoors under field conditions. These measurements were carried out during the February-March 2009 winter period in Austrian Alpine sites at temperatures ranging between -5 and -25 degrees C. The compounds investigated were detected under field conditions and their main Raman spectral features were observed unambiguously at their correct reference wavenumber positions. The results obtained demonstrate that a miniaturized Raman spectrometer equipped with 785 nm excitation could be applied with advantage as a key instrument for investigating the presence of organic minerals, organic acids and nitrogen-containing organic compounds outdoors under terrestrial low-temperature conditions. Within the payload designed by ESA and NASA for several missions focusing on Mars, Titan, Europa and other extraterrestrial bodies, Raman spectroscopy can be proposed as an important non-destructive analytical tool for the in situ identification of organic compounds relevant to life detection on planetary and moon surfaces or near subsurfaces.

  6. Organic compounds as indicators of air pollution

    DEFF Research Database (Denmark)

    Mølhave, Lars


    The most important indoor air pollutants have already been addressedwith individual national guidelines or recommendations. However, an interna-tional set of guidelines or recommendations for indoor air quality (IAQ) isneeded for these pollutants based on general and uniform rules for setting...... suchstandards. A major research need exist on the less adverse pollutants beforerecommendations or guidelines can be established. In the interim period a pre-caution principle should lead to an ALARA principle for these secondary cau-salities. It should be noted that volatile organic compound (VOC......) is an indicatorfor the presence of VOC indoors. The TVOC indicator can be used in relation toexposure characterization and source identification but for VOCs only, not as anindictor of other pollutants and their health effects. In risk assessment the TVOCindicator can only be used as a screening tool and only...

  7. Adsorption of Organic Compounds to Building Products

    DEFF Research Database (Denmark)

    Kjær, Ulla Dorte

    The presence of VOCs (Volatile Organic Compounds) in the indoor air may be a contributory cause of complaints about irritation of mucous membranes in eyes, nose and throat, difficulty in breathing, frequent airway inflammation, skin irritation, fatigue, concentration difficulty, dizziness and hea...... (6 pages). Detailed summary in English (15 pages). Background (23 pages). Objective and hypotheses (2 pages). Methods and materials (20 pages). Results (26 pages). Discussion (12 pages). Conclusion (3 pages). References (14 pages). Appendices (95 pages)....... on sorption equilibrium and kinetics of temperature, relative humidity, VOC concentrations and air velocity past the surface of the building product. Four common building materials were carefully selected for the sorption/desorption experiments: Painted gypsum board, lacquered beechwood parquet, PVC flooring...

  8. Simulations of charge transport in organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Vehoff, Thorsten


    We study the charge transport properties of organic liquid crystals, i.e. hexabenzocoronene and carbazole macrocycle, and single crystals, i.e. rubrene, indolocarbazole and benzothiophene derivatives (BTBT, BBBT). The aim is to find structure-property relationships linking the chemical structure as well as the morphology with the bulk charge carrier mobility of the compounds. To this end, molecular dynamics (MD) simulations are performed yielding realistic equilibrated morphologies. Partial charges and molecular orbitals are calculated based on single molecules in vacuum using quantum chemical methods. The molecular orbitals are then mapped onto the molecular positions and orientations, which allows calculation of the transfer integrals between nearest neighbors using the molecular orbital overlap method. Thus we obtain realistic transfer integral distributions and their autocorrelations. In case of organic crystals the differences between two descriptions of charge transport, namely semi-classical dynamics (SCD) in the small polaron limit and kinetic Monte Carlo (KMC) based on Marcus rates, are studied. The liquid crystals are investigated solely in the hopping limit. To simulate the charge dynamics using KMC, the centers of mass of the molecules are mapped onto lattice sites and the transfer integrals are used to compute the hopping rates. In the small polaron limit, where the electronic wave function is spread over a limited number of neighboring molecules, the Schroedinger equation is solved numerically using a semi-classical approach. The carbazole macrocycles form columnar structures arranged on a hexagonal lattice with side chains facing inwards, so columns can closely approach each other allowing inter-columnar and thus three-dimensional transport. We are able to show that, on the time-scales of charge transport, static disorder due to slow side chain motions is the main factor determining the mobility. The high mobility of rubrene is explained by two main

  9. Implications of extraterrestrial material on the origin of life (United States)

    Pasek, Matthew A.

    Meteoritic organic material may provide the best perspective on prebiotic chemistry. Meteorites have also been invoked as a source of prebiotic material. This study suggests a caveat to extraterrestrial organic delivery: that prebiotic meteoritic organics were too dilute to promote prebiotic reactions. However, meteoritic material provides building material for endogenous synthesis of prebiotic molecules, such as by hydrolysis of extraterrestrial organic tars, and corrosion of phosphide minerals.

  10. Characterisation of selected volatile organic compounds in ...

    African Journals Online (AJOL)

    GCMS), was used to identify volatile compounds at three different temperatures. Fifty volatile compounds, inclusive of 14 acids, 14 alcohols, and 22 esters were identified and quantified in the two brands of indigenous banana beer samples. Only 12 ...

  11. New uranium compounds preparation and use as catalyst for hydrogenation of non-saturated organic compounds

    International Nuclear Information System (INIS)

    Arnaudet, L.; Folcher, G.


    Preparation of new organic uranium compounds and their use as catalysts for hydrogenation of non-saturated organic compounds are described. These compounds include Uranium III, a cyclopentadienic group, an alkyl group and an acetylenic derivative C 6 H 5 C triple bonds CR fixed by a π bond. Catalysts can be prepared with depleted uanium for hydrogenation of olefins for example [fr

  12. Investigations on organogermanium compounds XII. Reactions of trialkylgermylalkalimetal compounds in hexamethylphosphoric triamide (HMPT) with some inorganic and organic compounds

    NARCIS (Netherlands)

    Bulten, E.J.; Noltes, J.G.


    Trialkylgermyl alkali metal compounds in HMPT have been found to be highly reactive nucleophiles. Reactions with some inorganic and organic compounds, such as oxygen, carbon dioxide, inorganic and orgaanic halides, aldehydes, ketones, epoxides and lactones are described. Several new


    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani Jr.; Theresa M. Bomstad


    Western Research Institute (WRI) initiated exploratory work towards the development of new field screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of carbon-halogen bonds. Commercially available heated diode and corona discharge leak detectors were procured and evaluated for halogenated VOC response. The units were modified to provide a digital readout of signal related to VOC concentration. Sensor response was evaluated with carbon tetrachloride and tetrachloroethylene (perchloroethylene, PCE), which represent halogenated VOCs with and without double bonds. The response characteristics were determined for the VOCs directly in headspace in Tedlar bag containers. Quantitation limits in air were estimated. Potential interferences from volatile hydrocarbons, such as toluene and heptane, were evaluated. The effect of humidity was studied also. The performance of the new devices was evaluated in the laboratory by spiking soil samples and monitoring headspace for halogenated VOCs. A draft concept of the steps for a new analytical method was outlined. The results of the first year effort show that both devices show potential utility for future analytical method development work towards the goal of developing a portable test kit for screening halogenated VOCs in the field.

  14. Organic compounds in concrete from demolition works. (United States)

    Van Praagh, M; Modin, H; Trygg, J


    This study aims to verify the effect of physically removing the outer surface of contaminated concrete on total contents and on potential mobility of pollutants by means of leaching tests. Reclaimed concrete from 3 industrial sites in Sweden were included: A tar impregnated military storage, a military tar track-depot, as well as concrete constructions used for disposing of pesticide production surplus and residues. Solid materials and leachates from batch and column leaching tests were analysed for metals, Cl, F, SO4, DOC and contents of suspected organic compounds (polycyclic aromatic hydrocarbons, PAH, and pesticides/substances for pesticide production such as phenoxy acids, chlorophenols and chlorocresols, respectively). In case of PAH contaminated concrete, results indicate that removing 1 or 5 mm of the surface lead to total concentrations below the Swedish guidelines for recycling of aggregates and soil in groundwork constructions. 3 out of 4 concrete samples contaminated with pesticides fulfilled Swedish guidelines for contaminated soil. Results from batch and column leaching tests indicated, however, that concentrations above environmental quality standards for certain PAH and phenoxy acids, respectively, might occur at site when the crushed concrete is recycled in groundwork constructions. As leaching tests engaged in the study deviated from leaching test standards with a limited number of samples, the potential impact of the leaching tests' equipment on measured PAH and pesticide leachate concentrations has to be evaluated in future work. Copyright © 2015. Published by Elsevier Ltd.

  15. International protocol on volatile organic compounds

    International Nuclear Information System (INIS)

    Gauthier, J.-P.


    In August 1991, negotiations between Canada, the USA, and 33 European countries led to an international protocol on reducing the emissions of volatile organic compounds (VOC), which are responsible for serious ozone pollution problems. This was the third transborder pollution agreement developed under the auspices of the United Nations Economic Commission for Europe. Certain aspects of negotiations related to an earlier protocol developed for SO 2 and nitrogen oxide emissions had reappeared during the VOC negotiations, and these aspects are discussed. The VOC protocol proposes three approaches to satisfy basic obligations: reducing VOC emissions of a country by 30%, reducing VOC emissions by 30% in certain regions, and ensuring a freeze in VOC emissions in a country starting on a specified date. The protocol also introduces a new concept, that of zones of tropospheric ozone management. In Canada, plans for management of nitrogen oxides and VOC have been adapted to the ozone problem, and the management plan has been developed by a consultation process involving all sectors of society including industry, environmental groups, and governments. In Canada, it will be sufficient to reduce total VOC emissions by 16% during a first phase and to increase these reductions slightly in the second phase. Special ozone management zones in the Quebec City/Windsor corridor and the Fraser River valley have been established

  16. Organic compounds in radiation fogs in Davis (California) (United States)

    Herckes, Pierre; Hannigan, Michael P.; Trenary, Laurie; Lee, Taehyoung; Collett, Jeffrey L.

    New stainless steel active fogwater collectors were designed and used in Davis (CA, USA) to collect fogwater for the speciation of organic matter. Organic compounds in fog samples were extracted by liquid-liquid extraction and analyzed by gas chromatography coupled to mass spectrometry. Numerous organic compounds, including various alkanes, polycyclic aromatic hydrocarbons (PAH) and alkanoic acids, have been identified in the fogwater samples. Higher molecular weight (MW) compounds are preferentially associated with an insoluble phase inside the fog drops, whereas lower molecular weight and more polar compounds are found predominantly in the dissolved phase. Concentrations in the dissolved phase were sometimes much higher than estimated by the compounds' aqueous solubilities.

  17. Mechanochemical synthesis of organic compounds and composites with their participation

    Energy Technology Data Exchange (ETDEWEB)

    Lyakhov, Nikolai Z; Grigorieva, Tatiana F; Barinova, Antonina P; Vorsina, I A [Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)


    The results of experimental studies in the mechanochemical synthesis of organic compounds and composites with their participation published over the last 15 years are described systematically. The key reactions of organic compounds are considered: synthesis of the salts of organic acids, acylation, substitution, dehalogenation, esterification, hydrometallation and other reactions. Primary attention is devoted to systems and compounds that cannot be obtained by traditional chemistry methods.

  18. Search for EPR markers of the history and origin of the insoluble organic matter in extraterrestrial and terrestrial rocks (United States)

    Gourier, Didier; Binet, Laurent; Scrzypczak, Audrey; Derenne, Sylvie; Robert, François


    The insoluble organic matter (IOM) of three carbonaceous meteorites (Orgueil, Murchison and Tagish Lake meteorites) and three samples of cherts (microcrystalline SiO 2 rock) containing microfossils with age ranging between 45 million years and 3.5 billion years is studied by electron paramagnetic resonance (EPR). The age of the meteorites is that of the solar system (4.6 billion years). The purpose of this work was to determine the EPR parameters, which allow us to discriminate between biogenic and extra terrestrial origin for the organic matter. Such indicators should be relevant for the controversy regarding the biogenicity of the organic matter in the oldest cheroot (3.5 billion years) and in Martian meteorites containing microbe-like microstructures. The organic matter of meteorites contains a high concentration of diradicaloid moieties characterised by a diamagnetic ground state S=0 and a thermally accessible triplet state S=1. The three meteorites exhibit the same singlet-triplet gap (ST gap) Δ E≈0.1 eV. To the best of our knowledge, such diradicaloids are unknown in insoluble organic matter of terrestrial origin. We have also shown that the EPR linewidth of insoluble organic matter in cherts and coals decrease logarithmically with the age of the organic matter. We conclude from this result that the organic matter in the oldest cherts (3.5 billion years) has the same age as their SiO 2 matrix, and is not due to a latter contamination by bacteria, as was recently found in meteoritic samples.

  19. Chemical Reductive Transformations of Synthetic Organic Compounds

    National Research Council Canada - National Science Library

    Peyton, Gary


    Advanced Oxidation Processes (AOPs) can be used to selectively remove DNT (2,4-dinitrotoluene) from a complex waste stream by adding a precursor compound such as ethanol which forms a reducing radical upon reaction with hydroxyl radical...

  20. Characterisation of selected volatile organic compounds in ...

    African Journals Online (AJOL)



    May 15, 2013 ... have entered the commercial market, both in rural areas ... nation of volatile compounds include: gas chromate- graphy (GC) ... prior to the actual analysis, various extraction methods ..... traditional and industrial 'orujo' spirits.


    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani, Jr.; Theresa M. Bomstad


    Western Research Institute (WRI) is continuing work toward the development of new screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of halogens. In prior work, the devices were tested for response to carbon tetrachloride, heptane, toluene, and water vapors. In the current work, sensor response was evaluated with sixteen halogenated VOCs relative to carbon tetrachloride. The results show that the response of the various chlorinated VOCs is within an order of magnitude of the response to carbon tetrachloride for each of the sensors. Thus, for field screening a single response factor can be used. Both types of leak detectors are being further modified to provide an on-board LCD signal readout, which is related to VOC concentration. The units will be fully portable and will operate with 115-V line or battery power. Signal background, noise level, and response data on the Bacharach heated diode detector and the TIF corona discharge detector show that when the response curves are plotted against the log of concentration, the plot is linear to the upper limit for the particular unit, with some curvature at lower levels. When response is plotted directly against concentration, the response is linear at the low end and is curved at the high end. The dynamic ranges for carbon tetrachloride of the two devices from the lower detection limit (S/N=2) to signal saturation are 4-850 vapor parts per million (vppm) for the corona discharge unit and 0.01-70 vppm for the heated diode unit. Additional circuit modifications are being made to lower the detection limit and increase the dynamic response range of the corona discharge unit. The results indicate that both devices show potential utility for future analytical method development work toward

  2. Mass spectrometric investigation of vinyl-substituted organic boron compounds

    International Nuclear Information System (INIS)

    Tarielashvili, V.O.; Ordzhonikidze, K.G.; Parulava, L.P.; Vakhaniya, G.V.


    Mass spectrometric investigation of vinyl-substituted organic compounds was conducted. Ionization was performed by electron shock. Possibility of determining boron isotope content is all analyzed organic boron vinyl-substituted compounds by direct method is shown. This simplifies sufficiently and lowers the price of analysis, improves its accuracy and rapidity

  3. Quantifying commuter exposures to volatile organic compounds (United States)

    Kayne, Ashleigh

    Motor-vehicles can be a predominant source of air pollution in cities. Traffic-related air pollution is often unavoidable for people who live in populous areas. Commuters may have high exposures to traffic-related air pollution as they are close to vehicle tailpipes. Volatile organic compounds (VOCs) are one class of air pollutants of concern because exposure to VOCs carries risk for adverse health effects. Specific VOCs of interest for this work include benzene, toluene, ethylbenzene, and xylenes (BTEX), which are often found in gasoline and combustion products. Although methods exist to measure time-integrated personal exposures to BTEX, there are few practical methods to measure a commuter's time-resolved BTEX exposure which could identify peak exposures that could be concealed with a time-integrated measurement. This study evaluated the ability of a photoionization detector (PID) to measure commuters' exposure to BTEX using Tenax TA samples as a reference and quantified the difference in BTEX exposure between cyclists and drivers with windows open and closed. To determine the suitability of two measurement methods (PID and Tenax TA) for use in this study, the precision, linearity, and limits of detection (LODs) for both the PID and Tenax TA measurement methods were determined in the laboratory with standard BTEX calibration gases. Volunteers commuted from their homes to their work places by cycling or driving while wearing a personal exposure backpack containing a collocated PID and Tenax TA sampler. Volunteers completed a survey and indicated if the windows in their vehicle were open or closed. Comparing pairs of exposure data from the Tenax TA and PID sampling methods determined the suitability of the PID to measure the BTEX exposures of commuters. The difference between BTEX exposures of cyclists and drivers with windows open and closed in Fort Collins was determined. Both the PID and Tenax TA measurement methods were precise and linear when evaluated in the

  4. Atmospheric degradation mechanism of organic sulfur compounds

    Energy Technology Data Exchange (ETDEWEB)

    Benter, T; Arsene, C


    In the present work a detailed product study has been performed on the OH radical initiated oxidation of dimethyl sulphide and dimethyl sulphoxide, under different conditions of temperature, partial pressure of oxygen and NO{sub x} concentration, in order to better define the degradation mechanism of the above compounds under conditions which prevail in the atmosphere. (orig.)

  5. Extraterrestrial Metals Processing, Phase I (United States)

    National Aeronautics and Space Administration — The Extraterrestrial Metals Processing (EMP) system produces ferrosilicon, silicon monoxide, a glassy mixed oxide slag, and smaller amounts of alkali earth...

  6. Organic compounds in circumstellar and interstellar environments. (United States)

    Kwok, Sun


    Recent research has discovered that complex organic matter is prevalent throughout the Universe. In the Solar System, it is found in meteorites, comets, interplanetary dust particles, and planetary satellites. Spectroscopic signatures of organics with aromatic/aliphatic structures are also found in stellar ejecta, diffuse interstellar medium, and external galaxies. From space infrared spectroscopic observations, we have found that complex organics can be synthesized in the late stages of stellar evolution. Shortly after the nuclear synthesis of the element carbon, organic gas-phase molecules are formed in the stellar winds, which later condense into solid organic particles. This organic synthesis occurs over very short time scales of about a thousand years. In order to determine the chemical structures of these stellar organics, comparisons are made with particles produced in the laboratory. Using the technique of chemical vapor deposition, artificial organic particles have been created by injecting energy into gas-phase hydrocarbon molecules. These comparisons led us to believe that the stellar organics are best described as amorphous carbonaceous nanoparticles with mixed aromatic and aliphatic components. The chemical structures of the stellar organics show strong similarity to the insoluble organic matter found in meteorites. Isotopic analysis of meteorites and interplanetary dust collected in the upper atmospheres have revealed the presence of pre-solar grains similar to those formed in old stars. This provides a direct link between star dust and the Solar System and raises the possibility that the early Solar System was chemically enriched by stellar ejecta with the potential of influencing the origin of life on Earth.

  7. Investigations in space-related molecular biology. [cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens (United States)

    Fernandez-Moran, H.; Pritzker, A. N.


    Improved instrumentation and preparation techniques for high resolution, high voltage cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens are reported. Computer correlated ultrastructural and biochemical work on hydrated and dried cell membranes and related biological systems provided information on membrane organization, ice crystal formation and ordered water, RNA virus linked to cancer, lunar rock samples, and organometallic superconducting compounds. Apollo 11, 12, 14, and 15 specimens were analyzed

  8. Synthesis of organic compounds 15 N enriched

    International Nuclear Information System (INIS)

    Oliveira, Claudineia Raquel de; Bendassolli, Jose Albertino; Prestes, Clelber Vieira; Tavares, Glauco Arnold


    The aim of this work was to develop urea- 15 N and glycine- 15 N synthesis for agronomic and biological studies. The production of these compounds was evaluated due to the fact of increasing use of urea, comparing to others solid fertilizers and the importance of glycine in the studies of protein metabolism. A non-conventional method was carried out to synthesize urea. The process involved reaction among Co, NH 3 anidrid and S at low temperature (100 deg C) and of pressure (0,81 mPa) compared to the conventional method. Monolise halets reaction was carried out for glycine synthesis with chloroacetic and ammonia 2 deg C. Both compounds are economic viable, they can be produced at a lower price than the trade market one. (author)

  9. Photocatalytic fluoroalkylation reactions of organic compounds


    Barata Vallejo, Sebastian; Bonesi, Sergio Mauricio; Postigo, Jose Alberto


    Photocatalytic methods for fluoroalkyl-radical generation provide more convenient alternatives to the classical perfluoroalkyl-radical (Rf) production through chemical initiators, such as azo or peroxide compounds or the employment of transition metals through a thermal electron transfer (ET) initiation process. The mild photocatalytic reaction conditions tolerate a variety of functional groups and, thus, are handy to the late-stage modification of bioactive molecules. Transition metal-photoc...

  10. Binary systems solubilities of inorganic and organic compounds

    CERN Document Server

    Stephen, H


    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w

  11. Organic compounds in hydraulic fracturing fluids and wastewaters: A review. (United States)

    Luek, Jenna L; Gonsior, Michael


    High volume hydraulic fracturing (HVHF) of shale to stimulate the release of natural gas produces a large quantity of wastewater in the form of flowback fluids and produced water. These wastewaters are highly variable in their composition and contain a mixture of fracturing fluid additives, geogenic inorganic and organic substances, and transformation products. The qualitative and quantitative analyses of organic compounds identified in HVHF fluids, flowback fluids, and produced waters are reviewed here to communicate knowledge gaps that exist in the composition of HVHF wastewaters. In general, analyses of organic compounds have focused on those amenable to gas chromatography, focusing on volatile and semi-volatile oil and gas compounds. Studies of more polar and non-volatile organic compounds have been limited by a lack of knowledge of what compounds may be present as well as quantitative methods and standards available for analyzing these complex mixtures. Liquid chromatography paired with high-resolution mass spectrometry has been used to investigate a number of additives and will be a key tool to further research on transformation products that are increasingly solubilized through physical, chemical, and biological processes in situ and during environmental contamination events. Diverse treatments have been tested and applied to HVHF wastewaters but limited information has been published on the quantitative removal of individual organic compounds. This review focuses on recently published information on organic compounds identified in flowback fluids and produced waters from HVHF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Organic compounds preparation with 14 C

    International Nuclear Information System (INIS)

    Shirvani, Gholam Hossein.


    Active urea is a basic reagent for the synthesis of active uric-8- 14 C acid. In our manner, activated Barium carbonate with specified activity was placed in a special furnace with ability of passing gases. Then, ammonia gas was passed through it at about 850 Degree C to obtain Barium Cyanamide. Reaction of the produced compound with CO 2 , and then acidification of the mixture, gave activated urea. Condensation of the urea with Ethylcyanoacetate, produce 6-Aminouracil which upon nitrosation, reduction and then condensation with urea, the desired Uric-8- 14 C acid was synthesized. (author). 148 refs.,

  13. Phosphate incorporation in organic compounds in roots of maize

    International Nuclear Information System (INIS)

    Michalik, I.; Ivanko, S.


    32 P incorporation and metabolism was investigated for short exposure times of 1 sec, 10 sec and 1, 10, 30 and 120 min. By stepwise extraction with a methanol-chloroform-formic acid-water mixture, various fractions of P compounds were obtained. Low-molecular acid-soluble P compounds were separated by one-dimensional paper chromatography. Of the total amount of 32 P absorbed by the roots of maize in the form of phosphate ions during the short incubation time of 1 sec, more than 33% was incorporated into organic compounds. With increasing incubation time, the proportion of 32 P in low-molecular organic compounds increased with the decreasing proportion of inorganic phosphorus. In the 1 sec, exposure incorporation was found in 3 low-molecular organic compounds only, namely ATP, ADP and diphosphoglyceric acid. The 32 P incorporation into ATP and ADP, in contrast with incorporation into diphosphoglyceric acid, increased markedly with increased exposure time. (author)

  14. Search for extraterrestrial intelligence (SETI)

    International Nuclear Information System (INIS)

    Morrison, P.; Billingham, J.; Wolfe, J.


    Findings are presented of a series of workshops on the existence of extraterrestrial intelligent life and ways in which extraterrestrial intelligence might be detected. The coverage includes the cosmic and cultural evolutions, search strategies, detection of other planetary systems, alternate methods of communication, and radio frequency interference. 17 references

  15. Volatile and semivolatile organic compounds in laboratory peat fire emissions (United States)

    U.S. Environmental Protection Agency — Supporting information Tables S3 and S4 list emission factors in g/kg of speciated volatile and particulate organic compounds emitted from peat burning. Peat samples...

  16. [An encounter with extraterrestrial intelligence]. (United States)

    Hisabayashi, Hisashi


    It is much easier to find extraterrestrial intelligence than to detect simple organisms living on other planets. However, it is hard to communicate with such intelligence without the mutual understanding of inter-stellar communication protocol. The radio SETI (The Search for Extra-Terrestrial Intelligence) was initiated with the pioneering work of F. Drake in 1960, one year after the historical SETI paper by Cocconi and Morrison. This talk explains that SETI evolves with two bases of science; the understanding of our universe and the development of technology. Since SETI has had strong connection with radio astronomy from its early beginning, the impacts of radio astronomical findings and technological breakthrough can be seen in many aspects of the SETI history. Topics of this talk include the detection of microwave 3 K background radiation in the universe. Interstellar atomic and molecular lines found in radio-wave spectra provide the evidence of pre-biotic chemical evolution in such region. Radio telescope imaging and spectral technique are closely associated with methodology of SETI. Topics of the talk extend to new Allen Telescope Array and projected Square Kilometer Array. Recent optical SETI and the discoveries of extra solar planets are also explained. In the end, the recent understanding of our universe is briefly introduced in terms of matter, dark matter and dark energy. Even our understanding of the universe has been evolutionarily revolved and accumulated after 1960, we must recognize that our universe is still poorly understood and that astronomy and SETI are required to proceed hand in hand.

  17. Metal organic frameworks for removal of compounds from a fluid

    KAUST Repository

    Eddaoudi, Mohamed


    Embodiments provide a method of compound removal from a fluid. The method includes contacting one or more metal organic framework (MOF) compositions with a fluid and sorbing one or more compounds, such as CO2, H2S and condensable hydrocarbons. One or more of CO2, H2S and condensable hydrocarbons can be sorbed simultaneously or in series. The metal organic framework can be an M-soc-MOF.

  18. Thermodynamic properties of organic compounds estimation methods, principles and practice

    CERN Document Server

    Janz, George J


    Thermodynamic Properties of Organic Compounds: Estimation Methods, Principles and Practice, Revised Edition focuses on the progression of practical methods in computing the thermodynamic characteristics of organic compounds. Divided into two parts with eight chapters, the book concentrates first on the methods of estimation. Topics presented are statistical and combined thermodynamic functions; free energy change and equilibrium conversions; and estimation of thermodynamic properties. The next discussions focus on the thermodynamic properties of simple polyatomic systems by statistical the

  19. Total volatile organic compounds (TVOC) in indoor air quality investigations

    DEFF Research Database (Denmark)

    Mølhave, L.; Clausen, Geo; Berglund, B.


    The amount of volatile organic compounds (VOCs) in indoor air, usually called TVOC (total volatile organic compounds), has been measured using different definitions and techniques which yield different results. This report recommends a definition of TVOC referring to a specified range of VOCs...... for characterizing indoor pollution and for improving source control as required from the points of view of health, comfort, energy efficiency and sustainability. (C) Indoor Air (1997)....

  20. Metal organic frameworks for removal of compounds from a fluid

    KAUST Repository

    Eddaoudi, Mohamed; Belmabkhout, Youssef


    Embodiments provide a method of compound removal from a fluid. The method includes contacting one or more metal organic framework (MOF) compositions with a fluid and sorbing one or more compounds, such as CO2, H2S and condensable hydrocarbons. One or more of CO2, H2S and condensable hydrocarbons can be sorbed simultaneously or in series. The metal organic framework can be an M-soc-MOF.

  1. Preparation of radioactive labelled compounds Pt.1. 82Br labelled organic bromine compounds

    International Nuclear Information System (INIS)

    Otto, R.


    A simple method allowing the preparation of 82 Br labelled organic bromine compounds from olefins with chemical and radiochemical yields between 75 and 95% and the specific activities required, is described [fr

  2. Alteration of Organic Compounds in Small Bodies and Cosmic Dusts by Cosmic Rays and Solar Radiation (United States)

    Kobayashi, Kensei; Kaneko, Takeo; Mita, Hajime; Obayashi, Yumiko; Takahashi, Jun-ichi; Sarker, Palash K.; Kawamoto, Yukinori; Okabe, Takuto; Eto, Midori; Kanda, Kazuhiro


    A wide variety of complex organic compounds have been detected in extraterrestrial bodies like carbonaceous chondrites and comets, and their roles in the generation of terrestrial life are discussed. It was suggested that organics in small bodies were originally formed in ice mantles of interstellar dusts in dense cloud. Irradiation of frozen mixture of possible interstellar molecules including CO (or CH _{3}OH), NH _{3} and H _{2}O with high-energy particles gave complex amino acid precursors with high molecular weights [1]. Such complex organic molecules were taken in planetesimals or comets in the early solar system. In prior to the generation of the terrestrial life, extraterrestrial organics were delivered to the primitive Earth by such small bodies as meteorites, comets and space dusts. These organics would have been altered by cosmic rays and solar radiation (UV, X-rays) before the delivery to the Earth. We examined possible alteration of amino acids, their precursors and nucleic acid bases in interplanetary space by irradiation with high energy photons and heavy ions. A mixture of CO, NH _{3} and H _{2}O was irradiated with high-energy protons from a van de Graaff accelerator (TIT, Japan). The resulting products (hereafter referred to as CAW) are complex precursors of amino acids. CAW, amino acids (dl-Isovaline, glycine), hydantoins (amino acid precursors) and nucleic acid bases were irradiated with continuous emission (soft X-rays to IR; hereafter referred to as soft X-rays irradiation) from BL-6 of NewSUBARU synchrotron radiation facility (Univ. Hyogo). They were also irradiated with heavy ions (eg., 290 MeV/u C ^{6+}) from HIMAC accelerator (NIRS, Japan). After soft X-rays irradiation, water insoluble materials were formed. After irradiation with soft X-rays or heavy ions, amino acid precursors (CAW and hydantoins) gave higher ratio of amino acids were recovered after hydrolysis than free amino acids. Nucleic acid bases showed higher stability than free

  3. Algae form brominated organic compounds in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Huetteroth, A; Putschew, A; Jekel, M [Tech. Univ. Berlin (Germany)


    Monitoring of organic halogen compounds, measured as adsorbable organic bromine (AOBr) revealed seasonal high concentrations of organic bromine compounds in a surface water (Lake Tegel, Berlin, Germany). Usually, in late summer, concentrations are up to five times higher than during the rest of the year. The AOBr of the lake inflows (throughout the year less then 6 {mu}g/L) were always lower then those in the lake, which indicates a production of AOBr in the lake. A correlation of the AOBr and chlorophyll-a concentration (1) in the lake provides first evidence for the influence of phototrophic organisms. The knowledge of the natural production of organohalogens is relatively recent. Up to now there are more then 3800 identified natural organohalogen compounds that have been detected in marine plants, animals, and bacteria and also in terrestrial plants, fungi, lichen, bacteria, insects, some higher animals, and humans. Halogenated organic compounds are commonly considered to be of anthropogenic origin; derived from e.g. pharmaceuticals, herbicides, fungicides, insecticides, flame retardants, intermediates in organic synthesis and solvents. Additionally they are also produced as by-products during industrial processes and by waste water and drinking water disinfection. Organohalogen compounds may be toxic, persistent and/or carcinogenic. In order to understand the source and environmental relevance of naturally produced organobromine compounds in surface waters, the mechanism of the formation was investigated using batch tests with lake water and algae cultures.

  4. Treating contaminated organic compounds using the DETOX process

    International Nuclear Information System (INIS)

    Elsberry, K.; Dhooge, P.M.


    Waste matrices containing organic compounds, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. This paper describes the results of bench-scale studies of DETOX applied to the components of liquid mixed wastes, with the goal of establishing parameters for designing a prototype waste treatment unit. Apparent reaction rate orders for organic compounds and the dependence of apparent reaction rate on solution composition and the contact area were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. Reaction rate was superior in chloride-based solutions and was proportional to the contact area above about 20 g/kg loading of organic material. Oxidations in 4-L volume, mixed bench-top reactor have given destruction efficiencies of 0.999999+ g/g for common organic compounds. Reaction rates achieved in the mixed bench-top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10 to 100+ g of organic material per L-hr. Results are also presented on the solvation efficiency of DETOX for mercury, cerium, and neodymium, and for removal/destruction of organic compounds sorbed on vermiculite. The next stage of development will be converting the bench-top unit to continuous processing

  5. Evolution of interstellar organic compounds under asteroidal hydrothermal conditions (United States)

    Vinogradoff, V.; Bernard, S.; Le Guillou, C.; Remusat, L.


    Carbonaceous chondrites (CC) contain a diversity of organic compounds. No definitive evidence for a genetic relationship between these complex organic molecules and the simple organic molecules detected in the interstellar medium (ISM) has yet been reported. One of the many difficulties arises from the transformations of organic compounds during accretion and hydrothermal alteration on asteroids. Here, we report results of hydrothermal alteration experiments conducted on a common constituent of interstellar ice analogs, Hexamethylenetetramine (HMT - C6H12N4). We submitted HMT to asteroidal hydrothermal conditions at 150 °C, for various durations (up to 31 days) and under alkaline pH. Organic products were characterized by gas chromatography mass spectrometry, infrared spectroscopy and synchrotron-based X-ray absorption near edge structure spectroscopy. Results show that, within a few days, HMT has evolved into (1) a very diverse suite of soluble compounds dominated by N-bearing aromatic compounds (> 150 species after 31 days), including for instance formamide, pyridine, pyrrole and their polymers (2) an aromatic and N-rich insoluble material that forms after only 7 days of experiment and then remains stable through time. The reaction pathways leading to the soluble compounds likely include HMT dissociation, formose and Maillard-type reactions, e.g. reactions of sugar derivatives with amines. The present study demonstrates that, if interstellar organic compounds such as HMT had been accreted by chondrite parent bodies, they would have undergone chemical transformations during hydrothermal alteration, potentially leading to the formation of high molecular weight insoluble organic molecules. Some of the diversity of soluble and insoluble organic compounds found in CC may thus result from asteroidal hydrothermal alteration.

  6. Trace organic compounds in wet atmospheric deposition: an overview (United States)

    Steinheimer, T.R.; Johnson, S.M.


    An overview of the occurrence of organic compounds in wet atmospheric deposition is given. Multiplicity of sources and problems associated with source identification are discussed. Available literature is reviewed by using citations from Chemical Abstracts and Water Resources Abstracts through June 1985 and includes reports published through December 1984 that summarize current knowledge. Approaches to the chemical determination of organic compounds in precipitation are examined in addition to aspects of sampling protocols. Best methods for sample collection and preparation for instrumental analysis continue to be discussed among various investigators. Automatic wet-deposition-only devices for collection and extraction are preferred. Classes of organic compounds that have been identified in precipitation include a spectrum of compounds with differing properties of acidity or basicity, polarity, and water solubility. Those compounds that have been reported in rainfall, snowfall, and ice include hydrocarbons (both aromatic and nonaromatic), chlorinated derivatives of these hydrocarbons, carbonyl compounds (both acidic and nonacidic), and carboxylic acids and esters. Formic and acetic are the most abundant organic acids present. Cloudwater, fogwater, and mist also have been collected and analyzed for organic composition.

  7. Investigation of second-order hyperpolarizability of some organic compounds (United States)

    Tajalli, H.; Zirak, P.; Ahmadi, S.


    In this work, we have measured the second order hyperpolarizability of some organic materials with (EFISH) method and also calculated the second order hyperpolarizability of 13 organic compound with Mopac6 software and investigated the different factors that affect the amount of second order hyperpolarizability and ways to increase it.

  8. Thin films of metal-organic compounds and metal nanoparticle

    Indian Academy of Sciences (India)

    Thin films of metal-organic compounds and metal nanoparticle-embedded polymers for nonlinear optical applications. S Philip Anthony Shatabdi Porel D ... Thin films based on two very different metal-organic systems are developed and some nonlinear optical applications are explored. A family of zinc complexes which ...


    Comprehensive screening data on the treatability of 32 organic chemicals in soil were developed. Of the evaluated chemicals, 22 were phenolic compounds. Aerobic batch laboratory microcosm experiments were conducted using two soils: an acidic clay soil with <1% organic matter and ...

  10. Removal of organic compounds from shale gas flowback water

    NARCIS (Netherlands)

    Butkovskyi, Andrii; Faber, Ann-Hélène; Wang, Yue; Grolle, Katja; Hofman-Caris, Roberta; Bruning, Harry; Van Wezel, Annemarie P.; Rijnaarts, Huub H M


    Ozonation, sorption to granular activated carbon and aerobic degradation were compared as potential treatment methods for removal of dissolved organic carbon (DOC) fractions and selected organic compounds from shale gas flowback water after pre-treatment in dissolved air flotation unit. Flowback

  11. On the enrichment of hydrophobic organic compounds in fog droplets (United States)

    Valsaraj, K. T.; Thoma, G. J.; Reible, D. D.; Thibodeaux, L. J.

    The unusual degree of enrichment of hydrophobic organics in fogwater droplets reported by several investigators can be interpreted as a result of (a) the effects of temperature correction on the reported enrichment factors, (b) the effects of colloidal organic matter (both filterable and non-filterable) in fog water and (c) the effects of the large air-water interfacial adsorption of neutral hydrophobic organics on the tiny fog droplets. The enrichment factor was directly correlated to the hydrophobicity (or the activity coefficient in water) of the compounds, as indicated by their octanol-water partition constants. Compounds with large octanol-water partition coefficients (high activity coefficients in water) showed the largest enrichment. Available experimental data on the adsorption of hydrophobic compounds at the air-water interface and on colloidal organic carbon were used to show that the large specific air-water interfacial areas of fog droplets contribute significantly to the enrichment factor.

  12. Studies about behavior of microbial degradation of organic compounds

    International Nuclear Information System (INIS)

    Ohtsuka, Makiko


    Some of TRU waste include organic compounds, thus these organic compounds might be nutrients for microbial growth at disposal site. This disposal system might be exposed to high alkali condition by cement compounds as engineering barrier material. In the former experimental studies, it has been supposed that microbial exist under pH = 12 and the microbial activity acclimated to high alkali condition are able to degrade asphalt under anaerobic condition. Microbes are called extremophile that exist in cruel habitat as high alkali or reductive condition. We know less information about the activity of extremophile, though any recent studies reveal them. In this study, the first investigation is metabolic pathway as microbial activity, the second is microbial degradation of aromatic compounds in anaerobic condition, and the third is microbial activity under high alkali. Microbial metabolic pathway consist of two systems that fulfill their function each other. One system is to generate energy for microbial activities and the other is to convert substances for syntheses of organisms' structure materials. As these systems are based on redox reaction between substances, it is made chart of the microbial activity region using pH, Eh, and depth as parameter, There is much report that microbe is able to degrade aromatic compounds under aerobic or molecular O 2 utilizing condition. For degradation of aromatic compounds in anaerobic condition, supplying electron acceptor is required. Co-metabolism and microbial consortia has important role, too. Alcalophile has individual transporting system depending Na + and acidic compounds contained in cell wall. Generating energy is key for survival and growth under high alkali condition. Co-metabolism and microbial consortia are effective for microbial degradation of aromatic compounds under high alkali and reductive condition, and utilizable electron acceptor and degradable organic compounds are required for keeping microbial activity and

  13. Levels of Organic Compounds, Number of Microorganisms (United States)

    Majewska, Małgorzata; Słomka, Anna


    Understanding the microbiological, biochemical and physiological aspects of phytoremediation of soil and water environments polluted to different degrees with heavy metals has very important theoretical and practical implications. In this study, a comparison was made between total cadmium concentration in root and shoot tissues as well as concentrations of particular fractions of Cd immobilized by roots of Festuca ovina (Sheep’s fescue) hydroponically cultivated in nutrient solutions supplemented with 1 μg Cd ml(–1) and those cultivated at 10 μg Cd ml(–1). After three weeks of F. ovina cultivation, the number of bacterial CFU and the amounts of organic chelators, siderophores, proteins and reducing sugars in the growth medium and on the root surface were higher at 10 than at 1 μg Cd ml(–1). The grass also reacted to the high Cd concentration by a decrease in plant growth and dehydrogenase activity in root tissues. The concentration of Cd determined in fractions bound with different strength in roots was significantly dependent on Cd concentration in the growth medium. When the plants were grown at 1 μg Cd ml(–1), 9% of the immobilized cadmium was loosely bound to the root surface, 20% was exchangeable adsorbed, and 28% was bound by chelation; at 10 μg Cd ml(–1), the respective values were 12%, 25%, and 20%. About 43% of the immobilized cadmium remained in roots after sequential extraction, and bioaccumulation factors in shoots had the same values independently of Cd concentration. At both Cd concentrations, the cadmium translocation index for F. ovina was low (< 1), which is why this grass can be recommended for phytostabilization of the metal under study.

  14. A kinetic study of the formation of organic solids from formaldehyde: Implications for the origin of extraterrestrial organic solids in primitive Solar System objects (United States)

    Kebukawa, Yoko; Cody, George D.


    Aqueous organic solid formation from formaldehyde via the formose reaction and subsequent reactions is a possible candidate for the origin of complex primitive chondritic insoluble organic matter (IOM) and refractory carbon in comets. The rate of formation of organic solids from formaldehyde was studied as a function of temperature and time, with and without ammonia, in order to derive kinetic expressions for polymer yield. The evolution in molecular structure as a function of time and temperature was studied using infrared spectroscopy. Using these kinetic expressions, the yield of organic solids is estimated for extended time and temperature ranges. For example, the half-life for organic solid formation is ∼5 days at 373 K, ∼200 days at 323 K, and ∼70 years at 273 K with ammonia, and ∼25 days at 373 K, ∼13 years at 323 K, and ∼2 × 104 years at 273 K without ammonia. These results indicate that organic solids could form during the aqueous alteration in meteorite parent bodies. If liquid water existed early in the interiors of Kuiper belt objects (KBOs), formaldehyde could convert into organic solids at temperatures close to 273 K, and possibly even below 273 K in the ammonia-water system.

  15. Improving rubber concrete by waste organic sulfur compounds. (United States)

    Chou, Liang-Hisng; Lin, Chun-Nan; Lu, Chun-Ku; Lee, Cheng-Haw; Lee, Maw-Tien


    In this study, the use of crumb tyres as additives to concrete was investigated. For some time, researchers have been studying the physical properties of concrete to determine why the inclusion of rubber particles causes the concrete to degrade. Several methods have been developed to improve the bonding between rubber particles and cement hydration products (C-S-H) with the hope of creating a product with an improvement in mechanical strength. In this study, the crumb tyres were treated with waste organic sulfur compounds from a petroleum refining factory in order to modify their surface properties. Organic sulfur compounds with amphiphilic properties can enhance the hydrophilic properties of the rubber and increase the intermolecular interaction forces between rubber and C-S-H. In the present study, a colloid probe of C-S-H was prepared to measure these intermolecular interaction forces by utilizing an atomic force microscope. Experimental results showed that rubber particles treated with waste organic sulfur compounds became more hydrophilic. In addition, the intermolecular interaction forces increased with the adsorption of waste organic sulfur compounds on the surface of the rubber particles. The compressive, tensile and flexural strengths of concrete samples that included rubber particles treated with organic sulfur compound also increased significantly.

  16. Surface microlayer enrichment of volatile organic compounds and semi-volatile organic compounds in drinking water source. (United States)

    Huang, Zhi; Zhou, Wen; Yu, Ya-juan; Zhang, Ai-qian; Han, Shuo-kui; Wang, Lian-sheng


    Enrichment of volatile organic compounds(VOC) and semi-volatility organic compounds(SVOC) in surface microlayer(SM) of three drinking water sources were studied. The enrichment factor(EFs) were 0.67 to 13.37 and 0.16 to 136, respectively. The results showed some VOC and most SVOC could enrich in SM. Some EFs of SVOC was quite high. Suspension and temperature could affect EFs of SVOC, slim wind and water movement do not destroy enrichment of organic in SM.

  17. Extraterrestrial Metals Processing, Phase II (United States)

    National Aeronautics and Space Administration — The Extraterrestrial Metals Processing (EMP) system produces iron, silicon, and light metals from Mars, Moon, or asteroid resources in support of advanced human...

  18. Biokinetics and dosimetry of radioactively labelled organic C-14 compounds

    International Nuclear Information System (INIS)

    Krins, A.; Sahre, P.; Schoenmuth, T.


    The report starts with summarising research work and the resulting scientific information in connection with the dosimetry of C-14 labelled organic compounds. Biokinetic models are developed for compounds such as benzene, phenol, aniline, nitrobenzene, and a selection of pharmaceuticals, in order to show the radioactivity distribution after administration of the C-14 labelled substances. Based on the those models, dose coefficients and excretion rates are derived. The following synoptic view of the available data library leads on to a discussion of various aspects, as eg. the question of whether and how monitoring for detection of incorporation of C-14 administered with labelled organic compounds is possible. None of the questions and aspects arising in connection with this subject can be adequately dealt with in the present document, but concepts and methods are presented which permit an interpretation of radioactivity excretion data measured after incorporation of C-14 labelled organic substances. (orig./CB) [de

  19. Extraterrestrial amino acids in Cretaceous/Tertiary boundary sediments at Stevns Klint, Denmark (United States)

    Zhao, Meixun; Bada, Jeffrey L.


    SINCE the discovery1 nearly a decade ago that Cretaceous/Tertiary (K/T) boundary layers are greatly enriched in iridium, a rare element in the Earth's crust, there has been intense controversy on the relationship between this Ir anomaly and the massive extinction of organisms ranging from dinosaurs to marine plankton that characterizes the K/T boundary. Convincing evidence suggests that both the Ir spike and the extinction event were caused by the collision of a large bolide (>10 km in diameter) with the Earth1-11. Alternative explanations claim that extensive, violent volcanism12-14 can account for the Ir, and that other independent causes were responsible for the mass extinctions15,16. We surmise that the collision of a massive extraterrestrial object with the Earth may have produced a unique organic chemical signature because certain meteorites, and probably comets, contain organic compounds which are either rare or non-existent on the Earth17. In contrast, no organic compounds would be expected to be associated with volcanic processes. Here we find that K/T boundary sediments at Stevns Klint, Denmark, contain both α-amino-isobutyric acid [AIB, (CH3)2CNH2COOH] and racemic isovaline [ISOVAL, CH3CH2(CH3)CNH2COOH], two amino acids that are exceedingly rare on the Earth but which are major amino acids in carbonaceous chondrites17,18. An extraterrestrial source is the most reasonable explanation for the presence of these amino acids.

  20. Radiolytic formation of organic iodides from organic compounds released from ripolin paint

    International Nuclear Information System (INIS)

    Attia, S.; Evans, G.J.


    The impact of a serious nuclear reactor accident is governed to a large extent by the possible release of airborne organic iodides to the environment. This research examines the identification and behavior of organic iodides formed in the containment due to the release of organic compounds from Ripolin paint, into the aqueous phase, following a nuclear reactor accident. A bench scale apparatus installed in the irradiation chamber of a Gammacell was used to analyze the formation of organic iodides. Iodo-organics, transferred to the gas phase above irradiated aqueous samples, were analyzed using a Thermal Desorption method coupled with gas chromatography and mass spectrometry. Detailed studies of the identity of the organic compounds released and the organic iodides formed were conducted. The effects of parameters such as irradiation dose were also examined. All the organic iodides formed, under radiolytic conditions, were identified as iodo-alkanes. The organic compounds that were released from the Ripolin paint, such as methyl isobutyl ketone, were found to decompose, by a series of reactions, to produce the organic iodides. The precursor organic compounds and the organic iodides formed were observed to consist of the same alkyl group. These results indicate that organic compounds released from surface paints directly influence the formation of radiolytic organic iodide. (author)

  1. Investigation of the impact of extraterrestrial energetic particles on stratospheric nitrogen compounds and ozone on the basis of three dimensional model studies

    Energy Technology Data Exchange (ETDEWEB)

    Wieters, Nadine


    As a result of solar events like Coronal Mass Ejections (CMEs) and solar flares, highly energetic charged particles including protons and electrons can precipitate in the direction of the Earth. Having sufficient energies, these particles can penetrate down to the middle atmosphere and lead to a change in the chemical composition of the atmosphere. In particular during strong events, these charged particles induce an ionisation in the atmosphere that can reach down to the lower stratosphere. This ionisation is followed by a fast positive ion chemistry that causes a strong increase in reactive HO{sub x} (H,OH,HO{sub 2}) an NO{sub x} (N,NO,NO{sub 2}). HO{sub x} and NO{sub x} constituents eventually destroy O{sub 3} in catalytical reaction cycles. Furthermore, NO{sub x} is long-lived during polar winter and can be transported into the middle and lower stratosphere, where it can contribute to the O{sub 3} depletion. The increase in NO{sub x} in the upper and middle atmosphere due to solar events and the consequential depletion of O{sub 3} has been observed as during the Solar Proton Event (SPE) in October/November 2003 by satellite instruments. In atmospheric models, the generation of HO{sub x} and NO{sub x} can be well described by parametrisations to include in neutral models. Whereas other changes, for instance in chlorine compounds, can not be described sufficiently by this parametrisation. The purpose of this PhD thesis is, to investigate the impact of strong solar particle events on the abundance in NO{sub x} and O{sub 3} in the stratosphere and mesosphere on the basis of three-dimensional model studies. For this purpose a three-dimensional Chemistry and Transport Model (CTM) has been extended to the upper atmosphere (lower thermosphere). To include the processes in the mesosphere and lower thermosphere a new meteorological data set has been implemented to the model. To describe the ionising effect of energetic particle on the atmosphere, three

  2. Inventory of volatile organic compound emissions in Finland, 1985

    International Nuclear Information System (INIS)

    Mroueh, U.M.


    The aim of the study was to compile an inventory of the emissions of volatile organic compounds in Finland for the year 1985. The report was prepared for the ECE Task Force on Emissions of Volatile Organic Compounds from Stationary Sources according to the classification given by the Task Force. It considers anthropogenic as well as natural sources. Mobile sources are excluded. The quantities as well as the main components are listed, as far as possible. The values given exclude methane which according to the present understanding is regarded as unreactive

  3. Simplified Production of Organic Compounds Containing High Enantiomer Excesses (United States)

    Cooper, George W. (Inventor)


    The present invention is directed to a method for making an enantiomeric organic compound having a high amount of enantiomer excesses including the steps of a) providing an aqueous solution including an initial reactant and a catalyst; and b) subjecting said aqueous solution simultaneously to a magnetic field and photolysis radiation such that said photolysis radiation produces light rays that run substantially parallel or anti-parallel to the magnetic field passing through said aqueous solution, wherein said catalyst reacts with said initial reactant to form the enantiomeric organic compound having a high amount of enantiomer excesses.

  4. Volatile organic compounds and oxides of nitrogen. Further emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Froste, H [comp.


    This report presents the current status in relation to achievement of the Swedish Environmental target set by Parliament to reduce emission of volatile organic compounds by 50 per cent between 1988 and 2000. It also instructed the Agency to formulate proposed measures to achieve a 50 per cent reduction of emission of nitrogen oxides between 1985 and 2005. The report presents an overall account of emission trends for volatile organic compounds (from all sectors) and nitrogen oxides (from the industry sector) and steps proposed to achieve further emission reductions. 43 refs

  5. Volatile organic compounds and oxides of nitrogen. Further emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Froste, H. [comp.


    This report presents the current status in relation to achievement of the Swedish Environmental target set by Parliament to reduce emission of volatile organic compounds by 50 per cent between 1988 and 2000. It also instructed the Agency to formulate proposed measures to achieve a 50 per cent reduction of emission of nitrogen oxides between 1985 and 2005. The report presents an overall account of emission trends for volatile organic compounds (from all sectors) and nitrogen oxides (from the industry sector) and steps proposed to achieve further emission reductions. 43 refs

  6. Organic compounds inhibiting S. epidermidis adhesion and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhiqiang [Department of Systems Biology, Technical University of Denmark, Dk-2800 Kgs. Lyngby (Denmark); Key Laboratory of Medical Molecular Virology of Ministry of Education and Public Health, Institute of Medical Microbiology and Institutes of Biomedical Science, Shanghai Medical School of Fudan University, Yi Xue Yuan Road 138, Shanghai 200032 (China); Division of Infectious Diseases, Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 (United States); Zhang, Jingdong; Hu, Yifan; Chi, Qijin [Department of Chemistry, Building 207, NanoDTU, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Mortensen, Ninell P. [Department of Systems Biology, Technical University of Denmark, Dk-2800 Kgs. Lyngby (Denmark); Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37932 (United States); Qu, Di [Key Laboratory of Medical Molecular Virology of Ministry of Education and Public Health, Institute of Medical Microbiology and Institutes of Biomedical Science, Shanghai Medical School of Fudan University, Yi Xue Yuan Road 138, Shanghai 200032 (China); Molin, Soren [Department of Systems Biology, Technical University of Denmark, Dk-2800 Kgs. Lyngby (Denmark); Ulstrup, Jens, E-mail: [Department of Chemistry, Building 207, NanoDTU, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)


    The formation of biofilms on surfaces of indwelling medical devices is a serious medical problem. Staphylococcus epidermidis is a common pathogen found to colonize implanted devices and as a biofilm is more resistant to the host immune system as well as to antibiotic treatments. Combating S. epidermidis infections by preventing or eradicating biofilm formation of the bacterium is therefore a medically important challenge. We report here a study of biofilm formation of S. epidermidis on solid surfaces using a combination of confocal laser scanning (CLSM) and atomic force microscopy (AFM) in both air and aqueous environments. We have investigated the inhibitory effects of surfaces treated with four organic compounds, two benzoate derivatives denoted as compound 59 and 75 and two carboxamide derivatives denoted as compound 47 and 73, on S. epidermidis adhesion and biofilm formation. All four compounds evoke significant inhibitory effects on the formation of S. epidermidis biofilms with compounds 47 and 73 being most effective. None of the compounds were found to inhibit growth of S. epidermidis in liquid cultures. Bacteria attached to the substrate when exposed to the compounds were not affected indicating that these compounds inhibit initial adhesion. These results suggest a pretreatment for medically implanted surfaces that can prevent the biofilm formation and reduce infection.

  7. Organic compounds inhibiting S. epidermidis adhesion and biofilm formation

    International Nuclear Information System (INIS)

    Qin, Zhiqiang; Zhang, Jingdong; Hu, Yifan; Chi, Qijin; Mortensen, Ninell P.; Qu, Di; Molin, Soren; Ulstrup, Jens


    The formation of biofilms on surfaces of indwelling medical devices is a serious medical problem. Staphylococcus epidermidis is a common pathogen found to colonize implanted devices and as a biofilm is more resistant to the host immune system as well as to antibiotic treatments. Combating S. epidermidis infections by preventing or eradicating biofilm formation of the bacterium is therefore a medically important challenge. We report here a study of biofilm formation of S. epidermidis on solid surfaces using a combination of confocal laser scanning (CLSM) and atomic force microscopy (AFM) in both air and aqueous environments. We have investigated the inhibitory effects of surfaces treated with four organic compounds, two benzoate derivatives denoted as compound 59 and 75 and two carboxamide derivatives denoted as compound 47 and 73, on S. epidermidis adhesion and biofilm formation. All four compounds evoke significant inhibitory effects on the formation of S. epidermidis biofilms with compounds 47 and 73 being most effective. None of the compounds were found to inhibit growth of S. epidermidis in liquid cultures. Bacteria attached to the substrate when exposed to the compounds were not affected indicating that these compounds inhibit initial adhesion. These results suggest a pretreatment for medically implanted surfaces that can prevent the biofilm formation and reduce infection.

  8. Isotopic evidence for extraterrestrial non- racemic amino acids in the Murchison meteorite (United States)

    Engel, M. H.; Macko, S. A.


    Many amino acids contain an asymmetric centre, occurring as laevorotatory, L, or dextrorotatory, D, compounds. It is generally assumed that abiotic synthesis of amino acids on the early Earth resulted in racemic mixtures (L- and D-enantiomers in equal abundance). But the origin of life required, owing to conformational constraints, the almost exclusive selection of either L- or D-enantiomers, and the question of why living systems on the Earth consist of L-enantiomers rather than D-enantiomers is unresolved. A substantial fraction of the organic compounds on the early Earth may have been derived from comet and meteorite impacts. It has been reported previously that amino acids in the Murchison meteorite exhibit an excess of L-enantiomers, raising the possibility that a similar excess was present in the initial inventory of organic compounds on the Earth. The stable carbon isotope compositions of individual amino acids in Murchison support an extraterrestrial origin-rather than a terrestrial overprint of biological amino acids-although reservations have persisted (see, for example, ref. 9). Here we show that individual amino-acid enantiomers from Murchison are enriched in 15N relative to their terrestrial counterparts, so confirming an extraterrestrial source for an L-enantiomer excess in the Solar System that may predate the origin of life on the Earth.

  9. Detection of organic compounds with whole-cell bioluminescent bioassays. (United States)

    Xu, Tingting; Close, Dan; Smartt, Abby; Ripp, Steven; Sayler, Gary


    Natural and manmade organic chemicals are widely deposited across a diverse range of ecosystems including air, surface water, groundwater, wastewater, soil, sediment, and marine environments. Some organic compounds, despite their industrial values, are toxic to living organisms and pose significant health risks to humans and wildlife. Detection and monitoring of these organic pollutants in environmental matrices therefore is of great interest and need for remediation and health risk assessment. Although these detections have traditionally been performed using analytical chemical approaches that offer highly sensitive and specific identification of target compounds, these methods require specialized equipment and trained operators, and fail to describe potential bioavailable effects on living organisms. Alternatively, the integration of bioluminescent systems into whole-cell bioreporters presents a new capacity for organic compound detection. These bioreporters are constructed by incorporating reporter genes into catabolic or signaling pathways that are present within living cells and emit a bioluminescent signal that can be detected upon exposure to target chemicals. Although relatively less specific compared to analytical methods, bioluminescent bioassays are more cost-effective, more rapid, can be scaled to higher throughput, and can be designed to report not only the presence but also the bioavailability of target substances. This chapter reviews available bacterial and eukaryotic whole-cell bioreporters for sensing organic pollutants and their applications in a variety of sample matrices.

  10. Phosphate incorporation in organic compounds in roots of maize

    Energy Technology Data Exchange (ETDEWEB)

    Michalik, I; Ivanko, S [Vysoka Skola Polnohospodarska, Nitra (Czechoslovakia)


    /sup 32/P incorporation and metabolism was investigated for short exposure times of 1 sec, 10 sec and 1, 10, 30 and 120 min. By stepwise extraction with a methanol-chloroform-formic acid-water mixture, various fractions of P compounds were obtained. Low-molecular acid-soluble P compounds were separated by one-dimensional paper chromatography. Of the total amount of /sup 32/P absorbed by the roots of maize in the form of phosphate ions during the short incubation time of 1 sec, more than 33% was incorporated into organic compounds. With increasing incubation time, the proportion of /sup 32/P in low-molecular organic compounds increased with the decreasing proportion of inorganic phosphorus. In the 1 sec, exposure incorporation was found in 3 low-molecular organic compounds only, namely ATP, ADP and diphosphoglyceric acid. The /sup 32/P incorporation into ATP and ADP, in contrast with incorporation into diphosphoglyceric acid, increased markedly with increased exposure time.

  11. Development of an Extraterrestrial Organic Analyzer (EOA) for Highly Sensitive Organic Detection on an Ice Shell Impact Penetrator (IceShIP) (United States)

    Stockton, A. M.; Duca, Z. A.; Cato, M.; Cantrell, T.; Kim, J.; Putman, P.; Schmidt, B. E.


    Kinetic penetrators have the potential to enable low cost in situ measurements of the ice of worlds including Europa and Enceladus [1]. Their small size and mass, critical to limiting their kinetic energy, makes them ideal small landers riding on primarily orbiter missions, while enabling sampling at several m depth due to burial and excavation. In situ microfluidic-based organic analysis systems are a powerful, miniaturized approach for detecting markers of habitability and recent biological activity. Development of microfluidic technology, like that of the Mars Organic Analyzer (MOA) [2,3] and Enceladus Organic Analyzer (EOA), has led to an instrument capable of in situ organic chemical analysis compatible with a kinetic penetrator platform. This technology uses an integrated microfluidic processor to prepare samples for analysis via fluorescent derivatization prior to highly sensitive laser-induced fluorescence (LIF) detection. Selective derivatization in the presence of a chiral selector enables distinction between amino acid enantiomers. Finite element analysis of the core microfluidic processing and analytical device indicated that the device itself is more than capable of surviving the stresses associated with an impact acceleration of >50,000g. However, a number of developments were still required to enable a flight-ready system. Preliminary experiments indicated that moving from a pneumatically-actuated to a hydraulically-actuated microvalve system may provide better impact resistance. A hydraulically-actuated microvalve system was developed and tested. A modification of an established microfabricated LIF detection system would use indium bump bonding to permanently weld optical components using standard microfabrication techniques with perfect alignment. Recent work has also focused on developing and characterizing impact-resistant electronics. This work shows the low-TRL development of EOA's LIF and microfluidic subsystems for future planetary impact

  12. Biogenic volatile organic compounds in the Earth system. (United States)

    Laothawornkitkul, Jullada; Taylor, Jane E; Paul, Nigel D; Hewitt, C Nicholas


    Biogenic volatile organic compounds produced by plants are involved in plant growth, development, reproduction and defence. They also function as communication media within plant communities, between plants and between plants and insects. Because of the high chemical reactivity of many of these compounds, coupled with their large mass emission rates from vegetation into the atmosphere, they have significant effects on the chemical composition and physical characteristics of the atmosphere. Hence, biogenic volatile organic compounds mediate the relationship between the biosphere and the atmosphere. Alteration of this relationship by anthropogenically driven changes to the environment, including global climate change, may perturb these interactions and may lead to adverse and hard-to-predict consequences for the Earth system.

  13. Novel collection method for volatile organic compounds (VOCs) from dogs (United States)

    Host derived chemical cues are an important aspect of arthropod attraction to potential hosts. Host cues that act over longer distances include CO2, heat, and water vapor, while cues such as volatile organic compounds (VOCs) act over closer distances. Domestic dogs are important hosts for disease cy...

  14. Exposure to organic compounds during heat treatment of cooking oils

    Directory of Open Access Journals (Sweden)

    Marzena Zaciera


    Full Text Available Fumes from cooking oils were found to be genotoxic in several short-term tests. Epidemiological research among Taiwanese and Chinese women has shown high incidence of lung cancer. These women were not smoking or rarely smoking , but they cooked meals every day. A lot of organic compounds have been identified from cooking oils including PAH.

  15. 40 CFR 60.542 - Standards for volatile organic compounds. (United States)


    ... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for the Rubber Tire Manufacturing Industry § 60.542 Standards for volatile organic compounds. (a) On and after the date on which the initial performance test, required by § 60.8, is completed, but no later than...

  16. Determination of hydrogen isotope composition in organic compounds

    International Nuclear Information System (INIS)

    Ordzhonikidze, K.G.; Parulava, L.P.; Vakhaniya, G.V.; Tarielashvili, V.O.


    method for determination of hydrogen isotope composition just in organic compounds using mass-spectrometer of the second class is suggested. The method enables to determine atomic fraction of hydrogen without multiplet separation. The accuracy of determination of deuterium atomic fraction in acetone in 1-99% range was equal to 3-0.2% respectively

  17. Nitrosonium complexes of organic compounds. Structure and reactivity

    International Nuclear Information System (INIS)

    Borodkin, Gennady I; Shubin, Vyacheslav G


    Data on the structures and reactivities of nitrosonium complexes of organic compounds are systematised and generalised. The characteristic features of the electronic structure of the NO + cation are responsible for a wide structural variety of nitrosonium complexes. Reactions of nitrosonium complexes are described. The bibliography includes 172 references.

  18. Radiation-induced nitration of organic compounds in aqueous solutions

    International Nuclear Information System (INIS)

    Ershov, B.G.; Gordeev, A.V.; Bykov, G.L.


    Radiation-induced nitration of organic compounds in aqueous solutions was studied. It was found that γ-irradiation of solutions containing acetic and nitric acid and/or their salts gives nitromethane. Dependences of the product yield on the absorbed dose and the contents of components were established. The mechanism of radiation nitration involving radicals is discussed. (author)

  19. The growth of bacteria on organic compounds in drinking water

    NARCIS (Netherlands)

    Kooij, van der D.


    Growth ("regrowth") of bacteria In drinking water distribution systems results in a deterioration of the water quality. Regrowth of chemoheterotrophic bacteria depends on the presence of organic. compounds that serve as a nutrient source for these bacteria. A batch-culture technique was

  20. ambient volatile organic compounds pollution and ozone formation

    African Journals Online (AJOL)



    Aug 1, 2013 ... Volatile organic compound (VOC) species react at different rate and exhibit differences in reactivity with respect to ozone formation in polluted urban atmosphere. To assess this, the variations pattern, reactivity relative to OH radical and ozone creation potential of ambient VOCs were investigated in field.

  1. Green chemistry principles in organic compound synthesis and analysis

    Directory of Open Access Journals (Sweden)

    Ruchi Verma


    Full Text Available The present review focus on various green chemistry approaches which could be utilized in the organic compounds in practical classes for undergraduate level in comparison of conventional methods. These methods avoid the usage of hazardous substances and are environmental friendly.

  2. Preparation of radioactive labelled compounds. Pt. 2. 82Br labelled organic bromine compounds by isotopic exchange

    International Nuclear Information System (INIS)

    Otto, R.


    Studies on isotopic exchange between organic bromine compounds and 82 Br labelled dioxane dibromide in the presence of AlCl 3 are described. The results obtained enable to develop a simple and quick preparation method for the labelling with 82 Br [fr

  3. Charge-density matching in organic-inorganic uranyl compounds

    International Nuclear Information System (INIS)

    Krivovichev, S.V.; Krivovichev, S.V.; Tananaev, I.G.; Myasoedov, B.F.


    Single crystals of [C 10 H 26 N 2 ][(UO 2 )(SeO 4 ) 2 (H 2 O)](H 2 SeO 4 ) 0.85 (H 2 O) 2 (1), [C 10 H 26 N 2 ][(UO 2 )(SeO 4 ) 2 ] (H 2 SeO 4 ) 0.50 (H 2 O) (2), and [C 8 H 20 N] 2 [(UO 2 )(SeO 4 ) 2 (H 2 O)] (H 2 O) (3) were prepared by evaporation from aqueous solution of uranyl nitrate, selenic acid and the respective amines. The structures of the compounds have been solved by direct methods and structural models have been obtained. The structures of the compounds 1, 2, and 3 contain U and Se atoms in pentagonal bipyramidal and tetrahedral coordinations, respectively. The UO 7 and SeO 4 polyhedra polymerize by sharing common O atoms to form chains (compound 1) or sheets (compounds 2 and 3). In the structure of 1, the layers consisting of hydrogen-bonded [UO 2 (SeO 4 ) 2 (H 2 O)] 2- chains are separated by mixed organic-inorganic layers comprising from [NH 3 (CH 2 ) 10 NH 3 ] 2+ molecules, H 2 O molecules, and disordered electroneutral (H 2 SeO 4 ) groups. The structure of 2 has a similar architecture but a purely inorganic layer is represented by a fully connected [UO 2 (SeO 4 ) 2 ] 2- sheet. The structure of 3 does not contain disordered (H 2 SeO 4 ) groups but is based upon alternating [UO 2 (SeO 4 ) 2 (H 2 O)] 2- sheets and 1.5-nm-thick organic blocks consisting of positively charged protonated octylamine molecules, [NH 3 (CH 2 ) 7 CH 3 ] + . The structures may be considered as composed of anionic inorganic sheets (2D blocks) and cationic organic blocks self-organized according to competing hydrophilic-hydrophobic interactions. Analysis of the structures allows us to conclude that the charge-density matching principle is observed in uranyl compounds. In order to satisfy some basic peculiarities of uranyl (in general, actinyl) chemistry, it requires specific additional mechanisms: (a) in long-chain-amine-templated compounds, protonated amine molecules inter-digitate; (b) in long-chain-diamine-templated compounds, incorporation of acid-water interlayers into

  4. Determination of organic compounds in water using ultraviolet LED (United States)

    Kim, Chihoon; Ji, Taeksoo; Eom, Joo Beom


    This paper describes a method of detecting organic compounds in water using an ultraviolet LED (280 nm) spectroscopy system and a photodetector. The LED spectroscopy system showed a high correlation between the concentration of the prepared potassium hydrogen phthalate and that calculated by multiple linear regression, indicating an adjusted coefficient of determination ranging from 0.953-0.993. In addition, a comparison between the performance of the spectroscopy system and the total organic carbon analyzer indicated that the difference in concentration was small. Based on the close correlation between the spectroscopy and photodetector absorbance values, organic measurement with a photodetector could be configured for monitoring.

  5. Determination of Volatile Organic Compounds in Selected Strains of Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Ivan Milovanović


    Full Text Available Microalgal biomass can be used in creating various functional food and feed products, but certain species of microalgae and cyanobacteria are known to produce various compounds causing off-flavour. In this work, we investigated selected cyanobacterial strains of Spirulina, Anabaena, and Nostoc genera originating from Serbia, with the aim of determining the chemical profile of volatile organic compounds produced by these organisms. Additionally, the influence of nitrogen level during growth on the production of volatile compounds was investigated for Nostoc and Anabaena strains. In addition, multivariate techniques, namely, principal component analysis (PCA and hierarchical cluster analysis (HCA, were used for making distinction among different microalgal strains. The results show that the main volatile compounds in these species are medium chain length alkanes, but other odorous compounds such as 2-methylisoborneol (0.51–4.48%, 2-pentylfuran (0.72–8.98%, β-cyclocitral (0.00–1.17%, and β-ionone (1.15–2.72% were also detected in the samples. Addition of nitrogen to growth medium was shown to negatively affect the production of 2-methylisoborneol, while geosmin was not detected in any of the analyzed samples, which indicates that the manipulation of growth conditions may be useful in reducing levels of some unwanted odor-causing components.

  6. Laboratory for Extraterrestrial Physics (United States)

    Vondrak, Richard R. (Technical Monitor)


    The NASA Goddard Space Flight Center (GSFC) Laboratory for Extraterrestrial Physics (LEP) performs experimental and theoretical research on the heliosphere, the interstellar medium, and the magnetospheres and upper atmospheres of the planets, including Earth. LEP space scientists investigate the structure and dynamics of the magnetospheres of the planets including Earth. Their research programs encompass the magnetic fields intrinsic to many planetary bodies as well as their charged-particle environments and plasma-wave emissions. The LEP also conducts research into the nature of planetary ionospheres and their coupling to both the upper atmospheres and their magnetospheres. Finally, the LEP carries out a broad-based research program in heliospheric physics covering the origins of the solar wind, its propagation outward through the solar system all the way to its termination where it encounters the local interstellar medium. Special emphasis is placed on the study of solar coronal mass ejections (CME's), shock waves, and the structure and properties of the fast and slow solar wind. LEP planetary scientists study the chemistry and physics of planetary stratospheres and tropospheres and of solar system bodies including meteorites, asteroids, comets, and planets. The LEP conducts a focused program in astronomy, particularly in the infrared and in short as well as very long radio wavelengths. We also perform an extensive program of laboratory research, including spectroscopy and physical chemistry related to astronomical objects. The Laboratory proposes, develops, fabricates, and integrates experiments on Earth-orbiting, planetary, and heliospheric spacecraft to measure the characteristics of planetary atmospheres and magnetic fields, and electromagnetic fields and plasmas in space. We design and develop spectrometric instrumentation for continuum and spectral line observations in the x-ray, gamma-ray, infrared, and radio regimes; these are flown on spacecraft to study

  7. Sorption of Heterocyclic Organic Compounds to Multiwalled Carbon Nanotubes. (United States)

    Metzelder, Florian; Funck, Matin; Schmidt, Torsten C


    Sorption is an important natural and technical process. Sorption coefficients are typically determined in batch experiments, but this may be challenging for weakly sorbing compounds. An alternative method enabling analysis of those compounds is column chromatography. A column packed with the sorbent is used and sorption data are determined by relating sorbate retention to that of a nonretarded tracer. In this study, column chromatography was applied for the first time to study sorption of previously hardly investigated heterocyclic organic compounds to multiwalled carbon nanotubes (MWCNTs). Sorption data for these compounds are very limited in literature, and weak sorption is expected from predictions. Deuterium oxide was used as nonretarded tracer. Sorption isotherms were well described by the Freundlich model and data showed reasonable agreement with predicted values. Sorption was exothermic and physisorption was observed. H-bonding may contribute to overall sorption, which is supported by reduced sorption with increasing ionic strength due to blocking of functional groups. Lowering pH reduced sorption of ionizable compounds, due to electrostatic repulsion at pH 3 where sorbent as well as sorbates were positively charged. Overall, column chromatography was successfully used to study sorption of heterocyclic compounds to MWCNTs and could be applied for other carbon-based sorbents.

  8. Volatile organic compound (VOC) emissions during malting and beer manufacture (United States)

    Gibson, Nigel B.; Costigan, Gavin T.; Swannell, Richard P. J.; Woodfield, Michael J.

    Estimates have been made of the amounts of volatile organic compounds (VOCs) released during different stages of beer manufacture. The estimates are based on recent measurements and plant specification data supplied by manufacturers. Data were obtained for three main manufacturing processes (malting, wort processing and fermentation) for three commercial beer types. Some data on the speciation of emitted compounds have been obtained. Based on these measurements, an estimate of the total unabated VOC emission. from the U.K. brewing industry was calculated as 3.5 kta -1, over 95% of which was generated during barley malting. This value does not include any correction for air pollution control.

  9. Main regularities of radiolytic transformations of bifunctional organic compounds

    International Nuclear Information System (INIS)

    Petryaev, E.P.; Shadyro, O.I.


    General regularities of the radiolysis of bifunctional organic compounds (α-diols, ethers of α-diols, amino alcohols, hydroxy aldehydes and hydroxy asids) in aqueous solutions from the early stages of the process to formation of finite products are traced. It is pointed out that the most characteristic course of radiation-chemical, transformation of bifunctional compounds in agueous solutions in the fragmentation process with monomolecular decomposition of primary radicals of initial substrances and simultaneous scission of two vicinal in respect to radical centre bonds via five-membered cyclic transient state. The data obtained are of importance for molecular radiobiology

  10. Universalist ethics in extraterrestrial encounter (United States)

    Baum, Seth D.


    If humanity encounters an extraterrestrial civilization, or if two extraterrestrial civilizations encounter each other, then the outcome may depend not only on the civilizations' relative strength to destroy each other but also on what ethics are held by one or both civilizations. This paper explores outcomes of encounter scenarios in which one or both civilizations hold a universalist ethical framework. Several outcomes are possible in such scenarios, ranging from one civilization destroying the other to both civilizations racing to be the first to commit suicide. Thus, attention to the ethics of both humanity and extraterrestrials is warranted in human planning for such an encounter. Additionally, the possibility of such an encounter raises profound questions for contemporary human ethics, even if such an encounter never occurs.

  11. Preliminary study on the occurrence of brominated organic compounds in Dutch marine organisms

    NARCIS (Netherlands)

    Kotterman, M.J.J.; Veen, van der I.; Hesselingen, van J.M.; Leonards, P.E.G.; Osinga, R.; Boer, de J.


    The extracts of three marine organisms; the ascidian Ciona intestinalis, the brown seaweed Sargassum muticum and the sponge Halichondria panicea, all elicited a number of brominated compounds, some of which were tentatively identified. Tribromophenol was observed in all species. This compound, also

  12. Holographic detection of hydrocarbon gases and other volatile organic compounds. (United States)

    Martínez-Hurtado, J L; Davidson, C A B; Blyth, J; Lowe, C R


    There is a need to develop sensors for real-time monitoring of volatile organic compounds (VOCs) and hydrocarbon gases in both external and indoor environments, since these compounds are of growing concern in human health and welfare. Current measurement technology for VOCs requires sophisticated equipment and lacks the prospect for rapid real-time monitoring. Holographic sensors can give a direct reading of the analyte concentration as a color change. We report a technique for recording holographic sensors by laser ablation of silver particles formed in situ by diffusion. This technique allows a readily available hydrophobic silicone elastomer to be transformed into an effective sensor for hydrocarbon gases and other volatile compounds. The intermolecular interactions present between the polymer and molecules are used to predict the sensor performance. The hydrophobicity of this material allows the sensor to operate without interference from water and other atmospheric gases and thus makes the sensor suitable for biomedical, industrial, or environmental analysis.

  13. Organic compounds inhibiting S. epidermidis adhesion and biofilm formation

    DEFF Research Database (Denmark)

    Qin, Zhiqiang; Zhang, Jingdong; Hu, Yifan


    The formation of biofilms on surfaces of indwelling medical devices is a serious medical problem. Staphylococcus epidermidis is a common pathogen found to colonize implanted devices and as a biofilm is more resistant to the host immune system as well as to antibiotic treatments. Combating S....... epidermidis infections by preventing or eradicating biofilm formation of the bacterium is therefore a medically important challenge. We report here a study of biofilm formation of S. epidermidis on solid surfaces using a combination of confocal laser scanning (CLSM) and atomic force microscopy (AFM) in both...... air and aqueous environments. We have investigated the inhibitory effects of surfaces treated with four organic compounds, two benzoate derivatives denoted as compound 59 and 75 and two carboxamicle derivatives denoted as compound 47 and 73, on S. epidermidis adhesion and biofilm formation. All four...

  14. Prebiotic Synthesis of Methionine and Other Sulfur-Containing Organic Compounds on the Primitive Earth: A Contemporary Reassessment Based on an Unpublished 1958 Stanley Miller Experiment (United States)

    Parker, Eric T.; Cleaves, H. James; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; Lazcano, Antonio


    Original extracts from an unpublished 1958 experiment conducted by the late Stanley L. Miller were recently found and analyzed using modern state-of-the-art analytical methods. The extracts were produced by the action of an electric discharge on a mixture of methane (CH4), hydrogen sulfide (H2S), ammonia (NH3), and carbon dioxide (CO2). Racemic methionine was farmed in significant yields, together with other sulfur-bearing organic compounds. The formation of methionine and other compounds from a model prebiotic atmosphere that contained H2S suggests that this type of synthesis is robust under reducing conditions, which may have existed either in the global primitive atmosphere or in localized volcanic environments on the early Earth. The presence of a wide array of sulfur-containing organic compounds produced by the decomposition of methionine and cysteine indicates that in addition to abiotic synthetic processes, degradation of organic compounds on the primordial Earth could have been important in diversifying the inventory of molecules of biochemical significance not readily formed from other abiotic reactions, or derived from extraterrestrial delivery.

  15. Release of organic nitrogen compounds from Kerogen via catalytic hydropyrolysis

    Directory of Open Access Journals (Sweden)

    Bennett B


    Full Text Available High hydrogen pressure pyrolysis (hydropyrolysis was performed on samples of solvent extracted Kimmeridge Clay Formation source rock with a maturity equivalent to ca. 0.35% vitrinite reflectance. We describe the types and distributions of organic nitrogen compounds in the pyrolysis products (hydropyrolysates using GC-MS. Compounds identified included alkyl-substituted indoles, carbazoles, benzocarbazoles, quinolines and benzoquinolines. The distributions of the isomers of methylcarbazoles, C2-alkylcarbazoles and benzocarbazoles in the hydropyrolysates were compared to a typical North Sea oil. The hydropyrolysates compared to the North Sea oil, showed increased contributions from alkylcarbazole isomers where the nitrogen group is "exposed" (no alkyl substituents adjacent to the nitrogen functionality and appreciable levels of benzo[b]carbazole relative to benzo[a]- and benzo[c]carbazoles. Hydropyrolysis is found to be an ideal technique for liberating appreciable quantities of heterocyclic organic nitrogen compounds from geomacromolecules. The products released from the immature Kimmeridge Clay are thought to represent a potential source of nitrogen compounds in the bound phase (kerogen able to contribute to the free bitumen phase during catagenesis.

  16. Marine Vibrio Species Produce the Volatile Organic Compound Acetone


    Nemecek-Marshall, M.; Wojciechowski, C.; Kuzma, J.; Silver, G. M.; Fall, R.


    While screening aerobic, heterotrophic marine bacteria for production of volatile organic compounds, we found that a group of isolates produced substantial amounts of acetone. Acetone production was confirmed by gas chromatography, gas chromatography-mass spectrometry, and high-performance liquid chromatography. The major acetone producers were identified as nonclinical Vibrio species. Acetone production was maximal in the stationary phase of growth and was stimulated by addition of l-leucine...

  17. Beyond the network of plants volatile organic compounds


    Vivaldo, Gianna; Masi, Elisa; Taiti, Cosimo; Caldarelli, Guido; Mancuso, Stefano


    Plants emission of volatile organic compounds (VOCs) is involved in a wide class of ecological functions, as VOCs play a crucial role in plants interactions with biotic and abiotic factors. Accordingly, they vary widely across species and underpin differences in ecological strategy. In this paper, VOCs spontaneously emitted by 109 plant species (belonging to 56 different families) have been qualitatively and quantitatively analysed in order to classify plants species. By using bipartite netwo...

  18. Production of fungal volatile organic compounds in bedding materials

    Directory of Open Access Journals (Sweden)



    Full Text Available The high relative humidity of the air and many potential growth media, such as bedding materials, hay and grains in the horse stable, for example, provide suitable conditions for fungal growth. Metabolic activity of four common agricultural fungi incubated in peat and wood shavings at 25°C and 4°C was characterized in this study using previously specified volatile metabolites of micro-organisms and CO 2 production as indicators. The volatile organic compounds were collected into Tenax resin and analysed by gas chromatography. Several microbial volatile organic compounds (MVOCs, e.g. 1-butanol, 2-hexanone, 2-heptanone, 3-octanone, 1-octen-3-ol and 1-octanol were detected in laboratory experiments; however, these accounted for only 0.08-1.5% of total volatile organic com-pounds (TVOCs. Emission rates of MVOCs were 0.001-0.176 mg/kg of bedding materials per hour. Despite some limitations of the analytical method, certain individual MVOCs, 2-hexanone, 2-hep-tanone and 3-octanone, were also detected in concentrations of less than 4.6 mg/m 3 (0.07-0.31% of TVOC in a horse stable where peat and shavings were used as bedding materials. MVOC emission rate was estimated to be 0.2-2.0 mg/kg ´ h -1 from bedding materials in the stable, being about ten times higher than the rates found in the laboratory experiments. Some compounds, e.g. 3-octanone and 1-octen-3-ol, can be assumed to originate mainly from microbial metabolisms.;

  19. Oceanic Emissions and Atmospheric Depositions of Volatile Organic Compounds (United States)

    Yang, M.; Blomquist, B.; Beale, R.; Nightingale, P. D.; Liss, P. S.


    Atmospheric volatile organic compounds (VOCs) affect the tropospheric oxidative capacity due to their ubiquitous abundance and relatively high reactivity towards the hydroxyal radical. Over the ocean and away from terrestrial emission sources, oxygenated volatile organic compounds (OVOCs) make up a large fraction of VOCs as airmasses age and become more oxidized. In addition to being produced or destroyed in the marine atmosphere, OVOCs can also be emitted from or deposited to the surface ocean. Here we first present direct air-sea flux measurements of three of the most abundant OVOCs - methanol, acetone, and acetaldehyde, by the eddy covariance technique from two cruises in the Atlantic: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The OVOC mixing ratios were quantified by a high resolution proton-reaction-transfer mass spectrometer with isotopically labeled standards and their air-sea (net) fluxes were derived from the eddy covariance technique. Net methanol flux was consistently from the atmosphere to the surface ocean, while acetone varied from supersaturation (emission) in the subtropics to undersaturation (deposition) in the higher latitudes of the North Atlantic. The net air-sea flux of acetaldehyde is near zero through out the Atlantic despite the apparent supersaturation of this compound in the surface ocean. Knowing the dissolved concentrations and in situ production rates of these compounds in seawater, we then estimate their bulk atmospheric depositions and oceanic emissions. Lastly, we summarize the state of knowledge on the air-sea transport of a number of organic gasses, and postulate the magnitude and environmental impact of total organic carbon transfer between the ocean and the atmosphere.

  20. Production of fungal volatile organic compounds in bedding materials




    The high relative humidity of the air and many potential growth media, such as bedding materials, hay and grains in the horse stable, for example, provide suitable conditions for fungal growth. Metabolic activity of four common agricultural fungi incubated in peat and wood shavings at 25°C and 4°C was characterized in this study using previously specified volatile metabolites of micro-organisms and CO 2 production as indicators. The volatile organic compounds were collected into Tenax resin a...

  1. Incineration method for plutonium recovery from alpha contaminated organic compounds

    International Nuclear Information System (INIS)

    Yahata, Taneaki; Abe, Jiro; Kato, Michiharu; Kurihara, Masayoshi


    An incineration method for plutonium recovery from α contaminated organic compounds in a flow of controlled oxygen gas is stated. The species of such thermal decomposition products as hydrocarbons, free carbon, carbon monoxide and hydrogen were determined by mass spectrography. The mixture of the products which are the source of tar or soot was converted to CO 2 and H 2 O in contact with copper oxide catalyst without flaming. This incineration method is composed of two stages. The first stage is the decomposition of organic compounds in the streams of gas mixtures containing oxygen in low ratios. The second stage is the incineration of the decomposition products by catalytic reaction in the streams of gas with higher oxygen ratios. Plutonium was recovered as the form of plutonium dioxide from the incineration residues of the first stage. The behavior of oil was examined as a representative of liquid organic compounds. It was found to evaporate below ca. 500 0 C, but was completely incinerated by the catalytic reaction with copper oxide catalyst in the flow of gas with controlled oxygen amount and was changed to CO 2 and H 2 O. (author)

  2. Engineering biosynthesis of high-value compounds in photosynthetic organisms. (United States)

    O'Neill, Ellis C; Kelly, Steven


    The photosynthetic, autotrophic lifestyle of plants and algae position them as ideal platform organisms for sustainable production of biomolecules. However, their use in industrial biotechnology is limited in comparison to heterotrophic organisms, such as bacteria and yeast. This usage gap is in part due to the challenges in generating genetically modified plants and algae and in part due to the difficulty in the development of synthetic biology tools for manipulating gene expression in these systems. Plant and algal metabolism, pre-installed with multiple biosynthetic modules for precursor compounds, bypasses the requirement to install these pathways in conventional production organisms, and creates new opportunities for the industrial production of complex molecules. This review provides a broad overview of the successes, challenges and future prospects for genetic engineering in plants and algae for enhanced or de novo production of biomolecules. The toolbox of technologies and strategies that have been used to engineer metabolism are discussed, and the potential use of engineered plants for industrial manufacturing of large quantities of high-value compounds is explored. This review also discusses the routes that have been taken to modify the profiles of primary metabolites for increasing the nutritional quality of foods as well as the production of specialized metabolites, cosmetics, pharmaceuticals and industrial chemicals. As the universe of high-value biosynthetic pathways continues to expand, and the tools to engineer these pathways continue to develop, it is likely plants and algae will become increasingly valuable for the biomanufacturing of high-value compounds.

  3. Delivery of Exogenous Complex Organic Compounds by Solar System Small Bodies and Space Dusts and Its Relevance to Origins of Life (United States)

    Kobayashi, Kensei; Fushimi, Hidehiko; Motoyama, Takuya; Kaneko, Takeo; Obayashi, Yumiko; Yoshida, Satoshi; Mita, Hajime; Yabuta, Hikaru; Okudaira, Kyoko; Hashimoto, Hirofumi; Yokobori, Shin-Ichi; Yamagishi, Akihiko

    A wide variety of organic compounds including amino acid precursors have been detected in such extraterrestrial bodies as carbonaceous chondrites and comets. It was suggested that these organics were formed in quite cold environments. We irradiated frozen mixtures of possible constituents of ice mantles of interstellar dust particles including water, methanol and ammonia with high-energy heavy ions from HIMAC, National Institute of Radiological Science, Japan. Amino acid precursors with complex structures were detected whose molecular weights are up to a few thousands. Such complex amino acid precursors are much stronger than free amino acids against radiation. Such organics could have been incorporated in solar system small bodies after the formation of the solar system and delivered to the primitive Earth. Possible carriers of such organics are meteorites, comets and interplanetary dust particles (IDPs) that were formed from comets and meteorites. It is suggested that IDPs brought much more organics than meteorites and comets. However, nature of organics in IDPs is little known, since they have been collected only in terrestrial biosphere. We are planning a space experiments named Tanpopo, where IDPs would be collected in aerogel equipped on the Exposure Facility of the International Space Station. In addition, amino acids and their relating compounds would be exposed to space environments to see their possible alteration processes in the interplanetary space. We will report some preliminary results for the preparation of the mission including the capture of amino acid-containing particles at high velocity with ultra-low density aerogel.

  4. Biodegradation of volatile organic compounds by five fungal species

    Energy Technology Data Exchange (ETDEWEB)

    Qi, B.; Moe, W.M. [Dept. of Civil and Environmental Engineering, Louisiana State Univ., Baton Rouge, LA (United States); Kinney, K.A. [Dept. of Civil Engineering, Univ. of Texas, Austin (United States)


    Five fungal species, Cladosporium resinae (ATCC 34066), Cladosporium sphaerospermum (ATCC 200384), Exophiala lecanii-corni (CBS 102400), Mucor rouxii (ATCC 44260), and Phanerochaete chrysosporium (ATCC 24725), were tested for their ability to degrade nine compounds commonly found in industrial off-gas emissions. Fungal cultures inoculated on ceramic support media were provided with volatile organic compounds (VOCs) via the vapor phase as their sole carbon and energy sources. Compounds tested included aromatic hydrocarbons (benzene, ethylbenzene, toluene, and styrene), ketones (methyl ethyl ketone, methyl isobutyl ketone, and methyl propyl ketone), and organic acids (n-butyl acetate, ethyl 3-ethoxypropionate). Experiments were conducted using three pH values ranging from 3.5 to 6.5. Fungal ability to degrade each VOC was determined by observing the presence or absence of visible growth on the ceramic support medium during a 30-day test period. Results indicate that E. lecanii-corni and C. sphaerospermum can readily utilize each of the nine VOCs as a sole carbon and energy source. P. chrysosporium was able to degrade all VOCs tested except for styrene under the conditions imposed. C. resinae was able to degrade both organic acids, all of the ketones, and some of the aromatic compounds (ethylbenzene and toluene); however, it was not able to grow utilizing benzene or styrene under the conditions tested. With the VOCs tested, M. rouxii produced visible growth only when supplied with n-butyl acetate or ethyl 3-ethoxypropionate. Maximum growth for most fungi was observed at a pH of approximately 5.0. The experimental protocol utilized in these studies is a useful tool for assessing the ability of different fungal species to degrade gas-phase VOCs under conditions expected in a biofilter application. (orig.)

  5. Characteristics of the volatile organic compounds -- Arid Integrated Demonstration Site

    International Nuclear Information System (INIS)

    Last, G.V.; Lenhard, R.J.; Bjornstad, B.N.; Evans, J.C.; Roberson, K.R.; Spane, F.A.; Amonette, J.E.; Rockhold, M.L.


    The Volatile Organic Compounds -- Arid Integrated Demonstration Program (VOC-Arid ID) is targeted at demonstration and testing of technologies for the evaluation and cleanup of volatile organic compounds and associated contaminants at arid DOE sites. The initial demonstration site is an area of carbon tetrachloride (CCl 4 ) contamination located near the center of the Hanford Site. The movement of CCl 4 and other volatile organic contaminants in the subsurface is very complex. The problem at the Hanford Site is further complicated by the concurrent discharge of other waste constituents including acids, lard oil, organic phosphates, and transuranic radionuclides. In addition, the subsurface environment is very complex, with large spatial variabilities in hydraulic properties. A thorough understanding of the problem is essential to the selection of appropriate containment, retrieval, and/or in situ remedial technologies. The effectiveness of remedial technologies depends on knowing where the contaminants are, how they are held up in a given physical and chemical subsurface environment; and knowing the physical, chemical, and microbiological changes that are induced by the various remedial technologies

  6. Global simulation of aromatic volatile organic compounds in the atmosphere (United States)

    Cabrera Perez, David; Taraborrelli, Domenico; Pozzer, Andrea


    Among the large number of chemical compounds in the atmosphere, the organic group plays a key role in the tropospheric chemistry. Specifically the subgroup called aromatics is of great interest. Aromatics are the predominant trace gases in urban areas due to high emissions, primarily by vehicle exhausts and fuel evaporation. They are also present in areas where biofuel is used (i.e residential wood burning). Emissions of aromatic compounds are a substantial fraction of the total emissions of the volatile organic compounds (VOC). Impact of aromatics on human health is very important, as they do not only contribute to the ozone formation in the urban environment, but they are also highly toxic themselves, especially in the case of benzene which is able to trigger a range of illness under long exposure, and of nitro-phenols which cause detrimental for humans and vegetation even at very low concentrations. The aim of this work is to assess the atmospheric impacts of aromatic compounds on the global scale. The main goals are: lifetime and budget estimation, mixing ratios distribution, net effect on ozone production and OH loss for the most emitted aromatic compounds (benzene, toluene, xylenes, ethylbenzene, styrene and trimethylbenzenes). For this purpose, we use the numerical chemistry and climate simulation ECHAM/MESSy Atmospheric Chemistry (EMAC) model to build the global atmospheric budget for the most emitted and predominant aromatic compounds in the atmosphere. A set of emissions was prepared in order to include biomass burning, vegetation and anthropogenic sources of aromatics into the model. A chemical mechanism based on the Master Chemical Mechanism (MCM) was developed to describe the chemical oxidation in the gas phase of these aromatic compounds. MCM have been reduced in terms of number of chemical equation and species in order to make it affordable in a 3D model. Additionally other features have been added, for instance the production of HONO via ortho

  7. Microbial degradation of water-insoluble organic compounds

    International Nuclear Information System (INIS)

    Thomas, J.M.


    The effect of solubilization on biodegradation of water-insoluble organic compounds was investigated. The effect of particle size on solubilization and degradation of 4-chlorobiphenyl (4-CB) and naphthalene by a microbial mixture was determined. The concentration of soluble compound was determined using gas-liquid chromatography. The rates of solubilization were inversely related to particle size for both compounds. The rates of mineralization of 14 C-labeled palmitic acid, octadecane, di(2-ethylhexyl)phthalate (DEHP), and Sevin (1-naphthyl N-methylcarbamate) by microbial mixtures were determined by trapping the 14 CO 2 formed, and those rates were compared to solubilization rates determined by periodically filtering sterile MS amended with one of the compounds. Mineralization and colonization of the surface of 10 μg palmitic acid per 10 ml MS by Pseudomonas pseudoflava was determined by trapping 14 CO 2 and epifluorescence microscopy. Mineralization began before colonization and was initially exponential, but the rate then declined. The rate of mineralization at the end of the exponential phase approximated the rate of solubilization. The surface was completely covered about the time mineralization stopped. Unbound cells grew exponentially before colonization was detected; however, colonization of the surface was complete after the number of free cells stopped increasing. The data suggest that soluble palmitic acid is utilized before the insoluble phase but colonization is important in the mineralization of palmitic acid when solubilization becomes rate limiting

  8. Some methods for labelling organic compounds by deuterium

    International Nuclear Information System (INIS)

    Moustapha, C.


    The rapid growth of knowledge in the fields of biochemistry, physiology, and molecular biology reflects to a considerable degree the utilization of stable isotopes (specially deuterium) in the study of chemical reactions and fragmentation mechanisms in mass spectrometry, as well as in the pharmacological and biological studies. Organic compounds maybe labelled by deuterium through classic organic reactions by using special deuterated solvents and reagents. This article discusses some reactions, with examples on how to prepare labelled compounds with high isotopic purety. These reactions are: exchange reactions in acid and alkaline media (the exchange in the chromatographic column in liquid and gas phases, the exchange in homogenous medium), reduction reactions of functional groups as well as saturation of the double bounds by deuterium using hydrogenation catalystes, electrochemical reactions using KOLBE, and photochemical reactions. This article also deals with spectroscopic properties of deuterium and the methods which are used to identify its compounds such as infrared, nuclear magnetic resonance, and mass spectroscopy. 37 refs., 2 figs

  9. Advanced Characterization of Semivolatile Organic Compounds Emitted from Biomass Burning (United States)

    Hatch, L. E.; Liu, Y.; Rivas-Ubach, A.; Shaw, J. B.; Lipton, M. S.; Barsanti, K. C.


    Biomass burning (BB) emits large amounts of non-methane organic gases (NMOGs) and primary (directly emitted) particulate matter (PM). NMOGs also react in plume to form secondary PM (i.e., SOA) and ozone. BB-PM has been difficult to represent accurately in models used for chemistry and climate predictions, including for air quality and fire management purposes. Much recent research supports that many previously unconsidered SOA precursors exist, including oxidation of semivolatile compounds (SVOCs). Although many recent studies have characterized relatively volatile BB-derived NMOGs and relatively non-volatile particle-phase organic species, comparatively few studies have performed detailed characterization of SVOCs emitted from BB. Here we present efforts to expand the volatility and compositional ranges of compounds measured in BB smoke. In this work, samples of SVOCs in gas and particle phases were collected from 18 fires representing a range of fuel types during the 2016 FIREX fire laboratory campaign; samples were analyzed by two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS) and Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS). Hundreds of compounds were detectable in both gas and particle phases by GCxGC-TOFMS whereas thousands of peaks were present in the FTICR mass spectra. Data from both approaches highlight that chemical fingerprints of smoke are fuel/burn-dependent. These efforts support our continued research in building the understanding and model representation of BB emissions and BB-derived SOA.

  10. Effects of organic compounds on actinoid transfer in natural environment

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, Keizo; Nakaguchi, Yuzuru; Suzuki, Yasuhiro [Kinki Univ., Higashi-Osaka, Osaka (Japan). Faculty of Science and Technology; Senoo, Muneaki; Nagao, Seiya; Sakamoto, Yoshiaki


    For safety evaluation of geological disposal of radioactive wastes, it seems necessary to elucidate the geological transfer of radioactive nuclides in the soil and the undersea sediments. It has been known that there exist various organic compounds highly potential to form a complex with TRU elements, uranium, copper etc. in the soil and the sediments and those compounds may play an important role for geological transfer of nuclides. In this study, fluorescent substances contained in underground and river water were focused as the measures to identify the molecular species of organic compounds in natural water and their interactions with radionuclides and minor metals, and their geological transfers were investigated. Spectrophotometric properties of humic acid obtained in the market were examined. Its fluorescent intensity was strongest at pH 10 and stable for 2 weeks or more. Then, highly polluted river water was taken from Yamato river to determine the contents of humic acid and other fluorescent substances. Further, the effects of the additions of Cu and Fe on the fluorescent intensity were examined. (M.N.)

  11. Charge-density matching in organic-inorganic uranyl compounds

    Energy Technology Data Exchange (ETDEWEB)

    Krivovichev, S.V. [Saint Petersburg State Univ., Dept. of Crystallography, Faculty of Geology (Russian Federation); Krivovichev, S.V.; Tananaev, I.G.; Myasoedov, B.F. [Russian Academy of Sciences, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Moscow (Russian Federation)


    Single crystals of [C{sub 10}H{sub 26}N{sub 2}][(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)](H{sub 2}SeO{sub 4}){sub 0.85}(H{sub 2}O){sub 2} (1), [C{sub 10}H{sub 26}N{sub 2}][(UO{sub 2})(SeO{sub 4}){sub 2}] (H{sub 2}SeO{sub 4}){sub 0.50}(H{sub 2}O) (2), and [C{sub 8}H{sub 20}N]{sub 2}[(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)] (H{sub 2}O) (3) were prepared by evaporation from aqueous solution of uranyl nitrate, selenic acid and the respective amines. The structures of the compounds have been solved by direct methods and structural models have been obtained. The structures of the compounds 1, 2, and 3 contain U and Se atoms in pentagonal bipyramidal and tetrahedral coordinations, respectively. The UO{sub 7} and SeO{sub 4} polyhedra polymerize by sharing common O atoms to form chains (compound 1) or sheets (compounds 2 and 3). In the structure of 1, the layers consisting of hydrogen-bonded [UO{sub 2}(SeO{sub 4}){sub 2}(H{sub 2}O)]{sup 2-} chains are separated by mixed organic-inorganic layers comprising from [NH{sub 3}(CH{sub 2}){sub 10}NH{sub 3}]{sup 2+} molecules, H{sub 2}O molecules, and disordered electroneutral (H{sub 2}SeO{sub 4}) groups. The structure of 2 has a similar architecture but a purely inorganic layer is represented by a fully connected [UO{sub 2}(SeO{sub 4}){sub 2}]{sup 2-} sheet. The structure of 3 does not contain disordered (H{sub 2}SeO{sub 4}) groups but is based upon alternating [UO{sub 2}(SeO{sub 4}){sub 2}(H{sub 2}O)]{sup 2-} sheets and 1.5-nm-thick organic blocks consisting of positively charged protonated octylamine molecules, [NH{sub 3}(CH{sub 2}){sub 7}CH{sub 3}]{sup +}. The structures may be considered as composed of anionic inorganic sheets (2D blocks) and cationic organic blocks self-organized according to competing hydrophilic-hydrophobic interactions. Analysis of the structures allows us to conclude that the charge-density matching principle is observed in uranyl compounds. In order to satisfy some basic peculiarities of uranyl (in

  12. Biodesulfurization of refractory organic sulfur compounds in fossil fuels. (United States)

    Soleimani, Mehran; Bassi, Amarjeet; Margaritis, Argyrios


    The stringent new regulations to lower sulfur content in fossil fuels require new economic and efficient methods for desulfurization of recalcitrant organic sulfur. Hydrodesulfurization of such compounds is very costly and requires high operating temperature and pressure. Biodesulfurization is a non-invasive approach that can specifically remove sulfur from refractory hydrocarbons under mild conditions and it can be potentially used in industrial desulfurization. Intensive research has been conducted in microbiology and molecular biology of the competent strains to increase their desulfurization activity; however, even the highest activity obtained is still insufficient to fulfill the industrial requirements. To improve the biodesulfurization efficiency, more work is needed in areas such as increasing specific desulfurization activity, hydrocarbon phase tolerance, sulfur removal at higher temperature, and isolating new strains for desulfurizing a broader range of sulfur compounds. This article comprehensively reviews and discusses key issues, advances and challenges for a competitive biodesulfurization process.

  13. Native Fluorescence Detection Methods, Devices, and Systems for Organic Compounds (United States)

    Hug, William F. (Inventor); Bhartia, Rohit (Inventor); Reid, Ray D. (Inventor); Lane, Arthur L. (Inventor)


    Naphthalene, benzene, toluene, xylene, and other volatile organic compounds VOCs have been identified as serious health hazards. Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter "badges" to be worn by personnel potentially exposed to hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined.

  14. Volatile organic compounds in the unsaturated zone from radioactive wastes (United States)

    Baker, Ronald J.; Andraski, Brian J.; Stonestrom, David A.; Luo, Wentai


    Volatile organic compounds (VOCs) are often comingled with low-level radioactive wastes (LLRW), but little is known about subsurface VOC emanations from LLRW landfills. The current study systematically quantified VOCs associated with LLRW over an 11-yr period at the USGS Amargosa Desert Research Site (ADRS) in southwestern Nevada. Unsaturated-zone gas samples of VOCs were collected by adsorption on resin cartridges and analyzed by thermal desorption and GC/MS. Sixty of 87 VOC method analytes were detected in the 110-m-thick unsaturated zone surrounding a LLRW disposal facility. Chlorofluorocarbons (CFCs) were detected in 100% of samples collected. Chlorofluorocarbons are powerful greenhouse gases, deplete stratospheric ozone, and are likely released from LLRW facilities worldwide. Soil-gas samples collected from a depth of 24 m and a horizontal distance 100 m south of the nearest waste-disposal trench contained >60,000 ppbv total VOCs, including >37,000 ppbv CFCs. Extensive sampling in the shallow unsaturated zone (0–2 m deep) identified areas where total VOC concentrations exceeded 5000 ppbv at the 1.5-m depth. Volatile organic compound concentrations exceeded background levels up to 300 m from the facility. Maximum vertical diffusive fluxes of total VOCs were estimated to be 1 g m-2 yr-1. Volatile organic compound distributions were similar but not identical to those previously determined for tritium and elemental mercury. To our knowledge, this study is the first to characterize the unsaturated zone distribution of VOCs emanating from a LLRW landfill. Our results may help explain anomalous transport of radionuclides at the ADRS and elsewhere.

  15. Volatile organic compounds emissions from gasoline and diesel powered vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Mugica, V [Universidad Autonoma Metropolitana, Mexico, D.F. (Mexico); Vega, E; Sanchez, G; Reyes, E; Arriaga, J. L [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Chow, J; Watson, J; Egami, R [Desert Research Institute, Reno, NV (United States)


    In this research, volatile organic compound emissions were characterized from gasoline and diesel vehicles. Sampling campaigns in the Metropolitan Area of Mexico City were designed and carried out in tunnels, crossroads, and truck and bus terminals. The samples were analyzed with gas chromatography getting more than 250 different compounds, being more or less 60 of them the 80% of all the emissions. The most abundant are the two carbon compounds, as a result of the combustion, and compounds related to fuels compositions, like isopentane, xylenes, toluene among others. The profiles obtained in tunnels and crossroads were very similar with the exception of the 3 and 4 carbon compounds, which were found in bigger proportion in the profiles at crossroads. This may probably be due to the blend with the ambient air. The profiles corresponding to trucks and buses have a smaller content of two carbon compounds and a bigger content of xylenes, toluene and ethylbenzene. The variations in the proportions of the compounds allow differentiating the profiles of vehicles using gasoline and diesel. [Spanish] En este trabajo se caracterizaron las emisiones de compuestos organicos volatiles provenientes de vehiculos a gasolina y a diesel. Para ello, se disenaron diversas campanas de muestreo en la zona Metropolitana de la Ciudad de Mexico, en tuneles, cruceros y estaciones de camiones de carga y autobuses. Las muestras se analizaron con cromatografia, de gases obteniendose mas de 250 compuestos distintos, de los cuales aproximadamente 60 corresponden a mas del 80% de las emisiones. Los compuestos mas abundantes son los de dos carbonos, resultado de la combustion, y 4 carbonos que se encontraron en mayor proporcion en los perfiles de cruceros, lo cual se debe probablemente a la mezcla con el aire ambiente. Los perfiles correspondientes a camiones de carga y autobuses tienen un menor contenido de compuestos de dos carbonos y un mayor contenido de xilenos, tolueno y etilbenceno. Estas

  16. Electron beam treatment of toxic volatile organic compounds and dioxins

    International Nuclear Information System (INIS)

    Kojima, Takuji


    Considerations of wastes based on the reduction, reuse and recycle in daily life are primary measures to conserve our environment, but the control technology is necessary to support these measures. The electron beam (EB) process is promising as an advanced purification process having advantages such as a quick treatment of big volume gas, applicability even for very low concentration pollutants as the further purification at the downstream of existing process, and decomposition of pollutants into non-toxic substances by one process. The EB technology has been developed for treatment of toxic volatile organic compounds (VOCs) in ventilation gas and dioxins in solid waste incineration flue gas. (author)

  17. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors

    Directory of Open Access Journals (Sweden)

    Milena Šetka


    Full Text Available The aim of this review is to summarize the recent progress in the fabrication of efficient nanostructured polymer-based sensors with special focus on polypyrrole. The correlation between physico-chemical parameters, mainly morphology of various polypyrrole nanostructures, and their sensitivity towards selected gas and volatile organic compounds (VOC is provided. The different approaches of polypyrrole modification with other functional materials are also discussed. With respect to possible sensors application in medicine, namely in the diagnosis of diseases via the detection of volatile biomarkers from human breath, the sensor interaction with humidity is described as well. The major attention is paid to analytes such as ammonia and various alcohols.

  18. Spatial arrangement of organic compounds on a model mineral surface: implications for soil organic matter stabilization. (United States)

    Petridis, Loukas; Ambaye, Haile; Jagadamma, Sindhu; Kilbey, S Michael; Lokitz, Bradley S; Lauter, Valeria; Mayes, Melanie A


    The complexity of the mineral-organic carbon interface may influence the extent of stabilization of organic carbon compounds in soils, which is important for global climate futures. The nanoscale structure of a model interface was examined here by depositing films of organic carbon compounds of contrasting chemical character, hydrophilic glucose and amphiphilic stearic acid, onto a soil mineral analogue (Al2O3). Neutron reflectometry, a technique which provides depth-sensitive insight into the organization of the thin films, indicates that glucose molecules reside in a layer between Al2O3 and stearic acid, a result that was verified by water contact angle measurements. Molecular dynamics simulations reveal the thermodynamic driving force behind glucose partitioning on the mineral interface: The entropic penalty of confining the less mobile glucose on the mineral surface is lower than for stearic acid. The fundamental information obtained here helps rationalize how complex arrangements of organic carbon on soil mineral surfaces may arise.

  19. Extraterrestrial Radiation Chemistry and Molecular Astronomy (United States)

    Hudson, Reggie L.; Moore, Marla H.


    Astronomical observations of both solar system and interstellar regions have revealed a rich chemical inventory that includes most classes of organic molecules and selected inorganics. For example, gas-phase ethylene glycol and SOz have been observed by astronomers, while solidphase detections include OCS, H2O2 , and the cyanate anion.' All of these are found in environments that are, by earthly standards, exceedingly hostile: temperatures of 10 - 100 K, miniscule densities, and near-ubiquitous ionizing-radiation fields. Beyond the simplest chemical species, these conditions have made it difficult-to-impassible to account for the observed molecular abundances using gas-phase chemistry, suggesting solid-phase reactions play an important role. In extraterrestrial environments, cosmic rays, UV photons, and magnetospheric radiation all drive chemical reactions, even at cryogenic temperatures. To study this chemistry, radiation astrochemists conduct experiments on icy materials, frozen under vacuum and exposed to sources such as keV electrons and MeV protons. Compositional changes usually are followed with IR spectroscopy and, in selected cases, more-sensitive mass-spectral techniques. This talk will review some recent results on known and suspected extraterrestrial molecules and ions. Spectra and reaction pathways will be presented, and predictions made for interstellar chemistry and the chemistry of selected solar system objects. Some past radiation-chemical contributions, and future needs, will be explored.

  20. Emission of Biogenic Volatile Organic Compounds in the Arctic

    DEFF Research Database (Denmark)

    Lindwall, Frida

    , emitted in order to communicate within and between trophic levels and as protection against biotic and abiotic stresses, or as byproducts. Some BVOCs are very reactive, and when entering the atmosphere they rapidly react with for example hydroxyl radicals and ozone, affecting the oxidative capacity......Emissions of biogenic volatile organic compounds (BVOCs) from arctic ecosystems are scarcely studied and the effect of climate change on BVOC emissions even less so. BVOCs are emitted from all living organisms and play a role for atmospheric chemistry. The major part of BVOCs derives from plants...... in the atmosphere. This may warm the climate due to a prolonged lifetime of the potent greenhouse gas methane in the atmosphere. However, oxidized BVOCs may participate in formation or growth of aerosols, which in turn may mitigate climate warming. Climate change in the Arctic, an area characterized by short...

  1. Dynamic behavior of semivolatile organic compounds in indoor air

    Energy Technology Data Exchange (ETDEWEB)

    Loy, Michael David Van [Univ. of California, Berkeley, CA (United States)


    Exposures to a wide range of air pollutants are often dominated by those occurring in buildings because of three factors: 1) most people spend a large fraction of their time indoors, 2) many pollutants have strong indoor sources, and 3) the dilution volume in buildings is generally several orders of magnitude smaller than that of an urban airshed. Semivolatile organic compounds (SVOCS) are emitted by numerous indoor sources, including tobacco combustion, cooking, carpets, paints, resins, and glues, so indoor gasphase concentrations of these compounds are likely to be elevated relative to ambient levels. The rates of uptake and release of reversibly sorbing SVOCS by indoor materials directly affect both peak concentrations and persistence of the pollutants indoors after source elimination. Thus, accurate predictions of SVOC dynamics in indoor air require an understanding of contaminant sorption on surface materials such as carpet and wallboard. The dynamic behaviors of gas-phase nicotine and phenanthrene were investigated in a 20 ms stainless steel chamber containing carpet and painted wallboard. Each compound was studied independently, first in the empty chamber, then with each sorbent individually, and finally with both sorbents in the chamber.

  2. Emission and role of biogenic volatile organic compounds in biosphere

    International Nuclear Information System (INIS)

    Saleem, A.R.


    Plants are an essential part of the biosphere. Under the influence of climate change, plants respond in multiple ways within the ecosystem. One such way is the release of assimilated carbon back to the atmosphere in form of biogenic volatile organic compounds (BVOCs), which are produced by plants and are involved in plant growth, reproduction, defense and other . These compounds are emitted from vegetation into the atmosphere under different environmental situations. Plants produce an extensive range of BVOCs, including isoprenoids, sequisterpenes, aldehydes, alcohols and terpenes in different tissues above and below the ground. The emission rates vary with various environmental conditions and the plant growth stage in its life span.BVOCs are released under biotic and abiotic stress changes, like heat, drought, land-use changes, higher atmospheric CO concentrations, increased UV radiation and insect or disease attack. Plants emit BVOCs in atmosphere in order to avoid stress, and adapt to harsh circumstances. These compounds also have a significant role in plant-plant interaction, communication and competition. BVOCs have the ability to alter atmospheric chemistry; they readily react with atmospheric pollutant gases under high temperature and form tropospheric ozone, which is a potent air pollutant for global warming and disease occurrence. BVOCs may be a cause of photochemical smog and increase the stay of other GHGs in the atmosphere. Therefore, further study is required to assess the behavior of BVOCs in the biosphere as well as the atmosphere. (author)

  3. Identifying organic nitrogen compounds in Rocky Mountain National Park aerosols (United States)

    Beem, K. B.; Desyaterik, Y.; Ozel, M. Z.; Hamilton, J. F.; Collett, J. L.


    Nitrogen deposition is an important issue in Rocky Mountain National Park (RMNP). While inorganic nitrogen contributions to the ecosystems in this area have been studied, the sources of organic nitrogen are still largely unknown. To better understand the potential sources of organic nitrogen, filter samples were collected and analyzed for organic nitrogen species. Samples were collected in RMNP using a Thermo Fisher Scientific TSP (total suspended particulate) high-volume sampler with a PM2.5 impactor plate from April - November of 2008. The samples presented the opportunity to compare two different methods for identification of individual organic nitrogen species. The first type of analysis was performed with a comprehensive two dimensional gas chromatography (GCxGC) system using a nitrogen chemiluminescence detector (NCD). The filter samples were spiked with propanil in dichloromethane to use as an internal standard and were then extracted in water followed by solid phase extraction. The GCxGC system was comprised of a volatility based separation (DB5 column) followed by a polarity based separation (RXI-17 column). A NCD was used to specifically detect nitrogen compounds and remove the complex background matrix. Individual standards were used to identify peaks by comparing retention times. This method has the added benefit of an equimolar response for nitrogen so only a single calibration is needed for all species. In the second analysis, a portion of the same filter samples were extracted in DI water and analyzed with liquid chromatography coupled with mass spectroscopy (LC/MS). The separation was performed using a C18 column and a water-methanol gradient elution. Electrospray ionization into a time of flight mass spectrometer was used for detection. High accuracy mass measurement allowed unambiguous assignments of elemental composition of resulting ions. Positive and negative polarities were used since amines tend to show up in positive mode and nitrates in

  4. Anti-photoaging and Photoprotective Compounds Derived from Marine Organisms

    Directory of Open Access Journals (Sweden)

    Ramjee Pallela


    Full Text Available Marine organisms form a prominent component of the oceanic population, which significantly contribute in the production of cosmeceutical and pharmaceutical molecules with biologically efficient moieties. In addition to the molecules of various biological activities like anti-bacterial, anti-cancerous, anti-inflammatory and anti-oxidative etc., these organisms also produce potential photoprotective or anti-photoaging agents, which are attracting present day researchers. Continuous exposure to UV irradiation (both UV-A and UV-B leads to the skin cancer and other photoaging complications, which are typically mediated by the reactive oxygen species (ROS, generated in the oxidative pathways. Many of the anti-oxidative and anti-photoaging compounds have been identified previously, which work efficiently against photodamage of the skin. Recently, marine originated photoprotective or anti-photoaging behavior was observed in the methanol extracts of Corallina pilulifera (CPM. These extracts were found to exert potent antioxidant activity and protective effect on UV-A-induced oxidative stress in human dermal fibroblast (HDF cells by protecting DNA and also by inhibiting matrix metalloproteinases (MMPs, a key component in photoaging of the skin due to exposure to UV-A. The present review depicts various other photoprotective compounds from algae and other marine sources for further elaborative research and their probable use in cosmeceutical and pharmaceutical industries.

  5. Formation of highly oxygenated organic molecules from aromatic compounds (United States)

    Molteni, Ugo; Bianchi, Federico; Klein, Felix; El Haddad, Imad; Frege, Carla; Rossi, Michel J.; Dommen, Josef; Baltensperger, Urs


    Anthropogenic volatile organic compounds (AVOCs) often dominate the urban atmosphere and consist to a large degree of aromatic hydrocarbons (ArHCs), such as benzene, toluene, xylenes, and trimethylbenzenes, e.g., from the handling and combustion of fuels. These compounds are important precursors for the formation of secondary organic aerosol. Here we show that the oxidation of aromatics with OH leads to a subsequent autoxidation chain reaction forming highly oxygenated molecules (HOMs) with an O : C ratio of up to 1.09. This is exemplified for five single-ring ArHCs (benzene, toluene, o-/m-/p-xylene, mesitylene (1,3,5-trimethylbenzene) and ethylbenzene), as well as two conjugated polycyclic ArHCs (naphthalene and biphenyl). We report the elemental composition of the HOMs and show the differences in the oxidation patterns of these ArHCs. A potential pathway for the formation of these HOMs from aromatics is presented and discussed. We hypothesize that AVOCs may contribute substantially to new particle formation events that have been detected in urban areas.

  6. Formation of highly oxygenated organic molecules from aromatic compounds

    Directory of Open Access Journals (Sweden)

    U. Molteni


    Full Text Available Anthropogenic volatile organic compounds (AVOCs often dominate the urban atmosphere and consist to a large degree of aromatic hydrocarbons (ArHCs, such as benzene, toluene, xylenes, and trimethylbenzenes, e.g., from the handling and combustion of fuels. These compounds are important precursors for the formation of secondary organic aerosol. Here we show that the oxidation of aromatics with OH leads to a subsequent autoxidation chain reaction forming highly oxygenated molecules (HOMs with an O : C ratio of up to 1.09. This is exemplified for five single-ring ArHCs (benzene, toluene, o-/m-/p-xylene, mesitylene (1,3,5-trimethylbenzene and ethylbenzene, as well as two conjugated polycyclic ArHCs (naphthalene and biphenyl. We report the elemental composition of the HOMs and show the differences in the oxidation patterns of these ArHCs. A potential pathway for the formation of these HOMs from aromatics is presented and discussed. We hypothesize that AVOCs may contribute substantially to new particle formation events that have been detected in urban areas.

  7. Biogenic volatile organic compound emissions from vegetation fires. (United States)

    Ciccioli, Paolo; Centritto, Mauro; Loreto, Francesco


    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  8. Nonvolatile, semivolatile, or volatile: redefining volatile for volatile organic compounds. (United States)

    Võ, Uyên-Uyén T; Morris, Michael P


    Although widely used in air quality regulatory frameworks, the term "volatile organic compound" (VOC) is poorly defined. Numerous standardized tests are currently used in regulations to determine VOC content (and thus volatility), but in many cases the tests do not agree with each other, nor do they always accurately represent actual evaporation rates under ambient conditions. The parameters (time, temperature, reference material, column polarity, etc.) used in the definitions and the associated test methods were created without a significant evaluation of volatilization characteristics in real world settings. Not only do these differences lead to varying VOC content results, but occasionally they conflict with one another. An ambient evaporation study of selected compounds and a few formulated products was conducted and the results were compared to several current VOC test methodologies: SCAQMD Method 313 (M313), ASTM Standard Test Method E 1868-10 (E1868), and US. EPA Reference Method 24 (M24). The ambient evaporation study showed a definite distinction between nonvolatile, semivolatile, and volatile compounds. Some low vapor pressure (LVP) solvents, currently considered exempt as VOCs by some methods, volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents they are meant to replace. Conversely, bio-based and heavy hydrocarbons did not readily volatilize, though they often are calculated as VOCs in some traditional test methods. The study suggests that regulatory standards should be reevaluated to more accurately reflect real-world emission from the use of VOC containing products. The definition of VOC in current test methods may lead to regulations that exclude otherwise viable alternatives or allow substitutions of chemicals that may limit the environmental benefits sought in the regulation. A study was conducted to examine volatility of several compounds and a few formulated products under several current VOC test

  9. Electrocatalytic hydrogenation and hydrodeoxygenation of oxygenated and unsaturated organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, James E.; Lam, Chun Ho; Saffron, Christopher M.; Miller, Dennis J.


    A process and related electrode composition are disclosed for the electrocatalytic hydrogenation and/or hydrodeoxygenation of organic substrates such as biomass-derived bio-oil components by the production of hydrogen atoms on a catalyst surface followed by the reaction of the hydrogen atoms with the organic reactants. Biomass fast pyrolysis-derived bio-oil is a liquid mixture containing hundreds of organic compounds with chemical functionalities that are corrosive to container materials and are prone to polymerization. A high surface area skeletal metal catalyst material such as Raney Nickel can be used as the cathode. Electrocatalytic hydrogenation and/or hydrodeoxygenation convert the organic substrates under mild conditions to reduce coke formation and catalyst deactivation. The process converts oxygen-containing functionalities and unsaturated bonds into chemically reduced forms with an increased hydrogen content. The process is operated at mild conditions, which enables it to be a good means for stabilizing bio-oil to a form that can be stored and transported using metal containers and pipes.

  10. Volatile organic compound emissions from Larrea tridentata (creosotebush

    Directory of Open Access Journals (Sweden)

    A. Guenther


    Full Text Available We present results from the CREosote ATmosphere Interactions through Volatile Emissions (CREATIVE 2009 field study in southern Arizona aimed at quantifying emission rates of VOCs from creosotebush (Larrea tridentata during the summer 2009 monsoon season. This species was chosen because of its vast distribution in North and South American deserts and because its resins have been reported to contain a rich set of volatile organic compounds (VOC. While a variety of ecosystems have been investigated for VOC emissions, deserts remain essentially unstudied, partially because of their low biomass densities and water limitations. However, during the North American monsoon, a pronounced increase in rainfall from an extremely dry June (80 mm occurs over large areas of the Sonoran desert in the southwestern United States and northwestern Mexico. We observed a strong diurnal pattern of branch emissions and ambient concentrations of an extensive suite of VOCs with maxima in early afternoon. These include VOCs typically observed in forest sites (oxygenated VOCs and volatile isoprenoids as well as a large number of other compounds, some of which have not been previously described from any plant including 1-chloro-2-methoxy-benzene and isobutyronitrile. Although generally considered to be derived from anthropogenic sources, we observed emissions of aromatic compounds including benzene, and a broad range of phenolics. Dimethyl sulfide emissions from creosotebush were higher than reported from any previously studied plant suggesting that terrestrial ecosystems should be reconsidered as an important source of this climatically important gas. We also present direct, primary emission measurements of isoprene and its apparent oxidation products methyl vinyl ketone, methacrolein, and 3-methyl furan (the later three compounds are typically assumed to form from secondary reactions within the atmosphere, as well as a group of compounds considered to be fatty acid

  11. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol (United States)

    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 d...

  12. Energy dependence of radiation interaction parameters of some organic compounds (United States)

    Singh, Mohinder; Tondon, Akash; Sandhu, B. S.; Singh, Bhajan


    Gamma rays interact with a material through photoelectric absorption, Compton scattering, Rayleigh scattering and Pair production in the intermediate energy range. The probability of occurrence of a particular type of process depends on the energy of incident gamma rays, atomic number of the material, scattering angle and geometrical conditions. Various radiological parameters for organic compounds, namely ethylene glycol (C2H6O2), propylene glycol (C3H8O2), glycerin (C3H8O3), isoamyl alcohol (C5H12O), butanone (C4H8O), acetophenone (C8H8O2), cyclohexanone (C6H10O), furfural (C5H4O2), benzaldehyde (C7H6O), cinnamaldehyde (C9H8O), glutaraldehyde (C5H8O2), aniline (C6H7N), benzyl amine (C6H7N), nitrobenzene (C6H5NO2), ethyl benzene (C8H10), ethyl formate (C3H6O2) and water (H2O) are presented at 81, 122, 356 and 511 keV energies employing NaI(Tl) scintillation detector in narrow-beam transmission geometry. The radiation interaction parameters such as mass attenuation, molar extinction and mass energy absorption coefficients, half value layer, total atomic and effective electronic cross-sections and CT number have been evaluated for these organic compounds. The general trend of values of mass attenuation coefficients, half value layer, molar extinction coefficients, total atomic and effective electronic cross-sections and mass energy absorption coefficients shows a decrease with increase in incident gamma photon energy. The values of CT number are found to increases linearly with increase of effective atomic number (Zeff). The variation in CT number around Zeff ≈ 3.3 shows the peak like structure with respect to water and the correlation between CT number and linear attenuation coefficient is about 0.99. Appropriate equations are fitted to these experimentally determined parameters for the organic compounds at incident photon energy ranging from 81 keV to 511 keV used in the present study. Experimental values are compared with the theoretical data obtained using Win

  13. Removal of gasoline volatile organic compounds via air biofiltration

    International Nuclear Information System (INIS)

    Miller, R.S.; Saberiyan, A.G.; Esler, C.T.; DeSantis, P.; Andrilenas, J.S.


    Volatile organic compounds (VOCs) generated by vapor extraction and air-stripping systems can be biologically treated in an air biofiltration unit. An air biofilter consists of one or more beds of packing material inoculated with heterotrophic microorganisms capable of degrading the organic contaminant of concern. Waste gases and oxygen are passed through the inoculated packing material, where the microorganisms will degrade the contaminant and release CO 2 + H 2 O. Based on data obtained from a treatability study, a full-scale unit was designed and constructed to be used for treating gasoline vapors generated by a vapor-extraction and groundwater-treatment system at a site in California. The unit is composed of two cylindrical reactors with a total packing volume of 3 m 3 . Both reactors are packed with sphagnum moss and inoculated with hydrocarbon-degrading microorganisms of Pseudomonas and Arthrobacter spp. The two reactors are connected in series for air-flow passage. Parallel lines are used for injection of water, nutrients, and buffer to each reactor. Data collected during the startup program have demonstrated an air biofiltration unit with high organic-vapor-removal efficiency

  14. Influence of Biodegradation on the Organic Compounds Composition of Peat. (United States)

    Serebrennikova, Olga; Svarovskaya, Lidiya; Duchko, Maria; Strelnikova, Evgeniya; Russkikh, Irina


    Largest wetland systems are situated on the territory of the Tomsk region. They are characterized by the high content of organic matter (OM), which undergoes transformation as a result of physical, chemical and biological processes. The composition of peat OM is determined by the nature of initial peat-forming plants, their transformation products and bacteria. An experiment in stimulated microbial impact was carried out for estimating the influence of biodegradation on the composition of peat lipids. The composition of the functional groups in the bacterial biomass, initial peat and peat after biodegradation was determined by IR-spectroscopy using the spectrometer NICOLET 5700. The IR spectra of peat and bacteria organic matter are characterized by the presence of absorption bands in ranges: 3400-3200 cm-1, which refers to the stretching vibrations of OH-group of carboxylic acids and various types of hydrogen bonds; 1738-1671 cm-1 - characteristic stretching vibrations of the C = O group of carboxylic acids and ketones; 1262 cm-1 - stretching vibrations of C-O of carboxylic acids. Group and individual composition of organic compounds in studied samples was determined by gas chromatography-mass-spectrometry.

  15. Cytotoxic Compounds from Aerial Organs of Xanthium strumarium. (United States)

    Ferrer, Janet Piloto; Zampini, Iris Catiana; Cuello, Ana Soledad; Francisco, Marbelis; Romero, Aylema; Valdivia, Dayana; Gonzalez, Maria; Carlos Salas; Lamar, Angel Sanchez; Isla, Maria Inés


    Xanthium strumarium L., the main species of the genus Xanthium, is ubiquitously distributed. The aim of this study was to determine the cytotoxic effect of aerial organs of X strumarium, grown in Cuba, against cancer cell lines and the isolation of compounds potentially responsible for this activity. Initially, an ethanol partitioning procedure yielded the XSE extract that was subsequently fractionated with chloroform resulting in a XSCF fraction. Both, XSE and XSCF fractions exhibited cytotoxic effects on MDA MB-23 1, MCF7, A549 and CT26 cell lines by using the MTT assay. Above all, the XSCF fraction was more active than XSE. For this reason, XSCF was subsequently fractionated by silica gel chromatography and the active fractions submitted to semi-preparative HPLC for isolation of bioactive compounds. Six sub-fractions (SF1 to SF6) were recovered. Sub-fractions 3 and 6 were the most active on each assayed cell line, while sub-fractions 4 and 5 were only active against A549 and CT26 cell lines. In each case, sub-fraction 6 showed the strongest inhibitory effect. The HPLC-DAD fingerprint of sub-fraction 6 showed a single peak that was identified by GC-MS as (-) spathulenol, a sesquiterpene with reported antitumor activity.

  16. Measurement of loss rates of organic compounds in snow using in situ experiments and isotopically labelled compounds

    Directory of Open Access Journals (Sweden)

    Erika von Schneidemesser


    Full Text Available Organic molecular marker compounds are widely used to identify emissions from anthropogenic and biogenic air pollution sources in atmospheric samples and in deposition. Specific organic compounds have been detected in polar regions, but their fate after deposition to snow is poorly characterized. Within this context, a series of exposure experiments were carried out to observe the post-depositional processing of organic compounds under real-world conditions in snow on the surface of the Greenland Ice Sheet, at the Summit research station. Snow was prepared from water spiked with isotopically labelled organic compounds, representative of typical molecular marker compounds emitted from anthropogenic activities. Reaction rate constants and reaction order were determined based on a decrease in concentration to a stable, non-zero, threshold concentration. Fluoranthene-d10, docosane-d46, hexadecanoic acid-d31, docosanoic acid-d43 and azelaic acid-d14 were estimated to have first order loss rates within surface snow with reaction rate constants of 0.068, 0.040, 0.070, 0.067 and 0.047 h−1, respectively. No loss of heptadecane-d36 was observed. Overall, these results suggest that organic contaminants are archived in polar snow, although significant post-depositional losses of specific organic compounds occur. This has implications for the environmental fate of organic contaminants, as well as for ice-core studies that seek to use organic molecular markers to infer past atmospheric loadings, and source emissions.

  17. Hybrid energy storage systems utilizing redox active organic compounds (United States)

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo


    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  18. Method for spiking soil samples with organic compounds

    DEFF Research Database (Denmark)

    Brinch, Ulla C; Ekelund, Flemming; Jacobsen, Carsten S


    We examined the harmful side effects on indigenous soil microorganisms of two organic solvents, acetone and dichloromethane, that are normally used for spiking of soil with polycyclic aromatic hydrocarbons for experimental purposes. The solvents were applied in two contamination protocols to either...... higher than in control soil, probably due mainly to release of predation from indigenous protozoa. In order to minimize solvent effects on indigenous soil microorganisms when spiking native soil samples with compounds having a low water solubility, we propose a common protocol in which the contaminant...... tagged with luxAB::Tn5. For both solvents, application to the whole sample resulted in severe side effects on both indigenous protozoa and bacteria. Application of dichloromethane to the whole soil volume immediately reduced the number of protozoa to below the detection limit. In one of the soils...

  19. Control of volatile organic compound emissions: the issues

    Energy Technology Data Exchange (ETDEWEB)

    Woodfield, M.; Marlowe, I.


    This review paper outlines the problems caused by the emissions of volatile organic compounds (VOC) which are causing increasing concern because of their part in the formation of photochemical oxidation that causes damage to crops and vegetation and because of the toxic and climatic effects. It briefly summarises current knowledge of VOC emissions and their effects and then suggests options for abatement of VOC emissions in the UK and the EEC. A comparison of anthropogenic VOC emission in the UK and the EEC from various sources is given. Further information is needed on current emissions, on the costs and efficiencies of control technologies and on the effects of control on industry before decisions can be made on the suitability, extent and strategy to control VOC emissions in the UK. The report was prepared for the UK Department of Trade and Industry (Headquarters).

  20. Effects of trace volatile organic compounds on methane oxidation

    Directory of Open Access Journals (Sweden)

    Chiemchaisri Wilai


    Full Text Available The effects of volatile organic compounds (VOCs on methane oxidation in landfill cover soils were examined. The batch experiments were conducted using single and mixed VOCs, such as, dichloromethane (DCM, trichloroethylene (TCE, tetrachloroethylene (PCE, and benzene. The results from all combinations showed a decrease in methane oxidation rate with increase in VOC concentrations. Moreover, inhibition effects of TCE and DCM were found higher than benzene and PCE. The reduction of methane oxidation by benzene and PCE could be attributed to the toxicity effect, whereas TCE and DCM were found to exhibit the competitive-inhibition effect. When the soil was mixed with DCM, no methane oxidation was found. Damage to the cell's internal membrane was found in a methanotrophic culture exposed to VOC gases which is the attachment site of a key enzyme needed for methane oxidation

  1. Imaging subsurface geology and volatile organic compound plumes

    International Nuclear Information System (INIS)

    Qualheim, B.J.; Daley, P.F.; Johnson, V.; McPherrin, R.V.; Laguna, G.


    Lawrence Livermore National Laboratory (LLNL) (Fig. 1) is in the final stages of the Superfund decisionmaking process for site remediation and restoration. In the process of characterizing the subsurface of the LLNL site, we have developed unique methods of collecting, storing, retrieving, and imaging geologic and chemical data from more than 350 drill holes. The lateral and vertical continuity of subsurface paleostream channels were mapped for the entire LLNL site using geologic descriptions from core samples, cuttings, and interpretations from geophysical logs. A computer-aided design and drafting program, SLICE, written at LLNL, was used to create two-dimensional maps of subsurface sediments, and state-of-the-art software produced three-dimensional images of the volatile organic compound (VOC) plumes using data from water and core fluid analyses

  2. Investigation of michelson interferometer for volatile organic compound sensor

    International Nuclear Information System (INIS)

    Marzuarman; Rivai, Muhammad; Sardjono, Tri Arief; Purwanto, Djoko


    The sensor device is required to monitor harmful gases in the environments and industries. Many volatile organic compounds adsorbed on the sensor material will result in changes of the optical properties including the refractive index and the film thickness. This study designed and realized a vapor detection device using the principle of Michelson Interferometer. The laser light beamed with a wavelength of 620 nm was divided by using a beam splitter. Interference occurredwhen the two separated lights were recombined. The phase difference between the two beams determined whether the interference would destruct or construct each other to produce the curved fringes. The vapor samples used in these experiments were ethanol and benzene. The results showed that the ethanol concentration of 1611-32210 ppm produced a fringe shift of 197 pixels, while the concentration of benzene of 964-19290 ppm produced a fringe shift of 273 pixels. (paper)

  3. Emission of the main biogenic volatile organic compounds in France

    International Nuclear Information System (INIS)

    Luchetta, L.; Simon, V.; Torres, L.


    An estimation of biogenic emissions of the main non-methanic Volatile Organic Compounds (VOCs) due to the forest cover in France has been realized. 32 species representing 98% of French forest have been considered for the estimation. The latter dealt on a net made of 93 irregular spatial grids (Departments) with an average size of 75 km x 75 km. We assigned emission rates and foliar biomass densities specific to each of the 32 species. The environmental variables (temperature, light intensity) have been collected for the whole of French Departments. A special effort was extended so as to use ''Guenther's'' calculation algorithms, and specific emitting factors to species growing in France or in bordering countries. Along the way of the five years (1994-1998) of the study we have calculated the yearly mean of isoprene, mono-terpenes and Other Volatile Organic Compounds (OVOCs) emissions on the scale of the French Departments. At the national level isoprene emission is reckoned at 457 kt yr -1 and represents nearly 49% of the total emission, whereas mono-terpenes with 350 kt yr -1 and OVOCs with 129 kt yr -1 represent respectively 37% and 14% of the total. The yearly biogenic emission of VOCs in France represents virtually half the anthropic source. However in some regions (Mediterranean area) natural emissions can widely exceed anthropic emissions during certain periods. Let's note the whole of our results remains tinged with a great uncertainty because the estimations carried out are presented with correction factors that can reach values comprised between 4 and 7. (author)

  4. Treatment of trace organic compounds in common onsite wastewater systems (United States)

    Robert Siegrist,; Conn, Kathleen E.


    Onsite wastewater systems (OWS) have historically been relied on to treat conventional pollutants and pathogens in a fashion similar to that expected from centralized wastewater systems. However, based on the occurrence of, and potential effects from, contaminants of emerging concern in wastewaters, OWS as well as centralized systems need to account for these compounds in system design and use. One group of contaminants involves organic compounds such as those associated with consumer product chemicals and pharmaceuticals, which are collectively referred to as trace organic compounds (TOrCs) due to their very low levels (e.g., ng/L to ug/L) relative to other pollutants. The question being confronted today is how best to account for TOrCs in onsite system design and use while also achieving other goals such as system simplicity, limited operation and maintenance requirements, low cost, and sustainability. In contrast to conventional pollutants such as nutrients and pathogens which have specific and achievable treatment goals, there are currently no enforceable treatment standards for TOrCs, which often have non-traditional toxicological endpoints (i.e. endocrine disruption). As highlighted in this paper, there are a large number of TOrCs that can be present in OWS and they have different properties, can be present at different frequencies of occurrence and concentrations, and have different susceptibilities to treatment in OWS. In general, based on the studies summarized in this paper, TOrCs normally should not require additional considerations beyond those for conventional pollutants and pathogens (e.g., nitrogen or bacteria and virus) during design and use of OWS. That said, there are situations where TOrCs could be a serious concern warranting special consideration in system design and use. In this paper, the frequency of occurrence of TOrCs and the range of concentrations encountered are highlighted. An evolving approach is outlined that could help assess the

  5. Neurotoxicity of fungal volatile organic compounds in Drosophila melanogaster. (United States)

    Inamdar, Arati A; Masurekar, Prakash; Bennett, Joan Wennstrom


    Many volatile organic compounds (VOCs) are found in indoor environment as products of microbial metabolism. In damp indoor environments, fungi are associated with poor air quality. Some epidemiological studies have suggested that microbial VOCs have a negative impact on human health. Our study was designed to provide a reductionist approach toward studying fungal VOC-mediated toxicity using the inexpensive model organism, Drosophila melanogaster, and pure chemical standards of several important fungal VOCs. Low concentrations of the following known fungal VOCs, 0.1% of 1-octen-3-ol and 0.5% of 2-octanone; 2,5 dimethylfuran; 3-octanol; and trans-2-octenal, caused locomotory defects and changes in green fluorescent protein (GFP)- and antigen-labeled dopaminergic neurons in adult D. melanogaster. Locomotory defects could be partially rescued with L-DOPA. Ingestion of the antioxidant, vitamin E, improved the survival span and delayed the VOC-mediated changes in dopaminergic neurons, indicating that the VOC-mediated toxicity was due, in part, to generation of reactive oxygen species.

  6. Volatile Organic Compounds: Characteristics, distribution and sources in urban schools (United States)

    Mishra, Nitika; Bartsch, Jennifer; Ayoko, Godwin A.; Salthammer, Tunga; Morawska, Lidia


    Long term exposure to organic pollutants, both inside and outside school buildings may affect children's health and influence their learning performance. Since children spend significant amount of time in school, air quality, especially in classrooms plays a key role in determining the health risks associated with exposure at schools. Within this context, the present study investigated the ambient concentrations of Volatile Organic Compounds (VOCs) in 25 primary schools in Brisbane with the aim to quantify the indoor and outdoor VOCs concentrations, identify VOCs sources and their contribution, and based on these; propose mitigation measures to reduce VOCs exposure in schools. One of the most important findings is the occurrence of indoor sources, indicated by the I/O ratio >1 in 19 schools. Principal Component Analysis with Varimax rotation was used to identify common sources of VOCs and source contribution was calculated using an Absolute Principal Component Scores technique. The result showed that outdoor 47% of VOCs were contributed by petrol vehicle exhaust but the overall cleaning products had the highest contribution of 41% indoors followed by air fresheners and art and craft activities. These findings point to the need for a range of basic precautions during the selection, use and storage of cleaning products and materials to reduce the risk from these sources.

  7. Influence of Sensory Stimulation on Exhaled Volatile Organic Compounds. (United States)

    Mazzatenta, A; Pokorski, M; Di Tano, A; Cacchio, M; Di Giulio, C


    The real-time exhaled volatile organic compounds (VOCs) have been suggested as a new biomarker to detect and monitor physiological processes in the respiratory system. The VOCs profile in exhaled breath reflects the biochemical alterations related to metabolic changes, organ failure, and neuronal activity, which are, at least in part, transmitted via the lungs to the alveolar exhaled breath. Breath analysis has been applied to investigate cancer, lung failure, and neurodegenerative diseases. There are by far no studies on the real-time monitoring of VOCs in sensory stimulation in healthy subjects. Therefore, in this study we investigated the breath parameters and exhaled VOCs in humans during sensory stimulation: smell, hearing, sight, and touch. Responses sensory stimulations were recorded in 12 volunteers using an iAQ-2000 sensor. We found significant effects of sensory stimulation. In particular, olfactory stimulation was the most effective stimulus that elicited the greatest VOCs variations in the exhaled breath. Since the olfactory pathway is distinctly driven by the hypothalamic and limbic circuitry, while other senses project first to the thalamic area and then re-project to other brain areas, the findings suggest the importance of olfaction and chemoreception in the regulation lung gas exchange. VOCs variations during sensory activation may become putative indicators of neural activity.

  8. Emerging site characterization technologies for volatile organic compounds

    International Nuclear Information System (INIS)

    Rohay, V.J.; Last, G.V.


    A Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) expedited response action (ERA) has been initiated at Hanford Site's 200 West Area for the removal of carbon tetrachloride from the unsaturated soils. In coordination with the ERA, innovative technology demonstrations are being conducted as part of DOE's Volatile Organic Compounds -- Arid Integrated Demonstration in an effort to improve upon baseline technologies. Improved methods for accessing, sampling, and analyzing soil and soil-vapor contaminants is a high priority. Sonic drilling is being evaluated as an alternative to cable-tool drilling, while still providing the advantages of reliability, containment, and waste minimization. Applied Research Associates, Inc. used their cone penetrometer in the 200 West Area to install a permanent soil-gas monitoring probe and to collect soil-gas profile data. However, successful application of this technology will require the development of an improved ability to penetrate coarse gravel units. A Science and Engineering Associates Membrane Instrumentation and Sampling Technique (SEAMIST) system designed for collecting in situ soil samples and air permeability data in between drilling runs at variable depths is being tested in 200 West Area boreholes. Analytical technologies scheduled for testing include supercritical fluid extraction and analysis for non- and semi-volatile organic co-contaminants and an unsaturated flow apparatus developed by Washington State University for the measurement of transport parameters

  9. A method to estimate the enthalpy of formation of organic compounds with chemical accuracy

    DEFF Research Database (Denmark)

    Hukkerikar, Amol; Meier, Robert J.; Sin, Gürkan


    through better correlation of data. For parameter estimation, a data-set containing 861 experimentally measured values of a wide variety of organic compounds (hydrocarbons, oxygenated compounds, nitrogenated compounds, multi-functional compounds, etc.) is used. The developed property model for Δf...

  10. Urinary Volatile Organic Compounds for the Detection of Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Tanzeela Khalid

    Full Text Available The aim of this work was to investigate volatile organic compounds (VOCs emanating from urine samples to determine whether they can be used to classify samples into those from prostate cancer and non-cancer groups. Participants were men referred for a trans-rectal ultrasound-guided prostate biopsy because of an elevated prostate specific antigen (PSA level or abnormal findings on digital rectal examination. Urine samples were collected from patients with prostate cancer (n = 59 and cancer-free controls (n = 43, on the day of their biopsy, prior to their procedure. VOCs from the headspace of basified urine samples were extracted using solid-phase micro-extraction and analysed by gas chromatography/mass spectrometry. Classifiers were developed using Random Forest (RF and Linear Discriminant Analysis (LDA classification techniques. PSA alone had an accuracy of 62-64% in these samples. A model based on 4 VOCs, 2,6-dimethyl-7-octen-2-ol, pentanal, 3-octanone, and 2-octanone, was marginally more accurate 63-65%. When combined, PSA level and these four VOCs had mean accuracies of 74% and 65%, using RF and LDA, respectively. With repeated double cross-validation, the mean accuracies fell to 71% and 65%, using RF and LDA, respectively. Results from VOC profiling of urine headspace are encouraging and suggest that there are other metabolomic avenues worth exploring which could help improve the stratification of men at risk of prostate cancer. This study also adds to our knowledge on the profile of compounds found in basified urine, from controls and cancer patients, which is useful information for future studies comparing the urine from patients with other disease states.

  11. Attenuation of trace organic compounds (TOrCs) inbioelectrochemical systems

    KAUST Repository

    Werner, Craig M.


    Microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) are two types of microbial bioelectrochemical systems (BESs) that use microorganisms to convert chemical energy in wastewaters into useful energy products such as (bio)electricity (MFC) or hydrogen gas (MEC). These two systems were evaluated for their capacity to attenuate trace organic compounds (TOrCs), commonly found in municipal wastewater, under closed circuit (current generation) and open circuit (no current generation) conditions, using acetate as the carbon source. A biocide was used to evaluate attenuation in terms of biotransformation versus sorption. The difference in attenuation observed before and after addition of the biocide represented biotransformation, while attenuation after addition of a biocide primarily indicated sorption. Attenuation of TOrCs was similar in MFCs and MECs for eight different TOrCs, except for caffeine and trimethoprim where slightly higher attenuation was observed in MECs. Electric current generation did not enhance attenuation of the TOrCs except for caffeine, which showed slightly higher attenuation under closed circuit conditions in both MFCs and MECs. Substantial sorption of the TOrCs occurred to the biofilm-covered electrodes, but no consistent trend could be identified regarding the physico-chemical properties of the TOrCs tested and the extent of sorption. The octanol-water distribution coefficient at pH 7.4 (log DpH 7.4) appeared to be a reasonable predictor for sorption of some of the compounds (carbamazepine, atrazine, tris(2-chloroethyl) phosphate and diphenhydramine) but not for others (N,N-Diethyl-meta-toluamide). Atenolol also showed high levels of sorption despite being the most hydrophilic in the suite of compounds studied (log DpH 7.4=-1.99). Though BESs do not show any inherent advantages over conventional wastewater treatment, with respect to TOrC removal, overall removals in BESs are similar to that reported for conventional wastewater

  12. Exposure to volatile organic compounds: Comparison among different transportation modes (United States)

    Do, Duc Hoai; Van Langenhove, Herman; Chigbo, Stephen Izuchukwu; Amare, Abebech Nuguse; Demeestere, Kristof; Walgraeve, Christophe


    The increasing trend of promoting public transportation (bus tram, metro, train) and more environmental friendly and sustainable non fossil-fuel alternatives (walking, cycling etc) as substitutes for auto vehicles brings forward new questions with regard to pollutant levels to which commuters are exposed. In this study, three transportation modes (tram, auto vehicle and bicycle) are studied and concentration levels of 84 volatile organic compounds (VOCs) (hydrocarbons, aromatic hydrocarbons, oxygen containing hydrocarbons, terpenes and halogenated compounds) are measured along a route in the city of Ghent, Belgium. The concentration levels are obtained by active sampling on Tenax TA sorbent tubes followed by thermal desorption gas chromatography mass spectrometry (TD-GC-MS) using deuterated toluene as an internal standard. The median total VOC concentrations for the tram mode (33 μg/m³) is 1.7 times higher than that of the bicycle mode (20 μg/m³) and 1.5 times higher than for the car mode (22 μg/m³). It is found that aromatic hydrocarbons account for a significant proportion in the total VOCs concentration (TVOCs) being as high as 41-57%, 59-72% and 58-72% for the tram, car and bicycle respectively. In all transportation modes, there was a high (r > 0.6) degree of correlation between BTEX compounds, isopropylbenzene, n-propylbenzene, 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene. When comparing time weighed average concentrations along a fixed route in Ghent, it is found that commuters using the tram mode experience the highest TVOCs concentration levels. However, next to the concentration level to which commuters are exposed, the physical activity level involving the mode of transportation is important to assess the exposure to toxic VOCs. It is proven that the commuter using a bicycle (4.3 ± 1.5 μg) inhales seven and nine times more benzene compared to the commuter using the car and tram respectively, when the same route is followed.

  13. Micron Scale Mapping and Depth Profiling of Organic Compounds in Geologic Material: Femtosecond - Laser Desorption Laser Postionization - Mass Spectrometry (fs-LDPI-MS) (United States)

    Pasterski, M. J.; Barry, G. E.; Hanley, L.; Kenig, F. P. H.


    organic compounds relative to host rock features. We were able to use the spatial distribution of the targeted organic compounds to unambiguously characterize them as either indigenous, non-indigenous or contaminants. This technique is applicable to the analysis of both Precambrian samples and extraterrestrial material.

  14. Aqueous processing of organic compounds in carbonaceous asteroids (United States)

    Trigo-Rodríguez, Josep Maria; Rimola, Albert; Martins, Zita


    There is growing evidence pointing towards a prebiotic synthesis of complex organic species in water-rich undifferentiated bodies. For instance, clays have been found to be associated with complex organic compounds (Pearson et al. 2002; Garvie & Buseck 2007; Arteaga et al. 2010), whereas theoretical calculations have studied the interaction between the organic species and surface minerals (Rimola et al., 2013) as well as surface-induced reactions (Rimola at al. 2007). Now, we are using more detailed analytical techniques to study the possible processing of organic molecules associated with the mild aqueous alteration in CR, CM and CI chondrites. To learn more about these processes we are studying carbonaceous chondrites at Ultra High-Resolution Transmission Electron Microscopy (UHR-TEM). We are particularly interested in the relationship between organics and clay minerals in carbonaceous chondrites (CCs) matrixes (Trigo-Rodríguez et al. 2014, 2015).We want to address two goals: i) identifying the chemical steps in which the organic molecules could have increased their complexity (i.e., surface interaction and catalysis); and ii) studying if the organic matter present in CCs experienced significant processing concomitant to the formation of clays and other minerals at the time in which these planetary bodies experienced aqueous alteration. Here, these two points are preliminarily explored combing experimental results with theoretical calculations based on accurate quantum mechanical methods. References Arteaga O, Canillas A, Crusats J, El-Hachemi Z, Jellison GE, Llorca J, Ribó JM (2010) Chiral biases in solids by effect of shear gradients: a speculation on the deterministic origin of biological homochirality. Orig Life Evol Biosph 40:27-40. Garvie LAJ, Buseck PR (2007) Prebiotic carbon in clays from Orgueil and Ivuna (CI) and Tagish lake (C2 ungrouped) meteorites. Meteorit Planet Sci 42:2111-2117. Pearson VK, Sephton MA, Kearsley AT, Bland AP, Franchi IA, Gilmour

  15. Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station (United States)

    Ho, K. F.; Lee, S. C.; Chiu, Gloria M. Y.

    Volatile organic compounds (VOCs), PAHs and carbonyl compounds are the major toxic components in Hong Kong. Emissions from motor vehicles have been one of the primary pollution sources in the metropolitan areas throughout Hong Kong for a long time. A 1-yr monitoring program for VOCs, PAHs and carbonyl compounds had been performed at a roadside urban station at Hong Kong Polytechnic University in order to determine the variations and correlations of each selected species (VOCs, PAHs and carbonyl compounds). This study is aimed to analyze toxic volatile organic compounds (benzene, toluene, ethylbenzene and xylene), two carbonyl compounds (formaldehyde, acetaldehyde), and selective polycyclic aromatic hydrocarbons. The monitoring program started from 16 April 1999 to 30 March 2000. Ambient VOC concentrations, many of which originate from the same sources as particulate PAHs and carbonyls compounds, show significant quantities of benzene, toluene and xylenes. Correlations and multivariate analysis of selected gaseous and particulate phase organic pollutants were performed. Source identification by principle component analysis and hierarchical cluster analysis allowed the identification of four sources (factors) for the roadside monitoring station. Factor 1 represents the effect of diesel vehicle exhaust. Factor 2 shows the contribution of aromatic compounds. Factor 3 explains photochemical products—formaldehyde and acetaldehyde. Factor 4 explains the effect of gasoline vehicle exhaust.

  16. Secondary organic aerosol formation from a large number of reactive man-made organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Derwent, Richard G., E-mail: [rdscientific, Newbury, Berkshire (United Kingdom); Jenkin, Michael E. [Atmospheric Chemistry Services, Okehampton, Devon (United Kingdom); Utembe, Steven R.; Shallcross, Dudley E. [School of Chemistry, University of Bristol, Bristol (United Kingdom); Murrells, Tim P.; Passant, Neil R. [AEA Environment and Energy, Harwell International Business Centre, Oxon (United Kingdom)


    A photochemical trajectory model has been used to examine the relative propensities of a wide variety of volatile organic compounds (VOCs) emitted by human activities to form secondary organic aerosol (SOA) under one set of highly idealised conditions representing northwest Europe. This study applied a detailed speciated VOC emission inventory and the Master Chemical Mechanism version 3.1 (MCM v3.1) gas phase chemistry, coupled with an optimised representation of gas-aerosol absorptive partitioning of 365 oxygenated chemical reaction product species. In all, SOA formation was estimated from the atmospheric oxidation of 113 emitted VOCs. A number of aromatic compounds, together with some alkanes and terpenes, showed significant propensities to form SOA. When these propensities were folded into a detailed speciated emission inventory, 15 organic compounds together accounted for 97% of the SOA formation potential of UK man made VOC emissions and 30 emission source categories accounted for 87% of this potential. After road transport and the chemical industry, SOA formation was dominated by the solvents sector which accounted for 28% of the SOA formation potential.

  17. Reactivity of group IV (100) semiconductor surfaces towards organic compounds (United States)

    Wang, George T.

    The reactions of simple and multifunctional organic compounds with the clean silicon, germanium, and diamond (100)-2 x 1 semiconductor surfaces have been investigated using a combination of multiple internal reflection infrared spectroscopy and quantum chemistry density functional theory calculations. From these studies, an improved understanding of the atomic level reactivity of these semiconductor surfaces has been obtained, along with insights into how to achieve their selective coupling with organics of desired and varied functionality. In addition to the Si(100) and Ge(100) surfaces, our results show that cycloaddition chemistry can also be extended to the diamond (100) surface. At room temperature, 1,3-butadiene was found to form a Diels-Alder product with the diamond (100) surface, as evidenced by isotopic substitution experiments and comparison of the surface adduct with its direct molecular analogue, cyclohexene. The reactions of other classes of molecules in addition to alkenes on the Si(100) and Ge(100) surfaces, including a series of five-membered cyclic amines, were also examined. For tertiary aliphatic amines on Si(100) and both secondary and tertiary aliphatic amines on Ge(100), a majority of the molecules were observed to become stably trapped in dative-bonded precursor states rather than form energetically favorable dissociation products. For pyrrole, aromaticity was found to play a defining role in its reactivity, and a comparison of its molecular and surface reactivity reveals interesting similarities. To probe the factors controlling the selectivity of organic reactions on clean semiconductor surfaces, the adsorption of acetone and a series of unsaturated ketones was also investigated. The reaction of acetone on Ge(100) was found to be under thermodynamic control at room temperature, resulting in the formation of an "ene" product rather than the kinetically favored [2+2] C=O cycloaddition product previously observed on the Si(100) surface. In

  18. Calixarene Langmuir-Blodgett Thin Films For Volatile Organic Compounds

    International Nuclear Information System (INIS)

    Capan, R.


    Volatile Organic Compounds (VOC's) such as benzene, toluene, chloroform are chemicals that evaporate easily at room temperature and create many health effects on young children, elderly and a person with heightened sensitivity to chemicals. Concentrations of many VOC's are consistently higher indoors (up to ten times higher) than outdoors because many household products (for example paints, varnishes, many cleaning, disinfecting, cosmetic, degreasing, hobby products etc.) contains VOC's. Some effects of VOC's for human beings can be followed as the eye, nose, and throat irritations; headaches, loss of coordination, nausea; damage to liver, kidneys, and central nervous system. These are big incentives for the development of portable, user-friendly VOC's sensors and for the investigation of the sensing properties of new materials to be prepared as a thin film sensing element. Langmuir-Blodgett (LB) ultra-thin film technique allows us to produce monolayer or multilayer organic thin films that can be used as chemical sensing elements.In this work, materials known as the calix[n]arene are investigated for the production of sensing material against several VOC's such as the chloroform, benzene, ethylbenzene and toluene by using LB thin film techniques. UV-visible, Quartz Crystal Microbalance (QCM) system and Surface Plasmon Resonance (SPR) measurement techniques are used to check the quality of the deposition process onto a solid substrate. Surface morphology and sensing properties of the final sensing layers are then studied by Atomic Force Microscopy (AFM) and SPR techniques. Our results indicated that selected calixarene materials are sensitive enough and quite suitable to fabricate a highly ordered, reproducible and uniform LB film that can be used as a very thin sensing layer against VOC's.

  19. Volatile organic compounds at swine facilities: a critical review. (United States)

    Ni, Ji-Qin; Robarge, Wayne P; Xiao, Changhe; Heber, Albert J


    Volatile organic compounds (VOCs) are regulated aerial pollutants that have environmental and health concerns. Swine operations produce and emit a complex mixture of VOCs with a wide range of molecular weights and a variety of physicochemical properties. Significant progress has been made in this area since the first experiment on VOCs at a swine facility in the early 1960s. A total of 47 research institutions in 15 North American, European, and Asian countries contributed to an increasing number of scientific publications. Nearly half of the research papers were published by U.S. institutions. Investigated major VOC sources included air inside swine barns, in headspaces of manure storages and composts, in open atmosphere above swine wastewater, and surrounding swine farms. They also included liquid swine manure and wastewater, and dusts inside and outside swine barns. Most of the sample analyses have been focusing on identification of VOC compounds and their relationship with odors. More than 500 VOCs have been identified. About 60% and 10% of the studies contributed to the quantification of VOC concentrations and emissions, respectively. The largest numbers of VOC compounds with reported concentrations in a single experimental study were 82 in air, 36 in manure, and 34 in dust samples. The relatively abundant VOC compounds that were quantified in at least two independent studies included acetic acid, butanoic acid (butyric acid), dimethyl disulfide, dimethyl sulfide, iso-valeric, p-cresol, propionic acid, skatole, trimethyl amine, and valeric acid in air. They included acetic acid, p-cresol, iso-butyric acid, butyric acid, indole, phenol, propionic acid, iso-valeric acid, and skatole in manure. In dust samples, they were acetic acid, propionic acid, butyric acid, valeric acid, p-cresol, hexanal, and decanal. Swine facility VOCs were preferentially bound to smaller-size dusts. Identification and quantification of VOCs were restricted by using instruments based on

  20. Non-microbial sources of microbial volatile organic compounds. (United States)

    Choi, Hyunok; Schmidbauer, Norbert; Bornehag, Carl-Gustaf


    The question regarding the true sources of the purported microbial volatile organic compounds (MVOCs) remains unanswered. To identify microbial, as well as non-microbial sources of 28 compounds, which are commonly accepted as microbial VOCs (i.e. primary outcome of interest is Σ 28 VOCs). In a cross-sectional investigation of 390 homes, six building inspectors assessed water/mold damage, took air and dust samples, and measured environmental conditions (i.e., absolute humidity (AH, g/m(3)), temperature (°C), ventilation rate (ACH)). The air sample was analyzed for volatile organic compounds (μg/m(3)) and; dust samples were analyzed for total viable fungal concentration (CFU/g) and six phthalates (mg/g dust). Four benchmark variables of the underlying sources were defined as highest quartile categories of: 1) the total concentration of 17 propylene glycol and propylene glycol ethers (Σ17 PGEs) in the air sample; 2) 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate (TMPD-MIB) in the air sample; 3) semi-quantitative mold index; and 4) total fungal load (CFU/g). Within severely damp homes, co-occurrence of the highest quartile concentration of either Σ17 PGEs or TMPD-MIB were respectively associated with a significantly higher median concentration of Σ 28 VOCs (8.05 and 13.38μg/m(3), respectively) compared to the reference homes (4.30 and 4.86μg/m(3), respectively, both Ps ≤0.002). Furthermore, the homes within the highest quartile range for Σ fungal load as well as AH were associated with a significantly increased median Σ 28 VOCs compared to the reference group (8.74 vs. 4.32μg/m(3), P=0.001). Within the final model of multiple indoor sources on Σ 28 VOCs, one natural log-unit increase in summed concentration of Σ17 PGEs, plus TMPD-MIB (Σ 17 PGEs + TMPD-MIB) was associated with 1.8-times (95% CI, 1.3-2.5), greater likelihood of having a highest quartile of Σ 28 VOCs, after adjusting for absolute humidity, history of repainting at least one room

  1. Biogenic volatile organic compound (VOC) emissions from forests in Finland

    International Nuclear Information System (INIS)

    Lindfors, V.; Laurila, T.


    We present model estimates of biogenic volatile organic compound (VOC) emissions from the forests in Finland. The emissions were calculated for the years 1995-1997 using the measured isoprene and monoterpene emission factors of boreal tree species together with detailed satellite land cover information and meteorological data. The three-year average emission is 319 kilotonnes per annum, which is significantly higher than the estimated annual anthropogenic VOC emissions of 193 kilotonnes. The biogenic emissions of the Finnish forests are dominated by monoterpenes, which contribute approximately 45% of the annual total. The main isoprene emitter is the Norway spruce (Picea abies) due to its high foliar biomass density. Compared to the monoterpenes, however, the total isoprene emissions are very low, contributing only about 7% of the annual forest VOC emissions. The isoprene emissions are more sensitive to the meteorological conditions than the monoterpene emissions, but the progress of the thermal growing season is clearly reflected in all biogenic emission fluxes. The biogenic emission densities in northern Finland are approximately half of the emissions in the southern parts of the country. (orig.)

  2. Advances in Biodegradation of Multiple Volatile Organic Compounds (United States)

    Zhang, M.; Yoshikawa, M.


    Bioremediation of soil and groundwater containing multiple contaminants remains a challenge in environmental science and engineering because complete biodegradation of all components is necessary but very difficult to accomplish in practice. This presentation provides a brief overview on advances in biodegradation of multiple volatile organic compounds (VOCs) including chlorinated ethylenes, benzene, toluene and dichloromethane (DCM). Case studies on aerobic biodegradation of benzene, toluene and DCM, and integrated anaerobic-aerobic biodegradation of 7 contaminants, specifically, tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (cis-DCE), vinyl chloride (VC), DCM, benzene and toluene will be provided. Recent findings based on systematic laboratory experiments indicated that aerobic toluene degradation can be enhanced by co-existence of benzene. Propioniferax, not a known benzene, toluene and DCM degrader can be a key microorganism that involves in biodegradation when the three contaminants co-exist. Integrated anaerobic-aerobic biodegradation is capable of completely degrading the seven VOCs with initial concentrations less than 30 mg/L. Dehalococcoides sp., generally considered sensitive to oxygen, can survive aerobic conditions for at least 28 days, and can be activated during the subsequent anaerobic biodegradation. This presentation may provide a systematic information about biodegradation of multiple VOCs, and a scientific basis for the complete bioremediation of multiple contaminants in situ.

  3. [Indoor volatile organic compounds: concentrations, sources, variation factors]. (United States)

    Palot, A; Charpin-Kadouch, C; Ercoli, J; Charpin, D


    Volatile organic compounds (V.O.C.) are part of urban air pollution and are also generated indoors from cleaning and maintenance products. VOC measurements are, on average, 10 times higher within homes than outside. Results of the national survey led by the Observatoire National de la Qualité de l'Air Intérieur demonstrated that up to 25% of French homes have very high or high concentrations of VOC. Indoor levels depend mainly on indoor sources. Aldehydes are included in many everyday life products. VOC originate from various household decorating and cleaning products. Some products are less detrimental to the environment and health and have special labelling. Indoor VOC levels also depend on the rate of air exchange and on household characteristics such as indoor temperature and humidity, age of the building, presence of smokers, and communication with a garage. The public may participate in maintaining good indoor air quality and the authorities should also improve regulations. VOC are part of everyday air pollution. Their sources and concentrations should be better monitored.

  4. Volatile organic compounds adsorption using different types of adsorbent

    Directory of Open Access Journals (Sweden)

    Pimanmes Chanayotha


    Full Text Available Adsorbents were synthesized from coconut shell, coal and coke by pyrolysis followed by chemical activation process. These synthesized materials were used as adsorbents in adsorption test to determine the amount of volatile organic compounds (VOCs namely, 2-Hydroxyethyl methacrylate (HEMA, Octamethylcyclotetrasiloxane and Alkanes standard solution (C8-C20. The adsorption capacities of both synthesized adsorbents and commercial grade adsorbents (Carbotrap™ B and Carbotrap™ C were also compared. It was found that adsorbent A402, which was produced from coconut shell, activated with 40% (wt. potassium hydroxide and at activating temperature of 800°C for 1 hr, could adsorb higher amount of both HEMA and Octamethylcyclotetrasiloxane than other synthesized adsorbents. The maximum adsorption capacity of adsorbent A402 in adsorbing HEMA and Octamethylcyclotetrasiloxane were 77.87% and 50.82% respectively. These adsorption capabilities were 79.73% and 70.07% of the adsorption capacity of the commercial adsorbent Carbotrap™ B respectively. All three types of the synthesized adsorbent (A402, C302, C402 showed the capability to adsorb alkanes standard solution through the range of C8-C20 . However, their adsorption capacities were high in a specific range of C10-C11. The result from the isotherm plot was indicated that surface adsorption of synthesized adsorbent was isotherm type I while the surface adsorption of commercial adsorbent was isotherm type III.

  5. Detection of semi-volatile organic compounds in permeable ... (United States)

    Abstract The Edison Environmental Center (EEC) has a research and demonstration permeable parking lot comprised of three different permeable systems: permeable asphalt, porous concrete and interlocking concrete permeable pavers. Water quality and quantity analysis has been ongoing since January, 2010. This paper describes a subset of the water quality analysis, analysis of semivolatile organic compounds (SVOCs) to determine if hydrocarbons were in water infiltrated through the permeable surfaces. SVOCs were analyzed in samples collected from 11 dates over a 3 year period, from 2/8/2010 to 4/1/2013.Results are broadly divided into three categories: 42 chemicals were never detected; 12 chemicals (11 chemical test) were detected at a rate of less than 10% or less; and 22 chemicals were detected at a frequency of 10% or greater (ranging from 10% to 66.5% detections). Fundamental and exploratory statistical analyses were performed on these latter analyses results by grouping results by surface type. The statistical analyses were limited due to low frequency of detections and dilutions of samples which impacted detection limits. The infiltrate data through three permeable surfaces were analyzed as non-parametric data by the Kaplan-Meier estimation method for fundamental statistics; there were some statistically observable difference in concentration between pavement types when using Tarone-Ware Comparison Hypothesis Test. Additionally Spearman Rank order non-parame

  6. Ionic liquid technology to recover volatile organic compounds (VOCs). (United States)

    Salar-García, M J; Ortiz-Martínez, V M; Hernández-Fernández, F J; de Los Ríos, A P; Quesada-Medina, J


    Volatile organic compounds (VOCs) comprise a wide variety of carbon-based materials which are volatile at relatively low temperatures. Most of VOCs pose a hazard to both human health and the environment. For this reason, in the last years, big efforts have been made to develop efficient techniques for the recovery of VOCs produced from industry. The use of ionic liquids (ILs) is among the most promising separation technologies in this field. This article offers a critical overview on the use of ionic liquids for the separation of VOCs both in bulk and in immobilized form. It covers the most relevant works within this field and provides a global outlook on the limitations and future prospects of this technology. The extraction processes of VOCs by using different IL-based assemblies are described in detail and compared with conventional methods This review also underlines the advantages and limitations posed by ionic liquids according to the nature of the cation and the anions present in their structure and the stability of the membrane configurations in which ILs are used as liquid phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Volatile organic compounds in the atmosphere of Mexico City (United States)

    Garzón, Jessica P.; Huertas, José I.; Magaña, Miguel; Huertas, María E.; Cárdenas, Beatriz; Watanabe, Takuro; Maeda, Tsuneaki; Wakamatsu, Shinji; Blanco, Salvador


    The Mexico City Metropolitan Area (MCMA) is one of the most polluted megacities in North America. Therefore, it is an excellent benchmark city to understand atmospheric chemistry and to implement pilot countermeasures. Air quality in the MCMA is not within acceptable levels, mainly due to high ground levels of ozone (O3). Tropospheric O3 is a secondary pollutant formed from the oxidation of volatile organic compounds (VOCs) in the presence of nitrogen oxides and sunlight. To gain a better understanding of O3 formation in megacities, evaluate the effectiveness of already-implemented countermeasures, and identify new cost-effective alternatives to reduce tropospheric O3 concentrations, researchers and environmental authorities require updated concentrations for a broader range of VOCs. Moreover, in an effort to protect human health and the environment, it is important to understand which VOCs exceed reference safe values or most contribute to O3 formation, as well as to identify the most probable emission sources of those VOCs. In this work, 64 VOCs, including 36 toxic VOCs, were measured at four sites in the MCMA during 2011-2012. VOCs related to liquefied petroleum gas leakages exhibited the highest concentrations. Toxic VOCs with the highest average concentrations were acetone and ethanol. The toxic VOC benzene represented the highest risk to Mexican citizens, and toluene contributed the most to O3 formation. Correlation analysis indicated that the measured VOCs come from vehicular emissions and solvent-related industrial sources.

  8. Processing of volatile organic compounds by microwave plasmas

    International Nuclear Information System (INIS)

    Mizeraczyk, J.; Jasinski, M.; Dors, M.; Zakrzewski, Z.


    In this paper atmospheric pressure microwave discharge methods and devices used for producing the nonthermal plasmas for processing of gases are presented. The main part of the paper concerns the microwave plasma sources (MPSs) for environmental protection applications. A few types of the MPSs, i.e. waveguidebased surface wave sustained MPS, coaxial-line-based and waveguide-based nozzle-type MPSs, waveguidebased nozzleless cylinder-type MPS and MPS for microdischarges are presented. Also, results of the laboratory experiments on the plasma processing of several highly-concentrated (up to several tens percent) volatile organic compounds (VOCs), including Freon-type refrigerants, in the moderate (200-400 W) waveguide-based nozzletype MPS (2.45 GHz) are presented. The results showed that the microwave discharge plasma fully decomposed the VOCs at relatively low energy cost. The energy efficiency of VOCs decomposition reached 1000 g/kWh. This suggests that the microwave discharge plasma can be a useful tool for environmental protection applications. In this paper also results of the use of the waveguide-based nozzleless cylinder-type MPS to methane reforming into hydrogen are presented. (author)

  9. Production of volatile organic compounds by cyanobacteria Synechococcus sp. (United States)

    Hiraiwa, M.; Abe, M.; Hashimoto, S.


    Phytoplankton are known to produce volatile organic compounds (VOCs), which contribute to environmental problems such as global warming and decomposition of stratospheric ozone. For example, picophytoplankton, such as Prochlorococcus and Synechococcus, are distributed in freshwater and oceans worldwide, accounting for a large proportion of biomass and primary production in the open ocean. However, to date, little is known about the production of VOCs by picophytoplankton. In this study, VOCs production by cyanobacteria Synechococcus sp. (NIES-981) was investigated. Synechococcus sp. was obtained from the National Institute for Environmental Studies (NIES), Japan, and cultured at 24°C in autoclaved f/2-Si medium under 54 ± 3 µE m-2 s-1 (1 E = 1 mol of photons) with a 12-h light and 12-h dark cycle. VOCs concentrations were determined using a purge-and-trap gas chromatograph-mass spectrometer (Agilent 5973). The concentrations of chlorophyll a (Chl a) were also determined using a fluorometer (Turner TD-700). Bromomethane (CH3Br) and isoprene were produced by Synechococcus sp. Isoprene production was similar to those of other phytoplankton species reported earlier. Isoprene was produced when Chl a was increasing in the early stage of the incubation period (5-15 days of incubation time, exponential phase), but CH3Br was produced when Chl a was reduced in the late stage of the incubation period (30-40 days of incubation time, death phase).

  10. Advanced heat pump for the recovery of volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)


    Emissions of Volatile Organic Compounds (VOC) from stationary industrial and commercial sources represent a substantial portion of the total US VOC emissions. The Toxic-Release Inventory'' of The US Environmental Protection Agency estimates this to be at about 3 billion pounds per year (1987 estimates). The majority of these VOC emissions are from coating processes, cleaning processes, polymer production, fuel production and distribution, foam blowing,refrigerant production, and wood products production. The US Department of Energy's (DOE) interest in the recovery of VOC stems from the energy embodied in the recovered solvents and the energy required to dispose of them in an environmentally acceptable manner. This Phase I report documents 3M's work in close working relationship with its subcontractor Nuclear Consulting Services (Nucon) for the preliminary conceptual design of an advanced Brayton cycle heat pump for the recovery of VOC. Nucon designed Brayton cycle heat pump for the recovery of methyl ethyl ketone and toluene from coating operations at 3M Weatherford, OK, was used as a base line for the work under cooperative agreement between 3M and ODE. See appendix A and reference (4) by Kovach of Nucon. This cooperative agreement report evaluates and compares an advanced Brayton cycle heat pump for solvent recovery with other competing technologies for solvent recovery and reuse. This advanced Brayton cycle heat pump is simple (very few components), highly reliable (off the shelf components), energy efficient and economically priced.

  11. Volatile organic compound monitoring by photo acoustic radiometry

    International Nuclear Information System (INIS)

    Sollid, J.E.; Trujillo, V.L.; Limback, S.P.; Woloshun, K.A.


    Two methods for sampling and analyzing volatile organics in subsurface pore gas were developed for use at the Hazardous Waste Disposal Site at Los Alamos National Laboratory. One is Thermal Desorption Gas Chromatography Mass Spectrometry (TDGCMS), the other is Photoacoustic Radiometry (PAR). Presented here are two years worth of experience and lessons learned as both techniques matured. The sampling technique is equally as important as the analysis method. PAR is a nondispersive infrared technique utilizing band pass filters in the region from 1 to 15 μm. A commercial instrument, the Model 1302 Multigas Analyzer, made by Bruel and Kjaer, was adapted for field use. To use the PAR there must be some a priori knowledge of the constellation of analytes to be measured. The TDGCMS method is sensitive to 50 analytes. Hence TDGCMS is used in an initial survey of the site to determine what compounds are present and at what concentration. Once the major constituents of the soil-gas vapor plume are known the PAR can be configured to monitor for the five analytes of most interest. The PAR can analyse a sample in minutes, while in the field. The PAR is also quite precise in controlled situations

  12. Processing of volatile organic compounds by microwave plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mizeraczyk, J. [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk (Poland); Department of Marine Electronics, Gdynia Martime University, Gdynia (Poland); Jasinski, M.; Dors, M.; Zakrzewski, Z. [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk (Poland)


    In this paper atmospheric pressure microwave discharge methods and devices used for producing the nonthermal plasmas for processing of gases are presented. The main part of the paper concerns the microwave plasma sources (MPSs) for environmental protection applications. A few types of the MPSs, i.e. waveguidebased surface wave sustained MPS, coaxial-line-based and waveguide-based nozzle-type MPSs, waveguidebased nozzleless cylinder-type MPS and MPS for microdischarges are presented. Also, results of the laboratory experiments on the plasma processing of several highly-concentrated (up to several tens percent) volatile organic compounds (VOCs), including Freon-type refrigerants, in the moderate (200-400 W) waveguide-based nozzletype MPS (2.45 GHz) are presented. The results showed that the microwave discharge plasma fully decomposed the VOCs at relatively low energy cost. The energy efficiency of VOCs decomposition reached 1000 g/kWh. This suggests that the microwave discharge plasma can be a useful tool for environmental protection applications. In this paper also results of the use of the waveguide-based nozzleless cylinder-type MPS to methane reforming into hydrogen are presented. (author)

  13. Personal exposure to volatile organic compounds in the Czech Republic. (United States)

    Svecova, Vlasta; Topinka, Jan; Solansky, Ivo; Sram, Radim J


    Personal exposures to volatile organic compounds (VOCs) were measured in the three industrial cities in the Czech Republic, Ostrava, Karvina and Havirov, while the city of Prague served as a control in a large-scale molecular epidemiological study identifying the impacts of air pollution on human health. Office workers from Ostrava and city policemen from Karvina, Havirov and Prague were monitored in the winter and summer of 2009. Only adult non-smokers participated in the study (N=160). Radiello-diffusive passive samplers were used to measure the exposure to benzene, toluene, ethylbenzene, meta- plus para-xylene and ortho-xylene (BTEX). All participants completed a personal questionnaire and a time-location-activity diary (TLAD). The average personal BTEX exposure levels in both seasons were 7.2/34.3/4.4/16.1 μg/m(3), respectively. The benzene levels were highest in winter in Karvina, Ostrava and Prague: 8.5, 7.2 and 5.3 μg/m(3), respectively. The personal exposures to BTEX were higher than the corresponding stationary monitoring levels detected in the individual localities (Pfireplace or gas stove, automobile use and being in a restaurant were important predictors for benzene personal exposure. Ostrava's outdoor benzene pollution was a significant factor increasing the exposure of the Ostrava study participants in winter (P<0.05).

  14. Volatile organic compounds discrimination based on dual mode detection (United States)

    Yu, Yuanyuan; Wu, Enxiu; Chen, Yan; Feng, Zhihong; Zheng, Shijun; Zhang, Hao; Pang, Wei; Liu, Jing; Zhang, Daihua


    We report on a volatile organic compound (VOC) sensor that can provide concentration-independent signals toward target gases. The device is based on a dual-mode detection mechanism that can simultaneously record the mechanical (resonant frequency, f r) and electrical (current, I) responses of the same gas adsorption event. The two independent signals form a unique I–f r trace for each target VOC as the concentration varies. The mechanical response (frequency shift, Δf r) resulting from mass load on the device is directly related to the amount of surface adsorptions, while the electrical response (current variation, ΔI) is associated with charge transfer across the sensing interface and changes in carrier mobility. The two responses resulting from independent physical processes reflect intrinsic physical properties of each target gas. The ΔI–Δf r trace combined with the concentration dependent frequency (or current) signals can therefore be used to achieve target both recognition and quantification. The dual-mode device is designed and fabricated using standard complementary metal oxide semiconductor (CMOS) compatible processes. It exhibits consistent and stable performance in our tests with six different VOCs including ethanol, methanol, acetone, formaldehyde, benzene and hexane.

  15. Characterization of volatile organic compounds from different cooking emissions (United States)

    Cheng, Shuiyuan; Wang, Gang; Lang, Jianlei; Wen, Wei; Wang, Xiaoqi; Yao, Sen


    Cooking fume is regarded as one of the main sources of urban atmospheric volatile organic compounds (VOCs) and its chemical characteristics would be different among various cooking styles. In this study, VOCs emitted from four different Chinese cooking styles were collected. VOCs concentrations and emission characteristics were analyzed. The results demonstrated that Barbecue gave the highest VOCs concentrations (3494 ± 1042 μg/m3), followed by Hunan cuisine (494.3 ± 288.8 μg/m3), Home cooking (487.2 ± 139.5 μg/m3), and Shandong cuisine (257.5 ± 98.0 μg/m3). The volume of air drawn through the collection hood over the stove would have a large impact on VOCs concentration in the exhaust. Therefore, VOCs emission rates (ER) and emission factors (EF) were also estimated. Home cooking had the highest ER levels (12.2 kg/a) and Barbecue had the highest EF levels (0.041 g/kg). The abundance of alkanes was higher in Home cooking, Shandong cuisine and Hunan cuisine with the value of 59.4%-63.8%, while Barbecue was mainly composed of alkanes (34.7%) and alkenes (39.9%). The sensitivity species of Home cooking and Hunan cuisine were alkanes, and that of Shandong cuisine and Barbecue were alkenes. The degree of stench pollution from cooking fume was lighter.

  16. Prediction of boiling points of organic compounds by QSPR tools. (United States)

    Dai, Yi-min; Zhu, Zhi-ping; Cao, Zhong; Zhang, Yue-fei; Zeng, Ju-lan; Li, Xun


    The novel electro-negativity topological descriptors of YC, WC were derived from molecular structure by equilibrium electro-negativity of atom and relative bond length of molecule. The quantitative structure-property relationships (QSPR) between descriptors of YC, WC as well as path number parameter P3 and the normal boiling points of 80 alkanes, 65 unsaturated hydrocarbons and 70 alcohols were obtained separately. The high-quality prediction models were evidenced by coefficient of determination (R(2)), the standard error (S), average absolute errors (AAE) and predictive parameters (Qext(2),RCV(2),Rm(2)). According to the regression equations, the influences of the length of carbon backbone, the size, the degree of branching of a molecule and the role of functional groups on the normal boiling point were analyzed. Comparison results with reference models demonstrated that novel topological descriptors based on the equilibrium electro-negativity of atom and the relative bond length were useful molecular descriptors for predicting the normal boiling points of organic compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Remediation of ground water containing volatile organic compounds and tritium

    International Nuclear Information System (INIS)

    Shukla, S.N.; Folsom, E.N.


    The Trailer 5475 (T-5475) East Taxi Strip Area at Lawrence Livermore National Laboratory (LLNL), Livermore, California was used as a taxi strip by the US Navy to taxi airplanes to the runway from 1942 to 1947. Solvents were used in some unpaved areas adjacent to the East Taxi Strip for cleaning airplanes. From 1953 through 1976, the area was used to store and treat liquid waste. From 1962 to 1976 ponds were constructed and used for evaporation of liquid waste. As a result, the ground water in this area contains volatile organic compounds (VOCs) and tritium. The ground water in this area is also known to contain hexavalent chromium that is probably naturally occurring. Therefore, LLNL has proposed ''pump-and-treat'' technology above grade in a completely closed loop system. The facility will be designed to remove the VOCs and hexavalent chromium, if any, from the ground water, and the treated ground water containing tritium will be reinjected where it will decay naturally in the subsurface. Ground water containing tritium will be reinjected into areas with equal or higher tritium concentrations to comply with California regulations

  18. Volatile organic compounds in emissions from brown-coal-fired residential stoves

    International Nuclear Information System (INIS)

    Engewald, W.; Knobloch, T.; Efer, J.


    Volatile organic compounds were determined in stack-gas emissions from the residential burning of brown-coal briquets using adsorptive enrichment on hydrophobic adsorbents, thermal desorption and capillary-gas chromatographic analysis. 152 compounds were identified and quantified. Quantitative emission factors of the identified individual compounds were determined in relation to the amount of the fuel used. These factors permit assessment of the pollution of the city of Leipzig with volatile organic compounds resulting from the burning of indigenous lignite. (orig.) [de

  19. Datasets used in the manuscript titled "Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms and organic aerosol" (United States)

    U.S. Environmental Protection Agency — This dataset documents that all of the data used in the manuscript "Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic...

  20. Characterization of polar organic compounds and source analysis of fine organic aerosols in Hong Kong (United States)

    Li, Yunchun

    Organic aerosols, as an important fraction of airborne particulate mass, significantly affect the environment, climate, and human health. Compared with inorganic species, characterization of individual organic compounds is much less complete and comprehensive because they number in thousands or more and are diverse in chemical structures. The source contributions of organic aerosols are far from being well understood because they can be emitted from a variety of sources as well as formed from photochemical reactions of numerous precursors. This thesis work aims to improve the characterization of polar organic compounds and source apportionment analysis of fine organic carbon (OC) in Hong Kong, which consists of two parts: (1) An improved analytical method to determine monocarboxylic acids, dicarboxylic acids, ketocarboxylic acids, and dicarbonyls collected on filter substrates has been established. These oxygenated compounds were determined as their butyl ester or butyl acetal derivatives using gas chromatography-mass spectrometry. The new method made improvements over the original Kawamura method by eliminating the water extraction and evaporation steps. Aerosol materials were directly mixed with the BF 3/BuOH derivatization agent and the extracting solvent hexane. This modification improves recoveries for both the more volatile and the less water-soluble compounds. This improved method was applied to study the abundances and sources of these oxygenated compounds in PM2.5 aerosol samples collected in Hong Kong under different synoptic conditions during 2003-2005. These compounds account for on average 5.2% of OC (range: 1.4%-13.6%) on a carbon basis. Oxalic acid was the most abundant species. Six C2 and C3 oxygenated compounds, namely oxalic, malonic, glyoxylic, pyruvic acids, glyoxal, and methylglyoxal, dominated this suite of oxygenated compounds. More efforts are therefore suggested to focus on these small compounds in understanding the role of oxygenated

  1. Volatile organic compounds and secondary organic aerosol in the Earth's atmosphere

    International Nuclear Information System (INIS)

    Galbally, Ian


    Full text: Recent research, when considered as a whole, suggests that a substantial fraction of both gas-phase and aerosol atmospheric organics have not been, or have very rarely been, directly measured. A review of the global budget for organic gases shows that we cannot account for the loss of approximately half the non-methane organic carbon entering the atmosphere. We suggest that this unaccounted-for loss most likely occurs through formation of secondary organic aerosols (SOAs), indicating that the source for these aerosols is an order of magnitude larger than current estimates. There is evidence that aged secondary organic aerosol can participate in both direct and indirect (cloud modifying) radiative forcing and that this influence may change with other global climate change. Even though our knowledge of the organic composition of the atmosphere is limited, these compounds clearly influence the reactive chemistry of the atmosphere and the formation, composition, and climate impact of aerosols A major challenge in the coming decade of atmospheric chemistry research will be to elucidate the sources, structure, chemistry, fate and influences of these clearly ubiquitous yet poorly constrained organic atmospheric constituents

  2. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer


    Mungall, Emma L.; Abbatt, Jonathan P. D.; Wentzell, Jeremy J. B.; Lee, Alex K. Y.; Thomas, Jennie L.; Blais, Marjolaine; Gosselin, Michel; Miller, Lisa A.; Papakyriakou, Tim; Willis, Megan D.; Liggio, John


    A biogeochemical connection between the atmosphere and the ocean is demonstrated whereby a marine source of oxygenated volatile organic compounds is identified. Compounds of this type are involved in the formation of secondary organic aerosol, which remains one of the most poorly understood components of Earth’s climate system due in part to the diverse sources of its volatile organic compound precursors. This is especially the case for marine environments, where there are more oxygenated vol...

  3. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries (United States)

    Doherty, J.P.; Marek, J.C.


    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

  4. Passive remediation of chlorinated volatile organic compounds using barometric pumping

    International Nuclear Information System (INIS)

    Rossabi, J.; Looney, B.B.; Dilek, C.A.E.; Riha, B.; Rohay, V.J.


    The purpose of the Savannah River Integrated Demonstration Program, sponsored by the Department of Energy, is to demonstrate new subsurface characterization, monitoring, and remediation technologies. The interbedded clay and sand layers at the Integrated Demonstration Site (IDS) are contaminated with chlorinated volatile organic compounds (CVOCs). Characterization studies show that the bulk of the contamination is located in the approximately 40 m thick vadose zone. The most successful strategy for removing contaminants of this type from this environment is vapor extraction alone or in combination with other methods such as air sparging or enhanced bioremediation. Preliminary work at the IDS has indicated that natural pressure differences between surface and subsurface air caused by surface barometric fluctuations can produce enough gas flow to make barometric pumping a viable method for subsurface remediation. Air flow and pressure were measured in wells that are across three stratigraphic intervals in the vadose zone' The subsurface pressures were correlated to surface pressure fluctuations but were damped and lagging in phase corresponding to depth and stratum permeability. Piezometer wells screened at lower elevations exhibited a greater phase lag and damping than wells screened at higher elevations where the pressure wave from barometric fluctuations passes through a smaller number of low permeable layers. The phase lag between surface and subsurface pressures results in significant fluxes through these wells. The resultant air flows through the subsurface impacts CVOC fate and transport. With the appropriate controls (e.g. solenoid valves) a naturally driven vapor extraction system can be implemented requiring negligible operating costs yet capable of a large CVOC removal rate (as much as 1--2 kg/day in each well at the IDS)

  5. Diagnosing Tibetan pollutant sources via volatile organic compound observations (United States)

    Li, Hongyan; He, Qiusheng; Song, Qi; Chen, Laiguo; Song, Yongjia; Wang, Yuhang; Lin, Kui; Xu, Zhencheng; Shao, Min


    Atmospheric transport of black carbon (BC) from surrounding areas has been shown to impact the Tibetan environment, and clarifying the geographical source and receptor regions is crucial for providing guidance for mitigation actions. In this study, 10 trace volatile organic compounds (VOCs) sampled across Tibet are chosen as proxies to diagnose source regions and related transport of pollutants to Tibet. The levels of these VOCs in Tibet are higher than those in the Arctic and Antarctic regions but much lower than those observed at many remote and background sites in Asia. The highest VOC level is observed in the eastern region, followed by the southern region and the northern region. A positive matrix factorization (PMF) model found that three factors-industry, biomass burning, and traffic-present different spatial distributions, which indicates that different zones of Tibet are influenced by different VOC sources. The average age of the air masses in the northern and eastern regions is estimated to be 3.5 and 2.8 days using the ratio of toluene to benzene, respectively, which indicates the foreign transport of VOC species to those regions. Back-trajectory analyses show that the Afghanistan-Pakistan-Tajikistan region, Indo-Gangetic Plain (IGP), and Meghalaya-Myanmar region could transport industrial VOCs to different zones of Tibet from west to east. The agricultural bases in northern India could transport biomass burning-related VOCs to the middle-northern and eastern zones of Tibet. High traffic along the unique national roads in Tibet is associated with emissions from local sources and neighboring areas. Our study proposes international joint-control efforts and targeted actions to mitigate the climatic changes and effects associated with VOCs in Tibet, which is a climate sensitive region and an important source of global water.

  6. Transport of volatile organic compounds across the capillary fringe (United States)

    McCarthy, Kathleen A.; Johnson, Richard L.


    Physical experiments were conducted to investigate the transport of a dissolved volatile organic compound (trichloroethylene, TCE) from shallow groundwater to the unsaturated zone under a variety of conditions including changes in the soil moisture profile and water table position. Experimental data indicated that at moderate groundwater velocities (0.1 m/d), vertical mechanical dispersion was negligible and molecular diffusion was the dominant vertical transport mechanism. Under these conditions, TCE concentrations decreased nearly 3 orders of magnitude across the capillary fringe and soil gas concentrations remained low relative to those of underlying groundwater. Data collected during a water table drop showed a short-term increase in concentrations throughout most of the unsaturated zone, but these concentrations quickly declined and approached initial values after the water table was returned to its original level. In the deep part of the unsaturated zone, the water table drop resulted in a long-term decrease in concentrations, illustrating the effects of hysteresis in the soil moisture profile. A two-dimensional random walk advection-diffusion model was developed to simulate the experimental conditions, and numerical simulations agreed well with experimental data. A simpler, one-dimensional finite-difference diffusion-dispersion model was also developed. One-dimensional simulations based on molecular diffusion also agreed well with experimental data. Simulations which incorporated mechanical dispersion tended to overestimate flux across the capillary fringe. Good agreement between the one- and two-dimensional models suggested that a simple, one-dimensional approximation of vertical transport across the capillary fringe can be useful when conditions are appropriate.

  7. Mass transfer of nonvolatile organic compounds from porous media (United States)

    Khachikian, Crist Simon

    This thesis presents data pertaining to the mass transfer of nonvolatile organic compounds from porous media. Physical properties of porous solids, including surface and pore areas, are studied. Information from these studies, along with dissolution data, are used to develop correlations relating the Sherwood Number to the Peclet Number. The contaminant used in this study is naphthalene; the solids used are Moffett Sand (MS), Borden Sand (BS), Lampblack (LB), and Silica Gel (SG). Surface area results indicate that contamination at 0.1% reduces the area of MS and SG by 48 and 37%, respectively, while contamination at 1.0% reduces the area of MS, BS, and SG by 59, 56, and 40%, respectively. Most of the reduction in area originates in the reduction of pore areas and volumes, where the contaminant precipitates. After long-term storage, surface areas did not recover to their original values due to an "irreversible" fraction of naphthalene. Treatment with heat or solvent or both was necessary to completely remove the contamination. For lampblack, treatment at 100°C decreased areas while treatment at 250°C increased them. Treatment at 250°°C probably opened pores while that at 100°C may have blocked more pores by redistributing the tar-like contaminant characteristic of lampblack. Contaminated MS and SG solids are packed in columns through which water is pumped. The effluent began at a relatively high concentration (˜70% of solubility) for both samples. However, SG column concentrations dropped quickly, never achieving steady state while the MS samples declined more gradually towards steady state. The high pore areas of the SG samples are believed to cause this behavior. The steady state portion of the MS dissolution history is used to develop mass transfer correlations. The correlation in this study differs from previous work in two major ways: (1) the exponent on the Pe is three times larger and (2) the limiting Sh is 106 times smaller. These results suggest that

  8. Virus, protozoa and organic compounds decay in depurated oysters. (United States)

    Souza, Doris Sobral Marques; Piazza, Rômi Sharon; Pilotto, Mariana Rangel; do Nascimento, Mariana de Almeida; Moresco, Vanessa; Taniguchi, Satie; Leal, Diego Averaldo Guiguet; Schmidt, Éder der Carlos; Cargin-Ferreira, Eduardo; Bícego, Márcia Caruso; Sasaki, Silvio Tarou; Montone, Rosalinda Carmela; de Araujo, Rafael Alves; Franco, Regina Maura Bueno; Bouzon, Zenilda Laurita; Bainy, Afonso Celso Dias; Barardi, Célia Regina Monte


    (1) Evaluate the dynamic of the depuration process of Crassostrea gigas oysters using different ultraviolet doses with different amounts of contaminants (virus, protozoa and organic contaminants) and (2) investigate the morphological changes in the oysters' tissues produced by the depuration procedures. The oysters were allocated in sites with different degrees of contamination and analyzed after 14 days. Some animals were used as positive controls by artificial bioaccumulation with HAdV2 and MNV1 and subjected to depuration assays using UV lamps (18 or 36 W) for 168 h. The following pollutants were researched in the naturally contaminated oysters, oysters after 14 days in sites and oysters during the depuration processes: virus (HAdV, HAV, HuNoV GI/GII and JCPyV), by (RT) qPCR; protozoa (Cryptosporidium and Giardia species), by immunomagnetic separation and immunofluorescence; and organic compounds (AHs, PAHs, LABs, PCBs and organochlorine pesticides-OCs), by chromatography. Changes in the oysters' tissues produced by the depuration processes were also evaluated using histochemical analysis by light microscopy. In the artificially bioaccumulated oysters, only HAdV2 and MNV1 were investigated by (RT) qPCR before the depuration procedures and after 96 and 168 h of these procedures. At 14 days post-allocation, HAdV was found in all the sites (6.2 × 105 to 4.4 × 107 GC g(-1)), and Giardia species in only one site. Levels of PCBs and OCs in the oyster's tissues were below the detection limit for all samples. AHs (3.5 to 4.4 μg g(-1)), PAHs (11 to 191 ng g(-1)) and LABs (57 to 751 ng g(-1)) were detected in the samples from 3 sites. During the depuration assays, we found HAdV, Giardia and Cryptosporidium species until 168 h, independent of UV treatment. AHs, PAHs and LABs were found also after 168 h of depuration (36 W and without UV lamp). The depuration procedures did not produce changes in the oysters' tissues. In the artificially contaminated and depurated

  9. Interactions of the Calcite {10.4} Surface with Organic Compounds: Structure and Behaviour at Mineral – Organic Interfaces

    DEFF Research Database (Denmark)

    Hakim, S. S.; Olsson, M. H. M.; Sørensen, H. O.


    The structure and the strength of organic compound adsorption on mineral surfaces are of interest for a number of industrial and environmental applications, oil recovery, CO2 storage and contamination remediation. Biomineralised calcite plays an essential role in the function of many organisms...... that control crystal growth with organic macromolecules. Carbonate rocks, composed almost exclusively of calcite, host drinking water aquifers and oil reservoirs. In this study, we examined the ordering behaviour of several organic compounds and the thickness of the adsorbed layers formed on calcite {10...... monolayers. The results of this work indicate that adhered organic compounds from the surrounding environment can affect the surface behaviour, depending on properties of the organic compound....

  10. Extraterrestrial Amino Acids Identified in Metal-Rich CH and CB Carbonaceous Chondrites from Antarctica (United States)

    Burton, Aaron S.; Elsila, Jamie E.; Hein, Jason E.; Glavin, Daniel P.; Dworkin, Jason P.


    Carbonaceous chondrites contain numerous indigenous organic compounds and could have been an important source of prebiotic compounds required for the origin of life on Earth or elsewhere. Extraterrestrial amino acids have been reported in five of the eight groups of carbonaceous chondrites and are most abundant in CI, CM, and CR chondritesbut are also present in the more thermally altered CV and CO chondrites. We report the abundance, distribution, and enantiomeric and isotopic compositions of simple primary amino acids in six metal-rich CH and CB carbonaceous chondrites that have not previously been investigated for amino acids: Allan Hills (ALH) 85085 (CH3), Pecora Escarpment(PCA) 91467 (CH3), Patuxent Range (PAT) 91546 (CH3), MacAlpine Hills (MAC) 02675(CBb), Miller Range (MIL) 05082 (CB), and Miller Range (MIL) 07411 (CB). Amino acid abundances and carbon isotopic values were obtained by using both liquid chromatography time-of-flight mass spectrometry and fluorescence, and gas chromatography isotope ratiomass spectrometry. The (delta D, delta C-13, delta N-15) ratios of multiple amino acids fall outside of the terrestrial range and support their extraterrestrial origin. Extracts of CH chondrites were found to be particularly rich in amino acids (1316 parts per million, ppm) while CB chondrite extracts had much lower abundances (0.22 ppm). The amino acid distributions of the CH and CB chondrites were distinct from the distributions observed in type 2 and 3 CM and CR chondrites and contained elevated levels of beta-, gamma-, and delta-amino acids compared to the corresponding alpha-amino acids, providing evidence that multiple amino acid formation mechanisms were important in CH and CB chondrites.

  11. Labelling of some iodinated organic compounds by halogen exchange in organic media

    International Nuclear Information System (INIS)

    Hallaba, E.; Suhybani, A.Al-; Khowaiter, S.Al-; Abdel-Wahid, M.


    Describes a general method for labelling Rose Bengal in an organic medium. An isotopic exchange technique with interactive iodine as carrier for radioiodine is used. The effect of temperature, carrier, pH of the solvent and solvent are investigated. The optimum conditions for maximum yield of exchange are: .0.2 micro mole carrier inactive iodine per one micro mole of Rose Bengal, reaction mixture is 10ml ethyl alcohol 96% as a solvent for Rose Bengal and 3ml of ether or carbon tetrachloride containing the inactive and radioiodine. In case of ether, the reaction is slow and is completed in two hours with maximum yield of 90% at boiling temperature. Addition of 175 λ of 1 M acetate buffer with carbon tetrachloride gave a yield of 90% in one hour. This method can be applied successfully to label any iodinated organic compound, such as hypuran, thyroxine, tyrosine or aliphatic fatty acids, for application in nuclear medicine. 10 Ref

  12. Neutron diffraction by monocrystals of inorganic and elementary organic compounds

    International Nuclear Information System (INIS)

    Becker, G.; Hauser, H.D.


    The phase of preparation and X-ray structural analysis of the compounds has been completed following the synthetical preparation of compounds sensitive to oxidation and pyrolysis, in this case: phosphonic acid, potassium silanide, lithium dihydrogenphosphide * DME, bis[lithium-tri(tert.butyl)alanate], dibromophenylbismuthate, potassium tetrahydride aluminate, and phosphinic acid. The work was started is neutron diffraction experiments for detecting the positions of the hydrogen and carbon atoms, in order to analyse space group problems. (BBR) [de

  13. Volatile Organic Compound Investigation Results, 300 Area, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Robert E.; Williams, Bruce A.; Smith, Ronald M.


    Unexpectedly high concentrations of volatile organic compounds (VOC) were discovered while drilling in the unconfined aquifer beneath the Hanford Site’s 300 Area during 2006. The discovery involved an interval of relatively finer-grained sediment within the unconfined aquifer, an interval that is not sampled by routine groundwater monitoring. Although VOC contamination in the unconfined aquifer has been identified and monitored, the concentrations of newly discovered contamination are much higher than encountered previously, with some new results significantly higher than the drinking water standards. The primary contaminant is trichloroethene, with lesser amounts of tetrachloroethene. Both chemicals were used extensively as degreasing agents during the fuels fabrication process. A biological degradation product of these chemicals, 1,2-dichloroethene, was also detected. To further define the nature and extent of this contamination, additional characterization drilling was undertaken during 2007. Four locations were drilled to supplement the information obtained at four locations drilled during the earlier investigation in 2006. The results of the combined drilling indicate that the newly discovered contamination is limited to a relatively finer-grained interval of Ringold Formation sediment within the unconfined aquifer. The extent of this contamination appears to be the area immediately east and south of the former South Process Pond. Samples collected from the finer-grained sediment at locations along the shoreline confirm the presence of the contamination near the groundwater/river interface. Contamination was not detected in river water that flows over the area where the river channel potentially incises the finer-grained interval of aquifer sediment. The source for this contamination is not readily apparent. A search of historical documents and the Hanford Waste Information Data System did not provide definitive clues as to waste disposal operations and

  14. Removal of chlorinated organic compounds from gas phase using electron beam technology

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.; Bulka, S.; Zimek, A. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Chmielewski, A. G. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw (Poland)


    Selected chlorinated organic compounds (Cl-HC), which are emitted from coal fired power plants, waste incinerators, chemical industry etc., are very harmful to the environment and human’s health. Some of them are listed as carcinogenic compounds by USA EPA. Recent studies show that some chlorinated organic compounds are suspected to be precursors for dioxins formation. Chlorinated organic compounds decomposition in air in an electron beam (EB) generated plasma reactor technology was studied. We selected cis-dichloroethylene (cis-DCE), 1,4-dichlorobenznene(1,4-DCB), 1-chloronaphthalene as studied objects. It is found that chlorinated organic compounds can be decomposed in an electron beam generated plasma reactor. The order of decomposition efficiency of these compounds are: cis-DCE > 1,4-DCB> 1-chloronaphthalene. (author)

  15. Chemical Reductive Transformations of Synthetic Organic Compounds. Probe Compound Studies and Mechanistic Modeling

    National Research Council Canada - National Science Library

    Peyton, Gary


    Advanced Oxidation Processes (AOPs) can be used to selectively remove DNT (2,4-dinitrotoluene) from a complex waste stream by adding a precursor compound such as ethanol, which forms a reducing radical upon reaction with hydroxyl radical...

  16. Crystallization of an organic compound from an ionic liquid using carbon dioxide as anti-solvent

    NARCIS (Netherlands)

    Kroon, M.C.; Toussaint, V.A.; Shariati - Sarabi, A.; Florusse, L.J.; Spronsen, van J.; Witkamp, G.J.; Peters, C.J.


    In this paper the anti-solvency behavior of supercritical carbon dioxide (CO2) as a way to recover an organic compound from an ionic liquid by crystallization is explored. As an example, the conditions for crystallization of the organic compound methyl-(Z)-a-acetamido cinnamate (MAAC) from the ionic

  17. Coordination compounds of rare-earth metals with organic ligands for electroluminescent diodes

    International Nuclear Information System (INIS)

    Katkova, M A; Bochkarev, Mikhail N; Vitukhnovsky, Alexey G


    Data on lanthanide coordination compounds with organic ligands used in the design of electroluminescent diodes are summarised and systematically represented. The molecular and electronic structures and spectroscopic characteristics of these compounds are considered. A comparative analysis of the properties of organic electroluminescent diodes with different compositions of emitting and conductive layers is presented.

  18. End-group-directed self-assembly of organic compounds useful for photovoltaic applications (United States)

    Beaujuge, Pierre M.; Lee, Olivia P.; Yiu, Alan T.; Frechet, Jean M.J.


    The present invention provides for an organic compound comprising electron deficient unit covalently linked to two or more electron rich units. The present invention also provides for a device comprising the organic compound, such as a light-emitting diode, thin-film transistor, chemical biosensor, non-emissive electrochromic, memory device, photovoltaic cells, or the like.

  19. Information theory, animal communication, and the search for extraterrestrial intelligence (United States)

    Doyle, Laurance R.; McCowan, Brenda; Johnston, Simon; Hanser, Sean F.


    We present ongoing research in the application of information theory to animal communication systems with the goal of developing additional detectors and estimators for possible extraterrestrial intelligent signals. Regardless of the species, for intelligence (i.e., complex knowledge) to be transmitted certain rules of information theory must still be obeyed. We demonstrate some preliminary results of applying information theory to socially complex marine mammal species (bottlenose dolphins and humpback whales) as well as arboreal squirrel monkeys, because they almost exclusively rely on vocal signals for their communications, producing signals which can be readily characterized by signal analysis. Metrics such as Zipf's Law and higher-order information-entropic structure are emerging as indicators of the communicative complexity characteristic of an "intelligent message" content within these animals' signals, perhaps not surprising given these species' social complexity. In addition to human languages, for comparison we also apply these metrics to pulsar signals—perhaps (arguably) the most "organized" of stellar systems—as an example of astrophysical systems that would have to be distinguished from an extraterrestrial intelligence message by such information theoretic filters. We also look at a message transmitted from Earth (Arecibo Observatory) that contains a lot of meaning but little information in the mathematical sense we define it here. We conclude that the study of non-human communication systems on our own planet can make a valuable contribution to the detection of extraterrestrial intelligence by providing quantitative general measures of communicative complexity. Studying the complex communication systems of other intelligent species on our own planet may also be one of the best ways to deprovincialize our thinking about extraterrestrial communication systems in general.

  20. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Nga Lee; Brown, Steven S.; Archibald, Alexander T.; Atlas, Elliot; Cohen, Ronald C.; Crowley, John N.; Day, Douglas A.; Donahue, Neil M.; Fry, Juliane L.; Fuchs, Hendrik; Griffin, Robert J.; Guzman, Marcelo I.; Herrmann, Hartmut; Hodzic, Alma; Iinuma, Yoshiteru; Jimenez, José L.; Kiendler-Scharr, Astrid; Lee, Ben H.; Luecken, Deborah J.; Mao, Jingqiu; McLaren, Robert; Mutzel, Anke; Osthoff, Hans D.; Ouyang, Bin; Picquet-Varrault, Benedicte; Platt, Ulrich; Pye, Havala O. T.; Rudich, Yinon; Schwantes, Rebecca H.; Shiraiwa, Manabu; Stutz, Jochen; Thornton, Joel A.; Tilgner, Andreas; Williams, Brent J.; Zaveri, Rahul A.


    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models.

    This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.

  1. Characteristics of organic compounds in PM2.5 at urban and remote areas in Korea (United States)

    Choi, A.; Lee, J.; Shin, H. J.; Lee, M.; Jin seok, H.; Lim, J.


    Organic aerosols contain thousands of organic compounds and contribute to 20%-90% of the total fine aerosol mass (Kanakidou et al., 2005). These organic aerosols originate from anthropogenic and natural (biogenic and geologic) sources and alter physical and chemical properties in the atmosphere depending on the atmospheric and meteorological conditions. About one hundred individual organic compounds in PM2.5 at Seoul (urban area) and Baengnyeong Island (remote area) were identified and quantified using gas chromatography/mass spectrometry (GC/MS) in order to understand the characteristics of organic compounds in PM2.5 at these areas. Further, major factors to determine their concentrations in the atmosphere were investigated. Organic compounds analyzed in this study were classified into six groups, n-alkanes, polycyclic aromatic hydrocarbons (PAHs), hopanes, fatty acids (FA), dicarboxylic acids (DCAs), and sugars. Daily variation of organic compounds concentrations at Seoul were not high, while, the concentrations of organic compounds at Baengnyeong Island showed high daily variation. This is might due to frequent change of source strength and/or SOA formation in this region. Through correlations of organic compounds with other air pollutants and factor analysis at both sites, it found that major factors (or source) for the determination of organic compounds concentrations at Seoul and Baengnyeong Island were different. The major sources at Seoul were anthropogenic sources such as vehicular emission and coal combustions, while, SOA formation and biomass burning were more attributed more to the organic compounds concentrations at Baengnyeong Island.References Kanakidou, M., Seinfeld, J.H., Pandis, S.N., Barnes, I., Dentener, F.J., Facchini, M.C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C.J., Swietlicki, E., Putaud, J.P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G.K., Winterhalter, R., Myhre, C.E.L., Tsigaridis, K., Vignati, E., Stephanou, E

  2. Methods and systems for chemoautotrophic production of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Curt R.; Che, Austin J.; Shetty, Reshma P.; Kelly, Jason R.


    The present disclosure identifies pathways, mechanisms, systems and methods to confer chemoautotrophic production of carbon-based products of interest, such as sugars, alcohols, chemicals, amino acids, polymers, fatty acids and their derivatives, hydrocarbons, isoprenoids, and intermediates thereof, in organisms such that these organisms efficiently convert inorganic carbon to organic carbon-based products of interest using inorganic energy, such as formate, and in particular the use of organisms for the commercial production of various carbon-based products of interest.

  3. Cloud processing of organic compounds: Secondary organic aerosol and nitrosamine formation (United States)

    Hutchings, James W., III

    Cloud processing of atmospheric organic compounds has been investigated through field studies, laboratory experiments, and numerical modeling. Observational cloud chemistry studies were performed in northern Arizona and fog studies in central Pennsylvania. At both locations, the cloud and fogs showed low acidity due to neutralization by soil dust components (Arizona) and ammonia (Pennsylvania). The field observations showed substantial concentrations (20-5500 ng•L -1) of volatile organic compounds (VOC) in the cloud droplets. The potential generation of secondary organic aerosol mass through the processing of these anthropogenic VOCs was investigated through laboratory and modeling studies. Under simulated atmospheric conditions, in idealized solutions, benzene, toluene, ethylbenzene, and xylene (BTEX) degraded quickly in the aqueous phase with half lives of approximately three hours. The degradation process yielded less volatile products which would contribute to new aerosol mass upon cloud evaporation. However, when realistic cloud solutions containing natural organic matter were used in the experiments, the reaction kinetics decreased with increasing organic carbon content, resulting in half lives of approximately 7 hours. The secondary organic aerosol (SUA) mass formation potential of cloud processing of BTEX was evaluated. SOA mass formation by cloud processing of BTEX, while strongly dependent on the atmospheric conditions, could contribute up to 9% of the ambient atmospheric aerosol mass, although typically ˜1% appears realistic. Field observations also showed the occurrence of N-nitrosodimethylamine (NDMA), a potent carcinogen, in fogs and clouds (100-340 ng•L -1). Laboratory studies were conducted to investigate the formation of NDMA from nitrous acid and dimethylamine in the homogeneous aqueous phase within cloud droplets. While NDMA was produced in the cloud droplets, the low yields (NDMA with partitioning to droplet must be the source of aqueous

  4. Fruit tree model for uptake of organic compounds from soil

    DEFF Research Database (Denmark)

    Trapp, Stefan; Rasmussen, D.; Samsoe-Petersen, L.


    -state, and an example calculation is given. The Fruit Tree Model is compared to the empirical equation of Travis and Arms (T&A), and to results from fruits, collected in contaminated areas. For polar compounds, both T&A and the Fruit Tree Model predict bioconcentration factors fruit to soil (BCF, wet weight based......) of > 1. No empirical data are available to support this prediction. For very lipophilic compounds (log K-OW > 5), T&A overestimates the uptake. The conclusion from the Fruit Tree Model is that the transfer of lipophilic compounds into fruits is not relevant. This was also found by an empirical study...... with PCDD/F. According to the Fruit Tree Model, polar chemicals are transferred efficiently into fruits, but empirical data to verify these predictions are lacking....

  5. Finding Extraterrestrial Life Using Ground-based High-dispersion Spectroscopy

    NARCIS (Netherlands)

    Snellen, I.A.G.; Kok, R.; Poole, le R.S.; Brogi, M.; Birkby, J.L.


    Exoplanet observations promise one day to unveil the presence of extraterrestrial life. Atmospheric compounds in strong chemical disequilibrium would point to large-scale biological activity just as oxygen and methane do in the Earth's atmosphere. The cancellation of both the Terrestrial Planet

  6. Feasibility of Detecting Bioorganic Compounds in Enceladus Plumes with the Enceladus Organic Analyzer (United States)

    Razu, Md Enayet; Kim, Jungkyu; Stockton, Amanda M.; Turin, Paul; Butterworth, Anna


    Abstract Enceladus presents an excellent opportunity to detect organic molecules that are relevant for habitability as well as bioorganic molecules that provide evidence for extraterrestrial life because Enceladus' plume is composed of material from the subsurface ocean that has a high habitability potential and significant organic content. A primary challenge is to send instruments to Enceladus that can efficiently sample organic molecules in the plume and analyze for the most relevant molecules with the necessary detection limits. To this end, we present the scientific feasibility and engineering design of the Enceladus Organic Analyzer (EOA) that uses a microfluidic capillary electrophoresis system to provide sensitive detection of a wide range of relevant organic molecules, including amines, amino acids, and carboxylic acids, with ppm plume-detection limits (100 pM limits of detection). Importantly, the design of a capture plate that effectively gathers plume ice particles at encounter velocities from 200 m/s to 5 km/s is described, and the ice particle impact is modeled to demonstrate that material will be efficiently captured without organic decomposition. While the EOA can also operate on a landed mission, the relative technical ease of a fly-by mission to Enceladus, the possibility to nondestructively capture pristine samples from deep within the Enceladus ocean, plus the high sensitivity of the EOA instrument for molecules of bioorganic relevance for life detection argue for the inclusion of EOA on Enceladus missions. Key Words: Lab-on-a-chip—Organic biomarkers—Life detection—Planetary exploration. Astrobiology 17, 902–912. PMID:28915087

  7. Effects of airborne volatile organic compounds on plants

    International Nuclear Information System (INIS)

    Cape, J.N.


    Possible adverse effects of VOCs on vegetation in urban areas cannot be rejected. - Routine measurements of volatile organic compounds (VOCs) in air have shown that average concentrations are very much smaller than those used in laboratory experiments designed to study the effects of VOCs on plants. However, maximum hourly concentrations of some VOCs can be 100 times larger than the average, even in rural air. Experimental studies have rarely extended for longer than a few days, so there is little information on potential long-term effects of exposure to small concentrations. This review considers the available evidence for long-term effects, based on laboratory and field data. Previous reviews of the literature from Germany and the USA are cited, prior to an assessment of the effects of individual VOCs. Although hydrocarbons from vehicle exhausts have been implicated in the observed effects on roadside vegetation, the evidence suggests that it is the nitrogen oxides in the exhaust gases that are mostly responsible. There is evidence that aromatic hydrocarbons can be metabolised in plants, although the fate of the metabolites is not known. There is a large literature on the effects of ethylene, because of its role as a plant hormone. Effects have been reported in the field, in response to industrial emissions, and dose-response experiments over several weeks in laboratory studies have clearly identified the potential for effects at ambient concentrations. The main responses are morphological (e.g. epinasty), which may be reversible, and on the development of flowers and fruit. Effects on seed production may be positive or negative, depending on the exposure concentration. Chlorinated hydrocarbons have been identified as potentially harmful to vegetation, but only one long-term experiment has studied dose-response relationships. As for ethylene, the most sensitive indication of effect was on seed production, although long-term accumulation of trichloroacetic acid in

  8. Molar extinction coefficients of solutions of some organic compounds

    Indian Academy of Sciences (India)

    efficients of these compounds have been used to calculate effective atomic numbers and electron densities. The additivity ... Molar extinction coefficients; effective atomic numbers; electron density. PACS Nos 29.30. ... the radiation path and is linearly dependent on the concentration of the absorbing species. This is most ...

  9. Green Synthetic Alternatives to Organic Compounds and Nanomaterials (United States)

    A brief account of reactions involving microwave (MW) exposure of neat reactants or catalyzed by mineral support surfaces, such as alumina, silica, clay, or their ‘doped’ versions, for the rapid one-pot assembly of heterocyclic compounds from in situ generated reactive intermedia...

  10. Rapid NMR method for the quantification of organic compounds in thin stillage. (United States)

    Ratanapariyanuch, Kornsulee; Shen, Jianheng; Jia, Yunhua; Tyler, Robert T; Shim, Youn Young; Reaney, Martin J T


    Thin stillage contains organic and inorganic compounds, some of which may be valuable fermentation coproducts. This study describes a thorough analysis of the major solutes present in thin stillage as revealed by NMR and HPLC. The concentration of charged and neutral organic compounds in thin stillage was determined by excitation sculpting NMR methods (double pulse field gradient spin echo). Compounds identified by NMR included isopropanol, ethanol, lactic acid, 1,3-propanediol, acetic acid, succinic acid, glycerophosphorylcholine, betaine, glycerol, and 2-phenylethanol. The concentrations of lactic and acetic acid determined with NMR were comparable to those determined using HPLC. HPLC and NMR were complementary, as more compounds were identified using both methods. NMR analysis revealed that stillage contained the nitrogenous organic compounds betaine and glycerophosphorylcholine, which contributed as much as 24% of the nitrogen present in the stillage. These compounds were not observed by HPLC analysis.

  11. Modeling of RO/NF membrane rejections of PhACs and organic compounds : A statistical analysis

    NARCIS (Netherlands)

    Yangali-Quintanilla, V.; Kim, T.U.; Kennedy, M.; Amy, G.


    Rejections of pharmaceutical compounds (Ibuprofen, Diclofenac, Clofibric acid, Naproxen, Primidone, Phenacetin) and organic compounds (Dichloroacetic acid, Trichloroacetic acid, Chloroform, Bromoform, Trichloroethene, Perchloroethene, Carbontetrachloride, Carbontetrabromide) by NF (Filmtec, Saehan)

  12. Comparison of the neurotoxicities between volatile organic compounds and fragrant organic compounds on human neuroblastoma SK-N-SH cells and primary cultured rat neurons

    Directory of Open Access Journals (Sweden)

    Yasue Yamada


    Full Text Available These are many volatile organic compounds (VOCs that are synthesized, produced from petroleum or derived from natural compounds, mostly plants. Fragrant and volatile organic compounds from plants have been used as food additives, medicines and aromatherapy. Several clinical and pathological studies have shown that chronic abuse of VOCs, mainly toluene, causes several neuropsychiatric disorders. Little is known about the mechanisms of neurotoxicity of the solvents. n-Octanal, nonanal, and 2-ethyl-1-hexanol, which are used catalyzers or intermediates of chemical reactions, are released into the environment. Essential oils have the functions of self-defense, sterilization, and antibiosis in plants. When volatile organic compounds enter the body, there is the possibility that they will pass through the blood–brain barrier (BBB and affect the central nervous system (CNS. However, the direct effects of volatile organic compounds on neural function and their toxicities are still unclear. We compared the toxicities of n-octanal, nonanal and 2-ethyl-1-hexanol with those of five naturally derived fragrant organic compounds (FOCs, linalool, cis-3-hexen-1-ol, isoamyl alcohol, n-propyl alcohol and n-phenethyl alcohol. MTT assay of human neuroblastoma SK-N-SH cells showed that the IC50 values of linalool, cis-3-hexen-1-ol, isoamyl alcohol, n-propyl alcohol and phenethyl alcohol were 1.33, 2.3, >5, >5, and 2.39 mM, respectively, and the IC50 values of toluene, n-octanal, nonanal and 2-ethyl-1-hexanol were 850, 37.2, 8.31 and 15.1 μM, respectively. FOCs showed lower toxicities than those of VOCs. These results indicate that FOCs are safer than other compounds.

  13. Thermal degradation of the vapours of organic nitrogen compounds in the presence of the air

    International Nuclear Information System (INIS)

    Brault, A.; Chevalier, G.; Kerfanto, M.; Loyer, H.


    Following a quick survey of the literature on the products originated during the thermal degradation of some organic nitrogen compounds, the experimental results obtained by applying a technique previously used for other organic compounds are presented. The compounds investigated include: methyl and ethylamines at the origin of the bad smells of many gaseous wastes, trilaurylamine and tetraethylenediamine sometimes used in nuclear facilities. Attention is brought on the emission of noxious products during thermal degradation in the presence of the air, at various temperatures, viz. either usual combustion gases such as carbon monoxide, or nitro-derivatives such as hydrogen cyanide present whatever the compound investigated when temperatures are below 850 0 C [fr

  14. Bibliography about silicon non-organic fluorine compounds

    International Nuclear Information System (INIS)

    Carles, M.


    This bibliography is made from Professor I.G. Ryss' book published in Moscow in 1956, translated in English under the title 'The chemistry of fluorine and its inorganic compounds' (Translation series. AEC tr 3927, Pt 1 and 2), and completed with the data found in the 'Chemical Abstracts' of the years 1946 to 1962 [fr

  15. Radiocarbon content of synthetic and natural semi-volatile halogenated organic compounds

    International Nuclear Information System (INIS)

    Reddy, C.M.; Xu Li; Eglinton, T.I.; Boon, J.P.; Faulkner, D.J.


    New developments in molecular-level 14 C analysis techniques enable clues about natural versus commercial synthesis of trace organic contaminants. - Some halogenated organic compounds, such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and polybrominated diphenyl ethers (PBDEs), have been suggested to have natural sources but separating these compounds from their commercially synthesized counterparts is difficult. Molecular-level 14 C analysis may be beneficial since most synthetic compounds are manufactured from petrochemicals ( 14 C-free) and natural compounds should have 'modern' or 'contemporary' 14 C levels. As a baseline study, we measured, for the first time, the 14 C abundance in commercial PCB and PBDE mixtures, a number of organochlorine pesticides, as well as one natural product 2-(3', 5'-dibromo-2'-methoxyphenoxy)-3,5-dibromoanisole. The latter compound was isolated from a marine sponge and is similar in structure to a PBDE. All of the synthetic compounds were 14 C-free except for the pesticide toxaphene, which had a modern 14 C abundance, as did the brominated natural compound. The result for toxaphene was not surprising since it was commercially synthesized by the chlorination of camphene derived from pine trees. These results suggest that measuring the 14 C content of halogenated organic compounds may be quite useful in establishing whether organic compounds encountered in the environment have natural or synthetic origins (or both) provided that any synthetic counterparts derive from petrochemical feedstock

  16. Binary systems solubilities of inorganic and organic compounds, v.1 pt.2

    CERN Document Server

    Stephen, H


    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w

  17. Prediction of Partition Coefficients of Organic Compounds for SPME/PDMS

    Directory of Open Access Journals (Sweden)

    Liao Hsuan-Yu


    Full Text Available The partition coefficients of 51 organic compounds between SPME/PDMS and gas were compiled from the literature sources in this study. The effect of physicochemical properties and descriptors on the partitioning process of partition coefficients was explicated by the correlation analysis. The PDMS-gas partition coefficients were well correlated to the molecular weight of organic compounds (r = 0.832, p < 0.05. An empirical model, consisting of the molecular weight and the polarizability, was developed to appropriately predict the partition coefficients of organic compounds. The empirical model for estimating the PDMS-gas partition coefficient will contribute to the practical applications of the SPME technique.

  18. Prediction of acid dissociation constants of organic compounds using group contribution methods

    DEFF Research Database (Denmark)

    Zhou, Teng; Jhamb, Spardha; Liang, Xiaodong


    data-points with average absolute error of 0.23; (b) a non-linear GC model for organic compounds using 1622 data-points with average absolute error of 1.18; (c) an artificial neural network (ANN) based GC model for the organic compounds with average absolute error of 0.17. For each of the developed......In this paper, group contribution (GC) property models for the estimation of acid dissociation constants (Ka) of organic compounds are presented. Three GC models are developed to predict the negative logarithm of the acid dissociation constant pKa: (a) a linear GC model for amino acids using 180...

  19. Differential effects of organic compounds on cucumber damping-off and biocontrol activity of antagonistic bacteria

    DEFF Research Database (Denmark)

    Li, Bin; Ravnskov, Sabine; Guanlin, X.


    The influence of the organic compounds tryptic soy broth, cellulose, glucose and chitosan on cucumber damping-off caused by Pythium aphanidermatum and biocontrol efficacy of the biocontrol agents (BCAs) Paenibacillus macerans and P. polymyxa were examined in a seedling emergence bioassay. Results...... showed that the organic compounds differentially affected both pathogen and BCAs. Tryptic soy broth, glucose and chitosan increased Pythium damping-off of cucumber, compared to the control treatment without organic compounds, whereas cellulose had no effect. Both Paenibacillus species had biocontrol...

  20. Development of the colorimetric sensor array for detection of explosives and volatile organic compounds in air

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Alstrøm, Tommy Sonne; Johnsen, C


    a color difference map which gives a unique fingerprint for each explosive and volatile organic compound. Such sensing technology can be used to screen for relevant explosives in a complex background as well as to distinguish mixtures of volatile organic compounds distributed in gas phase. This sensor......In the framework of the research project 'Xsense' at the Technical University of Denmark (DTU) we are developing a simple colorimetric sensor array which can be useful in detection of explosives like DNT and TNT, and identification of volatile organic compounds in the presence of water vapor in air...

  1. Acidic organic compounds in beverage, food, and feed production. (United States)

    Quitmann, Hendrich; Fan, Rong; Czermak, Peter


    Organic acids and their derivatives are frequently used in beverage, food, and feed production. Acidic additives may act as buffers to regulate acidity, antioxidants, preservatives, flavor enhancers, and sequestrants. Beneficial effects on animal health and growth performance have been observed when using acidic substances as feed additives. Organic acids could be classified in groups according to their chemical structure. Each group of organic acids has its own specific properties and is used for different applications. Organic acids with low molecular weight (e.g. acetic acid, lactic acid, and citric acid), which are part of the primary metabolism, are often produced by fermentation. Others are produced more economically by chemical synthesis based on petrochemical raw materials on an industrial scale (e.g. formic acid, propionic and benzoic acid). Biotechnology-based production is of interest due to legislation, consumer demand for natural ingredients, and increasing environmental awareness. In the United States, for example, biocatalytically produced esters for food applications can be labeled as "natural," whereas identical conventional acid catalyst-based molecules cannot. Natural esters command a price several times that of non-natural esters. Biotechnological routes need to be optimized regarding raw materials and yield, microorganisms, and recovery methods. New bioprocesses are being developed for organic acids, which are at this time commercially produced by chemical synthesis. Moreover, new organic acids that could be produced with biotechnological methods are under investigation for food applications.

  2. Organic compounds and suspended matter in the White Sea snow-ice cover

    International Nuclear Information System (INIS)

    Nemirovskaya, I.; Shevchenko, V.


    The pollution of the White Sea snow-ice cover was estimated by examining the distribution of organic compounds, including oil and pyrogenic hydrocarbons. Ice and snow cores were taken from Chupa Bay and the Kandalaksha Gulf in the Cape Kartesh area in the spring of 2004 and from the mouth of the Severnaya Dvina River in the spring of 2005, 2006, and 2007. This paper presented data on the lipid content, aliphatic hydrocarbons (AHC), polycyclic aromatic hydrocarbons (PAH) and suspended particulate matter in snow, ice and under-ice water. This paper focused on organic compounds and suspended matter (SM) concentrations in the sea snow-ice cover and described the ice forming conditions and interactions of the substances with ice, snow and sub-ice water. The amount of particulate matter and organic compounds in the snow increased sharply near industrial centres. The concentration of compounds decreased further away from these centres, suggesting that most pollutants are deposited locally. The study revealed that organic compounds concentrate in barrier zones, such as snow-ice and water-ice, depending on the source of pollution. There was no obvious evidence of petrogenic sources of PAHs in particulate matter from the White Sea snow-ice cover. The SM and organic compounds accumulated in layers characterized by local depositional processes. The zones remained biogeochemically active even under low temperature conditions, but the accumulation of both SM and organic compounds was at its highest during the initial stage of ice formation. 16 refs., 2 tabs., 4 figs

  3. Capillary electrophoretic separation of inorganic and organic arsenic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Greschonig, H. [Institute of Analytical Chemistry, Karl Franzens University Graz (Austria); Schmid, M.G.; Guebitz, G. [Institute of Pharmaceutical Chemistry, Karl Franzens University Graz (Austria)


    Capillary zone electrophoresis was used to separate arsenite, arsenate, dimethylarsinic and diphenylarsinic acid, methanearsonic acid, phenyl- and p-aminophenyl arsonic acid, phenylarsineoxide and phenarsazinic acid. Anionic and uncharged species were separated in a fused silica capillary with on-column UV detection at 200 nm. A 15 mM phosphate solution adjusted to pH 6.5 containing 10 mM sodium dodecylsulfonate served as background electrolyte. The influence of pH and applied voltage on separation efficiency, as well as the feasibility of identification of arsenic compounds in spiked urine, were investigated. (orig.) With 7 figs., 1 tab., 22 refs.

  4. Atmospheric chemistry of organic sulfur and nitrogen compounds

    International Nuclear Information System (INIS)

    Nielsen, O.J.; Sidebottom, H.W.; Treacy, J.J.


    The work carried out during the first year of a four year Danish-Irish contract with the European Economic Community is described. The reactions of OH radicals with dialkyl sulfides and nitroalkanes have been studied applying both an absolute technique of pulse radiolysis with kinetic spectroscopy and a relative rate method using conventional smog chamber facilities. The reactions of OH with dimethyl sulfide and nitromethane have been investigated in special detail. Rate constants for reaction of Cl atoms with the same compounds have been determing using the relative rate method. (author)

  5. Dissolved organic carbon enhances the mass transfer of hydrophobic organic compounds from Nonaqueous Phase Liquids (NAPLs) into the aqueous phase

    NARCIS (Netherlands)

    Smith, K.E.C.; Thullner, M.; Wick, L.Y.; Harms, H.


    The hypothesis that dissolved organic carbon (DOC) enhances the mass transfer of hydrophobic organic compounds from nonaqueous phase liquids (NAPLs) into the aqueous phase above that attributable to dissolved molecular diffusion alone was tested. In controlled experiments, mass transfer rates of

  6. 75 FR 57390 - Approval and Promulgation of Implementation Plans; Alabama: Volatile Organic Compounds (United States)


    ... Environmental Management (ADEM) on March 3, 2010. The revision modifies the definition of ``volatile organic... the VOC definition on the basis that these compounds make a negligible contribution to tropospheric..., 2009, which excludes these compounds from the regulatory VOC definition. This action is being taken...

  7. Destructive hydrogenation; dehydrogenation and dehydrogenation processes; purifying oils; polynuclear organic compounds

    Energy Technology Data Exchange (ETDEWEB)


    Unitary organic compounds containing four or more nuclei are recovered from the high boiling fractions of destructive hydrogenation products of bituminous, resinous, or ligneous materials. Cooling, precipitation, crystallization, selective dissolution and distillation are some of the techniques discussed. These techniques may also be applied to the recovery of polynuclear compounds.

  8. Volatile organic compounds and Photobacterium phosphoreum associated with spoilage of modified-atmosphere-packaged raw pork

    DEFF Research Database (Denmark)

    Nieminen, Timo T.; Dalgaard, Paw; Björkroth, Johanna


    Accumulation of volatile organic compounds was monitored in association with sensory quality, bacterial concentrations and culture-independent microbial community analyses in raw pork loin and pork collar during storage under high-oxygen modified atmosphere at +4°C. Of the 48 volatile compounds...

  9. Genetic effects of organic mercury compounds. II. Chromosome segregation in Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Ramel, C; Magnusson, J


    The genetic effect of organic mercury compounds on the fruit fly, Drosophila melanogaster was investigated. Treatments of larvae with methyl and phenyl mercury gave rise to development disturbances. Chromosomal abnormalities were noted.

  10. Isotopic Constraints on the Sources and Associations of Organic Compounds in Marine Sediments

    National Research Council Canada - National Science Library

    White, Helen K


    .... The main objective has been to determine the significance of these associations, and to assess how they affect the transport, bioavailability, preservation and residence times of organic compounds in the environment...

  11. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds

    NARCIS (Netherlands)

    Park, Yong-Soon; Dutta, Swarnalee; Ann, Mina; Raaijmakers, Jos M.; Park, Kyungseok


    Abstract Volatile organic compounds (VOCs) from plant growth-promoting rhizobacteria (PGPR) play key roles in modulating plant growth and induced systemic resistance (ISR) to pathogens. Despite their significance, the physiological functions of the specific VOCs produced by Pseudomonas fluorescens

  12. Abstracts of the papers presented at the workshop 'synthesis and application of radioactively labelled organic compounds'

    International Nuclear Information System (INIS)


    The abstracts of the 12 papers read at the Rossendorf workshop comprise syntheses and radioactive labelling of organic compounds such as herbicides, steroids, peptides and others and their application as tracers, above all in kinetic studies

  13. Occurrence and Distribution of Pharmaceutical Organic Compounds in the Groundwater Downgradient of a Landfill (Grindsted, Denmark)

    DEFF Research Database (Denmark)

    Holm, John V.; Rügge, Kirsten; Bjerg, Poul Løgstrup


    Usually landfill leachates contain specific organic compounds as BTEXs (benzene, toluene, ethylbenzene, and xylenes), chlorinated aliphatic hydrocarbons and chlorobenzenes originating from household chemicals and waste from small businesses (I). However, where industrial waste has been landfilled...

  14. Factors that influence the volatile organic compound content in human breath

    NARCIS (Netherlands)

    Blanchet, L.; Smolinska, Agnieszka; Baranska, Agnieszka; Tigchelaar-Feenstra, E.; Swertz, M.; Zhernakova, A.; Dallinga, J. W.; Wijmenga, C.; van Schooten, Frederik J.

    Background. Thousands of endogenous and exogenous volatile organic compounds (VOCs) are excreted in each breath. Inflammatory and deviant metabolic processes affect the level of endogeneous VOCs, which can serve as specific biomarkers for clinical diagnosis and disease monitoring. Important issues

  15. Plant-associated bacterial degradation of toxic organic compounds in soil.

    LENUS (Irish Health Repository)

    McGuinness, Martina


    A number of toxic synthetic organic compounds can contaminate environmental soil through either local (e.g., industrial) or diffuse (e.g., agricultural) contamination. Increased levels of these toxic organic compounds in the environment have been associated with human health risks including cancer. Plant-associated bacteria, such as endophytic bacteria (non-pathogenic bacteria that occur naturally in plants) and rhizospheric bacteria (bacteria that live on and near the roots of plants), have been shown to contribute to biodegradation of toxic organic compounds in contaminated soil and could have potential for improving phytoremediation. Endophytic and rhizospheric bacterial degradation of toxic organic compounds (either naturally occurring or genetically enhanced) in contaminated soil in the environment could have positive implications for human health worldwide and is the subject of this review.


    Direct measurement of volatile and semivolatile halogenated organic compounds of environmental interest was carried out using arrays of conducting polymer sensors. Mathematical expressions of the sensor arrays using microscopic polymer network model is described. A classical, non...

  17. The Study and Development of Metal Oxide Reactive Adsorbents for the Destruction of Toxic Organic Compounds

    National Research Council Canada - National Science Library

    Mitchell, Mark B


    ... and other toxic organic compounds. The research program that was developed built upon earlier results achieved in the room temperature oxidative decomposition of a chemical warfare agent simulant, dimethyl methylphosphonate (DMMP...


    The prototype computer program SPARC has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC solute-solute physical process models have been developed and tested...

  19. Lifetimes of organic photovoltaics: photooxidative degradation of a model compound

    DEFF Research Database (Denmark)

    Norrman, K.; Alstrup, J.; Jørgensen, M.


    A poly phenylene vinylene (PPV-type) oligomer used in organic photovoltaics was designed to facilitate the interpretation of mass spectral data. A film of the oligomer was subjected to various degrees of illumination (1000 W m(-2), AM1.5) in air resulting in photooxidation of the material...

  20. Adsorption of Volatile Organic Compounds from Aqueous Solution by Granular Activated Carbon in Batch System

    International Nuclear Information System (INIS)

    Zeinali, F.; Ghoreyshi, A. A.; Najafpour, G.


    Chlorinated hydrocarbons and aromatics are the major volatile organic compounds that contaminate the ground water and industrial waste waters. The best way to overcome this problem is to recover the dissolved compounds in water. In order to evaluate the potential ability of granular activated carbon for recovery of volatile organic compounds from water, the equilibrium adsorption was investigated. This study deals with the adsorption of dichloromethane as a typical chlorinated volatile organic compound and toluene as the representative of aromatic volatile organic compounds on a commercial granular activated carbon. The adsorption isotherms of these two volatile organic compounds on granular activated carbon were measured at three different temperatures, toluene at 293, 303 and 313 K and dichloromethane at 298, 303 and 313 K within their solubility concentration range in water. The maximum adsorption capacity of dichloromethane and toluene adsorption by granular activated carbon was 4 and 0.2 mol/Kg-1, respectively. The experimental data obtained were correlated with different adsorption isotherm models. The Langmuir model was well adapted to the description of dichloromethane adsorption on granular activated carbon at all three temperatures, while the adsorption of toluene on granular activated carbon was found to be well described by the Langmuir-BET hybrid model at all three temperatures. The heat of adsorption was also calculated based on the thermodynamic equation of Clausius Clapeyron, which indicates the adsorption process is endothermic for both compounds.

  1. Studies on the biological effects of deuteriated organic compounds

    International Nuclear Information System (INIS)

    Dinh-Nguyen, Nguyen; Vincent, J.


    The antifungal activity of some perdeuterated fatty acids with a normal chain of 11 to 18 carbon atoms was investigated on common dermatophytes Epidermophyton floccosum, Microsporum canis, Trichophyton mentagrophytes and T. rubrum under in vitro conditions. A perdeuterated compound is one in which most of the hydrogen atoms in the molecule are replaced by deuterium. These studies were performed by the dilution technique with respiratory measurements. Perdeuteration of of some fatty acids increases their inhibitory effect on the dermatophyte growth. Perdeuterated n-hendecanoic acid proved to be the most active of the substances tested. Possible mechanisms behind the enhanced antifungal activity due to the perdeuteration of fatty acids are discussed. The present study investigates the antifungal properties of some perdeuterated fatty acids on dermatophytes in vitro

  2. Erythrocyte hemolysis by organic tin and lead compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kleszcynska, H. [Agricultural Univ., Wroclaw (Poland). Dept. of Physics and Biophysics; Hladyszowski, J. [Agricultural Univ., Wroclaw (Poland). Dept. of Physics and Biophysics; Pruchnik, H. [Agricultural Univ., Wroclaw (Poland). Dept. of Physics and Biophysics; Przestalski, S. [Agricultural Univ., Wroclaw (Poland). Dept. of Physics and Biophysics


    The effect of trialkyllead and trialkyltin on pig erythrocyte hemolysis has been studied and compared. The results of experiments showed that the hemolytic activity of organoleads increases with their hydrophobicity and follows the sequence: triethyllead chloride < tri-n-propyllead chloride < tributyllead chloride. And similarly in the case of organotins: triethyltin chloride < tri-n-propyltin chloride < tributyltin chloride. Comparison of the hemolytic activity of organoleads and organotins indicates that the lead compounds exhibit higher hemolytic activity. The methods of quantum chemistry allowed to determine the maximum electric potential of the ions R{sub 3}Pb{sup +} and R{sub 3}Sn{sup +}, and suggest a relationship between the potential and toxicity. (orig.)

  3. Biosynthesis of polybrominated aromatic organic compounds by marine bacteria (United States)

    Agarwal, Vinayak; El Gamal, Abrahim A.; Yamanaka, Kazuya; Poth, Dennis; Kersten, Roland D.; Schorn, Michelle; Allen, Eric E.; Moore, Bradley S.


    Polybrominated diphenyl ethers (PBDEs) and polybrominated bipyrroles are natural products that bioaccumulate in the marine food chain. PBDEs have attracted widespread attention due to their persistence in the environment and potential toxicity to humans. However, the natural origins of PBDE biosynthesis are not known. Here we report marine bacteria as producers of PBDEs and establish a genetic and molecular foundation for their production that unifies paradigms for the elaboration of bromophenols and bromopyrroles abundant in marine biota. We provide biochemical evidence of marine brominase enzymes revealing decarboxylative-halogenation enzymology previously unknown among halogenating enzymes. Biosynthetic motifs discovered in our study were used to mine sequence databases to discover unrealized marine bacterial producers of organobromine compounds. PMID:24974229

  4. Maximizing Information from Residential Measurements of Volatile Organic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena, Randy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Li, Na [Berkeley Analytical Associates, Richmond, CA (United States); Hodgson, Alfred [Berkeley Analytical Associates, Richmond, CA (United States); Offermann, Francis [Indoor Environmental Engineering, San Francisco, CA (United States); Singer, Brett [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)


    Continually changing materials used in home construction and finishing can introduce new chemicals or changes in the VOC profile in residential air and the trend towards tighter homes can lead to higher exposure concentrations for many indoor sources. However, the complex mixture of VOCs in residential air makes it difficult to discover emerging contaminants and/or trends in pollutant profiles. The purpose of this study is to prepare a comprehensive library of chemicals found in homes, along with a semi-quantitative approach to maximize the information gained from VOC measurements. We carefully reviewed data from 108 new California homes and identified 238 individual compounds. The majority of the identified VOCs originated indoors. Only 31% were found to have relevant health based exposure guidelines and less than 10% had a chronic reference exposure level (CREL). The finding highlights the importance of extending IAQ studies to include a wider range of VOCs

  5. New methods of arene iodination and functional transformation of multiple bonds in organic compounds

    International Nuclear Information System (INIS)

    Filimonov, V.D.; Chajkovskij, V.K.; Krasnokutskaya, E.A.


    The review summarizes the latest results of organic chemistry and technology of organic synthesis department of Tomsk polytechnical university concerning iodination of arenes and chemical transformations of unsaturated compounds. Preparative possibilities of the new reactions and reagents for iodination, oxidation of alkenes and alkynes to 1,2- and bis-1,2-dicarbonyl compounds, iodonitration of alkynes, and reaction of oxidative dimerization of the terminal alkynes to unsaturated δ-sultones are discussed [ru

  6. Prediction of Partition Coefficients of Organic Compounds for SPME/PDMS


    Liao Hsuan-Yu; Huang Miao-Ling; Lu Yu-Ting; Chao Keh-Ping


    The partition coefficients of 51 organic compounds between SPME/PDMS and gas were compiled from the literature sources in this study. The effect of physicochemical properties and descriptors on the partitioning process of partition coefficients was explicated by the correlation analysis. The PDMS-gas partition coefficients were well correlated to the molecular weight of organic compounds (r = 0.832, p < 0.05). An empirical model, consisting of the molecular weight and the polarizability, was ...

  7. Biogenic, urban, and wildfire influences on the molecular composition of dissolved organic compounds in cloud water (United States)

    Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu; Boone, Eric; Chu, Rosalie K.; Dukett, James E.; Gunsch, Matthew J.; Zhang, Wuliang; Tolic, Nikola; Laskin, Alexander; Pratt, Kerri A.


    Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds. Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on

  8. Removal of volatile organic compounds by a high pressure microwave plasma torch

    International Nuclear Information System (INIS)

    Rubio, S.J.; Quintero, M.C.; Rodero, A.; Alvarez, R.


    A helium microwave plasma torch was studied and optimised as a destruction system of volatile organic compounds. Attention was focused on trichloroethylene as a prototypical volatile organic compound, which is used technologically and which poses known health risks. The dependence of the destruction efficiency on the plasma conditions was obtained for different values of trichloroethylene concentrations. The results show a destruction and removal efficiency greater than 99.999% (Authors)

  9. Analysis of volatile organic compounds of ‘Fuji’ apples following electron beam irradiation and storage

    International Nuclear Information System (INIS)

    Song, Hyun-Pa; Shim, Sung-Lye; Lee, Sun-Im; Kim, Dong-Ho; Kwon, Joong-Ho; Kim, Kyong-Su


    The volatile organic compounds of non-irradiated and electron-beam irradiated ‘Fuji’ apples (Malus domestica Borkh.) at 0, 0.5, and 1 kGy were isolated through simultaneous distillation extractions and analyzed using gas chromatograph–mass spectrometry. A total of 53 volatile organic compounds were characterized in 0 and 1 kGy irradiated samples, whereas two more compounds related to ketone and terpenoid group were identified in 0.5 kGy irradiated samples. The contents of volatile compounds were 24.33, 36.49, and 35.28 mg/kg in 0, 0.5, and 1 kGy irradiated samples, respectively. The major compounds identified were butanol, hexanal, [E]-2-hexenal, and hexanol in all samples. The relative content of alcohol increased after 30 days of storage in all samples, whereas that of aldehyde decreased. Although the contents of some volatile compounds were changed by electron-beam irradiation, the total yield and major flavor compounds of irradiated ‘Fuji’ apples were similar to, or even greater than, those of the control. Therefore, the application of e-beam irradiation if required for microbial decontamination of ‘Fuji’ apples is an acceptable method as it does not bring about any major quantitative changes of volatile organic compounds. - Highlights: ► We analyzed the volatile organic compounds of electron beam irradiated Fuji apples. ► The major compounds of samples were butanol, hexanal, [E]-2-hexenal, and hexanol. ► The contents of major flavor compounds of non-irradiated and irradiated samples were similar.

  10. Adsorption of volatile organic compounds by polytetra-fluor ethylene

    International Nuclear Information System (INIS)

    Martinet, J.M.


    The sorption of organic vapours by microporous polytetra-fluor ethylene has been studied gravimetrically using a Mc Bain-Baker type sorption balance. The amount of sorption, the peculiarities observed on the isotherm curves, the small influence of temperature, and smallness of hysteresis suggests that mainly physical adsorption occurs when the temperature is around 25 deg. C. The values of the surface areas obtained from the adsorption isotherms using organic vapours differ greatly from those derived from N 2 adsorption measurements. This discrepancy cannot be completely attributed to differences in the structure and chemical function of the adsorbate molecules, or to the porous structure of the adsorbent. On the contrary, the surface area values obtained by sorbing high volatile freons conform with those measured by nitrogen adsorption, which seems to imply a connection between the area of sorbed monolayers and volatility of the adsorbate. (author) [fr

  11. Sensing of volatile organic compounds by copper phthalocyanine thin films (United States)

    Ridhi, R.; Saini, G. S. S.; Tripathi, S. K.


    Thin films of copper phthalocyanine have been deposited by thermal evaporation technique. We have subsequently exposed these films to the vapours of methanol, ethanol and propanol. Optical absorption, infrared spectra and electrical conductivities of these films before and after exposure to chemical vapours have been recorded in order to study their sensing mechanisms towards organic vapours. These films exhibit maximum sensing response to methanol while low sensitivities of the films towards ethanol and propanol have been observed. The changes in sensitivities have been correlated with presence of carbon groups in the chemical vapours. The effect of different types of electrodes on response-recovery times of the thin film with organic vapours has been studied and compared. The electrodes gap distance affects the sensitivity as well as response-recovery time values of the thin films.

  12. Organic compound materials used as pipes reinforcement of fluids conduction

    International Nuclear Information System (INIS)

    Latorre, G; Vargas, F


    This paper presents the experimental test and the results of the development of a composite organic material (MCO) for the reinforcement and covering of pipelines. MCO is designed to be applied to pipelines with external, damages such as dents or gauges or with surface damages caused by corrosion; The product can recover transport lines with 65% thickness losses due to corrosion in lengths of less than 0,2 m. the system developed by ECOPETROL-ICP can stop progressive picking corrosion, it has an excellent capillary, good adhesion, good resistance in cathodic protection, and mechanical strength that can support the operational pressure of the pipeline. MCO is a mixture of a polymeric resin reinforced with organic fibers, it can be applied to surface or underground pipelines without stopping normal operation. The maximum rupture pressure attained by the MCO was 23,4 MPA in pipelines with a 65% thickness loss due to corrosion. The normal operation pressure is 10-12 MPA

  13. The Photocatalytic Destruction of Volatile Organic Compounds in Water (United States)


    some common oxidants. It can be seen that the hydroxyl radical is only second to the fluorine ion in oxidation potential. 5 Table 2.1 Dissociation...Potential of Oxidants (Bernardin, 1991) Relative Oxidation Oxidative Power, Chlorine = 1 Species Potential (volts) 2.23 Fluorine 3.03 2.06 Hydroxyl... varnishes . It is used as a universal degreaser, in drycleaning, and in the manufacture of organic chemicals. On military bases it is used as a universal

  14. Non-classical structures of organic compounds: unusual stereochemistry and hypercoordination

    International Nuclear Information System (INIS)

    Minkin, Vladimir I; Minyaev, Ruslan M; Hoffmann, Roald


    Non-classical structures of organic compounds are defined as molecules containing non-tetrahedral tetracoordinate and/or hypercoordinate carbon atoms. The evolution of the views on this subject is considered and the accumulated theoretical and experimental data on the structures and dynamic transformations of non-classical organic compounds are systematised. It is shown that computational analysis using the methods and the software potential of modern quantum chemistry has now acquired high predictive capacity and is the most important source of data on the structures of non-classical compounds. The bibliography includes 227 references.

  15. Using the properties of organic compounds to help design a treatment system

    International Nuclear Information System (INIS)

    Nyer, E.; Boettcher, G.; Morello, B.


    The author provides the physical/chemical and treatability properties of 50 organic compounds. The physical/chemical parameters of the compounds can be used to help evaluate data generated during remedial investigations. The treatability parameters can be used as a basis for the preliminary design of a treatment system that will remove organic compounds from ground water. The main physical/chemical properties that should be evaluated prior to design are solubility, specific gravity, and octanol/water coefficient. Based on this determination, the treatability is determined for carbon adsorption and biodegradability

  16. Graphene and graphene nanocomposites for the removal of aromatic organic compounds from the water: systematic review (United States)

    Monsores Paixão, Monique; Tadeu Gomes Vianna, Marco; Marques, Marcia


    Aromatic organic pollutants are highly toxic to the human and environmental health and are considered as priority pollutants by regulatory agencies. Managing contaminated sites with organic pollutants is one of the major environmental challenges today. Of all technologies that have been proposed to remove contaminants, adsorption is recognized worldwide as an attractive option due to its versatility, wide applicability and economic viability. Recent studies report the use of graphene (GN), a recently carbon nanomaterial, and its derivatives in sorption processes for the removal of aromatic organic compounds. The present review has shown that GN structures are a promising alternative to traditional adsorbent materials, with excellent results in the removal of organic compounds from water, due to their unique structural characteristics and great adsorption capacity for organic compounds. Although, there is still a long way to go until that practical applications can be implemented.

  17. Identifying bioaccumulative halogenated organic compounds using a nontargeted analytical approach: seabirds as sentinels.

    Directory of Open Access Journals (Sweden)

    Christopher J Millow

    Full Text Available Persistent organic pollutants (POPs are typically monitored via targeted mass spectrometry, which potentially identifies only a fraction of the contaminants actually present in environmental samples. With new anthropogenic compounds continuously introduced to the environment, novel and proactive approaches that provide a comprehensive alternative to targeted methods are needed in order to more completely characterize the diversity of known and unknown compounds likely to cause adverse effects. Nontargeted mass spectrometry attempts to extensively screen for compounds, providing a feasible approach for identifying contaminants that warrant future monitoring. We employed a nontargeted analytical method using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS to characterize halogenated organic compounds (HOCs in California Black skimmer (Rynchops niger eggs. Our study identified 111 HOCs; 84 of these compounds were regularly detected via targeted approaches, while 27 were classified as typically unmonitored or unknown. Typically unmonitored compounds of note in bird eggs included tris(4-chlorophenylmethane (TCPM, tris(4-chlorophenylmethanol (TCPMOH, triclosan, permethrin, heptachloro-1'-methyl-1,2'-bipyrrole (MBP, as well as four halogenated unknown compounds that could not be identified through database searching or the literature. The presence of these compounds in Black skimmer eggs suggests they are persistent, bioaccumulative, potentially biomagnifying, and maternally transferring. Our results highlight the utility and importance of employing nontargeted analytical tools to assess true contaminant burdens in organisms, as well as to demonstrate the value in using environmental sentinels to proactively identify novel contaminants.

  18. Detecting and Eliminating Interfering Organic Compounds in Waters Analyzed for Isotopic Composition by Crds (United States)

    Richman, B. A.; Hsiao, G. S.; Rella, C.


    Optical spectroscopy based CRDS technology for isotopic analysis of δD and δ18O directly from liquid water has greatly increased the number and type of liquid samples analyzed. This increase has also revealed a previously unrecognized sample contamination problem. Recently West[1] and Brand[2] identified samples containing ethanol, methanol, plant extracts and other organic compounds analyzed by CRDS and other spectroscopy based techniques as yielding erroneous results for δD and δ18O (especially δD) due to spectroscopic interference. Not all organic compounds generate interference. Thus, identifying which samples are contaminated by which organic compounds is of key importance for data credibility and correction. To address this problem a new approach in the form of a software suite, ChemCorrect™, has been developed. A chemometrics component uses a spectral library of water isotopologues and interfering organic compounds to best fit the measured spectra. The best fit values provide a quantitative assay of the actual concentrations of the various species and are then evaluated to generate a visual flag indicating samples affected by organic contamination. Laboratory testing of samples spiked with known quantities of interfering organic compounds such as methanol, ethanol, and terpenes was performed. The software correctly flagged and identified type of contamination for all the spiked samples without any false positives. Furthermore the reported values were a linear function of actual concentration with an R^2>0.99 even for samples which contained multiple organic compounds. Further testing was carried out against a range of industrial chemical compounds which can contaminate ground water as well as a variety of plant derived waters and juices which were also analyzed by IRMS. The excellent results obtained give good insight into which organic compounds cause interference and which classes of plants are likely to contain interfering compounds. Finally

  19. Abiotic synthesis of organic compounds from carbon disulfide under hydrothermal conditions. (United States)

    Rushdi, Ahmed I; Simoneit, Bernd R T


    Abiotic formation of organic compounds under hydrothermal conditions is of interest to bio, geo-, and cosmochemists. Oceanic sulfur-rich hydrothermal systems have been proposed as settings for the abiotic synthesis of organic compounds. Carbon disulfide is a common component of magmatic and hot spring gases, and is present in marine and terrestrial hydrothermal systems. Thus, its reactivity should be considered as another carbon source in addition to carbon dioxide in reductive aqueous thermosynthesis. We have examined the formation of organic compounds in aqueous solutions of carbon disulfide and oxalic acid at 175 degrees C for 5 and 72 h. The synthesis products from carbon disulfide in acidic aqueous solutions yielded a series of organic sulfur compounds. The major compounds after 5 h of reaction included dimethyl polysulfides (54.5%), methyl perthioacetate (27.6%), dimethyl trithiocarbonate (6.8%), trithianes (2.7%), hexathiepane (1.4%), trithiolanes (0.8%), and trithiacycloheptanes (0.3%). The main compounds after 72 h of reaction consisted of trithiacycloheptanes (39.4%), pentathiepane (11.6%), tetrathiocyclooctanes (11.5%), trithiolanes (10.6%), tetrathianes (4.4%), trithianes (1.2%), dimethyl trisulfide (1.1%), and numerous minor compounds. It is concluded that the abiotic formation of aliphatic straight-chain and cyclic polysulfides is possible under hydrothermal conditions and warrants further studies.

  20. The olefin metathesis reaction: reorganization and cyclization of organic compounds

    International Nuclear Information System (INIS)

    Frederico, Daniel; Brocksom, Ursula; Brocksom, Timothy John


    The olefin metathesis reaction allows the exchange of complex alkyl units between two olefins, with the formation of a new olefinic link and a sub-product olefin usually ethylene. This reaction has found extensive application in the last ten years with the development of the Grubbs and Schrock catalysts, in total synthesis of complex organic molecules, as opposed to the very important use in the petrochemical industry with relatively simple molecules. This review intends to trace a historical and mechanistic pathway from industry to academy, before illustrating the more recent advances. (author)

  1. Short latency compound action potentials from mammalian gravity receptor organs (United States)

    Jones, T. A.; Jones, S. M.


    Gravity receptor function was characterized in four mammalian species using far-field vestibular evoked potentials (VsEPs). VsEPs are compound action potentials of the vestibular nerve and central relays that are elicited by linear acceleration ramps applied to the cranium. Rats, mice, guinea pigs, and gerbils were studied. In all species, response onset occurred within 1.5 ms of the stimulus onset. Responses persisted during intense (116 dBSPL) wide-band (50 to 50 inverted question mark omitted inverted question mark000 Hz) forward masking, whereas auditory responses to intense clicks (112 dBpeSPL) were eliminated under the same conditions. VsEPs remained after cochlear extirpation but were eliminated following bilateral labyrinthectomy. Responses included a series of positive and negative peaks that occurred within 8 ms of stimulus onset (range of means at +6 dBre: 1.0 g/ms: P1=908 to 1062 micros, N1=1342 to 1475 micros, P2=1632 to 1952 micros, N2=2038 to 2387 micros). Mean response amplitudes at +6 dBre: 1.0 g/ms ranged from 0.14 to 0.99 microV. VsEP input/output functions revealed latency slopes that varied across peaks and species ranging from -19 to -51 micros/dB. Amplitude-intensity slopes also varied ranging from 0.04 to 0.08 microV/dB for rats and mice. Latency values were comparable to those of birds although amplitudes were substantially smaller in mammals. VsEP threshold values were considerably higher in mammals compared to birds and ranged from -8.1 to -10.5 dBre 1.0 g/ms across species. These results support the hypothesis that mammalian gravity receptors are less sensitive to dynamic stimuli than are those of birds.

  2. HS-SPME analysis of volatile organic compounds of coniferous needle litter (United States)

    Isidorov, V. A.; Vinogorova, V. T.; Rafałowski, K.

    The composition of volatile emission of Scots pine ( Pinus sylvestris) and spruce ( Picea exelsa) litter was studied by gas chromatography-mass spectrometry (GC-MS) and samples were collected by solid-phase microextraction (SPME) method. The list of identified compounds includes over 60 organic substances of different classes. It was established that volatile emission contain not only components of essential oils of pine and spruce needles but also a large number of organic compounds which are probably secondary metabolites of litter-decomposing fungi. They include lower carbonyl compounds and alcohols as well as products of terpene dehydration and oxidation. These data show that the processes of litter decomposition are an important source of reactive organic compounds under canopy of coniferous forests.

  3. From energy-rich phosphate compounds to warfare agents: A review on the chemistry of organic phosphate compounds

    Directory of Open Access Journals (Sweden)

    Luciano Albino Giusti


    Full Text Available The chemistry of the phosphorus-oxygen bond is widely used in biological systems in many processes, such as energy transduction and the storage, transmission and expression of genetic information, which are essential to living beings in relation to a wide variety of functions. Compounds containing this bond have been designed for many purposes, ranging from agricultural defense systems, in order to increase food production, to nerve agents, for complaining use in warfare. In this review, features related to the chemistry of organic phosphate compounds are discussed, with particular emphasis on the role of phosphate compounds in biochemical events and in nerve agents. To this aim, the energy-rich phosphate compounds are focused, particularly the mode of their use as energy currency in cells. Historical and recent studies carried out by research groups have tried to elucidate the mechanism of action of enzymes responsible for energy transduction through the use of biochemical studies, enzyme models, and artificial enzymes. Finally, recent studies on the detoxification of nerve agents based on phosphorous esters are presented, and on the utilization of chromogenic and fluorogenic chemosensors for the detection of these phosphate species.

  4. Two new POMOF compounds constructed from polyoxoanions, metals and organic ligands (United States)

    Xiao, Li-Na; Zhang, Hao; Zhang, Ting-Ting; Zhang, Xiao; Cui, Xiao-Bing


    Two new POMOF compounds, namely [PMo12V2O42][Cu3(4,4'-bpy)3]·(DABCO) (1) and [PMo10V4O42][Cu2(4,4'-bpy)2][Cu(phen)2]2 (2) (DABCO = triethylenediamine, bpy = bipyridine, phen = 1,10-phenanthroline)), have been synthesized and characterized by IR, UV-Vis, XRD, elemental analysis and X-ray diffraction analysis. Crystal structure analyses reveal that compounds 1 and 2 exhibit novel 2-D layered framework structures constructed from bi-capped Keggin molybdenum-vanadium polyoxoanions, metals and organic ligands, respectively. The main difference of the two compounds is that compound 2 contains both Cu2+ and Cu+ complexes. In addition, we also investigate the catalytic properties of the two compounds, both compound 1 and 2 are excellent catalysts for the epoxidation of styrene.

  5. Photocatalysis: A viable alternative for the elimination of organic compound

    International Nuclear Information System (INIS)

    Gil Pavas, Edison


    The basic idea of this project is to present photo catalysis as a simple, economic, effective and innovative technology, for the treatment of phenolic waters found in the effluents from several industrial processes, by determining the optimum conditions of operation and by identifying the parameters that govern the process. The attractiveness of this technology is based on its profitability, easy of implementation and use. The required capital investment is minimal in comparison with other technologies. The UV radiation from the sun or artificial sources (lamps) is used to activate the catalyst (TiO) to destroy the organic pollutants present in liquids effluent. The process was carried out continuously with using ph, catalyst (TiO 2 ) concentration and recirculation time as variables

  6. Radioluminescence of organic compounds: specific luminescence of condensed aromatic scintillators

    International Nuclear Information System (INIS)

    Lopes da Silva, J.


    The influence of the nature of ionizing particles on the radioluminescence yield of aromatic scintillators is studied. Both prompt and delayed scintillation components are considered. An expression giving the specific luminescence dS/dx as a function of the charge number z and of the incident particle specific energy loss have been derived, following a track model published before, that is consistent with recent conclusions about the nature, evolution and distribution of the primary excitations created by an ionizing particle in the organic scintillator. The good agreement between the theoretical curves derived in this paper and the experimental ones previously reported provided us with a means of evaluating the different parameters included in the proposed expressions. The numerical values of these parameters included in the proposed expressions. The numerical values of these parameters agree with those of other authors and are theoretically discussed and justified [fr

  7. Extraction of interesting organic compounds from olive oil waste

    Directory of Open Access Journals (Sweden)

    Jiménez, Ana


    Full Text Available In the olive fruits there is a large amount of bioactive compounds and substances of high interest. Many of them are known by owing health beneficial properties that contribute to protective effect of the virgin olive oil. During olive oil processing, most of them remain in the olive oil wastes. Although, olive-mill wastewater (OMWW or “alpechin”, olive oil cake (OOC, and the new by-product, known as “alperujo” in Spain and generated by the two-phase extraction process, represent a major disposal and potentially severe pollution problem for the industry, they are also promising source of substances of high value. This review summarises the last knowledge on the utilisation of residual products, with more than 90 references including articles and patents, which are promising with regard to future application. All these investigations have been classified into two options, the recovery of valuable natural constituents and the bioconversion into useful products.Existe una gran cantidad de compuestos bioactivos y de alto interés presentes en la aceituna. Muchos de ellos se conocen por las cualidades beneficiosas que aportan al aceite de oliva virgen. La mayoría permanecen en mayor cantidad en el subproducto de la extracción del aceite. Aunque, el alpechín, el orujo y el nuevo subproducto de extracción del aceite en dos fases, alperujo, representan un problema potencial de vertido y contaminación, también son una prometedora fuente de compuestos de alto valor. Esta revisión resume lo último que se conoce sobre la utilización de estos residuos en el campo anteriormente mencionado, con más de 90 referencias que incluyen artículos y patentes. Todas estas investigaciones han sido clasificadas en cuanto a la recuperación de constituyentes naturalmente presentes o en cuanto a la bioconversión de los residuos en sustancias de interés.

  8. Occurrence and abundance of carbohydrates and amino compounds in sequentially extracted labile soil organic matter fractions. (United States)

    This study aimed to investigate the content of carbohydrates and amino compounds in three labile fraction of soil organic matter (SOM). Soil samples were collected from two agricultural fields in southern Italy and the light fraction (LF), the 500–53-µm particulate organic matter (POM) and the mobil...

  9. N-doping of organic semiconductors by bis-metallosandwich compounds (United States)

    Barlow, Stephen; Qi, Yabing; Kahn, Antoine; Marder, Seth; Kim, Sang Bok; Mohapatra, Swagat K.; Guo, Song


    The various inventions disclosed, described, and/or claimed herein relate to the field of methods for n-doping organic semiconductors with certain bis-metallosandwich compounds, the doped compositions produced, and the uses of the doped compositions in organic electronic devices. Metals can be manganese, rhenium, iron, ruthenium, osmium, rhodium, or iridium. Stable and efficient doping can be achieved.

  10. Hydrogen charging/discharging system with liquid organic compounds: a lacunar oxide catalyst to hydrogenate the unsaturated organic compound

    International Nuclear Information System (INIS)

    Jalowiecki-Duhamel, L.; Carpentier, J.; Payen, E.; Heurtaux, F.


    Lacunar mixed oxides based on cerium nickel and aluminium or zirconium CeM 0.5 Ni x O y s (M = Zr or Al), able to store high quantities of hydrogen, have been analysed in the hydrogenation of toluene into methyl-cyclohexane (MCH). When these solids present very good toluene hydrogenation activity and selectivity towards MCH in presence of H 2 , in absence of gaseous hydrogen, the reactive hydrogen species stored in the solid can hydrogenate toluene into MCH. The hydrogenation activity under helium + toluene flow decreases as a function of time and becomes nil. The integration of the curve obtained allows to determine the extractable hydrogen content of the solid used, and a value of 1.2 wt % is obtained at 80 C on a CeAl 0.5 Ni 3 O y compound pre-treated in H 2 at 300 C. To optimise the system, different parameters have been analysed, such as the catalyst formulation, the metal content, the pre-reducing conditions as well as the reaction conditions under helium + toluene. (authors)

  11. Biodegradation of organic compounds in vadose zone and aquifer sediments

    International Nuclear Information System (INIS)

    Konopka, A.; Turco, R.


    The microbial processes that occur in the subsurface under a typical Midwest agricultural soil were studied. A 26-m bore was installed in November of 1988 at a site of the Purdue University Agronomy Research Center. Aseptic collections of soil materials were made at 17 different depths. Physical analysis indicated that the site contained up to 14 different strata. The site materials were primarily glacial tills with a high carbonate content. The N,P, and organic C contents of sediments tended to decrease with depth. Ambient water content was generally less than the water content, which corresponds to a -0.3-bar equivalent. No pesticides were detected in slurry incubations of up to 128 days. The sorption of atrazine and metolachlor was correlated with the clay content of the sediments. Microbial biomass (determined by direct microscopic count, viable count, and phospholipid assay) in the tills was lower than in either the surface materials or the aquifer located at 25 m. The biodegradation of glucose and phenol occurred rapidly and without a lag in samples from the aquifer capillary fringe, saturated zone, and surface soils. In contrast, lag periods and smaller biodegradation rates were found in the till samples. Subsurface sediments are rich in microbial numbers and activity. The most active strata appear to be transmissive layers in the saturated zone. This implies that the availability of water may limit activity in the profile

  12. Development of technology performance specifications for volatile organic compounds

    International Nuclear Information System (INIS)

    Purdy, C.; Schutte, W.E.


    The Office of Technology Development (OTD) within the Office of Environmental Restoration and Waste Management of the Department of Energy has a mission to deliver needed and usable technologies to its customers. The primary customers are individuals and organizations performing environmental characterization and remediation, waste cleanup, and pollution prevention at DOE sites. DOE faces a monumental task in cleaning up the dozen or so major sites and hundreds of smaller sites that were or are used to produce the US nuclear weapons arsenal and to develop nuclear technologies for national defense and for peaceful purposes. Contaminants and waste materials include the radionuclides associated with nuclear weapons, such as plutonium and tritium, and more common pollutants and wastes of industrial activity such as chromium, chlorinated solvents, and polychlorinated biphenyls (PCBs). Quite frequently hazardous wastes regulated by the Environmental Protection Agency are co-mingled with radioactive wastes regulated by the Nuclear Regulatory Commission to yield a open-quotes mixed waste,close quotes which increases the cleanup challenges from several perspectives. To help OTD and its investigators meet DOE's cleanup goal, technology performance specifications are being implemented for research and development and DT ampersand E projects. Technology performance specifications or open-quotes performance goalsclose quotes describe, quantitatively where possible, the technology development needs being addressed. These specifications are used to establish milestones, evaluate the status of ongoing projects, and determine the success of completed projects

  13. Method for the detection and isolation of traces of organic fluorine compounds in plants

    Energy Technology Data Exchange (ETDEWEB)

    Wade, R H; Ross, J M; Benedict, H M


    A method for the detection and isolation of sub-microgram quantities of organic fluorine compounds from plant materials in the presence of much larger amounts of inorganic fluoride is presented. The procedure consists first of a rapid screening step for use with large numbers of vegetable samples and extracts and, second, of a chromatographic step to isolate and characterize any fluoro-organics found. These methods are developed in light of specific chemical characteristics of organic fluorine compounds as a general class. A modification of SOEP's quantitative sub-micro fluoride analytical method is presented as applicable to these isolation methods. Microgram quantities of organic fluorine compounds were found in the plant materials investigated but at a level too low for isolation and identification.

  14. Organic compounds leached from fast pyrolysis mallee leaf and bark biochars. (United States)

    Lievens, Caroline; Mourant, Daniel; Gunawan, Richard; Hu, Xun; Wang, Yi


    Characterization of organic compounds leached from biochars is essential in assessing the possible toxicity of the biochar to the soils' biota. In this study the nature of the leached organic compounds from Mallee biochars, produced from pyrolysis of Mallee leaf and bark in a fluidised-bed pyrolyser at 400 and 580°C was investigated. Light bio-oil compounds and aromatic organic compounds were investigated. The 'bio-oil like' light compounds from leaf and bark biochars 'surfaces were obtained after leaching the chars with a solvent, suitable to dissolve the respective bio-oils. GC/MS was implemented to investigate the leachates. Phenolics, which are potentially harmful toxins, were detected and their concentration shown to be dependent on the char's origin and the char production temperature. Further, to simulate biochars amendment to soils, the chars were leached with water. The water-leached aromatic compounds from leaf and bark biochars were characterized using UV-fluorescence spectroscopy. Those results suggested that biochars contain leachable compounds of which the nature and amount is dependent on the biomass feedstock, pyrolysis temperature and leaching time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Azo compounds as a family of organic electrode materials for alkali-ion batteries. (United States)

    Luo, Chao; Borodin, Oleg; Ji, Xiao; Hou, Singyuk; Gaskell, Karen J; Fan, Xiulin; Chen, Ji; Deng, Tao; Wang, Ruixing; Jiang, Jianjun; Wang, Chunsheng


    Organic compounds are desirable for sustainable Li-ion batteries (LIBs), but the poor cycle stability and low power density limit their large-scale application. Here we report a family of organic compounds containing azo group (N=N) for reversible lithiation/delithiation. Azobenzene-4,4'-dicarboxylic acid lithium salt (ADALS) with an azo group in the center of the conjugated structure is used as a model azo compound to investigate the electrochemical behaviors and reaction mechanism of azo compounds. In LIBs, ADALS can provide a capacity of 190 mAh g -1 at 0.5 C (corresponding to current density of 95 mA g -1 ) and still retain 90%, 71%, and 56% of the capacity when the current density is increased to 2 C, 10 C, and 20 C, respectively. Moreover, ADALS retains 89% of initial capacity after 5,000 cycles at 20 C with a slow capacity decay rate of 0.0023% per cycle, representing one of the best performances in all organic compounds. Superior electrochemical behavior of ADALS is also observed in Na-ion batteries, demonstrating that azo compounds are universal electrode materials for alkali-ion batteries. The highly reversible redox chemistry of azo compounds to alkali ions was confirmed by density-functional theory (DFT) calculations. It provides opportunities for developing sustainable batteries.

  16. Influence of organic nitro-compounds and of surface active compounds on the inverse voltametric determination of cadmium, lead and copper

    Energy Technology Data Exchange (ETDEWEB)

    Wahdat, F; Neeb, R


    The influence of surface active agents and of organic nitro-compounds alone and in combination on the potentiometric stripping analysis and anodic-stripping differential-pulse-polarography of Cd, Pb and Cu is investigated. In some cases PSA offers advantages for the determination of these elements in the presence of organic nitro-compounds in comparison with differential pulse-polarography.

  17. Precipitation of organic arsenic compounds and their degradation products during struvite formation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jin-Biao; Yuan, Shoujun [School of Civil Engineering, Hefei University of Technology, Hefei 230009 (China); Institute of Water Treatment and Wastes Reutilization, Hefei University of Technology, Hefei 230009 (China); Wang, Wei, E-mail: [School of Civil Engineering, Hefei University of Technology, Hefei 230009 (China); Institute of Water Treatment and Wastes Reutilization, Hefei University of Technology, Hefei 230009 (China); Hu, Zhen-Hu, E-mail: [School of Civil Engineering, Hefei University of Technology, Hefei 230009 (China); Institute of Water Treatment and Wastes Reutilization, Hefei University of Technology, Hefei 230009 (China); Yu, Han-Qing [Department of Chemistry, University of Science & Technology of China, Hefei 230026 (China)


    Highlights: • Organic and inorganic arsenic compounds precipitated during struvite formation. • Precipitation of organic arsenic compounds in struvite decreased with increasing pH. • Arsenate easily precipitate in struvite as compared to organic arsenic compounds. • Arsenic compounds in solution affected the shape of struvite crystallization products. - Abstract: Roxarsone (ROX) and arsanilic acid (ASA) have been extensively used as organoarsenic animal feed additives. Organic arsenic compounds and their degradation products, arsenate (As(V)) and arsenite (As(III)), exist in the effluent from anaerobic reactors treating animal manure contaminated by ROX or ASA with ammonium (NH{sub 4}{sup +}-N) and phosphate (PO{sub 4}{sup 3−}-P) together. Therefore, arsenic species in the effluent might be involved in the struvite formation process. In this study, the involvement of organic arsenic compounds and their degradation products As(V) and As(III) in the struvite crystallization was investigated. The results demonstrated that arsenic compounds did not substantially affect the PO{sub 4}{sup 3−}-P recovery, but confirmed the precipitation of arsenic during struvite formation. The precipitation of arsenic compounds in struvite was considerably affected by a solution pH from 9.0 to 11.0. With an increase in pH, the content of ASA and ROX in the precipitation decreased, but the contents of As(III) and As(V) increased. In addition, the arsenic content of As(V) in the struvite was higher than that of As(III), ASA and ROX. The results indicated that the struvite could be contaminated when the solution contains arsenic species, but that could be minimized by controlling the solution pH and maintaining anaerobic conditions during struvite formation.

  18. Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater. (United States)

    Keren, Yonatan; Borisover, Mikhail; Bukhanovsky, Nadezhda


    The organic compound-soil interactions may be strongly influenced by changes in soil organic matter (OM) which affects the environmental fate of multiple organic pollutants. The soil OM changes may be caused by land disposal of various OM-containing wastes. One unique type of OM-rich waste is olive mill-related wastewater (OMW) characterized by high levels of OM, the presence of fatty aliphatics and polyphenolic aromatics. The systematic data on effects of the land-applied OMW on organic compound-soil interactions is lacking. Therefore, aqueous sorption of simazine and diuron, two herbicides, was examined in batch experiments onto three soils, including untreated and OMW-affected samples. Typically, the organic compound-soil interactions increased following the prior land application of OMW. This increase is associated with the changes in sorption mechanisms and cannot be attributed solely to the increase in soil organic carbon content. A novel observation is that the OMW application changes the soil-sorbent matrix in such a way that the solute uptake may become cooperative or the existing ability of a soil sorbent to cooperatively sorb organic molecules from water may become characterized by a larger affinity. The remarkable finding of this study was that in some cases a cooperative uptake of organic molecules by soils makes itself evident in distinct sigmoidal sorption isotherms rarely observed in soil sorption of non-ionized organic compounds; the cooperative herbicide-soil interactions may be characterized by the Hill model coefficients. However, no single trend was found for the effect of applied OMW on the mechanisms of organic compound-soil interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Source apportionment of airborne particulate matter using organic compounds as tracers (United States)

    Schauer, James J.; Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.

    A chemical mass balance receptor model based on organic compounds has been developed that relates source contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in southern California using atmospheric organic compound concentration data and source test data collected specifically for the purpose of testing this model. The contributions of up to nine primary particle source types can be separately identified in ambient samples based on this method, and approximately 85% of the organic fine aerosol is assigned to primary sources on an annual average basis. The model provides information on source contributions to fine mass concentrations, fine organic aerosol concentrations and individual organic compound concentrations. The largest primary source contributors to fine particle mass concentrations in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions from food cooking and wood smoke, with smaller contribution from tire dust, plant fragments, natural gas combustion aerosol, and cigarette smoke. Once these primary aerosol source contributions are added to the secondary sulfates, nitrates and organics present, virtually all of the annual average fine particle mass at Los Angeles area monitoring sites can be assigned to its source.

  20. Potential for ion-induced nucleation of volatile organic compounds by radon decay in indoor environments

    International Nuclear Information System (INIS)

    Daisey, J.M.


    There is considerable interest in the ''unattached'' fraction of radon progeny in indoor air because of its significance to the estimation of the risks of radon exposure. Because of its high mobility in air, the unattached fraction is more efficiently deposited in the respiratory tract. Variation in the diameter of the ''unattached'' fraction and in its diffusion coefficient can be due to clustering of other atmospheric species around the 218 PoO 2 + ion. The purpose of this study was to investigate the potential for the formation of clusters of vapor phase organic compounds, found in indoor air, around the 218 PoO 2 + ion and to determine which were most likely to form clusters. A secondary purpose was to provide a compilation of measurements of indoor organic compounds for future experiments and theoretical calculations by the radon research community. The classical charged liquid droplet theory (Thomson equation) was used to estimate the Gibbs free energy of ion-induced nucleation and to provide an indication of the indoor organic compounds most likely to undergo ion-induced nucleation. Forty-four volatile and semi-volatile organic compounds out of the more than 300 which have been reported in indoor air were investigated. Water vapor was included for comparison. The results indicate that there is a potential for the formation of clusters of organic compounds around the 218 PoO 2 + ion. The compounds with the greatest potential for cluster formation are the volatile oxidized hydrocarbons (e.g., n-butanol, phenol, hexanal, nonanal, benzaldehyde, the ketones and the acetates) and the semi-volatile organic compounds (pentachlorophenol, nicotine, chlordane, chlorpyrifos)

  1. Sensory irritating potency of some microbial volatile organic compounds (MVOCs) and a mixture of five MVOCs. (United States)

    Korpi, A; Kasanen, J P; Alarie, Y; Kosma, V M; Pasanen, A L


    The authors investigated the ability/potencies of 3 microbial volatile organic compounds and a mixture of 5 microbial volatile organic compounds to cause eye and upper respiratory tract irritation (i.e., sensory irritation), with an animal bioassay. The authors estimated potencies by determining the concentration capable of decreasing the respiratory frequency of mice by 50% (i.e., the RD50 value). The RD50 values for 1-octen-3-ol, 3-octanol, and 3-octanone were 182 mg/m3 (35 ppm), 1359 mg/m3 (256 ppm), and 17586 mg/m3 (3360 ppm), respectively. Recommended indoor air levels calculated from the individual RD50 values for 1-octen-3-ol, 3-octanol, and 3-octanone were 100, 1000, and 13000 microg/m3, respectively-values considerably higher than the reported measured indoor air levels for these compounds. The RD50 value for a mixture of 5 microbial volatile organic compounds was also determined and found to be 3.6 times lower than estimated from the fractional concentrations and the respective RD50s of the individual components. The data support the conclusion that a variety of microbial volatile organic compounds may have some synergistic effects for the sensory irritation response, which constrains the interpretation and application of recommended indoor air levels of individual microbial volatile organic compounds. The results also showed that if a particular component of a mixture was much more potent than the other components, it may dominate the sensory irritation effect. With respect to irritation symptoms reported in moldy houses, the results of this study indicate that the contribution of microbial volatile organic compounds to these symptoms seems less than previously supposed.

  2. Development of sampling method and chromatographic analysis of volatile organic compounds emitted from human skin. (United States)

    Grabowska-Polanowska, Beata; Miarka, Przemysław; Skowron, Monika; Sułowicz, Joanna; Wojtyna, Katarzyna; Moskal, Karolina; Śliwka, Ireneusz


    The studies on volatile organic compounds emitted from skin are an interest for chemists, biologists and physicians due to their role in development of different scientific areas, including medical diagnostics, forensic medicine and the perfume design. This paper presents a proposal of two sampling methods applied to skin odor collection: the first one uses a bag of cellulose film, the second one, using cellulose sachets filled with active carbon. Volatile organic compounds were adsorbed on carbon sorbent, removed via thermal desorption and analyzed using gas chromatograph with mass spectrometer. The first sampling method allowed identification of more compounds (52) comparing to the second one (30). Quantitative analyses for acetone, butanal, pentanal and hexanal were done. The skin odor sampling method using a bag of cellulose film, allowed the identification of many more compounds when compared with the method using a sachet filled with active carbon.

  3. Novel synthetic organic compounds inspired from antifeedant marine alkaloids as potent bacterial biofilm inhibitors. (United States)

    Rane, Rajesh A; Karpoormath, Rajshekhar; Naphade, Shital S; Bangalore, Pavankumar; Shaikh, Mahamadhanif; Hampannavar, Girish


    In this paper, we have reported seventeen novel synthetic organic compounds derived from marine bromopyrrole alkaloids, exhibiting potential inhibition of biofilm produced by Gram-positive bacteria. Compound 5f with minimumbiofilm inhibitory concentration(MBIC) of 0.39, 0.78 and 3.125 μg/mL against MSSA, MRSA and SE respectively, emerged as promising anti-biofilm lead compounds. In addition, compounds 5b, 5c, 5d, 5e, 5f, 5h, 5i and 5j revealed equal potency as that of the standard drug Vancomycin (MBIC = 3.125 μg/mL) against Streptococcus epidermidis. Notably, most of the synthesized compounds displayed better potency than Vancomycin indicating their potential as inhibitors of bacterial biofilm. The cell viability assay for the most active hybrid confirms its anti-virulence properties which need to be further researched. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Life from the stars?. [extraterrestrial sources contributing to chemical evolution on Earth (United States)

    Pendleton, Yvonne J.; Cruikshank, Dale P.


    Scientists are now seriously considering the possibility that organic matter from interstellar space could have influenced, or even spurred, the origin of life on Earth. Various aspects of chemical evolution are discussed along with possible extraterrestrial sources responsible for contributing to Earth's life-producing, chemical composition. Specific topics covered include the following: interstellar matter, molecular clouds, asteroid dust, organic molecules in our solar system, interplanetary dust and comets, meteoritic composition, and organic-rich solar-system bodies.

  5. Mathematical modeling of atmospheric fine particle-associated primary organic compound concentrations (United States)

    Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.


    An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst- and catalyst-equipped autos, diesel trucks, paved road dust, tire wear, brake lining dust, meat cooking operations, industrial oil-fired boilers, roofing tar pots, natural gas combustion in residential homes, cigarette smoke, fireplaces burning oak and pine wood, and plant leaf abrasion products. These primary fine particle source emissions were supplied to a computer-based model that simulates atmospheric transport, dispersion, and dry deposition based on the time series of hourly wind observations and mixing depths. Monthly average fine particle organic compound concentrations that would prevail if the primary organic aerosol were transported without chemical reaction were computed for more than 100 organic compounds within an 80 km × 80 km modeling area centered over Los Angeles. The monthly average compound concentrations predicted by the transport model were compared to atmospheric measurements made at monitoring sites within the study area during 1982. The predicted seasonal variation and absolute values of the concentrations of the more stable compounds are found to be in reasonable agreement with the ambient observations. While model predictions for the higher molecular weight polycyclic aromatic hydrocarbons (PAH) are in agreement with ambient observations, lower molecular weight PAH show much higher predicted than measured atmospheric concentrations in the particle phase, indicating atmospheric decay by chemical reactions or evaporation from the particle phase. The atmospheric concentrations of dicarboxylic acids and aromatic polycarboxylic acids greatly exceed the contributions that

  6. Identification of novel synthetic organic compounds with supersonic gas chromatography-mass spectrometry. (United States)

    Fialkov, Alexander B; Amirav, Aviv


    Several novel synthetic organic compounds were successfully analyzed with a unique type of GC-MS titled Supersonic GC-MS following a failure in their analysis with standard GC-MS. Supersonic GC-MS is based on interfacing GC and MS with a supersonic molecular beam (SMB) and on electron ionization of sample compounds as vibrationally cold molecules while in the SMB, or by cluster chemical ionization. The analyses of novel synthetic organic compounds significantly benefited from the extended range of compounds amenable to analyses with the Supersonic GC-MS. The Supersonic GC-MS enabled the analysis of thermally labile compounds that usually degrade in the GC injector, column and/or ion source. Due to the high carrier gas flow rate at the injector liner and column these compounds eluted without degradation at significantly lower elution temperatures and the use of fly-through EI ion source eliminated any sample degradation at the ion source. The cold EI feature of providing trustworthy enhanced molecular ion (M+), complemented by its optional further confirmation with cluster CI was highly valued by the synthetic organic chemists that were served by the Supersonic GC-MS. Furthermore, the provision of extended mass spectral structural, isomer and isotope information combined with short (a few minutes) GC-MS analysis times also proved beneficial for the analysis of unknown synthetic organic compounds. As a result, the synthetic organic chemists were provided with both qualitative and quantitative data on the composition of their synthetic mixture, and could better follow the path of their synthetic chemistry. Ten cases of such analyses are demonstrated in figures and discussed.

  7. Analysis of organic compounds by secondary neutral mass spectrometry (SNMS) and secondary ion mass spectrometry (SIMS)

    International Nuclear Information System (INIS)

    Ewinger, H.P.


    This study is about the use of secondary neutral mass spectrometry (SNMS) and secondary ion mass spectrometry (SIMS) as analytical techniques with depth resolution in determining organic components in environmental solid microparticles. The first application of plasma SNMS to organic compounds revealed the spectra to be composed mainly of signals from the atoms of all participating elements, such as C, H, O, N, S, P, and Cl. In addition, signals produced by multi-atomic clusters can be detected, such as CH, C 2 , CH 2 , C 2 H, and C 3 , as well as signals indicating the presence of organic compounds with hetero elements, such as OH, NH, and CN. Their intensity decreases very markedly with increasing numbers of atoms. Among the signals from bi-atomic clusters, those coming from elements with large mass differences are most intense. The use of plasma SNMS with organic compounds has shown that, except for spurious chemical reactions induced by ion bombardment and photodesorption by the photons of the plasma, it is possible to analyze with resolution in depth, elements of organic solids. A more detailed molecular characterization of organic compounds is possible by means of SIMS on the basis of multi-atomic fragments and by comparison with suitable signal patterns. (orig./BBR) [de

  8. Evaluation of soluble organic compounds generated by radiological degradation of asphalt

    International Nuclear Information System (INIS)

    Fukumoto, M.; Nishikawa, Y.; Kagawa, A.; Kawamura, K.


    The soluble organic compounds generated by radiological degradation of asphalt (γ ray) were confirmed as a part of influence of the bituminized waste degradation in the TRU waste repository. Especially, the influence of the nitrate was focused on. As a result, the concentration of the soluble organic compounds generated by radiological degradation of asphalt (10 MGy, γ ray which is correspond to absorbed dose of asphalt for 1,000,000 years) were lower (each formic acid: about 50 mg/dm 3 , acetic acid: about 30 mg/dm 3 and oxalic acid: about 2 mg/dm 3 ) than that of the formic acid, the acetic acid and the oxalic acid which Valcke et al. had shown (the influence of the organic at the solubility examination which uses Pu and Am). Moreover, the change in the concentration of TOC and the soluble organic compounds (formic acid, acetic acid and oxalic acid) is little under the existence of nitrate ion. That is, the formic acid and acetic acid which can be organic ligands were generated little by oxidative decomposition of asphalt in the process that nitrate ion becomes nitride ion by radiation. The influence of the soluble organic compounds by the radiological degradation of the asphalt (γ ray) on adsorption and solubility by the complexation of radionuclides in the performance assessment can be limited. (author)

  9. Hammerhead ribozyme activity and oligonucleotide duplex stability in mixed solutions of water and organic compounds

    Directory of Open Access Journals (Sweden)

    Shu-ichi Nakano


    Full Text Available Nucleic acids are useful for biomedical targeting and sensing applications in which the molecular environment is different from that of a dilute aqueous solution. In this study, the influence of various types of mixed solutions of water and water-soluble organic compounds on RNA was investigated by measuring the catalytic activity of the hammerhead ribozyme and the thermodynamic stability of an oligonucleotide duplex. The compounds with a net neutral charge, such as poly(ethylene glycol, small primary alcohols, amide compounds, and aprotic solvent molecules, added at high concentrations changed the ribozyme-catalyzed RNA cleavage rate, with the magnitude of the effect dependent on the NaCl concentration. These compounds also changed the thermodynamic stability of RNA base pairs of an oligonucleotide duplex and its dependence on the NaCl concentration. Specific interactions with RNA molecules and reduced water activity could account for the inhibiting effects on the ribozyme catalysis and destabilizing effects on the duplex stability. The salt concentration dependence data correlated with the dielectric constant, but not with water activity, viscosity, and the size of organic compounds. This observation suggests the significance of the dielectric constant effects on the RNA reactions under molecular crowding conditions created by organic compounds.

  10. Phosphorus sorption on marine carbonate sediment: phosphonate as model organic compounds. (United States)

    Huang, Xiao-Lan; Zhang, Jia-Zhong


    Organophosphonate, characterized by the presence of a stable, covalent, carbon to phosphorus (C-P) bond, is a group of synthetic or biogenic organophosphorus compounds. The fate of these organic phosphorus compounds in the environment is not well studied. This study presents the first investigation on the sorption of phosphorus (P) in the presence of two model phosphonate compounds, 2-aminothylphosphonoic acid (2-AEP) and phosphonoformic acid (PFA), on marine carbonate sediments. In contrast to other organic P compounds, no significant inorganic phosphate exchange was observed in seawater. P was found to adsorb on the sediment only in the presence of PFA, not 2-AEP. This indicated that sorption of P from phosphonate on marine sediment was compound specific. Compared with inorganic phosphate sorption on the same sediments, P sorption from organic phosphorus is much less in the marine environment. Further study is needed to understand the potential role of the organophosphonate compounds in biogeochemical cycle of phosphorus in the environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Organic Compounds in Clackamas River Water Used for Public Supply near Portland, Oregon, 2003-05 (United States)

    Carpenter, Kurt D.; McGhee, Gordon


    Organic compounds studied in this U.S. Geological Survey (USGS) assessment generally are man-made, including pesticides, gasoline hydrocarbons, solvents, personal care and domestic-use products, disinfection by-products, and manufacturing additives. In all, 56 compounds were detected in samples collected approximately monthly during 2003-05 at the intake for the Clackamas River Water plant, one of four community water systems on the lower Clackamas River. The diversity of compounds detected suggests a variety of different sources and uses (including wastewater discharges, industrial, agricultural, domestic, and others) and different pathways to drinking-water supplies (point sources, precipitation, overland runoff, ground-water discharge, and formation during water treatment). A total of 20 organic compounds were commonly detected (in at least 20 percent of the samples) in source water and (or) finished water. Fifteen compounds were commonly detected in source water, and five of these compounds (benzene, m- and p-xylene, diuron, simazine, and chloroform) also were commonly detected in finished water. With the exception of gasoline hydrocarbons, disinfection by-products, chloromethane, and the herbicide diuron, concentrations in source and finished water were less than 0.1 microgram per liter and always less than human-health benchmarks, which are available for about 60 percent of the compounds detected. On the basis of this screening-level assessment, adverse effects to human health are assumed to be negligible (subject to limitations of available human-health benchmarks).

  12. Microbial transformations of natural organic compounds and radionuclides in subsurface environments

    International Nuclear Information System (INIS)

    Francis, A.J.


    A major national concern in the subsurface disposal of energy wastes is the contamination of ground and surface waters by waste leachates containing radionuclides, toxic metals, and organic compounds. Microorganisms play an important role in the transformation of organic compounds, radionuclides, and toxic metals present in the waste and affect their mobility in subsurface environments. Microbial processes involved in dissolution, mobilization, and immobilization of toxic metals under aerobic and anaerobic conditions are briefly reviewed. Metal complexing agents and several organic acids produced by microbial action affect mobilization of radionuclides and toxic metals in subsurface environments. Information on the persistence of and biodegradation rates of synthetic as well as microbiologically produced complexing agents is scarce but important in determining the mobility of metal organic complexes in subsoils. Several gaps in knowledge in the area of microbial transformation of naturally occurring organics, radionuclides, and toxic metals have been identified, and further basic research has been suggested. 31 refs., 1 fig., 3 tabs

  13. Effect of organic complexing compounds and surfactants on coprecipitation of cesium radionuclides with nickel ferrocyanide precipitate

    International Nuclear Information System (INIS)

    Milyutin, V.V.; Gelis, V.M.; Ershov, B.G.; Seliverstov, A.F.


    One studied the effect of the organic complexing compounds and of the surfactants on the coprecipitation of Cs trace amounts with the nickel ferrocyanide precipitate. The presence of the oxalate- and ethylenediamin-tetraacetate-ions in the solutions is shown to result in the abrupt reduction of Cs coprecipitation degree. The effect of the various surfactants manifested itself not so explicitly. To reduce the negative effect of the organic compounds on the intimacy of Cs coprecipitation one tried out the procedure of their chemical destruction by ozon. Pre-ozonization of the solutions enabled to prevent the negative effect of the organic complexing compounds and of the surfactants on Cs coprecipitation with nickel ferrocyanide precipitate [ru

  14. A methodology for ranking and hazard identification of xenobiotic organic compounds in urban stormwater

    DEFF Research Database (Denmark)

    Baun, Anders; Eriksson, Eva; Ledin, Anna


    The paper presents a novel methodology (RICH, Ranking and Identification of Chemical Hazards) for ranking and identification of xenobiotic organic compounds of environmental concern in stormwater discharged to surface water. The RICHmethod is illustrated as a funnel fitted with different filters...... in hazard/risk assessments, a justified list of stormwater priority pollutants which must be included in hazard/risk assessments, and a list of compounds which may be present in discharged stormwater, but cannot be evaluated due to lack of data. The procedure was applied to 233 xenobiotic organic chemicals...... with xenobiotic organic compounds (XOCs) found in urban stormwater, but it may be transferred to other environmental compartments and problems. Thus, the RICH procedure can be used as a stand-alone tool for selection of potential priority pollutants or it can be integrated in larger priority setting frameworks....

  15. Organic compounds in produced waters from coalbed natural gas wells in the Powder River Basin, Wyoming, USA (United States)

    Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Rice, C.A.; Bartos, T.T.; Bates, A.L.; Tewalt, S.; Corum, M.D.


    The organic composition of produced water samples from coalbed natural gas (CBNG) wells in the Powder River Basin, WY, sampled in 2001 and 2002 are reported as part of a larger study of the potential health and environmental effects of organic compounds derived from coal. The quality of CBNG produced waters is a potential environmental concern and disposal problem for CBNG producers, and no previous studies of organic compounds in CBNG produced water have been published. Organic compounds identified in the produced water samples included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, various non-aromatic compounds, and phthalates. Many of the identified organic compounds (phenols, heterocyclic compounds, PAHs) are probably coal-derived. PAHs represented the group of organic compounds most commonly observed. Concentrations of total PAHs ranged up to 23 ??g/L. Concentrations of individual compounds ranged from about 18 to compound concentrations was documented, as two wells with relatively high organic compound contents in produced water in 2001 had much lower concentrations in 2002. In many areas, including the PRB, coal strata provide aquifers for drinking water wells. Organic compounds observed in produced water are also likely present in drinking water supplied from wells in the coal. Some of the organic compounds identified in the produced water samples are potentially toxic, but at the levels measured in these samples are unlikely to have acute health effects. The human health effects of low-level, chronic exposure to coal-derived organic compounds in drinking water are currently unknown. Continuing studies will evaluate possible toxic effects from low level, chronic exposure to coal-derived organic compounds in drinking water supplies.

  16. Role of effluent organic matter in the photochemical degradation of compounds of wastewater origin. (United States)

    Bodhipaksha, Laleen C; Sharpless, Charles M; Chin, Yu-Ping; MacKay, Allison A


    The photoreactivity of treated wastewater effluent organic matter differs from that of natural organic matter, and the indirect phototransformation rates of micropollutants originating in wastewater are expected to depend on the fractional contribution of wastewater to total stream flow. Photodegradation rates of four common compounds of wastewater origin (sulfamethoxazole, sulfadimethoxine, cimetidine and caffeine) were measured in river water, treated municipal wastewater effluent and mixtures of both to simulate various effluent-stream water mixing conditions that could occur in environmental systems. Compounds were chosen for their unique photodegradation pathways with the photochemically produced reactive intermediates, triplet-state excited organic matter ( 3 OM*), singlet oxygen ( 1 O 2 ), and hydroxyl radicals (OH). For all compounds, higher rates of photodegradation were observed in effluent relative to upstream river water. Sulfamethoxazole degraded primarily via direct photolysis, with some contribution from OH and possibly from carbonate radicals and other unidentified reactive intermediates in effluent-containing samples. Sulfadimethoxine also degraded mainly by direct photolysis, and natural organic matter appeared to inhibit this process to a greater extent than predicted by light screening. In the presence of effluent organic matter, sulfadimethoxine showed additional reactions with OH and 1 O 2 . In all water samples, cimetidine degraded by reaction with 1 O 2 (>95%) and caffeine by reaction with OH (>95%). In river water mixtures, photodegradation rate constants for all compounds increased with increasing fractions of effluent. A conservative mixing model was able to predict reaction rate constants in the case of hydroxyl radical reactions, but it overestimated rate constants in the case of 3 OM* and 1 O 2 pathways. Finally, compound degradation rate constants normalized to the rate of light absorption by water correlated with E 2 /E 3 ratios

  17. Application of organic compounds for high-order harmonic generation of ultrashort pulses (United States)

    Ganeev, R. A.


    The studies of the high-order nonlinear optical properties of a few organic compounds (polyvinyl alcohol, polyethylene, sugar, coffee, and leaf) are reported. Harmonic generation in the laser-produced plasmas containing the molecules and large particles of above materials is demonstrated. These studies showed that the harmonic distributions and harmonic cutoffs from organic compound plasmas were similar to those from the graphite ablation. The characteristic feature of observed harmonic spectra was the presence of bluesided lobes near the lower-order harmonics.

  18. Organic halogen compounds and surface water pollution; Composti organoalogenati alifatici e contaminazione delle acque superficiali

    Energy Technology Data Exchange (ETDEWEB)

    Cocchioni, M.; Pellegrini, M. G.; Grappasonni, I.; Nacciarriti, L.; Bernacchia, G. [Camerino, Univ. (Italy). Dipt. di Scienze Igienistiche e Sanitarie-Ambientali


    A brief review of the effects of halogenated organic compounds on the fluvial ecosystem is followed by results from a detailed monitoring of these substances in all the Marches Region rivers. The results show generally modest concentrations, except for sporadic peaks for chloroform. Sites revealing significant concentrations of halogenated organic compounds also manifested a worsening of the biological quality of the waters with lessening of E.B.I. Attention is drawn to the negative effects of indiscriminate chlorination of purification plant outputs, as this practice often fails to resolve infective problems and in itself adds toxicity to the watercourse.

  19. Analysis of volatile organic compound from Elaeis guineensis inflorescences planted on different soil types in Malaysia (United States)

    Muhamad Fahmi, M. H.; Ahmad Bukhary, A. K.; Norma, H.; Idris, A. B.


    The main attractant compound for Eleidobius kamerunicus to male spikelet Elaeis guineensis (oil palm) were determined by analyzing volatile organic compound extracted from E. guineenses inflorescences planted on different soil types namely peat soil, clay soil and sandy soil. Anthesizing male oil palm inflorescences were randomly choosen from palm aged between 4-5 years old age. Extraction of the volatiles from the oil palm inflorescences were performed by Accelerated Solvent Extraction method (ASE). The extracted volatile compound were determined by using gas chromatography-mass spectrometry. Out of ten identified compound, estragole was found to be a major compound in sandy soil (37.49%), clay soil (30.71%) and peat soil (27.79%). Other compound such as 9,12-octadecadieonic acid and n-hexadecanoic acid were found as major compound in peat soil (27.18%) and (7.45%); sandy soil (14.15 %) and (9.31%); and clay soil (30.23%) and (4.99%). This study shows that estragole was the predominant volatile compound detected in oil palm inflorescences with highly concentrated in palm planted in sandy soil type.

  20. Hazardous organic compounds in biogas plant end products-Soil burden and risk to food safety

    International Nuclear Information System (INIS)

    Suominen, K.; Verta, M.; Marttinen, S.


    The end products (digestate, solid fraction of the digestate, liquid fraction of the digestate) of ten biogas production lines in Finland were analyzed for ten hazardous organic compounds or compound groups: polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), polychlorinated biphenyls (PCB(7)), polyaromatic hydrocarbons (PAH(16)), bis-(2-ethylhexyl) phthalate (DEHP), perfluorinated alkyl compounds (PFCs), linear alkylbenzene sulfonates (LASs), nonylphenols and nonylphenol ethoxylates (NP + NPEOs), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA). Biogas plant feedstocks were divided into six groups: municipal sewage sludge, municipal biowaste, fat, food industry by-products, animal manure and others (consisting of milling by-products (husk) and raw former foodstuffs of animal origin from the retail trade). There was no clear connection between the origin of the feedstocks of a plant and the concentrations of hazardous organic compounds in the digestate. For PCDD/Fs and for DEHP, the median soil burden of the compound after a single addition of digestate was similar to the annual atmospheric deposition of the compound or compound group in Finland or other Nordic countries. For PFCs, the median soil burden was somewhat lower than the atmospheric deposition in Finland or Sweden. For NP + NPEOs, the soil burden was somewhat higher than the atmospheric deposition in Denmark. The median soil burden of PBDEs was 400 to 1000 times higher than the PBDE air deposition in Finland or in Sweden. With PBDEs, PFCs and HBCD, the impact of the use of end products should be a focus of further research. Highly persistent compounds, such as PBDE- and PFC-compounds may accumulate in agricultural soil after repeated use of organic fertilizers containing these compounds. For other compounds included in this study, agricultural use of biogas plant end products is unlikely to cause risk to food safety in Finland. - Highlights:

  1. Hazardous organic compounds in biogas plant end products-Soil burden and risk to food safety

    Energy Technology Data Exchange (ETDEWEB)

    Suominen, K., E-mail: [Finnish Food Safety Authority Evira, Risk Assessment Research Unit, Mustialankatu 3, 00790 Helsinki (Finland); Verta, M. [Finnish Environmental Institute (SYKE), Mechelininkatu 34a, P.O. Box 140, 00251 Helsinki (Finland); Marttinen, S. [MTT Agrifood Research Finland, 31600 Jokioinen (Finland)


    The end products (digestate, solid fraction of the digestate, liquid fraction of the digestate) of ten biogas production lines in Finland were analyzed for ten hazardous organic compounds or compound groups: polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), polychlorinated biphenyls (PCB(7)), polyaromatic hydrocarbons (PAH(16)), bis-(2-ethylhexyl) phthalate (DEHP), perfluorinated alkyl compounds (PFCs), linear alkylbenzene sulfonates (LASs), nonylphenols and nonylphenol ethoxylates (NP + NPEOs), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA). Biogas plant feedstocks were divided into six groups: municipal sewage sludge, municipal biowaste, fat, food industry by-products, animal manure and others (consisting of milling by-products (husk) and raw former foodstuffs of animal origin from the retail trade). There was no clear connection between the origin of the feedstocks of a plant and the concentrations of hazardous organic compounds in the digestate. For PCDD/Fs and for DEHP, the median soil burden of the compound after a single addition of digestate was similar to the annual atmospheric deposition of the compound or compound group in Finland or other Nordic countries. For PFCs, the median soil burden was somewhat lower than the atmospheric deposition in Finland or Sweden. For NP + NPEOs, the soil burden was somewhat higher than the atmospheric deposition in Denmark. The median soil burden of PBDEs was 400 to 1000 times higher than the PBDE air deposition in Finland or in Sweden. With PBDEs, PFCs and HBCD, the impact of the use of end products should be a focus of further research. Highly persistent compounds, such as PBDE- and PFC-compounds may accumulate in agricultural soil after repeated use of organic fertilizers containing these compounds. For other compounds included in this study, agricultural use of biogas plant end products is unlikely to cause risk to food safety in Finland. - Highlights:

  2. Insights into the attenuated sorption of organic compounds on black carbon aged in soil. (United States)

    Luo, Lei; Lv, Jitao; Chen, Zien; Huang, Rixiang; Zhang, Shuzhen


    Sorption of organic compounds on fresh black carbons (BCs) can be greatly attenuated in soil over time. We examined herein the changes in surface properties of maize straw-derived BCs (biochars) after aged in a black soil and their effects on the sorptive behaviors of naphthalene, phenanthrene and 1,3-dinitrobenzene. Dissolved fulvic and humic acids extracted from the soil were used to explore the role of dissolved organic carbon (DOC) in the aging of biochars. Chromatography analysis indicated that DOC molecules with relatively large molecular weight were preferentially adsorbed on the biochars during the aging processes. DOC sorption led to blockage of the biochar's micropores according to N 2 and CO 2 adsorption analyses. Surface chemistry of the biochars was also substantially modified, with more O-rich functional groups on the aged biochars compared to the original biochars, as evidenced by Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses. The changes in both the physical and chemical surface properties of biochars by DOC led to significant attenuation of the sorption capacity and nonlinearity of the nonionic organic compounds on the aged biochars. Among the tested organic compounds, phenanthrene was the most attenuated in its sorption by the aging treatments, possibly because of its relatively large molecular size and hydrophobicity. The information can help gain a mechanistic understanding of interactions between BCs and organic compounds in soil environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Prediction of RO/NF membrane rejections of PhACs and organic compounds : A statistical analysis

    NARCIS (Netherlands)

    Yangali-Quintanilla, V.; Kim, T.U.; Kennedy, M.; Amy, G.


    OA fund TU Delft Rejections of pharmaceutical compounds (Ibuprofen, Diclofenac, Clofibric acid, Naproxen, Primidone, Phenacetin) and organic compounds (Dichloroacetic acid, Trichloroacetic acid, Chloroform, Bromoform, Trichloroethene, Perchloroethene, Car-bontetrachloride, Carbontetrabromide) by NF

  4. The Search for Extraterrestrial Intelligence (SETI) (United States)

    Tarter, Jill

    The search for evidence of extraterrestrial intelligence is placed in the broader astronomical context of the search for extrasolar planets and biomarkers of primitive life elsewhere in the universe. A decision tree of possible search strategies is presented as well as a brief history of the search for extraterrestrial intelligence (SETI) projects since 1960. The characteristics of 14 SETI projects currently operating on telescopes are discussed and compared using one of many possible figures of merit. Plans for SETI searches in the immediate and more distant future are outlined. Plans for success, the significance of null results, and some opinions on deliberate transmission of signals (as well as listening) are also included. SETI results to date are negative, but in reality, not much searching has yet been done.

  5. Psycholinguistics and the Search for Extraterrestrial Intelligence

    Directory of Open Access Journals (Sweden)

    Lidija Krotenko


    Full Text Available The author of the article reveals the possibilities of psycholinguistics in the identifi cation and interpretation of languages and texts of Alien Civilizations. The author combines modern interdisciplinary research in psycholinguistics with the theory “Evolving Matter” proposed by Oleg Bazaluk and concludes that the identifi cation of languages and texts of Alien Civilizations, as well as the communication of terrestrial civilization with Extraterrestrial Intelligence, is in principle possible. To that end, it is necessary to achieve the required level of the modeling of neurophilosophy and to include these achievements of modern psycholinguistics studies: а language acquisition; b language comprehension; c language production; d second language acquisition. On the one hand, the possibilities of neurophilosophy to accumulate and model advanced neuroscience research; on the other hand, highly specialized psycholinguistic studies in language evolution are able to provide the communication of terrestrial civilization with Extraterrestrial Intelligence.

  6. Stripping of organic compounds from wastewater as an auxiliary fuel of regenerative thermal oxidizer

    International Nuclear Information System (INIS)

    Chang, Meng-Wen; Chern, Jia-Ming


    Organic solvents with different volatilities are widely used in various processes and generate air and water pollution problems. In the cleaning processes of electronics industries, most volatile organic compounds (VOCs) are vented to air pollution control devices while most non-volatile organic solvents dissolve in the cleaning water and become the major sources of COD in wastewater. Discharging a high-COD wastewater stream to wastewater treatment facility often disturbs the treatment performance. A pretreatment of the high-COD wastewater is therefore highly desirable. This study used a packed-bed stripping tower in combination with a regenerative thermal oxidizer to remove the COD in the wastewater from a printed circuit board manufacturing process and to utilize the stripped organic compounds as the auxiliary fuel of the RTO. The experimental results showed that up to 45% of the COD could be removed and 66% of the RTO fuel could be saved by the combined treatment system.

  7. Synthetic organic compounds and their transformation products in groundwater: occurrence, fate and mitigation. (United States)

    Postigo, Cristina; Barceló, Damià


    Groundwater constitutes the main source of public drinking water supply in many regions. Thus, the contamination of groundwater resources by organic chemicals is a matter of growing concern because of its potential effects on public health. The present manuscript compiles the most recent works related to the study of synthetic organic compounds (SOCs) in groundwater, with special focus on the occurrence of contaminants not or barely covered by previously published reviews, e.g., pesticide and pharmaceutical transformation products, lifestyle products, and industrial chemicals such as corrosion inhibitors, brominated and organophosphate flame retardants, plasticizers, volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs). Moreover, the main challenges in managed aquifer recharge, i.e., reclaimed water injection and infiltration, and riverbank filtration, regarding natural attenuation of organic micropollutants are discussed, and insights into the future chemical quality of groundwater are provided. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Exploring sources of biogenic secondary organic aerosol compounds using chemical analysis and the FLEXPART model

    Directory of Open Access Journals (Sweden)

    J. Martinsson


    Full Text Available Molecular tracers in secondary organic aerosols (SOAs can provide information on origin of SOA, as well as regional scale processes involved in their formation. In this study 9 carboxylic acids, 11 organosulfates (OSs and 2 nitrooxy organosulfates (NOSs were determined in daily aerosol particle filter samples from Vavihill measurement station in southern Sweden during June and July 2012. Several of the observed compounds are photo-oxidation products from biogenic volatile organic compounds (BVOCs. Highest average mass concentrations were observed for carboxylic acids derived from fatty acids and monoterpenes (12. 3 ± 15. 6 and 13. 8 ± 11. 6 ng m−3, respectively. The FLEXPART model was used to link nine specific surface types to single measured compounds. It was found that the surface category sea and ocean was dominating the air mass exposure (56 % but contributed to low mass concentration of observed chemical compounds. A principal component (PC analysis identified four components, where the one with highest explanatory power (49 % displayed clear impact of coniferous forest on measured mass concentration of a majority of the compounds. The three remaining PCs were more difficult to interpret, although azelaic, suberic, and pimelic acid were closely related to each other but not to any clear surface category. Hence, future studies should aim to deduce the biogenic sources and surface category of these compounds. This study bridges micro-level chemical speciation to air mass surface exposure at the macro level.

  9. Environmental recovery by destruction of toxic organic compounds using electron beam accelerator

    International Nuclear Information System (INIS)

    Duarte, C.L; Sampa, M.H.O.; Rela, P.R.; Oikawa, H.


    The oxidation process has attracted many researchers because of the capacity to mineralise organic compounds. The most efficient oxidation is the use of OH radicals. There are various methods to generate OH radicals as the use of ozone, hydrogen peroxide and ultra-violet (AOP - Advanced Oxidation Process). The most simple and efficient method for generating OH radicals in situ is the interaction of ionizing radiation with water. The reactive species formed by the water irradiation are the reducing radical's solvated electron and H atoms and the oxidising radical hydroxyl OH. The reactive species will react with organic compounds in the water inducing their decomposition. The use of ionizing radiation has great ecological and technologies advantages, especially when compared to physical-chemical and biological methods. It degrades organic compounds, generating substances that are easily biodegraded without the necessity of adding chemical compounds. The purpose of the radiation treatment is the conversion of these substances to biodegradable compounds; sometimes the complete decomposition is not necessary for this conversion

  10. Protective effects of novel organic selenium compounds against oxidative stress in the nematode Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Sílvio Terra Stefanello


    Full Text Available Organic selenium compounds possess numerous biological properties, including antioxidant activity. Yet, the high toxicity of some of them, such as diphenyl diselenide (DPDS, is a limiting factor in their current usage. Accordingly, we tested four novel organic selenium compounds in the non-parasite nematode Caenorhabditis elegans and compared their efficacy to DPDS. The novel organic selenium compounds are β-selenoamines 1-phenyl-3-(p-tolylselanylpropan-2-amine (C1 and 1-(2-methoxyphenylselanyl-3-phenylpropan-2-amine (C2 and analogs of DPDS 1,2-bis(2-methoxyphenyldiselenide (C3 and 1,2-bisp-tolyldiselenide (C4. Synchronized worms at the L4 larval stage were exposed for one hour in M9 buffer to these compounds. Oxidative stress conditions were induced by juglone (200 μM and heat shock (35 °C. Moreover, we evaluated C. elegans behavior, GST-4::GFP (glutathione S-transferase expression and the activity of acetylcholinesterase (AChE. All tested compounds efficiently restored viability in juglone stressed worms. However, DPDS, C2, C3 and C4 significantly decreased the defecation cycle time. Juglone-induced GST-4::GFP expression was not attenuated in worms pretreated with the novel compounds, except with C2. Finally, AChE activity was reduced by DPDS, C2, C3 and C4. To our knowledge, this is study firstly showed the effects of C1, C2, C3 and C4 selenium-derived compounds in C. elegans. Low toxic effects were noted, except for reduction in the defecation cycle, which is likely associated with AChE inhibition. The juglone-induced stress (reduced viability was fully reversed by compounds to control animal levels. C2 was also efficient in reducing the juglone-induced GST-4::GFP expression, suggesting the latter may mediate the stress induced by this compound. Future studies could be profitably directed at addressing additional molecular mechanisms that mediate the protective effects of these novel organic selenium compounds.

  11. The solubilities of significant organic compounds in HLW tank supernate solutions -- FY 1995 progress report

    International Nuclear Information System (INIS)

    Barney, G.S.


    At the Hanford Site organic compounds were measured in tank supernate simulant solutions during FY 1995. This solubility information will be used to determine if these organic salts could exist in solid phases (saltcake or sludges) in the waste where they might react violently with the nitrate or nitrite salts present in the tanks. Solubilities of sodium glycolate, succinate, and caproate salts; iron and aluminum and butylphosphate salts; and aluminum oxalate were measured in simulated waste supernate solutions at 25 degree C, 30 degree C, 40 degree C, and 50 degree C. The organic compounds were selected because they are expected to exist in relatively high concentrations in the tanks. The solubilities of sodium glycolate, succinate, caproate, and butylphosphate in HLW tank supernate solutions were high over the temperature and sodium hydroxide concentration ranges expected in the tanks. High solubilities will prevent solid sodium salts of these organic acids from precipitating from tank supernate solutions. The total organic carbon concentrations (YOC) of actual tank supernates are generally much lower than the TOC ranges for simulated supernate solutions saturated (at the solubility limit) with the organic salts. This is so even if all the dissolved carbon in a given tank and supernate is due to only one of these eight soluble compounds (an unlikely situation). Metal ion complexes of and butylphosphate and oxalate in supernate solutions were not stable in the presence of the hydroxide concentrations expected in most tanks. Iron and aluminum dibutylphosphate compounds reacted with hydroxide to form soluble sodium dibutylphosphate and precipitated iron and aluminum hydroxides. Aluminum oxalate complexes were also not stable in the basic simulated supernate solutions. Solubilities of all the organic salts decrease with increasing sodium hydroxide concentration because of the common ion effect of Na+. Increasing temperatures raised the solubilities of the organic

  12. Stimulated exoelectron emission dosimetry of organic compounds and of ionic crystals

    International Nuclear Information System (INIS)

    Rocca-Serra nee Chevtchenko, Nathalie


    The purpose of this work is the dosimetric study of stimulated exoelectron emission from various organic compounds (organic acid salts, amino acids) and ionic crystals (sodium chloride, magnesium oxide, calcium sulfate, lithium fluoride and α/β alumina). Experimental results obtained for α/β alumina leads us to determine physical properties of this material such as activation energies and frequency factors of traps involved in the exo-emission process. (author) [fr

  13. General scheme for elucidating the structure of organic compounds using spectroscopic and spectrometric methods

    International Nuclear Information System (INIS)

    Ribeiro, Carlos Magno R.; Souza, Nelson Angelo de


    This work describes a systematic method to be applied in undergraduate courses of organic chemistry, correlating infrared spectra, hydrogen and carbon-13 nuclear magnetic resonance, and mass spectra. To this end, a scheme and a table were developed to conduct the elucidation of the structure of organic compounds initially using infrared spectra. Interpretation of hydrogen and carbon-13 nuclear magnetic resonance spectra and of mass spectra is used to confirm the proposed structure. (author)

  14. Modeling of iodine radiation chemistry in the presence of organic compounds

    International Nuclear Information System (INIS)

    Taghipour, Fariborz; Evans, Greg J.


    A kinetic-based model was developed that simulates the radiation chemistry of iodine in the presence of organic compounds. The model's mechanistic description of iodine chemistry and generic semi-mechanistic reactions for various classes of organics, provided a reasonable representation of experimental results. The majority of the model and experimental results of iodine volatilization rates were in agreement within an order of magnitude

  15. Deuterium enrichment by selective photo-induced dissociation of an organic carbonyl compound

    International Nuclear Information System (INIS)

    Marling, J.B.


    A deuterium-enriched material is produced by selective photoinduced dissociation of a gas phase organic carbonyl compound containing at least one hydrogen atom bonded to an atom adjacent to a carbonyl group. Alkyl carbonyl compounds such as acetone, acetaldehyde, trifluoroacetic acid, cyclobutanone, cyclopentanone, methyl acetate, 3,3-dimethyl-2-butanone, 2,4-pentanedione, and 4-methyl-2-pentanone are preferred. The carbonyl compound is subjected to intense infrared radiation from one laser, or two lasers operating at different frequencies, to selectively dissociate the deuterated molecules into stable products. The undissociated compound may be redeuterated by direct aqueous liquid phase H/D exchange, or by indirect liquid phase exchange using an alkanol in an intermediate step

  16. Quantitative prediction of solvation free energy in octanol of organic compounds. (United States)

    Delgado, Eduardo J; Jaña, Gonzalo A


    The free energy of solvation, DeltaGS0, in octanol of organic compounds is quantitatively predicted from the molecular structure. The model, involving only three molecular descriptors, is obtained by multiple linear regression analysis from a data set of 147 compounds containing diverse organic functions, namely, halogenated and non-halogenated alkanes, alkenes, alkynes, aromatics, alcohols, aldehydes, ketones, amines, ethers and esters; covering a DeltaGS0 range from about -50 to 0 kJ.mol(-1). The model predicts the free energy of solvation with a squared correlation coefficient of 0.93 and a standard deviation, 2.4 kJ.mol(-1), just marginally larger than the generally accepted value of experimental uncertainty. The involved molecular descriptors have definite physical meaning corresponding to the different intermolecular interactions occurring in the bulk liquid phase. The model is validated with an external set of 36 compounds not included in the training set.

  17. Halogenated organic compounds in archived whale oil: A pre-industrial record

    International Nuclear Information System (INIS)

    Teuten, Emma L.; Reddy, Christopher M.


    To provide additional evidence that several halogenated organic compounds (HOCs) found in environmental samples are natural and not industrially produced, we analyzed an archived whale oil sample collected in 1921 from the last voyage of the whaling ship Charles W. Morgan. This sample, which pre-dates large-scale industrial manufacture of HOCs, contained two methoxylated polybrominated diphenyl ethers (MeO-PBDEs), five halogenated methyl bipyrroles (MBPs), one halogenated dimethyl bipyrrole (DMBP), and tentatively one dimethoxylated polybrominated biphenyl (diMeO-PBB). This result indicates, at least in part, a natural source of the latter compounds. - Nine halogenated organic compounds have been detected in archived whale oil from the early 1920s

  18. Halogenated organic compounds in archived whale oil: A pre-industrial record

    Energy Technology Data Exchange (ETDEWEB)

    Teuten, Emma L. [Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, MA 02543 (United States)]. E-mail:; Reddy, Christopher M. [Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, MA 02543 (United States)]. E-mail:


    To provide additional evidence that several halogenated organic compounds (HOCs) found in environmental samples are natural and not industrially produced, we analyzed an archived whale oil sample collected in 1921 from the last voyage of the whaling ship Charles W. Morgan. This sample, which pre-dates large-scale industrial manufacture of HOCs, contained two methoxylated polybrominated diphenyl ethers (MeO-PBDEs), five halogenated methyl bipyrroles (MBPs), one halogenated dimethyl bipyrrole (DMBP), and tentatively one dimethoxylated polybrominated biphenyl (diMeO-PBB). This result indicates, at least in part, a natural source of the latter compounds. - Nine halogenated organic compounds have been detected in archived whale oil from the early 1920s.

  19. Chemisorption of organic iodine compounds forming from fission isotopes of radioactive iodine

    International Nuclear Information System (INIS)

    Tot, G.; Galina, F.; Zel'd, E.


    Studied is ethyl iodine adsorption, labelled by iodine 131, on palladium black and on aluminium oxide activized by palladium. The desorption of adsorbed iodine in the temperature range of 20-600 deg C by the mass spectroscopy and thermal gravimetric methods was investigated. At the ethyl iodine and palladium interaction the bond between carbon and iodine in the ethyl iodine molecule breaks down and extracting iodine reacts with palladium, forming a stable compound at high temperatures. Desorption of adsorbed iodine is insignificant up to the temperatures of 250-300 deg C. Thus, sorbents, containing palladium, may be successfully applied for iodine absorption from the organic iodine compounds. These compounds spontaneously appear from the iodine fragment ratio isotopes during their interaction with some environmental organic impurities

  20. Organically grown tomato (Lycopersicon esculentum Mill.): bioactive compounds in the fruit and infection with Phytophthora infestans. (United States)

    Mohammed, Afrah E; Smit, Inga; Pawelzik, Elke; Keutgen, Anna J; Horneburg, Bernd


    Tomato fruits are characterized by a good nutritional profile, including different bioactive compounds such as carotenoids, phenolic compounds and ascorbic acid. The objective of this study was to analyze the content of bioactive compounds in the fruit and the infection by Phytophthora infestans of 28 tomato genotypes from organic outdoor production. The relationship between bioactive compounds in the fruit and infection with P. infestans was estimated. Field experiments were carried out in 2004 and 2005 at two locations in central Germany. Significant variation among genotypes, locations and years was observed for the content of lycopene, ascorbic acid, total phenolic compounds, antioxidant capacity and the infection level of P. infestans. Antioxidant capacity seemed to be influenced mainly by the phenolics and was highest in small fruits, which were less infected with P. infestans. The large genetic variation among tomato genotypes for the content of bioactive compounds in their fruit allows for selection gains. None of the investigated bioactive compounds can be recommended for the indirect selection for increased field resistance against P. infestans. Copyright © 2011 Society of Chemical Industry.

  1. The effect of the controlled oxygen on the incineration of radio contaminated organic compounds

    International Nuclear Information System (INIS)

    Yahata, Taneaki; Abe, Jiro; Hoshino, Akira.


    It is very important to resolve the method of safety storage and the reduction of volume of radio contaminated waste for utilization of atomic energies. Presently, the amounts of radio contaminated organic compounds such as ion exchange resin, vinyl chloride resin and so on are increased year by year. These compounds are very difficult to burning because of the occurrence of soot or flying ash, so that the waste are solidified using with cement or asphalt. But the burning of these compounds are most efficient method for reduction of volume of the wastes. The present work is an attempt to evaluate the effect of controlled oxygen on the incineration of these compounds, using by differential thermoelectrobalance. The given off gas from these compounds are mixture of hydrocarbon and free carbon examined by mass spectrography. As the result of this study, these compounds are decomposed perfectly under 5 - 10% of oxygen gas flow at about 650 0 C and the off gas from the compounds is disappeared contact with heated copper oxide without soot or flying ash. (author)

  2. Volatile organic compound emmission rates from mixed deciduous and coniferous foest in Northern Wisconsin, USA (United States)

    J. G. Isebrands; A. B. Guenther; P. Harley; D. Helmig; L. Klinger; L. Vierling; P. Zimmerman; C. Geron


    Biogenic emissions of volatile organic compounds {VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regions of the world to understand regional and global impacts and to implement possible...

  3. Synthesis, characterization and crystal structures of new organic compounds containing cyanoacrylic acid

    Czech Academy of Sciences Publication Activity Database

    Khalaji, A.D.; Mogheiseh, M.; Eigner, Václav; Dušek, Michal; Chow, T.J.; Maddahi, E.


    Roč. 1098, Oct (2015), s. 318-323 ISSN 0022-2860 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : organic compounds * cyanoacrylic acid * single-crystal structure analysis * dye-sensitized solar cells * density functional theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.780, year: 2015

  4. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals. (United States)


    ... (VOC) emissions from bulk gasoline terminals. 60.502 Section 60.502 Protection of Environment... SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires a...

  5. The scent of colorectal cancer: detection by volatile organic compound analysis

    NARCIS (Netherlands)

    de Boer, Nanne K. H.; de Meij, Tim G. J.; Oort, Frank A.; Ben Larbi, Ilhame; Mulder, Chris J. J.; van Bodegraven, Adriaan A.; van der Schee, Marc P.


    The overall metabolic state of an individual is reflected by emitted volatile organic compounds (VOCs), which are gaseous carbon-based chemicals. In this review, we will describe the potential of VOCs as fully noninvasive markers for the detection of neoplastic lesions of the colon. VOCs are

  6. Electrospun Polyurethane Fibers for Absorption of Volatile Organic Compounds from Air

    NARCIS (Netherlands)

    Scholten, E.; Bromberg, L.; Rutledge, G.C.; Hatton, T.A.


    Electrospun polyurethane fibers for removal of volatile organic compounds (VOC) from air with rapid VOC absorption and desorption have been developed. Polyurethanes based on 4,4-methylenebis(phenylisocyanate) (MDI) and aliphatic isophorone diisocyanate as the hard segments and butanediol and

  7. 40 CFR 60.542a - Alternate standard for volatile organic compounds. (United States)


    ... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for the Rubber Tire Manufacturing Industry § 60.542a Alternate standard for volatile organic compounds. (a) On and after the date on which the initial performance test, required by § 60.8, is completed, but no...

  8. New global fire emission estimates and evaluation of volatile organic compounds (United States)

    C. Wiedinmyer; L. K. Emmons; S. K. Akagi; R. J. Yokelson; J. J. Orlando; J. A. Al-Saadi; A. J. Soja


    A daily, high-resolution, global fire emissions model has been built to estimate emissions from open burning for air quality modeling applications: The Fire INventory from NCAR (FINN version 1). The model framework uses daily fire detections from the MODIS instruments and updated emission factors, specifically for speciated non-methane organic compounds (NMOC). Global...

  9. Estimating the melting point, entropy of fusion, and enthalpy of fusion of organic compounds via SPARC (United States)

    The entropies of fusion, enthalies of fusion, and melting points of organic compounds can be estimated through three models developed using the SPARC (SPARC Performs Automated Reasoning in Chemistry) platform. The entropy of fusion is modeled through a combination of interaction ...

  10. Dependence of negative muon depolarization on molecular weight and temperature in organic compounds

    International Nuclear Information System (INIS)

    Djuraev, A.A.; Evseev, V.S.; Obukhov, Yu.V.; Roganov, V.S.


    An atomic capture of negative muons in the aliphatic spirit series, the dependence of muon rest polarization on the molecular weight of spirit have been studied. The temperature dependence of depolarization in benzole and styrene has been obtained. The results on depolarization are being interpreted basing on notions about chemical interactions of mesic atoms in organic compounds. (author)

  11. Intermolecula transfer and elimination of molecular hydrogen in thermal reactions of unsaturated organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Suria, Sabartanty [Iowa State Univ., Ames, IA (United States)


    Two reactions which are important to coal liquefaction include intermolecular transfer and the elimination of two hydrogen atoms. We have designed several model reactions to probe the viability of several hydrogen transfer and elimination pathways. This report described studies on these reactions using organic model compounds.

  12. Profiling of volatile organic compounds produced by clinical Aspergillus isolates using gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    Gerritsen, M G; Brinkman, P; Escobar Salazar, Natalia; Bos, L D; de Heer, K; Meijer, M; Janssen, H-G; de Cock, H; Wösten, H A B; Visser, C.E.; van Oers, M H J; Sterk, P J

    Volatile organic compounds (VOCs) in exhaled breath may identify the presence of invasive pulmonary aspergillosis. We aimed to detect VOC profiles emitted by in vitro cultured, clinical Aspergillus isolates using gas chromatography-mass spectrometry (GC-MS). Three clinical Aspergillus isolates and a

  13. Removal of H2S and volatile organic sulfur compounds by silicone membrane extraction

    NARCIS (Netherlands)

    Manconi, I.; Lens, P.N.L.


    BACKGROUND: This study explores an alternative process for the abatement and/or desulfurization of H2S and volatile organic sulfur compounds (VOSC) containing waste streams, which employs a silicone-based membrane to simultaneously remove H2S and VOSC. An extractive membrane reactor allows the

  14. Microbial Volatile Organic Compound Emissions from Stachybotrys chartarum growing on Gypsum Wallboard and Ceiling tile (United States)

    This study compared seven toxigenic strains of S. chartarum found in water-damaged buildings to characterize the microbial volatile organic compound (MVOC) emissions profile while growing on gypsum wallboard (W) and ceiling tile (C) coupons. The inoculated coupons with their sub...

  15. Fulvic acid-like organic compounds control nucleation of marine calcite under suboxic conditions

    NARCIS (Netherlands)

    Neuweiler, F.; D'Orazio, M.; Immenhauser, A.M.; Geipel, G.; Heise, K.H.; Cocozza, C.; Miano, T.M.


    Intracrystalline organic compounds, enclosed within in situprecipitated marine microcrystalline calcite (automicrite), might represent either an inclusion or the catalyst of such precipitation. We use evidence from a Lower Cretaceous deep-water carbonate mound to show (1) the original source, (2)

  16. Profiling of volatile organic compounds produced by clinical Aspergillus isolates using gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    Gerritsen, M. G.; Brinkman, P.; Escobar, N.; Bos, L. D.; de Heer, K.; Meijer, M.; Janssen, H.-G.; de Cock, H.; Wösten, H. A. B.; Visser, C. E.; van Oers, M. H. J.; Sterk, P. J.


    Volatile organic compounds (VOCs) in exhaled breath may identify the presence of invasive pulmonary aspergillosis. We aimed to detect VOC profiles emitted by in vitro cultured, clinical Aspergillus isolates using gas chromatography-mass spectrometry (GC-MS). Three clinical Aspergillus isolates and a

  17. Signals of speciation: Volatile organic compounds resolve closely related sagebrush taxa, suggesting their importance in evolution (United States)

    Deidre M. Jaeger; Justin B. Runyon; Bryce A. Richardson


    Volatile organic compounds (VOCs) play important roles in the environmental adaptation and fitness of plants. Comparison of the qualitative and quantitative differences in VOCs among closely related taxa and assessing the effects of environment on their emissions are important steps to deducing VOC function and evolutionary importance.

  18. Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste

    DEFF Research Database (Denmark)

    Mustafa, Muhammad Farooq; Liu, Yanjun; Duan, Zhenhan


    Degradation of mechanically sorted organic fraction (MSOF) of municipal solid waste in composting facilities is among the major contributors of volatile compounds (VCs) generation and emission, causes nuisance problems and health risks on site as well as in the vicinages. The aim of current study...

  19. Separation of polar compounds using a flexible metal-organic framework

    NARCIS (Netherlands)

    Motkuri, R.K.; Thallapally, P.K.; Annapureddy, H.V.R.; Dang, L.X.; Krishna, R.; Nune, S.K.; Fernandez, C.A.; Liu, J.; McGrail, B.P.


    A flexible metal-organic framework constructed from a flexible linker is shown to possess the capability of separating mixtures of polar compounds (propanol isomers) by exploiting the differences in the saturation capacities of the constituents. Transient breakthrough simulations show that these

  20. 40 CFR Appendix Viii to Part 266 - Organic Compounds for Which Residues Must Be Analyzed (United States)


    ... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Pt. 266, App. VIII Appendix VIII to Part 266... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Organic Compounds for Which Residues...

  1. Atomic and molecular physics of plasma-based environmental technologies for abatement of volatile organic compounds

    International Nuclear Information System (INIS)

    Penetrante, B. M.; Hsiao, M. C.; Bardsley, J. N.; Merritt, B. T.; Vogtin, G. E.; Kuthi, A.; Burkhart, C. P.; Bayless, J. R.


    Non-thermal plasma techniques represent a new generation of air emission control technology that potentially could treat large-volume emissions containing dilute concentrations of volatile organic compounds. In order to apply non-thermal plasmas in an industrial scale, it is important to establish the electrical power requirements and byproducts of the process.There is a need for reliable data concerning the primary decomposition mechanisms and subsequent chemical kinetics associated with non- thermal plasma processing of volatile organic compounds. There are many basic atomic and molecular physics issues that are essential in evaluating the economic performance of non-thermal plasma reactors. These studies are important in understanding how the input electrical power is dissipated in the plasma and how efficiently it is converted to the production of the plasma species (radicals, ions or electrons) responsible for the decomposition of the volatile organic compounds. This paper will present results from basic experimental and theoretical studies aimed at identifying the reaction mechanisms responsible for the primary decomposition of various types of volatile organic compounds. (authors)

  2. Emission index for evaluation of volatile organic compounds emitted from tomato plants in greenhouses

    NARCIS (Netherlands)

    Takayama, K.; Jansen, R.M.C.; Henten, van E.J.; Verstappen, F.W.A.; Bouwmeester, H.J.; Nishina, H.


    Measurement of volatile organic compounds (VOCs) emitted by plants allows us to monitor plant health status without touching the plant. To bring this technique a step further towards a practical plant diagnosis technique for greenhouse crop production, we have defined a numerical index named


    Atmospheric volatile organic compounds (VOCs) are an important factor in the production of ozone near ground level [3]. Many hydrocarbons originate from auto exhaust. However, a number of VOCs, e.g., isoprene, are known to be natural in origin. To develop reliable models for un...

  4. Volatile Organic Sulfur Compounds of Environmental Interest: Dimethyl Sulfide and Methanethiol (United States)

    Chasteen, Thomas G.; Bentley, Ronald


    Volatile organic sulfur compounds (VOSCs) have been assigned environmental roles in global warming, acid precipitation, and cloud formation where two important members dimethyl sulfide (CH3)2 S, DMS, and methanethiol, CH3SH, MT, of VOSC group are involved.

  5. Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: A review (United States)

    Residual pollutants including polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and carbon(aceous) nanoparticles are inevitably generated during the pyrolysis of waste biomass, and remain on the solid co-product called biochar. Such pollutants could have adverse effects on ...

  6. Total Oxidation of Model Volatile Organic Compounds over Some Commercial Catalysts

    Czech Academy of Sciences Publication Activity Database

    Matějová, Lenka; Topka, Pavel; Jirátová, Květa; Šolcová, Olga


    Roč. 443, NOV 7 (2012), s. 40-49 ISSN 0926-860X R&D Projects: GA MPO FR-TI1/059 Institutional support: RVO:67985858 Keywords : volatile organic compounds * oxidation * ethanol Subject RIV: DM - Solid Waste and Recycling Impact factor: 3.410, year: 2012

  7. An Analytical Approach for Relating Boiling Points of Monofunctional Organic Compounds to Intermolecular Forces (United States)

    Struyf, Jef


    The boiling point of a monofunctional organic compound is expressed as the sum of two parts: a contribution to the boiling point due to the R group and a contribution due to the functional group. The boiling point in absolute temperature of the corresponding RH hydrocarbon is chosen for the contribution to the boiling point of the R group and is a…


    A composite membrane was constructed on a porous ceramic support from a block copolymer of styrene and butadiene (SBS). It was tested in a laboratory pervaporation apparatus for recovering volatile organic compounds (VOCs) such a 1,1,1-trichloroethane (TCA) and trichloroethylene ...

  9. Screening for organic solvents in Hanford waste tanks using total non- methane organic compound vapor concentrations

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Glissmeyer, J.A.; Sklarew, D.S.


    The potential ignition of organic liquids stored in the Hanford high-level radioactive waste tanks is a safety issue because expanding gases could affect tank dome integrity. This report presents results of a screening test that was applied to 75 passively ventilated waste tanks at Hanford to determine those that might contain a significant amount of organic liquid waste. The screening test is based on a simple model of tank headspace, headspace organic vapor concentrations, and certain tank physical parameters. Analyses indicate that damage to the tank dome is credible only if the organic liquid burn rate is above a threshold value, and this can occur only if the surface area of organic liquid in a tank is above a corresponding threshold value of about one square meter. Twelve tanks were identified as potentially containing at least that amount of semivolatile organic liquid based on conservative estimates. Tank head space organic vapor concentrations and physical parameters required by the screening test have been compiled and are presented for each of the tanks studied. Estimates of the ventilation rates of the waste tanks were revised to reflect recent information obtained from hydrogen monitoring data. A simple analysis of the uncertainty in the test results suggests that the largest current uncertainty in the estimation of organic liquid surface area is that associated with knowledge of the tank ventilation rate. The uncertainty analysis is applied to determine 95% confidence limits for the estimated organic waste surface area in each tank

  10. The limits of extremophilic life expanded under extraterrestrial environment-simulated experiments (United States)

    Lage, C.; Dalmaso, G.; Teixeira, L.; Bendia, A.; Rosado, A.


    Astrobiology is a brand new area of science that seeks to understand the origin and dynamics of life in the universe. Several hypotheses to explain life in the cosmic context have been developed throughout human history, but only now technology has allowed many of them to be tested. Laboratory experiments have been able to show how chemical elements essential to life, carbon, nitrogen, oxygen and hydrogen combine in biologically important compounds. Interestingly, these compounds are found universally. As these compounds were combined to the point of originating cells and complex organisms is still a challenge to be unveiled by science. However, our 4.5 billion years-old solar system was born within a 10-billion years-old universe. Thus, simple cells like microorganisms may have had time to form in planets older than ours or other suitable molecular places in the universe. One hypothesis to explain the origin of life on Earth is called panspermia, which predicts that microbial life could have been formed in the universe billions of years ago, traveling between planets, and inseminating units of life that could have become more complex in habitable planets like ours. A project designed to test the viability of extremophile microorganisms exposed to simulated extraterrestrial environments is ongoing at the Carlos Chagas Filho Institute of Biophysics to test whether microbial life could withstand those inhospitable environments. Ultra-resistant (known or novel ones) microorganisms collected from terrestrial extreme environments, extremophiles, have been exposed to intense radiation sources simulating solar radiation (at synchrotron accelerators), capable of emitting in a few hours radiation equivalent of million years accumulated doses. The results obtained in these experiments reveal the interesting possibility of the existence of microbial life beyond Earth.

  11. Extraterrestrial altruism evolution and ethics in the cosmos

    CERN Document Server


    Extraterrestrial Altruism examines a basic assumption of the Search for Extraterrestrial Intelligence (SETI): that extraterrestrials will be transmitting messages to us for our benefit. This question of whether extraterrestrials will be altruistic has become increasingly important in recent years as SETI scientists have begun contemplating transmissions from Earth to make contact. Should we expect altruism to evolve throughout the cosmos, or is this only wishful thinking? Would this make biological sense? Is it dangerous to send messages to other worlds, as Stephen Hawking has suggested? Would extraterrestrial societies be based on different ethical principles? Extraterrestrial Altruism explores these and related questions about the motivations of civilizations beyond Earth, providing new insights that are critical for SETI. Chapters are authored by leading scholars from diverse disciplines—anthropology, astronomy, biology, chemistry, computer science, cosmology, engineering, history of science, law, philos...

  12. Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth

    Directory of Open Access Journals (Sweden)

    F. Riccobono


    Full Text Available Lack of knowledge about the mechanisms underlying new particle formation and their subsequent growth is one of the main causes for the large uncertainty in estimating the radiative forcing of atmospheric aerosols in global models. We performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to the formation and early growth of nucleated particles. Distinct experiments in the presence of two different organic precursors (1,3,5-trimethylbenzene and α-pinene showed the ability of these compounds to reproduce the formation rates observed in the low troposphere. These results were obtained measuring the sulfuric acid concentrations with two chemical ionization mass spectrometers confirming the results of a previous study which modeled the sulfuric acid concentrations in presence of 1,3,5-trimethylbenzene.

    New analysis methods were applied to the data collected with a condensation particle counter battery and a scanning mobility particle sizer, allowing the assessment of the size resolved growth rates of freshly nucleated particles. The effect of organic vapors on particle growth was investigated by means of the growth rate enhancement factor (Γ, defined as the ratio between the measured growth rate in the presence of α-pinene and the kinetically limited growth rate of the sulfuric acid and water system. The observed Γ values indicate that the growth is already dominated by organic compounds at particle diameters of 2 nm. Both the absolute growth rates and Γ showed a strong dependence on particle size, supporting the nano-Köhler theory. Moreover, the separation of the contributions from sulfuric acid and organic compounds to particle growth reveals that the organic contribution seems to be enhanced by the sulfuric acid concentration. Finally, the size resolved growth analysis indicates that both condensation of oxidized organic compounds and reactive uptake contribute to particle growth.

  13. Mineral and organic compounds in leachate from landfill with concentrate recirculation. (United States)

    Talalaj, Izabela Anna


    The effect of a reverse osmosis concentrate recirculation on the mineral and organic compounds in a landfill leachate was investigated. Investigated was the quality of a leachate from two landfills operated for different periods (a 20-year-old Cell A and a 1-year-old Cell B), where the concentrate was recirculated. Examined were general parameters (conductivity, pH), organic compounds (biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic nitrogen, BOD/COD), and inorganic compounds (nitrogen ammonia, sulfite, sulfate, cyanide, boron, chloride, ferrous, zinc, chrome, copper). The findings from the first year of investigation showed that over the initial period of recirculation, the concentration of organic compounds (BOD, COD) increased, but after 6 months their values stabilized. It indicates that the concentrate recirculation accelerated organic decomposition, especially in the new landfill Cell. The analysis of inorganic parameters showed that recirculation landfills produce a leachate with a higher concentration of N-NH4, and Cl(-). In case of the old landfill Cell, an increase in B and Fe was also noticeable. These compounds are cyclically washed out from a waste dump and require an additional pretreatment in order to exclude them from recirculation cycle. The increased concentration of Cu, Zn, and Fe was noticed during the initial months of recirculation and in the season of intense atmospheric precipitation in the leachate from both Cells. Higher values of electro conductivity, Cl(-), N-NH4 (+), B, and Fe in the leachate from the old field indicate that the attenuation capacity of this landfill is close to exhaustion.

  14. Organic Compounds in Truckee River Water Used for Public Supply near Reno, Nevada, 2002-05 (United States)

    Thomas, Karen A.


    Organic compounds studied in this U.S. Geological Survey (USGS) assessment generally are man-made, including, in part, pesticides, solvents, gasoline hydrocarbons, personal care and domestic-use products, and refrigerants and propellants. Of 258 compounds measured, 28 were detected in at least 1 source water sample collected approximately monthly during 2002-05 at the intake of the Chalk Bluff Treatment Plant, on the Truckee River upstream of Reno, Nevada. The diversity of compounds detected indicate various sources and uses (including wastewater discharge, industrial, agricultural, domestic, and others) and different pathways (including point sources from treated wastewater outfalls upstream of the sampling location, overland runoff, and groundwater discharge) to drinking-water supply intakes. Three compounds were detected in more than 20 percent of the source-water intake samples at low concentrations (less than 0.1 microgram per liter), including caffeine, p-cresol (a wood preservative), and toluene (a gasoline hydrocarbon). Sixteen of the 28 compounds detected in source water also were detected in finished water (after treatment, but prior to distribution; 2004-05). Additionally, two disinfection by-products not detected in source water, bromodichloromethane and dibromochloromethane, were detected in all finished water samples. Two detected compounds, cholesterol and 3-beta-coprostanol, are among five naturally occurring biochemicals analyzed in this study. Concentrations for all detected compounds in source and finished water generally were less than 0.1 microgram per liter and always less than human-health benchmarks, which are available for about one-half of the compounds. Seven compounds (toluene, chloroform, bromodichloromethane, dibromodichloromethane, bisphenol A, cholesterol, and 3-beta-coprostanol) were measured at concentrations greater than 0.1 microgram per liter. On the basis of this screening-level assessment, adverse effects to human health are

  15. Detection of Organic Compounds in Ice Cores for Application to Palaeoclimate Reconstruction - Methodological Development (United States)

    Giorio, C.; King, A. C. F.; Wolff, E. W.; Kalberer, M.; Thomas, E. R.; Mulvaney, R.


    Records of inorganic gases and particles trapped in ice core layers have provided some of the most important insights to our understanding of climate of the last 800,000 years. Organic compounds within the ice, however, are an un-tapped reservoir of information. In particular, two groups of compounds emitted from the terrestrial biosphere, fatty acids and terpene secondary oxidation aerosols (SOAs), display characteristics required for ice core paleoclimate reconstruction; emission rates depend on atmospheric states (e.g. temperature), compounds survive long-distance transport in the atmosphere to high altitudes and latitudes (Grannas et al., 2004; Fu et al., 2013 among others), and are shown to survive in ice layers up to 450 yrs old for fatty acids in Greenland (Kawamura et al., 1996) and 350 yrs for SOAs in Alaska (Pokhrel et al., 2015). Here, we aim to develop a single method for quantification of all compounds of interest over longer timescales and further locations using liquid chromatography (LC) ultrahigh resolution mass spectrometry (LTQ Orbitrap). Initial quantification of compound contamination from sources such as drilling fluids and storage bags, diffusing through outer ice core surfaces, suggests compound contamination is limited to the outer few mm's of ice over periods of a few months. Detection limits were in the order of 1-5 ppb for the compounds of interest, leading to the trial of pre-concentration methods using stir bar sorbtive extraction (SBSE) to facilitate detection of ppt concentration levels, as expected for these types of compounds based on previous analysis of snow samples (Pokhrel et al., 2015). Detection of these compounds seems highly viable, with promise for long-term records being achieved in the near future. Fu et al.(2013) Biogeosciences, 10(2), 653-667; Grannas et al.(2004) Global Biogeochem. Cycles, 18, GB1006; Kawamura et al.(1996) Geophys. Res. Lett., 23(19), 2665-2668; Pokhrel et al.(2015) Atmos. Environ., 130, 105-112.

  16. Chlorination of cooling water: a source of chlorine-containing organic compounds with possible environmental significance

    International Nuclear Information System (INIS)

    Jolley, R.L.; Gehrs, C.W.; Pitt, W.W. Jr.


    Chlorination of cooling waters may be a source of environmentally significant pollutants. Many water-soluble chlorine-containing organic compounds of low volatility were found in a sample of cooling water chlorinated to a 2-mg/l chlorine concentration in the laboratory. The compounds were separated and detected using a coupled 36 Cl-tracer--high-resolution liquid chromatographic technique developed at the Oak Ridge National Laboratory for determination of chlorinated organics in process effluents. For a chlorination contact time of 75 min at 25 0 C, the yield of chlorine in the form of chloro-organics amounted to 0.78% of the chlorine dosage. It is estimated that the yield is about 0.5% under typical reaction conditions in the electric power plant cooling system chosen for study. Because chlorine is commonly used to remove slime films from the cooling systems of electric power plants, as a means of maintaining high operational efficiency, it is estimated that several hundred tons of chlorinated organics are produced annually in the nation by this antifoulant process. The chromatographic elution positions of some of the separated constituents correspond to those of compounds separated and partially identified from chlorinated sewage treatment plant effluents. The results of this study indicate the formation of chloro-organics during the chlorination of cooling waters should be thoroughly examined, particularly with respect to their identification and determination of possible toxicological properties

  17. OrgTrace – No difference found in bioactive compounds of organic and conventional crops

    DEFF Research Database (Denmark)

    Knuthsen, Pia; Søltoft, Malene; Laursen, Kristian Holst

    years as well as soil types. The results showed that contents of neither polyacetylenes and carotenoids in carrots, flavonoids in onions, nor phenolic acids in carrots and potatoes were significantly influenced by growth system. Thus it could not be concluded that the organically grown crops had higher...... contents of bioactive compounds than the conventionally grown. This indicates that giving preference to organic products because they contain more bioactive components is doubtfull. However, there are many other reasons for the consumer to choose organic food products, including: no pesticide residues...

  18. Polycarbonyl(quinonyl) organic compounds as cathode materials for sustainable lithium ion batteries

    International Nuclear Information System (INIS)

    Zeng, Ronghua; Xing, Lidan; Qiu, Yongcai; Wang, Yating; Huang, Wenna; Li, Weishan; Yang, Shihe


    Highlights: • Quinonyl compounds containing –OH groups are reported as cathode of sustainable Li-ion battery. • Lithiation potential of these compounds is positively correlated to -OH group number on them. • These compounds exhibit a discharge plateau of 3 V and deliver a capacity of over 180 mAh g -1 at 20 mA g -1 . - Abstract: Suitably designed organic compounds are promising renewable electrode materials for lithium ion batteries (LIBs) with minimal environmental impacts and no CO 2 release. Herein we report a series of polycarbonyl organic compounds with different number of hydroxyl groups, which can be obtained from renewable plants, as cathode materials for LIBs. Density functional theory (DFT) calculations based on the natural bond orbital (NBO) reveal a positive correlation between the reduction potentials and the number of hydroxyl groups, which is borne out experimentally. Anthraquinone (AQ) with three or four -OH groups has the structural advantages for improving the discharge plateaus. Mechanistic studies show that AQ containing neighbouring carbonyl groups and hydroxyl groups facilitates the formation of six or five-membered rings with lithium ion. Charge/discharge tests show that AQ, 1,5-DHAQ, 1,2,7-THAQ, and 1,2,5,8-THAQ can achieve initial discharge capacities of 215, 190, 186 and 180 mAh g -1 at a current density of 20 mA g -1 , corresponding to 84%, 85%, 89% and 91% of their theoretical capacities, respectively

  19. Abatements of reduced sulphur compounds, colour, and organic matter from indigo dyeing effluents by electrocoagulation. (United States)

    Tünay, Olcay; Simşeker, Merve; Kabdaşli, Isik; Olmez-Hanci, Tugba


    In the present study, the treatability of indigo dyeing effluents by the electrocoagulation (EC) process using stainless steel electrodes was experimentally investigated. The samples used were concentrated with main pollutant parameters of chemical oxygen demand (COD) (1000-1100 mg/L), reduced sulphur species (over 2000 mg SO2-(3)/L), and colour (0.12-0.13 1/cm). The study focused on the effect of main operation parameters on the EC process performance in terms of abatement of reduced sulphur compounds as well as decolourization and organic matter reduction. Results indicated that the performance of EC proved to be high providing total oxidation of the reduced sulphur compounds, almost complete decolourization, and COD removal up to 90%. Increasing applied current density from 22.5 to 45 mA/cm2 appreciably improved abatement of the reduced sulphur compounds for Sample I, but a further increase in the applied current density to 67.5 mA/cm2 did not accelerate the conversion rate to sulphate. The process performance was adversely affected by increasing initial concentration of the reduced sulphur compounds. Decolourization and organic matter removal efficiency enhanced with increasing applied current density. The main removal mechanism of the reduced sulphur compounds by EC was explained as conversion to sulphate via oxidation. Conversion rate to sulphate fitted pseudo-first-order kinetics very well.

  20. Analysis of Organic Volatile Flavor Compounds in Fermented Stinky Tofu Using SPME with Different Fiber Coatings

    Directory of Open Access Journals (Sweden)

    Wei Guan


    Full Text Available The organic volatile flavor compounds in fermented stinky tofu (FST were studied using SPME-GC/MS. A total of 39 volatile compounds were identified, including nine esters, seven alcohols, five alkenes, four sulfides, three heterocycles, three carboxylic acids, three ketones, two aldehydes, one phenol, one amine and one ether. These compounds were determined by MS, and conformed by comparison of the retention times of the separated constituents with those of authentic samples and by comparison of retention indexes (RIs of separated constituents with the RIs reported in the literature. The predominant volatile compound in FST was indole, followed by dimethyl trisulfide, phenol, dimethyl disulfide and dimethyl tetrasulfide. In order to find a better extraction time, the extraction times was optimized for each type of SPME fiber; the results show that the best extraction time for Carboxen/PDMS is 60 min, for PDMS/DVB 30 min, for DVB/CAR/PDMS 60 min and for PDMS 75 min. Of the four fibers used in this work, Carboxen/PDMS is found to be the most suitable to extract the organic volatile flavor compounds in fermented stinky tofu.

  1. Organic compounds in hot-water-soluble fractions from water repellent soils (United States)

    Atanassova, Irena; Doerr, Stefan


    Water repellency (WR) is a soil property providing hydrophobic protection and preventing rapid microbial decomposition of organic matter entering the soil with litter or plant residues. Global warming can cause changes in WR, thus influencing water storage and plant productivity. Here we assess two different approaches for analysis of organic compounds composition in hot water extracts from accelerated solvent extraction (ASE) of water repellent soils. Extracts were lyophilized, fractionated on SiO2 (sand) and SPE cartridge, and measured by GC/MS. Dominant compounds were aromatic acids, short chain dicarboxylic acids (C4-C9), sugars, short chain fatty acids (C8-C18), and esters of stearic and palmitic acids. Polar compounds (mainly sugars) were adsorbed on applying SPE clean-up procedure, while esters were highly abundant. In addition to the removal of polar compounds, hydrophobic esters and hydrocarbons (alkanes and alkenes particle wettability and C dynamics in soils. Key words: soil water repellency, hot water soluble carbon (HWSC), GC/MS, hydrophobic compounds

  2. Organic compounds in White River water used for public supply near Indianapolis, Indiana, 2002-05 (United States)

    Lathrop, Tim; Moran, Dan


    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS) characterized the occurrence of 277 organic compounds in source water (stream water collected before treatment) and finished water (treated water before distribution) from the White River North treatment plant, one of several community water systems that use the White River as its primary water supply (fig. 1). Samples were collected at least monthly during 2002-05 and included 30 source- and 13 finished-water samples. The samples were analyzed for pesticides and selected pesticide degradates (or 'breakdown products'), solvents, gasoline hydrocarbons, disinfection by-products, personal-care and domestic-use products, and other organic compounds. Community water systems are required to monitor for compounds regulated under the Safe Drinking Water Act. Most of the compounds tested in this study are not regulated under U.S. Environmental Protection Agency (USEPA) federal drinking-water standards (U.S. Environmental Protection Agency, 2007a). The White River study is part of the ongoing Source Water-Quality Assessment (SWQA) investigation of community water systems that withdraw from rivers across the United States. More detailed information and references on the sampling-design methodology, specific compounds monitored, and the national study are described by Carter and others (2007).

  3. Factors Effecting the Total Volatile Organic Compound (TVOC Concentrations in Slovak Households

    Directory of Open Access Journals (Sweden)

    Ľudmila Mečiarová


    Full Text Available Thirty five Slovak households were selected for an investigation of indoor environmental quality. Measuring of indoor air physical and chemical factors and a questionnaire survey was performed during May 2017. The range of permissible operative temperature was not met in 11% of objects. Relative humidity met the legislative requirements in all monitored homes. Concentrations of total volatile organic compounds (TVOCs were significantly higher in the apartments than in the family houses. The average TVOC levels in the apartments and family houses were 519.7 µg/m3 and 330.2 µg/m3, respectively. Statistical analysis confirmed the effect of indoor air temperature, relative humidity and particulate matter (PM0.5 and PM1 on the levels of TVOCs. Higher TVOC levels were observed also in homes where it is not a common practice to open windows during cleaning activities. Other factors that had a statistically significant effect on concentrations of volatile organic compounds were heating type, attached garage, location of the apartment within residential building (the floor, as well as number of occupants. Higher TVOC concentrations were observed in indoor than outdoor environment, while further analysis showed the significant impact of indoor emission sources on the level of these compounds in buildings. The questionnaire study showed a discrepancy between objective measurement and subjective assessment in the household environment, and pointed to insufficient public awareness about volatile organic compounds (VOCs.

  4. Solid phase microextraction: measurement of volatile organic compounds (VOCs) in Dhaka City air pollution. (United States)

    Hussam, A; Alauddin, M; Khan, A H; Chowdhury, D; Bibi, H; Bhattacharjee, M; Sultana, S


    A solid phase microextraction (SPME) technique was applied for the sampling of volatile organic compounds (VOCs) in ambient air polluted by two stroke autorickshaw engines and automobile exhausts in Dhaka city, Bangladesh. Analysis was carried out by capillary gas chromatography (GC) and GC-mass spectrometry (MS). The methodology was tested by insitu sampling of an aromatic hydrocarbon mixture gas standard with a precision of +/-5% and an average accuracy of 1-20%. The accuracy for total VOCs concentration measurement was about 7%. VOC's in ambient air were collected by exposing the SPME fiber at four locations in Dhaka city. The chromatograms showed signature similar to that of unburned gasoline (petrol) and weathered diesel containing more than 200 organic compounds; some of these compounds were positively identified. These are normal hydrocarbons pentane (n-C5H2) through nonacosane (n-C29H60), aromatic hydrocarbons: benzene, toluene, ethylbenzene, n-propylbenzene, n-butylbenzene, 1,3,5-trimethylbenzene, xylenes, and 1-isocyanato-3-methoxybenzene. Two samples collected near an autorickshaw station contained 783000 and 1479000 microg/m3 of VOCs. In particular, the concentration of toluene was 50-100 times higher than the threshold limiting value of 2000 microg/m3. Two other samples collected on street median showed 135000 microg/m3 and 180000 microg/m3 of total VOCs. The method detection limit of the technique for most semi-volatile organic compounds was 1 microg/m3.

  5. The identification of polar organic compounds found in consumer products and their toxicological properties. (United States)

    Cooper, S D; Raymer, J H; Pellizzari, E D; Thomas, K W


    Exposure to volatile organic compounds (VOCs) in the indoor environment has received substantial research attention in the past several years, with the goal of better understanding the impact of such exposures on human health and well-being. Many VOCs can arise from consumer products used within the indoor environment. The VOCs emitted from five representative consumer products were collected onto Tenax-GC and subjected to thermal desorption and analysis by gas chromatography, in combination with low-resolution mass spectrometry (MS), high-resolution MS, and matrix-isolation Fourier transform infrared spectroscopy for structural characterization. An emphasis was placed on the polar organic compounds often used to provide fragrance in these products. The structures of a number of these compounds were confirmed, and an electronic literature search was carried out on them to determine any known toxic properties. The search revealed that many of the VOCs possess toxic properties when studied at acute, relatively high-level exposures. In addition, toxic effects were reported for a few of the chemicals, such as benzaldehyde, alpha-terpineol, benzyl acetate, and ethanol, at relatively low dose levels of 9-14 mg/kg. In general, the data were unclear as to the effect of chronic, low-level exposures. The widespread use of such chemicals suggests that the health effects of chronic exposures need to be determined. Validated analytical methods for the quantitative characterization of polar organic compounds at low concentrations will be required to make such work possible.

  6. Effect of fouling on removal of trace organic compounds by nanofiltration

    Directory of Open Access Journals (Sweden)

    S. Hajibabania


    Full Text Available The fate of chemical of concern is not yet fully understood during treatment of impaired waters. The aim of this paper is to assess the impact of different organic-based fouling layers on the removal of a large range of trace organics. Both model and real water samples (mixed with trace organic contaminants at environmental concentration of 2 μg l−1 were used to simulate fouling in nanofiltration under controlled environment. The new and fouled membranes were systematically characterised for surface charge, hydrophobicity and roughness. It was observed that fouling generally reduced the membrane surface charge; however, the alterations of the membrane hydrophobicity and surface roughness were dependent on the foulants composition. The rejection of charged trace organics was observed to be improved due to the increased electrostatic repulsion by fouled membranes and the adsorption of the trace organic chemicals onto organic matters. On the other hand, the removal of nonionic compounds decreased when fouling occurred, due to the presence of cake enhanced concentration polarization. The fouling layer structure was found to play an important role in the rejection of the trace organic compounds.

  7. Evaluating the mutagenic potential of aerosol organic compounds using informatics-based screening (United States)

    Decesari, Stefano; Kovarich, Simona; Pavan, Manuela; Bassan, Arianna; Ciacci, Andrea; Topping, David


    Whilst general policy objectives to reduce airborne particulate matter (PM) health effects are to reduce exposure to PM as a whole, emerging evidence suggests that more detailed metrics associating impacts with different aerosol components might be needed. Since it is impossible to conduct toxicological screening on all possible molecular species expected to occur in aerosol, in this study we perform a proof-of-concept evaluation on the information retrieved from in silico toxicological predictions, in which a subset (N = 104) of secondary organic aerosol (SOA) compounds were screened for their mutagenicity potential. An extensive database search showed that experimental data are available for 13 % of the compounds, while reliable predictions were obtained for 82 %. A multivariate statistical analysis of the compounds based on their physico-chemical, structural, and mechanistic properties showed that 80 % of the compounds predicted as mutagenic were grouped into six clusters, three of which (five-membered lactones from monoterpene oxidation, oxygenated multifunctional compounds from substituted benzene oxidation, and hydroperoxides from several precursors) represent new candidate groups of compounds for future toxicological screenings. These results demonstrate that coupling model-generated compositions to in silico toxicological screening might enable more comprehensive exploration of the mutagenic potential of specific SOA components.

  8. Lipid–water partition coefficients and correlations with uptakes by algae of organic compounds

    International Nuclear Information System (INIS)

    Hung, Wei-Nung; Chiou, Cary T.; Lin, Tsair-Fuh


    Graphical abstract: - Highlights: • Partition coefficients of contaminants with lipid triolein (K tw ) are measured. • Measured K tw values are nearly the same as the respective K ow . • Sorption of the contaminants to a dry algal powder is similarly measured. • Algal uptake of a compound occurs primarily by partition into the algal lipid. - Abstract: In view of the scarcity of the lipid–water partition coefficients (K tw ) for organic compounds, the log K tw values for many environmental contaminants were measured using ultra-pure triolein as the model lipid. Classes of compounds studied include alkyl benzenes, halogenated benzenes, short-chain chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides. In addition to log K tw determination, the uptakes of these compounds from water by a dry algal species were measured to evaluate the lipid effect on the algal uptake. The measured log K tw are closely related to their respective log K ow (octanol–water), with log K ow = 1.9 to 6.5. A significant difference is observed between the present and early measured log K tw for compounds with log K ow > ∼5, which is attributed to the presence and absence of a triolein microemulsion in water affecting the solute partitioning. The observed lipid-normalized algae–water distribution coefficients (log K aw/lipid ) are virtually identical to the respective log K tw values, which manifests the dominant lipid-partition effect of the compounds with algae

  9. Improvement of organic compounds labelling method with the use of thermally activated tritium gas

    International Nuclear Information System (INIS)

    Nejman, L.A.; Smolyakov, V.S.; Antropova, L.P.


    Use of a support (various types of papers) is recommended for organic compounds labelling by tritium gas activated at a hot tungsten filament. This improvement increases chemical and radiochemical yields and makes the experiment simpler and faster. Generally labelled triethyloxonium tetra-fluoroborate, ethyl-p-aminobenzoate, p-aminobenzoic acid (Na-salt), A-factor (a natural regulator of streptomycin biosynthesis), decapeptide angiotensin I, phospholipid 1, 2 - dimyristoyl-sn-glycero-3--phosphocholine and E. coli tRNAs have been prepared by this method. Molar radioactivity of the labelled compounds is in the range of 1-200 GBg/mmole [ru

  10. Modelling uptake into roots and subsequent translocation of neutral and ionisable organic compounds

    DEFF Research Database (Denmark)

    Trapp, Stefan


    A study on uptake of neutral and dissociating organic compounds from soil solution into roots, and their subsequent translocation, was undertaken using model simulations. The model approach combines the processes of lipophilic sorption, electrochemical interactions, ion trap, advection in xylem...... and dilution by growth. It needs as input data, apart fromplant properties, log KOW, pKa and the valency number of the compound, and pH and chemical concentration in the soil solution. Equilibrium and dynamic (steady-state) models were tested against measured data from several authors, including non...

  11. Molecular design chemical structure generation from the properties of pure organic compounds

    CERN Document Server

    Horvath, AL


    This book is a systematic presentation of the methods that have been developed for the interpretation of molecular modeling to the design of new chemicals. The main feature of the compilation is the co-ordination of the various scientific disciplines required for the generation of new compounds. The five chapters deal with such areas as structure and properties of organic compounds, relationships between structure and properties, and models for structure generation. The subject is covered in sufficient depth to provide readers with the necessary background to understand the modeling

  12. Alteration of five organic compounds by glow discharge plasma and UV light under simulated Mars conditions (United States)

    Hintze, Paul E.; Buhler, Charles R.; Schuerger, Andrew C.; Calle, Luz M.; Calle, Carlos I.


    The Viking missions to Mars failed to detect any organic material in regolith samples. Since then, several removal mechanisms of organic material have been proposed. Two of these proposed methods are removal due to exposure to plasmas created in dust devils and exposure to UV irradiation. The experiments presented here were performed to identify similarities between the two potential removal mechanisms and to identify any compounds produced from these mechanisms that would have been difficult for the Viking instruments to detect. Five organic compounds, phenanthrene, octadecane, octadecanoic acid, decanophenone and benzoic acid, were exposed to a glow discharge plasma created in simulated martian atmospheres as might be present in dust devils, and to UV irradiation similar to that found at the surface of Mars. Glow discharge exposure was carried out in a chamber with 6.9 mbar pressure of a Mars like gas composed mostly of carbon dioxide. The plasma was characterized using emission spectroscopy and found to contain cations and excited neutral species including carbon dioxide, carbon monoxide, and nitrogen. UV irradiation experiments were performed in a Mars chamber which simulates the temperature, pressure, atmospheric composition, and UV fluence rates of equatorial Mars. The non-volatile residues left after each exposure were characterized by mass loss, infrared spectroscopy and high resolution mass spectrometry. Oxidized, higher molecular weight versions of the parent compounds containing carbonyl, hydroxyl and alkenyl functional groups were identified. The presence of these oxidized compounds suggests that searches for organic material in soils on Mars use instrumentation suitable for detection of compounds which contain the above functional groups. Discussions of possible reaction mechanisms are given.

  13. Organic Compounds Complexify Transport in the Amargosa Desert—The Case for Phytotritiation (United States)

    Stonestrom, D. A.; Luo, W.; Andraski, B. J.; Baker, R. J.; Maples, S.; Mayers, C. J.; Young, M. B.


    Civilian low-level radioactive waste containing organic compounds was disposed in 2- to 15-m deep unlined trenches in a 110-m deep unsaturated zone at the present-day USGS Amargosa Desert Research Site. Tritium represents the plurality of disposed activity. A plume of gas-phase contaminants surrounds the disposal area, with 60 distinct volatile organic compounds (VOCs) identified to date. The distribution of tritiated water in the unsaturated zone surrounding the disposal area is highly enigmatic, with orders of magnitude separating observed levels from those predicted by multiphase models of mass and energy transport. Peaks of tritium and VOCs are coincidently located in sediments tens of meters below the root zone, suggesting abiotic stratigraphic control on lateral transport at depth. Surprisingly, the highest observed levels of tritium occur at a depth of about 1.5 m, the base of the creosote-bush plant-community root zone, where levels of waste-derived VOCs are low (approaching atmospheric levels). Bulk water-vapor samples from shallow and deep unsaturated-zone profile hot spots were trapped as water ice in cold fingers immersed in dry ice-isopropyl alcohol filled Dewar flasks, then melted and sequentially extracted by purge-and-trap VOC degassing followed by elution through activated carbon solid-phase extraction (SPE) cartridges. Analysis of tritium activities and mass spectrometer results indicate that over 98% of tritium activity at depth is present as water, whereas about 15% of basal root zone tritium activity is present as organic compounds trapped with the water. Of these, the less-volatile compound group removed by SPE accounted for about 85% of the organic tritium activity, with mass spectrometry identifying 2-ethyl-1-hexanol as the principal compound removed. This plant-produced fatty alcohol is ubiquitous in the root zone of creosote-bush communities and represents a family of hydroxyl-containing plant produced compounds that give the plants their

  14. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study

    KAUST Repository

    Maeng, Sungkyu; Sharma, Saroj K.; Abel, Chol D T; Magic-Knezev, Aleksandra; Song, Kyungguen; Amy, Gary L.


    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR

  15. Passive sampling as a tool for identifying micro-organic compounds in groundwater. (United States)

    Mali, N; Cerar, S; Koroša, A; Auersperger, P


    The paper presents the use of a simple and cost efficient passive sampling device with integrated active carbon with which to test the possibility of determining the presence of micro-organic compounds (MOs) in groundwater and identifying the potential source of pollution as well as the seasonal variability of contamination. Advantage of the passive sampler is to cover a long sampling period by integrating the pollutant concentration over time, and the consequently analytical costs over the monitoring period can be reduced substantially. Passive samplers were installed in 15 boreholes in the Maribor City area in Slovenia, with two sampling campaigns covered a period about one year. At all sampling sites in the first series a total of 103 compounds were detected, and 144 in the second series. Of all detected compounds the 53 most frequently detected were selected for further analysis. These were classified into eight groups based on the type of their source: Pesticides, Halogenated solvents, Non-halogenated solvents, Domestic and personal, Plasticizers and additives, Other industrial, Sterols and Natural compounds. The most frequently detected MO compounds in groundwater were tetrachloroethene and trichloroethene from the Halogenated solvents group. The most frequently detected among the compound's groups were pesticides. Analysis of frequency also showed significant differences between the two sampling series, with less frequent detections in the summer series. For the analysis to determine the origin of contamination three groups of compounds were determined according to type of use: agriculture, urban and industry. Frequency of detection indicates mixed land use in the recharge areas of sampling sites, which makes it difficult to specify the dominant origin of the compound. Passive sampling has proved to be useful tool with which to identify MOs in groundwater and for assessing groundwater quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Performance audits and laboratory comparisons for SCOS97-NARSTO measurements of speciated volatile organic compounds (United States)

    Fujita, Eric M.; Harshfield, Gregory; Sheetz, Laurence

    Performance audits and laboratory comparisons were conducted as part of the quality assurance program for the 1997 Southern California Ozone Study (SCOS97-NARSTO) to document potential measurement biases among laboratories measuring speciated nonmethane hydrocarbons (NMHC), carbonyl compounds, halogenated compounds, and biogenic hydrocarbons. The results show that measurements of volatile organic compounds (VOC) made during SCOS97-NARSTO are generally consistent with specified data quality objectives. The hydrocarbon comparison involved nine laboratories and consisted of two sets of collocated ambient samples. The coefficients of variation among laboratories for the sum of the 55 PAM target compounds and total NMHC ranged from ±5 to 15 percent for ambient samples from Los Angeles and Azusa. Abundant hydrocarbons are consistently identified by all laboratories, but discrepancies occur for olefins greater than C 4 and for hydrocarbons greater than C 8. Laboratory comparisons for halogenated compounds and biogenic hydrocarbons consisted of both concurrent ambient sampling by different laboratories and round-robin analysis of ambient samples. The coefficients of variation among participating laboratories were about 10-20 percent. Performance audits were conducted for measurement of carbonyl compounds involving sampling from a standard mixture of carbonyl compounds. The values reported by most of the laboratories were within 10-20 percent of those of the reference laboratory. Results of field measurement comparisons showed larger variations among the laboratories ranging from 20 to 40 percent for C 1-C 3 carbonyl compounds. The greater variations observed in the field measurement comparison may reflect potential sampling artifacts, which the performance audits did not address.

  17. Laboratory Detection and Analysis of Organic Compounds in Rocks Using HPLC and XRD Methods (United States)

    Dragoi, D.; Kanik, I.; Bar-Cohen, Y.; Sherrit, S.; Tsapin, A.; Kulleck, J.


    In this work we describe an analytical method for determining the presence of organic compounds in rocks, limestone, and other composite materials. Our preliminary laboratory experiments on different rocks/limestone show that the organic component in mineralogical matrices is a minor phase on order of hundreds of ppm and can be better detected using high precision liquid chromatography (HPLC). The matrix, which is the major phase, plays an important role in embedding and protecting the organic molecules from the harsh Martian environment. Some rocks bear significant amounts of amino acids therefore, it is possible to identify these phases using powder x-ray diffraction (XRD) by crystallizing the organic. The method of detection/analysis of organics, in particular amino acids, that have been associated with life will be shown in the next section.

  18. Optimization of the solvent-based dissolution method to sample volatile organic compound vapors for compound-specific isotope analysis. (United States)

    Bouchard, Daniel; Wanner, Philipp; Luo, Hong; McLoughlin, Patrick W; Henderson, James K; Pirkle, Robert J; Hunkeler, Daniel


    The methodology of the solvent-based dissolution method used to sample gas phase volatile organic compounds (VOC) for compound-specific isotope analysis (CSIA) was optimized to lower the method detection limits for TCE and benzene. The sampling methodology previously evaluated by [1] consists in pulling the air through a solvent to dissolve and accumulate the gaseous VOC. After the sampling process, the solvent can then be treated similarly as groundwater samples to perform routine CSIA by diluting an aliquot of the solvent into water to reach the required concentration of the targeted contaminant. Among solvents tested, tetraethylene glycol dimethyl ether (TGDE) showed the best aptitude for the method. TGDE has a great affinity with TCE and benzene, hence efficiently dissolving the compounds during their transition through the solvent. The method detection limit for TCE (5±1μg/m 3 ) and benzene (1.7±0.5μg/m 3 ) is lower when using TGDE compared to methanol, which was previously used (385μg/m 3 for TCE and 130μg/m 3 for benzene) [2]. The method detection limit refers to the minimal gas phase concentration in ambient air required to load sufficient VOC mass into TGDE to perform δ 13 C analysis. Due to a different analytical procedure, the method detection limit associated with δ 37 Cl analysis was found to be 156±6μg/m 3 for TCE. Furthermore, the experimental results validated the relationship between the gas phase TCE and the progressive accumulation of dissolved TCE in the solvent during the sampling process. Accordingly, based on the air-solvent partitioning coefficient, the sampling methodology (e.g. sampling rate, sampling duration, amount of solvent) and the final TCE concentration in the solvent, the concentration of TCE in the gas phase prevailing during the sampling event can be determined. Moreover, the possibility to analyse for TCE concentration in the solvent after sampling (or other targeted VOCs) allows the field deployment of the sampling

  19. Retardation of volatile organic compounds in ground water in low organic carbon sediments

    International Nuclear Information System (INIS)

    Hoffman, F.


    It is postulated that adsorption onto aquifer matrix surfaces is only one of the processes that retard contaminants in ground water in unconsolidated sediments; others include hydrodynamic dispersion, abiotic/biotic degradation, matrix diffusion, partitioning to organic carbon, diffusion into and retention in dead-end pores, etc. This work aims at these processes in defining the K d of VOCs in sediments with low organic carbon content. Experiments performed include an initial column experiment for VOC (TCE and perchloroethylene(PCE)) retardation tests on geological materials, PCE and TCE data from LLNL sediments, and a preliminary multilayer sampler experiment. The VOC K d s in low organic carbon permeable aquifer materials are dependent on the VOC composition and independent of aquifer grain size, indicating that sorption was not operative and that the primary retarding factors are diffusion controlled. The program of future experiments is described

  20. Prediction of ozone tropospheric degradation rate constant of organic compounds by using artificial neural networks

    International Nuclear Information System (INIS)

    Fatemi, M.H.


    Ozone tropospheric degradation of organic compound is very important in environmental chemistry. The lifetime of organic chemicals in the atmosphere can be calculated from the knowledge of the rate constant of their reaction with free radicals such as OH and NO 3 or O 3 . In the present work, the rate constant for the tropospheric degradation of 137 organic compounds by reaction with ozone, the least widely and successfully modeled degradation process, are predicted by quantitative structure activity relationships modeling based on a variety of theoretical descriptors, which screened and selected by genetic algorithm variable subset selection procedure. These descriptors which can be used as inputs for generated artificial neural networks are; HOMO-LUMO gap, number of double bonds, number of single bonds, maximum net charge on C atom, minimum (>0.1) bond order of C atom and Minimum e-e repulsion of H atom. After generation, optimization and training of artificial neural network, network was used for the prediction of log KO 3 for the validation set. The root mean square error for the neural network calculated log KO 3 for training, prediction and validation set are 0.357, 0.460 and 0.481, respectively, which are smaller than those obtained by multiple linear regressions model (1.217, 0.870 and 0.968, respectively). Results obtained reveal the reliability and good predictivity of neural network model for the prediction of ozone tropospheric degradations rate constant of organic compounds

  1. Assessing two different peroxidases´ potential for application in recalcitrant organic compound bioremediation

    Directory of Open Access Journals (Sweden)

    Nelson Caicedo


    Full Text Available This work shows the promising future presented by the following enzymes: Chloroperoxidase (CPO from Caldariomyces fumago and royal palm peroxidase (Roystonea regia, PPR. These peroxidases were obtained from different sources (microbial and vegetable and used as biocatalysts for applicating them in bioremediation of recalcitrant organic compounds. Each one of the enzymes' peroxidase catalytic activity was evaluated in organic phase systems, using different model compounds such as: PAHs (pyrene and anthracene, organic-nitrogenated compounds (diphenylamine, monoaromatic phenolic molecules (guayacol and dyes (methyl orange and ABTS. The reaction systems were composed of mono-phase water mixtures and organic miscible solvent (methanol, ethanol, isopropanol, acetonitrile, tetrahydrofuran, dimethyl sulfoxide and dimethyl formamide, on which both peroxidases' catalytic activity was evaluated. The two enzymes' catalytic activity was observed on the evaluated substrates in most of these assays. However, PPR did not show biocatalytic oxidation for methyl orange dye and some PAHs. This enzyme did show the best tolerance to the evaluated solvents. Its catalytic activity was appreciably enhanced when low hydrophobic solvents were used. The kcat was calculated from this experimental data (as kinetic parameter leading to each enzyme's biocatalytic performance on substrates being compared.

  2. A microfluidic device for open loop stripping of volatile organic compounds. (United States)

    Cvetković, Benjamin Z; Dittrich, Petra S


    The detection of volatile organic compounds is of great importance for assessing the quality of water. In this contribution, we describe a miniaturized stripping device that allows fast online detection of organic solvents in water. The core component is a glass microfluidic chip that facilitates the creation of an annular-flowing stream of water and nitrogen gas. Volatile compounds are transferred efficiently from the water into the gas phase along the microfluidic pathway at room temperature within less than 5 s. Before exiting the microchip, the liquid phase is separated from the enriched gas phase by incorporating side capillaries through which the hydrophilic water phase is withdrawn. The gas phase is conveniently collected at the outlet reservoir by tubing. Finally, a semiconductor gas sensor analyzes the concentration of (volatile) organic compounds in the nitrogen gas. The operation and use of the stripping device is demonstrated for the organic solvents THF, 1-propanol, toluene, ethylbenzene, benzaldehyde, and methanol. The mobile, inexpensive, and continuously operating system with liquid flow rates in the low range of microliters per minute can be connected to other detectors or implemented in chemical production line for process control.

  3. (Semi)volatile organic compounds and microbiological entities in snow during OASIS Barrow 2009 (United States)

    Ariya, P.; Kos, G.


    Gregor Kos (1), Nafissa Adechina (2), Dwayne Lutchmann (2) , Roya Mortazavi, and Parisa Ariya* (1), (2) (1) McGill University, Department of Atmospheric and Oceanic Sciences, 805 Sherbrooke Street West, Montreal, Quebec, H3A 2K6, Canada (2) McGill University, Department of Chemistry, 801 Sherbrooke Street West, Montreal, Quebec, H3A 2K6, Canada an active medium for the deposition of (semi-)volatile (bio)organic compounds. We collected surface snow samples during the OASIS Barrow campaign in March 2009 for analysis of semi-volatile organic compounds using solid phase microextraction and gas chromatography with mass spectrometric detection (SPME-GC/MS). Additioal gab samples were taken for analysis of non-methane hydrocarbons in air. More over, we analyzed for microbial species in air and snow. Identifed organic compounds covered a wide range of functionalities andmolecular weigts, including oxygenated reactive speces such as aldehydes (e.g., hexanal to decanal), alcohols (e.g., hexanol, octanol) and aromatic species (e.g., methyl- and ethylbenzenes). Quantification data for selected aromatic species are presented with concentrations in the upper ng/L range. We will present our preliminary data on microbiological species, and will discuss the potential mplications of the results for organic snow chemistry.

  4. Regulatory off-gas analysis from the evaporation of Hanford simulated waste spiked with organic compounds. (United States)

    Saito, Hiroshi H; Calloway, T Bond; Ferrara, Daro M; Choi, Alexander S; White, Thomas L; Gibson, Luther V; Burdette, Mark A


    After strontium/transuranics removal by precipitation followed by cesium/technetium removal by ion exchange, the remaining low-activity waste in the Hanford River Protection Project Waste Treatment Plant is to be concentrated by evaporation before being mixed with glass formers and vitrified. To provide a technical basis to permit the waste treatment facility, a relatively organic-rich Hanford Tank 241-AN-107 waste simulant was spiked with 14 target volatile, semi-volatile, and pesticide compounds and evaporated under vacuum in a bench-scale natural circulation evaporator fitted with an industrial stack off-gas sampler at the Savannah River National Laboratory. An evaporator material balance for the target organics was calculated by combining liquid stream mass and analytical data with off-gas emissions estimates obtained using U.S. Environmental Protection Agency (EPA) SW-846 Methods. Volatile and light semi-volatile organic compounds (1 mm Hg vapor pressure) in the waste simulant were found to largely exit through the condenser vent, while heavier semi-volatiles and pesticides generally remain in the evaporator concentrate. An OLI Environmental Simulation Program (licensed by OLI Systems, Inc.) evaporator model successfully predicted operating conditions and the experimental distribution of the fed target organics exiting in the concentrate, condensate, and off-gas streams, with the exception of a few semi-volatile and pesticide compounds. Comparison with Henry's Law predictions suggests the OLI Environmental Simulation Program model is constrained by available literature data.

  5. [Research on source profile of aerosol organic compounds in leather plant]. (United States)

    Wang, Bo-Guang; Zhou, Yan; Feng, Zhi-Cheng; Liu, Hui-Xuan


    Through investigating current air pollution condition for PM10 in every factories of different style leather plants in Pearl River Delta, characteristic profile of semi-volatile organic compounds in PM10 emitted from leather factories and their contents were researched by using ultrasonic and gas chromatography and mass spectrum technology. The 6 types of organic compounds containing 46 species in total were found in the collected samples, including phenyl compounds, alcohols, PAHs, acids, esters and amides. The concentrations of PM10 in leather tanning plant, leather dying plant and man-made leather plant were 678.5, 454.5, 498.6 microgm x m(-3) respectively, and concentration of organic compounds in PM10 were 10.04, 6.89, 14.21 microg x m(-3) in sequence. The more important type of pollutants in each leather plants had higher contribution to total organic mass as follows, esters and amides in tanning plants profile account for 43.47% and 36.51% respectively; esters and alcohols in dying plants profiles account for 52.52% and 16.16% respectively; esters and amide in man-made leather plant have the highest content and account for 57.07% and 24.17% respectively. In the aerosol organic source profiles of tested leather plants, 9-octadecenamide was the abundant important species with the weight of 26.15% in tanning plant, and Bis(2-ethylhexyl) phthalate was up to 44.19% in the dying plant, and Bis(2-ethylhexyl) maleate and 1-hydroxy-piperidine had obviously higher weight in man-made plant than the other two plants.

  6. Nutrients, organic compounds, and mercury in the Meduxnekeag River watershed, Maine, 2003 (United States)

    Schalk, Charles W.; Tornes, Lan


    In 2003, the U.S. Geological Survey, in cooperation with the Houlton Band of Maliseet Indians, sampled streambed sediments and surface water of the Meduxnekeag River watershed in northeastern Maine under various hydrologic conditions for nutrients, hydrophobic organic compounds, and mercury. Nutrients were sampled to address concerns related to summer algal blooms, and organic compounds and mercury were sampled to address concerns about regional depositional patterns and overall watershed quality. In most surface-water samples, phosphorus was not detected or was detected at concentrations below the minimum reporting limit. Nitrate and organic nitrogen were detected in every surface-water sample for which they were analyzed; the highest concentration of total nitrogen was 0.75 milligrams per liter during low flow. Instantaneous nitrogen loads and yields were calculated at four stations for two sampling events. These data indicate that the part of the watershed that includes Houlton, its wastewater-treatment plant, and four small urban brooks may have contributed high concentrations of nitrate to Meduxnekeag River during the high flows on April 23-24 and high concentrations of both organic and nitrate nitrogen on June 2-3. Mercury was detected in all three bed-sediment samples for which it was analyzed; concentrations were similar to those reported from regional studies. Notable organic compounds detected in bed sediments included p,p'-DDE and p,p'-DDT (pesticides of the DDT family) and several polycyclic aromatic hydrocarbons. Polychlorinated biphenyls (PCBs) and phthalates were not detected in any sample, whereas p-cresol was the only phenolic compound detected. Phosphorus was detected at concentrations below 700 milligrams per kilogram in each bed-sediment sample for which it was analyzed. Data were insufficient to establish whether the lack of large algal blooms in 2003 was related to low concentrations of phosphorus.

  7. Car indoor air pollution by volatile organic compounds and aldehydes in Japan

    Directory of Open Access Journals (Sweden)

    Kouichi Tatsu


    Full Text Available Fifty-five organic substances including volatile organic compounds (VOCs and aldehydes present in indoor air were measured from 24 car cabins in Japan. A screening-level risk assessment was also performed. Acetaldehyde (3.81–36.0 μg/m3, formaldehyde (3.26–26.7 μg/m3, n-tetradecane (below the method quantification limit (organic compounds originated from the car interior materials. Total volatile organic compound (TVOC concentrations in 14 car cabins (58% of all car cabins exceeded the advisable values established by the Ministry of Health, Labour and Welfare of Japan (400 μg/m3. The highest TVOC concentration (1136 μg/m3 was found in a new car (only one month since its purchase date. Nevertheless, TVOC concentrations exceeded the advisable value even for cars purchased over 10 years ago. Hazard quotients (HQs for formaldehyde obtained using measured median and highest concentrations in both exposure scenarios for occupational use (residential time in a car cabin was assumed to be 8 h were higher than that expected, a threshold indicative of potential adverse effects. Under the same exposure scenarios, HQ values for all other organic compounds remained below this threshold.

  8. Sulfate minerals: a problem for the detection of organic compounds on Mars? (United States)

    Lewis, James M T; Watson, Jonathan S; Najorka, Jens; Luong, Duy; Sephton, Mark A


    The search for in situ organic matter on Mars involves encounters with minerals and requires an understanding of their influence on lander and rover experiments. Inorganic host materials can be helpful by aiding the preservation of organic compounds or unhelpful by causing the destruction of organic matter during thermal extraction steps. Perchlorates are recognized as confounding minerals for thermal degradation studies. On heating, perchlorates can decompose to produce oxygen, which then oxidizes organic matter. Other common minerals on Mars, such as sulfates, may also produce oxygen upon thermal decay, presenting an additional complication. Different sulfate species decompose within a large range of temperatures. We performed a series of experiments on a sample containing the ferric sulfate jarosite. The sulfate ions within jarosite break down from 500 °C. Carbon dioxide detected during heating of the sample was attributed to oxidation of organic matter. A laboratory standard of ferric sulfate hydrate released sulfur dioxide from 550 °C, and an oxygen peak was detected in the products. Calcium sulfate did not decompose below 1000 °C. Oxygen released from sulfate minerals may have already affected organic compound detection during in situ thermal experiments on Mars missions. A combination of preliminary mineralogical analyses and suitably selected pyrolysis temperatures may increase future success in the search for past or present life on Mars.

  9. Organic compounds in fluid inclusions of Archean quartz-Analogues of prebiotic chemistry on early Earth. (United States)

    Schreiber, Ulrich; Mayer, Christian; Schmitz, Oliver J; Rosendahl, Pia; Bronja, Amela; Greule, Markus; Keppler, Frank; Mulder, Ines; Sattler, Tobias; Schöler, Heinz F


    The origin of life is still an unsolved mystery in science. Hypothetically, prebiotic chemistry and the formation of protocells may have evolved in the hydrothermal environment of tectonic fault zones in the upper continental crust, an environment where sensitive molecules are protected against degradation induced e.g. by UV radiation. The composition of fluid inclusions in minerals such as quartz crystals which have grown in this environment during the Archean period might provide important information about the first organic molecules formed by hydrothermal synthesis. Here we present evidence for organic compounds which were preserved in fluid inclusions of Archean quartz minerals from Western Australia. We found a variety of organic compounds such as alkanes, halocarbons, alcohols and aldehydes which unambiguously show that simple and even more complex prebiotic organic molecules have been formed by hydrothermal processes. Stable-isotope analysis confirms that the methane found in the inclusions has most likely been formed from abiotic sources by hydrothermal chemistry. Obviously, the liquid phase in the continental Archean crust provided an interesting choice of functional organic molecules. We conclude that organic substances such as these could have made an important contribution to prebiotic chemistry which might eventually have led to the formation of living cells.

  10. Passive Sampling in Regulatory Chemical Monitoring of Nonpolar Organic Compounds in the Aquatic Environment

    DEFF Research Database (Denmark)

    Booij, Kees; Robinson, Craig D; Burgess, Robert M


    We reviewed compliance monitoring requirements in the European Union, the United States, and the Oslo-Paris Convention for the protection of the marine environment of the North-East Atlantic, and evaluated if these are met by passive sampling methods for nonpolar compounds. The strengths...... is the best available technology for chemical monitoring of nonpolar organic compounds. Key issues to be addressed by scientists and environmental managers are outlined....... and shortcomings of passive sampling are assessed for water, sediments, and biota. Passive water sampling is a suitable technique for measuring concentrations of freely dissolved compounds. This method yields results that are incompatible with the EU's quality standard definition in terms of total concentrations...

  11. From organic pollutants to bioplastics: insights into the bioremediation of aromatic compounds by Cupriavidus necator. (United States)

    Berezina, Nathalie; Yada, Bopha; Lefebvre, Rodrigue


    Organic pollution by aromatic compounds is of increasing concern to our environment. Therefore, the transformation of aromatic pollutants into valuable aliphatic and biodegradable bioplastics was studied. Since benzoic acid was found to be the key compound for such bioremediation processes, its transformation, and metabolic pathways of digestion, by Cupriavidus necator were specifically analysed. It was found that the degradation of aromatic compounds follows the 2,3-dioxygenase pathway in this strain and that the batch transformations of benzoic acid with either fresh or adapted cells were limited to an initial concentration of 2.5 g/L of pollutant. The repeated fed-batch with partial withdrawal process, however, showed a 17.5-fold improvement, thus allowing the transformation of a total of 43.7 g/L in 12 weeks. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Bismuth solubility through binding by various organic compounds and naturally occurring soil organic matter. (United States)

    Murata, Tomoyoshi


    The present study was performed to examine the effects of soluble organic matter and pH on the solubility of Bi in relation to inference with the behavior of metallic Bi dispersed in soil and water environments using EDTA, citric acid, tartaric acid, L-cysteine, soil humic acids (HA), and dissolved organic matter (DOM) derived from the soil organic horizon. The solubility of Bi by citric acid, tartaric acid, L-cysteine, HA, and DOM showed pH dependence, while that by EDTA did not. Bi solubility by HA seemed to be related to the distribution of pKa (acid dissociation constant) values of acidic functional groups in their molecules. That is, HA extracted at pH 3.2 solubilized Bi preferentially in the acidic range, while HA extracted at pH 8.4 showed preferential solubilization at neutral and alkaline pH. This was related to the dissociation characteristics of functional groups, their binding capacity with Bi, and precipitation of Bi carbonate or hydroxides. In addition to the dissociation characteristics of functional groups, the unique structural configuration of the HA could also contribute to Bi-HA complex formation. The solubility of Bi by naturally occurring DOM derived from the soil organic horizon (Oi) and its pH dependence were different from those associated with HA and varied among tree species.

  13. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Meyer, M.T.


    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. ?? 2009 SETAC.

  14. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system. (United States)

    Conn, Kathleen E; Siegrist, Robert L; Barber, Larry B; Meyer, Michael T


    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. Copyright 2009 SETAC.

  15. Study on ionizing radiation effects in diesel and crude oil: organic compounds, hydrocarbon, sulfur and nitrogen

    International Nuclear Information System (INIS)

    Andrade, Luana dos Santos


    Petroleum is the most important energy and pollution source in the world, nowadays. New technologies in petrochemical industry aim to minimize energy spending at the process and to reduce pollution products. Sulfur and nitrogen compounds generate environmental problems; the most relevant is air pollution that affects the population health directly. The nuclear technology has been used in environmental protection through pollutants removal by free radicals produced at action of the radiation in water molecule. The objective of this study is to evaluate the radiation effects on oil and diesel, mainly in the hydrocarbons, organic sulfur, and nitrogen compounds. It was studied a molecule model of sulfur, named benzothiophene, diesel and crude oil samples. The samples were irradiated using a Co-60 source, Gammacell type. The total sulfur concentration in the samples was determined by X-ray fluorescence spectrometry, and organic compounds were analyzed by gas chromatography coupled to mass spectrometry (GC-MS). The study of molecular model showed that 95% was degraded at 20 kGy dose rate. Irradiation at 15 kGy of absorbed dose showed some cracking in petrol hydrocarbons, however with higher doses it was observed polymerization and low efficiency of cracking. It was observed that the sulfur compounds from diesel and petroleum was efficiently reduced. The applied doses of 15 kGy and 30 kGy were the most efficient on desulfurization of petroleum, and for diesel the highest variation was observed with 30 kGy and 50 kGy of absorbed dose. The distillation and chromatographic separation using an open column with palladium chloride as stationary phase showed a preferential separation of organic sulfur compounds in petroleum. (author)

  16. Electrochemical catalytic reforming of oxygenated-organic compounds: a highly efficient method for production of hydrogen from bio-oil. (United States)

    Yuan, Lixia; Chen, Yaqiong; Song, Chongfu; Ye, Tongqi; Guo, Qingxiang; Zhu, Qingshi; Torimoto, Youshifumi; Li, Quanxin


    A novel approach to produce hydrogen from bio-oil was obtained with high carbon conversion (>90%) and hydrogen yield (>90%) at Tcatalytic reforming of oxygenated-organic compounds over 18%NiO/Al(2)O(3) reforming catalyst; thermal electrons play important promoting roles in the decomposition and reforming of the oxygenated-organic compounds in the bio-oil.

  17. Organic compounds and suspended matter in the marine ice of the Eastern Antarctic

    International Nuclear Information System (INIS)

    Nemirovskaya, I.A.; Novigatsky, A.N.


    Data on the composition of organic compounds in Antarctic sea ice are virtually non-existent, as most works concentrate on the structure, physical composition and biological properties of the ice. Data is needed for the study of the global carbon cycle and the estimation of background values and anthropogenic compounds. Specific features of the hydrometeorological regime near Antarctica affect the structure of the ice cover and its properties. The transportation of large volumes of snow to the ocean results in the formation of a snow sludge layer which gradually accumulates on the sea surface and freezes into young slush ice. The irregular distribution of snow at the ice surface and seawater infiltration results in the formation of ice with a specific crystalline structure and physiochemical properties. This paper discussed the dissolved and suspended lipids and hydrocarbons, as well as suspended matter (SM) concentrations in snow, sea ice and sub-ice water in coastal zones of the East Antarctic. The data was obtained during the Russian Antarctic Expedition in 2003. Variations in the concentration and distribution of the various substances suggest that they are related to ice forming conditions and to the processes that occur when ice forms, as well as in the interaction of the substances with ice, snow and sub-ice water. The SM and organic compounds are accumulated in layers characterized by intense autochthonous processes. It was noted that the zones stay biogeochemically active even under low temperature conditions. The highest concentrations of organic compounds, along with the biggest variations in their proportions have been discovered in the areas surrounded by penguin colonies near Buromsky Island and Haswell Island's Lake. The presence of significant quantities of PAHs in both pack and seasonal ice of high latitudes indicates that their formation is relatively rapid even at low temperatures. Many biochemical processes are intense under the influence of ice

  18. Interactions between radionuclides and organic colloids. Structure and reactivity of humic compounds

    International Nuclear Information System (INIS)

    Plancque, G.


    Humic compounds are the main organic colloids present in natural waters. These compounds can significantly modify the speciation of metals and control their properties, like migration, toxicity or bio-availability. It is thus important to study their speciation in conditions representative to those encountered in the natural environment. The aim of this work is to analyze the reactivity of these humic compounds. Two spectroscopic techniques have been used: the time-resolution laser spectro-fluorimetry, limited to the study of fluorescent elements, and the electro-spray source mass spectroscopy which requires the development of specific protocols for all elements of the periodic classification system. Europium, a fluorescent element analogue to trivalent actinides, has been chosen as test-metal for the intercomparison of both spectroscopic techniques. The first technique has permitted to determine the inorganic and organic speciation (spectra and lifetime of europium hydroxides and carbonates, and constants of interaction with humic acids, respectively). The limitations of this technique in the study of inorganic speciation has been evidenced. Humic compounds have a badly defined structure. The use of high-resolution mass spectroscopy has permitted to propose in a direct and experimental way, a molecular structure of aquatic fulvic acids in agreement with their known physico-chemical properties. (J.S.)

  19. Influence of Inorganic Ions and Organic Substances on the Degradation of Pharmaceutical Compound in Water Matrix

    Directory of Open Access Journals (Sweden)

    Edyta Kudlek


    Full Text Available The paper determined the influence of inorganic substances and high-molecular organic compounds on the decomposition of diclofenac, ibuprofen, and carbamazepine in the process of photocatalysis conducted with the presence of Titanium dioxide (TiO2. It was determined that the presence of such ions as CO 3 2 − , HCO 3 − , HPO 4 2 − as well as SO 4 2 − inhibited the decomposition of carbamazepine, whereas the efficiency of diclofenac degradation was decreased only by the presence of CO 3 2 − and HCO 3 − anions. In case of ibuprofen sodium salt (IBU, all investigated anions influenced the increase in its decomposition rate. The process of pharmaceutical photooxidation conducted in suspensions with Al3+ and Fe3+ cations was characterized by a significantly decreased efficiency when compared to the solution deprived of inorganic compounds. The addition of Ca2+, Mg2+ and NH4+ affected the increase of reaction rate constant value of diclofenac and ibuprofen decomposition. On the other hand, high molecular organic compounds present in the model effluent additionally catalysed the degradation process of pharmaceutical compounds and constituted an additional sorbent that enabled to decrease their concentration. Toxicological analysis conducted in deionized water with pharmaceutical compounds’ patterns proved the production of by-products from oxidation and/or reduction of micropollutants, which was not observed for model effluent irradiation.

  20. Removal kinetics of organic compounds and sum parameters under field conditions for managed aquifer recharge. (United States)

    Wiese, Bernd; Massmann, Gudrun; Jekel, Martin; Heberer, Thomas; Dünnbier, Uwe; Orlikowski, Dagmar; Grützmacher, Gesche


    Managed aquifer recharge (MAR) provides efficient removal for many organic compounds and sum parameters. However, observed in situ removal efficiencies tend to scatter and cannot be predicted easily. In this paper, a method is introduced which allows to identify and eliminate biased samples and to quantify simultaneously the impact of (i) redox conditions (ii) kinetics (iii) residual threshold values below which no removal occurs and (iv) field site specifics. It enables to rule out spurious correlations between these factors and therefore improves the predictive power. The method is applied to an extensive database from three MAR field sites which was compiled in the NASRI project (2002-2005, Berlin, Germany). Removal characteristics for 38 organic parameters are obtained, of which 9 are analysed independently in 2 different laboratories. Out of these parameters, mainly pharmaceutically active compounds (PhAC) but also sum parameters and industrial chemicals, four compounds are shown to be readily removable whereas six are persistent. All partly removable compounds show a redox dependency and most of them reveal either kinetic dependencies or residual threshold values, which are determined. Differing removal efficiencies at different field sites can usually be explained by characteristics (i) to (iii). Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Degradation of air polluted by organic compounds; Degradacion de aire contaminado por compuestos organicos

    Energy Technology Data Exchange (ETDEWEB)

    Santoyo O, E L; Lizama S, B E [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, 56000 Toluca (Mexico); Vazquez A, O; Luna C, P C; Arredondo H, S [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)


    According to the Mexican standard NOM-010-STPS-1994 it has been established concentrations of maximum permissible levels in workable air for styrene in the range 420-1710 mg/m{sup 3} and for xylene between 218-870 mg/m{sup 3}. In this work it is studied a biological treatment (bio filtration) for air polluted by xylene and styrene where the microorganisms are adhered at synthetic fiber, these degrade to the organic compounds that across in gaseous state and they are mineralized toward CO{sub 2} and H{sub 2}O. The characteristics of temperature, p H, concentration of organic compound and mineral parameters, as well as, the biomass quantity have been optimized for that bio filters efficiency were greater than those reported in other works. (Author)

  2. Identification of organic compounds migrating from polyethylene pipelines into drinking water

    DEFF Research Database (Denmark)

    Brocca, D.; Arvin, Erik; Mosbæk, Hans


    A study of the diffusion of organic additives from four polyethylene (PE) materials into drinking water was conducted. Various structures of organic chemicals were identified in the water extracts by means of gas chromatography–mass spectrometry analysis. Most of them presented a basic common......, in order to investigate the origin of the chemicals detected in the water samples. Consequently, the presence of some of the compounds was attributed to impurities or by-products of typical phenolic additives used as antioxidants in pipeline production. Finally, the occurrence of the identified chemicals...... was tested under field conditions, i.e. in water samples from newly installed pipelines in a distribution system. Here, the presence of three of the compounds identified in vitro was detected. r 2002 Elsevier Science Ltd. All rights reserved....

  3. Method development for the determination of volatile organic compounds in mixed waste

    International Nuclear Information System (INIS)

    Sandoval, W.F.; Rogers, Y.C.; Schappert, M.F.; Boland, K.S.; Spall, W.D.; Wilkerson, C.W. Jr.


    While analytical methods exist for the determination of Resource Conservation and Recovery Act (RCRA) listed organic and inorganic compounds in hazardous materials, equivalent methods suitable for the characterization of radioactively contaminated samples are not at the same level of maturity. The Mixed Waste Methods Development Lab. has been established at Los Alamos National Lab. to address the need for such procedures. This presentation will focus on the efforts that have been directed toward the determination of volatile organic compounds (VOCs) in mixed waste matrices. The capabilities of the Mixed Waste Methods Development Lab. will be outlined. Modifications to the containment boxes and analytical instrumentation required for the analyses will be described, as will experimental procedures and system performance benchmarks. Preliminary results from surrogate and real mixed waste matrices will be presented, and future directions for our method development effort will be discussed

  4. Sensory and Physiological Effects on Humans of Combined Exposures to Air Temperatures and Volatile Organic Compounds

    DEFF Research Database (Denmark)

    Mølhave, Lars; Liu, Zunyong; Jørgensen, Anne Hempel


    Ten healthy humans were exposed to combinations of volatile organic compounds (VOCs) and air temperature (0 mg/m3 and 10 mg/m3 of a mixture of 22 volatile organic compounds and 18, 22 and 26° C). Previously demonstrated effects of VOCs and thermal exposures were replicated. For the first time nasal...... cross-sectional areas and nasal volumes, as measured by acoustic rhinometry, were shown to decrease with decreasing temperature and increasing VOC exposure. Temperature and pollutant exposures affected air quality, the need for more ventilation, skin humidity on the forehead, sweating, acute sensory...... irritation and possibly watering eyes in an additive way. Interactions were found for odor intensity (p = 0.1), perceived facial skin temperature and dryness, general well-being, tear film stability, and nasal cavity dimension. The presence of interactions implies that in the future guidelines for acceptable...

  5. Fracton pairing mechanism for unconventional superconductors: Self-assembling organic polymers and copper-oxide compounds

    DEFF Research Database (Denmark)

    Milovanov, A.V.; Juul Rasmussen, J.


    Self-assembling organic polymers and copper-oxide compounds are two classes of unconventional superconductors, whose challenging behavior does not comply with the traditional picture of Bardeen-Cooper-Schrieffer (BCS) superconductivity in regular crystals. In this paper, we propose a theoretical...... or holes) exchange fracton excitations, quantum oscillations of fractal lattices that mimic the complex microscopic organization of the unconventional superconductors. For the copper oxides, the superconducting transition temperature T-c as predicted by the fracton mechanism is of the order of similar to......150 K. We suggest that the marginal ingredient of the high-temperature superconducting phase is provided by fracton coupled holes that condensate in the conducting copper-oxygen planes owing to the intrinsic field-effect-transistor configuration of the cuprate compounds. For the gate...

  6. Radiation polymerization of butyl acrylate for using as organic compounds recovery system from waste water

    International Nuclear Information System (INIS)

    Kattan, M.; Al-Kassiri, H.


    In this work, radiation polymerization of butyl acrylate using 60 Co gamma rays was studied. The effects of different parameters, such as the irradiation dose, dose rate and the temperature of irradiation on the polymerization were investigated. The relationship between polymerization yield with the dose rate and the temperature found to be linear. The kinetic of irradiation polymerization at 10 kGy/h was studied. The activation energy of reaction was calculated and it was E=9.27 j/mol. The thermal properties and the effect of irradiation dose on the glass transition were investigated. The application of this polymer in the field of environment treatment such as extraction of organics compounds dissolved in water was studied. The swelling in several organic compounds was studied, the weight percentages of both the swelling and the liberation were calculated. (author)

  7. Quantitative Prediction of Solvation Free Energy in Octanol of Organic Compounds

    Directory of Open Access Journals (Sweden)

    Eduardo J. Delgado


    Full Text Available The free energy of solvation, ΔGS0 , in octanol of organic compunds is quantitatively predicted from the molecular structure. The model, involving only three molecular descriptors, is obtained by multiple linear regression analysis from a data set of 147 compounds containing diverse organic functions, namely, halogenated and non-halogenated alkanes, alkenes, alkynes, aromatics, alcohols, aldehydes, ketones, amines, ethers and esters; covering a ΔGS0 range from about –50 to 0 kJ·mol-1. The model predicts the free energy of solvation with a squared correlation coefficient of 0.93 and a standard deviation, 2.4 kJ·mol-1, just marginally larger than the generally accepted value of experimental uncertainty. The involved molecular descriptors have definite physical meaning corresponding to the different intermolecular interactions occurring in the bulk liquid phase. The model is validated with an external set of 36 compounds not included in the training set.

  8. Organic radionuclide compounds in soil solutions and their role in elements absorption in plants

    International Nuclear Information System (INIS)

    Agapkin, G.I.; Tikhomirov, F.A.


    The results of reference experiments with introduction of radioactive labels ( 35 S, 45 Ca, 59 Fe, 85 , 125 I) into 5 types of climatophytic soils by the method of radiogel-chromatography allow to ascertain that in soil solutions 59 Fe and 125 I incorporate completely and 35 S, 45 Ca and 85 Sr incorporate by 60-90 % into the composition of one of three fractions of organic compounds with molecular masses of 4x10 2 -6x10 4 . It is shown that significant variations between soils in the absorption of such radionuclides as 4 5 Ca, 58 Fe, 85 Sr and 125 I are celated to a different degree of their transport into soil solutions as well as to differencies in their distribution by molecular-mass fractions of water-soluble organic compounds

  9. Passive sampling of selected endocrine disrupting compounds using polar organic chemical integrative samplers

    International Nuclear Information System (INIS)

    Arditsoglou, Anastasia; Voutsa, Dimitra


    Two types of polar organic chemical integrative samplers (pharmaceutical POCIS and pesticide POCIS) were examined for their sampling efficiency of selected endocrine disrupting compounds (EDCs). Laboratory-based calibration of POCISs was conducted by exposing them at high and low concentrations of 14 EDCs (4-alkyl-phenols, their ethoxylate oligomers, bisphenol A, selected estrogens and synthetic steroids) for different time periods. The kinetic studies showed an integrative uptake up to 28 days. The sampling rates for the individual compounds were obtained. The use of POCISs could result in an integrative approach to the quality status of the aquatic systems especially in the case of high variation of water concentrations of EDCs. The sampling efficiency of POCISs under various field conditions was assessed after their deployment in different aquatic environments. - Calibration and field performance of polar organic integrative samplers for monitoring EDCs in aquatic environments

  10. Volatile organic compounds and trace metal level in some beers collected from Romanian market (United States)

    Voica, Cezara; Kovacs, Melinda; Vadan, Marius


    Beer is one of the most popular beverages at worldwide level. Through this study fifteen different types of beer collected from Romanian market were analysed in order to evaluate their mineral, trace element as well the their organic content. Importance of such characterization of beer samples is supported by the fact that their chemical composition can affect both taste and stability of beer, as well the consumer health. Minerals and trace elements analysis were performed on ICP-MS while organic compounds analysis was done through GC-MS. Through ICP-MS analysis, elements as Ca, Na, K and Mg were evidenced at mgṡkg-1 order while elements as Cr, Ba, Co, Ni were detected at lower level. After GC-MS analysis the major volatile compounds that were detected belong to alcohols namely ethanol, propanol, isobutanol, isoamyl alcohol and linalool. Selected fatty acids and esters were evidenced also in the studied beer samples.

  11. Distribution of enantiomers of volatile organic compounds in selected fruit distillates. (United States)

    Vyviurska, Olga; Zvrškovcová, Helena; Špánik, Ivan


    The enantiomer ratios of chiral volatile organic compounds in fruit distillates were determined by multidimensional gas chromatography using solid-phase microextraction (SPME) as a sample treatment procedure. Linalool and its oxides, limonene, α-terpineol, and nerolidol, were present at the highest concentration levels, while significantly lower amounts of β-citronellol and lactones were found in the studied samples. However, almost all terpenoids mainly occur as a racemic or near-racemic mixture; enantiomer distribution of some chiral organic compounds in fruit distillates correlated to a botanical origin. In particular, a significant enantiomeric excess of (R)-linalool and (S)-α-terpineol was found only for pear brandy, and likewise the dominance (R)-limonene and the second eluted enantiomer of nerolidol for Sorbus domestica and strawberry, respectively. The distribution of γ-lactones stereoisomers was more nonspecific, with a general excess of the R-enantiomer. © 2016 Wiley Periodicals, Inc.

  12. Publicly available models to predict normal boiling point of organic compounds

    International Nuclear Information System (INIS)

    Oprisiu, Ioana; Marcou, Gilles; Horvath, Dragos; Brunel, Damien Bernard; Rivollet, Fabien; Varnek, Alexandre


    Quantitative structure–property models to predict the normal boiling point (T b ) of organic compounds were developed using non-linear ASNNs (associative neural networks) as well as multiple linear regression – ISIDA-MLR and SQS (stochastic QSAR sampler). Models were built on a diverse set of 2098 organic compounds with T b varying in the range of 185–491 K. In ISIDA-MLR and ASNN calculations, fragment descriptors were used, whereas fragment, FPTs (fuzzy pharmacophore triplets), and ChemAxon descriptors were employed in SQS models. Prediction quality of the models has been assessed in 5-fold cross validation. Obtained models were implemented in the on-line ISIDA predictor at (

  13. The Formation of Complex Organic Compounds in Astrophysical Ices and their Implications for Astrobiology (United States)

    Sandford, Scott A.


    Ices in astrophysical environments are generally dominated by very simple molecules like H2O, CH3OH, CH4, NH3, CO, CO2, etc, although they likely contain PAHs as well. These molecules, particularly H2O, are of direct interest to astrobiology in-and-of themselves since they represent some of the main carriers of the biogenic elements C, H, O, and N. In addition, these compounds are present in the dense interstellar clouds in which new stars and planetary systems are formed and may play a large role in the delivery of volatiles and organics to the surfaces of new planets. However, these molecules are all far simpler than the more complex organic compounds found in living systems.

  14. Release of volatile organic compounds (VOCs from the lung cancer cell line CALU-1 in vitro

    Directory of Open Access Journals (Sweden)

    Schubert Jochen


    Full Text Available Abstract Background The aim of this work was to confirm the existence of volatile organic compounds (VOCs specifically released or consumed by lung cancer cells. Methods 50 million cells of the human non-small cell lung cancer (NSCLC cell line CALU-1 were incubated in a sealed fermenter for 4 h or over night (18 hours. Then air samples from the headspace of the culture vessel were collected and preconcentrated by adsorption on solid sorbents with subsequent thermodesorption and analysis by means of gas chromatography mass spectrometry (GC-MS. Identification of altogether 60 compounds in GCMS measurement was done not only by spectral library match, but also by determination of retention times established with calibration mixtures of the respective pure compounds. Results The results showed a significant increase in the concentrations of 2,3,3-trimethylpentane, 2,3,5-trimethylhexane, 2,4-dimethylheptane and 4-methyloctane in the headspace of CALU-1 cell culture as compared to medium controls after 18 h. Decreased concentrations after 18 h of incubation were found for acetaldehyde, 3-methylbutanal, butyl acetate, acetonitrile, acrolein, methacrolein, 2-methylpropanal, 2-butanone, 2-methoxy-2-methylpropane, 2-ethoxy-2-methylpropane, and hexanal. Conclusion Our findings demonstrate that certain volatile compounds can be cancer-cell derived and thus indicative of the presence of a tumor, whereas other compounds are not released but seem to be consumed by CALU-1 cells.

  15. Compositions of volatile organic compounds emitted from melted virgin and waste plastic pellets. (United States)

    Yamashita, Kyoko; Yamamoto, Naomichi; Mizukoshi, Atsushi; Noguchi, Miyuki; Ni, Yueyong; Yanagisawa, Yukio


    To characterize potential air pollution issues related to recycling facilities of waste plastics, volatile organic compounds (VOCs) emitted from melted virgin and waste plastics pellets were analyzed. In this study, laboratory experiments were performed to melt virgin and waste plastic pellets under various temperatures (150, 200, and 250 degrees C) and atmospheres (air and nitrogen [N2]). In the study presented here, low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS) and the recycled waste plastic pellets were used. The VOCs generated from each plastic pellets were collected by Tenax/Carboxen adsorbent tubes and analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). The result showed the higher temperatures generated larger amounts of total VOCs (TVOCs). The VOCs emitted from the virgin plastic pellets likely originated from polymer degradation. Smaller TVOC emissions were observed in N2 atmosphere than in air atmosphere. In particular, larger amounts of the oxygenated compounds, which are generally hazardous and malodorous, were detected in air than in N2. In addition to the compounds originating from polymer degradation, the compounds originating from the plastic additives were also detected from LDPE and PS. Furthermore, various species of VOCs likely originating from contaminant inseparate polyvinyl chloride (PVC), food residues, cleaning agents, degreasers, and so on were detected from the waste plastic. Thus, melting waste plastics, as is conducted in recycling facilities, might generate larger amounts of potentially toxic compounds than producing virgin plastics.

  16. Fluxes and concentrations of volatile organic compounds above central London, UK

    Directory of Open Access Journals (Sweden)

    B. Langford


    Full Text Available Concentrations and fluxes of eight volatile organic compounds (VOCs were measured during October 2006 from a high telecom tower above central London, as part of the CityFlux contribution to the REPARTEE I campaign. A continuous flow disjunct eddy covariance technique with analysis by proton transfer reaction mass spectrometry was used. Daily averaged VOC mixing ratios were within the range 1–19 ppb for the oxygenated compounds (methanol, acetaldehyde and acetone and 0.2–1.3 ppb for the aromatics (benzene, toluene and C2-benzenes. Typical VOC fluxes were in the range 0.1–1.0 mg m−2 h−1. There was a non-linear relationship between VOC fluxes and traffic density for most of the measured compounds. Traffic activity was estimated to account for approximately 70% of the aromatic compound fluxes, whereas non-traffic related sources were found to be more important for methanol and isoprene fluxes. The measured fluxes were comparable to the estimates of the UK national atmospheric emission inventory for the aromatic VOCs and CO. In contrast, fluxes of the oxygenated compounds were about three times larger than inventory estimates. For isoprene and acetonitrile this difference was many times larger. At temperatures over 25° C it is estimated that more than half the isoprene observed in central London is of biogenic origin.

  17. Antennal olfactory responses of adult meadow spittlebug, Philaenus spumarius, to volatile organic compounds (VOCs.

    Directory of Open Access Journals (Sweden)

    Giacinto Salvatore Germinara

    Full Text Available The meadow spittlebug, Philaenus spumarius L. (Hemiptera, Aphrophoridae is a commonly found vector of Xylella fastidiosa Wells et al. (1987 strain subspecies pauca associated with the "Olive Quick Decline Syndrome" in Italy. To contribute to the knowledge of the adult P. spumarius chemoreceptivity, electroantennographic (EAG responses of both sexes to 50 volatile organic compounds (VOCs including aliphatic aldehydes, alcohols, esters, and ketones, terpenoids, and aromatics were recorded. Measurable EAG responses were elicited by all compounds tested. In both sexes, octanal, 2-octanol, 2-decanone, (E-2-hexenyl acetate, and vanillin elicited the strongest antennal amplitude within the chemical groups of aliphatic saturated aldehydes, aliphatic alcohols, aliphatic acetates and aromatics, respectively. Male and female EAG responses to sulcatol, (±linalool, and sulcatone were higher than those to other terpenoinds. In both sexes, the weakest antennal stimulants were phenethyl alcohol and 2-pentanone. Sexual differences in the EAG amplitude were found only for four of test compounds suggesting a general similarity between males and females in antennal sensitivity. The olfactory system of both sexes proved to be sensitive to changes in stimulus concentration, carbon chain length, and compound structure. Compounds with short carbon chain length (C5-C6 elicited lower EAG amplitudes than compounds with higher carbon chain length (C9-C10 in all classes of aliphatic hydrocarbons with different functional groups. The elucidation of the sensitivity profile of P. spumarius to a variety of VOCs provides a basis for future identification of behaviorally-active compounds useful for developing semiochemical-based control strategies of this pest.

  18. Proficiency Test SYKE 8/2012. Volatile organic compounds in water and soil


    Korhonen-Ylönen, Kaija; Nuutinen, Jari; Leivuori, Mirja; Ilmakunnas, Markku


    Proftest SYKE carried out the proficiency test for analysis of volatile organic compounds from water and soil in October 2012. One artificial sample and one river water sample and one soil sample were distributed. In total, 15 laboratories participated in the proficiency test. Either the calculated concentration or the robust mean value was chosen to be the assigned value for the measurement. The performance of the participants was evaluated by using z scores. In this proficiency test 72 % of...

  19. Symptoms of mothers and infants related to total volatile organic compounds in household products


    Farrow, A; Taylor, H; Northstone, K; Golding, J


    The authors sought to determine whether reported symptoms of mothers and infants were associated significantly with the use of household products that raised indoor levels of total volatile organic compounds (TVOCs). Data collected from 170 homes within the Avon Longitudinal Study of Parents and Children (ALSPAC: a large birth cohort of more than 10,000) had determined which household products were associated with the highest levels of TVOCs. The latter data were collected over a period that ...

  20. Performance specifications for technology development: Application for characterization of volatile organic compounds in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, S.E.; Doskey, P.V.; Erickson, M.D.; Lindahl, P.C.


    This report contains information about technology development for the monitoring and remediation of environmental pollution caused by the release of volatile organic compounds. Topics discussed include: performance specification processes, gas chromatography, mass spectrometer, fiber-optic chemical sensors, infrared spectroscopy, Raman spectroscopy, piezoelectric sensors and electrochemical sensors. These methods are analyzed for their cost efficiency, accuracy, and the ability to meet the needs of the customer.

  1. Analysis of Wastewater for Organic Compounds Unique to RDX/HMX manufacturing and Processing (United States)


    manufacture of acetic anhydride and the concentration of weak acetic acid, recovered at Area B, to yield * Holston Defense Corporation 2 Kingsport...washing nor Soxhlet extraction techniques proved to be effective in recovering the organic compounds from the type of activated carbon available at ?nd acetone mixture.J Approximately one liter of dewater yielded approximately 200 mg (0.2 grams) of freeze-dried solids: These solids were

  2. Assessing methods to estimate emissions of non-methane organic compounds from landfills

    DEFF Research Database (Denmark)

    Saquing, Jovita M.; Chanton, Jeffrey P.; Yazdani, Ramin


    The non-methane organic compound (NMOC) emission rate is used to assess compliance with landfill gas emission regulations by the United States Environmental Protection Agency (USEPA). A recent USEPA Report (EPA/600/R-11/033) employed a ratio method to estimate speciated NMOC emissions (i...... and speciated NMOC concentration and flux data from 2012/2013 field sampling of four landfills, an unpublished landfill study, and literature data from three landfills. The ratio method worked well for landfills with thin covers (...

  3. Iodometric microdetermination of phosphorus in organic compounds by use of An amplification reaction


    Al Kubaisi, A. H. [عبد الله حسين الكبيسي; Farag, A. B.; Amin, R. R.


    A high chemical amplification method is described for the iodometric microdetermination of phosphorus in organic compounds. This method depends on combustion by the oxygen flask, absorption of the combustion products in distilled water and conversion to orthophosphoric acid with bromine water. The phosphoric acid produced is then allowed to react with sodium molybdate in acid medium to form phosphomolybdic acid which is extracted into a mixture of diethyl ether and pentanol (5:1, V/V), and ba...

  4. [Photoionization ion mobility spectrometry (UV-IMS) for the isomeric volatile organic compounds]. (United States)

    Li, Hu; Niu, Wen-qi; Wang, Hong-mei; Huang, Chao-qun; Jiang, Hai-he; Chu, Yan-nan


    The construction and performance study is reported for a newly developed ultraviolet photoionization ion mobility spectrometry (UV-IMS). In the present paper, an UV-IMS technique was firstly developed to detect eleven isomeric volatile organic compounds including the differences in the structure of carbon chain, the style of function group and the position of function group. Their reduced mobility values were determined and increased in this order: linears alcohols homemade UV-IMS was around ppb-ppm.

  5. Wet effluent diffusion denuder technique and the determination of volatile organic compounds in air. II. Monoterpenes

    Czech Academy of Sciences Publication Activity Database

    Sklenská, Jana; Broškovičová, Anna; Večeřa, Zbyněk


    Roč. 973, 1-2 (2002), s. 211-216 ISSN 0021-9673 R&D Projects: GA ČR GA203/98/0943 Grant - others:SPSDII(XE) EV/02/11 Institutional research plan: CEZ:AV0Z4031919 Keywords : wet effluent denuder technique * volatile organic compounds * monoterpenes Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.098, year: 2002

  6. Very volatile organic compounds: An understudied class of indoor air pollutants: Keynote: Indoor Air 2014


    Salthammer, T.


    Very volatile organic compounds (VVOCs), as categorized by the WHO, are an important subgroup of indoor pollutants and cover a wide spectrum of chemical substances. Some VVOCs are components of products commonly used indoors, some result from chemical reactions and some are reactive precursors of secondary products. Nevertheless, there is still no clear and internationally accepted definition of VVOCs. Current approaches are based on the boiling point, and the saturation vapor pressure or ref...

  7. Investigation into organic boron compounds complexing. 25. Triaryl borane complexes with benzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Belonovich, M I; Lapkin, I I; Morozova, T L; Okatysheva, L Yu; Rybakova, M N; Yuzhakova, G A [Permskij Gosudarstvennyj Univ. (USSR)


    Coordination of organic boron compounds with heterocyclic ligands is studied. Substances containing one molecule of ligand per one molecule of triarylborane are extracted when mixing ether solution of triarylborane and alcohol solution of benzimidazole. Based on IR spectra it is stated that coordination with boron is realized at the expense of pyridine nitrogen atom of imidazole cycle. Dipole momenta are determined for synthesized complexes using Debye method.

  8. Modeling Human Exposure Levels to Airborne Volatile Organic Compounds by the Hebei Spirit Oil Spill


    Kim, Jong Ho; Kwak, Byoung Kyu; Ha, Mina; Cheong, Hae-Kwan; Yi, Jongheop


    Objectives The goal was to model and quantify the atmospheric concentrations of volatile organic compounds (VOCs) as the result of the Hebei Spirit oil spill, and to predict whether the exposure levels were abnormally high or not. Methods We developed a model for calculating the airborne concentration of VOCs that are produced in an oil spill accident. The model was applied to a practical situation, namely the Hebei Spirit oil spill. The accuracy of the model was verified by comparing the res...

  9. Determination of Fluorine in Fluoro-Organic Compounds in Low Concentrations in Air (United States)


    Analysis of 2-Fluoroethanol in Air ..... SUMMARY BIBLIOGRAPHY 15 APPENDIX , 16 FIGURE 1 Apparatus PLATE 1 CDS Scrubber SECRET ) SECRET...liter, and 68$ at 1 - 2 mg. per liter. By using two scrubbers in series, 90$ of di-isopropyl fluorophosphate was recovered at a concentration of 1 to 2...chromic acid and detection of HP by etching of the glass container ; (5) scrub- bing the gas with ammonia and decomposing the fluoro-organic compound4

  10. Safeprops: A Software for Fast and Reliable Estimation of Safety and Environmental Properties for Organic Compounds

    DEFF Research Database (Denmark)

    Jones, Mark Nicholas; Frutiger, Jerome; Abildskov, Jens

    We present a new software tool called SAFEPROPS which is able to estimate major safety-related and environmental properties for organic compounds. SAFEPROPS provides accurate, reliable and fast predictions using the Marrero-Gani group contribution (MG-GC) method. It is implemented using Python...... as the main programming language, while the necessary parameters together with their correlation matrix are obtained from a SQLite database which has been populated using off-line parameter and error estimation routines (Eq. 3-8)....

  11. Vacuum ultra-violet and electron energy loss spectroscopy of gaseous and solid organic compounds

    International Nuclear Information System (INIS)

    Koch, E.E.; Otto, A.


    The experimental arrangements used by the authors for the study of optical vacuum ultra-violet and electron energy loss spectra of organic compounds are described and some theoretical aspects of studies of higher excited states are considered. Results for alkanes, benzene, naphthalene, anthracene and some more complex hydrocarbons are reviewed. Recent results obtained by reflection and electron energy loss spectroscopy for single crystals of anthracene are included and their relevance for gas phase work as well as for the understanding of exciton effects in organic solids is described. (author)

  12. X-ray photoelectron spectroscopy of HUPA organic substances: natural and synthetic humic compounds

    International Nuclear Information System (INIS)

    Barre, N.; Mercier-Bion, F.; Reiller, P.


    X-ray photoelectron spectroscopy (XPS) results on the characterisation of the HUPA organic materials, i.e. natural humic substances ''GOHY 573'' (fulvic acid FA and humic acid HA) extracted from the Gorleben ground waters, and synthetic humic acids ''M1'' and ''M42'' obtained from a standard melanoidin preparation from FZ Rossendorf, are presented in this paper. XPS investigations were focused on the determination of the chemical environment of the major elements as carbon, nitrogen, oxygen and sulphur, and on the identification of trace metals trapped by these organic compounds. (orig.)

  13. A field comparison of volatile organic compound measurements using passive organic vapor monitors and stainless steel canisters. (United States)

    Pratt, Gregory C; Bock, Don; Stock, Thomas H; Morandi, Maria; Adgate, John L; Ramachandran, Gurumurthy; Mongin, Steven J; Sexton, Ken


    Concurrent field measurements of 10 volatile organic compounds (VOCs) were made using passive diffusion-based organic vapor monitors (OVMs) and the U.S. Federal Reference Method, which comprises active monitoring with stainless steel canisters (CANs). Measurements were obtained throughout a range of weather conditions, repeatedly over the course of three seasons, and at three different locations in the Minneapolis/St. Paul metropolitan area. Ambient concentrations of most VOCs as measured by both methods were low compared to those of other large metropolitan areas. For some VOCs a considerable fraction of measurements was below the detection limit of one or both methods. The observed differences between the two methods were similar across measurement sites, seasons, and meteorological variables. A Bayesian analysis with uniform priors on the differences was applied, with accommodation of sometimes heavy censoring (nondetection) in either device. The resulting estimates of bias and standard deviation of the OVM relative to the CAN were computed by tertile of the canister-measured concentration. In general, OVM and CAN measurements were in the best agreement for benzene and other aromatic compounds with hydrocarbon additions (ethylbenzene, toluene, and xylenes). The two methods were not in such good agreement for styrene and halogenated compounds (carbon tetrachloride, p-dichlorobenzene, methylene chloride, and trichloroethylene). OVMs slightly overestimated benzene concentrations and carbon tetrachloride at low concentrations, but in all other cases where significant differences were found, OVMs underestimated relative to canisters. Our study indicates that the two methods are in agreement for some compounds, but not all. We provide data and interpretation on the relative performance of the two VOC measurement methods, which facilitates intercomparisons among studies.

  14. The solubilities of significant organic compounds in HLW tank supernate solutions

    International Nuclear Information System (INIS)

    Barney, G.S.


    Large quantities of organic chemicals used in reprocessing spent nuclear-fuels at the Hanford Site have accumulated in underground high-level radioactive waste tanks. The organic content of these tanks must he known so that the potential for hazardous reactions between organic components and sodium nitrate/nitrite salts in the waste can he evaluated. The solubilities of organic compounds described in this report will help determine if they are present in the solid phases (salt cake and sludges) as well as the liquid phase (interstitial liquor/supernate) in the tanks. The solubilities of five significant sodium salts of carboxylic acids and aminocarboxylic acids [sodium oxalate, formate, citrate, nitrilotriacetate (NTA) and ethylendiaminetetraacetate (EDTA)] were measured in a simulated supernate solution at 25 degrees C, 30 degrees C, 40 degrees C, and 50 degrees C


    Directory of Open Access Journals (Sweden)

    Sitti Raodah Garuda


    Full Text Available Uniqueness of stunning Dendrobium variety such as shapes, colors, and sizes are main attraction of this plant. Germination oforchid seeds can be carried out in a laboratory with in vitro techniques.Medium used for germination of orchid seeds are Vacin and Went medium. Researcher stried to add other substances that may increase growth explants, such as complex organic compounds. Study aims to determine effect of complex organic compounds into growth medium VW Dendrobium plantlets. Research used complete randomized design consist five treatment:VW medium without extract (control, VW medium+banana extract, VW medium+ melon extrac, VW medium+guava extract and VW medium+pepaya extract, with three replications, each replication consist two culture bottles.. Each culture bottle planted four planlets. Addition of complex organic compounds such as melon extract gave best vegetative growth of leaves quantity, roots quantity, root length and fresh weight. While guava extract provide best results to plantlet high and saplings. Plant lets with melon extract treatment showed appearance of muscular orchid plantlets is characteristic of plants that can survive during acclimatization. While both guava extract is best used for purpose of orchid plantlets regeneration.

  16. Biogenic volatile organic compounds from the urban forest of the Metropolitan Region, Chile

    International Nuclear Information System (INIS)

    Préndez, Margarita; Carvajal, Virginia; Corada, Karina; Morales, Johanna; Alarcón, Francis; Peralta, Hugo


    Tropospheric ozone is a secondary pollutant whose primary sources are volatile organic compounds and nitrogen oxides. The national standard is exceeded on a third of summer days in some areas of the Chilean Metropolitan Region (MR). This study reports normalized springtime experimental emissions factors (EF) for biogenic volatile organic compounds from tree species corresponding to approximately 31% of urban trees in the MR. A Photochemical Ozone Creation Index (POCI) was calculated using Photochemical Ozone Creation Potential of quantified terpenes. Ten species, natives and exotics, were analysed using static enclosure technique. Terpene quantification was performed using GC-FID, thermal desorption, cryogenic concentration and automatic injection. Observed EF and POCI values for terpenes from exotic species were 78 times greater than native values; within the same family, exotic EF and POCI values were 28 and 26 times greater than natives. These results support reforestation with native species for improved urban pollution management. -- First experimental determination of the emission factors of biogenic volatile organic compounds in the urban forest of the Metropolitan Region, Chile

  17. Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds

    KAUST Repository

    Wang, Zhandong


    Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability of liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500–600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound’s molecular structure (n-alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. Finally, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels.

  18. Prospects for reconstructing paleoenvironmental conditions from organic compounds in polar snow and ice (United States)

    Giorio, Chiara; Kehrwald, Natalie; Barbante, Carlo; Kalberer, Markus; King, Amy C. F.; Thomas, Elizabeth R.; Wolff, Eric W.; Zennaro, Piero


    Polar ice cores provide information about past climate and environmental changes over periods ranging from a few years up to 800,000 years. The majority of chemical studies have focused on determining inorganic components, such as major ions and trace elements as well as on their isotopic fingerprint. In this paper, we review the different classes of organic compounds that might yield environmental information, discussing existing research and what is needed to improve knowledge. We also discuss the problems of sampling, analysis and interpretation of organic molecules in ice. This review highlights the great potential for organic compounds to be used as proxies for anthropogenic activities, past fire events from different types of biomass, terrestrial biogenic emissions and marine biological activity, along with the possibility of inferring past temperature fluctuations and even large-scale climate variability. In parallel, comprehensive research needs to be done to assess the atmospheric stability of these compounds, their ability to be transported long distances in the atmosphere, and their stability in the archive in order to better interpret their fluxes in ice cores. In addition, specific decontamination procedures, analytical methods with low detection limits (ng/L or lower), fast analysis time and low sample requests need to be developed in order to ensure a good time resolution in the archive.

  19. Prospects for reconstructing paleoenvironmental conditions from organic compounds in polar snow and ice (United States)

    Giorio, Chiara; Kehrwald, Natalie; Barbante, Carlo; Kalberer, Markus; King, Amy C.F.; Thomas, Elizabeth R.; Wolff, Eric W.; Zennaro, Piero


    Polar ice cores provide information about past climate and environmental changes over periods ranging from a few years up to 800,000 years. The majority of chemical studies have focused on determining inorganic components, such as major ions and trace elements as well as on their isotopic fingerprint. In this paper, we review the different classes of organic compounds that might yield environmental information, discussing existing research and what is needed to improve knowledge. We also discuss the problems of sampling, analysis and interpretation of organic molecules in ice. This review highlights the great potential for organic compounds to be used as proxies for anthropogenic activities, past fire events from different types of biomass, terrestrial biogenic emissions and marine biological activity, along with the possibility of inferring past temperature fluctuations and even large-scale climate variability. In parallel, comprehensive research needs to be done to assess the atmospheric stability of these compounds, their ability to be transported long distances in the atmosphere, and their stability in the archive in order to better interpret their fluxes in ice cores. In addition, specific decontamination procedures, analytical methods with low detection limits (ng/L or lower), fast analysis time and low sample requests need to be developed in order to ensure a good time resolution in the archive.

  20. Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds

    KAUST Repository

    Wang, Zhandong; Popolan-Vaida, Denisia M.; Chen, Bingjie; Moshammer, Kai; Mohamed, Samah; Wang, Heng; Sioud, Salim; Raji, Misjudeen; Kohse-Hö inghaus, Katharina; Hansen, Nils; Dagaut, Philippe; Leone, Stephen R.; Sarathy, Mani


    Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability of liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500–600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound’s molecular structure (n-alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. Finally, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels.

  1. Radiolytic generation of chloro-organic compounds in transuranic and low-level radioactive waste

    International Nuclear Information System (INIS)

    Reed, D.T.; Armstrong, S.C.; Krause, T.R.


    The radiolytic degradation of chloro-plastics is being investigated to evaluate the formation of chlorinated volatile organic compounds in radioactive waste. These chlorinated VOCs, when their subsequent migration in the geosphere is considered, are potential sources of ground-water contamination. This contamination is an important consideration for transuranic waste repositories being proposed for the Waste Isolation Pilot Plant project and the several additional low-level radioactive waste sites being considered throughout the United States. The production of chlorinated volatile organic compounds due to the interaction of ionizing radiation with chloro-plastic materials has been well-established in both this work and past studies. This occurs as a result of gamma, beta, and alpha particle interactions with the plastic material. The assemblage of organic compounds generated depends on the type of plastic material, the type of ionizing radiation, the gaseous environment present and the irradiation temperature. In the authors' experiments, gas generation data were obtained by mounting representative plastics near (3 mm) an alpha particle source (Am-241 foil). This assembly was placed in an irradiation vessel which contained air, nitrogen, or a hydrogen/carbon dioxide mixture, at near-atmospheric pressures, to simulate the range of atmospheres likely to be encountered in the subsurface. The gas phase in the vessels are periodically sampled for net gas production. The gas phase concentrations are monitored over time to determine trends and calculate the radiolytic yield for the various gaseous products

  2. Activation of Persulfates by Graphitized Nanodiamonds for Removal of Organic Compounds. (United States)

    Lee, Hongshin; Kim, Hyoung-Il; Weon, Seunghyun; Choi, Wonyong; Hwang, Yu Sik; Seo, Jiwon; Lee, Changha; Kim, Jae-Hong


    This study introduces graphited nanodiamond (G-ND) as an environmentally friendly, easy-to-regenerate, and cost-effective alternative catalyst to activate persulfate (i.e., peroxymonosulfate (PMS) and peroxydisulfate (PDS)) and oxidize organic compounds in water. The G-ND was found to be superior for persulfate activation to other benchmark carbon materials such as graphite, graphene, fullerene, and carbon nanotubes. The G-ND/persulfate showed selective reactivity toward phenolic compounds and some pharmaceuticals, and the degradation kinetics were not inhibited by the presence of oxidant scavengers and natural organic matter. These results indicate that radical intermediates such as sulfate radical anion and hydroxyl radical are not majorly responsible for this persulfate-driven oxidation of organic compounds. The findings from linear sweep voltammetry, thermogravimetric analysis, Fourier transform infrared spectroscopy, and electron paramagnetic resonance spectroscopy analyses suggest that the both persulfate and phenol effectively bind to G-ND surface and are likely to form charge transfer complex, in which G-ND plays a critical role in mediating facile electron transfer from phenol to persulfate.

  3. Analytical SuperSTEM for extraterrestrial materials research

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J P; Dai, Z R


    Electron-beam studies of extraterrestrial materials with significantly improved spatial resolution, energy resolution and sensitivity are enabled using a 300 keV SuperSTEM scanning transmission electron microscope with a monochromator and two spherical aberration correctors. The improved technical capabilities enable analyses previously not possible. Mineral structures can be directly imaged and analyzed with single-atomic-column resolution, liquids and implanted gases can be detected, and UV-VIS optical properties can be measured. Detection limits for minor/trace elements in thin (<100 nm thick) specimens are improved such that quantitative measurements of some extend to the sub-500 ppm level. Electron energy-loss spectroscopy (EELS) can be carried out with 0.10-0.20 eV energy resolution and atomic-scale spatial resolution such that variations in oxidation state from one atomic column to another can be detected. Petrographic mapping is extended down to the atomic scale using energy-dispersive x-ray spectroscopy (EDS) and energy-filtered transmission electron microscopy (EFTEM) imaging. Technical capabilities and examples of the applications of SuperSTEM to extraterrestrial materials are presented, including the UV spectral properties and organic carbon K-edge fine structure of carbonaceous matter in interplanetary dust particles (IDPs), x-ray elemental maps showing the nanometer-scale distribution of carbon within GEMS (glass with embedded metal and sulfides), the first detection and quantification of trace Ti in GEMS using EDS, and detection of molecular H{sub 2}O in vesicles and implanted H{sub 2} and He in irradiated mineral and glass grains.

  4. [Extraterrestrial influences on health and disease]. (United States)

    Sitar, J


    As to extraterrestrial influences on man in health and disease so far only the effect of the sun and moon are known. This concerns the effect of solar radiation of different wavelengths and the effect of corpuscular solar radiation which has an impact on the condition of the terrestrial magnetic field and electric conditions in the atmosphere. Moreover there is also a question of important influences of gravitation (tides). Here the influence of the position of the moon in relation to the connecting line between sun and earth is involved. In the course of the synodic month (from new moon to the next new moon) a semilunar periodicity of different medical and geomagnetic indicators as well as meteorological ones plays a part. Based on his own research and that of others the author reaches the conclusion that extraterrestrial and terrestrial influences are interrelated and exert a mutual influence on each other and that it is not sensible to separate them strictly. Investigation of all the mentioned influences is important not only for biomedical prognosis but also for basic geophysical and meteorological research. Perspectively it would be useful to plan model experiments. The author feels it is his duty to refuse publication of different horoscopes in the mass media, whatever the intention. In the lay public this may lead to popularization of astrology which has nothing in common with serious research.

  5. Extraterrestrial Intelligence: What Would it Mean? (United States)

    Impey, Chris


    Results from NASA's Kepler mission imply a hundred million Earth-like habitable worlds in the Milky Way galaxy, many of which formed billions of years before the Earth. Each of these worlds is likely to have all of the ingredients needed for biology. The real estate of time and space for the evolution of intelligent life is formidable, begging the question of whether or not we are alone in the universe. The implications of making contact have been explored extensively in science fiction and the popular culture, but less frequently in the serious scientific literature. Astronomers have carried out searches for extraterrestrial intelligence for over half a century, with no success so far. In practice, it is easier to search for alien technology than to discern intelligence of unknown function and form. In this talk, the modes of technology that can currently be detected are summarized, along with the implications of a timing argument than any detected civilization is likely to be much more advanced than ours. Fermi's famous question ``Where Are They?'' is as well posed now as it was sixty years ago. The existence of extraterrestrial intelligence would have profound practical, cultural, and religious implications for humanity.

  6. Is Your Gut Conscious? Is an Extraterrestrial? (United States)

    Vos Post, Jonathan


    This paper speculates on questions intending to be taken scientifically rather than metaphysically: "Can the human gut (enteric nervous system) be conscious?"; "Can your immune system think?"; "Could consciousness be coded in DNA?"; "What do we mean when asserting that an Extraterrestrial is Thinking, or is Conscious? We explore through reference to theory, experiment, and computational models by Christof Koch (Caltech), Barbara Wold (Caltech), and Stuart Kauffman (University of Calgary, Tampere University of Technology, Santa Fe Institute). We use a tentative new definition of thinking, designed to be applicable for humans, cetecea, corvids, artificial intelligences, and extraterrestrial intelligences of any substrate (i.e. Life as We Do Not Know It): "Thinking is the occurrence, transformation, and storage in a mind or brain (or simulation thereof) of information-bearing structures (representations) of one kind or another, such as thoughts, concept, percepts, ideas, impressions, notions, rules, schemas, images, phantasms, or subpersonal representations." We use the framework for Consciousness developed by Francis Crick and Christof Koch. We try to describe scientific goals, but discuss Philosophy sufficient to avoid naïve philosophical category errors (thus are careful not to conflate thought, consciousness, and language) Penrose, Hameroff, and Kauffman speculate (differently) that CNS consciousness is a macroscopic quantum phenomenon. Might intestinal, immune system, or genetic regulatory network dynamics exhibit emergent cooperative quantum effects? The speculations are in the context of Evolution by Natural Selection, presumed to operate throughout the Cosmos, and recent work in the foundations of Computational Biology and Quantum Mechanics.

  7. Fluorescence quantum yields of natural organic matter and organic compounds: Implications for the fluorescence-based interpretation of organic matter composition

    DEFF Research Database (Denmark)

    Wünsch, Urban; Murphy, Kathleen R.; Stedmon, Colin


    to more than 200 modeled spectra (PARAFAC components) in the OpenFluor database. Apparent matches, based on spectral similarity, were subsequently evaluated using molar fluorescence and absorbance. Five organic compounds were potential matches with PARAFAC components from 16 studies; however, the ability......Absorbance and fluorescence spectroscopy are economical tools for tracing the supply, turnover and fate of dissolved organic matter (DOM). The colored and fluorescent fractions of DOM (CDOM and FDOM, respectively) are linked by the apparent fluorescence quantum yield (AQY) of DOM, which reflects...... the likelihood that chromophores emit fluorescence after absorbing light. Compared to the number of studies investigating CDOM and FDOM, few studies have systematically investigated AQY spectra for DOM, and linked them to fluorescence quantum yields (Φ) of organic compounds. To offer a standardized approach...

  8. Study of the interactions between uranium and organic compounds in the hydrothermal systems

    International Nuclear Information System (INIS)

    Salze, David


    Formers studies on the relations between organic matter and uranium have shown that these interactions go since the complexation and the transport of uranium in organics fluids until its reduction by the organic matter leading to the uranium-bearing mineral precipitation. An experimental study of these reactions to 200 deg. C and 500 bars between experimental compounds (pure organic compounds) such as the n-alkanes (n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, n-dodecane, n-tetradecane and n-hexadecane), an n-alkene hydrocarbon (n-dec-1-ene), cycles (butyl-cyclohexane and cyclo-hexane) and the aromatic ones (butyl-benzene and naphthalene), and hexavalent uranium oxides was undertaken. These experiments allowed to show a progressive oxidation of n-alkanes starting from made up C6. The increasing size of the aliphatic chains and the increase in the time of setting in interaction are major factors of the increase in the environment oxidizing capacity in interaction with uranium on the organic compound. The determination of the oxidation step of uranium oxides after experiment made it possible to determine that in aqueous environment the aliphatic model compounds are reducers more powerful than the aromatic compounds. An organic matter from lake or marine origin generally has an aliphatic fraction larger than the organic matter of continental origin and thus will be more likely to reduce uranium. A natural example, the uranium deposits in the sandstones from Arlit, the tectono-lithologic type, was selected in order to apply the results obtained in the experimental part. They are located in fluviatile sandstones rich in organic matter of continental origin (type III) deposited in the paleo-channels. Former authors considered that only this organic matter of type III was responsible for the reduction of U (VI) in U (IV). Work which was undertaken in the present study shows that migrated oils of probable marine origin strongly contributed to the genesis

  9. Biogenic volatile organic compounds as a potential stimulator for organic contaminant degradation by soil microorganisms

    International Nuclear Information System (INIS)

    McLoughlin, Emma; Rhodes, Angela H.; Owen, Susan M.; Semple, Kirk T.


    The effects of monoterpenes on the degradation of 14 C-2,4-dichlorophenol (DCP) were investigated in soils collected from areas surrounding monoterpene and non-monoterpene-emitting vegetation. Indigenous microorganisms degraded 14 C-2,4-DCP to 14 CO 2 , after 1 d contact time. Degradation was enhanced by prior exposure of the soils to 2,4-DCP for 32 d, increasing extents of mineralisation up to 60%. Monoterpene amendments further enhanced 2,4-DCP degradation, but only following pre-exposure to both 2,4-DCP and monoterpene, with total 2,4-DCP mineralisation extents of up to 71%. Degradation was greatest at the higher monoterpene concentrations (≥1 μg kg -1 ). Total mineralisation extents were similar between concentrations, but higher than the control and the 0.1 μg kg -1 amendment, indicating that increases in monoterpene concentration has a diminishing enhancing effect. We suggest that monoterpenes can stimulate the biodegradation of 2,4-DCP by indigenous soil microorganisms and that monoterpene amendment in soils is an effective strategy for removing organic contaminants. - A amendment of soils with monoterpenes may induce organic contaminant degradation by indigenous soil microorganisms

  10. Microbial communities related to volatile organic compound emission in automobile air conditioning units. (United States)

    Diekmann, Nina; Burghartz, Melanie; Remus, Lars; Kaufholz, Anna-Lena; Nawrath, Thorben; Rohde, Manfred; Schulz, Stefan; Roselius, Louisa; Schaper, Jörg; Mamber, Oliver; Jahn, Dieter; Jahn, Martina


    During operation of mobile air conditioning (MAC) systems in automobiles, malodours can occur. We studied the microbial communities found on contaminated heat exchanger fins of 45 evaporators from car MAC systems which were operated in seven different regions of the world and identified corresponding volatile organic compounds. Collected biofilms were examined by scanning electron microscopy and fluorescent in situ hybridization. The detected bacteria were loosely attached to the metal surface. Further analyses of the bacteria using PCR-based single-strand conformation polymorphism and sequencing of isolated 16S rRNA gene fragments identified highly divergent microbial communities with multiple members of the Alphaproteobacteriales, Methylobacteria were the prevalent bacteria. In addition, Sphingomonadales, Burkholderiales, Bacillales, Alcanivorax spp. and Stenotrophomonas spp. were found among many others depending on the location the evaporators were operated. Interestingly, typical pathogenic bacteria related to air conditioning systems including Legionella spp. were not found. In order to determine the nature of the chemical compounds produced by the bacteria, the volatile organic compounds were examined by closed loop stripping analysis and identified by combined gas chromatography/mass spectrometry. Sulphur compounds, i.e. di-, tri- and multiple sulphides, acetylthiazole, aromatic compounds and diverse substituted pyrazines were detected. Mathematical clustering of the determined microbial community structures against their origin identified a European/American/Arabic cluster versus two mainly tropical Asian clusters. Interestingly, clustering of the determined volatiles against the origin of the corresponding MAC revealed a highly similar pattern. A close relationship of microbial community structure and resulting malodours to the climate and air quality at the location of MAC operation was concluded.

  11. Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds

    Directory of Open Access Journals (Sweden)

    Nigel V. Gale


    Full Text Available Recent meta-analyses of plant responses to biochar boast positive average effects of between 10 and 40%. Plant responses, however, vary greatly across systems, and null or negative biochar effects are increasingly reported. The mechanisms responsible for such responses remain unclear. In a glasshouse experiment we tested the effects of three forestry residue wood biochars, applied at five dosages (0, 5, 10, 20, and 50 t/ha to a temperate forest drystic cambisol as direct surface applications and as complete soil mixes on the herbaceous pioneers Lolium multiflorum and Trifolium repens. Null and negative effects of biochar on growth were found in most cases. One potential cause for null and negative plant responses to biochar is plant exposure to mobile compounds produced during pyrolysis that leach or evolve following additions of biochars to soil. In a second glasshouse experiment we examined the effects of simple leaching and heating techniques to ameliorate potentially phytotoxic effects of volatile and leachable compounds released from biochar. We used Solid Phase Microextraction (SPME–gas chromatography–mass spectrometry (GC-MS to qualitatively describe organic compounds in both biochar (through headspace extraction, and in the water leachates (through direct injection. Convection heating and water leaching of biochar prior to application alleviated growth inhibition. Additionally, growth was inhibited when filtrate from water-leached biochar was applied following germination. SPME-GC-MS detected primarily short-chained carboxylic acids and phenolics in both the leachates and solid chars, with relatively high concentrations of several known phytotoxic compounds including acetic acid, butyric acid, 2,4-di-tert-butylphenol and benzoic acid. We speculate that variable plant responses to phytotoxic organic compounds leached from biochars may largely explain negative plant growth responses and also account for strongly species

  12. Exhaled volatile organic compounds for phenotyping chronic obstructive pulmonary disease: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Basanta Maria


    Full Text Available Abstract Background Non-invasive phenotyping of chronic respiratory diseases would be highly beneficial in the personalised medicine of the future. Volatile organic compounds can be measured in the exhaled breath and may be produced or altered by disease processes. We investigated whether distinct patterns of these compounds were present in chronic obstructive pulmonary disease (COPD and clinically relevant disease phenotypes. Methods Breath samples from 39 COPD subjects and 32 healthy controls were collected and analysed using gas chromatography time-of-flight mass spectrometry. Subjects with COPD also underwent sputum induction. Discriminatory compounds were identified by univariate logistic regression followed by multivariate analysis: 1. principal component analysis; 2. multivariate logistic regression; 3. receiver operating characteristic (ROC analysis. Results Comparing COPD versus healthy controls, principal component analysis clustered the 20 best-discriminating compounds into four components explaining 71% of the variance. Multivariate logistic regression constructed an optimised model using two components with an accuracy of 69%. The model had 85% sensitivity, 50% specificity and ROC area under the curve of 0.74. Analysis of COPD subgroups showed the method could classify COPD subjects with far greater accuracy. Models were constructed which classified subjects with ≥2% sputum eosinophilia with ROC area under the curve of 0.94 and those having frequent exacerbations 0.95. Potential biomarkers correlated to clinical variables were identified in each subgroup. Conclusion The exhaled breath volatile organic compound profile discriminated between COPD and healthy controls and identified clinically relevant COPD subgroups. If these findings are validated in prospective cohorts, they may have diagnostic and management value in this disease.

  13. Increase in volatilization of organic compounds using air sparging through addition in alcohol in a soil-water system. (United States)

    Chao, Huan-Ping; Hsieh, Lin-Han Chiang; Tran, Hai Nguyen


    This study developed a novel method to promote the remediation efficiency of air sparging. According to the enhanced-volatilization theory presented in this study, selected alcohols added to groundwater can highly enhance the volatilization amounts of organic compounds with high Henry's law constants. In this study, the target organic compounds consisted of n-hexane, n-heptane, benzene, toluene, 1,1,2-trichloroethane, and tetrachloroethene. n-pentanol, n-hexanol, and n-heptanol were used to examine the changes in the volatilization amounts of organic compounds in the given period. Two types of soils with high and low organic matter were applied to evaluate the transport of organic compounds in the soil-water system. The volatilization amounts of the organic compounds increased with increasing alcohol concentrations. The volatilization amounts of the test organic compounds exhibited a decreasing order: n-heptanol>n-hexanol>n-pentanol. When 10mg/L n-heptanol was added to the system, the maximum volatilization enhancement rate was 18-fold higher than that in distilled water. Samples of soil with high organic matter might reduce the volatilization amounts by a factor of 5-10. In the present study, the optimal removal efficiency for aromatic compounds was approximately 98%. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. POPs and other persistent organic compounds in fish from remote alpine lakes in the Grisons, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, P.; Gujer, E.; Zennegg, M. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland); Lanfranchi, M. [Agency for Nature and Environment of the Canton Grisons, Chur (Switzerland)


    Global transfer of persistent semivolatile organic compounds, such as persistent organic pollutants (POPs), is effected by long-range atmospheric transport in combination with condensation and volatilization processes. Within the global atmosphere, evaporation in warm latitudes and deposition in cold latitudes leads to a transfer of contaminants towards the poles. The phenomenon of atmospheric migration of semivolatile chemicals, such as PCB and DDT, has been predicted and associated with the term ''global distillation'' by Goldberg, and the model has been extensively reviewed by Mackay and Wania. For comparatively less volatile components such as PCDD/F and PBDE, particle-bound deposition is the dominating transfer mechanism. Therefore, the input of these compounds in remote alpine regions without point sources is controlled by atmospheric deposition (dry and wet) and condensation. For organochlorine compounds, such as pesticides and polychlorinated biphenyls (PCB), it has been shown that accumulation is enhanced by temperaturecontrolled condensation also in alpine regions with low average temperatures. The hydrology of remote alpine lakes is determined by direct atmospheric deposition feeding and feeding with water from the surrounding catchment area, without significant inputs from tributaries or from nearby anthropogenic activities. Fish dwelling in these ecosystems represents an excellent indicator for the long-term input of bioaccumulating contaminants, such as POPs and other persistent organic compounds. In the present study, fish from 7 alpine lakes from the Grisons (Switzerland) situated between 2062 and 2637 m above sea level were investigated. With the exception of Laghetto Moesola which is situated adjacent to a mountain pass road, input from local anthropogenic emissions can be excluded for these lakes.

  15. Hydrogen isotope exchange of organic compounds in dilute acid at elevated temperatures

    International Nuclear Information System (INIS)

    Werstiuk, N.H.


    Introduction of one or more deuterium (or tritium) atoms into organic molecules can be accomplished in many ways depending on the nature of the substrate and the extent and sterochemistry of deuteriation or tritiation required. Some of the common methods include acid- and base-catalyzed exchange of carbonyl compounds, metal hydride reductions, dissolving metal reductions, catalytic reduction of double bonds, chromatographic exchange, homogeneous and heterogeneous metal-catalyzed exchange, base-catalyzed exchange of carbon acids other than carbonyl compounds and acid-catalyzed exchange via electrophilic substitution. Only the latter three methods have been used for perdeuteriation of organic compounds. A very useful compendium of labeling methods with examples has been available to chemists for some time. Although metal-catalyzed exchange has been used extensively, the method suffers from some deficiencies: irreproducibility of catalyst surfaces, catalyst poisoning, side reactions such as coupling and hydrogenolysis of labile groups and low deuterium incorporation. Usually a number of cycles are required with fresh catalyst and fresh deuterium source to achieve substantial isotope incorporation. Acid-catalyzed exchange of aromatics and alkenes, strongly acidic media such as liquid DBr, concentrated DBr, acetic acid/stannic chloride, concentrated D 3 PO 4 , concentrated DC1, D 3 PO 4 /BF 3 SO 2 , 50-80% D 2 SO 4 and DFSO 4 /SbF 5 at moderate temperatures (<100 degrees) have been used to effect exchange. The methods are not particularly suitable for large scale deuteriations because of the cost and the fact that the recovery and upgrading of the diluted deuterium pool is difficult. This paper describes the hydrogen isotope exchange of a variety of organic compounds in dilute aqueous acid (0.1-0.5 M) at elevated temperatures (150-300 degrees)

  16. Lipid–water partition coefficients and correlations with uptakes by algae of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Wei-Nung [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 30011, Taiwan (China); Chiou, Cary T., E-mail: [Department of Environmental Engineering and Sustainable Environment Research Laboratory, National Cheng Kung University, Tainan 70101, Taiwan (China); U.S. Geological Survey, Denver Federal Center, Denver, CO 80225 (United States); Lin, Tsair-Fuh, E-mail: [Department of Environmental Engineering and Sustainable Environment Research Laboratory, National Cheng Kung University, Tainan 70101, Taiwan (China)


    Graphical abstract: - Highlights: • Partition coefficients of contaminants with lipid triolein (K{sub tw}) are measured. • Measured K{sub tw} values are nearly the same as the respective K{sub ow}. • Sorption of the contaminants to a dry algal powder is similarly measured. • Algal uptake of a compound occurs primarily by partition into the algal lipid. - Abstract: In view of the scarcity of the lipid–water partition coefficients (K{sub tw}) for organic compounds, the log K{sub tw} values for many environmental contaminants were measured using ultra-pure triolein as the model lipid. Classes of compounds studied include alkyl benzenes, halogenated benzenes, short-chain chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides. In addition to log K{sub tw} determination, the uptakes of these compounds from water by a dry algal species were measured to evaluate the lipid effect on the algal uptake. The measured log K{sub tw} are closely related to their respective log K{sub ow} (octanol–water), with log K{sub ow} = 1.9 to 6.5. A significant difference is observed between the present and early measured log K{sub tw} for compounds with log K{sub ow} > ∼5, which is attributed to the presence and absence of a triolein microemulsion in water affecting the solute partitioning. The observed lipid-normalized algae–water distribution coefficients (log K{sub aw/lipid}) are virtually identical to the respective log K{sub tw} values, which manifests the dominant lipid-partition effect of the compounds with algae.

  17. Distribution of volatile organic compounds over a semiconductor Industrial Park in Taiwan. (United States)

    Chiu, Kong-Hwa; Wu, Ben-Zen; Chang, Chih-Chung; Sree, Usha; Lo, Jiunn-Guang


    This study examined volatile organic compounds (VOC) concentration in ambient air collected during the years 2000--2003 at several different locations of Hsinchu Science-based Industrial Park (HSIP) in Taiwan. A canister automated GC-MS system analyzed the volatile organics in ambient air grasp samples according to T0-15 method. Oxygenated volatiles were the most abundant VOC detected in HSIP followed by aromatics that are commonly used as solvents in the semiconductor industries. The major components measured in the ambient air are 2-propanol (29-135 ppbv), acetone (12-164 ppbv), benzene (0.7-1.7 ppbv), and toluene (13-20 ppbv). At some of the sampling locations, odorous compounds such as carbon disulfide and dimethyl sulfide levels exceed threshold values. The estimated toluene/benzene ratio is very high at most of the sites. However, the total amount of VOC is reduced over the years from 2000 to 2003 due to strict implementation on use and discharge of solvents in industries. There exists no definite seasonal pattern for sporadic occurrence of high levels of some of the volatile organics. Stagnant weather conditions with low wind speeds aid accumulation of toxic species at ground level. The results entail that hi-tech semiconductor industries are still a potential source for harmful organic substances to surrounding microenvironment.

  18. Effects and mechanistic aspects of absorbing organic compounds by coking coal. (United States)

    Ning, Kejia; Wang, Junfeng; Xu, Hongxiang; Sun, Xianfeng; Huang, Gen; Liu, Guowei; Zhou, Lingmei


    Coal is a porous medium and natural absorbent. It can be used for its original purpose after adsorbing organic compounds, its value does not reduce and the pollutants are recycled, and then through systemic circulation of coking wastewater zero emissions can be achieved. Thus, a novel method of industrial organic wastewater treatment using adsorption on coal is introduced. Coking coal was used as an adsorbent in batch adsorption experiments. The quinoline, indole, pyridine and phenol removal efficiencies of coal adsorption were investigated. In addition, several operating parameters which impact removal efficiency such as coking coal consumption, oscillation contact time, initial concentration and pH value were also investigated. The coking coal exhibited properties well-suited for organics' adsorption. The experimental data were fitted to Langmuir and Freundlich isotherms as well as Temkin and Redlich-Peterson (R-P) models. The Freundlich isotherm model provided reasonable models of the adsorption process. Furthermore, the purification mechanism of organic compounds' adsorption on coking coal was analysed.

  19. Explicit modeling of volatile organic compounds partitioning in the atmospheric aqueous phase

    Directory of Open Access Journals (Sweden)

    C. Mouchel-Vallon


    Full Text Available The gas phase oxidation of organic species is a multigenerational process involving a large number of secondary compounds. Most secondary organic species are water-soluble multifunctional oxygenated molecules. The fully explicit chemical mechanism GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere is used to describe the oxidation of organics in the gas phase and their mass transfer to the aqueous phase. The oxidation of three hydrocarbons of atmospheric interest (isoprene, octane and α-pinene is investigated for various NOx conditions. The simulated oxidative trajectories are examined in a new two dimensional space defined by the mean oxidation state and the solubility. The amount of dissolved organic matter was found to be very low (yield less than 2% on carbon atom basis under a water content typical of deliquescent aerosols. For cloud water content, 50% (isoprene oxidation to 70% (octane oxidation of the carbon atoms are found in the aqueous phase after the removal of the parent hydrocarbons for low NOx conditions. For high NOx conditions, this ratio is only 5% in the isoprene oxidation case, but remains large for α-pinene and octane oxidation cases (40% and 60%, respectively. Although the model does not yet include chemical reactions in the aqueous phase, much of this dissolved organic matter should be processed in cloud drops and modify both oxidation rates and the speciation of organic species.

  20. Salt lakes of Western Australia - Natural abiotic formation of volatile organic compounds (United States)

    Krause, T.; Studenroth, S.; Mulder, I.; Tubbesing, C.; Kotte, K.; Ofner, J.; Junkermann, W.; Schöler, H. F.


    Western Australia is a semi-/arid region that is heavily influenced by global climate change and agricultural land use. The area is known for its many ephemeral saline and hypersaline lakes with a wide range of hydrogeochemical parameters that have gradually changed over the last fifty years. Historically, the region was covered by eucalyptus trees and shrubs, but was cleared mainly within 10 years after WWII to make room for wheat and live stock. After the clearance of the deep rooted native plants the groundwater started to rise, bringing increased amounts of dissolved salts and minerals to the surface and discharging them into streams and lakes. Thus most of Western Australia is influenced by secondary salinisation (soil salting) [1]. Another problem is that the discharged minerals affect the pH of ground and surface water, which ranges from acidic to slightly basic. During the 2011 campaign surface water was measured with a pH between 2.5 and 7.1. Another phenomenon in Western Australia is the decrease of rainfall over the last decades assumed to be linked to the secondary salinisation. The rising saline and mineral rich groundwater increases the biotical and abiotical activity of the salt lakes. Halogenated and non-halogenated volatile organic compounds emitted from those lakes undergo fast oxidation and chemical reactions to form small particles modifying cloud microphysics and thus suppressing rain events [2]. Our objective is to gain a better understanding of this extreme environment with its hypersaline acidic lakes with regard to the potential abiotic formation of volatile organic compounds and its impact on the local climate. In spring 2011 fifty-three sediment samples from ten salt lakes in the Lake King region where taken, freeze-dried and ground. In order to simulate the abiotic formation of volatile organic compounds the soil samples were resuspended with water in gas-tight headspace vials. The headspace was measured using a purge and trap GC